WorldWideScience

Sample records for general education astronomy

  1. Online Scholarly Conversations in General Education Astronomy Courses

    Science.gov (United States)

    Cai, Qijie; Wong, Ka-Wah

    2018-01-01

    In general education astronomy courses, many students are struggling with understanding the foundational concepts and theories in astronomy. One of the possible reasons is that, due the large class size, many of the courses are taught using a lecture mode, where human interactions and active learning are limited (Freeman et al., 2014). To address this challenge, we have applied the knowledge building framework (Scardamalia & Bereiter, 2006) to design an online collaborative learning component, called Scholarly Conversations, to be integrated into a general education astronomy course at a public, comprehensive university.During Scholarly Conversations, students are treated as scholars to advance knowledge frontiers (Scardamalia & Bereiter, 2006). The whole process involves the creation of new ideas and requires discourse and collective work for the advancement and creation of artifacts, such as theories and models (van Aalst, 2009). Based on the knowledge building principles (Scardamalia, 2002; Zhang, Scardamalia, Reeve, & Messina, 2009), several features have been built into Scholarly Conversations so that students are guided to deepen understanding of the astronomy concepts through three phases: knowledge sharing, knowledge construction and knowledge building, and reflections on learning growth (van Aalst, 2009; Cai, 2017). The online Scholarly Conversation is an extension of the lecture component of the general education astronomy course. It promotes student interactions and collaborative learning, and provides scaffolds for students to construct meanings of the essential concepts in astronomy through social learning and online technology. In this presentation, we will explain the specific design principles of the online Scholarly Conversation, and share the artifacts created to facilitate the online conversations in an general education astronomy course.Note: This project has been supported by the College of Education Research Grant Program at Minnesota State

  2. Innovation in Astronomy Education

    Science.gov (United States)

    Pasachoff, Jay M.; Ros, Rosa M.; Pasachoff, Naomi

    2013-01-01

    Preface; Part I. General Strategies for Effective Teaching: Introduction; 1. Main objectives of SpS2; 2. Learning astronomy by doing astronomy; 3. Hands-on Universe-Europe; 4. Life on Earth in the atmosphere of the Sun; 5. A model of teaching astronomy to pre-service teachers; 6. How to teach, learn about, and enjoy astronomy; 7. Clickers: a new teaching tool of exceptional promise; 8. Educational opportunities in pro-am collaboration; 9. Teaching history of astronomy to second-year engineering students; 10. Teaching the evolution of stellar and Milky Way concepts through the ages; 11. Educational efforts of the International Astronomical Union; 12. Astronomy in culture; 13. Light pollution: a tool for astronomy education; 14. Astronomy by distance learning; 15. Edible astronomy demonstrations; 16. Amateur astronomers as public outreach partners; 17. Does the Sun rotate around Earth or Earth rotate around the Sun?; 18. Using sounds and sonifications for astronomy outreach; 19. Teaching astronomy and the crisis in science education; 20. Astronomy for all as part of a general education; Poster abstracts; Part II. Connecting Astronomy with the Public: Introduction; 21. A status report from the Division XII working group; 22. Outreach using media; 23. Astronomy podcasting; 24. IAU's communication strategy, hands-on science communication, and the communication of the planet definition discussion; 25. Getting a word in edgeways: the survival of discourse in audiovisual astronomy; 26. Critical evaluation of the new Hall of Astronomy; 27. Revitalizing astronomy teaching through research on student understanding; Poster abstracts; Part III. Effective Use of Instruction and Information Technology: Introduction; 28. ESO's astronomy education program; 29. U.S. student astronomy research and remote observing projects; 30. Global network of autonomous observatories dedicated to student research; 31. Remote telescopes in education: report of an Australian study; 32. Visualizing

  3. A General Education Course in Cultural Astronomy: Exploring the Universe Through Human Eyes

    Science.gov (United States)

    Larsen, Kristine

    2017-01-01

    Astronomy courses for non-science majors (often referred to as Astro 101) are the bread and butter of the general education service obligation of astronomy faculty and programs across the US. Their content has traditionally been a general survey of the solar system, stars and galaxies, or even the entire universe. However, because the audience is students who will not be continuing on in astronomy, there is actually no need to cover a broad range of specific topics. Rather, it is more important to concentrate on the scientific process, and hopefully leave the student with an understanding of the relevance of science in everyday life, regardless of his or her major. As a result, some faculty prefer a more interdisciplinary focus for their Astro 101 classes, for example courses on the search for extraterrestrial life. Another option for general education astronomy courses is what has become known as cultural astronomy. Cultural astronomy focuses on the ways in which astronomical knowledge and belief influences human behavior and social structures. Under this umbrella fall two important areas of study, archaeoastronomy (concentrating on ancient cultures) and enthoastronomy (focusing on extant cultures). Such interdisciplinary courses draw heavily upon archaeology, history, anthropology, art, and other fields more traditionally aligned with the humanities and social sciences than the natural sciences, and therefore can be attractive to students in these non-science majors. In such courses, students experience the “humanity” of science: the important connections between science and the human experience, and how experts in myriad fields contribute in meaningful ways to our understanding of how astronomical knowledge has been constructed and disseminated across time and space. This poster describes the content and pedagogy of a general education course in cultural astronomy for non-science majors that stresses hands-on and experiential learning, including the use of

  4. Blazing the Trail for Astronomy Education Research

    Science.gov (United States)

    Bailey, Janelle M.; Lombardi, Doug

    2015-01-01

    Education research has long considered student learning of topics in astronomy and the space sciences, but astronomy education research as a sub-field of discipline-based education research is relatively new. Driven by a growing interest among higher education astronomy educators in improving the general education, introductory science survey…

  5. The General Education Astronomy Source (GEAS) Project: Extending the Reach of Astronomy Education

    Science.gov (United States)

    Vogt, N. P.; Muise, A. S.

    2014-07-01

    We present a set of NASA and NSF sponsored resources to aid in teaching astronomy remotely and in the classroom at the college level, with usage results for pilot groups of students. Our goal is to increase the accessibility of general education science coursework to underserved populations nationwide. Our materials are available for use without charge, and we are actively looking for pilot instructors. Primary components of our program include an interactive online tutorial program with over 12,000 questions, an instructor review interface, a set of hands-on and imaging- and spectra-driven laboratory exercises, including video tutorials, and interviews with diverse individuals working in STEM fields to help combat stereotypes. We discuss learning strategies often employed by students without substantial scientific training and suggest ways to incorporate them into a framework based on the scientific method and techniques for data analysis, and we compare cohorts of in-class and distance-education students.

  6. A Study of General Education Astronomy Students' Understandings of Cosmology. Part I. Development and Validation of Four Conceptual Cosmology Surveys

    Science.gov (United States)

    Wallace, Colin S.; Prather, Edward E.; Duncan, Douglas K.

    2011-01-01

    This is the first in a series of five articles describing a national study of general education astronomy students' conceptual and reasoning difficulties with cosmology. In this paper, we describe the process by which we designed four new surveys to assess general education astronomy students' conceptual cosmology knowledge. These surveys focused…

  7. Astronomy Education in Morocco - New Project for Implementing Astronomy in High Schools

    Science.gov (United States)

    Darhmaoui, H.; Loudiyi, K.

    2006-08-01

    Astronomy education in Morocco, like in many developing countries, is not well developed and lacks the very basics in terms of resources, facilities and research. In 2004, the International Astronomical Union (IAU) signed an agreement of collaboration with Al Akhawayn University in Ifrane to support the continued, long-term development of astronomy and astrophysics in Morocco. This is within the IAU program "Teaching for Astronomy Development" (TAD). The initial focus of the program concentrated exclusively on the University's Bachelor of Science degree program. Within this program, and during two years, we were successful in providing adequate astronomy training to our physics faculty and few of our engineering students. We also offered our students and community general astronomy background through courses, invited talks and extra curricular activities. The project is now evolving towards a wider scope and seeks promoting astronomy education at the high school level. It is based on modules from the Hands on Universe (HOU) interactive astronomy program. Moroccan students will engage in doing observational astronomy from their PCs. They will have access to a world wide network of telescopes and will interact with their peers abroad. Through implementing astronomy education at this lower age, we foresee an increasing interest among our youth not only in astronomy but also in physics, mathematics, and technology. The limited astronomy resources, the lack of teachers experience in the field and the language barrier are amongst the difficulties that we'll be facing in achieving the objectives of this new program.

  8. Teach Astronomy: An Online Resource for General Education and Informal Learning

    Science.gov (United States)

    Hardegree-Ullman, Kevin; Impey, C.; Patikkal, A.; Srinathan, A.; Collaboration of Astronomy Teaching Scholars CATS

    2012-01-01

    Teach Astronomy is a website developed for students and informal learners who would like to learn more general astronomy knowledge. This learning tool aggregates content from a myriad of sources, including: an introductory astronomy text book by C. D. Impey and W. K. Hartmann, astronomy related articles on Wikipedia, images from the Astronomy Picture of the Day, two to three minute video clips by C. D. Impey, podcasts from 365 Days of Astronomy, and news from Science Daily. In addition, Teach Astronomy utilizes a novel technology to cluster and display search results called a Wikimap. We present an overview of the website's features and suggestions for making the best use of Teach Astronomy in the classroom or at home. This material is based in part upon work supported by the National Science Foundation under Grant No. 0715517, a CCLI Phase III Grant for the Collaboration of Astronomy Teaching Scholars (CATS). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

  9. A New Resource for College Distance Education Astronomy Laboratory Exercises

    Science.gov (United States)

    Vogt, Nicole P.; Cook, Stephen P.; Muise, Amy Smith

    2013-01-01

    This article introduces a set of distance education astronomy laboratory exercises for use by college students and instructors and discusses first usage results. This General Astronomy Education Source exercise set contains eight two-week projects designed to guide students through both core content and mathematical applications of general…

  10. Challenges in Astronomy Education

    Science.gov (United States)

    De Greve, Jean-Pierre

    2010-11-01

    Astronomy is an attractive subject for education. It deals with fascination of the unknown and the unreachable, yet is uses tools, concepts and insights from various fundamental sciences such as mathematics, physics, chemistry, biology. Because of this it can be well used for introducing sciences to young people and to raise their interest in further studies in that direction. It is also an interesting subject for teaching as its different aspects (observation techniques, theory, data sampling and analysis, modelling,?) offer various didactical approaches towards different levels of pupils, students and different backgrounds. And it gives great opportunities to teach and demonstrate the essence of scientific research, through tutorials and projects. In this paper we discuss some of the challenges education in general, and astronomy in particular, faces in the coming decades, given the major geophysical and technological changes that can be deducted from our present knowledge. This defines a general, but very important background in terms of educational needs at various levels, and in geographical distribution of future efforts of the astronomical community. Special emphasis will be given to creative approaches to teaching, to strategies that are successful (such as the use of tutorials with element from computer games), and to initiatives complementary to the regular educational system. The programs developed by the IAU will be briefly highlighted.

  11. The Art of Astronomy: A New General Education Course for Non-Science Majors

    Science.gov (United States)

    Pilachowski, Catherine A.; van Zee, Liese

    2017-01-01

    The Art of Astronomy is a new general education course developed at Indiana University. The topic appeals to a broad range of undergraduates and the course gives students the tools to understand and appreciate astronomical images in a new way. The course explores the science of imaging the universe and the technology that makes the images possible. Topics include the night sky, telescopes and cameras, light and color, and the science behind the images. Coloring the Universe: An Insider's Look at Making Spectacular Images of Space" by T. A. Rector, K. Arcand, and M. Watzke serves as the basic text for the course, supplemented by readings from the web. Through the course, students participate in exploration activities designed to help them first to understand astronomy images, and then to create them. Learning goals include an understanding of scientific inquiry, an understanding of the basics of imaging science as applied in astronomy, a knowledge of the electromagnetic spectrum and how observations at different wavelengths inform us about different environments in the universe, and an ability to interpret astronomical images to learn about the universe and to model and understand the physical world.

  12. Multi-Institutional Collaborative Astronomy Education Research

    Science.gov (United States)

    Slater, T. F.; Slater, S. J.

    2011-09-01

    ASP, AAS, APS, and AAPT advocate that scientists should be engaged and acknowledged for successfully engaging in astronomy and physics education research and the scholarship of teaching because these efforts serve to improve pedagogical techniques and the evaluation of teaching. However, scientists have had the opportunity to pursue formal training in how to meaningfully engage in astronomy education research as an important scholarly endeavor. This special interest session for college and university physics and astronomy faculty, post-docs, and graduate students provided a forum to discuss the motivations, strategies, methodology, and publication routes for improving astronomy education through conducting rigorous science education research. Topics for discussion targeted the value of various education research questions, strengths and weaknesses of several different research design methodologies, strategies to successfully obtain Institutional Review Board approval to conduct education research on human subjects, and become more aware of how education research articles are created for publication in journals such as the Astronomy Education Review.

  13. Astronomy Education: a Challenge for Contemporary Education

    Science.gov (United States)

    Metaxa, M.

    2010-07-01

    Tales around the World give visibility to local, national and international fundamental connection that always existed between people and the night sky that means Astronomy. In this paper we discuss and analyze further the role of Astronomy Education for achieving an integrated concept of education, one that enables individuals to adapt to a rapidly changing social, economic and cultural environment, and to continue to learn throughout life. It is no longer enough to learn how to read, write and count. We also discuss and present initiatives undertaken in the context of various national, and international educational projects in Greece as best practices on how Astronomy Education can actually reinforce the Contemporary Education.

  14. A new international agenda for astronomy education research

    Science.gov (United States)

    Bretones, Paulo Sergio

    2015-08-01

    A great deal can be learned about astronomy education research by conducting comprehensive summary reviews of scholarly production revealing trends and gaps in the area. Motivated by the recent IAU Commission Reform, we are proposing projects related to the Commission 46 and more specifically to the Working Group on Theory and Methods in Astronomy Education. The goal of this work is to present a new international agenda for research on astronomy education. In a general way we intend to encourage efforts to increase the scholarly production in the area and encourage surveys of what has been published in several regions of the globe. These surveys refer to the various forms of production, published in theses dissertations, conference proceedings and journal articles. We believe that there exists considerable scholarly effort around the world, but that much of it is “hidden” and systematic surveys need to be conducted internationally to collect and synthesize this material to guide future work. Much of the work in these venues is certainly not known by researchers in Astronomy, not only because they belong to a different area of theoretical and methodological framework, but also because they are related to teaching in Physics and general sciences, rather than Astronomy specifically. This kind of research is largely invisible because it occurs in very specific different contexts of production, culture, curriculum, materials and application in schools with local teachers and the general public. To improve the present situation, international events are proposed in various continents seeking to encourage surveys of already published materials, their studies and seeking also new key lines of research. As concrete examples, surveys, scholarly reviews and studies conducted in Brazil and other countries are shown. We believe that such actions should raise the visibility of authors and institutions and enable studies of state-of-the-art showing trends and gaps, allowing

  15. Energy, The Environment And Astronomy: Education And Action

    Science.gov (United States)

    Rodgers, Bernadette; Doppmann, G.; Kalas, P.; Lacy, J.; Beck, T.; Marshall, P. J.

    2010-01-01

    The specter of global climate change is arguably the most pressing scientific, social and ethical issue of our time. Although the relatively small field of astronomy represents only a fraction of the total human carbon emissions, astronomers have a great potential, and therefore perhaps a great responsibility, to educate themselves and the public on this issue. In addition, the average per capita carbon emissions of professional astronomers are not small, and our profession can do much to reduce its energy consumption and maximize the cost-benefit ratio of our work. At the January AAS meeting, we are organizing a half-day splinter meeting titled "Energy, the Environment and Astronomy: Education and Action". The focus will be on energy conservation and education as it relates to professional astronomy. Education focuses on informing ourselves, our students and the general public with which we interact, about the real issues, the necessary actions, and the likely consequences of various energy consumption and carbon emission scenarios. Action focuses on effective energy conservation and renewable energy initiatives within professional astronomy. Air travel, solar energy at ground-based observatories, and Gemini's "Green Initiative” are among the topics that will be discussed. The splinter meeting will be open to all and will include expert speakers from outside astronomy, contributed talks by astronomers, and a discussion session.

  16. Active Galactic Videos: A YouTube Channel for Astronomy Education and Outreach

    Science.gov (United States)

    Calahan, Jenny; Gibbs, Aidan; Hardegree-Ullman, Melody; Hardegree-Ullman, Michael; Impey, Chris David; Kevis, Charlotte; Lewter, Austin; Mauldin, Emmalee; McKee, Carolyn; Olmedo, Alejandro; Pereira, Victoria; Thomas, Melissa; Wenger, Matthew

    2018-01-01

    Active Galactic Videos is an astronomy-focused YouTube channel run by a team at the University of Arizona. The channel both produces astronomy-focused educational content for public audiences and opens a window into the world of professional astronomy by showcasing the work done at Steward Observatory and in Southern Arizona. The channel is mainly run by undergraduate students from a variety of backgrounds including: astronomy, education, film, music, english, and writing. In addition to providing educational content for public audiences, this project provides opportunities for undergraduate students to learn about astronomy content, general astronomy pedagogy, as well as science communication. This is done through developing the practical skills needed to take on the challenge of creating effective and engaging videos. Students write, film, score, direct, and edit each video while conscious of how each piece can affect the teaching/storytelling of the concept at hand. The team has produced various styles of video: presentational, interviews, musical/poetic, tours, and documentaries. In addition to YouTube, the Active Galactic Videos team maintains a social media presence on Facebook, Twitter, and Instagram. These help to widely distribute the content as well as to publicize the main Youtube channel. In addition to providing an overview of our educational work, we present 51 videos, or two year's, worth of online analytics that we are using to better understand our audience, to examine what videos have been popular and successful, and how people are accessing our content. We will present our experience in order to help others learn about improving astronomy education online, as well as astronomy communication and outreach in general.We acknowledge the Howard Hughes Medical Institute for grant support of this and related education initiatives

  17. Astronomy in the City for Astronomy Education

    Science.gov (United States)

    Ros, Rosa M.; Garc, Beatriz

    2016-10-01

    Astronomy is part of our culture. Astronomy cannot be isolated in a classroom, it has to be integrated in the normal life of teachers and students. ``Astronomy in the city'' is an important part of NASE (Network for Astronomy School Education) (Ros & Hemenway 2012). In each NASE course we introduce a ``working group session'' chaired by a local expert in cultural astronomy. The chair introduces several examples of astronomy in their city and after that, the participants have the opportunity to discuss and mention several similar examples. After this session all participants visit one or two sites proposed and introduced by the chair. After more than 5 years using this method we visited and discovered several examples of astronomy in the city: •Astronomy in ancient typical clothes. •Archaeological temples oriented according to the sunrise or set. •Petroglyphs with astronomical meaning. •Astronomy in monuments. •Sundials. •Oriented Colonial churches. •Astronomy in Souvenirs. In any case, teachers and students discover that Astronomy is part of their everyday life. They can take into account the Sun's path when they park their car or when they take a bus ``what is the best part in order to be seat in the shadow during the journey?'' The result is motivation to go with ``open eyes'' when they are in the street and they try to get more and more information about their surroundings. In summary, one of the main activities is to introduce local cultural aspects in NASE astronomy courses. The participants can discover a new approach to local culture from an astronomical point of view.

  18. A Study of General Education Astronomy Students' Understandings of Cosmology. Part IV. Common Difficulties Students Experience with Cosmology

    Science.gov (United States)

    Wallace, Colin S.; Prather, Edward E.; Duncan, Douglas K.

    2012-01-01

    This is our fourth paper in our five paper series describing our national study of general education astronomy students' conceptual and reasoning difficulties with cosmology. While previous papers in this series focused on the processes by which we collected and quantitatively analyzed our data, this paper presents the most common pre-instruction…

  19. Some innovative programmes in Astronomy education

    Science.gov (United States)

    Babu, G. S. D.; Sujatha, S.

    In order to inculcate a systematic scientific awareness of the subject of Astronomy among the students and to motivate them to pursue careers in Astronomy and Astrophysics, various innovative educational programmes have been designed at MPBIFR. Among them, the main programme is termed as the ``100-hour Certificate Course in Astronomy and Astrophysics'' which has been designed basically for the students of the undergraduate level of B.Sc. and B.E. streams. The time duration of the 100 hours in this course is partitioned as 36 hours of classroom lectures, 34 hours of practicals and field trips and the remaining 30 hours being dedicated to dissertation writing and seminar presentations by the students. In addition, after the 100-hour course, the students have the option to take up specialized advance courses in the topics of Astrobiology, Astrochemistry, Radio Astronomy, Solar Astronomy and Cosmology as week-end classes. These courses are at the post graduate level and are covered in a span of 18 to 20 hours spread over a period of 9 to 10 weeks. As a preparatory programme, short-term introductory courses in the same subject are conducted for the high school students during the summer vacation period. Along with this, a three-week programme in basic Astronomy is also designed as an educational package for the general public. The students of these courses have the opportunity of being taken on field trips to various astronomical centers as well as the Radio, Solar and the Optical Observatories as part of their curriculum. The guided trips to the ISRO’s Satellite Centre at Bangalore and the Satellite Launching Station at SHAR provide high degree of motivation apart from giving thrilling experiences to the students. Further, the motivated students are encouraged to involve themselves in regular research programmes in Astronomy at MPBIFR for publishing research papers in national and international journals. The teaching and mentoring faculty for all these programmes

  20. Ten Years of "Latin-American Journal of Astronomy Education" RELEA: Achievements and Challenges for International Astronomy Education Development

    Science.gov (United States)

    Bretones, Paulo S.; Jafelice, Luiz C.; Horvath, Jorge E.

    2016-01-01

    This study reviews 10 years of "Latin-American Journal of Astronomy Education" (RELEA), showing that the journal has become a valuable resource for publishing and highlights its pathway as scholarly journal. Furthermore, it is also a call to astronomy education specialists to consolidate their efforts considering similar journals…

  1. Developing Astronomy Research and Education in the Philippines

    Science.gov (United States)

    Sese, R. M. D.; Kouwenhoven, M. B. N. Thijs

    2015-03-01

    In the past few years, the Philippines has been gradually developing its research and educational capabilities in astronomy and astrophysics. In terms of astronomy development, it is still lagging behind several neighboring Southeast Asian countries such as Indonesia, Thailand and Malaysia, while it is advanced with respect to several others. One of the main issues hampering progress is the scarcity of trained professional Filipino astronomers, as well as long-term visions for astronomy development. Here, we will be presenting an overview of astronomy education and research in the country. We will discuss the history and current status of astronomy in the Philippines, including all levels of education, outreach and awareness activities, as well as potential areas for research and collaborations. We also discuss issues that need to be addressed to ensure sustainable astronomy development in the Philippines. Finally, we discuss several ongoing and future programs aimed at promoting astronomy research and education. In essence, the work is a precursor of a possible white paper which we envision to submit to the Department of Science and Technology (DOST) in the near future, with which we aim to further convince the authorities of the importance of astrophysics. With the support of the International Astronomical Union (IAU), this may eventually lead to the creation of a separate astronomy agency in the Philippines.

  2. A Study of General Education Astronomy Students' Understandings of Cosmology. Part II. Evaluating Four Conceptual Cosmology Surveys: A Classical Test Theory Approach

    Science.gov (United States)

    Wallace, Colin S.; Prather, Edward E.; Duncan, Douglas K.

    2011-01-01

    This is the second of five papers detailing our national study of general education astronomy students' conceptual and reasoning difficulties with cosmology. This article begins our quantitative investigation of the data. We describe how we scored students' responses to four conceptual cosmology surveys, and we present evidence for the inter-rater…

  3. A Brief History of Publishing Papers on Astronomy Education Research

    Science.gov (United States)

    Fraknoi, Andrew

    2014-01-01

    While some research had been done on K-12 and planetarium astronomy teaching from the 1930's to the 1980's, the growth of research on college physics education offered astronomy education researchers a model for examining techniques for teaching introductory college astronomy survey "Astronomy 101" courses as well. This early research…

  4. Peer-review Platform for Astronomy Education Activities

    Science.gov (United States)

    Heenatigala, Thilina; Russo, Pedro; Gomez, Edward; Strubbe, Linda

    2015-08-01

    Astronomy educators and teachers worldwide commonly request and search for high-quality astronomy activities to do with their students. Hundreds of astronomy education activities exist, as well as many resource repositories to find them. However, the quality of such resources is highly variable as they are not updated regularly or limited with content review. Since its launch in 2013, astroEDU has been addressing these issues and more by following a peer-review process. Each activity submitted is reviewed by an educator and a professional astronomer, balancing both the scientific and educational value of the content. Moreover, the majority of the reviewers are invited from IAU commissions related to the field of the activity, as an effort to get IAU members actively involved in the project. The website code, activities and layout design are open-access in order to make them accessible and adoptable for educators around the world. Furthermore the platform harnesses the OAD volunteer database to develop existing astronomy education activities into the astroEDU activity format. Published activities are also pushed to partner repositories and each activity is registered for DOI, allowing authors to cite their work. To further test the activities and improve the platform, astroEDU editorial team organises workshops.

  5. Network for Astronomy School Education

    Science.gov (United States)

    Deustua, Susana E.; Ros, R. M.; Garcia, B.

    2014-01-01

    The Network for Astronomy School Education Project (NASE) was developed in response to the IAU's most recent 10 Years Strategic Plan to increase the efforts of the IAU in schools. NASE's mission is to stimulate teaching astronomy in schools, through professional development of primary and secondary school science teachers in developing and emerging countries. NASE's organizational principle is to build capacity by providing courses for three years in cooperation with a Local Organizing Committee (Local NASE Group). The Local NASE Group consists of 6-8 local university professors and education professional who will promote astronomy activities and organize future courses in subsequent years in their region of their country. NASE philosophy is to introduce low-tech astronomy, and has thus developed an a suite of activities that can be carried out with inexpensive, quotidian materials. Supporting these activities is a text for teachers, plus a complete set of instructional materials for each topic. These materials are available in English and Spanish, with future editions available in Chinese and Portuguese. We describe and discuss NASE activities in Central and South America from 2009 to the present.

  6. Refocusing International Astronomy Education Research Using a Cognitive Focus

    Science.gov (United States)

    Slater, Timothy F.; Slater, Stephanie J.

    2015-08-01

    For over 40 years, the international astronomy education community has given its attention to cataloging the substantial body of "misconceptions" in individual's thinking about astronomy, and to addressing the consequences of those misconceptions in the science classroom. Despite the tremendous amount of effort given to researching and disseminating information related to misconceptions, and the development of a theory of conceptual change to mitigate misconceptions, progress continues to be less than satisfying. An analysis of the literature and our own research has motivated the CAPER Center for Astronomy & Physics Education Research to advance a new model that allowing us to operate on students' astronomical learning difficulties in a more fruitful manner. Previously, much of the field's work binned erroneous student thinking into a single construct, and from that basis, curriculum developers and instructors addressed student misconceptions with a single instructional strategy. In contrast this model suggests that "misconceptions" are a mixture of at least four learning barriers: incorrect factual information, inappropriately applied mental algorithms (e.g., phenomenological primitives), insufficient cognitive structures (e.g., spatial reasoning), and affective/emotional difficulties. Each of these types of barriers should be addressed with an appropriately designed instructional strategy. Initial applications of this model to learning problems in astronomy and the space sciences have been fruitful, suggesting that an effort towards categorizing persistent learning difficulties in astronomy beyond the level of "misconceptions" may allow our community to craft tailored and more effective learning experiences for our students and the general public.

  7. A Study of General Education Astronomy Students' Understandings of Cosmology. Part III. Evaluating Four Conceptual Cosmology Surveys: An Item Response Theory Approach

    Science.gov (United States)

    Wallace, Colin S.; Prather, Edward E.; Duncan, Douglas K.

    2012-01-01

    This is the third of five papers detailing our national study of general education astronomy students' conceptual and reasoning difficulties with cosmology. In this paper, we use item response theory to analyze students' responses to three out of the four conceptual cosmology surveys we developed. The specific item response theory model we use is…

  8. Astronomy education through interactive materials

    Science.gov (United States)

    Voelzke, Marcos Rincon; Antunes de Macêdo, Josué

    2015-08-01

    This study presents results of a survey conducted at the Federal Institution of Education, Science and Technology in the North of Minas Gerais (IFNMG), and aimed to investigate the potentialities of the use of interactive materials in the teaching of astronomy. An advanced training course with involved learning activities about basic concepts of astronomy was offered to thirty-two Licenciate students in Physics, Mathematics and Biological Sciences, using the mixed methodology, combined with the three pedagogical moments. Among other aspects, the viability of the use of resources was noticed, involving digital technologies and interactive materials on teaching of astronomy, which may contribute to the broadening of methodological options for future teachers and meet their training needs.

  9. Modern Publishing Approach of Journal of Astronomy & Earth Sciences Education

    Science.gov (United States)

    Slater, Timothy F.

    2015-01-01

    Filling a needed scholarly publishing avenue for astronomy education researchers and earth science education researchers, the Journal of Astronomy & Earth Sciences Education - JAESE published its first volume and issue in 2014. The Journal of Astronomy & Earth Sciences Education - JAESE is a scholarly, peer-reviewed scientific journal publishing original discipline-based education research and evaluation, with an emphasis of significant scientific results derived from ethical observations and systematic experimentation in science education and evaluation. International in scope, JAESE aims to publish the highest quality and timely articles from discipline-based education research that advance understanding of astronomy and earth sciences education and are likely to have a significant impact on the discipline or on policy. Articles are solicited describing both (i) systematic science education research and (ii) evaluated teaching innovations across the broadly defined Earth & space sciences education, including the disciplines of astronomy, climate education, energy resource science, environmental science, geology, geography, agriculture, meteorology, planetary sciences, and oceanography education. The publishing model adopted for this new journal is open-access and articles appear online in GoogleScholar, ERIC, and are searchable in catalogs of 440,000 libraries that index online journals of its type. Rather than paid for by library subscriptions or by society membership dues, the annual budget is covered by page-charges paid by individual authors, their institutions, grants or donors: This approach is common in scientific journals, but is relatively uncommon in education journals. Authors retain their own copyright. The journal is owned by the Clute Institute of Denver, which owns and operates 17 scholarly journals and currently edited by former American Astronomical Society Education Officer Tim Slater, who is an endowed professor at the University of Wyoming and

  10. The California-Arizona Minority Partnership for Astronomy Research and Education (CAMPARE): an Educational Experience for Undergraduates at the University of Arizona Alumni Association's Astronomy Camp.

    Science.gov (United States)

    Lemon, Courtney; McCarthy, D.; Rudolph, A.

    2011-01-01

    The California-Arizona Minority Partnership for Astronomy Research and Education (CAMPARE) is an NSF-funded partnership between the Astronomy Program at Cal Poly Pomona (CPP) and the University of Arizona Steward Observatory designed to promote participation of underrepresented minorities (including women) in astronomy research and education. As part of the education component of the program, CPP undergraduate physics majors and minors are eligible to work as a counselor at the University of Arizona's Astronomy Camp, one of the premier astronomy outreach opportunities in the world. CAMPARE students have the opportunity to work in this learn-by-doing environment with a wide range of students to gain first hand experience of teaching astronomy to students of a wide variety of ages in highly structured educational setting. Cal Poly Pomona students who are interested in education, both formal and informal, work in a variety of camps, from Girl Scout camps to camps for advanced high school students, to further their understanding of what it means to be a professional in the field of education. The CAMPARE student who participated in this program during summer 2010 had the opportunity to work under Dr. Don McCarthy, camp director of University of Arizona's Astronomy Camps for 20 years, and observe the interpersonal relations between campers and staff that is so vital to the learning the students receive. Through these observations, the CAMPARE student was able to learn to gauge students' interest in the material, and experience real life teaching and learning scenarios in the informal education realm.

  11. Special Session 4: Astronomy Education between Past and Future

    Science.gov (United States)

    de Greve, Jean-Pierre

    2010-11-01

    The special session aims at discussing an integrated approach of the different efforts to increase and promote the teaching and learning of astronomy in the world, with emphasis on developing countries. To this end, attention will be given to research on education, specifically in the field of physics, to best practices of the use of astronomy in educational systems (specifically in developing countries), and to innovative learning initiatives other than formal education. The Special Session aims also at creating a universal perspective wherein modern (post-Copernican) astronomy will presented as an intellectual cumulus. The objective of the session is to disseminate best practices in teaching and learning activities of astronomy and to give an opportunity to learn about initiatives in different cultural and socio-economic settings. The special session also wants to give food-for-thought and proposals for reflection for an integrative approach, and for optimization processes, to enhance the interest in astronomy and its role as a trigger towards science education in the educational systems, with emphasis on the developing countries. The outcome should be a sensitization of teachers and students alike to the concept of a universal history of astronomy and creation of some reliable source material which can be used as a teaching aid in a culture-specific context. The outcome could be a set of recommendations for future integrated actions, and eventually recommendations on new initiatives, framed into the new decadal policy plan.

  12. Evolving Perspectives on Astronomy Education and Public Outreach in Hawai'i

    Science.gov (United States)

    Kimura, Ka'iu; Slater, T.; Hamilton, J.; Takata, V.

    2012-01-01

    For the last several decades, well meaning astronomers and educators have worked diligently to provide astronomy education experiences to Native Hawaiians and visitors across all the islands. Much of the early education and public outreach (EPO) work was based on a philosophical perspective based on the notion of, "if we just make them aware of how wonderful astronomy is, then everyone will naturally support the development of astronomy in the islands.” In support of this goal, numerous teacher workshops were delivered and the first generation of the Maunakea Observatories Visitors’ Center was developed and funded. These projects were most frequently developed using Mainland thinking, in a Mainland style, with a Mainland agenda. Consequently, these efforts often failed to create even moderate impacts, whether in educational settings, or in terms of public outreach. In recent years, our understanding of effective EPO has evolved. This evolution has led to a shift in the locus of control, from the Mainland to the Islands; and in content, from "astronomy only” to "astronomy as part of the whole.” We have come to understand that successfully transformative EPO requires intertwining astronomy with teaching about culture, language and context. In response, the `Imiloa Astronomy Center was expanded to convolve historical and modern astronomy with Hawaiian culture and language. Moreover, the most successful astronomy EPO programs in the islands have been redesigned to reflect meaningful collaborations of schools, businesses, and the larger community that situate astronomy as part of a larger educational work of honoring the traditions of the past while simultaneously transforming the future. This evolution in thinking may serve as a model for the astronomy community's interaction with other regional communities.

  13. Teach Astronomy: An Educational Resource for Formal and Informal Learners

    Science.gov (United States)

    Impey, Chris David

    2018-01-01

    Teach Astronomy is an educational resource, available in the form of a user-friendly, platform-agnostic website. Ideal for college-level, introductory astronomy courses, Teach Astronomy can be a valuable reference for astronomers at all levels, especially informal learners. Over the past year, multiple changes have been made to the infrastructure behind Teach Astronomy to provide high availability to our tens of thousands of monthly, unique users, as well as fostering in new features. Teach Astronomy contains interactive tools which supplement the free textbook, such as a Quiz Tool with real-time feedback. The site also provides a searchable collection of Chris Impey’s responses to questions frequently asked by our users. The developers and educators behind Teach Astronomy are working to create an environment which encourages astronomy students of all levels to continue to increase their knowledge and help others learn.

  14. The astronomy education through interactive materials

    Science.gov (United States)

    de Macedo, Josué Antunes; Voelzke, Marcos Rincon

    2014-11-01

    This study presents results of a survey conducted at the Federal Institution of Education, Science and Technology in the North of Minas Gerais (IFNMG), and aimed to investigate the potentialities of the use of interactive materials in the teaching of astronomy. An advanced training course with involved learning activities about basic concepts of astronomy was offered to thirty-two Licenciate students in Physics, Mathematics and Biological Sciences, using three pedagogical moments. Among other aspects, the viability of the use of resources was noticed, involving digital technologies and interactive materials on teaching of astronomy, which may contribute to the broadening of methodological options for future teachers and meet their training needs

  15. Highschool astronomy research workshop in Thailand and how it transforms Thai astronomy education

    Science.gov (United States)

    Tangmatitham, Matipon

    2017-01-01

    The National Astronomical Research Institute of Thailand (NARIT) have launched the program "Advance Teacher Training Workshop" that aims to introduce both the students and astronomy teacher alike to the nature of critical thinking in science via hands on experience in astronomy projects. Students and accompanying teachers are participated in 5 days workshop in which each of them must select an individual astronomy research project. The project is then carried out on their own for the next 6 months, after which their works are presented in a conference. Progress is monitored and extra aid is delivered as needed via the use of social media. Over a hundred projects have been completed under this program. Follow up study have suggests that this workshop has shown to be quite successful at improving critical thinking skills in participants. As the program became more popular, other schools began to follow. To support the growing interest, we have also launched the "Thai Astronomical Society: student session", a highschool astronomy conference for anyone who participated or interested in astronomy related projects. Via these stages we are able to secure a permanent foothold in Thai astronomy education and inspire new generations to participate in astronomy projects.

  16. Astronomy4Kids: Extending STEM learning to the youngest student through an online educational outreach program

    Science.gov (United States)

    Pearson, Richard L.; Pearson, Sarah R.

    2017-06-01

    Astronomy4Kids is an online video series aimed at filling the void of effective and engaging education tools within early childhood learning. Much discussion and research has been conducted on the significance of early learning, with general trends showing significant benefits to early introductions to language, mathematics, and general science concepts. Ultimately, when ideas are introduced to a child at a young age, that child is better prepared for when the concept is re-introduced in its entirety later. National agencies—such as the AAS and NSF—have implemented Science, Technology, Engineering, and Math (STEM) initiatives to expand learning in these areas. However, despite these many resources, the education outreach available to the youngest learners (under the age of 8 or those from pre-school to about 2nd-grade) is seriously lacking. Astronomy4Kids was created to bridge this gap and provide succinct, creative-learning videos following the principles of Fred Rogers, the founder of preschool education video. We present ways to incorporate the freely accessible YouTube videos within various classroom ages and discuss how to use simple activities to promote physics, astronomy, and math learning. Current development, video statistics, and future work will be discussed. The freely accessible videos can be found at www.astronomy4kids.net.

  17. Teaching and Learning Astronomy

    Science.gov (United States)

    Pasachoff, Jay; Percy, John

    2009-07-01

    Preface; Part I. Astronomy in the Curriculum Around the World: Preface; 1. Why astronomy is useful and should be included in the school curriculum John R. Percy; 2. Astronomy and mathematics education Rosa M. Ros; 3. Astronomy in the curriculum around the world; 4. Engaging gifted science students through astronomy Robert Hollow; 5. Poster highlights: astronomy in the curriculum around the world; Part II. Astronomy Education Research: Preface; 6. Astronomy education research down under John M. Broadfoot and Ian S. Ginns; 7. A contemporary review of K-16 astronomy education research Janelle M. Bailey and Timothy F. Slater; 8. Implementing astronomy education research Leonarda Fucili; 9. The Astronomy Education Review: report on a new journal Sidney C. Wolff and Andrew Fraknoi; 10. Poster highlights: astronomy education research; Part III. Educating Students: Preface; 11. Textbooks for K-12 astronomy Jay M. Pasachoff; 12. Distance/internet astronomy education David H. McKinnon; 13. Educating students with robotic telescopes - open discussion; 14. Poster highlights - educating students; Part IV. Educating teachers: Preface; 15. Pre-service astronomy education of teachers Mary Kay Hemenway; 16. In-service education of teachers Michèle Gerbaldi; 17. Poster highlights: educating teachers; Part V. Astronomy and Pseudoscience: Preface; 18. Astronomy, pseudoscience and rational thinking Jayant V. Narlikar; 19. Astronomical pseudosciences in North America John R. Percy and Jay M. Pasachoff; Part VI. Astronomy and Culture: Preface; 20. Teaching astronomy in other cultures: archeoastronomy Julieta Fierro; 21. Poster highlights: astronomy and culture; Part VII. Astronomy in Developing Countries: Preface; 22. Astronomy Curriculum for developing countries Case Rijsdijk; 23. Science education resources for the developing countries James C. White II; Part VIII. Public Outreach in Astronomy: Preface; 24. What makes informal education programs successful? Nahide Craig and Isabel

  18. Astronomy Education Programs at the Smithsonian National Air and Space Museum

    Science.gov (United States)

    Nagy, Katie; de Messieres, G.; Edson, S.

    2014-01-01

    Astronomy educators present the range of astronomy education programming available at the National Air and Space Museum, including the following. In the Phoebe Waterman Haas Public Observatory, visitors use telescopes and other scientific equipment to observe and discuss the Sun, Venus, and other celestial sights in an unstructured, inquiry-based environment. At Discovery Stations throughout the Museum, staff and volunteers engage visitors in hands-on exploration of a wide range of artifacts and teaching materials. Astronomy-related Discovery Stations include Cosmic Survey, an exploration of gravitational lensing using a rubber sheet, spectroscopy using discharge tubes, and several others. Astronomy lectures in the planetarium or IMAX theater, featuring researchers as the speakers, include a full evening of activities: a custom pre-lecture Discovery Station, a handout to help visitors explore the topic in more depth, and evening stargazing at the Public Observatory. Astronomy educators present planetarium shows, including star tours and explorations of recent science news. During Astronomy Chat, an astronomy researcher engages visitors in an informal conversation about science. The goal is to make the public feel welcome in the environment of professional research and to give busy scientists a convenient outreach opportunity. Astronomy educators also recruit, train, and coordinate a corps of volunteers who contribute their efforts to the programming above. The volunteer program has grown significantly since the Public Observatory was built in 2009.

  19. Analysis of the NSF IUSE Physics & Astronomy Education Portfolio

    Science.gov (United States)

    Lee, Kevin M.

    2017-01-01

    The National Science Foundation’s IUSE:EHR (Improving Undergraduate STEM Education) Program is now over 3 years old. This presentation will describe the characteristics of the awards presently in the physics & astronomy portfolio. Awards will be described based upon a) general characteristics (duration, total funding, PI rank, type of institution, etc.), b) applicability (intended audience, level, and arena of implementation), c) nature of project (educational research, practical implementation, or both), and d) pedagogical focus (curriculum, STEM recruitment, STEM retention, information collection, and tools and/or skills development). General trends and exemplars will be identified as well as voids in the portfolio. Understanding what has been funded will help attendees design future proposals that will make innovative contributions to the portfolio.

  20. An Online Tutor for Astronomy: The GEAS Self-Review Library

    Science.gov (United States)

    Vogt, Nicole P.; Muise, Amy Smith

    2015-01-01

    We introduce an interactive online resource for use by students and college instructors in introductory astronomy courses. The General Education Astronomy Source (GEAS) online tutor guides students developing mastery of core astronomical concepts and mathematical applications of general astronomy material. It contains over 12,000 questions, with…

  1. A Study of General Education Astronomy Students' Understandings of Cosmology. Part V. The Effects of a New Suite of Cosmology "Lecture-Tutorials" on Students' Conceptual Knowledge

    Science.gov (United States)

    Wallace, Colin S.; Prather, Edward E.; Duncan, Douglas K.

    2012-01-01

    This is the final paper in a five-paper series describing our national study of the teaching and learning of cosmology in general education astronomy college-level courses. A significant portion of this work was dedicated to the development of five new "Lecture-Tutorials" that focus on addressing the conceptual and reasoning difficulties that our…

  2. C46 `ASTRONOMY Education and Development': a Peculiar Commission

    Science.gov (United States)

    de Greve, Jean-Pierre; García, Beatriz; Gerbaldi, Michèle; Ferlet, Roger; Guinan, Edward; Hearnshaw, John; Jones, Barrie; Marschall, Laurence; Miley, George; Pasachoff, Jay; Ros, Rosa; Stavinschi, Magda; Torres-Peimbert, Silvia

    2016-04-01

    C46 was a Commission of the Executive Committee of the IAU under Division XII (Union-Wide Activities), then after 2012 under Division C (Education, Outreach, and Heritage). It was the only commission dealing exclusively with astronomy education; a previous Commission 38 (Exchange of Astronomers), which allocated travel grants to astronomers who needed them, and a Working Group on the Worldwide Development of Astronomy, have been absorbed by Commission 46.

  3. A Model for Establishing an Astronomy Education Discussion Group

    Science.gov (United States)

    Deming, Grace; Hayes-Gehrke, M.; Zauderer, B. A.; Bovill, M. S.; DeCesar, M.

    2010-01-01

    In October 2005, a group of astronomy faculty and graduate students met to establish departmental support for participants in the UM Center for Teaching Excellence University Teaching and Learning Program. This program seeks to increase graduate students’ understanding of effective teaching methods, awareness of student learning, and appreciation of education as a scholarly pursuit. Our group has facilitated the submission of successful graduate student educational development grant proposals to the Center for Teaching Excellence (CTE). Completion of the CTE program results in a notation on the graduate student's transcript. Our discussion group met monthly during the first two years. The Astronomy Education Review, The Physics Teacher, The Washington Post, The Chronicle of Higher Education, and National Research Council publications were used to provide background for discussion. Beginning in 2007, the group began sponsoring monthly astronomy education lunches during the academic year to which the entire department was invited. Over the past two years, speakers have included graduate students, faculty, and guests, such as Jay Labov from the National Research Council. Topics have included the Astronomy Diagnostic Test, intelligent design versus evolution, active learning techniques, introducing the use of lecture tutorials, using effective demonstrations, confronting student misconceptions, engagement through clickers (or cards), and fostering critical thinking with ranking tasks. The results of an informal evaluation will be presented.

  4. The Astronomy Workshop

    Science.gov (United States)

    Hamilton, D. P.; Asbury, M. L.; Proctor, A.

    2001-12-01

    The Astronomy Workshop (http://janus.astro.umd.edu) is an interactive online astronomy resource developed, and maintained at the University of Maryland, for use by students, educators and the general public. The Astronomy Workshop has been extensively tested and used successfully at many different levels, including High School and Junior High School science classes, University introductory astronomy courses, and University intermediate and advanced astronomy courses. Some topics currently covered in the Astronomy Workshop are: Animated Orbits of Planets and Moons: The orbits of the nine planets and 91 known planetary satellites are shown in animated, to-scale drawings. The orbiting bodies move at their correct relative speeds about their parent, which is rendered as an attractive, to-scale gif image. Solar System Collisions: This most popular of our applications shows what happens when an asteroid or comet with user-defined size and speed impacts a given planet. The program calculates many effects, including the country impacted (if Earth is the target), energy of the explosion, crater size, magnitude of the planetquake generated. It also displays a relevant image (e.g. terrestrial crater, lunar crater, etc.). Planetary and Satellite Data Calculators: These tools allow the user to easily calculate physical data for all of the planets or satellites simultaneously, making comparison very easy. Orbital Simulations: These tools allow the student to investigate different aspects of the three-body problem of celestial mechanics. Astronomy Workshop Bulletin Board: Get innovative teaching ideas and read about in-class experiences with the Astronomy Workshop. Share your ideas with other educators by posting on the Bulletin Board. Funding for the Astronomy Workshop is provided by the National Science Foundation.

