WorldWideScience

Sample records for general fracture transgranularly

  1. First principles characterisation of brittle transgranular fracture of titanium hydrides

    International Nuclear Information System (INIS)

    Olsson, Pär A.T.; Mrovec, Matous; Kroon, Martin

    2016-01-01

    In this work we have studied transgranular cleavage and the fracture toughness of titanium hydrides by means of quantum mechanical calculations based on density functional theory. The calculations show that the surface energy decreases and the unstable stacking fault energy increases with increasing hydrogen content. This is consistent with experimental findings of brittle behaviour of titanium hydrides at low temperatures. Based on Griffith-Irwin theory we estimate the fracture toughness of the hydrides to be of the order of 1 MPa⋅m"1"/"2, which concurs well with experimental data. To investigate the cleavage energetics, we analyse the decohesion at various crystallographic planes and determine the traction-separation laws based on the Rose's extended universal binding energy relation. The calculations predict that the peak stresses do not depend on the hydrogen content of the phases, but it is rather dependent on the crystallographic cleavage direction. However, it is found that the work of fracture decreases with increasing hydrogen content, which is an indication of hydrogen induced bond weakening in the material.

  2. Stress corrosion of Zircaloy-4. Fracture mechanics study of the intergranular - transgranular transition

    International Nuclear Information System (INIS)

    Farina, Silvia B.; Duffo, Gustavo S.

    2003-01-01

    Stress corrosion cracking susceptibility of Zircaloy-4 wires was studied in 1M NaCl, 1M KBr and 1M KI aqueous solutions, and in iodine alcoholic solutions. In all cases, intergranular attack preceded transgranular propagation. It is generally accepted that the intergranular-transgranular transition occurs when a critical value of the stress intensity factor is reached. In the present work it was confirmed that the transition from intergranular to transgranular propagation cracking in Zircaloy-4 wires also occurs when a critical value of the stress intensity factor is reached. This critical stress intensity factor in wire samples is independent of the solution tested and close to 10 MPa.m-1/2. This value is in good agreement with those reported in the literature measured by different techniques. (author)

  3. Microscopic Characterization of Tensile and Shear Fracturing in Progressive Failure in Marble

    Science.gov (United States)

    Cheng, Yi; Wong, Louis Ngai Yuen

    2018-01-01

    Compression-induced tensile and shear fractures were reported to be the two fundamental fracture types in rock fracturing tests. This study investigates such tensile and shear fracturing process in marble specimens containing two different flaw configurations. Observations first reveal that the development of a tensile fracture is distinct from shear fracture with respect to their nucleation, propagation, and eventual formation in macroscale. Second, transgranular cracks and grain-scale spallings become increasingly abundant in shear fractures as loading increases, which is almost not observed in tensile fractures. Third, one or some dominant extensional microcracks are commonly observed in the center of tensile fractures, while such development of microcracks is almost absent in shear fractures. Microcracks are generally of a length comparable to grain size and distribute uniformly within the damage zone of the shear fracture. Fourth, the width of densely damaged zone in the shear fracture is nearly 10 times of that in the tensile fracture. Quantitative measurement on microcrack density suggests that (1) microcrack density in tensile and shear fractures display distinct characteristics with increasing loading, (2) transgranular crack density in the shear fracture decreases logarithmically with the distance away from the shear fracture center, and (3) whatever the fracture type, the anisotropy can only be observed for transgranular cracks with a large density, which partially explains why microcrack anisotropy usually tends to be unobvious until approaching peak stress in specimens undergoing brittle failure. Microcracking characteristics observed in this work likely shed light to some phenomena and conclusions generalized in seismological studies.

  4. Conversion of transgranular to intergranular fracture in NiCr steels

    Czech Academy of Sciences Publication Activity Database

    Hadraba, Hynek; Němec, O.; Dlouhý, Ivo

    2008-01-01

    Roč. 75, č. 12 (2008), s. 3677-3691 ISSN 0013-7944 R&D Projects: GA AV ČR IAA200410502 Institutional research plan: CEZ:AV0Z20410507 Keywords : intergranular fracture * cleavage * fracture toughness * fracture stress * micromechanics * micromechanism * fractal dimension Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.713, year: 2008

  5. Computational simulation for creep fracture properties taking microscopic mechanism into account

    International Nuclear Information System (INIS)

    Tabuchi, Masaaki

    2003-01-01

    Relationship between creep crack growth rate and microscopic fracture mechanism i.e., wedge-type intergranular, transgranular and cavity-type intergranular crack growth, has been investigated. The growth rate of wedge-type and transgranular creep crack could be characterized by creep ductility. Creep damages formed ahead of the cavity-type crack tip accelerated the crack growth rate. Based on the experimental results, FEM code that simulates creep crack growth has been developed by taking the fracture mechanism into account. The effect of creep ductility and void formation ahead of the crack tip on creep crack growth behavior could be simulated. (author)

  6. In-situ Investigation of the Fracture Behaviors of 2195-T8 Aluminum-Lithium alloy

    Directory of Open Access Journals (Sweden)

    Wang Liang

    2016-01-01

    Full Text Available In this paper, the tensile crack initiation and propagation behavior of 2195-T8 Aluminum-Lithium alloy was studied by in situ scanning electron microscope observation at room temperature. It was found that cracks initiated at second phases which propagated along the grain boundaries only as T1 phases could retard crack growth inside grains. With further increase of strain, within the grain a large number of slip bands were produced, resulting in the deflection of the grains, which leaded to transgranular fracture at last. SEM examination show both intergranular and transgranular fracture surface morphology indicating that the 2195-T8 alloy revealed a mix mechanism for the fracture.

  7. Evaluation of the transgranular cracking phenomenon on the Indian Point No. 3 steam generator vessels

    International Nuclear Information System (INIS)

    Czajkowski, C.J.

    1985-01-01

    A metallurgical investigation was performed on specimens from the shell of steam generators Nos. 31 and 32 of the Indian Point-3 Power Plant. The shell material exhibited high values in hardness which was indicative that relatively high residual stresses may have been present. All observed cracks were transgranular in appearance and were associated with pits on the vessels' inside surfaces. Both stress relieved and non-stress relieved specimens of SA302 Grade B material were tested in a constant extension rate apparatus in various environments in order to reproduce the transgranular cracking at Indian Point No. 3. The paper concludes that SA302 Grade B material is susceptible to transgranular stress corrosion cracking (SCC) in constant extension rate testing (CERT) with as little as 1 ppM chloride (as CUCL 2 ) in 268 0 C H 2 O. 2 refs., 9 figs

  8. Microstructural Modeling of Dynamic Intergranular and Transgranular Fracture Modes in Zircaloys

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, I. [North Carolina State Univ., Raleigh, NC (United States); Zikry, M.A. [North Carolina State Univ., Raleigh, NC (United States); Ziaei, S. [North Carolina State Univ., Raleigh, NC (United States)

    2017-04-01

    In this time period, we have continued to focus on (i) refining the thermo-mechanical fracture model for zirconium (Zr) alloys subjected to large deformations and high temperatures that accounts for the cracking of ZrH and ZrH2 hydrides, (ii) formulating a framework to account intergranular fracture due to iodine diffusion and pit formation in grain-boundaries (GBs). Our future objectives are focused on extending to a combined population of ZrH and ZrH2 populations and understanding how thermo-mechanical behavior affects hydride reorientation and cracking. We will also refine the intergranular failure mechanisms for grain boundaries with pits.

  9. Elastic fracture in driven media

    International Nuclear Information System (INIS)

    Lung Chiwei; Wang Shenggang; Long Qiyi

    1999-08-01

    Fracture as one of the mechanical properties of materials is structurally dependent. Defects, defect assemblies, grain boundaries and sub-boundaries materials, modify the local stress intensity factors intensively. Brittle fracture prefers to confine to the grain boundary where the specific surface energy is lower than that in the grain. Again, transgranular cracking may occur on the crystal cleavage plane or planes where the local toughness is lowered by dislocation interaction and motion. This paper shows the complexity of the fractal dimension or roughness index of fractured surfaces in materials with metallographic structures or in inhomogeneous media. (author)

  10. Degradation of impact fracture during accelerated aging of weld metal on microalloyed steel

    International Nuclear Information System (INIS)

    Vargas-Arista, B.; Hallen, J. M.; Albiter, A.; Angeles-Chavez, C.

    2008-01-01

    The effect of accelerated aging on the toughness and fracture of the longitudinal weld metal on an API5L-X52 line pipe steel was evaluated by Charpy V-notch impact test, fracture analysis and transmission electron microscopy. Aging was performed at 250 degree centigrade for 100 to 1000 h. The impact results indicated a significant reduction in the fracture energy and impact toughness as a function of aging time, which were achieved by the scanning electron microscope fractography that showed a decrease in the vol fraction of microvoids by Charpy ductile failure with the aging time, which favored the brittle fracture by transgranular cleavage. The minimum vol fraction of microvoids was reached at 500 h due to the peak aged. The microstructural analysis indicated the precipitation of transgranular iron nano carbides in the aged specimens, which was related to the deterioration of toughness and change in the ductile to brittle behavior. (Author) 15 refs

  11. Fracture characteristics of uranium alloys by scanning electron microscopy

    International Nuclear Information System (INIS)

    Koger, J.W.; Bennett, R.K. Jr.

    1976-10-01

    The fracture characteristics of uranium alloys were determined by scanning electron microscopy. The fracture mode of stress-corrosion cracking (SCC) of uranium-7.5 weight percent niobium-2.5 weight percent zirconium (Mulberry) alloy, uranium--niobium alloys, and uranium--molybdenum alloys in aqueous chloride solutions is intergranular. The SCC fracture surface of the Mulberry alloy is characterized by very clean and smooth grain facets. The tensile-overload fracture surfaces of these alloys are characteristically ductile dimple. Hydrogen-embrittlement failures of the uranium alloys are brittle and the fracture mode is transgranular. Fracture surfaces of the uranium-0.75 weight percent titanium alloys are quasi cleavage

  12. Effect of temperature on the elastic-plastic fracture toughness behavior of Inconel X-750

    International Nuclear Information System (INIS)

    Mills, W.J.

    1977-09-01

    The elastic-plastic J/sub Ic/ fracture toughness response of precipitation heat treated Inconel X-750 has been evaluated by the multi-specimen resistance curve (R-curve) technique at room temperature, 800 0 F (427 0 C), and 1000 0 F (538 0 C). The value of J/sub Ic/ for this nickel-base superalloy was found to be relatively independent of temperature over the test temperature range. On the other hand, the slopes of the fracture toughness R-curves were steeper at 800 and 1000 0 F (427 and 538 0 C) than at 75 0 F (24 0 C), thereby indicating that the resistance to crack extension was considerably greater at elevated temperatures, Metallographic and electron fractographic examination of the Inconel X-750 fracture surfaces revealed that this slope change phenomenon was associated with an intergranular to transgranular fracture mechanism transition. Under room temperature conditions, crack extension occurred primarily by an intergranular dimple rupture mechanism attributed to microvoid coalescence along a grain boundary denuded region. In the 800 to 1000 0 F (427 to 538 0 C) regime, the fracture surface was dominated by a faceted transgranular morphology

  13. Effect of hot extrusion, other constituents, and temperature on the strength and fracture of polycrystalline MgO

    Energy Technology Data Exchange (ETDEWEB)

    Rice, R.W. (W.R. Grace and Co.-Conn, Columbia, MD (United States))

    1993-12-01

    Improved agreement was confirmed between the Petch intercept and single-crystal yield stresses at 22 C. Hot-extruded MgO crystal specimens stressed parallel with the resultant axial texture (1) gave the highest and least-scattered strength-grain size results at 22 C, (2) showed direct fractographic evidence of microplastic initiated fracture at 22 C and showed macroscopic yield at 1,315 and especially 1,540 C, and (3) fractured entirely via transgranular cleavage, except for intergranular failure initiation from one or a few grain boundary surfaces exposed on the subsequent fracture surface, mainly at 1,540 C. Hot-extruded, hot-pressed MgO billets gave comparable strength when fracture initiated transgranularly, but lower strength when fracture initiated from one or especially a few grain boundary surfaces exposed on the fracture. The extent and frequency of such boundary fracture increased with test temperature. While oxide additions of [<=] 5% or impurities in hot-pressed or hot-extruded MgO can make limited strength increases at larger grain sizes, those having limited solubility can limit strength at finer grain sizes, as can coarser surface finish. Overall, MgO strength is seen as a balance between flaw and microplastic controlled failure, with several parameters shifting the balance.

  14. The characteristics creep fracture of austenitic stainless steels

    International Nuclear Information System (INIS)

    Monteiro, S.N.; Assis, A.M.C.A.

    1977-05-01

    The characteristics of fracture on creep of two AISI type 316 austenitic stainless steels tested at constant load from 600 to 800 0 C were studied by scanning electron microscopy. The morphological aspects of the fracture were analysed and correllated to the ductility level attained in creep. A marked change from intergranular to transgranular type of fracture was observed in going from 600 to 800 0 C. At 800 0 C on the other hand, the condition for crack nucleation at sigma phase as well as the special conditions of oxidation, are apparently responsible for that same change with the applied stress. (Author) [pt

  15. Effects of grain size and test temperature on ductility and fracture behavior of a b-doped Ni/sub 3/Al alloy

    International Nuclear Information System (INIS)

    Takeyama, M.; Liu, C.T.

    1988-01-01

    Effect of grain size on ductility and fracture behavior of boron-doped Ni/sub 3/Al(Ni-23Al-0.5Hf, at.%) was studied by tensile tests using a strain rate of 3.3 x 10/sup -3/s/sup -1/ at temperatures to 1000 0 C under a high vacuum of 0 C, the alloy showed essentially ductile transgranular fracture with more than 30% elongation whereas it exhibited ductile grain-boundary fracture in the temperature range from 700 to 800 0 C. In both cases, the ductility was insensitive to grain size. On the other hand, at room temperatures above 800 0 C, the ductility decreased from about 17 to 0% with increasing grain size. The corresponding fracture mode changed from grain-boundary fracture with dynamic recrystallization to brittle grain-boundary fracture. The ductile transgranular fracture at lower temperatures is explained by stress concentration at the intersection of slip bands. The grain-size dependence of ductility is interpreted in terms of stress concentration at the grain boundaries. Finally, it is suggested that the temperature dependence of ductility in this alloy might be related to the thermal behavior of boron segregated to the grain boundaries

  16. Effect of Crack Tip Stress Concentration Factor on Fracture Resistance in Vacuum Environment

    Science.gov (United States)

    2015-01-20

    indicate: (1) in all alloys, the fracture resistance is highest for blunt-notches (smaller Kt), and is lowest for fatigue -sharpened precracked...paths are transgranular and the fracture mode is ductile void coalescence in all cases, irrespective of the stress concentration factor. 20-01-2015...because of corrosion and/or various loading conditions such as fatigue , fretting, abrasion, etc. Also, the geometry of the structure may cause an

  17. A study on the fractures of iodine induced stress corrosion cracking of new zirconium alloys

    International Nuclear Information System (INIS)

    Peng Qian; Zhao Wenjin; Li Weijun; Tang Zhenghua; Heng Xuemei

    2005-10-01

    The morphology and chemical compositions of I-SCC fractures of new zirconium alloys were investigated by SEM and EDXA. The feature on fracture surface for I-SCC samples, such as corrosion products, the secondary cracking, intergranular cracking and pseudo-cleavage transgranular cracking, have been observed. And the fluting, the typical characteristic of I-SCC also has been found. Intergranular cracking is visible at crack initiation stage and transgranular cracking is distinguished at crack propagation stage. The corrosion products are mainly composed of Zr and O; and I can be detected on the local pseudocleavage zone. The most of grooves on the fractures of relieved-stress annealing samples are parallel with the roll plane. The intergranular cracking in relieved-stress annealing samples is not obvious. When the test temperature increases, the activity of iodine increases and the stress on crack tip is easier to be released, thus the corrosion products on fracture also increase and intergranular cracking is visible. The partial pressure of iodine influents the thickness of corrosion products, and intergranular cracking is easier to be found when iodine partial pressure is high enough. (authors)

  18. Macro and Microscopic Investigation on Fracture Specimen of Alloy 617 Base Metal and Weldment in Low Cycle Fatigue Regime

    International Nuclear Information System (INIS)

    Kim, Seon Jin; Dewa, Rando Tungga; Kim, Won Gon

    2016-01-01

    This paper investigates macro- and microscopic fractography performed on fracture specimens from low cycle fatigue (LCF) testings through an Alloy 617 base metal and weldments. The weldment specimens were taken from gas tungsten arc welding (GTAW) pad of Alloy 617. The aim of the present study is to investigate the macro- and microscopic aspects of the low cycle fatigue fracture mode and mechanism of Alloy 617 base metal and GTAWed weldment specimens. Fully axial total strain controlled fatigue tests were conducted at room temperature with total strain ranges of 0.6, 0.9, 1.2 and 1.5%. Macroscopic fracture surfaces of Alloy 617 base metal specimens showed a flat type normal to the fatigue loading direction, whereas the GTAWed weldment specimens were of a shear/star type. The fracture surfaces of both the base metal and weldment specimens revealed obvious fatigue striations at the crack propagation regime. In addition, the fatigue crack mechanism of the base metal showed a transgranular normal to fatigue loading direction; however, the GTAWed weldment specimens showed a transgranular at approximately 45° to the fatigue loading direction

  19. Macro and Microscopic Investigation on Fracture Specimen of Alloy 617 Base Metal and Weldment in Low Cycle Fatigue Regime

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seon Jin; Dewa, Rando Tungga [Pukyung National Univ., Busan (Korea, Republic of); Kim, Won Gon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-06-15

    This paper investigates macro- and microscopic fractography performed on fracture specimens from low cycle fatigue (LCF) testings through an Alloy 617 base metal and weldments. The weldment specimens were taken from gas tungsten arc welding (GTAW) pad of Alloy 617. The aim of the present study is to investigate the macro- and microscopic aspects of the low cycle fatigue fracture mode and mechanism of Alloy 617 base metal and GTAWed weldment specimens. Fully axial total strain controlled fatigue tests were conducted at room temperature with total strain ranges of 0.6, 0.9, 1.2 and 1.5%. Macroscopic fracture surfaces of Alloy 617 base metal specimens showed a flat type normal to the fatigue loading direction, whereas the GTAWed weldment specimens were of a shear/star type. The fracture surfaces of both the base metal and weldment specimens revealed obvious fatigue striations at the crack propagation regime. In addition, the fatigue crack mechanism of the base metal showed a transgranular normal to fatigue loading direction; however, the GTAWed weldment specimens showed a transgranular at approximately 45° to the fatigue loading direction.

  20. Identification of modes of fracture in a 2618-T6 aluminum alloy using stereophotogrammetry

    Energy Technology Data Exchange (ETDEWEB)

    Salas Zamarripa, A., E-mail: a.salaszamarripa@gmail.com [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon. Av. Universidad S/N, Ciudad Universitaria, C.P. 66451, Apartado Postal 076 Suc. ' F' San Nicolas de los Garza, N.L. (Mexico); Pinna, C.; Brown, M.W. [Department of Mechanical Engineering, University of Sheffield. Sir Frederick Mappin Building, Mappin Street, Sheffield, S1 3JD (United Kingdom); Mata, M.P. Guerrero; Morales, M. Castillo; Beber-Solano, T.P. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon. Av. Universidad S/N, Ciudad Universitaria, C.P. 66451, Apartado Postal 076 Suc. ' F' San Nicolas de los Garza, N.L. (Mexico)

    2011-12-15

    The identification and the development of a quantification technique of the modes of fracture in fatigue fracture surfaces of a 2618-T6 aluminum alloy were developed during this research. Fatigue tests at room and high temperature (230 Degree-Sign C) were carried out to be able to compare the microscopic fractographic features developed by this material under these testing conditions. The overall observations by scanning electron microscopy (SEM) of the fracture surfaces showed a mixture of transgranular and ductile intergranular fracture. The ductile intergranular fracture contribution appears to be more significant at room temperature than at 230 Degree-Sign C. A quantitative methodology was developed to identify and to measure the contribution of these microscopic fractographic features. The technique consisted of a combination of stereophotogrammetry and image analysis. Stereo-pairs were randomly taken along the crack paths and were then analyzed using the profile module of MeX software. The analysis involved the 3-D surface reconstruction, the trace of primary profile lines in both vertical and horizontal directions within the stereo-pair area, the measurements of the contribution of the modes of fracture in each profile, and finally, the calculation of the average contribution in each stereo-pair. The technique results confirmed a higher contribution of ductile intergranular fracture at room temperature than at 230 Degree-Sign C. Moreover, there was no indication of a direct relationship between this contribution and the strain amplitudes range applied during the fatigue testing. - Highlights: Black-Right-Pointing-Pointer Stereophotogrammetry and image analysis as a measuring tool of modes of fracture in fatigue fracture surfaces. Black-Right-Pointing-Pointer A mixture of ductile intergranular and transgranular fracture was identified at room temperature and 230 Degree-Sign C testing. Black-Right-Pointing-Pointer Development of a quantitative methodology to

  1. Identification of modes of fracture in a 2618-T6 aluminum alloy using stereophotogrammetry

    International Nuclear Information System (INIS)

    Salas Zamarripa, A.; Pinna, C.; Brown, M.W.; Mata, M.P. Guerrero; Morales, M. Castillo; Beber-Solano, T.P.

    2011-01-01

    The identification and the development of a quantification technique of the modes of fracture in fatigue fracture surfaces of a 2618-T6 aluminum alloy were developed during this research. Fatigue tests at room and high temperature (230 °C) were carried out to be able to compare the microscopic fractographic features developed by this material under these testing conditions. The overall observations by scanning electron microscopy (SEM) of the fracture surfaces showed a mixture of transgranular and ductile intergranular fracture. The ductile intergranular fracture contribution appears to be more significant at room temperature than at 230 °C. A quantitative methodology was developed to identify and to measure the contribution of these microscopic fractographic features. The technique consisted of a combination of stereophotogrammetry and image analysis. Stereo-pairs were randomly taken along the crack paths and were then analyzed using the profile module of MeX software. The analysis involved the 3-D surface reconstruction, the trace of primary profile lines in both vertical and horizontal directions within the stereo-pair area, the measurements of the contribution of the modes of fracture in each profile, and finally, the calculation of the average contribution in each stereo-pair. The technique results confirmed a higher contribution of ductile intergranular fracture at room temperature than at 230 °C. Moreover, there was no indication of a direct relationship between this contribution and the strain amplitudes range applied during the fatigue testing. - Highlights: ► Stereophotogrammetry and image analysis as a measuring tool of modes of fracture in fatigue fracture surfaces. ► A mixture of ductile intergranular and transgranular fracture was identified at room temperature and 230 °C testing. ► Development of a quantitative methodology to obtain the percentage of modes of fracture within the fracture surface.

  2. Degradation of impact fracture during accelerated aging of weld metal on microalloyed steel; Degradacion de la tenacidad al impacto durante el envejecimiento acelerado de soldadura en acero microaleado

    Energy Technology Data Exchange (ETDEWEB)

    Vargas-Arista, B.; Hallen, J. M.; Albiter, A.; Angeles-Chavez, C.

    2008-07-01

    The effect of accelerated aging on the toughness and fracture of the longitudinal weld metal on an API5L-X52 line pipe steel was evaluated by Charpy V-notch impact test, fracture analysis and transmission electron microscopy. Aging was performed at 250 degree centigrade for 100 to 1000 h. The impact results indicated a significant reduction in the fracture energy and impact toughness as a function of aging time, which were achieved by the scanning electron microscope fractography that showed a decrease in the vol fraction of microvoids by Charpy ductile failure with the aging time, which favored the brittle fracture by transgranular cleavage. The minimum vol fraction of microvoids was reached at 500 h due to the peak aged. The microstructural analysis indicated the precipitation of transgranular iron nano carbides in the aged specimens, which was related to the deterioration of toughness and change in the ductile to brittle behavior. (Author) 15 refs.

  3. Hot pressing, strength, and fracture of calcium hexaboride

    International Nuclear Information System (INIS)

    Dutta, S.K.

    1975-01-01

    Fracture behavior and strength of hot-pressed CaB 6 were studied. The modulus of elasticity determined by attaching strain gages to the tensile surface of the bend bars to measure strain, was 55 +- 3 x 10 6 psi. The results are compared with values for other low density ceramic materials (B 4 C, SiB 6 , Be 4 B, AlB 12 ) in a table. The fracture mode was observed for both modulus of rupture and impact test specimens. Predominantly transgranular fracture, associated with distinct step cleavages is evident. Fracture origins were examined in an effort to understand the strength limiting features in hot-pressed CaB 6 specimens. Surface defects, large grain agglomerations, and isolated pore pockets were observed and varied from bar to bar; these were similar to those found in B 4 C. (U.S.)

  4. Mechanistic differences between transgranular and intergranular stress corrosion cracking

    International Nuclear Information System (INIS)

    Serebrinsky, Santiago A.; Galvele, Jose R.

    2000-01-01

    Constant extension rate tests (CERT or CSRT) with the strain rate (SR) covering a 7 orders of magnitude range were applied to the study of many systems. In particular, the kinetics of SCC were measured via the stress corrosion (SCC) crack propagation rate (CPR). The main experimental findings are: a) increasing SR produces a monotonic (logarithmic) increase in CPR; b) the slopes α in log CPR vs. log SR plots take distinct values depending on the morphology: intergranular (IG) cracks are more steeply accelerated by SR than transgranular (TG), with α lG =0.4 to 0.7 and α TG =0.2 to 0.3; c) an increase in SR only shifts the log CPR vs. potential curves to higher CPR values, without changing its shape. Quantitative evaluation shows that dislocations piled-up at grain boundaries may combine with the surface mobility mechanism to give the experimental results. (author)

  5. Postirradiation fracture toughness of Inconel X-750

    International Nuclear Information System (INIS)

    Mills, W.J.

    1983-01-01

    The effect of fast-neutron irradiation on the fracture toughness response of Inconel X-750 was characterized at 427 deg C using the J-R curve technique. Irradiation exposures ranging from 3 to 16 displacements per atom resulted in a reduction in Jsub(Ic) from 130 to 76 kJ/m 2 and a reduction in tearing modulus from 32 to 2.6. Postirradiation fractographic examination revealed that an intergranular fracture mechanism was dominant, in contrast to the extensive transgranular cracking mode found on unirradiated fracture surfaces. The enhanced intergranular failure observed after irradiation was caused by extensive heterogeneous slip in a matrix that was greatly strengthened by an irradiation-induced dislocation substructure. Specifically, intense planar slip bands impinged on the grain boundaries and generated large stress concentrations. Since the stress concentrations could not be relaxed by the hardened matrix, the grain boundaries 'unzipped' readily, resulting in the low toughness and tearing resistance. (author)

  6. Effect of helium bubbles at grain boundaries on the fracture characteristics of high-density 238PuO2

    International Nuclear Information System (INIS)

    Sisson, R.D.; McDonell, W.R.

    1976-01-01

    Helium bubbles that formed at grain boundaries in high density (greater than 92 percent of theoretical) 238 PuO 2 shards did not affect the room temperature fracture behavior as observed by scanning electron microscopy. Fracture was predominantly by brittle transgranular cleavage with only infrequent intergranular failure observed. Pores (approximately 5 μm dia) that formed within the grains during the sintering process, rather than helium bubbles, initiated fractures. Helium bubbles were observed occasionally on the fracture surfaces of 20-month-old shards that had been heated to 1600 0 C for 8 h and subsequently crushed at room temperature. The average radius of these bubbles was approximately 1 μm. These bubbles were not interconnected, but were sometimes aligned in stringers

  7. Fracture characteristic in creep of a 5 Cr-1/2 Mo steel at 600 and 6500C

    International Nuclear Information System (INIS)

    Paiva, R.L.C. de; Monteiro, S.N.; Silveira, T.L.

    The creep behavior of a 5 Cr-1/2 Mo steel was studied at 600 and 650 0 C. The caracteristics of fracture, observed by optical and scanning metallography, displayed a transition from intergranular to transgranular mode of rupture in the range of temperatures and stresses studied. This behavior was dicussed based upon the possible mechanisms for creep deformation taking place in this material [pt

  8. Relationship between microstructure and fracture types in a UNS S32205 duplex stainless steel

    Directory of Open Access Journals (Sweden)

    Maria Victoria Biezma

    2013-01-01

    Full Text Available Duplex stainless steels are susceptible to the formation of sigma phase at high temperature which could potentially be responsible for catastrophic service failure of components. Thermal treatments were applied to duplex stainless steels in order to promote the precipitation of different fractions of sigma phase into a ferrite-austenite microstructure. Quantitative image analysis was employed to characterize the microstructure and Charpy impact tests were used in order to evaluate the mechanical degradation caused by sigma phase presence. The fracture morphology of the Charpy test specimens were thoroughly observed in SEM, looking for a correlation between the microstructure and the fracture types in UNS S32205 duplex stainless steel. The main conclusion is the strong embrittlement effect of sigma phase since it is possible to observe a transition from transgranular fracture to intergranular fracture as increases the percentage of sigma phase. Thus, the mixed modes of fracture are predominant in the present study with high dependence on sigma phase percentages obtained by different thermal treatments.

  9. Micromechanical Aspects of Transgranular and Intergranular Failure Competition

    Czech Academy of Sciences Publication Activity Database

    Dlouhý, Ivo; Tarafder, M.; Hadraba, Hynek

    2011-01-01

    Roč. 465, - (2011), s. 399-402 ISSN 1013-9826 R&D Projects: GA ČR(CZ) GAP107/10/0361 Institutional research plan: CEZ:AV0Z20410507 Keywords : intergranular fracture * cleavage * fracture toughness Subject RIV: JL - Materials Fatigue, Friction Mechanics

  10. Failure analysis of the fractured wires in sternal perichronal loops.

    Science.gov (United States)

    Chao, Jesús; Voces, Roberto; Peña, Carmen

    2011-10-01

    We report failure analysis of sternal wires in two cases in which a perichronal fixation technique was used to close the sternotomy. Various characteristics of the retrieved wires were compared to those of unused wires of the same grade and same manufacturer and with surgical wire specifications. In both cases, wire fracture was un-branched and transgranular and proceeded by a high cycle fatigue process, apparently in the absence of corrosion. However, stress anlysis indicates that the effective stress produced during strong coughing is lower than the yield strength. Our findings suggest that in order to reduce the risk for sternal dehiscence, the diameter of the wire used should be increased. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Fracture toughness of copper-base alloys for ITER applications: A preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, D.J.; Zinkle, S.J.; Rowcliffe, A.F. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    Oxide-dispersion strengthened copper alloys and a precipitation-hardened copper-nickel-beryllium alloy showed a significant reduction in toughness at elevated temperature (250{degrees}C). This decrease in toughness was much larger than would be expected from the relatively modest changes in the tensile properties over the same temperature range. However, a copper-chromium-zirconium alloy strengthened by precipitation showed only a small decrease in toughness at the higher temperatures. The embrittled alloys showed a transition in fracture mode, from transgranular microvoid coalescence at room temperature to intergranular with localized ductility at high temperatures. The Cu-Cr-Zr alloy maintained the ductile microvoid coalescence failure mode at all test temperatures.

  12. Brittle fracture in structural steels: perspectives at different size-scales.

    Science.gov (United States)

    Knott, John

    2015-03-28

    This paper describes characteristics of transgranular cleavage fracture in structural steel, viewed at different size-scales. Initially, consideration is given to structures and the service duty to which they are exposed at the macroscale, highlighting failure by plastic collapse and failure by brittle fracture. This is followed by sections describing the use of fracture mechanics and materials testing in carrying-out assessments of structural integrity. Attention then focuses on the microscale, explaining how values of the local fracture stress in notched bars or of fracture toughness in pre-cracked test-pieces are related to features of the microstructure: carbide thicknesses in wrought material; the sizes of oxide/silicate inclusions in weld metals. Effects of a microstructure that is 'heterogeneous' at the mesoscale are treated briefly, with respect to the extraction of test-pieces from thick sections and to extrapolations of data to low failure probabilities. The values of local fracture stress may be used to infer a local 'work-of-fracture' that is found experimentally to be a few times greater than that of two free surfaces. Reasons for this are discussed in the conclusion section on nano-scale events. It is suggested that, ahead of a sharp crack, it is necessary to increase the compliance by a cooperative movement of atoms (involving extra work) to allow the crack-tip bond to displace sufficiently for the energy of attraction between the atoms to reduce to zero. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  13. Ductility and fracture behavior of polycrystalline Ni/sub 3/Al alloys

    International Nuclear Information System (INIS)

    Liu, C.T.

    1987-01-01

    This paper provides a comprehensive review of the recent work on tensile ductility and fracture behavior of Ni/sub 3/Al alloys tested at ambient and elevated temperatures. Polycrystalline Ni/sub 3/Al is intrinsically brittle along grain boundaries, and the brittleness has been attributed to the large difference in valency, electronegativity, and atom size between nickel and aluminum atoms. Alloying with B, Mn, Fe, and Be significantly increases the ductility and reduces the propensity for intergranular fracture in Ni/sub 3/Al alloys. Boron is found to be most effective in improving room-temperature ductility of Ni/sub 3/Al with <24.5 at.% Al. The tensile ductility of Ni/sub 3/Al alloys depends strongly on test environments at elevated temperatures, with much lower ductilities observed in air than in vacuum. The loss in ductility is accompanied by a change in fracture mode from transgranular to intergranular. This embrittlement is due to a dynamic effect involving simultaneously high localized stress, elevated temperature, and gaseous oxygen. The embrittlement can be alleviated by control of grain shape or alloying with chromium additions. All the results are discussed in terms of localized stress concentration and grain-boundary cohesive strength

  14. Fracture toughness of WWER Uranium dioxide fuel pellets with various grain size

    International Nuclear Information System (INIS)

    Sivov, R.; Novikov, V.; Mikheev, E.; Fedotov, A.

    2015-01-01

    Uranium dioxide fuel pellets with grain sizes 13, 26, and 33 μm for WWER were investigated in the present work in order to determine crack formation and the fracture toughness.The investigation of crack formation in uranium oxide fuel pellets of the WWER-types showed that Young’s modulus and the microhardness of polycrystalline samples increase with increasing grain size, while the fracture toughness decreases. Characteristically, radial Palmqvist cracks form on the surface of uranium dioxide pellets for loads up to 1 kg. Transgranular propagation of cracks over distances several-fold larger than the length of the imprint diagonal is observed in pellets with large grains and small intragrain pores. Intergranular propagation of cracks along grain boundaries with branching occurs in pellets with small grains and low pore concentration on the grain boundaries. Blunting on large pores and at breaks in direction does not permit the cracks to reach a significant length

  15. Deformation and fracture of thin sheet aluminum-lithium alloys: The effect of cryogenic temperatures

    Science.gov (United States)

    Wagner, John A.; Gangloff, Richard P.

    1990-01-01

    The objective is to characterize the fracture behavior and to define the fracture mechanisms for new Al-Li-Cu alloys, with emphasis on the role of indium additions and cryogenic temperatures. Three alloys were investigated in rolled product form: 2090 baseline and 2090 + indium produced by Reynolds Metals, and commercial AA 2090-T81 produced by Alcoa. The experimental 2090 + In alloy exhibited increases in hardness and ultimate strength, but no change in tensile yield strength, compared to the baseline 2090 composition in the unstretched T6 condition. The reason for this behavior is not understood. Based on hardness and preliminary Kahn Tear fracture experiments, a nominally peak-aged condition was employed for detailed fracture studies. Crack initiation and growth fracture toughness were examined as a function of stress state and microstructure using J(delta a) methods applied to precracked compact tension specimens in the LT orientation. To date, J(delta a) experiments have been limited to 23 C. Alcoa 2090-T81 exhibited the highest toughness regardless of stress state. Fracture was accompanied by extensive delamination associated with high angle grain boundaries normal to the fatigue precrack surface and progressed microscopically by a transgranular shear mechanism. In contrast the two peak-aged Reynolds alloys had lower toughness and fracture was intersubgranular without substantial delamination. The influences of cryogenic temperature, microstructure, boundary precipitate structure, and deformation mode in governing the competing fracture mechanisms will be determined in future experiments. Results contribute to the development of predictive micromechanical models for fracture modes in Al-Li alloys, and to fracture resistant materials.

  16. Generalized linear elastic fracture mechanics: an application to a crack touching the bimaterial interface

    Czech Academy of Sciences Publication Activity Database

    Náhlík, Luboš; Šestáková, L.; Hutař, Pavel; Knésl, Zdeněk

    2011-01-01

    Roč. 452-453, - (2011), s. 445-448 ISSN 1013-9826 R&D Projects: GA AV ČR(CZ) KJB200410803; GA ČR GA101/09/1821 Institutional research plan: CEZ:AV0Z20410507 Keywords : generalized stress intensity factor * bimaterial interface * composite materials * strain energy density factor * fracture criterion * generalized linear elastic fracture mechanics Subject RIV: JL - Materials Fatigue, Friction Mechanics

  17. Aging effects on fracture behavior of 63Sn37Pb eutectic solder during tensile tests under the SEM

    International Nuclear Information System (INIS)

    Ding Ying; Wang Chunqing; Li Mingyu; Bang Hansur

    2004-01-01

    This study investigates the influence of aging treatment on fracture behavior of Sn-Pb eutectic solder alloys at different loading rate regime during tensile tests under the scanning electron microscope. In high homologous temperature, the solder exhibit the creep behavior that could be confirmed through the phenomena of grain boundary sliding (GBS) to both as-cast and aged specimens. Owing to the large grain scale after high temperature storage, boundary behavior was limited to some extent for the difficulty in grain rotation and boundary migration. Instead, drastic intragranular deformation occurred. Also, the phase coarsening weakened the combination between lead-rich phase and tin matrix. Consequently, surface fragmentation was detected for the aged specimens. Furthermore, the fracture mechanism changed from intergranular dominated to transgranular dominated with increasing loading rate to both specimens during early stage

  18. The influence of He on the high temperature fracture of an austenitic stainless steel

    International Nuclear Information System (INIS)

    Saguees, A.A.

    1976-01-01

    The Ti-stabilised DIN 1.4970 austenitic stainless steel is an important candidate for high temperature - high neutron fluence applications which will create appreciable amounts of He within the matrix. In order to determine the mechanical effects associated with the presence of He alone a set of tensile specimens was cyclotron implanted to uniform He concentrations in the 10 -6 to 10 -4 at. range and later creep tested at 700 0 C and 800 0 C. The elongation to fracture values of the implanted specimens were reduced with respect to those of unimplanted controls. Scanning Electron Microscope (SEM) examination revealed that fracture starts as intergranular and subsequently propagates in a transgranular fashion, the intergranular part being much more extended in the implanted material. Transmission Electron Microscope (TEM) examination revealed He segregation at the grain boundary precipitates. A mechanism of He embrittlement is discussed in terms of the present results

  19. Hierarchical multiscale modeling for flows in fractured media using generalized multiscale finite element method

    KAUST Repository

    Efendiev, Yalchin R.

    2015-06-05

    In this paper, we develop a multiscale finite element method for solving flows in fractured media. Our approach is based on generalized multiscale finite element method (GMsFEM), where we represent the fracture effects on a coarse grid via multiscale basis functions. These multiscale basis functions are constructed in the offline stage via local spectral problems following GMsFEM. To represent the fractures on the fine grid, we consider two approaches (1) discrete fracture model (DFM) (2) embedded fracture model (EFM) and their combination. In DFM, the fractures are resolved via the fine grid, while in EFM the fracture and the fine grid block interaction is represented as a source term. In the proposed multiscale method, additional multiscale basis functions are used to represent the long fractures, while short-size fractures are collectively represented by a single basis functions. The procedure is automatically done via local spectral problems. In this regard, our approach shares common concepts with several approaches proposed in the literature as we discuss. We would like to emphasize that our goal is not to compare DFM with EFM, but rather to develop GMsFEM framework which uses these (DFM or EFM) fine-grid discretization techniques. Numerical results are presented, where we demonstrate how one can adaptively add basis functions in the regions of interest based on error indicators. We also discuss the use of randomized snapshots (Calo et al. Randomized oversampling for generalized multiscale finite element methods, 2014), which reduces the offline computational cost.

  20. Influence of pH, temperature and thermal treatment on site corrosion of SAE 304 steel in chlorinated solutions

    International Nuclear Information System (INIS)

    Konrad, I.B.

    1982-01-01

    The electrochemical behaviour and fracture morphology of homogenized and sensitized type SAE 304 stainless steel U bent specimens, in 3% NaCl solution, at pH=2.0 and pH=7.0 both at room temperature and 100 0 C was studied. Polarization curves, galvanostatic and potentiostatic experiments were run. It could be observed that high temperature and low pH favour transgranular cracking and longer sensitization times lower fracture time and tend to give rise to intergranular fracture. Light sensitization can produce transgranular cracking even at room temperature, when the homogenized alloy does not present stress-corrosion cracking for the same condition. (Author) [pt

  1. Oxygen-induced intergranular fracture of the nickel-base alloy IN718 during mechanical loading at high temperatures

    Directory of Open Access Journals (Sweden)

    Krupp Ulrich

    2004-01-01

    Full Text Available There is a transition in the mechanical-failure behavior of nickel-base superalloys from ductile transgranular crack propagation to time-dependent intergranular fracture when the temperature exceeds about 600 °C. This transition is due to oxygen diffusion into the stress field ahead of the crack tip sufficient to cause brittle decohesion of the grain boundaries. Since very high cracking rates were observed during fixed-displacement loading of IN718, it is not very likely that grain boundary oxidation governs the grain-boundary-separation process, as has been proposed in several studies on the fatigue-damage behavior of the nickel-base superalloy IN718. Further studies on bicrystal and thermomechanically processed specimens of IN718 have shown that this kind of brittle fracture, which has been termed "dynamic embrittlement", depends strongly on the structure of the grain boundaries.

  2. Propagation of stress corrosion cracks in alpha-brasses

    Energy Technology Data Exchange (ETDEWEB)

    Beggs, Dennis Vinton [Univ. of Illinois, Urbana-Champaign, IL (United States)

    1981-01-01

    Transgranular and intergranular stress corrosion cracks were investigated in alpha-brasses in a tarnishing ammoniacal solution. Surface observation indicated that the transgranular cracks propagated discontinuously by the sudden appearance of a fine crack extending several microns ahead of the previous crack tip, often associated with the detection of a discrete acoustic emission (AE). By periodically increasing the deflection, crack front markings were produced on the resulting fracture surfaces, showing that the discontinuous propagation of the crack trace was representative of the subsurface cracking. The intergranular crack trace appeared to propagate continuously at a relatively blunt crack tip and was not associated with discrete AE. Under load pulsing tests with a time between pulses, Δt greater than or equal to 3 s, the transgranular fracture surfaces always exhibited crack front markings which corresponded with the applied pulses. The spacing between crack front markings, Δx, decreased linearly with Δt. With Δt less than or equal to 1.5 s, the crack front markings were in a one-to-one correspondence with applied pulses only at relatively long crack lengths. In this case, Δx = Δx* which approached a limiting value of 1 μm. No crack front markings were observed on intergranular fracture surfaces produced during these tests. It is concluded that transgranular cracking occurs by discontinuous mechanical fracture of an embrittled region around the crack tip, while intergranular cracking results from a different mechanism with cracking occurring via the film-rupture mechanism.

  3. Correlation of fracture toughness with tensile properties for irradiated 20% cold-worked 316 stainless steel

    International Nuclear Information System (INIS)

    Hamilton, M.L.; Garner, F.A.; Wolfer, W.G.

    1983-08-01

    A correlation has been developed which allows an estimate to be made of the toughness of austenitic alloys using more easily obtained tensile data. Tensile properties measured on 20% cold-worked AISI 316 specimens made from ducts and cladding irradiated in EBR-II were used to predict values for the plane strain fracture toughness according to a model originally developed by Krafft. Some microstructural examination is required to determine a parameter designated as the process zone size. In contrast to the frequently employed Hahn-Rosenfeld model, this model gives results which agree with recent experimental determinations of toughness performed in the transgranular failure regime

  4. HAEMATOMA BLOCK- AN EFFECTIVE ALTERNATIVE TO GENERAL ANAESTHESIA FOR REDUCTION OF DISTAL RADIUS FRACTURES

    Directory of Open Access Journals (Sweden)

    Prabhati Rani Mishra

    2016-12-01

    Full Text Available BACKGROUND Most common fracture in elderly patients is distal radius fracture. The most common method of management is closed reduction and immobilisation. The aim of the study is to compare the analgesic effects of haematoma block and general anaesthesia for closed reduction of distal fracture of radius. MATERIALS AND METHODS A prospective randomised controlled study was carried out among 100 patients of age group between 15-70 years of either sex who had fracture distal radius between 2015-2016. The patients having multiple fractures, pathological fractures or suffering from any organic diseases were excluded from the study. After taking informed written consent, the patients were randomised into two equal groups. In group A, reduction of fracture was done following administration of IV propofol and in group B after infiltration with 2% lignocaine into fracture haematoma site. Pain score was compared by VAS before, during and after manipulation in both the groups. Time taken from presentation at emergency department to reduction and discharge from hospital was also compared. Statistical analysis was done by applying SPSS software. RESULTS 100 patients of mean age 42.5 years, male: female 43:57 with fracture distal radius were studied. Mean time from admission to fracture reduction in group A was 2.64±0.93 hours and in group B 0.90±0.45 hours (P=0.0001. Discharge time from hospital after reduction of fracture in group A was 4.24±0.94 hours and in group B 0.75±0.2 hours (P=0.0001. VAS during reduction in group A was 0 and in group B 0.98±0.8 (P=0.0001. 10 minutes after reduction VAS in group A was 2.28±0.24 and group B 0.72±0.45 (P=0.0001. CONCLUSION For closed reduction of distal radius fracture, haematoma block with lignocaine is safe and effective alternative to intravenous general anaesthesia with propofol.

  5. A generalized multiscale finite element method for elastic wave propagation in fractured media

    KAUST Repository

    Chung, Eric T.

    2016-02-26

    In this paper, we consider elastic wave propagation in fractured media applying a linear-slip model to represent the effects of fractures on the wavefield. Fractured media, typically, are highly heterogeneous due to multiple length scales. Direct numerical simulations for wave propagation in highly heterogeneous fractured media can be computationally expensive and require some type of model reduction. We develop a multiscale model reduction technique that captures the complex nature of the media (heterogeneities and fractures) in the coarse scale system. The proposed method is based on the generalized multiscale finite element method, where the multiscale basis functions are constructed to capture the fine-scale information of the heterogeneous, fractured media and effectively reduce the degrees of freedom. These multiscale basis functions are coupled via the interior penalty discontinuous Galerkin method, which provides a block-diagonal mass matrix. The latter is needed for fast computation in an explicit time discretization, which is used in our simulations. Numerical results are presented to show the performance of the presented multiscale method for fractured media. We consider several cases where fractured media contain fractures of multiple lengths. Our numerical results show that the proposed reduced-order models can provide accurate approximations for the fine-scale solution.

  6. A generalized multiscale finite element method for elastic wave propagation in fractured media

    KAUST Repository

    Chung, Eric T.; Efendiev, Yalchin R.; Gibson, Richard L.; Vasilyeva, Maria

    2016-01-01

    In this paper, we consider elastic wave propagation in fractured media applying a linear-slip model to represent the effects of fractures on the wavefield. Fractured media, typically, are highly heterogeneous due to multiple length scales. Direct numerical simulations for wave propagation in highly heterogeneous fractured media can be computationally expensive and require some type of model reduction. We develop a multiscale model reduction technique that captures the complex nature of the media (heterogeneities and fractures) in the coarse scale system. The proposed method is based on the generalized multiscale finite element method, where the multiscale basis functions are constructed to capture the fine-scale information of the heterogeneous, fractured media and effectively reduce the degrees of freedom. These multiscale basis functions are coupled via the interior penalty discontinuous Galerkin method, which provides a block-diagonal mass matrix. The latter is needed for fast computation in an explicit time discretization, which is used in our simulations. Numerical results are presented to show the performance of the presented multiscale method for fractured media. We consider several cases where fractured media contain fractures of multiple lengths. Our numerical results show that the proposed reduced-order models can provide accurate approximations for the fine-scale solution.

  7. Processing temperature effects on molybdenum disilicide

    International Nuclear Information System (INIS)

    Wade, R.K.; Petrovic, J.J.

    1992-01-01

    This paper reports on a series of MoSi 2 compacts that were fabricated at increasing hot-pressing temperatures to achieve different grain sizes. The materials were evaluated by Vickers indentation fracture to determine room-temperature fracture toughness, hardness, and fracture mode. From 1500 degrees to 1800 degrees C, MoSi 2 had a constant 67% transgranular fracture and linearly increasing rain size from 14 to 21 μm. Above 1800 degrees C, the fracture percentage increased rapidly to 97% transgranular at 1920 degrees C (32 μ grain size). Fracture toughness and hardness decreased slightly with increasing temperature. MoSi 2 processed at 1600 degrees C had the highest fracture toughness and hardness values of 3.6 MPa·m 1/2 and 9.9 GPa, respectively. The effects of SiO 2 formation from oxygen impurities in the MoSi 2 starting powders and MoSi 2 -Mo 5 Si 3 eutectic liquid formation were studied

  8. Hydrogen pressure dependence of the fracture mode transition in nickel

    International Nuclear Information System (INIS)

    Jones, R.H.; Baer, D.R.; Bruemmer, S.M.; Thomas, M.T.

    1983-01-01

    A relationship between fracture mode, grain boundary composition, and hydrogen pressure has been determined for nickel straining electrode samples tested at cathodic potentials. This relationship can be expressed as C /SUB S/ α P /SUP -n/ /SUB H2/ where C /SUB S/ is the critical grain boundary sulfur concentration corresponding to 50% transgranular and 50% intergranular fracture and P /SUB H2/ is the hydrogen pressure. The value of n was found to be between 0.34 and 0.9. This expression was derived by relating C /SUB S/ to the hydrogen overpotential with the Nernst equation. At a cathodic test potential of -0.3 V (SCE), C /SUB S/ was equal to 0.20 monolayers of sulfur and at higher cathodic potentials or higher hydrogen pressures, C /SUB S/ decreased such that at -0.72 V (SCE) C /SUB S/ was equal to 0.045 monolayers of sulfur. The inverse hydrogen pressure dependence observed with cathodic hydrogen is similar to that for the hydrogen permeation rate or a critical hydrogen concentration derived by Gerberich et al. for gaseous hydrogen. This similarity between gaseous and cathodic hydrogen suggests that grain boundary impurities contribute to the hydrogen embrittlement process without altering the embrittlement process although this result does not indicate whether decohesion or plasticity dependent processes are responsible for the combined sulfur-hydrogen effect on the intergranular fracture of nickel

  9. Impact toughness of laser surface alloyed Aluminium

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2012-03-01

    Full Text Available with intermetallic phases and metal matrix composites were achieved during laser alloying. Brittle fracture of the SiC particles and transgranular cracking of the intermetallic phases was observed for the laser alloyed samples, while ductile fracture was observed...

  10. Hydrogen pressure dependence of the fracture mode transition in nickel

    International Nuclear Information System (INIS)

    Jones, R.H.; Baer, D.R.; Bruemmer, S.M.; Thomas, M.T.

    1983-01-01

    A relationship between fracture mode, grain boundary composition, and hydrogen pressure has been determined for nickel straining electrode samples tested at cathodic potentials. This relationship can be expressed as C /SUB s/ α P /SUP -n/ /SUB H2/ where C /SUB s/ is the critical grain boundary sulfur concentration corresponding to 50 pct transgranular and 50 pct intergranular fracture and P /SUB H2/ is the hydrogen pressure. The value of n was found to be between 0.34 and 0.9. This expression was derived by relating C /SUB s/ to th hydrogen overpotential with the Nernst equation. At a cathodic test potential of -0.3 V (SCE). C /SUB s/ was equal to 0.20 monolayers of sulfur and at higher cathodic potentials or higher hydrogen pressures, C /SUB s/ decreased such that at -0.72 V (SCE) C /SUB s/ was equal to 0.045 monolayers of sulfur. The inverse hydrogen pressure dependence observed with cathodic hydrogen is similar to that for the hydrogen permeation rate or a critical hydrogen concentration derived by Gerberich et al. for gaseous hydrogen. This similarity between gaseous and cathodic hydrogen suggests that grain boundary impurities contribute to the hydrogen embrittlement process without altering the embrittlement process although this result does not indicate whether decohesion or plasticity dependent processes are responsible for the combined sulfur-hydrogen effect on the intergranular fracture of nickel

  11. The risk of fracture in patients with multiple sclerosis: The UK general practice research database

    DEFF Research Database (Denmark)

    Bazelier, Marloes T; van Staa, Tjeerd; Uitdehaag, Bernard Mj

    2011-01-01

    Patients with multiple sclerosis (MS) may be at an increased risk of fracture owing to a greater risk of falling and decreased bone mineral density when compared with the general population. This study was designed to estimate the relative and absolute risk of fracture in patients with MS. We...... were used to derive adjusted hazard ratios (HRs) for fracture associated with MS. Time-dependent adjustments were made for age, comorbidity, and drug use. Absolute 5- and 10-year risks of fracture were estimated for MS patients as a function of age. Compared with controls, MS patients had an almost...... threefold increased risk of hip fracture [HR = 2.79,95% confidence interval (CI) 1.83-4.26] and a risk of osteoporotic fracture that was increased 1.4-fold (HR = 1.35,95% CI 1.13-1.62). Risk was greater in patients who had been prescribed oral/intravenous glucocorticoids (GCs; HR = 1.85, 95% CI 1...

  12. Effect of He implantation on fracture behavior and microstructural evolution in F82H

    Energy Technology Data Exchange (ETDEWEB)

    Yabuuchi, Kiyohiro, E-mail: kiyohiro.yabuuchi@qse.tohoku.ac.jp [Department of Quantum Science and Energy Engineering, Tohoku University, 6-6-01-2, Aramaki-Aza-Aoba, Aobaku, Sendai, Miyagi 980-8579 (Japan); Sato, Kiminori; Nogami, Shuhei; Hasegawa, Akira [Department of Quantum Science and Energy Engineering, Tohoku University, 6-6-01-2, Aramaki-Aza-Aoba, Aobaku, Sendai, Miyagi 980-8579 (Japan); Ando, Masami; Tanigawa, Hiroyasu [Japan Atomic Energy Agency, 2-166, Oaza-Obuchi-Aza-Omotedate, Rokkasho-mura, Kamikita-gun, Aomori 039-3212 (Japan)

    2014-12-15

    Reduced-activation ferritic/martensitic steels (RAFMs) are the primary candidate structural materials for fusion reactor blanket components. He bubbles, which formed under 14 MeV neutron irradiation, is considered to cause some mechanical property changes. In a previous study, Hasegawa et al. investigated the fracture behavior using Charpy impact test of He implanted F82H by 50 MeV α-particles with cyclotron accelerator, and the ductile brittle transition temperature (DBTT) was increased and intergranular fracture (IGF) was observed. However, the cause of the IGF was not shown in the previous study. To clarify the cause of the IGF of the He implanted F82H by 50 MeV α-particles with cyclotron accelerator, the microstructure of the He implanted F82H was investigated. After Charpy impact test at 233 K, the brittle fracture surface of the He implanted specimen was observed by SEM and TEM. By SEM observation, grain boundary surface was clearly observed from the bottom of the notch to a depth of about 400 μm. This area correspond to the He implanted region. On the other hand, at unimplanted region, river pattern was observed and transgranular fracture occurred. TEM observation revealed the He bubbles agglomeration at dislocations, lath boundaries, and grain boundaries, and the coarsening of precipitates on grain boundaries. IGF of the He implanted F82H was caused by both He bubbles and coarsening precipitates.

  13. Mechanical Properties and Microstructure of Neutron Irradiated Cold-worked Al-1050 and Al-6063 Alloys

    International Nuclear Information System (INIS)

    Munitz, A.; Cotler, A; Talianker, M.

    1998-01-01

    The impact of neutron irradiation on the internal microstructure, mechanical properties and fracture morphology of cold-worked Al-1050 and Al-6063 alloys was studied, using scanning and transmission electron microscopy, and tensile measurements. Specimens consisting of 50 mm long and 6 mm wide gauge sections, were punched out from Al-1050 and Al-6063 23% cold-worked tubes. They were exposed to prolonged neutron irradiation of up to 4.5x10 25 and 8x10 25 thermal neutrons/m 2 (E -3 s -1 . In general, the uniform and total elongation, the yield stress, and the ultimate tensile strength increase as functions of fluence. However, for Al-1050 a decrease in the ultimate tensile strength and yield stress was observed up to a fluence of 1x10 25 thermal neutrons/m 2 which then increase with thermal neutrons fluence. Metallographic examination and fractography for Al-6063 revealed a decrease in the local area reduction of the final fracture necking. This reduction is accompanied by a morphology transition from ductile transgranular shear rupture to a combination of transgranular shear with intergranular dimpled rupture. The intergranular rupture area increases with fluence. In contrast, for Al-1050, fracture morphology remains ductile transgranular shear rupture and the final local area reduction remains almost constant No voids could be observed in either alloy up to the maximum fluence. The dislocation density of cold-worked Al was found to decrease with the thermal neutron fluence. Prolonged annealing of unirradiated cold-worked Al-6063 at 52 degree led to similar results. Thus, it appears that, under our irradiation conditions, whereby the temperature encompassing the samples increases the exposure to this thermal field is the major factor influencing the mechanical properties and microstructure of aluminum alloys

  14. Fracture diagnostics, unnecessary travel and treatment: a comparative study before and after the introduction of teleradiology in a remote general practice.

    Science.gov (United States)

    Jacobs, Jac J W M; Jacobs, Jan P A M; van Sonderen, Eric; van der Molen, Thys; Sanderman, Robbert

    2015-05-06

    Teleradiology entails attainment of x-rays in one location, transfer over some distance and assessment at another location for diagnosis or consultation. This study documents fracture diagnostics, unnecessary trips to the hospital, treatment and number of x-rays for the years 2006 and 2009, before and after the introduction of teleradiology in a general practice on the island of Ameland in the north of the Netherlands. In a retrospective, descriptive, observational before and after study of the introduction of x-ray facilities in an island-based general practice, we compared the number of accurately diagnosed fractures, unnecessary trips, treatments and number of x-rays taken in 2006 when only a hospital x-ray facility was available 5 hours away with those in 2009 after an x-ray facility became available at a local general practice. All patients visiting a general practice on the island of Ameland in 2006 and 2009 with trauma and clinical suspicion of a fracture, dislocation or sprain were included in the study. The initial clinical diagnoses, including those based on the outcomes of x-rays, were compared for the two years and also whether the patients were treated at home or in hospital. A total of 316 and 490 patients with trauma visited a general practice in 2006 and 2009, respectively. Of these patients, 66 and 116 were found to have fractures or dislocations in the two years, respectively. In 2006, 83 x-rays were ordered; in 2009, this was 284. In 2006, 9 fractures were missed; in 2009, this was only 2. In 2006, 15 patients with fractures or dislocations were treated at the general practice; in 2009, this had increased to 77. Since the introduction of teleradiology the number of missed fractures in patients visiting the general practice with trauma and the number of the unnecessary trips to a hospital are reduced. In addition more patients with fractures and dislocations can be treated in the general practice as opposed to the hospital.

  15. Limb fracture during recovery from general anaesthesia : an often tragic complication of equine anaesthesia : clinical communication

    Directory of Open Access Journals (Sweden)

    T.B. Dzikiti

    2008-05-01

    Full Text Available A 10-year-old Thoroughbred mare was presented for lameness of the left hindlimb as a result of an apical fracture of the lateral proximal sesamoid bone. The mare was ultimately euthanased after suffering catastrophic fractures of the 3rd and 4th metatarsal bones of the contra-lateral hindlimb during an uncoordinated attempt to rise during recovery from general anaesthesia after undergoing arthroscopic surgery. The case report focuses mostly on horse anaesthesia-related mortality, anaesthetic procedure in the horse, possible causes of fractures in horses during recovery and ways in which rate of occurrence of these fractures can be minimised.

  16. Implications of Y-fluting microstructures in zircaloy stress-corrosion fracture and analogous systems

    International Nuclear Information System (INIS)

    Banks, T.M.; Garlick, A.

    1982-01-01

    Transgranular cleavage is an important mode of crack propagation during stress-corrosion cracking (SCC) of Zircaloy in iodine vapour; and another characteristic feature is the presence of parallel closely spaced ridges. These are often referred to as Y-flutings because each ridge takes the form of an inverted Y when viewed along the direction of crack growth. The flutings are shown here to be formed by localised ductile parting of the Zircaloy near the tips of cleavage cracks; high mechanical constraints in those regions and the limited number of available slip systems result in the formation of a planar array of parallel tunnels. Upon final separation these appear as a pattern of parallel ridges on each fracture face. Striking similarities in morphology have been noted here between Y-flutings in Zircaloy and those produced during tests on unstable fluid interfaces: the direction of motion of the fluid interface can be determined from the Y-morphology and is in agreement with observations from Zircaloy SCC tests. It is further demonstrated that equations governing thermodynamic and kinetic instability of fluid interfaces can be adapted to relate the fluting spacing in Zircaloy to standard fracture mechanics parameters. (author)

  17. Microstructure and mechanical properties of TiB2–TiC–WC composite ceramic tool materials

    International Nuclear Information System (INIS)

    Song, Jinpeng; Huang, Chuanzhen; Zou, Bin; Liu, Hanlian; Wang, Jun

    2012-01-01

    Highlights: ►Effect of sintering parameters on TiB 2 –TiC–WC composites has been investigated. ► Ni element was dispersed in the interface between WC and matrix grains. ► The fracture mode changed from intergranular fracture to transgranular fracture. ► The microstructure and mechanical properties of the composite were improved. -- Abstract: TiB 2 –TiC–WC composites with Ni as a sintering aid were fabricated by a hot-press technique at 1700 °C and 1650 °C for 1 h, respectively. The microstructure and mechanical properties were investigated. The composites were analyzed by means of scanning electron microscope (SEM), X-ray diffraction (XRD) and energy dispersive spectrometry (EDS). The matrix phases consisted of TiB 2 and TiC. No severe chemical reactions happened between the additive and matrix. The microstructure consisted of the fine WC grains and uniform matrix grains. When the proper WC content added to TiB 2 –TiC composites, the growth of matrix grains was inhibited and the mechanical properties of the composites were improved. The interface energy was strengthened by Ni that dispersed in the interfaces among WC grains and matrix grains, which made the fracture mode change from intergranular fracture to transgranular fracture. The transgranular fracture and the pulling out of WC grains played a predominant role in the propagating of cracks when WC content was 20 wt.% in TiB 2 –TiC–WC composites. The optimal mechanical properties of TiB 2 –TiC–20 wt.%WC composite were 955.71 MPa of flexural strength, 7.5 MPa m 1/2 of fracture toughness and 23.5 GPa of Vickers hardness.

  18. The effect of low temperatures on the fatigue crack growth of S460 structural steel

    NARCIS (Netherlands)

    Walters, C.L.; Alvaro, A.; Maljaars, J.

    2016-01-01

    The Fatigue Ductile–Brittle Transition (FDBT) is a phenomenon similar to the fracture ductile to brittle transition, in which the fracture mode of the fatigue cracks changes from ductile transgranular to cleavage and/or grain boundary separation. Fatigue at temperatures below the FDBT has a much

  19. Fracture mechanisms of aluminium alloy AA7075-T651 under various loading conditions

    International Nuclear Information System (INIS)

    Pedersen, Ketill O.; Borvik, Tore; Hopperstad, Odd Sture

    2011-01-01

    The fracture behaviour of the aluminium alloy AA7075-T651 is investigated for quasi-static and dynamic loading conditions and different stress states. The fracture surfaces obtained in tensile tests on smooth and notched axisymmetric specimens and compression tests on cylindrical specimens are compared to the fracture surfaces that occur when a projectile, having either a blunt or an ogival nose shape, strikes a 20 mm thick plate of the aluminium alloy. The stress state in the impact tests is much more complex and the strain rate significantly higher than in the tensile and compression tests. Optical and scanning electron microscopes are used in the investigation. The fracture surface obtained in tests with smooth axisymmetric specimens indicates that the crack growth is partly intergranular along the grain boundaries or precipitation free zones and partly transgranular by void formation around fine and coarse intermetallic particles. When the stress triaxiality is increased through the introduction of a notch in the tensile specimen, delamination along the grain boundaries in the rolling plane is observed perpendicular to the primary crack. In through-thickness compression tests, the crack propagates within an intense shear band that has orientation about 45 o with respect to the load axis. The primary failure modes of the target plate during impact were adiabatic shear banding when struck by a blunt projectile and ductile hole-enlargement when struck by an ogival projectile. Delamination and fragmentation of the plates occurred for both loading cases, but was stronger for the ogival projectile. The delamination in the rolling plane was attributed to intergranular fracture caused by tensile stresses occurring during the penetration event.

  20. A Generalized Mathematical Model for the Fracture Problem of the Suspended Highway

    Directory of Open Access Journals (Sweden)

    Zhao Ying

    2017-01-01

    Full Text Available In order to answer dangling fracture problems of highway, the suspended pavement equivalent for non - suspended pavement, through the special boundary conditions has been suspended highway stress field of expression, in accordance with the 3D fracture model of crack formation, and establish a vacant, a general mathematics model for fracture problems of highway and analysis in highway suspended segment weight and vehicle load limit of highway capacity of Pu For overturning road inPu is less than the force of carrying more than compared to the work and fruit Bridge Hydropower Station Road engineering examples to verify suspended highway should force field expressions for the correctness and applicability. The results show that: when the hanging ratio R 0. 243177 limits of Pu design axle load 100kN. When the vertical crack in the vacant in the direction of length greater than 0. 1, the ultimate bearing capacity is less than the design axle load 100kN; when the hanging ratio R is less than 0. 5, the road to local fracture, the ultimate bearing capacity of suspended stress field expressions in solution; when the hanging ratio is greater than or equal to 0. 5, the road does not reach the limit bearing capacity of the whole body; torque shear surface of the effect is far less than the bending moments on shear planes.

  1. Normalizing effect on fatigue crack propagation at the heat-affected zone of AISI 4140 steel shielded metal arc weldings

    Directory of Open Access Journals (Sweden)

    B. Vargas-Arista

    2013-01-01

    Full Text Available The fractography and mechanical behaviour of fatigue crack propagation in the heat-affected zone (HAZ of AISI 4140 steel welded using the shielded metal arc process was analysed. Different austenitic grain size was obtained by normalizing performed at 1200 °C for 5 and 10 hours after welding. Three point bending fatigue tests on pre-cracked specimens along the HAZ revealed that coarse grains promoted an increase in fatigue crack growth rate, hence causing a reduction in both fracture toughness and critical crack length, and a transgranular brittle final fracture with an area fraction of dimple zones connecting cleavage facets. A fractographic analysis proved that as the normalizing time increased the crack length decreased. The increase in the river patterns on the fatigue crack propagation in zone II was also evidenced and final brittle fracture because of transgranular quasicleavage was observed. Larger grains induced a deterioration of the fatigue resistance of the HAZ.

  2. Effects of degradation on the mechanical properties and fracture toughness of a steel pressure-vessel weld metal

    International Nuclear Information System (INIS)

    Wu, S.J.; Knott, J.F.

    2003-01-01

    A degradation procedure has been devised to simulate the effect of neutron irradiation on the mechanical properties of a steel pressure-vessel weld metal. The procedure combines the application of cold prestrain together with an embrittling heat treatment to produce an increase in yield stress, a decrease in strain hardening rate, and an increased propensity for brittle intergranular fracture. Fracture tests were carried out using blunt-notch four-point-bend specimens in slow bend over a range of temperatures and the brittle/ductile transition was shown to increase by approximately 110 deg. C as a result of the degradation. Fractographic analysis of specimens broken at low temperatures showed about 30% intergranular failure in combination with transgranular cleavage. Predictions have been made of the ductile-brittle transition curves for the weld metal (sharp crack) fracture toughness in degraded and non-degraded states, based on the notched-bar test results and on finite element analyses of the stress distributions ahead of the notches and sharp cracks. The ductile-brittle transition temperature shift (ΔT=110 deg. C) between non-degraded and degraded weld metal at a notch opening displacement of 0.31 mm was combined with the Ritchie, Knott and Rice (RKR) model to predict an equivalent shift of 115 deg. C for sharp-crack specimens at a toughness level of 70 MN/m 3/2

  3. Incidence of fractures among epilepsy patients: a population-based retrospective cohort study in the General Practice Research Database.

    Science.gov (United States)

    Souverein, Patrick C; Webb, David J; Petri, Hans; Weil, John; Van Staa, Tjeerd P; Egberts, Toine

    2005-02-01

    To compare the incidence of various fractures in a cohort of patients with epilepsy with a reference cohort of patients not having epilepsy. Patients were included in the epilepsy cohort if they had at least one diagnosis of epilepsy in their medical history and had sufficient evidence of "active" epilepsy (use of antiepileptic drugs, diagnoses) after the practice was included in the General Practice Research Database (GPRD). Two reference patients were sampled for each patient with epilepsy from the same practice. Primary outcome was the occurrence of any fracture during follow-up. Poisson regression analysis was used to estimate incidence density ratios (IDRs). The study population comprised 40,485 and 80,970 patients in the epilepsy and reference cohorts, respectively. The median duration of follow-up was approximately 3 years. The overall incidence rate in the epilepsy cohort was 241.9 per 10,000 person-years. This rate was about twice as high as that in reference cohort: age- and sex-adjusted IDR, 1.89 (95% CI, 1.81-1.98). When comparing IDRs among the different groups of fractures, the highest relative-risk estimate was found for hip and femur fractures (adjusted IDR, 2.79; 95% CI, 2.41-3.24). IDRs were consistently elevated across age and sex groups and across fracture subtypes. The overall risk of fractures was nearly twice as high among patients with epilepsy compared with the general population. The relative fracture risk was highest for hip and femur. Further study is necessary to elucidate whether this elevated risk is due to the disease, the use of antiepileptic drugs, or both.

  4. Coupled processes in single fractures, double fractures and fractured porous media

    International Nuclear Information System (INIS)

    Tsang, C.F.

    1986-12-01

    The emplacement of a nuclear waste repository in a fractured porous medium provides a heat source of large dimensions over an extended period of time. It also creates a large cavity in the rock mass, changing significantly the stress field. Such major changes induce various coupled thermohydraulic, hydromechanic and hydrochemical transport processes in the environment around a nuclear waste repository. The present paper gives, first, a general overview of the coupled processes involving thermal, mechanical, hydrological and chemical effects. Then investigations of a number of specific coupled processes are described in the context of fluid flow and transport in a single fracture, two intersecting fractures and a fractured porous medium near a nuclear waste repository. The results are presented and discussed

  5. Fractography of hydrogen-embrittled iron-chromium-nickel alloys

    International Nuclear Information System (INIS)

    Caskey, G.R. Jr.

    1980-01-01

    Tensile specimens of iron-chromium-nickel base alloys were broken in either a hydrogen environment or in air following thermal charging with hydrogen. Fracture surfaces were examined by scanning electron microscopy. Fracture morphology of hydrogen-embrittled specimens was characterized by: changed dimple size, twin-boundary parting, transgranular cleavage, and intergranular separation. The nature and extent of the fracture mode changes induced by hydrogen varied systematically with alloy composition and test temperature. Initial microstructure developed during deformation processing and heat treating had a secondary influence on fracture mode

  6. Failure behavior of high pressure die casting AZ91D magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.; Xiong, S.M. [School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Tsinghua University, Beijing 100084 (China); Guo, Z., E-mail: zhipeng_guo@mail.tsinghua.edu.cn [School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Tsinghua University, Beijing 100084 (China)

    2016-08-30

    The failure behavior of high pressure die casting AZ91D magnesium alloy during both tensile and fatigue tests was studied in situ by using scanning electron microscope. Attention was focused on the role of microstructure played in crack initiation and propagation. Results showed that the defects in castings, including gas pore, shrinkage pore and defect band, were the crack initiation sources. In tensile test, the crack propagated in a combination of intergranular and transgranular modes, and the specimen fractured by connecting defects at the section with minimum effective force bearing area. In fatigue test, the crack propagated in a transgranular mode at specific crystalline planes. When the crack was in contact with the β-phase, the crack would pass through, and fracture the network β-phase, whereas bypass the island β-phase by detaching it from the surrounding α-Mg grains. Besides, defects in front of the crack would act as the secondary crack initiation sources, from which new cracks would initiate and propagate. With the propagation of the fatigue crack, the actual maximum cyclic stress would increase to the fracture stress of the left cross section and lead to the final fracture of the specimen.

  7. Characterization by notched and precracked Charpy tests of the in-service degradation of RPV steel fracture toughness

    International Nuclear Information System (INIS)

    Fabry, A.