  5. Astronomy in Primary and Secondary Education in Slovenia

    Science.gov (United States)

    Gomboc, Andreja

    2015-08-01

    I will present the status of astronomy in educational system in Slovenia. In primary schools astronomy is offered as an optional course in the last 3 grades (12-15 yrs old), while in secondary schools a few astronomical topics are present only as part of other subjects (e.g. physics, geography). I will describe a pilot project of an astronomy course in secondary schools, which was carried out in the school year 2013/14. The main focus of my presentation will be the experience gained with organisation of the Slovenian National Astronomy Competition. It is organised by the Slovenian Society of Mathematicians, Physicists and Astronomers since 2009, building on an extensive network of over 200 primary and secondary school teachers who participated in IYA2009 activities, and who now represent majority of mentors for the competition. In 2013, only 5 years after the start of competition, our pupils attended the International Olympiad on Astronomy and Astrophysics for the first time and with great success. Supporting activities include the Slovenian version of the Portal to the Universe (www.portalvvesolje.si) and translation of Space Scoop astronomy news for children.

  6. No Child Left Behind and High School Astronomy

    Science.gov (United States)

    Krumenaker, Larry

    2009-01-01

    Astronomy was a required subject in the first American secondary level schools, the academies of the 18th century. When these were supplanted a century later by public high schools, astronomy still was often required, subsumed into courses of Natural Philosophy. Reasons given at that time to support astronomy as a part of general education include…

  7. Publishing in the Refereed International Journal of Astronomy & Earth Sciences Education JAESE

    Science.gov (United States)

    Slater, Timothy F.

    2015-08-01

    Filling a needed scholarly publishing avenue for astronomy education researchers and earth science education researchers, the Journal of Astronomy & Earth Sciences Education- JAESE was first published in 2014. JAESE is a scholarly, peer-reviewed scientific journal publishing original discipline-based education research and evaluation, with an emphasis of significant scientific results derived from ethical observations and systematic experimentation in science education and evaluation. International in scope, JAESE aims to publish the highest quality and timely articles from discipline-based education research that advance understanding of astronomy and earth sciences education and are likely to have a significant impact on the discipline or on policy. Articles are solicited describing both (i) systematic science education research and (ii) evaluated teaching innovations across the broadly defined Earth & space sciences education, including the disciplines of astronomy, climate education, energy resource science, environmental science, geology, geography, agriculture, meteorology, planetary sciences, and oceanography education. The publishing model adopted for this new journal is open-access and articles appear online in GoogleScholar, ERIC, EBSCO, ProQuest, and NASA SAO/ADS and are searchable in catalogs of 440,000 libraries that index online journals of its type. Rather than paid for by library subscriptions or by society membership dues, the annual budget is covered by page-charges paid by individual authors, their institutions, grants or donors: This approach is common in scientific journals, but is relatively uncommon in education journals. Authors retain their own copyright. The journal is owned by the Clute Institute in the United States, which owns and operates 17 scholarly journals and currently edited by former American Astronomical Society Education Officer Tim Slater, who is an endowed professor at the University of Wyoming and a Senior Scientist at the

  8. Astronomy all the time for everybody

    Science.gov (United States)

    Grigore, Valentin

    2015-08-01

    General contextCommunicating astronomy with the public must be done all year and with all community members using all the available methods to promote the all aspects of astronomy: education, science, research, new technologies, dark-sky protection, astrophotography, mythology, astropoetry, astro arts and music.An annual calendarTwo aspect must be taken in consideration when create a calendar of activity:- astronomical events (eclipses, meteor showers, comets, etc.)- international and local astronomical events: Global Astronomy Months, Astronomy Day, Globe at Night, ISAN, public activitiesCommunicating astronomy with the whole communityA description of the experience of the author organizing over 500 events in 30 years of activity including all the community members: general public, students, teachers, artists, authorities, people with disabilities, minor and adult prisoners, etc.An experience of seven years as TV producer of the astronomy TV show “Ùs and the Sky” is presented.Promotion of the activityThe relation with the mass-media is an important aspect communicating astronomy with the public.Mass-media between rating and correct information of the public.The role of the cooperation with the community in astronomy projectsA successful model: EURONEAR project

  9. The Center for Astronomy Education (CAE) and Our NSF Funded CCLI Phase III Collaboration of Astronomy Teaching Scholars (CATS) Program: Updates to Our New Community-Based Model for Astronomy Education Research

    Science.gov (United States)

    Brissenden, Gina; Impey, C.; Prather, E. E.; Lee, K. M.; CATS

    2010-01-01

    The Center for Astronomy Education (CAE) has been devoted to improving teaching & learning in Astro 101 by creating research-validated curriculum & assessment instruments for use in Astro 101 & by providing Astro 101 instructors professional development opportunities to increase their pedagogical content knowledge & instructional skills at implementing these curricula & assessment materials. To create sustainability and further expand this work, CAE, in collaboration with other national leaders in astronomy education & research, developed the Collaboration of Astronomy Teaching Scholars (CATS) Program. The primary goals of CATS are to: 1) increase the number of Astro 101 instructors conducting fundamental research in astronomy education 2) increase the amount of research-validated curriculum & assessment instruments available for use in Astro 101 3) increase the number of people prepared to develop & conduct their own CAE Teaching Excellence Workshops In our second year we have concluded a national study assessing the contribution students’ personal characteristics make to student learning gains and the effectiveness of interactive learning strategies. We have results from our classroom research validation study on the use of the "ClassAction” electronic learning system. We have begun creation of an assessment instrument designed specifically for Astro 101 to evaluate the effectiveness of our instruction in improving students’ attitudes & beliefs about science, and which is being informed by several of our studies and community input. We have also begun field-testing of our Solar System Concept Inventory. Additionally research into students’ beliefs and reasoning difficulties on topics in Cosmology is underway. We acknowledge the NSF for funding under Award No. 0715517, a CCLI Phase III Grant for the Collaboration of Astronomy Teaching Scholars (CATS) Program.

  10. Astronomy Education Research Observations from the iSTAR international Study of Astronomical Reasoning Database

    Science.gov (United States)

    Tatge, C. B.; Slater, S. J.; Slater, T. F.; Schleigh, S.; McKinnon, D.

    2016-12-01

    Historically, an important part of the scientific research cycle is to situate any research project within the landscape of the existing scientific literature. In the field of discipline-based astronomy education research, grappling with the existing literature base has proven difficult because of the difficulty in obtaining research reports from around the world, particularly early ones. In order to better survey and efficiently utilize the wide and fractured range and domain of astronomy education research methods and results, the iSTAR international Study of Astronomical Reasoning database project was initiated. The project aims to host a living, online repository of dissertations, theses, journal articles, and grey literature resources to serve the world's discipline-based astronomy education research community. The first domain of research artifacts ingested into the iSTAR database were doctoral dissertations. To the authors' great surprise, nearly 300 astronomy education research dissertations were found from the last 100-years. Few, if any, of the literature reviews from recent astronomy education dissertations surveyed even come close to summarizing this many dissertations, most of which have not been published in traditional journals, as re-publishing one's dissertation research as a journal article was not a widespread custom in the education research community until recently. A survey of the iSTAR database dissertations reveals that the vast majority of work has been largely quantitative in nature until the last decade. We also observe that modern-era astronomy education research writings reaches as far back as 1923 and that the majority of dissertations come from the same eight institutions. Moreover, most of the astronomy education research work has been done covering learners' grasp of broad knowledge of astronomy rather than delving into specific learning targets, which has been more in vogue during the last two decades. The surprisingly wide breadth

  11. Astronomy for a Better World”: IAU/OAD Task Force One Activities to Develop Astronomy Education and Research at Universities in the Developing World

    Science.gov (United States)

    Guinan, Edward Francis; Kolenberg, Katrien

    2015-08-01

    The Task Force (1) on Astronomy for Universities & Research (TF-1) was established in 2012 as part of the IAU Office of Astronomy for Development (OAD). This Task Force drives activities related to astronomy education and research at universities mainly in the developing world. Astronomy is used to stimulate research and education in STEM fields and to develop and promote astronomy in regions of the world where there is little or no astronomy. There is also potential for developing research in the historical and cultural aspects of astronomy which may prove important for stimulating an interest in the subject in communities where there is yet no established interest in the science.Since the establishment of the OAD, over 25 TF-1 programs have been funded (or partially funded) to support a wide variety of interesting and innovative astronomy programs in Africa, Asia, South-East Asia, Middle-East, and in South & Central America. Nearly every aspect of development has been supported. These programs include supporting: regional astronomy training schools, specialized workshops, research visits, university twinning programs, distance learning projects, university astronomy curriculum development, as well as small telescope and equipment grants. In addition, a large new program - Astrolab - was introduced (by J-P De Greve and Michele Gerbaldi) to bring starlight” into the class room. In the Astrolab program students carry out and reduce CCD photometry secured by them using remotely controlled telescopes. Results from pilot programs will be discussed.OAD TF-1 programs will be discussed along with future plans for improving and expanding these programs to bring astronomy education and research to a greater number of people and indeed to use Astronomy for a Better World. Information and advice will also be provided about applying for support in the future.

  12. The Center for Astronomy Education (CAE) Ushers in a New Community-Based Model for Astronomy Education Research with the NSF Funded CCLI Phase III Collaboration of Astronomy Teaching Scholars (CATS) Program

    Science.gov (United States)

    Brissenden, Gina; Impey, C.; Prather, E.; Lee, K.; Duncan, D.

    2009-01-01

    The Center for Astronomy Education (CAE) has been devoted to improving teaching & learning in Astro 101 by creating research-validated curriculum & assessment instruments for use in Astro 101 & by providing Astro 101 instructors professional development opportunities to increase their pedagogical content knowledge & instructional skills at implementing these curricula & assessment materials. To create sustainability and further expand this work, CAE, in collaboration with other national leaders in astronomy education & research, developed the Collaboration of Astronomy Teaching Scholars (CATS) Program. The primary goals of CATS are to: 1) increase the number of Astro 101 instructors conducting fundamental research in astronomy education 2) increase the amount of research-validated curriculum & assessment instruments available for use in Astro 101 3) increase the number of people prepared to develop & conduct their own CAE Teaching Excellence Workshops In our first year we have concluded a national study assessing the teaching & learning of Astro 101 & the effect of interactive instruction. We have begun the initial analysis of the demographics data of this study. We have begun a classroom research validation study on the use of the "ClassAction” electronic learning system. We have begun to analyze data from two different studies on students’ attitudes & understanding of science to inform the creation of an assessment instrument designed specifically for Astro 101 to evaluate the effectiveness of our instruction in improving students’ attitudes & beliefs about science. We have also begun the development of a Solar System Concept Inventory. Additionally the development of the Solar System Concept Inventory and research into students’ beliefs and reasoning difficulties on topics in Cosmology are well underway. We acknowledge the NSF for funding under Award No. 0715517, a CCLI Phase III Grant for the Collaboration of Astronomy Teaching Scholars (CATS) Program.

  13. Astronomy Communication

    Science.gov (United States)

    Heck, A.; Madsen, C.

    2003-07-01

    Astronomers communicate all the time, with colleagues of course, but also with managers and administrators, with decision makers and takers, with social representatives, with the news media, and with the society at large. Education is naturally part of the process. Astronomy communication must take into account several specificities: the astronomy community is rather compact and well organized world-wide; astronomy has penetrated the general public remarkably well with an extensive network of associations and organizations of aficionados all over the world. Also, as a result of the huge amount of data accumulated and by necessity for their extensive international collaborations, astronomers have pioneered the development of distributed resources, electronic communications and networks coupled to advanced methodologies and technologies, often much before they become of common world-wide usage. This book is filling up a gap in the astronomy-related literature by providing a set of chapters not only of direct interest to astronomy communication, but also well beyond it. The experts contributing to this book have done their best to write in a way understandable to readers not necessarily hyperspecialized in astronomy nor in communication techniques while providing specific detailed information, as well as plenty of pointers and bibliographic elements. This book will be very useful for researchers, teachers, editors, publishers, librarians, computer scientists, sociologists of science, research planners and strategists, project managers, public-relations officers, plus those in charge of astronomy-related organizations, as well as for students aiming at a career in astronomy or related space science. Link: http://www.wkap.nl/prod/b/1-4020-1345-0

  14. Design, implementation and evaluation of transnational collaborative programmes in astronomy education and public outreach

    NARCIS (Netherlands)

    Rodrigues dos Santos Russo, Pedro Miguel

    2015-01-01

    This thesis presents a study of how science can most effectively be used to engage and educate the global public and specifically describes the role of astronomy in doing this. Astronomy has a special place in the field of science education and public engagement with science. It has great appeal for

  15. An online tutor for astronomy: The GEAS self-review library

    Directory of Open Access Journals (Sweden)

    Nicole P. Vogt

    2015-12-01

    Full Text Available We introduce an interactive online resource for use by students and college instructors in introductory astronomy courses. The General Education Astronomy Source (GEAS online tutor guides students developing mastery of core astronomical concepts and mathematical applications of general astronomy material. It contains over 12,000 questions, with linked hints and solutions. Students who master the material quickly can advance through the topics, while underprepared or hesitant students can focus on questions on a certain topic for as long as needed, with minimal repetition. Students receive individual accounts for study and course instructors are provided with overview tracking information, by time and by topic, for entire cohorts of students. Diagnostic tools support self-evaluation and close collaboration between instructor and student, even for distance learners. An initial usage study shows clear trends in performance which increase with study time, and indicates that distance learners using these materials perform as well as or better than a comparison cohort of on-campus astronomy students. We are actively seeking new collaborators to use this resource in astronomy courses and other educational venues.

  16. STEM Education as a Gateway to Future Astronomy: the Case of Ethiopian Universities

    Science.gov (United States)

    Adhana Teklr, Kelali

    2015-08-01

    Over last two decades education sector in Ethiopia has got due attention. To meet the education deficit of the nation number of universities has been increased from two to thirty eight and twelve more are coming soon. The proliferation has brought a spillover effect that universities have to compete for center excellence in research and education. Convincingly, government’s support is geared towards knowledge-based and innovation-driven system of education to back up the green economic development plan.In an effort to build inclusive economic development emphasis is given to innovative competency building through science and technology fields. The universities in the nation have establish laboratories to educate school boys and girls at early stage of their schooling in STEM (Science, Technology, Engineering and Mathematics) subjects as means to paving future destiny. Though most of the astronomy and space science labs are virtual ones; more and more student have been inspired and want astronomy and space science as their future career fields. Assessment study carried out in universities running STEM education showed that there is a mismatch between the capacity of the labs and number of students wanted to study astronomy and space sciences. The universities have endorsed that STEM education is the gateway to future astronomy and strongly advised concerned bodies and partnering institutions to collaboratively work to intensify the teaching-learning of STEM subjects.The assessment study compiled astronomic and space science exercises carried out by instructors and students and the document is ready to be disseminated to universities and middle and secondary schools to promote the science nationwide. The results have motivated university instructors, science and technology professionals, researchers and policy makers to be more involved in shaping future destiny of the young generation and have their shown determination to support the STEM education so that it will

  17. Earth Science Principles Pertinent to the General Education Programs in Junior High Schools

    Science.gov (United States)

    Henson, Kenneth Tyrone

    1970-01-01

    Presents the procedures, and findings of a study designed to identify principles in astronomy, geology, meterology, oceanography and physical geography pertinent to general education programs in junior high schools. (LC)

  18. Beyond Astro 101 -- Examining Lower Division Astronomy Curriculum For The 21 St Century

    Science.gov (United States)

    Kao, Lancelot L.; Umurhan, O. M.; Summer, T. J.

    2009-01-01

    So-called "ASTRO 101” survey courses in general astronomy are offered to non-science majors in colleges and universities across the United States, to fulfill general-education requirements in the physical sciences. At least two of the common Student Learning Outcomes (SLO) for these courses are critical thinking and understanding astronomy as a scientific discipline. We argue that a comprehensive lower-division astronomy program surpassing ASTRO 101 would increase science literacy for non-science majors, STEM students, and the general public. The program would include diverse astronomy course offerings, interdisciplinary science courses (e.g. astrobiology), service-learning and peer-mentoring activities, and internship opportunities.

  19. General Education Earth, Astronomy and Space Science College Courses Serve as a Vehicle for Improving Science Literacy in the United States.

    Science.gov (United States)

    Prather, E.

    2011-10-01

    Every year approximately 500,000 undergraduate college students take a general education Earth, Astronomy and Space Science (EASS) course in the Unites States. For the majority of these students this will be their last physical science course in life. This population of students is incredibly important to the science literacy of the United States citizenry and to the success of the STEM career pipeline. These students represent future scientists, technologists, business leaders, politicians, journalists, historians, artists, and most importantly, policy makers, parents, voters, and teachers. A significant portion of these students are taught at minority serving institutions and community colleges and often are from underserved and underrepresented groups, such as women and minorities. Members of the Center for Astronomy Education (CAE) at the University of Arizona have been developing and conducting research on the effectiveness of instructional strategies and materials that are explicitly designed to challenge students' naïve ideas and intellectually engage their thinking at a deep level in the traditional lecture classroom. The results of this work show that dramatic improvement in student understanding can be made from increased use of interactive learning strategies. These improvements are shown to be independent of institution type or class size, but appear to be strongly influenced by the quality of the instructor's implementation. In addition, we find that the positive effects of interactive learning strategies apply equally to men and women, across ethnicities, for students with all levels of prior mathematical preparation and physical science course experience, independent of GPA, and regardless of primary language. These results powerfully illustrate that all students can benefit from the effective implementation of interactive learning strategies.

  20. First Contact: Expectations of Beginning Astronomy Students

    Science.gov (United States)

    Lacey, T. L.; Slater, T. F.

    1999-05-01

    Three hundred seven undergraduate students enrolled in Introductory Astronomy were surveyed at the beginning of class to determine their expectations for course content. The course serves as a survey of astronomy for non-science majors and is a distribution course for general education core requirements. The course has no prerequisites, meets three times each week for 50 minutes, and represents three semester credit hours. The university catalog describes the course with the title "PHYSICS 101 - Mysteries of the Sky" and the official course description is: a survey of the struggle to understand the Universe and our place therein. The structure, growth, methods, and limitations of science will be illustrated using the development of astronomy as a vehicle. Present day views of the Universe are presented. Two questions were asked as open response items: What made you decide to take this course? and What do you expect to learn in this course? The reasons that students cited to take the course, in order of frequency, were: interested in astronomy, interesting or fun sounding course, required general education fulfillment, recommendation by peer. Secondary reasons cited were required for major or minor, general interest in science, and was available in the schedule. Tertiary reasons listed were recommendation by advisor or orientation leader, inflate grade point average, and heard good things about the teacher. The students' expectations about what they would learn in the course were numerous. The most common objects listed, in order of frequency, were: stars, constellations, planets, galaxies, black holes, solar system, comets, galaxies, asteroids, moon, and Sun. More interesting were the aspects not specifically related to astronomy. These were weather, atmosphere, UFOs and the unexplained, generally things in the sky. A mid-course survey suggests that students expected to learn more constellations and that the topics would be less in-depth.

  1. Astronomy4Kids: A new, online, STEM-focused, video education outreach program

    Science.gov (United States)

    Pearson, Richard L.; Pearson, Sarah R.

    2017-06-01

    Recent research indicates significant benefits of early childhood introductions to language, mathematics, and general science concepts. Specifically, a child that is introduced to a concept at a young age is more prepared to receive it in its entirety later. Astronomy4Kids was created to bring science, technology, engineering, and math (STEM) concepts to the youngest learners (those under the age of eight, or those from pre-school to about second-grade). The videos are presented in a succinct, one-on-one manner, and provide a creative learning environment for the viewers. Following the preschool education video principles established by Fred Rogers, we hope to give young children access to an expert astronomer who can explain things simply and sincerely. We believe presenting the material in this manner will make it engaging for even the youngest scholar and available to any interested party. The videos can be freely accessed at www.astronomy4kids.net.

  2. Inspiring the Next Generation: Astronomy Catalyzes K12 STEM Education

    Science.gov (United States)

    Borders, Kareen; Thaller, Michelle; Winglee, Robert; Borders, Kyla

    2017-06-01

    K-12 educators need effective and relevant astronomy professional development. NASA's Mission Science provides innovative and accessible opportunities for K-12 teachers. Science questions involve scale and distance, including Moon/Earth scale, solar system scale, and distance of objects in the universe. Teachers can gain an understanding of basic telescopes, the history of telescopes, ground and satellite based telescopes, and models of JWST Telescope. An in-depth explanation of JWST and Spitzer telescopes gave participants background knowledge for infrared astronomy observations. During teacher training, we taught the electromagnetic spectrum through interactive stations. The stations included an overview via lecture and power point, the use of ultraviolet beads to determine ultraviolet exposure, the study of lenticulars and diagramming of infrared data, looking at visible light through diffraction glasses and diagramming the data, protocols for using astronomy based research in the classroom, and infrared thermometers to compare environmental conditions around the observatory. An overview of LIDAR physics was followed up by a simulated LIDAR mapping of the topography of Mars.We will outline specific steps for K-12 infrared astronomy professional development, provide data demonstrating the impact of the above professional development on educator understanding and classroom use, and detail future plans for additional K-12 professional development.Funding was provided by Washington STEM, NASA, and the Washington Space Grant Consortium.

  3. PhysLink Physics and Astronomy online education and reference

    CERN Document Server

    The PhysLink.com is a comprehensive physics and astronomy online education, research and reference web site. In addition to providing high-quality content, PhysLink.com is a meeting place for professionals, students and other curious minds.

  4. The Network for Astronomy in Education in Southwest New Mexico

    Science.gov (United States)

    Neely, B.

    1998-12-01

    The Network for Astronomy in Education was organized to use astronomy as a motivational tool to teach science methods and principles in the public schools. NFO is a small private research observatory, associated with the local University, Western New Mexico. We started our program in 1996 with an IDEA grant by introducing local teachers to the Internet, funding a portable planetarium (Starlab) for the students, and upgrading our local radio linked computer network. Grant County is a rural mining and ranching county in Southwest New Mexico. It is ethnically diverse and has a large portion of the population below the poverty line. It's dryness and 6000' foot elevation, along with dark skies, suite it to the appreciation of astronomy. We now have 8 local schools involved in astronomy at some level. Our main programs are the Starlab and Project Astro, and we will soon install a Sidewalk Solar System in the center of Silver City.

  5. Astronomy Education Project for Guangdong High Schools F. P. Pi ...

    Indian Academy of Sciences (India)

    School of Physics and Electronic Engineering, Guangzhou University, ... an astronomy education project for high school teachers and students was initiated ... ipality, universities and research institutes, professional and amateur astronomical.

  6. Infrared Astronomy Professional Development for K-12 Educators: WISE Telescope

    Science.gov (United States)

    Borders, Kareen; Mendez, B. M.

    2010-01-01

    K-12 educators need effective and relevant astronomy professional development. WISE Telescope (Wide-Field Infrared Survey Explorer) and Spitzer Space Telescope Education programs provided an immersive teacher professional development workshop at Arecibo Observatory in Puerto Rico during the summer of 2009. As many common misconceptions involve scale and distance, teachers worked with Moon/Earth scale, solar system scale, and distance of objects in the universe. Teachers built and used basic telescopes, learned about the history of telescopes, explored ground and satellite based telescopes, and explored and worked on models of WISE Telescope. An in-depth explanation of WISE and Spitzer telescopes gave participants background knowledge for infrared astronomy observations. We taught the electromagnetic spectrum through interactive stations. The stations included an overview via lecture and power point, the use of ultraviolet beads to determine ultraviolet exposure, the study of WISE lenticulars and diagramming of infrared data, listening to light by using speakers hooked up to photoreceptor cells, looking at visible light through diffraction glasses and diagramming the data, protocols for using astronomy based research in the classroom, and infrared thermometers to compare environmental conditions around the observatory. An overview of LIDAR physics was followed up by a simulated LIDAR mapping of the topography of Mars. We will outline specific steps for K-12 infrared astronomy professional development, provide data demonstrating the impact of the above professional development on educator understanding and classroom use, and detail future plans for additional K-12 professional development. Funding was provided by WISE Telescope, Spitzer Space Telescope, Starbucks, Arecibo Observatory, the American Institute of Aeronautics and Astronautics, and the Washington Space Grant Consortium.

  7. The Latin American Journal of Astronomy Education (RELEA): contributions and perspectives

    Science.gov (United States)

    Bretones, P. S.; Jafelice, L. C.; Horvath, J. E.

    2014-10-01

    dissemination of the journal to increase the number of submissions, encouraging the diversification of contents and methods and increase the participation of authors in general and from Latin America in particular, aiming to greater academic contribution for astronomy education at various levels and places.

  8. Astronomy Education & Outreach in South Africa

    Science.gov (United States)

    Throop, Henry B.

    2015-11-01

    Although South Africa has evolved greatly in the 20 years since the end of apartheid, it remains a very divided country. The highest-performing students are comparable in ability to those in the US and Europe, but nearly all of these students are from priveleged Afrikaaner (European) backgrounds. The vast majority of students in the country are native African, and school standards remain very low across the country. It is common that students have no textbooks, teachers have only a high school education, and schools have no telephones and no toilets. By high school graduation, the majority of students have never used a web browser -- even students in the capital of Johannesburg. And while a few students are inspired by home-grown world-class projects such as the Square Kilometer Array (SKA) and Southern African Large Telescope (SALT), most remain unaware of their existence.Despite the poor state of education in the country, students work hard, are curious, and desire information from the outside world. Astronomy is one subject in which students in rural Africa often show exceptional interest. Perhaps astronomy serves as a 'gateway science,' linking the physically observable world with the exotic and unknown.Here I report on many visits I have made to both rural and urban schools in South Africa during the 2013-2015 period. I have interacted with thousands of grade 7-12 students at dozens of schools, as well as taught students who graduated from this system and enrolled in local universities. I will present an assessment of the state of science education in South Africa, as well as a few broader suggestions for how scientists and educators in developed countries can best make an impact in Southern Africa.

  9. Exploring new possibilities of astronomy education and outreach

    Science.gov (United States)

    Fukushima, Kodai

    2015-08-01

    I investigate the influences of astronomy education and outreach activities on people in order to explore their potential benefits and contribution to society. This research is based on the astronomy education lessons I gave to 287 senior high school and junior high school students in Cambodia in November 2013. Before and after my lesson, I asked them to answer my questionnaires in Khmer, where they could also write free descriptions. Sentences in their free descriptions translated into Japanese are analyzed by means of a text mining method. By converting text data to various numbers using a text mining method, it is possible for us to do statistical analysis. I counted the number of question sentences and computed their rate with respect to the total number of sentences. The rate of question sentences in 9th and 12th grade students are 39% and 9%, respectively. This shows 9th grade students wonder why and how more frequently and appear to be more stimulated in their curiosity than 12th grade students. I counted the frequency of words in the free descriptions and examined high frequency words, to take a broad view of the characteristics of free description. The word ''world'' is the fourth highest frequency word among 369 words following the three words, ''the universe'', ''the earth'', and ''a star'', which frequently appear in the lesson in astronomy. The most sentences including the word “world” described amazement at the existence of so vast unknown world outside of what they had known until then. The frequency of sentences including the word ''world'' of 12th grade students is much higher (45%) than that (18%) of 9th grade students. A significant fraction of 12th grade students appears to have had a strong impact and changed their views of the world. It is found that my lesson and related activities inspired intellectual curiosity in many students, especially in 9th grade students. It is also found that a significant fraction of 12th grade students appear

  10. Worldviews: A New Paradigm for Astronomy Education Research

    Science.gov (United States)

    Wallace, Colin Scott; Prather, E. E.; Collaboration of Astronomy Teaching Scholars CATS

    2012-01-01

    Much of astronomy education research focuses on improving students’ conceptual understandings of key astronomy topics. But are we missing something important if we restrict our efforts to conceptual change? In this talk, we argue that we also need to shape our instruction such that it affects students’ worldviews. By worldview, we mean a set of (often implicit and often non-rational) beliefs, presuppositions, and assumptions about reality that affect our emotions, thoughts, and behaviors, and determine what constitutes valid and important knowledge about the world. Prior science education research has shown that a students’ worldview plays a fundamental role in his or her acceptance or rejection of science. We believe that our instruction must be informed by the interplay between students’ worldviews and the worldview of science if we want our students to become advocates for science. By advocates for science, we mean they feel motivated and obliged to communicate science to those around them, and they recognize the importance of science for their society, especially as evidenced by the amount of funding they are willing to support for scientific research. This material is based in part upon work supported by the National Science Foundation under Grant Nos. 0715517, a CCLI Phase III Grant for the Collaboration of Astronomy Teaching Scholars (CATS). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

  11. Mathematics and Astronomy: Inquire Based Scientific Education at School

    Science.gov (United States)

    de Castro, Ana I. Gómez

    2010-10-01

    Mathematics is the language of science however, in secondary and high school education students are not made aware of the strong implications behind this statement. This is partially caused because mathematical training and the modelling of nature are not taught together. Astronomy provides firm scientific grounds for this joint training; the mathematics needed is simple, the data can be acquired with simple instrumentation in any place on the planet and the physics is rich with a broad range of levels. In addition, astronomy and space exploration are extremely appealing to young (14-17 years old) students helping to motivate them to study science doing science, i.e. to introduce Inquiry Based Scientific Education (IBSE). Since 1997 a global consortium is being developed to introduce IBSE techniques in secondary/high school education on a global scale: the Global Hands-On Universe association (www.globalhou.org) making use of the astronomical universe as a training lab. This contribution is a brief update on the current activities of the HOU consortium. Relevant URLS: www.globalhou.org, www.euhou.net, www.houspain.com.

  12. Improving Teach Astronomy: A Survey of Instructors

    Science.gov (United States)

    Wenger, Matthew; Riabokin, Malanka; Impey, Chris David

    2018-01-01

    Teach Astronomy is a website that provides educational resources for introductory astronomy. The motivation behind constructing this site was to provide quality online educational tools for use as a primary or supplementary instructional resource for teachers and students. The website provides an online textbook, glossary, podcasts and video summaries of concepts. As the popularity of online courses steadily increases, so does the demand for robust online educational resources. In order to cater to our users, our team conducted a survey of the instructors that use Teach Astronomy site for feedback for use in updating and streamlining the website content. The survey collected feedback regarding functionality of each of the website tools, in which courses the site was being used, and the motivation of the instructors use of our site. The overwhelming majority of responses indicate that instructors use the website as a class textbook in introductory astronomy courses for non-science majors, and instructors also generally tended to agree that the site content was comprehensive and lucid. One interesting result of the survey is to cluster topics in a way that is consistent with different levels of instruction (i.e. grouping middle-school level content and university level content distinctly). Our team will use this feedback to improve the Teach Astronomy website and maintain it as a high-quality, free online resource. We will also continue to gather feedback from instructors to ensure that the Teach Astronomy website stays current and remains a valuable online resource for instructors around the country.

  13. Research on the potential use of interactive materials on astronomy education

    Science.gov (United States)

    Voelzke, Marcos Rincon; Macedo, Josue

    2016-07-01

    This study presents results of a survey conducted at the Federal Institution of Education, Science and Technology in the North of Minas Gerais (IFNMG), and aimed to investigate the potentialities of the use of interactive materials in the teaching of astronomy. An advanced training course with involved learning activities about basic concepts of astronomy was offered to thirty-two Licenciate students in Physics, Mathematics and Biological Sciences, using the mixed methodology, combined with the three pedagogical moments. Among other aspects, the viability of the use of resources was noticed, involving digital technologies and interactive materials on teaching of astronomy, which may contribute to the broadening of methodological options for future teachers and meet their training needs.

  14. Ten years of RELEA: achievements and challenges for astronomy education development

    Science.gov (United States)

    Bretones, Paulo Sergio; Jafelice, Luiz Carlos; Horvath, Jorge Ernesto

    2015-08-01

    When an area of education, and more particularly the research within this area, is aimed to development, a basic requirement is the existence of a regular publication that accounts for the scientific production in that area. This study aims to analyze 10 years of Latin-American Journal of Astronomy Education (RELEA). Publishing policies of the RELEA and their context are discussed in relation to submission, refereeing and publication. The 75 articles published in 18 editions are analyzed and classified by: year of publication, edition, the authors' institutions, school level, study focus and content. The results present trends and shortcomings of the production. A comparison with the number of articles published in other Brazilian journals of education and an analysis of the international scene in relation to other type publications along these ten years is made. Given that this journal is now consolidated, its future prospects in the international landscape are further considered. The challenges related to article submission are discussed: how to increase their number, the submission of Latin American countries, and how to bring in the issues and subjects not addressed until now. It is also considered the possibility of encouraging graduate studies, new lines of research in astronomy education, and dissemination of material in schools and universities for teachers and students. Finally, future possibilities are discussed given the IAU development programs. For example, more article submission from Portuguese-speaking countries with the support of Regional Nodes and Language Expertise Centers, and opportunities for volunteer IAU members and global projects for the development of astronomy education.

  15. The California-Arizona Minority Partnership for Astronomy Research and Education (CAMPARE): A New Model for Promoting Minority Participation in Astronomy Research and Education

    Science.gov (United States)

    Rudolph, Alexander L.; Impey, C. D.; Bieging, J. H.; Phillips, C. B.; Tieu, J.; Prather, E. E.; Povich, M. S.

    2013-01-01

    The California-Arizona Minority Partnership for Astronomy Research and Education (CAMPARE) program represents a new and innovative kind of research program for undergraduates: one that can effectively carry out the goal of recruiting qualified minority and female students to participate in Astronomy and Planetary Science research opportunities, while mentoring them in a way to maximize the chance that these students will persist in obtaining their undergraduate degrees in STEM fields, and potentially go on to obtain their PhDs or pursue careers in those fields. The members of CAMPARE comprise a network of comprehensive universities and community colleges in Southern California and Arizona (most of which are minority serving institutions), and four major research institutions (University of Arizona Steward Observatory, the SETI Institute, and JPL/Caltech). Most undergraduate research programs focus on a single research institution. By having multiple institutions, we significantly broaden the opportunities for students, both in terms of breadth of research topics and geographical location. In its first three years, the CAMPARE program has had 20 undergraduates from two CSU campuses, both Hispanic Serving Institutions, take part in research and educational activities at four research institutions, the University of Arizona Steward Observatory, the SETI Institute, and JPL/Caltech. Of the 20 participants, 9 are women and 11 are men, a much more even split than is typical in Astronomy research programs; 10 are Hispanic, 2 are African American, and 1 is part Native American, including 2 female Hispanic and 2 female African-American participants, an exceptionally high participation rate (65%) for students from underrepresented minority groups. Of the five participants who have graduated since the program began, two are in graduate programs in Physics or Astronomy, two are pursuing a K-12 teaching credential, and one has enlisted in the Nuclear Propulsion Officer Candidate

  16. Education in astronomy and solar-terrestrial relations in science research environment

    Science.gov (United States)

    Stoeva, Penka; Stoev, Alexey

    In recent years, more and more attention is paid to educational programmes, which are closely connected with the process of scientific research. Such programmes are developed in collab-oration and included in the schools, universities and scientific institutes in Bulgaria. They are also used in the organization of public events aimed to demonstrate beauty, relevance and significance of Space and Earth science to the whole world. During the last four years, So-lar-Terrestrial Influences Institute of the Bulgarian Academy of Sciences, and the Yuri Gagarin Public Astronomical Observatory and Planetarium, Stara Zagora succeeded to build an ex-cellent partnership, working on the International Heliophysical year and International Year of Astronomy -global efforts initiated by the UNESCO and the International Astronomical Union (IAU) to help the citizens of the world rediscover their place in the Universe. They organized and tutored all the Astronomical Observatories and Planetaria, and teachers from all around Bulgaria to participate in the world initiatives Solar Week, Sun-Earth Day,Yuri's Night, World Astronomy day and World Space week, and use them in the process of education and public outreach. After the official closing of the International Heliophysical year, the IHY follow-on activities in Bulgaria continued and were devoted to the International Year of Astronomy 2009. A lot of lectures, public talks and exhibitions have been organized. Stara Zagora became a host of IHY Space Weather Monitor -SID (Sudden Ionospheric Disturbances), numerous of educational materials have been adapted and translated in Bulgarian. Cycle of lectures "Epock of Great astronomical discoveries", devoted to the International Year of Astronomy was given in April 2009 in the Stara Zagora Art Gallery. Participation in the cornerstone projects of the International Year of Astronomy 2009 was organized: "100 hours of Astronomy" -ob-servations with small telescopes in the period of 5 -9 April

  17. School-Based Extracurricular Astronomy

    Science.gov (United States)

    Stanger, Jeffrey J.

    2010-01-01

    The International Year of Astronomy in 2009 focused considerable public attention on Astronomy and generated valuable resources for educators. These activities are an effective vehicle for promoting Science to students and to the wider school community. The most engaging practical astronomy activities are best delivered with sustained support from…

  18. "Dark Skies, Bright Kids" -- Astronomy Education and Outreach in Rural Virginia

    Science.gov (United States)

    Zasowski, Gail; Johnson, K.; Beaton, R.; Carlberg, J.; Czekala, I.; de Messieres, G.; Drosback, M.; Filipetti, C.; Gugliucci, N.; Hoeft, A.; Jackson, L.; Lynch, R.; Romero, C.; Sivakoff, G.; Whelan, D.; Wong, A.

    2010-01-01

    In the hills of central Virginia, the extraordinarily dark nighttime skies of southern Albemarle County provide a natural outdoor classroom for local science education. Until recently, this rural area lacked the financial and educational support to take full advantage of this rare and valuable natural resource. With funds provided by the NSF, a team of volunteers from the University of Virginia introduced a new program this fall called "Dark Skies - Bright Kids," which promotes science education at the elementary school level through a wide range of activities. The program volunteers (comprising undergraduate and graduate students, postdocs, and faculty) have sought to develop a coherent schedule of fun and educational activities throughout the semester, with emphases on hands-on learning and critical thinking. For example, students learn about the constellations by making star-wheels, about rocketry by building and launching rockets, and about comets by assembling miniature analogs. Additional activities include stories about the scientific and cultural history of astronomy, visits by professional astronomers and popular book authors, and astronomy-themed exercises in art, music, and physical education. These projects are designed to make astronomy, and by extension all science, accessible and appealing to each student. Family involvement is important in any educational environment, particularly at the elementary school level. To include the students' families and the larger community in "Dark Skies," we hold weekly telescope observing sessions at the school. Here, all interested parties can come together to hear what the students are learning and view astronomical objects through a small telescope. We hope that this well-received program will soon expand to other disadvantaged schools in the area. The "Dark Skies" team is proud and excited to have an impact on the scientific literacy of the students in these starry-skied communities!

  19. Astronomy development in Morocco: a challenge to stimulate science and education

    Science.gov (United States)

    Chamcham, Khalil

    From my experience in Morocco, I discuss the difficulties one can face while trying to set up projects in a country where astronomy is a forgotten science: everything has to be built from scratch and, at the same time, one is required to keep up the pace at the international level. But, on the other side, it is quite a relief to see the strong demand from students and the public. In these circumstances even professional astronomy cannot survive without feedback from the public and long-term investment in education at all levels.

  20. Research on teaching astronomy in the planetarium

    CERN Document Server

    Slater, Timothy F

    2017-01-01

    From a noted specialist in astronomy education and outreach, this Brief provides an overview of the most influential discipline-based science education research literature now guiding contemporary astronomy teaching. In recent years, systematic studies of effective and efficient teaching strategies have provided a solid foundation for enhancing college-level students’ learning in astronomy. Teaching astronomy and planetary science at the college-level was once best characterized as professor-centered, information-download lectures. Today, astronomy faculty are striving to drastically improve the learning environment by using innovative teaching approaches.  Uniquely, the authors have organized this book around strands of commonly employed astronomy teaching strategies to help readers, professors, and scholars quickly access the most relevant work while, simultaneously, avoiding the highly specialized, technical vocabulary of constructivist educational pedagogies unfamiliar to most astronomy professors. F...

  1. Non-Formal education in astronomy: The experience of the University the Carabobo

    Science.gov (United States)

    Falcón, Nelson

    2011-06-01

    Since 1995, the University the Carabobo, in Venezuela, has come developing a program of astronomical popularization and learning Astronomy using the Non formal education methods. A synopsis of the activities is presented. We will also discuss some conceptual aspects about the extension of the knowledge like supplementary function of the investigation and the university teaching. We illustrate the characteristics of the communication with an example of lectures and printed material. The efficiency of the heuristic arguments could be evaluated through a ethnology study. In that order of ideas, we show some images of the activities of astronomical popularization. We can see the population and great concurrence with chronological (and cultural) heterogeneity. We conclude that the Non formal education, structured with characteristic different to the usual educational instruction, constitutes a successful strategy in the diffusion and the communicating astronomy.

  2. Institutions of Non-Formal Education of Astronomy in Brazil and their Distribution on the National Territory

    Science.gov (United States)

    Marques, Joana Brás Varanda; de Freitas, Denise

    2015-12-01

    This article presents the results of a survey of Brazilian institutions of non-formal education and popularization of Astronomy. The non-formal sector of education and scientific dissemination are areas in expansion throughout the world and also in Brazil. Astronomy is a privileged science due to the network of existing institutions, but there is little research on this issue and the information about institutions are neither integrated nor updated. In response, this paper presents the results of a systematic survey of planetariums, observatories, museums and associations dedicated to education in astronomy in Brazil. The survey was executed by compiling and updating of existing partial listings on equipment and institutions. It can be concluded that in Brazil there are nearly 500 institutions dedicated to this area but these institutions are distributed unevenly across the country.

  3. The Astronomy Workshop

    Science.gov (United States)

    Hamilton, D. P.

    2005-05-01

    The Astronomy Workshop (http://janus.astro.umd.edu) is a collection of interactive online educational tools developed for use by students, educators, and the general public. The more than 20 tools in the Astronomy Workshop are rated for ease-of-use, and have been extensively tested in large university survey courses, classes for undergraduate majors, and High Schools. Here we briefly describe a few of the more popular tools. The Life of the Sun (New!): The history of the Sun is animated as a movie, showing students how the size and color of our star has evolved and will evolve in time. Animated Orbits of Planets and Moons: The orbital motions of planets, moons, asteroids, and comets are animated at their correct relative speeds in accurate to-scale drawings. Solar System Collisions: This most popular of our applications shows what happens when an asteroid or comet with user-defined size and speed impacts a given planet. The program calculates many effects, including the country of impact (if Earth is the target), energy of explosion, crater size, and magnitude of the ``planetquake'' generated. It also displays a relevant image (e.g. terrestrial crater, lunar crater, etc.). Astronomical Distances: Travel away from the Earth at a chosen speed and see how long it takes to reach other planets, stars and galaxies. This tool helps students visualize astronomical distances in an intuitive way. Funding for the Astronomy Workshop is provided by a NASA EPO grant.

  4. Teaching Astronomy with Technology

    Science.gov (United States)

    Austin, Carmen; Impey, Chris David; Wenger, Matthew

    2015-01-01

    Students today are expected to have access to computers and the Internet. Students young and old, in school and out of school, are interested in learning about astronomy, and have computers to use for this. Teach Astronomy is a website with a comprehensive digital astronomy textbook freely available to students and educators. In addition to the textbook, there are astronomy Wikipedia articles, image archives from Astronomy Picture of the Day and AstroPix, and video lectures covering all topics of astronomy. Teach Astronomy has a unique search tool called the wikimap that can be used to search through all of the resources on the site. Astronomy: State of the Art (ASOTA) is a massive, open, online course (MOOC). Over 18,000 students have enrolled over the past year and half. This MOOC has been presented in various forms. First, only to students on the web, with content released weekly on host site Udemy. Then to university students who met formally in the classroom for educational activities, but were also expected to watch lectures online on their own time. Presently, it is available online for students to go at their own pace. In the future it will be available in an extended format on a new host site, Coursera. ASOTA instructors use social media to interact with students. Students ask questions via the course host site, Udemy. Live question and answer sessions are conducted using Google Hangouts on Air, and interesting and relevant astronomy news, or supplementary educational content is shared via the ASOTA Facebook page. Teaching on the Internet may seem impersonal and impractical, but by learning to use all of these tools, instructors have the ability to interact with students, and keep them engaged.

  5. Design of the iSTAR International STudy on Astronomy Reasoning

    Science.gov (United States)

    Tatge, Coty B.; Slater, Stephanie J.

    2015-01-01

    Beginning in 2013, a small international collaborative of discipline-based astronomy education researchers began to build the foundation to start the International STudy on Astronomy Reasoning Project, known simply as iSTAR. The project was a direct result of the inability of existing large international investigations into the learning of science, such as the TIMSS and PISA studies, to provide actionable intelligence on either strengths or weaknesses of astronomy teaching across the world. This is not because those studies were flawed; rather, they focused on the general characteristics of teaching and learning across all sciences. Prior to the iSTAR effort, there has been no systematic effort to measure individual's conceptual astronomy understanding across the globe. The goal of studying a widely dispersed international sample is to identify cultural subpopulations that do not conform to our existing knowledge of student misconceptions, highlighting unexpected cultural or educational practices that hint at alternative, and perhaps more effective, means of instruction. As a first step, we are carefully translating the Test Of Astronomy STandards - TOAST multiple-choice assessment instrument and carefully attending to nuances that occur during the translation process as cultural clues to differences in the teaching and learning of astronomy. We are actively welcoming and seeking international partners in this work through the CAPERteam.com website and at https://www.surveymonkey.com/s/iSTAR-Registration . This project is sponsored and managed by the CAPER Center for Astronomy & Physics Education Research in collaboration with members of the International Astronomical Union-Commission 46.

  6. STS-Astro: Astronomy in the focus of Science, Technology and Society and Case Study in Education Distance

    Science.gov (United States)

    Ferreira, O. R.