    1997-01-01

    The current engineering and regulatory practice to estimate fracture toughness safety margins for nuclear reactor pressure vessels (RPVs) relies heavily on the CVN impact test. Techniques to estimate in-service toughness degradation directly using a variety of precracked specimens are under development worldwide. Emphasis is on their miniaturization. In the nuclear context, it is essential to address many issues such as representativity of the surveillance programs with respect to the vessel in terms of materials and environment, transferability of test results to the structure (constraint and size effects), lower bound toughness certification, creadibility relative to trends of exising databases. An enhanced RPV surveillance strategy in under development in Belgium. It combines state-of-the-art micromechanical and damage modelling to the evaluation of CVN load-deflection signals, tensile stress-strain curves and slow-bend tests of reconstituted precracked Charpy specimens. A probabilistic micromechanical model has been established for static and dynamic transgranular cleavage initiation fracture toughness in the ductile-brittle transition temperature range. This model allows to project toughness bounds for any steel embrittlement condition from the corresponding CVN and static tensile properties, using a single scaling factor defined by imposing agreement with toughness tests in a single condition. The outstanding finding incorporated by this toughness transfer model is that the microcleavage fracture stress is affected by temperature in the ductile-brittle transition and that this influence is strongly correlated to the flow stress: this explains the shape of the K Ic n K Id temperature curves as well as the actual magnitude of the strain rate and irradiation effects. Furthermore, CVN crack arrest loads and fracture appearance are also taken advantage of in order to estimate K Ia degradation. Finally, the CVN-tensile load-temperature diagram provides substantial

  8. Effects of AlN on the densification and mechanical properties of pressureless-sintered SiC ceramics

    Directory of Open Access Journals (Sweden)

    Qisong Li

    2016-02-01

    Full Text Available In the present work, SiC ceramics was fabricated with AlN using B4C and C as sintering aids by a solid-state pressureless-sintered method. The effects of AlN contents on the densification, mechanical properties, phase compositions, and microstructure evolutions of as-obtained SiC ceramics were thoroughly investigated. AlN was found to promote further densification of the SiC ceramics due to its evaporation over 1800 °C, transportation, and solidification in the pores resulted from SiC grain coarsening. The highest relative density of 99.65% was achieved for SiC sample with 15.0 wt% AlN by the pressureless-sintered method at 2130 °C for 1 h in Ar atmosphere. Furthermore, the fracture mechanism for SiC ceramics containing AlN tended to transfer from single transgranular fracture mode to both transgranular fracture and intergranular fracture modes when the sample with 30.0 wt% AlN sintered at 1900 °C for 1 h in Ar. Also, SiC ceramics with 30.0 wt% AlN exhibited the highest fracture toughness of 5.23 MPa m1/2 when sintered at 1900 °C.

  9. Improved ductility of Ni3Si by microalloying with boron or carbon

    International Nuclear Information System (INIS)

    Taub, A.I.; Briant, C.L.

    1989-01-01

    The effects of boron and carbon additions on the tendency for intergranular fracture in trinickel silicide intermetallics are reported. Melt spinning of Ni 77 Si 23 alloyed with 0.1 at. pct boron results in full bend ductility and complete transgranular fracture compared with brittle intergranular fracture for the unmodified compound. Alloying with 0.1 at. pct carbon also produced full bend ductility but a mixed mode failure (30 pct transgranular). For both carbon and boron additions, reducing the Ni concentration of the base compound results in a greater percentage of intergranular fracture. For Ni 77 Si 23 , the solubility limit is between 0.1 and 0.2 t. pct boron. For compounds with silicon concentrations of 23.5 and 24.0 at. pct, the solubility limit is less than 0.1 at. pct boron. Boron additions above the solubility limit result in Ni 3 B precipitates which degrade the bend ductility and increase the percentage of intergranular fracture. Alloying with carbon above the solubility limit ( 77 Si 23 , increasing the carbon concentration from 0.1 to 1.0 at. pct resulted in no change in the ductility. Auger examination of the grain boundary composition showed strong segregation of both boron and carbon. Enrichment in silicon concentration was also observed

  10. Effect of TiC content on the microstructure and properties of Ti3SiC2-TiC composites in situ fabricated by spark plasma sintering

    International Nuclear Information System (INIS)

    Zhang Jianfeng; Wang Lianjun; Jiang Wan; Chen Lidong

    2008-01-01

    Spark plasma sintering technique was used to in situ fabricate high dense Ti 3 SiC 2 -TiC composites. The calculated TiC volume content from X-ray diffraction (XRD) is close to the theoretical one. It is found from fracture surface observation that TiC is about 1 μm, and Ti 3 SiC 2 is about 2-10 μm in grain size. The fracture modes consist of intergranular mainly for Ti 3 SiC 2 and transgranular fracture mainly for TiC. With the increasing of TiC volume content, Vickers hardness increases to the maximum value of 13 GPa for Ti 3 SiC 2 -40 vol.%TiC. Fracture toughness and flexural strength of the composites are also improved compared with those of monolithic Ti 3 SiC 2 except for Ti 3 SiC 2 -40 vol.%TiC composite. The main reasons for the sudden decrease of fracture toughness and flexural strength of Ti 3 SiC 2 -40 vol.%TiC composite can be attributed to the relatively lower density, some clusters of TiC in the composite and the transition of fracture mode from intergranular to transgranular. The thermal conductivities decreased with the addition of TiC. The minimum thermal conductivity is 22 W m deg. C -1 for Ti 3 SiC 2 -40 vol.%TiC composite

  11. High prevalence of missed opportunities for secondary fracture prevention in a regional general hospital setting in Singapore.

    Science.gov (United States)

    Gani, Linsey; Reddy, Saripalli K; Alsuwaigh, Rayan; Khoo, Joan; King, Thomas F J

    2017-12-01

    This study aims at assessing the gap in secondary fracture prevention at a regional general hospital setting in Singapore. Male patients have significantly lower rate of being investigated and treated for osteoporosis than their female counterparts. Vitamin D deficiency is prevalent in our population. Secondary fracture prevention services are not routine in Singapore; we seek to assess the treatment gap that exists in the lack of diagnosis and treatment of osteoporosis in fragility fracture patients. We performed a retrospective analysis of all admissions for fragility fractures between December 2013 and December 2014. Demographic data, rates of BMD performance, serum vitamin D investigation and calcium and vitamin D supplementation as well as antiresorptive initiation 1 year post admission were analysed. There were 125 fragility fractures in patients below 65 and 615 fractures in older patients. There was a slightly higher proportion of males in the younger population, whereas females predominated in the older population. Median vitamin D levels were low in both younger (19.1 μg/L) and older (22.0 μg/L) groups, but supplementation was lower in younger patients (4.8 versus 16.6%, p = 0.003). Rate of BMD performance was lower in younger patients (34.4 versus 64.6%, p Singapore. Male osteoporosis remains inadequately investigated and treated in both age groups.

  12. Degradación de la tenacidad al impacto durante el envejecimiento acelerado de soldadura en acero microaleado

    Directory of Open Access Journals (Sweden)

    Vargas-Arista, B.

    2008-12-01

    Full Text Available The effect of accelerated aging on the toughness and fracture of the longitudinal weld metal of an API5L-X52 linepipe steel was evaluated by Charpy V-notch impact test, fracture analysis and transmission electron microscopy. Aging was performed at 250 °C for 100 to 1000 h. The impact results indicated a significant reduction in the fracture energy and impact toughness as a function of aging time, which were achieved by the scanning electron microscope fractographs that showed a decrease in the vol fraction of microvoids by Charpy ductile failure with the aging time, which favored the brittle fracture by transgranular cleavage. The minimum vol fraction of microvoids was reached at 500 h due to the peak-aged. The microstructural analysis indicated the precipitation of transgranular iron nanocarbides in the aged specimens, which was related to the deterioration of toughness and change in the ductile to brittle behavior.

    Se evaluó, mediante el ensayo de impacto Charpy, fractografía y microscopia electrónica de transmisión el efecto del envejecimiento acelerado sobre la tenacidad y fractura de la soldadura en tubería de acero API5L-X52. El envejecimiento se realizó a 250 °C por 1.000 h, con control cada 100 h. Los resultados de impacto indicaron una disminución en la energía de fractura y tenacidad al impacto en función del tiempo del envejecimiento, los cuales se evidenciaron mediante fractografía, por la reducción en la fracción volumétrica de microhuecos por fractura dúctil con el tiempo, favoreciendo la fractura frágil por clivaje transgranular. Sin embargo, a 500 h, se observó la fracción volumétrica mínima debido al pico del envejecimiento. El análisis microestructural evidenció la precipitación de nanocarburos de hierro transgranulares en las muestras envejecidas, la cual se relaciono con la pérdida de tenacidad y cambio en el comportamiento dúctil a frágil, confirmado por fractografía.

  13. Fracture mode, microstructure and temperature-dependent elastic moduli for thermoelectric composites of PbTe-PbS with SiC nanoparticle additions

    Science.gov (United States)

    Ni, Jennifer E.; Case, Eldon D.; Schmidt, Robert D.; Wu, Chun-I.; Hogan, Timothy P.; Trejo, Rosa M.; Lara-Curzio, Edgar; Kanatzidis, Mercouri G.

    2013-12-01

    Twenty-six (Pb0.95Sn0.05Te)0.92(PbS)0.08-0.055% PbI2-SiC nanoparticle (SiCnp) composite thermoelectric specimens were either hot pressed or pulsed electric current sintered (PECS). Bloating (a thermally induced increase in porosity, P, for as-densified specimens) was observed during annealing at temperatures >603 K for hot-pressed specimens and PECS-processed specimens from wet milled powders, but in contrast seven out of seven specimens densified by PECS from dry milled powders showed no observable bloating following annealing at temperatures up to 936 K. In this study, bloating in the specimens was accessed via thermal annealing induced changes in (i) porosity measured by scanning electron microscopy on fractured specimen surfaces, (ii) specimen volume and (iii) elastic moduli. The moduli were measured by resonant ultrasound spectroscopy. SiCnp additions (1-3.5 vol.%) changed the fracture mode from intergranular to transgranular, inhibited grain growth, and limited bloating in the wet milled PECS specimens. Inhibition of bloating likely occurs due to cleaning of contamination from powder particle surfaces via PECS processing which has been reported previously in the literature.

  14. Reactive silica transport in fractured porous media: Analytical solutions for a system of parallel fractures

    Science.gov (United States)

    Yang, Jianwen

    2012-04-01

    A general analytical solution is derived by using the Laplace transformation to describe transient reactive silica transport in a conceptualized 2-D system involving a set of parallel fractures embedded in an impermeable host rock matrix, taking into account of hydrodynamic dispersion and advection of silica transport along the fractures, molecular diffusion from each fracture to the intervening rock matrix, and dissolution of quartz. A special analytical solution is also developed by ignoring the longitudinal hydrodynamic dispersion term but remaining other conditions the same. The general and special solutions are in the form of a double infinite integral and a single infinite integral, respectively, and can be evaluated using Gauss-Legendre quadrature technique. A simple criterion is developed to determine under what conditions the general analytical solution can be approximated by the special analytical solution. It is proved analytically that the general solution always lags behind the special solution, unless a dimensionless parameter is less than a critical value. Several illustrative calculations are undertaken to demonstrate the effect of fracture spacing, fracture aperture and fluid flow rate on silica transport. The analytical solutions developed here can serve as a benchmark to validate numerical models that simulate reactive mass transport in fractured porous media.

  15. Superelastic behavior and fracture of a Cu-11.8%wAl-0.5%wBe alloy as used in seismic energy dispersors

    International Nuclear Information System (INIS)

    Montecinos, S; Sepulveda, A; Moroni, M; Lund, F

    2004-01-01

    Some results are shown of the characterization of the super elastic behavior and fracturing of a polycrystalline alloy Cu-11.8% w Al-0.5% w Be. It was submitted to monotonic traction and cyclic (at 1 Hz) tests. The alloy was provided by Trefim aux, in the form of 3 and 6 mm diameter wires. This work aims to present a preliminary mechanical definition of this alloy, with a view to its eventual use in seismic energy absorption devices in civil constructions. Similar behavior trends were found for the two diameters, although some differences were detected in the values of the measured properties. The material is super elastic within a deformation range of 2.3% for the 3mm wire and 3.1% for the 6 mm wire. Increasing the grain size increased the material's super elastic range. When the maximum applied deformation was increased, the temperature of the test pieces went up and a change occurred in the form of the cycles, increasing the absorption (with values of 5% in the super elastic limit) and decreasing the K parameter and the rigidity of the cycles. With the monotonic traction tests, the material presents a transgranular fracture from a mixed mechanism of cleavage and micropores, elongating the larger fracture by 15% and a maximum force (UTS) greater than 5000 kg cm 2 (CW)

  16. Examination of failed studs from No. 2 steam generator at the Maine Yankee Nuclear Power Station

    International Nuclear Information System (INIS)

    Czajkowski, C.

    1983-02-01

    Three studs removed from service on the primary manway cover from steam generator No. 2 of the Maine Yankee station were sent to Brookhaven National Laboratory (BNL) for examination. The examination consisted of visual/dye penetrant examination, optical metallography and Scanning Electron Microscopy/Energy Dispersive Spectroscopy (SEM/EDS) evaluation. One bolt was through cracked and its fracture face was generally transgranular in nature with numerous secondary intergranular cracks. The report concludes that the environmenally assisted cracking of the stud was due to the interaction of the various lubricants used with steam leaks associated with this manway cover

  17. Fracture in Soft Materials

    DEFF Research Database (Denmark)

    Hassager, Ole

    Fracture is a phenomenon that is generally associated with solids. A key element in fracture theory is the so-called weakest link idea that fracture initiates from the largest pre-existing material imperfection. However, recent work has demonstrated that fracture can also happen in liquids, where...... surface tension will act to suppress such imperfections. Therefore, the weakest link idea does not seem immediately applicable to fracture in liquids. This presentation will review fracture in liquids and argue that fracture in soft liquids is a material property independent of pre-existing imperfections....... The following questions then emerge: What is the material description needed to predict crack initiation, crack speed and crack shape in soft materials and liquids....

  18. Management of osteoporotic vertebral fractures

    OpenAIRE

    Dionyssiotis, Yannis

    2010-01-01

    Yannis DionyssiotisRhodes General Hospital, Rhodes, GreeceAbstract: Osteoporotic vertebral fractures are associated with considerable reduction of quality of life, morbidity, and mortality. The management of patients with vertebral fractures should include treatment for osteoporosis and measures to reduce pain and improve mobility. This article provides information for management and rehabilitation of vertebral fractures based on clinical experience and literature.Keywords: vertebral fracture...

  19. Aspects of modern fracture statistics

    International Nuclear Information System (INIS)

    Tradinik, W.; Pabst, R.F.; Kromp, K.

    1981-01-01

    This contribution begins with introductory general remarks about fracture statistics. Then the fundamentals of the distribution of fracture probability are described. In the following part the application of the Weibull Statistics is justified. In the fourth chapter the microstructure of the material is considered in connection with calculations made in order to determine the fracture probability or risk of fracture. (RW) [de

  20. Experimental study on creep-fatigue interaction behavior of GH4133B superalloy

    International Nuclear Information System (INIS)

    Hu Dianyin; Wang Rongqiao

    2009-01-01

    The creep-fatigue tests have been conducted with nickel-based superalloy GH4133B at 600 deg. C in three cases of type loading to study the creep-fatigue behavior of the alloy and the loading history effect on the creep-fatigue damage. Since the conventional linear cumulative damage rule failed in evaluating the creep-fatigue life based on experimental data, a continuous non-linear model proposed by Mao et al. was employed to describe the creep-fatigue interaction. The creep-fatigue damage in the cases of continuous cyclic creep loading (CF) and prior fatigue followed by creep loading (F + C) was larger than unity and smaller than unity when the type loading was prior creep followed by fatigue loading (C + F). Scanning electron microscope (SEM) analyses of the fracture surface showed that the cracks initiated from the specimen surface and the fracture modes in different loading history were different. The crack mode at CF loading depended on the cyclic period. In the case of F + C loading, the primary fracture mode was transgranular, and in the condition where the type of waveform was C + F, the fracture mode was of mixed transgranular and intergranular type. In addition, the origin of the history effect on creep-fatigue interaction was explained by the SEM observations.

  1. Tensile properties of candidate structural materials for high power spallation sources at high helium contents

    Science.gov (United States)

    Jung, P.; Henry, J.; Chen, J.

    2005-08-01

    Low activation 9%Cr martensitic steels EUROFER97, pure tantalum, and low carbon austenitic stainless steel 316L were homogeneously implanted with helium to concentrations up to 5000 appm at temperatures from 70 °C to 400 °C. The specimens were tensile tested at room temperature and at the respective implantation temperatures. In all materials the helium caused an increased in strength and reduction in ductility, with both changes being generally larger at lower implantation and testing temperatures. After implantation some work hardening was retained in 316L and in tantalum, while it almost completely disappeared in EUROFER97. After tensile testing, fracture surfaces were analysed by scanning electron microscopy (SEM). Implantation caused reduction of necking, but up to concentrations of 2500 appm He fracture surface still showed transgranular ductile appearance. Completely brittle intergranular fracture was observed in tantalum at 9000 appm He and is also expected for EUROFER97 at this concentration, according to previous results on similar 9%Cr steels.

  2. Crack growth threshold under hold time conditions in DA Inconel 718 – A transition in the crack growth mechanism

    Directory of Open Access Journals (Sweden)

    E. Fessler

    2016-01-01

    Full Text Available Aeroengine manufacturers have to demonstrate that critical components such as turbine disks, made of DA Inconel 718, meet the certification requirements in term of fatigue crack growth. In order to be more representative of the in service loading conditions, crack growth under hold time conditions is studied. Modelling crack growth under these conditions is challenging due to the combined effect of fatigue, creep and environment. Under these conditions, established models are often conservative but the degree of conservatism can be reduced by introducing the crack growth threshold in models. Here, the emphasis is laid on the characterization of crack growth rates in the low ΔK regime under hold time conditions and in particular, on the involved crack growth mechanism. Crack growth tests were carried out at high temperature (550 °C to 650 °C under hold time conditions (up to 1200 s in the low ΔK regime using a K-decreasing procedure. Scanning electron microscopy was used to identify the fracture mode involved in the low ΔK regime. EBSD analyses and BSE imaging were also carried out along the crack path for a more accurate identification of the fracture mode. A transition from intergranular to transgranular fracture was evidenced in the low ΔK regime and slip bands have also been observed at the tip of an arrested crack at low ΔK. Transgranular fracture and slip bands are usually observed under pure fatigue loading conditions. At low ΔK, hold time cycles are believed to act as equivalent pure fatigue cycles. This change in the crack growth mechanism under hold time conditions at low ΔK is discussed regarding results related to intergranular crack tip oxidation and its effect on the crack growth behaviour of Inconel 718 alloy. A concept based on an “effective oxygen partial pressure” at the crack tip is proposed to explain the transition from transgranular to intergranular fracture in the low ΔK regime.

  3. Statistics and thermodynamics of fracture

    Science.gov (United States)

    Chudnovsky, A.

    1984-01-01

    A probabilistic model of the fracture processes unifying the phenomenological study of long term strength of materials, fracture mechanics and statistical approaches to fracture is briefly outlined. The general framework of irreversible thermodynamics is employed to model the deterministic side of the failure phenomenon. The stochastic calculus is used to account for thg failure mechanisms controlled by chance; particularly, the random roughness of fracture surfaces.

  4. Fractures of the growing mandible.

    Science.gov (United States)

    Kushner, George M; Tiwana, Paul S

    2009-03-01

    Oral and maxillofacial surgeons must constantly weigh the risks of surgical intervention for pediatric mandible fractures against the wonderful healing capacity of children. The majority of pediatric mandibular fractures can be managed with closed techniques using short periods of maxillomandibular fixation or training elastics alone. Generally, the use of plate- and screw-type internal fixation is reserved for difficult fractures. This article details general and special considerations for this surgery including: craniofacial growth & development, surgical anatomy, epidemiology evaluation, various fractures, the role rigid internal fixation and the Risdon cable in pediatric maxillofacial trauma. It concludes with suggestions concerning long-term follow-up care in light of the mobility, insurance obstacles, and family dynamics facing the patient population.

  5. Associations of early premenopausal fractures with subsequent fractures vary by sites and mechanisms of fractures.

    Science.gov (United States)

    Honkanen, R; Tuppurainen, M; Kroger, H; Alhava, E; Puntila, E

    1997-04-01

    In a retrospective population-based study we assessed whether and how self-reported former fractures sustained at the ages of 20-34 are associated with subsequent fractures sustained at the ages of 35-57. The 12,162 women who responded to fracture questions of the baseline postal enquiry (in 1989) of the Kuopio Osteoporosis Study, Finland formed the study population. They reported 589 former and 2092 subsequent fractures. The hazard ratio (HR), with 95% confidence interval (CI), of a subsequent fracture was 1.9 (1.6-2.3) in women with the history of a former fracture compared with women without such a history. A former low-energy wrist fracture was related to subsequent low-energy wrist [HR = 3.7 (2.0-6.8)] and high-energy nonwrist [HR = 2.4 (1.3-4.4)] fractures, whereas former high-energy nonwrist fractures were related only to subsequent high-energy nonwrist [HR = 2.8 (1.9-4.1)] but not to low-energy wrist [HR = 0.7 (0.3-1.8)] fractures. The analysis of bone mineral density (BMD) data of a subsample of premenopausal women who underwent dual x-ray absorptiometry (DXA) during 1989-91 revealed that those with a wrist fracture due to a fall on the same level at the age of 20-34 recorded 6.5% lower spinal (P = 0.140) and 10.5% lower femoral (P = 0.026) BMD than nonfractured women, whereas the corresponding differences for women with a former nonwrist fracture due to high-energy trauma were -1.8% (P = 0.721) and -2.4% (P = 0. 616), respectively. Our results suggest that an early premenopausal, low-energy wrist fracture is an indicator of low peak BMD which predisposes to subsequent fractures in general, whereas early high-energy fractures are mainly indicators of other and more specific extraskeletal factors which mainly predispose to same types of subsequent fractures only.

  6. Radiotherapy of pathologic fractures and skeletal lesions bearing the risk of fracture

    International Nuclear Information System (INIS)

    Rieden, K.; Kober, B.; Mende, U.; Zum Winkel, K.

    1986-01-01

    Radiotherapy is of great importance in the treatment of pathologic fractures and skeletal lesions bearing the risk of fracture which are induced by malignomas, especially if these are in an advanced stage. In dependence on site and extent of skeletal destruction as well as on the general tumor dissemination, it can be distinguished between palliative radiotherapy and curative radiotherapy aiming at analgesia and remineralization. A retrospective analysis of 27 pathologic fractures and 56 skeletal lesions bearing the risk of fracture in malignoma patients showed an analgetic effect obtained by radiotherapy in 67% of pathological fractures and in 80% of skeletal lesions bearing the risk of fracture, whereas a remineralization could be demonstrated for 33% of pathological fractures and 50% of destructions bearing the risk of fracture. A stabilization of destructions progressing before therapy was found in 55% of pathological fractures and 40% of skeletal lesions bearing the risk of fracture. Thus a partial loading, supported by orthopedic prostheses, was possible for more than 50% of all patients. (orig.) [de

  7. Stress fractures in athletes

    International Nuclear Information System (INIS)

    Steingruber, I.E.; Wolf, C.; Gruber, H.; Czermak, B.V.; Mallouhi, A.; Jaschke, W.; Gabriel, M.

    2002-01-01

    Stress fractures may pose a diagnostic dilemma for radiologists since they are sometimes difficult to demonstrate on plain films and may simulate a tumour. They were first described in military personnel and professional athletes. Recently, there is an increasing incidence in the general population due to increasing sportive activities. Stress fractures occur most often in the lower extremities, especially in the tibia, the tarsal bone, the metatarsal bone, the femur and the fibula. In the upper extremities, they are commonly found in the humerus, the radius and the ulna. Some fractures of the lower extremities appear to be specific for particular sports, for example, fractures of the tibia affect mostly distance runners. Whereas stress fractures of the upper extremities are generally associated with upper limb-dominated sports. A correct diagnosis requires a careful clinical evaluation. The initial plain radiography may be normal. Further radiological evaluation could be performed by means of computerised tomography, magnetic resonance imaging and bone scanning. The latter two techniques are especially helpful for establishing a correct initial diagnosis. (orig.) [de

  8. Characterization by notched and precracked Charpy tests of the in-service degradation of RPV steel fracture toughness

    Energy Technology Data Exchange (ETDEWEB)

    Fabry, A.

    1997-01-01

    The current engineering and regulatory practice to estimate fracture toughness safety margins for nuclear reactor pressure vessels (RPVs) relies heavily on the CVN impact test. Techniques to estimate in-service toughness degradation directly using a variety of precracked specimens are under development worldwide. Emphasis is on their miniaturization. In the nuclear context, it is essential to address many issues such as representativity of the surveillance programs with respect to the vessel in terms of materials and environment, transferability of test results to the structure (constraint and size effects), lower bound toughness certification, creadibility relative to trends of exising databases. An enhanced RPV surveillance strategy in under development in Belgium. It combines state-of-the-art micromechanical and damage modelling to the evaluation of CVN load-deflection signals, tensile stress-strain curves and slow-bend tests of reconstituted precracked Charpy specimens. A probabilistic micromechanical model has been established for static and dynamic transgranular cleavage initiation fracture toughness in the ductile-brittle transition temperature range. This model allows to project toughness bounds for any steel embrittlement condition from the corresponding CVN and static tensile properties, using a single scaling factor defined by imposing agreement with toughness tests in a single condition. The outstanding finding incorporated by this toughness transfer model is that the microcleavage fracture stress is affected by temperature in the ductile-brittle transition and that this influence is strongly correlated to the flow stress: this explains the shape of the K{sub Ic}n K{sub Id} temperature curves as well as the actual magnitude of the strain rate and irradiation effects. Furthermore, CVN crack arrest loads and fracture appearance are also taken advantage of in order to estimate K{sub Ia} degradation. Finally, the CVN-tensile load-temperature diagram

  9. Tibial Plateau Fractures

    DEFF Research Database (Denmark)

    Elsøe, Rasmus

    This PhD thesis reported an incidence of tibial plateau fractures of 10.3/100,000/year in a complete Danish regional population. The results reported that patients treated for a lateral tibial plateau fracture with bone tamp reduction and percutaneous screw fixation achieved a satisfactory level...... with only the subgroup Sport significantly below the age matched reference population. The thesis reports a level of health related quality of life (Eq5d) and disability (KOOS) significantly below established reference populations for patients with bicondylar tibial plateau fracture treated with a ring...... fixator, both during treatment and at 19 months following injury. In general, the thesis demonstrates that the treatment of tibial plateau fractures are challenging and that some disabilities following these fractures must be expected. Moreover, the need for further research in the area, both with regard...

  10. Integrin beta3 Leu33Pro polymorphism and risk of hip fracture: 25 years follow-up of 9233 adults from the general population

    DEFF Research Database (Denmark)

    Tofteng, Charlotte L; Bach-Mortensen, Pernille; Bojesen, Stig E

    2007-01-01

    OBJECTIVE: Integrin alphavbeta3 is essential for mature osteoclast function and therefore important for the development of osteoporosis and osteoporotic fractures. Integrin alphavbeta3 antagonists have antiresorptive effects in bone. We tested the hypothesis that the Leu33Pro polymorphism...... in the integrin beta3-subunit associates with risk of hip fracture. METHODS: We included 9233 men and women selected at random to represent the Danish general population as participants in the Copenhagen City Heart Study. First-ever hip fractures (n=267) were registered during 25 years follow-up. Log...

  11. Mixed-mode fracture of ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, J.J.

    1985-01-01

    The mixed-mode fracture behavior of ceramic materials is of importance for monolithic ceramics in order to predict the onset of fracture under generalized loading conditions and for ceramic composites to describe crack deflection toughening mechanisms. Experimental data on surface flaw mixed-mode fracture in various ceramics indicate that the flaw-plane normal stress at fracture decreases with increasing in-flaw-plane shear stress, although present data exhibit a fairly wide range in details of this sigma - tau relationship. Fracture from large cracks suggests that Mode II has a greater effect on Mode I fracture than Mode III. A comparison of surface flaw and large crack mixed-mode I-II fracture responses indicated that surface flaw behavior is influenced by shear resistance effects.

  12. Scapular fracture: lower severity and mortality

    Directory of Open Access Journals (Sweden)

    Javad Salimi

    Full Text Available CONTEXT AND OBJECTIVE: The presence of scapular fracture is believed to be associated with high rates of other injuries and accompanying morbidities. The aim was to study injury patterns and their overall outcomes in patients with scapula fractures. DESIGN AND SETTING: Cross-sectional study of trauma patients treated at six general hospitals in Tehran. METHODS: One-year trauma records were obtained from six general hospitals Among these, forty-one had sustained a scapular fracture and were included in this study. RESULTS: Scapular fracture occurred predominantly among 20 to 50-year-old patients (78%. Road traffic accidents (RTAs were the main cause of injury (73.2%; 30/41. Pedestrians accounted for 46.7% (14/30 of the injuries due to RTAs. Falls were the next most common cause, accounting for seven cases (17.1%. Body fractures were the most common type of scapular fractures (80%. Eighteen patients (43.9% had isolated scapular fractures. Limb fracture was the most common associated injury, detected in 18 cases (43.9%. Three patients (7.3% had severe injuries (injury severity score, ISS > 16 which resulted in one death (2.4%. The majority of the patients were treated conservatively (87.8%. CONCLUSIONS: Patients with scapula fractures have more severe underlying chest injuries and clavicle fractures. However, this did not correlate with higher rates of injury severity score, intensive care unit admission or mortality.

  13. Experimental investigation on low cycle fatigue and creep-fatigue interaction of DZ125 in different dwell time at elevated temperatures

    International Nuclear Information System (INIS)

    Shi Duoqi; Liu Jinlong; Yang Xiaoguang; Qi Hongyu; Wang Jingke

    2010-01-01

    Research highlights: → This paper has researched creep-fatigue interaction of directionally solidified superalloy DZ125 with different dwell time at high temperature combined with micro-mechanism by experiment. → The results indicated that the life of creep-fatigue decreases as dwell time increases, but the life of this alloy was almost unchanged when dwell time exceeds a critical value at 850 deg. C. - Abstract: The low cycle fatigue (LCF) and creep-fatigue tests have been conducted with directionally solidified nickel-based superalloy DZ125 at 850 and 980 deg. C to study the creep-fatigue interaction behavior of alloy with different dwell time. On the average, the life of creep-fatigue tests are about 70% less than the life of LCF tests under the same strain range at 850 deg. C. The life of creep-fatigue decreases as dwell time increases, but the life of this alloy was almost unchanged when dwell time exceeds a critical value at 850 deg. C. Scanning electron microscope (SEM) analyses of the fracture revealed that the fracture modes were influenced by different way of loading. In case of LCF, the primary fracture mode was transgranular, while in case of creep-fatigue, the primary fracture mode was mixed with transgranular and intergranular. There were also obvious different morphologies of surface crack between LCF and creep-fatigue.

  14. Incidence of trampoline related pediatric fractures in a large district general hospital in the United Kingdom: lessons to be learnt.

    Science.gov (United States)

    Bhangal, K K; Neen, D; Dodds, R

    2006-04-01

    To test the observation that the incidence of trampoline related pediatric fractures is increasing-both nationally and in a large district general hospital. A retrospective analysis was undertaken of patient records establishing mechanism of injury of pediatric fractures over three consecutive summers from 2000-03. Theatre records of fractures treated operatively were used as the initial data source. A statistically significant increase in trampoline related injuries was discovered. This reflects the rising incidence of injuries from national data and furthermore corresponds to the growing popularity of domestic use trampolines in the UK. The incidence of injuries is increasing. There are lessons to be learnt from existing work from countries where trampoline prevalence has been greater for longer. The authors recommend various safety measures that may reduce children's injuries.

  15. General and localized corrosion of carbon and low-alloy steels in oxygenated high-temperature water. Final report

    International Nuclear Information System (INIS)

    Macdonald, D.D.; Smialowska, S.; Pednekar, S.

    1983-02-01

    The susceptibilities to stress corrosion cracking (SCC) of two carbon steels, SA106-grB and SA333-gr6, which are used in seamless BWR piping, and a low-alloy pressure vessel steel, A508-C12, were studied in high purity water as a function of oxygen concentration (0.16 to 8 ppM) and temperature (50 to 288 0 C) . The susceptibility to SCC was measured using the slow strain rate technique. The fracture surfaces of the test specimens were also examined using SEM to determine the mode of failure. In water containing 1 and 8 ppM oxygen and at temperatures above 135 0 C, transgranular stress corrosion cracking (TGSCC) was observed to occur in A508-C12, SA333-gr6 and SA106grB steels at very high stresses. The susceptibility to SCC increased with temperature

  16. Hydraulic properties of fracture networks

    International Nuclear Information System (INIS)

    Dreuzy, J.R. de

    1999-12-01

    Fractured medium are studied in the general framework of oil and water supply and more recently for the underground storage of high level nuclear wastes. As fractures are generally far more permeable than the embedding medium, flow is highly channeled in a complex network of fractures. The complexity of the network comes from the broad distributions of fracture length and permeability at the fracture scale and appears through the increase of the equivalent permeability at the network scale. The goal of this thesis is to develop models of fracture networks consistent with both local-scale and global-scale observations. Bidimensional models of fracture networks display a wide variety of flow structures ranging from the sole permeable fracture to the equivalent homogeneous medium. The type of the relevant structure depends not only on the density and the length and aperture distributions but also on the observation scale. In several models, a crossover scale separates complex structures highly channeled from more distributed and homogeneous-like flow patterns at larger scales. These models, built on local characteristics and validated by global properties, have been settled in steady state. They have also been compared to natural well test data obtained in Ploemeur (Morbihan) in transient state. The good agreement between models and data reinforces the relevance of the models. Once validated and calibrated, the models are used to estimate the global tendencies of the main flow properties and the risk associated with the relative lack of data on natural fractures media. (author)

  17. Creep fracture and creep-fatigue fracture in ceramics and ceramic composites

    International Nuclear Information System (INIS)

    Suresh, S.

    1993-01-01

    This paper summarizes recent advances in the areas of subcritical crack growth in ceramics subjected to static and cyclic loads at elevated temperatures. Attention is devoted to the specific role of pre-existing and in-situ-formed glass films in influencing creep fracture and creep-fatigue fracture. Experimental results on the effects of cyclic frequency and load ratio, along with detailed transmission electron microscopy of crack-tip and crack-wake damage are highlighted. Some general conclusions are drawn about the dependence of high-temperature damage tolerance on interfacial glass films and about the susceptibility of ceramic materials to cyclic fatigue fracture

  18. Coupled Fracture and Flow in Shale in Hydraulic Fracturing

    Science.gov (United States)

    Carey, J. W.; Mori, H.; Viswanathan, H.

    2014-12-01

    Production of hydrocarbon from shale requires creation and maintenance of fracture permeability in an otherwise impermeable shale matrix. In this study, we use a combination of triaxial coreflood experiments and x-ray tomography characterization to investigate the fracture-permeability behavior of Utica shale at in situ reservoir conditions (25-50 oC and 35-120 bars). Initially impermeable shale core was placed between flat anvils (compression) or between split anvils (pure shear) and loaded until failure in the triaxial device. Permeability was monitored continuously during this process. Significant deformation (>1%) was required to generate a transmissive fracture system. Permeability generally peaked at the point of a distinct failure event and then dropped by a factor of 2-6 when the system returned to hydrostatic failure. Permeability was very small in compression experiments (fashion as pressure increased. We also observed that permeability decreased with increasing fluid flow rate indicating that flow did not follow Darcy's Law, possibly due to non-laminar flow conditions, and conformed to Forscheimer's law. The coupled deformation and flow behavior of Utica shale, particularly the large deformation required to initiate flow, indicates the probable importance of activation of existing fractures in hydraulic fracturing and that these fractures can have adequate permeability for the production of hydrocarbon.

  19. On the nature of groundwater flow paths: Observations at fractures and fracture coating at road-cuts

    International Nuclear Information System (INIS)

    Lindberg, A.; Hellmuth, K.-H.

    2001-01-01

    Preliminary investigations were conducted at fractures and their surface coatings exposed along recently quarried road-cuts to the north and east of Helsinki. While (sub)horizontal fractures were usually rare at depths more than a few meters, (sub)vertical fractures were dominating. Fracture fillings/coatings were mostly absent in the formers and generally thin in the latters. Often these fillings/coatings were representative for processes which occurred in the far past at conditions others than present ambient ones. But, on the other hand only a few cases of more intense rock matrix alteration in connection with these processes were observed. Post-glacial weathering has caused at many of the investigated sites surficial oxidation of Fe(II)-rich minerals which has led to mostly thin coatings of fracture surfaces by soft amorphous Fe(III)-oxyhydroxides. Surface coatings were generally homogeneous with fairly even surface structures. It was found that at road-cuts huge areas of undamaged fracture surfaces were accessable to investigations. These can serve for demonstration purposes for the nature of contact surface between groundwater and rock. Despite some oxidation, these exposures give a fairly representative impression of the situation at greater depth where similar fracture types were reported in repository site investigations. (orig.)

  20. Quantifying Discrete Fracture Network Connectivity in Hydraulic Fracturing Stimulation

    Science.gov (United States)

    Urbancic, T.; Ardakani, E. P.; Baig, A.

    2017-12-01

    Hydraulic fracture stimulations generally result in microseismicity that is associated with the activation or extension of pre-existing microfractures and discontinuities. Microseismic events acquired under 3D downhole sensor coverage provide accurate event locations outlining hydraulic fracture growth. Combined with source characteristics, these events provide a high quality input for seismic moment tensor inversion and eventually constructing the representative discrete fracture network (DFN). In this study, we investigate the strain and stress state, identified fracture orientation, and DFN connectivity and performance for example stages in a multistage perf and plug completion in a North American shale play. We use topology, the familiar concept in many areas of structural geology, to further describe the relationships between the activated fractures and their effectiveness in enhancing permeability. We explore how local perturbations of stress state lead to the activation of different fractures sets and how that effects the DFN interaction and complexity. In particular, we observe that a more heterogeneous stress state shows a higher percentage of sub-horizontal fractures or bedding plane slips. Based on topology, the fractures are evenly distributed from the injection point, with decreasing numbers of connections by distance. The dimensionless measure of connection per branch and connection per line are used for quantifying the DFN connectivity. In order to connect the concept of connectivity back to productive volume and stimulation efficiency, the connectivity is compared with the character of deformation in the reservoir as deduced from the collective behavior of microseismicity using robustly determined source parameters.

  1. The effect of thermal history on intergranular boron segregation and fracture morphology of substoichiometric Ni3Al

    International Nuclear Information System (INIS)

    Choudhury, A.; White, C.L.; Brooks, C.R.

    1986-01-01

    While it has attractive mechanical properties and good corrosion resistance, the usefulness of polycrystalline Ni 3 Al has been restricted because of its propensity for brittle intergranular fracture. While this intergranular brittleness can be aggravated by the intergranular segregation of certain impurities, particularly sulfur, the grain boundaries of Ni 3 Al are intrinsically brittle and Ni 3 Al will fail intergranularly in the absence of detectable impurity segregation. Addition of boron resulted in the fracture morphology changing from primarily intergranular to largely transgranular; and more importantly, the intergranular segregation of boron was conclusively demonstrated. The range of boron concentrations over which these beneficial effects are observed is well within the solubility limit, which has been estimated to be 1.5 at. % (4,5). Rice (6) developed a relationship between equilibrium intergranular segregation and grain boundary cohesion. According to this theory, the potential for intergranular embrittlement by a solute is related to the relative intensity of segregation of the solute to free surfaces as compared to segregation to grain boundaries. Rices theory allowed for the case of a solute segregating more strongly to grain boundaries than to free surfaces. If this difference is sufficiently large (approximately a factor of two), Rice's theory predicts an enhancement of grain boudary cohesion. White and coworkers (4,7) noted the rather unusual phenomenon of boron segregating much more strongly to grain boundaries of Ni 3 Al than to free surfaces, while sulfur (an embrittling impurity) was shown to exhibit the opposite effect

  2. Isolated Transverse Sacrum Fracture: A Case Report

    Directory of Open Access Journals (Sweden)

    Cemil Kavalci

    2011-01-01

    Full Text Available Sacral fracture commonly results from high-energy trauma. Most insufficiency fractures of the sacrum are seen in women after the age of 70. Fractures of the sacrum are rare and generally combined with a concomitant pelvic fracture. Transverse sacral fractures are even less frequent which constitute only 3–5% of all sacral fractures. This type of fractures provide a diagnostic challenge. We report a unique case of isolated transverse fracture of sacrum in a young man sustained low-energy trauma. The patient presented to our emergency department after several hours of injury, and diagnosed by clinical features and roentgenogram findings.

  3. Lithium use and the risk of fractures

    NARCIS (Netherlands)

    Wilting, Ingeborg; de Vries, Frank; Thio, Brahm M. K. S.; Cooper, Cyrus; Heerdink, Eibert R.; Leutkens, Hubert G. M.; Nolen, Willem A.; Egberts, Antoine C. G.; van Staa, Tjeerd P.

    A recent study reported a decreased risk of fractures among lithium users. We conducted a case-control study within the UK General Practice Research Database, comparing never, ever, current, recent and past lithium use in 231,778 fracture cases to matched controls. In addition, the risk of fractures

  4. Basic principles of fracture treatment in children.

    Science.gov (United States)

    Ömeroğlu, Hakan

    2018-04-01

    This review aims to summarize the basic treatment principles of fractures according to their types and general management principles of special conditions including physeal fractures, multiple fractures, open fractures, and pathologic fractures in children. Definition of the fracture is needed for better understanding the injury mechanism, planning a proper treatment strategy, and estimating the prognosis. As the healing process is less complicated, remodeling capacity is higher and non-union is rare, the fractures in children are commonly treated by non-surgical methods. Surgical treatment is preferred in children with multiple injuries, in open fractures, in some pathologic fractures, in fractures with coexisting vascular injuries, in fractures which have a history of failed initial conservative treatment and in fractures in which the conservative treatment has no/little value such as femur neck fractures, some physeal fractures, displaced extension and flexion type humerus supracondylar fractures, displaced humerus lateral condyle fractures, femur, tibia and forearm shaft fractures in older children and adolescents and unstable pelvis and acetabulum fractures. Most of the fractures in children can successfully be treated by non-surgical methods.

  5. Fractures in sport: Optimising their management and outcome

    Science.gov (United States)

    Robertson, Greg AJ; Wood, Alexander M

    2015-01-01

    Fractures in sport are a specialised cohort of fracture injuries, occurring in a high functioning population, in which the goals are rapid restoration of function and return to play with the minimal symptom profile possible. While the general principles of fracture management, namely accurate fracture reduction, appropriate immobilisation and timely rehabilitation, guide the treatment of these injuries, management of fractures in athletic populations can differ significantly from those in the general population, due to the need to facilitate a rapid return to high demand activities. However, despite fractures comprising up to 10% of all of sporting injuries, dedicated research into the management and outcome of sport-related fractures is limited. In order to assess the optimal methods of treating such injuries, and so allow optimisation of their outcome, the evidence for the management of each specific sport-related fracture type requires assessment and analysis. We present and review the current evidence directing management of fractures in athletes with an aim to promote valid innovative methods and optimise the outcome of such injuries. From this, key recommendations are provided for the management of the common fracture types seen in the athlete. Six case reports are also presented to illustrate the management planning and application of sport-focussed fracture management in the clinical setting. PMID:26716081

  6. Current Concepts in the Mandibular Condyle Fracture Management Part I: Overview of Condylar Fracture

    Directory of Open Access Journals (Sweden)

    Kang-Young Choi

    2012-07-01

    Full Text Available The incidence of condylar fractures is high, but the management of fractures of the mandibular condyle continues to be controversial. Historically, maxillomandibular fixation, external fixation, and surgical splints with internal fixation systems were the techniques commonly used in the treatment of the fractured mandible. Condylar fractures can be extracapsular or intracapsular, undisplaced, deviated, displaced, or dislocated. Treatment depends on the age of the patient, the co-existence of other mandibular or maxillary fractures, whether the condylar fracture is unilateral or bilateral, the level and displacement of the fracture, the state of dentition and dental occlusion, and the surgeonnds on the age of the patient, the co-existence of othefrom which it is difficult to recover aesthetically and functionally;an appropriate treatment is required to reconstruct the shape and achieve the function ofthe uninjured status. To do this, accurate diagnosis, appropriate reduction and rigid fixation, and complication prevention are required. In particular, as mandibular condyle fracture may cause long-term complications such as malocclusion, particularly open bite, reduced posterior facial height, and facial asymmetry in addition to chronic pain and mobility limitation, great caution should be taken. Accordingly, the authors review a general overview of condyle fracture.

  7. Current Concepts in the Mandibular Condyle Fracture Management Part I: Overview of Condylar Fracture

    Directory of Open Access Journals (Sweden)

    Kang-Young Choi

    2012-07-01

    Full Text Available The incidence of condylar fractures is high,but the management of fractures of the mandibularcondyle continues to be controversial. Historically, maxillomandibular fixation, externalfixation, and surgical splints with internal fixation systems were the techniques commonlyused in the treatment of the fractured mandible. Condylar fractures can be extracapsularor intracapsular, undisplaced, deviated, displaced, or dislocated. Treatment depends on theage of the patient, the co-existence of other mandibular or maxillary fractures, whether thecondylar fracture is unilateral or bilateral, the level and displacement of the fracture, thestate of dentition and dental occlusion, and the surgeonnds on the age of the patient, theco-existence of othefrom which it is difficult to recover aesthetically and functionally;anappropriate treatment is required to reconstruct the shape and achieve the function oftheuninjured status. To do this, accurate diagnosis, appropriate reduction and rigid fixation, andcomplication prevention are required. In particular, as mandibular condyle fracture may causelong-term complications such as malocclusion, particularly open bite, reduced posterior facialheight, and facial asymmetry in addition to chronic pain and mobility limitation, great cautionshould be taken. Accordingly, the authors review a general overview of condyle fracture.

  8. Current Concepts in the Mandibular Condyle Fracture Management Part I: Overview of Condylar Fracture

    Science.gov (United States)

    Yang, Jung-Dug; Chung, Ho-Yun; Cho, Byung-Chae

    2012-01-01

    The incidence of condylar fractures is high, but the management of fractures of the mandibular condyle continues to be controversial. Historically, maxillomandibular fixation, external fixation, and surgical splints with internal fixation systems were the techniques commonly used in the treatment of the fractured mandible. Condylar fractures can be extracapsular or intracapsular, undisplaced, deviated, displaced, or dislocated. Treatment depends on the age of the patient, the co-existence of other mandibular or maxillary fractures, whether the condylar fracture is unilateral or bilateral, the level and displacement of the fracture, the state of dentition and dental occlusion, and the surgeonnds on the age of the patient, the co-existence of othefrom which it is difficult to recover aesthetically and functionally;an appropriate treatment is required to reconstruct the shape and achieve the function ofthe uninjured status. To do this, accurate diagnosis, appropriate reduction and rigid fixation, and complication prevention are required. In particular, as mandibular condyle fracture may cause long-term complications such as malocclusion, particularly open bite, reduced posterior facial height, and facial asymmetry in addition to chronic pain and mobility limitation, great caution should be taken. Accordingly, the authors review a general overview of condyle fracture. PMID:22872830

  9. Fatigue crack growth in an aluminum alloy-fractographic study

    Science.gov (United States)

    Salam, I.; Muhammad, W.; Ejaz, N.

    2016-08-01

    A two-fold approach was adopted to understand the fatigue crack growth process in an Aluminum alloy; fatigue crack growth test of samples and analysis of fractured surfaces. Fatigue crack growth tests were conducted on middle tension M(T) samples prepared from an Aluminum alloy cylinder. The tests were conducted under constant amplitude loading at R ratio 0.1. The stress applied was from 20,30 and 40 per cent of the yield stress of the material. The fatigue crack growth data was recorded. After fatigue testing, the samples were subjected to detailed scanning electron microscopic (SEM) analysis. The resulting fracture surfaces were subjected to qualitative and quantitative fractographic examinations. Quantitative fracture analysis included an estimation of crack growth rate (CGR) in different regions. The effect of the microstructural features on fatigue crack growth was examined. It was observed that in stage II (crack growth region), the failure mode changes from intergranular to transgranular as the stress level increases. In the region of intergranular failure the localized brittle failure was observed and fatigue striations are difficult to reveal. However, in the region of transgranular failure the crack path is independent of the microstructural features. In this region, localized ductile failure mode was observed and well defined fatigue striations were present in the wake of fatigue crack. The effect of interaction of growing fatigue crack with microstructural features was not substantial. The final fracture (stage III) was ductile in all the cases.

  10. Radiological diagnosis of fractures

    International Nuclear Information System (INIS)

    Finlay, D.B.L.; Allen, M.J.

    1984-01-01

    This book is about radiology of fractures. While it contains sections of clinical features it is not intended that readers should rely entirely upon these for the diagnosis and management of the injured patient. As in the diagnosis and treatment of all medical problems, fracture management must be carried out in a logical step-by-step fashion - namely, history, examination, investigation, differential diagnosis, diagnosis and then treatment. Each section deals with a specific anatomical area and begins with line drawings of the normal radiographs demonstrating the anatomy. Accessory views that may be requested, and the indications for these, are included. Any radiological pitfalls for the area in general are then described. The fractures in adults are then examined in turn, their radiological features described, and any pitfalls in their diagnosis discussed. A brief note of important clinical findings is included. A brief mention is made of pediatric fractures which are of significance and their differences to the adult pattern indicated. Although fractures can be classified into types with different characteristics, in life every fracture is individual. Fractures by and large follow common patterns, but many have variations

  11. Study of Hot Salt Stress Corrosion Crack Initiation of Alloy IMI 834 by using DC Potential Drop Method

    Energy Technology Data Exchange (ETDEWEB)

    Pustode, Mangesh D. [Bharat Forge Ltd., Pune (India); Dewangan, Bhupendra [Tata Steel, Jamshedpur (India); Raja, V. S. [Indian Institute of Technology Bombay, Mumbai (India); Paulose, Neeta; Babu, Narendra [Gas Turbine Research Establishment (GTRE), Bangalore (India)

    2016-10-15

    DC potential drop technique was employed during the slow strain rate tests to study the hot salt stress corrosion crack (HSSCC) initiation at 300 and 400 ℃. Threshold stresses for HSSCC initiation were found to about 88 % of the yield strength at both temperatures, but the time from crack initiation to final failure (Δtscc) decreased significantly with temperature, which reflects larger tendency for brittle fracture and secondary cracking. The brittle fracture features consisted of transgranular cracking through the primary α grain and discontinuous faceted cracking through the transformed β grains.

  12. Pre-fracture individual characteristics associated with high total health care costs after hip fracture.

    Science.gov (United States)

    Schousboe, J T; Paudel, M L; Taylor, B C; Kats, A M; Virnig, B A; Dowd, B E; Langsetmo, L; Ensrud, K E

    2017-03-01

    Older women with pre-fracture slow walk speed, high body mass index, and/or a high level of multimorbidity have significantly higher health care costs after hip fracture compared to those without those characteristics. Studies to investigate if targeted health care interventions for these individuals can reduce hip fracture costs are warranted. The aim of this study is to estimate the associations of individual pre-fracture characteristics with total health care costs after hip fracture, using Study of Osteoporotic Fractures (SOF) cohort data linked to Medicare claims. Our study population was 738 women age 70 and older enrolled in Medicare Fee for Service (FFS) who experienced an incident hip fracture between January 1, 1992 and December 31, 2009. We assessed pre-fracture individual characteristics at SOF study visits and estimated costs of hospitalizations, skilled nursing facility and inpatient rehabilitation stays, home health care visits, and outpatient utilization from Medicare FFS claims. We used generalized linear models to estimate the associations of predictor variables with total health care costs (2010 US dollars) after hip fracture. Median total health care costs for 1 year after hip fracture were $35,536 (inter-quartile range $24,830 to $50,903). Multivariable-adjusted total health care costs for 1 year after hip fracture were 14 % higher ($5256, 95 % CI $156 to $10,356) in those with walk speed total health care costs after hip fracture in older women. Studies to investigate if targeted health care interventions for these individuals can reduce the costs of hip fractures are warranted.

  13. Mechanical properties of 238PuO2

    International Nuclear Information System (INIS)

    Petrovic, J.J.; Hecker, S.S.; Land, C.C.; Rohr, D.L.

    1977-04-01

    The mechanical properties of 238 PuO 2 have been examined in the Los Alamos Scientific Laboratory mechanical test facility built to handle α-radioactive materials. Compression tests were conducted as a function of temperature, strain rate, grain size, density, and storage time. At temperatures less than or equal to 1400 0 C, test specimens of 238 PuO 2 exhibit pseudobrittle behavior due to internal cracks. Plastic deformation is ''localized'' at the crack tips. Generalized plastic deformation is observed at 1500 0 C. Ultimate stress values decrease markedly with increasing temperature and decreasing strain rate, and decrease less with decreasing density, increasing storage time, and increasing grain size. Room temperature fracture is transgranular, whereas intergranular fracture predominates at elevated temperatures. Crack-free specimens of 239 PuO 2 exhibit extensive plastic deformation at 1000 0 C and above. The relationship of these test results to the impact properties of 238 PuO 2 fuel in radioisotope thermoelectric generators is discussed

  14. Reduced Fracture Finite Element Model Analysis of an Efficient Two-Scale Hybrid Embedded Fracture Model

    KAUST Repository

    Amir, Sahar Z.

    2017-06-09

    A Hybrid Embedded Fracture (HEF) model was developed to reduce various computational costs while maintaining physical accuracy (Amir and Sun, 2016). HEF splits the computations into fine scale and coarse scale. Fine scale solves analytically for the matrix-fracture flux exchange parameter. Coarse scale solves for the properties of the entire system. In literature, fractures were assumed to be either vertical or horizontal for simplification (Warren and Root, 1963). Matrix-fracture flux exchange parameter was given few equations built on that assumption (Kazemi, 1968; Lemonnier and Bourbiaux, 2010). However, such simplified cases do not apply directly for actual random fracture shapes, directions, orientations …etc. This paper shows that the HEF fine scale analytic solution (Amir and Sun, 2016) generates the flux exchange parameter found in literature for vertical and horizontal fracture cases. For other fracture cases, the flux exchange parameter changes according to the angle, slop, direction, … etc. This conclusion rises from the analysis of both: the Discrete Fracture Network (DFN) and the HEF schemes. The behavior of both schemes is analyzed with exactly similar fracture conditions and the results are shown and discussed. Then, a generalization is illustrated for any slightly compressible single-phase fluid within fractured porous media and its results are discussed.

  15. Reduced Fracture Finite Element Model Analysis of an Efficient Two-Scale Hybrid Embedded Fracture Model

    KAUST Repository

    Amir, Sahar Z.; Chen, Huangxin; Sun, Shuyu

    2017-01-01

    A Hybrid Embedded Fracture (HEF) model was developed to reduce various computational costs while maintaining physical accuracy (Amir and Sun, 2016). HEF splits the computations into fine scale and coarse scale. Fine scale solves analytically for the matrix-fracture flux exchange parameter. Coarse scale solves for the properties of the entire system. In literature, fractures were assumed to be either vertical or horizontal for simplification (Warren and Root, 1963). Matrix-fracture flux exchange parameter was given few equations built on that assumption (Kazemi, 1968; Lemonnier and Bourbiaux, 2010). However, such simplified cases do not apply directly for actual random fracture shapes, directions, orientations …etc. This paper shows that the HEF fine scale analytic solution (Amir and Sun, 2016) generates the flux exchange parameter found in literature for vertical and horizontal fracture cases. For other fracture cases, the flux exchange parameter changes according to the angle, slop, direction, … etc. This conclusion rises from the analysis of both: the Discrete Fracture Network (DFN) and the HEF schemes. The behavior of both schemes is analyzed with exactly similar fracture conditions and the results are shown and discussed. Then, a generalization is illustrated for any slightly compressible single-phase fluid within fractured porous media and its results are discussed.

  16. Fracture-toughness variations in Alloy 718

    International Nuclear Information System (INIS)

    Mills, W.J.; Blackburn, L.D.

    1983-04-01

    The effect of product-form variations within a single heat on the J Ic fracture toughness behavior of Alloy 718 was examined at 24, 427 and 538 degree C using the multiple-specimen J R -curve method. Three product forms (plate, round bar and upset forging) were tested in both the conventional and modified heat-treatment (CHT and MHT) conditions. In CHT material, the fracture toughness response was different for the three product forms -- plate having the highest toughness, bar the lowest. The MHT was found to improve the overall fracture resistance for each product form. In this condition, plate and forging had very similar toughness values, but J Ic levels for the bar were considerably lower. These results and WHC data previously reported for four other Alloy 718 heats were unalloyed statistically to establish minimum-expected J Ic values based on tolerance limits bracketing 90% of a total population at a 95% confidence level. Metallographic and fractographic examinations of the seven material lots were performed to relate key microstructural features and operative fracture mechanisms to macroscopic properties. Generally, coarse δ precipitates controlled fracture properties in CHT material by initiating secondary dimples that pre-empted growth of the primary dimples nucleated by broken carbide inclusions. The MHT dissolved the coarse δ particles and thereby suppressed secondary microvoid coalescence. This generally enhanced the fracture resistance of Alloy 718, except when alternate secondary fracture mechanism, such as channel fracture and dimple rupture at δ-phase remnants, prematurely interrupted primary microvoid growth. 25 refs., 12 figs., 12 tabs

  17. Mimetic Finite Differences for Flow in Fractures from Microseismic Data

    KAUST Repository

    Al-Hinai, Omar; Srinivasan, Sanjay; Wheeler, Mary F.

    2015-01-01

    We present a method for porous media flow in the presence of complex fracture networks. The approach uses the Mimetic Finite Difference method (MFD) and takes advantage of MFD's ability to solve over a general set of polyhedral cells. This flexibility is used to mesh fracture intersections in two and three-dimensional settings without creating small cells at the intersection point. We also demonstrate how to use general polyhedra for embedding fracture boundaries in the reservoir domain. The target application is representing fracture networks inferred from microseismic analysis.

  18. Mimetic Finite Differences for Flow in Fractures from Microseismic Data

    KAUST Repository

    Al-Hinai, Omar

    2015-01-01

    We present a method for porous media flow in the presence of complex fracture networks. The approach uses the Mimetic Finite Difference method (MFD) and takes advantage of MFD\\'s ability to solve over a general set of polyhedral cells. This flexibility is used to mesh fracture intersections in two and three-dimensional settings without creating small cells at the intersection point. We also demonstrate how to use general polyhedra for embedding fracture boundaries in the reservoir domain. The target application is representing fracture networks inferred from microseismic analysis.

  19. Effects of laser shock peening on stress corrosion behavior of 7075 aluminum alloy laser welded joints

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.T., E-mail: jiasqq1225@126.com [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); School of Materials Engineering, Jiangsu University of Technology, Changzhou 213001 (China); Zhang, Y.K. [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); School of Mechanical Engineering, Southeast University, Nanjing 211189 (China); Chen, J.F.; Zhou, J.Y.; Ge, M.Z.; Lu, Y.L.; Li, X.L. [School of Materials Engineering, Jiangsu University of Technology, Changzhou 213001 (China)

    2015-10-28

    7075 aluminum alloy weldments were processed by an intensive process known as laser shock peening (LSP), meanwhile its stress corrosion behaviors were observed by scanning electron microscopy (SEM) and slow strain rate tensile (SSRT) tests. Results showed that the effect of LSP on corrosion behavior of the joint was fairly useful and obvious. With LSP, the elongation, time of fracture and static toughness after the SSRT test were improved by 11.13%, 20% and 100%, respectively. At the same time, the location of the fracture also changed. LSP led to a transition of the fracture type from transgranular to intergranular The reasons for these enhancements of the joint on corrosion behavior were caused by microstructure, residual stress, micro-hardness, and fracture appearance.

  20. Femoral fractures : indications an[d] biomechanics of external fixation

    NARCIS (Netherlands)

    A.H. Broekhuizen (Tom); B. van Linge

    1988-01-01

    textabstractInternal fixation can be carried out in various ways. For femoral shaft fractures, an (interlocking) nail is becoming increasingly popular, instead of open realignment of the fracture. External fixation, which has become a generally accepted method of treating fractures of the lower

  1. Fracture Union in Closed Interlocking Nail in Femoral Fracture

    Directory of Open Access Journals (Sweden)

    R L Sahu

    2010-09-01

    Full Text Available INTRODUCTION: Fractures shaft femur is a major cause of morbidity and mortality in patients with lower extremity injuries. The objective of this study was to find out the outcome of Interlocking nail in fracture femur. METHODS: This study was conducted in the Department of Orthopaedic surgery in M. M. Medical College from July 2006 to November 2008. Seventy eight patients were recruited from Emergency and out patient department having closed fracture of femoral shaft. All patients were operated under general or spinal anesthesia. All patients were followed for nine months. RESULTS: Out of seventy eight patients, sixty nine patients underwent union in 90 to 150 days with a mean of 110.68 days. Touch down weight bearing was started on 2nd post-operative day. Complications found in four patients who had non-union, and five patients had delayed union which was treated with dynamization and bone graft. The results were excellent in 88.46% and good in 6.41% patients. CONCLUSIONS: We concluded that this technique is advantageous because of early mobilization (early weight bearing, less complication with good results and is economical. Keywords: close reamed interlocking nail, dynamization, femoral shaft fractures, union

  2. Stress corrosion cracking susceptibility of austenitic stainless steels in supercritical water conditions

    International Nuclear Information System (INIS)

    Novotny, R.; Haehner, P.; Ripplinger, S.; Siegl, J.; Penttilae, Sami; Toivonen, Aki

    2009-01-01

    Within the 6th Framework Program HPLWR-2 project (High Performance Light Water Reactor - Phase 2), stress corrosion cracking (SCC) susceptibilities of selected austenitic stainless steels, 316L and 316NG, were studied in supercritical water (SCW) with the aim to identify and describe the specific failure mechanisms prevailing during slow strain-rate tensile (SSRT) tests in ultra-pure demineralised SCW water solution. The SSRT tests were performed using a step-motor controlled loading device in an autoclave at 350 deg. C, 500 deg. C and 550 deg. C. Besides water temperature, the pressure, the oxygen content and the strain rate (resp. crosshead speed) were varied in the series of tests. The specimens SSRT tested to failure were subjected to fractographic analysis, in order to characterise the failure mechanisms. The fractography confirmed that failure was due to a combination of transgranular SCC and transgranular ductile fracture. The share of SCC and ductile fracture in the failure process of individual specimens was affected by the parameters of the SSRT tests, so that the environmental influence on SCC susceptibility could be assessed, in particular, the SCC sensitising effects of increasing oxygen content, decreasing strain rate and increasing test temperature. (author)

  3. Isolated Fracture of the Coracoid Process

    Directory of Open Access Journals (Sweden)

    Ali Güleç

    2014-01-01

    Full Text Available Coracoid fractures are rarely seen fractures. In the shoulder girdle, coracoid process fractures generally accompany dislocation of the acromioclavicular joint or glenohumeral joint, scapula corpus, clavicula, humerus fracture, or rotator cuff tear. Coracoid fractures can be missed and the treatment for coracoid process fractures is still controversial. In this paper, a 34-year-old male manual labourer presented to the emergency department with complaints of pain and restricted movement in the left shoulder following a traffic accident. On direct radiographs and computerised tomography images a fragmented fracture was observed on the base of the coracoid process. In addition to the coracoid fracture, a mandibular fracture was determined. The patient was admitted for surgery on both fractures. After open reduction, fixation was made with a 3.5 mm cannulated screw and washer. At the postoperative 6th week, bone union was determined. The patient returned to his previous occupation pain-free and with a full range of joint movement. In conclusion, in the current case of isolated fragmented coracoid process fracture showing minimal displacement in a patient engaged in heavy manual work, surgery was preferred as it was thought that nonunion might be encountered particularly because of the effect of forces around the coracoid.

  4. A Continuum-Atomistic Analysis of Transgranular Crack Propagation in Aluminum

    Science.gov (United States)

    Yamakov, V.; Saether, E.; Glaessgen, E.

    2009-01-01

    A concurrent multiscale modeling methodology that embeds a molecular dynamics (MD) region within a finite element (FEM) domain is used to study plastic processes at a crack tip in a single crystal of aluminum. The case of mode I loading is studied. A transition from deformation twinning to full dislocation emission from the crack tip is found when the crack plane is rotated around the [111] crystallographic axis. When the crack plane normal coincides with the [112] twinning direction, the crack propagates through a twinning mechanism. When the crack plane normal coincides with the [011] slip direction, the crack propagates through the emission of full dislocations. In intermediate orientations, a transition from full dislocation emission to twinning is found to occur with an increase in the stress intensity at the crack tip. This finding confirms the suggestion that the very high strain rates, inherently present in MD simulations, which produce higher stress intensities at the crack tip, over-predict the tendency for deformation twinning compared to experiments. The present study, therefore, aims to develop a more realistic and accurate predictive modeling of fracture processes.

  5. Effect of heat treatment on the temperature dependence of the fracture behavior of X-750 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, C.; Depinoy, S. [University of South Carolina (United States); Kaoumi, D. [North Carolina State University (United States)

    2016-11-20

    X-750 is a nickel-chromium based super alloy of usefulness in a wide variety of applications such as gas turbines, rocket engines, nuclear reactors, pressure vessels, tooling, and aircraft structures. Its good mechanical properties are due to the strengthening from precipitation of γ′ particles upon prior ageing heat treatment. In this work, the effect of such heat treatment on the fracture mechanisms of X-750 was studied at various temperatures by comparing it with a non-aged, solution annealed X-750. Tensile tests were conducted from room temperatures up to 900 °C; fracture surfaces were analyzed by means of SEM observations. In addition, the microstructure of both aged and solution annealed materials were studied using SEM and TEM, both on as received and on tested specimens. In terms of mechanical properties, as expected, the yield strength and the ultimate tensile strength of the aged material were better than for the solution-annealed one, and only slightly decreased with increasing temperature when tested between room temperatures and 650 °C. In this range of temperature, the fracture surface of aged material evolves from purely intergranular to purely transgranular due to the thermal activation of dislocation mobility that relieves the stress at the grain boundaries, while the rupture of the solution annealed material is due to the coalescence of voids induced by decohesion at the MC carbides/matrix interface. At higher temperatures, precipitation of γ’ particles upon testing of the solution-annealed material leads to a temperature-dependent increase in both yield strength and ultimate tensile strength, which nevertheless remain below the aged material ones with the exception of the higher temperatures. At the same time, an overall decrease of the aged material mechanical properties is observed. Minimum ductility was observed at 750 °C for both solution annealed and aged specimen, due to the oxidation of grain boundaries leading to an

  6. Evaluation and Management of Proximal Humerus Fractures

    Directory of Open Access Journals (Sweden)

    Ekaterina Khmelnitskaya

    2012-01-01

    Full Text Available Proximal humerus fractures are common injuries, especially among older osteoporotic women. Restoration of function requires a thorough understanding of the neurovascular, musculotendinous, and bony anatomy. This paper addresses the relevant anatomy and highlights various management options, including indication for arthroplasty. In the vast majority of cases, proximal humerus fractures may be treated nonoperatively. In the case of displaced fractures, when surgical intervention may be pursued, numerous constructs have been investigated. Of these, the proximal humerus locking plate is the most widely used. Arthroplasty is generally reserved for comminuted 4-part fractures, head-split fractures, or fractures with significant underlying arthritic changes. Reverse total shoulder arthroplasty is reserved for patients with a deficient rotator cuff, or highly comminuted tuberosities.

  7. The Danish Fracture Database can monitor quality of fracture-related surgery, surgeons' experience level and extent of supervision

    DEFF Research Database (Denmark)

    Andersen, M. J.; Gromov, K.; Brix, M.

    2014-01-01

    INTRODUCTION: The importance of supervision and of surgeons' level of experience in relation to patient outcome have been demonstrated in both hip fracture and arthroplasty surgery. The aim of this study was to describe the surgeons' experience level and the extent of supervision for: 1) fracture-related...... surgery in general; 2) the three most frequent primary operations and reoperations; and 3) primary operations during and outside regular working hours. MATERIAL AND METHODS: A total of 9,767 surgical procedures were identified from the Danish Fracture Database (DFDB). Procedures were grouped based...... procedures by junior residents grew from 30% during to 40% (p related surgery. The extent of supervision was generally high; however, a third of the primary procedures performed by junior...

  8. Modeling CO2 Storage in Fractured Reservoirs: Fracture-Matrix Interactions of Free-Phase and Dissolved CO2

    Science.gov (United States)

    Oldenburg, C. M.; Zhou, Q.; Birkholzer, J. T.

    2017-12-01

    The injection of supercritical CO2 (scCO2) in fractured reservoirs has been conducted at several storage sites. However, no site-specific dual-continuum modeling for fractured reservoirs has been reported and modeling studies have generally underestimated the fracture-matrix interactions. We developed a conceptual model for enhanced CO2 storage to take into account global scCO2 migration in the fracture continuum, local storage of scCO2 and dissolved CO2 (dsCO2) in the matrix continuum, and driving forces for scCO2 invasion and dsCO2 diffusion from fractures. High-resolution discrete fracture-matrix models were developed for a column of idealized matrix blocks bounded by vertical and horizontal fractures and for a km-scale fractured reservoir. The column-scale simulation results show that equilibrium storage efficiency strongly depends on matrix entry capillary pressure and matrix-matrix connectivity while the time scale to reach equilibrium is sensitive to fracture spacing and matrix flow properties. The reservoir-scale modeling results shows that the preferential migration of scCO2 through fractures is coupled with bulk storage in the rock matrix that in turn retards the fracture scCO2 plume. We also developed unified-form diffusive flux equations to account for dsCO2 storage in brine-filled matrix blocks and found solubility trapping is significant in fractured reservoirs with low-permeability matrix.

  9. Incomplete linear tibial fractures in two horses

    International Nuclear Information System (INIS)

    Johnson, P.J.; Allhands, R.V.; Baker, G.J.; Boero, M.J.; Foreman, J.H.; Hyyppa, T.; Huhn, J.C.

    1988-01-01

    Incomplete linear tibial fractures were identified in two horses with the aid of scintigraphy. Both horses were treated successfully by strict stall confinement, and both returned to normal athletic activity. Scintigraphy can be used to facilitate the generally difficult diagnosis of incomplete tibial fractures

  10. Isolated fracture of pisiform: case report of a rare injury of wrist

    African Journals Online (AJOL)

    Arun Kumar Agnihotri

    ABSTRACT: Isolated fracture of the pisiform is an extremely rare injury. Generally fractures of the pisiform are associated with fractures of other carpal bones or the distal radius. Fractures of the carpals and metacarpals account for roughly 6% of all fractures. The average incidence of pisiform fractures is 0.2% of all carpal ...

  11. Functional outcome of intra-articular tibial plateau fractures: the impact of posterior column fractures.

    Science.gov (United States)

    van den Berg, Juriaan; Reul, Maike; Nunes Cardozo, Menno; Starovoyt, Anastasiya; Geusens, Eric; Nijs, Stefaan; Hoekstra, Harm

    2017-09-01

    INTRODUCTION: Although regularly ignored, there is growing evidence that posterior tibial plateau fractures affect the functional outcome. The goal of this study was to assess the incidence of posterior column fractures and its impact on functional outcome and general health status. We aimed to identify all clinical variables that influence the outcome and improve insights in the treatment strategies. A retrospective cohort study including 218 intra-articular tibial plateau fractures was conducted. All fractures were reclassified and applied treatment was assessed according to the updated three-column concept. Relevant demographic and clinical variables were studied. The patient reported outcome was assessed using the Knee injury and Osteoarthritis Outcome Score (KOOS). Median follow-up was 45.5 (IQR 24.9-66.2) months. Significant outcome differences between operatively and non-operatively treated patients were found for all KOOS subscales. The incidence of posterior column fractures was 61.9%. Posterior column fractures, sagittal malalignment and an increased complication rate were associated with poor outcome. Patients treated according to the updated three-column concept, showed significantly better outcome scores than those patients who were not. We could not demonstrate the advantage of posterior column fracture fixation, due to a limited patient size. Our data indicates that implementation of the updated three-column classification concept may improve the surgical outcome of tibial plateau fractures. Failure to recognize posterior column fractures may lead to inappropriate utilization of treatment techniques. The current concept allows us to further substantiate the importance of reduction and fixation of posterior column fractures with restoration of the sagittal alignment. 3.

  12. Effects of HfB2 and HfN Additions on the Microstructures and Mechanical Properties of TiB2-Based Ceramic Tool Materials

    Science.gov (United States)

    An, Jing; Song, Jinpeng; Liang, Guoxing; Gao, Jiaojiao; Xie, Juncai; Cao, Lei; Wang, Shiying; Lv, Ming

    2017-01-01

    The effects of HfB2 and HfN additions on the microstructures and mechanical properties of TiB2-based ceramic tool materials were investigated. The results showed that the HfB2 additive not only can inhibit the TiB2 grain growth but can also change the morphology of some TiB2 grains from bigger polygons to smaller polygons or longer ovals that are advantageous for forming a relatively fine microstructure, and that the HfN additive had a tendency toward agglomeration. The improvement of flexural strength and Vickers hardness of the TiB2-HfB2 ceramics was due to the relatively fine microstructure; the decrease of fracture toughness was ascribed to the formation of a weaker grain boundary strength due to the brittle rim phase and the poor wettability between HfB2 and Ni. The decrease of the flexural strength and Vickers hardness of the TiB2-HfN ceramics was due to the increase of defects such as TiB2 coarse grains and HfN agglomeration; the enhancement of fracture toughness was mainly attributed to the decrease of the pore number and the increase of the rim phase and TiB2 coarse grains. The toughening mechanisms of TiB2-HfB2 ceramics mainly included crack bridging and transgranular fracture, while the toughening mechanisms of TiB2-HfN ceramics mainly included crack deflection, crack bridging, transgranular fracture, and the core-rim structure. PMID:28772821

  13. Effects of HfB2 and HfN Additions on the Microstructures and Mechanical Properties of TiB2-Based Ceramic Tool Materials

    Directory of Open Access Journals (Sweden)

    Jing An

    2017-04-01

    Full Text Available The effects of HfB2 and HfN additions on the microstructures and mechanical properties of TiB2-based ceramic tool materials were investigated. The results showed that the HfB2 additive not only can inhibit the TiB2 grain growth but can also change the morphology of some TiB2 grains from bigger polygons to smaller polygons or longer ovals that are advantageous for forming a relatively fine microstructure, and that the HfN additive had a tendency toward agglomeration. The improvement of flexural strength and Vickers hardness of the TiB2-HfB2 ceramics was due to the relatively fine microstructure; the decrease of fracture toughness was ascribed to the formation of a weaker grain boundary strength due to the brittle rim phase and the poor wettability between HfB2 and Ni. The decrease of the flexural strength and Vickers hardness of the TiB2-HfN ceramics was due to the increase of defects such as TiB2 coarse grains and HfN agglomeration; the enhancement of fracture toughness was mainly attributed to the decrease of the pore number and the increase of the rim phase and TiB2 coarse grains. The toughening mechanisms of TiB2-HfB2 ceramics mainly included crack bridging and transgranular fracture, while the toughening mechanisms of TiB2-HfN ceramics mainly included crack deflection, crack bridging, transgranular fracture, and the core-rim structure.

  14. Fracture size and transmissivity correlations: Implications for transport simulations in sparse three-dimensional discrete fracture networks following a truncated power law distribution of fracture size

    Science.gov (United States)

    Hyman, J.; Aldrich, G. A.; Viswanathan, H. S.; Makedonska, N.; Karra, S.

    2016-12-01

    We characterize how different fracture size-transmissivity relationships influence flow and transport simulations through sparse three-dimensional discrete fracture networks. Although it is generally accepted that there is a positive correlation between a fracture's size and its transmissivity/aperture, the functional form of that relationship remains a matter of debate. Relationships that assume perfect correlation, semi-correlation, and non-correlation between the two have been proposed. To study the impact that adopting one of these relationships has on transport properties, we generate multiple sparse fracture networks composed of circular fractures whose radii follow a truncated power law distribution. The distribution of transmissivities are selected so that the mean transmissivity of the fracture networks are the same and the distributions of aperture and transmissivity in models that include a stochastic term are also the same.We observe that adopting a correlation between a fracture size and its transmissivity leads to earlier breakthrough times and higher effective permeability when compared to networks where no correlation is used. While fracture network geometry plays the principal role in determining where transport occurs within the network, the relationship between size and transmissivity controls the flow speed. These observations indicate DFN modelers should be aware that breakthrough times and effective permeabilities can be strongly influenced by such a relationship in addition to fracture and network statistics.

  15. Growth Kinematics of Opening-Mode Fractures

    Science.gov (United States)

    Eichhubl, P.; Alzayer, Y.; Laubach, S.; Fall, A.

    2014-12-01

    Fracture aperture is a primary control on flow in fractured reservoirs of low matrix permeability including unconventional oil and gas reservoirs and most geothermal systems. Guided by principles of linear elastic fracture mechanics, fracture aperture is generally assumed to be a linear function of fracture length and elastic material properties. Natural opening-mode fractures with significant preserved aperture are observed in core and outcrop indicative of fracture opening strain accommodated by permanent solution-precipitation creep. Fracture opening may thus be decoupled from length growth if the material effectively weakens after initial elastic fracture growth by either non-elastic deformation processes or changes in elastic properties. To investigate the kinematics of fracture length and aperture growth, we reconstructed the opening history of three opening-mode fractures that are bridged by crack-seal quartz cement in Travis Peak Sandstone of the SFOT-1 well, East Texas. Similar crack-seal cement bridges had been interpreted to form by repeated incremental fracture opening and subsequent precipitation of quartz cement. We imaged crack-seal cement textures for bridges sampled at varying distance from the tips using scanning electron microscope cathodoluminescence, and determined the number and thickness of crack-seal cement increments as a function of position along the fracture length and height. Observed trends in increment number and thickness are consistent with an initial stage of fast fracture propagation relative to aperture growth, followed by a stage of slow propagation and pronounced aperture growth. Consistent with fluid inclusion observations indicative of fracture opening and propagation occurring over 30-40 m.y., we interpret the second phase of pronounced aperture growth to result from fracture opening strain accommodated by solution-precipitation creep and concurrent slow, possibly subcritical, fracture propagation. Similar deformation

  16. Cement augmentation of implants--no general cure in osteoporotic fracture treatment. A biomechanical study on non-displaced femoral neck fractures.

    Science.gov (United States)

    Hofmann-Fliri, Ladina; Nicolino, Tomas I; Barla, Jorge; Gueorguiev, Boyko; Richards, R Geoff; Blauth, Michael; Windolf, Markus

    2016-02-01

    Femoral neck fractures in the elderly are a common problem in orthopedics. Augmentation of screw fixation with bone cement can provide better stability of implants and lower the risk of secondary displacement. This study aimed to investigate whether cement augmentation of three cannulated screws in non-displaced femoral neck fractures could increase implant fixation. A femoral neck fracture was simulated in six paired human cadaveric femora and stabilized with three 7.3 mm cannulated screws. Pairs were divided into two groups: conventional instrumentation versus additional cement augmentation of screw tips with 2 ml TraumacemV+ each. Biomechanical testing was performed by applying cyclic axial load until failure. Failure cycles, axial head displacement, screw angle changes, telescoping and screw cut-out were evaluated. Failure (15 mm actuator displacement) occurred in the augmented group at 12,500 cycles (± 2,480) compared to 15,625 cycles (± 4,215) in the non-augmented group (p = 0.041). When comparing 3 mm vertical displacement of the head no significant difference (p = 0.72) was detected between the survival curves of the two groups. At 8,500 load-cycles (early onset failure) the augmented group demonstrated a change in screw angle of 2.85° (± 0.84) compared to 1.15° (± 0.93) in the non-augmented group (p = 0.013). The results showed no biomechanical advantage with respect to secondary displacement following augmentation of three cannulated screws in a non-displaced femoral neck fracture. Consequently, the indication for cement augmentation to enhance implant anchorage in osteoporotic bone has to be considered carefully taking into account fracture type, implant selection and biomechanical surrounding. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  17. Research on fracture analysis, groundwater flow and sorption processes in fractured rocks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae Ha [Korea Institute of Geology Mining and Materials, Taejon (Korea)

    1998-12-01

    Due to increasing demand for numerous industrial facilities including nuclear power plants and waste repositories, the feasibility of rocks masses as sites for the facilities has been a geological issue of concern. Rock masses, in general, comprises systems of fractures which can provide pathways for groundwater flow and may also affect the stability of engineered structures. such properties of fractures stimulate a synthetic study on (1) analyses of fracture systems, and (2) characterization of groundwater flow and sorption processes in fractured rocks to establish a preliminary model for assessing suitable sites for industrial facilities. The analyses of fracture systems cover (1) reconstruction of the Cenozoic tectonic movements and estimation of frequency indices for the Holocene tectonic movements, (2) determination of distributions and block movements of the Quaternary marine terraces, (3) investigation of lithologic and geotechnical nature of study area, and (4) examination of the Cenozoic volcanic activities and determination of age of the dike swarms. Using data obtained from above mentioned analyses along with data related to earthquakes and active faults, probabilistic approach is performed to determine various potential hazards which may result from the Quaternary or the Holocene tectonic movements. In addition, stepwise and careful integration of various data obtained from field works and laboratory experiments are carried out to analyze groundwater flow in fractures rocks as follows; (1) investigation of geological feature of the site, (2) identification and characterization of fracture systems using core and televiewer logs, (3) determination of conductive fractures using electrical conductivity, temperature, and flow logs, (4) identification of hydraulic connections between fractures using televiewer logs with tracer tests within specific zones. The results obtained from these processes allow a qualitative interpretation of groundwater flow patterns

  18. Diagnostic ability of panoramic radiography for mandibular fractures

    International Nuclear Information System (INIS)

    Lee, Ji Hyun; Jung, Yun Hoa; Cho Bong Hae; Hwang, Dae Seok

    2010-01-01

    The purpose of this study was to evaluate the diagnostic efficacy of panoramic radiographs for detection of mandibular fractures. The sample was comprised of 65 patients (55 fractured, 10 non-fractured) with 92 fracture sites confirmed by multi-detector computed tomography (CT). Panoramic radiographs were evaluated for mandibular fractures by six examiners; two oral and maxillofacial radiologists (observer A and B), two oral and maxillofacial surgeons (observer C and D), and two general dentists (observer E and F). Sensitivity of panoramic radiography for mandibular fractures was 95.7% in observer A and B, 93.5% in observer C and D and 80.4% in observer E and F. The lowest sensitivity was shown in symphyseal/parasymphyseal areas, followed by subcondylar/condylar regions. Panoramic radiography is adequate for detection of mandibular fractures. However, additional multidetector CT is recommended to ascertain some indecisive fractures of symphysis and condyle, and in complicated fractures.

  19. Diagnostic ability of panoramic radiography for mandibular fractures

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Hyun; Jung, Yun Hoa; Cho Bong Hae; Hwang, Dae Seok [School of Dentistry, Pusan National University, Pusan (Korea, Republic of)

    2010-03-15

    The purpose of this study was to evaluate the diagnostic efficacy of panoramic radiographs for detection of mandibular fractures. The sample was comprised of 65 patients (55 fractured, 10 non-fractured) with 92 fracture sites confirmed by multi-detector computed tomography (CT). Panoramic radiographs were evaluated for mandibular fractures by six examiners; two oral and maxillofacial radiologists (observer A and B), two oral and maxillofacial surgeons (observer C and D), and two general dentists (observer E and F). Sensitivity of panoramic radiography for mandibular fractures was 95.7% in observer A and B, 93.5% in observer C and D and 80.4% in observer E and F. The lowest sensitivity was shown in symphyseal/parasymphyseal areas, followed by subcondylar/condylar regions. Panoramic radiography is adequate for detection of mandibular fractures. However, additional multidetector CT is recommended to ascertain some indecisive fractures of symphysis and condyle, and in complicated fractures.

  20. Ductile fracture theories for pressurised pipes and containers

    Science.gov (United States)

    Erdogan, F.

    1976-01-01

    Two mechanisms of fracture are distinguished. Plane strain fractures occur in materials which do not undergo large-scale plastic deformations prior to and during a possible fracture deformation. Plane stress or high energy fractures are generally accompanied by large inelastic deformations. Theories for analyzing plane stress are based on the concepts of critical crack opening stretch, K(R) characterization, J-integral, and plastic instability. This last is considered in some detail. The ductile fracture process involves fracture initiation followed by a stable crack growth and the onset of unstable fracture propagation. The ductile fracture propagation process may be characterized by either a multiparameter (discrete) model, or some type of a resistance curve which may be considered as a continuous model expressed graphically. These models are studied and an alternative model is also proposed for ductile fractures which cannot be modeled as progressive crack growth phenomena.

  1. Mechanical behaviour of new zirconia-hydroxyapatite ceramic materials

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, J.A.; Morejon, L. [La Habana Univ. (Cuba). Centro de Biomateriales; Martinez, S. [Barcelona Univ. (Spain). Dept. Cristallografia, Mineralogia; Ginebra, M.P.; Carlsson, N.; Fernandez, E.; Planell, J.A. [Universidad Politecnica de Cataluna, Barcelona (Spain). CREB; Clavaguera-Mora, M.T.; Rodriguez-Viejo, J. [Universitat Autonoma de Barcelona (Spain). Dept. de Fisica

    2001-07-01

    In this work a new zirconia-hydroxyapatite ceramic material was obtained by uniaxial pressing and sintering in humid environment. The powder X-ray diffraction (XRD) patterns and infrared spectra (FT-IR) showed that the hydroxyapatite (HA) is the only calcium phosphate phase present. The fracture toughness for HA with 20 wt.% of magnesia partially stabilised zirconia (Mg-PSZ) was around 2.5 times higher than those obtained for HA pure, also the highest value of bending strength (160 MPa) was obtained for material reinforced with Mg-PSZ. For the MgPSZ-HA (20%) the fracture mechanism seems to be less transgranular. (orig.)

  2. Fracture risk in hepatitis C virus infected persons

    DEFF Research Database (Denmark)

    Hansen, Ann-Brit Eg; Omland, Lars Haukali; Krarup, Henrik

    2014-01-01

    BACKGROUND & AIMS: The association between Hepatitis C virus (HCV)-infection and fracture risk is not well characterized. We compared fracture risk between HCV-seropositive (HCV-exposed) patients and the general population and between patients with cleared and chronic HCV-infection. METHODS...

  3. Rib fracture following stereotactic body radiotherapy: a potential pitfall.

    Science.gov (United States)

    Stanic, Sinisa; Boike, Thomas P; Rule, William G; Timmerman, Robert D

    2011-11-01

    Although the incidence of rib fractures after conventional radiotherapy is generally low (rib fractures are a relatively common complication of stereotactic body radiotherapy. For malignancy adjacent to the chest wall, the incidence of rib fractures after stereotactic body radiotherapy is as high as 10%. Unrecognized bone fractures can mimic bone metastases on bone scintigraphy, can lead to extensive workup, and can even lead to consideration of unnecessary systemic chemotherapy, as treatment decisions can be based on imaging findings alone. Nuclear medicine physicians and diagnostic radiologists should always consider rib fracture in the differential diagnosis.

  4. Bilateral iatrogenic maxillary fractures after dental treatment in two aged horses

    OpenAIRE

    Widmer, A; Fürst, A; Bettschart-Wolfensberger, R; Makara, M; Geyer, H; Kummer, M

    2010-01-01

    This clinical report describes two horses with bilateral maxillary fractures following dental treatment. The fractures occurred during dental treatment by a veterinarian, and both had rostral, transverse, and complete bilateral maxillary fractures with instability and minimal displacement. The fractures were repaired using bilateral intraoral wiring with the patients under general anesthesia. The postoperative period was without complications and the fractures healed as expected. Maxillary fr...

  5. Radionuclide transport in fractured porous media -- Analytical solutions for a system of parallel fractures with a constant inlet flux

    International Nuclear Information System (INIS)

    Chen, C.T.; Li, S.H.

    1997-01-01

    Analytical solutions are developed for the problem of radionuclide transport in a system of parallel fractures situated in a porous rock matrix. A constant flux is used as the inlet boundary condition. The solutions consider the following processes: (a) advective transport along the fractures; (b) mechanical dispersion and molecular diffusion along the fractures; (c) molecular diffusion from a fracture to the porous matrix; (d) molecular diffusion within the porous matrix in the direction perpendicular to the fracture axis; (e) adsorption onto the fracture wall; (f) adsorption within the porous matrix, and (g) radioactive decay. The solutions are based on the Laplace transform method. The general transient solution is in the form of a double integral that is evaluated using composite Gauss-Legendre quadrature. A simpler transient solution that is in the form of a single integral is also presented for the case that assumes negligible longitudinal dispersion along the fractures. The steady-state solutions are also provided. A number of examples are given to illustrate the effects of various important parameters, including: (a) fracture spacing; (b) fracture dispersion coefficient; (c) matrix diffusion coefficient; (d) fracture width; (e) groundwater velocity; (f) matrix retardation factor; and (g) matrix porosity

  6. Effect of Random Natural Fractures on Hydraulic Fracture Propagation Geometry in Fractured Carbonate Rocks

    Science.gov (United States)

    Liu, Zhiyuan; Wang, Shijie; Zhao, Haiyang; Wang, Lei; Li, Wei; Geng, Yudi; Tao, Shan; Zhang, Guangqing; Chen, Mian

    2018-02-01

    Natural fractures have a significant influence on the propagation geometry of hydraulic fractures in fractured reservoirs. True triaxial volumetric fracturing experiments, in which random natural fractures are created by placing cement blocks of different dimensions in a cuboid mold and filling the mold with additional cement to create the final test specimen, were used to study the factors that influence the hydraulic fracture propagation geometry. These factors include the presence of natural fractures around the wellbore, the dimension and volumetric density of random natural fractures and the horizontal differential stress. The results show that volumetric fractures preferentially formed when natural fractures occurred around the wellbore, the natural fractures are medium to long and have a volumetric density of 6-9%, and the stress difference is less than 11 MPa. The volumetric fracture geometries are mainly major multi-branch fractures with fracture networks or major multi-branch fractures (2-4 fractures). The angles between the major fractures and the maximum horizontal in situ stress are 30°-45°, and fracture networks are located at the intersections of major multi-branch fractures. Short natural fractures rarely led to the formation of fracture networks. Thus, the interaction between hydraulic fractures and short natural fractures has little engineering significance. The conclusions are important for field applications and for gaining a deeper understanding of the formation process of volumetric fractures.

  7. Prediction of brittle fracture of epoxy-aluminum flanging

    Directory of Open Access Journals (Sweden)

    Korbel J.

    2010-07-01

    Full Text Available This paper presents a fracture mechanical approach for estimation of critical bending load of different types of aluminum-epoxy flanging and comparison with experimental measurements. For this purpose, several designs of the flanges were investigated. The flanges were glued to the epoxy bars and adhesive-epoxy interface was considered as a bi-material notch. Prediction of the failure is based on generalized stress intensity factor and generalized fracture toughness.

  8. Secondary hyperparathyroidism and mortality in hip fracture patients compared to a control group from general practice

    DEFF Research Database (Denmark)

    Madsen, Christian Medom; Jørgensen, Henrik Løvendahl; Lind, Bent

    2012-01-01

    INTRODUCTION: Previously, little attention has been paid as to how disturbances in the parathyroid hormone (PTH)-calcium-vitamin D-axis, such as secondary hyperparathyroidism (SHPT), relate to mortality amongst hip fracture patients. This study aimed to (1) determine if SHPT is associated......) (age=70 years) admitted to a Danish university hospital. The hip fracture patients were prospectively enrolled in a dedicated hip fracture database. Each hip fracture patient was exactly matched according to age and sex with two controls randomly chosen from a control population of 21,778 subjects who...

  9. High revision rate but good healing capacity of atypical femoral fractures. A comparison with common shaft fractures.

    Science.gov (United States)

    Schilcher, Jörg

    2015-12-01

    Healing of complete, atypical femoral fractures is thought to be impaired, but the evidence is weak and appears to be based on the delayed healing observed in patients with incomplete atypical fractures. Time until fracture healing is difficult to assess, therefore we compared the reoperation rates between women with complete atypical femoral fractures and common femoral shaft fractures. We searched the orthopaedic surgical registry in Östergötland County for patients with subtrochanteric and femoral shaft fractures (ICD-10 diagnosis codes S72.2, S72.3 and M84.3F) between January 1st 2007 and December 31st 2013. Out of 895 patients with surgically treated femoral shaft fractures, 511 were women 50 years of age or older. Among these we identified 24 women with atypical femoral shaft fractures, and 71 with common shaft fractures. Reoperations were performed in 6 and 5 patients, respectively, odds ratio 4.4 (95% CI 1.2 to 16.1). However, 5 reoperations in the atypical fracture group could not be ascribed to poor healing. In 3 patients the reoperation was due to a new fracture proximal to a standard intramedullary nail. In 2 patients the distal locking screws were removed due to callus formation that was deemed incomplete 5 months post-operatively. The one patient with poor healing showed faint callus formation at 5 months when the fracture was dynamised and callus remained sparse at 11 months. Among patients with common shaft fractures, 2 reoperations were performed to remove loose screws, 2 because of peri-implant fractures and 1 reoperation due to infection. Reoperation rates in patients with complete atypical femoral fractures are higher than in patients with common shaft fractures. The main reason for failure was peri-implant fragility fractures which might be prevented with the use of cephalomedullary nails at the index surgery. Fracture healing however, seems generally good. A watchful waiting approach is advocated in patients with fractures that appear to

  10. Role of MRI in hip fractures, including stress fractures, occult fractures, avulsion fractures

    International Nuclear Information System (INIS)

    Nachtrab, O.; Cassar-Pullicino, V.N.; Lalam, R.; Tins, B.; Tyrrell, P.N.M.; Singh, J.

    2012-01-01

    MR imaging plays a vital role in the diagnosis and management of hip fractures in all age groups, in a large spectrum of patient groups spanning the elderly and sporting population. It allows a confident exclusion of fracture, differentiation of bony from soft tissue injury and an early confident detection of fractures. There is a spectrum of MR findings which in part is dictated by the type and cause of the fracture which the radiologist needs to be familiar with. Judicious but prompt utilisation of MR in patients with suspected hip fractures has a positive therapeutic impact with healthcare cost benefits as well as social care benefits.

  11. Paratrooper's ankle fracture: posterior malleolar fracture.

    Science.gov (United States)

    Young, Ki Won; Kim, Jin-su; Cho, Jae Ho; Kim, Hyung Seuk; Cho, Hun Ki; Lee, Kyung Tai

    2015-03-01

    We assessed the frequency and types of ankle fractures that frequently occur during parachute landings of special operation unit personnel and analyzed the causes. Fifty-six members of the special force brigade of the military who had sustained ankle fractures during parachute landings between January 2005 and April 2010 were retrospectively analyzed. The injury sites and fracture sites were identified and the fracture types were categorized by the Lauge-Hansen and Weber classifications. Follow-up surveys were performed with respect to the American Orthopedic Foot and Ankle Society ankle-hindfoot score, patient satisfaction, and return to preinjury activity. The patients were all males with a mean age of 23.6 years. There were 28 right and 28 left ankle fractures. Twenty-two patients had simple fractures and 34 patients had comminuted fractures. The average number of injury and fractures sites per person was 2.07 (116 injuries including a syndesmosis injury and a deltoid injury) and 1.75 (98 fracture sites), respectively. Twenty-three cases (41.07%) were accompanied by posterior malleolar fractures. Fifty-five patients underwent surgery; of these, 30 had plate internal fixations. Weber type A, B, and C fractures were found in 4, 38, and 14 cases, respectively. Based on the Lauge-Hansen classification, supination-external rotation injuries were found in 20 cases, supination-adduction injuries in 22 cases, pronation-external rotation injuries in 11 cases, tibiofibular fractures in 2 cases, and simple medial malleolar fractures in 2 cases. The mean follow-up period was 23.8 months, and the average follow-up American Orthopedic Foot and Ankle Society ankle-hindfoot score was 85.42. Forty-five patients (80.36%) reported excellent or good satisfaction with the outcome. Posterior malleolar fractures occurred in 41.07% of ankle fractures sustained in parachute landings. Because most of the ankle fractures in parachute injuries were compound fractures, most cases had to

  12. Quality of life following hip fractures: results from the Norwegian hip fracture register.

    Science.gov (United States)

    Gjertsen, Jan-Erik; Baste, Valborg; Fevang, Jonas M; Furnes, Ove; Engesæter, Lars Birger

    2016-07-07

    Patient-reported health-related quality of life is an important outcome measure when assessing the quality of hip fracture surgery. The frequently used EQ-5D index score has unfortunately important limitations. One alternative can be to assess the distribution of each of the five dimensions of the patients' descriptive health profile. The objective of this paper was to investigate health-related quality of life (HRQoL) after hip fractures. Data from hip fracture operations from 2005 through 2012 were obtained from The Norwegian Hip Fracture Register. Patient reported HRQoL, (EQ-5D-3L) was collected from patients preoperatively and at four and twelve months postoperatively n = 10325. At each follow-up the distribution of the EQ-5D-3L and mean pain VAS was calculated. Generally, a higher proportion of patients reported problems in all 5 dimensions of the EQ-5D-3L at all follow-ups compared to preoperative. Also a high proportion of patients with no preoperative problems reported problems after surgery; At 4 and 12 months follow-ups 71 % and 58 % of the patients reported walking problems, and 65 % and 59 % of the patients reported pain respectively. Patients with femoral neck fractures and the youngest patients (age < 70 years) reported least problems both preoperatively and at all follow-ups. A hip fracture has a dramatic impact on the patients' HRQoL, and the deterioration in HRQoL sustained also one year after the fracture. Separate use of the descriptive profile of the EQ-5D is informative when assessing quality of life after hip fracture surgery.

  13. Results of operative fixation of unstable ankle fractures in geriatric patients.

    Science.gov (United States)

    Pagliaro, A J; Michelson, J D; Mizel, M S

    2001-05-01

    It is widely accepted that operative fixation of unstable ankle fractures yields predictably good outcomes in the general population. The current literature, however reports less acceptable results in the geriatric population age 65 years and older. The current study analyzes the outcome of the surgical treatment of unstable ankle fractures in patients at least 65 years old. Twenty three patient over 65 years old were surgically treated after sustaining 21 (91%) closed and 2 (9%) open grade II unstable ankle fractures. Fractures were classified according to the Danis-Weber and Lauge-Hansen schemes. Fracture type was predominantly Weber B (21/23, 91%), or supination external rotation stage IV (21/23, 91%). Fracture union rate was 100%. There were three significant complications including a lateral wound dehiscence with delayed fibular union in an open fracture dislocation, and two below knee amputations, neither of which was directly related to the fracture treatment. There were three minor complications; one superficial wound infection and two cases of prolonged incision drainage, all of which resolved without further surgical intervention. Complications were associated with open fractures and preexisting systemic disease. These results indicate that open reduction and internal fixation of unstable ankle fractures in geriatric patients is an efficacious treatment regime that with results that are comparable to the general population.

  14. A Predictive Framework for Thermomechanical Fatigue Life of High Silicon Molybdenum Ductile Cast Iron Based on Considerations of Strain Energy Dissipation

    Science.gov (United States)

    Avery, Katherine R.

    Isothermal low cycle fatigue (LCF) and anisothermal thermomechanical fatigue (TMF) tests were conducted on a high silicon molybdenum (HiSiMo) cast iron for temperatures up to 1073K. LCF and out-of-phase (OP) TMF lives were significantly reduced when the temperature was near 673K due to an embrittlement phenomenon which decreases the ductility of HiSiMo at this temperature. In this case, intergranular fracture was predominant, and magnesium was observed at the fracture surface. When the thermal cycle did not include 673K, the failure mode was predominantly transgranular, and magnesium was not present on the fracture surface. The in-phase (IP) TMF lives were unaffected when the thermal cycle included 673K, and the predominant failure mode was found to be transgranular fracture, regardless of the temperature. No magnesium was present on the IP TMF fracture surfaces. Thus, the embrittlement phenomenon was found to contribute to fatigue damage only when the temperature was near 673K and a tensile stress was present. To account for the temperature- and stress-dependence of the embrittlement phenomenon on the TMF life of HiSiMo cast iron, an original model based on the cyclic inelastic energy dissipation is proposed which accounts for temperature-dependent differences in the rate of fatigue damage accumulation in tension and compression. The proposed model has few empirical parameters. Despite the simplicity of the model, the predicted fatigue life shows good agreement with more than 130 uniaxial low cycle and thermomechanical fatigue tests, cyclic creep tests, and tests conducted at slow strain rates and with hold times. The proposed model was implemented in a multiaxial formulation and applied to the fatigue life prediction of an exhaust manifold subjected to severe thermal cycles. The simulation results show good agreement with the failure locations and number of cycles to failure observed in a component-level experiment.

  15. Treatment of neglected femoral neck fracture

    Directory of Open Access Journals (Sweden)

    Anil K Jain

    2015-01-01

    Full Text Available Intra-capsular femoral neck fractures are seen commonly in elderly people following a low energy trauma. Femoral neck fracture has a devastating effect on the blood supply of the femoral head, which is directly proportional to the severity of trauma and displacement of the fracture. Various authors have described a wide array of options for treatment of neglected/nonunion (NU femoral neck fracture. There is lack of consensus in general, regarding the best option. This Instructional course article is an analysis of available treatment options used for neglected femoral neck fracture in the literature and attempt to suggest treatment guides for neglected femoral neck fracture. We conducted the "Pubmed" search with the keywords "NU femoral neck fracture and/or neglected femoral neck fracture, muscle-pedicle bone graft in femoral neck fracture, fibular graft in femoral neck fracture and valgus osteotomy in femoral neck fracture." A total of 203 print articles were obtained as the search result. Thirty three articles were included in the analysis and were categorized into four subgroups based on treatment options. (a treated by muscle-pedicle bone grafting (MPBG, (b closed/open reduction internal fixation and fibular grafting (c open reduction and internal fixation with valgus osteotomy, (d miscellaneous procedures. The data was pooled from all groups for mean neglect, the type of study (prospective or retrospective, classification used, procedure performed, mean followup available, outcome, complications, and reoperation if any. The outcome of neglected femoral neck fracture depends on the duration of neglect, as the changes occurring in the fracture area and fracture fragments decides the need and type of biological stimulus required for fracture union. In stage I and stage II (Sandhu′s staging neglected femoral neck fracture osteosynthesis with open reduction and bone grafting with MPBG or Valgus Osteotomy achieves fracture union in almost 90

  16. Progressive fracture of polymer matrix composite structures: A new approach

    Science.gov (United States)

    Chamis, C. C.; Murthy, P. L. N.; Minnetyan, L.

    1992-01-01

    A new approach independent of stress intensity factors and fracture toughness parameters has been developed and is described for the computational simulation of progressive fracture of polymer matrix composite structures. The damage stages are quantified based on physics via composite mechanics while the degradation of the structural behavior is quantified via the finite element method. The approach account for all types of composite behavior, structures, load conditions, and fracture processes starting from damage initiation, to unstable propagation and to global structural collapse. Results of structural fracture in composite beams, panels, plates, and shells are presented to demonstrate the effectiveness and versatility of this new approach. Parameters and guidelines are identified which can be used as criteria for structural fracture, inspection intervals, and retirement for cause. Generalization to structures made of monolithic metallic materials are outlined and lessons learned in undertaking the development of new approaches, in general, are summarized.

  17. Mechanisms of dynamic deformation and dynamic failure in aluminum nitride

    International Nuclear Information System (INIS)

    Hu Guangli; Chen, C.Q.; Ramesh, K.T.; McCauley, J.W.

    2012-01-01

    Uniaxial quasi-static, uniaxial dynamic and confined dynamic compression experiments have been performed to characterize the failure and deformation mechanisms of a sintered polycrystalline aluminum nitride using a servohydraulic machine and a modified Kolsky bar. Scanning electron microscopy and transmission electron microscopy (TEM) are used to identify the fracture and deformation mechanisms under high rate and high pressure loading conditions. These results show that the fracture mechanisms are strong functions of confining stress and strain rate, with transgranular fracture becoming more common at high strain rates. Dynamic fracture mechanics and micromechanical models are used to analyze the observed fracture mechanisms. TEM characterization of fragments from the confined dynamic experiments shows that at higher pressures dislocation motion becomes a common dominant deformation mechanism in AlN. Prismatic slip is dominant, and pronounced microcrack–dislocation interactions are observed, suggesting that the dislocation plasticity affects the macroscopic fracture behavior in this material under high confining stresses.

  18. Fracture Mechanics

    International Nuclear Information System (INIS)

    Jang, Dong Il; Jeong, Gyeong Seop; Han, Min Gu

    1992-08-01

    This book introduces basic theory and analytical solution of fracture mechanics, linear fracture mechanics, non-linear fracture mechanics, dynamic fracture mechanics, environmental fracture and fatigue fracture, application on design fracture mechanics, application on analysis of structural safety, engineering approach method on fracture mechanics, stochastic fracture mechanics, numerical analysis code and fracture toughness test and fracture toughness data. It gives descriptions of fracture mechanics to theory and analysis from application of engineering.

  19. [Distal clavicle fracture].

    Science.gov (United States)

    Seppel, G; Lenich, A; Imhoff, A B

    2014-06-01

    Reposition and fixation of unstable distal clavicle fractures with a low profile locking plate (Acumed, Hempshire, UK) in conjunction with a button/suture augmentation cerclage (DogBone/FibreTape, Arthrex, Naples, FL, USA). Unstable fractures of the distal clavicle (Jäger and Breitner IIA) in adults. Unstable fractures of the distal clavicle (Jäger and Breitner IV) in children. Distal clavicle fractures (Jäger and Breitner I, IIB or III) with marked dislocation, injury of nerves and vessels, or high functional demand. Patients in poor general condition. Fractures of the distal clavicle (Jäger and Breitner I, IIB or III) without marked dislocation or vertical instability. Local soft-tissue infection. Combination procedure: Initially the lateral part of the clavicle is exposed by a 4 cm skin incision. After reduction of the fracture, stabilization is performed with a low profile locking distal clavicle plate. Using a special guiding device, a transclavicular-transcoracoidal hole is drilled under arthroscopic view. Additional vertical stabilization is arthroscopically achieved by shuttling the DogBone/FibreTape cerclage from the lateral portal cranially through the clavicular plate. The two ends of the FibreTape cerclage are brought cranially via adjacent holes of the locking plate while the DogBone button is placed under the coracoid process. Thus, plate bridging is achieved. Finally reduction is performed and the cerclage is secured by surgical knotting. Use of an arm sling for 6 weeks. Due to the fact that the described technique is a relatively new procedure, long-term results are lacking. In the short term, patients postoperatively report high subjective satisfaction without persistent pain.

  20. Hydromechanical modeling of clay rock including fracture damage

    Science.gov (United States)

    Asahina, D.; Houseworth, J. E.; Birkholzer, J. T.

    2012-12-01

    Argillaceous rock typically acts as a flow barrier, but under certain conditions significant and potentially conductive fractures may be present. Fracture formation is well-known to occur in the vicinity of underground excavations in a region known as the excavation disturbed zone. Such problems are of particular importance for low-permeability, mechanically weak rock such as clays and shales because fractures can be relatively transient as a result of fracture self-sealing processes. Perhaps not as well appreciated is the fact that natural fractures can form in argillaceous rock as a result of hydraulic overpressure caused by phenomena such as disequlibrium compaction, changes in tectonic stress, and mineral dehydration. Overpressure conditions can cause hydraulic fracturing if the fluid pressure leads to tensile effective stresses that exceed the tensile strength of the material. Quantitative modeling of this type of process requires coupling between hydrogeologic processes and geomechanical processes including fracture initiation and propagation. Here we present a computational method for three-dimensional, hydromechanical coupled processes including fracture damage. Fractures are represented as discrete features in a fracture network that interact with a porous rock matrix. Fracture configurations are mapped onto an unstructured, three-dimensonal, Voronoi grid, which is based on a random set of spatial points. Discrete fracture networks (DFN) are represented by the connections of the edges of a Voronoi cells. This methodology has the advantage that fractures can be more easily introduced in response to coupled hydro-mechanical processes and generally eliminates several potential issues associated with the geometry of DFN and numerical gridding. A geomechanical and fracture-damage model is developed here using the Rigid-Body-Spring-Network (RBSN) numerical method. The hydrogelogic and geomechanical models share the same geometrical information from a 3D Voronoi

  1. Splinting of Longitudinal Fracture: An Innovative Approach

    Directory of Open Access Journals (Sweden)

    Rashmi Bansal

    2016-01-01

    Full Text Available Trauma may result in craze lines on the enamel surface, one or more fractured cusps of posterior teeth, cracked tooth syndrome, splitting of posterior teeth, and vertical fracture of root. Out of these, management of some fractures is of great challenge and such teeth are generally recommended for extraction. Literature search reveals attempts to manage such fractures by full cast crown, orthodontic wires, and so forth, in which consideration was given to extracoronal splinting only. However, due to advancement in materials and technologies, intracoronal splinting can be achieved as well. In this case report, longitudinal fractures in tooth #27, tooth #37, and tooth #46 had occurred. In #27, fracture line was running mesiodistally involving the pulpal floor resulting in a split tooth. In teeth 37 and 46, fractures of the mesiobuccal cusp and mesiolingual cusp were observed, respectively. They were restored with cast gold inlay and full cast crown, respectively. Longitudinal fracture of 27 was treated with an innovative approach using intracanal reinforced composite with Ribbond, external reinforcement with an orthodontic band, and full cast metal crown to splint the split tooth.

  2. Fracture toughness of fibrous composite materials

    Science.gov (United States)

    Poe, C. C., Jr.

    1984-01-01

    Laminates with various proportions of 0 deg, 45 deg, and 90 deg plies were fabricated from T300/5208 and T300/BP-907 graphite/epoxy prepreg tape material. The fracture toughness of each laminate orientation or lay-up was determined by testing center-cracked specimens, and it was also predicted with the general fracture-toughness parameter. The predictions were good except when crack-tip splitting was large, at which time the toughness and strengths tended to be underpredicted. By using predictions, a parametric study was also made of factors that influence fracture toughness. Fiber and matrix properties as well as lay-up were investigated. Without crack-tip splitting, fracture toughness increases in proportion to fiber strength and fiber volume fraction, increases linearly with E(22)/E(11), is largest when the modulus for non-0 deg fibers is greater than that of 0 deg fibers, and is smallest for 0(m)/90(p)(s) lay-ups. (The E(11) and E(22) are Young's moduli of the lamina parallel to and normal to the direction of the fibers, respectively). For a given proportion of 0 deg plies, the most notch-sensitive lay-ups are 0(m)/90(p)(s) and the least sensitive are 0(m)/45(n)(s) and alpha(s). Notch sensitivity increases with the proportion of 0 deg plies and decreases with alpha. Strong, tough matrix materials, which inhibit crack-tip splitting, generally lead to minimum fracture toughness.

  3. AN ACTIVE FRACTURE MODEL FOR UNSATURATED FLOW AND TRANSPORT

    International Nuclear Information System (INIS)

    HUI-HAI LIU, GUDMUNDUR S. BODVARSSON AND CHRISTINE DOUGHTY

    1999-01-01

    Fracture/matrix (F/M) interaction is a key factor affecting flow and transport in unsaturated fractured rocks. In classic continuum approaches (Warren and Root, 1963), it is assumed that flow occurs through all the connected fractures and is uniformly distributed over the entire fracture area, which generally gives a relatively large F/M interaction. However, fractures seem to have limited interaction with the surrounding matrix at Yucca Mountain, Nevada, as suggested by geochemical nonequilibrium between the perched water (resulting mainly from fracture flow) and pore water in the rock matrix. Because of the importance of the F/M interaction and related issues, there is a critical need to develop new approaches to accurately consider the interaction reduction inferred from field data at the Yucca Mountain site. Motivated by this consideration, they have developed an active fracture model based on the hypothesis that not all connected fractures actively conduct water in unsaturated fractured rocks

  4. Fracture risk associated with use of antibiotics

    DEFF Research Database (Denmark)

    Vestergaard, Peter

    2018-01-01

    of fractures. The cause for this increase has to be determined but may be related to their use against infections of the bone, the increase thus rather being due to the underlying disease than the drug. Other types of antibiotics especially the fluoroquinolones were not systematically associated......BACKGROUND: Data have pointed at an impaired fracture healing with fluoroquinolones and thus potentially a decreased bone biomechanical competence. OBJECTIVES: To study fracture risk associated with antibiotics. METHODS: Case control study. There were 124,655 fracture cases and 373,962 age...... and gender matched controls. The main exposure was use of various groups of antibiotics. Confounder control was performed for social variables, contacts to hospitals and general practitioners, alcoholism and a number of other variables. RESULTS: An increased risk of any fracture (OR =1. 45, 95% CI: 1. 42 -1...

  5. Radionuclide transport in fractured porous media -- Analytical solutions for a system of parallel fractures with a kinetic solubility-limited dissolution model

    International Nuclear Information System (INIS)

    Li, S.H.; Chen, C.T.

    1997-01-01

    Analytical solutions are developed for the problem of radionuclide transport in a system of parallel fractures situated in a porous rock matrix. A kinetic solubility-limited dissolution model is used as the inlet boundary condition. The solutions consider the following processes: (a) advective transport in the fractures, (b) mechanical dispersion and molecular diffusion along the fractures, (c) molecular diffusion from a fracture to the porous matrix, (d) molecular diffusion within the porous matrix in the direction perpendicular to the fracture axis, (e) adsorption onto the fracture wall, (f) adsorption within the porous matrix, and (g) radioactive decay. The solutions are based on the Laplace transform method. The general transient solution is in the form of a double integral that is evaluated using composite Gauss-Legendre quadrature. A simpler transient solution that is in the form of a single integral is also presented for the case that assumes negligible longitudinal dispersion along the fractures. The steady-state solutions are also provided. A number of examples are given to illustrate the effects of the following important parameters: (a) fracture spacings, (b) dissolution-rate constants, (c) fracture dispersion coefficient, (d) matrix retardation factor, and (e) fracture retardation factor

  6. The true origin of ductile fracture in aluminium alloys

    OpenAIRE

    Toda, Hiroyuki; Oogo, Hideyuki; Horikawa, Keitaro; Uesugi, Kentaro; Takeuchi, Akihisa; Suzuki, Yasuo; Nakazawa, Mitsuru; Aoki, Yoshimitsu; Kobayashi, Masakazu

    2014-01-01

    It has generally been assumed that metals usually fail as a result of microvoid nucleation induced by particle fracture. Here, we concentrate on high-density micropores filled with hydrogen in aluminum, existence of which has been largely overlooked until quite recently. These micropores exhibit premature growth under external loading, thereby inducing ductile fracture, whereas the particle fracture mechanism operates only incidentally. Conclusive evidence of a micropore mechanism is provided...

  7. Research on fracture analysis, groundwater flow and sorption processes in fractured rocks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae-Ha; Kim, Won-Young; Lee, Seung-Gu [Korea Institute of Geology Mining and Materials, Taejon (KR)] (and others)

    1999-12-01

    Due to increasing demand for numerous industrial facilities including nuclear power plants and waste repositories, the feasibility of rocks masses as sites for the facilities has been a geological issue of concern. Rock masses, in general, comprises systems of fractures which can provide pathways for groundwater flow and may also affect the stability of engineered structures. For the study of groundwater flow and sorption processes in fractured rocks, five boreholes were drilled. A stepwise and careful integration of various data obtained from field works and laboratory experiments were carried out to analyze groundwater flow in fractured rocks as follows; (1) investigation of geological feature of the site, (2) identification and characterization of fracture systems using core and televiewer logs, (3) determination of hydrogeological properties of fractured aquifers using geophysical borehole logging, pumping and slug tests, and continuous monitoring of groundwater level and quality, (4) evaluation of groundwater flow patterns using fluid flow modeling. The results obtained from these processes allow a qualitative interpretation of fractured aquifers in the study area. Column experiments of some reactive radionuclides were also performed to examine sorption processes of the radionuclides including retardation coefficients. In addition, analyses of fracture systems covered (1) reconstruction of the Cenozoic tectonic movements and estimation of frequency indices for the Holocene tectonic movements, (2) determination of distributions and block movements of the Quaternary marine terraces, (3) investigation of lithologic and geotechnical nature of study area, and (4) examination of the Cenozoic volcanic activities and determination of age of the dike swarms. Using data obtained from above mentioned analyses along with data related to earthquakes and active faults, probabilistic approach was performed to determine various potential hazards which may result from the

  8. Fractured-aquifer hydrogeology from geophysical logs; the passaic formation, New Jersey

    Science.gov (United States)

    Morin, R.H.; Carleton, G.B.; Poirier, S.

    1997-01-01

    The Passaic Formation consists of gradational sequences of mudstone, siltstone, and sandstone, and is a principal aquifer in central New Jersey. Ground-water flow is primarily controlled by fractures interspersed throughout these sedimentary rocks and characterizing these fractures in terms of type, orientation, spatial distribution, frequency, and transmissivity is fundamental towards understanding local fluid-transport processes. To obtain this information, a comprehensive suite of geophysical logs was collected in 10 wells roughly 46 m in depth and located within a .05 km2 area in Hopewell Township, New Jersey. A seemingly complex, heterogeneous network of fractures identified with an acoustic televiewer was statistically reduced to two principal subsets corresponding to two distinct fracture types: (1) bedding-plane partings and (2) high-angle fractures. Bedding-plane partings are the most numerous and have an average strike of N84??W and dip of 20??N. The high-angle fractures are oriented subparallel to these features, with an average strike of N79??E and dip of 71??S, making the two fracture types roughly orthogonal. Their intersections form linear features that also retain this approximately east-west strike. Inspection of fluid temperature and conductance logs in conjunction with flowmeter measurements obtained during pumping allows the transmissive fractures to be distinguished from the general fracture population. These results show that, within the resolution capabilities of the logging tools, approximately 51 (or 18 percent) of the 280 total fractures are water producing. The bedding-plane partings exhibit transmissivities that average roughly 5 m2/day and that generally diminish in magnitude and frequency with depth. The high-angle fractures have average transmissivities that are about half those of the bedding-plane partings and show no apparent dependence upon depth. The geophysical logging results allow us to infer a distinct hydrogeologic structure

  9. Effect of natural aging on the microstructural regions, mechanical properties, corrosion resistance and fracture in welded joints on API5L X52 steel pipeline

    Directory of Open Access Journals (Sweden)

    Vargas-Arista, Benjamín

    2014-09-01

    Full Text Available A characterization study was done to analyze how microstructural regions affect the mechanical properties, corrosion and fractography of the Heat Affected Zone (HAZ, weld bead and base metal for pipe naturally aged for 21 years at 30 °C. Results showed that microstructures exhibited damage and consequently decrease in properties, resulting in over-aged due to service. SEM analysis showed that base metal presented coarse ferrite grain. Tensile test indicated that microstructures showed discontinuous yield. Higher tensile strength was obtained for weld bead, which exhibited a lower impact energy in comparison to that of HAZ and base metal associated with brittle fracture by trans-granular cleavage. The degradation of properties was associated with the coarsening of nano-carbides observed through TEM images analysis, which was confirmed by SEM fractography of tensile and impact fracture surfaces. The weld bead reached the largest void density and highest susceptibility to corrosion in H2S media when compared to those of the HAZ and base metal.Se realizó un estudio de caracterización para analizar cómo la microestructura afecta a las propiedades mecánicas, corrosión y fractura de la zona afectada por calor (ZAC, soldadura y metal base para tubería envejecida naturalmente durante 21 años a 30 °C. Los resultados indicaron que las microestructuras presentaron daño y consecuentemente reducción en propiedades mecánicas, como consecuencia del envejecimiento por servicio. El estudio mediante MEB mostró que el metal base presenta grano ferrítico grueso. La prueba de tensión indicó que las microestructuras mostraron fluencia discontinua. La mayor resistencia a la tracción se presentó en la soldadura, la cual alcanzó menor energía de impacto en comparación con la ZAC y metal base asociado con fractura frágil por clivaje transgranular. La degradación de las propriedades está en relación con el engrosamiento de nanocarburos observados a

  10. Management of penile fractures

    International Nuclear Information System (INIS)

    Ghilan, Abdulelah M. M.; Al-Asbahi, Waleed A.; Alwan, Mohammed A.; Al-Khanbashi, Omar M.; Ghafour, Mohammed A.

    2008-01-01

    Objective was to present our experience with surgical and conservative management of penile fracture. This prospective study was carried out in the Urology and Nephrology Center, at Al-Thawra General and Teaching Hospital, Sana'a, Yemen from June 2003 to September 2007 and included 30 patients presenting with penile fracture. Diagnosis was made clinically in all our patients. Six patients with simple fracture were treated conservatively while 24 patients with more severe injuries were operated upon. Patient's age ranged from 24-52 years (mean 31.3 years) 46.7% of patients were under the age of 30 years and 56.7% were unmarried. Hard manipulation of the erect penis for example during masturbation was the most frequent mechanism of fracture in 53.3% of patients. Solitary tear was found in 22 patients and bilateral corporal tears associated with urethral injury were found in 2 patients. Corporal tears were saturated with synthetic absorbable sutures and urethral injury was repaired primarily. All operated patients described full erection with straight penis except 3 of the 8 patients who were managed by direct longitudinal incision, in whom mild curvature during erection was observed. The conservatively treated patients described satisfactory penile straightness and erection. The optimal functional and cosmetic results are achieved following immediate surgical repair of penis fracture. Good results can also be obtained in some selected patients with conservative management. (author)

  11. Model of T-Type Fracture in Coal Fracturing and Analysis of Influence Factors of Fracture Morphology

    Directory of Open Access Journals (Sweden)

    Yuwei Li

    2018-05-01

    Full Text Available Special T-type fractures can be formed when coal is hydraulically fractured and there is currently no relevant theoretical model to calculate and describe them. This paper first establishes the height calculation model of vertical fractures in multi-layered formations and deduces the stress intensity factor (SIF at the upper and lower sides of the fracture in the process of vertical fracture extension. Combined with the fracture tip stress analysis method of fracture mechanics theory, the horizontal bedding is taken into account for tensile and shear failure, and the critical mechanical conditions for the formation of horizontal fracture in coal are obtained. Finally, the model of T-type fracture in coal fracturing is established, and it is verified by fracturing simulation experiments. The model calculation result shows that the increase of vertical fracture height facilitates the increase of horizontal fracture length. The fracture toughness of coal has a significant influence on the length of horizontal fracture and there is a threshold. When the fracture toughness is less than the threshold, the length of horizontal fracture remains unchanged, otherwise, the length of horizontal fracture increases rapidly with the increase of fracture toughness. When the shear strength of the interface between the coalbed and the interlayer increases, the length of the horizontal fracture of the T-type fracture rapidly decreases.

  12. Fracture mapping for radionuclide migration studies in the Climax granite

    International Nuclear Information System (INIS)

    Thorpe, R.; Springer, J.

    1981-05-01

    As part of LLNL's program on radionuclide migration through fractured rock, major geologic discontinuities have been mapped and characterized at the 420 m level in the Climax Stock, adjacent to LLNL's Spent Fuel Test. Persistence or continuity of features was the principal sampling criterion, and ninety major fractures and faults were mapped in the main access and tail drifts. Although the purpose and nature of this study was different from previous fracture surveys in the Climax Stock, the results are generally consistent in that three predominant fracture sets are identified: NW strike/vertical, NE strike/vertical, NW strike/subhorizontal. The frequency of major features in the main access drift is somewhat higher than in the tail drift. Those mapped in the main access drift are generally braided, stepped, or en echelon, while those in the tail drift appear to be more distinct and planar. Several of the fractures in the tail drift lie in the NE/vertical set, while most form an entirely different set oriented N5E/55NW. Subhorizontal fractures were common to both drifts. An area of seepage associated with some of these low-angle features was mapped in the main access drift

  13. The effect of aging treatment on the high temperature fatigue strength and fatigue fracture behaviour of friction welded domestic heat resisting steels (SUH3-SUS303)

    International Nuclear Information System (INIS)

    Lee, K.Y.; Oh, S.K.; Kim, H.J.

    1981-01-01

    In this study the experiment was carried out as the high temperature rotary bending fatigue testing under the condition of 700 0 C high temperature to the friction welded domestic heat resisting steels, SUH3-SUS303, which were 10 hr., 100 hr. aging heat treated at 700 0 C after solution treatment 1 hr. at 1060 0 C for the purpose of observing the effects of the high temperature fatigue strength and fatigue fracture behaviours as well as with various mechanical properties of welded joints. The results obtained are summarized as follows: 1) Through mechanical tests and microstructural examinations, the determined optimum welding conditions, rotating speed 2420 rpm, heating pressure 8 kg/mm 2 , upsetting pressure 22 kg/mm 2 , the amount of total upset 7 mm (heating time 3 sec and upsetting time 2 sec) were satisfied. 2) The solution treated material SUH3, SUS303 and SUH3-SUS303, have the highest inclination gradiant on S-N curve due to the high temperature fatigue testing for long time at 700 0 C. 3) The optimum aging time of friction welded SUH3-SUS303, has been recognized near the 10 hr. at 700 0 C after the solution treatment of 1 hr. at 1060 0 C. 4) The high temperature fatigue limits of aging treated materials were compared with those of raw material according to the extender of aging time, on 10 hr. aging, fatigue limits were increased by SUH3 75.4%, SUS303 28.5%, friction welded joints SUH3-SUS303 44.2% and 100 hr. aging the rate were 64.9%, 30.4% and 36.6% respectively. 5) The fatigue fractures occurred at the side of the base metal SUS303 of the friction welded joints SUH3-SUS303 and it is difficult to find out fractures at the friction welding interfaces. 6) The cracking mode of SUS303, SUH3-SUS303 is intergranular in any case, but SUH3 is fractured by transgranular cracking. (author)

  14. Assessment of fractures classified as non-mineralised in the Sicada database

    Energy Technology Data Exchange (ETDEWEB)

    Claesson Liljedahl, Lillemor; Munier, Raymond (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Sandstroem, Bjoern (WSP Sverige AB, Goeteborg (Sweden)); Drake, Henrik (Isochron GeoConsulting, Varberg (Sweden)); Tullborg, Eva-Lena (Terralogica AB, Graabo (Sweden))

    2011-03-15

    The general objective of this report was to describe the results of the investigation of fractures classified as non-mineralised in Sicada. Such fractures exist at Forsmark and at Laxemar. The main aims of the investigation of these fractures were to: - Quantify the number of non-mineralised fractures (i.e. fractures lacking mineral coating) in Sicada (table: p{_}fract{_}core{_}eshi). - Closely examine a selection of fractures recorded as non-mineralised in Sicada. - Outline possible reasons for the existence of non-mineralised fractures. The work has involved extraction of fracture data from Sicada and subsequent statistical analysis. Since several thousand fractures are classified as non-mineralised in Sicada, it was not a practical possibility to include all these in this study, we examined one fracture sub-set from each site. We investigated a sample of 204 of these fractures in detail (see Sections 1.1 and 2.4). Rock mechanical differences between Forsmark and Laxemar and kinematic analysis of fracture surfaces is not discussed in this report

  15. Hypobaric Unilateral Spinal Anaesthesia versus General Anaesthesia in Elderly Patients Undergoing Hip Fracture Surgical Repair: A Prospective Randomised Open Trial.

    Science.gov (United States)

    Meuret, Pascal; Bouvet, Lionel; Villet, Benoit; Hafez, Mohamed; Allaouchiche, Bernard; Boselli, Emmanuel

    2018-04-01

    Intraoperative hypotension during hip fracture surgery is frequent in the elderly. No study has compared the haemodynamic effect of hypobaric unilateral spinal anaesthesia (HUSA) and standardised general anaesthesia (GA) in elderly patients undergoing hip fracture surgical repair. We performed a prospective, randomised open study, including 40 patients aged over 75 years, comparing the haemodynamic effects of HUSA (5 mg isobaric bupivacaine with 5 μg sufentanil and 1 mL sterile water) and GA (induction with etomidate/remifentanil and maintenance with desflurane/remifentanil). An incidence of severe hypotension, defined by a decrease in systolic blood pressure of >40% from baseline, was the primary endpoint. The incidence of severe hypotension was lower in the HUSA group compared with that in the GA group (32% vs. 71%, respectively, p=0.03). The median [IQR] ephedrine consumption was lower (p=0.001) in the HUSA group (6 mg, 0-17 mg) compared with that in the GA group (36 mg, 21-57 mg). Intraoperative muscle relaxation and patients' and surgeons' satisfaction were similar between groups. No difference was observed in 5-day complications or 30-day mortality. This study shows that HUSA provides better haemodynamic stability than GA, with lower consumption of ephedrine and similar operating conditions. This new approach of spinal anaesthesia seems to be safe and effective in elderly patients undergoing hip fracture surgery.

  16. On fracture in finite strain gradient plasticity

    DEFF Research Database (Denmark)

    Martínez Pañeda, Emilio; Niordson, Christian Frithiof

    2016-01-01

    In this work a general framework for damage and fracture assessment including the effect of strain gradients is provided. Both mechanism-based and phenomenological strain gradient plasticity (SGP) theories are implemented numerically using finite deformation theory and crack tip fields are invest......In this work a general framework for damage and fracture assessment including the effect of strain gradients is provided. Both mechanism-based and phenomenological strain gradient plasticity (SGP) theories are implemented numerically using finite deformation theory and crack tip fields...... are investigated. Differences and similarities between the two approaches within continuum SGP modeling are highlighted and discussed. Local strain hardening promoted by geometrically necessary dislocations (GNDs) in the vicinity of the crack leads to much higher stresses, relative to classical plasticity...... in the multiple parameter version of the phenomenological SGP theory. Since this also dominates the mechanics of indentation testing, results suggest that length parameters characteristic of mode I fracture should be inferred from nanoindentation....

  17. A general mixed mode fracture mechanics test specimen: The DCB-specimen loaded with uneven bending moments

    DEFF Research Database (Denmark)

    Sørensen, Bent F.; Jørgensen, K.; Jacobsen, T.K.

    2004-01-01

    A mixed mode specimen is proposed for fracture mechanics characterisation of adhesive joints, laminates and multilayers. The specimen is a double cantilever beam specimen loaded with uneven bending moments at the two free beams. By varying the ratiobetween the two applied moments, the full mode...... glass-fibre laminates was studied. The mixed mode fracture resistance increased with increasing crack length due to fibre bridging, eventually reaching asteady-state level (R-curve behaviour). The steady-state fracture toughness level increased with increasing tangential crack opening displacement....

  18. Representation of fracture networks as grid cell conductivities

    International Nuclear Information System (INIS)

    Svensson, Urban

    1999-12-01

    A method to represent fracture networks as grid cell conductivities is described and evaluated. The method is developed for a fracture system of the kind found in the Aespoe area, i.e. a sparsely fractured rock with a conductivity field that is dominated by a set of major fracture zones. For such a fracture system it is believed that an accurate description of the correlation and anisotropy structure is essential. The proposed method will capture these features of the fracture system. The method will be described in two reports. The first one, this report, evaluates the accuracy by comparisons with analytical solutions and established theories. The second report is an application to the Aespoe Hard Rock Laboratory. The general conclusion from this report is that the method is accurate enough for practical groundwater simulations. This statement is based on the results from three test cases with analytical solution and two test cases where results are compared with those from established theories

  19. Tensile Deformation Temperature Impact on Microstructure and Mechanical Properties of AISI 316LN Austenitic Stainless Steel

    Science.gov (United States)

    Xiong, Yi; He, Tiantian; Lu, Yan; Ren, Fengzhang; Volinsky, Alex A.; Cao, Wei

    2018-03-01

    Uniaxial tensile tests were conducted on AISI 316LN austenitic stainless steel from - 40 to 300 °C at a rate of 0.5 mm/min. Microstructure and mechanical properties of the deformed steel were investigated by optical, scanning and transmission electron microscopies, x-ray diffraction, and microhardness testing. The yield strength, ultimate tensile strength, elongation, and microhardness increase with the decrease in the test temperature. The tensile fracture morphology has the dimple rupture feature after low-temperature deformations and turns to a mixture of transgranular fracture and dimple fracture after high-temperature ones. The dominating deformation microstructure evolves from dislocation tangle/slip bands to large deformation twins/slip bands with temperature decrease. The deformation-induced martensite transformation can only be realized at low temperature, and its quantity increases with the decrease in the temperature.

  20. Investigation on compression behavior of TZM and La{sub 2}O{sub 3} doped TZM Alloys at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Ping, E-mail: huping1985@126.com [School of Metallurgy Engineering, Xi’an University of Architecture and Technology, Xi’an 710055 (China); Zhou, Yuhang; Chang, Tian; Yu, Zhitao; Wang, Kuaishe; Yang, Fan; Hu, Boliang [School of Metallurgy Engineering, Xi’an University of Architecture and Technology, Xi’an 710055 (China); Cao, Weicheng [Jinduicheng Molybdenum Co., Ltd, Xi’an 710077 (China); Yu, Hailiang [School of Mechanical, Materials, Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2500 (Australia)

    2017-02-27

    Mechanical properties of Titanium-zirconium-molybdenum (TZM) and La{sub 2}O{sub 3} doped TZM alloys under compression were tested at 1000 °C and 1200 °C. Microstructure of TZM and La{sub 2}O{sub 3} doped TZM alloys after compressing was characterized by scanning electron microscopy. The effects on La{sub 2}O{sub 3} doping on the high temperature deformation behavior and microstructure evolution of the TZM alloy were analyzed. Results show that La{sub 2}O{sub 3} doping can refine the grain size of TZM alloy. La{sub 2}O{sub 3} doping changes fracture model of TZM alloy. TZM alloy exhibits mainly intergranular fracture, while the La{sub 2}O{sub 3} doped TZM alloy exhibits both intergranular and transgranular fracture mode.

  1. Fast fracture: an adiabatic restriction on thermally activated crack propagation

    Energy Technology Data Exchange (ETDEWEB)

    Burns, S.J.

    1978-01-01

    Slow, isothermal, crack propagation is widely suspected to be rate controlled by thermally activated plastic deformation in the crack tip region. Adiabatic conditions are generally established in the fracture modified material at the tip of a crack during fast fracture. The temperature of this material is not the temperature of the specimen and is generally not measured during fast fracture. Thus, a complete thermodynamic description of adiabatic crack propagation data can not be made. When the slow, isothermal, crack propagation mechanisms are assumed to be operative during adiabatic crack propagation then certain predictions can be made. For example: the changes in the driving force due to temperature and rate are always in the opposite sense; there is no minimum in the driving force versus crack velocity without a change in mechanism; the temperature rise in the crack tip fracture modified material is determined mainly by the activation enthalpy for crack propagation; the interpretation of fast fracture structural steel data from simple plastic models is suspect since these materials have dissimilar isothermal temperature dependencies.

  2. CURBSIDE CONSULTATION IN FRACTURE MANAGEMENT: 49 CLINICAL QUESTIONS

    Directory of Open Access Journals (Sweden)

    Walter W. Virkus

    2008-12-01

    displaced bimalleolar fracture in insulin dependant middle aged woman; Man-agement of calcaneal fractures; Fixation technic for a displaced talar neck fracture in a patient in ER; Indica-tions for surgical treatment of metatarsal fractures; Bone grafting in acute fractures; Management of a nonunion of plated midshaft tibia fracture; Management of a child with a twisted ankle and normal x-rays; Assessment of com-partment syndrome in foot.The Section III is about “GENERAL FRACTURE CARE” including: Management of multiple orthopedic injuries and damage control orthopedics; Bone stimula-tion in nonunion; Indications for locking plates; Fractures requiring anatomic reduction.AUDIENCE: Mainly trauma fellows and practicing or-thopedists are the targeted audience of the book, but not only the basic knowledge for the orthopedic residents but also the expert advices for complicated and controversial cases pointing experienced surgeons widen the spectrum of audience. Also non-physician personnel may benefit the basic knowledge from brief answers given in a casual format.ASSESMENT: “Curbside Consultation in Fracture Man-agement:49 Clinical Questions” offering practical, brief, evidence based answers to frequently asked questions especially those have been often left controversial related with the treatment of fractures of upper and lower extrem-ity, pelvic fractures is a useful resource mainly for resi-dents, fellows and junior orthopedists. Casual format that mimics a “curbside” dialog of colleagues and also the rich illustrations by images and diagrams makes the advanced knowledge in the text easier to understand and learn. Questions are carefully chosen from a wide spectrum of subjects related to fracture management to form a unique reference including high and low energy trauma fractures, pediatric fractures, fractures in elderly, multiple orthope-dic injury, and general fracture care. Assessment of frac-tures and diagnostic approach, postoperative care and

  3. Post-surgical rehabilitative approach to fragility fractures.

    Science.gov (United States)

    Gimigliano, F; Iolascon, G; Riccio, I; Frizzi, L; Gimigliano, R

    2013-10-01

    Osteoporosis is a skeletal disorder characterized by compromised bone strength predisposing to an increased risk of fracture. The most frequent sites of fragility fractures are the hip, the distal radius, the spine, the proximal humerus, and the ankle. In most cases, a surgical approach with subsequent rehabilitative treatment is required. The general aims of rehabilitation are to increase functioning and improve patients' activities, participation level, and quality of life.

  4. Ion implantation and fracture toughness of ceramics

    International Nuclear Information System (INIS)

    Clark, J.; Pollock, J.T.A.

    1985-01-01

    Ceramics generally lack toughness which is largely determined by the ceramic surface where stresses likely to cause failure are usually highest. Ion implantation has the capacity to improve the surface fracture toughness of ceramics. Significantly reduced ion size and reactivity restrictions exist compared with traditional methods of surface toughening. We are studying the effect of ion implantation on ceramic fracture toughness using indentation testing as the principal tool of analysis

  5. Bimalleolar ankle fracture with proximal fibular fracture

    NARCIS (Netherlands)

    Colenbrander, R. J.; Struijs, P. A. A.; Ultee, J. M.

    2005-01-01

    A 56-year-old female patient suffered a bimalleolar ankle fracture with an additional proximal fibular fracture. This is an unusual fracture type, seldom reported in literature. It was operatively treated by open reduction and internal fixation of the lateral malleolar fracture. The proximal fibular

  6. [Treatment of periprosthetic and peri-implant fractures : modern plate osteosynthesis procedures].

    Science.gov (United States)

    Raschke, M J; Stange, R; Kösters, C

    2012-11-01

    Periprosthetic fractures are increasing not only due to the demographic development with high life expectancy, the increase in osteoporosis and increased prosthesis implantation but also due to increased activity of the elderly population. The therapeutic algorithms are manifold but general valid rules for severe fractures are not available. The most commonly occurring periprosthetic fractures are proximal and distal femoral fractures but in the clinical routine fractures of the tibial head, ankle, shoulder, elbow and on the borders to other implants (peri-implant fractures) and complex interprosthetic fractures are being seen increasingly more. It is to be expected that in the mid-term further options, such as cement augmentation of cannulated polyaxial locking screws will extend the portfolio of implants for treatment of periprosthetic fractures. The aim of this review article is to present the new procedures for osteosynthesis of periprosthetic fractures.

  7. Correlation of Hip Fracture with Other Fracture Types: Toward a Rational Composite Hip Fracture Endpoint

    Science.gov (United States)

    Colón-Emeric, Cathleen; Pieper, Carl F.; Grubber, Janet; Van Scoyoc, Lynn; Schnell, Merritt L; Van Houtven, Courtney Harold; Pearson, Megan; Lafleur, Joanne; Lyles, Kenneth W.; Adler, Robert A.

    2016-01-01

    Purpose With ethical requirements to the enrollment of lower risk subjects, osteoporosis trials are underpowered to detect reduction in hip fractures. Different skeletal sites have different levels of fracture risk and response to treatment. We sought to identify fracture sites which cluster with hip fracture at higher than expected frequency; if these sites respond to treatment similarly, then a composite fracture endpoint could provide a better estimate of hip fracture reduction. Methods Cohort study using Veterans Affairs and Medicare administrative data. Male Veterans (n=5,036,536) aged 50-99 years receiving VA primary care between1999-2009 were included. Fractures were ascertained using ICD9 and CPT codes and classified by skeletal site. Pearson correlation coefficients, logistic regression and kappa statistics, were used to describe the correlation between each fracture type and hip fracture within individuals, without regards to the timing of the events. Results 595,579 (11.8%) men suffered 1 or more fractures and 179,597 (3.6%) suffered 2 or more fractures during the time under study. Of those with one or more fractures, rib was the most common site (29%), followed by spine (22%), hip (21%) and femur (20%). The fracture types most highly correlated with hip fracture were pelvic/acetabular (Pearson correlation coefficient 0.25, p<0.0001), femur (0.15, p<0.0001), and shoulder (0.11, p<0.0001). Conclusions Pelvic, acetabular, femur, and shoulder fractures cluster with hip fractures within individuals at greater than expected frequency. If we observe similar treatment risk reductions within that cluster, subsequent trials could consider use of a composite endpoint to better estimate hip fracture risk. PMID:26151123

  8. Non-Newtonian fluid flow in 2D fracture networks

    Science.gov (United States)

    Zou, L.; Håkansson, U.; Cvetkovic, V.

    2017-12-01

    Modeling of non-Newtonian fluid (e.g., drilling fluids and cement grouts) flow in fractured rocks is of interest in many geophysical and industrial practices, such as drilling operations, enhanced oil recovery and rock grouting. In fractured rock masses, the flow paths are dominated by fractures, which are often represented as discrete fracture networks (DFN). In the literature, many studies have been devoted to Newtonian fluid (e.g., groundwater) flow in fractured rock using the DFN concept, but few works are dedicated to non-Newtonian fluids.In this study, a generalized flow equation for common non-Newtonian fluids (such as Bingham, power-law and Herschel-Bulkley) in a single fracture is obtained from the analytical solutions for non-Newtonian fluid discharge between smooth parallel plates. Using Monte Carlo sampling based on site characterization data for the distribution of geometrical features (e.g., density, length, aperture and orientations) in crystalline fractured rock, a two dimensional (2D) DFN model is constructed for generic flow simulations. Due to complex properties of non-Newtonian fluids, the relationship between fluid discharge and the pressure gradient is nonlinear. A Galerkin finite element method solver is developed to iteratively solve the obtained nonlinear governing equations for the 2D DFN model. Using DFN realizations, simulation results for different geometrical distributions of the fracture network and different non-Newtonian fluid properties are presented to illustrate the spatial discharge distributions. The impact of geometrical structures and the fluid properties on the non-Newtonian fluid flow in 2D DFN is examined statistically. The results generally show that modeling non-Newtonian fluid flow in fractured rock as a DFN is feasible, and that the discharge distribution may be significantly affected by the geometrical structures as well as by the fluid constitutive properties.

  9. Current management of posterior wall fractures of the acetabulum.

    Science.gov (United States)

    Moed, Berton R; Kregor, Philip J; Reilly, Mark C; Stover, Michael D; Vrahas, Mark S

    2015-01-01

    The general goals for treating an acetabular fracture are to restore congruity and stability of the hip joint. These goals are no different from those for the subset of fractures of the posterior wall. Nevertheless, posterior wall fractures present unique problems compared with other types of acetabular fractures. Successful treatment of these fractures depends on a multitude of factors. The physician must understand their distinctive radiologic features, in conjunction with patient factors, to determine the appropriate treatment. By knowing the important points of posterior surgical approaches to the hip, particularly the posterior wall, specific techniques can be used for fracture reduction and fixation in these often challenging fractures. In addition, it is important to develop a complete grasp of potential complications and their treatment. The evaluation and treatment protocols initially developed by Letournel and Judet continue to be important; however, the surgeon also should be aware of new information published and presented in the past decade.

  10. The morphologies of fractured surfaces and fracture toughness in some As-Se-Sb-S-I glasses

    International Nuclear Information System (INIS)

    Lukic, S.R.; Petrovic, D.M.; Skuban, F.; Sidanin, L.; Guth, I.O.

    2006-01-01

    As part of a general physical characterization of amorphous materials in the pseudobinary system (As 2 Se 3 ) 100-x (SbSI) x type, their indentation fracture toughness was determined. It is a system with the variable ratio of classical amorphous compound As 2 Se 3 and the molecule of antimony sulfoiodide, SbSI, which in the monocrystal form is characterized as ferroelectrics. Because of chalcogenides are generally very brittle and under load they crack very easily, these glasses have been studied with the aim of examining the possibility of obtaining some new structures on the basis of the materials with amorphous internal network, the structures that will have a higher quality in respect of mechanical properties. The morphologies of fractured surfaces were investigated by scanning electron microscope

  11. The morphologies of fractured surfaces and fracture toughness in some As-Se-Sb-S-I glasses

    Energy Technology Data Exchange (ETDEWEB)

    Lukic, S.R. [Department of Physics, Faculty of Sciences, University of Novi Sad, Trg D. Obradovica 4, 21000 Novi Sad (Serbia and Montenegro)]. E-mail: svetdrag@im.ns.ac.yu; Petrovic, D.M. [Department of Physics, Faculty of Sciences, University of Novi Sad, Trg D. Obradovica 4, 21000 Novi Sad (Serbia and Montenegro); Skuban, F. [Department of Physics, Faculty of Sciences, University of Novi Sad, Trg D. Obradovica 4, 21000 Novi Sad (Serbia and Montenegro); Sidanin, L. [Department for Production Engineering, Faculty of Technical Sciences, University of Novi Sad, Trg D. Obradovica 6, 21000 Novi Sad (Serbia and Montenegro); Guth, I.O. [Department of Physics, Faculty of Sciences, University of Novi Sad, Trg D. Obradovica 4, 21000 Novi Sad (Serbia and Montenegro)

    2006-09-15

    As part of a general physical characterization of amorphous materials in the pseudobinary system (As{sub 2}Se{sub 3}){sub 100-x}(SbSI) {sub x} type, their indentation fracture toughness was determined. It is a system with the variable ratio of classical amorphous compound As{sub 2}Se{sub 3} and the molecule of antimony sulfoiodide, SbSI, which in the monocrystal form is characterized as ferroelectrics. Because of chalcogenides are generally very brittle and under load they crack very easily, these glasses have been studied with the aim of examining the possibility of obtaining some new structures on the basis of the materials with amorphous internal network, the structures that will have a higher quality in respect of mechanical properties. The morphologies of fractured surfaces were investigated by scanning electron microscope.

  12. Friction of Shear-Fracture Zones

    Science.gov (United States)

    Riikilä, T. I.; Pylväinen, J. I.; Åström, J.

    2017-12-01

    A shear fracture of brittle solids under compression undergoes a substantial evolution from the initial microcracking to a fully formed powder-filled shear zone. Experiments covering the entire process are relatively easy to conduct, but they are very difficult to investigate in detail. Numerically, the large strain limit has remained a challenge. An efficient simulation model and a custom-made experimental device are employed to test to what extent a shear fracture alone is sufficient to drive material to spontaneous self-lubrication. A "weak shear zone" is an important concept in geology, and a large number of explanations, specific for tectonic conditions, have been proposed. We demonstrate here that weak shear zones are far more general, and that their emergence only demands that a microscopic, i.e., fragment-scale, stress relaxation mechanism develops during the fracture process.