    2014-02-01

    The dissertation addresses the focus of Astronomy in Science, Technology and Society [STS}, which the author calls the STS-Astro. Observes the International Year of the Astronomy 2009 [IYA 2009] as one of the greatest experiences STS worldwide, causing unprecedented integration between science, technology and humanities, with positive impacts in many sectors of society and are still worthy of study, specially in Brazil due to the implementation of the International Year of Astronomy, Brazil 2009 [IYABrazil-2009}. Astronomy is also investigated in the area of Education, based mainly on theoretical aspects of educational socio-interacionist of Lev Semenovich Vygotsky (Vygotsky, 1991, 2008 and 2012, p. 103-117) and socio-historical cultural of Paulo Reglus Neves Freire (1979, 1982 and 1996), but when necessary and still keeping the field of constructivism, properly taking advantage of the interactionism and transdisciplinarity of Jean William Fritz Piaget (1983). Concerning Distance Education [DE], it is noted significant growth at the graduate and postgraduate courses. New challenges arise, with the establishment of an increasingly accustomed to Information and Communication Technologies [ICT] and the teaching methodologies to be used and developed, with Astronomy becoming an important instrument in the teaching-learning process associated technologies. Using the methodology of action research, we proceeded with a case study involving 26 students of the discipline of Astronomy Topics applied to Education, between November 1 and December 17, 2012, of the postgraduation courses in Distance Education at the Universidade Cruzeiro do Sul [Southern Cross University]. The results obtained permit statistical surveys therefore quantitative, but also qualitative information about the teaching-learning Astronomy by DE. Analyses of performance and progress of each student and set permit a finding interaction among those involved in the mediation of the teacher-tutor who, in turn

  7. Andres Bello and the Dissemination of Astronomy: Education and Scientific Rhetoric

    Directory of Open Access Journals (Sweden)

    Verónica Ramírez Errázuriz

    2017-12-01

    Full Text Available This paper analyzes the astronomical texts written by Andres Bello between 1810 and 1848, from its educational nature to its rhetorical expression, suggesting that their main purpose was to show the advances in the field - in terms of knowledge production and also technology development- in order to improve the material and intellectual environment of the nation. It also stands that astronomy should be tought by activating creativity and imagination, which may be linked with Bello’s willing to avoid science and art develop apart from each other, keeping, in this case astronomy bonded with literature.

  8. Using the Teach Astronomy Website to Enrich Introductory Astronomy Classes

    Science.gov (United States)

    Hardegree-Ullman, K. K.; Impey, C. D.; Patikkal, A.; Austin, C. L.

    2013-04-01

    This year we implemented Teach Astronomy as a free online resource to be used as a teaching tool for non-science major astronomy courses and for a general audience interested in the subject. The comprehensive astronomy content of the website includes: an introductory text book, encyclopedia articles, images, two to three minute topical video clips, podcasts, and news articles. Teach Astronomy utilizes a novel technology to cluster, display, and navigate search results, called a Wikimap. We will present an overview of how Teach Astronomy works and how instructors can use it as an effective teaching tool in the classroom. Additionally, we will gather feedback from science instructors on how to improve the features and functionality of the website, as well as develop new assignment ideas using Teach Astronomy.

  9. Infrared Astronomy and Education: Linking Infrared Whole Sky Mapping with Teacher and Student Research

    Science.gov (United States)

    Borders, Kareen; Mendez, Bryan; Thaller, Michelle; Gorjian, Varoujan; Borders, Kyla; Pitman, Peter; Pereira, Vincent; Sepulveda, Babs; Stark, Ron; Knisely, Cindy; Dandrea, Amy; Winglee, Robert; Plecki, Marge; Goebel, Jeri; Condit, Matt; Kelly, Susan

    The Spitzer Space Telescope and the recently launched WISE (Wide Field Infrared Survey Explorer) observe the sky in infrared light. Among the objects WISE will study are asteroids, the coolest and dimmest stars, and the most luminous galaxies. Secondary students can do authentic research using infrared data. For example, students will use WISE data to mea-sure physical properties of asteroids. In order to prepare students and teachers at this level with a high level of rigor and scientific understanding, the WISE and the Spitzer Space Tele-scope Education programs provided an immersive teacher professional development workshop in infrared astronomy.The lessons learned from the Spitzer and WISE teacher and student pro-grams can be applied to other programs engaging them in authentic research experiences using data from space-borne observatories such as Herschel and Planck. Recently, WISE Educator Ambassadors and NASA Explorer School teachers developed and led an infrared astronomy workshop at Arecibo Observatory in PuertoRico. As many common misconceptions involve scale and distance, teachers worked with Moon/Earth scale, solar system scale, and distance and age of objects in the Universe. Teachers built and used basic telescopes, learned about the history of telescopes, explored ground and satellite based telescopes, and explored and worked on models of WISE Telescope. An in-depth explanation of WISE and the Spitzer telescopes gave participants background knowledge for infrared astronomy observations. We taught the electromagnetic spectrum through interactive stations. We will outline specific steps for sec-ondary astronomy professional development, detail student involvement in infrared telescope data analysis, provide data demonstrating the impact of the above professional development on educator understanding and classroom use, and detail future plans for additional secondary professional development and student involvement in infrared astronomy. Funding was

  10. Astronomy in the Middle East and North Africa

    Science.gov (United States)

    Athem Alsabti, Abdul

    2015-08-01

    Recent turbulent events in the Middle East and North Africa have influenced all aspects of life. Education in general, including astronomy, teaching and research has all been greatly affected. In this presentation, the current situation regarding astronomy in this region is reviewed in detail. This is based on visits made to Tunisia and Algeria recently on behalf of the IAU and other visits to Iraq, Qatar, Egypt and Jordan in recent years, as well as on discussions and communications with astronomers, officials and astronomical and educational institutes in the region. Discussions have also been established with astronomers from Iran, Oman and Morocco. Ideas and proposals will be presented on the best ways for the IAU and the international academic community to help under these circumstances.

  11. Rescuing Middle School Astronomy

    Science.gov (United States)

    Mayo, L. A.; Janney, D.

    2010-12-01

    There is a crisis in education at the middle school level (Spellings, 2006). Recent studies point to large disparities in middle school performance in schools with high minority populations. The largest disparities exist in areas of math and science. Astronomy has a universal appeal for K-12 students but is rarely taught at the middle school level. When it is taught at all it is usually taught in isolation with few references in other classes such as other sciences (e.g. physics, biology, and chemistry), math, history, geography, music, art, or English. The problem is greatest in our most challenged school districts. With scores in reading and math below national averages in these schools and with most state achievement tests ignoring subjects like astronomy, there is little room in the school day to teach about the world outside our atmosphere. Add to this the exceedingly minimal training and education in astronomy that most middle school teachers have and it is a rare school that includes any astronomy teaching at all. In this presentation, we show how to develop and offer an astronomy education training program for middle school teachers encompassing a wide range of educational disciplines that are frequently taught at the middle school level. The prototype for this program was developed and launched in two of the most challenged and diverse school systems in the country; D.C. Public Schools, and Montgomery County (MD) Public Schools.

  12. NASA Center for Astronomy Education: Building a Community of Practice

    Science.gov (United States)

    Brissenden, Gina; Prather, E. E.; Slater, T. F.; Greene, W. M.; Thaller, M.; Alvidrez, R.

    2007-12-01

    The NASA Center for Astronomy Education (CAE) is devoted to the professional development of introductory college astronomy instructors teaching at community colleges. The primary goal is building a "community of practice." Evaluation results suggest this community of practice model is effective at improving instructional practices, particularly in settings where instructors feel isolated from their peers. For community college faculty this isolation can be quite real. Many are the only astronomer, if not the only scientist, at their institution. In addition, they may be adjunct instructors who have no office, no institutional email address, nor appear in the campus directory. CAE works to prevent this sense of isolation by building both actual and virtual communities for these instructors, as well as provide actual and virtual professional development opportunities. CAE's major effort is providing multi-tiered "Teaching Excellence Workshops" offered at national and regional venues. Recently added to our workshop offerings is a Tier II, or advanced, workshop for instructors who have attended a previous Teaching Excellence Workshop. The focus of the Tier II workshops is on implementation issues. In addition, we are now also offering a workshop exclusively for post-docs, graduates, and undergraduate students. Ongoing support is offered through the CAE website. Instructors can learn about, and register for, upcoming workshops. They can engage in discussions about educational issues and share best practices with peers using the moderated discussion group Astrolrner@CAE. CAE also provides an updated article "This Month's Teaching Strategy” which is a reflection on teaching strategies discussed in the workshops. Instructors can also find their peers through the online map of US community colleges offering introductory astronomy courses. Lastly, CAE Regional Teaching Exchanges facilitate local, and sustained, community building. CAE is supported by the NASA/JPL Navigator

  13. Astronomy from the chair - the application of the Internet in promoting of Astronomy

    Science.gov (United States)

    Tomic, Zoran

    2014-05-01

    Internet and modern communication technologies are an indispensable part of modern life. The use of the Internet makes it possible to enhance the education and expand opportunities for acquiring new knowledge. One example is Astronomy, where today thanks to the Internet, we can control telescopes that are distant from us and listen to lectures from Universities in other countries. "Astronomy from the chair" is the name for a concept where amateur astronomers can deal with astronomy from their homes using the Internet. The concept can be divided into four sections depending on the content being offered: Robotic Observatory, Virtual Observatory, Online astronomy broadcasting and Online courses. Robotic observatory is defined as an astronomical instrument and detection system that enables efficient observation without the need of a person's physical intervention. Virtual Observatory is defined as a collection of databases and software tools that use the Internet as a platform for scientific research. Online astronomy broadcasting is part of concept "Astronomy from the chair" which gives users the opportunity to get directly involved in astronomical observation organized by an amateur astronomer from somewhere in the world. Online courses are groups of sites and organizations that provide the opportunity to amateur astronomers to attend lectures, save and watch video materials from lectures, do homework, communicate with other seminar participants and in that way become familiar with the various areas of Astronomy. This paper discusses a new concept that describes how the Internet can be applied in modern education. In this paper will be described projects that allows a large number of astronomy lovers to do their own research without the need to own a large and expensive set of astronomical equipment (Virtual Telescope from Italy, Observatory "Night Hawk" from Serbia and project "Astronomy from an armchair" at Faculty of Sciences and Mathematics in Nis), to help

  14. The Lowell Observatory Navajo-Hopi Astronomy Outreach Program

    Science.gov (United States)

    Herrmann, K. A.; Hunter, D. A.; Bosh, A. S.; Johnson, M.; Schindler, K.

    2012-08-01

    We present an overview of the Lowell Observatory Navajo-Hopi Astronomy Outreach Program, which is modeled after the ASP's Project ASTRO (Richter & Fraknoi 1994). Since 1996, our missions have been (1) to use the inherent excitement about the night sky to help teachers get Navajo and Hopi students excited about science and education, and (2) to help teachers of Navajo and Hopi students learn about astronomy and hands-on activities so that they will be better able to incorporate astronomy in their classrooms. Lowell astronomers pair up for a school year with an elementary or middle school (5th-8th grade) teacher and make numerous visits to their teachers' classes, partnering with the educators in leading discussions linked with hands-on activities. Lowell staff also work with educators and amateur astronomers to offer evening star parties that involve the family members of the students as well as the general community. Toward the end of the school year, teachers bring their classes to Lowell Observatory. The classes spend some time exploring the Steele Visitor Center and participating in tours and programs. They also voyage to Lowell's research facility in the evening to observe at two of Lowell's research telescopes. Furthermore, we offer biennial teacher workshops in Flagstaff to provide teachers with tools, curricula materials, and personalized training so that they are able to include astronomy in their classrooms. We also work with tribal educators to incorporate traditional astronomical knowledge. Funding for the program comes from many different sources.

  15. Crafting an International Study of Students' Conceptual Understanding of Astronomy

    Science.gov (United States)

    Slater, Stephanie; Bretones, P. S.; McKinnon, D.; Schleigh, S.; Slater, T. F.; Astronomy, Center; Education Research, Physics

    2013-01-01

    Large international investigations into the learning of science, such as the TIMSS and PISA studies, have been enlightening with regard to effective instructional practices. Data from these studies revealed weaknesses and promising practices within nations' educational systems, with evidence to suggest that these studies have led to international reforms in science education. However, these reforms have focused on the general characteristics of teaching and learning across all sciences. While extraordinarily useful, these studies have provided limited insight for any given content domain. To date, there has been no systematic effort to measure individual's conceptual astronomy understanding across the globe. This paper describes our motivations for a coordinated, multinational study of astronomy understanding. First, reformed education is based upon knowing the preexisting knowledge state of our students. The data from this study will be used to assist international astronomy education and public outreach (EPO) professionals in their efforts to improve practices across global settings. Second, while the US astronomy EPO community has a long history of activity, research has established that many practices are ineffective in the face of robust misconceptions (e.g.: seasons). Within an international sample we hope to find subpopulations that do not conform to our existing knowledge of student misconceptions, leading us to cultural or educational practices that hint at alternative, effective means of instruction. Finally, it is our hope that this first venture into large-scale disciplinary collaboration will help us to craft a set of common languages and practices, building capacity and leading toward long-term cooperation across the international EPO community. This project is sponsored and managed by the Center for Astronomy & Physics Education Research (CAPER), in collaboration with members of the International Astronomical Union-Commission 46. We are actively

  16. RE-NUMERATE: A Workshop to Restore Essential Numerical Skills and Thinking via Astronomy Education

    Science.gov (United States)

    McCarthy, D.; Follette, K.

    2013-04-01

    The quality of science teaching for all ages is degraded by our students' gross lack of skills in elementary arithmetic and their unwillingness to think, and to express themselves, numerically. Out of frustration educators, and science communicators, often choose to avoid these problems, thereby reinforcing the belief that math is only needed in “math class” and preventing students from maturing into capable, well informed citizens. In this sense we teach students a pseudo science, not its real nature, beauty, and value. This workshop encourages and equips educators to immerse students in numerical thinking throughout a science course. The workshop begins by identifying common deficiencies in skills and attitudes among non-science collegians (freshman-senior) enrolled in General Education astronomy courses. The bulk of the workshop engages participants in well-tested techniques (e.g., presentation methods, curriculum, activities, mentoring approaches, etc.) for improving students' arithmetic skills, increasing their confidence, and improving their abilities in numerical expression. These techniques are grounded in 25+ years of experience in college classrooms and pre-college informal education. They are suited for use in classrooms (K-12 and college), informal venues, and science communication in general and could be applied across the standard school curriculum.

  17. Scientific Disclosure: Social Representations of Brazilian Researchers Acting in the Field of Astronomy

    Science.gov (United States)

    Carneiro, D. L. C. M.

    2014-10-01

    Science dissemination has unquestioned role on intermediate science and society and it is a wide subject of research in education, considering that the construction of knowledge flows in different spaces, and, consequently, produces and disseminates representations. It presents as a motivator for reflection and as a necessary tool to prevent that knowledge do not become synonymous with domination and power. Thereby, the Astronomy assumes a remarkable role as a trigger of scientific dissemination process, due to its interdisciplinary character. From this viewpoint and the theoretical and methodological framework of the Theory of Social Representations (TRS), grounded by Serge Moscovici, this research, qualitative in nature, seek to answer: What are the social representations about scientific dissemination of Brazilian researchers that act in the field of astronomy? The work was based on Longhini, Gomide and Fernandes (2013) research, which delineate the Brazilian scientific community involved in Astronomy, identifying two groups of researchers with different training paths: one with postgraduate in education and related fields, and other with postgraduate in Physics or Astronomy. Thus, this study had the subquestion: Does the researchers of these groups have different conceptions about the practices of science dissemination? A sample was composed of six subjects, three of each formative course, who participated in semi-structured interviews analyzed following the steps outlined by Spink (2012). The results show that the science dissemination is part of the researches schedule's, with a positive image relative to promote scientific knowledge to population and similar on practical approach between the two groups. Point to two social representations of science dissemination: one for society in general, moved by passion, anchored in values and beliefs, in satisfaction of seeing the results that their actions bring to people's lives; and the other to their pairs

  18. Hobbits, Hogwarts, and the Heavens: The use of fantasy literature and film in astronomy outreach and education

    Science.gov (United States)

    Larsen, Kristine

    2011-06-01

    Due in part to recent (and ongoing) film adaptations, the fantasy series of C.S. Lewis (The Chronicles of Narnia), J.K. Rowling (Harry Potter), Philip Pullman (His Dark Materials), and J.R.R. Tolkien (The Silmarillion, The Hobbit, and The Lord of the Rings) are being introduced to a new audience. Many astronomers and astronomy educators are unaware of the wide variety of astronomical references contained in each series, and the myriad possible uses of these works in astronomy education and outreach. This paper highlights activities which educators, planetariums, and science centers have already developed to utilise these works in their education and outreach programs.

  19. Astronomy for teachers: A South African Perspective

    Science.gov (United States)

    de Witt, Aletha; West, Marion; Leeuw, Lerothodi; Gouws, Eldrie

    2015-08-01

    South Africa has nominated Astronomy as a “flagship science” and aims to be an international Astronomy hub through projects such as the Square Kilometre Array (SKA) and the South African Large Telescope (SALT). These projects open up career opportunities in maths, science and engineering and therefore offers a very real door for learners to enter into careers in science and technology through Astronomy. However, the Trends in International Mathematics and Science Survey (TIMSS), the Global Competitiveness Report (GCR) and Annual National Assessment (ANA) have highlighted that South Africa’s Science and Mathematics education is in a critical condition and that South African learners score amongst the worst in the world in both these subjects. In South Africa Astronomy is generally regarded as the worst taught and most avoided Natural Science knowledge strand, and most teachers that specialised in Natural Sciences, never covered Astronomy in their training.In order to address these issues a collaborative project between the University of South Africa (UNISA) and the Hartebeesthoek Radio Astronomy Observatory (HartRAO) was initiated, which aims to assist teachers to gain more knowledge and skills so that they can teach Astronomy with confidence. By collaborating we aim to ensure that the level of astronomy development will be raised in both South Africa and the rest of Africa.With the focus on Teaching and Learning, the research was conducted within a quantitative paradigm and 600 structured questionnaires were administered to Natural Science teachers in Public primary schools in Gauteng, South Africa. This paper reports the findings of this research and makes recommendations on how to assist teachers to teach Astronomy with confidence.

  20. Astronomy in Mozambique

    Science.gov (United States)

    Ribeiro, Valério A. R. M.; Paulo, Cláudio M.

    2015-03-01

    We present the state of Astronomy in Mozambique and how it has evolved since 2009 following the International Year of Astronomy. Activities have been lead by staff at University Eduardo Mondlane and several outreach activities have also flourished. In 2010 the University introduced its first astronomy module, Introduction to Astronomy and Astrophysics, for the second year students in the Department of Physics. The course has now produced the first students who will be graduating in late 2012 with some astronomy content. Some of these students will now be looking for further studies and those who have been keen in astronomy have been recommended to pursue this as a career. At the university level we have also discussed on the possibility to introduce a whole astronomy course by 2016 which falls well within the HCD that the university is now investing in. With the announcement that the SKA will be split between South Africa with its partner countries (including Mozambique), and Australia we have been working closely with the Ministry of Science and Technology to make astronomy a priority on its agenda. In this respect, an old telecommunications antenna is being converted by the South Africa SKA Project Office, and donated to Mozambique for educational purposes. It will be situated in Maluana, Mozambique.

  1. An Update on the Journal Astronomy Education Review and Why Your Work Isn't Done Until You Have Published

    Science.gov (United States)

    Wolff, S.; Fraknoi, A.; Hockey, T.; Biemesderfer, C.; Johnson, J.

    2010-08-01

    Astronomy Education Review (AER) is an online journal and magazine, covering astronomy and space science education and outreach. Founded in 2001 by Andrew Fraknoi and Sidney Wolff, and published until recently by National Optical Astronomy Observatories (NOAO), the journal is now a proud part of the journals operation of the American Astronomical Society (AAS) found online at http://aer.aip.org. If you are presenting at this conference, or reading the conference proceedings, you may be an ideal candidate to publish in AER. Later in this paper, we present some encouraging hints and guidelines for publishing in the journal.

  2. Chaco astronomies

    Science.gov (United States)

    Martín López, Alejandro

    2015-08-01

    This presentation discusses the result of 18 years of ethnographic and ethnohistorical studies on Chaco astronomies. The main features of the systems of astronomical knowledge of the Chaco Aboriginal groups will be discussed. In particular we will discuss the relevance of the Milky Way, the role of the visibility of the Pleiades, the ways in which the celestial space is represented, the constitution of astronomical orientations in geographic space, etc. We also address a key feature of their vision of the cosmos: the universe is seen by these groups as a socio-cosmos, where humans and non-humans are related. These are therefore actually socio-cosmologies. We will link this to the theories of Chaco Aboriginal groups about power and political relations.We will discuss how the study of Aboriginal astronomies must be performed along with the studies about astronomies of Creole people and European migrants, as well as anthropological studies about the science teaching in the formal education system and by the mass media. In this form we will discuss the relevance of a very complex system of interethnic relations for the conformation of these astronomical representations and practices.We will also discuss the general methodological implications of this case for the ethnoastronomy studies. In particular we will talk about the advantages of a study of regional scope and about the key importance of put in contact the ethnoastronomy with contemporary issues in social sciences.We also analyze the importance of ethnoastronomy studies in relation to studies of sociology of science, especially astronomy. We also study the potential impact on improving formal and informal science curricula and in shaping effective policies to protect the tangible and intangible astronomical heritage in a context of respect for the rights of Aboriginal groups.

  3. Astronomy, Visual Literacy, and Liberal Arts Education

    Science.gov (United States)

    Crider, Anthony

    2016-01-01

    With the exponentially growing amount of visual content that twenty-first century students will face throughout their lives, teaching them to respond to it with visual and information literacy skills should be a clear priority for liberal arts education. While visual literacy is more commonly covered within humanities curricula, I will argue that because astronomy is inherently a visual science, it is a fertile academic discipline for the teaching and learning of visual literacy. Astronomers, like many scientists, rely on three basic types of visuals to convey information: images, qualitative diagrams, and quantitative plots. In this talk, I will highlight classroom methods that can be used to teach students to "read" and "write" these three separate visuals. Examples of "reading" exercises include questioning the authorship and veracity of images, confronting the distorted scales of many diagrams published in astronomy textbooks, and extracting quantitative information from published plots. Examples of "writing" exercises include capturing astronomical images with smartphones, re-sketching textbook diagrams on whiteboards, and plotting data with Google Motion Charts or iPython notebooks. Students can be further pushed to synthesize these skills with end-of-semester slide presentations that incorporate relevant images, diagrams, and plots rather than relying solely on bulleted lists.

  4. A Website for Astronomy Education and Outreach

    Science.gov (United States)

    Impey, C.; Danehy, A.

    2017-09-01

    Teach Astronomy is a free, open access website designed for formal and informal learners of astronomy. The site features: an online textbook complete with quiz questions and a glossary; over ten thousand images; a curated collection of the astronomy articles in Wikipedia; a complete video lecture course; a video Frequently Asked Questions tool; and other materials provided by content partners. Clustering algorithms and an interactive visual interface allow users to browse related content. This article reviews the features of the website and how it can be used.

  5. Informal Education: Slacker Astronomy Podcasts

    Science.gov (United States)

    Price, A.

    2005-12-01

    Slacker Astronomy is a weekly podcast about astronomy begun in February, 2005. Each week we cover a recent astronomical news event. We present it with humor and silliness, yet we respect the intelligence of the audience and do not ``dumb it down." Since we are professional astronomers we often cover items ignored by traditional press. We currently have around 10,000 loyal weekly listeners. All our shows are rated for content and available to the public under the Creative Commons license. Both scripts and audio are also used as source material by parents, teachers and planetarium directors.

  6. Virtual Reality Astronomy Education Using AAS WorldWide Telescope and Oculus Rift

    Science.gov (United States)

    Weigel, A. David; Moraitis, Christina D.

    2017-01-01

    The Boyd E. Christenberry Planetarium at Samford University (Birmingham, AL) offers family friendly, live, and interactive planetarium presentations that educate the public on topics from astronomy basics to current cutting edge astronomical discoveries. With limited funding, it is not possible to provide state of the art planetarium hardware for these community audiences. In a society in which many people, even young children, have access to high resolution smart phones and highly realistic video games, it is important to leverage cutting-edge technology to intrigue young and old minds alike. We use an Oculus Rift virtual reality headset running AAS WorldWide Telescope software to visualize 3D data in a fully immersive environment. We create interactive experiences and videos to highlight astronomical concepts and also to communicate the beauty of our universe. The ease of portability enables us to set up at Virtual Reality (VR) experience at various events, festivals, and even in classrooms to provide a community outreach that a fixed planetarium cannot. This VR experience adds the “wow” factor that encourages children and adults to engage in our various planetarium events to learn more about astronomy and continue to explore the final frontier of space. These VR experiences encourages our college students to participate in our astronomy education resulting in increased interest in STEM fields, particularly physics and math.

  7. A New Online Astronomy Resource for Education and Outreach

    Science.gov (United States)

    Impey, C. D.; Hardegree-Ullman, K. K.; Patikkal, A.; Srinathan, A.; Austin, C. L.; Ganesan, N. K.; Guvenen, B. C.

    2013-01-01

    A new web site called "Teach Astronomy" (http://www.teachastronomy.com) has been created to serve astronomy instructors and their students, amateur astronomers, and members of the public interested in astronomy. The

  8. Music Inspired by Astronomy: A Selected Listing for the International Year of Astronomy

    Science.gov (United States)

    Fraknoi, A.

    2008-11-01

    Part of the aim of the International Year of Astronomy is to show the connections between astronomy and other areas of human culture. Such connections are easily found in music, where astronomical ideas have found a wide range of expression. This is not a comprehensive listing, but a sampling of some of the pieces that are available on CD's, and that may be of particular interest to educators and astronomy enthusiasts. To qualify for the list, a piece (or the composer's vision for it) has to include some real science and not just an astronomical term in the title or in a few lyrics. For example, we do not list The Planets, by Gustav Holst, since it treats the astrological view of the planets. And we regret that Philip Glass' opera Galileo is not available on CD and therefore cannot be listed. Nor do we include the thousands of popular songs that use the moon or the stars for an easy rhyme or a quick romantic image. And, while many jazz pieces have astronomy in the title, it is often hard to know just how the piece and the astronomy go together; so we've sadly omitted jazz too. For those with old-fashioned ears, like the author, we note that no warranty is made that all these pieces are easy to listen to, but each takes some key idea from astronomy and makes music out of it. A more comprehensive discussion can be found in my article in Astronomy Education Review: http://aer.noao.edu/cgi-bin/article.pl?id=193

  9. Teach Astronomy: An Online Textbook for Introductory Astronomy Courses and Resources for Informal Learners

    Science.gov (United States)

    Hardegree-Ullman, Kevin; Impey, C. D.; Patikkal, A.

    2012-05-01

    This year we implemented Teach Astronomy (www.teachastronomy.com) as a free online resource to be used as a teaching tool for non-science major astronomy courses and for a general audience interested in the subject. The comprehensive content includes: an introductory astronomy text book by Chris Impey, astronomy articles on Wikipedia, images from the Astronomy Picture of the Day, two to three minute topical video clips by Chris Impey, podcasts from 365 Days of Astronomy, and astronomy news from Science Daily. Teach Astronomy utilizes a novel technology to cluster, display, and navigate search results, called a Wikimap. Steep increases in textbook prices and the unique capabilities of emerging web technology motivated the development of this free online resource. Recent additions to Teach Astronomy include: images and diagrams for the textbook articles, mobile device implementation, and suggested homework assignments for instructors that utilize recent discoveries in astronomy. We present an overview of how Teach Astronomy has been implemented for use in the classroom and informal settings, and suggestions for utilizing the rich content and features of the web site.

  10. Europe's Astronomy Teachers Meet at ESO

    Science.gov (United States)

    1994-12-01

    European Association for Astronomy Education Formed A joint EU/ESO Workshop (1) on the Teaching of Astronomy in Europe was held at the ESO Headquarters from November 25-30, 1994, under the auspices of the 1994 European Week for Scientific Culture. More than 100 teachers from secondary schools in 17 European countries participated together with representatives of national ministries and local authorities, as well as professional astronomers. This meeting was the first of its kind ever held and was very successful. As a most visible and immediate outcome, the participants agreed to form the "European Association for Astronomy Education (EAAE)", uniting astronomy educators all over Europe into one network. A provisional Executive Committee of the EAAE was elected which will work towards the organisation of a constitutional conference within the next year. The participants unanimously adopted a "Declaration on the Teaching of Astronomy in Europe", specifying the overall aims and initial actions needed to achieve them. Astronomy: Science, Technology and Culture At the beginning of the Workshop the participants listened to lectures by several specialists about some of the most active fields of astronomy. The scientific sessions included topics as diverse as minor bodies in the solar system, nucleosynthesis, interstellar chemistry and cosmology. Then followed overviews of various recent advances in astronomical technology, some of which are already having direct impact on highly specialized sectors of European industry. They included the advanced use of computers in astronomy, for instance within image processing and data archiving, as well as a demonstration of remote observing. Discussing the cultural aspects, Nigel Calder (UK) and Hubert Reeves (France) emphasized the important role of astronomy in modern society, in particular its continuing influence on our perceptions of mankind's unique location in time and space. Teaching of Astronomy in European Countries

  11. Science Literacy and Prior Knowledge of Astronomy MOOC Students

    Science.gov (United States)

    Impey, Chris David; Buxner, Sanlyn; Wenger, Matthew; Formanek, Martin

    2018-01-01

    Many of science classes offered on Coursera fall into fall into the category of general education or general interest classes for lifelong learners, including our own, Astronomy: Exploring Time and Space. Very little is known about the backgrounds and prior knowledge of these students. In this talk we present the results of a survey of our Astronomy MOOC students. We also compare these results to our previous work on undergraduate students in introductory astronomy courses. Survey questions examined student demographics and motivations as well as their science and information literacy (including basic science knowledge, interest, attitudes and beliefs, and where they get their information about science). We found that our MOOC students are different than the undergraduate students in more ways than demographics. Many MOOC students demonstrated high levels of science and information literacy. With a more comprehensive understanding of our students’ motivations and prior knowledge about science and how they get their information about science, we will be able to develop more tailored learning experiences for these lifelong learners.

  12. Regulations and Ethical Considerations for Astronomy Education Research III: A Suggested Code of Ethics

    Science.gov (United States)

    Brogt, Erik; Foster, Tom; Dokter, Erin; Buxner, Sanlyn; Antonellis, Jessie

    2009-01-01

    We present an argument for, and suggested implementation of, a code of ethics for the astronomy education research community. This code of ethics is based on legal and ethical considerations set forth by U.S. federal regulations and the existing code of conduct of the American Educational Research Association. We also provide a fictitious research…

  13. Philippine Astronomy Convention 2009 Abstract: Program Offerings in Astronomy in the Philippines

    Science.gov (United States)

    Torres, J. R. F.

    2009-03-01

    The formal academic programs in Astronomy of the Rizal Technological University are the first such programs in the Philippines. The Master of Science in Astronomy program is envisioned to provide the student with a wide range of knowledge in many areas of Astronomy, leaning towards the descriptive aspects of knowledge. The student will choose the field or research most suitable to his or her interests. Three of these researches done while enrolled in the program, and even researches completed before the student actually enrolled in the program, may be considered as his or her thesis. The program suits professionals in all persuasions who wish to study Astronomy either for professional advancement or plainly for the love of the science or for intellectual satisfaction. Non-science majors can enroll. In 2008, the RTU Graduate School decided to ladderize the MS program and the Graduate Diploma in Astronomy was designed. This program is suited for science educators, astronomy lecturers and entrepreneurs, members of astronomical societies, and plain astronomy enthusiasts who like to gain in-depth knowledge in the most important aspects of astronomy. A bachelor's degree in any field is required. The program can be finished in two semesters and one summer. If the student opts to continue in the MS in Astronomy program, all the courses he or she has earned in the Diploma will be credited. The Bachelor of Science in Astronomy Technology is an intensive baccalaureate degree program designed to prepare students to become future research scientists and technologists in the field of Astronomy. The BS in Astronomy Technology is a cross-fertilized program, integrating interrelated sciences, such as engineering, geology, remote sensing, physics, atmospheric and environmental science, biology and biochemistry, and even philosophy and entrepreneurship into the study. Thus, the B.S. in Astronomy Technology program gives the student excellent job opportunities in many fields.

  14. Astronomy in the early years of elementary education: a partnership between university and school

    Science.gov (United States)

    Barai, A.; Carvalho Neto, J. T.; Garrido, D.; Ityanagui, G.; Navi, M.

    2016-12-01

    This paper describes the interaction and partnership experience between a school and one of the Federal University of São Carlos (UFSCar)campi, both located in Araras, SP, aiming to teach and promote astronomy and astronautics knowledge among students of the first five years of Elementary Education. This initiative made use of Brazilian Olympiad of Astronomy and Astronautics as a motivating event for the theme exploration. The actions were divided into two fronts: an improvement course for the school teachers conducted by university professors and lectures for students by UFSCar students under the guidance of university teachers and the school coordinators. By the observed results, we noticed the importance of narrowing the distance school-university, promoting learning for both institutions and helping to raise the level of education from elementary school to college.

  15. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Astronomy Education Project for Guangdong High Schools ... Astronomy education; high school; science popularization. ... This means that each accepted article is being published immediately online with DOI and article ...

  16. Possible Collaboration Perspectives in Astronomy Education

    Science.gov (United States)

    Nuritdinov, Salakhutdin

    It is a question of international educational collaboration in the frame of IAU Commission 46. As astronomers are graduated by some Universities it will be useful joint discussion of collaboration perspectives: 1. Taking into account that in countries of former Soviet Union training Bachelors and Masters is began it is desirable working out consistent educational curriculums. 2. Consistent curriculums of the Bachelor must have about 60-70% identical special courses and other part of courses can depend on traditional directions of that country. The curriculums give a possibility to continue study for example to enter Master of other country. 3. In the frame of IAU Commission 46 creation of united international virtual library of astronomy textbooks is important for our students. Where there is training astronomers it is necessary the access of students to all textbooks and some scientific journals. 4. It is desirable to organize summer and winter scientific schools for students in the frame of the Commission yearly. Unfortunately we did not receive an announcement about it though only our University in Central Asia trains astronomers. Other proposals will be given in the report

  17. How Create an Astronomy Outreach Program to Bring Astronomy to Thousands of People at Outdoor Concerts Astronomy Festivals, or Tourist Sites

    Science.gov (United States)

    Lubowich, Donald

    2015-08-01

    I describe how to create an astronomy program for thousands of people at outdoor concerts based on my $308,000 NASA-funded Music and Astronomy Under the Stars (MAUS) program (60 events 2009 - 2013), and the Astronomy Festival on the National Mall (AFNM, 10,000 people/yr).MAUS reached 50,000 music lovers at local parks and at the Central Park Jazz, Newport Folk, Ravinia, or Tanglewood Music Festivals with classical, folk, pop/rock, opera, Caribbean, or county-western concerts assisted by astronomy clubs. Yo-Yo-Ma, the Chicago and Boston Symphony Orchestras, Ravi Coltrane, Esperanza Spalding, Phish, Blood Sweat and Tears, Deep Purple, Tony Orlando, and Wilco performed at these events. AFNM was started in 2010 with co-sponsorship by the White House Office of Science and Technology Policy. MAUS and AFMN combine solar, optical, and radio telescope observations; large posters/banners; hands-on activities, imaging with a cell phone mount; citizen science activities; hand-outs; and teacher info packet. Representatives from scientific institutions participated. Tyco Brahe, Johannes Kepler, and Caroline Herschel made guest appearances.MAUS reached underserved groups and attracted large crowds. Young kids participated in this family learning experience-often the first time they looked through a telescope. While < 50% of the participants took part in a science activity in the past year, they found MAUS enjoyable and understandable; learned about astronomy; wanted to learn more; and increased their interest in science (ave. rating 3.6/4). MAUS is effective in promoting science education!Lessons learned: plan early; create partnerships with parks, concert organizers, and astronomy clubs; test equipment; have backup equipment; create professional displays; select the best location to obtain a largest number of participants; use social media/www sites to promote the events; use many telescopes for multiple targets; project a live image or video; select equipment that is easy to

  18. Status and Evolution of the Journal of Astronomy & Earth Science Education's First Year

    Science.gov (United States)

    Slater, Timothy F.

    2016-01-01

    The Journal of Astronomy & Earth Science Education (JAESE.org) is a recently created, peer-reviewed journal designed to serve the discipline-based astronomy, planetary, and geo-sciences education research community. JAESE's first issue was published on December 31, 2014 and has published two volumes and three issues since that time, encompassing 15 peer-reviewed articles. By far, the median article topic has been focused on planetarium education research, while there has only been one article on solid Earth geosciences education research. Although there is not yet an even distribution of topics across the field, there is a relatively even distribution among author demographics. Authors include a range of both junior and senior members of the field. There have been slightly female authors than male authors. Submissions are distributed to two or three reviewers with authors' names redacted from the manuscript. The average time to complete the first round of peer-review reviewers is 6.2-weeks. There have been too few manuscripts to reliably publish a "percentage acceptance rate." Finally, the majority of recently completed astronomy education research doctoral dissertations have been published in JAESE. Taken together, JAESE's guiding Editorial Advisory Board judges this to be a successful first year. In a purposeful effort to make JAESE authors' scholarly works as widely accessible as possible, JAESE adopted an open-access business model. JAESE articles are available to read free-of-charge over the Internet, delivered as PDFs. To date, the most common way articles are downloaded by readers is through Google Scholar. Instead of charging readers and libraries recurring subscription fees, JAESE charges authors a nominal submission fee and a small open-access fee, averaging about $500 USD. These charges are similar to the traditional page charges typically charged to authors or their institutions by scientific journals, making JAESE an attractive publishing venue for

  19. Expectations of Students about Astronomy in High School

    Science.gov (United States)

    Peixoto, Denis Eduardo; Kleinke, Maurício Urban

    2016-12-01

    Current literature reports that the astronomy education is motivating and interesting for basic education, but the content suggested by the national curriculum guidelines do not seem to attract students and teachers in order to transcend the discipline of Science in the elementary School or Physics in High School. By applying a questionnaire to 80 students of High School and participants of Brazilian Olympiad of Astronomy and Astronautics of two schools of São Paulo state, we obtained results that indicate that astronomy topics that really motivate students are topics linked to science fiction and current research, which are the subject of extensive media release and have a strong interdisciplinary character. At the end of the work we suggest a new context for astronomy education, by inserting topics combined with other areas of knowledge to what we call “interdisciplinary astrophysics teaching”.

  20. The Astronomy Workshop

    Science.gov (United States)

    Hamilton, Douglas P.

    2012-05-01

    {\\bf The Astronomy Workshop} (http://janus.astro.umd.edu) is a collection of interactive online educational tools developed for use by students, educators, professional astronomers, and the general public. The more than 20 tools in the Astronomy workshop are rated for ease-of-use, and have been extensively tested in large university survey courses as well as more specialized classes for undergraduate majors and graduate students. Here we briefly describe a few of the available tools. {\\bf Solar Systems Visualizer}: The orbital motions of planets, moons, and asteroids in the Solar System as well as many of the planets in exoplanetary systems are animated at their correct relative speeds in accurate to-scale drawings. Zoom in from the chaotic outer satellite systems of the giant planets all the way to their innermost ring systems. {\\bf Solar System Calculators}: These tools calculate a user-defined mathematical expression simultaneously for all of the Solar System's planets (Planetary Calculator) or moons (Satellite Calculator). Key physical and orbital data are automatically accessed as needed. {\\bf Stellar Evolution}: The "Life of the Sun" tool animates the history of the Sun as a movie, showing students how the size and color of our star has evolved and will evolve over billions of years. In "Star Race," the user selects two stars of different masses and watches their evolution in a split-screeen format that emphasizes the great differences in stellar lifetimes and fates.

  1. Cultural Astronomy in the Armenian Highland

    Science.gov (United States)

    Farmanyan, S. V.; Suvaryan, Yu. M.; Mickaelian, A. M. (Eds.)

    2016-12-01

    The book contains 29 articles of the Proceedings of the Young Scientists Conference "Cultural Astronomy in the Armenian Highland" held at the Armenian National Academy of Sciences on 20-23 June 2016. It consists of 4 main sections: "Introductory", "Cultural Astronomy", "Archaeoastronomy", "Scientific Tourism and Journalism, Astronomical Education and Amateur Astronomy". The book may be interesting to astronomers, culturologists, philologists, linguists, historians, archaeologists, art historians, ethnographers and to other specialists, as well as to students.

  2. Elementary astronomy

    Science.gov (United States)

    Fierro, J.

    2006-08-01

    In developing nations such as Mexico, basic science education has scarcely improved. There are multiple reasons for this problem; they include poor teacher training and curricula that are not challenging for students. I shall suggest ways in which astronomy can be used to improve basic education, it is so attractive that it can be employed to teach how to read and write, learn a second language, mathematics, physics, as well as geography. If third world nations do not teach science in an adequate way, they will be in serious problems when they will try to achieve a better standard of living for their population. I shall also address informal education, it is by this means that most adults learn and keep up to date with subjects that are not their specialty. If we provide good outreach programs in developing nations we can aid adult training; astronomy is ideal since it is particularly multidisciplinary. In particular radio and television programs are useful for popularization since they reach such wide audiences.

  3. Astronomy in Second Life

    Directory of Open Access Journals (Sweden)

    Gauthier, A.

    2007-10-01

    Full Text Available Second Life (SL is a multi-user virtual environment that is not limited to adult social entertainment. SL is also a 3D playground for innovative instructors and education/outreach professionals in the sciences. Astronomy and space science have a presence in SL, but it could be so much more. This paper describes some of the current astronomy themed spaces in SL and briefly discusses future innovations.

  4. Analyses of Teaching Strategies and Learning of Concepts of Astronomy in Elementary Education II

    Science.gov (United States)

    Voelzke, Marcos Rincon; Poffo, M. Roberta

    2012-07-01

    The proposed curricular of the State of Sao Paulo suggests for the discipline of Physical and Biological Sciences contents related to Astronomy for the Elementary Education. In 2010, a study was realised in a public school in Santo Andr to examine the pupils' previous knowledge. Only 19% of them reached a satisfactory note. In this year the contents were presented with three different teaching strategies. In the first class an expositive lesson with audiovisual aids was held, in the second one an expositive lesson in dialogue form was used, and in the third class a textbook research. After the approach a clear improvement of the performance was observe, and the class where the contents had been presented in an expositive lesson with dialogue showed the best effectsciency. This study facilitates analyses of the learning procedure and teaching strategies to improve the Astronomy education in the discipline of Science.

  5. Covering the Standards: Astronomy Teachers' Preparation and Beliefs

    Science.gov (United States)

    Plummer, Julia D.; Zahm, Valerie M.

    2010-01-01

    An online survey of science teachers and interviews with curriculum directors were used to investigate the coverage of astronomy in middle and high schools in the greater Philadelphia region. Our analysis looked beyond astronomy elective courses to uncover all sources of astronomy education in secondary schools. We focused on coverage of state…

  6. Global TIE Observatories: Real Time Observational Astronomy Through a Robotic Telescope Network

    Science.gov (United States)

    Clark, G.; Mayo, L. A.

    2001-12-01

    Astronomy in grades K-12 is traditionally taught (if at all) using textbooks and a few simple hands-on activities. Teachers are generally not trained in observational astronomy techniques and are unfamiliar with the most basic astronomical concepts. In addition, most students, by High School graduation, will never have even looked through the eyepiece of a telescope. The problem becomes even more challenging in inner cities, remote rural areas and low socioeconomic communities where educational emphasis on topics in astronomy as well as access to observing facilities is limited or non existent. Access to most optical telescope facilities is limited to monthly observing nights that cater to a small percentage of the general public living near the observatory. Even here, the observing experience is a one-time event detached from the process of scientific enquiry and sustained educational application. Additionally, a number of large, "research grade" observatory facilities are largely unused, partially due to the slow creep of light pollution around the facilities as well as the development of newer, more capable telescopes. Though cutting edge science is often no longer possible at these sights, real research opportunities in astronomy remain numerous for these facilities as educational tools. The possibility now exists to establish a network of research grade telescopes, no longer useful to the professional astronomical community, that can be made accessible through classrooms, after school, and community based programs all across the country through existing IT technologies and applications. These telescopes could provide unparalleled research and educational opportunities for a broad spectrum of students and turns underutilized observatory facilities into valuable, state-of-the-art teaching centers. The NASA sponsored Telescopes In Education project has been wildly successful in engaging the K-12 education community in real-time, hands-on, interactive astronomy

  7. Astronomy for Development: Path to Global Impact

    Science.gov (United States)

    Venugopal, R.; Govender, K.; Grant, E.

    2017-07-01

    The IAU established its Office of Astronomy for Development in 2011 in Cape Town, South Africa, in partnership with the South African National Research Foundation, and hosted at the South African Astronomical Observatory. The primary purpose of the office has been to implement the IAU's decadal strategic plan which aims to use astronomy to stimulate education and development globally. Since its inception there have been nine regional offices established, including one in the Latin American region which focuses on Andean countries. Following a very positive external review in 2015, as well as a supportive resolution by the 2015 IAU General Assembly to continue the work of the office, the OAD is now in a position to move beyond the setting up of structures to a more intensive effort aimed at measuring and delivering programmes with broader global impact.

  8. Identification and Support of Outstanding Astronomy Students

    Science.gov (United States)

    Stoev, A. D.; Bozhurova, E. S.

    2006-08-01

    The aims, organizational plan and syllabus of a specialized Astronomy School with a subject of training students for participation in the International Astronomy Olympiad, are presented. Thematic frame includes basic educational activities during the preparation and self-preparation of the students and their participation in astronomical Olympiads. A model of identification and selection of outstanding students for astronomical Olympiads has been developed. Examples of didactic systems of problems for development of mathematical, physical and astronomical skills are shown. The programme ends with individual training for solving problems on astronomy and astrophysics. Possibilities, which the characteristic, non-standard astronomical problems give for stimulating the creative and original thinking, are specified. Basic psychological condition for development of the students' creative potential - transformation of the cognitive content in emotional one - is demonstrated. The programme of identification and support of outstanding students on astronomy is realized in collaboration with The Ministry of Education and Science, Public Astronomical Observatories and Planetaria, Institute of Astronomy - Bulgarian Academy of Sciences, and The Union of Astronomers in Bulgaria.

  9. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Astronomy is a very interesting subject for undergraduate students studying physics. In this paper, we report astronomy education for undergraduate students in the Physics Department of Guangzhou University, and how we are teaching astronomy to the students. Astrophysics has been rapidly developing ...

  10. A Pilot Astronomy Outreach Project in Bangladesh

    Science.gov (United States)

    Bhattacharya, Dipen; Mridha, Shahjahan; Afroz, Maqsuda

    2015-08-01

    In its strategic planning for the "Astronomy for Development Project," the International Astronomical Union (IAU) has ecognized, among other important missions, the role of astronomy in understanding the far-reaching possibilities for promoting global tolerance and citizenship. Furthermore, astronomy is deemed inspirational for careers in science and technology. The "Pilot Astronomy Outreach Project in Bangladesh"--the first of its kind in the country--aspires to fulfill these missions. As Bangladesh lacks resources to promote astronomy education in universities and schools, the role of disseminating astronomy education to the greater community falls on citizen science organizations. One such group, Anushandhitshu Chokro (AChokro) Science Organization, has been carrying out a successful public outreach program since 1975. Among its documented public events, AChokro organized a total solar eclipse campaign in Bangladesh in 2009, at which 15,000 people were assembled in a single open venue for the eclipse observation. The organization has actively pursued astronomy outreach to dispel public misconceptions about astronomical phenomena and to promote science. AChokro is currently working to build an observatory and Science Outreach Center around a recently-acquired 14-inch Scmidt-Cassegrain telescope and a soon-to-be-acquired new 16-inch reflector, all funded by private donations. The telescopes will be fitted with photometers, spectrometers, and digital and CCD cameras to pursue observations that would include sun spot and solar magnetic fields, planetary surfaces, asteroid search, variable stars and supernovae. The Center will be integrated with schools, colleges, and community groups for regular observation and small-scale research. Special educational and observing sessions for adults will also be organized. Updates on the development of the Center, which is expected to be functioning by the end of 2015, will be shared and feedback invited on the fostering of

  11. TeachAstronomy.com - Digitizing Astronomy Resources

    Science.gov (United States)

    Hardegree-Ullman, Kevin; Impey, C. D.; Austin, C.; Patikkal, A.; Paul, M.; Ganesan, N.

    2013-06-01

    Teach Astronomy—a new, free online resource—can be used as a teaching tool in non-science major introductory college level astronomy courses, and as a reference guide for casual learners and hobbyists. Digital content available on Teach Astronomy includes: a comprehensive introductory astronomy textbook by Chris Impey, Wikipedia astronomy articles, images from Astronomy Picture of the Day archives and (new) AstroPix database, two to three minute topical video clips by Chris Impey, podcasts from 365 Days of Astronomy archives, and an RSS feed of astronomy news from Science Daily. Teach Astronomy features an original technology called the Wikimap to cluster, display, and navigate site search results. Development of Teach Astronomy was motivated by steep increases in textbook prices, the rapid adoption of digital resources by students and the public, and the modern capabilities of digital technology. This past spring semester Teach Astronomy was used as content supplement to lectures in a massive, open, online course (MOOC) taught by Chris Impey. Usage of Teach Astronomy has been steadily growing since its initial release in August of 2012. The site has users in all corners of the country and is being used as a primary teaching tool in at least four states.

  12. Interactive Materials In The Teaching Of Astronomy

    Science.gov (United States)

    Macêdo, J. A.; Voelzke, M. R.

    2014-10-01

    This study presents results of a survey conducted at the Federal Institution of Education, Science and Technology in the North of Minas Gerais (IFNMG), and aimed to investigate the potentialities of the use of interactive materials in the teaching of astronomy. An advanced training course with involved learning activities about basic concepts of astronomy was offered to thirty-two Licenciate students in Physics, Mathematics and Biological Science. The following steps were to be taken: i) analysis of the pedagogical projects (PPC) of the licenciates at the IFNMG, research locus of its Campus Januária; ii) analysis of students' preconceptions about astronomy and digital technologies, identified by the application of an initial questionnaire; iii) preparation of the course taking into account the students' previous knowledge; iv) application of the education proposal developed under part-time presence modality, using various interactive tools; v) application and analysis of the final questionnaire. The test was conducted with the qualitative and quantitative methodology, combined with a content analysis. The results indicated that in the IFNMG only the licenciate-course in physics includes astronomy content diluted in various subjects of the curriculum; the rates of students prior knowledge in relation to astronomy was low; an evidence of meaningful learning of the concepts related to astronomy, and of viability of resource use involving digital technologies in the Teaching of astronomy, which may contribute to the broadening of methodological options of future teachers and meet their training needs.

  13. Reflections on the astronomy of Glasgow

    CERN Document Server

    Clarke, David

    2013-01-01

    How Astronomy contributed to the educational enlightenment of Glasgow, to its society and to its commerce. The words 'Astronomy' and 'Glasgow' seem an incongruous juxtaposition, and yet the two are closely linked over 500 years of history. This is a tale of enlightenment and scientific progress at both institutional and public levels. Combined with the ambitions of civic commerce, it is a story populated with noteworthy personalities and intense rivalries.It is remarkable to realise that the first Astronomy teaching in the Glasgow 'Colledge' presented an Earth-centred Universe, prior to the Co

  14. Astronomy Research Seminars

    Science.gov (United States)

    Genet, Russell M.

    2018-06-01

    Astronomy Research Seminars are offered by a rapidly growing number of community colleges and universities. Over the past decade some 120 student team research papers have been published with approximately 500 coauthors. Each team manages their own research, obtains and analyzes original data, writes a team paper, obtains an external review, submits their paper for publication, and gives a public PowerPoint presentation. The student teams are supported by: (1) an extensive community-of-practice which consists of professional and amateur astronomers, educators, and Seminar graduates; (2) the Institute for Student Astronomical Research (www.in4star.org); (3) the Small Telescope Astronomy Research Handbook and (4) an in-person/online, open-source Canvas learning management system with videos, quizzes, and other, extensive supporting material. Team research projects are completed in a semester or less and are managed by the students themselves. The Seminars have expanded from double star astronomy to asteroid astrometry, eclipsing binary times of minima, and exoplanet transits. Conducting authentic research inspires students, provides them with important skills in teamwork, project management and scientific literacy, and gives them confidence in their abilities to participate in scientific research. Being coauthors of published papers boosts student educational careers with respect to admissions and scholarships.

  15. IAU Astronomy for Equity and Inclusion Working Group

    Science.gov (United States)

    Ortiz-Gil, A.; García, B.; WG3 of Commission C1 Division C of the IAU

    2017-03-01

    In this talk we present the aims, goals and activities that have been started by the working group on Astronomy for Equity and Inclusion. This working group is part of Commission 1 ''Astronomy Education and Development'' of Division C ''Education, Outreach and Heritage'' of the International Astronomical Union (IAU). The working group was born with the aim of developing new strategies and resources to promote the access to Astronomy, both at the profesional and outreach levels, for persons with special needs or for those who could be excluded because of race or sexual orientation (among other reasons). It is composed of astronomers affiliated with the IAU and other volunteers who work in astronomy, education and special needs, as well as partner organizations like the IAU Office of Astronomy for Development (OAD), Astronomers without Borders (AWB), the Galileo Teacher Training Program (GTTP) or Universe Awareness (UNAWE). To reach those goals we have started different initiatives which are outlined at the working group’s website, like a repository of resources or the creation of a document about good practices, and the establishment of a tight collaboration with the Working Group about Accessibility of the American Astronomical Society, which was formed recently too.

  16. Mathematical Astronomy in India

    Science.gov (United States)

    Plofker, Kim

    Astronomy in South Asia's Sanskrit tradition, apparently originating in simple calendric computations regulating the timing of ancient ritual practices, expanded over the course of two or three millennia to include detailed spherical models, an endless variety of astrological systems, and academic mathematics in general. Assimilating various technical models, methods, and genres from the astronomy of neighboring cultures, Indian astronomers created new forms that were in turn borrowed by their foreign counterparts. Always recognizably related to the main themes of Eurasian geocentric mathematical astronomy, Indian astral science nonetheless maintained its culturally distinct character until Keplerian heliocentrism and Newtonian mechanics replaced it in colonial South Asia's academic mainstream.

  17. iSTAR: The International STudy on Astronomy Reasoning

    Science.gov (United States)

    Tatge, Coty B.; Slater, Timothy F.; Slater, Stephanie J.

    2015-08-01

    This paper reports the first steps taken in the International STudy on Astronomy Reasoning (iSTAR). The iSTAR Project is an attempt to look beyond traditional wisdom and practices in astronomy education, to discover the ways in which cognitive abilities and human culture interact to impact individuals’ understanding of and relationship to astronomy content knowledge. In contrast to many international studies that seek to rank nations by student performance on standardized tests, the iSTAR Project seeks to find ways that culture may unexpectedly enhance performance in astronomy. Using the Test of Astronomy Standards (TOAST) as a reasonable, initial proxy for the content knowledge a well educated person might know in astronomy, the iSTAR team then defined culture as a construct with five components: practices, traditional knowledge, historical and genealogical relationships, place-based knowledge, and language. Given the complexity of this construct, Stage 1 of the project focuses on the cultural component of language, and assumed that prior to the collection of data from students, the process of translating the TOAST could provide valuable expert-based information on the impact of language on astronomy knowledge. As such, the work began with a study of the translation process. For each of the languages used in the testing phase of the iSTAR protocol, a succession of translators and analysts were engaged, including two educated, non-astronomer native speakers, a native speaking astronomer, and a native speaking linguistics expert. Multiple translations were analyzed in order to make relevant meaning of differences in the translations, and provide commentary on the ways in which metaphor, idiom, cultural history are embedded in the language, providing potential advantages in the learning of astronomy. The first test languages were German, Hawaiian, and American Sign Language, and initial findings suggest that each of these languages provide specific advantages

  18. Revealing the Universe to Our Community: NMSU's Society of Astronomy Students' Dedication to Public Outreach

    Science.gov (United States)

    Maldonado, Mercedes; Rees, S.; Medina, A.; Beasley, D.; Campos, A.; Chanover, N. J.; Uckert, K.; McKeever, J.

    2014-01-01

    The New Mexico State University (NMSU) Society of Astronomy Students (SAS) is an undergraduate organization centered on students’ passions for learning and sharing knowledge about the field of astronomy. The SAS strives to become one of the most active clubs on the NMSU campus by their involvement in both astronomy and non-astronomy related public outreach and community service events. NMSU is located in Las Cruces, NM, where Clyde Tombaugh made great contributions both to the field of astronomy and to our local community. He was able to spark the community's interest in astronomy and science in general; this is an aspect of his career that the SAS strives to emulate. To do this, the SAS participates in community outreach events with the goal of stimulating curiosity and providing opportunities for the public to observe and understand exciting phenomenon occurring in our universe. With help from the NMSU Astronomy Department, the SAS is able to volunteer alongside the Astronomy Graduate Student Organization (AGSO) at events for people of all ages. Working jointly with the AGSO allows us to be mentored by the very students who were in our shoes not long ago; they educate us about the wonders of the universe, just as we wish to educate the community. This provides an enlightening and enriching environment for both club and community members. The NMSU Astronomy Department hosts events for the entire community, such as observing nights held at Tombaugh Observatory — which SAS members attend and help advertise — where community members learn about and view objects in the night sky through telescopes. SAS members assist with field trips where local middle and elementary school students attend presentations and participate in astronomy-related activities on the NMSU campus. These hands-on activities are presented in an understandable way, and are meant to increase appreciation for all of the exciting subjects our universe has to offer. Other outreach events include

  19. A Partnership in Observational and Computational Astronomy (POCA)

    Science.gov (United States)

    Walter, Donald K.; Brittain, S. D.; Cash, J. L.; Hartmann, D. H.; Howell, S. B.; King, J. R.; Leising, M. D.; Mayo, E. A.; Mighell, K. J.; Smith, D. M., Jr.

    2009-01-01

    A partnership has been established between South Carolina State University (SCSU, a Historically Black College/University), the National Optical Astronomy Observatory (NOAO) and Clemson University (CU) under an award from NSF's "Partnerships in Astronomy and Astrophysics Research and Education (PAARE)" program. The mission of POCA is to develop an effective, long-term partnership that combines the strengths of the three institutions to increase the scientific and educational output of all the partners with special emphasis on enhancing diversity in the field of astronomy. Components of the program include enhancing faculty and student research in astronomy at SCSU, recruiting and retaining underrepresented minority students into the field, outreach through planetarium programs and museum exhibits and developing web based resources in astronomy education. Activities in the first year of the program are discussed. We have begun developing and testing several new astronomy laboratory exercises. Our first summer internship program has concluded successfully. With PAARE scholarship money, we are now supporting four physics majors at SCSU who have chosen the astronomy option (concentration) for their degree. SCSU undergraduates have acquired observing experience on the KPNO Mayall 4-meter telescope under the guidance of faculty and graduate students from CU. NOAO astronomers have collaborated with SCSU faculty to begin a research program that studies RV Tauri stars. Funds from PAARE are supporting follow-up research to a just-completed doctoral dissertation by E. A. Mayo described elsewhere in these proceedings. Future plans for graduate fellowships and related activities are discussed in addition to summer internships for POCA undergraduates at CU and NOAO. Support for this work was provided by the NSF PAARE program to South Carolina State University under award AST-0750814.

  20. Fundamental astronomy

    CERN Document Server

    Kröger, Pekka; Oja, Heikki; Poutanen, Markku; Donner, Karl

    2017-01-01

    Now in its sixth edition this successful undergraduate textbook gives a well-balanced and comprehensive introduction to the topics of classical and modern astronomy. While emphasizing both the astronomical concepts and the underlying physical principles, the text provides a sound basis for more profound studies in the astronomical sciences. The chapters on galactic and extragalactic astronomy as well as cosmology were extensively modernized in the previous edition. In this new edition they have been further revised to include more recent results. The long chapter on the solar system has been split into two parts: the first one deals with the general properties, and the other one describes individual objects. A new chapter on exoplanets has been added to the end of the book next to the chapter on astrobiology. In response to the fact that astronomy has evolved enormously over the last few years, only a few chapters of this book have been left unmodified. Long considered a standard text for physical science maj...

  1. Preservice elementary teachers learning of astronomy

    Science.gov (United States)

    Fidler, Chuck Gary

    The dissertation presents a new approach for the study of preservice elementary teacher astronomy education. The approach suggests that learning astronomical concepts are facilitated by greater sophistication in scale perception and spatial-aptitude. This dissertation is underscored by the national call for elementary science education reform efforts and suggests certain strategies shown more effective for the development of accurate astronomical comprehension. The present research study describes how preservice elementary teachers conceptualize and communicate ideas about Space. Instead of assuming a universal mental conception of cosmic orientations and relationships, the dissertation claims that the perception of Space related dimensions vary among preservice elementary teachers. Furthermore, the dissertation suggests individual perceptions of the scale sizes and orientations of celestial systems have direct influences on mental models used to organize and communicate astronomical information. The development of inaccurate mental models of the scaled dimensions of Space may perpetuate the teacher-student cycle of misconception and naive-theory generation among children in elementary education settings. The ability to conceptualize the vast cosmos is facilitated by the minds ability to think about vast scales and orientations of celestial objects. The Earth-based perspective of astronomy education compels the learner to think about astronomical principles within imaginary frames of reference and across unfamiliar scaled dimensions. Therefore, mental astronomical model building is underscored by the perception of scale and cosmic spatiality. This study suggests these cognitive skill sets are interconnected and facilitate the learning of accurate astronomy principles; as well as play an important role when designing an astronomy education program for preservice elementary teachers. This research study is comprised of three separate standalone articles designed and

  2. Pushing Stellarium to the Limit for Astronomy Distance Education

    Science.gov (United States)

    Connors, Martin

    2016-01-01

    The freeware planetarium program Stellarium (www.stellarium.org) provides a high quality astronomical simulation which can be stimulating for students of all ages. Athabasca University has been offering distance education astronomy courses using computer simulations of the night sky for nearly three decades. A recurring theme has been the challenge of matching available software to the computers available to students in their homes. Stellarium is useful in this respect in being available as downloadable freeware for Windows, Mac, and linux, and available from third parties for other platforms. Stellarium is useful for giving a qualitative idea of sky movements that take place slowly in nature. A night, or even a year, can be presented in sped up time, or with large time steps allowing to see changes. Our Science-stream freshman course emphasizes quantitative analysis, and Stellarium is also useful for this. Plotting the Sun's position at noon (allowing for Daylight Savings Time) gives an analemma from which the obliquity can be readily calculated. The Moon's daily motion can be measured in degrees with local declination lines as a reference, allowing the eccentricity of its orbit to be demonstrated. Plotting retrograde loops for outer planets corrects the misimpression students sometimes develop that this is a phenomenon restricted to Mars. For both inner and outer planets, the relation of synodic and sidereal periods may be explored quantitatively. Most recently we are exploring the possibility of replacing our HR diagram and Hubble Law plots with data gathered from Stellarium. Data in these is not directly measured as are the variables in planetary motion labs, but an observational feel can be added to labs that otherwise (if done using published tables of data) could seem divorced from observation. Stellarium can help attain a large number of objectives in introductory astronomy education, from truly understanding basic phenomena to making and interpreting

  3. Astronomy Landscape in Africa

    Science.gov (United States)

    Nemaungani, Takalani

    2015-01-01

    The vision for astronomy in Africa is embedded in the African Space Policy of the African Union in early 2014. The vision is about positioning Africa as an emerging hub for astronomy sciences and facilities. Africa recognized the need to take advantage of its natural resource, the geographical advantage of the clear southern skies and pristine sites for astronomy. The Pan African University (PAU) initiative also presents an opportunity as a post-graduate training and research network of university nodes in five regions of Africa and supported by the African Union. The Southern African node based in South Africa concentrates on space sciences which also includes astronomy. The PAU aims to provide the opportunity for advanced graduate training and postgraduate research to high-performing African students. Objectives also include promoting mobility of students and teachers and harmonizing programs and degrees.A number of astronomy initiatives have burgeoned in the Southern African region and these include the Southern Africa Largest Optical Telescope (SALT), HESS (High Energy Stereoscopic System), the SKA (Square Kilometre Array) and the AVN (African Very Long Baseline Interferometer Network). There is a growing appetite for astronomy sciences in Africa. In East Africa, the astronomy community is well organized and is growing - the East African Astronomical society (EAAS) held its successful fourth annual conference since 2010 on 30 June to 04 July 2014 at the University of Rwanda. Centred around the 'Role of Astronomy in Socio-Economic Transformation,' this conference aimed at strengthening capacity building in Astronomy, Astrophysics and Space Science in general, while providing a forum for astronomers from the region to train young and upcoming scientists.

  4. Introduction to solar radio astronomy and radio physics

    International Nuclear Information System (INIS)

    Krueger, A.

    1979-01-01

    A systematic summary is presented of the work done during the last thirty years in the field of solar radio astronomy from the standpoint of general solar physics. Instrumental aspects, observations and theory are covered. A brief introduction is given to the matter consisting of the history of solar radio astronomy and some fundamentals of astronomy and solar physics are outlined. Some topics of the instrumental background of solar radio astronomy and the main results of observations are presented. The elements of a theoretical interpretation of solar radio observations are reported and a synthesis of both observation and theory contributing to a general picture of solar and solar-terrestrial physics is outlined. (C.F./Auth)

  5. From Conceptual Frameworks to Mental Models for Astronomy: Students' Perceptions

    Science.gov (United States)

    Pundak, David; Liberman, Ido; Shacham, Miri

    2017-01-01

    Considerable debate exists among discipline-based astronomy education researchers about how students change their perceptions in science and astronomy. The study questioned the development of astronomical models among students in institutions of higher education by examining how college students change their initial conceptual frameworks and…

  6. Training in Astronomy for Physics Students J. H. Fan1,2

    Indian Academy of Sciences (India)

    2Astronomy Science and Technology Research Laboratory, Department of Education of Guangdong Province, Guangzhou 510006, ... to astronomy training for physics students. More and more students are ... We, astronomy staff give popular science talks for undergraduate students, middle school students, primary school ...

  7. Astronomy Exercises for the Artist: van Gogh the Observer

    Science.gov (United States)

    Lawlor, Timothy M.

    2013-01-01

    We present a set of exercises designed to be used in a survey astronomy course, an introductory astronomy laboratory course, or in secondary education. The exercises use the great works of Vincent van Gogh but could

  8. The GalileoMobile starts its South American voyage - Astronomy education goes on tour through the Andes Mountains

    Science.gov (United States)

    2009-10-01

    Today marks the beginning of the GalileoMobile Project, a two-month expedition to bring the wonder and excitement of astronomy to young people in Chile, Bolivia and Peru. Supported by ESO and partners, a group of astronomers and educators will travel through a region of the Andes Mountains aboard the GalileoMobile, offering astronomical activities, such as workshops for students and star parties for the general public. Professional filmmakers on the trip will produce a multilingual documentary capturing the thrill of discovery through science, culture and travel. The GalileoMobile is a Special Project of the International Year of Astronomy 2009 (IYA2009), which is a global celebration commemorating the first use of a telescope to view the Universe by the Italian astronomer Galileo four hundred years ago. The project will promote basic science education through astronomy by visiting schools and communities that have limited access to outreach programmes. The GalileoMobile will provide these underserved groups with hands-on activities and educational material from international partners. The van is fully equipped to offer unique sky-observing opportunities for young students and other locals, with star parties at night and solar observations during the day. The team will use various tools including IYA2009's handy Galileoscopes, which will be donated to the schools after the visits. By stimulating curiosity, critical thinking and a sense of wonder and discovery for the Universe and our planet, the GalileoMobile Project aims to encourage interest in astronomy and science, and exchange culturally different visions of the cosmos. Spearheading the initiative is a group of enthusiastic Latin American and European PhD students from the European Southern Observatory, the Max Planck Society, the University Observatory Munich, and the Stockholm University Observatory. This itinerant educational programme is intended to reach about 20 000 people during eight weeks in October

  9. NASE Training Courses in Astronomy for Teachers throughout the World

    Science.gov (United States)

    Ros, Rosa M.

    2012-01-01

    Network for Astronomy School Education, NASE, is a project that is organizing courses for teachers throughout the entire world. The main objective of the project is to prepare secondary and primary school teachers in astronomy. Students love to know more about astronomy and teachers have the opportunity to observe the sky that every school has…

  10. Selected topics on data analysis in astronomy

    International Nuclear Information System (INIS)

    Scarsi, L.

    1987-01-01

    The contents of this book are: General Lectures Given at the Erice II Workshop on Data Analysis in Astronomy: Fundamentals in Data Analysis in Astronomy; Computational Techniques; Evolution of Architectures for Data Processing; Hardware for Graphics and Image Display; and Data Analysis Systems

  11. Developing a Global Science and Math Education System Based on Real Astronomy Data

    Science.gov (United States)

    Pennypacker, Carlton

    2015-03-01

    Global Hands-On Universe (GHOU) is an educational system where students use real astronomy data from (largely optical) telescopes to learn fundamental physics, math, astronomy, and technology.GHOU is a good example of a collaborative global education project, where data, software, teacher training methods, curriculum, activities, telescopes, and human resources are developed by many members of GHOU and then shared internationally.Assessments show that in this program students learn more science and math than in conventional classroom teaching, and students change their attitudes towards choosing careers in science and technology.GHOU is an exemplar of appropriate use of computers in the classroom for real data analysis.The International Asteroid Search program of GHOU has helped students discover over 700 asteroids. Half a dozen high schools have named the asteroids they have found after their high school (some from here in Texas!).GHOU has found resonance with many teachers and students around the world, reaching approximately 20,000 global teachers in the International Year of Astronomy in 2009.In addition, activities from French HOU are part of the official French National Curriculum, and exit exam, teacher training syllabus and teacher exit exams. GHOU has found particular enthusiasms in nations with increasing technology basis - for example, GHOU is reaching many teachers in China, Chile, Indonesia, Kenya, Venezuela, with expansion plans for Cuba underway. Some nations, such as Portugal, have reached reasonable fractions of their teachers through GHOU. Workshops are planned in Iran, and HOU colleagues are starting to build a GHOU telescope in Israel. US HOU had trained approximately 1000 teachers in the United States, before the closing of the NSF Teacher Enhancement Section.But as many new large and smaller telescopes come on line - e.g., the Large Synoptic Survey Telescope - the need for GHOU around the world and even the United States will only increase.

  12. Solar System Symphony: Combining astronomy with live classical music

    Science.gov (United States)

    Kremer, Kyle; WorldWide Telescope

    2017-01-01

    Solar System Symphony is an educational outreach show which combines astronomy visualizations and live classical music. As musicians perform excerpts from Holst’s “The Planets” and other orchestral works, visualizations developed using WorldWide Telescope and NASA images and animations are projected on-stage. Between each movement of music, a narrator guides the audience through scientific highlights of the solar system. The content of Solar System Symphony is geared toward a general audience, particularly targeting K-12 students. The hour-long show not only presents a new medium for exposing a broad audience to astronomy, but also provides universities an effective tool for facilitating interdisciplinary collaboration between two divergent fields. The show was premiered at Northwestern University in May 2016 in partnership with Northwestern’s Bienen School of Music and was recently performed at the Colburn Conservatory of Music in November 2016.

  13. Science Education: A Case for Astronomy

    Science.gov (United States)

    Wentzel, Donat G.

    1971-01-01

    Describes astronomy course used as a medium to provide an understanding of how science progresses and how it relates to society. Illustrations are given of how scientific judgment, importance of basic science, humanistic aspects of science, and the priorities among science are presented. (DS)

  14. Building on the International Year of Astronomy: The Dark Skies Awareness Program

    Science.gov (United States)

    Walker, C. E.; Sparks, R. T.; Pompea, S. M.

    2010-08-01

    The International Year of Astronomy (IYA2009) offered opportunities to create exemplary educational programs in astronomy, such as those through the cornerstone project, Dark Skies Awareness (DSA). The preservation of dark skies is important for many reasons including astronomy, energy conservation, wildlife conservation, and even human health. Light pollution is a growing concern, yet it is one of the easiest global environmental problems citizen scientists can address on a local level. The Dark Skies workshop imparted the skills necessary for participants to lead activities at their home institution for conserving dark skies. Workshop participants experienced the hands-on activities, which are suitable for use in a variety of settings including museums, science centers, planetariums, schools, university outreach efforts, and astronomy club events. Participants were immersed in activities that illustrate proper lighting, light pollution's effects on wildlife, and how to measure the darkness of your skies. Several citizen science projects were highlighted, including GLOBE at Night, the Great World Wide Star Count, and How Many Stars. These programs enlist the help of students and the general public to collect data on the night sky conditions in their community and contribute to a worldwide database on light pollution. The data can be analyzed using various online tools. A CD of activities, a light shielding demonstration, a book, a two DVD set with a planetarium show, and many other resources are included in a Dark Skies Education Kit, which workshop participants received at the close of the workshop.

  15. Physics Education: Effect of Micro-Teaching Method Supported by Educational Technologies on Pre-Service Science Teachers' Misconceptions on Basic Astronomy Subjects

    Science.gov (United States)

    Gurbuz, Fatih

    2016-01-01

    The purpose of this research study is to explore pre-service science teachers' misconceptions on basic astronomy subjects and to examine the effect of micro teaching method supported by educational technologies on correcting misconceptions. This study is an action research. Semi- structured interviews were used in the study as a data collection…

  16. Motivations and Participation in an Astronomy MOOC

    Science.gov (United States)

    Wenger, Matthew; Buxner, Sanlyn; Formanek, Martin; Impey, Chris David

    2018-01-01

    Student motivation, engagement, and completion are important topics in the study of Massive Open Online Courses (MOOCs). Many science-focused Massive Open Online Courses (MOOCs) appeal to lifelong learners interested in general education as opposed to career development, yet little motivation-related research has been conducted with students in these courses. We present the results of a study that examined the motivations of MOOC students in our class, Astronomy: Exploring Time and Space. We examined trends in motivation and participation for these non-career-focused students. Although we have been able to show that the students in our class are similar, demographically, to other MOOC classes, our research has shown that they have very different motivations from undergraduate students, or MOOC students who are intere “average” MOOC user. Astronomy: Exploring Time and Space students are much more likely to be astronomy hobbyists, or taking the class to satisfy their curiosity and not attempting to change careers or achieve a credential. We were also able to correlate the results of the motivation survey instruments with student engagement with course materials and rates of course completion. We examined the motivations of students using both the validated Science Motivation Questionnaire II by Glynn et. al (2011) and a motivation instrument developed by John Falk for learners in free-choice settings. These allowed us to compare our results with other researchers who have used these instrument in other educational settings, including MOOCs. Students who reported high levels of self-determination were the most likely to complete the course, while high social motivation was a poor predictor of completion and performance.

  17. Historic Radio Astronomy Working Group

    Science.gov (United States)

    2007-06-01

    This special issue of Astronomische Nachrichten contains the proceedings of a session of the Historic Radio Astronomy Working Group of the International Astronomical Union that took place during the 26th General Assembly of the IAU in Prague on 17th August 2006. In addition to the talks presented in Prague some contributions were solicited to give a more complete overview of `The Early History of European Radio Astronomy'.

  18. The Development and Validation of the Test Of Astronomy STandards (TOAST)

    Science.gov (United States)

    Slater, Stephanie J.

    2014-01-01

    The Test Of Astronomy STandards (TOAST) is a comprehensive assessment instrument designed to measure students' general astronomy content knowledge. Built upon the research embedded within a generation of astronomy assessments designed to measure single concepts, the TOAST is appropriate to measure across an entire astronomy course. The TOAST's…

  19. What next for astronomy?

    Science.gov (United States)

    Williams, Robert

    2009-12-01

    "Astronomy is in the midst of a golden age," wrote Catherine Cesarsky, my predecessor as president of the International Astronomical Union (IAU), earlier this year in Physics World (March pp22-24). I believe that is certainly true and it is an opportunity that we must take full advantage of. Astronomy is one of the great ways to bring science to the public - the images of the universe obtained using the Hubble Space Telescope, for example, are full of beauty. Astronomy is all about us. Indeed, the Earth and the life on it have developed from the cosmos, and the sky is the one laboratory that all humanity shares equally and that is accessible to all. There is little about the subject that appeals to fear - except, perhaps, the occasional killer asteroid. So what better science to inspire and educate people that what we do not know is definitely worth knowing?

  20. Muggles, Meteoritic Armor, and Menelmacar: Using Fantasy Series in Astronomy Education and Outreach

    Science.gov (United States)

    Larsen, K.; Bednarski, M.

    2008-11-01

    Due in part to recent (and ongoing) film adaptations, the fantasy series of C.S. Lewis (The Chronicles of Narnia), J.K. Rowling (Harry Potter), Philip Pullman (His Dark Materials), and J.R.R. Tolkien (The Silmarillion, The Hobbit, and The Lord of the Rings) are being introduced to a new audience of young (and not so young) readers. Many astronomers and astronomy educators are unaware of the wide variety of astronomical references contained in each series. The first portion of this workshop will introduce participants to these references, and highlight activities which educators, planetariums, and science centers have already developed to utilize these works in their education and outreach programs. In the second segment of the workshop, participants will develop ideas for activities and materials relevant to their individual circumstances, including standards-based education materials.

  1. Astronomy Week in Madeira, Portugal

    Science.gov (United States)

    Augusto, P.; Sobrinho, J. L.

    2012-05-01

    The outreach programme Semanas da Astronomia (Astronomy Weeks) is held in late spring or summer on the island of Madeira, Portugal. This programme has been attracting enough interest to be mentioned in the regional press/TV/radio every year and is now, without doubt, the astronomical highlight of the year on Madeira. We believe that this programme is a good case study for showing how to attract the general public to astronomy in a small (population 250 000, area 900 km2) and fairly isolated place such as Madeira. Our Astronomy Weeks have been different each year and have so far included exhibitions, courses, talks, a forum, documentaries, observing sessions (some with blackouts), music and an astro party. These efforts may contribute towards putting Madeira on the map with respect to observational astronomy, and have also contributed to the planned installation of two observatories in the island.

  2. Astronomers Without Borders: A Global Astronomy Community

    Science.gov (United States)

    Simmons, M.

    2011-10-01

    Astronomers Without Borders (AWB) brings together astronomy enthusiasts of all types - amateur astronomers, educators, professionals and "armchair" astronomers for a variety of online and physicalworld programs. The AWB web site provides social networking and a base for online programs that engage people worldwide in astronomy activities that transcend geopolitical and cultural borders. There is universal interest in astronomy, which has been present in all cultures throughout recorded history. Astronomy is also among the most accessible of sciences with the natural laboratory of the sky being available to people worldwide. There are few other interests for which people widely separated geographically can engage in activities involving the same objects. AWB builds on those advantages to bring people together. AWB also provides a platform where projects can reach a global audience. AWB also provides unique opportunities for multidisciplinary collaboration in EPO programs. Several programs including The World at Night, Global Astronomy Month and others will be described along with lessons learned.

  3. The East Asian Office of Astronomy for Development

    Science.gov (United States)

    de Grijs, Richard; Zhang, Ziping

    2015-08-01

    At the 2012 General Assembly of the International Astronomical Union (IAU), the Office of Astronomy for Development (OAD) programme announced a number of exciting new partnerships to assist with the IAU's decadal strategic plan (2010-2020). These landmark decisions included establishing a new coordinating centre that aims at using astronomy as a tool for development in East Asia. The agreement covers two important functions. One is known as a Regional Node, which entails the coordination of astronomy-for-development activities in countries within the general geographical region of East Asia (in first instance China, Mongolia and the DPRK, but without placing firm geographical limits on the region). The other is known as a Language Expertise Centre which will deal with all aspects relating to (mainly) the Chinese language and culture. The impact of the latter may obviously spread well beyond the geographical region to other parts of the world. At this next General Assembly, we aim at updating the community of the achievements and aims of the East Asian Office of Astronomy for Development.

  4. The movable digital planetary from the Cruzeiro do Sul University as a distributing agent of astronomy

    Science.gov (United States)

    Voelzke, Marcos Rincon

    2012-10-01

    The Movable Digital Planetary from the Cruzeiro do Sul University has been working in order to publicize and to popularize Astronomy, in particular among students and teachers of Primary (EF) and Medium (EM) Education in municipal and state schools of the City of São Paulo, but also for the general public at large. The aim of this paper is to show and publicize the activities already undertaken by this planetary. In 2010, several presentations were recorded, such as: for the School Cruzeiro do Sul, in São Miguel Paulista, serving 161 children in the EF; Eighth Symposium on Education, Cruzeiro do Sul University, 75 students; NGO Educational Project Capuano, Anália Franco, 30 adults: Fair Student Guide in Shopping Center Norte, 455 people; NGO Association for Charitable Paulista, Burgo Paulista, 70 children; Workshop of Advanced Computing and Informatics, Cruzeiro do Sul University, 37 students; Day of Social Responsibility, Social Work in Don Bosco, Itaquera, 133 people! . In 2011 the presentations took place during the XIII Regional Meeting of Astronomy Education at Cruzeiro do Sul University, serving 112 teachers; College Cruzeiro do Sul, São Miguel Paulista, 356 children of the EF; College Brasilia from São Paulo, Anália Franco, 102 children in the EF and for the Scout Group Caramuru, São Paulo, 104 children. The applied methodology in all presentations consisted of the exhibition of two videos about Astronomy with a subsequent discussion about the presented issues. Previous surveys have shown a great interest in the majority of participants in wanting to learn more about the subject, which clearly explains the importance of education in non-formal places for the teaching of Astronomy

  5. Cultural Astronomy in Elementary and Secondary School

    Science.gov (United States)

    Jafelice, Luiz Carlos

    2015-07-01

    This work is addressed to educators and geography, science, biology and physics teachers who deal with elementary, middle and high school education. It discusses the importance of adopting the anthropological perspective regarding issues that are considered within the astronomy area. It also presents practical proposals for those who intend to introduce cultural astronomy in elementary, middle and high school education - from the beginning of the 1st grade in Elementary school to the end of the 3rd grade in Secondary school, in formal as well as in informal education. This work is proposed within the context of the holistic and transdisciplinary environmental education. Our approach values above all the experience and aims at a humanistic education that includes epistemological and cultural diversities. The suggested practical proposals can be also beneficially used to address works that include contents related to Brazilian indigenous and Afro-descent cultures in the school curriculum, as the new law requires. The guidelines presented here were tested in real school situations.

  6. Astronomy in Iraq

    Science.gov (United States)

    Alsabti, A. W.

    2006-08-01

    The history of modern Iraqi astronomy is reviewed. During the early 1970's Iraqi astronomy witnessed significant growth through the introduction of the subject at university level and extensively within the school curriculum. In addition, astronomy was popularised in the media, a large planetarium was built in Baghdad, plus a smaller one in Basra. Late 1970 witnessed the construction of the Iraqi National Observatory at Mount Korek in Iraqi Kurdistan. The core facilities of the Observatory included 3.5-meter and 1.25-meter optical telescopes, and a 30-meter radio telescope for millimetre wavelength astronomy. The Iraqi Astronomical Society was founded and Iraq joined the IAU in 1976. During the regime of Saddam Hussain in the 1980's, the Observatory was attacked by Iranian artillery during the Iraq-Iran war, and then again during the second Gulf war by the US air force. Years of sanctions during the 1990's left Iraq cut off from the rest of the international scientific community. Subscriptions to astronomical journals were halted and travel to conferences abroad was virtually non-existent. Most senior astronomers left the country for one reason or another. Support from expatriate Iraqi astronomers existed (and still exists) however, this is not sufficient. Recent changes in Iraq, and the fall of Saddam's regime, has meant that scientific communication with the outside world has resumed to a limited degree. The Ministry of Higher Education in Baghdad, Baghdad University and the Iraqi National Academy of Science, have all played active roles in re-establishing Iraqi astronomy and re-building the damaged Observatory at Mount Korek. More importantly the University of Sallahudin in Erbil, capital of Iraqi Kurdistan, has taken particular interest in astronomy and the Observatory. Organized visits to the universities, and also to the Observatory, have given us a first-hand assessment of the scale of the damage to the Observatory, as well as the needs of astronomy teaching

  7. Prospective Pre-School Teachers' Attitudes towards Astronomy

    Science.gov (United States)

    Türk, Cumhur; Demir, Esra

    2016-01-01

    The purpose of this study is to examine the changes in prospective pre-school teachers' attitudes towards astronomy in terms of their grades. The study was conducted with 205 prospective teachers (1st, 2nd, 3rd, 4th graders) studying in the education faculty of a university in Eastern Anatolia region of Turkey. Astronomy Attitude Scale (AAS) was…

  8. Division X, XII / Commission 40, 41 / Working Group Radio Astronomy

    NARCIS (Netherlands)

    Kellermann, Kenneth; Orchiston, Wayne; Davies, Rod; Gurvits, Leonid; Ishiguro, Masato; Lequeux, James; Swarup, Govind; Wall, Jasper; Wielebinski, Richard; van Woerden, Hugo

    The IAU Working Group on Historical Radio Astronomy (WGHRA) was formed at the 2003 General Assembly of the IAU as a Joint Working Group of Commissions 40 (Radio Astronomy) and 41 (History of Astronomy), in order to: a) assemble a master list of surviving historically-significant radio telescopes and

  9. Optimising Impact in Astronomy for Development Projects

    Science.gov (United States)

    Grant, Eli

    2015-08-01

    Positive outcomes in the fields of science education and international development are notoriously difficult to achieve. Among the challenges facing projects that use astronomy to improve education and socio-economic development is how to optimise project design in order to achieve the greatest possible benefits. Over the past century, medical scientists along with statisticians and economists have progressed an increasingly sophisticated and scientific approach to designing, testing and improving social intervention and public health education strategies. This talk offers a brief review of the history and current state of `intervention science'. A similar framework is then proposed for astronomy outreach and education projects, with applied examples given of how existing evidence can be used to inform project design, predict and estimate cost-effectiveness, minimise the risk of unintended negative consequences and increase the likelihood of target outcomes being achieved.

  10. Comparisons Between Science Knowledge, Interest, and Information Literacy of Learners in Introductory Astronomy Courses

    Science.gov (United States)

    Buxner, Sanlyn; Impey, Chris David; Formanek, Martin; Wenger, Matthew

    2018-01-01

    Introductory astronomy courses are exciting opportunities to engage non-major students in scientific issues, new discoveries, and scientific thinking. Many undergraduate students take these courses to complete their general education requirements. Many free-choice learners also take these courses, but for their own interest. We report on a study comparing the basic science knowledge, interest in science, and information literacy of undergraduate students and free choice learners enrolled in introductory astronomy courses run by the University of Arizona. Undergraduate students take both in-person and online courses for college credit. Free choice learners enroll in massive open online courses (MOOCs), through commercial platforms, that can earn them a certificate (although most do not take advantage of that opportunity). In general, we find that undergraduate students outperform the general public on basic science knowledge and that learners in our astronomy MOOCs outperform the undergraduate students in the study. Learners in the MOOC have higher interest in science in general. Overall, learners in both groups report getting information about science from online sources. Additionally, learners’ judgement of the reliability of different sources of information is weakly related to their basic science knowledge and more strongly related to how they describe what it means to study something scientifically. We discuss the implications of our findings for both undergraduate students and free-choice learners as well as instructors of these types of courses.

  11. First Results from the Test Of Astronomy STandards (TOAST) Assessment Instrument

    Science.gov (United States)

    Slater, Stephanie

    2009-01-01

    Considerable effort in the astronomy education research over the past several years has focused on developing assessment tools in the form of multiple-choice conceptual diagnostics and content knowledge surveys. This has been critically important in advancing astronomy as a sub-discipline of physics education research, allowing researchers to establish the initial knowledge state of students as well as to attempt to measure some of the impacts of innovative instructional interventions. Before now, few of the existing instruments were constructed upon a solid list of clearly articulated and widely agreed upon learning objectives. Moving beyond the 10-year old Astronomy Diagnostics Test, we have developed and validated a new assessment instrument that is tightly aligned to the consensus learning goals stated by the American Astronomical Society - Chair's Conference on ASTRO 101, the American Association of the Advancement of Science's Project 2061 Benchmarks, and the National Research Council's National Science Education Standards. Researchers from the Cognition in Astronomy, Physics and Earth sciences Research (CAPER) Team at the University of Wyoming's Science and Math Teaching Center (UWYO SMTC) designed a criterion-referenced assessment tool, called the Test Of Astronomy STandards (TOAST). Through iterative development, this multiple-choice instrument has a high degree of reliability and validity for instructors and researchers needing information on students’ initial knowledge state at the beginning of a course and can be used, in aggregate, to help measure the impact of course-length duration instructional strategies for undergraduate science survey courses with learning goals tightly aligned to the consensus goals of the astronomy education community.

  12. Incorporating Service Learning into the Introductory Astronomy Course

    Science.gov (United States)

    Mukherjee, K.

    2002-05-01

    The introductory Astronomy course can be enriched by adding a service learning component to it. This enables students to interact with and educate the general public about matters of outer space. At Slippery Rock University we have incorporated this idea into our Astronomy and Space Science courses. Working in groups, the students do a presentation which is often interdisciplinary. Frequently the department gets requests from schools to do a show specifically tailored to a topic like the solar system or constellations. Such projects are beneficial to students in many ways. They demand a thorough knowledge of the subject matter so as to communicate to the audience in a clear and nontechnical manner. The students also experience first hand the difficulties involved in coordinating a group effort. They learn to take responsibility for their allocated part and how to combine effectively to make the entire show a success. Interacting with various age groups demands a versatility in planning content and public speaking skills not easily available elsewhere in a traditional education. Our planetarium facilities help in attracting diverse audiences from preschoolers to senior citizens. Performance in these shows constitutes twenty five percent of course grade. Feedback from audience groups helps refine future shows by subsequent student cohorts.

  13. Communicating astronomy with the public for scientists

    Science.gov (United States)

    Girola, R.

    2015-03-01

    This article intends to convey the improvement regarding the knowledge exchange in the astronomical field through an improvement in the quality of professional communication between researchers, teachers and the like whose job is to broadcast astronomical concepts. It has been a couple of years since the difficulty of communicating astronomical concepts decreased due to institutional projects, schools and education systems. Inside the education system, the need to include astronomy as an innovative element in curricula has become obvious. Outside, an informal public interested in astronomy became greater in number and began to be fostered by different organizations which spread their astronomical knowledge via workshops and demonstrations.

  14. Organizations and Strategies in Astronomy Volume 6

    CERN Document Server

    Heck, André

    2006-01-01

    This book is the sixth volume under the title Organizations and Strategies in Astronomy (OSA). The OSA series is intended to cover a large range of fields and themes. In practice, one could say that all aspects of astronomy-related life and environment are considered in the spirit of sharing specific expertise and lessons learned. The chapters of this book are dealing with socio-dynamical aspects of the astronomy (and related space sciences) community: characteristics of organizations, strategies for development, legal issues, operational techniques, observing practicalities, educational policies, journal and magazine profiles, public outreach, publication studies, relationships with the media, research communication, evaluation and selection procedures, research indicators, national specificities, contemporary history, and so on. The experts contributing to this volume have done their best to write in a way understandable to readers not necessarily hyperspecialized in astronomy while providing specific detai...

  15. Social Representations of the Integrated High School Students about Astronomy

    Science.gov (United States)

    Barbosa, Jose Isnaldo de Lima; Voelzke, Marcos Rincon

    2017-07-01

    Astronomy issues are not always adequately handled in the formal education system, as well as, their dissemination in the media is often loaded with sensationalism. However, in this context the students are forming their explanations about it. Therefore, this work has the objective of identifying the possible social representations of students from the Integrated High School on the inductor term Astronomy. It is basically a descriptive research, therefore, a quali-qualitative approach was adopted. The procedures for obtaining the data occurred in the form of a survey, and they involved 653 subjects students from the Integrated High School. The results indicate that the surveyed students have social representations of the object Astronomy, which are based on elements from the formal education space, and also disclosed in the media. In addition, they demonstrate that the students have information about Astronomy, and a value judgment in relation to this science.

  16. Pushing Traditional Publishing Boundaries in the Journal of Astronomy & Earth Science Education JAESE

    Science.gov (United States)

    Slater, T. F.

    2017-12-01

    Responding to the community's need for an archival journal to document program evaluation and educational impact of programs and innovations, the Journal of Astronomy & Earth Science Education (JAESE.org) is a scholarly, peer-reviewed journal designed to serve the discipline-based astronomy, planetary, and geosciences education research community. JAESE's first issue was published on December 31, 2014 and has published four volumes and seven issues since that time. By far, the median article topic has been focused on planetarium education research, while there have only been a few articles on conventional solid-Earth geosciences education research. Although there is not yet an even distribution of topics across the field, there is a relatively even distribution among author demographics. Authors include a range of both junior and senior members of the field. There have been significantly more female authors than male authors. Submissions are distributed as blind-copies to two or three peer reviewers with authors' names and identifying information redacted from the manuscript. The average time to complete the first round of peer-review reviewers is 6.2-weeks. There have been too few manuscripts to reliably publish a "percentage acceptance rate." Taken together, JAESE's guiding Editorial Advisory Board judges this to be a successful first few years. In a purposeful effort to make JAESE authors' scholarly works as widely accessible as possible, JAESE adopted an open-access business model. JAESE articles are available to read free-of-charge over the Internet, delivered as PDFs. To date, the most common way articles are downloaded by readers is through Google Scholar. Instead of charging readers and libraries recurring subscription fees, JAESE charges authors a nominal submission fee and a small open-access fee, averaging about $700 USD. These charges are far lower than the traditional page charges and gold-package open-access fees typically charged to authors or their

  17. Global projects and Astronomy awareness activities in Nepal

    Science.gov (United States)

    Gautam, Suman

    2015-08-01

    Modern astronomy is a crowning achievement of human civilization which inspires teenagers to choose career in science and technology and is a stable of adult education. It is a unique and cost effective tool for furthering sustainable global development because of its technological, scientific and cultural dimensions which allow us to reach with the large portion of the community interact with children and inspire with our wonderful cosmos.Using astronomy to stimulate quality and inspiring education for disadvantaged children is an important goal of Nepal Astronomical Society (NASO) since its inception. NASO is carrying out various awareness activities on its own and in collaboration with national and international organizations like Central Department of Physics Tribhuvan University (TU), International astronomical Union (IAU), Department of Physics Prithvi Narayan Campus Pokhara, Nepal academy of science and technology (NAST), Global Hands on Universe (GHOU), EU- UNAWE and Pokhara Astronomical Society (PAS) to disseminate those activities for the school children and teachers in Nepal. Our experiences working with kids, students, teachers and public in the field of universe Awareness Activities for the school children to minimize the abstruse concept of astronomy through some practical approach and the project like Astronomy for the visually impaired students, Galileo Teacher Training program and International School for young astronomers (ISYA) outskirts will be explained which is believed to play vital role in promoting astronomy and space science activities in Nepal.