  13. Inaccuracy in self-report of fractures may underestimate association with health outcomes when compared with medical record based fracture registry

    International Nuclear Information System (INIS)

    Siggeirsdottir, Kristin; Aspelund, Thor; Sigurdsson, Gunnar; Mogensen, Brynjolfur; Chang, Milan; Jonsdottir, Birna; Eiriksdottir, Gudny; Launer, Lenore J.; Harris, Tamara B.; Jonsson, Brynjolfur Y.; Gudnason, Vilmundur

    2007-01-01

    Introduction and objective Misreporting fractures in questionnaires is known. However, the effect of misreporting on the association of fractures with subsequent health outcomes has not been examined. Methods Data from a fracture registry (FR) developed from an extensive review of radiographic and medical records were related to self-report of fracture for 2,255 participants from the AGES Reykjavik Study. This data was used to determine false negative and false positive rates of self-reported fractures, correlates of misreporting, and the potential effect of the misreporting on estimates of health outcomes following fractures. Results In women, the false positive rate decreased with age as the false negative rate increased with no clear trend with age in men. Kappa values for agreement between FR and self-report were generally higher in women than men with the best agreement for forearm fracture (men 0.64 and women 0.82) and the least for rib (men 0.28 and women 0.25). Impaired cognition was a major factor associated with discordant answers between FR and self-report, OR 1.7 (95% CI: 1.3-2.1) (P < 0.0001). We estimated the effect of misreporting on health after fracture by comparison of the association of the self-report of fracture and fracture from the FR, adjusting for those factors associated with discordance. The weighted attenuation factor measured by mobility and muscle strength was 11% (95% CI: 0-24%) when adjusted for age and sex but reduced to 6% (95% CI: -10-22%) when adjusted for cognitive impairment. Conclusion Studies of hip fractures should include an independent ascertainment of fracture but for other fractures this study supports the use of self-report

  14. Characterization of reservoir fractures using conventional geophysical logging

    Directory of Open Access Journals (Sweden)

    Paitoon Laongsakul

    2011-04-01

    Full Text Available In hydrocarbon exploration fractures play an important role as possible pathways for the hydrocarbon flow and bythis enhancing the overall formation’s permeability. Advanced logging methods for fracture analysis, like the boreholeacoustic televiewer and Formation Microscanner (FMS are available, but these are additional and expensive tools. However,open and with water or hydrocarbon filled fractures are also sensitive to electrical and other conventional logging methods.For this study conventional logging data (electric, seismic, etc were available plus additional fracture information from FMS.Taking into account the borehole environment the results show that the micro-spherically focused log indicates fractures byshowing low resistivity spikes opposite open fractures, and high resistivity spikes opposite sealed ones. Compressional andshear wave velocities are reduced when passing trough the fracture zone, which are assumed to be more or less perpendicularto borehole axis. The photoelectric absorption curve exhibit a very sharp peak in front of a fracture filled with bariteloaded mud cake. The density log shows low density spikes that are not seen by the neutron log, usually where fractures,large vugs, or caverns exist. Borehole breakouts can cause a similar effect on the logging response than fractures, but fracturesare often present when this occurs. The fracture index calculation by using threshold and input weight was calculatedand there was in general a good agreement with the fracture data from FMS especially in fracture zones, which mainlycontribute to the hydraulic system of the reservoir. Finally, the overall results from this study using one well are promising,however further research in the combination of different tools for fracture identification is recommended as well as the useof core for further validation.

  15. Diagnosis of scaphoid fracture: optimal imaging techniques

    Directory of Open Access Journals (Sweden)

    Geijer M

    2013-07-01

    Full Text Available Mats Geijer Center for Medical Imaging and Physiology, Skåne University Hospital and Lund University, Lund, Sweden Abstract: This review aims to provide an overview of modern imaging techniques for evaluation of scaphoid fracture, with emphasis on occult fractures and an outlook on the possible evolution of imaging; it also gives an overview of the pathologic and anatomic basis for selection of techniques. Displaced scaphoid fractures detected by wrist radiography, with or without special scaphoid views, pose no diagnostic problems. After wrist trauma with clinically suspected scaphoid fracture and normal scaphoid radiography, most patients will have no clinically important fracture. Between 5% and 19% of patients (on average 16% in meta-analyses will, however, have an occult scaphoid fracture which, untreated, may lead to later, potentially devastating, complications. Follow-up imaging may be done with repeat radiography, tomosynthesis, computed tomography, magnetic resonance imaging (MRI, or bone scintigraphy. However, no method is perfect, and choice of imaging may be based on availability, cost, perceived accuracy, or personal preference. Generally, MRI and bone scintigraphy are regarded as the most sensitive modalities, but both are flawed by false positive results at various rates. Keywords: occult fracture, wrist, radiography, computed tomography, magnetic resonance imaging, radionuclide imaging

  16. Progress in elastic-plastic fracture mechanics and its applications

    International Nuclear Information System (INIS)

    Paris, P.C.; Zahalak, G.I.

    1980-01-01

    This paper surveys recent developments in the application of J-Integral methods to problems of elastic-plastic fracture. The analytical and experimental development of the J-Integral concept over the last ten years is reviewed briefly. Tearing instability theory is presented in general terms, and specific applications of the theory are discussed. Principles of fracture-proof design are shown to follow naturally from the tearing instability theory. These principles are illustrated first for simple structures, and then generalized to more complex configurations and loading conditions. Examples include multiple member tension structures, beams, frames, nuclear reactor pressure vessel nozzles and piping, and beams on elastic foundations. It is concluded that J-integral based methods offer the best immediate opportunity for the development of sound analytical techniques for treating important practical problems of elastic-plastic fracture

  17. Foal Fractures: Osteochondral Fragmentation, Proximal Sesamoid Bone Fractures/Sesamoiditis, and Distal Phalanx Fractures.

    Science.gov (United States)

    Reesink, Heidi L

    2017-08-01

    Foals are susceptible to many of the same types of fractures as adult horses, often secondary to external sources of trauma. In addition, some types of fractures are specific to foals and occur routinely in horses under 1 year of age. These foal-specific fractures may be due to the unique musculoskeletal properties of the developing animal and may present with distinct clinical signs. Treatment plans and prognoses are tailored specifically to young animals. Common fractures not affecting the long bones in foals are discussed in this article, including osteochondral fragmentation, proximal sesamoid bone fractures/sesamoiditis, and distal phalanx fractures. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Assessment of fractures classified as non-mineralised in the Sicada database

    International Nuclear Information System (INIS)

    Claesson Liljedahl, Lillemor; Munier, Raymond; Sandstroem, Bjoern; Drake, Henrik; Tullborg, Eva-Lena

    2011-03-01

    The general objective of this report was to describe the results of the investigation of fractures classified as non-mineralised in Sicada. Such fractures exist at Forsmark and at Laxemar. The main aims of the investigation of these fractures were to: - Quantify the number of non-mineralised fractures (i.e. fractures lacking mineral coating) in Sicada (table: p f ract c ore e shi). - Closely examine a selection of fractures recorded as non-mineralised in Sicada. - Outline possible reasons for the existence of non-mineralised fractures. The work has involved extraction of fracture data from Sicada and subsequent statistical analysis. Since several thousand fractures are classified as non-mineralised in Sicada, it was not a practical possibility to include all these in this study, we examined one fracture sub-set from each site. We investigated a sample of 204 of these fractures in detail (see Sections 1.1 and 2.4). Rock mechanical differences between Forsmark and Laxemar and kinematic analysis of fracture surfaces is not discussed in this report

  19. Mechanical properties of materials in fusion reactor first-wall and blanket systems

    International Nuclear Information System (INIS)

    Bloom, E.E.

    1979-01-01

    With respect to the effects of irradiation on mechanical properties, the most significant difference between fast fission and fusion reactor spectra is the relatively large amount of helium produced by (n,α) transmutations in the latter. Relevant information on the effects of large amounts of helium (with concomitant displacement damage) comes from irradiation of alloys containing nickel in mixed spectrum reactors. At helium levels of interest for fusion reactor development, properties are degraded to unacceptable levels above Tm/2. Below this temperature, strength and ductility are retained and fractures remain transgranular. Importantly, the properties remain sensitive to composition and structure. A comparison of the response of bcc refractory alloys to that of stainless steel at equivalent damage levels shows the same general trends in properties with homologous temperature. The refractory alloys do offer potential for higher temperature applications because of their melting temperatures

  20. Acetabular Fracture

    Directory of Open Access Journals (Sweden)

    Chad Correa

    2017-09-01

    Full Text Available History of present illness: A 77-year-old female presented to her primary care physician (PCP with right hip pain after a mechanical fall. She did not lose consciousness or have any other traumatic injuries. She was unable to ambulate post-fall, so X-rays were ordered by her PCP. Her X-rays were concerning for a right acetabular fracture (see purple arrows, so the patient was referred to the emergency department where a computed tomography (CT scan was ordered. Significant findings: The non-contrast CT images show a minimally displaced comminuted fracture of the right acetabulum involving the acetabular roof, medial and anterior walls (red arrows, with associated obturator muscle hematoma (blue oval. Discussion: Acetabular fractures are quite rare. There are 37 pelvic fractures per 100,000 people in the United States annually, and only 10% of these involve the acetabulum. They occur more frequently in the elderly totaling an estimated 4,000 per year. High-energy trauma is the primary cause of acetabular fractures in younger individuals and these fractures are commonly associated with other fractures and pelvic ring disruptions. Fractures secondary to moderate or minimal trauma are increasingly of concern in patients of advanced age.1 Classification of acetabular fractures can be challenging. However, the approach can be simplified by remembering the three basic types of acetabular fractures (column, transverse, and wall and their corresponding radiologic views. First, column fractures should be evaluated with coronally oriented CT images. This type of fracture demonstrates a coronal fracture line running caudad to craniad, essentially breaking the acetabulum into two halves: a front half and a back half. Secondly, transverse fractures should be evaluated by sagittally oriented CT images. By definition, a transverse fracture separates the acetabulum into superior and inferior halves with the fracture line extending from anterior to posterior

  1. Modelling Laccoliths: Fluid-Driven Fracturing in the Lab

    Science.gov (United States)

    Ball, T. V.; Neufeld, J. A.

    2017-12-01

    Current modelling of the formation of laccoliths neglects the necessity to fracture rock layers for propagation to occur [1]. In magmatic intrusions at depth the idea of fracture toughness is used to characterise fracturing, however an analogue for near surface intrusions has yet to be explored [2]. We propose an analytical model for laccolith emplacement that accounts for the energy required to fracture at the tip of an intrusion. For realistic physical parameters we find that a lag region exists between the fluid magma front and the crack tip where large negative pressures in the tip cause volatiles to exsolve from the magma. Crucially, the dynamics of this tip region controls the spreading due to the competition between viscous forces and fracture energy. We conduct a series of complementary experiments to investigate fluid-driven fracturing of adhered layers and confirm the existence of two regimes: viscosity dominant spreading, controlled by the pressure in the lag region, and fracture energy dominant spreading, controlled by the energy required to fracture layers. Our experiments provide the first observations, and evolution, of a vapour tip. These experiments and our simplified model provide insight into the key physical processes in near surface magmatic intrusions with applications to fluid-driven fracturing more generally. Michaut J. Geophys. Res. 116(B5), B05205. Bunger & Cruden J. Geophys. Res. 116(B2), B02203.

  2. The effects of cold rolling orientation and water chemistry on stress corrosion cracking behavior of 316L stainless steel in simulated PWR water environments

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Junjie [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China); Lu, Zhanpeng, E-mail: zplu@t.shu.edu.cn [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China); State Key Laboratory of Advanced Special Steels, Shanghai University, 149 Yanchang Road, Shanghai, 200072 (China); Xiao, Qian; Ru, Xiangkun; Han, Guangdong; Chen, Zhen [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China); Zhou, Bangxin [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China); State Key Laboratory of Advanced Special Steels, Shanghai University, 149 Yanchang Road, Shanghai, 200072 (China); Shoji, Tetsuo [New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579 (Japan)

    2016-04-15

    Stress corrosion cracking behaviors of one-directionally cold rolled 316L stainless steel specimens in T–L and L–T orientations were investigated in hydrogenated and deaerated PWR primary water environments at 310 °C. Transgranular cracking was observed during the in situ pre-cracking procedure and the crack growth rate was almost not affected by the specimen orientation. Locally intergranular stress corrosion cracks were found on the fracture surfaces of specimens in the hydrogenated PWR water. Extensive intergranular stress corrosion cracks were found on the fracture surfaces of specimens in deaerated PWR water. More extensive cracks were found in specimen T–L orientation with a higher crack growth rate than that in the specimen L–T orientation with a lower crack growth rate. Crack branching phenomenon found in specimen L–T orientation in deaerated PWR water was synergistically affected by the applied stress direction as well as the preferential oxidation path along the elongated grain boundaries, and the latter was dominant. - Highlights: • Transgranular fatigue crack growth rate was not affected by the cold rolling orientation. • Locally intergranular SCC was found in the hydrogenated PWR water. • Extensive intergranular SCC cracks were found in deaerated PWR water. • T–L specimen showed more extensive SCC cracks and a higher crack growth rate. • Crack branching related to the applied stress and the preferential oxidation path.

  3. Grain by grain study of the mechanisms of crack propagation during iodine SCC of Zry-4

    International Nuclear Information System (INIS)

    Haddad Andalag, R.E.

    1993-01-01

    This paper describes the tests conducted to determine the conditions leading to cracking of a specified grain of metal, focussing on the crystallographic orientation of crack paths, the critical stress conditions and the significance of the fractographic features encountered. In order to get orientable cracking, a technique was developed to produce iodine SCC, by means of pressurizing tubes of a specially heat treated Zry-4 having very large grains, shaped as discs of a few millimeters in diameter and grown up to the wall thickness. Careful orientation of fractured grains, performed by means of a back-reflection Laue technique with a precision better than one degree, has proved that transgranular cracking occurs only along basal planes. The effect of anisotropy, plasticity, triaxiality and residual stresses originated in thermal contraction, has to be considered to account for the influence of the stress state . A grain by grain calculation led to the conclusion that transgranular cracking always occurs on those bearing the maximum resolved tensile stress on basal planes. There are clear indications of the need of a triaxial stress state for the process to occur. Fracture modes other than pseudo-cleavage have been encountered, including intergranular separation, ductile tearing produced by prismatic slip and propagation along twin boundaries. In each case the fractographic features have been identified, and associations have been made with fractographs obtained in normal fuel cladding. (Author)

  4. Fracture characterization and discrimination criteria for karst and tectonic fractures in the Ellenburger Group, West Texas: Implications for reservoir and exploration models

    Energy Technology Data Exchange (ETDEWEB)

    Hoak, T.E. [Science Applications International Corp., Germantown, MD (United States)]|[Kestrel Geoscience, Littleton, CO (United States); Sundberg, K.R. [Phillips Petroleum Co., Bartlesville, OK (United States); Deyhim, P. [Oklahoma State Univ., Stillwater, OK (United States); Ortoleva, P. [Indiana Univ., Bloomington, IN (United States). Lab. for Computational Geodynamics

    1998-12-31

    In the Ellenburger Group fractured dolomite reservoirs of West Texas, it is extremely difficult to distinguish between multiple phases of karst-related fracturing, modifications to the karst system during burial, and overprinting tectonic fractures. From the analyses of drill core, the authors developed criteria to distinguish between karst and tectonic fractures. In addition, they have applied these criteria within the context of a detailed diagenetic cement history that allows them to further refine the fracture genesis and chronology. In these analyses, the authors evaluated the relationships between fracture intensity, morphologic attributes, host lithology, fracture cement, and oil-staining. From this analysis, they have been able to characterize variations in Ellenburger tectonic fracture intensity by separating these fractures from karst-related features. In general, the majority of fracturing in the Ellenburger is caused by karst-related fracturing although a considerable percentage is caused by tectonism. These findings underscore the importance of considering the complete geologic evolution of a karst reservoir during exploration and field development programs. The authors have been able to more precisely define the spatial significance of the fracture data sets by use of oriented core from Andector Field. They have also demonstrated the importance of these results for exploration and reservoir development programs in West Texas, and the potential to extrapolate these results around the globe. Given the historic interest in the large hydrocarbon reserves in West Texas carbonate reservoirs, results of this study will have tremendous implications for exploration and production strategies targeting vuggy, fractured carbonate systems not only in West Texas, but throughout the globe.

  5. Fundamental Solution For The Self-healing Fracture Pulse

    Science.gov (United States)

    Nielsen, S.; Madariaga, R.

    We find the analytical solution for a fundamental fracture mode in the form of a self- similar, self-healing pulse. The existence of such a fracture mode was strongly sug- gested by recent numerical findings but, to our knwledge, no formal proof had been proposed up to date. We present a two dimensional, anti-plane solution for fixed rup- ture and healing velocities, that satisfies both wave equation and stress conditions; we argue that such a solution is plausible even in the absence of rate-weakening in the friction, as an alternative to the classic crack solution. In practice, the impulsive mode rather than the expanding crack mode is selected depending on details of fracture initiation, and is therafter self-maintained. We discuss stress concentration, fracture energy, rupture velocity and compare them to the case of a crack. The analytical study is complemented by various numerical examples and comparisons. On more general grounds, we argue that an infinity of marginally stable fracture modes may exist other than the crack solution or the impulseive fracture described here.

  6. SIZE SCALING RELATIONSHIPS IN FRACTURE NETWORKS

    International Nuclear Information System (INIS)

    Wilson, Thomas H.

    2000-01-01

    The research conducted under DOE grant DE-FG26-98FT40385 provides a detailed assessment of size scaling issues in natural fracture and active fault networks that extend over scales from several tens of kilometers to less than a tenth of a meter. This study incorporates analysis of data obtained from several sources, including: natural fracture patterns photographed in the Appalachian field area, natural fracture patterns presented by other workers in the published literature, patterns of active faulting in Japan mapping at a scale of 1:100,000, and lineament patterns interpreted from satellite-based radar imagery obtained over the Appalachian field area. The complexity of these patterns is always found to vary with scale. In general,but not always, patterns become less complex with scale. This tendency may reverse as can be inferred from the complexity of high-resolution radar images (8 meter pixel size) which are characterized by patterns that are less complex than those observed over smaller areas on the ground surface. Model studies reveal that changes in the complexity of a fracture pattern can be associated with dominant spacings between the fractures comprising the pattern or roughly to the rock areas bounded by fractures of a certain scale. While the results do not offer a magic number (the fractal dimension) to characterize fracture networks at all scales, the modeling and analysis provide results that can be interpreted directly in terms of the physical properties of the natural fracture or active fault complex. These breaks roughly define the size of fracture bounded regions at different scales. The larger more extensive sets of fractures will intersect and enclose regions of a certain size, whereas smaller less extensive sets will do the same--i.e. subdivide the rock into even smaller regions. The interpretation varies depending on the number of sets that are present, but the scale breaks in the logN/logr plots serve as a guide to interpreting the

  7. A general mixed mode fracture mechanics test specimen: The DCB-specimen loaded with uneven bending moments

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, B.F.; Joergensen, K.; Oestergaard, R.C. [Risoe National Lab., Materials Dept., Roskilde (Denmark); Jacobsen, T.K. [LM Glasfiber A/S, Lunderskov (Denmark)

    2004-03-01

    A mixed mode specimen is proposed for fracture mechanics characterisation of adhesive joints, laminates and multilayers. The specimen is a double cantilever beam specimen loaded with uneven bending moments at the two free beams. By varying the ratio between the two applied moments, the full mode mixity range from pure mode I to pure mode II can be generated for the same specimen geometry. The specimen allows stable crack growth. In case of large scale crack bridging, mixed mode cohesive laws can be obtained by a J integral based approach. As a preliminary example, fracture of adhesive joints between two glass-fibre laminates was studied. The mixed mode fracture resistance increased with increasing crack length due to fibre cross over bridging, eventually reaching a steady-state level (R-curve behaviour). The steady-state fracture toughness level increased with increasing tangential crack opening displacement. Cohesive stresses were determined by a J integral approach. The deducted shear stress was found to be relative high ({approx} = 20 MPa) in comparison with the normal stress ({approx} = 1 MPa). (au)

  8. The Influence of Hydraulic Fracturing on Carbon Storage Performance

    Science.gov (United States)

    Fu, Pengcheng; Settgast, Randolph R.; Hao, Yue; Morris, Joseph P.; Ryerson, Frederick J.

    2017-12-01

    Conventional principles of the design and operation of geologic carbon storage (GCS) require injecting CO2 below the caprock fracturing pressure to ensure the integrity of the storage complex. In nonideal storage reservoirs with relatively low permeability, pressure buildup can lead to hydraulic fracturing of the reservoir and caprock. While the GCS community has generally viewed hydraulic fractures as a key risk to storage integrity, a carefully designed stimulation treatment under appropriate geologic conditions could provide improved injectivity while maintaining overall seal integrity. A vertically contained hydraulic fracture, either in the reservoir rock or extending a limited height into the caprock, provides an effective means to access reservoir volume far from the injection well. Employing a fully coupled numerical model of hydraulic fracturing, solid deformation, and matrix fluid flow, we study the enabling conditions, processes, and mechanisms of hydraulic fracturing during CO2 injection. A hydraulic fracture's pressure-limiting behavior dictates that the near-well fluid pressure is only slightly higher than the fracturing pressure of the rock and is insensitive to injection rate and mechanical properties of the formation. Although a fracture contained solely within the reservoir rock with no caprock penetration, would be an ideal scenario, poroelastic principles dictate that sustaining such a fracture could lead to continuously increasing pressure until the caprock fractures. We also investigate the propagation pattern and injection pressure responses of a hydraulic fracture propagating in a caprock subjected to heterogeneous in situ stress. The results have important implications for the use of hydraulic fracturing as a tool for managing storage performance.

  9. Ballistic fractures: indirect fracture to bone.

    Science.gov (United States)

    Dougherty, Paul J; Sherman, Don; Dau, Nathan; Bir, Cynthia

    2011-11-01

    Two mechanisms of injury, the temporary cavity and the sonic wave, have been proposed to produce indirect fractures as a projectile passes nearby in tissue. The purpose of this study is to evaluate the temporal relationship of pressure waves using strain gauge technology and high-speed video to elucidate whether the sonic wave, the temporary cavity, or both are responsible for the formation of indirect fractures. Twenty-eight fresh frozen cadaveric diaphyseal tibia (2) and femurs (26) were implanted into ordnance gelatin blocks. Shots were fired using 9- and 5.56-mm bullets traversing through the gelatin only, passing close to the edge of the bone, but not touching, to produce an indirect fracture. High-speed video of the impact event was collected at 20,000 frames/s. Acquisition of the strain data were synchronized with the video at 20,000 Hz. The exact time of fracture was determined by analyzing and comparing the strain gauge output and video. Twenty-eight shots were fired, 2 with 9-mm bullets and 26 with 5.56-mm bullets. Eight indirect fractures that occurred were of a simple (oblique or wedge) pattern. Comparison of the average distance of the projectile from the bone was 9.68 mm (range, 3-20 mm) for fractured specimens and 15.15 mm (range, 7-28 mm) for nonfractured specimens (Student's t test, p = 0.036). In this study, indirect fractures were produced after passage of the projectile. Thus, the temporary cavity, not the sonic wave, was responsible for the indirect fractures.

  10. Hydraulic fracture propagation modeling and data-based fracture identification

    Science.gov (United States)

    Zhou, Jing

    Successful shale gas and tight oil production is enabled by the engineering innovation of horizontal drilling and hydraulic fracturing. Hydraulically induced fractures will most likely deviate from the bi-wing planar pattern and generate complex fracture networks due to mechanical interactions and reservoir heterogeneity, both of which render the conventional fracture simulators insufficient to characterize the fractured reservoir. Moreover, in reservoirs with ultra-low permeability, the natural fractures are widely distributed, which will result in hydraulic fractures branching and merging at the interface and consequently lead to the creation of more complex fracture networks. Thus, developing a reliable hydraulic fracturing simulator, including both mechanical interaction and fluid flow, is critical in maximizing hydrocarbon recovery and optimizing fracture/well design and completion strategy in multistage horizontal wells. A novel fully coupled reservoir flow and geomechanics model based on the dual-lattice system is developed to simulate multiple nonplanar fractures' propagation in both homogeneous and heterogeneous reservoirs with or without pre-existing natural fractures. Initiation, growth, and coalescence of the microcracks will lead to the generation of macroscopic fractures, which is explicitly mimicked by failure and removal of bonds between particles from the discrete element network. This physics-based modeling approach leads to realistic fracture patterns without using the empirical rock failure and fracture propagation criteria required in conventional continuum methods. Based on this model, a sensitivity study is performed to investigate the effects of perforation spacing, in-situ stress anisotropy, rock properties (Young's modulus, Poisson's ratio, and compressive strength), fluid properties, and natural fracture properties on hydraulic fracture propagation. In addition, since reservoirs are buried thousands of feet below the surface, the

  11. Return to sports after ankle fractures: a systematic review.

    Science.gov (United States)

    Del Buono, Angelo; Smith, Rebecca; Coco, Manuela; Woolley, Laurence; Denaro, Vincenzo; Maffulli, Nicola

    2013-01-01

    This review aims to provide information on the time athletes will take to resume sports activity following ankle fractures. We systematically searched Medline (PubMED), EMBASE, CINHAL, Cochrane, Sports Discus and Google scholar databases using the combined keywords 'ankle fractures', 'ankle injuries', 'athletes', 'sports', 'return to sport', 'recovery', 'operative fixation', 'pinning', 'return to activity' to identify articles published in English, Spanish, French, Portuguese and Italian. Seven retrospective studies fulfilled our inclusion criteria. Of the 793 patients, 469 (59%) were males and 324 (41%) were females, and of the 356 ankle fractures we obtained information on, 338 were acute and 18 stress fractures. The general principles were to undertake open reduction and internal fixation of acute fractures, and manage stress fractures conservatively unless a thin fracture line was visible on radiographs. The best timing to return to sports after an acute ankle fracture is still undefined, given the heterogeneity of the outcome measures and results. The time to return to sports after an acute stress injury ranged from 3 to 51 weeks. When facing athletes with ankle fractures, associated injuries have to be assessed and addressed to improve current treatment lines and satisfy future expectancies. The best timing to return to sports after an ankle fracture has not been established yet. The ideas of the return to activity parameter and surgeon databases including sports-related information could induce research to progress.

  12. Effects of metal binder on the microstructure and mechanical properties of Al2O3-based micro-nanocomposite ceramic tool material

    Science.gov (United States)

    Ni, Xiu-ying; Zhao, Jun; Sun, Jia-lin; Gong, Feng; Li, Zuo-li

    2017-07-01

    The Al2O3-(W,Ti)C composites with Ni and Mo additions varying from 0vol% to 12vol% were prepared via hot pressing sintering under 30 MPa. The microstructure was investigated via X-ray diffraction (XRD) and scanning electron microscopy (SEM) equipped with energy dispersive spectrometry (EDS). Mechanical properties such as flexural strength, fracture toughness, and Vickers hardness were also measured. Results show that the main phases A12O3 and (W,Ti)C were detected by XRD. Compound MoNi also existed in sintered nanocomposites. The fracture modes of the nanocomposites were both intergranular and transgranular fractures. The plastic deformation of metal particles and crack bridging were the main toughening mechanisms. The maximum flexural strength and fracture toughness were obtained for 9vol% and 12vol% additions of Ni and Mo, respectively. The hardness of the composites reduced gradually with increasing content of metals Ni and Mo.

  13. Modelling of Local Necking and Fracture in Aluminium Alloys

    International Nuclear Information System (INIS)

    Achani, D.; Eriksson, M.; Hopperstad, O. S.; Lademo, O.-G.

    2007-01-01

    Non-linear Finite Element simulations are extensively used in forming and crashworthiness studies of automotive components and structures in which fracture need to be controlled. For thin-walled ductile materials, the fracture-related phenomena that must be properly represented are thinning instability, ductile fracture and through-thickness shear instability. Proper representation of the fracture process relies on the accuracy of constitutive and fracture models and their parameters that need to be calibrated through well defined experiments. The present study focuses on local necking and fracture which is of high industrial importance, and uses a phenomenological criterion for modelling fracture in aluminium alloys. As an accurate description of plastic anisotropy is important, advanced phenomenological constitutive equations based on the yield criterion YLD2000/YLD2003 are used. Uniaxial tensile tests and disc compression tests are performed for identification of the constitutive model parameters. Ductile fracture is described by the Cockcroft-Latham fracture criterion and an in-plane shear tests is performed to identify the fracture parameter. The reason is that in a well designed in-plane shear test no thinning instability should occur and it thus gives more direct information about the phenomenon of ductile fracture. Numerical simulations have been performed using a user-defined material model implemented in the general-purpose non-linear FE code LS-DYNA. The applicability of the model is demonstrated by correlating the predicted and experimental response in the in-plane shear tests and additional plane strain tension tests

  14. 2D Geoelectric Imaging of the Uneme-Nekhua Fracture Zone

    Directory of Open Access Journals (Sweden)

    Muslim B. Aminu

    2014-01-01

    Full Text Available We have employed 2D geoelectric imaging to reveal the geometry and nature of a fracture zone in Uneme-Nekhua, southwestern Nigeria. The fracture zone is discernable from an outcropping rock scarp and appears to define the course of a seasonal stream. Data were acquired using the dipole-dipole survey array configuration with electrode separation of 6 m and a maximum dipole length of 60 m. Three traverses with lengths varying between 72 m and 120 m were laid orthogonal to the course of the seasonal stream. 2D geoelectric images of the subsurface along the profiles imaged a north-south trending fracture zone. This fracture zone appears to consist of two vertical fractures with more intense definition downstream. The eastern fracture is buried by recent sediment, while the western fracture appears to have experienced more recent tectonic activity as it appears to penetrate through the near surface. Perhaps at some point, deformation ceased on the eastern fracture and further strain was transferred to the western fracture. The fracture zone generally defines the course of the north-south seasonal stream with the exception of the downstream end where the fracture appears to have died out entirely. Two associated basement trenches lying parallel to and east of the fracture zone are also imaged.

  15. A Simplified Way for the Stabilization of Pediatric Mandibular Fracture With an Occlusal Splint.

    Science.gov (United States)

    Demirkol, Mehmet; Demirkol, Nermin; Abdo, Omar Hasan; Aras, Mutan Hamdi

    2016-06-01

    The management of pediatric mandibular fractures is challenging for maxillofacial surgeons due to ongoing mandibular growth involving tooth buds. The treatment of such fractures has been a topic of much research. Generally accepted methods for the treatment of mandibular parasymphyseal or symphyseal fractures in children are conservative approaches involving the use of acrylic splints, lateral compression with an open-cap splint stabilized by circummandibular wiring, and maxillomandibular fixation with an arch bar and eyelet wiring. The aim of this technical note was to describe a straightforward approach to the treatment of pediatric mandibular fractures, in which an occlusal splint is secured to prevent trauma to the soft tissue, without the need for general anesthesia.

  16. Distinguishing stress fractures from pathologic fractures: a multimodality approach

    International Nuclear Information System (INIS)

    Fayad, Laura M.; Kamel, Ihab R.; Kawamoto, Satomi; Bluemke, David A.; Fishman, Elliot K.; Frassica, Frank J.

    2005-01-01

    Whereas stress fractures occur in normal or metabolically weakened bones, pathologic fractures occur at the site of a bone tumor. Unfortunately, stress fractures may share imaging features with pathologic fractures on plain radiography, and therefore other modalities are commonly utilized to distinguish these entities. Additional cross-sectional imaging with CT or MRI as well as scintigraphy and PET scanning is often performed for further evaluation. For the detailed assessment of a fracture site, CT offers a high-resolution view of the bone cortex and periosteum which aids the diagnosis of a pathologic fracture. The character of underlying bone marrow patterns of destruction can also be ascertained along with evidence of a soft tissue mass. MRI, however, is a more sensitive technique for the detection of underlying bone marrow lesions at a fracture site. In addition, the surrounding soft tissues, including possible involvement of adjacent muscle, can be well evaluated with MRI. While bone scintigraphy and FDG-PET are not specific, they offer a whole-body screen for metastases in the case of a suspected malignant pathologic fracture. In this review, we present select examples of fractures that underscore imaging features that help distinguish stress fractures from pathologic fractures, since accurate differentiation of these entities is paramount. (orig.)

  17. Double segmental tibial fractures - an unusual fracture pattern

    Directory of Open Access Journals (Sweden)

    Bali Kamal

    2012-02-01

    Full Text Available 【Abstract】A case of a 50-year-old pedestrian who was hit by a bike and suffered fractures of both bones of his right leg was presented. Complete clinical and radiographic assessment showed double segmental fractures of the tibia and multisegmental fractures of the fibula. Review of the literature revealed that this fracture pattern was unique and only a single case was reported so far. Moreover, we discussed the possible mechanisms which can lead to such an injury. We also discussed the management of segmental tibial fracture and the difficulties encountered with them. This case was managed by modern osteosynthesis tech- nique with a pleasing outcome. Key words: Fracture, bone; Tibia; Fibula; Nails

  18. Fracture Sealing in Shales: Geological and Geochemical Factors

    International Nuclear Information System (INIS)

    Cathelineau, Michel

    2001-01-01

    The so-called self-sealing processes can be re-examined at the light of geological and geochemical consideration about the past history of the rocks. The concept of 'self sealing' needs to consider the formation and the sealing of fractures, especially three main stages: (i) the initiation of the fracture (development of micro-cracks initiated from previous heterogeneities up to fracturing), ii) the fracturing processes which occur generally at depth in presence of a fluid phase, iii) the healing or sealing of the fractures which corresponds basically to two main processes: a restoration of the initial permeability of the rock block by reducing the transmissivity of the discontinuity down to values equivalent to that of the homogeneous medium before fracturing, or the sealing of the open discontinuity by precipitation of newly formed minerals. In the latter case, the evolution of the open fracture is driven by re-arrangement of particles or precipitation of newly formed material, either by dissolution/crystallisation processes or by crystallisation from the percolating fluids (advective processes). Such processes are governed by chemical processes, especially the rate of precipitation of minerals which depends of the degree of saturation with respect to the mineral, and the kinetics of precipitation. (author)

  19. Extension type fracture of the ankylotic thoracic spine with gross displacement causing esophageal rupture

    NARCIS (Netherlands)

    Groen, F. R J; Delawi, D.; Kruyt, M. C.; Oner, F. C.

    2016-01-01

    Purpose: This study aimed at discussing the relevance of the type B3 fracture of the new AOSpine classification. Methods: Hyperextension fractures of the spine are rare in the general population, but common in the ankylotic spine. We present a case of a severe spinal fracture with concomitant

  20. Fluid transport in reaction induced fractures

    Science.gov (United States)

    Ulven, Ole Ivar; Sun, WaiChing; Malthe-Sørenssen, Anders

    2015-04-01

    The process of fracture formation due to a volume increasing chemical reaction has been studied in a variety of different settings, e.g. weathering of dolerites by Røyne et al. te{royne}, serpentinization and carbonation of peridotite by Rudge et al. te{rudge} and replacement reactions in silica-poor igneous rocks by Jamtveit et al. te{jamtveit}. It is generally assumed that fracture formation will increase the net permeability of the rock, and thus increase the reactant transport rate and subsequently the total rate of material conversion, as summarised by Kelemen et al. te{kelemen}. Ulven et al. te{ulven_1} have shown that for fluid-mediated processes the ratio between chemical reaction rate and fluid transport rate in bulk rock controls the fracture pattern formed, and Ulven et al. te{ulven_2} have shown that instantaneous fluid transport in fractures lead to a significant increase in the total rate of the volume expanding process. However, instantaneous fluid transport in fractures is clearly an overestimate, and achievable fluid transport rates in fractures have apparently not been studied in any detail. Fractures cutting through an entire domain might experience relatively fast advective reactant transport, whereas dead-end fractures will be limited to diffusion of reactants in the fluid, internal fluid mixing in the fracture or capillary flow into newly formed fractures. Understanding the feedback process between fracture formation and permeability changes is essential in assessing industrial scale CO2 sequestration in ultramafic rock, but little is seemingly known about how large the permeability change will be in reaction-induced fracturing. In this work, we study the feedback between fracture formation during volume expansion and fluid transport in different fracture settings. We combine a discrete element model (DEM) describing a volume expanding process and the related fracture formation with different models that describe the fluid transport in the

  1. Ankle fracture spur sign is pathognomonic for a variant ankle fracture.

    Science.gov (United States)

    Hinds, Richard M; Garner, Matthew R; Lazaro, Lionel E; Warner, Stephen J; Loftus, Michael L; Birnbaum, Jacqueline F; Burket, Jayme C; Lorich, Dean G

    2015-02-01

    The hyperplantarflexion variant ankle fracture is composed of a posterior tibial lip fracture with posterolateral and posteromedial fracture fragments separated by a vertical fracture line. This infrequently reported injury pattern often includes an associated "spur sign" or double cortical density at the inferomedial tibial metaphysis. The objective of this study was to quantitatively establish the association of the ankle fracture spur sign with the hyperplantarflexion variant ankle fracture. Our clinical database of operative ankle fractures was retrospectively reviewed for the incidence of hyperplantarflexion variant and nonvariant ankle fractures as determined by assessment of injury radiographs, preoperative advanced imaging, and intraoperative observation. Injury radiographs were then evaluated for the presence of the spur sign, and association between the spur sign and variant fractures was analyzed. The incidence of the hyperplantarflexion variant fracture among all ankle fractures was 6.7% (43/640). The spur sign was present in 79% (34/43) of variant fractures and absent in all nonvariant fractures, conferring a specificity of 100% in identifying variant fractures. Positive predictive value and negative predictive value were 100% and 99%, respectively. The ankle fracture spur sign was pathognomonic for the hyperplantarflexion variant ankle fracture. It is important to identify variant fractures preoperatively as patient positioning, operative approach, and fixation construct of variant fractures often differ from those employed for osteosynthesis of nonvariant fractures. Identification of the spur sign should prompt acquisition of advanced imaging to formulate an appropriate operative plan to address the variant fracture pattern. Level III, retrospective comparative study. © The Author(s) 2014.

  2. Association of Ipsilateral Rib Fractures With Displacement of Midshaft Clavicle Fractures.

    Science.gov (United States)

    Stahl, Daniel; Ellington, Matthew; Brennan, Kindyle; Brennan, Michael

    2017-04-01

    To determine whether the presence of ipsilateral rib fractures affects the rate of a clavicle fracture being unstable (>100% displacement). A retrospective review from 2002-2013 performed at a single level 1 trauma center evaluated 243 midshaft clavicle fractures. Single Level 1 trauma center. These fractures were subdivided into those with ipsilateral rib fractures (CIR; n = 149) and those without ipsilateral rib fractures (CnIR; n = 94). The amount of displacement was measured on the initial injury radiograph and subsequent follow-up radiographs. Fractures were classified into either 100% displacement, based on anteroposterior radiographs. Ipsilateral rib fractures were recorded based on which number rib was fractured and the total number of fractured ribs. One hundred sixteen (78%) of the CIR group and 51 (54%) of the CnIR group were found to have >100% displacement at follow-up (P = 0.0047). Seventy-two percent of the CIR group demonstrated progression from 100% displacement of the fracture compared with only 54% of the CnIR group (P fracture to >100% was 4.08 (P = 0.000194) when ribs 1-4 were fractured and not significant for rib fractures 5-8 or 9-12. The presence of concomitant ipsilateral rib fractures significantly increases the rate of midshaft clavicle fractures being >100% displaced. In addition, a fracture involving the upper one-third of the ribs significantly increases the rate of the clavicle fracture being >100% displaced on early follow-up. Clavicle fractures with associated ipsilateral rib fractures tend to demonstrate an increased amount of displacement on follow-up radiographs compared with those without ipsilateral rib fractures. Prognostic Level II. See Instructions for Authors for a complete description of levels of evidence.

  3. High-Risk Stress Fractures: Diagnosis and Management.

    Science.gov (United States)

    McInnis, Kelly C; Ramey, Lindsay N

    2016-03-01

    Stress fractures are common overuse injuries in athletes. They occur during periods of increased training without adequate rest, disrupting normal bone reparative mechanisms. There are a host of intrinsic and extrinsic factors, including biochemical and biomechanical, that put athletes at risk. In most stress fractures, the diagnosis is primarily clinical, with imaging indicated at times, and management focused on symptom-free relative rest with advancement of activity as tolerated. Overall, stress fractures in athletes have an excellent prognosis for return to sport, with little risk of complication. There is a subset of injuries that have a greater risk of fracture progression, delayed healing, and nonunion and are generally more challenging to treat with nonoperative care. Specific locations of high-risk stress fracture include the femoral neck (tension side), patella, anterior tibia, medial malleolus, talus, tarsal navicular, proximal fifth metatarsal, and great toe sesamoids. These sites share a characteristic region of high tensile load and low blood flow. High-risk stress fractures require a more aggressive approach to evaluation, with imaging often necessary, to confirm early and accurate diagnosis and initiate immediate treatment. Treatment consists of nonweight-bearing immobilization, often with a prolonged period away from sport, and a more methodic and careful reintroduction to athletic activity. These stress fractures may require surgical intervention. A high index of suspicion is essential to avoid delayed diagnosis and optimize outcomes in this subset of stress fractures. Copyright © 2016 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  4. Hybrid-dimensional modelling of two-phase flow through fractured porous media with enhanced matrix fracture transmission conditions

    Science.gov (United States)

    Brenner, Konstantin; Hennicker, Julian; Masson, Roland; Samier, Pierre

    2018-03-01

    In this work, we extend, to two-phase flow, the single-phase Darcy flow model proposed in [26], [12] in which the (d - 1)-dimensional flow in the fractures is coupled with the d-dimensional flow in the matrix. Three types of so called hybrid-dimensional two-phase Darcy flow models are proposed. They all account for fractures acting either as drains or as barriers, since they allow pressure jumps at the matrix-fracture interfaces. The models also permit to treat gravity dominated flow as well as discontinuous capillary pressure at the material interfaces. The three models differ by their transmission conditions at matrix fracture interfaces: while the first model accounts for the nonlinear two-phase Darcy flux conservations, the second and third ones are based on the linear single phase Darcy flux conservations combined with different approximations of the mobilities. We adapt the Vertex Approximate Gradient (VAG) scheme to this problem, in order to account for anisotropy and heterogeneity aspects as well as for applicability on general meshes. Several test cases are presented to compare our hybrid-dimensional models to the generic equi-dimensional model, in which fractures have the same dimension as the matrix, leading to deep insight about the quality of the proposed reduced models.

  5. Multi-pathway model of nuclide transport in fractured media and its application

    International Nuclear Information System (INIS)

    Li Xun; Yang Zeping; Li Jinxuan

    2010-01-01

    In order to know the law of nuclide transport in fracture system, the basic differential equations of nuclide transport in fracture and matrix were obtained based on the dual media theory, and the general analytic solutions of nuclide transport in single fractured media with exponential attenuation source in fracture were deduced by Laplace transform, and one-dimensional multi-pathway model of nuclide transport was proposed based on dual media theory and stochastic distribution of fracture parameters. The transport of Th-229, Cs-135 and Se-79 were simulated with this model, the relative concentration of these nuclides in fracture system were predicted. Further more, it was deduced that aperture and velocity can distinctly influence transport of nuclide by comparing with the results which were simulated by single fracture model. (authors)

  6. Under-reporting of osteoporotic vertebral fractures on computed tomography

    International Nuclear Information System (INIS)

    Williams, Alexandra L.; Al-Busaidi, Aisha; Sparrow, Patrick J.; Adams, Judith E.; Whitehouse, Richard W.

    2009-01-01

    Purpose: Osteoporotic vertebral fractures are frequently asymptomatic. They are often not diagnosed clinically or radiologically. Despite this, prevalent osteoporotic vertebral fractures predict future osteoporotic fractures and are associated with increased mortality and morbidity. Appropriate management of osteoporosis can reduce future fracture risk. Fractures on lateral chest radiographs taken for other conditions are frequently overlooked by radiologists. Our aim was to assess the value of computed tomography (CT) in the diagnosis of vertebral fracture and identify the frequency with which significant fractures are missed. Materials and methods: The thoracic CT scans of 100 consecutive male and 100 consecutive female patients over 55 years were reviewed. CT images were acquired on General Electric Lightspeed multi-detector (MD) CT scanners (16 or 32 row) using 1.25 mm slice thickness. Midline sagittal images were reconstructed from the 3D volume images. The presence of moderate (25-40% height loss) or severe (>40% height loss) vertebral fractures between T1 and L1 was determined using an established semi-quantitative method and confirmed by morphological measurement. Results were compared with the formal CT report. Results: Scans of 192 patients were analysed (95 female; 97 male); mean age 70.1 years. Thirty-eight (19.8%) patients had one or more moderate to severe vertebral fractures. Only 5 (13%) were correctly reported as having osteoporotic fractures in the official report. The sensitivity of axial CT images to vertebral fracture was 0.35. Conclusion: Incidental osteoporotic vertebral fractures are under-reported on CT. The sensitivity of axial images in detecting these fractures is poor. Sagittal reformations are strongly recommended to improve the detection rate

  7. Flow characteristics through a single fracture of artificial fracture system

    International Nuclear Information System (INIS)

    Park, Byoung Yoon; Bae, Dae Seok; Kim, Chun Soo; Kim, Kyung Su; Koh, Young Kwon; Jeon, Seok Won

    2001-04-01

    Fracture flow in rock masses is one of the most important issues in petroleum engineering, geology, and hydrogeology. Especially, in case of the HLW disposal, groundwater flow in fractures is an important factor in the performance assessment of the repository because the radionuclides move along the flowing groundwater through fractures. Recently, the characterization of fractures and the modeling of fluid flow in fractures are studied by a great number of researchers. Among those studies, the hydraulic behavior in a single fracture is one of the basic issues for understanding of fracture flow in rockmass. In this study, a fluid flow test in the single fracture made of transparent epoxy replica was carried out to obtain the practical exponent values proposed from the Cubic law and to estimate the flow rates through a single fracture. Not only the relationship between flow rates and the geometry of fracture was studied, but also the various statistical parameters of fracture geometry were compared to the effective transmissivity data obtained from computer simulation.

  8. [Treatment of femoral neck fracture--preference to internal fixation].

    Science.gov (United States)

    Minato, Izumi

    2011-03-01

    In the guidelines for the treatment of femoral neck fracture, prosthetic replacement is recommended in displaced one and internal fixation is in undisplaced one. However, in the long view, survived femoral head after internal fixation can be superior to prosthesis which will deteriorate as time goes by. Surgical method should be considered not only by type of fracture but general status of the patient.

  9. A Rare Nasal Bone Fracture: Anterior Nasal Spine Fracture

    Directory of Open Access Journals (Sweden)

    Egemen Kucuk

    2014-04-01

    Full Text Available Anterior nasal spine fractures are a quite rare type of nasal bone fractures. Associated cervical spine injuries are more dangerous than the nasal bone fracture. A case of the anterior nasal spine fracture, in a 18-year-old male was presented. Fracture of the anterior nasal spine, should be considered in the differential diagnosis of the midface injuries and also accompanying cervical spine injury should not be ignored.

  10. Effect of Low-Temperature Environment on Stress Corrosion Cracking Behavior of X80 Pipeline Steel in Simulated Alkaline Soil Solution

    Science.gov (United States)

    Xie, Fei; Wang, Dan; Wu, Ming; Yu, Chengxiang; Sun, Dongxu; Yang, Xu; Xu, Changhao

    2018-04-01

    The stress corrosion cracking (SCC) of X80 pipeline steel in simulated alkaline soil solution under different temperatures was investigated by slow-strain-rate testing, scanning electron microscopy and energy-dispersive spectroscopy. Results showed that the fracture was transgranular and brittle at 273 K to 278 K (0 °C to 5 °C), and the metal surface was dissolved by a large number of chloride ions. Furthermore, hydrogen embrittlement was caused by the hydrogen atom extended to the high-stress region. The fracture process was controlled by hydrogen-induced cracking, and SCC was highly sensitive at this stage. At 288 K to 298 K (15 °C to 25 °C), the fracture morphology was attributed to the mixed mode of ductile and brittle fractures, the fracture process was controlled by the mechanism of hydrogen-induced cracking and anodic dissolution, and the susceptibility to SCC decreased. When the temperature reached 308 K to 318 K (35 °C to 45 °C), the fracture was mainly intergranular and ductile, the fracture process was controlled by anodic dissolution, and SCC sensitivity was the smallest in this temperature range.

  11. [Multidisciplinary approach of hip fractures based on Hungarian data].

    Science.gov (United States)

    Juhász, Krisztina; Turchányi, Béla; Mintál, Tibor; Somogyi, Péter

    2016-09-01

    Hip fractures are described by increased mortality, loss of quality of life, functional decline and burden of diseases. They show a growing number worldwide. The aim of the present study is to summarise the existing data on the incidence, mortality, complications and rehabilitation of hip fractures, which relevance is reported only by few studies. To reduce mortality and complications of hip fractures the authors emphasize the importance of primary treatment within 12 hours, appropriate selection of surgical methods corresponding to the fracture type after the assessment of femoral head viability, vitamin D supplementation, same conditions for primary treatment during everyday of the week, and an adequate acute treatment and rehabilitation for patient's general health status. In the future integrated processing of multidisciplinary results of hip fractures based on Hungarian data can support the development of efficient treatment and prevention strategies, which can be advantageous for the patient, families, health care system, and the society, too, by the reduction of costly complications of hip fracture healing and mortality. Orv. Hetil., 2016, 157(37), 1469-1475.

  12. High prevalence of hypovitaminosis D and K in patients with hip fracture.

    Science.gov (United States)

    Nakano, Tetsuo; Tsugawa, Naoko; Kuwabara, Akiko; Kamao, Maya; Tanaka, Kiyoshi; Okano, Toshio

    2011-01-01

    Although hip fracture is considered to be associated with hypovitaminosis D and K, few reports have previously studied both of them. We have studied the vitamin D- and K-status as well as the general nutritional status in ninety-nine patients with hip fracture. Mean serum concentration of 25hydroxy-vitamin D (25OH-D) in female fractured patients was only approximately 9 ng/mL, suggesting severe vitamin D deficiency. There was no significant difference between the two groups in serum concentration of intact parathyroid hormone in both genders and serum 25OH-D levels in the male subjects. Plasma concentrations of phylloquinone (vitamin K1; PK) and menaquinone-7 (MK-7) were significantly lower in the fractured group than in the control group in both genders. Logistic regression analysis indicated that circulating concentrations of albumin, PK and 25OH-D were the significant and independent determinants of fracture risk, with their higher concentrations associated with decreased fracture risk. Finally, principal component analysis (PCA) was performed to summarize the clinical parameters into smaller numbers of independent components. Three components were obtained, each representing the overall nutritional status, the vitamin D status, and the vitamin K status. In conclusion, our study has shown that patients with hip fracture have vitamin D and K deficiency independent of general malnutrition.

  13. Acidization of shales with calcite cemented fractures

    Science.gov (United States)

    Kwiatkowski, Kamil; Szymczak, Piotr; Jarosiński, Marek

    2017-04-01

    wormholes is the strongest when coating thickness is a few times larger than the initial aperture of the fracture. This leads to formation of favorable complex networks of wormholes which provide adequate transport of reactive fluids to fracture surfaces and - at the same time - are capable of supporting fracture surfaces. As a conclusion, acidization of the reactivated fractures with hydrochloric acid seems to be an attractive treatment to apply at fracking stage or later on as EGR. The results contribute to the discussion on the use of acidization to enhance the gas production in the shale reservoirs. This communication stresses the importance of the dissolution of calcite cement in natural fractures in shale formations, which are initially sealed and become reactivated during fracking. While this research is based on the analysis of fractures in the Pomeranian shale basin its results are general enough to be applicable to different formations worldwide.

  14. Fracture toughness of dentin/resin-composite adhesive interfaces.

    Science.gov (United States)

    Tam, L E; Pilliar, R M

    1993-05-01

    The reliability and validity of tensile and shear bond strength determinations of dentin-bonded interfaces have been questioned. The fracture toughness value (KIC) reflects the ability of a material to resist crack initiation and unstable propagation. When applied to an adhesive interface, it should account for both interfacial bond strength and inherent defects at or near the interface, and should therefore be more appropriate for characterization of interface fracture resistance. This study introduced a fracture toughness test for the assessment of dentin/resin-composite bonded interfaces. The miniature short-rod specimen geometry was used for fracture toughness testing. Each specimen contained a tooth slice, sectioned from a bovine incisor, to form the bonded interface. The fracture toughness of an enamel-bonded interface was assessed in addition to the dentin-bonded interfaces. Tensile bond strength specimens were also prepared from the dentin surfaces of the cut bovine incisors. A minimum of ten specimens was fabricated for each group of materials tested. After the specimens were aged for 24 h in distilled water at 37 degrees C, the specimens were loaded to failure in an Instron universal testing machine. There were significant differences (p adhesives tested. Generally, both the fracture toughness and tensile bond strength measurements were highest for AllBond 2, intermediate for 3M MultiPurpose, and lowest for Scotchbond 2. Scanning electron microscopy of the fractured specimen halves confirmed that crack propagation occurred along the bond interface during the fracture toughness test. It was therefore concluded that the mini-short-rod fracture toughness test provided a valid method for characterization of the fracture resistance of the dentin-resin composite interface.

  15. Fracture of the styloid process associated with the mandible fracture

    Directory of Open Access Journals (Sweden)

    K N Dubey

    2013-01-01

    Full Text Available Fracture of the styloid process (SP of temporal bone is an uncommon injuries. Fracture of the SP can be associated with the facial injuries including mandible fracture. However, injury to the SP may be concealed and missed diagnosis may lead to the improper or various unnecessary treatments. A rare case of SP fracture associated with the ipsilateral mandibular fracture and also the diagnostic and management considerations of the SP fracture are discussed.

  16. Facial Fractures.

    Science.gov (United States)

    Ghosh, Rajarshi; Gopalkrishnan, Kulandaswamy

    2018-06-01

    The aim of this study is to retrospectively analyze the incidence of facial fractures along with age, gender predilection, etiology, commonest site, associated dental injuries, and any complications of patients operated in Craniofacial Unit of SDM College of Dental Sciences and Hospital. This retrospective study was conducted at the Department of OMFS, SDM College of Dental Sciences, Dharwad from January 2003 to December 2013. Data were recorded for the cause of injury, age and gender distribution, frequency and type of injury, localization and frequency of soft tissue injuries, dentoalveolar trauma, facial bone fractures, complications, concomitant injuries, and different treatment protocols.All the data were analyzed using statistical analysis that is chi-squared test. A total of 1146 patients reported at our unit with facial fractures during these 10 years. Males accounted for a higher frequency of facial fractures (88.8%). Mandible was the commonest bone to be fractured among all the facial bones (71.2%). Maxillary central incisors were the most common teeth to be injured (33.8%) and avulsion was the most common type of injury (44.6%). Commonest postoperative complication was plate infection (11%) leading to plate removal. Other injuries associated with facial fractures were rib fractures, head injuries, upper and lower limb fractures, etc., among these rib fractures were seen most frequently (21.6%). This study was performed to compare the different etiologic factors leading to diverse facial fracture patterns. By statistical analysis of this record the authors come to know about the relationship of facial fractures with gender, age, associated comorbidities, etc.

  17. Chance Fracture Secondary to a Healed Kyphotic Compression Osteoporotic Fracture

    Directory of Open Access Journals (Sweden)

    Teh KK

    2009-11-01

    Full Text Available Chance fracture is an unstable vertebral fracture, which usually results from a high velocity injury. An elderly lady with a previously healed osteoporotic fracture of the T12 and L1 vertebra which resulted in a severe kyphotic deformity subsequently sustained a Chance fracture of the adjacent L2 vertebrae after a minor fall. The previously fracture left her with a deformity which resulted in significant sagittal imbalance therefore predisposing her to this fracture. This case highlights the importance of aggressive treatment of osteoporotic fractures in order to prevent significant sagittal imbalance from resultant (i.e. kyphotic deformity.

  18. Hip Fracture

    Science.gov (United States)

    ... hip fractures in people of all ages. In older adults, a hip fracture is most often a result of a fall from a standing height. In people with very weak bones, a hip fracture can occur simply by standing on the leg and twisting. Risk factors The rate of hip fractures increases substantially with ...

  19. Numerical methods in dynamic fracture mechanics

    International Nuclear Information System (INIS)

    Beskos, D.E.

    1987-01-01

    A review of numerical methods for the solution of dynamic problems of fracture mechanics is presented. Finite difference, finite element and boundary element methods as applied to linear elastic or viscoelastic and non-linear elastoplastic or elastoviscoplastic dynamic fracture mechanics problems are described and critically evaluated. Both cases of stationary cracks and rapidly propagating cracks of simple I, II, III or mixed modes are considered. Harmonically varying with time or general transient dynamic disturbances in the form of external loading or incident waves are taken into account. Determination of the dynamic stress intensity factor for stationary cracks or moving cracks with known velocity history as well as determination of the crack-tip propagation history for given dynamic fracture toughness versus crack velocity relation are described and illustrated by means of certain representative examples. Finally, a brief assessment of the present state of knowledge is made and research needs are identified

  20. Self-Reported Fractures in Dermatitis Herpetiformis Compared to Coeliac Disease

    Directory of Open Access Journals (Sweden)

    Camilla Pasternack

    2018-03-01

    Full Text Available Dermatitis herpetiformis (DH is a cutaneous manifestation of coeliac disease. Increased bone fracture risk is known to associate with coeliac disease, but this has been only scantly studied in DH. In this study, self-reported fractures and fracture-associated factors in DH were investigated and compared to coeliac disease. Altogether, 222 DH patients and 129 coeliac disease-suffering controls were enrolled in this study. The Disease Related Questionnaire and the Gastrointestinal Symptom Rating Scale and Psychological General Well-Being questionnaires were mailed to participants; 45 out of 222 (20% DH patients and 35 out of 129 (27% of the coeliac disease controls had experienced at least one fracture (p = 0.140. The cumulative lifetime fracture incidence did not differ between DH and coeliac disease patients, but the cumulative incidence of fractures after diagnosis was statistically significantly higher in females with coeliac disease compared to females with DH. The DH patients and the coeliac disease controls with fractures reported more severe reflux symptoms compared to those without, and they also more frequently used proton-pump inhibitor medication. To conclude, the self-reported lifetime bone fracture risk is equal for DH and coeliac disease. After diagnosis, females with coeliac disease have a higher fracture risk than females with DH.

  1. Self-Reported Fractures in Dermatitis Herpetiformis Compared to Coeliac Disease

    Science.gov (United States)

    Pasternack, Camilla; Mansikka, Eriika; Kaukinen, Katri; Hervonen, Kaisa; Reunala, Timo; Collin, Pekka; Mattila, Ville M.

    2018-01-01

    Dermatitis herpetiformis (DH) is a cutaneous manifestation of coeliac disease. Increased bone fracture risk is known to associate with coeliac disease, but this has been only scantly studied in DH. In this study, self-reported fractures and fracture-associated factors in DH were investigated and compared to coeliac disease. Altogether, 222 DH patients and 129 coeliac disease-suffering controls were enrolled in this study. The Disease Related Questionnaire and the Gastrointestinal Symptom Rating Scale and Psychological General Well-Being questionnaires were mailed to participants; 45 out of 222 (20%) DH patients and 35 out of 129 (27%) of the coeliac disease controls had experienced at least one fracture (p = 0.140). The cumulative lifetime fracture incidence did not differ between DH and coeliac disease patients, but the cumulative incidence of fractures after diagnosis was statistically significantly higher in females with coeliac disease compared to females with DH. The DH patients and the coeliac disease controls with fractures reported more severe reflux symptoms compared to those without, and they also more frequently used proton-pump inhibitor medication. To conclude, the self-reported lifetime bone fracture risk is equal for DH and coeliac disease. After diagnosis, females with coeliac disease have a higher fracture risk than females with DH. PMID:29538319

  2. Challenges of Fracture Management for Adults With Osteogenesis Imperfecta.

    Science.gov (United States)

    Gil, Joseph A; DeFroda, Steven F; Sindhu, Kunal; Cruz, Aristides I; Daniels, Alan H

    2017-01-01

    Osteogenesis imperfecta is caused by qualitative or quantitative defects in type I collagen. Although often considered a disease with primarily pediatric manifestations, more than 25% of lifetime fractures are reported to occur in adulthood. General care of adults with osteogenesis imperfecta involves measures to preserve bone density, regular monitoring of hearing and dentition, and maintenance of muscle strength through physical therapy. Surgical stabilization of fractures in these patients can be challenging because of low bone mineral density, preexisting skeletal deformities, or obstruction by instrumentation from previous surgeries. Additionally, unique perioperative considerations exist when operatively managing fractures in patients with osteogenesis imperfecta. To date, there is little high-quality literature to help guide the optimal treatment of fractures in adult patients with osteogenesis imperfecta. [Orthopedics. 2017; 40(1):e17-e22.]. Copyright 2016, SLACK Incorporated.

  3. Ankle fractures have features of an osteoporotic fracture.

    Science.gov (United States)

    Lee, K M; Chung, C Y; Kwon, S S; Won, S H; Lee, S Y; Chung, M K; Park, M S

    2013-11-01

    We report the bone attenuation of ankle joint measured on computed tomography (CT) and the cause of injury in patients with ankle fractures. The results showed age- and gender-dependent low bone attenuation and low-energy trauma in elderly females, which suggest the osteoporotic features of ankle fractures. This study was performed to investigate the osteoporotic features of ankle fracture in terms of bone attenuation and cause of injury. One hundred ninety-four patients (mean age 51.0 years, standard deviation 15.8 years; 98 males and 96 females) with ankle fracture were included. All patients underwent CT examination, and causes of injury (high/low-energy trauma) were recorded. Mean bone attenuations of the talus, medial malleolus, lateral malleolus, and distal tibial metaphysis were measured on CT images. Patients were divided into younger age (fractures than the younger age group. With increasing age, bone attenuations tended to decrease and the difference of bone attenuation between the genders tended to increase in the talus, medial malleolus, lateral malleolus, and distal tibial metaphysis. Ankle fracture had features of osteoporotic fracture that is characterized by age- and gender-dependent low bone attenuation. Ankle fracture should not be excluded from the clinical and research interest as well as from the benefit of osteoporosis management.

  4. Fracture risk in hepatitis C virus infected persons: results from the DANVIR cohort study.

    Science.gov (United States)

    Hansen, Ann-Brit Eg; Omland, Lars Haukali; Krarup, Henrik; Obel, Niels

    2014-07-01

    The association between Hepatitis C virus (HCV)-infection and fracture risk is not well characterized. We compared fracture risk between HCV-seropositive (HCV-exposed) patients and the general population and between patients with cleared and chronic HCV-infection. Outcome measures were time to first fracture at any site, time to first low-energy and first non-low-energy (other) fracture in 12,013 HCV-exposed patients from the DANVIR cohort compared with a general population control cohort (n=60,065) matched by sex and age. Within DANVIR, 4500 patients with chronic HCV-infection and 2656 patients with cleared HCV-infection were studied. Compared with population controls, HCV-exposed patients had increased overall risk of fracture [adjusted incidence rate ratio (aIRR) 2.15, 95% Confidence Interval (CI) 2.03-2.28], increased risk of low-energy fracture (aIRR 2.13, 95% CI: 1.93-2.35) and of other fracture (aIRR 2.18, 95% CI: 2.02-2.34). Compared with cleared HCV-infection, chronic HCV-infection was not associated with increased risk of fracture at any site (aIRR 1.08, 95% CI: 0.97-1.20), or other fracture (aIRR 1.04, 95% CI: 0.91-1.19). The aIRR for low-energy fracture was 1.20 (95% CI: 0.99-1.44). HCV-exposed patients had increased risk of all fracture types. In contrast, overall risk of fracture did not differ between patients with chronic vs. cleared HCV-infection, although chronic HCV-infection might be associated with a small excess risk of low-energy fractures. Our study suggests that fracture risk in HCV-infected patients is multi-factorial and mainly determined by lifestyle-related factors associated with HCV-exposure. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  5. Mechanical properties of materials in fusion reactor first-wall and blanket systems

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, E.E.

    1979-01-01

    With respect to the effects of irradiation on mechanical properties, the most significant difference between fast fission and fusion reactor spectra is the relatively large amount of helium produced by (n,..cap alpha..) transmutations in the latter. Relevant information on the effects of large amounts of helium (with concomitant displacement damage) comes from irradiation of alloys containing nickel in mixed spectrum reactors. At helium levels of interest for fusion reactor development, properties are degraded to unacceptable levels above Tm/2. Below this temperature, strength and ductility are retained and fractures remain transgranular. Importantly, the properties remain sensitive to composition and structure. A comparison of the response of bcc refractory alloys to that of stainless steel at equivalent damage levels shows the same general trends in properties with homologous temperature. The refractory alloys do offer potential for higher temperature applications because of their melting temperatures.

  6. A Rare Entity: Bilateral First Rib Fractures Accompanying Bilateral Scapular Fractures

    OpenAIRE

    Gulbahar, Gultekin; Kaplan, Tevfik; Turker, Hasan Bozkurt; Gundogdu, Ahmet Gokhan; Han, Serdar

    2015-01-01

    First rib fractures are scarce due to their well-protected anatomic locations. Bilateral first rib fractures accompanying bilateral scapular fractures are very rare, although they may be together with scapular and clavicular fractures. According to our knowledge, no case of bilateral first rib fractures accompanying bilateral scapular fractures has been reported, so we herein discussed the diagnosis, treatment, and complications of bone fractures due to thoracic trauma in bias of this rare en...

  7. A Rare Entity: Bilateral First Rib Fractures Accompanying Bilateral Scapular Fractures.

    Science.gov (United States)

    Gulbahar, Gultekin; Kaplan, Tevfik; Turker, Hasan Bozkurt; Gundogdu, Ahmet Gokhan; Han, Serdar

    2015-01-01

    First rib fractures are scarce due to their well-protected anatomic locations. Bilateral first rib fractures accompanying bilateral scapular fractures are very rare, although they may be together with scapular and clavicular fractures. According to our knowledge, no case of bilateral first rib fractures accompanying bilateral scapular fractures has been reported, so we herein discussed the diagnosis, treatment, and complications of bone fractures due to thoracic trauma in bias of this rare entity.

  8. Small-scale electrical resistivity tomography of wet fractured rocks.

    Science.gov (United States)

    LaBrecque, Douglas J; Sharpe, Roger; Wood, Thomas; Heath, Gail

    2004-01-01

    This paper describes a series of experiments that tested the ability of the electrical resistivity tomography (ERT) method to locate correctly wet and dry fractures in a meso-scale model. The goal was to develop a method of monitoring the flow of water through a fractured rock matrix. The model was a four by six array of limestone blocks equipped with 28 stainless steel electrodes. Dry fractures were created by placing pieces of vinyl between one or more blocks. Wet fractures were created by injecting tap water into a joint between blocks. In electrical terms, the dry fractures are resistive and the wet fractures are conductive. The quantities measured by the ERT system are current and voltage around the outside edge of the model. The raw ERT data were translated to resistivity values inside the model using a three-dimensional Occam's inversion routine. This routine was one of the key components of ERT being tested. The model presented several challenges. First, the resistivity of both the blocks and the joints was highly variable. Second, the resistive targets introduced extreme changes the software could not precisely quantify. Third, the abrupt changes inherent in a fracture system were contrary to the smoothly varying changes expected by the Occam's inversion routine. Fourth, the response of the conductive fractures was small compared to the background variability. In general, ERT was able to locate correctly resistive fractures. Problems occurred, however, when the resistive fracture was near the edges of the model or when multiple fractures were close together. In particular, ERT tended to position the fracture closer to the model center than its true location. Conductive fractures yielded much smaller responses than the resistive case. A difference-inversion method was able to correctly locate these targets.

  9. Short- and long-term results following standing fracture repair in 34 horses.

    Science.gov (United States)

    Payne, R J; Compston, P C

    2012-11-01

    Standing fracture repair in the horse is a recently described surgical procedure and currently there are few follow-up data. This case series contains 2 novel aspects in the standing horse: repair of incomplete sagittal fractures of the proximal phalanx and medial condylar repair from a lateral aspect. To describe outcome in a case series of horses that had lower limb fractures repaired under standing sedation at Rossdales Equine Hospital. Case records for all horses that had a fracture surgically repaired, by one surgeon at Rossdales Equine Hospital, under standing sedation and local anaesthesia up until June 2011, were retrieved. Hospital records, owner/trainer telephone questionnaire and the Racing Post website were used to evaluate follow-up. Thirty-four horses satisfied the inclusion criteria. Fracture sites included the proximal phalanx (incomplete sagittal fracture, n = 14); the third metacarpal bone (lateral condyle, n = 12, and medial condyle, n = 7); and the third metatarsal bone (lateral condyle, n = 1). One horse required euthanasia due to caecal rupture 10 days post operatively. Twenty horses (66.7% of those with available follow-up) have returned to racing. Where available, mean time from operation to return to racing was 226 days (range 143-433 days). Standing fracture repair produced similar results to fracture repair under general anaesthesia in terms of both the number of horses that returned to racing and the time between surgery and race. Repair of lower limb fracture in the horse under standing sedation is a procedure that has the potential for tangible benefits, including avoidance of the inherent risks of general anaesthesia. The preliminary findings in this series of horses are encouraging and informative when discussing options available prior to fracture repair. © 2012 EVJ Ltd.

  10. Relationships between fractures

    Science.gov (United States)

    Peacock, D. C. P.; Sanderson, D. J.; Rotevatn, A.

    2018-01-01

    Fracture systems comprise many fractures that may be grouped into sets based on their orientation, type and relative age. The fractures are often arranged in a network that involves fracture branches that interact with one another. Interacting fractures are termed geometrically coupled when they share an intersection line and/or kinematically coupled when the displacements, stresses and strains of one fracture influences those of the other. Fracture interactions are characterised in terms of the following. 1) Fracture type: for example, whether they have opening (e.g., joints, veins, dykes), closing (stylolites, compaction bands), shearing (e.g., faults, deformation bands) or mixed-mode displacements. 2) Geometry (e.g., relative orientations) and topology (the arrangement of the fractures, including their connectivity). 3) Chronology: the relative ages of the fractures. 4) Kinematics: the displacement distributions of the interacting fractures. It is also suggested that interaction can be characterised in terms of mechanics, e.g., the effects of the interaction on the stress field. It is insufficient to describe only the components of a fracture network, with fuller understanding coming from determining the interactions between the different components of the network.

  11. A Rare Entity: Bilateral First Rib Fractures Accompanying Bilateral Scapular Fractures

    Directory of Open Access Journals (Sweden)

    Gultekin Gulbahar

    2015-01-01

    Full Text Available First rib fractures are scarce due to their well-protected anatomic locations. Bilateral first rib fractures accompanying bilateral scapular fractures are very rare, although they may be together with scapular and clavicular fractures. According to our knowledge, no case of bilateral first rib fractures accompanying bilateral scapular fractures has been reported, so we herein discussed the diagnosis, treatment, and complications of bone fractures due to thoracic trauma in bias of this rare entity.

  12. Proximal femoral fractures.

    Science.gov (United States)

    Webb, Lawrence X

    2002-01-01

    Fractures of the proximal femur include fractures of the head, neck, intertrochanteric, and subtrochanteric regions. Head fractures commonly accompany dislocations. Neck fractures and intertrochanteric fractures occur with greatest frequency in elderly patients with a low bone mineral density and are produced by low-energy mechanisms. Subtrochanteric fractures occur in a predominantly strong cortical osseous region which is exposed to large compressive stresses. Implants used to address these fractures must be able to accommodate significant loads while the fractures consolidate. Complications secondary to these injuries produce significant morbidity and include infection, nonunion, malunion, decubitus ulcers, fat emboli, deep venous thrombosis, pulmonary embolus, pneumonia, myocardial infarction, stroke, and death.