  18. IAU astroEDU: an open-access platform for peer-reviewed astronomy education activities

    Science.gov (United States)

    Heenatigala, Thilina; Russo, Pedro; Strubbe, Linda; Gomez, Edward

    2015-08-01

    astroEDU is an open access platform for peer-reviewed astronomy education activities. It addresses key problems in educational repositories such as variability in quality, not maintained or updated regularly, limited content review, and more. This is achieved through a peer-review process similar to what scholarly articles are based on. Activities submitted are peer-reviewed by an educator and a professional astronomer which gives the credibility to the activities. astroEDU activities are open-access in order to make the activities accessible to educators around the world while letting them discover, review, distribute and remix the activities. The activity submission process allows authors to learn how to apply enquiry-based learning into the activity, identify the process skills required, how to develop core goals and objectives, and how to evaluate the activity to determine the outcome. astroEDU is endorsed by the International Astronomical Union meaning each activity is given an official stamp by the international organisation for professional astronomers.

  19. The CAMPARE Program:A New Model Promoting Minority Participation in Astronomy Research and Education

    Science.gov (United States)

    Rudolph, Alexander L.; Impey, C. D.; Bieging, J. H.; Phillips, C. B.; Tieu, J.; Povich, M. S.

    2014-01-01

    The California-Arizona Minority Partnership for Astronomy Research and Education (CAMPARE) program represents a new and innovative kind of research program for undergraduates: one that can effectively carry out the goal of recruiting qualified minority and female students to participate in Astronomy and Planetary Science research opportunities, while mentoring them in a way to maximize the chance that these students will persist in obtaining their undergraduate degrees in STEM fields, and potentially go on to obtain their PhDs or pursue careers in those fields. The members of CAMPARE comprise a network of comprehensive universities and community colleges in Southern California and Arizona (most of which are minority serving institutions), and four major research institutions (University of Arizona Steward Observatory, the SETI Institute, and JPL/Caltech). Most undergraduate research programs focus on a single research institution. By having multiple institutions, we significantly broaden the opportunities for students, both in terms of breadth of research topics and geographical location.

  20. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Blazar Observations in Infrared and Optical. Methods for the Quasi-Periodic Variability Analysis in Blazars ... Astronomy Education for Physics Students · J. H. Fan J. S. Zhang J. Y. Zhang Y. Liu H. G. Wang .... Training in Astronomy for Physics Students · J. H. Fan · More Details Abstract Fulltext PDF.

  1. Monitoring and evaluating astronomy outreach programmes: Challenges and solutions

    Directory of Open Access Journals (Sweden)

    Sarah Chapman

    2015-05-01

    Full Text Available A number of tools exist to guide the monitoring and evaluation of science, technology, engineering and mathematics (STEM education and outreach programmes. Fewer tools exist for evaluating astronomy outreach programmes. In this paper we try to overcome this limitation by presenting a monitoring and evaluation framework developed for the International Astronomical Union's Office of Astronomy for Development (OAD. The mandate of the OAD is to stimulate sustainable development at an international level and to expand astronomy education and outreach globally. The broad assumptions of this programme are that astronomy has the potential to contribute to human development by means of the transferable nature of its science discoveries, as well as its potential to activate feelings of wonderment, inspiration and awareness of the universe. As a result, the programme potentially embodies a far broader mix of outcomes than conventionally considered in STEM evaluation approaches. Towards this aim, we operationalise our monitoring and evaluation approach by first outlining programme theories for three key OAD programmes: a programme for universities and research, another one for schools, and one for public outreach. We then identify outcomes, indicators and measures for each one of these programmes. We conclude with suggestions for evaluating the global impact of astronomy for development.

  2. Astronomy Outreach for Large, Unique, and Unusual Audiences

    Science.gov (United States)

    Lubowich, Donald

    2015-08-01

    My successful outreach program venues include: outdoor concerts and festivals; the US National Mall; churches, synagogues, seminaries, or clergy conferences; the Ronald McDonald Houses of Long Island and Chicago; the Winthrop U. Hospital Children’s Medical Center the Fresh Air Fund summer camps (low-income and special needs); a Halloween star party (costumed kids look through telescopes); a Super Bowl Star Party (targeting women); Science Festivals (World, NYC; Princeton U.; the USA Science and Engineering Festival); and the NYC Columbus Day Parade. Information was also provided about local science museums, citizen science projects, astronomy educational sites, and astronomy clubs to encourage lifelong learning. In 2010 I created Astronomy Festival on the National Mall (co-sponsored by the White House Office of Science and Technology Policy) with the participation of astronomy clubs, scientific institutions and with Tyco Brahe, Johannes Kepler, and Caroline Herschel making guest appearances. My programs include solar, optical, and radio telescope observations, hands-on activities, a live image projection system; large outdoor posters and banners; videos; hands-on activities, and edible astronomy demonstrations.My NASA-funded Music and Astronomy Under the Stars (MAUS) program (60 events 2009 - 2013) reached 50,000 music lovers at local parks and the Central Park Jazz, Newport Folk, Ravinia, or Tanglewood Music Festivals with classical, folk, pop/rock, opera, Caribbean, or county-western concerts assisted by astronomy clubs. Yo-Yo-Ma, the Chicago and Boston Symphony Orchestras, Ravi Coltrane, Esperanza Spalding, Phish, Blood Sweat and Tears, Deep Purple, Tony Orlando, and Wilco performed at these events. MAUS reached underserved groups and attracted large crowds. Young kids participated in this family learning experience - often the first time they looked through a telescope. While < 50% of the participants took part in a science activity in the past year, they

  3. Astronomy Against Terrorism: an Educational Astronomical Observatory Project in Peru

    Science.gov (United States)

    Ishitsuka, M.; Montes, H.; Kuroda, T.; Morimoto, M.; Ishitsuka, J.

    2003-05-01

    The Cosmos Coronagraphic Observatory was completely destroyed by terrorists in 1988. In 1995, in coordination with the Minister of Education of Peru, a project to construct a new Educational Astronomical Observatory has been executed. The main purpose of the observatory is to promote an interest in basic space sciences in young students from school to university levels, through basic astronomical studies and observations. The planned observatory will be able to lodge 25 visitors; furthermore an auditorium, a library and a computer room will be constructed to improve the interest of people in astronomy. Two 15-cm refractor telescopes, equipped with a CCD camera and a photometer, will be available for observations. Also a 6-m dome will house a 60-cm class reflector telescope, which will be donated soon, thanks to a fund collected and organized by the Nishi-Harima Astronomical Observatory in Japan. In addition a new modern planetarium donated by the Government of Japan will be installed in Lima, the capital of Peru. These installations will be widely open to serve the requirements of people interested in science.

  4. A GeoWall with Physics and Astronomy Applications

    Science.gov (United States)

    Dukes, Phillip; Bruton, Dan

    2008-03-01

    A GeoWall is a passive stereoscopic projection system that can be used by students, teachers, and researchers for visualization of the structure and dynamics of three-dimensional systems and data. The type of system described here adequately provides 3-D visualization in natural color for large or small groups of viewers. The name ``GeoWall'' derives from its initial development to visualize data in the geosciences.1 An early GeoWall system was developed by Paul Morin at the electronic visualization laboratory at the University of Minnesota and was applied in an introductory geology course in spring of 2001. Since that time, several stereoscopic media, which are applicable to introductory-level physics and astronomy classes, have been developed and released into the public domain. In addition to the GeoWall's application in the classroom, there is considerable value in its use as part of a general science outreach program. In this paper we briefly describe the theory of operation of stereoscopic projection and the basic necessary components of a GeoWall system. Then we briefly describe how we are using a GeoWall as an instructional tool for the classroom and informal astronomy education and in research. Finally, we list sources for several of the free software media in physics and astronomy available for use with a GeoWall system.

  5. A Status Report on the AAS Astronomy Ambassadors Program

    Science.gov (United States)

    Fienberg, Richard Tresch; Fraknoi, Andrew; Gurton, Suzanne; Hurst, Anna; Schatz, Dennis L.

    2014-06-01

    The American Astronomical Society, in partnership with the Astronomical Society of the Pacific (ASP), has launched a series of professional-development workshops and a community of practice designed to improve early-career astronomers’ ability to communicate effectively with students and the public. Called AAS Astronomy Ambassadors, the program provides training and mentoring for young astronomers, from advanced undergraduates to beginning faculty; it also provides them access to resources and a network of contacts within the astronomy education and public outreach (EPO) community. Ambassadors are provided with a library of outreach activities and resource materials suitable for a range of venues and audiences. For much of this library we are using resources developed by organizations such as the ASP, the Pacific Science Center, and the Center for Astronomy Education for other outreach programs, though some resources have been created by one of us (AF) specifically for this program. After a period of evaluation and revision, the program’s “Menu of Outreach Opportunities for Science Education” (MOOSE) is now posted on the AAS website at http://aas.org/outreach/moose-menu-outreach-opportunities-science-education.The first two Astronomy Ambassadors workshops were held at AAS meetings in January 2013 and January 2014; each served 30 young astronomers chosen from about twice that many applicants. Web-based follow-up activities are being provided through a website at the ASP designed to keep cohorts of educators trained in their programs in touch with one another. The AAS is exploring ways to fund additional workshops at future winter meetings; suggestions are most welcome. Meanwhile, the Astronomy Ambassadors trained to date have logged more than 150 outreach events, reaching many thousands of children and adults across the U.S. and Canada.

  6. Citizen science projects for non-science astronomy students

    OpenAIRE

    Barmby, Pauline; Gallagher, S. C.; Cami, J.

    2014-01-01

    A poster from the 2011 Western Conference on Science Education, describing the use of citizen science project Galaxy Zoo in a non-majors astronomy course. Lots more on this topic at https://www.zooniverse.org/education  

  7. Integration of the digital technologies in the teaching of astronomy

    Science.gov (United States)

    de Macedo, J. A.; Voelzke, M. R.

    2014-08-01

    This study presents results of a survey conducted at the Federal Institution of Education, Science and Technology in the North of Minas Gerais (IFNMG), and aimed to investigate the potential uses of interactive materials in the teaching of astronomy. Despite being part of official documents, proposals included in the curriculum of several states, and having contributed to human and technological development, astronomy is rarely taught adequately in the Brazilian basic education. When it is taught, it is with unsatisfactory results as presented by students and teachers as shown by several studies, such as those carried out by (Voelzke and Gonzaga, 2013). Digital technologies are commonly used by youth, but neglected by the majority of teachers. In this sense, a survey with the aim of pointing out the potential use of digital technologies in teaching astronomy was developed. An advanced course in astronomy was offered for participants with the goal to help them understand astronomical phenomena. The following steps were to be taken: i) analysis of the pedagogical projects (PPC) of the licenciates at the IFNMG, with its Campus Januária as research locus; ii) analysis of students' preconceptions about astronomy and digital technologies, identified by the application of an initial questionnaire; iii) preparation of the course taking into account the students' previous knowledge; iv) application of the education proposal developed under part-time presence modality, using various interactive tools; v) application and analysis of the final questionnaire. The test consisted of thirty-two students of physics, mathematics and biology and was conducted with the qualitative and quantitative methodology, combined with a content analysis. Among other results, it was verified that: (i) In the IFNMG only the licenciate-course in physics includes astronomy content diluted in various subjects of the curriculum; (ii) the analysis of the initial questionnaire showed even that group

  8. Astronomy in the streets

    Science.gov (United States)

    Kebe, Fatoumata

    2015-08-01

    The Ephemerides Association was founded last year by a PhD student in Astronomy. The association is devoted to the promotion and advancement of knowledge of the universe through research and education.The main activities of the association are scientific meetings, the planning and realization of scientific projects, the support of the scientific activities of its members, and the dissemination of related information among members and other interested persons.The association targets the disadvantaged zones of the Paris suburbs.The main issue was how to bring astronomy in those places. In the suburbs, since most of the youth are poor, most leisure activities like cinema are out of your reach. Thus, mostly of them will play football or basketball outside.We decided to go to meet young people who find themselves together in the evening. We prepare the telescope as well as the fasicules to start the observation of the planets. The discussion finally lead to their career plans and aspirations. Astronomy has become a tool to address societal issues. We present our results after one year of activity.

  9. EVALUATION OF CONCEPTUAL FRAMEWORKS IN ASTRONOMY

    Directory of Open Access Journals (Sweden)

    David Pundak

    2016-02-01

    Full Text Available Even though astronomy is the oldest science, it is still an open question how to evaluate students’ understanding in astronomy. In spite of the fact that some methods and evaluation tools have been developed for that purpose, the sources of students' difficulties in astronomy are still unclear. This paper presents an investigation of the changes in conceptual frameworks in astronomy among 50 engineering students as a result of learning a general course in astronomy. A special tool called Conceptual Frameworks in Astronomy (CFA, which was initially used in 1989, was adopted to gather data for the present research. In its new version, the tool includes 23 questions and five to six optional answers to each question. Each of the answers characterizes one of the four conceptual frameworks: pre-scientific, geocentric, heliocentric and sidereal. These four conceptual frameworks act as a taxonomical system that enables us to evaluate astronomical understanding. The paper describes the background of the CFA, its development, and discusses its validity and reliability. Using the CFA we were able to: (1 identify the students’ conceptual frameworks at the beginning of the course and at its end, (2 to evaluate the students’ paradigmatic change following the course. It was found that the measure of the students’ improvement (gain index was g = 0.37. Approximately 45% of the students in the course improved their conceptual frameworks in astronomy and 26% deepened their understanding of the heliocentric or sidereal conceptual frameworks. The CFA can also be applied as an evaluation tool in all schools and institutions that teach astronomy.

  10. Methodological pluralism in the teaching of Astronomy

    Science.gov (United States)

    de Macedo, Josué Antunes; Voelzke, Marcos Rincon

    2015-04-01

    This paper discusses the feasibility of using a teaching strategy called methodological pluralism, consisting of the use of various methodological resources in order to provide a meaningful learning. It is part of a doctoral thesis, which aims to investigate contributions to the use of traditional resources combined with digital technologies, in order to create autonomy for future teachers of Natural Sciences and Mathematics in relation to themes in Astronomy. It was offered an extension course at the "Federal Institution of Education, Science and Technology" in the North of Minas Gerais (FINMG), Campus Januaria, for thirty-two students of licentiate courses in Physics, Mathematics and Biological Sciences, involving themes of Astronomy, in order to search and contribute to improving the training of future teachers. The following aspects are used: the mixed methodology, with pre-experimental design, combined with content analysis. The results indicate the rates of students' prior knowledge in relation to Astronomy was low; meaningful learning indications of concepts related to Astronomy, and the feasibility of using digital resources Involving technologies, articulated with traditional materials in the teaching of Astronomy. This research sought to contribute to the initial teacher training, especially in relation to Astronomy Teaching, proposing new alternatives to promote the teaching of this area of knowledge, extending the methodological options of future teachers.

  11. Communicating astronomy with the public in Cuba

    Science.gov (United States)

    Alvarez, O.

    2008-06-01

    Communicating astronomy with the public to produce attractive materials for a broad audience on TV is a difficult job in a third world country. One way of developing effective communication in fields like astronomy, astrophysics, and cosmology whilst connecting the professional astronomer with a majority of the people is to combine the knowledge of the scientist with the most spectacular TV production methods of first world countries: integrating, through commentary and analysis, astronomy and science into the public debate of lay citizens. Here I present my ten years of experience of presenting a TV programme devoted to general science outreach. I also comment on the progress of the construction of the new planetarium, a cultural centre for science and technology, to be opened as part of the commemoration activities for the 2009 International Year of Astronomy. It is hoped to guide the interest of the people of Cuba towards basic science and astronomy in the most populated and frequented area of the country.

  12. New Contemporary Criterion-Referenced Assessment Instruments for Astronomy & Geology: TOAST & EGGS

    Science.gov (United States)

    Guffey, Sarah Katie; Slater, Stephanie J.; Slater, Timothy F.

    2015-08-01

    Considerable effort in the astronomy and Earth sciences education research over the past decade has focused on developing assessment tools in the form of multiple-choice conceptual diagnostics and content knowledge surveys. This has been critically important in advancing discipline-based education research allowing scholar to establish the initial, incoming knowledge state of students as well as to attempt to measure some of the impacts of innovative instructional interventions. Before now, few of the existing instruments were constructed upon a solid list of clearly articulated and widely agreed upon learning objectives. Whereas first-generation assessment tools, such as the Astronomy Diagnostics Test ADT2) were based primarily upon further identifying documented astronomy misconceptions, scholars from the CAPER Center for Astronomy & Physics Education Research team are creating contemporary instruments based instead by developing items using modern test construction techniques and tightly aligned to the consensus learning goals identified by the American Association of the Advancement of Science’s Project 2061 Benchmarks, and the National Research Council’s National Science Education Standards, and the National Research Council’s Frameworks for A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. These consensus learning goals are further enhanced guiding documents from the American Astronomical Society - Chair’s Conference on ASTRO 101 and the NSF-funded Earth Science Literacy Initiative. Two of the resulting criterion-referenced assessment tools widely used by researchers are the Test Of Astronomy STandards (TOAST) and the Exam of GeoloGy StandardS (EGGS). These easy-to-use and easy-to-score multiple-choice instruments have a high degree of reliability and validity for instructors and researchers needing information on students’ initial knowledge state at the beginning of a course and can be used, in aggregate, to

  13. The East Asian Regional Office of Astronomy for Development

    Science.gov (United States)

    de Grijs, Richard; Zhang, Ziping; He, Jinhua

    2016-10-01

    At the 2012 General Assembly of the International Astronomical Union (IAU), the Office of Astronomy for Development announced a number of exciting new partnerships to assist with the IAU's decadal strategic plan (2010-2020). These landmark decisions included establishing a new coordinating centre that aims at using astronomy as a tool for development in East Asia. The agreement covers two important functions. One is known as a Regional Node, which entails the coordination of astronomy-for-development activities in countries within the general geographical region of East Asia. The other is known as a Language Expertise Centre which deals with all aspects relating to (mainly) the Chinese language and culture. The impact of the latter may obviously spread well beyond the geographical region to other parts of the world. Here we provide an update of the achievements and aims of the East Asian Office of Astronomy for Development.

  14. Students Across Texas Celebrate Astronomy Day

    Science.gov (United States)

    Preston, S.; Wetzel, M.; Hemenway, M. K.

    2010-08-01

    Over the past three years, McDonald Observatory has offered special Astronomy Day videoconference programs to students across Texas—the second largest state in the U.S. (Only Alaska is larger). Videoconferencing allows many students and teachers access to our Observatory, which is remotely located 180 miles (290 kilometers) from any major city. McDonald Observatory partners with Connect2Texas to advertise the Astronomy Day event. Connect2Texas provides the electronic bridge between schools and the Observatory. They also provide an online evaluation for teachers to complete. In 2009 the Astronomy Day videoconference celebrated the International Year of Astronomy and the historic observations made by Galileo Galilei. During the videoconference, the classes explore the Moon or Venus by making real-time telescopic observations. Students also receive an introduction to the Observatory, an opportunity to perform an activity relating to Galileo's observations, and an interview with an astronomer. A website provides teachers pre-and post-video conference materials, instructions, and a certificate of completion that can be customized for each student. The website also lists content alignment with state science education standards.

  15. Expanding Astronomy Education Innovations to the International Community

    Science.gov (United States)

    Slater, Stephanie J.; Slater, Timothy F.; Tatge, Coty; Guffey, Sarah Katie

    2015-08-01

    In the course of learning astronomy, it is generally accepted that successful science learning experiences should result in learners developing a meaningful understanding of the nature of science as inquiry where: (i) students are engaged in questions; (ii) students are designing plans to pursue data; and (iii) students are generating and defending conclusions based on evidence they have collected. In support of these goals, we have systematically field-test three separate instructional tools that are ready to be field-tested beyond the United States. The first of these is called LECTURE-TUTORIALS. These are self-contained, classroom-ready, collaborative group activities. The materials are designed specifically to be easily integrated into the lecture course and directly address the needs of busy faculty for effective, student-centered, classroom-ready materials that do not require a drastic course revision for implementation. Students are asked to reason about difficult concepts, while working in pairs, and to discuss their ideas openly. The second of these is a series of computer-mediated, inquiry learning experiences based upon an inquiry-oriented teaching approach framed by the notions of BACKWARDS-FADED SCAFFOLDING as an overarching theme for instruction that leverage online science data. BFS is a strategy where the conventional and rigidly linear scientific method is turned on its head and students are first taught how to create conclusions based on evidence, then how experimental design creates evidence, and only at the end introduces students to - what we believe is the most challenging part of inquiry - inventing scientifically appropriate questions. Third, contemporary ASSESSMENT INSTRUMENTS, including the TOAST and EGGS surveys, for astronomy & geology have been developed to help teachers measure the success of their implementation. Evaluation results consistently suggest that these tools help teachers better engage students in self-directed scientific

  16. An Update on the AAS Astronomy Ambassadors Program

    Science.gov (United States)

    Fienberg, Richard T.; Gurton, S.; Fraknoi, A.; Prather, E. E.; Hurst, A.; Schatz, D. L.

    2013-06-01

    The American Astronomical Society, partnering with organizations active in science education and public outreach (EPO), has launched a series of professional-development workshops and a community of practice designed to help improve early-career astronomers’ ability to effectively communicate with students and the public. Called Astronomy Ambassadors, the program provides mentoring and training experiences for young astronomers, from advanced undergraduates to beginning faculty; it also provides access to resources and a network of contacts within the astronomy EPO community. By learning how to implement effective education and outreach strategies, Astronomy Ambassadors become better teachers, better presenters at meetings, and better representatives of our science to the public and to government. And because young astronomers are a more diverse group than those who currently do the majority of outreach, they help the astronomical community present a more multicultural and gender-balanced face to the public, enabling members of underserved groups to see themselves as scientists. Ambassadors are provided with a large library of outreach activities and materials that are suitable for a range of venues and audiences and that will grow with time. For much of this library we are using resources developed by organizations such as the Astronomical Society of the Pacific, the Pacific Science Center, and the Center for Astronomy Education for other outreach programs, though some resources have been created by one of us (AF) specifically for this program. The first Astronomy Ambassadors workshop was held at the 221st meeting of the AAS in January 2013 and served 30 young astronomers chosen from more than 75 applicants. Incorporating feedback from workshop participants and lessons learned from the reports they’ve submitted after conducting their own outreach events, we are now planning the second annual workshop to be held 4-5 January 2014 at the 223rd AAS meeting in

  17. Development of the Test Of Astronomy STandards (TOAST) Assessment Instrument

    Science.gov (United States)

    Slater, Timothy F.; Slater, S. J.

    2008-05-01

    Considerable effort in the astronomy education research (AER) community over the past several years has focused on developing assessment tools in the form of multiple-choice conceptual diagnostics and content knowledge surveys. This has been critically important in advancing the AER discipline so that researchers could establish the initial knowledge state of students as well as to attempt measure some of the impacts of innovative instructional interventions. Unfortunately, few of the existing instruments were constructed upon a solid list of clearly articulated and widely agreed upon learning objectives. This was not done in oversight, but rather as a result of the relative youth of AER as a discipline. Now that several important science education reform documents exist and are generally accepted by the AER community, we are in a position to develop, validate, and disseminate a new assessment instrument which is tightly aligned to the consensus learning goals stated by the American Astronomical Society - Chair's Conference on ASTRO 101, the American Association of the Advancement of Science's Project 2061 Benchmarks, and the National Research Council's National Science Education Standards. In response, researchers from the Cognition in Astronomy, Physics and Earth sciences Research (CAPER) Team at the University of Wyoming's Science & Math Teaching Center (UWYO SMTC) have designed a criterion-referenced assessment tool, called the Test Of Astronomy STandards (TOAST). Through iterative development, this instrument has a high degree of reliability and validity for instructors and researchers needing information on students’ initial knowledge state at the beginning of a course and can be used, in aggregate, to help measure the impact of course-length duration instructional strategies for courses with learning goals tightly aligned to the consensus goals of our community.

  18. Astronomy and Poetry (overview)

    Science.gov (United States)

    Samvelyan, David

    2016-12-01

    Through this work we have tried to show how astronomy penetrates into the poetry of different periods in time and in various poets' works all over the world. The following work has significant cognitive value, demonstrates and reveals the general nature of certain poets' astronomical ideas and provides a brief analysis in some cases. As a result, we have come to the conclusion that astronomy with all its components such as the sky, our solar system and phenomena such as these have always been a source of inspiration for those who create works of art, moreover some of them have even gained actual astronomical knowledge.

  19. The Impact of Cognitive Load Theory on Learning Astronomy

    Science.gov (United States)

    Foster, Thomas M.

    2010-01-01

    Every student is different, which is the challenge of astronomy education research (AER) and teaching astronomy. This difference also provides the greatest goal for education researchers - our GUT - we need to be able to quantify these differences and provide explanatory and predictive theories to curriculum developers and teachers. One educational theory that holds promise is Cognitive Load Theory. Cognitive Load Theory begins with the well-established fact that everyone's working memory can hold 7 ± 2 unique items. This quirk of the human brain is why phone numbers are 7 digits long. This quirk is also why we forget peoples’ names after just meeting them, leave the iron on when we leave the house, and become overwhelmed as students of new material. Once the intricacies of Cognitive Load are understood, it becomes possible to design learning environments to marshal the resources students have and guide them to success. Lessons learned from Cognitive Load Theory can and should be applied to learning astronomy. Classroom-ready ideas will be presented.

  20. Engineering a General Education Program: Designing Mechanical Engineering General Education Courses

    Science.gov (United States)

    Fagette, Paul; Chen, Shih-Jiun; Baran, George R.; Samuel, Solomon P.; Kiani, Mohammad F.

    2013-01-01

    The Department of Mechanical Engineering at our institution created two engineering courses for the General Education Program that count towards second level general science credit (traditional science courses are first level). The courses were designed for the general student population based upon the requirements of our General Education Program…

  1. Texas-Style Fundraising and Public Relations for the International Year of Astronomy

    Science.gov (United States)

    Preston, S.; Barna, J. W.; Johnson, R.; Geiger, S.; Rimm, N.; Watson, K.; Griffin, J.

    2008-11-01

    McDonald Observatory will use the International Year of Astronomy (IYA) celebration to strengthen its fundraising for science education and outreach programs. At the same time, McDonald Observatory will be undergoing a logo and branding campaign in order to better unite the work and relationship of the University of Texas Department of Astronomy, McDonald Observatory, and the Observatory's education and outreach programs.

  2. Online Particle Physics Information - Education Sites

    Science.gov (United States)

    SLAC Online Particle Physics Information Particle Data Group Particle Physics Education Sites General Sites Background Knowledge Physics Lessons & Activities Astronomy Lessons & Activities Ask -A-Scientist Experiments, Demos and Fun Physics History & Diversity Art in Physics General Sites

  3. Mapping the Future of Non-Formal Education and the Scientific Dissemination of Astronomy in Brazil: A Delphi Study

    Science.gov (United States)

    Marques, Joana Brás Varanda; de Freitas, Denise

    2016-01-01

    Non-formal education and the dissemination of science are increasingly gaining importance around the world. Whilst astronomy in Brazil is no exception, its growth has however been slow and dispersed, institutions and activities across the country are uncoordinated, and no source exists that integrates relevant information and knowledge. To address…

  4. Humanising Astronomy

    Science.gov (United States)

    Levin, S.

    2008-06-01

    Universe Awareness (UNAWE) is an international programme that aims to expose underprivileged children (in the age group 4-10) to the inspirational aspects of astronomy. We are currently at the stage of developing materials that will be utilised in a diverse range of environments. This paper explores UNAWE's particular approach to developing tools which includes not only indigenous and folkloric astronomical knowledge, but also the culture of transmission of such knowledge. A specific understanding and explanation of the Universe, the Sun, Moon and stars is present in every culture and can be found contained in its history, legends and belief systems. By consciously embracing different ways of knowing the Universe and not uniquely the rational model, UNAWE places the humanising potential of astronomy at the centre of its purpose. Whilst inspiring curiosity, pride and a sense of ownership in one's own cultural identity, such an approach also exposes children to the diversity of other peoples and their cultures as well as the unifying aspects of our common scientific heritage. The means of creating and delivering the astronomy programme are as relevant to the desired educational outcomes as the content. The challenge in the design of materials is to communicate this stimulating message to the very young. Respect for alternative values systems, the need for dialogue and community participation, and where possible the production of materials using local resources is emphasised. This paper touches recent experiences liaising with communities in India, South Africa, Tunisia, Venezuela and Colombia.

  5. Pre-Service Teachers' Mental Models of Basic Astronomy Concepts

    Science.gov (United States)

    Arslan, A. Saglam; Durikan, U.

    2016-01-01

    The aim of the present study is to determine pre-service teachers' mental models related to basic astronomy concepts. The study was conducted using a survey method with 293 pre-service teachers from 4 different departments; physics education, science education, primary teacher education and early childhood education. An achievement test with…

  6. Status of astronomy in Rwanda and volunteer work at Kigali Institute of Education (KIE)

    Science.gov (United States)

    Pović, M.; Nkundabakura, P.; Uwamahoro, J.

    2015-03-01

    Until 2009, astronomy was undeveloped in Rwanda, without astronomy courses at universities and schools, astronomical facilities, or any outreach programmes. With the international year of astronomy in 2009, Dr. Pheneas Nkundabakura and Dr. Jean Uwamahoro from the KIE Maths-Physics department, both graduates from the South African NASSP Programme (http://www.star.ac.za), started a program of implementing the astronomical knowledge at schools and universities. During the same year 2009, IAU donated 100 galileoscopes for the secondary schools, and several astronomy workshops were organised for the teachers. IAU donated also 5 laptops to help students and lecturers to learn and use astronomy software. With this, KIE students have now a possibility to choose astronomy/space science for their undergraduate final year research projects. Moreover, there is an ongoing effort to look for further collaboration towards establishing the first astronomical facility (observatory) in the country.

  7. Astronomically speaking a dictionary of quotations on astronomy and physics

    CERN Document Server

    Gaither, CC

    2003-01-01

    To understand the history, accomplishments, failures, and meanings of astronomy requires a knowledge of what has been said about astronomy by philosophers, novelists, playwrights, poets, scientists, and laymen. With this in mind, Astronomically Speaking: A Dictionary of Quotations on Astronomy and Physics serves as a guide to what has been said about astronomy through the ages. Containing approximately 1,550 quotations and numerous illustrations, this resource is the largest compilation of astronomy and astrophysics quotations published to date.Devoted to astronomy and the closely related areas of mathematics and physics, this resource helps form an accurate picture of these interconnected disciplines. It is designed as an aid for general readers with little knowledge of astronomy who are interested in astronomical topics. Students can use the book to increase their understanding of the complexity and richness that exists in scientific disciplines. In addition, experienced scientists will find it as a handy s...

  8. Participant Perspectives on the ESO Astronomy Camp Programme

    Science.gov (United States)

    Olivotto, C.; Cenadelli, D.; Gamal, M.; Grossmann, D.; Teller, L. A. I.; Marta, A. S.; Matoni, C. L.; Taillard, A.

    2015-09-01

    This article describes the experience of attending the European Southern Observatory (ESO) Astronomy Camp from the perspective of its participants - students aged between 16 and 18 years old from around the world. The students shared a week together during the winter of 2014 in the Alpine village of Saint-Barthelemy, Italy. The camp was organised by ESO in collaboration with Sterrenlab and the Astronomical Observatory of the Autonomous Region of the Aosta Valley and offered a rich programme of astronomy and leisure activities. This article focuses on the concept of astronomy camps, and their role as a unique tool to complement formal classroom education, rather than on the astronomy activities and the scientific programme. Thus, it is not an academic review of the implemented methodologies, but rather a reflection on the overall experience. The article was brought together from collaborative accounts by some of the participants who were asked to reflect on the experience. The participants who contributed to this article represent the diversity of the ESO Astronomy Camp's alumni community.

  9. Gravitational Wave Astronomy: Opening a New Window on the Universe for Students, Educators and the Public

    Science.gov (United States)

    Cavaglia, Marco; Hendry, M.; Ingram, D.; Milde, S.; Pandian, S. R.; Reitze, D.; Riles, K.; Schutz, B.; Stuver, A. L.; Summerscales, T.; Ugolini, D.; Thacker, J.; Vallisneri, M.; Zermeno, A.

    2008-05-01

    The nascent field of gravitational wave astronomy offers many opportunities for effective and inspirational astronomy outreach. Gravitational waves, the `ripples in spacetime' predicted by Einstein's general theory of relativity, are produced by some of the most energetic and dramatic phenomena in the cosmos, including black holes, neutron stars and supernovae - and their discovery should help to address a number of fundamental questions in physics, from the evolution of stars and galaxies to the origin of dark energy and the nature of spacetime itself. Moreover, the cutting-edge technology developed to search for gravitational waves is pushing back the frontiers of many fields, from lasers and materials science to high performance computing, and thus provides a powerful showcase for the attractions and challenges of a career in science and engineering. For several years a worldwide network of ground-based laser interferometric gravitational wave detectors, built and run by the LIGO Scientific Collaboration, has been fully operational. These detectors are already among the most sensitive scientific instruments on the planet but in the next few years their sensitivity will achieve further significant improvement. Those developments promise to open an exciting new window on the Universe, heralding the arrival of gravitational wave astronomy as a revolutionary, new observational field. In this poster we describe the extensive program of public outreach activities already undertaken by the LIGO Scientific Collaboration, and a number of special events which we are planning for IYA2009. These activities include: * programs at Science Centers and Observatory Visitor Centers * programs on gravitational wave astronomy for the classroom, across the K-12 spectrum * interdisciplinary events linking gravitational wave astronomy to music and the visual arts * research experiences for schools and citizens through the highly successful `Einstein@Home' program.

  10. ACDA Thirty Years of Popularization of Astronomy in Colombia

    Science.gov (United States)

    Ocampo, W.; Higuera-G., Mario A.

    2017-07-01

    The Colombian Association of Astronomical Studies (ACDA) is a Non Profit Organization with thirty years of permanent efforts for the popularization of astronomy and related sciences in Colombia. ACDA put together amateur and profesional astronomers, as well as interested people. We surely had left a footprint on uncountable number of attending people to our activities, members and former members, and have supported the process of building a new society, with more awareness on the importance of science. We devote our efforts to our members and general people, to keep them motivated, support them and follow each member own interests in order to expand and spread their knowledge. In order to achieve our goals we have develop several strategies as: acquire of didactic material and optical instruments, video projections and discussion, astronomical observations, visits to observatories and planetariums, attending conferences and events, and mainly a weekly Saturday morning talk at the Bogotá Planetarium. ACDA has had different study teams on several fields including: Planetary Systems, Astrobiology, Space Exploration, Cosmology, History of Astronomy and Radioastronomy. ACDA has a national brandname on Astronomy due to seriousness and quality of its projects. A good list of members have become profesional astronomers. From our experience we can say: astronomy is a fertile field to teach science, in general there is an absence of astronomy culture in the public, our best communication experience are astronomical observations, explained astronomy movies and colloquiums, our best public are kids and aged people and finally, social networks gave dynamics to our astronomy spreading initiative.

  11. Highlights of Astronomy, Vol. 16

    Science.gov (United States)

    Montmerle, Thierry

    2015-04-01

    Part I. Invited Discourses: 1. The Herschel view of star formation; 2. Past, present and future of Chinese astronomy; 3. The zoo of galaxies; 4. Supernovae, the accelerating cosmos, and dark energy; Part II. Joint Discussion: 5. Very massive stars in the local universe; 6. 3-D views of the cycling Sun in stellar context; 7. Ultraviolet emission in early-type galaxies; 8. From meteors and meteorites to their parent bodies: current status and future developments; 9. The connection between radio properties and high-energy emission in AGNs; 10. Space-time reference systems for future research; Part III. Special Sessions: 11. Origin and complexity of massive star clusters; 12. Cosmic evolution of groups and clusters of galaxies; 13. Galaxy evolution through secular processes; 14. New era for studying interstellar and intergalactic magnetic fields; 15. The IR view of massive stars: the main sequence and beyond; 16. Science with large solar telescopes; 17. The impact hazard: current activities and future plans; 18. Calibration of star-formation rate measurements across the electromagnetic spectrum; 19. Future large scale facilities; 20. Dynamics of the star-planet relations strategic plan and the Global Office of Astronomy for Development; 21. Strategic plan and the Global Office of Astronomy for Development; 22. Modern views of the interstellar medium; 23. High-precision tests of stellar physics from high-precision photometry; 24. Communicating astronomy with the public for scientists; 25. Data intensive astronomy; 26. Unexplained spectral phenomena in the interstellar medium; 27. Light pollution: protecting astronomical sites and increasing global awareness through education.

  12. Astronomy: Social Representations of the Integrated High School Students and Graduates in Physics

    Science.gov (United States)

    Barbosa, J. I. L.

    The topics related to Astronomy are spread through almost all levels of basic education in Brazil and are also disseminated through the mass media, activities that do not always occur in the proper way. However, their students form their explanations about the phenomena studied by Astronomy, that is, they begin to construct their opinions, their beliefs and their attitudes regarding this object or this situation. In this sense, this work was divided in two fronts, which have the following objectives: (1) To identify the social representations of Astronomy elaborated by students of Integrated secondary education and undergraduate students in Physics; (2) To verify to what extent the social representations developed by the investigated students are equivalent; (3) To Investigate if the social representations designed per undergraduate students in Physics about Astronomy undergo changes after these participate in a course on basic subjects of Astronomy, in comparison with those exposed before the mentioned event. On the first front there is a research of a basic nature, where the data were obtained through of survey, and analysed in accordance with the methodologies pertinent to Central Nucleus Theory, the second front deals with an investigation of an applied nature, and the data obtained were explored through statistical analyses. The results indicate that the researchers have been involved in social representations of the object Astronomy, which are based on elements of the formal education space, and also disclosed in the media, in addition, demonstrate that the students have information about Astronomy and a valuation position in relation to this Science. On the second front, the results indicate that there were changes in the social representations of the undergraduate students in Physics about the term inductor Astronomy, after the course, that is, several elements evoked before the course were replaced by others, which were worked during the event.

  13. The Universe Observing Center a modern center to teach and communicate astronomy

    Science.gov (United States)

    Ribas, Salvador J.

    2011-06-01

    The Universe Observing Center is one of the parts of the Parc Astronòmic Montsec (PAM). PAM is an initiative of the Catalan government, through the Consorci del Montsec (Montsec Consortium), to take advantage of the capabilities and potential of the Montsec region to develop scientific research, training and outreach activities, particularly in the field of Astronomy. The choice of the Montsec mountains to install the PAM was motivated by the magnificent conditions for observing the sky at night; the sky above Montsec is the best (natural sky free of light pollution) in Catalonia for astronomical observations. The PAM has two main parts: the Observatori Astronòmic del Montsec (OAdM) and the Universe Observing Center (COU). The OAdM is a professional observatory with an 80-cm catadioptric telescope (Joan Oró Telescope). This telescope is a robotic telescope that can be controlled from anywhere in the world via the Internet. The COU is a large multipurpose center which is intended to become an educational benchmark for teaching and communicate astronomy and other sciences in Catalonia. The management of the COU has three main goals: 1) Teach primary and secondary school students in our Educational Training Camp. 2) Teach university students housing the practical astronomy lectures of the universities. 3) Communicate astronomy to the general public. The COU comprises special areas for these purposes: the Telescopes Park with more than 20 telescopes, a coelostat for solar observations and two dome containing full-automated telescopes. The most special equipment is ``The Eye of Montsec'', with its 12m dome containing a multimedia digital planetarium and a platform for direct observation of the sky and the environment. During 2009 we expect around 10000 visitors in Montsec area to enjoy science with Montsec dark skies and an special natural environment.

  14. The Eternal Role of Astronomy in History and Civilization

    Science.gov (United States)

    Theodossiou, E.; Manimanis, V. N.

    2010-07-01

    Astronomy is the most ancient of all natural sciences. From its roots in ancient Babylonian and Egyptian stellar observations, and through its formulation into a science from the Greek natural philosophers, it defined the measurement of time. The stellar eras and the applications of Astronomy were incorporated in temples, paintings, sculptures and in art in general. Today, the value of Astronomy on practical matters, timekeeping or the navigation, has diminished. However, the eternal questions connected with Astronomy remain: Who are we and where did we come from? How and why was the Universe born? The greatest step to answer this kind of questions came with the so-called Copernican revolution, mostly in the 17th Century. The progress of Astronomy in the 400 years since then answered questions and gave an end to all kinds of superstitions, one more contribution to human civilization.

  15. The Development of Astronomy and Emergence of Astrophysics in New Zealand

    Science.gov (United States)

    Hearnshaw, John; Orchiston, Wayne

    The development of astronomy and astrophysics in New Zealand from the earliest European exploration and settlement to the present day is discussed. The major contributions to astronomy by amateur astronomers are covered, as is the later development of astronomy and astrophysics in New Zealand's universities. The account includes the founding of professional observatories for optical astronomy at Mt. John (belonging to the University of Canterbury) and for radio astronomy at Warkworth (belonging to the Auckland University of Technology). Several major international collaborations in which New Zealand is participating (or has participated) are described, including SALT, MOA, IceCube and SKA. The founding and history of the Carter Observatory in Wellington, of the Stardome Observatory in Auckland (both engaged in astronomical education and outreach) and of the Royal Astronomical Society of New Zealand are briefly covered.

  16. “Big Data” Teen Astronomy Cafes at NOAO

    Science.gov (United States)

    Pompea, Stephen; Walker, Constance E.

    2018-01-01

    The National Optical Astronomy Observatory has designed and implemented a prototype educational program designed to test and understand best practices with high school students to promote an understanding of modern astronomy research with its emphasis on large data sets, data tools, and visualization tools. This program, designed to cultivate the interest of talented youth in astronomy, is based on a teen science café model developed at Los Alamos as the Café Scientifique New Mexico. In our program, we provide a free, fun way for teens to explore current research topics in astronomy on Saturday mornings at the NOAO headquarters. The program encourages stimulating conversations with astronomers in an informal and relaxed setting, with free food of course. The café is organized through a leadership team of local high school students and recruits students from all parts of the greater Tucson area. The high school students who attend have the opportunity to interact with expert astronomers working with large astronomical data sets on topics such as killer asteroids, the birth and death of stars, colliding galaxies, the structure of the universe, gravitational waves, gravitational lensing, dark energy, and dark matter. The students also have the opportunity to explore astronomical data sets and data tools using computers provided by the program. The program may serve as a model for educational outreach for the 40+ institutions involved in the LSST.

  17. Encyclopedia of Astronomy and Astrophysics

    CERN Document Server

    2002-01-01

    Interstellar medium, Light, Magnetisphere, Matter, Planet Earth, Public Impact, Solar Activity, Solar Heliosphere, Solar Interior, Solar Systems, Space, Stellar Astrophysics, Stellar Populations, Telescopes, Time The Encyclopedia of Astronomy and Astrophysics covers 30 major subject areas, such as Active galaxies, Astrometry, Astrophysical theory, Atmospheres, Binary stars, Biography, Clusters, Coordinates, Cosmology, Earth, Education, Galaxies,

  18. Archaeo- and Cultural Astronomy in Armenia

    Science.gov (United States)

    Farmanyan, Sona V.; Mickaelian, Areg M.

    2015-08-01

    We present a general overview on Armenian Archaeoastronomy and Astronomy in Culture to mention and summarize some activities and related organizations involved. Armenia is rather rich in archaeoastronomy and culture, including calendars, rock art, mythology, etc. Archaeoastronomical issues in Armenia include: Zodiac Constellations (believed to be introduced for the first time in the Armenian Highland); Ancient Observatories; Armenian Rock Art; Ancient Armenian Calendar and other (medieval) calendars; Astronomical Terms and Names; Records of Astronomical Events by ancient Armenians; Anania Shirakatsi’s (612-685) Astronomical Heritage; Medieval Sky Maps and Astronomical Devices. During the recent years, we have organized a number of meetings, where archaeoastronomy was involved: Joint European and National Astronomy Meeting (JENAM-2007), Special Session #6: “Archaeoastronomy” (2007), ArAS VIII Annual Meeting “Astronomy and Society”, Session “Archaeoastronomy” (2009), Archaeoastronomical meeting “Astronomical Heritage in the National Culture” dedicated to Anania Shirakatsi’s 1400th anniversary (2012), Meeting “Relation of Astronomy to other Sciences, Culture and Society” (RASCS), Sessions“Archaeoastronomy” and “Astronomy in Culture” (2014). Along with Byurakan Astrophysical Observatory (BAO), there are several other institutions related to Archaeoastronomy and Astronomy in Culture: Institute of History, Institute of Archaeology and Ethnography, Institute of Literature, Institute of Language, Matenadaran (Institute of Ancient Manuscripts). We have introduced a section “Archaeoastronomy and Astronomy in Culture” in the newsletter of Armenian Astronomical Society (ArAS). This is to strengthen ArAS activities and to widen our knowledge in this area, to encourage and establish collaborations with other scientists related to these subjects; historians, archaeologists, ethnographers, philologists, linguists, artists and other

  19. Holding or Breaking with Ptolemy's Generalization: Considerations about the Motion of the Planetary Apsidal Lines in Medieval Islamic Astronomy.

    Science.gov (United States)

    Mozaffari, S Mohammad

    2017-03-01

    Argument In the Almagest, Ptolemy finds that the apogee of Mercury moves progressively at a speed equal to his value for the rate of precession, namely one degree per century, in the tropical reference system of the ecliptic coordinates. He generalizes this to the other planets, so that the motions of the apogees of all five planets are assumed to be equal, while the solar apsidal line is taken to be fixed. In medieval Islamic astronomy, one change in this general proposition took place because of the discovery of the motion of the solar apogee in the ninth century, which gave rise to lengthy discussions on the speed of its motion. Initially Bīrūnī and later Ibn al-Zarqālluh assigned a proper motion to it, although at different rates. Nevertheless, appealing to the Ptolemaic generalization and interpreting it as a methodological axiom, the dominant idea became to extend it in order to include the motion of the solar apogee as well. Another change occurred after correctly making a distinction between the motion of the apogees and the rate of precession. Some Western Islamic astronomers generalized Ibn al-Zarqālluh's proper motion of the solar apogee to the apogees of the planets. Analogously, Ibn al-Shāṭir maintained that the motion of the apogees is faster than precession. Nevertheless, the Ptolemaic generalization in the case of the equality of the motions of the apogees remained untouchable, despite the notable development of planetary astronomy, in both theoretical and observational aspects, in the late Islamic period.