  13. Fracture mechanisms and fracture control in composite structures

    Science.gov (United States)

    Kim, Wone-Chul

    Four basic failure modes--delamination, delamination buckling of composite sandwich panels, first-ply failure in cross-ply laminates, and compression failure--are analyzed using linear elastic fracture mechanics (LEFM) and the J-integral method. Structural failures, including those at the micromechanical level, are investigated with the aid of the models developed, and the critical strains for crack propagation for each mode are obtained. In the structural fracture analyses area, the fracture control schemes for delamination in a composite rib stiffener and delamination buckling in composite sandwich panels subjected to in-plane compression are determined. The critical fracture strains were predicted with the aid of LEFM for delamination and the J-integral method for delamination buckling. The use of toughened matrix systems has been recommended for improved damage tolerant design for delamination crack propagation. An experimental study was conducted to determine the onset of delamination buckling in composite sandwich panel containing flaws. The critical fracture loads computed using the proposed theoretical model and a numerical computational scheme closely followed the experimental measurements made on sandwich panel specimens of graphite/epoxy faceskins and aluminum honeycomb core with varying faceskin thicknesses and core sizes. Micromechanical models of fracture in composites are explored to predict transverse cracking of cross-ply laminates and compression fracture of unidirectional composites. A modified shear lag model which takes into account the important role of interlaminar shear zones between the 0 degree and 90 degree piles in cross-ply laminate is proposed and criteria for transverse cracking have been developed. For compressive failure of unidirectional composites, pre-existing defects play an important role. Using anisotropic elasticity, the stress state around a defect under a remotely applied compressive load is obtained. The experimentally

  14. The Danish Fracture Database can monitor quality of fracture-related surgery, surgeons' experience level and extent of supervision

    DEFF Research Database (Denmark)

    Andersen, Morten Jon; Gromov, Kirill; Brix, Michael

    2014-01-01

    INTRODUCTION: The importance of supervision and of surgeons' level of experience in relation to patient outcome have been demonstrated in both hip fracture and arthroplasty surgery. The aim of this study was to describe the surgeons' experience level and the extent of supervision for: 1) fracture......-related surgery in general; 2) the three most frequent primary operations and reoperations; and 3) primary operations during and outside regular working hours. MATERIAL AND METHODS: A total of 9,767 surgical procedures were identified from the Danish Fracture Database (DFDB). Procedures were grouped based...... on the surgeons' level of experience, extent of supervision, type (primary, planned secondary or reoperation), classification (AO Müller), and whether they were performed during or outside regular hours. RESULTS: Interns and junior residents combined performed 46% of all procedures. A total of 90% of surgeries...

  15. The Danish Fracture Database can monitor quality of fracture-related surgery, surgeons' experience level and extent of supervision

    DEFF Research Database (Denmark)

    Andersen, M. J.; Gromov, K.; Brix, M.

    2014-01-01

    INTRODUCTION: The importance of supervision and of surgeons' level of experience in relation to patient outcome have been demonstrated in both hip fracture and arthroplasty surgery. The aim of this study was to describe the surgeons' experience level and the extent of supervision for: 1) fracture......-related surgery in general; 2) the three most frequent primary operations and reoperations; and 3) primary operations during and outside regular working hours. MATERIAL AND METHODS: A total of 9,767 surgical procedures were identified from the Danish Fracture Database (DFDB). Procedures were grouped based...... on the surgeons' level of experience, extent of supervision, type (primary, planned secondary or reoperation), classification (AO Muller), and whether they were performed during or outside regular hours. RESULTS: Interns and junior residents combined performed 46% of all procedures. A total of 90% of surgeries...

  16. Epidemiology of fractures in people with severe and profound developmental disabilities

    Science.gov (United States)

    Glick, N.R.; Fischer, M.H.; Heisey, D.M.; Leverson, G.E.; Mann, D.C.

    2005-01-01

    Fractures are more prevalent among people with severe and profound developmental disabilities than in the general population. In order to characterize the tendency of these people to fracture, and to identify features that may guide the development of preventive strategies, we analyzed fracture epidemiology in people with severe and profound developmental disabilities who lived in a stable environment. Data from a 23-year longitudinal cohort registry of 1434 people with severe and profound developmental disabilities were analyzed to determine the effects of age, gender, mobility, bone fractured, month of fracture, and fracture history upon fracture rates. Eighty-five percent of all fractures involved the extremities. The overall fracture rate increased as mobility increased. In contrast, femoral shaft fracture risk was substantially higher in the least mobile [relative risk (RR), 10.36; 95% confidence interval (CI), 3.29-32.66] compared with the most mobile group. Although the overall fracture rate was not associated with age, the femoral shaft fractures decreased but hand/foot fractures increased with age. Overall fracture risk declined in August and September (RR, 0.70; 95% CI, 0.55-0.89), being especially prominent for tibial/fibular fractures (RR, 0.31; 95% CI, 0.13-0.70). Gender was not a factor in fracture risk. Two primary fracture mechanisms are apparent: one, largely associated with lack of weight-bearing in people with the least mobility, is exemplified by femoral fractures during non-traumatic events as simple as diapering or transfers; the other, probably due to movement- or fall-related trauma, is exemplified by hand/foot fractures in people who ambulate. The fracture experience of people with severe and profound developmental disabilities is unique and, because it differs qualitatively from postmenopausal osteoporosis, may require population-specific methods for assessing risk, for improving bone integrity, and for reduction of falls and accidents

  17. Slow Waves in Fractures Filled with Viscous Fluid

    Energy Technology Data Exchange (ETDEWEB)

    Korneev, Valeri

    2008-01-08

    Stoneley guided waves in a fluid-filled fracture generally have larger amplitudes than other waves, and therefore, their properties need to be incorporated in more realistic models. In this study, a fracture is modeled as an infinite layer of viscous fluid bounded by two elastic half-spaces with identical parameters. For small fracture thickness, I obtain a simple dispersion equation for wave-propagation velocity. This velocity is much smaller than the velocity of a fluid wave in a Biot-type solution, in which fracture walls are assumed to be rigid. At seismic prospecting frequencies and realistic fracture thicknesses, the Stoneley guided wave has wavelengths on the order of several meters and an attenuation Q factor exceeding 10, which indicates the possibility of resonance excitation in fluid-bearing rocks. The velocity and attenuation of Stoneley guided waves are distinctly different at low frequencies for water and oil. The predominant role of fractures in fluid flow at field scales is supported by permeability data showing an increase of several orders of magnitude when compared to values obtained at laboratory scales. These data suggest that Stoneley guided waves should be taken into account in theories describing seismic wave propagation in fluid-saturated rocks.

  18. Translation between the Neer- and the AO/OTA-classification for proximal humeral fractures

    DEFF Research Database (Denmark)

    Brorson, Stig; Eckardt, Henrik; Audigé, Laurent

    2013-01-01

    The reporting and interpretation of data from clinical trials of proximal humeral fractures are hampered by the use of two partly incommensurable fracture classification systems: the Neer classification and the AO/OTA classification. It remains difficult to interpret and generalize results...

  19. Dating fractures and fracture movement in the Lac du Bonnet Batholith

    International Nuclear Information System (INIS)

    Gascoyne, M.; Brown, A.; Ejeckam, R.B.; Everitt, R.A.

    1997-04-01

    This report examines and summarizes all work that has been done from 1980 to the present in determining the age of rock crystallization, fracture initiation, fracture reactivation and rates of fracture movement in the Lac du Bonnet Batholith to provide information for Atomic Energy of Canada Limited's (AECL) Canadian Nuclear Fuel Waste Management Program. Geological and petrographical indicators of relative age (e.g. cross-cutting relationships, sequences of fracture infilling minerals, P-T characteristics of primary and secondary minerals) are calibrated with radiometric age determinations on minerals and whole rock samples, using 87 Rb- 87 Sr, 40 K- 39 Ar, 40 Ar- 39 Ar and fission track methods. Most fractures and fracture zones inclined at low angles are found to be ancient features, first formed in the Early Proterozoic under conditions of deuteric alteration. Following some movement on fractures in the Late Proterozoic and Early Paleozoic, reactivation of fractures during the Pleistocene is established from uranium-series dating methods and use of stable isotopic contents of fracture infilling minerals (mainly calcite). Some indication of movement on fracture zones during the Pleistocene is given by electron spin resonance dating techniques on fault gouge. The slow rate of propagation of fractures is indicated by mineral infillings, their P-T characteristics and U-series calcite ages in a fracture in sparsely fractured rock, accessible from AECL's Underground Research Laboratory. These results collectively indicate that deep fractures observed in the batholith are ancient features and the fracturing and jointing in the upper 200 m is relatively recent (< 1 Ma) and largely a result of stress release. (author)

  20. High-temperature mechanical properties of a uniaxially reinforced zircon-silicon carbide composite

    International Nuclear Information System (INIS)

    Singh, R.N.

    1990-01-01

    This paper reports that mechanical properties of a monolithic zircon ceramic and zircon-matrix composites uniaxially reinforced with either uncoated or BN-coated silicon carbide monofilaments were measured in flexure between 25 degrees and 1477 degrees C. Monolithic zircon ceramics were weak and exhibited a brittle failure up to abut 1300 degrees C. An increasing amount of the plastic deformation was observed before failure above about 1300 degrees C. In contrast, composites reinforced with either uncoated or BN-coated Sic filaments were stronger and tougher than the monolithic zircon at all test temperatures between 25 degrees and 1477 degrees. The ultimate strength and work-of-fracture of composite samples decreased with increasing temperature. A transgranular matrix fracture was shown by the monolithic and composite samples tested up to about 1200 degrees C, whereas an increasing amount of the intergranular matrix fracture was displayed above 1200 degrees C

  1. Fracture of nasal bones: an epidemiologic analysis

    Directory of Open Access Journals (Sweden)

    Fornazieri, Marco Aurélio

    2008-12-01

    Full Text Available Introduction: One of the most common diseases in the otorhinolaryngology emergency room is the nasal bones fracture. The peak of incidence is between 15 and 25 years of age. Generally men are more affected. Objective: To analyze the age, gender and the most frequent causes of nasal fractures evaluated in the otorhinolaryngology service of a tertiary hospital. Method: Retrospective study of records of the patients with nasal fracture diagnosis treated between July 1st, 2003 and July 1st, 2007. Results: 167 patients with nasal bones fracture were included in the study, including 134 men and 33 women. Violence was the most frequent cause, with 55 cases (32.9%, followed by fall from their own height, with 33 cases (19.7%, and motorcycle accident, 14 cases (8.4%. The most common age was between 21 and 39 years (46.1%. Conclusion: Male, age between 21 and 39 years and violence are the most common characteristics found in our service. Motorcycle accidents also play an important role in this affection.

  2. Multiscale model reduction for shale gas transport in fractured media

    KAUST Repository

    Akkutlu, I. Y.

    2016-05-18

    In this paper, we develop a multiscale model reduction technique that describes shale gas transport in fractured media. Due to the pore-scale heterogeneities and processes, we use upscaled models to describe the matrix. We follow our previous work (Akkutlu et al. Transp. Porous Media 107(1), 235–260, 2015), where we derived an upscaled model in the form of generalized nonlinear diffusion model to describe the effects of kerogen. To model the interaction between the matrix and the fractures, we use Generalized Multiscale Finite Element Method (Efendiev et al. J. Comput. Phys. 251, 116–135, 2013, 2015). In this approach, the matrix and the fracture interaction is modeled via local multiscale basis functions. In Efendiev et al. (2015), we developed the GMsFEM and applied for linear flows with horizontal or vertical fracture orientations aligned with a Cartesian fine grid. The approach in Efendiev et al. (2015) does not allow handling arbitrary fracture distributions. In this paper, we (1) consider arbitrary fracture distributions on an unstructured grid; (2) develop GMsFEM for nonlinear flows; and (3) develop online basis function strategies to adaptively improve the convergence. The number of multiscale basis functions in each coarse region represents the degrees of freedom needed to achieve a certain error threshold. Our approach is adaptive in a sense that the multiscale basis functions can be added in the regions of interest. Numerical results for two-dimensional problem are presented to demonstrate the efficiency of proposed approach. © 2016 Springer International Publishing Switzerland

  3. Radiation exposure from fluoroscopy during fixation of hip fracture and fracture of ankle: Effect of surgical experience

    Directory of Open Access Journals (Sweden)

    Botchu Rajesh

    2008-01-01

    Full Text Available Background: Over the years, there has been a tremendous increase in the use of fluoroscopy in orthopaedics. The risk of contracting cancer is significantly higher for an orthopedic surgeon. Hip and spine surgeries account for 99% of the total radiation dose. The amount of radiation to patients and operating surgeon depends on the position of the patient and the type of protection used during the surgery. A retrospective study to assess the influence of the radiation exposure of the operating surgeon during fluoroscopically assisted fixation of fractures of neck of femur (dynamic hip screw and ankle (Weber B was performed at a district general hospital in the United Kingdom. Materials and Methods: Sixty patients with undisplaced intertrochanteric fracture were included in the hip group, and 60 patients with isolated fracture of lateral malleolus without communition were included in the ankle group. The hip and ankle groups were further divided into subgroups of 20 patients each depending on the operative experience of the operating surgeon. All patients had fluoroscopically assisted fixation of fracture by the same approach and technique. The radiation dose and screening time of each group were recorded and analyzed. Results: The radiation dose and screening time during fluoroscopically assisted fixation of fracture neck of femur were significantly high with surgeons and trainees with less than 3 years of surgical experience in comparison with surgeons with more than 10 years of experience. The radiation dose and screening time during fluoroscopically assisted fixation of Weber B fracture of ankle were relatively independent of operating surgeon′s surgical experience. Conclusion: The experience of operating surgeon is one of the important factors affecting screening time and radiation dose during fluoroscopically assisted fixation of fracture neck of femur. The use of snapshot pulsed fluoroscopy and involvement of senior surgeons could

  4. Elastic-plastic fracture mechanics of compact bone

    Science.gov (United States)

    Yan, Jiahau

    Bone is a composite composed mainly of organics, minerals and water. Most studies on the fracture toughness of bone have been conducted at room temperature. Considering that the body temperature of animals is higher than room temperature, and that bone has a high volumetric percentage of organics (generally, 35--50%), the effect of temperature on fracture toughness of bone should be studied. Single-edged V-shaped notched (SEVN) specimens were prepared to measure the fracture toughness of bovine femur and manatee rib in water at 0, 10, 23, 37 and 50°C. The fracture toughness of bovine femur and manatee rib were found to decrease from 7.0 to 4.3 MPa·m1/2 and from 5.5 to 4.1 MPa·m1/2, respectively, over a temperature range of 50°C. The decreases were attributed to inability of the organics to sustain greater stresses at higher temperatures. We studied the effects of water and organics on fracture toughness of bone using water-free and organics-free SEVN specimens at 23°C. Water-free and organics-free specimens were obtained by placing fresh bone specimen in a furnace at different temperatures. Water and organics significantly affected the fracture toughness of bone. Fracture toughness of the water-free specimens was 44.7% (bovine femur) and 32.4% (manatee rib) less than that of fresh-bone specimens. Fracture toughness of the organics-free specimens was 92.7% (bovine femur) and 91.5% (manatee rib) less than that of fresh bone specimens. Linear Elastic Fracture Mechanics (LEFM) is widely used to study bone. However, bone often has small to moderate scale yielding during testing. We used J integral, an elastic-plastic fracture-mechanics parameter, to study the fracture process of bone. The J integral of bovine femur increased from 6.3 KJ/mm2 at 23°C to 6.7 KJ/mm2 at 37°C. Although the fracture toughness of bovine bone decreases as the temperature increases, the J integral results show a contrary trend. The energy spent in advancing the crack beyond the linear

  5. Surgical treatment and a unique management of rostral mandibular fracture with cerclage wire in a horse.

    Science.gov (United States)

    Naddaf, Hadi; Sabiza, Soroush; Kavosi, Narges

    2015-01-01

    A 3-year-old Arabian colt was presented for a major gingiva wound at the right rostral part of mandible. After clinical assessments, rostral mandibular fracture was determined. Stabilization of fractured region was achieved via cerclage wire application under general anesthesia. Fixation wires were left in place for 6 weeks. A 3 -month follow up revealed complete fracture healing. The purpose of this case report was to give clinical information about rostral mandibular fractures and treatment of these fractures and nutrition protocol in a horse, as this fracture is of the most common type of jaw fracture sustained by young horses.

  6. Osteoporosis among Fallers without Concomitant Fracture Identified in an Emergency Department: Frequencies and Risk Factors

    DEFF Research Database (Denmark)

    Glintborg, Bente; Hesse, Ulrik; Houe, Thomas

    2011-01-01

    aged 50-80 years sustaining a low-energy fall without fracture were identified from an ED (n = 199). Patients answered a questionnaire on risk factors and underwent osteodensitometry. Data was compared to a group of patients routinely referred to osteodensitometry from general practice (n = 201......). Results. Among the 199 included fallers, 41 (21%) had osteoporosis. Among these, 35 (85%) reported either previous fracture or reduced body height (>3¿cm). These two risk factors were more frequent among fallers with osteoporosis compared to fallers with normal bone mineral density or osteopenia (previous...... if the patient has a prior fracture or declined body height. Since fallers generally have higher fracture risk, the ED might serve as an additional entrance to osteodensitometry compared to referral from primary care....

  7. Physical fracture properties (fracture surfaces as information sources; crackgrowth and fracture mechanisms; exemples of cracks)

    International Nuclear Information System (INIS)

    Meny, Lucienne.

    1979-06-01

    Fracture surfaces are considered as a useful source of informations: an introduction to fractography is presented; the fracture surface may be observed through X ray microanalysis, and other physical methods such as Auger electron spectroscopy or secundary ion emission. The mechanisms of macroscopic and microscopic crackgrowth and fracture are described, in the case of unstable fracture (cleavage, ductile with shear, intergranular brittleness) and of progressive crack propagation (creep, fatigue). Exemples of cracks are presented in the last chapter [fr

  8. SUPRACONDYLAR FRACTURE OF THE HUMERUS IN CHILDREN

    Directory of Open Access Journals (Sweden)

    Nikola Bojović

    2012-09-01

    Full Text Available Humeral supracondylar fractures are the second most common fractures seen in children and young teenagers (16.6%. They represent 60-70% of all the elbow fractures. The maximum incidence is found between the fifth and seventh year of age, slightly more often in boys and on non-dominant hand. We performed a retrospective study in our clinic which included 105 patients admitted to our facility during the period from January, 2008 to April, 2012. The included patients had humeral supracondylar fracture either type 2 or type 3 (Gartland classification. At the moment of admission the median age was 7.26 years. All the patients were treated during the first 12 hours, with no more than two attempts of closed reposition. Sixteen patients with type 2 fracture were treated by analgosedation, closed reduction followed by cast immobilization. All other patients were treated after induction of general anesthesia. Sixteen patients were treated by percutaneous fixation of the fragments after closed reduction and 73 were treated with open reduction and pinning with different number and positions of „К“ wires. None of the patients had deep tissue infection; four patients had pin site infection. Three patients had cubitus varus deformity, two patients had elbow contracture, five patients had temporary limitation in extension, and one patient had iatrogenic lesion of the ulnar nerve. This makes 14.2% complication rate in our series. All the fractures healed in the expected period (3–4 weeks. Bauman’s angle, carrying angle and functional factor were measured postoperatively. Closed reposition with pinning, using radiographic control, for the dislocated supracondylar humeral fractures is the safest, as well as the least time consuming and cost-effective method. We also suggest treating these fractures within 12 hours and conversion of closed into open reposition in case of lacking crepitations (possibility of interposition of soft tissues between fragments.

  9. Fractures of the distal radius in children: A retrospective evaluation

    Directory of Open Access Journals (Sweden)

    Selma Yazıcı

    2012-06-01

    Full Text Available Objectives: This study designed to evaluate the resultsof treatment, closed reduction and percutaneous wires, ofthe distal radius fractures in children.Materials and methods: A retrospective analysis wascarried out in children aged between 5-15 years who presentedwith a displaced fracture of the distal radius to ourhospital. They were initially treated with closed reductionand cast immobilization. If the fractures redisplaced treatedby percutaneous Kirschner (K- wire with scope undera general anaesthesia.Results: Totally 104 patients, who have distal radius fractureswere treated by closed reduction and immobilizationin a plaster cast. 13 patient who have distal radiusfractures were treated by closed reduction under generalanaesthesia and fixed by percutaneous Kirschner (K-wire. Patients with impaired the alignment of the fracturein late period were usually completely displaced fractures.(n=5, 4,3%, in early period, completely displaced fractures(n=5, 4,3% are superior to partial displaced fractures(n=2, 1,7%.Conclusion: In our study, when children with distal radiusfracture first come, they were treated by closed reductionand immobilization in a plaster cast. We thought that inredisplaced fractures patients were suitable for the closedreduction with percutaneous wire treatment.

  10. Mandibular fracture cases in Pelotas, Rio Grande do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    Rafael Silva da Silva

    2009-10-01

    Full Text Available Objectives: To analyze the data in the literature, which show a high incidence of mandibular fractures. The aim of this research was to elucidate the context in which these fractures occur among patients attended at the first aid center of “Pronto Socorro Municipal de Pelotas”, Rio Grande do Sul, Brazil. Methods: From the records referring to the period of June, 2001 to August, 2007, there were 1 345 patients with facial fractures. Of this total, 116 patients with mandibular fracture were selected for this study and the items analysed were: age, gender, mandibular fracture site, etiology and period of the year. Results: It was found that 86.2% of the sample were men. The most prevalent age was 20 to 29 years old representing 36.2%, and the most affected mandibular sites were the body, with 29 cases (25%, and the condyle, with 26 cases (22.4%. The most common cause of fractures was the physical aggression representing 37.1%. The period of the year with the highest incidence of mandibular fractures was the summer, with 38 cases (32.8%. Conclusion: It was therefore observed that the patients with mandibular fracture assisted at Pronto-Socorro Municipal de Pelotas, Rio Grande do Sul, Brazil, were generally men, 20 to 29 years old with mandibular body fracture and they were victims of physical aggression.

  11. Osteoporosis-related fracture case definitions for population-based administrative data

    Directory of Open Access Journals (Sweden)

    Lix Lisa M

    2012-05-01

    Full Text Available Abstract Background Population-based administrative data have been used to study osteoporosis-related fracture risk factors and outcomes, but there has been limited research about the validity of these data for ascertaining fracture cases. The objectives of this study were to: (a compare fracture incidence estimates from administrative data with estimates from population-based clinically-validated data, and (b test for differences in incidence estimates from multiple administrative data case definitions. Methods Thirty-five case definitions for incident fractures of the hip, wrist, humerus, and clinical vertebrae were constructed using diagnosis codes in hospital data and diagnosis and service codes in physician billing data from Manitoba, Canada. Clinically-validated fractures were identified from the Canadian Multicentre Osteoporosis Study (CaMos. Generalized linear models were used to test for differences in incidence estimates. Results For hip fracture, sex-specific differences were observed in the magnitude of under- and over-ascertainment of administrative data case definitions when compared with CaMos data. The length of the fracture-free period to ascertain incident cases had a variable effect on over-ascertainment across fracture sites, as did the use of imaging, fixation, or repair service codes. Case definitions based on hospital data resulted in under-ascertainment of incident clinical vertebral fractures. There were no significant differences in trend estimates for wrist, humerus, and clinical vertebral case definitions. Conclusions The validity of administrative data for estimating fracture incidence depends on the site and features of the case definition.

  12. Heavy crude production from shallow formations: long horizontal wells versus horizontal fractures

    Energy Technology Data Exchange (ETDEWEB)

    Valko, P.; Economides, M. J. [Texas A and M Univ., TX (United States)

    1998-12-31

    The feasibility of producing heavy oil from shallow formations using either horizontal wells or short horizontal wells fractured horizontally is demonstrated. The problem of optimum proppant placement is solved in two steps. In step one, the finite productivity performance is considered in general terms showing that the performance is a function of two dimensionless parameters. Following derivation of optimum conditions, the solution is applied to the horizontal fracture consideration. The limiting factor is that to create an effective finite conductivity fracture, the dimensionless fracture conductivity must be on the order of unity, a fracture that is difficult to realize in higher permeability formations. The best candidates for the suggested configuration are shallow or moderate formations, or formations otherwise proven to accept horizontal fractures, and formations with low permeability/viscosity ratio. 7 refs., 2 tabs., 10 figs., 2 appendices.

  13. Fracture toughness and strength change of neutron-irradiated ceramic materials

    International Nuclear Information System (INIS)

    Dienst, W.; Zimmermann, H.

    1994-01-01

    In order to analyse the results of bending strength measurements on neutron-irradiated samples of Al 2 O 3 , AlN and SiC, fracture toughness measurements were additionally conducted. The neutron fluences concerned were mostly in the range of 0.6 to 3.2x10 26 n/m 2 at irradiation temperatures of 400 to 550 C. A fracture toughness decrease was generally observed for polycrystalline materials which, however, was considerably smaller than the reduction of the fracture strength. Exceptional increase of the fracture toughness seems typical for the effect of rather coarse irradiation defects. The irradiation-induced change of the fracture toughness of single crystal Al 2 O 3 appeared dependent on the crystallographic orientation; both reduced and increased fracture toughness after irradiation was observed. Recent results of neutron irradiation to about 2x10 25 n/m 2 at 100 C showed, that the strength decrease of various Al 2 O 3 grades sets in at (3-5)x10 24 n/m 2 and seems to be little dependent on the irradiation temperature. ((orig.))

  14. Parametric investigation of fracture of EBR-II ducts

    International Nuclear Information System (INIS)

    Chopra, P.S.; Moustakakis, B.

    1977-01-01

    Results of preliminary static and dynamic finite element fracture mechanics analyses that were conducted to analytically simulate the dynamic fracture behavior of EBR-II ducts are presented. The loads considered are those that may arise because of rapid release of fission gases from a failed fuel element inside a duct, obtained from some previous tests and a recent analytical model. In spite of the motivation for the present work, the analytical procedures described may have a wider general application in the fail-safe design of structures

  15. Stress Fractures

    Science.gov (United States)

    Stress fractures Overview Stress fractures are tiny cracks in a bone. They're caused by repetitive force, often from overuse — such as repeatedly jumping up and down or running long distances. Stress fractures can also arise from normal use of ...

  16. Transstyloid, transscaphoid, transcapitate fracture: a variant of scaphocapitate fractures.

    LENUS (Irish Health Repository)

    Burke, Neil G

    2014-01-01

    Transstyloid, transscaphoid, transcapitate fractures are uncommon. We report the case of a 28-year-old man who sustained this fracture following direct trauma. The patient was successfully treated by open reduction internal fixation of the scaphoid and proximal capitate fragment, with a good clinical outcome at 1-year follow-up. This pattern is a new variant of scaphocapitate fracture as involves a fracture of the radial styloid as well.

  17. Japanese round robin analysis for probabilistic fracture mechanics

    International Nuclear Information System (INIS)

    Yagawa, G.; Yoshimura, S.; Handa, N.

    1991-01-01

    Recently attention is focused on the probabilistic fracture mechanics, a branch of fracture mechanics with probability theory for a rational mean to assess the strength of components and structures. In particular, the probabilistic fracture mechanics is recognized as the powerful means for quantitative investigation of significance of factors and rational evaluation of life on problems involving a number of uncertainties, such as degradation of material strength, accuracy and frequency of inspection. Comparison with reference experiments are generally employed to assure the analytical accuracy. However, accuracy and reliability of analytical methods in the probabilistic fracture mechanics are hardly verified by experiments. Therefore, it is strongly needed to verify the probabilistic fracture mechanics through the round robin analysis. This paper describes results from the round robin analysis of flat plate with semi-elliptic cracks on the surface, conducted by the PFM Working Group of LE Subcommittee of the Japan Welding Society under the contract of the Japan Atomic Energy Research Institute and participated by Tokyo University, Yokohama National University, the Power Reactor and Nuclear Fuel Corporation, Tokyo Electric Power Co. Central Research Institute of Electric Power Industry, Toshiba Corporation, Kawasaki Heavy Industry Co. and Mitsubishi Heavy Industry Co. (author)

  18. Transverse dispersion in heterogeneous fractures

    International Nuclear Information System (INIS)

    Dershowitz, Bill; Shuttle, Dawn; Klise, Kate; Outters, Nils; Hermanson, Jan

    2004-12-01

    This report evaluates the significance of transverse dispersion processes for solute transport in a single fracture. Transverse dispersion is a potentially significant process because it increases the fracture surface area available for sorptive and diffusive properties, and has the potential to transport solute between what would otherwise be distinctive, streamline pathways. Transverse dispersion processes are generally ignored in one-dimensional repository performance assessment approaches. This report provides an initial assessment of the magnitude of transverse dispersion effect in a single heterogeneous fracture on repository safety assessment. This study builds on a previous report which considered the network effects on transport dispersion including streamline routing and mixing at fracture intersections. The project uses FracMan software. This platform has been extensively used by SKB in other projects. FracMan software is designed to generate and analyze DFN's as well as to compute fluid flow in DFN's with the MAFIC Finite element method (FEM) code. Solute transport was modeled using the particle tracking inside MAFIC, the 2-D Laplace Transform Galerkin inside PAWorks/LTG, and the 1-D Laplace Transform approach designed to replicate FARF31 inside GoldSim.The study reported here focuses on a single, 20-meter scale discrete fracture, with simplified boundary conditions intended to represent the position of this fracture within a fracture network. The range of assumptions made regarding fracture heterogeneity were as follows: Base case, Heterogeneous fracture, geostatistical field, correlation length 0.01 m. Case 1a, Homogeneous fracture, transmissivity = 10 -7 m 2 /s. Case 1b, Heterogeneous fracture, non-channeled geostatistical field correlation length 5 m. Case 1c, Heterogeneous fracture, channeled, anisotropic geostatistical field. Case 1d, Heterogeneous fracture, fracture intersection zone (FIZ) permeability enhanced. Case 5, Simple channelized

  19. Introduction to numerical modeling of thermohydrologic flow in fractured rock masses

    International Nuclear Information System (INIS)

    Wang, J.S.Y.

    1980-01-01

    More attention is being given to the possibility of nuclear waste isolation in hard rock formations. The waste will generate heat which raises the temperature of the surrounding fractured rock masses and induces buoyancy flow and pressure change in the fluid. These effects introduce the potential hazard of radionuclides being carried to the biosphere, and affect the structure of a repository by stress changes in the rock formation. The thermohydrological and thermomechanical responses are determined by the fractures as well as the intact rock blocks. The capability of modeling fractured rock masses is essential to site characterization and repository evaluation. The fractures can be modeled either as a discrete system, taking into account the detailed fracture distributions, or as a continuum representing the spatial average of the fractures. A numerical model is characterized by the governing equations, the numerical methods, the computer codes, the validations, and the applications. These elements of the thermohydrological models are discussed. Along with the general review, some of the considerations in modeling fractures are also discussed. Some remarks on the research needs in modeling fractured rock mass conclude the paper

  20. Study on elastic-plastic fracture toughness test in high temperature water

    International Nuclear Information System (INIS)

    Miura, Yasufumi

    2016-01-01

    Structural integrity of internal components in light water reactors is important for the safety of operation and service lifetime. Fracture toughness is important parameter for structural integrity assessment of nuclear power plant. In general, fracture toughness of materials which compose the components in light water reactor is obtained with fracture toughness tests in air although some components are subjected to high temperature water because of the difficulty of fracture toughness test in high temperature water. However, the effects of high temperature water and hydrogen on fracture behavior of the structural materials in nuclear power plant such as low alloy steel, cast austenitic stainless steel, and Ni base alloy are concerned recently. In this study, elastic-plastic fracture toughness test of low alloy steel in simulated BWR water environment was studied. Fracture toughness test in high temperature water with original clip gage and normalization data reduction technique was established. The difference of fracture toughness J_Q tested in air between using elastic unload compliance method and normalization data reduction technique was also discussed. As a result, obtained value with normalization data reduction technique tended to be higher than the value with elastic unload compliance. (author)

  1. Risk of hip fracture after osteoporosis fractures. 451 women with fracture of lumbar spine, olecranon, knee or ankle

    DEFF Research Database (Denmark)

    Lauritzen, J B; Lund, B

    1993-01-01

    In a follow-up study during 1976-1984, the risk of a subsequent hip fracture was investigated in women aged 60-99 years, hospitalized for the following fractures: lumbar spine (n 70), olecranon (n 52), knee (n 129) and ankle (n 200). Follow-up ranged from 0 to 9 years. Observation time of the 4...... different fractures were 241, 180, 469, and 779, person-years, respectively. In women aged 60-79 years with one of the following fractures the relative risk of a subsequent hip fracture was increased by 4.8 (lumbar spine), 4.1 (olecranon), 3.5 (knee) and 1.5 (ankle). The relative risk of hip fracture showed...... a tendency to level off 3 years after the primary fracture....

  2. Effect of cold working and annealing on stress corrosion cracking of AISI 304 stainless steel

    International Nuclear Information System (INIS)

    Yeon, Y.M.; Kwun, S.I.

    1983-01-01

    A study was made of the effects of cold working and annealing on the stress corrosion cracking of AISI 304 stainless steel in boiling 42% MgCl 2 solution. When the 60% or 76% of yield stress was applied, the resistance to SCC showed maximum at 30% of cold work. However, when the same load was applied to the annealed specimens after cold working, the resistance to SCC decreased abruptly at 675degC annealing. The fracture mode changed mode change mixed → intergranular → transgranular as the amount of cold work increased. (Author)

  3. PERIMENOPAUSAL WRIST FRACTURE - AN OPPORTUNITY FOR ...

    African Journals Online (AJOL)

    Review of Medscheme's administrative databases to study ... management of a wrist fracture between 1995 and 1998, and ... reviewed dual-energy ... from three general practices in the UK. ... and Torgerson6 estimated the total cost of treating osteoporotic .... us adults from fHANES Ill. / Bone Miner Res 1997; U, 1761-1768.

  4. A quasi steady state method for solving transient Darcy flow in complex 3D fractured networks accounting for matrix to fracture flow

    Science.gov (United States)

    Nœtinger, B.

    2015-02-01

    Modeling natural Discrete Fracture Networks (DFN) receives more and more attention in applied geosciences, from oil and gas industry, to geothermal recovery and aquifer management. The fractures may be either natural, or artificial in case of well stimulation. Accounting for the flow inside the fracture network, and accounting for the transfers between the matrix and the fractures, with the same level of accuracy is an important issue for calibrating the well architecture and for setting up optimal resources recovery strategies. Recently, we proposed an original method allowing to model transient pressure diffusion in the fracture network only [1]. The matrix was assumed to be impervious. A systematic approximation scheme was built, allowing to model the initial DFN by a set of N unknowns located at each identified intersection between fractures. The higher N, the higher the accuracy of the model. The main assumption was using a quasi steady state hypothesis, that states that the characteristic diffusion time over one single fracture is negligible compared with the characteristic time of the macroscopic problem, e.g. change of boundary conditions. In that context, the lowest order approximation N = 1 has the form of solving a transient problem in a resistor/capacitor network, a so-called pipe network. Its topology is the same as the network of geometrical intersections between fractures. In this paper, we generalize this approach in order to account for fluxes from matrix to fractures. The quasi steady state hypothesis at the fracture level is still kept. Then, we show that in the case of well separated time scales between matrix and fractures, the preceding model needs only to be slightly modified in order to incorporate these fluxes. The additional knowledge of the so-called matrix to fracture transfer function allows to modify the mass matrix that becomes a time convolution operator. This is reminiscent of existing space averaged transient dual porosity models.

  5. High prevalence of simultaneous rib and vertebral fractures in patients with hip fracture.

    Science.gov (United States)

    Lee, Bong-Gun; Sung, Yoon-Kyoung; Kim, Dam; Choi, Yun Young; Kim, Hunchul; Kim, Yeesuk

    2017-02-01

    The purpose was to evaluate the prevalence and location of simultaneous fracture using bone scans in patients with hip fracture and to determine the risk factors associated with simultaneous fracture. One hundred eighty two patients with hip fracture were reviewed for this study. Clinical parameters and bone mineral density (BMD) of the lumbar vertebra and femoral neck were investigated. To identify acute simultaneous fracture, a bone scan was performed at 15.4±4.1days after hip fracture. The prevalence and location of simultaneous fracture were evaluated, and multivariate logistic regression analysis was performed to determine the risk factors. Simultaneous fracture was observed in 102 of 182 patients, a prevalence of 56.0%. Rib fracture was the most common type of simultaneous fracture followed by rib with vertebral fracture. The BMD of the lumbar vertebra was significantly lower in patients with simultaneous fracture (p=0.044) and was identified as an independent risk factor (odds ratio: OR 0.05, 95% confidence interval: CI 0.01-0.57). The prevalence of simultaneous fracture was relatively high among patients with hip fracture, and BMD was significantly lower in patients with simultaneous fracture than in patients without it. Surgeons should be aware of the possibility of simultaneous fracture in patients with hip fracture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Inferring biological evolution from fracture patterns in teeth.

    Science.gov (United States)

    Lawn, Brian R; Bush, Mark B; Barani, Amir; Constantino, Paul J; Wroe, Stephen

    2013-12-07

    It is hypothesised that specific tooth forms are adapted to resist fracture, in order to accommodate the high bite forces needed to secure, break down and consume food. Three distinct modes of tooth fracture are identified: longitudinal fracture, where cracks run vertically between the occlusal contact and the crown margin (or vice versa) within the enamel side wall; chipping fracture, where cracks run from near the edge of the occlusal surface to form a spall in the enamel at the side wall; and transverse fracture, where a crack runs horizontally through the entire section of the tooth to break off a fragment and expose the inner pulp. Explicit equations are presented expressing critical bite force for each fracture mode in terms of characteristic tooth dimensions. Distinctive transitions between modes occur depending on tooth form and size, and loading location and direction. Attention is focussed on the relatively flat, low-crowned molars of omnivorous mammals, including humans and other hominins and the elongate canines of living carnivores. At the same time, allusion to other tooth forms - the canines of the extinct sabre-tooth (Smilodon fatalis), the conical dentition of reptiles, and the columnar teeth of herbivores - is made to highlight the generality of the methodology. How these considerations impact on dietary behaviour in fossil and living taxa is discussed. © 2013 Elsevier Ltd. All rights reserved.

  7. Impact of comorbidities on hospitalization costs following hip fracture.

    Science.gov (United States)

    Nikkel, Lucas E; Fox, Edward J; Black, Kevin P; Davis, Charles; Andersen, Lucille; Hollenbeak, Christopher S

    2012-01-04

    Hip fractures are common in the elderly, and patients with hip fractures frequently have comorbid illnesses. Little is known about the relationship between comorbid illness and hospital costs or length of stay following the treatment of hip fracture in the United States. We hypothesized that specific individual comorbid illnesses and multiple comorbid illnesses would be directly related to the hospitalization costs and the length of stay for older patients following hip fracture. With use of discharge data from the 2007 Nationwide Inpatient Sample, 32,440 patients who were fifty-five years or older with an isolated, closed hip fracture were identified. Using generalized linear models, we estimated the impact of comorbidities on hospitalization costs and length of stay, controlling for patient, hospital, and procedure characteristics. Hypertension, deficiency anemias, and fluid and electrolyte disorders were the most common comorbidities. The patients had a mean of three comorbidities. Only 4.9% of patients presented without comorbidities. The average estimated cost in our reference patient was $13,805. The comorbidity with the largest increased hospitalization cost was weight loss or malnutrition, followed by pulmonary circulation disorders. Most other comorbidities significantly increased the cost of hospitalization. Compared with internal fixation of the hip fracture, hip arthroplasty increased hospitalization costs significantly. Comorbidities significantly affect the cost of hospitalization and length of stay following hip fracture in older Americans, even while controlling for other variables.

  8. External fixation of tibial pilon fractures and fracture healing.

    Science.gov (United States)

    Ristiniemi, Jukka

    2007-06-01

    Distal tibial fractures are rare and difficult to treat because the bones are subcutaneous. External fixation is commonly used, but the method often results in delayed union. The aim of the present study was to find out the factors that affect fracture union in tibial pilon fractures. For this purpose, prospective data collection of tibial pilon fractures was carried out in 1998-2004, resulting in 159 fractures, of which 83 were treated with external fixation. Additionally, 23 open tibial fractures with significant > 3 cm bone defect that were treated with a staged method in 2000-2004 were retrospectively evaluated. The specific questions to be answered were: What are the risk factors for delayed union associated with two-ring hybrid external fixation? Does human recombinant BMP-7 accelerate healing? What is the role of temporary ankle-spanning external fixation? What is the healing potential of distal tibial bone loss treated with a staged method using antibiotic beads and subsequent autogenous cancellous grafting compared to other locations of the tibia? The following risk factors for delayed healing after external fixation were identified: post-reduction fracture gap of >3 mm and fixation of the associated fibula fracture. Fracture displacement could be better controlled with initial temporary external fixation than with early definitive fixation, but it had no significant effect on healing time, functional outcome or complication rate. Osteoinduction with rhBMP-7 was found to accelerate fracture healing and to shorten the sick leave. A staged method using antibiotic beads and subsequent autogenous cancellous grafting proved to be effective in the treatment of tibial bone loss. Healing potential of the bone loss in distal tibia was at least equally good as in other locations of the tibia.

  9. Radiographic anatomy of the proximal femur: femoral neck fracture vs. transtrochanteric fracture

    Directory of Open Access Journals (Sweden)

    Ana Lecia Carneiro Leão de Araújo Lima

    Full Text Available ABSTRACT OBJECTIVE: To evaluate the correlation between radiographic parameters of the proximal femur with femoral neck fractures or transtrochanteric fractures. METHODS: Cervicodiaphyseal angle (CDA, femoral neck width (FNW, hip axis length (HAL, and acetabular tear drop distance (ATD were analyzed in 30 pelvis anteroposterior view X-rays of patients with femoral neck fractures (n = 15 and transtrochanteric fractures (n = 15. The analysis was performed by comparing the results of the X-rays with femoral neck fractures and with transtrochanteric fractures. RESULTS: No statistically significant differences between samples were observed. CONCLUSION: There was no correlation between radiographic parameters evaluated and specific occurrence of femoral neck fractures or transtrochanteric fractures.

  10. Prior nonhip limb fracture predicts subsequent hip fracture in institutionalized elderly people.

    Science.gov (United States)

    Nakamura, K; Takahashi, S; Oyama, M; Oshiki, R; Kobayashi, R; Saito, T; Yoshizawa, Y; Tsuchiya, Y

    2010-08-01

    This 1-year cohort study of nursing home residents revealed that historical fractures of upper limbs or nonhip lower limbs were associated with hip fracture (hazard ratio = 2.14), independent of activities of daily living (ADL), mobility, dementia, weight, and type of nursing home. Prior nonhip fractures are useful for predicting of hip fracture in institutional settings. The aim of this study was to evaluate the utility of fracture history for the prediction of hip fracture in nursing home residents. This was a cohort study with a 1-year follow-up. Subjects were 8,905 residents of nursing homes in Niigata, Japan (mean age, 84.3 years). Fracture histories were obtained from nursing home medical records. ADL levels were assessed by caregivers. Hip fracture diagnosis was based on hospital medical records. Subjects had fracture histories of upper limbs (5.0%), hip (14.0%), and nonhip lower limbs (4.6%). Among historical single fractures, only prior nonhip lower limbs significantly predicted subsequent fracture (adjusted hazard ratio, 2.43; 95% confidence interval (CI), 1.30-4.57). The stepwise method selected the best model, in which a combined historical fracture at upper limbs or nonhip lower limbs (adjusted hazard ratio, 2.14; 95% CI, 1.30-3.52), dependence, ADL levels, mobility, dementia, weight, and type of nursing home independently predicted subsequent hip fracture. A fracture history at upper or nonhip lower limbs, in combination with other known risk factors, is useful for the prediction of future hip fracture in institutional settings.

  11. Orthobiologics in the augmentation of osteoporotic fractures.

    Science.gov (United States)

    Watson, J Tracy; Nicolaou, Daemeon A

    2015-02-01

    Many orthobiologic adjuvants are available and widely utilized for general skeletal restoration. Their use for the specific task of osteoporotic fracture augmentation is less well recognized. Common conductive materials are reviewed for their value in this patient population including the large group of allograft adjuvants categorically known as the demineralized bone matrices (DBMs). Another large group of alloplastic materials is also examined-the calcium phosphate and sulfate ceramics. Both of these materials, when used for the proper indications, demonstrate efficacy for these patients. The inductive properties of bone morphogenic proteins (BMPs) and platelet concentrates show no clear advantages for this group of patients. Systemic agents including bisphosphonates, receptor activator of nuclear factor κβ ligand (RANKL) inhibitors, and parathyroid hormone augmentation all demonstrate positive effects with this fracture cohort. Newer modalities, such as trace ion bioceramic augmentation, are also reviewed for their positive effects on osteoporotic fracture healing.

  12. Mandible Fractures.

    Science.gov (United States)

    Pickrell, Brent B; Serebrakian, Arman T; Maricevich, Renata S

    2017-05-01

    Mandible fractures account for a significant portion of maxillofacial injuries and the evaluation, diagnosis, and management of these fractures remain challenging despite improved imaging technology and fixation techniques. Understanding appropriate surgical management can prevent complications such as malocclusion, pain, and revision procedures. Depending on the type and location of the fractures, various open and closed surgical reduction techniques can be utilized. In this article, the authors review the diagnostic evaluation, treatment options, and common complications of mandible fractures. Special considerations are described for pediatric and atrophic mandibles.

  13. A Thermoelastic Hydraulic Fracture Design Tool for Geothermal Reservoir Development

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad Ghassemi

    2003-06-30

    Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Thus, knowledge of conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fracture are created in the reservoir using hydraulic fracturing. At times, the practice aims to create a number of parallel fractures connecting a pair of wells. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have set out to develop advanced thermo-mechanical models for design of artificial fractures and rock fracture research in geothermal reservoirs. These models consider the significant hydraulic and thermo-mechanical processes and their interaction with the in-situ stress state. Wellbore failure and fracture initiation is studied using a model that fully couples poro-mechanical and thermo-mechanical effects. The fracture propagation model is based on a complex variable and regular displacement discontinuity formulations. In the complex variable approach the displacement discontinuities are

  14. Recognizing and reporting vertebral fractures: reducing the risk of future osteoporotic fractures

    International Nuclear Information System (INIS)

    Lentle, B.C.; Brown, J.P.; Khan, A.

    2007-01-01

    Given the increasing evidence that vertebral fractures are underdiagnosed and not acted on, Osteoporosis Canada and the Canadian Association of Radiologists initiated a project to develop and publish a set of recommendations to promote and facilitate the diagnosis and reporting of vertebral fractures. The identification of spinal fractures is not uniform. More than 65% of vertebral fractures cause no symptoms. It is also apparent that vertebral fractures are inadequately recognized when the opportunity for diagnosis arises fortuitously. It is to patients' benefit that radiologists report vertebral fractures evident on a chest or other radiograph, no matter how incidental to the immediate clinical indication for the examination. The present recommendations can help to close the gap in care in recognizing and treating vertebral fractures, to prevent future fractures and thus reduce the burden of osteoporosis-related morbidity and mortality, as well as fracture-related costs to the health care system. Several studies indicate that a gap exists in regard to the diagnosis of vertebral fractures and the clinical response following such diagnosis. All recommendations presented here are based on consensus. These recommendations were developed by a multidisciplinary working group under the auspices of the Scientific Advisory Council of Osteoporosis Canada and the Canadian Association of Radiologists. Prevalent vertebral fractures have important clinical implications in terms of future fracture risk. Recognizing and reporting fractures incidental to radiologic examinations done for other reasons has the potential to reduce health care costs by initiating further steps in osteoporosis diagnosis and appropriate therapy. Physicians should be aware of the importance of vertebral fracture diagnosis in assessing future osteoporotic fracture risk. Vertebral fractures incidental to radiologic examinations done for other reasons should be identified and reported. Vertebral fractures

  15. Thermo-hydro-mechanical simulation of a 3D fractured porous rock: preliminary study of coupled matrix-fracture hydraulics

    International Nuclear Information System (INIS)

    Canamon, I.; Javier Elorza, F.; Ababou, R.

    2007-01-01

    We present a problem involving the modeling of coupled flow and elastic strain in a 3D fractured porous rock, which requires prior homogenization (up-scaling) of the fractured medium into an equivalent Darcian anisotropic continuum. The governing equations form a system of PDE's (Partial Differential Equations) and, depending on the case being considered, this system may involve two different types of 'couplings' (in a real system, both couplings (1) and (2) generally take place): 1) Hydraulic coupling in a single (no exchange) or in a dual matrix-fracture continuum (exchange); 2) Thermo-Hydro-Mechanical interactions between fluid flow, pressure, elastic stress, strain, and temperature. We present here a preliminary model and simulation results with FEMLAB R , for the hydraulic problem with anisotropic heterogeneous coefficients. The model is based on data collected at an instrumented granitic site (FEBEX project) for studying a hypothetical nuclear waste repository at the Grimsel Test Site in the Swiss Alps. (authors)

  16. Thermo-hydro-mechanical simulation of a 3D fractured porous rock: preliminary study of coupled matrix-fracture hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Canamon, I.; Javier Elorza, F. [Universidad Politecnica de Madrid, Dept. de Matematica Aplicada y Metodos Informaticas, ETSI Minas (UPM) (Spain); Ababou, R. [Institut de Mecanique des Fluides de Toulouse (IMFT), 31 (France)

    2007-07-01

    We present a problem involving the modeling of coupled flow and elastic strain in a 3D fractured porous rock, which requires prior homogenization (up-scaling) of the fractured medium into an equivalent Darcian anisotropic continuum. The governing equations form a system of PDE's (Partial Differential Equations) and, depending on the case being considered, this system may involve two different types of 'couplings' (in a real system, both couplings (1) and (2) generally take place): 1) Hydraulic coupling in a single (no exchange) or in a dual matrix-fracture continuum (exchange); 2) Thermo-Hydro-Mechanical interactions between fluid flow, pressure, elastic stress, strain, and temperature. We present here a preliminary model and simulation results with FEMLAB{sup R}, for the hydraulic problem with anisotropic heterogeneous coefficients. The model is based on data collected at an instrumented granitic site (FEBEX project) for studying a hypothetical nuclear waste repository at the Grimsel Test Site in the Swiss Alps. (authors)

  17. Non-darcy flow behavior mean high-flux injection wells in porous and fractured formations

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yu-Shu

    2003-04-25

    This paper presents a study of non-Darcy fluid flow through porous and fractured rock, which may occur near wells during high-flux injection of waste fluids into underground formations. Both numerical and analytical models are used in this study. General non-Darcy flow is described using the Forchheimer equation, implemented in a three-dimensional, multiphase flow reservoir simulator. The non-Darcy flow through a fractured reservoir is handled using a general dual continuum approach, covering commonly used conceptual models, such as double porosity, dual permeability, explicit fracture, etc. Under single-phase flow conditions, an approximate analytical solution, as an extension of the Warren-Root solution, is discussed. The objectives of this study are (1) to obtain insights into the effect of non-Darcy flow on transient pressure behavior through porous and fractured reservoirs and (2) to provide type curves for well test analyses of non-Darcy flow wells. The type curves generated include various types of drawdown, injection, and buildup tests with non-Darcy flow occurring in porous and fractured reservoirs. In addition, non-Darcy flow into partially penetrating wells is also considered. The transient-pressure type curves for flow in fractured reservoirs are based on the double-porosity model. Type curves provided in this work for non-Darcy flow in porous and fractured reservoirs will find their applications in well test interpretation using a type-curve matching technique.

  18. Radon transport in fractured soil. Laboratory experiments and modelling

    International Nuclear Information System (INIS)

    Hoff, A.

    1997-10-01

    Radon (Rn-222) transport in fractured soil has been investigated by laboratory experiments and by modelling. Radon transport experiments have been performed with two sand columns (homogeneous and inhomogeneous) and one undisturbed clayey till column containing a net of preferential flow paths (root holes). A numerical model (the finite-element model FRACTRAN) and an analytic model (a pinhole model) have been applied in simulations if soil gas and radon transport in fractured soil. Experiments and model calculations are included in a discussion of radon entry rates into houses placed on fractured soil. The main conclusion is, that fractures does not in general alter transport of internally generated radon out of soil, when the pressure and flow conditions in the soil is comparable to the conditions prevailing under a house. This indicates the important result, that fractures in soil have no impact on radon entry into a house beyond that of an increased gas permeability, but a more thorough investigation of this subject is needed. Only in the case where the soil is exposed to large pressure gradients, relative to gradients induced by a house, may it be possible to observe effects of radon exchange between fractures and matrix. (au) 52 tabs., 60 ill., 5 refs

  19. Radon transport in fractured soil. Laboratory experiments and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Hoff, A

    1997-10-01

    Radon (Rn-222) transport in fractured soil has been investigated by laboratory experiments and by modelling. Radon transport experiments have been performed with two sand columns (homogeneous and inhomogeneous) and one undisturbed clayey till column containing a net of preferential flow paths (root holes). A numerical model (the finite-element model FRACTRAN) and an analytic model (a pinhole model) have been applied in simulations if soil gas and radon transport in fractured soil. Experiments and model calculations are included in a discussion of radon entry rates into houses placed on fractured soil. The main conclusion is, that fractures does not in general alter transport of internally generated radon out of soil, when the pressure and flow conditions in the soil is comparable to the conditions prevailing under a house. This indicates the important result, that fractures in soil have no impact on radon entry into a house beyond that of an increased gas permeability, but a more thorough investigation of this subject is needed. Only in the case where the soil is exposed to large pressure gradients, relative to gradients induced by a house, may it be possible to observe effects of radon exchange between fractures and matrix. (au) 52 tabs., 60 ill., 5 refs.

  20. Scale dependency of fractional flow dimension in a fractured formation

    Directory of Open Access Journals (Sweden)

    Y.-C. Chang

    2011-07-01

    Full Text Available The flow dimensions of fractured media were usually predefined before the determination of the hydraulic parameters from the analysis of field data in the past. However, it would be improper to make assumption about the flow geometry of fractured media before site characterization because the hydraulic structures and flow paths are complex in the fractured media. An appropriate way to investigate the hydrodynamic behavior of a fracture system is to determine the flow dimension and aquifer parameters simultaneously. The objective of this study is to analyze a set of field data obtained from four observation wells during an 11-day hydraulic test at Chingshui geothermal field (CGF in Taiwan in determining the hydrogeologic properties of the fractured formation. Based on the generalized radial flow (GRF model and the optimization scheme, simulated annealing, an approach is therefore developed for the data analyses. The GRF model allows the flow dimension to be integer or fractional. We found that the fractional flow dimension of CGF increases near linearly with the distance between the pumping well and observation well, i.e. the flow dimension of CGF exhibits scale-dependent phenomenon. This study provides insights into interpretation of fracture flow at CGF and gives a reference for characterizing the hydrogeologic properties of fractured media.

  1. Hidden contributions of the enamel rods on the fracture resistance of human teeth

    OpenAIRE

    Yahyazadehfar, M.; Bajaj, Devendra; Arola, Dwayne D.

    2012-01-01

    The enamel of human teeth is generally regarded as a brittle material with low fracture toughness. Consequently, the contributions of this tissue in resisting tooth fracture and the importance of its complex microstructure have been largely overlooked. In this study an experimental evaluation of the crack growth resistance of human enamel was conducted to characterize the role of rod (i.e. prism) orientation and degree of decussation on the fracture behavior of this tissue. Incremental crack ...

  2. Simulation of complex fracture networks influenced by natural fractures in shale gas reservoir

    Directory of Open Access Journals (Sweden)

    Zhao Jinzhou

    2014-10-01

    Full Text Available When hydraulic fractures intersect with natural fractures, the geometry and complexity of a fracture network are determined by the initiation and propagation pattern which is affected by a number of factors. Based on the fracture mechanics, the criterion for initiation and propagation of a fracture was introduced to analyze the tendency of a propagating angle and factors affecting propagating pressure. On this basis, a mathematic model with a complex fracture network was established to investigate how the fracture network form changes with different parameters, including rock mechanics, in-situ stress distribution, fracture properties, and frac treatment parameters. The solving process of this model was accelerated by classifying the calculation nodes on the extending direction of the fracture by equal pressure gradients, and solving the geometrical parameters prior to the iteration fitting flow distribution. With the initiation and propagation criterion as the bases for the propagation of branch fractures, this method decreased the iteration times through eliminating the fitting of the fracture length in conventional 3D fracture simulation. The simulation results indicated that the formation with abundant natural fractures and smaller in-situ stress difference is sufficient conditions for fracture network development. If the pressure in the hydraulic fractures can be kept at a high level by temporary sealing or diversion, the branch fractures will propagate further with minor curvature radius, thus enlarging the reservoir stimulation area. The simulated shape of fracture network can be well matched with the field microseismic mapping in data point range and distribution density, validating the accuracy of this model.

  3. Aging precipitation behavior and its influence on mechanical properties of Mn18Cr18N austenitic stainless steel

    Science.gov (United States)

    Qin, Fengming; Li, Yajie; He, Wenwu; Zhao, Xiaodong; Chen, Huiqin

    2017-11-01

    The aging precipitation behavior in Mn18Cr18N austenitic stainless steel was investigated at temperatures from 600 °C to 900 °C. During isothermal aging treatment, the primary precipitate was Cr2N with a = 0.478 nm and c = 0.444 nm, and it preferentially nucleates along initial grain boundaries and gradually grows towards the interior of grains in discontinuous cellular way. Meanwhile, a small amount of granular face-centred cubic M23C6 with a = 1.066 nm also were observed, which mainly form along grain boundaries. The effect of these precipitates on mechanical properties of the alloy was studied. It was found that precipitates result in degeneration of the matrix hardness. Meanwhile, the SEM morphologies of aged tensile sample show that the brittle fracture predominates during deformation, i.e. the fracture mode transforms from intergranular fracture to transgranular fracture with the increasing of aging time. Compared with the solution-treated sample, the strength of the aged tensile samples slightly decreases and plasticity remarkably deteriorates.

  4. Modelling of fluid flow in fractured porous media by the singular integral equations method

    International Nuclear Information System (INIS)

    Vu, M.N.

    2012-01-01

    This thesis aims to develop a method for numerical modelling of fluid flow through fractured porous media and for determination of their effective permeability by taking advantage of recent results based on formulation of the problem by Singular Integral Equations. In parallel, it was also an occasion to continue on the theoretical development and to obtain new results in this area. The governing equations for flow in such materials are reviewed first and mass conservation at the fracture intersections is expressed explicitly. Using the theory of potential, the general potential solutions are proposed in the form of a singular integral equation that describes the steady-state flow in and around several fractures embedded in an infinite porous matrix under a far-field pressure condition. These solutions represent the pressure field in the whole body as functions of the infiltration in the fractures, which fully take into account the fracture interaction and intersections. Closed-form solutions for the fundamental problem of fluid flow around a single fracture are derived, which are considered as the benchmark problems to validate the numerical solutions. In particular, the solution obtained for the case of an elliptical disc-shaped crack obeying to the Poiseuille law has been compared to that obtained for ellipsoidal inclusions with Darcy law.The numerical programs have been developed based on the singular integral equations method to resolve the general potential equations. These allow modeling the fluid flow through a porous medium containing a great number of fractures. Besides, this formulation of the problem also allows obtaining a semi-analytical infiltration solution over a single fracture depending on the matrice permeability, the fracture conductivity and the fracture geometry. This result is the important key to up-scaling the effective permeability of a fractured porous medium by using different homogenisation schemes. The results obtained by the self

  5. Hydromechanical and Thermomechanical Behaviour of Elastic Fractures during Thermal Stimulation of Naturally Fractured Reservoirs

    Science.gov (United States)

    Jalali, Mohammadreza; Valley, Benoît

    2015-04-01

    behaviors become dominant at different time scales, i.e. HM effects is dominant at early time after injection initiation, whereas the TM effect becomes more dominant at later time as the temperature propagation is slower than pressure propagation in the rock due to different value of hydraulic and thermal diffusivities. Due to the relative similarity of thermoelasticity and poroelasticity on the mechanical behavior of fractures, an analogy between these two mechanisms is introduced which can be used to estimate the effect of one of the mechanisms based on the other one on the mechanical behavior of the considered medium in the cases where only one of the solution exists. There may be merit in developing this work to generate more accurate and higher order functions to represent fractures within a general analogy of THM coupled problems as the computational time of this approach is at least one order less than the conventional THM iterative approaches.

  6. Compound dorsal dislocation of lunate with trapezoid fracture

    Directory of Open Access Journals (Sweden)

    Bong-Sung Kim

    2016-12-01

    Full Text Available We report about a dorsal dislocation of the lunate accompanied by a trapezoid fracture in a 41-year old male patient after a motorcycle accident. The lunate dislocation with no dorsal or volar intercalated segment instability (DISI, VISI was diagnosed by x-ray whereas the trapezoid fracture was only diagnosable by computed tomography. A closed reduction and internal fixation of the lunate by two Kirschner wires was performed, the trapezoid fracture was conservatively treated. Surgery was followed by immobilization, intense physiotherapy and close follow-up. Even though complaints such as swelling and pain subsided during the course of rehabilitation, partial loss of strength and range of motion remained even after 16 months. In conclusion, a conservative treatment of trapezoid fractures seems to be sufficient in most cases. Closed reduction with Kwire fixation led to an overall satisfactory result in our case. For dorsal lunate dislocations in general, open reduction should be performed when close reduction is unsuccessful or DISI/VISI are observed in radiographs after attempted close reduction.

  7. Effect of heat treatment and impurity concentration on some mechanical properties V-15Cr-5Ti alloy

    International Nuclear Information System (INIS)

    Loomis, B.A.; Kestel, B.J.; Diercks, D.R.

    1986-03-01

    The effects of heat treatment and O, N, C, Si, and S impurity level on the yield strength, ductility, and fracture mode for specimens from four different heats of the V-15Cr-5Ti alloy are presented. The heat treatments for the alloy consisted of annealing as-rolled material for one hour at either 950, 1050, 1125, or 1200 0 C. The total oxygen, nitrogen, and carbon impurity concentration ranged from 400 to 1200 wppm. The Si concentration ranged from 300 to 1050 wppm, and the S concentration ranged from 440 to 1100 wppm. The yield strength and ductility for the alloy, regardless of impurity concentration, exhibited minimum and maximum values, respectively, for the 1125 0 C anneal. The primary mode of failure for the tensile specimens was transgranular fracture

  8. Determining the REV for Fracture Rock Mass Based on Seepage Theory

    Directory of Open Access Journals (Sweden)

    Lili Zhang

    2017-01-01

    Full Text Available Seepage problems of the fractured rock mass have always been a heated topic within hydrogeology and engineering geology. The equivalent porous medium model method is the main method in the study of the seepage of the fractured rock mass and its engineering application. The key to the method is to determine a representative elementary volume (REV. The FractureToKarst software, that is, discrete element software, is a main analysis tool in this paper and developed by a number of authors. According to the standard of rock classification established by ISRM, this paper aims to discuss the existence and the size of REV of fractured rock masses with medium tractility and provide a general method to determine the existence of REV. It can be gleaned from the study that the existence condition of fractured rock mass with medium tractility features average fracture spacing smaller than 0.6 m. If average fracture spacing is larger than 0.6 m, there is no existence of REV. The rationality of the model is verified by a case study. The present research provides a method for the simulation of seepage field in fissured rocks.

  9. early functional outcome of distal femoral fractures at kenyatta

    African Journals Online (AJOL)

    The leading cause was RTA, followed by falls from a height. ... Distal femoral fractures cause considerable morbidity .... as means and standard deviations. .... Anaesthesia. Spinal. 37 (80). General Anaesthesia (GA). 9 (20). Transfusion.

  10. Microstructure and tensile properties of Fe-40 at. pct Al alloys with C, Zr, Hf, and B additions

    Science.gov (United States)

    Gaydosh, D. J.; Draper, S. L.; Nathal, M. V.

    1989-01-01

    The influence of small additions of C, Zr, and Hf, alone or in combination with B, on the microstructure and tensile behavior of substoichiometric FeAl was investigated. Tensile properties were determined from 300 to 1100 K on powder which was consolidated by hot extrusion. All materials possessed some ductility at room temperature, although ternary additions generally reduced ductility compared to the binary alloy. Adding B to the C- and Zr-containing alloys changed the fracture mode from intergranular to transgranular and restored the ductility to approximately 5 percent elongation. Additions of Zr and Hf increased strength up to about 900 K. Fe6Al6Zr and Fe6Al6Hf precipitates, both with identical body-centered tetragonal structures, were identified as the principal second phase in these alloys. Strength decreased steadily as temperature increased above 700 K, as diffusion-assisted mechanisms became operative. Although all alloys had similar strengths at 1100 K, Hf additions significantly improved high-temperature ductility by suppressing cavitation.

  11. [Trochanteric femoral fractures].

    Science.gov (United States)

    Douša, P; Čech, O; Weissinger, M; Džupa, V

    2013-01-01

    At the present time proximal femoral fractures account for 30% of all fractures referred to hospitals for treatment. Our population is ageing, the proportion of patients with post-menopausal or senile osteoporosis is increasing and therefore the number of proximal femoral fractures requiring urgent treatment is growing too. In the age category of 50 years and older, the incidence of these fractures has increased exponentially. Our department serves as a trauma centre for half of Prague and part of the Central Bohemia Region with a population of 1 150 000. Prague in particular has a high number of elderly citizens. Our experience is based on extensive clinical data obtained from the Register of Proximal Femoral Fractures established in 1997. During 14 years, 4280 patients, 3112 women and 1168 men, were admitted to our department for treatment of proximal femoral fractures. All patients were followed up until healing or development of complications. In the group under study, 82% were patients older than 70 years; 72% of those requiring surgery were in their seventies and eighties. Men were significantly younger than women (pfractures were 2.3-times more frequent in women than in men. In the category under 60 years, men significantly outnumbered women (pfractures were, on the average, eight years older than the patients with intertrochanteric fractures, which is a significant difference (pTrochanteric fractures accounted for 54.7% and femoral neck fractures for 45.3% of all fractures. The inter-annual increase was 5.9%, with more trochanteric than femoral neck fractures. There was a non-significant decrease in intertrochanteric (AO 31-A3) fractures. On the other hand, the number of pertrochanteric (AO 31-A1+2) fractures increased significantly (pfractures were treated with a proximal femoral nail; a short nail was used in 1260 and a long nail in 134 of them. A dynamic hip screw (DHS) was employed to treat 947 fractures. Distinguishing between pertrochanteric (21-A1

  12. Jogger's fracture and other stress fractures of the lumbo-sacral spine

    International Nuclear Information System (INIS)

    Abel, M.S.

    1985-01-01

    The posterior rings of the lower lumbo-sacral vertebrae are subject to stress fractures at any part - pedicle, pars, or lamina. The site of fracture is apparently determined by the axis of weight bearing. The three illustrative clinical examples cited include a jogger with a laminar fracture, a ballet dancer with pedicle fractures, and a nine-year-old boy with fractures of pars and lamina. Chronic low back pain is the typical complaint with stress fractures of the lower lumbo-sacral spine. Special imaging techniques are usually needed to demonstrate these lesions, including vertebral arch views, multi-directional tomography, and computed tomography (CT). (orig.)

  13. Automated detection and classification of the proximal humerus fracture by using deep learning algorithm.

    Science.gov (United States)

    Chung, Seok Won; Han, Seung Seog; Lee, Ji Whan; Oh, Kyung-Soo; Kim, Na Ra; Yoon, Jong Pil; Kim, Joon Yub; Moon, Sung Hoon; Kwon, Jieun; Lee, Hyo-Jin; Noh, Young-Min; Kim, Youngjun

    2018-03-26

    Background and purpose - We aimed to evaluate the ability of artificial intelligence (a deep learning algorithm) to detect and classify proximal humerus fractures using plain anteroposterior shoulder radiographs. Patients and methods - 1,891 images (1 image per person) of normal shoulders (n = 515) and 4 proximal humerus fracture types (greater tuberosity, 346; surgical neck, 514; 3-part, 269; 4-part, 247) classified by 3 specialists were evaluated. We trained a deep convolutional neural network (CNN) after augmentation of a training dataset. The ability of the CNN, as measured by top-1 accuracy, area under receiver operating characteristics curve (AUC), sensitivity/specificity, and Youden index, in comparison with humans (28 general physicians, 11 general orthopedists, and 19 orthopedists specialized in the shoulder) to detect and classify proximal humerus fractures was evaluated. Results - The CNN showed a high performance of 96% top-1 accuracy, 1.00 AUC, 0.99/0.97 sensitivity/specificity, and 0.97 Youden index for distinguishing normal shoulders from proximal humerus fractures. In addition, the CNN showed promising results with 65-86% top-1 accuracy, 0.90-0.98 AUC, 0.88/0.83-0.97/0.94 sensitivity/specificity, and 0.71-0.90 Youden index for classifying fracture type. When compared with the human groups, the CNN showed superior performance to that of general physicians and orthopedists, similar performance to orthopedists specialized in the shoulder, and the superior performance of the CNN was more marked in complex 3- and 4-part fractures. Interpretation - The use of artificial intelligence can accurately detect and classify proximal humerus fractures on plain shoulder AP radiographs. Further studies are necessary to determine the feasibility of applying artificial intelligence in the clinic and whether its use could improve care and outcomes compared with current orthopedic assessments.

  14. An Efficient XFEM Approximation of Darcy Flows in Arbitrarily Fractured Porous Media

    Directory of Open Access Journals (Sweden)

    Fumagalli Alessio

    2014-07-01

    Full Text Available Subsurface flows are influenced by the presence of faults and large fractures which act as preferential paths or barriers for the flow. In literature models were proposed to handle fractures in a porous medium as objects of codimension 1. In this work we consider the case of a network of intersecting fractures, with the aim of deriving physically consistent and effective interface conditions to impose at the intersection between fractures. This new model accounts for the angle between fractures at the intersections and allows for jumps of pressure across the intersection. This latter property permits to describe more accurately the flow when fractures are characterised by different properties, than other models that impose pressure continuity. The main mathematical properties of the model, derived in the two-dimensional setting, are analysed. As concerns the numerical discretization we allow the grids of the fractures to be independent, thus in general non-matching at the intersection, by means of the Extended Finite Element Method (XFEM, to increase the flexibility of the method in the case of complex geometries characterized by a high number of fractures.

  15. A ductile fracture mechanics methodology for predicting pressure vessel and piping failure

    International Nuclear Information System (INIS)

    Landes, J.D.; Zhou, Z.

    1991-01-01

    This paper reports on a ductile fracture methodology based on one used more generally for the prediction of fracture behavior that was applied to the prediction of fracture behavior in pressure vessel and piping components. The model uses the load versus displacement record from a fracture toughness test to develop inputs for predicting the behavior of the structural component. The principle of load separation is used to convert the test record into two pieces of information, calibration functions which describe the structural deformation behavior and fracture toughness which describes the response of a crack-like flaw to the loading. These calibration functions and fracture toughness values which relate to the test specimen are then transformed to those appropriate to the structure. Often in this step computation procedures could be used but are not always necessary. The calibration functions and fracture for the structure are recombined to predict a load versus displacement behavior for the structure. The input for the model was generated from tests of compact specimen geometries; this geometry is often used for fracture toughness testing. The predictions were done for five model structures

  16. Imaging of insufficiency fractures

    Energy Technology Data Exchange (ETDEWEB)

    Krestan, Christian [Department of Radiology, Medical University of Vienna, Vienna General Hospital, Waehringerstr. 18-20, 1090 Vienna (Austria)], E-mail: christian.krestan@meduniwien.ac.at; Hojreh, Azadeh [Department of Radiology, Medical University of Vienna, Vienna General Hospital, Waehringerstr. 18-20, 1090 Vienna (Austria)

    2009-09-15

    This review focuses on the occurrence, imaging and differential diagnosis of insufficiency fractures. Prevalence, the most common sites of insufficiency fractures and their clinical implications are discussed. Insufficiency fractures occur with normal stress exerted on weakened bone. Postmenopausal osteoporosis is the most common cause of insufficiency fractures. Other conditions which affect bone turnover include osteomalacia, hyperparathyroidism, chronic renal failure and high-dose glucocorticoid therapy. It is a challenge for the radiologist to detect and diagnose insufficiency fractures, and to differentiate them from other bone lesions. Radiographs are still the most widely used imaging method for identification of insufficiency fractures, but sensitivity is limited, depending on the location of the fractures. Magnetic resonance imaging (MRI) is a very sensitive tool to visualize bone marrow abnormalities associated with insufficiency fractures. Thin section, multi-detector computed tomography (MDCT) depicts subtle fracture lines allowing direct visualization of cortical and trabecular bone. Bone scintigraphy still plays a role in detecting fractures, with good sensitivity but limited specificity. The most important differential diagnosis is underlying malignant disease leading to pathologic fractures. Bone densitometry and clinical history may also be helpful in confirming the diagnosis of insufficiency fractures.

  17. Management of acute combined fractures of the atlas and axis: A retrospective study of two trauma centers

    Directory of Open Access Journals (Sweden)

    Joseph DiDomenico

    2017-01-01

    Conclusions: This study demonstrates the variety of treatment strategies used for the management of combined C1-C2 fractures. Patients managed operatively tend to have both anterior and posterior C1 arch fractures, while patients managed nonoperatively tend to have either anterior or posterior arch fractures. In general, treatments should be tailored to patients' needs depending on the stability of the fractures, neurological state, and medical comorbidities.

  18. Influence of structures on fracture and fracture toughness of cemented tungsten carbides

    International Nuclear Information System (INIS)

    Zhao, W.; Zhang, X.