  20. Uncovering Astronomy Students’ Understandings of the Age of the Universe: A Literature Review

    Science.gov (United States)

    Grundstrom, Erika; Slater, T.; Stassun, K.

    2008-05-01

    Most education reform documents describing what students should understand about astronomy include concepts surrounding the immense size scale and ancient age of our Universe. If an appreciation for "deep time” is needed to develop mastery of astronomical concepts, then astronomy educators need to become aware of how students, and the general public, think about concepts of immense timescales. As a first step toward addressing this issue, we conducted a survey of the educational research literature on students’ conceptions of long timescales. Most recent research efforts have focused on two strategies. One is to show figures illustrating geologic strata to students who are asked to determine the sequence of events based on the concepts of original horizontality and superposition with younger sediments overlying older sediments. The other research design is to employ a card-sorting technique where people are asked to arrange events in order in relative sequence and sometimes asked to space them on a timeline. The key finding is that students can often place historical events in the correct relative order but are unable to place them with correct relative spacing or accurate absolute dates. Other findings are that current research does not reveal gender or racial biases in student thinking and it does not show that students always distinguish between the Big Bang and the formation of the Sun or Earth. It is clear that researchers in earth science education have not focused on cosmological time frames, only geologic time frames, thus leaving an important deficit in the literature. Prior to turning our attention to curriculum materials development focused on improving student understanding of long timescales in astronomy, we plan to expand these studies to include cosmological events.

  1. Inter-Division IV-V-IX / Working Group Historic Radio Astronomy

    NARCIS (Netherlands)

    Orchiston, Wayne; Kellermann, Kenneth I.; Davies, Rodney D.; Débarbat, Suzanne V.; Morimoto, Masaki; Slysh, Slava; Swarup, Govind; van Woerden, Hugo; Wall, Jasper V.; Wielebinski, Richard

    2009-01-01

    The Working Group was formed at the IAU XXV General Assembly in Sydney, 2003, as a joint initiative of Commissions 40 Radio Astronomy and Commission 41 History of Astronomy, in order to assemble a master list of surviving historically-significant radio telescopes and associated instrumentation found

  2. Kepler's Philosophy and the New Astronomy

    CERN Document Server

    Martens, Rhonda

    2009-01-01

    Johannes Kepler contributed importantly to every field he addressed. He changed the face of astronomy by abandoning principles that had been in place for two millennia, made important discoveries in optics and mathematics, and was an uncommonly good philosopher. Generally, however, Kepler's philosophical ideas have been dismissed as irrelevant and even detrimental to his legacy of scientific accomplishment. Here, Rhonda Martens offers the first extended study of Kepler's philosophical views and shows how those views helped him construct and justify the new astronomy.Martens notes that since Ke

  3. 2011 Astronomy Day at McDonald Observatory

    Science.gov (United States)

    Preston, Sandra; Hemeway, M.; Wetzel, M.

    2012-01-01

    Our philosophy is that everyday is Astronomy Day because the McDonald Observatory's Frank N. Bash Visitors Center is open 362 days a year. So, how did we create a special celebration for the "Astronomy Day” declared by the Astronomical League? During September 26-29 we conducted 20 videoconferences and served 12,559 students with "Astronomy Day” programming. Connect2Texas provides bridging for a network of Texas-based museums and cultural, historical, and scientific organizations that offer educational content to schools throughout the state via videoconferencing. Connect2Texas connected McDonald Observatory to 334 schools; most of these schools were in Texas, but schools in a dozen other states also participated. While most schools had a "view-only" connection, at least 20 of the schools had interactive connections, whereby the students could ask questions of the presenter. Connect2Texas also collects evaluation information from the participating schools that we will use to produce a report for our funders and make modifications to future programs as need be. The videoconferences were offered free of charge. The theme for the 2011 Astronomy Day program was the Year of the Solar System, which aligns with NASA's theme for 2011 and 2012. By aligning with this NASA theme, we could leverage NASA artwork and materials to both advertise and enrich the learning experience. Videoconference materials also included pre- and post-videoconference assessment sheets, an inquiry based activity, and pre- and post-videoconference activities, all of which were made available online. One of the lessons learned from past Astronomy Day videoconferences is that the days the Astronomical League declares as "Astronomy Day” are not always good days for Texas schools to participate. So, we choose an Astronomy Day that meets the needs of Texas schools and our schedule - so any day can be Astronomy Day. 2011 Astronomy Day was made possible by The Meyer-Levy Charitable Trust.

  4. Astronomy Education for Physics Students JH Fan1,2,∗ , JS Zhang1

    Indian Academy of Sciences (India)

    2Astronomy Science and Technology Research Laboratory of Department of ... University, and how we are teaching astronomy to the students. Astro- physics ... graduate students, middle school students, and even primary school students. We.

  5. African Cultural Astronomy

    CERN Document Server

    Holbrook, Jarita C; Medupe, R. Thebe; Current Archaeoastronomy and Ethnoastronomy research in Africa

    2008-01-01

    Astronomy is the science of studying the sky using telescopes and light collectors such as photographic plates or CCD detectors. However, people have always studied the sky and continue to study the sky without the aid of instruments this is the realm of cultural astronomy. This is the first scholarly collection of articles focused on the cultural astronomy of Africans. It weaves together astronomy, anthropology, and Africa. The volume includes African myths and legends about the sky, alignments to celestial bodies found at archaeological sites and at places of worship, rock art with celestial imagery, and scientific thinking revealed in local astronomy traditions including ethnomathematics and the creation of calendars. Authors include astronomers Kim Malville, Johnson Urama, and Thebe Medupe; archaeologist Felix Chami, and geographer Michael Bonine, and many new authors. As an emerging subfield of cultural astronomy, African cultural astronomy researchers are focused on training students specifically for do...

  6. The new Andean Regional Office of Astronomy for Development (ROAD)

    Science.gov (United States)

    Char, Farid; Forero-Romero, Jaime

    2015-08-01

    The Andean Regional Office of Astronomy for Development (ROAD) is a new effort in South America to serve several goals in astronomical development. Six countries (Bolivia, Colombia, Chile, Ecuador, Perú and Venezuela) will work together, representing a common language block in the Andean region and focusing on develop strategies to strengthen the professional research, education and popularization of astronomy. Our current Working Structure comprises a ROAD Coordinator and Coordinators per Task Force, as well as Organizing Committees, Collaborators and Volunteers.The participating institutions of this new ROAD have been involved in many projects involving each of the current OAD’s Task Forces: research, schools and children and public, exploring educational activities/material to be shared among the Andean countries, standardizing the knowledge and creating inspirational experiences. We expect to generate many efforts in order to bring a more homogeneous activity in each Andean country, taking into account the special role of Chile in global astronomy, due to its great conditions for astronomy and the involvement of many professional observatories, universities and astronomy institutions.Our current (and upcoming) most relevant activities includes: Andean Schools on Astronomy, Andean Graduate Program and Massive Open Online Courses (TF1); Virtual Training Sessions and Teaching material for the visually impaired students; Annual TF2 meeting to gather all the collaborators (TF2); Development for planetariums and Communicating Astronomy with the Public (TF3). The Andean region, in the other hand, will also be involved in at least two important events: the CAP Meeting in May 2016 and the XV LARIM in October 2016 (both in Colombia); and Chile will bid to host the XXXI IAU GA in 2021, with the aim of show the great advances in astronomical development from the Andean region and South America.

  7. The Universe Observation Center: an educational center devoted to Astronomy in Catalonia

    Science.gov (United States)

    Fernández, D.

    The Universe Observation Center (in Catalan language, Centre d'Observació de l'Univers, COU) is located in close proximity to the Montsec Astronomical Observatory (Observatori Astronòmic del Montsec, OAM), in eastern Catalonia (Spain). Both centers comprise the Montsec Astronomical Park (Parc Astronòmic Montsec, PAM), managed by the Consorci del Montsec. Montsec Mountain remains the finest location for astronomical observation in Catalonia, as demonstrated by a site-testing campaign conducted by the Astronomy and Meteorology Department of the University of Barcelona. The COU consists of a Central Building (including a permanent exhibition and three classrooms possessing broadband Internet access), the Telescope Park (two astronomical domes equipped with medium-size telescopes, a coelostat for solar observation, and a portable telescope park), the Eye of Montsec (a digital planetarium and, at the same time, an extremely innovative platform for sky observation) and the Garden of the Universe (a tour of the land surrounding the COU, visiting several areas within it). The COU will offer to the Spanish academic community a host of fascinating and unique activities in the fields of astronomy and geology. The Center is open not only to students (from primary school through university), but also to amateur astronomers, people interested in science and the general public.

  8. Astronomy and Politics

    Science.gov (United States)

    Steele, John M.

    The relationship between astronomy and politics is a complex but important part of understanding the practice of astronomy throughout history. This chapter explores some of the ways that astronomy, astrology, and politics have interacted, placing particular focus on the way that astronomy and astrology have been used for political purposes by both people in power and people who wish to influence a ruler's policy. Also discussed are the effects that politics has had on the development of astronomy and, in particular, upon the recording and preservation of astronomical knowledge.

  9. Astronomy: social background of students of the integrated high school

    Science.gov (United States)

    Voelzke, M. R.; Barbosa, J. I. L.

    2017-07-01

    Astronomy-related contents exist in almost all levels of basic education in Brazil and are also frequently disseminated through mass media. Thus, students form their own explanations about the phenomena studied by this science. Therefore, this work has the objective of identifying the possible social background of the Integrated High School students on the term Astronomy. It is a research of a basic nature, descriptive, and for that reason a quali-quantitative approach was adopted; the procedures to obtain the data were effected in the form of a survey. The results show that the tested students have a social background about the object Astronomy, which is on the one hand fortified by elements they have made or which is part of the experience lived by the respondents within the formal space of education, and on the other hand based on elements possibly disseminated through the mass media.

  10. The sociology of innovation in modern astronomy

    International Nuclear Information System (INIS)

    Edge, D.

    1977-01-01

    This paper describes some of the main features of the development of astronomy since 1945, stressing sociological factors, and drawing examples mainly from the history of radio astronomy. Particular attention is given to aspects which appear to distinguish astronomy from other recently-studied sciences - notably, the prevalence of serendipitous discoveries, and the lack of any general resistance from the 'parent' discipline. The work of Kuhn and Hagstrom is used to illuminate these features, and also to indicate how a sociological analysis can be advanced of individual research decisions, and of the nature of disputes within science. Common misconceptions about the nature and scope of sociology are briefly discussed; in particular, it is emphasized that the kind of sociology of science under discussion cannot be normative. (author)

  11. Creating a Community of Practice: Lessons Learned from the Center for Astronomy Education (Invited)

    Science.gov (United States)

    Brissenden, G.

    2009-12-01

    The Center for Astronomy Education (CAE) is devoted to improving teaching and learning in Astro 101. To accomplish this, a vital part of CAE is our broader community of practice which includes over 1000 instructors, graduate and undergraduate students, and postdocs. It is this greater community of practice that supports each other, helps, and learns from each other beyond what would be possible without it. As our community of practice has grown, we at CAE have learned many lessons about how different facets of CAE can best be used to promote and support our community both as a whole and for individual members. We will discuss the various facets of CAE, such as our online discussion group Astrolrner@CAE (http://astronomy101.jpl.nasa.gov/discussion) and its Guest Moderator program, our CAE Regional Teaching Exchange Coordinator program, our CAE Workshop Presenter Apprenticeship Training program, our online This Month’s Teaching Strategy, monthly newsletters, and various types of socializing and networking sessions we hold at national meetings. But more importantly, we will discuss the lessons we’ve learned about what does and does not work in building community within each of these facets.

  12. Thinking Big for 25 Years: Astronomy Camp Research Projects

    Science.gov (United States)

    Hooper, Eric Jon; McCarthy, D. W.; Benecchi, S. D.; Henry, T. J.; Kirkpatrick, J. D.; Kulesa, C.; Oey, M. S.; Regester, J.; Schlingman, W. M.; Camp Staff, Astronomy

    2013-01-01

    Astronomy Camp is a deep immersion educational adventure for teenagers and adults in southern Arizona that is entering its 25th year of existence. The Camp Director (McCarthy) is the winner of the 2012 AAS Education Prize. A general overview of the program is given in an accompanying contribution (McCarthy et al.). In this presentation we describe some of the research projects conducted by Astronomy Camp participants over the years. Many of the Camps contain a strong project-oriented emphasis, which reaches its pinnacle in the Advanced Camps for teenagers. High school students from around the world participate in a microcosm of the full arc of astronomy research. They plan their own projects before the start of Camp, and the staff provide a series of "key projects." Early in the Camp the students submit observing proposals to utilize time on telescopes. (The block of observing time is secured in advance by the staff.) The participants collect, reduce and analyze astronomical data with the help of staff, and they present the results to their peers on the last night of Camp, all in a span of eight days. The Camps provide research grade telescopes and instruments, in addition to amateur telescopes. Some of the Camps occur on Kitt Peak, where we use an ensemble of telescopes: the 2.3-meter (University of Arizona) with a spectrograph; the WIYN 0.9-meter; the McMath-Pierce Solar Telescope; and the 12-meter millimeter wave telescope. Additionally the Camp has one night on the 10-meter Submillimeter Telescope on Mt. Graham. Campers use these resources to study stars, galaxies, AGN, transiting planets, molecular clouds, etc. Some of the camper-initiated projects have led to very high level performances in prestigious international competitions, such as the Intel International Science and Engineering Fair. The key projects often contribute to published astronomical research (e.g., Benecchi et al. 2010, Icarus, 207, 978). Many former Campers have received Ph.D. degrees in

  13. Astronomy across cultures the history of non-Western astronomy

    CERN Document Server

    Xiaochun, Sun

    2000-01-01

    Astronomy Across Cultures: A History of Non-Western Astronomy consists of essays dealing with the astronomical knowledge and beliefs of cultures outside the United States and Europe. In addition to articles surveying Islamic, Chinese, Native American, Aboriginal Australian, Polynesian, Egyptian and Tibetan astronomy, among others, the book includes essays on Sky Tales and Why We Tell Them and Astronomy and Prehistory, and Astronomy and Astrology. The essays address the connections between science and culture and relate astronomical practices to the cultures which produced them. Each essay is well illustrated and contains an extensive bibliography. Because the geographic range is global, the book fills a gap in both the history of science and in cultural studies. It should find a place on the bookshelves of advanced undergraduate students, graduate students, and scholars, as well as in libraries serving those groups.

  14. Assessing Informal Astronomy Education and Outreach

    Science.gov (United States)

    Bednarski, Marsha; Larsen, K.; Robinson, C.

    2008-05-01

    As astronomical organizations, science centers, and planetariums prepare new programming for the IYA, the question of assessment of such programs, both in conveying astronomical content and engaging the audience in that content, becomes increasingly important. In addition, how can target audience interests be measured in such as way as to facilitate the development of this new programming? One methodology is question cards (Stroud et al. 2007) which asks participants to physically sort a set of questions into categories such as "what I already know about,” "what I want to know more about,” and "what I am not interested in knowing more about.” When administered as a pre/post assessment, the resulting data can be utilized to make adjustments to future programming and to create new programs which better fit target audience interests and pedagogical needs. This poster discusses a modification of this methodology as 10-item questionnaire where questions such as "how will the sun die?” and "why do stars have different colors” are accompanied by four possible responses: "I know the answer,” "I want to know the answer,” "I know the answer but I want to know more,” and "I'm not interested in this question.” Data will be provided for the successes and limitations of this assessment technique as applied to three pilot programs: assessment of an existing informal astronomy education program for 7th graders, assessment of an existing planetarium show, and audience research for the planning of a future planetarium show.

  15. Astronomy in the Russian Scientific-Educational Project: "KAZAN-GEONA-2010"

    Science.gov (United States)

    Gusev, A.; Kitiashvili, I.

    2006-08-01

    The European Union promotes the Sixth Framework Programme. One of the goals of the EU Programme is opening national research and training programs. A special role in the history of the Kazan University was played by the great mathematician Nikolai Lobachevsky - the founder of non-Euclidean geometry (1826). Historically, the thousand-year old city of Kazan and the two-hundred-year old Kazan University carry out the role of the scientific, organizational, and cultural educational center of the Volga region. For the continued successful development of educational and scientific-educational activity of the Russian Federation, the Republic Tatarstan, Kazan was offered the national project: the International Center of the Sciences and Internet Technologies "GeoNa" (Geometry of Nature - GeoNa - is wisdom, enthusiasm, pride, grandeur). This is a modern complex of conference halls including the Center for Internet Technologies, a 3D Planetarium - development of the Moon, PhysicsLand, an active museum of natural sciences, an oceanarium, and a training complex "Spheres of Knowledge". Center GeoNa promotes the direct and effective channel of cooperation with scientific centers around the world. GeoNa will host conferences, congresses, fundamental scientific research sessions of the Moon and planets, and scientific-educational actions: presentation of the international scientific programs on lunar research and modern lunar databases. A more intense program of exchange between scientific centers and organizations for a better knowledge and planning of their astronomical curricula and the introduction of the teaching of astronomy are proposed. Center GeoNa will enable scientists and teachers of the Russian universities with advanced achievements in science and information technologies to join together to establish scientific communications with foreign colleagues in the sphere of the high technology and educational projects with world scientific centers.

  16. Teach Astronomy: An Online Resource for Introductory Astronomy Courses and Informal Learners

    Science.gov (United States)

    Austin, Carmen; Impey, C. D.; Hardegree-Ullman, K.; Patikkal, A.; Ganesan, N.

    2013-01-01

    Teach Astronomy (www.teachastronomy.com) is a new, free online resource—a teaching tool for non-science major astronomy courses and a reference guide for lifelong learners interested in the subject. Digital content available includes: a comprehensive introductory astronomy textbook by Chris Impey, Wikipedia astronomy articles, images from Astronomy Picture of the Day archives and AstroPix database, two to three minute topical video clips by Chris Impey, podcasts from 365 Days of Astronomy archives, and an RSS feed of astronomy news from Science Daily. Teach Astronomy features an original technology called the Wikimap to cluster, display, and navigate site search results. Motivation behind the development of Teach Astronomy includes steep increases in textbook prices, the rapid adoption by students and the public of digital resources, and the modern capabilities of digital technology. Recent additions to Teach Astronomy include: AstroPix images—from some of the most advanced observatories and complete with metadata, mobile device functionality, links to WikiSky where users can see the location of astronomical objects in the sky, and end of chapter textbook review questions. Next in line for development are assignments for classroom use. We present suggestions for utilizing the rich content and features of the web site.

  17. Introductory Astronomy Course at the University of Cape Town: Probing Student Perspectives

    Science.gov (United States)

    Rajpaul, Vinesh; Allie, Saalih; Blyth, Sarah-Louise

    2014-01-01

    We report on research carried out to improve teaching and student engagement in the introductory astronomy course at the University of Cape Town. This course is taken by a diverse range of students, including many from educationally disadvantaged backgrounds. We describe the development of an instrument, the Introductory Astronomy Questionnaire…

  18. Present and future of astronomy in Thailand

    Science.gov (United States)

    Soonthornthum, Boonrucksar

    2018-05-01

    Investments in national astronomical facilities and human resources through the National Astronomical Research Institute of Thailand have led to the rapid growth of astronomy in Thailand. Ongoing activities in key research areas, education and outreach will lead to further sustainable development.

  19. Introducing Astronomy Related Research into Non-Astronomy Courses

    Science.gov (United States)

    Walker, Douglas

    The concern over the insufficient number of students choosing to enter the science and engineering fields has been discussed and documented for years. While historically addressed at the national level, many states are now recognizing that the lack of a highly-skilled technical workforce within their states' borders has a significant effect on their economic health. Astronomy, as a science field, is no exception. Articles appear periodically in the most popular astronomy magazines asking the question, "Where are the young astronomers?" Astronomy courses at the community college level are normally restricted to introductory astronomy I and II level classes that introduce the student to the basics of the night sky and astronomy. The vast majority of these courses is geared toward the non-science major and is considered by many students to be easy and watered down courses in comparison to typical physics and related science courses. A majority of students who enroll in these classes are not considering majors in science or astronomy since they believe that science is "boring and won't produce any type of career for them." Is there any way to attract students? This paper discusses an approach being undertaken at the Estrella Mountain Community College to introduce students in selected mathematics courses to aspects of astronomy related research to demonstrate that science is anything but boring. Basic statistical techniques and understanding of geometry are applied to a large virgin data set containing the magnitudes and phase characteristics of sets of variable stars. The students' work consisted of developing and presenting a project that explored analyzing selected aspects of the variable star data set. The description of the data set, the approach the students took for research projects, and results from a survey conducted at semester's end to determine if student's interest and appreciation of astronomy was affected are presented. Using the data set provided, the

  20. Multimedia Astronomy Communication: Effectively Communicate Astronomy to the Desired Audience

    Science.gov (United States)

    Star Cartier, Kimberly Michelle; Wright, Jason

    2017-01-01

    A fundamental aspect of our jobs as scientists is communicating our work to others. In this, the field of astronomy holds the double-edged sword of ubiquitous fascination: the topic has been of interest to nearly the entire global population at some point in their lives, yet the learning curve is steep within any subfield and rife with difficult-to-synthesize details. Compounding this issue is the ever-expanding array of methods to reach people in today's Communications Era. Each communication medium has its own strengths and weaknesses, is appropriate in different situations, and requires its own specific skillset in order to maximize its functionality. Despite this, little attention is given to training astronomers in effective communication techniques, often relying on newcomers to simply pick up the ability by mimicking others and assuming that a firm grasp on the subject matter will make up for deficiencies in communication theory. This can restrict astronomers to a narrow set of communication methods, harming both the communicators and the audience who may struggle to access the information through those media.Whether writing a research paper to academic peers or giving an astronomy talk to a pubic audience, successfully communicating a scientific message requires more than just an expert grasp on the topic. A communicator must understand the makeup and prior knowledge of the desired audience, be able to break down the salient points of the topic into pieces that audience can digest, select and maximize upon a medium to deliver the message, and frame the message in a way that hooks the audience and compels further interest. In this work we synthesize the requirements of effective astronomy communication into a few key questions that every communicator needs to answer. We then discuss some of the most common media currently used to communicate astronomy, give both effective and poor examples of utilizing these media to communicate astronomy, and provide key

  1. The Role of the Modern Planetarium as an Effective Tool in Astronomy Education and Public Outreach

    Science.gov (United States)

    Albin, Edward F.

    2016-01-01

    As the planetarium approaches its 100th anniversary, today's planetarium educator must reflect on the role of such technology in contemporary astronomy education and outreach. The projection planetarium saw "first light" in 1923 at the Carl Zeiss factory in Jena, Germany. During the 20th century, the concept of a star projector beneath a dome flourished as an extraordinary device for the teaching of astronomy. The evolution of digital technology over the past twenty years has dramatically changed the perception / utilization of the planetarium. The vast majority of modern star theaters have shifted entirely to fulldome digital projection systems, abandoning the once ubiquitous electromechanical star projector altogether. These systems have evolved into ultra-high resolution theaters, capable of projecting imagery, videos, and any web-based media onto the dome. Such capability has rendered the planetarium as a multi-disciplinary tool, broadening its educational appeal to a wide variety of fields -- including life sciences, the humanities, and even entertainment venues. However, we suggest that what is at the heart of the planetarium appeal is having a theater adept at projecting a beautiful / accurate star-field. To this end, our facility chose to keep / maintain its aging Zeiss V star projector while adding fulldome digital capability. Such a hybrid approach provides an excellent compromise between presenting state of the art multimedia while at the same time maintaining the ability to render a stunning night sky. In addition, our facility maintains two portable StarLab planetariums for outreach purposes, one unit with a classic electromechanical star projector and the other having a relatively inexpensive fulldome projection system. With a combination of these technologies, it is possible for the planetarium to be an effective tool for astronomical education / outreach well into the 21st century.

  2. Astronomy on a Landfill

    Science.gov (United States)

    Venner, Laura

    2008-09-01

    Engaging "K-to-Gray” audiences (children, families, and older adults) in astronomical activities is one of the main goals of the NJMC Center for Environmental and Scientific Education and the William D. McDowell Observatory located in Lyndhurst, NJ. Perched atop a closed and reclaimed municipal solid waste landfill, our new LEED - certified building (certification pending) and William D. McDowell observatory will assist in bringing the goals of IYA 2009 to the approximately 25,000 students and 15,000 adults that visit our site from the NY/NJ region each year. Diversifying our traditional environmental science offerings, we have incorporated astronomy into our repertoire with "The Sun Through Time” module, which includes storytelling, cultural astronomy, telescope anatomy, and other activities that are based on the electromagnetic spectrum and our current knowledge of the sun. These lessons have also been modified to bring astronomy to underserved communities, specifically those individuals that have dexterity or cognitive ability differences. The program is conducted in a classroom setting and is designed to meet New Jersey Core Curriculum Content Standards. With the installation of our new 20” telescope, students and amateur astronomers will be given the opportunity to perform rudimentary research. In addition, a program is in development that will allow individuals to measure local sky brightness and understand the effects of light pollution on astronomical viewing. Teaching astronomy in an urban setting presents many challenges. All individuals, regardless of ability level or location, should be given the opportunity to be exposed to the wonders of the universe and the MEC/CESE has been successful in providing those opportunities.

  3. Astronomy: A Self-Teaching Guide, 6th Edition

    Science.gov (United States)

    Moché, Dinah L.

    2004-02-01

    "A lively, up-to-date account of the basic principles of astronomy and exciting current field of research."-Science Digest For a quarter of a century, Astronomy: A Self-Teaching Guide has been making students and amateur stargazers alike feel at home among the stars. From stars, planets and galaxies, to black holes, the Big Bang and life in space, this title has been making it easy for beginners to quickly grasp the basic concepts of astronomy for over 25 years. Updated with the latest discoveries in astronomy and astrophysics, this newest edition of Dinah Moché's classic guide now includes many Web site addresses for spectacular images and news. And like all previous editions, it is packed with valuable tables, charts, star and moon maps and features simple activities that reinforce readers' grasp of basic concepts at their own pace, as well as objectives, reviews, and self-tests to monitor their progress. Dinah L. Moché, PhD (Rye, NY), is an award-winning author, educator, and lecturer. Her books have sold over nine million copies in seven languages.

  4. Armenian Cultural Astronomy

    Science.gov (United States)

    Farmanyan, S. V.; Mickaelian, A. M.

    2015-07-01

    Cultural Astronomy is the reflection of sky events in various fields of nations' culture. In foreign literature this field is also called "Astronomy in Culture" or "Astronomy and Culture". Cultural astronomy is the set of interdisciplinary fields studying the astronomical systems of current or ancient societies and cultures. It is manifested in Religion, Mythology, Folklore, Poetry, Art, Linguistics and other fields. In recent years, considerable attention has been paid to this sphere, particularly international organizations were established, conferences are held and journals are published. Armenia is also rich in cultural astronomy. The present paper focuses on Armenian archaeoastronomy and cultural astronomy, including many creations related to astronomical knowledge; calendars, rock art, mythology, etc. On the other hand, this subject is rather poorly developed in Armenia; there are only individual studies on various related issues (especially many studies related to Anania Shirakatsi) but not coordinated actions to manage this important field of investigation.

  5. How Much Learning Could Possibly Be Going On In A 700 Person General Education Science Course? Research Results On The Teaching And Learning Of A "Mega” Astro 101 Course

    Science.gov (United States)

    Prather, Edward E.; Rudolph, A. L.; Brissenden, G.; Cormier, S.; Consiglio, D.; Collaboration of Astronomy Teaching Scholars CATS

    2012-01-01

    Researchers with the NSF-funded Collaboration of Astronomy Teaching Scholars (CATS) Program and the JPL NASA funded Center for Astronomy Education at the University of Arizona have engaged in a multi-year study on the learning that occurs in a general education introductory astronomy class with an enrollment of greater than 700 students. This new "Mega” course, was modeled after the University of Arizona's highly-effective Astro 101 instructional environment which evolved out of the development and testing from the Lecture-Tutorials and Ranking-Task curriculum projects (Prather, Rudolph, & Brissenden 2009). We have undertaken an ambitious research project to assess the effectiveness of this Mega course through the simultaneous implementation of the Light and Spectroscopy Concept Inventory (LSCI), the Stellar Properties Concept Inventory (SPCI), The Lawson Test for Scientific Reasoning, and the Thinking about Science Survey Instrument (TSSI). Results indicate that the content learning gains of the students in these courses are quite high, and that new models for instruction pioneered for this course are critical to crating a productive and collaborative learning environment in the Mega classroom. This material is based in part upon work supported by the National Science Foundation under Grant No. 0715517, a CCLI Phase III Grant for the Collaboration of Astronomy Teaching Scholars (CATS). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. Prather, E. E., A. L. Rudolph, and G. Brissenden. 2009. "Teaching and Learning Astronomy in the 21st Century.” Physics Today 62(10), 41.

  6. Development Programs and Activities for Southeast Asia Regional Office of Astronomy for Development

    Science.gov (United States)

    Insiri, Wichan

    2015-08-01

    In recent years, since the establishment of SEA-ROAD in 2012, the office has seen an exponential progress as it has proved to be one of the prominent regional hubs for IAU-OAD. Recent activities over the past years ranging from Winter and Summer Schools Trainings to Astronomy Technology Transfer Camp for high school students to Internship at NARIT are some examples of what promises to be a good sign of progressive leap in astronomy for the entire region. SEA-ROAD will continue to make an impact on astronomy education, popularization and public outreach as the office is vital and imperative to the capacity building of astronomy of the entire region.

  7. Radio astronomy

    CERN Document Server

    Alder, Berni

    1975-01-01

    Methods in Computational Physics, Volume 14: Radio Astronomy is devoted to the role of the digital computer both as a control device and as a calculator in addressing problems related to galactic radio noise. This volume contains four chapters and begins with a technical description of the hardware and the special data-handling problems of using radioheliography, with an emphasis on a selection of observational results obtained with the Culgoora radioheliograph and their significance to solar physics and to astrophysics in general. The subsequent chapter examines interstellar dispersion, i

  8. Lighting the Fire for 25 years: The Nature and Legacy of Astronomy Camp

    Science.gov (United States)

    McCarthy, Donald W.; Hooper, E.; Benecchi, S. D.; Henry, T. J.; Kirkpatrick, J. D.; Kulesa, C.; Oey, M. S.; Regester, J.; Schlingman, W. M.; Camp Staff, Astronomy

    2013-01-01

    In 1988, Astronomy Camp began in an era when science was entirely the realm of professionals, astronomical observatories were off-limits to the public at night, and scientists were not encouraged to spend time in science education. Since then we have grown a dynamic science education program that immerses individuals (ages 11-80), educators, schools, and Girl Scout Leaders in authentic science at Arizona’s research observatories in the Catalina mountains and at Kitt Peak. Often labeled “life changing,” these residential programs have engaged thousands of people from 49 U.S. states and 20 foreign countries. Female enrollment has increased steadily, and women now generally outnumber men in our teenage programs. Graduate students have played a major creative role and many have gone on to become educators and research leaders around the world. By involving a wide range of ages, the Camps have helped strengthen the STEM-pipeline. Many of our alumni remain in touch via social and professional networks and have developed not only into professional astronomers but also into leaders throughout society, parents, and educators. Our emphasis on age-appropriate research helped inspire today’s concepts of research-based science education and Citizen Science. An accompanying paper (E. Hooper et al.) discusses our approach to project-oriented astronomical research. Scientific discoveries include Near-Earth Objects, supernova classification, and lightcurves of Kuiper Belt Objects. The Camps have also contributed to educational research involving informal science education, youth perceptions, and student identities. Ironically, the Camps have leveraged new initiatives in both research and education at NOAO, LSST, and JWST. Here we review the philosophy, conduct, and content of Astronomy Camp and summarize the unexpected nature of its ongoing legacy. We remain grateful to The University of Arizona Alumni Association for its long-term encouragement and support.

  9. The outcomes of the Brazilian Olympiad of Astronomy and Astronautics as an opportunity to develop successful outreach actions

    Science.gov (United States)

    Figueiró Spinelli, Patrícia; de Oliveira Costa, Cristiane; Requeijo, Flávia; do Amaral Ferreira, Marcelo Augusto; Torres Perillo, Augusto; Batista Garcia Canalle, João; Reis Neto, Eugênio; Nascimento, Josina

    2015-08-01

    Every year, hundreds of thousands of students and teachers from all over the country take part in the Brazilian Olympiad of Astronomy and Astronautics (OBA). This has the aim of both spreading astronomy and astronautics-related concepts and training teachers about these topics. After being marked some of the exams are sent by participant schools to the Organizing Committee to select candidates for the international competition. The OBA exam archive thereby offers an unique opportunity to evaluate the teaching of astronomy in Brazil in relation to school level and content, as well as over time. Understanding the misconceptions unraveled by the exams is of utmost importance to planning successful outreach activities. In this talk I will present how the analysis of the 2013 OBA event helped the Museum of Astronomy and Related Sciences to develop an astronomy education kit aimed at teachers and how this cooperation between an academic institution and schools is helping educators in their pedagogical practice to teach astronomy in the classroom.

  10. The Inwood Astronomy Project: Ready for IYA 2009

    Science.gov (United States)

    Shilling Kendall, Jason

    2009-01-01

    The Inwood Astronomy Project begins its mission of "100 Nights of Astronomy", an outreach program for the IYA 2009 in New York City. While the city lights may at first glance be a major deterrent to amateur and educational night-sky viewing, the author describes numerous community-based initiatives designed to fit into a racially and ethnically diverse neighborhood of Northern Manhattan and the Bronx, which all give a deeper understanding and appreciation of and for the night sky. The author presents ways for professional astronomers to use their light-polluted cities and towns for the same purpose.

  11. An Experimental Comparison of Two Different Methods in Astronomy Teaching

    OpenAIRE

    TÜRK, Cumhur; KALKAN, Hüseyin

    2017-01-01

    In this study, the efficiency of teaching with virtual reality programs (VRT) and teaching with physicalmodels (PMT), which are widely used in astronomy teaching, have been compared experimentally.The study has a quasi-experimental design and it was conducted with 106pre-service science teachers studying in the educational faculty of OndokuzMayıs University. The groups were determined by using simple random samplingmethod. As data collection tool Astronomy Achievement Test (AAT) was used. Ino...

  12. 3D Virtual Reality for Teaching Astronomy

    Science.gov (United States)

    Speck, Angela; Ruzhitskaya, L.; Laffey, J.; Ding, N.

    2012-01-01

    We are developing 3D virtual learning environments (VLEs) as learning materials for an undergraduate astronomy course, in which will utilize advances both in technologies available and in our understanding of the social nature of learning. These learning materials will be used to test whether such VLEs can indeed augment science learning so that it is more engaging, active, visual and effective. Our project focuses on the challenges and requirements of introductory college astronomy classes. Here we present our virtual world of the Jupiter system and how we plan to implement it to allow students to learn course material - physical laws and concepts in astronomy - while engaging them into exploration of the Jupiter's system, encouraging their imagination, curiosity, and motivation. The VLE can allow students to work individually or collaboratively. The 3D world also provides an opportunity for research in astronomy education to investigate impact of social interaction, gaming features, and use of manipulatives offered by a learning tool on students’ motivation and learning outcomes. Use of this VLE is also a valuable source for exploration of how the learners’ spatial awareness can be enhanced by working in 3D environment. We will present the Jupiter-system environment along with a preliminary study of the efficacy and usability of our Jupiter 3D VLE.

  13. Naming asteroids for the popularisation of astronomy

    Science.gov (United States)

    Naranjo, O. A.

    2008-06-01

    We give a detailed description of how the naming of asteroids was used as a prize in competitions run by educational institutions and museums. There were two events, one in Venezuela and one in Brazil, which used this as an attractive alternative method for the popularisation of astronomy. The first competition, named Bautizo Espacial (Space Baptism), consisted of scientific stories written by high school students. The second, called Grande Desafio (Big Challenge), was a competition where teams of students were challenged to design and build prototype equipment to fight forest fires. Nationally, both events received wide publicity through newspapers, radio, TV and web pages, reaching many people in both countries. As part of both the events, several activities promoting the public knowledge of astronomy were held. The asteroids that were named in these competitions are just some of the many discovered in a search programme developed by the Group of Theoretical Astrophysics of University of Los Andes in Mérida, Venezuela (Grupo de Astrofisica Teórica de la Universidad de Los Andes) as a mainstream research programme. Finally, Asteroids for the Popularisation of Astronomy has been formally proposed to the IAU as a worldwide programme during the celebration of the International Year of Astronomy in 2009 (IYA2009).

  14. The Networks Of The Astronomical Society Of The Pacific And The International Year Of Astronomy

    Science.gov (United States)

    Fraknoi, Andrew; Manning, J.; Gurton, S.; Gibbs, M.; Hurst, A.; White, V.; Berendsen, M.

    2007-12-01

    Serious planning has begun for the International Year of Astronomy (IYA) in 2009, which will also be the 120th anniversary of the Astronomical Society of the Pacific (ASP). A key element required for IYA's success in reaching the maximum number of people in the U.S. will be to find effective ways of disseminating the programs and materials that are being developed. The ASP's national networks of educational intermediaries can play a major role in training, dissemination, and organization for IYA. These networks include: the Project ASTRO National Site Network (13 regional sites training professional and amateur astronomers to work with local teachers and families), the Night Sky Network (over 200 amateur astronomy clubs engaged in active outreach), the Astronomy from the Ground Up Network (smaller science and nature centers increasing their offerings in astronomy), and the Cosmos in the Classroom Network (hundreds of instructors of introductory astronomy in community, state, and liberal arts colleges). The ASP also offers "The Universe in the Classroom", a quarterly newsletter for those teaching astronomy in grades 3-12, an extensive web site of educational resources, podcasts, workshops, national conferences, and awards to help improve the public understanding of astronomy. At the Summer 2008 AAS meeting, the ASP will sponsor a major symposium and workshops on preparing for IYA (and working with a range of different audiences.)

  15. Explorers of the Southern Sky: A History of Australian Astronomy

    Science.gov (United States)

    Haynes, Raymond; Haynes, Roslynn D.; Malin, David; McGee, Richard

    1996-06-01

    This well-illustrated volume is the most comprehensive account of Australian astronomy to date. It is both an indispensable reference book on the history of astronomy in Australia, and a highly readable study of a scientific discipline in the context of emerging nationhood. It covers not only the science, but the individuals involved and the social and economic climate in which they worked. Starting from the ancient Aboriginal beliefs about the Sky World - the earliest known astronomy, anywhere in the world - we are led through to the most exciting high-tech current and projected research being carried out at Australia's world-class national astronomy facilities, and by groups in Australian universities. All branches of astronomy are covered - optical, infrared, X-ray, gamma-ray, microwave, gravitational wave and theoretical - including the contribution of amateur astronomers. The non-technical language, many illustrations, and explanatory figures, ensure that this guide will appeal to a wide range of readers - including professional astronomers, historians of science, students, amateur astronomers and general readers.

  16. Kinesthetic Astronomy: Significant Upgrades to the Sky Time Lesson that Support Student Learning

    Science.gov (United States)

    Morrow, C. A.; Zawaski, M.

    2004-12-01

    This paper will report on a significant upgrade to the first in a series of innovative, experiential lessons we call Kinesthetic Astronomy. The Sky Time lesson reconnects students with the astronomical meaning of the day, year, and seasons. Like all Kinesthetic Astronomy lessons, it teaches basic astronomical concepts through choreographed bodily movements and positions that provide educational sensory experiences. They are intended for sixth graders up through adult learners in both formal and informal educational settings. They emphasize astronomical concepts and phenomenon that people can readily encounter in their "everyday" lives such as time, seasons, and sky motions of the Sun, Moon, stars, and planets. Kinesthetic Astronomy lesson plans are fully aligned with national science education standards, both in content and instructional practice. Our lessons offer a complete learning cycle with written assessment opportunities now embedded throughout the lesson. We have substantially strengthened the written assessment options for the Sky Time lesson to help students translate their kinesthetic and visual learning into the verbal-linguistic and mathematical-logical realms of expression. Field testing with non-science undergraduates, middle school science teachers and students, Junior Girl Scouts, museum education staff, and outdoor educators has been providing evidence that Kinesthetic Astronomy techniques allow learners to achieve a good grasp of concepts that are much more difficult to learn in more conventional ways such as via textbooks or even computer animation. Field testing of the Sky Time lesson has also led us to significant changes from the previous version to support student learning. We will report on the nature of these changes.

  17. Fundamental Astronomy

    CERN Document Server

    Karttunen, Hannu; Oja, Heikki; Poutanen, Markku; Donner, Karl Johan

    2007-01-01

    Fundamental Astronomy gives a well-balanced and comprehensive introduction to the topics of classical and modern astronomy. While emphasizing both the astronomical concepts and the underlying physical principles, the text provides a sound basis for more profound studies in the astronomical sciences. The fifth edition of this successful undergraduate textbook has been extensively modernized and extended in the parts dealing with the Milky Way, extragalactic astronomy and cosmology as well as with extrasolar planets and the solar system (as a consequence of recent results from satellite missions and the new definition by the International Astronomical Union of planets, dwarf planets and small solar-system bodies). Furthermore a new chapter on astrobiology has been added. Long considered a standard text for physical science majors, Fundamental Astronomy is also an excellent reference and entrée for dedicated amateur astronomers.

  18. Greek astronomy

    CERN Document Server

    Heath, Sir Thomas L

    2011-01-01

    Astronomy as a science began with the Ionian philosophers, with whom Greek philosophy and mathematics also began. While the Egyptians and Babylonians had accomplished much of astronomical worth, it remained for the unrivalled speculative genius of the Greeks, in particular, their mathematical genius, to lay the foundations of the true science of astronomy. In this classic study, a noted scholar discusses in lucid detail the specific advances made by the Greeks, many of whose ideas anticipated the discoveries of modern astronomy.Pythagoras, born at Samos about 572 B.C., was probably the first

  19. Gender discrimination in physics and astronomy: Graduate student experiences of sexism and gender microaggressions

    Science.gov (United States)

    Barthelemy, Ramón S.; McCormick, Melinda; Henderson, Charles

    2016-12-01

    [This paper is part of the Focused Collection on Gender in Physics.] Sexism occurs when men are believed to be superior to women, and is thought to be one of the reasons for women's underrepresentation in physics and astronomy. The issue of sexism in physics and astronomy has not been thoroughly explored in the physics education literature and there is currently no clear language for discussing sexism in the field. This article seeks to begin a conversation on sexism in physics and astronomy and offer a starting point for language to discuss sexism in research groups and departments. Interviews with 21 women in graduate physics and astronomy programs are analyzed for their individual experiences of sexism. Although a subset of women did not report experiencing sexual discrimination, the majority experienced subtle insults and slights known as microaggressions. Other participants also experienced more traditional hostile sexism in the form of sexual harassment, gender role stereotypes, and overt discouragement. These results indicate the existence of sexism in the current culture of physics and astronomy, as well as the importance departments must put on eliminating it and educating students about sexism and microaggressions.

  20. Gender discrimination in physics and astronomy: Graduate student experiences of sexism and gender microaggressions

    Directory of Open Access Journals (Sweden)

    Ramón S. Barthelemy

    2016-08-01

    Full Text Available [This paper is part of the Focused Collection on Gender in Physics.] Sexism occurs when men are believed to be superior to women, and is thought to be one of the reasons for women’s underrepresentation in physics and astronomy. The issue of sexism in physics and astronomy has not been thoroughly explored in the physics education literature and there is currently no clear language for discussing sexism in the field. This article seeks to begin a conversation on sexism in physics and astronomy and offer a starting point for language to discuss sexism in research groups and departments. Interviews with 21 women in graduate physics and astronomy programs are analyzed for their individual experiences of sexism. Although a subset of women did not report experiencing sexual discrimination, the majority experienced subtle insults and slights known as microaggressions. Other participants also experienced more traditional hostile sexism in the form of sexual harassment, gender role stereotypes, and overt discouragement. These results indicate the existence of sexism in the current culture of physics and astronomy, as well as the importance departments must put on eliminating it and educating students about sexism and microaggressions.

  1. The International Year of Astronomy 2009: The Global Programme

    Science.gov (United States)

    Lindberg Christensen, Lars

    2009-01-01

    The International Year of Astronomy 2009 (IYA2009) is a global collaboration between nations and organisations for peaceful purposes - the search for our cosmic origin, a common heritage that connects everyone. The science of astronomy represents millennia of collaborations across all boundaries: geographic, gender, age, culture and race, in accordance with the principles of the UN Charter. 1 January 2009 will mark the beginning of the IYA2009 in the eyes of the public. However this immense worldwide science outreach and education event began more than six years earlier, with IAU's initiative in 2003. The IYA2009 aims to unite nations under the umbrella of astronomy and science, while at the same time acknowledging cultural differences and national and regional particularities. Never before has such a network of scientists, amateur astronomers, educators, journalists and scientific institutions come together. When the IYA2009 officially kicks off in Paris on 15 January 2009, it is estimated that more than 5000 people will be directly involved in the organisation of IYA2009 activities across the globe. During this talk we will outline the status of the principal projects and activities that make up the Year.

  2. Space and astronomy

    CERN Document Server

    Kirkland, Kyle

    2010-01-01

    Some daring explorers like to study distant frontiers by venturing out into them, but others prefer to study them by bringing them, or representative samples, a little closer to the lab. Both options are pursued in the fields of space and astronomy. Space exploration and astronomy are intricately linked and are examined in-depth in this guide. Dedicated to the scientists who explore the frontiers of space and astronomy-and the results of their unfamiliar findings-each chapter in Space and Astronomy explores one of the frontiers of this science. The development of technology, such as rocket pro

  3. Using a Two-Tier Test to Analyse Students' and Teachers' Alternative Concepts in Astronomy

    Science.gov (United States)

    Kanli, U.

    2015-01-01

    This paper presents an analysis of physics teachers' as well as university and high school students' understanding of some astronomy concepts. In recent years, the significance of astronomy teaching in science education has gradually increased. Many research studies indicate that students have misconceptions about the reasons for seasons, the…

  4. NASA IDEAS to Improve Instruction in Astronomy and Space Science

    Science.gov (United States)

    Malphrus, B.; Kidwell, K.