    1987-01-01

    A study was made of the influence of structures on fracture and fracture toughness of cemented tungsten carbides with different compositions and grain sizes. The measurement of the fracture toughness of cemented tungsten carbide was carried out using single edge notched beam. The microstructural parameters and the proportion for each fracture mode on the fracture surface were obtained. The brittle fracture of the alloy is mainly due to the interfacial decohesion fracture following the interface of the carbide crystals. It has been observed that there are localized fractures region ahead of the crack tip. The morphology of the crack propagation path as well as the slip structure in the cobalt phase of the deformed region have been investigated. In addition, a study of the correlation between the plane strain fracture toughness and microstructural parameters, such as mean free path of the cobalt phase, tungsten carbide grain size and the contiguity of tungsten carbide crystals was also made

  19. Rib fractures predict incident limb fractures: results from the European prospective osteoporosis study.

    Science.gov (United States)

    Ismail, A A; Silman, A J; Reeve, J; Kaptoge, S; O'Neill, T W

    2006-01-01

    Population studies suggest that rib fractures are associated with a reduction in bone mass. While much is known about the predictive risk of hip, spine and distal forearm fracture on the risk of future fracture, little is known about the impact of rib fracture. The aim of this study was to determine whether a recalled history of rib fracture was associated with an increased risk of future limb fracture. Men and women aged 50 years and over were recruited from population registers in 31 European centres for participation in a screening survey of osteoporosis (European Prospective Osteoporosis Study). Subjects were invited to complete an interviewer-administered questionnaire that included questions about previous fractures including rib fracture, the age of their first fracture and also the level of trauma. Lateral spine radiographs were performed and the presence of vertebral deformity was determined morphometrically. Following the baseline survey, subjects were followed prospectively by annual postal questionnaire to determine the occurrence of clinical fractures. The subjects included 6,344 men, with a mean age of 64.2 years, and 6,788 women, with a mean age of 63.6 years, who were followed for a median of 3 years (range 0.4-5.9 years), of whom 135 men (2.3%) and 101 women (1.6%) reported a previous low trauma rib fracture. In total, 138 men and 391 women sustained a limb fracture during follow-up. In women, after age adjustment, those with a recalled history of low trauma rib fracture had an increased risk of sustaining 'any' limb fracture [relative hazard (RH)=2.3; 95% CI 1.3, 4.0]. When stratified by fracture type the predictive risk was more marked for hip (RH=7.7; 95% CI 2.3, 25.9) and humerus fracture (RH=4.5; 95% CI 1.4, 14.6) than other sites (RH=1.6; 95% CI 0.6, 4.3). Additional adjustment for prevalent vertebral deformity and previous (non-rib) low trauma fractures at other sites slightly reduced the strength of the association between rib fracture and

  20. Hip fracture - discharge

    Science.gov (United States)

    ... neck fracture repair - discharge; Trochanteric fracture repair - discharge; Hip pinning surgery - discharge ... in the hospital for surgery to repair a hip fracture, a break in the upper part of ...

  1. Analysis on the risk factors of second fracture in osteoporosis-

    Directory of Open Access Journals (Sweden)

    RUAN Wen-dong

    2011-04-01

    Full Text Available 【Abstract】 Objective: To explore the clinical characteristics and risk factors of refracture in patients suffering from osteoporosis-related fractures as well as effective interventions. Methods: From January 2006 to January 2008, both out-patients and in-patients in our hospital who were over 50 years old and suffered from osteoporosis-related fractures were selected for this research. They were divided into fracture group and refracture group. The refracture rate was followed up for 2 years, during which 11 patients developed refracture, thus were included in the refracture group. Therefore, 273 patients, 225 first-fracture cases, aged (67.7± 8.5 years, and 48 refracture cases, aged (72.7±9.5 years, were included in this study. General data including age and sex, fracture types, femoral neck bone mineral density (BMD T-scores tested by dual-energy X-rays absorptiometry (DEXA, Charlson index, time-frame between two fractures as well as mobility skill assessment were collected and analyzed by single-factor and multivariate statistical methods. Results: Females accounted for 70.2% of the fracture group and 77.1% of the refracture group. The most common refracture type was vertebral fracture for the first time and femoral neck fracture for the second time during the followup. The second fracture happened 3.7 years after the first one on average. The refracture rate was 2.12% within one year, and 4.66% within two years. Risk factors for a second fracture in osteoporotic fracture patients included age (>75 years, HR=1.23, 95%CI 1.18-1.29; >85 years, HR=1.68, 95% CI 1.60-1.76, female sex (HR=1.36, 95%CI 1.32-1.40, prior vertebral fractures (HR=1.62, 95%CI 1.01-2.07, prior hip fractures (HR=1.27, 95%CI 0.89-2.42, BMD T-score<-3.5 (HR=1.38, 95%CI 1.17-1.72 and weakened motor skills (HR=1.27, 95%CI 1.09-1.40. Conclusions: The risks of second fracture among patients with initial brittle fracture are substantial. There is adequate time between the

  2. A study of hydrogen environment effects on microstructure property behavior of NASA-23 alloy and related alloy systems

    International Nuclear Information System (INIS)

    Diwan, R.M.

    1990-01-01

    The influence of hydrogen on the tensile properties and ductility behavior of NASA-23 alloy were analyzed. NASA-23 and other referenced alloys in cast and hipped conditions were solution treated and aged under selected conditions and characterized using optical metallography, scanning electron microscopy, and electron microprobe analysis techniques. The yield strength of NASA-23 is not affected much by hydrogen under tensile tests carried at 5000 psig conditions; however, the ultimate strength and ductility properties are degraded. This implies that the physical mechanisms operating would be related to the plastic deformation process. The fracture surfaces characteristics of NASA-23 specimens tensile tested in hydrogen, helium, and air were also analyzed. These revealed surface cracks around specimen periphery with the fracture surface showing a combination of intergranular and transgranular modes of fracture. It is seen that the specimens charged in hydrogen seem to favor a more brittle fracture mode in comparison to air and helium charged specimens. The AMCC casting characterization program is to be analyzed for their hydrogen behavior. As a result of this program, the basic microstructural factors and fracture characteristics in some cases were analyzed

  3. Design and Implementation of Energized Fracture Treatment in Tight Gas Sands

    Energy Technology Data Exchange (ETDEWEB)

    Mukul Sharma; Kyle Friehauf

    2009-12-31

    Hydraulic fracturing is essential for producing gas and oil at an economic rate from low permeability sands. Most fracturing treatments use water and polymers with a gelling agent as a fracturing fluid. The water is held in the small pore spaces by capillary pressure and is not recovered when drawdown pressures are low. The un-recovered water leaves a water saturated zone around the fracture face that stops the flow of gas into the fracture. This is a particularly acute problem in low permeability formations where capillary pressures are high. Depletion (lower reservoir pressures) causes a limitation on the drawdown pressure that can be applied. A hydraulic fracturing process can be energized by the addition of a compressible, sometimes soluble, gas phase into the treatment fluid. When the well is produced, the energized fluid expands and gas comes out of solution. Energizing the fluid creates high gas saturation in the invaded zone, thereby facilitating gas flowback. A new compositional hydraulic fracturing model has been created (EFRAC). This is the first model to include changes in composition, temperature, and phase behavior of the fluid inside the fracture. An equation of state is used to evaluate the phase behavior of the fluid. These compositional effects are coupled with the fluid rheology, proppant transport, and mechanics of fracture growth to create a general model for fracture creation when energized fluids are used. In addition to the fracture propagation model, we have also introduced another new model for hydraulically fractured well productivity. This is the first and only model that takes into account both finite fracture conductivity and damage in the invaded zone in a simple analytical way. EFRAC was successfully used to simulate several fracture treatments in a gas field in South Texas. Based on production estimates, energized fluids may be required when drawdown pressures are smaller than the capillary forces in the formation. For this field

  4. Canister positioning. Influence of fracture system on deposition hole stability

    International Nuclear Information System (INIS)

    Hoekmark, Harald

    2003-11-01

    The study concerns the mechanical behaviour of rock surrounding tunnels and deposition holes in a nuclear waste repository. The mechanical effects of tunnel excavation and deposition hole excavation are investigated by use of a tunnel scale numerical model representing a part of a KBS-3 type repository. The excavation geometry, the initial pre-mining state of stress, and the geometrical features of the fracture system are defined according to conditions that prevail in the TBM tunnel rock mass in Aespoe HRL. Comparisons are made between results obtained without consideration of fractures and results obtained with inclusion of the fracture system. The focus is on the region around the intersection of a tunnel and a deposition hole. A general conclusion is that a fracture system of the type found in the TBM rock mass does not have a decisive influence on the stability of the deposition holes. To estimate the expected extent of spalling, information about other conditions, e.g. the orientation of the initial stresses and the strength properties of the intact rock, is more important than detailed information about the fracture system

  5. Relationship between side necking and plastic zone size at fracture

    International Nuclear Information System (INIS)

    Kim, Do Hyung; Kang, Ki Ju; Kim, Dong Hak

    2004-01-01

    Generally, fracture of a material is influenced by plastic zone size developed near the crack tip. Hence, according to the relative size of plastic zone in the material, the mechanics as a tool for analyzing the fracture process are classified into three kinds, that is, Linear Elastic Fracture Mechanics, Elastic Plastic Fracture Mechanics, Large Deformation Fracture Mechanics. Even though the plastic zone size is such an important parameter, the practical measurement techniques are very limited and the one for in-situ measurement is not virtually available. Therefore, elastic-plastic FEA has been performed to estimate the plastic zone size. In this study, it is noticed that side necking at the surface is a consequence of plastic deformation and lateral contraction and the relation between the plastic zone and side necking is investigated. FEA for modified boundary layer models with finite thickness, various mode mixes 0 .deg., 30 deg., 60 deg., 90 .deg. and strain hardening exponent n=3, 10 are performed. The results are presented and the implication regarding to application to experiment is discussed

  6. Fracture network growth for prediction of fracture characteristics and connectivity in tight reservoir rocks

    NARCIS (Netherlands)

    Barnhoorn, A.; Cox, S.F.

    2012-01-01

    Fracturing experiments on very low-porosity dolomite rocks shows a difference in growth of fracture networks by stress-driven fracturing and fluid-driven fracturing. Stress-driven fracture growth, in the absence of fluid pressure, initially forms fractures randomly throughout the rocks followed by

  7. Origin of Permeability and Structure of Flows in Fractured Media

    Science.gov (United States)

    De Dreuzy, J.; Darcel, C.; Davy, P.; Erhel, J.; Le Goc, R.; Maillot, J.; Meheust, Y.; Pichot, G.; Poirriez, B.

    2013-12-01

    After more than three decades of research, flows in fractured media have been shown to result from multi-scale geological structures. Flows result non-exclusively from the damage zone of the large faults, from the percolation within denser networks of smaller fractures, from the aperture heterogeneity within the fracture planes and from some remaining permeability within the matrix. While the effect of each of these causes has been studied independently, global assessments of the main determinisms is still needed. We propose a general approach to determine the geological structures responsible for flows, their permeability and their organization based on field data and numerical modeling [de Dreuzy et al., 2012b]. Multi-scale synthetic networks are reconstructed from field data and simplified mechanical modeling [Davy et al., 2010]. High-performance numerical methods are developed to comply with the specificities of the geometry and physical properties of the fractured media [Pichot et al., 2010; Pichot et al., 2012]. And, based on a large Monte-Carlo sampling, we determine the key determinisms of fractured permeability and flows (Figure). We illustrate our approach on the respective influence of fracture apertures and fracture correlation patterns at large scale. We show the potential role of fracture intersections, so far overlooked between the fracture and the network scales. We also demonstrate how fracture correlations reduce the bulk fracture permeability. Using this analysis, we highlight the need for more specific in-situ characterization of fracture flow structures. Fracture modeling and characterization are necessary to meet the new requirements of a growing number of applications where fractures appear both as potential advantages to enhance permeability and drawbacks for safety, e.g. in energy storage, stimulated geothermal energy and non-conventional gas productions. References Davy, P., et al. (2010), A likely universal model of fracture scaling and

  8. Scaphoid Fracture

    Directory of Open Access Journals (Sweden)

    Esther Kim, BS

    2018-04-01

    Full Text Available History of present illness: A 25-year-old, right-handed male presented to the emergency department with left wrist pain after falling from a skateboard onto an outstretched hand two-weeks prior. He otherwise had no additional concerns, including no complaints of weakness or loss of sensation. On physical exam, there was tenderness to palpation within the anatomical snuff box. The neurovascular exam was intact. Plain films of the left wrist and hand were obtained. Significant findings: The anteroposterior (AP plain film of this patient demonstrates a full thickness fracture through the middle third of the scaphoid (red arrow, with some apparent displacement (yellow lines and subtle angulation of the fracture fragments (blue line. Discussion: The scaphoid bone is the most commonly fractured carpal bone accounting for 70%-80% of carpal fractures.1 Classically, it is sustained following a fall onto an outstretched hand (FOOSH. Patients should be evaluated for tenderness with palpation over the anatomical snuffbox, which has a sensitivity of 100% and specificity of 40%.2 Plain films are the initial diagnostic modality of choice and have a sensitivity of 70%, but are commonly falsely negative in the first two to six weeks of injury (false negative of 20%.3 The Mayo classification organizes scaphoid fractures as involving the proximal, mid, and distal portions of the scaphoid bone with mid-fractures being the most common.3 The proximal scaphoid is highly susceptible to vascular compromise because it depends on retrograde blood flow from the radial artery. Therefore, disruption can lead to serious sequelae including osteonecrosis, arthrosis, and functional impairment. Thus, a low threshold should be maintained for neurovascular evaluation and surgical referral. Patients with non-displaced scaphoid fractures should be placed in a thumb spica splint.3 Patients with even suspected scaphoid fractures should be placed in a thumb spica splint and re

  9. Surrogate-based optimization of hydraulic fracturing in pre-existing fracture networks

    Science.gov (United States)

    Chen, Mingjie; Sun, Yunwei; Fu, Pengcheng; Carrigan, Charles R.; Lu, Zhiming; Tong, Charles H.; Buscheck, Thomas A.

    2013-08-01

    Hydraulic fracturing has been used widely to stimulate production of oil, natural gas, and geothermal energy in formations with low natural permeability. Numerical optimization of fracture stimulation often requires a large number of evaluations of objective functions and constraints from forward hydraulic fracturing models, which are computationally expensive and even prohibitive in some situations. Moreover, there are a variety of uncertainties associated with the pre-existing fracture distributions and rock mechanical properties, which affect the optimized decisions for hydraulic fracturing. In this study, a surrogate-based approach is developed for efficient optimization of hydraulic fracturing well design in the presence of natural-system uncertainties. The fractal dimension is derived from the simulated fracturing network as the objective for maximizing energy recovery sweep efficiency. The surrogate model, which is constructed using training data from high-fidelity fracturing models for mapping the relationship between uncertain input parameters and the fractal dimension, provides fast approximation of the objective functions and constraints. A suite of surrogate models constructed using different fitting methods is evaluated and validated for fast predictions. Global sensitivity analysis is conducted to gain insights into the impact of the input variables on the output of interest, and further used for parameter screening. The high efficiency of the surrogate-based approach is demonstrated for three optimization scenarios with different and uncertain ambient conditions. Our results suggest the critical importance of considering uncertain pre-existing fracture networks in optimization studies of hydraulic fracturing.

  10. XFEM modeling of hydraulic fracture in porous rocks with natural fractures

    Science.gov (United States)

    Wang, Tao; Liu, ZhanLi; Zeng, QingLei; Gao, Yue; Zhuang, Zhuo

    2017-08-01

    Hydraulic fracture (HF) in porous rocks is a complex multi-physics coupling process which involves fluid flow, diffusion and solid deformation. In this paper, the extended finite element method (XFEM) coupling with Biot theory is developed to study the HF in permeable rocks with natural fractures (NFs). In the recent XFEM based computational HF models, the fluid flow in fractures and interstitials of the porous media are mostly solved separately, which brings difficulties in dealing with complex fracture morphology. In our new model the fluid flow is solved in a unified framework by considering the fractures as a kind of special porous media and introducing Poiseuille-type flow inside them instead of Darcy-type flow. The most advantage is that it is very convenient to deal with fluid flow inside the complex fracture network, which is important in shale gas extraction. The weak formulation for the new coupled model is derived based on virtual work principle, which includes the XFEM formulation for multiple fractures and fractures intersection in porous media and finite element formulation for the unified fluid flow. Then the plane strain Kristianovic-Geertsma-de Klerk (KGD) model and the fluid flow inside the fracture network are simulated to validate the accuracy and applicability of this method. The numerical results show that large injection rate, low rock permeability and isotropic in-situ stresses tend to lead to a more uniform and productive fracture network.

  11. Mortality Following Periprosthetic Proximal Femoral Fractures Versus Native Hip Fractures.

    Science.gov (United States)

    Boylan, Matthew R; Riesgo, Aldo M; Paulino, Carl B; Slover, James D; Zuckerman, Joseph D; Egol, Kenneth A

    2018-04-04

    The number of periprosthetic proximal femoral fractures is expected to increase with the increasing prevalence of hip arthroplasties. While native hip fractures have a well-known association with mortality, there are currently limited data on this outcome among the subset of patients with periprosthetic proximal femoral fractures. Using the New York Statewide Planning and Research Cooperative System, we identified patients from 60 to 99 years old who were admitted to a hospital in the state with a periprosthetic proximal femoral fracture (n = 1,655) or a native hip (femoral neck or intertrochanteric) fracture (n = 97,231) between 2006 and 2014. Within the periprosthetic fracture cohort, the indication for the existing implant was not available in the data set. We used mixed-effects regression models to compare mortality at 1 and 6 months and 1 year for periprosthetic compared with native hip fractures. The risk of mortality for patients who sustained a periprosthetic proximal femoral fracture was no different from that for patients who sustained a native hip fracture at 1 month after injury (3.2% versus 4.6%; odds ratio [OR], 0.90; 95% confidence interval [CI], 0.68 to 1.19; p = 0.446), but was lower at 6 months (3.8% versus 6.5%; OR, 0.74; 95% CI, 0.57 to 0.95; p = 0.020) and 1 year (9.7% versus 15.9%; OR, 0.71; 95% CI, 0.60 to 0.85; p accounting for age and comorbidities. Prognostic Level III. See Instructions for Authors for a complete description of levels of evidence.

  12. Assessment of fracture risk

    International Nuclear Information System (INIS)

    Kanis, John A.; Johansson, Helena; Oden, Anders; McCloskey, Eugene V.

    2009-01-01

    Fractures are a common complication of osteoporosis. Although osteoporosis is defined by bone mineral density at the femoral neck, other sites and validated techniques can be used for fracture prediction. Several clinical risk factors contribute to fracture risk independently of BMD. These include age, prior fragility fracture, smoking, excess alcohol, family history of hip fracture, rheumatoid arthritis and the use of oral glucocorticoids. These risk factors in conjunction with BMD can be integrated to provide estimates of fracture probability using the FRAX tool. Fracture probability rather than BMD alone can be used to fashion strategies for the assessment and treatment of osteoporosis.

  13. The radiation swelling effect on fracture properties and fracture mechanisms of irradiated austenitic steels. Part I. Ductility and fracture toughness

    Energy Technology Data Exchange (ETDEWEB)

    Margolin, B., E-mail: mail@crism.ru; Sorokin, A.; Shvetsova, V.; Minkin, A.; Potapova, V.; Smirnov, V.

    2016-11-15

    The radiation swelling effect on the fracture properties of irradiated austenitic steels under static loading has been studied and analyzed from the mechanical and physical viewpoints. Experimental data on the stress-strain curves, fracture strain, fracture toughness and fracture mechanisms have been represented for austenitic steel of 18Cr-10Ni-Ti grade (Russian analog of AISI 321 steel) irradiated up to neutron dose of 150 dpa with various swelling. Some phenomena in mechanical behaviour of irradiated austenitic steels have been revealed and explained as follows: a sharp decrease of fracture toughness with swelling growth; untypical large increase of fracture toughness with decrease of the test temperature; some increase of fracture toughness after preliminary cyclic loading. Role of channel deformation and channel fracture has been clarified in the properties of irradiated austenitic steel and different tendencies to channel deformation have been shown and explained for the same austenitic steel irradiated at different temperatures and neutron doses.

  14. Discrete Fracture Modeling of 3D Heterogeneous Enhanced Coalbed Methane Recovery with Prismatic Meshing

    Directory of Open Access Journals (Sweden)

    Yongbin Zhang

    2015-06-01

    Full Text Available In this study, a 3D multicomponent multiphase simulator with a new fracture characterization technique is developed to simulate the enhanced recovery of coalbed methane. In this new model, the diffusion source from the matrix is calculated using the traditional dual-continuum approach, while in the Darcy flow scale, the Discrete Fracture Model (DFM is introduced to explicitly represent the flow interaction between cleats and large-scale fractures. For this purpose, a general formulation is proposed to model the multicomponent multiphase flow through the fractured coal media. The S&D model and a revised P&M model are incorporated to represent the geomechanical effects. Then a finite volume based discretization and solution strategies are constructed to solve the general ECBM equations. The prismatic meshing algorism is used to construct the grids for 3D reservoirs with complex fracture geometry. The simulator is validated with a benchmark case in which the results show close agreement with GEM. Finally, simulation of a synthetic heterogeneous 3D coal reservoir modified from a published literature is performed to evaluate the production performance and the effects of injected gas composition, well pattern and gas buoyancy.

  15. Simulation of counter-current imbibition in water-wet fractured reservoirs based on discrete-fracture model

    Directory of Open Access Journals (Sweden)

    Wang Yueying

    2017-08-01

    Full Text Available Isolated fractures usually exist in fractured media systems, where the capillary pressure in the fracture is lower than that of the matrix, causing the discrepancy in oil recoveries between fractured and non-fractured porous media. Experiments, analytical solutions and conventional simulation methods based on the continuum model approach are incompetent or insufficient in describing media containing isolated fractures. In this paper, the simulation of the counter-current imbibition in fractured media is based on the discrete-fracture model (DFM. The interlocking or arrangement of matrix and fracture system within the model resembles the traditional discrete fracture network model and the hybrid-mixed-finite-element method is employed to solve the associated equations. The Behbahani experimental data validates our simulation solution for consistency. The simulation results of the fractured media show that the isolated-fractures affect the imbibition in the matrix block. Moreover, the isolated fracture parameters such as fracture length and fracture location influence the trend of the recovery curves. Thus, the counter-current imbibition behavior of media with isolated fractures can be predicted using this method based on the discrete-fracture model.

  16. Fracture characteristics in Japanese rock

    International Nuclear Information System (INIS)

    Ijiri, Yuji; Sawada, Atsushi; Akahori, Kuniaki

    1999-11-01

    It is crucial for the performance assessment of geosphere to evaluate the characteristics of fractures that can be dominant radionuclide migration pathways from a repository to biosphere. This report summarizes the characteristics of fractures obtained from broad literature surveys and the fields surveys at the Kamaishi mine in northern Japan and at outcrops and galleries throughout the country. The characteristics of fractures described in this report are fracture orientation, fracture shape, fracture frequency, fracture distribution in space, transmissivity of fracture, fracture aperture, fracture fillings, alteration halo along fracture, flow-wetted surface area in fracture, and the correlation among these characteristics. Since granitic rock is considered the archetype fractured media, a large amount of fracture data is available in literature. In addition, granitic rock has been treated as a potential host rock in many overseas programs, and has JNC performed a number of field observations and experiments in granodiorite at the Kamaishi mine. Therefore, the characteristics of fractures in granitic rock are qualitatively and quantitatively clarified to some extent in this report, while the characteristics of fractures in another rock types are not clarified. (author)

  17. Cough-induced rib fractures.

    Science.gov (United States)

    Hanak, Viktor; Hartman, Thomas E; Ryu, Jay H

    2005-07-01

    To define the demographic, clinical, and radiological features of patients with cough-induced rib fractures and to assess potential risk factors. For this retrospective, single-center study, we identified all cases of cough-induced rib fractures diagnosed at the Mayo Clinic in Rochester, Minn, over a 9-year period between January 1, 1996, and January 31, 2005. Bone densitometry data from patients' medical records were analyzed, and T scores were used to classify patients into bone density categories. The mean +/- SD age of the 54 study patients at presentation was 55+/-17 years, and 42 patients (78%) were female. Patients presented with chest wall pain after onset of cough. Rib fracture was associated with chronic cough (> or =3 weeks' duration) in 85% of patients. Rib fractures were documented by chest radiography, rib radiography, computed tomography, or bone scan. Chest radiography had been performed in 52 patients and revealed rib fracture in 30 (58%). There were 112 fractured ribs in 54 patients. One half of patients had more than one fractured rib. Right-sided rib fractures alone were present in 17 patients (26 fractured ribs), left-sided in 23 patients (35 fractured ribs), and bilateral in 14 patients (51 fractured ribs). The most commonly fractured rib on both sides was rib 6. The fractures were most common at the lateral aspect of the rib cage. Bone densitometry was done in 26 patients and revealed osteopenia or osteoporosis in 17 (65%). Cough-induced rib fractures occur primarily in women with chronic cough. Middle ribs along the lateral aspect of the rib cage are affected most commonly. Although reduced bone density is likely a risk factor, cough-induced rib fractures can occur in the presence of normal bone density.

  18. Influence of perforation erosion on multiple growing hydraulic fractures in multi-stage fracturing

    Directory of Open Access Journals (Sweden)

    Yongming Li

    2018-02-01

    Full Text Available In multi-stage hydraulic fracturing, the limited-entry method is widely used to promote uniform growth of multiple fractures. However, this method's effectiveness may be lost because the perforations will be eroded gradually during the fracturing period. In order to study the influence of perforation erosion on multiple growing hydraulic fractures, we combined the solid–fluid coupled model of hydraulic fracture growth with an empirical model of perforation erosion to implement numerical simulation. The simulations show clearly that the erosion of perforation will significantly deteriorate the non-uniform growth of multiple fractures. Based on the numerical model, we also studied the influences of proppant concentration and injection rates on perforation erosion in multi-stage hydraulic fracturing. The results indicate that the initial erosion rates become higher with the rising proppant concentration, but the growth of multiple hydraulic fractures is not sensitive to the varied proppant concentration. In addition, higher injection rates are beneficial significantly to the limited-entry design, leading to more uniform growth of fractures. Thus, in multi-stage hydraulic fracturing enough high injection rates are proposed to keep uniform growths. Keywords: Unconventional oil and gas reservoir, Horizontal well, Perforation friction, Perforation erosion, Multi-stage hydraulic fracturing, Numerical simulation, Mathematic model, Uniform growth of fractures

  19. Characteristic fracture spacing in primary and secondary recovery for naturally fractured reservoirs

    NARCIS (Netherlands)

    Gong, J.; Rossen, W.R.

    2018-01-01

    If the aperture distribution is broad enough in a naturally fractured reservoir, even one where the fracture network is highly inter-connected, most fractures can be eliminated without significantly affecting the flow through the fracture network. During a waterflood or enhanced-oil-recovery

  20. Experimental study on stress corrosion crack propagation rate of FV520B in carbon dioxide and hydrogen sulfide solution

    Science.gov (United States)

    Qin, Ming; Li, Jianfeng; Chen, Songying; Qu, Yanpeng

    FV520B steel is a kind of precipitation hardening Martensitic stainless steel, it has high-strength, good plasticity and good corrosion resistance. Stress corrosion cracking (SCC) is one of the main corrosion failure mode for FV520B in industrial transportation of natural gas operation. For a better understanding the effect on SCC of FV520B, the improved wedge opening loading (WOL) specimens and constant displacement loading methods were employed in experimental research in carbon dioxide and hydrogen sulfide solution. The test results showed that the crack propagation rate is 1.941 × 10-7-5.748 × 10-7 mm/s, the stress intensity factor KISCC is not more than 36.83 MPa √{ m } . The rate increases with the increasing of the crack opening displacement. Under the condition of different initial loading, KISCC generally shows a decreasing tendency with the increase in H2S concentration, and the crack propagation rate showed an increasing trend substantially. For the enrichment of sulfur ion in the crack tip induced the generation of pitting corrosion, promoting the surrounding metal formed the corrosion micro batteries, the pit defects gradually extended and connected with the adjacent pit to form a small crack, leading to further propagation till cracking happened. Fracture microscopic morphology displayed typical brittle fracture phenomena, accompanying with trans-granular cracking, river shape and sector, many second cracks on the fracture surface.

  1. Risks of subsequent contralateral fractures of the trochanteric region in elderly.

    Science.gov (United States)

    Pogliacomi, Francesco; Pellegrini, Andrea; Tacci, Fabrizio; Pedrini, Martina Francesca; Costantino, Cosimo; Pedrazzini, Alessio; Pedrazzi, Giuseppe; Lauretani, Fulvio; Vaienti, Enrico; Ceccarelli, Francesco

    2017-01-16

    Fractures in elderly are always a dramatic event and the healing is often not complete. In a context of bone fragility, repeated fractures are a growing problem in the industrialized world, in which the mean age of population is increasing. The aim of this study was to identify those general factors which may increase the risk of subsequent trochanteric fractures after an initial lesion. Three-hundred and thirty-one patients who underwent intramedullary fixation for trochanteric fractures between January 2012 and December 2013 were studied. Forty subjects yet alive (group 1), affected by a subsequent contralateral hip fracture, were compared with 202 patients (group 2) affected by isolated trochanteric fracture. Days of hospitalization before surgery, hospitalization, period of rehabilitation, type of discharge and comorbidities, that are reported in literature as possible risk factors for hip refracture, were analyzed. In addition, all patients were interviewed in order to assess if a therapy for osteoporosis was prescribed after the initial fracture and how their gait had been modified by fractures. Days of hospitalization before surgery, hospitalization, period of rehabilitation and type of discharge were not predictive factors for subsequent fractures, as well as diabetes mellitus, hypertension and cardiac diseases. The presence of neurologic and respiratory diseases were associated to a higher risk of refractures, as well as the absence of specific medical treatment for osteoporosis. Neurologic and respiratory comorbidities and the absence of osteoporosis medical treatment are the variables associated to a higher risk of contralateral fractures. Physicians can do more in terms of prevention and strategies must consider these risk factors.

  2. Fracture mechanical materials characterisation

    International Nuclear Information System (INIS)

    Wallin, K.; Planman, T.; Nevalainen, M.

    1998-01-01

    The experimental fracture mechanics development has been focused on the determination of reliable lower-bound fracture toughness estimates from small and miniature specimens, in particular considering the statistical aspects and loading rate effects of fracture mechanical material properties. Additionally, materials aspects in fracture assessment of surface cracks, with emphasis on the transferability of fracture toughness data to structures with surface flaws have been investigated. Further a modified crack-arrest fracture toughness test method, to increase the effectiveness of testing, has been developed. (orig.)

  3. Fracture Mechanics

    CERN Document Server

    Zehnder, Alan T

    2012-01-01

    Fracture mechanics is a vast and growing field. This book develops the basic elements needed for both fracture research and engineering practice. The emphasis is on continuum mechanics models for energy flows and crack-tip stress- and deformation fields in elastic and elastic-plastic materials. In addition to a brief discussion of computational fracture methods, the text includes practical sections on fracture criteria, fracture toughness testing, and methods for measuring stress intensity factors and energy release rates. Class-tested at Cornell, this book is designed for students, researchers and practitioners interested in understanding and contributing to a diverse and vital field of knowledge. Alan Zehnder joined the faculty at Cornell University in 1988. Since then he has served in a number of leadership roles including Chair of the Department of Theoretical and Applied Mechanics, and Director of the Sibley School of Mechanical and Aerospace Engineering.  He teaches applied mechanics and his research t...

  4. Fractures and fracture infillings of the Eye-Dashwa Lakes pluton, Atikokan, Ontario

    International Nuclear Information System (INIS)

    Stone, Denver; Kamineni, D.C.

    1982-01-01

    Fractures in the Eye-Dashwa pluton near Atikokan, Ontario can be subdivided on the basis of their filling materials. These materials include aplite, epidote, chlorite, and gypsum-carbonate-clay, listed in order of decreasing age established from crosscutting relations. Textues indicate that infilling occurred during fracture growth. Continuous cooling of the pluton during fracturing is inferred from the expected crystallization temperatures of fillings. Fracturing began before the pluton was completely solidified (650-600 0 C) and continued to temperatures below 100 0 C. Many fractures appear to have been sealed by the filling materials after initiation but were subsequently sheared and filled by lower temperatue materials. Apparently the majority of fractures formed during or immediately after pluton solidification and new fractures became smaller and more restricted in location as cooling progressed. Fractures and filling materials are seen as important features in assessing the possibility of movement of radionuclides in aqueous solutions away from a nuclear fuel waste repository

  5. A survey of experience-based preference of Nickel-Titanium rotary files and incidence of fracture among general dentists

    Directory of Open Access Journals (Sweden)

    WooCheol Lee

    2012-11-01

    Full Text Available Objectives The purpose was to investigate the preference and usage technique of NiTi rotary instruments and to retrieve data on the frequency of re-use and the estimated incidence of file separation in the clinical practice among general dentists. Materials and Methods A survey was disseminated via e-mail and on-site to 673 general dentists. The correlation between the operator's experience or preferred technique and frequency of re-use or incidence of file fracture was assessed. Results A total of 348 dentists (51.7% responded. The most frequently used NiTi instruments was ProFile (39.8% followed by ProTaper. The most preferred preparation technique was crown-down (44.6%. 54.3% of the respondents re-used NiTi files more than 10 times. There was a significant correlation between experience with NiTi files and the number of reuses (p = 0.0025. 54.6% of the respondents estimated experiencing file separation less than 5 times per year. The frequency of separation was significantly correlated with the instrumentation technique (p = 0.0003. Conclusions A large number of general dentists in Korea prefer to re-use NiTi rotary files. As their experience with NiTi files increased, the number of re-uses increased, while the frequency of breakage decreased. Operators who adopt the hybrid technique showed less tendency of separation even with the increased number of re-use.

  6. Nonoperative Treatment of Thoracic and Lumbar Spine Fractures : A Prospective Randomized Study of Different Treatment Options

    NARCIS (Netherlands)

    Stadhouder, Agnita; Buskens, Erik; Vergroesen, Diederik A.; Fidler, Malcolm W.; de Nies, Frank; Oner, F. C.

    Objectives: To evaluate and compare nonoperative treatment methods for traumatic thoracic and lumbar compression fractures and burst fractures. Design: Prospective randomized controlled trial with long-term follow-up. Setting: Two general hospitals in the Netherlands. Patients/Participants: Patients

  7. Disposal of radioactive grouts into hydraulically fractured shale

    International Nuclear Information System (INIS)

    1983-01-01

    A process for permanent waste disposal has been in operation for nearly 20 years at Oak Ridge National Laboratory (ORNL). In this method, intermediate-level radioactive waste effluents in the form of a slurry containing hydraulic binders (grouts) are injected by means of fracturing into a deep underground formation (a nearly impervious shale formation) considered to be isolated from the surface. The composition of the grout is carefully chosen so that the slurry thus injected solidifies in situ, ensuring fixation of the waste and rendering this type of disposal final in character. This process - ''hydrofracture'' or ''shale fracturing'' - immobilizes the wastes directly in situ, in such a condition that is well removed from the biosphere. It is an inexpensive process that is particularly suited for the permanent disposal of large batches of certain types of wastes under specific conditions. Some sections of this report are concerned with the general aspects of the hydrofracture process. Other sections are site specific and discuss the development of the process at ORNL and the operating experience with the ORNL facility. Sections 2 and 3 are concerned with the general aspects of site selection and are not site specific. Sections 4, 5, 6 and 8 are concerned with operating experience at ORNL and are site specific. Section 7 (safety assessment) is based on ORNL experience, but the considerations that are discussed in this section have general application. Details of the operating experience with the process at ORNL and West Valley are given in Appendix 1. Appendix 2 is a brief treatment of the theory of fracture mechanics

  8. Computed tomograms of blowout fracture

    International Nuclear Information System (INIS)

    Ito, Haruhide; Hayashi, Minoru; Shoin, Katsuo; Hwang, Wen-Zern; Yamamoto, Shinjiro; Yonemura, Taizo.

    1985-01-01

    We studied 18 cases of orbital fractures, excluding optic canal fracture. There were 11 cases of pure blowout fracture and 3 of the impure type. The other 4 cases were orbital fractures without blowout fracture. The cardinal syndromes were diplopia, enophthalmos, and sensory disturbances of the trigeminal nerve in the pure type of blowout fracture. Many cases of the impure type of blowout fracture or of orbital fracture showed black eyes or a swelling of the eyelids which masked enophthalmos. Axial and coronal CT scans demonstrated: 1) the orbital fracture, 2) the degree of enophthalmos, 3) intraorbital soft tissue, such as incarcerated or prolapsed ocular muscles, 4) intraorbital hemorrhage, 5) the anatomical relation of the orbital fracture to the lacrimal canal, the trochlea, and the trigeminal nerve, and 6) the lesions of the paranasal sinus and the intracranial cavity. CT scans play an important role in determining what surgical procedures might best be employed. Pure blowout fractures were classified by CT scans into these four types: 1) incarcerating linear fracture, 2) trapdoor fracture, 3) punched-out fracture, and 4) broad fracture. Cases with severe head injury should be examined to see whether or not blowout fracture is present. If the patients are to hope to return to society, a blowout fracture should be treated as soon as possible. (author)

  9. Computed tomograms of blowout fracture

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Haruhide; Hayashi, Minoru; Shoin, Katsuo; Hwang, Wen-Zern; Yamamoto, Shinjiro; Yonemura, Taizo

    1985-02-01

    We studied 18 cases of orbital fractures, excluding optic canal fracture. There were 11 cases of pure blowout fracture and 3 of the impure type. The other 4 cases were orbital fractures without blowout fracture. The cardinal syndromes were diplopia, enophthalmos, and sensory disturbances of the trigeminal nerve in the pure type of blowout fracture. Many cases of the impure type of blowout fracture or of orbital fracture showed black eyes or a swelling of the eyelids which masked enophthalmos. Axial and coronal CT scans demonstrated: 1) the orbital fracture, 2) the degree of enophthalmos, 3) intraorbital soft tissue, such as incarcerated or prolapsed ocular muscles, 4) intraorbital hemorrhage, 5) the anatomical relation of the orbital fracture to the lacrimal canal, the trochlea, and the trigeminal nerve, and 6) the lesions of the paranasal sinus and the intracranial cavity. CT scans play an important role in determining what surgical procedures might best be employed. Pure blowout fractures were classified by CT scans into these four types: 1) incarcerating linear fracture, 2) trapdoor fracture, 3) punched-out fracture, and 4) broad fracture. Cases with severe head injury should be examined to see whether or not blowout fracture is present. If the patients are to hope to return to society, a blowout fracture should be treated as soon as possible. (author).

  10. Groundwater degassing in fractured rock: Modelling and data comparison

    Energy Technology Data Exchange (ETDEWEB)

    Jarsjoe, J.; Destouni, G. [Royal Inst. of Tech., Stockholm (Sweden). Water Resources Engineering

    1998-11-01

    Dissolved gas may be released from deep groundwater in the vicinity of open boreholes and drifts, where the water pressures are relatively low. Degassing of groundwater may influence observations of hydraulic conditions made in drifts, interpretation of experiments performed close to drifts, and buffer mass and backfill performance, particularly during emplacement and repository closure. Under certain conditions, considerable fracture inflow and transmissivity reductions have been observed during degassing experiments in the field and in the laboratory; such reductions affect the outcome and interpretation of both hydraulic and tracer tests. We develop models for the estimation of the resulting degree of fracture gas saturation and the associated transmissivity reduction due to groundwater degassing in fractured rock. Derived expressions for bubble trapping probability show that fracture aperture variability and correlation length influence the conditions for capillary bubble trapping and gas accumulation. The laboratory observations of bubble trapping in an Aespoe fracture replica are consistent with the prediction of a relatively high probability of bubble trapping in this fracture. The prediction was based on the measured aperture distribution of the Aespoe fracture and the applied hydraulic gradient. Results also show that the conceptualisation of gas and water occupancy in a fracture greatly influences model predictions of gas saturation and relative transmissivity. Images from laboratory degassing experiments indicate that tight apertures are completely filled with water, whereas both gas and water exist in wider apertures under degassing conditions; implementation of this relation in our model resulted in the best agreement between predictions and laboratory observations. Model predictions for conditions similar to those prevailing in field for single fractures at great depths indicate that degassing effects in boreholes should generally be small, unless the

  11. [Zygomatic-orbito-malar fractures. Apropos of 85 cases].

    Science.gov (United States)

    Ait Benhamou, C; Kadiri, F; Laraqui, N; Benghalem, A; Touhami, M; Chekkoury, A; Benchakroun, Y

    1996-01-01

    Our retrospective study has concerned 85 cases of zygomatic-orbito molar fractures, hospitalised and treated from january 1983 to december 1992. 86% of patients were men. The young adult is interested in 78% of cases. The traffic accidents are predominant in 45%. The diagnosis is especially, made by the clinic and confirmed by the radiology. The abstension is justificate in 27, 1% due to the absence of deplacement and associated disorders. The orthopedic treatment concerns the len deplaced (20% of cases) and stable molar fractures. The surgery such as reduction with osteosynthesis or reconstruction of floor is realised in 55% of patients presenting deplaced fractures with norphologic and/or fonctionel disorders. The evolution is good in general. Few sequellaes has been noted in 25% cases. The authors insist on the interest of the precocity of diagnosis and treatment and on the multidisciplinar collaboration which permit an adapted treatment with few sequellaes.

  12. Transport of silver nanoparticles in single fractured sandstone

    Science.gov (United States)

    Neukum, Christoph

    2018-02-01

    Silver nanoparticles (Ag-NP) are used in various consumer products and are one of the most prevalent metallic nanoparticle in commodities and are released into the environment. Transport behavior of Ag-NP in groundwater is one important aspect for the assessment of environmental impact and protection of drinking water resources in particular. Ag-NP transport processes in saturated single-fractured sandstones using triaxial flow cell experiments with different kind of sandstones is investigated. Ag-NP concentration and size are analyzed using flow field-flow fractionation and coupled SEM-EDX analysis. Results indicate that Ag-NP are more mobile and show generally lower attachment on rock surface compared to experiments in undisturbed sandstone matrix and partially fractured sandstones. Ag-NP transport is controlled by the characteristics of matrix porosity, time depending blocking of attachment sites and solute chemistry. Where Ag-NP attachment occur, it is heterogeneously distributed on the fracture surface.

  13. Facial Fractures.

    Science.gov (United States)

    Ricketts, Sophie; Gill, Hameet S; Fialkov, Jeffery A; Matic, Damir B; Antonyshyn, Oleh M

    2016-02-01

    After reading this article, the participant should be able to: 1. Demonstrate an understanding of some of the changes in aspects of facial fracture management. 2. Assess a patient presenting with facial fractures. 3. Understand indications and timing of surgery. 4. Recognize exposures of the craniomaxillofacial skeleton. 5. Identify methods for repair of typical facial fracture patterns. 6. Discuss the common complications seen with facial fractures. Restoration of the facial skeleton and associated soft tissues after trauma involves accurate clinical and radiologic assessment to effectively plan a management approach for these injuries. When surgical intervention is necessary, timing, exposure, sequencing, and execution of repair are all integral to achieving the best long-term outcomes for these patients.

  14. Functional recovery of older people with hip fracture: does malnutrition make a difference?

    Science.gov (United States)

    Li, Hsiao-Juan; Cheng, Huey-Shinn; Liang, Jersey; Wu, Chi-Chuan; Shyu, Yea-Ing Lotus

    2013-08-01

    To report a study of the effects of protein-energy malnutrition on the functional recovery of older people with hip fracture who participated in an interdisciplinary intervention. It is not clear whether protein-energy malnutrition is associated with worse functional outcomes or it affects the interdisciplinary intervention program on the functional recovery of older people with hip fracture. A randomized experimental design. Data were collected between 2002-2006 from older people with hip fracture (N = 162) in Taiwan. The generalized estimating equations approach was used to evaluate the effect of malnutrition on the functional recovery of older people with hip fracture. The majority of older patients with hip fracture were malnourished (48/80, 60% in the experimental group vs. 55/82, 67% in the control group) prior to hospital discharge. The results of the generalized estimating equations analysis demonstrated that subjects suffering from protein-energy malnutrition prior to hospital discharge appeared to have significantly worse performance trajectories for their activities of daily living, instrumental activities of daily living, and recovery of walking ability compared with those without protein-energy malnutrition. In addition, it was found that the intervention is more effective on the performance of activities of daily living and recovery of walking ability in malnourished patients than in non-malnourished patients. Healthcare providers should develop a nutritional assessment/management system in their interdisciplinary intervention program to improve the functional recovery of older people with hip fracture. © 2012 Blackwell Publishing Ltd.

  15. Influence of nano-inclusions' grain boundaries on crack propagation modes in materials

    International Nuclear Information System (INIS)

    Karakasidis, T.E.; Charitidis, C.A.

    2011-01-01

    The effect of nano-inclusions on materials' strength and toughness has attracted great interest in recent years. It has been shown that tuning the morphological and microstructural features of materials can tailor their fracture modes. The existence of a characteristic size of inclusions that favours the fracture mode (i.e. transgranular or intergranular) has been experimentally observed but also predicted by a 2D model based on energetic arguments which relates the crack propagation mode to the ratio of the interface area between the crystalline inclusion and the matrix with the area of the crystallite inclusion in a previous work. In the present work, a 3D model is proposed in order to extend the 2D model and take into account the influence of the size of grain boundary zone on the toughening/hardening behavior of the material as it was observed experimentally in the literature. The model relates crack propagation mode to the ratio of the volume of the grain boundary zone between the crystalline inclusion and the matrix with the volume of the nano-inclusion. For a ratio below a critical value, transgranular propagation is favoured while for larger values, intergranular propagation is favoured. We also demonstrate that the extent of the grain boundary region also can significantly affect this critical value. The results of the model are in agreement with the literature experimental observations related to the toughening/hardening behavior as a function of the size of crystalline inclusions as well as the width of the grain boundary regions.

  16. Fracture toughness of glasses and hydroxyapatite: a comparative study of 7 methods by using Vickers indenter

    OpenAIRE

    HERVAS , Isabel; MONTAGNE , Alex; Van Gorp , Adrien; BENTOUMI , M.; THUAULT , A.; IOST , Alain

    2016-01-01

    International audience; Numerous methods have been proposed to estimate the indentation fracture toughness Kic for brittle materials. These methods generally uses formulæ established from empirical correlations between critical applied force, or average crack length, and classical fracture mechanics tests. This study compares several models of fracture toughness calculation obtained by using Vickers indenters. Two optical glasses (Crown and Flint), one vitroceramic (Zerodur) and one ceramic (...

  17. Fracture behaviour of heat cured fly ash based geopolymer concrete

    International Nuclear Information System (INIS)

    Sarker, Prabir K.; Haque, Rashedul; Ramgolam, Karamchand V.

    2013-01-01

    Highlights: ► Fly ash geopolymer (GPC) can help reduce carbon footprint of concrete. ► Fracture behaviour of GPC as compared to OPC concrete was studied. ► Fracture energy of GPC was similar to that of OPC concrete. ► GPC showed higher fracture toughness than OPC concrete. ► Higher bond strength resulted in higher crack resistance of GPC. -- Abstract: Use of fly ash based geopolymer as an alternative binder can help reduce CO 2 emission of concrete. The binder of geopolymer concrete (GPC) is different from that of ordinary Portland cement (OPC) concrete. Thus, it is necessary to study the effects of the geopolymer binder on the behaviour of concrete. In this study, the effect of the geopolymer binder on fracture characteristics of concrete has been investigated by three point bending test of RILEM TC 50 – FMC type notched beam specimens. The peak load was generally higher in the GPC specimens than the OPC concrete specimens of similar compressive strength. The failure modes of the GPC specimens were found to be more brittle with relatively smooth fracture planes as compared to the OPC concrete specimens. The post-peak parts of the load–deflection curves of GPC specimens were steeper than that of OPC concrete specimens. Fracture energy calculated by the work of fracture method was found to be similar in both types of concrete. Available equations for fracture energy of OPC concrete yielded conservative estimations of fracture energy of GPC. The critical stress intensity factor of GPC was found to be higher than that of OPC concrete. The different fracture behaviour of GPC is mainly because of its higher tensile strength and bond strength than OPC concrete of the same compressive strength.

  18. Public priorities for osteoporosis and fracture research: results from a general population survey.

    Science.gov (United States)

    Paskins, Zoe; Jinks, Clare; Mahmood, Waheed; Jayakumar, Prakash; Sangan, Caroline B; Belcher, John; Gwilym, Stephen

    2017-12-01

    This is the first national study of public and patient research priorities in osteoporosis and fracture. We have identified new research areas of importance to members of the public, particularly 'access to information from health professionals'. The findings are being incorporated into the research strategy of the National Osteoporosis Society. This study aimed to prioritise, with patients and public members, research topics for the osteoporosis research agenda. An e-survey to identify topics for research was co-designed with patient representatives. A link to the e-survey was disseminated to supporters of the UK National Osteoporosis Society (NOS) in a monthly e-newsletter. Responders were asked to indicate their top priority for research across four topics (understanding and preventing osteoporosis, living with osteoporosis, treating osteoporosis and treating fractures) and their top three items within each topic. Descriptive statistics were used to describe demographics and item ranking. A latent class analysis was applied to identify a substantive number of clusters with different combinations of binary responses. One thousand one hundred eighty-eight (7.4%) respondents completed the e-survey. The top three items overall were 'Having easy access to advice and information from health professionals' (63.8%), 'Understanding further the safety and benefit of osteoporosis drug treatments' (49.9%) and 'Identifying the condition early by screening' (49.2%). Latent class analysis revealed distinct clusters of responses within each topic including primary care management and self-management. Those without a history of prior fracture or aged under 70 were more likely to rate items within the cluster of self-management as important (21.0 vs 12.9 and 19.8 vs 13.3%, respectively). This is the first study of public research priorities in osteoporosis and has identified new research areas of importance to members of the public including access to information. The findings

  19. Analysis of systematic fracturing in Eocene flsch of the Slovenian coastal region

    Directory of Open Access Journals (Sweden)

    Marko Vrabec

    2017-12-01

    Full Text Available We analyse systematic fractures occurring in sandstone beds in Eocene flsch of the Slovenian coastal area. Two nearly perpendicular fracture sets were identifid: fractures F1 are generally NW-SE oriented, wellexpressed and predominately planar, whereas fractures F2 are NE-SW-striking, shorter, more irregular in shape, and terminate against the F1 set. The average orientation of both sets does not change signifiantly in a coastal transect crossing all principal structural domains of the area. We analysed fracture spacing with respect to layer thickness and determined fracture spacing index for both fracture sets. We interpret both fracture sets as tensional (Mode I joints originating in two distinct extensional episodes. Set F1 is older and formed in NE-SW directed tension which we correlate with the well-documented regional post-Dinaric orogen-perpendicular extension of presumably mid-Miocene age. Set F2 formed in NW-SE oriented tension, which is compatible with previously documented NE-SW-striking normal faults occurring in the area, but was so far not documented elsewhere. We interpret that F1 fractures predate folding and thrusting in the coastal belt. Earlier, Eocene-Oligocene Dinaric thrusting therefore did not signifiantly affect the coastal area, whereas post-F1 shortening, associated with northward indentation and underthrusting of the Adria microplate, did not commence before late Miocene.

  20. Mechanics of Hydraulic Fractures

    Science.gov (United States)

    Detournay, Emmanuel

    2016-01-01

    Hydraulic fractures represent a particular class of tensile fractures that propagate in solid media under pre-existing compressive stresses as a result of internal pressurization by an injected viscous fluid. The main application of engineered hydraulic fractures is the stimulation of oil and gas wells to increase production. Several physical processes affect the propagation of these fractures, including the flow of viscous fluid, creation of solid surfaces, and leak-off of fracturing fluid. The interplay and the competition between these processes lead to multiple length scales and timescales in the system, which reveal the shifting influence of the far-field stress, viscous dissipation, fracture energy, and leak-off as the fracture propagates.

  1. Orbital Blowout Fracture with Complete Dislocation of the Globe into the Maxillary Sinus.

    Science.gov (United States)

    Wang, Joy Mh; Fries, Fabian N; Hendrix, Philipp; Brinker, Titus; Loukas, Marios; Tubbs, R Shane

    2017-09-29

    This rare case report describes the diagnosis and treatment of an isolated left-sided orbital floor fracture with a complete dislocation of the globe into the maxillary sinus and briefly discusses the indications of surgery and recovery for orbital floor fractures in general. Complete herniation of the globe through an orbital blow-out fracture is uncommon. However, the current case illustrates that such an occurrence should be in the differential diagnosis and should be considered, especially following high speed/impact injuries involving a foreign object. In these rare cases, surgical intervention is required.

  2. Surgical Stabilization of Pelvic and Acetabular Fractures: A Review on the Determinants of Clinical Outcomes

    Directory of Open Access Journals (Sweden)

    SS Sathappan

    2010-03-01

    Full Text Available AIM: Pelvic and acetabular fractures are associated with high-energy trauma. The aim of this study was to identify factors that are associated with specific clinical outcomes following treatment for these fractures. METHODS: A consecutive series of 30 patients who had surgical intervention for either pelvic or acetabular fractures formed the sample for this study. Clinical variables reviewed were: age, associated injuries, number of surgical procedures, time to surgery and post-operative complications. Clinical outcomes were assessed using Matta’s grading of post- operative fracture reduction alignment, and functional outcomes were graded using D'Aubigne & Postel’s Hip scoring system. RESULTS: Study subjects included twelve pelvic fractures and eighteen acetabular fractures. Patients older than 50 years of age had poorer hip scores despite surgery. Earlier fracture fixation (within five days was associated with better hip scores. Patients with acetabular fractures generally had better functional outcomes than patients with pelvic fractures (mean hip score 15.0 vs. 13.5. Closer anatomical reduction of acetabular fractures was associated with better functional outcome. CONCLUSION: Improved clinical outcomes are associated with younger age, fewer concomitant injuries, shorter time interval to surgery and more closely approximated anatomical fracture reduction.

  3. Seismic characteristics of tensile fracture growth induced by hydraulic fracturing

    Science.gov (United States)

    Eaton, D. W. S.; Van der Baan, M.; Boroumand, N.

    2014-12-01

    Hydraulic fracturing is a process of injecting high-pressure slurry into a rockmass to enhance its permeability. Variants of this process are used for unconventional oil and gas development, engineered geothermal systems and block-cave mining; similar processes occur within volcanic systems. Opening of hydraulic fractures is well documented by mineback trials and tiltmeter monitoring and is a physical requirement to accommodate the volume of injected fluid. Numerous microseismic monitoring investigations acquired in the audio-frequency band are interpreted to show a prevalence of shear-dominated failure mechanisms surrounding the tensile fracture. Moreover, the radiated seismic energy in the audio-frequency band appears to be a miniscule fraction (<< 1%) of the net injected energy, i.e., the integral of the product of fluid pressure and injection rate. We use a simple penny-shaped crack model as a predictive framework to describe seismic characteristics of tensile opening during hydraulic fracturing. This model provides a useful scaling relation that links seismic moment to effective fluid pressure within the crack. Based on downhole recordings corrected for attenuation, a significant fraction of observed microseismic events are characterized by S/P amplitude ratio < 5. Despite the relatively small aperture of the monitoring arrays, which precludes both full moment-tensor analysis and definitive identification of nodal planes or axes, this ratio provides a strong indication that observed microseismic source mechanisms have a component of tensile failure. In addition, we find some instances of periodic spectral notches that can be explained by an opening/closing failure mechanism, in which fracture propagation outpaces fluid velocity within the crack. Finally, aseismic growth of tensile fractures may be indicative of a scenario in which injected energy is consumed to create new fracture surfaces. Taken together, our observations and modeling provide evidence that

  4. Individualized fracture risk assessment: State-of-the-art and room for improvement

    Directory of Open Access Journals (Sweden)

    Tuan V. Nguyen

    2018-03-01

    Full Text Available Fragility fracture is a serious clinical event, because it is associated with increased risk of mortality and reduced quality of life. The risk of fracture is determined by multiple risk factors, and their effects may be interactional. Over the past 10 years, a number of predictive models (e.g., FRAX, Garvan Fracture Risk Calculator, and Qfracture have been developed for individualized assessment of fracture risk. These models use different risk profiles to estimate the probability of fracture over 5- and 10-year period. The ability of these models to discriminate between those individuals who will and will not have a fracture (i.e., area under the receiver operating characteristic curve [AUC] is generally acceptable-to-good (AUC, 0.6 to 0.8, and is highly variable between populations. The calibration of existing models is poor, particularly in Asian populations. There is a strong need for the development and validation of new prediction models based on Asian data for Asian populations. We propose approaches to improve the accuracy of existing predictive models by incorporating new markers such as genetic factors, bone turnover markers, trabecular bone score, and time-variant factors. New and more refined models for individualized fracture risk assessment will help identify those most likely to sustain a fracture, those most likely to benefit from treatment, and encouraging them to modify their risk profile to decrease risk. Keywords: Osteoporosis, Fracture, Fracture risk assessment, Genetic profiling, FRAX, Garvan

  5. Skull and Posterior Rib Fractures with Respiratory Failure caused by Child Abuse

    Directory of Open Access Journals (Sweden)

    Dzulfikar Djalil Lukmanul Hakim

    2017-03-01

    Full Text Available Background: Presence of multiple fractures suggests child abuse. Skull fractures rarely occurred but posterior rib fractures are commonly found and have high specificity as a radiological finding in child abuse. A respiratory failure can occur as a result of the damage to the osseous structure of the thorax that destabilizes the rib cage and impairs spontaneous breathing mechanism. Methods: A case report of a 6-month-old boy who presented with respiratory failure, multiple bilateral parietal and occipital bone fractures, and also fractures of right rib 5–8. The patient required ventilatory support for 9 days in the Pediatric Intensive Care Unit, Dr.HasanSadikin General Hospital. Results: The patient was on ventilatory support for 9 days, and was given antibiotics for 2 weeks. Next, the patient was referred to the High Care Unit (HCU after the condition was stabilized, and then referred to the ward, for treatment by the Social Pediatric Division. The patient was still having issues about his foster care. Conclusions: Recognition of presence of fractures is important in early diagnosis and treatment of child abuse.

  6. MONOLATERAL LOW-INVASIVE TREATMENT OF HUMERAL SHAFT FRACTURE IN CHILDREN

    Directory of Open Access Journals (Sweden)

    V. P. Kuzmin

    2012-01-01

    Full Text Available Humeral fractures in children are from 4 up to 10% of the general number of child fractures. Recently the trend is marked to expansion of indications to operative treatment despite of mainly conservative treatment of humeral shaft fractures. The experience of humeral shaft fractures operative treatment with use of Ender nails was analyzed. 8 humeral bones were treated with use of 2 nails, 15 humeral bones - with use of 1 nail only. The good and excellent results were received in both groups of patients. At the same time group with monolateral osteosynthesis (with 1 nail had statistically significant (p<0,01 decreasing of surgery time (average difference 16 min, and also it had statistically significant (p <0,001 decreasing of X-ray exposition time (average difference 23 sec in comparison with group where the osteosynthesis was done with use of 2 nails. The results received in study show necessity of the further work for this direction.

  7. Pathological fractures in children

    Science.gov (United States)

    De Mattos, C. B. R.; Binitie, O.; Dormans, J. P.

    2012-01-01

    Pathological fractures in children can occur as a result of a variety of conditions, ranging from metabolic diseases and infection to tumours. Fractures through benign and malignant bone tumours should be recognised and managed appropriately by the treating orthopaedic surgeon. The most common benign bone tumours that cause pathological fractures in children are unicameral bone cysts, aneurysmal bone cysts, non-ossifying fibromas and fibrous dysplasia. Although pathological fractures through a primary bone malignancy are rare, these should be recognised quickly in order to achieve better outcomes. A thorough history, physical examination and review of plain radiographs are crucial to determine the cause and guide treatment. In most benign cases the fracture will heal and the lesion can be addressed at the time of the fracture, or after the fracture is healed. A step-wise and multidisciplinary approach is necessary in caring for paediatric patients with malignancies. Pathological fractures do not have to be treated by amputation; these fractures can heal and limb salvage can be performed when indicated. PMID:23610658

  8. Hydrologic mechanisms governing fluid flow in partially saturated, fractured, porous tuff at Yucca Mountain

    International Nuclear Information System (INIS)

    Wang, J.S.Y.; Narasimhan, T.N.

    1984-10-01

    In contrast to the saturated zone where fluid moves rapidly along fractures, the fractures (with apertures large relative to the size of matrix pores) will desaturate first during drainage process and the bulk of fluid flow would be through interconnected pores in the matrix. Within a partially drained fracture, the presence of a relatively continuous air phase will produce practically an infinite resistance to liquid flow in the direction parallel to the fracture. The residual liquid will be held by capillary force in regions around fracture contact areas where the apertures are small. Normal to the fracture surfaces, the drained portion of the fractures will reduce the effective area for liquid flow from one matrix block to another matrix block. A general statistical theory is constructed for flow along the fracture and for flow between the matrix blocks to the fractures under partially saturated conditions. Results are obtained from an aperture distribution model for fracture saturation, hydraulic conductivity, and effective matrix-fracture flow areas as functions of pressure. Drainage from a fractured tuff column is simulated. The parameters for the simulations are deduced from fracture surface characteristics, spacings and orientations based on core analyses, and from matrix characteristics curve based on laboratory measurements. From the cases simulated for the fractured, porous column with discrete vertical and horizontal fractures and porous matrix blocks explicitly taken into account, it is observed that the highly transient changes from fully saturated conditions to partially saturated conditions are extremely sensitive to the fracture properties. However, the quasi-steady changes of the fluid flow of a partially saturated, fractured, porous system could be approximately simulated without taking the fractures into account. 22 references, 16 figures

  9. Hereditary bone dysplasia with pathological fractures and nodal osteoarthropathy

    International Nuclear Information System (INIS)

    Arendse, Regan; Brink, Paul; Beighton, Peter

    2009-01-01

    A father and daughter both had multiple pathological fractures and nodal osteoarthropathy. The father, aged 50 years, had at least 20 healed fractures of the axial and appendicular skeleton, sustained by minor trauma over his 50-year lifespan, many of which had been surgically fixed prior to his first presentation to us. Fractures of the clavicles, thoracic cage and long bones of the arms and legs, had healed with malalignment and deformity. Healed fractures were complicated by ankylosis of the cervical vertebrae and both elbows. He also had osteoarthritis of the hands, with exuberant osteophytosis, and profound perceptive deafness. His general health was good, his intellect and facies were normal, and his sclerae were white. The daughter, aged 27 years, had sustained at least seven fractures of the axial and appendicular skeleton following trivial injuries, in distribution similar to those of the father. She had also experienced painful swelling of the fingers, which preceded progressive development of nodal osteoarthropathy. Her hearing was normal. In both individuals, biochemical and immunological investigations yielded normal results. It was not possible for molecular studies to be undertaken. Pedigree data were consistent with autosomal dominant transmission, and this disorder appeared to be a previously undocumented heritable skeletal dysplasia. (orig.)

  10. Hereditary bone dysplasia with pathological fractures and nodal osteoarthropathy

    Energy Technology Data Exchange (ETDEWEB)

    Arendse, Regan [University of Stellenbosch, Department of Medicine, Tygerberg Hospital, Stellenbosch (South Africa); University of Cape Town, Division of Rheumatology, Groote Schuur Hospital, Cape Town (South Africa); Brink, Paul [University of Stellenbosch, Department of Medicine, Tygerberg Hospital, Stellenbosch (South Africa); Beighton, Peter [University of Cape Town, Division of Human Genetics, Faculty of Health Sciences, Cape Town (South Africa)

    2009-12-15

    A father and daughter both had multiple pathological fractures and nodal osteoarthropathy. The father, aged 50 years, had at least 20 healed fractures of the axial and appendicular skeleton, sustained by minor trauma over his 50-year lifespan, many of which had been surgically fixed prior to his first presentation to us. Fractures of the clavicles, thoracic cage and long bones of the arms and legs, had healed with malalignment and deformity. Healed fractures were complicated by ankylosis of the cervical vertebrae and both elbows. He also had osteoarthritis of the hands, with exuberant osteophytosis, and profound perceptive deafness. His general health was good, his intellect and facies were normal, and his sclerae were white. The daughter, aged 27 years, had sustained at least seven fractures of the axial and appendicular skeleton following trivial injuries, in distribution similar to those of the father. She had also experienced painful swelling of the fingers, which preceded progressive development of nodal osteoarthropathy. Her hearing was normal. In both individuals, biochemical and immunological investigations yielded normal results. It was not possible for molecular studies to be undertaken. Pedigree data were consistent with autosomal dominant transmission, and this disorder appeared to be a previously undocumented heritable skeletal dysplasia. (orig.)

  11. A lateral approach to the repair of propagating fractures of the medial condyle of the third metacarpal and metatarsal bone in 18 racehorses.

    Science.gov (United States)

    Wright, Ian M; Smith, Matthew R W

    2009-08-01

    To report the technique, observations on fracture configurations and results of treatment by fixation lag screw following the fracture plane determined by an approach to the third metacarpal/metatarsal bone (MC3/MT3) that begins laterally over the metacarpo(metatarso)phalangeal joint and extends dorsally over the diaphysis of the bone. Case series. Thoroughbred horses (n=18) with propagating fractures of the medial condyle of MC3/MT3. Retrospective analysis of case records of horses with fractures of the medial condyle of MC3/MT3 that propagated sagittaly or in a spiral configuration into the diaphysis, repaired surgically under general anesthesia by screw fixation in lag fashion through a lateral approach with periosteal reflection. Fractures were readily identified at surgery, enabling screw fixation in lag fashion following the fracture plane. Fracture configurations varied and could be classified as sagittal and spiral fractures with fractures within each group generally following a similar course. All horses recovered relatively uneventfully from general anesthesia and surgery, and all fractures healed well. Thirteen horses returned to training; 5 subsequently raced. Repair of propagating sagittal and spiral fractures of the medial condyle of MC3/MT3 with diaphyseal involvement, through a lateral approach with periosteal reflection permits stable fixation with minimal complications. In this series there were no catastrophic failures. Fractures of the medial condyle of MC3/MT3 that propagate either sagittaly or in a spiral configuration into the diaphysis can be successfully repaired with screw fixation in lag fashion using a lateral approach with periosteal reflection.

  12. Fluid-driven fracture propagation in heterogeneous media: Probability distributions of fracture trajectories.

    Science.gov (United States)

    Santillán, David; Mosquera, Juan-Carlos; Cueto-Felgueroso, Luis

    2017-11-01

    Hydraulic fracture trajectories in rocks and other materials are highly affected by spatial heterogeneity in their mechanical properties. Understanding the complexity and structure of fluid-driven fractures and their deviation from the predictions of homogenized theories is a practical problem in engineering and geoscience. We conduct a Monte Carlo simulation study to characterize the influence of heterogeneous mechanical properties on the trajectories of hydraulic fractures propagating in elastic media. We generate a large number of random fields of mechanical properties and simulate pressure-driven fracture propagation using a phase-field model. We model the mechanical response of the material as that of an elastic isotropic material with heterogeneous Young modulus and Griffith energy release rate, assuming that fractures propagate in the toughness-dominated regime. Our study shows that the variance and the spatial covariance of the mechanical properties are controlling factors in the tortuousness of the fracture paths. We characterize the deviation of fracture paths from the homogenous case statistically, and conclude that the maximum deviation grows linearly with the distance from the injection point. Additionally, fracture path deviations seem to be normally distributed, suggesting that fracture propagation in the toughness-dominated regime may be described as a random walk.

  13. Environment-assisted cracking of cast WE43-T6 magnesium

    International Nuclear Information System (INIS)

    Marrow, T.J.; Bin Ahmad, A.; Khan, I.N.; Sim, S.M.A.; Torkamani, S.

    2004-01-01

    Environment-assisted cracking of WE43 cast magnesium (4.2 wt.% Yt, 2.3 wt.% Nd, 0.7% Zr, 0.8% HRE) in the T6 peak-aged condition was induced in ambient air in notched specimens. The mechanism of fracture was studied using electron backscatter diffraction, serial sectioning and in situ observations of crack propagation. Cracks initiated at the intergranular brittle intermetallic, and propagated by transgranular cleavage. These observations imply that a microstructural model for the static fatigue limit in cast magnesium alloys may be developed which includes the effects of notch-like defects such as porosity

  14. Traumatic thoracolumbar spine fractures

    NARCIS (Netherlands)

    J. Siebenga (Jan)

    2013-01-01

    textabstractTraumatic spinal fractures have the lowest functional outcomes and the lowest rates of return to work after injury of all major organ systems.1 This thesis will cover traumatic thoracolumbar spine fractures and not osteoporotic spine fractures because of the difference in fracture

  15. Epidemiology of rib fractures in older men: Osteoporotic Fractures in Men (MrOS) prospective cohort study.

    Science.gov (United States)

    Barrett-Connor, Elizabeth; Nielson, Carrie M; Orwoll, Eric; Bauer, Douglas C; Cauley, Jane A

    2010-03-15

    To study the causes and consequences of radiologically confirmed rib fractures (seldom considered in the context of osteoporosis) in community dwelling older men. Prospective cohort study (Osteoporotic Fractures in Men (MrOS) Study). 5995 men aged 65 or over recruited in 2000-2 from six US sites; 99% answered mailed questionnaires about falls and fractures every four months for a mean 6.2 (SD 1.3) year follow-up. New fractures validated by radiology reports; multivariate Cox proportional hazard ratios were used to evaluate factors independently associated with time to incident rib fracture; associations between baseline rib fracture and incident hip and wrist fracture were also evaluated. The incidence of rib fracture was 3.5/1000 person years, and 24% (126/522) of all incident non-spine fractures were rib fractures. Nearly half of new rib fractures (48%; n=61) followed falling from standing height or lower. Independent risk factors for an incident rib fracture were age 80 or above, low bone density, difficulty with instrumental activities of daily living, and a baseline history of rib/chest fracture. Men with a history of rib/chest fracture had at least a twofold increased risk of an incident rib fracture (adjusted hazard ratio 2.71, 95% confidence interval 1.86 to 3.95), hip fracture (2.05, 1.33 to 3.15), and wrist fracture (2.06, 1.14 to 3.70). Only 14/82 of men reported being treated with bone specific drugs after their incident rib fracture. Rib fracture, the most common incident clinical fracture in men, was associated with classic risk markers for osteoporosis, including old age, low hip bone mineral density, and history of fracture. A history of rib fracture predicted a more than twofold increased risk of future fracture of the rib, hip, or wrist, independent of bone density and other covariates. Rib fractures should be considered to be osteoporotic fractures in the evaluation of older men for treatment to prevent future fracture.

  16. Analysis of fracture patterns and local stress field variations in fractured reservoirs

    Science.gov (United States)

    Deckert, Hagen; Drews, Michael; Fremgen, Dominik; Wellmann, J. Florian

    2010-05-01

    A meaningful qualitative evaluation of permeabilities in fractured reservoirs in geothermal or hydrocarbon industry requires the spatial description of the existing discontinuity pattern within the area of interest and an analysis how these fractures might behave under given stress fields. This combined information can then be used for better estimating preferred fluid pathway directions within the reservoir, which is of particular interest for defining potential drilling sites. A description of the spatial fracture pattern mainly includes the orientation of rock discontinuities, spacing relationships between single fractures and their lateral extent. We have examined and quantified fracture patterns in several outcrops of granite at the Costa Brava, Spain, and in the Black Forest, Germany, for describing reservoir characteristics. For our analysis of fracture patterns we have used photogrammetric methods to create high-resolution georeferenced digital 3D images of outcrop walls. The advantage of this approach, compared to conventional methods for fracture analysis, is that it provides a better 3D description of the fracture geometry as the entity of position, extent and orientation of single fractures with respect to their surrounding neighbors is conserved. Hence for instance, the method allows generating fracture density maps, which can be used for a better description of the spatial distribution of discontinuities in a given outcrop. Using photogrammetric techniques also has the advantage to acquire very large data sets providing statistically sound results. To assess whether the recorded discontinuities might act as fluid pathways information on the stress field is needed. A 3D model of the regional tectonic structure was created and the geometry of the faults was put into a mechanical 3D Boundary Element (BE) Model. The model takes into account the elastic material properties of the geological units and the orientation of single fault segments. The

  17. [Epidemiology of maxillofacial fractures due to traffic accidents in Medellin (Colombia)].

    Science.gov (United States)

    Agudelo-Suárez, Andrés A; Duque-Serna, Francisco Levi; Restrepo-Molina, Lucas; Martínez-Herrera, Eliana

    2015-09-01

    To characterize maxillofacial fractures due to traffic accidents in patients attending the Hospital Universitario San Vicente Fundación (Medellin-Colombia) from 1998 to 2010. A descriptive study (n =1609) was carried out with information from the medical records of patients meeting the inclusion criteria established by the general objective of the study. The variables consisted of sex, age, year, type and number of fractures, and type of vehicle. A descriptive analysis of the variables was performed and the frequency of fractures due to traffic accidents was calculated according to year and sex. Crude and adjusted odds ratios (aOR) were estimated to establish associations among age, type of vehicle, and the presence of two or more fractures with stratification by sex. The frequency of maxillofacial fractures due to traffic accidents increased in 2007 (men: n=198, women: n=35) and decreased from 2008 to 2010 in both sexes. Fractures were more frequent in persons aged <35 years (80%) and in men (82%). The highest frequency of fractures was observed in motorists. Male users of motorcycles (aOR=1.41; confidence interval 95% [95%CI]: 1.02- 1.94) and bicycles (aOR=1.61; 95%CI: 1.01- 2.56) were more likely to report two or more fractures compared with pedestrians, after adjustment for other variables. Most maxillofacial fractures occurred in men and in motorists. Future studies should analyze other determinants affecting the epidemiology of maxillofacial fractures. Strategies should be designed to improve the use of protective elements and drivers' knowledge and practices. Copyright © 2014 SESPAS. Published by Elsevier Espana. All rights reserved.

  18. Radiological classification of mandibular fractures

    International Nuclear Information System (INIS)

    Mihailova, H.

    2009-01-01

    Mandibular fractures present the biggest part (up to 97%) of the facial bone fractures. Method of choice for diagnosing of mandibular fractures is conventional radiography. The aim of the issue is to present an unified radiological classification of mandibular fractures for the clinical practice. This classification includes only those clinical symptoms of mandibular fracture which could be radiologically objectified: exact anatomical localization (F1-F6), teeth in fracture line (Ta,Tb), grade of dislocation (D I, D II), occlusal disturbances (O(+), O(-)). Radiological symptoms expressed by letter and number symbols are systematized in a formula - FTDO of mandibular fractures similar to TNM formula for tumours. FTDO formula expresses radiological diagnose of each mandibular fracture but it doesn't include neither the site (left or right) of the fracture, nor the kind and number of fractures. In order to express topography and number of fractures the radiological formula is transformed into a decimal fraction. The symbols (FTD) of right mandible fracture are written in the numerator and those of the left site - in the denominator. For double and multiple fractures between the symbols for each fracture we put '+'. Symbols for occlusal disturbances are put down opposite, the fractional line. So topographo-anatomical formula (FTD/FTD)xO is formed. In this way the whole radiological information for unilateral, bilateral, single or multiple fractures of the mandible is expressed. The information in the radiological topography anatomic formula, resp. from the unified topography-anatomic classification ensures a quick and exact X-ray diagnose of mandibular fracture. In this way contributes to get better, make easier and faster X-ray diagnostic process concerning mandibular fractures. And all these is a precondition for prevention of retardation of the diagnosis mandibular fracture. (author)

  19. Use of fracture mechanics in engineering problems

    Energy Technology Data Exchange (ETDEWEB)

    Carter, C S

    1965-02-26

    If an engineering material containing a crack is subjected to a slowly increasing load, applied so that the crack tends to open, a small zone of plastic yielding develops at the crack tip. This zone increases in size with increasing load, and has the effect of resisting the tendency of the crack to extend. The basic concepts of fracture mechanics are outlined and the significance of crack toughness as measured by KDcU and KD1cU which relate the applied stress and crack size for unstable fracture prior to general yielding is discussed. The methods available for crack-toughness evaluation are indicated, and the mathematical expressions describing KDcU and KD1cU for a variety of geometrical situations are quoted. This approach to the design of fracture- resistant structures has been used in a number of fields in the U.S. and could be of value to the British steam turbine, aerospace, and pressure-vessel industries for design, inspection, and material selection. (64 refs.)

  20. An unusual stress fracture: Bilateral posterior longitudinal stress fracture of tibia.

    Science.gov (United States)

    Malkoc, Melih; Korkmaz, Ozgur; Ormeci, Tugrul; Oltulu, Ismail; Isyar, Mehmet; Mahirogulları, Mahir

    2014-01-01

    Stress fractures (SF) occur when healthy bone is subjected to cyclic loading, which the normal carrying range capacity is exceeded. Usually, stress fractures occur at the metatarsal bones, calcaneus, proximal or distal tibia and tends to be unilateral. This article presents a 58-year-old male patient with bilateral posterior longitudinal tibial stress fractures. A 58 years old male suffering for persistent left calf pain and decreased walking distance for last one month and after imaging studies posterior longitudinal tibial stress fracture was detected on his left tibia. After six months the patient was admitted to our clinic with the same type of complaints in his right leg. All imaging modalities and blood counts were performed and as a result longitudinal posterior tibial stress fractures were detected on his right tibia. Treatment of tibial stress fracture includes rest and modified activity, followed by a graded return to activity commensurate with bony healing. We have applied the same treatment protocol and our results were acceptable but our follow up time short for this reason our study is restricted for separate stress fractures of the posterior tibia. Although the main localization of tibial stress fractures were unilateral, anterior and transverse pattern, rarely, like in our case, the unusual bilateral posterior localization and longitudinal pattern can be seen. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Self-designed femoral neck guide pin locator for femoral neck fractures.

    Science.gov (United States)

    Xia, Shengli; Wang, Ziping; Wang, Minghui; Wu, Zuming; Wang, Xiuhui

    2014-01-01

    Closed reduction and fixation with 3 cannulated screws is a widely accepted surgery for the treatment of femoral neck fractures. However, how to obtain optimal screw placement remains unclear. In the current study, the authors designed a guide pin positioning system for femoral neck fracture cannulated screw fixation and examined its application value by comparing it with freehand guide needle positioning and with general guide pin locator positioning provided by equipment manufacturers. The screw reset rate, screw parallelism, triangle area formed by the link line of the entry point of 3 guide pins, and maximum vertical load bearing of the femoral neck after internal fixation were recorded. As expected, the triangle area was largest in the self-designed positioning group, followed by the general positioning group and the freehand positioning group. The difference among the 3 groups was statistically significant (P.05). The authors’ self-designed guide pin positioning system has the potential to accurately insert cannulated screws in femoral neck fractures and may reduce bone loss and unnecessary radiation.

  2. Cryogenic mechanical properties of low density superplastically formable Al-Li alloys

    Science.gov (United States)

    Verzasconi, S. L.; Morris, J. W., Jr.

    1989-01-01

    The aerospace industry is considering the use of low density, superplastically formable (SPF) materials, such as Al-Li alloys in cryogenic tankage. SPF modifications of alloys 8090, 2090, and 2090+In were tested for strength and Kahn tear toughness. The results were compared to those of similar tests of 2219-T87, an alloy currently used in cryogenic tankage, and 2090-T81, a recently studied Al-Li alloy with exceptional cryogenic properties (1-9). With decreasing temperature, all materials showed an increase in strength, while most materials showed an increase in elongation and decrease in Kahn toughness. The indium addition to 2090 increased alloy strength, but did not improve the strength-toughness combination. The fracture mode was predominantly intergranular along small, recrystallized grains, with some transgranular fracture, some ductile rupture, and some delamination on large, unrecrystallized grains.

  3. Osteoporosis, Fractures, and Diabetes

    Directory of Open Access Journals (Sweden)

    Peter Jackuliak

    2014-01-01

    Full Text Available It is well established that osteoporosis and diabetes are prevalent diseases with significant associated morbidity and mortality. Patients with diabetes mellitus have an increased risk of bone fractures. In type 1 diabetes, the risk is increased by ∼6 times and is due to low bone mass. Despite increased bone mineral density (BMD, in patients with type 2 diabetes the risk is increased (which is about twice the risk in the general population due to the inferior quality of bone. Bone fragility in type 2 diabetes, which is not reflected by bone mineral density, depends on bone quality deterioration rather than bone mass reduction. Thus, surrogate markers and examination methods are needed to replace the insensitivity of BMD in assessing fracture risks of T2DM patients. One of these methods can be trabecular bone score. The aim of the paper is to present the present state of scientific knowledge about the osteoporosis risk in diabetic patient. The review also discusses the possibility of problematic using the study conclusions in real clinical practice.

  4. Evaluation of Fibular Fracture Type vs Location of Tibial Fixation of Pilon Fractures.

    Science.gov (United States)

    Busel, Gennadiy A; Watson, J Tracy; Israel, Heidi

    2017-06-01

    Comminuted fibular fractures can occur with pilon fractures as a result of valgus stress. Transverse fibular fractures can occur with varus deformation. No definitive guide for determining the proper location of tibial fixation exists. The purpose of this study was to identify optimal plate location for fixation of pilon fractures based on the orientation of the fibular fracture. One hundred two patients with 103 pilon fractures were identified who were definitively treated at our institution from 2004 to 2013. Pilon fractures were classified using the AO/OTA classification and included 43-A through 43-C fractures. Inclusion criteria were age of at least 18 years, associated fibular fracture, and definitive tibial plating. Patients were grouped based on the fibular component fracture type (comminuted vs transverse), and the location of plate fixation (medial vs lateral) was noted. Radiographic outcomes were assessed for mechanical failures. Forty fractures were a result of varus force as evidenced by transverse fracture of the fibula and 63 were due to valgus force with a comminuted fibula. For the transverse fibula group, 14.3% mechanical complications were noted for medially placed plate vs 80% for lateral plating ( P = .006). For the comminuted fibular group, 36.4% of medially placed plates demonstrated mechanical complications vs 16.7% for laterally based plates ( P = .156). Time to weight bearing as tolerated was also noted to be significant between groups plated medially and laterally for the comminuted group ( P = .013). Correctly assessing the fibular component for pilon fractures provides valuable information regarding deforming forces. To limit mechanical complications, tibial plates should be applied in such a way as to resist the original deforming forces. Level of Evidence Level III, comparative study.

  5. ADVANCED FRACTURING TECHNOLOGY FOR TIGHT GAS: AN EAST TEXAS FIELD DEMONSTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Mukul M. Sharma

    2005-03-01

    The primary objective of this research was to improve completion and fracturing practices in gas reservoirs in marginal plays in the continental United States. The Bossier Play in East Texas, a very active tight gas play, was chosen as the site to develop and test the new strategies for completion and fracturing. Figure 1 provides a general location map for the Dowdy Ranch Field, where the wells involved in this study are located. The Bossier and other tight gas formations in the continental Unites States are marginal plays in that they become uneconomical at gas prices below $2.00 MCF. It was, therefore, imperative that completion and fracturing practices be optimized so that these gas wells remain economically attractive. The economic viability of this play is strongly dependent on the cost and effectiveness of the hydraulic fracturing used in its well completions. Water-fracs consisting of proppant pumped with un-gelled fluid is the type of stimulation used in many low permeability reservoirs in East Texas and throughout the United States. The use of low viscosity Newtonian fluids allows the creation of long narrow fractures in the reservoir, without the excessive height growth that is often seen with cross-linked fluids. These low viscosity fluids have poor proppant transport properties. Pressure transient tests run on several wells that have been water-fractured indicate a long effective fracture length with very low fracture conductivity even when large amounts of proppant are placed in the formation. A modification to the water-frac stimulation design was needed to transport proppant farther out into the fracture. This requires suspending the proppant until the fracture closes without generating excessive fracture height. A review of fracture diagnostic data collected from various wells in different areas (for conventional gel and water-fracs) suggests that effective propped lengths for the fracture treatments are sometimes significantly shorter than those

  6. Fractures in multiple sclerosis

    DEFF Research Database (Denmark)

    Stenager, E; Jensen, K

    1991-01-01

    In a cross-sectional study of 299 MS patients 22 have had fractures and of these 17 after onset of MS. The fractures most frequently involved the femoral neck and trochanter (41%). Three patients had had more than one fracture. Only 1 patient had osteoporosis. The percentage of fractures increase...

  7. Numerical investigation and optimization of multiple fractures in tight gas reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Hou, M.Z. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). ITE; Energie-Forschungszentrum Niedersachsen, Goslar (Germany); Zhou, L. [Energie-Forschungszentrum Niedersachsen, Goslar (Germany)

    2013-08-01

    -150 m will certain influence on each other in terms of the stress change, but not pore pressure. Generally, this influence as simulated at this location has a positive effect on the fracture geometry as well, and may lead to a bigger half-length and a smaller width of the fracture. In order to maximize the production rate in this specific site, transverse multiple fractures with an optimal fracture distance of ca. 57 m should be implemented. This optimal fracture spacing is derived from the counter of 5 direction change of the primary maximum horizontal stress, to ensure that only transverse fractures are generated in this location. However, the influence on longitudinal multiple fractures is very obvious, as observed from the numerical simulations of longitudinal multiple fractures at U2. Under the circumstances, it is recommended that the boreholes should not be drilled exactly in the direction of maximal horizontal stress ({+-}15 ), in order to avoid the overlapping of fractures. (orig.)

  8. A STUDY ON PROXIMAL HUMERAL FRACTURES STABILISED WITH PHILOS PLATE

    Directory of Open Access Journals (Sweden)

    Praveen Sivakumar K

    2017-02-01

    Full Text Available BACKGROUND Techniques for treating complex proximal humeral fractures vary and include fixations using tension bands, percutaneous pins, bone suture, T-plates, intramedullary nails, double tubular plates, hemiarthroplasty, plant tan humerus fixator plates, Polaris nails and blade plates. Complications of these techniques include cutout or back out of the screws and plates, avascular necrosis, nonunion, malunion, nail migration, rotator cuff impairment and impingement syndromes. Insufficient anchorage from conventional implants may lead to early loosening and failure, especially in osteoporotic bones. In general, nonoperative treatment of displaced three and four-part fractures of the proximal humerus leads to poor outcome due to intraarticular nature of injury and inherent instability of the fragments. Comminuted fractures of the proximal humerus are at risk of fixation failure, screw loosening and fracture displacement. Open reduction and internal fixation with conventional plate and screws has been associated with unacceptably high incidence of screw pull out. PHILOS (the proximal humeral internal locking system plate is an internal fixation system that enables angled stabilisation with multiple interlocking screws for fractures of the proximal humerus. MATERIALS AND METHODS 30 patients with proximal humerus fractures who were admitted in the Department of Orthopaedics, Government General Hospital, Kakinada, during the period November 2014 - November 2016 were taken up for study according to inclusion criteria. All patients were treated with PHILOS plate. These proximal humerus fractures were classified according to Neer’s classification. Patients were followed up at 6 weeks, 12 weeks and 6 months’ interval. Functional outcomes for pain, range of motion and muscle power and function were assessed using the Constant-Murley scoring system. Collected data analysed with independent t-test and ANNOVA test. RESULTS The outcome of the study was 1

  9. TIBIAL SHAFT FRACTURES.

    Science.gov (United States)

    Kojima, Kodi Edson; Ferreira, Ramon Venzon

    2011-01-01

    The long-bone fractures occur most frequently in the tibial shaft. Adequate treatment of such fractures avoids consolidation failure, skewed consolidation and reoperation. To classify these fractures, the AO/OTA classification method is still used, but it is worthwhile getting to know the Ellis classification method, which also includes assessment of soft-tissue injuries. There is often an association with compartmental syndrome, and early diagnosis can be achieved through evaluating clinical parameters and constant clinical monitoring. Once the diagnosis has been made, fasciotomy should be performed. It is always difficult to assess consolidation, but the RUST method may help in this. Radiography is assessed in two projections, and points are scored for the presence of the fracture line and a visible bone callus. Today, the dogma of six hours for cleaning the exposed fracture is under discussion. It is considered that an early start to intravenous antibiotic therapy and the lesion severity are very important. The question of early or late closure of the lesion in an exposed fracture has gone through several phases: sometimes early closure has been indicated and sometimes late closure. Currently, whenever possible, early closure of the lesion is recommended, since this diminishes the risk of infection. Milling of the canal when the intramedullary nail is introduced is still a controversial subject. Despite strong personal positions in favor of milling, studies have shown that there may be some advantage in relation to closed fractures, but not in exposed fractures.

  10. Surgical treatment of trochanteric fractures: Indications and early ...

    African Journals Online (AJOL)

    Pr KODO

    Road traffic accident was the main cause of fractures accounting for 42 cases. ... Infection occurred in seven patients, wound hematoma in eight and decubital ... under general anesthesia on a standard operating ... latter device arises while inserting the lower oblique ... preferred.13 The problem with the interlocking nail is.

  11. Treatment of mandibular symphyseal fracture combined with dislocated intracapsular condylar fractures.

    Science.gov (United States)

    Xu, Xiaofeng; Shi, Jun; Xu, Bing; Dai, Jiewen; Zhang, Shilei

    2015-03-01

    To evaluate the treatment methods of mandibular symphyseal fracture combined with dislocated intracapsular condylar fractures (MSF&DICF) and to compare the effect of different treatment methods of condylar fractures. Twenty-eight patients with MSF&DICF were included in this study. Twenty-two sites were treated by open reduction, and all the medial condylar fragments were fixed with titanium screws; whereas the other 22 sites underwent close treatment. The surgical effect between these 2 groups was compared based on clinical examination and radiographic examination results. Seventeen of 22 condyle fractures were repositioned in the surgery group, whereas 4 of 22 condyle fractures were repositioned in the close treatment group. Statistical difference was observed between these 2 groups (P condyle fractures should be treated by surgical reduction with the maintenance of the attachment of lateral pterygoid muscle, which is beneficial to repositioning the dislocated condyle to its original physiological position, to closure of the mandibular lingual gap, to restore the mandibular width.

  12. Classification of Porcine Cranial Fracture Patterns Using a Fracture Printing Interface,.

    Science.gov (United States)

    Wei, Feng; Bucak, Serhat Selçuk; Vollner, Jennifer M; Fenton, Todd W; Jain, Anil K; Haut, Roger C

    2017-01-01

    Distinguishing between accidental and abusive head trauma in children can be difficult, as there is a lack of baseline data for pediatric cranial fracture patterns. A porcine head model has recently been developed and utilized in a series of studies to investigate the effects of impact energy level, surface type, and constraint condition on cranial fracture patterns. In the current study, an automated pattern recognition method, or a fracture printing interface (FPI), was developed to classify cranial fracture patterns that were associated with different impact scenarios documented in previous experiments. The FPI accurately predicted the energy level when the impact surface type was rigid. Additionally, the FPI was exceedingly successful in determining fractures caused by skulls being dropped with a high-level energy (97% accuracy). The FPI, currently developed on the porcine data, may in the future be transformed to the task of cranial fracture pattern classification for human infant skulls. © 2016 American Academy of Forensic Sciences.

  13. Hydrajet fracturing: an effective method for placing many fractures in openhole horizontal wells

    Energy Technology Data Exchange (ETDEWEB)

    Surjaatmadja, J. B.; Grundmann, S. R.; McDaniel, B.; Deeg, W. F. J.; Brumley, J. L.; Swor, L. C.

    1998-12-31

    A new method for openhole horizontal well fracturing that combines hydrajetting and fracturing techniques, which was developed on the basis of Bernoulli`s theorem, is described. This theorem has been effectively proven in many applications such as jet pumps, additive injection systems and jet aircraft engines. By using this method, operators can position a jetting tool, without the use of sealing elements, at the exact point where fracture is required. The method also permits the use of multiple fractures in the same well, which can be spaced evenly or unevenly as prescribed by the fracturing program. Damage can be avoided by placing hundreds of small fractures in a long horizontal section, or operators can use acid and/or propped sand techniques to place a combination of two fracture types in the well. The paper describes the basic principles of horizontal hydrajet fracturing, and elements of a laboratory model which was developed to demonstrate the effectiveness of the method.

  14. Characterisation of hydraulically-active fractures in a fractured ...

    African Journals Online (AJOL)

    ... in the initial stage of a site investigation to select the optimal site location or to evaluate the hydrogeological properties of fractures in underground exploration studies, such as those related geothermal reservoir evaluation and radioactive waste disposal. Keywords: self-potential method, hydraulically-conductive fractures, ...

  15. A novel approach proposed for fractured zone detection using petrophysical logs

    International Nuclear Information System (INIS)

    Tokhmechi, B; Memarian, H; Noubari, H A; Moshiri, B

    2009-01-01

    Fracture detection is a key step in wellbore stability and fractured reservoir fluid flow simulation. While different methods have been proposed for fractured zones detection, each of them is associated with certain shortcomings that prevent their full use in different related engineering applications. In this paper, a novel combined method is proposed for fractured zone detection, using processing of petrophysical logs with wavelet, classification and data fusion techniques. Image and petrophysical logs from Asmari reservoir in eight wells of an oilfield in southwestern Iran were used to investigate the accuracy and applicability of the proposed method. Initially, an energy matching strategy was utilized to select the optimum mother wavelets for de-noising and decomposition of petrophysical logs. Parzen and Bayesian classifiers were applied to raw, de-noised and various frequency bands of logs after decomposition in order to detect fractured zones. Results show that the low-frequency bands (approximation 2, a 2 ) of de-noised logs are the best data for fractured zones detection. These classifiers considered one well as test well and the other seven wells as train wells. Majority voting, optimistic OWA (ordered weighted averaging) and pessimistic OWA methods were used to fuse the results obtained from seven train wells. Results confirmed that Parzen and optimistic OWA are the best combined methods to detect fractured zones. The generalization of method is confirmed with an average accuracy of about 72%

  16. Fracture propagation in sandstone and slate – Laboratory experiments, acoustic emissions and fracture mechanics

    Directory of Open Access Journals (Sweden)

    Ferdinand Stoeckhert

    2015-06-01

    Full Text Available Fracturing of highly anisotropic rocks is a problem often encountered in the stimulation of unconventional hydrocarbon or geothermal reservoirs by hydraulic fracturing. Fracture propagation in isotropic material is well understood but strictly isotropic rocks are rarely found in nature. This study aims at the examination of fracture initiation and propagation processes in a highly anisotropic rock, specifically slate. We performed a series of tensile fracturing laboratory experiments under uniaxial as well as triaxial loading. Cubic specimens with edge lengths of 150 mm and a central borehole with a diameter of 13 mm were prepared from Fredeburg slate. An experiment using the rather isotropic Bebertal sandstone as a rather isotropic rock was also performed for comparison. Tensile fractures were generated using the sleeve fracturing technique, in which a polymer tube placed inside the borehole is pressurized to generate tensile fractures emanating from the borehole. In the uniaxial test series, the loading was varied in order to observe the transition from strength-dominated fracture propagation at low loading magnitudes to stress-dominated fracture propagation at high loading magnitudes.

  17. A unique case of nontraumatic femoral neck fracture following epilepsia partialis continua

    Directory of Open Access Journals (Sweden)

    Karl O. Nakken

    2015-01-01

    Full Text Available People with epilepsy are more accident prone than the non-epilepsy population. Bone fractures are most often due to seizure-related falls. However, seizures themselves, in particular generalized tonic-clonic seizures, may also cause fractures, e.g. of the thoracic spine. Here, I present a man who developed focal epilepsy following a subarachnoidal hemorrhage. During a focal motor seizure with left-sided convulsions and preserved consciousness that lasted 2 hrs, he sustained a femoral neck fracture. In persons with low mineral density, as in this case, contractions associated with simple focal motor seizures may be sufficient to give rise to such a severe complication.

  18. Rib Fractures

    Science.gov (United States)

    ... Video) Achilles Tendon Tear Additional Content Medical News Rib Fractures By Thomas G. Weiser, MD, MPH, Associate Professor, ... Tamponade Hemothorax Injury to the Aorta Pulmonary Contusion Rib Fractures Tension Pneumothorax Traumatic Pneumothorax (See also Introduction to ...

  19. Orbital fractures: a review

    Directory of Open Access Journals (Sweden)

    Jeffrey M Joseph

    2011-01-01

    Full Text Available Jeffrey M Joseph, Ioannis P GlavasDivision of Ophthalmic Plastic and Reconstructive Surgery, Department of Ophthalmology, School of Medicine, New York University, New York, NY, USA; Manhattan Eye, Ear, and Throat Hospital, New York, NY, USAAbstract: This review of orbital fractures has three goals: 1 to understand the clinically relevant orbital anatomy with regard to periorbital trauma and orbital fractures, 2 to explain how to assess and examine a patient after periorbital trauma, and 3 to understand the medical and surgical management of orbital fractures. The article aims to summarize the evaluation and management of commonly encountered orbital fractures from the ophthalmologic perspective and to provide an overview for all practicing ophthalmologists and ophthalmologists in training.Keywords: orbit, trauma, fracture, orbital floor, medial wall, zygomatic, zygomatic complex, zmc fracture, zygomaticomaxillary complex fractures 

  20. Outcomes in closed reamed interlocking nail in fractures of shaft of femur

    International Nuclear Information System (INIS)

    Mohammad, T.; Sawati, A.; Ahmed, A.

    2015-01-01

    Femoral shaft fracture is one of the common fractures seen in accident and emergency department of our hospital. Violent forces are required to break this and strongest of human bones. There are various treatment modalities for femoral shaft fractures in adults like traction, brace, platting, intramedullary nail (IMN), external fixators and inter locking nails. The study was done with an objective to evaluate the results of closed reamed interlocking nail in fractures of shaft of femur. Methods: A prospective study of 114 cases of femoral shaft fractures was carried out at orthopaedic unit of Ayub Teaching Hospital Abbottabad during 1 year. All these cases were treated with statically locked nails under spinal or general anaesthesia. These cases were followed up for up to one year and Results of the interlocking nail were observed in terms of union and complications. Results: Out of 114 patients, 95 underwent union in 90-150 days with a mean of 110.68 days. Ten patients had dynamization within six weeks because of obvious fracture gap in radiograph. There were 3 patients who had non-union, and 6 patients had delayed union which was treated with dynamization. Conclusion: Close reamed interlocking intramedullary nail in femoral shaft fractures is the treatment of choice. Patient rehabilitation is early, hospitalization is short, and fracture healing response is good. (author)

  1. Clastic patterned ground in Lomonosov crater, Mars: examining fracture controlled formation mechanisms

    Science.gov (United States)

    Barrett, Alexander M.; Balme, Matthew R.; Patel, Manish R.; Hagermann, Axel

    2017-10-01

    The area surrounding Lomonosov crater on Mars has a high density of seemingly organised boulder patterns. These form seemingly sorted polygons and stripes within kilometre scale blockfields, patches of boulder strewn ground which are common across the Martian high latitudes. Several hypotheses have been suggested to explain the formation of clastic patterned ground on Mars. It has been proposed that these structures could have formed through freeze-thaw sorting, or conversely by the interaction of boulders with underlying fracture polygons. In this investigation a series of sites were examined to evaluate whether boulder patterns appear to be controlled by the distribution of underlying fractures and test the fracture control hypotheses for their formation. It was decided to focus on this suite of mechanisms as they are characterised by a clear morphological relationship, namely the presence of an underlying fracture network which can easily be evaluated over a large area. It was found that in the majority of examples at these sites did not exhibit fracture control. Although fractures were present at many sites there were very few sites where the fracture network appeared to be controlling the boulder distribution. In general these were not the sites with the best examples of organization, suggesting that the fracture control mechanisms are not the dominant geomorphic process organising the boulders in this area.

  2. Modeling of strongly heat-driven flow in partially saturated fractured porous media

    International Nuclear Information System (INIS)

    Pruess, K.; Tsang, Y.W.; Wang, J.S.Y.

    1985-01-01

    The authors have performed modeling studies on the simultaneous transport of heat, liquid water, vapor, and air in partially saturated fractured porous media, with particular emphasis on strongly heat-driven flow. The presence of fractures makes the transport problem very complex, both in terms of flow geometry and physics. The numerical simulator used for their flow calculations takes into account most of the physical effects which are important in multi-phase fluid and heat flow. It has provisions to handle the extreme non-linearities which arise in phase transitions, component disappearances, and capillary discontinuities at fracture faces. They model a region around an infinite linear string of nuclear waste canisters, taking into account both the discrete fractures and the porous matrix. From an analysis of the results obtained with explicit fractures, they develop equivalent continuum models which can reproduce the temperature, saturation, and pressure variation, and gas and liquid flow rates of the discrete fracture-porous matrix calculations. The equivalent continuum approach makes use of a generalized relative permeability concept to take into account the fracture effects. This results in a substantial simplification of the flow problem which makes larger scale modeling of complicated unsaturated fractured porous systems feasible. Potential applications for regional scale simulations and limitations of the continuum approach are discussed. 27 references, 13 figures, 2 tables

  3. Modeling of strongly heat-driven flow in partially saturated fractured porous media

    International Nuclear Information System (INIS)

    Pruess, K.; Tsang, Y.W.; Wang, J.S.Y.

    1984-10-01

    We have performed modeling studies on the simultaneous transport of heat, liquid water, vapor, and air in partially saturated fractured porous media, with particular emphasis on strongly heat-driven flow. The presence of fractures makes the transport problem very complex, both in terms of flow geometry and physics. The numerical simulator used for our flow calculations takes into account most of the physical effects which are important in multi-phase fluid and heat flow. It has provisions to handle the extreme non-linearities which arise in phase transitions, component disappearances, and capillary discontinuities at fracture faces. We model a region around an infinite linear string of nuclear waste canisters, taking into account both the discrete fractures and the porous matrix. From an analysis of the results obtained with explicit fractures, we develop equivalent continuum models which can reproduce the temperature, saturation, and pressure variation, and gas and liquid flow rates of the discrete fracture-porous matrix calculations. The equivalent continuum approach makes use of a generalized relative permeability concept to take into account for fracture effects. This results in a substantial simplification of the flow problem which makes larger scale modeling of complicated unsaturated fractured porous systems feasible. Potential applications for regional scale simulations and limitations of the continuum approach are discussed. 27 references, 13 figures, 2 tables

  4. Orbital wall fractures

    International Nuclear Information System (INIS)

    Iinuma, Toshitaka; Ishio, Ken-ichirou; Yoshinami, Hiroyoshi; Kuriyama, Jun-ichi; Hirota, Yoshiharu.

    1993-01-01

    A total of 59 cases of mild facial fractures (simple orbital wall fractures, 34 cases, other facial fractures, 25 cases) with the clinical suspects of orbital wall fractures were evaluated both by conventional views (Waters' and Caldwell views) and coronal CT scans. Conventional views were obtained, as an average, after 4 days and CT after 7 days of injuries. Both the medial wall and the floor were evaluated at two sites, i.e., anterior and posterior. The ethmoid-maxillary plate was also included in the study. The degree of fractures was classified as, no fractures, fractures of discontinuity, dislocation and fragmentation. The coronal CT images in bone window condition was used as reference and the findings were compared between conventional views and CT. The correct diagnosis was obtained as follows: orbital floor (anterior, 78%, posterior, 73%), medial orbital wall (anterior, 72%, posterior, 72%) and ethmoid-maxillary plate (64%). The false positive diagnosis was as follows: orbital floor (anterior only, 13%), medial orbital wall (anterior only, 7%) and ethmoid-maxillary plate (11%). The false negative diagnosis was as follows: orbital floor (anterior, 9%, posterior, 10%), medial orbital wall (anterior, 21%, posterior, 28%) and ethmoid-maxillary plate (21%). The results were compared with those of others in the past. (author)

  5. Multi-zone coupling productivity of horizontal well fracturing with complex fracture networks in shale gas reservoirs

    Directory of Open Access Journals (Sweden)

    Weiyao Zhu

    2018-02-01

    Full Text Available In this paper, a series of specific studies were carried out to investigate the complex form of fracture networks and figure out the multi-scale flowing laws of nano/micro pores–complex fracture networks–wellbore during the development of shale reservoirs by means of horizontal well fracturing. First, hydraulic fractures were induced by means of Brazilian splitting tests. Second, the forms of the hydraulic fractures inside the rock samples were observed by means of X-ray CT scanning to measure the opening of hydraulic fractures. Third, based on the multi-scale unified flowing model, morphological description of fractures and gas flowing mechanism in the matrix–complex fracture network–wellbore, the productivity equation of single-stage horizontal well fracturing which includes diffusion, slipping and desorption was established. And fourthly, a productivity prediction model of horizontal well multi-stage fracturing in the shale reservoir was established considering the interference between the multi-stage fracturing zones and the pressure drop in the horizontal wellbore. The following results were obtained. First, hydraulic fractures are in the form of a complex network. Second, the measured opening of hydraulic fractures is in the range of 4.25–453 μm, averaging 112 μm. Third, shale gas flowing in different shapes of fracture networks follows different nonlinear flowing laws. Forth, as the fracture density in the strongly stimulated zones rises and the distribution range of the hydraulic fractures in strongly/weakly stimulated zones enlarges, gas production increases gradually. As the interference occurs in the flowing zones of fracture networks between fractured sections, the increasing amplitude of gas production rates decreases. Fifth, when the length of a simulated horizontal well is 1500 m and the half length of a fracture network in the strongly stimulated zone is 100 m, the productivity effect of stage 10 fracturing is the

  6. Epidemiology of metatarsal stress fractures versus tibial and femoral stress fractures during elite training.

    Science.gov (United States)

    Finestone, Aharon; Milgrom, Charles; Wolf, Omer; Petrov, Kaloyan; Evans, Rachel; Moran, Daniel

    2011-01-01

    The training of elite infantry recruits takes a year or more. Stress fractures are known to be endemic in their basic training and the clinical presentation of tibial, femoral, and metatarsal stress fractures are different. Stress fracture incidence during the subsequent progressively more demanding training is not known. The study hypothesis was that after an adaptation period, the incidence of stress fractures during the course of 1 year of elite infantry training would fall in spite of the increasingly demanding training. Seventy-six male elite infantry recruits were followed for the development of stress fractures during a progressively more difficult training program composed of basic training (1 to 14 weeks), advanced training (14 to 26 weeks), and unit training (26 to 52 weeks). Subjects were reviewed regularly and those with clinical suspicion of stress fracture were assessed using bone scan and X-rays. The incidence of stress fractures was 20% during basic training, 14% during advanced training and 23% during unit training. There was a statistically significant difference in the incidence of tibial and femoral stress fractures versus metatarsal stress fractures before and after the completion of phase II training at week 26 (p=0.0001). Seventy-eight percent of the stress fractures during phases I and II training were either tibial or femoral, while 91% of the stress fractures in phase III training were metatarsal. Prior participation in ball sports (p=0.02) and greater tibial length (p=0.05) were protective factors for stress fracture. The study hypothesis that after a period of soldier adaptation, the incidence of stress fractures would decrease in spite of the increasingly demanding elite infantry training was found to be true for tibial and femoral fractures after 6 months of training but not for metatarsal stress fractures. Further studies are required to understand the mechanism of this difference but physicians and others treating stress fractures

  7. Floor-Fractured Craters through Machine Learning Methods

    Science.gov (United States)

    Thorey, C.

    2015-12-01

    Floor-fractured craters are impact craters that have undergone post impact deformations. They are characterized by shallow floors with a plate-like or convex appearance, wide floor moats, and radial, concentric, and polygonal floor-fractures. While the origin of these deformations has long been debated, it is now generally accepted that they are the result of the emplacement of shallow magmatic intrusions below their floor. These craters thus constitute an efficient tool to probe the importance of intrusive magmatism from the lunar surface. The most recent catalog of lunar-floor fractured craters references about 200 of them, mainly located around the lunar maria Herein, we will discuss the possibility of using machine learning algorithms to try to detect new floor-fractured craters on the Moon among the 60000 craters referenced in the most recent catalogs. In particular, we will use the gravity field provided by the Gravity Recovery and Interior Laboratory (GRAIL) mission, and the topographic dataset obtained from the Lunar Orbiter Laser Altimeter (LOLA) instrument to design a set of representative features for each crater. We will then discuss the possibility to design a binary supervised classifier, based on these features, to discriminate between the presence or absence of crater-centered intrusion below a specific crater. First predictions from different classifier in terms of their accuracy and uncertainty will be presented.

  8. Anesthetic and Surgical Management of a Bilateral Mandible Fracture in a Patient With Charcot-Marie-Tooth Disease: A Case Report.

    Science.gov (United States)

    Smith, Jeffrey D; Minkin, Patton; Lindsey, Sean; Bovino, Brian

    2015-10-01

    This report describes the case of a 74-year-old man who had been diagnosed with Charcot-Marie-Tooth disease as a child. Because the patient had serious motor and sensory neuropathy associated with his disease, special anesthetic and surgical recommendations had to be considered before he underwent general anesthesia to repair his mandibular fracture. Repair of the mandible was performed under general anesthesia with a nasal endotracheal tube and the use of the nondepolarizing muscle relaxant rocuronium. Open reduction and internal fixation through extraoral approaches were used to fixate the displaced right subcondylar and symphyseal fractures. A closed reduction approach using maxillary fixation screws and a mandibular arch bar with light elastic guidance was used to treat a nondisplaced fracture of the left mandibular ramus. Rigid fixation allowed for avoidance of a period of intermaxillary fixation. General anesthesia and muscle relaxant were administered without complication. Treatment of bilateral mandibular fractures with combined open and closed approaches resulted in restoration of premorbid occlusion and masticatory function. Repair of mandibular fractures under general anesthesia appears to be a safe procedure in patients with Charcot-Marie-Tooth disease when appropriate anesthetic and surgical methods are used. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  9. Fracture toughness evaluation of circumferentially-cracked round bars

    International Nuclear Information System (INIS)

    Scibetta, M.

    1996-05-01

    The measure of the fracture toughness of a circumferentially-cracked round bar is generally performed through approximate formulae. Comparison of existing formulae to finite element results does not always show good agreement. Therefore an eta factor is introduced in order to improve the existing analytical formula. The axisymmetrical geometry is generally considered to be a high constrained geometry. Finite element calculations are performed to verify and quantify the constraint relative to the three point bending configuration (precracked Charpy)

  10. Are there radiologically identifiable prodromal changes in Thoroughbred racehorses with parasagittal fractures of the proximal phalanx?

    Science.gov (United States)

    Smith, M R W; Wright, I M

    2014-01-01

    Fractures of the proximal phalanx are generally considered to result from monotonic supraphysiological loads, but radiological observations from clinical cases suggest there may be a stress-related aetiology. To determine whether there are radiologically identifiable prodromal changes in Thoroughbred racehorses with confirmed parasagittal fractures of the proximal phalanx. Retrospective cross-sectional study. Case records and radiographs of Thoroughbred racehorses with parasagittal fractures of the proximal phalanx were analysed. Thickness of the subchondral bone plate was measured in fractured and contralateral limbs, and additional radiological features consistent with prodromal fracture pathology documented. The subchondral bone plate was significantly thicker in affected than in contralateral limbs. Evidence of additional prodromal fracture pathology was observed in 15/110 (14%) limbs with parasagittal fractures, and in 4% of contralateral limbs. The results of this study are not consistent with monotonic loading as a cause of fracture in at least a proportion of cases, but suggest a stress-related aetiology. Increased thickness of the subchondral bone plate may reflect (failed) adaptive changes that precede fracture. Better understanding of the aetiology of fractures of the proximal phalanx may help develop strategies to reduce the risk of fracture. © 2013 EVJ Ltd.

  11. Use of orthodontic brackets for intermaxillary fixation for management of mandibular fracture in a pediatric patient

    OpenAIRE

    Rajeev Pandey; Anit Khatri; Rajat Gupta; Nitin Bhagat

    2017-01-01

    Fracture of mandible is relatively less common in pediatric population when compared to adults. Management of pediatric mandibular fracture is a very complex issue and requires accurate and early treatment. Although the general principles of treatment remain the same as adult but various factors which influence the choice of management: age, dentition status, site involved, amount of displacement, number of fractures, and socioeconomic status. This case report describes a conservative way of ...

  12. Reduction of femoral fractures in long-term care facilities: the Bavarian fracture prevention study.

    Directory of Open Access Journals (Sweden)

    Clemens Becker

    Full Text Available BACKGROUND: Hip fractures are a major public health burden. In industrialized countries about 20% of all femoral fractures occur in care dependent persons living in nursing care and assisted living facilities. Preventive strategies for these groups are needed as the access to medical services differs from independent home dwelling older persons at risk of osteoporotic fractures. It was the objective of the study to evaluate the effect of a fall and fracture prevention program on the incidence of femoral fracture in nursing homes in Bavaria, Germany. METHODS: In a translational intervention study a fall prevention program was introduced in 256 nursing homes with 13,653 residents. The control group consisted of 893 nursing homes with 31,668 residents. The intervention consisted of staff education on fall and fracture prevention strategies, progressive strength and balance training, and on institutional advice on environmental adaptations. Incident femoral fractures served as outcome measure. RESULTS: In the years before the intervention risk of a femoral fracture did not differ between the intervention group (IG and control group (CG. During the one-year intervention period femoral fracture rates were 33.6 (IG and 41.0/1000 person years (CG, respectively. The adjusted relative risk of a femoral fracture was 0.82 (95% CI 0.72-0.93 in residents exposed to the fall and fracture prevention program compared to residents from CG. CONCLUSIONS: The state-wide dissemination of a multi-factorial fall and fracture prevention program was able to reduce femoral fractures in residents of nursing homes.

  13. Fracture mechanics

    CERN Document Server

    Perez, Nestor

    2017-01-01

    The second edition of this textbook includes a refined presentation of concepts in each chapter, additional examples; new problems and sections, such as conformal mapping and mechanical behavior of wood; while retaining all the features of the original book. The material included in this book is based upon the development of analytical and numerical procedures pertinent to particular fields of linear elastic fracture mechanics (LEFM) and plastic fracture mechanics (PFM), including mixed-mode-loading interaction. The mathematical approach undertaken herein is coupled with a brief review of several fracture theories available in cited references, along with many color images and figures. Dynamic fracture mechanics is included through the field of fatigue and Charpy impact testing. Explains computational and engineering approaches for solving crack-related problems using straightforward mathematics that facilitate comprehension of the physical meaning of crack growth processes; Expands computational understandin...

  14. Estimation of the hydraulic conductivity of a two-dimensional fracture network using effective medium theory and power-law averaging

    Science.gov (United States)

    Zimmerman, R. W.; Leung, C. T.

    2009-12-01

    Most oil and gas reservoirs, as well as most potential sites for nuclear waste disposal, are naturally fractured. In these sites, the network of fractures will provide the main path for fluid to flow through the rock mass. In many cases, the fracture density is so high as to make it impractical to model it with a discrete fracture network (DFN) approach. For such rock masses, it would be useful to have recourse to analytical, or semi-analytical, methods to estimate the macroscopic hydraulic conductivity of the fracture network. We have investigated single-phase fluid flow through generated stochastically two-dimensional fracture networks. The centers and orientations of the fractures are uniformly distributed, whereas their lengths follow a lognormal distribution. The aperture of each fracture is correlated with its length, either through direct proportionality, or through a nonlinear relationship. The discrete fracture network flow and transport simulator NAPSAC, developed by Serco (Didcot, UK), is used to establish the “true” macroscopic hydraulic conductivity of the network. We then attempt to match this value by starting with the individual fracture conductances, and using various upscaling methods. Kirkpatrick’s effective medium approximation, which works well for pore networks on a core scale, generally underestimates the conductivity of the fracture networks. We attribute this to the fact that the conductances of individual fracture segments (between adjacent intersections with other fractures) are correlated with each other, whereas Kirkpatrick’s approximation assumes no correlation. The power-law averaging approach proposed by Desbarats for porous media is able to match the numerical value, using power-law exponents that generally lie between 0 (geometric mean) and 1 (harmonic mean). The appropriate exponent can be correlated with statistical parameters that characterize the fracture density.

  15. Flow channeling in a single fracture as a two-dimensional strongly heterogeneous permeable medium

    International Nuclear Information System (INIS)

    Tsang, Y.W.; Tsang, C.F.

    1990-01-01

    Recent interest in the evaluation of contaminant transport in bedrock aquifers and in the performance assessment of geologic nuclear waste repositories has motivated many studies of fluid flow and tracer transport in fractured rocks. Until recently, numerical modeling of fluid flow in the fractured medium commonly makes the assumption that each fracture may be idealized as a pair of parallel plates separated by a constant distance which represents the aperture of the fracture. More recent theoretical work has taken into account that the aperture in a real rock fracture in fact takes on a range of values. Evidence that flow in fractures tends to coalesce in preferred paths has been found in the field. Current studies of flow channeling in a fracture as a result of the variable apertures may also be applicable to flow and transport in a strongly heterogenous porous medium. This report includes the methodology used to study the flow channelling and tracer transport in a single fracture consisting of variable apertures. Relevant parameters that control flow channeling are then identified and the relationship of results to the general problem of flow in a heterogenous porous medium are discussed

  16. Root fractures

    DEFF Research Database (Denmark)

    Andreasen, Jens Ove; Christensen, Søren Steno Ahrensburg; Tsilingaridis, Georgios

    2012-01-01

    The purpose of this study was to analyze tooth loss after root fractures and to assess the influence of the type of healing and the location of the root fracture. Furthermore, the actual cause of tooth loss was analyzed....

  17. Pore-fluid effects on seismic waves in vertically fractured earth with orthotropic symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, J.G.

    2010-05-15

    For elastically noninteracting vertical-fracture sets at arbitrary orientation angles to each other, a detailed model is presented in which the resulting anisotropic fractured medium generally has orthorhombic symmetry overall. Some of the analysis methods and ideas of Schoenberg are emphasized, together with their connections to other similarly motivated and conceptually related methods by Sayers and Kachanov, among others. Examples show how parallel vertical-fracture sets having HTI (horizontal transversely isotropic) symmetry transform into orthotropic fractured media if some subsets of the vertical fractures are misaligned with the others, and then the fractured system can have VTI (vertical transversely isotropic) symmetry if all of the fractures are aligned randomly or half parallel and half perpendicular to a given vertical plane. An orthotropic example having vertical fractures in an otherwise VTI earth system (studied previously by Schoenberg and Helbig) is compared with the other examples treated and it is finally shown how fluids in the fractures affect the orthotropic poroelastic system response to seismic waves. The key result is that fracture-influence parameters are multiplied by a factor of (1-B), where 0 {le} B < 1 is Skempton's second coefficient for poroelastic media. Skempton's B coefficient is itself a measurable characteristic of fluid-saturated porous rocks, depending on porosity, solid moduli, and the pore-fluid bulk modulus. For heterogeneous porous media, connections between the present work and earlier related results of Brown and Korringa are also established.

  18. Public health impact and economic evaluation of vitamin D-fortified dairy products for fracture prevention in France

    OpenAIRE

    Hiligsmann, M.; Burlet, N.; Fardellone, P.; Al-Daghri, N.; Reginster, J.-Y.

    2016-01-01

    Summary The recommended intake of vitamin D-fortified dairy products can substantially decrease the burden of osteoporotic fractures and seems an economically beneficial strategy in the general French population aged over 60?years. Introduction This study aims to assess the public health and economic impact of vitamin D-fortified dairy products in the general French population aged over 60?years. Methods We estimated the lifetime health impacts expressed in number of fractures prevented, life...

  19. Fracturing process and effect of fracturing degree on wave velocity of a crystalline rock

    Directory of Open Access Journals (Sweden)

    Charalampos Saroglou

    2017-10-01

    Full Text Available The present paper investigates the effect of fracturing degree on P- and S-wave velocities in rock. The deformation of intact brittle rocks under loading conditions is characterized by a microcracking procedure, which occurs due to flaws in their microscopic structure and propagates through the intact rock, leading to shear fracture. This fracturing process is of fundamental significance as it affects the mechanical properties of the rock and hence the wave velocities. In order to determine the fracture mechanism and the effect of fracturing degree, samples were loaded at certain percentages of peak strength and ultrasonic wave velocity was recorded after every test. The fracturing degree was recorded on the outer surface of the sample and quantified by the use of the indices P10 (traces of joints/m, P20 (traces of joints/m2 and P21 (length of fractures/m2. It was concluded that the wave velocity decreases exponentially with increasing fracturing degree. Additionally, the fracturing degree is described adequately with the proposed indices. Finally, other parameters concerning the fracture characteristics, rock type and scale influence were found to contribute to the velocity decay and need to be investigated further.

  20. Numerical development of a new correlation between biaxial fracture strain and material fracture toughness for small punch test

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pradeep [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Dutta, B.K., E-mail: bijon.dutta@gmail.com [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Chattopadhyay, J. [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Reactor Safety Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2017-04-01

    The miniaturized specimens are used to determine mechanical properties of the materials, such as yield stress, ultimate stress, fracture toughness etc. Use of such specimens is essential whenever limited quantity of material is available for testing, such as aged/irradiated materials. The miniaturized small punch test (SPT) is a technique which is widely used to determine change in mechanical properties of the materials. Various empirical correlations are proposed in the literature to determine the value of fracture toughness (J{sub IC}) using this technique. bi-axial fracture strain is determined using SPT tests. This parameter is then used to determine J{sub IC} using available empirical correlations. The correlations between J{sub IC} and biaxial fracture strain quoted in the literature are based on experimental data acquired for large number of materials. There are number of such correlations available in the literature, which are generally not in agreement with each other. In the present work, an attempt has been made to determine the correlation between biaxial fracture strain (ε{sub qf}) and crack initiation toughness (J{sub i}) numerically. About one hundred materials are digitally generated by varying yield stress, ultimate stress, hardening coefficient and Gurson parameters. Such set of each material is then used to analyze a SPT specimen and a standard TPB specimen. Analysis of SPT specimen generated biaxial fracture strain (ε{sub qf}) and analysis of TPB specimen generated value of J{sub i}. A graph is then plotted between these two parameters for all the digitally generated materials. The best fit straight line determines the correlation. It has been also observed that it is possible to have variation in J{sub i} for the same value of biaxial fracture strain (ε{sub qf}) within a limit. Such variation in the value of J{sub i} has been also ascertained using the graph. Experimental SPT data acquired earlier for three materials were then used to get J

  1. Incidence and Time to Return to Training for Stress Fractures during Military Basic Training

    Directory of Open Access Journals (Sweden)

    Alexander M. Wood

    2014-01-01

    Full Text Available Currently, little is known about the length of time required to rehabilitate patients from stress fractures and their return to preinjury level of physical activity. Previous studies have looked at the return to sport in athletes, in a general population, where rehabilitation is not as controlled as within a captive military population. In this study, a longitudinal prospective epidemiological database was assessed to determine the incidence of stress fractures and the time taken to rehabilitate recruits to preinjury stage of training. Findings demonstrated a background prevalence of 5% stress fractures in Royal Marine training; femoral and tibial stress fractures take 21.1 weeks to return to training with metatarsal stress fractures being the most common injury taking 12.2 weeks. Rehabilitation from stress fractures accounts for 814 weeks of recruit rehabilitation time per annum. Stress fracture incidence is still common in military training; despite this stress fracture recovery times remain constant and represent a significant interruption in training. It takes on average 5 weeks after exercise specific training has restarted to reenter training at a preinjury level, regardless of which bone has a stress fracture. Further research into their prevention, treatment, and rehabilitation is required to help reduce these burdens.

  2. Numerical modelling of flow and transport in rough fractures

    Directory of Open Access Journals (Sweden)

    Scott Briggs

    2014-12-01

    Full Text Available Simulation of flow and transport through rough walled rock fractures is investigated using the lattice Boltzmann method (LBM and random walk (RW, respectively. The numerical implementation is developed and validated on general purpose graphic processing units (GPGPUs. Both the LBM and RW method are well suited to parallel implementation on GPGPUs because they require only next-neighbour communication and thus can reduce expenses. The LBM model is an order of magnitude faster on GPGPUs than published results for LBM simulations run on modern CPUs. The fluid model is verified for parallel plate flow, backward facing step and single fracture flow; and the RW model is verified for point-source diffusion, Taylor-Aris dispersion and breakthrough behaviour in a single fracture. Both algorithms place limitations on the discrete displacement of fluid or particle transport per time step to minimise the numerical error that must be considered during implementation.

  3. Parallel, Multigrid Finite Element Simulator for Fractured/Faulted and Other Complex Reservoirs based on Common Component Architecture (CCA)

    Energy Technology Data Exchange (ETDEWEB)

    Milind Deo; Chung-Kan Huang; Huabing Wang

    2008-08-31

    Black-oil, compositional and thermal simulators have been developed to address different physical processes in reservoir simulation. A number of different types of discretization methods have also been proposed to address issues related to representing the complex reservoir geometry. These methods are more significant for fractured reservoirs where the geometry can be particularly challenging. In this project, a general modular framework for reservoir simulation was developed, wherein the physical models were efficiently decoupled from the discretization methods. This made it possible to couple any discretization method with different physical models. Oil characterization methods are becoming increasingly sophisticated, and it is possible to construct geologically constrained models of faulted/fractured reservoirs. Discrete Fracture Network (DFN) simulation provides the option of performing multiphase calculations on spatially explicit, geologically feasible fracture sets. Multiphase DFN simulations of and sensitivity studies on a wide variety of fracture networks created using fracture creation/simulation programs was undertaken in the first part of this project. This involved creating interfaces to seamlessly convert the fracture characterization information into simulator input, grid the complex geometry, perform the simulations, and analyze and visualize results. Benchmarking and comparison with conventional simulators was also a component of this work. After demonstration of the fact that multiphase simulations can be carried out on complex fracture networks, quantitative effects of the heterogeneity of fracture properties were evaluated. Reservoirs are populated with fractures of several different scales and properties. A multiscale fracture modeling study was undertaken and the effects of heterogeneity and storage on water displacement dynamics in fractured basements were investigated. In gravity-dominated systems, more oil could be recovered at a given pore

  4. Micromechanics based simulation of ductile fracture in structural steels

    Science.gov (United States)

    Yellavajjala, Ravi Kiran

    The broader aim of this research is to develop fundamental understanding of ductile fracture process in structural steels, propose robust computational models to quantify the associated damage, and provide numerical tools to simplify the implementation of these computational models into general finite element framework. Mechanical testing on different geometries of test specimens made of ASTM A992 steels is conducted to experimentally characterize the ductile fracture at different stress states under monotonic and ultra-low cycle fatigue (ULCF) loading. Scanning electron microscopy studies of the fractured surfaces is conducted to decipher the underlying microscopic damage mechanisms that cause fracture in ASTM A992 steels. Detailed micromechanical analyses for monotonic and cyclic loading are conducted to understand the influence of stress triaxiality and Lode parameter on the void growth phase of ductile fracture. Based on monotonic analyses, an uncoupled micromechanical void growth model is proposed to predict ductile fracture. This model is then incorporated in to finite element program as a weakly coupled model to simulate the loss of load carrying capacity in the post microvoid coalescence regime for high triaxialities. Based on the cyclic analyses, an uncoupled micromechanics based cyclic void growth model is developed to predict the ULCF life of ASTM A992 steels subjected to high stress triaxialities. Furthermore, a computational fracture locus for ASTM A992 steels is developed and incorporated in to finite element program as an uncoupled ductile fracture model. This model can be used to predict the ductile fracture initiation under monotonic loading in a wide range of triaxiality and Lode parameters. Finally, a coupled microvoid elongation and dilation based continuum damage model is proposed, implemented, calibrated and validated. This model is capable of simulating the local softening caused by the various phases of ductile fracture process under

  5. Leakage losses from a hydraulic fracture and fracture propagation

    International Nuclear Information System (INIS)

    Johnson, R.E.; Gustafson, C.W.

    1988-01-01

    The fluid mechanics of viscous fluid injection into a fracture embedded in a permeable rock formation is studied. Coupling between flow in the fracture and flow in the rock is retained. The analysis is based on a perturbation scheme that assumes the depth of penetration of the fluid into the rock is small compared to the characteristic length w 3 0 /k, where w 0 is the characteristic crack width and k is the permeability. This restriction, however, is shown to be minor. The spatial dependence of the leakage rate per unit length from the fracture is found to be linear, decreasing from the well bore to the fracture tip where it vanishes. The magnitude of the leakage rate per unit length is found to decay in time as t -1 /sup // 3 if the injection rate at the well bore is constant, and as t -1 /sup // 2 if the well bore pressure is held constant. The results cast considerable doubt on the validity of Carter's well-known leakage formula (Drilling Prod. Prac. API 1957, 261) derived from a one-dimensional theory. Using the simple fracture propagation model made popular by Carter, the present work also predicts that the fracture grows at a rate proportional to t 1 /sup // 3 for a fixed well bore injection rate and a rate proportional to t 1 /sup // 4 for a fixed well bore pressure

  6. Spontaneous rib fractures.

    Science.gov (United States)

    Katrancioglu, Ozgur; Akkas, Yucel; Arslan, Sulhattin; Sahin, Ekber

    2015-07-01

    Other than trauma, rib fracture can occur spontaneously due to a severe cough or sneeze. In this study, patients with spontaneous rib fractures were analyzed according to age, sex, underlying pathology, treatment, and complications. Twelve patients who presented between February 2009 and February 2011 with spontaneous rib fracture were reviewed retrospectively. The patients' data were evaluated according to anamnesis, physical examination, and chest radiographs. The ages of the patients ranged from 34 to 77 years (mean 55.91 ± 12.20 years), and 7 (58.4%) were male. All patients had severe cough and chest pain. The fractures were most frequently between 4th and 9th ribs; multiple rib fractures were detected in 5 (41.7%) patients. Eight (66.7%) patients had chronic obstructive pulmonary disease, 2 (16.7%) had bronchial asthma, and 2 (16.7%) had osteoporosis. Bone densitometry revealed a high risk of bone fracture in all patients. Patients with chronic obstructive pulmonary disease or bronchial asthma had been treated with high-dose steroids for over a year. Spontaneous rib fracture due to severe cough may occur in patients with osteoporosis, chronic obstructive pulmonary disease, or bronchial asthma, receiving long-term steroid therapy. If these patients have severe chest pain, chest radiography should be performed to check for bone lesions. © The Author(s) 2015.

  7. Cough-induced rib fractures.

    Science.gov (United States)

    Sano, Atsushi; Tashiro, Ken; Fukuda, Tsutomu

    2015-10-01

    Occasionally, patients who complain of chest pain after the onset of coughing are diagnosed with rib fractures. We investigated the characteristics of cough-induced rib fractures. Between April 2008 and December 2013, 17 patients were referred to our hospital with chest pain after the onset of coughing. Rib radiography was performed, focusing on the location of the chest pain. When the patient had other signs and symptoms such as fever or persistent cough, computed tomography of the chest was carried out. We analyzed the data retrospectively. Rib fractures were found in 14 of the 17 patients. The age of the patients ranged from 14 to 86 years (median 39.5 years). Ten patients were female and 4 were male. Three patients had chronic lung disease. There was a single rib fracture in 9 patients, and 5 had two or more fractures. The middle and lower ribs were the most commonly involved; the 10th rib was fractured most frequently. Cough-induced rib fractures occur in every age group regardless of the presence or absence of underlying disease. Since rib fractures often occur in the lower and middle ribs, rib radiography is useful for diagnosis. © The Author(s) 2015.

  8. Identification of fracture zones and its application in automatic bone fracture reduction.

    Science.gov (United States)

    Paulano-Godino, Félix; Jiménez-Delgado, Juan J

    2017-04-01

    The preoperative planning of bone fractures using information from CT scans increases the probability of obtaining satisfactory results, since specialists are provided with additional information before surgery. The reduction of complex bone fractures requires solving a 3D puzzle in order to place each fragment into its correct position. Computer-assisted solutions may aid in this process by identifying the number of fragments and their location, by calculating the fracture zones or even by computing the correct position of each fragment. The main goal of this paper is the development of an automatic method to calculate contact zones between fragments and thus to ease the computation of bone fracture reduction. In this paper, an automatic method to calculate the contact zone between two bone fragments is presented. In a previous step, bone fragments are segmented and labelled from CT images and a point cloud is generated for each bone fragment. The calculated contact zones enable the automatic reduction of complex fractures. To that end, an automatic method to match bone fragments in complex fractures is also presented. The proposed method has been successfully applied in the calculation of the contact zone of 4 different bones from the ankle area. The calculated fracture zones enabled the reduction of all the tested cases using the presented matching algorithm. The performed tests show that the reduction of these fractures using the proposed methods leaded to a small overlapping between fragments. The presented method makes the application of puzzle-solving strategies easier, since it does not obtain the entire fracture zone but the contact area between each pair of fragments. Therefore, it is not necessary to find correspondences between fracture zones and fragments may be aligned two by two. The developed algorithms have been successfully applied in different fracture cases in the ankle area. The small overlapping error obtained in the performed tests

  9. Fracture analysis

    International Nuclear Information System (INIS)

    Ueng, Tzoushin; Towse, D.

    1991-01-01

    Fractures are not only the weak planes of a rock mass, but also the easy passages for the fluid flow. Their spacing, orientation, and aperture will affect the deformability, strength, heat transmittal, and fluid transporting properties of the rock mass. To understand the thermomechanical and hydrological behaviors of the rock surrounding the heater emplacement borehole, the location, orientation, and aperture of the fractures of the rock mass should be known. Borehole television and borescope surveys were performed to map the location, orientation, and aperture of the fractures intersecting the boreholes drilled in the Prototype Engineered Barrier System Field Tests (PEBSFT) at G-Tunnel. Core logging was also performed during drilling. However, because the core was not oriented and the depth of the fracture cannot be accurately determined, the results of the core logging were only used as reference and will not be discussed here

  10. Scaphoid fractures in children

    Directory of Open Access Journals (Sweden)

    Gajdobranski Đorđe

    2014-01-01

    Full Text Available Introduction. Scaphoid fractures are rare in childhood. Diagnosis is very difficult to establish because carpal bones are not fully ossified. In suspected cases comparative or delayed radiography is used, as well as computerized tomography, magnetic resonance imaging, ultrasound and bone scintigraphy. Majority of scaphoid fractures are treated conservatively with good results. In case of delayed fracture healing various types of treatment are available. Objective. To determine the mechanism of injury, clinical healing process, types and outcome of treatment of scaphoid fractures in children. Methods. We retrospectively analyzed patients with traumatic closed fracture of the scaphoid bone over a ten-year period (2002-2011. The outcome of the treatment of “acute” scaphoid fracture was evaluated using the Mayo Wrist Score. Results. There were in total 34 patients, of mean age 13.8 years, with traumatic closed fracture of the scaphoid bone, whose bone growth was not finished yet. Most common injury mechanism was fall on outstretched arm - 76% of patients. During the examined period 31 children with “acute” fracture underwent conservative treatment, with average immobilization period of 51 days. Six patients were lost to follow-up. In the remaining 25 patients, after completed rehabilitation, functional results determined by the Mayo Wrist Score were excellent. Conclusion. Conservative therapy of “acute” scaphoid fractures is an acceptable treatment option for pediatric patients with excellent functional results.

  11. Effect of microstructure on the susceptibility of a 533 steel to temper embrittlement

    International Nuclear Information System (INIS)

    Raoul, S.; Marini, B.; Pineau, A.

    1998-01-01

    In ferritic steels, brittle fracture usually occurs at low temperature by cleavage. However the segregation of impurities (P, As, Sn etc..) along prior γ grain boundaries can change the brittle fracture mode from transgranular to intergranular. In quenched and tempered steels, this segregation is associated with what is called the temper-embrittlement phenomenon. The main objective of the present study is to investigate the influence of the as-quenched microstructure (lower bainite or martensite) on the susceptibility of a low alloy steel (A533 cl.1) to temper-embrittlement. Dilatometric tests were performed to determine the continous-cooling-transformation (CCT) diagram of the material and to measure the critical cooling rate (V c ) for a martensitic quench. Then subsized Charpy V-notched specimens were given various cooling rates from the austenitization temperature to obtain a wide range of as-quenched microstructures, including martensite and bainite. These specimens were subsequently given a heat treatment to develop temper embrittlement and tested to measure the V-notch fracture toughness at -50 C. The fracture surfaces were examined by SEM. It is shown that martensitic microstructures are more susceptible to intergranular embrittlement than bainitic microstructures. These observed microstructural influences are briefly discussed. (orig.)

  12. Fluid driven fracture mechanics in highly anisotropic shale: a laboratory study with application to hydraulic fracturing

    Science.gov (United States)

    Gehne, Stephan; Benson, Philip; Koor, Nick; Enfield, Mark

    2017-04-01

    The finding of considerable volumes of hydrocarbon resources within tight sedimentary rock formations in the UK led to focused attention on the fundamental fracture properties of low permeability rock types and hydraulic fracturing. Despite much research in these fields, there remains a scarcity of available experimental data concerning the fracture mechanics of fluid driven fracturing and the fracture properties of anisotropic, low permeability rock types. In this study, hydraulic fracturing is simulated in a controlled laboratory environment to track fracture nucleation (location) and propagation (velocity) in space and time and assess how environmental factors and rock properties influence the fracture process and the developing fracture network. Here we report data on employing fluid overpressure to generate a permeable network of micro tensile fractures in a highly anisotropic shale ( 50% P-wave velocity anisotropy). Experiments are carried out in a triaxial deformation apparatus using cylindrical samples. The bedding planes are orientated either parallel or normal to the major principal stress direction (σ1). A newly developed technique, using a steel guide arrangement to direct pressurised fluid into a sealed section of an axially drilled conduit, allows the pore fluid to contact the rock directly and to initiate tensile fractures from the pre-defined zone inside the sample. Acoustic Emission location is used to record and map the nucleation and development of the micro-fracture network. Indirect tensile strength measurements at atmospheric pressure show a high tensile strength anisotropy ( 60%) of the shale. Depending on the relative bedding orientation within the stress field, we find that fluid induced fractures in the sample propagate in two of the three principal fracture orientations: Divider and Short-Transverse. The fracture progresses parallel to the bedding plane (Short-Transverse orientation) if the bedding plane is aligned (parallel) with the

  13. Initial Probabilistic Evaluation of Reactor Pressure Vessel Fracture with Grizzly and Raven

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Benjamin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hoffman, William [Univ. of Idaho, Moscow, ID (United States); Sen, Sonat [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Dickson, Terry [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bass, Richard [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    The Grizzly code is being developed with the goal of creating a general tool that can be applied to study a variety of degradation mechanisms in nuclear power plant components. The first application of Grizzly has been to study fracture in embrittled reactor pressure vessels (RPVs). Grizzly can be used to model the thermal/mechanical response of an RPV under transient conditions that would be observed in a pressurized thermal shock (PTS) scenario. The global response of the vessel provides boundary conditions for local models of the material in the vicinity of a flaw. Fracture domain integrals are computed to obtain stress intensity factors, which can in turn be used to assess whether a fracture would initiate at a pre-existing flaw. These capabilities have been demonstrated previously. A typical RPV is likely to contain a large population of pre-existing flaws introduced during the manufacturing process. This flaw population is characterized stastistically through probability density functions of the flaw distributions. The use of probabilistic techniques is necessary to assess the likelihood of crack initiation during a transient event. This report documents initial work to perform probabilistic analysis of RPV fracture during a PTS event using a combination of the RAVEN risk analysis code and Grizzly. This work is limited in scope, considering only a single flaw with deterministic geometry, but with uncertainty introduced in the parameters that influence fracture toughness. These results are benchmarked against equivalent models run in the FAVOR code. When fully developed, the RAVEN/Grizzly methodology for modeling probabilistic fracture in RPVs will provide a general capability that can be used to consider a wider variety of vessel and flaw conditions that are difficult to consider with current tools. In addition, this will provide access to advanced probabilistic techniques provided by RAVEN, including adaptive sampling and parallelism, which can dramatically

  14. Incomplete oblique sagittal fractures of the dorsal cortex of the third metacarpal bone in six horses

    International Nuclear Information System (INIS)

    Watt, B.C.; Foerner, J.J.; Haines, G.R.

    1998-01-01

    To describe incomplete oblique sagittal dorsal cortical fractures of the equine third metacarpal bone, their surgical repair, and subsequent performance of the horses. Retrospective examination of medical records and racing performance. Six Thoroughbred race horses, 2 to 4 years of age. Radiographic confirmation of all fractures preceded general anesthesia and surgical correction. Three fractures were treated by intracortical compression using screws placed in lag fashion, and five fractures were treated by osteostixis. Race records were reviewed for each horse to determine performance after surgery. Fractures were best observed on palmarodorsal radiographic projections. Three horses treated by intracortical compression returned to racing, but fracture recurred in one horse and was treated by osteostixis. This horse and the other three horses treated by osteostixis raced after surgery. Horses with incomplete oblique sagittal fractures of the dorsal cortex of the third metacarpal bone can race after surgical management of the fracture by screws placed in lag fashion or osteostixis. The authors' preferred surgical procedure for managing this fracture is osteostixis. Palmarodorsal radiographic projections of the third metacarpal bone are recommended in young Thoroughbred race horses suspected of having dorsal metacarpal stress fractures

  15. The use of geological data from pilot holes for predicting FPI (full perimeter intersection) fractures

    International Nuclear Information System (INIS)

    Joutsen, A.

    2012-02-01

    Posiva Oy is responsible for preparation of final disposal of spent nuclear fuel in Olkiluoto. The knowledge about existing network of fractures is important for the safety and feasibility of the final repository. The bedrock properties essential for safety case are analyzed in investigations of Rock Suitability Criteria (RSC). One subtask in RSC is avoidance of large (long) fractures adjacent to disposal holes. The long fractures have been defined in tunnel mapping to indicate tunnel cross-cutting fractures (TCF) or full perimeter intersections (FPI). The purpose for this study was to evaluate the possibility of recognizing FPIs from drill cores by their geological properties. The study was carried out by correlating FPIs mapped from the ONKALO tunnel to the pilot holes logging data with a view of finding out which fracture in the pilot hole corresponds to the FPI in the tunnel. It was also estimated what kind of geological properties does FPIs commonly have in the tunnel and how does these properties differ from the FPI correlated pilot hole fractures. The data sources for this study are the pilot holes from ONK-PH8 to ONK-PH14 and the systematic geological mapping data. The FPIs used in this study usually follow the general trends of the fracturing in the Olkiluoto bedrock. The fracture surface profiles are principally undulating and a striation can be often seen on the fracture surfaces. The FPIs are frequently moderately to intensely altered with diverse filling mineralogy and thick fracture fillings in comparison to the regular fractures. The FPI correlated pilot hole fractures have slightly different properties in comparison to the FPIs. These fractures have wider range of different fracture surface profiles and are slightly less altered than the FPIs. Filling mineralogy follows the trends of the FPIs but filling thicknesses are thinner. These differences probably occur because of the variable uncertainties related to the correlation and to the fact that the

  16. The use of geological data from pilot holes for predicting FPI (full perimeter intersection) fractures

    Energy Technology Data Exchange (ETDEWEB)

    Joutsen, A.

    2012-02-15

    Posiva Oy is responsible for preparation of final disposal of spent nuclear fuel in Olkiluoto. The knowledge about existing network of fractures is important for the safety and feasibility of the final repository. The bedrock properties essential for safety case are analyzed in investigations of Rock Suitability Criteria (RSC). One subtask in RSC is avoidance of large (long) fractures adjacent to disposal holes. The long fractures have been defined in tunnel mapping to indicate tunnel cross-cutting fractures (TCF) or full perimeter intersections (FPI). The purpose for this study was to evaluate the possibility of recognizing FPIs from drill cores by their geological properties. The study was carried out by correlating FPIs mapped from the ONKALO tunnel to the pilot holes logging data with a view of finding out which fracture in the pilot hole corresponds to the FPI in the tunnel. It was also estimated what kind of geological properties does FPIs commonly have in the tunnel and how does these properties differ from the FPI correlated pilot hole fractures. The data sources for this study are the pilot holes from ONK-PH8 to ONK-PH14 and the systematic geological mapping data. The FPIs used in this study usually follow the general trends of the fracturing in the Olkiluoto bedrock. The fracture surface profiles are principally undulating and a striation can be often seen on the fracture surfaces. The FPIs are frequently moderately to intensely altered with diverse filling mineralogy and thick fracture fillings in comparison to the regular fractures. The FPI correlated pilot hole fractures have slightly different properties in comparison to the FPIs. These fractures have wider range of different fracture surface profiles and are slightly less altered than the FPIs. Filling mineralogy follows the trends of the FPIs but filling thicknesses are thinner. These differences probably occur because of the variable uncertainties related to the correlation and to the fact that the

  17. Characteristics of patients who suffer major osteoporotic fractures despite adhering to alendronate treatment

    DEFF Research Database (Denmark)

    Abrahamsen, B; Rubin, K H; Eiken, Pia Agnete

    2013-01-01

    .03-1.06, for each drug). Dementia (HR 1.81, 95 % CI 1.18-2.78), prior fracture (one: HR 1.17, 95 % CI 1.02-1.34; multiple: HR 1.34, 95 % CI 1.08-1.67), and ulcer disease (HR 1.45, 95 % CI 1.04-2.03) also increased the risk. Diabetes did not influence fracture risk, nor did rheumatic disorders. The risk was lower...... and associations may not be causal, it may be prudent to include dementia, ulcer disease, and Parkinson's disease to capture the risk of fractures on treatment. Lower risk in patients treated with glucocorticoids and in men probably reflects a lower treatment threshold related to guidelines.......Antiresorptive treatment reduces the risk of fractures, but most patients remain at elevated risk. We used health registers to identify predictors of new major osteoporotic fractures in patients adhering to alendronate. Risk factors showed a different pattern than in the general population...

  18. Radiological study of the mandibular fractures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ju Won; Kim, Kyoung A; Koh, Kwang Jun [Department of Oral and Maxillofacial Radiology, School of Dentistry, and Institute of Oral Bio Science, Chonbuk National University, Jeonju (Korea, Republic of)

    2009-06-15

    To classify and evaluate mandibular fractures. The author classified mandibular fractures of 284 patients who were referred to the Chonbuk National University Dental Hospital during the period from March 2004 to June 2007. This study was based on the conventional radiographs as well as computed tomographs which were pertained to the 284 patients who have had the mandibular fractures including the facial bone fractures. And mandibular fractures were classified with respect to gender, age, site and type of the fractures. More frequently affected gender with mandibular fracture was male with the ratio of 3.3 : 1. The most frequently affected age with mandibular fracture was third decade (38%), followed by fourth decade (16%), second decade (15%), fifth decade (11%), sixth decade (7%), seventh decade (5%), eighth decade (4%), first decade (4%), and ninth decade (0.3%). The most frequent type of mandibular fracture was single fracture (58%), followed by double fracture (39%), triple fracture (3%). The most common site of mandibular fracture was mandibular condyle as 113 cases (27.7%) and the next was mandibular symphysis as 109 cases (26.7%), mandibular angle as 103 cases (25.3%), mandibular body as 83 cases (20.3%) in order. The sum of fracture sites were 408 sites and there were 1.4 fracture sites per one patient. The number of mandible fractures accompanied with facial bone fractures were 41 cases (14.4%). The results showed the most frequent type and common site of mandibular fracture was single fracture and mandibular condyle respectively.