    1999-12-01

    The IDEAS to Improve Instructional Competencies in Astronomy and Space Science project is intended to develop and/or enhance teacher competencies in astronomy and space sciences of teacher participants (Grades 5-12) in Kentucky. The project is being implemented through a two-week summer workshop, a series of five follow-up meetings, and an academic year research project. The resources of Kentucky's only Radio Astronomy Observatory- the Morehead Radio Telescope (MRT), Goldstone Apple Valley Radio Telescope (GAVRT) (via remote observing using the Internet), and the Kentucky Department of Education regional service centers are combined to provide a unique educational experience. The project is designed to improve science teacher's instructional methodologies by providing pedagogical assistance, content training, involving the teachers and their students in research in radio astronomy, providing access to the facilities of the Morehead Astrophysical Observatory, and by working closely with a NASA-JOVE research astronomer. Participating teachers will ultimately produce curriculum units and research projects, the results of which will be published on the WWW. A major goal of this project is to share with teachers and ultimately students the excitement and importance of scientific research. The project represents a partnership of five agencies, each matching the commitment both financially and/or personnel. This project is funded by the NASA IDEAS initiative administered by the Space Telescope Science Institute and the National Air and Space Administration (NASA).

  5. Astronomy in Research-Based Science Education (A-RBSE): A Review of a Decade of Professional Development Programs in Support of Teacher and Student Research at the National Optical Astronomy Observatory

    Science.gov (United States)

    Pompea, S. M.; Garmany, C. D.; Walker, C. E.; Croft, S. K.

    2006-12-01

    We will review the evolution of the Research Based Science Education (RBSE) and Teacher Leaders in Research Based Science (TLRBSE) programs at the National Optical Astronomy Observatory over the last eleven years. The program has evolved from an NSF-funded program in teacher enhancement to an observatory-supported core education initiative. The present manifestation of our program is an umbrella of programs designed to aid teachers in doing research with astronomical data archives, small telescopes, large research-grade telescopes, and the Spitzer Space Telescope. The professional development program has addressed basic questions on the nature of research, best techniques to bring it into the classroom, the value of authentic research, and the mix of on-line versus in- person professional development. The current program is used to test new models of teacher professional development that for outreach programs for the Large Synoptic Survey Telescope program, the Thirty-Meter Telescope program, and the National Virtual Observatory program. We will describe a variety of lessons learned (and relearned) and try to describe best practices in promoting teacher and student research. The TLRBSE Program has been funded by the National Science Foundation under ESI 0101982, funded through the AURA/NSF Cooperative Agreement AST-9613615. NOAO is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under cooperative agreement with the National Science Foundation.

  6. The IAU's East Asian Regional Office of Astronomy for Development

    Science.gov (United States)

    de Grijs, Richard

    2014-09-01

    At the 2012 General Assembly of the International Astronomical Union (IAU), the Office of Astronomy for Development (OAD) programme announced a number of exciting new partnerships to assist with the IAU's decadal strategic plan (2010-2020). These landmark decisions included establishing a new coordinating centre that aims at using astronomy as a tool for development in East Asia. The agreement covers two important functions. One is known as a Regional Node, which entails the coordination of astronomy-for-development activities in countries within the general geographical region of East Asia (in first instance China, Mongolia and the DPRK, but without placing firm geographical limits on the region). The other is known as a Language Expertise Centre which will deal with all aspects relating to (mainly) the Chinese language and culture. The impact of the latter may obviously spread well beyond the geographical region to other parts of the world.

  7. Improving Science Communication and Engaging the Public in Astronomy and Nature

    Science.gov (United States)

    Arion, Douglas N.

    2016-01-01

    A partnershipship between Carthage College and the Appalachian Mountain Club has delivered a successful public education and outreach program that merges natural environment topics and astronomy. Over the four years of activity, over 25,000 people have received programming. The effort has trained nature educators, permanent and seasonal AMC staff, and undergraduate physics and astronomy students to integrate diverse topical material and deliver high quality programming to the lay public. Unique to the program is the holistic nature of the material delivered - an 'atypical' astronomy program. Linking observable characteristics of the natural world with astronomical history and phenomena, and emphasizing the unique sequence of events that have led to human life on Earth, the program has changed attitudes and behaviors among the public participants. Successful interventions have included hands-on observing programs (day and night) that link nature content to the observed objects; table-talk presentations on nature/astronomy topics; dark skies preservation workshops; and hands-on activities developed for younger audiences, including schools, camps, and family groups. An extensive evaluation and assessment effort managed by a leading sociologist has demonstrated the effectiveness of the approach, and contributed to continuous improvement in the program content and methods. This work was supported in part by NSF Grant 1432662.

  8. The planetarium: A didactic resource to the teaching of astronomy

    Science.gov (United States)

    Marques Barrio, Juan Bernardino

    Even though the advances are sharp in the processes of educational research in some areas of the natural sciences, is not possible to declare the same in the case of the Astronomy, where there is a huge hollow. Therefore, the necessity of innovative research in the teaching and learning of Astronomy is really large because is one of the main ways to break the ignorance barrier. Taking into consideration the fact that the heuristic, communicative and educational values in the use of the history of the Astronomy and its interaction with other areas supply an interesting dynamic view to the teaching effort, that is possible to take advantage of that to become aware of the existence of previous ideas and its possible study, in the first moment of the paper we present a panoramic view of the Astronomy around the world: creational myths, interaction with the culture, etc. Since reflect in a critical way about the educational activity is not only consider our practical activity fruit of the exposure of theories, but also consider the theory as a result of our practices, we have chosen the investigation-action as the methodology to be applied on the lessons. Then, we could verify, with the bibliographic review about the didactic processes used to transmit the astronomical knowledge, the arguable existing theoretical framework and the reasearches about teaching and learning of Astronomy, the scarce research and the need of innovate in this field. On the other hand, the process of investigation-action developed, using the Planetarium as a didactic resource in the teaching process, at the same time allow us to state that the Planetarium cover the three basic functions of a didactic middle---bearer of contents, to motivate and to structure---and also declare, in opposition to the view of some authors, that this middle should be, and in fact it is, a big allied to reach the conceptual contents and not only the attitudinal and contents related to the procedure.

  9. General Education! Not Again?

    Science.gov (United States)

    Marsee, Stuart

    After reviewing definitions of general education and statements regarding its importance found in the literature, this paper presents observations to be considered in updating or developing general education programs. It is observed that many disciplines have developed excessive departmentalization; that administrators tend to view general…

  10. Space-Based Astronomy: An Educator Guide with Activities for Science, Mathematics, and Technology Education

    Science.gov (United States)

    Vogt, Gregory L.

    2001-01-01

    If you go to the country, far from city lights, you can see about 3,000 stars on a clear night. If your eyes were bigger, you could see many more stars. With a pair of binoculars, an optical device that effectively enlarges the pupil of your eye by about 30 times, the number of stars you can see increases to the tens of thousands. With a medium-sized telescope with a light-collecting mirror 30 centimeters in diameter, you can see hundreds of thousands of stars. With a large observatory telescope, millions of stars become visible. This curriculum guide uses hands-on activities to help students and teachers understand the significance of space-based astronomy--astronomical observations made from outer space. It is not intended to serve as a curriculum. Instead, teachers should select activities from this guide that support and extend existing study. The guide contains few of the traditional activities found in many astronomy guides such as constellation studies, lunar phases, and planetary orbits. It tells, rather, the story of why it is important to observe celestial objects from outer space and how to study the entire electromagnetic spectrum. Teachers are encouraged to adapt these activities for the particular needs of their students. When selected activities from this guide are used in conjunction with traditional astronomy curricula, students benefit from a more complete experience.

  11. Astronomy in the International Year of Light 2015

    Science.gov (United States)

    Walker, Constance E.; Pompea, Stephen M.; Green, Richard F.; Fienberg, Richard Tresch; Seitzer, Patrick

    2014-06-01

    In December 2013 the United Nations General Assembly proclaimed 2015 as the International Year of Light and Light-based Technologies (IYL 2015), recognizing “the importance of raising global awareness of how light-based technologies promote sustainable development and provide solutions to global challenges in energy, education, agriculture, and health.” John Dudley, president of the European Physical Society and chair of the IYL 2015 Steering Committee, explains: “An International Year of Light is a tremendous opportunity to ensure that policymakers are made aware of the problem-solving potential of light technology. Photonics provides cost-effective solutions to challenges in so many different areas: energy, sustainable development, climate change, health, communications, and agriculture. For example, innovative lighting solutions reduce energy consumption and environmental impact, while minimizing light pollution so that we can all appreciate the beauty of the universe in a dark sky.”IYL 2015 is bringing together many different stakeholders, including scientific societies and unions, educational and research institutions, technology platforms, non-profit organizations, and private-sector partners to promote and celebrate the significance of light and its applications during 2015.The AAS and the International Astronomical Union (IAU), which were heavily involved in the International Year of Astronomy in 2009, will play a role in IYL 2015 — especially since the AAS will host the 29th General Assembly of the IAU in August 2015. Other US-based organizations, such as NOAO, are organizing efforts jointly with IAU and AAS members to form a cornerstone. Discussion for this presentation will center on the IYL cornerstone project in astronomy, dark-skies awareness, and optics and the related projects and events being formed, as well as the regional, national, and international committees and contact points being established to ensure that all nations of the world

  12. Gravitational-wave Astronomy: Opening a New Window on the Universe for Students, Educators and the Public

    Science.gov (United States)

    Cavaglià, M.; Hendry, M.; Ingram, D.; Milde, S.; Reitze, D.; Riles, K.; Schutz, B.; Stuver, A. L.; Summerscales, T.; Thacker, J.; Torres, C. V.; Ugolini, D.; Vallisneri, M.; Zermeno, A.

    2008-11-01

    The nascent field of gravitational-wave astronomy offers many opportunities for effective and inspirational astronomy outreach. Gravitational waves, the ``ripples in space-time'' predicted by Einstein's theory of General Relativity, are produced by some of the most energetic and dramatic phenomena in the cosmos, including black holes, neutron stars and supernovae. The detection of gravitational waves will help to address a number of fundamental questions in physics, from the evolution of stars and galaxies to the origin of dark energy and the nature of space-time itself. Moreover, the cutting-edge technology developed to search for gravitational waves is pushing back the frontiers of many fields, from lasers and materials science to high performance computing, and thus provides a powerful showcase for the attractions and challenges of a career in science and engineering. For several years a worldwide network of ground-based laser interferometric gravitational-wave detectors has been fully operational, including the two LIGO detectors in the United States. These detectors are already among the most sensitive scientific instruments on the planet and in the next few years their sensitivity will achieve further significant improvement. Those developments promise to open an exciting new window on the universe, heralding the arrival of gravitational-wave astronomy as a revolutionary, new observational field. In this paper we describe the extensive program of public outreach activities already undertaken by the LIGO Scientific Collaboration, and a number of special events which we are planning for IYA2009.

  13. Improving Introductory Astronomy Education in American Colleges and Universities: A Review of Recent Progress

    Science.gov (United States)

    Waller, William H.; Slater, Timothy F.

    2011-01-01

    Over the past 15 years, professional astronomers, their societies, and associated funding agencies have collaborated to improve astronomy teaching and learning at the introductory undergraduate level. Many nonscience majors and preservice teachers enroll in these introductory astronomy courses, thus meriting the focused attention. In this review…

  14. An Experience of Teaching of Astronomy in the 6th Year if Fundamental Education

    Science.gov (United States)

    Pereira, L. F.; Damasceno, L. E. F.; Nero, J. D.; Silva, S. J. S. da; Costa, M. B. C.; Aleixo, V. F. P.; Júnior, C. A. B. da S.

    2017-12-01

    This paper deals the question of astronomy teaching within the science discipline through: 1- analysis of the "Earth and Universe" axis of the National Curricular Parameters (NCPs); 2- profile of the professional who teaching the discipline; 3- analysis of the history and importance of experimentation for the teaching of Astronomy in Brazil. The main objective is to analyze the conception of students and teachers regarding the application of experimentation in the teaching of Astronomy in a hybrid class of 6º year with 14 students in the period recovery (07/2016) in an municipal public school of São Miguel of Guama-Pa. We highlight the teacher mishaps of the public school system and its difficulty in using teaching methodologies that go beyond the traditional, we emphasize, the problems with the training courses concerning the teaching of Astronomy and highlight the experimentation as tool indispensable in the construction of this teaching and learning process.

  15. Growth of Astronomy Education in Chile: a late but successful story

    Science.gov (United States)

    Quintana, Hernán

    2017-06-01

    The first present international observatories were stablished in Chile by 1963, at a time when local astronomy was devoted to traditional Fundamental Astronomy research, as in most other Latin-american countries. For over 35 years little was achieved in the way of effectively developing a healthy university teaching in the field, in spite of initiatives started and helped in the mid-sixties by some astronomers at CTIO or ESO. Up to 1998, when a second try to start a university degree, this time at U. Católica, was unexpectedly successful, the number of Chileans astronomers had remained constant or slightly decreased. The number started to grow significantly when the new degree attracted the keen interest of students, reaching the potential widely recognized since a long time. Today some 13 universities have astronomy courses or degrees and the number of students and post-docs are in the hundreds.The series of events and university policies originally prevailing in the country, and the changes that allowed the new state of affairs, will be reviewed and described. This will include the barriers and difficulties encountered, and the ways devised to overcome these.

  16. Building worlds and learning astronomy on Facebook

    Science.gov (United States)

    Harold, J. B.; Hines, D. C.

    2013-12-01

    James Harold (SSI), Dean Hines (STScI/SSI) and a team at the National Center for Interactive Learning at the Space Science Institute are developing an end-to-end stellar and planetary evolution game for the Facebook platform. Supported by NSF and NASA, and based in part on a prototype funded by STScI several years ago ('MyStar'), the game uses the 'sporadic play' model of games such as Farmville, where players might only take actions a few times a day, but continue playing for months. This framework is an excellent fit for teaching about the evolution of stars and planets. Players will select regions of the galaxy to build their stars and planets, and watch as the systems evolve in scaled real time (a million years to the minute). Massive stars will supernova within minutes, while lower mass stars like our sun will live for weeks, possibly evolving life before passing through a red giant stage and ending their lives as white dwarfs. In addition to allowing players to explore a variety of astronomy concepts (stellar lifecycles, habitable zones, the roles of giant worlds in creating habitable solar systems), the game also allows us to address specific misconceptions. For instance, the game's solar system visualization engine is being designed to confront common issues concerning orbital shapes and scales. 'Mini games' will also let players unlock advanced functionality, while allowing us to create activities focused on specific learning goals. This presentation will focus on the current state of the project as well as its overall goals, which include reaching a broad audience with basic astronomy concepts as well as current science results; exploring the potential of social, 'sporadic play' games in education; and determining if platforms such as Facebook allow us to reach significantly different demographics than are generally targeted by educational games.

  17. Astronomy for Astronomical Numbers - Education and Public Outreach with Massive Open Online Classes

    Science.gov (United States)

    Impey, C.; Buxner, S.; Wenger, M.; Formanek, M.

    2015-12-01

    Massive Open Online Classes (MOOCs) represent a powerful new mode of education and public outreach. While early hype has often given way to disappointment over the typically low completion rates, retaining the interest of free-choice learners is always a challenge, and the worldwide reach and low cost of of these online classes is a democratizing influence in higher education. We have used providers Udemy and Coursera to reach over 60,000 adults with an astronomy course that covers the recent research results across the subject from comets to cosmology. In addition to measures of participation, completion, and performance, we have administered surveys of the learners that measure science literacy, attitudes towards science and technology, and sources of information about science. Beyond the usual core of video lectures and quizzes, we have used peer reviewed writing assignments, observing project, and citizen science to create a richer learning environment. Research on MOOCs is still in its early stages, but we hope to learn what factors contribute most to student engagement and completion in these online settings.

  18. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Center for Astrophysics, Guangzhou University, Guangzhou 510006, China. Department of Physics, School for Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006, China. Astronomy Science and Technology Research Laboratory of Department of Education of Guangdong Province, Guangzhou ...

  19. Telescope Kits: A Teaching Vehicle for the International Year of Astronomy

    Science.gov (United States)

    Pompea, Stephen M.; Fienberg, R. T.; Isbell, D.; Deustua, S.

    2007-12-01

    We are examining a variety of telescope kits suitable for assembly by school-age children in order to design a cornerstone educational program for the International Year of Astronomy 2009-400 years after Galileo's observations. In our experience, telescope kits are superior to pre-assembled telescopes for use in an educational setting as the students feels a stronger sense of ownership and have a better understanding of the components and how they work. We examined several low to medium power refracting telescope kits including one kit used in the Hands-On Optics project at NOAO. We describe the advantages and disadvantages of each kit from an educational and optical perspective and what modifications may be made to enhance their educational utility. We also describe the optical and education requirements for a low-powered "Galileoscope", to be distributed widely during the IYA. We also describe how the "Galileoscope” will be embedded in an educational program disseminated through science centers, amateur astronomy clubs and other Hands-On Optics centers and partners.

  20. Astronomy and Inclusion: resouces for disabled populations

    Science.gov (United States)

    García, Beatriz; Ortiz Gil, Amelia

    2015-08-01

    Commission 46 proposed, in 2012, the creation of an interdisciplinary WG in which astronomers work together with educators and disability specialists to develop new teaching and learning strategies devoted to generate resources of impact among disabled populations, which are usually away from astronomy. We present some of the achivements and new challenges.

  1. Electronic publications, a useful technique for astronomy outreach

    Science.gov (United States)

    Stavinschi, M.; Mosoia, C.

    2012-09-01

    Thanks to modern technology, astronomy can be communicated to the public through a variety of techniques, from classic conferences (also upgraded to the video projectors, etc.) to TV, print media and social media platforms such as Facebook, Twitter, Linkedin, MySpace, etc. We are going to present advantages of electronic publishing, starting from informing the public with latest astronomy news, to providing a place for public debate. In an era of global crisis e-publishing is a must do, be it seen from the financially perspective, or the desired impact to the public. We are going to present a constant example of year electronic publication dedicated to promoting science and communication; also, the Science Communicators Network Interested in spreading the word of astronomy. The aim is to establish connections with all OEP participants with a view to know each other and try to work in common for the better message transmission to the public. Together, we might build a single platform with multiple educational results.

  2. Southern Africa Regional Office of Astronomy for Development: A New Hub for Astronomy for Development

    Science.gov (United States)

    Siseho Mutondo, Moola

    2015-08-01

    A new Astronomy for Development hub needs innovative tools and programs. SAROAD is developing exciting tools integrating Raspberry Pi® technology to bring cost-effective astronomy content to learning centres. SAROAD would also like to report achievements in realising the IAU's strategic plan. In order to manage, evaluate and coordinate regional IAU capacity building programmes, including the recruitment and mobilisation of volunteers, SAROAD has built an intranet that is accessible to regional members upon request. Using this resource, regional members can see and participate in regional activities. This resource also forms the foundation for closer collaboration between SAROAD member countries. SAROAD has commenced with projects in the three Task Force areas of Universities and Research, Children and Schools and Public Outreach. Under the three Task Force areas, a total of seven projects have commenced in Zambia. A further two projects involve the collaboration of Zambia and other regional member countries in order to foster engagement with important regional astronomy facilities (e.g. SKA). SAROAD has identified the IAU’s International Year of Light and a starting point for offering regional support for IAU-endorsed global activities. SAROAD has set up a hub dedicated to regional events and activities about the International Year of Light. SAROAD has a database of regional authorities to enable contact with the region's decision makers and experts. SAROAD will hold an annual event which brings forum for astronomy for development. The creation of the database and the SAROAD Road show is a first step towards this goal. The SAROAD website has helped to advertise upcoming events for astronomy development and education; it is used to provide advice, guidance and information for astronomers in all countries in the Southern Africa. Fundraising is the primary goal for SAROAD in 2015 towards financial self-sufficiency by 2020. We report on the methods that work best

  3. Examining the Attitudes of Secondary General Education and Special Education Teachers toward Inclusion of Children with Autism in General Education Classrooms

    Science.gov (United States)

    Bosch, Morghan E.

    2016-01-01

    Academic environments, such as general education classrooms, have increasingly become important learning environments for children with autism. The purpose of the study was to examine the attitudes of secondary general education and special education teachers toward inclusion of children with autism in general education classrooms. The research…

  4. A study about the interest and previous contact of high school students with Astronomy

    Science.gov (United States)

    Carvalho, C. L.; Zanitti, M. H. R.; Felicidade, B. L.; Gomes, A. D. T.; Dias, E. W.; Coelho, F. O.

    2016-04-01

    The currently problems in Astronomy teaching in Brazilian Basic Education contrast with the space, and the popularity that astronomical themes have in various media in the country. In this work, we present the results of a study about the interest, and previous contact of high school students from a public school in the city of "São João del-Rei"/MG with topics related to Astronomy. The study and the pedagogical intervention were carried out by students of the PIBID/CAPES/UFSJ. The intervention was performed through an oral exposition with the students' participation, followed by the use of the Stellarium program. The results suggest the majority of students surveyed are interested in Astronomy, and have had some contact with the area. However, some inconsistencies in their responses were identified and examined. The implications for research and for Astronomy Education are discussed. We also make some considerations about relationship between the lack of specific knowledge and the misinformation as one possible reason for the little interest of students in various areas of Science.

  5. Aristarchus of Samos and Graeco-Babylonian Astronomy

    Directory of Open Access Journals (Sweden)

    George Huxley

    2002-06-01

    Full Text Available Aristarchus calculated the length of the year to a greater precision than his predecessors and probably was responsible for the name of the period, the exeligmos; Berosus’ writings cannot have contributed significantly to Aristarchus or to Greek astronomy in general.

  6. Astronomy Enrollments and Degrees: Results from the 2012 Survey of Astronomy Enrollments and Degrees. Focus On

    Science.gov (United States)

    Mulvey, Patrick; Nicholson, Starr

    2014-01-01

    Interest in astronomy degrees in the U.S. remains strong, with astronomy enrollments at or near all-time highs for the 2012-13 academic year. The total number of students taking an introductory astronomy course at a degree-granting physics or astronomy department is approaching 200,000. Enrollments in introductory astronomy courses have been…

  7. Astronomy at the frontiers of science

    CERN Document Server

    2011-01-01

    Astronomy is by nature an interdisciplinary activity: it involves mathematics, physics, chemistry and biology. Astronomers use (and often develop) the latest technology, the fastest computers and the most refined software.  In this book twenty-two leading scientists from nine countries talk about how astronomy interacts with these other sciences. They describe modern instruments used in astronomy and the relations between astronomy and technology, industry, politics and philosophy. They also discuss what it means to be an astronomer, the history of astronomy, and the place of astronomy in society today.   The book contains twenty chapters grouped in four parts: ASTRONOMY AND PHYSICS discusses the place of astronomy among various branches of (mostly high-energy) physics. ASTRONOMY IN SOCIETY describes not only the historical context of astronomy, but issues facing astronomers today, including funding, planning, worldwide collaboration and links with industry. THE TOOLS OF OBSERVATION AND THE PROFESSION OF AS...

  8. The Future of Space Astronomy.

    Science.gov (United States)

    Field, George B.

    1984-01-01

    Discusses various aspects of space astronomy, considering advantages, the space telescope and ground-based astronomy, an orbiting astrophysics facility, solar physics, and other areas. Indicates that earth-based astronomy will continue to be carried out there and space astronomy will be limited to observations that can be carried out only from…

  9. COMMUNICATING ASTRONOMY IN EUROPE: Strategies and Challenges in International Organisations

    Science.gov (United States)

    Barrosa, Mariana

    2007-08-01

    How much do Europeans really know about science and technology? What do they think about it? For more than a decade, the European Union (EU) has carried out regular surveys to measure public opinion and knowledge on a variety of themes across its member states. One survey carried out in early 2005 is of particular interest to science communication - "Europeans, Science and Technology". It's easy to see that science and technology are racing along faster than ever and you would think that people's knowledge and interest of science and technology would be keeping pace. Unfortunately, that is not the case. Over the past few years, Europeans' overall interest in science and technology has decreased. Astronomy plays a special role within public science communication. It serves as a general science "catcher", not only for young people. Astronomy embraces core sciences such as mathematics, physics, chemistry, biology and geology as well as technical disciplines including optics, observational techniques and data analysis. Astronomy reaches wide into the realm of philosophy; it rubs shoulders with religion and is at the core of many science fiction stories. In short, astronomy attracts a wide spectrum of people and may serve as a powerful vehicle for improving the public awareness and understanding of science. Several key International Organisations like the European Space Agency (ESA), the European Southern Observatory (ESO), Europlanet and the International Astronomical Union (IAU) work in Astronomy and Space Sciences in Europe. As well as a general overview of the outreach and communication actions of some of these Organisations, focus will be made in specific cases and examples in the context of these organisations. 2009 will be the International Year of Astronomy. It will be interesting to see how these European Organisations are getting ready for this ultimate science communication challenge.

  10. Gender Discrimination in Physics and Astronomy: Graduate Student Experiences of Sexism and Gender Microaggressions

    Science.gov (United States)

    Barthelemy, Ramón S.; McCormick, Melinda; Henderson, Charles

    2016-01-01

    Sexism occurs when men are believed to be superior to women, and is thought to be one of the reasons for women's underrepresentation in physics and astronomy. The issue of sexism in physics and astronomy has not been thoroughly explored in the physics education literature and there is currently no clear language for discussing sexism in the field.…

  11. Developing an Astronomy Program at the Crownpoint Institute of Technology

    Science.gov (United States)

    Gino, M. C.

    2004-12-01

    The Crownpoint Institute of Technology (CIT) is a tribal college located on the eastern edge of the Navajo Nation in northwestern New Mexico. Historically CIT is a technical college which grants AAS degrees and certificates in a number of vocational and technical fields. CIT is in the process of seeking higher learning articulation and accreditation, and has received "Candidacy Status" from the North Central Association of Colleges and Schools Commission on Institutions of Higher Education. To meet the demands placed upon the college as it steps into its role as an institution of higher learning, CIT is dedicated to broadening its curriculum with programs that encourage math, science and technology, and to increasing the number of courses that advance knowledge in both Navajo and Western society by enhancing both laboratory and educational technologies. The introduction of astronomy into the science curriculum advances CIT's goals in all of these areas, and presents a unique opportunity to incorporate traditional Navajo scientific knowledge into a technically advanced science program. In this poster we outline the development of the astronomy program, which has started with the inclusion of the first astronomy course into the science curriculum and the acquisition of two small telescope systems for K-14 student use and public outreach, and will continue through the construction of a campus observatory capable of supporting an undergraduate research program. It is our expectation that through the introduction of astronomy into the curriculum, CIT will advance its goals of increasing science and technology educational opportunities for its students and training the next generation of Navajo science and technology professionals, while maintaining an awareness of the needs of the Navajo Nation and a sensitivity to Navajo cultural values and protocols.

  12. Misconceptions in Astronomy: Before and After a Constructivist Learning Environment

    Science.gov (United States)

    Ruzhitskaya, Lanika; Speck, A.

    2009-01-01

    We present results of a pilot study on college students’ misconceptions in astronomy. The study was conducted on the campus of a Midwestern university among 43 non-science major students enrolled in an introductory astronomy laboratory course. The laboratory course was based on a constructivist learning environment where students learned astronomy by doing astronomy. During the course, students worked with educational simulations created by Project CLEA team and RedShift College Education Astronomy Workbook by Bill Walker as well as were involved in think-pair-share discussions based on Lecture-Tutorials (Prather et al 2008). Several laboratories were prompted by an instructor's brief presentations. On the first and last days of the course students were surveyed on what their beliefs were about causes of the seasons, the moon's apparent size in the sky and its phases, planetary orbits, structure of the solar system, the sun, distant stars, and the nature of light. The majority of the surveys’ questions were based on Neil Comins’ 50 most commonly cited misconceptions. The outcome of the study showed that while students constructed correct understanding of a number of phenomena, they also created a set of new misconceptions. For example, if on the first day of the course, nine out of 43 students knew what caused the seasons on Earth; on the last day of the course, 20 students gained the similar understanding. However, by the end of the course more students believed that smaller planets must rotate faster based on the conservation of angular momentum and Kepler's laws. Our findings suggest that misconceptions pointed out by Neil Comins over a decade ago are still relevant today; and that learning based exclusively on simulations and collaborative group discussions does not necessarily produce the best results, but may set a ground for creating new misconceptions.

  13. WorldWide Telescope in High School Astronomy Competitions

    Science.gov (United States)

    Constantin, Ana-Maria; Goodman, A. A.; Udomprasert, P. S.

    2014-01-01

    This project aims to improve astronomy education at the high school level, and to increase awareness in astronomy for pre-university students, on an international scale. In 2013, the WorldWide Telescope Ambassadors Program began a collaboration with the International Olympiad in Astronomy and Astrophysics (IOAA), which was held in the city of Volos, Greece in August 2013. Now at its VIIth edition, IOAA is the largest annual astronomy competition for high school students, and it consists of one team task and three individual ones - Theoretical, Data Analysis, and Observational. Each of the participating countries (35 in 2013, compared to 21 in 2007) is responsible for selecting up to five representative students for the International round. IOAA is meant to promote future collaborations between these students, and to encourage friendships inside a global scientific community. Ana-Maria Constantin, a current Harvard undergraduate student and a former medalist of IOAA, represented WorldWide Telescope Ambassadors in Greece by giving a talk on the advantages of using WWT as a tool for research and education. As a result, the President and the International Board of the Olympiad have expressed support for including WWT in the competition for future editions. WWTA is working with the Organizing Board for next year’s competition in Romania, to include WWT as a testing tool. This poster will summarize key points from the WWTA presentation in Greece, present ideas for WWT-based activities in future IOAA competitions, and outline plans for new collaborations from representatives of Sri Lanka, Poland, Bangladesh, and Colombia. Given the positive feedback we have received after the presentation in Greece, we are also considering future implementations of WWT in summer research camps for high school students, such as the Summer Science Program.

  14. Progress on Creating the Galileoscope for the International Year of Astronomy 2009

    Science.gov (United States)

    Pompea, S. M.; Fienberg, R. T.; Arion, D. N.; Smith, T. C.; Isbell, D.

    2008-11-01

    For the International Year of Astronomy 2009 (IYA2009), we have designed an educational program based on understanding the basic principles of telescopes and using telescopes for astronomical observations. As part of this program, we have designed an educational telescope kit that can be assembled by students and used to observe the Moon, Jupiter, and Saturn from urban environments. A premise of the project is that for students, the building of their own telescope is far better than getting an assembled one. The Galileoscope is designed to create ``Wow!'' experiences in kids when viewing Saturn, Jupiter, and the Moon. With the Galileoscope, Galileo's observations can be easily duplicated across the country, even in major cities. We have designed the Galileoscope and its associated educational materials for use in a wide variety of educational environments including planetariums, small science and nature centers, classrooms, and amateur astronomy clubs.

  15. Handheld Devices with Wide-Area Wireless Connectivity: Applications in Astronomy Educational Technology and Remote Computational Control

    Science.gov (United States)

    Budiardja, R. D.; Lingerfelt, E. J.; Guidry, M. W.

    2003-05-01

    Wireless technology implemented with handheld devices has attractive features because of the potential to access large amounts of data and the prospect of on-the-fly computational analysis from a device that can be carried in a shirt pocket. We shall describe applications of such technology to the general paradigm of making digital wireless connections from the field to upload information and queries to network servers, executing (potentially complex) programs and controlling data analysis and/or database operations on fast network computers, and returning real-time information from this analysis to the handheld device in the field. As illustration, we shall describe several client/server programs that we have written for applications in teaching introductory astronomy. For example, one program allows static and dynamic properties of astronomical objects to be accessed in a remote observation laboratory setting using a digital cell phone or PDA. Another implements interactive quizzing over a cell phone or PDA using a 700-question introductory astronomy quiz database, thus permitting students to study for astronomy quizzes in any environment in which they have a few free minutes and a digital cell phone or wireless PDA. Another allows one to control and monitor a computation done on a Beowulf cluster by changing the parameters of the computation remotely and retrieving the result when the computation is done. The presentation will include hands-on demonstrations with real devices. *Managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725.

  16. Gravitational-Wave Astronomy

    Science.gov (United States)

    Kelly, Bernard J.

    2010-01-01

    Einstein's General Theory of Relativity is our best classical description of gravity, and informs modern astronomy and astrophysics at all scales: stellar, galactic, and cosmological. Among its surprising predictions is the existence of gravitational waves -- ripples in space-time that carry energy and momentum away from strongly interacting gravitating sources. In my talk, I will give an overview of the properties of this radiation, recent breakthroughs in computational physics allowing us to calculate the waveforms from galactic mergers, and the prospect of direct observation with interferometric detectors such as LIGO and LISA.

  17. Introducing astronomy into high school physics curriculum through the use of the University of North Dakota Observatory

    Science.gov (United States)

    Nolby, Caitlin Marie

    Astronomy education is currently lacking in the secondary level classroom. Many programs have been created to remedy this, including research opportunities for students and training workshops for educators. These reach only a small fraction of the population however, while remaining students still lack the opportunity to learn astronomy at the secondary level. This research addresses the creation of a program that will make astronomy education a recurring option for students across North Dakota through implementation of a two-week astronomy course at Grand Forks Central High School (GFCHS) in a class of 19 physics students. During ten class periods from April 16, 2012 through April 27, 2012, instruction included presentation of basic astronomy concepts and observational techniques as well as student participation in demonstrations and in-class activities. Original lesson plans also included a group research project on the astrometry of an asteroid. Students were given the option to visit the University of North Dakota (UND) Observatory the evening of April 20, 2012 for a public "star party" where they received a tour of the university's telescopes and research equipment. Students also took a field trip to the John D. Odegard School of Aerospace Sciences to tour Aviation and Space Studies facilities at UND on April 25, 2012. Students were given a pre-test at the start of the course, daily exit surveys at the end of each class period, and a post-test at the end of the two weeks. These assessments were used to evaluate student enjoyment, progress, and overall perception of the course. The research also identified common misconceptions in astronomy held by the learners and the most effective teaching methods. It was found that this course was overall successful in promoting the students' learning of astronomy. This analysis has been used to make improvements in future installments of the course and it is now available online to educators for use in the classroom.

  18. Astronomy Courses which Emphasize Communication Skills

    Science.gov (United States)

    Dinerstein, H. L.

    1998-12-01

    The ability to communicate effectively, both in oral and written form, is crucial for success in almost any career path. Furthermore, being able to effectively communicate information requires a high level of conceptual mastery of the material. For these reasons, I have incorporated practice in communication into courses at a variety of levels, ranging from non-science-major undergraduate courses to graduate courses. I briefly describe the content of these courses, particularly the communication-related component. The first, Ast 309N, ``Astronomy Bizarre: Stars and Stellar Evolution," is an elective which follows one semester of general introductory astronomy for non-majors. Instead of homework problems, the students complete a sequence of writing assignments of graduated complexity, beginning with simple tasks such as writing abstracts and critiques of assigned readings, and moving on to writing term papers which require literature research and a short science fiction story incorporating accurate depictions of relativistic effects. In Ast 175/275, a ``Journal Club" course for upper-division astronomy majors, students read articles in the professional literature and give short oral presentations to the rest of the class. To build up their understanding of a topic, we work through the ``paper trail" of key papers on topics with exciting recent developments, such as extrasolar planets, gravitational lenses, or gamma-ray bursts. Finally, in a seminar course for first-semester astronomy graduate students (Ast 185C) that broadly addresses professional development issues, I include a practice AAS oral session, with the students giving 5-minute presentations on a journal paper of their choice. This seminar course also examines career paths and employment trends, the peer review process for papers and proposals, professional norms and ethics, and other topics. Syllabi for these and other courses I teach regularly can be found from my home page (http://www.as.utexas.edu/astronomy/people/dinerstein).

  19. The NASA Space Place: A Plethora of Games, Projects, and Fun Facts for Celebrating Astronomy

    Science.gov (United States)

    Leon, N. J.; Fisher, D. K.

    2008-12-01

    The Space Place is a unique NASA education and public outreach program. It includes a NASA website (spaceplace.nasa.gov) in English and Spanish that targets elementary age children with appealing, content- rich STEM material on space science, Earth science, and technology. The site features science and/or technology content related to, so far, over 40 NASA missions. This overall program, as well as special efforts planned for IYA2009, strongly support many of the objectives of IYA. Some of these are: 1. Stimulate interest in astronomy and science, especially among young people and in audiences not normally reached. 2. Increase scientific awareness. 3. Support and improve formal and informal science education. 4. Provide a contemporary image of science and scientists. 5. Facilitate new astronomy education networks and strengthen existing ones. 6. Improve the gender-balanced representation of scientists at all levels and promote greater involvement of underrepresented groups. The Space Place program has cultivated a large network of community partners (Obj. 5), including museums, libraries, and planetariums, as well as a large network of avocational astronomy societies. We send the community partners monthly mailings of the latest NASA materials for their "NASA Space Place" display boards (Obj. 1, 2, 3, 5). The astronomy societies receive original articles with the latest "insider" news on NASA missions for publication in their newsletters or on their websites (Obj. 2, 5). Through these leveraged partnerships, we reach a large audience of children; parents; formal and informal educators; rural, minority, and otherwise underserved audiences (Obj. 1, 6); and avocational astronomers, many of whom work with children and the general public in the classroom or at special events (Obj. 2, 3). Supporting Obj. 4, are the "Space Place Live" cartoon "talk show" episodes, spaceplace.nasa.gov/en/kids/live. For IYA 2009, we will specifically prepare our partners to plan and carry

  20. Social Media Programs at the National Optical Astronomy Observatory

    Science.gov (United States)

    Sparks, Robert T.; Walker, Constance Elaine; Pompea, Stephen M.

    2015-08-01

    Observatories and other science research organizations want to share their research and activities with the public. The last several years, social media has become and increasingly important venue for communicating information about observatory activities, research and education and public outreach.The National Optical Astronomy Observatory (NOAO) uses a wide variety of social media to communicate with different audiences. NOAO is active on social media platforms including Facebook, Twitter, Google+ and Pinterest. Our social media accounts include those for the National Optical Astronomy Observatory, Cerro Tololo Inter-American Observatory, Kitt Peak National Observatory and our dark skies conservation program Globe at Night.Our social media programs have a variety of audiences. NOAO uses social media to announce and promote NOAO sponsored meetings, observatory news and proposal deadlines to the professional astronomical community. Social media accounts are used to disseminate NOAO press releases, images from the observatory and other science using data from NOAO telescopes.Social media is important in our Education and Public Outreach programs (EPO). Globe at Night has very active facebook and twitter accounts encouraging people to become involved in preserving dark skies. Social media plays a role in recruiting teachers for professional development workshops such as Project Astro.NOAO produces monthly podcasts for the 365 Days of Astronomy podcast featuring interviews with NOAO astronomers. Each podcast highlights the science of an NOAO astronomer, an NOAO operated telescope or instrument, or an NOAO program. A separate series of podcasts is produced for NOAO’s Dark Skies Education programs. All the podcasts are archived at 365daysofastronomy.org.

  1. Addressing the General Education Curriculum in General Education Settings with Students with Severe Disabilities

    Science.gov (United States)

    Ballard, Sarah L.; Dymond, Stacy K.

    2017-01-01

    This systematic literature review examined research on stakeholders' beliefs about addressing the general education curriculum in general education classrooms with students with severe disabilities (SD). The investigation was limited to studies published in peer-reviewed journals between 1997 and 2015. Ten articles were identified and then…

  2. Online Astronomy Resources from the American Museum of Natural History

    Science.gov (United States)

    Steiner, Robert

    2010-02-01

    The American Museum of Natural History, one of the world's largest natural history museums, is the locus of a rich array of scientific research, exhibition and educational resources through its Department of Astrophysics, its Rose Center for Earth and Space and its Hall of Meteorites. For the past decade, the Museum's National Center for Science Literacy, Education and Technology has leveraged these assets to create a panoply of web-based resources for students, teachers and the general public. This session will review several of these resources, including the Digital Universe (a three-dimensional mapping of the Universe); The Solar System (an online graduate course for K-12 teachers); multimedia highlighting searches for exoplanets and ultra-high-energy cosmic rays; Journey to the Stars (a DVD version of the current planetarium show); and the astronomy section of Ology (a website for children ages 7 and up). A copy of the Journey to the Stars DVD will be provided to all attendees. )

  3. Early-Years Educators' Attitudes to Science and Pseudo-Science: The Case of Astronomy and Astrology.

    Science.gov (United States)

    Kallery, Maria

    2001-01-01

    Surveyed Greek elementary teachers' attitudes toward astrology, investigating whether they could distinguish between astronomy as the science and astrology as the pseudoscience. Teacher surveys indicated that 60 percent of respondents subscribed more or less to the astrological principles, and 59 percent viewed both astronomy and astrology as…

  4. Astronomy and culture

    CERN Document Server

    Hetherington, Edith

    2009-01-01

    While astronomy is a burgeoning science, with tremendous increases in knowledge every year, it also has a tremendous past, one that has altered humanity's understanding of our place in the universe. The impact of astronomy on culture - whether through myths and stories, or through challenges to the intellectual status quo - is incalculable. This volume in the Greenwood Guides to the Universe series examines how human cultures, in all regions and time periods, have tried to make sense of the wonders of the universe. Astronomy and Culture shows students how people throughout time have struggled

  5. Consecutive Course Modules Developed with Simple Materials to Facilitate the Learning of Basic Concepts in Astronomy

    Science.gov (United States)

    Okulu, Hasan Zuhtu; Oguz-Unver, Ayse

    2015-01-01

    From the perspective of teaching, the huge natural laboratory that astronomy provides constitutes the most prominent connection between astronomy and other branches of science. The purpose of this research was to provide educators with activities of observation using simple materials that were developed to facilitate the teaching of basic concepts…

  6. The Radio JOVE Project - Shoestring Radio Astronomy

    Science.gov (United States)

    Thieman, J.; Flagg, R.; Greenman, W.; Higgins, C.; Reyes, F.; Sky, J.

    2010-01-01

    Radio JOVE is an education and outreach project intended to give students and other interested individuals hands-on experience in learning radio astronomy. They can do this through building a radio telescope from a relatively inexpensive kit that includes the parts for a receiver and an antenna as well as software for a computer chart recorder emulator (Radio Skypipe) and other reference materials

  7. A Community - Centered Astronomy Research Program

    Science.gov (United States)

    Boyce, Pat; Boyce, Grady

    2017-06-01

    The Boyce Research Initiatives and Education Foundation (BRIEF) is providing semester-long, hands-on, astronomy research experiences for students of all ages that results in their publishing peer-reviewed papers. The course in astronomy and double star research has evolved from a face-to-face learning experience with two instructors to an online - hybrid course that simultaneously supports classroom instruction at a variety of schools in the San Diego area. Currently, there are over 65 students enrolled in three community colleges, seven high schools, and one university as well as individual adult learners. Instructional experience, courseware, and supporting systems were developed and refined through experience gained in classroom settings from 2014 through 2016. Topics of instruction include Kepler's Laws, basic astrometry, properties of light, CCD imaging, use of filters for varying stellar spectral types, and how to perform research, scientific writing, and proposal preparation. Volunteer instructors were trained by taking the course and producing their own research papers. An expanded program was launched in the fall semester of 2016. Twelve papers from seven schools were produced; eight have been accepted for publication by the Journal of Double Observations (JDSO) and the remainder are in peer review. Three additional papers have been accepted by the JDSO and two more are in process papers. Three college professors and five advanced amateur astronomers are now qualified volunteer instructors. Supporting tools are provided by a BRIEF server and other online services. The server-based tools range from Microsoft Office and planetarium software to top-notch imaging programs and computational software for data reduction for each student team. Observations are performed by robotic telescopes worldwide supported by BRIEF. With this success, student demand has increased significantly. Many of the graduates of the first semester course wanted to expand their

  8. Radio astronomy

    International Nuclear Information System (INIS)

    Parijskij, Y.N.; Gossachinskij, I.V.; Zuckerman, B.; Khersonsky, V.K.; Pustilnik, S.; Robinson, B.J.

    1976-01-01

    A critical review of major developments and discoveries in the field of radioastronomy during the period 1973-1975 is presented. The report is presented under the following headings:(1) Continuum radiation from the Galaxy; (2) Neutral hydrogen, 21 cm (galactic and extragalactic) and recombination lines; (3) Radioastronomy investigations of interstellar molecules; (4) Extragalactic radio astronomy and (6) Development in radio astronomy instruments. (B.R.H.)

  9. Teaching Astronomy using a Flipped Classroom Model of Instruction

    Science.gov (United States)

    Wenger, Matthew; Impey, Chris D.; Rivera Chavez, Wendy

    2014-11-01

    Astronomy: State of the Art is a MOOC specifically developed to study student participation in an online learning environment. The project aims to serve multiple audiences of learners. For this project we focused on college students who use the online environment for lectures and quizzes but whose classroom time is devoted to hands-on activities and group work; this is the “flipped classroom” model.In spring 2014, Astronomy: State of the Art was co-convened with “The Physical Universe,” a Natural Sciences course taught at the University of Arizona that satisfies a General Education requirement for non-science majors. Using the same core material as Astronomy - State of the Art (with additional modules on the physics of radiation, atomic structure, energy, and gravity that are not necessary for the informal learners), the local course employed a “flipped” model where the students access lectures and podcasts online but are in a face-to-face classroom two times a week for labs and hands-on activities, lecture tutorials, group discussions, and other research-validated tools for enhancing learning. A flipped or hybrid model gives students flexibility, uses the online medium for the aspects of instruction where interaction with an instructor isn’t required, and optimizes the scarce resource of time in a large classroom.Final student grades were closely related to their attendance, however, performance in this class was not correlated with completion of the online video lectures, even though the quizzes were closely tied to the content of these videos. The course will next be taught using Coursera which allow instructors to more closely examine the relationship between students use of course materials and understanding of course topics. The eventual goal is to recruit undergraduates from anywhere in the United States and award them transferrable credit for completing the class.

  10. Galactic radio astronomy

    CERN Document Server

    Sofue, Yoshiaki

    2017-01-01

    This book is a concise primer on galactic radio astronomy for undergraduate and graduate students, and provides wide coverage of galactic astronomy and astrophysics such as the physics of interstellar matter and the dynamics and structure of the Milky Way Galaxy and galaxies. Radio astronomy and its technological development have led to significant progress in galactic astronomy and contributed to understanding interstellar matter and galactic structures. The book begins with the fundamental physics of radio-wave radiation, i.e., black body radiation, thermal emission, synchrotron radiation, and HI and molecular line emissions. The author then gives overviews of ingredients of galactic physics, including interstellar matter such as the neutral (HI), molecular hydrogen, and ionized gases, as well as magnetic fields in galaxies. In addition, more advanced topics relevant to the Galaxy and galaxies are also contained here: star formation, supernova remnants, the Galactic Center and black holes, galactic dynamics...