  19. Radiological study of the mandibular fractures

    International Nuclear Information System (INIS)

    Kim, Ju Won; Kim, Kyoung A; Koh, Kwang Jun

    2009-01-01

    To classify and evaluate mandibular fractures. The author classified mandibular fractures of 284 patients who were referred to the Chonbuk National University Dental Hospital during the period from March 2004 to June 2007. This study was based on the conventional radiographs as well as computed tomographs which were pertained to the 284 patients who have had the mandibular fractures including the facial bone fractures. And mandibular fractures were classified with respect to gender, age, site and type of the fractures. More frequently affected gender with mandibular fracture was male with the ratio of 3.3 : 1. The most frequently affected age with mandibular fracture was third decade (38%), followed by fourth decade (16%), second decade (15%), fifth decade (11%), sixth decade (7%), seventh decade (5%), eighth decade (4%), first decade (4%), and ninth decade (0.3%). The most frequent type of mandibular fracture was single fracture (58%), followed by double fracture (39%), triple fracture (3%). The most common site of mandibular fracture was mandibular condyle as 113 cases (27.7%) and the next was mandibular symphysis as 109 cases (26.7%), mandibular angle as 103 cases (25.3%), mandibular body as 83 cases (20.3%) in order. The sum of fracture sites were 408 sites and there were 1.4 fracture sites per one patient. The number of mandible fractures accompanied with facial bone fractures were 41 cases (14.4%). The results showed the most frequent type and common site of mandibular fracture was single fracture and mandibular condyle respectively.

  20. A study on management of extracapsular trochanteric fractures by proximal femoral nail

    Directory of Open Access Journals (Sweden)

    K Ramaprathap Reddy

    2016-01-01

    Full Text Available Background: Trochanteric fractures of femur like intertrochanteric and subtrochanteric fractures are a leading cause of hospital admissions in elderly people. Conservative methods of treatment results in malunion with shortening and limitation of hip movement as well as complications of prolonged immobilizations such as bed sores, deep vein thrombosis, and respiratory infections. This study is done to analyze the surgical management of trochanteric fractures of the femur using a proximal femoral nail (PFN. Methodology: This is a prospective study of 40 cases of trochanteric and subtrochanteric fractures admitted to Government General Hospital, Vijayawada, Andhra Pradesh. Cases were taken according to inclusion and exclusion criteria, i.e., patients with trochanteric fractures femur above the age of 20 years. Medically unsuitable, open fractures and patients not willing for surgery were excluded from the study. Results: Forty percentage of cases were admitted due to slip and fall and with a slight predominance of the right side. Out of 40 cases, 26 were trochanteric, and 14 were subtrochanteric. In trochanteric class, 37.5% were body and griffin Type 2, in subtrochanteric class 12.5% were sinsheimer Type 3a and 10% were 2b. Out of 30 remaining cases, 25 were trochanteric, and 05 were subtrochanteric. Good to excellent results are seen in 100% cases of trochanteric fractures and 90% cases in subtrochanteric fractures. Conclusion: From this sample study, we consider that PFN is an excellent implant for the treatment of pertrochanteric fractures. The terms of successful outcome include a good understanding of fracture biomechanics, proper patient selection, good preoperative planning, accurate instrumentation, good image intensifier, and exactly performed osteosynthesis.

  1. Experimental research on rock fracture failure characteristics under liquid nitrogen cooling conditions

    Science.gov (United States)

    Gao, Feng; Cai, Chengzheng; Yang, Yugui

    2018-06-01

    As liquid nitrogen is injected into a wellbore as fracturing fluid, it can rapidly absorb heat from warmer rock and generate cryogenic condition in downhole region. This will alter the physical conditions of reservoir rocks and further affect rock failure characteristics. To investigate rock fracture failure characteristics under liquid nitrogen cooling conditions, the fracture features of four types of sandstones and one type of marble were tested on original samples (the sample without any treatment) and cryogenic samples (the samples just taken out from the liquid nitrogen), respectively. The differences between original samples and cryogenic samples in load-displacement curves, fracture toughness, energy evolution and the crack density of ruptured samples were compared and analyzed. The results showed that at elastic deformation stage, cryogenic samples presented less plastic deformation and more obvious brittle failure characteristics than original ones. The average fracture toughness of cryogenic samples was 10.47%-158.33% greater than that of original ones, indicating that the mechanical strength of rocks used were enhanced under cooling conditions. When the samples ruptured, the cryogenic ones were required to absorb more energy and reserve more elastic energy. In general, the fracture degree of cryogenic samples was higher than that of original ones. As the samples were entirely fractured, the crack density of cryogenic samples was about 536.67% at most larger than that of original ones. This indicated that under liquid nitrogen cooling conditions, the stimulation reservoir volume is expected to be improved during fracturing. This work could provide a reference to the research on the mechanical properties and fracture failure of rock during liquid nitrogen fracturing.

  2. [Periprosthetic knee fractures].

    Science.gov (United States)

    Mittlmeier, T; Beck, M; Bosch, U; Wichelhaus, A

    2016-01-01

    The cumulative incidence of periprosthetic fractures around the knee is increasing further because of an extended indication for knee replacement, previous revision arthroplasty, rising life expectancy and comorbidities. The relevance of local parameters such as malalignment, osseous defects, neighbouring implants, aseptic loosening and low-grade infections may sometimes be hidden behind the manifestation of a traumatic fracture. A differentiated diagnostic approach before the treatment of a periprosthetic fracture is of paramount importance, while the physician in-charge should also have particular expertise in fracture treatment and in advanced techniques of revision endoprosthetics. The following work gives an overview of this topic. Valid classifications are available for categorising periprosthetic fractures of the femur, the tibia and the patella respectively, which are helpful for the selection of treatment. With the wide-ranging modern treatment portfolio bearing in mind the substantial rate of complications and the heterogeneous functional outcome, the adequate analysis of fracture aetiology and the corresponding transformation into an individualised treatment concept offer the chance of an acceptable functional restoration of the patient at early full weight-bearing and prolonged implant survival. The management of complications is crucial to the final outcome.

  3. Fracture sacrum.

    Directory of Open Access Journals (Sweden)

    Dogra A

    1995-04-01

    Full Text Available An extremely rare case of combined transverse and vertical fracture of sacrum with neurological deficit is reported here with a six month follow-up. The patient also had an L1 compression fracture. The patient has recovered significantly with conservative management.

  4. An Inset CT Specimen for Evaluating Fracture in Small Samples of Material

    Science.gov (United States)

    Yahyazadehfar, M.; Nazari, A.; Kruzic, J.J.; Quinn, G.D.; Arola, D.

    2013-01-01

    In evaluations on the fracture behavior of hard tissues and many biomaterials, the volume of material available to study is not always sufficient to apply a standard method of practice. In the present study an inset Compact Tension (inset CT) specimen is described, which uses a small cube of material (approximately 2×2×2 mm3) that is molded within a secondary material to form the compact tension geometry. A generalized equation describing the Mode I stress intensity was developed for the specimen using the solutions from a finite element model that was defined over permissible crack lengths, variations in specimen geometry, and a range in elastic properties of the inset and mold materials. A validation of the generalized equation was performed using estimates for the fracture toughness of a commercial dental composite via the “inset CT” specimen and the standard geometry defined by ASTM E399. Results showed that the average fracture toughness obtained from the new specimen (1.23 ± 0.02 MPa•m0.5) was within 2% of that from the standard. Applications of the inset CT specimen are presented for experimental evaluations on the crack growth resistance of dental enamel and root dentin, including their fracture resistance curves. Potential errors in adopting this specimen are then discussed, including the effects of debonding between the inset and molding material on the estimated stress intensity distribution. Results of the investigation show that the inset CT specimen offers a viable approach for studying the fracture behavior of small volumes of structural materials. PMID:24268892

  5. Elastic-plastic fracture mechanics for nuclear pressure vessels: a preliminary appraisal

    International Nuclear Information System (INIS)

    Hahn, G.T.; Broek, D.; Marschall, C.W.; Rosenfield, A.R.; Rybicki, E.F.; Schmueser, D.W.; Stonesifer, R.B.; Kanninen, M.F.

    1978-01-01

    A research program directed at assessing the margin of safety of flawed nuclear pressure vessels near and beyond general yielding is described. The program has the general objective of developing an elastic-plastic fracture mechanics methodology. The approach is based on the use of finite element models together with experimental results to identify criteria appropriate for the onset of crack extension and for stable crack growth. A number of criteria beyond the conventional LEFM R curve are being evaluated. These include the critical values of the J-integral, its derivative, the crack tip opening angle, the average crack opening angle, a generalized energy release rate, its components and a crack tip force. The optimum fracture criterion for nuclear vessels is being determined by systematic measurements of load extension curves, strain distribution, crack opening displacement, stable crack growth and instability on 'toughness scaled' model materials. Computations have been performed for center cracked panels of a model material (2219-T87 aluminium) for full shear failure. (author)

  6. Management of Hip Fractures in Lateral Position without a Fracture Table

    Directory of Open Access Journals (Sweden)

    Hamid Pahlavanhosseini

    2014-09-01

    Full Text Available Background:  Hip fracture Management in supine position on a fracture table with biplane fluoroscopic views has some difficulties which leads to prolongation of surgery and increasing x- rays’ dosage. The purpose of this study was to report the results and complications of hip fracture management in lateral position on a conventional operating table with just anteroposterior fluoroscopic view.  Methods:  40 hip fractures (31 trochanteric and 9 femoral neck fractures were operated in lateral position between Feb 2006 and Oct 2012. Age, gender, fracture classification, operation time, intra-operation blood loss, reduction quality, and complications were extracted from patients’ medical records. The mean follow-up time was 30.78±22.73 months (range 4-83. Results: The mean operation time was 76.50 ± 16.88 min (range 50 – 120 min.The mean intra-operative blood loss was 628.75 ± 275.00 ml (range 250-1300ml. Anatomic and acceptable reduction was observed in 95%of cases. The most important complications were malunion (one case in trochanteric group, avascular necrosis of oral head and nonunion (each one case in femoral neck group.  Conclusions:  It sounds that reduction and fixation of hip fractures in lateral position with fluoroscopy in just anteroposterior view for small rural hospitals may be executable and probably safe.

  7. Dynamic fracture characterization of material

    International Nuclear Information System (INIS)

    Kobayashi, A.S.; Emery, A.F.; Liaw, B.M.

    1981-01-01

    The influences of a wide range of material properties, i.e. of A533B steel, a silicon nitride ceramic and a Homalite-100 photoelastic polymer, as well as the influences of the specimen sizes on the dynamic fracture response of fracture specimens are presented in this paper. The results of a numerical study show that the dynamic fracture responses of these fracture specimens of proportional dimensions were indistinguishable provided the normalized dynamic fracture toughness versus normalized crack velocity relations of the three materials coincide. The limited results suggest that should the normalized dynamic fracture toughness versus normalized crack velocity relations between prototype and model materials coincide, then dynamic fracture experiments on scaled models can be used to infer the dynamic fracture response of the prototype. (orig./HP)

  8. [Hip Fracture--Epidemiology, Management and Liaison Service. Risk factor for hip fracture].

    Science.gov (United States)

    Fujiwara, Saeko

    2015-04-01

    Many risk factors have been identified for hip fracture, including female, advanced age, osteoporosis, previous fractures, low body weight or low body mass index, alcohol drinking, smoking, family history of fractures, use of glucocorticoid, factors related to falls, and bone strength. The factors related to falls are number of fall, frail, post stroke, paralysis, muscle weakness, anti-anxiety drugs, anti-depression drugs, and sedatives. Dementia and respiratory disease and others have been reported to be risk factors for secondary hip fracture.

  9. A new coal-permeability model: Internal swelling stress and fracture-matrix interaction

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H.H.; Rutqvist, J.

    2009-10-01

    We have developed a new coal-permeability model for uniaxial strain and constant confining stress conditions. The model is unique in that it explicitly considers fracture-matrix interaction during coal deformation processes and is based on a newly proposed internal-swelling stress concept. This concept is used to account for the impact of matrix swelling (or shrinkage) on fracture-aperture changes resulting from partial separation of matrix blocks by fractures that do not completely cut through the whole matrix. The proposed permeability model is evaluated with data from three Valencia Canyon coalbed wells in the San Juan Basin, where increased permeability has been observed during CH{sub 4} gas production, as well as with published data from laboratory tests. Model results are generally in good agreement with observed permeability changes. The importance of fracture-matrix interaction in determining coal permeability, demonstrated in this work using relatively simple stress conditions, underscores the need for a dual-continuum (fracture and matrix) mechanical approach to rigorously capture coal-deformation processes under complex stress conditions, as well as the coupled flow and transport processes in coal seams.

  10. Bad splits in bilateral sagittal split osteotomy: systematic review of fracture patterns.

    Science.gov (United States)

    Steenen, S A; Becking, A G

    2016-07-01

    An unfavourable and unanticipated pattern of the mandibular sagittal split osteotomy is generally referred to as a 'bad split'. Few restorative techniques to manage the situation have been described. In this article, a classification of reported bad split pattern types is proposed and appropriate salvage procedures to manage the different types of undesired fracture are presented. A systematic review was undertaken, yielding a total of 33 studies published between 1971 and 2015. These reported a total of 458 cases of bad splits among 19,527 sagittal ramus osteotomies in 10,271 patients. The total reported incidence of bad split was 2.3% of sagittal splits. The most frequently encountered were buccal plate fractures of the proximal segment (types 1A-F) and lingual fractures of the distal segment (types 2A and 2B). Coronoid fractures (type 3) and condylar neck fractures (type 4) have seldom been reported. The various types of bad split may require different salvage approaches. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  11. Statistical methodology for discrete fracture model - including fracture size, orientation uncertainty together with intensity uncertainty and variability

    International Nuclear Information System (INIS)

    Darcel, C.; Davy, P.; Le Goc, R.; Dreuzy, J.R. de; Bour, O.

    2009-11-01

    starting point we built Statistical Fracture Domains whose significance rely exclusively on fracturing statistics, not including explicitly the current Fracture Domains or closeness between one borehole section or the other. Theoretical developments are proposed in order to incorporate the orientation uncertainty and the fracturing variability into a resulting parent distribution density uncertainty. When applied to both sites, it comes that variability prevails in front of uncertainty, thus validating the good level of data accuracy. Moreover, this allows to define a possible range of variation around the mean values of densities. Finally a sorting algorithm is developed for providing, from the initial elementary bricks mentioned above, a division of a site into Statistical Fracture Domains whose internal variability is reduced. The systematic comparison is based on the division of the datasets according to several densities referring to a division of the orientations into 13 subsets (pole zones). The first application of the methodology shows that some main trends can be defined for the orientation/density distributions throughout the site, which are combined with a high level of overlapping. Moreover the final Statistical Fracture Domain definition differ from the Fracture Domains existing at the site. The SFD are an objective comparison of statistical fracturing properties. Several perspectives are proposed in order to bridge the gap between constraints brought by a relevant statistical modeling and modeling specificities of the SKB sites and more generally conditions inherent to geological models

  12. Fracture Patterns within the Shale Hills Critical Zone Observatory

    Science.gov (United States)

    Singha, K.; White, T.; Perron, J.; Chattopadhyay, P. B.; Duffy, C.

    2012-12-01

    Rock fractures are known to exist within the deep Critical Zone and are expected to influence groundwater flow, but there are limited data on their orientation and spatial arrangement and no general framework for systematically predicting their effects. Here, we explore fracture patterns within the Susquehanna-Shale Hills Critical Zone Observatory, and consider how they may be influenced by weathering, rock structure, and stress via field observations of variable fracture orientation within the site, with implications for the spatial variability of structural control on hydrologic processes. Based on field observations from 16-m deep boreholes and surface outcrop, we suggest that the appropriate structural model for the watershed is steeply dipping strata with meter- to decimeter-scale folds superimposed, including a superimposed fold at the mouth of the watershed that creates a short fold limb with gently dipping strata. These settings would produce an anisotropy in the hydraulic conductivity and perhaps also flow, especially within the context of the imposed stress field. Recently conducted 2-D numerical stress modeling indicates that the proxy for shear fracture declines more rapidly with depth beneath valleys than beneath ridgelines, which may produce or enhance the spatial variability in permeability. Even if topographic stresses do not cause new fractures, they could activate and cause displacement on old fractures, making the rocks easier to erode and increasing the permeability, and potentially driving a positive feedback that enhances the growth of valley relief. Calculated stress fields are consistent with field observations, which show a rapid decline in fracture abundance with increasing depth below the valley floor, and predict a more gradual trend beneath ridgetops, leading to a more consistent (and lower) hydraulic conductivity with depth on the ridgetops when compared to the valley, where values are higher but more variable with depth. Hydraulic

  13. Extended Hall-Petch Relationships for Yield, Cleavage and Intergranular Fracture Strengths of bcc Steel and Its Deformation and Fracture Behaviors

    Science.gov (United States)

    Heo, N. H.; Heo, Y.-U.; Kwon, S. K.; Kim, N. J.; Kim, S.-J.; Lee, H.-C.

    2018-03-01

    Extended Hall-Petch relationships for yield ( σy ), cleavage ( σ_{cl} ) and intergranular fracture ( σ_{ig} ) strengths of pure iron have been established through the direct calculation of the proportional constant (k) and the estimation of the friction stress (σ0 ) . The magnitude orders of k and σ0 are generally ky causes the high work hardening rate.

  14. A study of hydrogen environment effects on microstructure property behavior of NASA-23 alloy and related alloy systems

    Science.gov (United States)

    Diwan, Ravinder M.

    1990-01-01

    This work is part of the overall advanced main combustion chamber (AMCC) casting characterization program of the Materials and Processes Laboratory of the Marshall Space Flight Center. The influence of hydrogen on the tensile properties and ductility behavior of NASA-23 alloy were analyzed. NASA-23 and other referenced alloys in cast and hipped conditions were solution treated and aged under selected conditions and characterized using optical metallography, scanning electron microscopy, and electron microprobe analysis techniques. The yield strength of NASA-23 is not affected much by hydrogen under tensile tests carried at 5000 psig conditions; however, the ultimate strength and ductility properties are degraded. This implies that the physical mechanisms operating would be related to the plastic deformation process. The fracture surfaces characteristics of NASA-23 specimens tensile tested in hydrogen, helium, and air were also analyzed. These revealed surface cracks around specimen periphery with the fracture surface showing a combination of intergranular and transgranular modes of fracture. It is seen that the specimens charged in hydrogen seem to favor a more brittle fracture mode in comparison to air and helium charged specimens. The AMCC casting characterization program is to be analyzed for their hydrogen behavior. As a result of this program, the basic microstructural factors and fracture characteristics in some cases were analyzed.

  15. Modeling of flow in faulted and fractured media

    Energy Technology Data Exchange (ETDEWEB)

    Oeian, Erlend

    2004-03-01

    . Thus, the main purpose of this chapter is to go into more details on the various parameters and derivations compared to the papers. Details of the ATHENA simulator is presented in Chapt. 3, including both earlier and recent additions. The main focus of this chapter is on code development issues like platform portability, 'safe' parallel programming and general improvements. Due to the code specific details, the content of this paper is for the most part not covered in the Part II papers. Chapt. 4 includes the domain decomposition framework and details on the parallel implementation. Based on the fault modeling aspects introduced in Chapt. 1, a brief review of existing numerical fracture flow techniques are given in Chapt. 5. Also, a hierarchical approach for including fractures at different scales within the ATHENA simulator is given here. This includes both discretization issues and methods for up scaling. After summary and conclusions in Chapt. 6, Part I ends with Chapt. 7 including suggestions on further work within the ATHENA simulator framework in particular and on numerical techniques for fractured porous media flow in general.

  16. Modeling of flow in faulted and fractured media

    Energy Technology Data Exchange (ETDEWEB)

    Oeian, Erlend

    2004-03-01

    . Thus, the main purpose of this chapter is to go into more details on the various parameters and derivations compared to the papers. Details of the ATHENA simulator is presented in Chapt. 3, including both earlier and recent additions. The main focus of this chapter is on code development issues like platform portability, 'safe' parallel programming and general improvements. Due to the code specific details, the content of this paper is for the most part not covered in the Part II papers. Chapt. 4 includes the domain decomposition framework and details on the parallel implementation. Based on the fault modeling aspects introduced in Chapt. 1, a brief review of existing numerical fracture flow techniques are given in Chapt. 5. Also, a hierarchical approach for including fractures at different scales within the ATHENA simulator is given here. This includes both discretization issues and methods for up scaling. After summary and conclusions in Chapt. 6, Part I ends with Chapt. 7 including suggestions on further work within the ATHENA simulator framework in particular and on numerical techniques for fractured porous media flow in general.

  17. Fractures (Broken Bones): First Aid

    Science.gov (United States)

    First aid Fractures (broken bones) Fractures (broken bones): First aid By Mayo Clinic Staff A fracture is a ... 10, 2018 Original article: http://www.mayoclinic.org/first-aid/first-aid-fractures/basics/ART-20056641 . Mayo Clinic ...

  18. Image diagnosis of nasal bone fracture

    International Nuclear Information System (INIS)

    Hirota, Yoshiharu; Shimizu, Yayoi; Iinuma, Toshitaka.

    1988-01-01

    Twenty cases of nasal bone fractures were evaluated as to the types of fractures based upon HRCT findings. Conventional X-Ray films for nasal bones were analyzed and compared with HRCT findings. Nasal bone fractures were classified into lateral and frontal fractures. HRCT images were evaluated in three planes including upper, middle and lower portions of the nasal bone. Fractures favored males of teens. Lateral fracture gave rise to the fractures of the nasal bone opposite to the external force, loosening of the ipsilateral nasomaxillary sutures and fractures of the frontal process of the maxilla. Conventional X-Ray films were reevaluated after HRCT evaluation and indications of nasal bone fractures were determined. In addition to the discontinuity of the nasal dorsum, fracture lines parallel to and beneath the nasal dorsum and indistinct fracture lines along the nasomaxillary sutures are the indication of nasal bone fractures by conventional X-Ray films. (author)

  19. Polymer liquids fracture like solids

    DEFF Research Database (Denmark)

    Huang, Qian; Hassager, Ole

    2017-01-01

    While fracture in brittle solids has been studied for centuries until today, there are few studies on fracture in polymer liquids. Recent developments in experimental techniques, especially the combination of controlled filament stretching rheometry and high speed imaging, have opened new windows...... into the detailed study of fracture processes for polymer liquids. High speed imaging shows that polymer liquids fracture like solids with initiation and propagation of an edge fracture. However, remarkable features such as highly reproducible critical stress, independent appearance of multiple fractures...

  20. Traumatic subchondral fracture of the femoral head in a healed trochanteric fracture.

    Science.gov (United States)

    Lee, Sang Yang; Niikura, Takahiro; Iwakura, Takashi; Kurosaka, Masahiro

    2014-07-11

    An 82-year-old woman sustained a trochanteric fracture of the left femur after a fall. Fracture fixation was performed using proximal femoral nail antirotation (PFNA) II, and she was able to walk with a T-cane after 3 months. Eleven months following the operation, the patient presented with left hip pain after a fall. Radiographs showed a subchondral collapse of the femoral head located above the blade tip. The authors removed the PFNA-II and subsequently performed cemented bipolar hemiarthroplasty. Histological evaluation of the femoral head showed osteoporosis with no evidence of osteonecrosis. Repair tissue, granulation tissue and callus formation were seen at the collapsed subchondral area. Based on these findings, a traumatic subchondral fracture of the femoral head in a healed trochanteric fracture was diagnosed. A traumatic subchondral fracture of the femoral head may need to be considered as a possible diagnosis after internal fixation of the trochanteric fracture. 2014 BMJ Publishing Group Ltd.

  1. Public health impact and economic evaluation of vitamin D-fortified dairy products for fracture prevention in France.

    Science.gov (United States)

    Hiligsmann, M; Burlet, N; Fardellone, P; Al-Daghri, N; Reginster, J-Y

    2017-03-01

    The recommended intake of vitamin D-fortified dairy products can substantially decrease the burden of osteoporotic fractures and seems an economically beneficial strategy in the general French population aged over 60 years. This study aims to assess the public health and economic impact of vitamin D-fortified dairy products in the general French population aged over 60 years. We estimated the lifetime health impacts expressed in number of fractures prevented, life years gained, and quality-adjusted life years (QALY) gained of the recommended intake of dairy products in the general French population over 60 years for 1 year (2015). A validated microsimulation model was used to simulate three age cohorts for both women and men (60-69, 70-79, and >80 years). The incremental cost per QALY gained of vitamin D-fortified dairy products compared to the absence of appropriate intake was estimated in different populations, assuming the cost of two dairy products per day in base case. The total lifetime number of fractures decreased by 64,932 for the recommended intake of dairy products in the general population over 60 years, of which 46,472 and 18,460 occurred in women and men, respectively. In particular, 15,087 and 4413 hip fractures could be prevented in women and men. Vitamin D-fortified dairy products also resulted in 32,569 QALYs and 29,169 life years gained. The cost per QALY gained of appropriate dairy intake was estimated at €58,244 and fall below a threshold of €30,000 per QALY gained in women over 70 years and in men over 80 years. Vitamin D-fortified dairy products have the potential to substantially reduce the burden of osteoporotic fractures in France and seem an economically beneficial strategy, especially in the general population aged above 70 years.

  2. Evaluation of scale effects on hydraulic characteristics of fractured rock using fracture network model

    International Nuclear Information System (INIS)

    Ijiri, Yuji; Sawada, Atsushi; Uchida, Masahiro; Ishiguro, Katsuhiko; Umeki, Hiroyuki; Sakamoto, Kazuhiko; Ohnishi, Yuzo

    2001-01-01

    It is important to take into account scale effects on fracture geometry if the modeling scale is much larger than the in-situ observation scale. The scale effect on fracture trace length, which is the most scale dependent parameter, is investigated using fracture maps obtained at various scales in tunnel and dam sites. We found that the distribution of fracture trace length follows negative power law distribution in regardless of locations and rock types. The hydraulic characteristics of fractured rock is also investigated by numerical analysis of discrete fracture network (DFN) model where power law distribution of fracture radius is adopted. We found that as the exponent of power law distribution become larger, the hydraulic conductivity of DFN model increases and the travel time in DFN model decreases. (author)

  3. Rib fractures after percutaneous radiofrequency and microwave ablation of lung tumors: incidence and relevance.

    Science.gov (United States)

    Alexander, Erica S; Hankins, Carol A; Machan, Jason T; Healey, Terrance T; Dupuy, Damian E

    2013-03-01

    To retrospectively identify the incidence and probable risk factors for rib fractures after percutaneous radiofrequency ablation (RFA) and microwave ablation (MWA) of neoplasms in the lung and to identify complications related to these fractures. Institutional review board approval was obtained for this HIPAA-compliant retrospective study. Study population was 163 patients treated with MWA and/or RFA for 195 lung neoplasms between February 2004 and April 2010. Follow-up computed tomographic images of at least 3 months were retrospectively reviewed by board-certified radiologists to determine the presence of rib fractures. Generalized estimating equations were performed to assess the effect that patient demographics, tumor characteristics, treatment parameters, and ablation zone characteristics had on development of rib fractures. Kaplan-Meier curve was used to estimate patients' probability of rib fracture after ablation as a function of time. Clinical parameters (ie, pain in ribs or chest, organ damage caused by fractured rib) were evaluated for patients with confirmed fracture. Rib fractures in proximity to the ablation zone were found in 13.5% (22 of 163) of patients. Estimated probability of fracture was 9% at 1 year and 22% at 3 years. Women were more likely than were men to develop fracture after ablation (P = .041). Patients with tumors closer to the chest wall were more likely to develop fracture (P = .0009), as were patients with ablation zones that involved visceral pleura (P = .039). No patients with rib fractures that were apparently induced by RFA and MWA had organ injury or damage related to fracture, and 9.1% (2 of 22) of patients reported mild pain. Rib fractures were present in 13.5% of patients after percutaneous RFA and MWA of lung neoplasms. Patients who had ablations performed close to the chest wall should be monitored for rib fractures.

  4. Fracture properties evaluation of stainless steel piping for LBB applications

    International Nuclear Information System (INIS)

    Kim, Y.J.; Seok, C.S.; Chang, Y.S.

    1997-01-01

    The objective of this paper is to evaluate the material properties of SA312 TP316 and SA312 TP304 stainless steels and their associated welds manufactured for shutdown cooling line and safety injection line of nuclear generating stations. A total of 82 tensile tests and 58 fracture toughness tests on specimens taken from actual pipes were performed and the effect of various parameters such as the pipe size, the specimen orientation, the test temperature and the welding procedure on the material properties are discussed. Test results show that the effect of the test temperature on the fracture toughness was significant while the effects of the pipe size and the specimen orientation on the fracture toughness were negligible. The material properties of the GTAW weld metal was in general higher than those of the base metal

  5. Fracture properties evaluation of stainless steel piping for LBB applications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y.J.; Seok, C.S.; Chang, Y.S. [Sung Kyun Kwan Univ., Suwon (Korea, Republic of)

    1997-04-01

    The objective of this paper is to evaluate the material properties of SA312 TP316 and SA312 TP304 stainless steels and their associated welds manufactured for shutdown cooling line and safety injection line of nuclear generating stations. A total of 82 tensile tests and 58 fracture toughness tests on specimens taken from actual pipes were performed and the effect of various parameters such as the pipe size, the specimen orientation, the test temperature and the welding procedure on the material properties are discussed. Test results show that the effect of the test temperature on the fracture toughness was significant while the effects of the pipe size and the specimen orientation on the fracture toughness were negligible. The material properties of the GTAW weld metal was in general higher than those of the base metal.

  6. Cronkhite-Canada syndrome associated with rib fractures: a case report

    Directory of Open Access Journals (Sweden)

    Wan Haijun

    2010-10-01

    Full Text Available Abstract Background Cronkhite-Canada syndrome (CCS is a rare multiple gastrointestinal polyposis. Up till now, many complications of CCS have been reported in the literature, but rib fracture is not included. Case Presentation We report a case of a 58-year-old man who was admitted to our hospital with a 6-month history of frequent diarrhea, intermittent hematochezia and a weight loss of 13 kg. On admission, physical examination revealed alopecia of the scalp, hyperpigmentation of the hands and soles, and dystrophy of the fingernails. Laboratory data revealed hypocalcaemia and hypoproteinemia. Esophagogastroduodenoscopy, video capsule endoscopy and colonoscopy revealed various sizes of generalized gastrointestinal polyps. Histological examination of the biopsy specimens obtained from the stomach and the colon showed adenomatous polyp and inflammatory polyp respectively. Thus, a diagnosis of CCS was made. After treatment with corticosteroids for 24 days and nutritional support for two months, his clinical condition improved. Two months later, he was admitted to our hospital for the second time with frequent diarrhea and weight loss. The chest radiography revealed fractures of the left sixth and seventh ribs. Examinations, including emission computed tomography, bone densitometry test, and other serum parameters, were performed, but could not identify the definite etiology of the rib fractures. One month later, the patient suffered from aggravating multiple rib fractures due to the ineffective treatment, persistent hypocalcaemia and malnutrition. Conclusions This is the first case of a CCS patient with multiple rib fractures. Although the association between CCS and multiple rib fractures in this case remains uncertain, we presume that persistent hypocalcaemia and malnutrition contribute to this situation, or at least aggravate this rare complication. Besides, since prolonged corticosteroid therapy will result in an increased risk of osteoporotic

  7. Cronkhite-Canada syndrome associated with rib fractures: a case report.

    Science.gov (United States)

    Yuan, Bosi; Jin, Xinxin; Zhu, Renmin; Zhang, Xiaohua; Liu, Jiong; Wan, Haijun; Lu, Heng; Shen, Yunzhu; Wang, Fangyu

    2010-10-18

    Cronkhite-Canada syndrome (CCS) is a rare multiple gastrointestinal polyposis. Up till now, many complications of CCS have been reported in the literature, but rib fracture is not included. We report a case of a 58-year-old man who was admitted to our hospital with a 6-month history of frequent diarrhea, intermittent hematochezia and a weight loss of 13 kg. On admission, physical examination revealed alopecia of the scalp, hyperpigmentation of the hands and soles, and dystrophy of the fingernails. Laboratory data revealed hypocalcaemia and hypoproteinemia. Esophagogastroduodenoscopy, video capsule endoscopy and colonoscopy revealed various sizes of generalized gastrointestinal polyps. Histological examination of the biopsy specimens obtained from the stomach and the colon showed adenomatous polyp and inflammatory polyp respectively. Thus, a diagnosis of CCS was made. After treatment with corticosteroids for 24 days and nutritional support for two months, his clinical condition improved. Two months later, he was admitted to our hospital for the second time with frequent diarrhea and weight loss. The chest radiography revealed fractures of the left sixth and seventh ribs. Examinations, including emission computed tomography, bone densitometry test, and other serum parameters, were performed, but could not identify the definite etiology of the rib fractures. One month later, the patient suffered from aggravating multiple rib fractures due to the ineffective treatment, persistent hypocalcaemia and malnutrition. This is the first case of a CCS patient with multiple rib fractures. Although the association between CCS and multiple rib fractures in this case remains uncertain, we presume that persistent hypocalcaemia and malnutrition contribute to this situation, or at least aggravate this rare complication. Besides, since prolonged corticosteroid therapy will result in an increased risk of osteoporotic fracture, CCS patients who accept corticosteroid therapy could be

  8. Management of Hangman's Fractures: A Systematic Review.

    Science.gov (United States)

    Murphy, Hamadi; Schroeder, Gregory D; Shi, Weilong J; Kepler, Christopher K; Kurd, Mark F; Fleischman, Andrew N; Kandziora, Frank; Chapman, Jens R; Benneker, Lorin M; Vaccaro, Alexander R

    2017-09-01

    Traumatic spondylolisthesis of the axis, is a common cervical spine fracture; however, to date there is limited data available to guide the treatment of these injuries. The purpose of this review is to provide an evidence-based analysis of the literature and clinical outcomes associated with the surgical and nonsurgical management of hangman's fractures. A systematic literature search was conducted using PubMed (MEDLINE) and Scopus (EMBASE, MEDLINE, COMPENDEX) for all articles describing the treatment of hangman's fractures in 2 or more patients. Risk of nonunion, mortality, complications, and treatment failure (defined as the need for surgery in the nonsurgically managed patients and the need for revision surgery for any reason in the surgically managed patients) was compared for operative and nonoperative treatment methods using a generalized linear mixed model and odds ratio analysis. Overall, 25 studies met the inclusion criteria and were included in our quantitative analysis. Bony union was the principal outcome measure used to assess successful treatment. All studies included documented fracture union and were included in statistical analyses. The overall union rate for 131 fractures treated nonsurgically was 94.14% [95% confidence interval (CI), 76.15-98.78]. The overall union rate for 417 fractures treated surgically was 99.35% (95% CI, 96.81-99.87). Chance of nonunion was lower in those patients treated surgically (odds ratio, 0.12; 95% CI, 0.02-0.71). There was not a significant difference in mortality between patients treated surgically (0.16%; 95% CI, 0.01%-2.89%) and nonsurgically (1.04%; 95% CI, 0.08%-11.4%) (odds ratio, 0.15; 95% CI, 0.01-2.11). Treatment failure was less likely in the surgical treatment group (0.12%; 95% CI, 0.01%-2.45%) than the nonsurgical treatment group (0.71%; 95% CI, 0.28%-15.75%) (odds ratio 0.07; 95% CI, 0.01-0.56). Hangman's fractures are common injuries, and surgical treatment leads to an increase in the rate of

  9. 3-D description of fracture surfaces and stress-sensitivity analysis for naturally fractured reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S.Q.; Jioa, D.; Meng, Y.F.; Fan, Y.

    1997-08-01

    Three kinds of reservoir cores (limestone, sandstone, and shale with natural fractures) were used to study the effect of morphology of fracture surfaces on stress sensitivity. The cores, obtained from the reservoirs with depths of 2170 to 2300 m, have fractures which are mated on a large scale, but unmated on a fine scale. A specially designed photoelectric scanner with a computer was used to describe the topography of the fracture surfaces. Then, theoretical analysis of the fracture closure was carried out based on the fracture topography generated. The scanning results show that the asperity has almost normal distributions for all three types of samples. For the tested samples, the fracture closure predicted by the elastic-contact theory is different from the laboratory measurements because plastic deformation of the aspirates plays an important role under the testing range of normal stresses. In this work, the traditionally used elastic-contact theory has been modified to better predict the stress sensitivity of reservoir fractures. Analysis shows that the standard deviation of the probability density function of asperity distribution has a great effect on the fracture closure rate.

  10. Hydrogeologic characterization of a fractured granitic rock aquifer, Raymond, California

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Andrew J.B. [Univ. of California, Berkeley, CA (United States)

    1993-10-01

    The hydrogeologic properties of a shallow, fractured granitic rock aquifer in the foothills of the Sierra Nevada, California were investigated via the analysis of borehole geophysical logs and pumping tests. The drawdowns produced during these tests are not indicative of any simple conceptual aquifer model, and borehole logs show that the granite is intensely fractured. These observations are suggestive of a complex fracture-flow geometry which is extremely difficult to decipher. However, through the measurement of orientations of individual subsurface fractures from acoustic televiewer logs, and correlation between particular fractures and electrical resistivity and thermal-pulse flowmeter logs, it was found that the aquifer is, in general, comprised of two subhorizontal and nearly parallel zones of unloading fractures. Downhole flowmeter measurements taken in several wells provide further evidence for the inferred dual-layer structure of the aquifer, as well as yield quantitative measures of the contribution of flow from each zone. Analysis of drawdowns in pumped wells reveals that there are zones of relatively high transmissivity immediately around them. It was found that these properties, as well as a nearby zone of lower transmissivity, can account for their observed drawdowns. A numerical model was constructed to test whether these major heterogeneities could also account for the drawdowns in observation wells. This stepwise analysis of both the geophysical and hydrological data resulted in the formulation of a conceptual model of the aquifer which is consistent with observations, and which can account for its behavior when subjected to pumping.

  11. Why ductile fracture mechanics

    International Nuclear Information System (INIS)

    Ritchie, R.O.

    1983-01-01

    Until recently, the engineering application of fracture mechanics has been specific to a description of macroscopic fracture behavior in components and structural parts which remain nominally elastic under loading. While this approach, termed linear elastic fracture mechanics, has been found to be invaluable for the continuum analysis of crack growth in brittle and high strength materials, it is clearly inappropriate for characterizing failure in lower strength ductile alloys where extensive inelastic deformation precedes and accompanies crack initiation and subsequent propagation. Accordingly, much effort has been devoted in recent years toward the development of nonlinear or ductile fracture mechanics methodology to characterize fracture behavior under elastic/plastic conditions; an effort which has been principally motivated by problems in nuclear industry. In this paper, the concepts of ductile (elastic/plastic) fracture mechanics are introduced and applied to the problem of both stationary and nonstationary cracks. Specifically, the limitations inherent in this approach are defined, together with a description of the microstructural considerations and applications relevant to the failure of ductile materials by fracture, fatigue, and creep

  12. Dynamic fracture toughness and evaluation of fracture in a ferritic nodular cast iron for casks

    International Nuclear Information System (INIS)

    Yasunaka, T.; Nakano, K.

    1993-01-01

    The effect of loading rate and temperature on fracture toughness of a ferritic nodular cast iron obtained from a thick-walled cylindrical casting has been investigated. Based upon this result, the cast iron is evaluated as a material for casks. (1) In the ductile fracture region, fracture toughness increases with increases in loading rate. (2) Ductile-brittle transition temperature is linearly related to the logarithm of stress intensity rate. (3) In the ductile fracture region, converted plain strain fracture toughness divided by yield stress can be adopted as a material constant which is independent of loading rate and temperature. From the result of a static fracture toughness test, the evaluation of fracture in high loading rate can be made. (4) In the ductile fracture region of the material investigated, the maximum allowable flaw depth exceeded the minimum detectable flaw size by a nondestructive inspection. Ferritic nodular cast iron can be used as a material for casks in the ductile fracture region at least. (J.P.N.)

  13. Effects of medication reviews performed by a physician on treatment with fracture-preventing and fall-risk-increasing drugs in older adults with hip fracture-a randomized controlled study.

    Science.gov (United States)

    Sjöberg, Christina; Wallerstedt, Susanna M

    2013-09-01

    To investigate whether medication reviews increase treatment with fracture-preventing drugs and decrease treatment with fall-risk-increasing drugs. Randomized controlled trial (1:1). Departments of orthopedics, geriatrics, and medicine at Sahlgrenska University Hospital, Gothenburg, Sweden. One hundred ninety-nine consecutive individuals with hip fracture aged 65 and older. Medication reviews, based on assessments of risks of falls and fractures, regarding fracture-preventing and fall-risk-increasing drugs, performed by a physician, conveyed orally and in written form to hospital physicians during the hospital stay, and to general practitioners after discharge. Primary outcomes were changes in treatment with fracture-preventing and fall-risk-increasing drugs 12 months after discharge. Secondary outcomes were falls, fractures, deaths, and physicians' attitudes toward the intervention. At admission, 26% of intervention and 29% of control participants were taking fracture-preventing drugs, and 12% and 11%, respectively, were taking bone-active drugs, predominantly bisphosphonates. After 12 months, 77% of intervention and 58% of control participants were taking fracture-preventing drugs (P = .01), and 29% and 15%, respectively, were taking bone-active drugs (P = .04). Mean number of fall-risk-increasing drugs per participants was 3.1 (intervention) and 3.1 (control) at admission and 2.9 (intervention) and 3.1 (control) at 12 months (P = .62). No significant differences in hard endpoints were found. The responding physicians (n = 65) appreciated the intervention; on a scale from 1 (very bad) to 6 (very good), the median rating was 5 (interquartile range (IQR) 4-6) for the oral part and 5 (IQR 4-5.5) for the text part. Medication reviews performed and conveyed by a physician increased treatment with fracture-preventing drugs but did not significantly decrease treatment with fall-risk-increasing drugs in older adults with hip fracture. Prescribing physicians appreciated

  14. Survival times of patients with a first hip fracture with and without subsequent major long-bone fractures.

    Science.gov (United States)

    Angthong, Chayanin; Angthong, Wirana; Harnroongroj, Thos; Naito, Masatoshi; Harnroongroj, Thossart

    2013-01-01

    Survival rates are poorer after a second hip fracture than after a first hip fracture. Previous survival studies have included in-hospital mortality. Excluding in-hospital deaths from the analysis allows survival times to be evaluated in community-based patients. There is still a lack of data regarding the effects of subsequent fractures on survival times after hospital discharge following an initial hip fracture. This study compared the survival times of community-dwelling patients with hip fracture who had or did not have a subsequent major long-bone fracture. Hazard ratios and risk factors for subsequent fractures and mortality rates with and without subsequent fractures were calculated. Of 844 patients with hip fracture from 2000 through 2008, 71 had a subsequent major long-bone fracture and 773 did not. Patients who died of other causes, such as perioperative complications, during hospitalization were excluded. Such exclusion allowed us to determine the effect of subsequent fracture on the survival of community-dwelling individuals after hospital discharge or after the time of the fracture if they did not need hospitalization. Demographic data, causes of death, and mortality rates were recorded. Differences in mortality rates between the patient groups and hazard ratios were calculated. Mortality rates during the first year and from 1 to 5 years after the most recent fracture were 5.6% and 1.4%, respectively, in patients with subsequent fractures, and 4.7% and 1.4%, respectively, in patients without subsequent fractures. These rates did not differ significantly between the groups. Cox regression analysis and calculation of hazard ratios did not show significant differences between patients with subsequent fractures and those without. On univariate and multivariate analyses, age fracture. This study found that survival times did not differ significantly between patients with and without subsequent major long-bone fractures after hip fracture. Therefore, all

  15. Fracture Characterization in Reactive Fluid-Fractured Rock Systems Using Tracer Transport Data

    Science.gov (United States)

    Mukhopadhyay, S.

    2014-12-01

    Fractures, whether natural or engineered, exert significant controls over resource exploitation from contemporary energy sources including enhanced geothermal systems and unconventional oil and gas reserves. Consequently, fracture characterization, i.e., estimating the permeability, connectivity, and spacing of the fractures is of critical importance for determining the viability of any energy recovery program. While some progress has recently been made towards estimating these critical fracture parameters, significant uncertainties still remain. A review of tracer technology, which has a long history in fracture characterization, reveals that uncertainties exist in the estimated parameters not only because of paucity of scale-specific data but also because of knowledge gaps in the interpretation methods, particularly in interpretation of tracer data in reactive fluid-rock systems. We have recently demonstrated that the transient tracer evolution signatures in reactive fluid-rock systems are significantly different from those in non-reactive systems (Mukhopadhyay et al., 2013, 2014). For example, the tracer breakthrough curves in reactive fluid-fractured rock systems are expected to exhibit a long pseudo-state condition, during which tracer concentration does not change by any appreciable amount with passage of time. Such a pseudo-steady state condition is not observed in a non-reactive system. In this paper, we show that the presence of this pseudo-steady state condition in tracer breakthrough patterns in reactive fluid-rock systems can have important connotations for fracture characterization. We show that the time of onset of the pseudo-steady state condition and the value of tracer concentration in the pseudo-state condition can be used to reliably estimate fracture spacing and fracture-matrix interface areas.

  16. The mechanics and physics of fracturing: application to thermal aspects of crack propagation and to fracking.

    Science.gov (United States)

    Cherepanov, Genady P

    2015-03-28

    By way of introduction, the general invariant integral (GI) based on the energy conservation law is presented, with mention of cosmic, gravitational, mass, elastic, thermal and electromagnetic energy of matter application to demonstrate the approach, including Coulomb's Law generalized for moving electric charges, Newton's Law generalized for coupled gravitational/cosmic field, the new Archimedes' Law accounting for gravitational and surface energy, and others. Then using this approach the temperature track behind a moving crack is found, and the coupling of elastic and thermal energies is set up in fracturing. For porous materials saturated with a fluid or gas, the notion of binary continuum is used to introduce the corresponding GIs. As applied to the horizontal drilling and fracturing of boreholes, the field of pressure and flow rate as well as the fluid output from both a horizontal borehole and a fracture are derived in the fluid extraction regime. The theory of fracking in shale gas reservoirs is suggested for three basic regimes of the drill mud permeation, with calculating the shape and volume of the local region of the multiply fractured rock in terms of the pressures of rock, drill mud and shale gas. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  17. Interpretation of fracture system geometry using well test data

    International Nuclear Information System (INIS)

    Doe, T.W.; Geier, J.E.

    1990-11-01

    This report presents three methods of determining fracture geometry and interconnection from well test information. Method 1 uses evidence for boundary effects in the well test to determine the distance to and type of fracture boundary. Method 2 uses the spatial dimension of the well test to infer the geometry of the fracture-conduit system. Method 3 obtains information of the spacing and transmissivity distribution of individual conductive fractures from fixed-interval-length (FIL) well tests. The three methods are applied to data from the Site Characterization and Validation (SCV) at the 360 m level of the Stripa Mine. The focus of the technology development is the constant-pressure welltest, although the general approaches apply to constant-rate well test, and to a much lesser extent slug or pulse test, which are relatively insensitive to boundaries and spatial dimension. Application of the techniques to the N and W holes in the SCV area shows that there is little evidence for boundary effects in the well test results. There is, on the other hand, considerable variation in the spatial dimension of the well test data ranging from sub-linear (fractures which decrease in conductivity with distance from the hole) to spherical, for three-dimensional fracture systems. The absence of boundary effects suggest that the rock mass in the SCV area contains a well connected fracture system. Major uncertainties in the analysis of well test data limit the use of single borehole measurements. Without assuming the value of specific storage, one can reliably determine only the spatial dimension, and, for two dimensional flow only, the transmissivity. Among the uncertainties are the effective well radius, the degree to which the fracture conduits fill the n-dimensional space in which flow occurs, and the cross-sectional area of the conduits at the wellbore. This report presents a complete development of constant-pressure well test methods for cylindrical flow and flow of arbitrary

  18. Osteoporotic fractures in older adults

    OpenAIRE

    Colón-Emeric, Cathleen S.; Saag, Kenneth G.

    2006-01-01

    Osteoporotic fractures are emerging as a major public health problem in the aging population. Fractures result in increased morbidity, mortality and health expenditures. This article reviews current evidence for the management of common issues following osteoporotic fractures in older adults including: (1) thromboembolism prevention; (2) delirium prevention; (3) pain management; (4) rehabilitation; (5) assessing the cause of fracture; and (6) prevention of subsequent fractures. Areas for prac...

  19. Dependence of fracture mechanical and fluid flow properties on fracture roughness and sample size

    International Nuclear Information System (INIS)

    Tsang, Y.W.; Witherspoon, P.A.

    1983-01-01

    A parameter study has been carried out to investigate the interdependence of mechanical and fluid flow properties of fractures with fracture roughness and sample size. A rough fracture can be defined mathematically in terms of its aperture density distribution. Correlations were found between the shapes of the aperture density distribution function and the specific fractures of the stress-strain behavior and fluid flow characteristics. Well-matched fractures had peaked aperture distributions that resulted in very nonlinear stress-strain behavior. With an increasing degree of mismatching between the top and bottom of a fracture, the aperture density distribution broadened and the nonlinearity of the stress-strain behavior became less accentuated. The different aperture density distributions also gave rise to qualitatively different fluid flow behavior. Findings from this investigation make it possible to estimate the stress-strain and fluid flow behavior when the roughness characteristics of the fracture are known and, conversely, to estimate the fracture roughness from an examination of the hydraulic and mechanical data. Results from this study showed that both the mechanical and hydraulic properties of the fracture are controlled by the large-scale roughness of the joint surface. This suggests that when the stress-flow behavior of a fracture is being investigated, the size of the rock sample should be larger than the typical wave length of the roughness undulations

  20. Constitutive and failure behaviour in selective laser melted stainless steel for microlattice structures

    International Nuclear Information System (INIS)

    Li, Peifeng

    2015-01-01

    The emerging selective laser melting (SLM) technology makes possible the manufacturing of metallic microlattice structures with better tailorability of properties. This work investigated the constitutive formulation of the parent material and the failure mechanism in the SLM stainless steel microlattice structure. The constitutive behaviour of SLM stainless steel was quantitatively formulated using the Johnson–Cook hardening model. A finite element model incorporating the constitutive formula was developed and experimentally validated to predict the localised stress evolution in an SLM stainless steel microlattice structure subjected to uniaxial compression. The predicted stresses were then linked to the fracture process in the SLM steel observed by scanning electron microscope. It was found that the tensile and compressive stress state is localised in the strut members of the microlattice, and determines the macroscopic cracking mode. The tensile opening and shear cracking dominate the tension and compression zones, respectively. However, the microscopic examination on the fracture surfaces reveals the formation of substantial slip bands in both the tension and compression zones, implying that the ductile fracture in the SLM stainless steel is transgranular

  1. The role of intermetallic precipitates in Ti-62222S

    Energy Technology Data Exchange (ETDEWEB)

    Evans, D J [US Air Force Mater. Directorate Wright Lab., Wright Patterson AFB, OH (United States); Broderick, T F [US Air Force Mater. Directorate Wright Lab., Wright Patterson AFB, OH (United States); Woodhouse, J B [UES Inc, Dayton, OH (United States); Hoenigman, J R [Wright State Univ., Dayton, OH (United States). Research Inst.

    1996-08-15

    Samples of Ti-62222-0.23wt.%Si were heat treated and aged at temperatures ranging from 1150 F to 1500 F with the view of effecting selective precipitation of {alpha}{sub 2} precipitates and silicides (i.e. Ti{sub x}Zr{sub 5-x}Si{sub 3}). The effect of these intermetallic precipitates on the mechanical properties and fracture morphology was assessed via three separate microstructural conditions: Ti-62222S with {alpha}{sub 2} precipitates, Ti-62222S with {alpha}{sub 2} and silicide precipitates, and Ti-62222S with silicide precipitates. Both types of intermetallic precipitate appear to lower the fracture toughness, however {alpha}{sub 2} promotes intergranular fracture while silicides lead to transgranular failure and dimpling. The combined presence of the {alpha}{sub 2} and silicides leads to mixed mode failure. Further, since {alpha}{sub 2} is present in the {alpha} phase and silicides precipitate out in the {beta} phase, it appears that the effect of each of these intermetallics in Ti-62222S is additive rather than synergistic. (orig.)

  2. Fatigue crack propagation under combined cyclic mechanical loading and electric field in piezoelectric ceramics

    International Nuclear Information System (INIS)

    Shirakihara, Kaori; Tanaka, Keisuke; Akiniwa, Yoshiaki; Suzuki, Yasuyoshi; Mukai, Hirokatsu

    2006-01-01

    Fatigue crack propagation tests of PZT specimens were performed under cyclic four-point bending with and without superposition of electric fields. The specimens were poled in the longitudinal direction (PL specimens) perpendicular to the crack plane. The crack propagation rate for the case of open circuit was faster than that for the case of short circuit. The application of a negative or positive electric field parallel to the poling direction accelerated the crack propagation rate, and the amount of acceleration was larger for the case of the negative field. The change of the crack propagation rate with crack extension can be divided into three regions. In the region I, the crack propagation rate decreases with increasing crack length, and then turn to increase in the region III. In the region II, the propagation rate is nearly constant. The mechanisms of fatigue crack propagation were correlated to domain switching near the crack tip. The grain boundary fracture was predominant in the low-rate region, while transgranular fracture became abundant on the unstable fracture surface. (author)

  3. PSYCHIATRIC EVALUATION OF LIMB FRACTURE PATIENTS

    OpenAIRE

    CHAUDHURY, S; JOHN, TR; KUMAR, A; SINGH, HARCHARAN

    2002-01-01

    The study included 70 consecutive patients with fracture of the lower and upper limbs each and an equal number of age and sex matched normal control subjects. All the subjects were screened using the General Health Questionnaire (GHQ), the Michigan Alcoholism Screening Test (MAST), Carroll Rating Scale for Depression (CRSD), State-Trait Anxiety Inventory (STAI), Impact of Events Scale (IES), Fatigue Scale (FS) and the Perceived Stress Questionnaire (PSQ). Probable “Psychiatric cases” identifi...

  4. C-arm guided closed reduction of zygomatic arch fracture

    International Nuclear Information System (INIS)

    Eo, Yoon Ki; Lee, Dong Kun; Kim, Jeong Sam; Jang, Young Il

    1999-01-01

    The zygomatic arch is structurally protruded and is easily fractured. The classic management of zygomatic arch fracture has been mentioned the Keen, Lothrop, Dingman and Alling and threaded K-wire. All of the above methods have advantages and disadvantages. To minimize the disadvantages, we performed threaded K-wire for the first time using C-arm image intensifier. The subjects were 16 patients with Knight North group II (Zygomatic arch fracture). Among them the C-arm was used in 12 patients and the operator used sensitivity general method in 4 patients and confirmed the operation by mobile X-ray equipment. In conclusion, both groups were satisfied surgically and cosmetically. Using the C-arm, actual image at the time operation was clear and satisfied, the surrounding tissue damage was minimized and at was more accurately completed. The operation time was shortened by 30 to 60 minutes proving it to be an efficient method. We suggest though that further studies be needed to evaluate the radiation effect on these patients

  5. Effects of fracture distribution and length scale on the equivalent continuum elastic compliance of fractured rock masses

    Directory of Open Access Journals (Sweden)

    Marte Gutierrez

    2015-12-01

    Full Text Available Fracture systems have strong influence on the overall mechanical behavior of fractured rock masses due to their relatively lower stiffness and shear strength than those of the rock matrix. Understanding the effects of fracture geometrical distribution, such as length, spacing, persistence and orientation, is important for quantifying the mechanical behavior of fractured rock masses. The relation between fracture geometry and the mechanical characteristics of the fractured rock mass is complicated due to the fact that the fracture geometry and mechanical behaviors of fractured rock mass are strongly dependent on the length scale. In this paper, a comprehensive study was conducted to determine the effects of fracture distribution on the equivalent continuum elastic compliance of fractured rock masses over a wide range of fracture lengths. To account for the stochastic nature of fracture distributions, three different simulation techniques involving Oda's elastic compliance tensor, Monte Carlo simulation (MCS, and suitable probability density functions (PDFs were employed to represent the elastic compliance of fractured rock masses. To yield geologically realistic results, parameters for defining fracture distributions were obtained from different geological fields. The influence of the key fracture parameters and their relations to the overall elastic behavior of the fractured rock mass were studied and discussed. A detailed study was also carried out to investigate the validity of the use of a representative element volume (REV in the equivalent continuum representation of fractured rock masses. A criterion was also proposed to determine the appropriate REV given the fracture distribution of the rock mass.

  6. Closed treatment of overriding distal radial fractures without reduction in children.

    Science.gov (United States)

    Crawford, Scott N; Lee, Lorrin S K; Izuka, Byron H

    2012-02-01

    Traditionally, distal radial fractures with marked displacement and angulation have been treated with closed or open reduction techniques. Reduction maneuvers generally require analgesia and sedation, which increase hospital time, cost, patient risk, and the surgeon's time. In our study, a treatment protocol for pediatric distal radial fractures was used in which the fracture was left shortened in an overriding position and a cast was applied without an attempt at anatomic fracture reduction. Consecutive patients three to ten years of age presenting between 2004 and 2009 with a closed overriding fracture of the distal radial metaphysis were followed prospectively. Our protocol consisted of no analgesia, no sedation, and a short arm fiberglass cast gently molded to correct only angulation. Patients were followed for at least one year. All parents or guardians were given a questionnaire assessing their satisfaction with the treatment. Financial analysis was performed with use of Current Procedural Terminology codes and the average total cost of care. Fifty-one children with an average age of 6.9 years were included in the study. Initial radial shortening averaged 5.0 mm. Initial sagittal and coronal angulation averaged 4.0° and 3.2°, respectively. The average duration of casting was forty-two days. Residual sagittal and coronal angulation at the time of final follow-up averaged 2.2° and 0.8°, respectively. All fifty-one patients achieved clinical and radiographic union with a full range of wrist motion. All parents and guardians answered the questionnaire and were satisfied with the treatment. Cost analysis demonstrated that closed reduction with the patient under conscious sedation or general anesthesia is nearly five to six times more expensive than the treatment used in this study. Adding percutaneous pin fixation increases costs nearly ninefold. This treatment protocol presents an alternative approach to overriding distal radial fractures in children and

  7. Failure conditions from push out tests of a steel-concrete joint: fracture mechanics approach

    Czech Academy of Sciences Publication Activity Database

    Klusák, Jan; Seitl, Stanislav; De Corte, W.; Helincks, P.; Boel, V.; De Schutter, G.

    488-489, - (2012), s. 710-713 ISSN 1013-9826. [International Conference on Fracture and Damage Mechanics - FDM 2011 /10./. Dubrovník, 19.09.2011-21.09.2011] R&D Projects: GA ČR GAP108/10/2049 Institutional research plan: CEZ:AV0Z20410507 Keywords : Push out test * generalized linear elastic fracture mechanics * bi-material notch Subject RIV: JL - Materials Fatigue, Friction Mechanics

  8. Plain film analysis of acetabular fracture

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Soo; Han, Sang Suk; Yoon, Eu Giene; Cha, Seong Sook; Eun, Tchoong Kie; Chung, Duck Hwan [Inje Medical College Paik Hospital, Pusan (Korea, Republic of)

    1986-02-15

    Acetabular fracture can result in severe limitation of the motion of the hip joint, which supports total weight of human body. Because of different methods of surgical approach according to fracture type, precise interpretation of X-ray films of acetabular fracture is required. We reviewed 38 cases of simple X-ray films showing acetabular fracture. The results were as follows: 1. Almost 60% of the cases-were in their 2nd and 3rd decades. 2. Twenty cases were male, and 18 cases were female. 3. The most common cause of the injury was traffic accident (33 cases, 86.8%), followed by fall down (4 cases, 10.5%), and slip down (1 case, 2.7%). 4. Elementary fractures were 21 cases (55.3%), and associated fractures were 17 cases (44.7%). 5. Among elementary fractures, posterior wall fractures were 9 cases (23.7%), followed by anterior column fractures (8 cases, 21.1%), anterior wall fractures (4 cases, 10.5%). 6. Among associated fractures, T-shaped fractures were 8 cases (21.1%), followed by both column fractures (6 cases, 15.8%), anterior and hemitransverse fractures (3 cases, 7.8%). 7. Other pelvic bone fractures associated with the acetabular fracture were as follows: fractures of contralateral pubic rami (6 cases, 15.8%) contralateral iliac bone (1 case, 2.6%) and ipsilateral iliac bone (1 case, 2.6%). 8. Injuries of other organs adjacent to the acetabulum were as follows: rupture of the bladder (3 cases, 7.9%), urethra (2 cases, 5.3%) and uterus (1 cases, 2.6%)

  9. Plain film analysis of acetabular fracture

    International Nuclear Information System (INIS)

    Kim, Chang Soo; Han, Sang Suk; Yoon, Eu Giene; Cha, Seong Sook; Eun, Tchoong Kie; Chung, Duck Hwan

    1986-01-01

    Acetabular fracture can result in severe limitation of the motion of the hip joint, which supports total weight of human body. Because of different methods of surgical approach according to fracture type, precise interpretation of X-ray films of acetabular fracture is required. We reviewed 38 cases of simple X-ray films showing acetabular fracture. The results were as follows: 1. Almost 60% of the cases-were in their 2nd and 3rd decades. 2. Twenty cases were male, and 18 cases were female. 3. The most common cause of the injury was traffic accident (33 cases, 86.8%), followed by fall down (4 cases, 10.5%), and slip down (1 case, 2.7%). 4. Elementary fractures were 21 cases (55.3%), and associated fractures were 17 cases (44.7%). 5. Among elementary fractures, posterior wall fractures were 9 cases (23.7%), followed by anterior column fractures (8 cases, 21.1%), anterior wall fractures (4 cases, 10.5%). 6. Among associated fractures, T-shaped fractures were 8 cases (21.1%), followed by both column fractures (6 cases, 15.8%), anterior and hemitransverse fractures (3 cases, 7.8%). 7. Other pelvic bone fractures associated with the acetabular fracture were as follows: fractures of contralateral pubic rami (6 cases, 15.8%) contralateral iliac bone (1 case, 2.6%) and ipsilateral iliac bone (1 case, 2.6%). 8. Injuries of other organs adjacent to the acetabulum were as follows: rupture of the bladder (3 cases, 7.9%), urethra (2 cases, 5.3%) and uterus (1 cases, 2.6%).

  10. Evaluation of viscoplastic fracture criteria and analysis methods

    International Nuclear Information System (INIS)

    Bass, B.R.; Pugh, C.E.; Keeney-Walker, J.; Dexter, R.J.; O'Donoghue, P.E.; Schwartz, C.W.

    1988-01-01

    The role of nonlinear rate-dependent effects in the interpretation of crack run-arrest events in ductile materials is being investigated by the Heavy-Section Steel Technology (HSST) program through development and applications of viscoplastic-dynamic finite element analysis techniques. This paper describes a portion of these studies wherein various viscoplastic constitutive models and several proposed nonlinear fracture criteria are being installed in general purpose (ADINA) and special purpose (VISCRK) finite element computer programs. The formulations of the Bodner-Partom, the Perzyna, and the Robinson constitutive models installed in the HSST computer programs are summarized. This is followed by a description of three integral functions that are candidate fracture parameters. The capabilities of these nonlinear techniques re compared and evaluated through applications to one of the HSST wide-plate crack-arrest tests. Results are presented from benchmark viscoplastic-dynamic wide-plate analyses performed using the ADINA and VISCRK computer programs. Finally, plans are summarized for additional computational and experimental studies to assess the utility of viscoplastic analysis techniques in constructing a transferable inelastic fracture mechanics model for ductile steels. (author)

  11. Paediatric talus fracture.

    LENUS (Irish Health Repository)

    Byrne, Ann-Maria

    2012-01-01

    Paediatric talus fractures are rare injuries resulting from axial loading of the talus against the anterior tibia with the foot in dorsiflexion. Skeletally immature bone is less brittle, with higher elastic resistance than adult bone, thus the paediatric talus can sustain higher forces before fractures occur. However, displaced paediatric talus fractures and those associated with high-energy trauma have been associated with complications including avascular necrosis, arthrosis, delayed union, neurapraxia and the need for revision surgery. The authors present the rare case of a talar neck fracture in a skeletally immature young girl, initially missed on radiological review. However, clinical suspicion on the part of the emergency physician, repeat examination and further radiographic imaging revealed this rare paediatric injury.

  12. Comparison of surgical techniques of 111 medial malleolar fractures classified by fracture geometry.

    Science.gov (United States)

    Ebraheim, Nabil A; Ludwig, Todd; Weston, John T; Carroll, Trevor; Liu, Jiayong

    2014-05-01

    Evaluation of operative techniques used for medial malleolar fractures by classifying fracture geometry has not been well documented. One hundred eleven patients with medial malleolar fractures (transverse n = 63, oblique n = 29, vertical n = 7, comminuted n = 12) were included in this study. Seventy-two patients had complicating comorbidities. All patients were treated with buttress plate, lag screw, tension band, or K-wire fixation. Treatment outcomes were evaluated on the basis of radiological outcome (union, malunion, delayed union, or nonunion), need for operative revision, presence of postoperative complications, and AOFAS Ankle-Hindfoot score. For transverse fractures, tension band fixation showed the highest rate of union (79%), highest average AOFAS score (86), lowest revision rate (5%), and lowest complication rate (16%). For oblique fractures, lag screws showed the highest rate of union (71%), highest average AOFAS score (80), lowest revision rate (19%), and lowest complication rate (33%) of the commonly used fixation techniques. For vertical fractures, buttress plating was used in every case but 1, achieving union (whether normal or delayed) in all cases with an average AOFAS score of 84, no revisions, and a 17% complication rate. Comminuted fractures had relatively poor outcomes regardless of fixation method. The results of this study suggest that both tension bands and lag screws result in similar rates of union for transverse fractures of the medial malleolus, but that tension band constructs are associated with less need for revision surgery and fewer complications. In addition, our data demonstrate that oblique fractures were most effectively treated with lag screws and that vertical fractures attained superior outcomes with buttress plating. Level III, retrospective comparative series.

  13. Streaming potential modeling in fractured rock: Insights into the identification of hydraulically active fractures

    Science.gov (United States)

    Roubinet, D.; Linde, N.; Jougnot, D.; Irving, J.

    2016-05-01

    Numerous field experiments suggest that the self-potential (SP) geophysical method may allow for the detection of hydraulically active fractures and provide information about fracture properties. However, a lack of suitable numerical tools for modeling streaming potentials in fractured media prevents quantitative interpretation and limits our understanding of how the SP method can be used in this regard. To address this issue, we present a highly efficient two-dimensional discrete-dual-porosity approach for solving the fluid flow and associated self-potential problems in fractured rock. Our approach is specifically designed for complex fracture networks that cannot be investigated using standard numerical methods. We then simulate SP signals associated with pumping conditions for a number of examples to show that (i) accounting for matrix fluid flow is essential for accurate SP modeling and (ii) the sensitivity of SP to hydraulically active fractures is intimately linked with fracture-matrix fluid interactions. This implies that fractures associated with strong SP amplitudes are likely to be hydraulically conductive, attracting fluid flow from the surrounding matrix.

  14. Hydraulic Fracturing At Sedimentary Basin Scale Fracturation hydraulique à l'échelle des bassins sédimentaires

    Directory of Open Access Journals (Sweden)

    Schneider F.

    2006-12-01

    Full Text Available One key point for simulating the hydraulic fracturing at basin scale, is to be able to compute the stress tensor. This is generally not addressed in basin model because of the complexity of this problem. In order to get access to the stress tensor we have to assume that:- one of the principal stress is vertical and equals the overburden weight;- the horizontal stress is deduced from the vertical stress with the K0 coefficient that is a function of depth and of the tectonical setting. Consolidation is considered here as the combined effect of the mechanical compaction and the chemical compaction. The mechanical compaction is mainly caused by the rearrangement of grains during burial and could be represented at the macroscopical scale by an elastoplastic rheology. The chemical compaction is considered here as resulting from dissolution-precipitation mechanisms, generally induced by stress (pressure-solution. The chemical compaction could be represented at the macroscopical scale by a viscoplastic rheology. The complete elastoplastic yield is defined by the union of the consolidation elastoplastic yield and of the different failure criteria that could be seen as elastobrittle yields. Thus, the elastoplastic yield is composed of six elementary elastoplastic yields which define the onset of vertical compaction, horizontal compaction, vertical tensile fracturing, horizontal tensile fracturing, subvertical shear fracturing, and subhorizontal shear fracturing. Due to the consolidation, most of the parameters that describe the physical properties of the sediments evolve with the geological times. One difficulty is to quantify the degree of evolution of the porous medium during its geological history. Here, we have chosen to measure the evolution of the sediments by their porosity. The local simulations showed that fracturing may occur is numerous configurations. Some of these configurations indicate that the sediments can reach the limit of its elastic

  15. Hydrologic behavior of fracture networks

    International Nuclear Information System (INIS)

    Long, J.C.S.; Endo, H.K.; Karasaki, K.; Pyrak, L.; MacLean, P.; Witherspoon, P.A.

    1985-01-01

    This paper reviews recent research on the nature of flow and transport in discontinuous fracture networks. The hydrologic behavior of these networks has been examined using two- and three-dimensional numerical models. The numerical models represent random realizations of fracture networks based on statistical field measurements of fracture geometry and equivalent hydraulic aperture. The authors have compared the flux and mechanical transported behavior of these networks to the behavior of equivalent continua. In this way they were able to determine whether a given fracture network could be modeled as an equivalent porous media in both flux and advective transport studies. They have examined departures from porous media behavior both as a function of interconnectivity and heterogeneity. Parameter studies have revealed behavior patterns such as: given a fracture frequency that can be measured in the field, porous media like behavior and the magnitude of permeability are both enhanced if the fractures are longer and the standard deviation of fracture permeabilities is smaller. The behavior of well tests in fractured networks has been modeled and compared to a new analytical well test solution which accounts for the early time dominance of the fractures intersecting the well. Finally, a three-dimensional fracture flow model has been constructed which assumes fractures are randomly located discs. This model has been constructed which assumes fractures are randomly located discs. This model uses a semi-analytical solution for flow such that it is relatively easy to use the model as a tool for stochastic analysis. 13 references, 12 figures

  16. Metatarsal stress fractures - aftercare

    Science.gov (United States)

    ... Metatarsal stress fracture. In: Safran MR, Zachazewski J, Stone DA, eds. Instructions for Sports Medicine Patients . 2nd ed. Elsevier Saunders; 2012:648-652. Smith MS. Metatarsal fractures. In: Eiff PM, Hatch R, eds. Fracture Management for Primary Care . 3rd ed. ...

  17. Acetabular fractures: anatomic and clinical considerations.

    Science.gov (United States)

    Lawrence, David A; Menn, Kirsten; Baumgaertner, Michael; Haims, Andrew H

    2013-09-01

    Classifying acetabular fractures can be an intimidating topic. However, it is helpful to remember that there are only three basic types of acetabular fractures: column fractures, transverse fractures, and wall fractures. Within this framework, acetabular fractures are classified into two broad categories: elementary or associated fractures. We will review the osseous anatomy of the pelvis and provide systematic approaches for reviewing both radiographs and CT scans to effectively evaluate the acetabulum. Although acetabular fracture classification may seem intimidating, the descriptions and distinctions discussed and shown in this article hopefully make the topic simpler to understand. Approach the task by recalling that there are only three basic types of acetabular fractures: column fractures (coronally oriented on CT images), transverse fractures (sagittally oriented on CT images), and wall fractures (obliquely oriented on CT images). We have provided systematic approaches for reviewing both conventional radiographs and CT scans to effectively assess the acetabulum. The clinical implications of the different fracture patterns have also been reviewed because it is critically important to include pertinent information for our clinical colleagues to provide the most efficient and timely clinical care.

  18. Role of fracture mechanics in modern technology

    International Nuclear Information System (INIS)

    Sih, G.C.

    1987-01-01

    The conference served as a forum not only for reviewing past concepts and technologies but it provided an opportunity for many of the designers, engineers and scientists to come forth with more advanced ideas so that fracture mechanics application can be broadened and employed more effectively to avoid unexpected failures that are annoying, costly and destructive of credibility of the engineering community in general

  19. Subtrochanteric femoral fracture during trochanteric nailing for the treatment of femoral shaft fracture.

    Science.gov (United States)

    Yun, Ho Hyun; Oh, Chi Hun; Yi, Ju Won

    2013-09-01

    We report on three cases of subtrochanteric femoral fractures during trochanteric intramedullary nailing for the treatment of femoral shaft fractures. Trochanteric intramedullary nails, which have a proximal lateral bend, are specifically designed for trochanteric insertion. When combined with the modified insertion technique, trochanteric intramedullary nails reduce iatrogenic fracture comminution and varus malalignment. We herein describe technical aspects of trochanteric intramedullary nailing for femoral shaft fractures to improve its application and prevent implant-derived complications.

  20. Rare stress fracture: longitudinal fracture of the femur.

    Science.gov (United States)

    Pérez González, M; Velázquez Fragua, P; López Miralles, E; Abad Moretón, M M

    42-year-old man with pain in the posterolateral region of the right knee that began while he was running. Initially, it was diagnosed by magnetic resonance (MR) as a possible aggressive process (osteosarcoma or Ewing's sarcoma) but with computed tomography it was noted a cortical hypodense linear longitudinal image with a continuous, homogeneous and solid periosteal reaction without clear soft tissue mass that in this patient suggest a longitudinal distal femoral fatigue stress fracture. This type of fracture at this location is very rare. Stress fractures are entities that can be confused with an agressive process. MR iscurrently the most sensitive and specific imaging method for its diagnosis. Copyright © 2017 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.