  11. The Educational Function of an Astronomy Research Experience for Undergraduates Program as Described by Female Participants

    Science.gov (United States)

    Slater, Stephanie

    2010-01-01

    The long-running REU-program is tacitly intended to increase retention and provide "an important educational experience" for undergraduates, particularly women, minorities and underrepresented groups. This longitudinal, two-stage study was designed to explore the ways in which the REU acted as an educational experience for 51 women in the field of astronomy. Stage-1 consisted of an ex post facto analysis of data collected over 8 years, including multiple interviews with each participant during their REU, annual open-ended alumni surveys, faculty interviews, and extensive field notes. Four themes emerged, related to developing understandings of the nature of professional scientific work, the scientific process, the culture of academia, and an understanding of the "self." Analysis provided an initial theory that was used to design the Stage-2 interview protocol. In Stage-2, over 10 hours of interviews were conducted with 8 participants selected for their potential to disconfirm the initial theory. Results indicate that the REU provided a limited impact in terms of participants’ knowledge of professional astronomy as a largely computer-based endeavor. The REU did not provide a substantive educational experience related to the nature of scientific work, the scientific process, the culture of academia, participants' conceptions about themselves as situated in science, or other aspects of the "self,” were limited. Instead, the data suggests that these women began the REU with pre-existing and remarkably strong conceptions in these areas, and that the REU did not functional to alter those states. These conceptions were frequently associated with other mentors/scientist interactions, from middle school into the undergraduate years. Instructors and family members also served as crucial forces in shaping highly developed, stable science identities. Sustained relationships with mentors were particularly transformational. These findings motivate an ongoing research agenda

  12. Astronomy books in Spanish

    Science.gov (United States)

    Fierro, Julieta

    Great cultures have created language. They have discovered its strength among other reasons for education. For a long time the Bible was one of the few books available in western culture, its influence is beyond any doubt. Many developing nations have no science books in their mother tongue. They might carry a few translations but these do not convey the local culture so it is harder for students to grasp the concepts and to build on what they know. Books, even if they are extremely simple, should be written in local languages because that will facilitate the conveying of knowledge and the creation of scientific culture. In the books examples that pertain to every day local life must be given, in particular examples that have to do with women. Women play a central role in developing nations by child bearing; if they become literate they will influence enormously the quality of their children's education, in particular their science comprehension. In Mexico a collection that includes astronomy books has recently been edited by the National Council for Culture and Arts. The books are small and light, which encourages middle-school students to carry them around and read them while traveling in public transportation, such as the subway. Every other page is a new subject, that carries illustrations, abstracts and conclusions. The astronomy books are on search for extraterrestrial life, the stars and the universe. These books are distributed nation-wide and are inexpensive. They have been written by Mexican astronomers.

  13. Introductory astronomy course at the University of Cape Town: Probing student perspectives

    Directory of Open Access Journals (Sweden)

    Vinesh Rajpaul

    2014-11-01

    Full Text Available We report on research carried out to improve teaching and student engagement in the introductory astronomy course at the University of Cape Town. This course is taken by a diverse range of students, including many from educationally disadvantaged backgrounds. We describe the development of an instrument, the Introductory Astronomy Questionnaire (IAQ, which we administered as pre- and posttests to students enrolled in the course. The instrument comprised a small number of questions which probed three areas of interest: student motivation and expectations, astronomy content, and worldview. Amongst our findings were that learning gains were made in several conceptual areas, and that students appeared to develop a more nuanced view of the nature of astronomy. There was some evidence that the course had a positive impact on students’ worldviews, particularly their attitudes towards science. We also identified a promising predictor of course success that could in the future be used to identify students requiring special teaching intervention.

  14. A Green Robotic Observatory for Astronomy Education

    Science.gov (United States)

    Reddy, Vishnu; Archer, K.

    2008-09-01

    With the development of robotic telescopes and stable remote observing software, it is currently possible for a small institution to have an affordable astronomical facility for astronomy education. However, a faculty member has to deal with the light pollution (observatory location on campus), its nightly operations and regular maintenance apart from his day time teaching and research responsibilities. While building an observatory at a remote location is a solution, the cost of constructing and operating such a facility, not to mention the environmental impact, are beyond the reach of most institutions. In an effort to resolve these issues we have developed a robotic remote observatory that can be operated via the internet from anywhere in the world, has a zero operating carbon footprint and minimum impact on the local environment. The prototype observatory is a clam-shell design that houses an 8-inch telescope with a SBIG ST-10 CCD detector. The brain of the observatory is a low draw 12-volt harsh duty computer that runs the dome, telescope, CCD camera, focuser, and weather monitoring. All equipment runs of a 12-volt AGM-style battery that has low lead content and hence more environmental-friendly to dispose. The total power of 12-14 amp/hrs is generated from a set of solar panels that are large enough to maintain a full battery charge for several cloudy days. This completely eliminates the need for a local power grid for operations. Internet access is accomplished via a high-speed cell phone broadband connection or satellite link eliminating the need for a phone network. An independent observatory monitoring system interfaces with the observatory computer during operation. The observatory converts to a trailer for transportation to the site and is converted to a semi-permanent building without wheels and towing equipment. This ensures minimal disturbance to local environment.

  15. Women in Astronomy Workshop Report

    OpenAIRE

    Brough, Sarah; Bauer, Amanda E.; Brooks, Kate; Hopkins, Andrew; Maddison, Sarah

    2011-01-01

    Here we report on the Women in Astronomy Workshop (http://asawomeninastronomy.org/meetings/wia2011/), which was held on 13 May 2011 in Sydney, Australia. The workshop was organised by the Astronomical Society of Australia's Chapter on Women in Astronomy, to discuss some of the issues that face women in astronomy and make recommendations to help support the success of women in Australian astronomy but came to broader conclusions that have value for the whole astronomical community. The worksho...

  16. The purpose of astronomy

    OpenAIRE

    Davoust, Emmanuel

    1995-01-01

    This is a presentation of the purpose of astronomy in the context of modern society. After exposing two misconceptions about astronomy, I detail its role in five domains, certified knowledge, incorporated abilities, innovations, collective goods, and popular science; with each domain is associated an institution, an incentive, and a method of evaluation. Finally, I point out the role of astronomy as a source of inspiration in other fields than science.

  17. Stamping through astronomy

    CERN Document Server

    Dicati, Renato

    2013-01-01

    Stamps and other postal documents are an attractive vehicle for presenting astronomy and its development. Written with expertise and great enthusiasm, this unique book offers a historical and philatelic survey of astronomy and some related topics on space exploration. It contains more than 1300 color reproductions of stamps relating to the history of astronomy, ranging from the earliest observations of the sky to modern research conducted with satellites and space probes. Featured are the astronomers and astrophysicists who contributed to this marvelous story – not only Ptolemy, Copernicus, Kepler, Newton, Herschel, and Einstein but also hundreds of other minor protagonists who played an important role in the development of this, the most ancient yet the most modern of all the sciences. The book also examines in depth the diverse areas which have contributed to the history of astronomy, including the instrumentation, the theories, and the observations. Many stamps illustrate the beauty and the mystery of ce...

  18. A Proposed Astronomy Learning Progression for Remote Telescope Observation

    Science.gov (United States)

    Slater, Timothy F.; Burrows, Andrea C.; French, Debbie A.; Sanchez, Richard A.; Tatge, Coty B.

    2014-01-01

    Providing meaningful telescope observing experiences for students who are deeply urban or distantly rural place-bound--or even daylight time-bound--has consistently presented a formidable challenge for astronomy educators. For nearly 2 decades, the Internet has promised unfettered access for large numbers of students to conduct remote telescope…

  19. ASTRONET: Strategic Planning for European Astronomy 2005-2025

    Science.gov (United States)

    Andersen, Johannes; Mourard, Denis

    2015-08-01

    European astronomy, with ESO and ESA, is supported by a wide variety of independent national agencies or similar bodies, which jointly provide ~98% of the total funding (with ~2% EU grants). In 2005 these agencies concluded that common strategic planning would be a more cost-effective approach, so they founded a consortium, ASTRONET (http://www.astronet-eu.org/), to prototype such an effort for all of Europe, with EU support. A bottom-up process resulted in a Science Vision (2007) and Infrastructure Roadmap (2008) for European astronomy, with recent updates (2014).These ASTRONET reports cover all branches of astronomy; infrastructures at all electromagnetic wavelengths as well as particles etc., on the ground and in space; laboratory work, software and archiving; and training, recruitment and public outreach. In short, they are agreed blueprints for what Europe plans to accomplish in the next 1-2 decades.Subsequently, a systematic and sustained pragmatic effort has been made to implement the strategy laid out in the Roadmap, including a common European participation in projects and facilities of global dimensions. Decisions on the organisation and construction of several major research facilities have been taken as foreseen (E-ELT, SKA, CTA,…), and they are on track for completion around 2025. The task for global astronomy is now to optimise the overall scientific returns and cost-effectiveness of these investments across wavelength domains, scientific disciplines, and political and financial borders. Accordingly, ASTRONET is currently transforming itself into a permanent, self-sustaining activity reaching out to the world.The ideal of a fully integrated global astronomy may not be reached until ~2050, but no science is better suited than astronomy to set such an example: One Universe surrounds us all, and one Earth is our platform. The IAU General Assembly is a springboard towards this goal.

  20. Solar eclipses as a vehicle for international astronomy education.

    Science.gov (United States)

    Pasachoff, J. M.

    The public's attention is drawn to astronomy whenever solar eclipse - partial, annular, or total - is visible, and we must take advantage of the opportunity to teach about the nature of science, the ability of astronomers to predict and analyze distant bodies and events, and the value of scientific research. We must also instruct people how to watch the partial and annular phases safely and that the total phase is not harmful.

  1. Improving Astronomy Achievement and Attitude through Astronomy Summer Project: A Design, Implementation and Assessment

    Science.gov (United States)

    Türk, Cumhur; Kalkan, Hüseyin; Iskeleli', Nazan Ocak; Kiroglu, Kasim

    2016-01-01

    The purpose of this study is to examine the effects of an astronomy summer project implemented in different learning activities on elementary school students, pre-service elementary teachers and in-service teachers' astronomy achievement and their attitudes to astronomy field. This study is the result of a five-day, three-stage, science school,…

  2. Work and General Education.

    Science.gov (United States)

    United Nations Educational, Scientific, and Cultural Organization, Bangkok (Thailand). Regional Office for Education in Asia and the Pacific.

    Presentations and other materials are provided from the Asia and the Pacific Programme of Educational Innovation for Development (APEID) Planning and Review Meeting on Work as an Integral Part of General Education. The focus is on how education, through an orientation to work, could help to decrease the gravity of the problems of population…

  3. A Study on Identifying the Misconceptions of Pre-Service and In-Service Teachers about Basic Astronomy Concepts

    Science.gov (United States)

    Kanli, Uygar

    2014-01-01

    Nowadays, the importance given to astronomy teaching in science and physics education has been gradually increasing. At the same time, teachers play an important role in remediating the misconceptions about astronomy concepts held by students. The present study aims to determine the misconceptions of pre-service physics teachers (n = 117),…

  4. Astronomy LITE Demonstrations

    Science.gov (United States)

    Brecher, Kenneth

    2006-12-01

    Project LITE (Light Inquiry Through Experiments) is a materials, software, and curriculum development project. It focuses on light, optics, color and visual perception. According to two recent surveys of college astronomy faculty members, these are among the topics most often included in the large introductory astronomy courses. The project has aimed largely at the design and implementation of hands-on experiences for students. However, it has also included the development of lecture demonstrations that employ novel light sources and materials. In this presentation, we will show some of our new lecture demonstrations concerning geometrical and physical optics, fluorescence, phosphorescence and polarization. We have developed over 200 Flash and Java applets that can be used either by teachers in lecture settings or by students at home. They are all posted on the web at http://lite.bu.edu. For either purpose they can be downloaded directly to the user's computer or run off line. In lecture demonstrations, some of these applets can be used to control the light emitted by video projectors to produce physical effects in materials (e.g. fluorescence). Other applets can be used, for example, to demonstrate that the human percept of color does not have a simple relationship with the physical frequency of the stimulating source of light. Project LITE is supported by Grant #DUE-0125992 from the NSF Division of Undergraduate Education.

  5. The Cambridge encyclopaedia of astronomy

    CERN Document Server

    1977-01-01

    Astronomy has been transformed in the last two decades by a series of dramatic discoveries that have left most reference books completely out of date. The Cambridge Encyclopaedia of Astronomy presents a broadly based survey of the whole of astronomy which places emphasis on these critical new findings.

  6. The NASA airborne astronomy program - A perspective on its contributions to science, technology, and education

    Science.gov (United States)

    Larson, Harold P.

    1992-01-01

    The publication records from NASA's airborne observatories are examined to evaluate the contribution of the airborne astronomy program to technological development and scientific/educational progress. The breadth and continuity of program is detailed with reference to its publication history, discipline representation, literature citations, and to the ability of such a program to address nonrecurring and unexpected astronomical phenomena. Community involvement in the airborne-observation program is described in terms of the number of participants, institutional affiliation, and geographic distribution. The program utilizes instruments including heterodyne and grating spectrometers, high-speed photometers, and Fabry-Perot spectrometers with wide total spectral ranges, resolutions, and numbers of channels. The potential of the program for both astronomical training and further scientific, theoretical, and applied development is underscored.

  7. Astronomy in Everyday Life

    Science.gov (United States)

    Rosenberg, M.; Bladon, G.; Russo, P.; Christensen, L. L.

    2014-01-01

    For a long time astronomers and other scientists believed that the importance of their work was evident to society. But in these difficult days of financial austerity, even the most obvious benefits of science have to undergo careful scrutiny. So, now more than ever is the time to highlight the importance of astronomy as a field in terms of its contributions to our technology, our mind sets and our lives. Here we will outline both the tangible and intangible reasons why astronomy is an important part of society. Whilst considerable attention will be given to technology and knowledge transfer from astronomy, perhaps the most important contribution outlined is the awareness that astronomy gives us of the vastness of the Universe and our place within it.

  8. Quickly Creating Interactive Astronomy Illustrations

    Science.gov (United States)

    Slater, Timothy F.

    2015-01-01

    An innate advantage for astronomy teachers is having numerous breathtaking images of the cosmos available to capture students' curiosity, imagination, and wonder. Internet-based astronomy image libraries are numerous and easy to navigate. The Astronomy Picture of the Day, the Hubble Space Telescope image archive, and the NASA Planetary…

  9. Women’s and men’s career choices in astronomy and astrophysics

    Directory of Open Access Journals (Sweden)

    Rachel Ivie

    2016-08-01

    Full Text Available [This paper is part of the Focused Collection on Gender in Physics.] The Longitudinal Study of Astronomy Graduate Students (LSAGS arose from the 2003 Women in Astronomy Conference, where it was noted that a majority of young members of the American Astronomical Society were women. The astronomy community wishes to make every effort to retain young women in astronomy, so they commissioned a longitudinal study to be conducted that would pinpoint the factors that contribute to retention in general, with a focus on differences between women and men. The LSAGS follows a cohort of people who were graduate students in astronomy or astrophysics during 2006–07. The first survey was conducted during 2007–08 and the second during 2012–13. The analysis presented in this paper used a subset of the respondents, all of whom had Ph.D.s in astronomy, astrophysics, or a related field at the time of the second survey. We tested the effects of four major concepts on two measures of attrition from physics and astronomy. These concepts included the imposter syndrome, mentoring and advising during graduate school, the “two-body problem” that occurs when a couple needs to find two jobs in the same geographic area, and the sex of the respondent. While the imposter syndrome and mentoring affected the likelihood of respondents’ thinking about leaving the field, they did not directly contribute to actually working in a field that was not physics or astronomy. Relationship with graduate advisors and the two-body problem both had significant effects on working in physics or astronomy, as did completing a postdoc. The sex of the respondent had no direct effect on our measures of attrition, but indirectly affected attrition because women were less likely to report positive relationships with graduate advisors and more likely to report two-body problems. This research identifies specific areas of concern that can be addressed by the scientific community to increase

  10. Astronomy Explained

    Science.gov (United States)

    North, Gerald

    Every year large numbers of people take up the study of astronomy, mostly at amateur level. There are plenty of elementary books on the market, full of colourful photographs, but lacking in proper explanations of how and why things are as they are. Many people eventually wish to go beyond the 'coffee-table book' stage and study this fascinating subject in greater depth. This book is written for them. In addition, many people sit for public examinations in this subject each year and this book is also intended to be of use to them. All the topics from the GCSE syllabus are covered here, with sample questions at the end of each chapter. Astronomy Explained provides a comprehensive treatment of the subject in more depth than is usually found in elementary works, and will be of interest to both amateur astronomers and students of astronomy.

  11. Science Divulgation: The Social Representations of Brazilian Researchers Working in the Field of Astronomy

    Science.gov (United States)

    Carneiro, Dalira Lúcia Cunha Maradei; Longhini, Marcos Daniel

    2015-12-01

    This article addresses the role of scientific divulgation in the interaction between science and society, debating the importance of Astronomy as a prime starter of the scientific divulgation. In the light of Moscovici’s Social Representations Theory, the social representations on scientific divulgation of Brazilian researchers that work in the field of Astronomy are studied. Individuals from different educational trajectories ansewered semi-structured interviews, which were analyzed according to Spink. The results indicate two representations: one for the society at large, moved by passion, based on values and beliefs, and on the satisfaction of seeing the results of their actions on people’s life; and another for their peers. In the first representation, gaps that obstruct the science divulgation emerge, such as the lack of training and the difficulty to use a plain language, the bureaucracy required for the projects’ execution and its negative representation in the media. Other inferences are that Astronomy is neither part of a systematic teaching nor a part of the media at large, and it often presents conceptual mistakes. Those representations find an echo in the theoretical framework, showing that, despite their advances, scientific divulgation and Astronomy Education are in a context of social fragility.

  12. Teaching Astronomy in UK Schools

    Science.gov (United States)

    Roche, Paul; Roberts, Sarah; Newsam, Andy; Barclay, Charles

    2012-01-01

    This article attempts to summarise the good, bad and (occasionally) ugly aspects of teaching astronomy in UK schools. It covers the most common problems reported by teachers when asked about covering the astronomy/space topics in school. Particular focus is given to the GCSE Astronomy qualification offered by Edexcel (which is currently the…

  13. Dark Skies Awareness Programs for the International Year of Astronomy

    Science.gov (United States)

    Walker, C. E.; Pompea, S. M.

    2008-12-01

    The loss of a dark night sky as a natural resource is a growing concern. It impacts not only astronomical research, but also our environment in terms of ecology, health, safety, economics and energy conservation. For this reason, "Dark Skies are a Universal Resource" is a cornerstone project for the U.S. International Year of Astronomy (IYA) program in 2009. Its goal is to raise public awareness of the impact of artificial lighting on local environments by getting people involved in a variety of dark skies-related programs. These programs focus on citizen-scientist sky-brightness monitoring programs, a planetarium show, podcasting, social networking, a digital photography contest, the Good Neighbor Lighting Program, Earth Hour, National Dark Skies Week, a traveling exhibit, a video tutorial, Dark Skies Discovery Sites, Astronomy Nights in the (National) Parks, Sidewalk Astronomy, and a Quiet Skies program. Many similar programs are available internationally through the "Dark Skies Awareness" Global Cornerstone Project. Working groups for both the national and international dark skies cornerstone projects are being chaired by the National Optical Astronomy Observatory (NOAO). The presenters from NOAO will provide the "know-how" and the means for session participants to become community advocates in promoting Dark Skies programs as public events at their home institutions. Participants will be able to get information on jump-starting their education programs through the use of well-developed instructional materials and kits. For more information, visit http://astronomy2009.us/darkskies/ and http://www.darkskiesawareness.org/.

  14. Extragalactic infrared astronomy

    International Nuclear Information System (INIS)

    Gondhalekar, P.M.

    1985-05-01

    The paper concerns the field of Extragalactic Infrared Astronomy, discussed at the Fourth RAL Workshop on Astronomy and Astrophysics. Fifteen papers were presented on infrared emission from extragalactic objects. Both ground-(and aircraft-) based and IRAS infrared data were reviewed. The topics covered star formation in galaxies, active galactic nuclei and cosmology. (U.K.)

  15. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Galaxies: active; accretion, accretion disks; binaries: general; black hole physics; galaxies: nuclei. ... Astronomical Observatory of Belgrade, Volgina 7, 11060 Belgrade, Serbia. ... Since January 2016, the Journal of Astrophysics and Astronomy has moved to Continuous Article Publishing (CAP) mode.

  16. Opportunity to learn: Investigating possible predictors for pre-course Test Of Astronomy STandards TOAST scores

    Science.gov (United States)

    Berryhill, Katie J.

    As astronomy education researchers become more interested in experimentally testing innovative teaching strategies to enhance learning in introductory astronomy survey courses ("ASTRO 101"), scholars are placing increased attention toward better understanding factors impacting student gain scores on the widely used Test Of Astronomy STandards (TOAST). Usually used in a pre-test and post-test research design, one might naturally assume that the pre-course differences observed between high- and low-scoring college students might be due in large part to their pre-existing motivation, interest, experience in science, and attitudes about astronomy. To explore this notion, 11 non-science majoring undergraduates taking ASTRO 101 at west coast community colleges were interviewed in the first few weeks of the course to better understand students' pre-existing affect toward learning astronomy with an eye toward predicting student success. In answering this question, we hope to contribute to our understanding of the incoming knowledge of students taking undergraduate introductory astronomy classes, but also gain insight into how faculty can best meet those students' needs and assist them in achieving success. Perhaps surprisingly, there was only weak correlation between students' motivation toward learning astronomy and their pre-test scores. Instead, the most fruitful predictor of TOAST pre-test scores was the quantity of pre-existing, informal, self-directed astronomy learning experiences.

  17. Astronomy, Astrology, and Medicine

    Science.gov (United States)

    Greenbaum, Dorian Gieseler

    Astronomy and astrology were combined with medicine for thousands of years. Beginning in Mesopotamia in the second millennium BCE and continuing into the eighteenth century, medical practitioners used astronomy/astrology as an important part of diagnosis and prescription. Throughout this time frame, scientists cited the similarities between medicine and astrology, in addition to combining the two in practice. Hippocrates and Galen based medical theories on the relationship between heavenly bodies and human bodies. In an enduring cultural phenomenon, parts of the body as well as diseases were linked to zodiac signs and planets. In Renaissance universities, astronomy and astrology were studied by students of medicine. History records a long tradition of astrologer-physicians. This chapter covers the topic of astronomy, astrology, and medicine from the Old Babylonian period to the Enlightenment.

  18. Armenian Archaeoastronomy and Astronomy in Culture

    Science.gov (United States)

    Mickaelian, Areg M.; Farmanyan, Sona V.

    2016-12-01

    A review is given on archaeoastronomy in Armenia and astronomical knowledge reflected in the Armenian culture. Astronomy in Armenia was popular since ancient times and Armenia is rich in its astronomical heritage, such as the names of the constellations, ancient observatories, Armenian rock art (numerous petroglyphs of astronomical content), ancient and medieval Armenian calendars, astronomical terms and names used in Armenian language since II-I millennia B.C., records of astronomical events by ancient Armenians (e.g. Halley's comet in 87 B.C., supernovae explosion in 1054), the astronomical heritage of the Armenian medieval great thinker Anania Shirakatsi's (612-685), medieval sky maps and astronomical devices by Ghukas (Luca) Vanandetsi (XVII-XVIII centuries) and Mkhitar Sebastatsi (1676-1749), etc. For systemization and further regular studies, we have created a webpage devoted to Armenian archaeoastronomical matters at Armenian Astronomical Society (ArAS) website. Issues on astronomy in culture include astronomy in ancient Armenian cultures, ethnoastronomy, astronomy in Armenian religion and mythology, astronomy and astrology, astronomy in folklore and poetry, astronomy in arts, astrolinguistics and astroheraldry. A similar webpage for Astronomy in Armenian Culture is being created at ArAS website and a permanent section "Archaeoastronomy and Astronomy in Culture" has been created in ArAS Electronic Newsletter. Several meetings on this topic have been organized in Armenia during 2007-2014, including the archaeoastronomical meetings in 2012 and 2014, and a number of books have been published. Several institutions are related to these studies coordinated by Byurakan Astrophysical Observatory (BAO) and researchers from the fields of astronomy, history, archaeology, literature, linguistics, etc. are involved.

  19. From the West Wing to Pink Floyd to Einstein Advertising: Astronomy in Popular Culture

    Science.gov (United States)

    Fraknoi, Andrew

    2007-12-01

    In what popular movie does Darryl Hannah play an astronomer? What Japanese car company is named after a well-known star cluster? Can you name at least two murder mysteries that take place at an observatory? What national astronomy education project was mentioned on The West Wing television show (which had several "stealth astronomy” episodes)? What piece of classical music begins with a Big Bang and has the players expanding on stage and into the concert hall? Can you recite the most famous neutrino poem and name the poet? What science fiction story, written by an astronomer under a pseudonym, features an H-R diagram? What rock group had its members’ names included in a reference in the Astrophysical Journal, unbeknownst to the editor? How many astronomy related operas can you name? How many astronomers does it take to screw in a light bulb? Join in on an exploration of astronomy in popular culture, from stamp collecting to advertising, from science fiction (with accurate astronomy) to rock music, from Broadway musicals to modern poetry. Learn which astronomy colleagues have been writing fiction and poetry while you were busy publishing in the research literature. Bring your favorite example of astronomy in popular culture and we'll take the time at the end to share ideas and have some fun. A resource guide for exploring astronomy and popular culture will be available.

  20. Skynet Junior Scholars: Bringing Astronomy to Deaf and Hard of Hearing Youth

    Science.gov (United States)

    Meredith, Kate; Williamson, Kathryn; Gartner, Constance; Hoette, Vivian L.; Heatherly, Sue Ann

    2016-01-01

    Skynet Junior Scholars (SJS), funded by the National Science Foundation, aims to engage middle school youth from diverse audiences in investigating the universe with research quality robotic telescopes. SJS project development goals include: 1) Online access to optical and radio telescopes, data analysis tools, and professional astronomers, 2) An age-appropriate web-based interface for controlling remote telescopes, 3) Inquiry-based standards-aligned instructional modules. From an accessibility perspective, the goal of the Skynet Junior Scholars project is to facilitate independent access to the project by all youth including those with blindness or low vision and those who are Deaf or Hard of Hearing.Deaf and Hard of Hearing (DHH) students have long been an underserved population within STEM fields, including astronomy. Two main barriers include: (1) insufficient corpus of American Sign Language (ASL) for astronomy terminology, and (2) DHH education professionals who lack astronomy background. A suite of vocabulary, accessible hands-on activities, and interaction with trained professionals, are critical for enhancing the background experiences of DHH youth, as they may come to an astronomy lesson lacking the basic "incidental learning" that is often taken for granted with hearing peers (for example, from astronomy in the media).A collaboration between the Skynet Junior Scholars (SJS) project and the Wisconsin School for the Deaf is bringing astronomy to the DHH community in an accessible way for the first time. We follow a group of seven DHH youth over one semester as they interact with the SJS tools and curriculum to understand how they assimilate astronomy experiences and benefit from access to telescopes both directly (on school campus and at Yerkes Observatory) and through Skynet's robotic telescope network (optical and radio telescopes, inquiry-based modules, data analysis tools, and professional astronomers). We report on our first findings of resources and

  1. Astronomy, Indigenous Knowledge and Interpretation: Advancing studies of Cultural Astronomy in South Africa

    OpenAIRE

    Holbrook, Jarita

    2016-01-01

    The International Society for Archaeoastronomy and Astronomy in Culture (ISAAC) Oxford X conference came to Africa for the first time in 2014. Oxford X exposed South African students and researchers to cultural astronomy data collection and analysis methods, as well as to potential mentors to further the goal of advancing the field. Cultural Astronomy studies in South Africa, however, remain in a nascent stage, which in some ways can be said for the entire field, but especially when it comes ...

  2. Space Culture: Innovative Cultural Approaches To Public Engagement With Astronomy, Space Science And Astronautics

    Science.gov (United States)

    Malina, Roger F.

    2012-01-01

    In recent years a number of cultural organizations have established ongoing programs of public engagement with astronomy, space science and astronautics. Many involve elements of citizen science initiatives, artists’ residencies in scientific laboratories and agencies, art and science festivals, and social network projects as well as more traditional exhibition venues. Recognizing these programs several agencies and organizations have established mechanisms for facilitating public engagement with astronomy and space science through cultural activities. The International Astronautics Federation has established an Technical Activities Committee for the Cultural Utilization of Space. Over the past year the NSF and NEA have organized disciplinary workshops to develop recommendations relating to art-science interaction and community building efforts. Rationales for encouraging public engagement via cultural projects range from theory of creativity, innovation and invention to cultural appropriation in the context of `socially robust science’ as advocated by Helga Nowotny of the European Research Council. Public engagement with science, as opposed to science education and outreach initiatives, require different approaches. Just as organizations have employed education professionals to lead education activities, so they must employ cultural professionals if they wish to develop public engagement projects via arts and culture. One outcome of the NSF and NEA workshops has been development of a rationale for converting STEM to STEAM by including the arts in STEM methodologies, particularly for K-12 where students can access science via arts and cultural contexts. Often these require new kinds of informal education approaches that exploit locative media, gaming platforms, artists projects and citizen science. Incorporating astronomy and space science content in art and cultural projects requires new skills in `cultural translation’ and `trans-mediation’ and new kinds

  3. Is It Working? Distractor Analysis Results from the Test Of Astronomy STandards (TOAST) Assessment Instrument

    Science.gov (United States)

    Slater, Stephanie

    2009-05-01

    The Test Of Astronomy STandards (TOAST) assessment instrument is a multiple-choice survey tightly aligned to the consensus learning goals stated by the American Astronomical Society - Chair's Conference on ASTRO 101, the American Association of the Advancement of Science's Project 2061 Benchmarks, and the National Research Council's National Science Education Standards. Researchers from the Cognition in Astronomy, Physics and Earth sciences Research (CAPER) Team at the University of Wyoming's Science and Math Teaching Center (UWYO SMTC) have been conducting a question-by-question distractor analysis procedure to determine the sensitivity and effectiveness of each item. In brief, the frequency each possible answer choice, known as a foil or distractor on a multiple-choice test, is determined and compared to the existing literature on the teaching and learning of astronomy. In addition to having statistical difficulty and discrimination values, a well functioning assessment item will show students selecting distractors in the relative proportions to how we expect them to respond based on known misconceptions and reasoning difficulties. In all cases, our distractor analysis suggests that all items are functioning as expected. These results add weight to the validity of the Test Of Astronomy STandards (TOAST) assessment instrument, which is designed to help instructors and researchers measure the impact of course-length duration instructional strategies for undergraduate science survey courses with learning goals tightly aligned to the consensus goals of the astronomy education community.

  4. Bad Astronomy Goes Hollywood

    Science.gov (United States)

    Plait, P.

    2003-05-01

    It can be argued that astronomy is the oldest of all the sciences, so you'd think that after all this time people would have a pretty good understanding of it. In reality, however, misconceptions about astronomy abound, and even basic concepts are misunderstood. There are many sources of these cosmic misconceptions, including incorrect textbooks, parents and/or teachers who don't understand astronomy and therefore spread misinformation, urban legends, and so on. Perhaps the most pervasive source of bad astronomy is Hollywood. Science fiction movies are enormously popular, but are commonly written and directed by people who don't have even a passing familiarity with astronomy. The smash hit "Armageddon" (the number one box office movie of 1998), for example, used vast quantities of incorrect astronomy in the plot. It reinforced such popular misconceptions as huge asteroids impacting the Earth with little warning, small meteorites being hot when they impact, air existing in space, and that a simple bomb can blow up an asteroid the size of a small moon (even when the bomb is buried only 800 feet deep!). However, movie scenes can be used as a hook that engages the student, helping them learn and remember the correct science. In this talk, I will light-heartedly discuss specific examples of common misinformation, using movie clips, diagrams, and a splash of common sense to show just where Hollywood gets it wrong, and what you can do to help students and the public get it right.

  5. The physics-astronomy frontier

    International Nuclear Information System (INIS)

    Hoyle, F.; Narlikar, K.

    1980-01-01

    Spacetime diagrams and the structure of matter are considered, and aspects of electrical interaction are investigated. Attention is given to radiation, quantum mechanics, spectrum lines, black bodies, stellar spectra, the H-R diagram, radio astronomy, millimeter-wave astronomy, interstellar grains and infrared astronomy, and X-ray astronomy. The strong and weak interactions are examined, taking into account atoms, nuclei, the evolution of stars, and the measurement of astronomical distances. A description of gravitational interaction is also presented. The laws of motion and gravitation are considered along with black holes, the significance of cosmology, Hubble's law, the expanding universe, the symmetries of the universe, Olbers' paradox, the big-bang universe, Mach's principle, the meaning of the expansion of the system of galaxies, the redshift-magnitude relation of Hubble and Humason, the early universe, and the geometry of special relativity

  6. Women in the History of Astronomy

    Science.gov (United States)

    Álvarez, M. Álvarez; Díaz, Ángeles I.

    1998-06-01

    We think about the History of Astronomy as the History of men. As the History of a few men: Ptolemy, Copernicus, Kepler, Newton,...- men who have changed our way of looking at the sky. But the History of Astronomy is more than that, it is the History of thousand of people whose daily work has allowed the development of knowledge and scientific theories at the time they lived. This, sometimes, "tedious work" permitted the big steps. Many of these people were women, as Theano who married Pythagoras and taught mathematics and astronomy in his school, Hypatia who managed the Library of Alexandria and wrote several astronomical treatises, Hildegard of Bingen who developed a theory on the origin and structure of the Universe in the 12th century, or Sofie Brahe who, worked with her famous brother. And so many privileged women who after a long process of study, were able to develop their scientific interests in spite of been excluded from most of the educational installations and formal and informal groups of men scientist. Most of the works done by these women have been ignored, or wrongly attributed to men throughout History. It often happens that although they have been recognized as good scientists in their own times, women have been discredited by posterior historians who refused to believe that important women scientist ever existed. Here we intend to make a short summary on the lives of some of these women and their astronomical works.

  7. The Relationship between Preservice Science Teachers' Attitude toward Astronomy and Their Understanding of Basic Astronomy Concepts

    Science.gov (United States)

    Bektasli, Behzat

    2016-01-01

    Turkish preservice science teachers have been taking a two-credit astronomy class during the last semester of their undergraduate program since 2010. The current study aims to investigate the relationship between preservice science teachers' astronomy misconceptions and their attitudes toward astronomy. Preservice science teachers were given an…

  8. From Earth to the Universe: Image Exhibitions in the International Year of Astronomy 2009

    Science.gov (United States)

    Watzke, M.; Arcand, K. K.; Christensen, L. L.

    2008-02-01

    The fantastic images of the Universe are largely responsible for the magical appeal that astronomy has for lay people. Indeed, popular images of the cosmos can engage the general public not only in the aesthetics of the visual realm, but also in the science of the knowledge and understanding behind them. The International Year of Astronomy 2009 (IYA2009) is an unprecedented opportunity to present astronomy to the global community. From Earth to the Universe (www.fromearthtotheuniverse.org) endeavours to bring these images to a wider audience in non-traditional venues, such as art museums, public galleries, shopping malls and public gardens.

  9. White supremacism and Islamic astronomy in history of astronomy texts from the eighteenth century to the present day

    Science.gov (United States)

    Lockard, Joe

    2018-04-01

    This paper reviews manifestations of racism in European and American histories of Arab and Persian astronomy from the eighteenth century to the present day. Its first section discusses representation of Islamic astronomy from Adam Smith to late Victorian writers, particularly tracing ideas of Arab unoriginality and scientific incapacity. The second section first relates the appearance of scientific racism in the early twentieth-century historiography of astronomy, then how the rise of scientifically and linguistically competent scholarship in the latter twentieth century provided much-improved information on Islamic achievements in astronomy. The paper’s conclusion underlines the importance of avoiding ethnic supremacism and integrating research on Islamic astronomy into teaching and publishing on the history of astronomy.

  10. LGBT Workplace Climate in Astronomy

    Science.gov (United States)

    Gaudi, B. S.; Danner, R.; Dixon, W. V.; Henderson, C. B.; Kay, L. E.

    2013-01-01

    The AAS Working Group on LGBTIQ Equality (WGLE) held a town hall meeting at the 220th AAS meeting in Anchorage to explore the workplace climate for LGBTIQ individuals working in Astronomy and related fields. Topics of discussion included anti-discrimination practices, general workplace climate, and pay and benefit policies. Four employment sectors were represented: industry, the federal government, private colleges, and public universities. We will summarize and expand on the town hall discussions and findings of the panel members.

  11. World's Biggest Astronomy Event on the World-Wide

    Science.gov (United States)

    1996-06-01

    `Astronomy On-Line' will connect students all over Europe Astronomy On-Line is a major, all-European project that will take place in conjunction with the 4th European Week for Scientific and Technological Culture later this year. It is based on intensive use of the World-Wide-Web (WWW) and represents the first large-scale attempt in the world to bring together pupils and their teachers all over one continent to explore challenging scientific questions, using modern communication tools, both for obtaining and for communicating information. The programme will be carried out in a collaboration between the European Association for Astronomy Education (EAAE) [1] and the European Southern Observatory, and together with the European Commission (EC). The active phase of Astronomy On-Line will start on October 1 and reach a climax on November 18 - 22, 1996 . What is `Astronomy On-Line'? In this project, a large number of students and their teachers at schools all over Europe, together with professional and amateur astronomers and others interested in astronomy, will become associated in a unique experience that makes intensive use of the vast possibilities of the World-Wide-Web (WWW). Although the exact number of participants will not be known until the beginning of October, it is expected to run into thousands, possibly many more. The unusual size and scope of Astronomy On-Line will contribute to make it an important all-European media event. The central idea is that the participants, through the WWW, will `meet' in a `marketplace' where a number of different `shops' will be available, each of which will tempt them with a number of exciting and educational `events', carefully prepared to cater for different age groups, from 12 years upwards. The events will cover a wide spectrum of activities, some of which will be timed to ensure the proper progression of this very complex project through its main phases. The benefits In fact, Astronomy On-Line will be the first

  12. Alexopoulos, Theodoros Benford's Law in Astronomy 639 Ali, Sk ...

    Indian Academy of Sciences (India)

    BetiCiciJoan

    Important Property of GRB Pulse: Power-Law Indices of Time Proper- ties on Energy. 535. Pi, F. P.. Astronomy Education Project for. Guangdong High Schools ... stricted Three-Body Problem with. Oblateness and Potential from a Belt. 107. On the Stability of L4,5 in the Relativis- tic R3BP with Radiating Secondary. 685. 752.

  13. Astronomy essentials

    CERN Document Server

    Brass, Charles O

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Astronomy includes the historical perspective of astronomy, sky basics and the celestial coordinate systems, a model and the origin of the solar system, the sun, the planets, Kepler'

  14. Astronomy on Tap as a Professional Development Tool

    Science.gov (United States)

    Rice, Emily; Burtnyk, Kimberly; Silverman, Jeffrey; Popinchalk, Mark; Constellation of Astronomy On Tap Host Stars

    2018-01-01

    We lured scientists, educators, and other astronomy enthusiasts into bars around the world with promises of fun public outreach, but we secretly provided them with networking opportunities and taught them how to be better communicators! Astronomy on Tap (AoT) events began in New York City in 2013, and since then nearly 400 events (featuring 1-6 presenters each) have been organized by over 100 people in over 30 locations across the U.S. and around the world. Implicit in the design of typical AoT events are opportunities for professional development in several areas, most prominently in networking and science communication. We surveyed organizers and presenters to assess the extent to which they have benefited from these opportunities. We report results from that survey and present plans for codifying professional development aspects of AoT events for future implementation.

  15. Exoplanet Peer-Learning Exercises for Introductory Astronomy Courses

    Science.gov (United States)

    Wisniewski, John P.; Larson, A.

    2010-01-01

    While exoplanet research has witnessed explosive growth over the past decade with over 350 exoplanets identified to date (http://exoplanet.eu), few education and public outreach tools capable of bringing the techniques and results of exoplanet science into the classroom have been developed. To help reduce this shortcoming, we have been developing and implementing a series of exoplanet-related active-learning exercises to be used in non-astronomy major introductory settings, including think-pair-share questions and peer-learning activities. We discuss some of these activities which we have field tested in undergraduate classes at the University of Washington. We also discuss our efforts to engage students in these classes in obtaining and analyzing astronomical observations of exoplanet host stars to identify and characterize exoplanet transit events. JPW acknowledges support from NSF Astronomy & Astrophysics Postdoctoral Fellowship AST 08-02230.

  16. The ESO Educational Office Reaches Out towards Europe's Teachers

    Science.gov (United States)

    2001-12-01

    carried out in close collaboration with the European Association for Astronomy Education (EAAE). During the past months, various preparatory discussions have been held between ESO, EAAE members and other teachers involved in Astronomy teaching from many countries. Provisional information about the ESO Educational Office will be found at its website ( http://www.eso.org/outreach/eduoff/ ). One of the first activities is concerned with a survey of the specific needs for astronomy education in Europe's high-schools by means of a widely distributed questionnaire. Of more immediate use will be the publication of four, comprehensive astronomy exercises, prepared in collaboration with the European Space Agency (ESA) and further described below. In the scientists' footsteps ESO PR Photo 36/01 ESO PR Photo 36/01 [Preview - JPEG: 450 x 640 pix - 34k] [Hires - JPEG: 2514 x 3578 pix - 1.4M] Cover of the "General Introduction" to the "ESA/ESO Astronomy Exercise Series" . The first instalments of the "ESA/ESO Astronomy Exercise Series" have just been published, on the web and in print. These exercises allow high-school students to gain exciting hands-on experience in astronomy, by making realistic calculations based on data obtained by some of the world's best telescopes, the NASA/ESA Hubble Space Telescope (HST) and ESO's Very Large Telescope (VLT) . Carefully prepared by astronomers and media experts, these excercises enable the students to measure and calculate fundamental properties like the distances to and the ages of different kinds of astronomical objects. Astronomy is an accessible and visual science, making it ideal for educational purposes. Reacting to the current need for innovative, high-quality educational materials, the European Space Agency (ESA) and the European Southern Observatory (ESO) have together produced this series of astronomical exercises for use in high schools. The prime object of the series is to present various small projects that will transmit some of

  17. The Correlation between Pre-Service Science Teachers' Astronomy Achievement, Attitudes towards Astronomy and Spatial Thinking Skills

    Science.gov (United States)

    Türk, Cumhur

    2016-01-01

    The purpose of this study was to examine the changes in pre-service Science teachers' astronomy achievement, attitudes towards astronomy and skills for spatial thinking in terms of their years of study. Another purpose of the study was to find out whether there was correlation between pre-service teachers' astronomy achievement, attitudes towards…

  18. Division B Commission 40: Radio Astronomy

    NARCIS (Netherlands)

    Chapman, Jessica M.; Giovaninni, Gabriele; Taylor, Russell; Carilli, Christopher; Hills, Richard; Hirabayashi, Hisashi; Jonas, Justin L.; Lazio, Joseph; Morganti, Raffaella; Nan, Rendong; Rubio, Monica; Shastri, Prjaval; Kellermann, Ken; Ekers, Ronald; Ohishi, Masatoshi

    2016-01-01

    IAU Commission 40 for Radio Astronomy (hereafter C40) brought together scientists and engineers who carry out observational and theoretical research in radio astronomy and who develop and operate the ground and space-based radio astronomy facilities and instrumentation. As of June 2015, the

  19. Implementation of Inclusive Education in General Education Institutions

    Directory of Open Access Journals (Sweden)

    Tat'yana A. Kalashnikova

    2013-01-01

    Full Text Available Nowadays much attention is attached to the problem of inclusive education. Inclusive education of children with learning disabilities is a new strategic trend of educational policy of the Republic of Kazakhstan, significantly addressing fundamental education. This article considers the possibility of involving the schoolchildren with learning disabilities in educational process and the necessity to secure favorable environment and support for the children with learning disabilities in accordance with the Law “On Education of the Republic of Kazakhstan” and State Program of Education Development in the Republic of Kazakhstan for 2011–2012.The trend of maximum possible involvement of children with special needs in common general education institutions determines the educational culture dynamics in many countries of the world. Number of European Union countries has already made drastic structural alterations, resulted in the abolition of special schools (Sweden, Denmark, Italy, Australia, USA, etc.. Children with different disabilities study in “the least restrictive environment”, in other words, whenever possible, together with peers in the environment of general education institutions [1].The goal of Kazakhstan development strategy up to 2030, involving the educational system is “to provide the development of the national educational model and its integration into international educational environment”.The priority of state program “Education” (2000–2005 “is to create conditions for efficient development of national educational model, providing access to qualitative education”. “The Concept of Kazakhstan Educational System”, the realization of which should provide: transfer from the principle of “education for life” to the principle of “lifelong education for everyone”; affordability and continuity of all educational levels; comprehensive, qualitative, competitive result-oriented education has been adopted

  20. Using Simulations to Visualize Astronomy Concepts

    Science.gov (United States)

    Lee, Kevin M.

    2011-05-01

    Advances in computer programming environments and the internet have made sophisticated simulations abundant and instantly accessible. This presentation will showcase simulations developed by the University of Nebraska's Astronomy Education Group that are publicly available on the web at http://astro.unl.edu. These interactive tools can be extremely useful in helping college students visualize challenging topics. Methods for using these tools interactively in the classroom through having a dialog with students, asking them to record predictions, and providing feedback on think-pair-share questions will be discussed.

  1. Astronomy in Australia

    Science.gov (United States)

    Watson, F.; Couch, W.

    2017-12-01

    Australians have watched the sky for tens of thousands of years. The nineteenth century saw the foundation of government observatories in capital cities such as Sydney and Melbourne. While early twentieth-century astronomy focused largely on solar physics, the advent of radio astronomy at the end of the Second World War enabled Australia to take a leading role in the new science, with particular emphasis on low-frequency studies. Today, the radio quietness of its outback interior provides an excellent location for the Australian core of the Square Kilometre Array. Australian optical astronomy has flourished since the 1960s, with the 3.9-metre Anglo-Australian Telescope becoming the principal national facility in 1974. Access to ESO’s facilities at the La Silla Paranal Observatory is warmly welcomed by all Australian astronomers.

  2. El Universo a Sus Pies: Actividades y Recursos para Astronomia (Universe at Your Fingertips: An Astronomy Activity and Resource Notebook).

    Science.gov (United States)

    Fraknoi, Andrew, Ed.; Schatz, Dennis, Ed.

    The goal of this resource notebook is to provide activities selected by astronomers and classroom teachers, comprehensive resource lists and bibliographies, background material on astronomical topics, and teaching ideas from experienced astronomy educators. Activities are grouped into several major areas of study in astronomy including lunar…

  3. Astronomy adventures and vacations how to get the most out of astronomy in your leisure time

    CERN Document Server

    Treadwell, Timothy

    2017-01-01

    This astronomy travel guide examines the many wonderful opportunities for experiencing the observing hobby. Amateur astronomy is often consigned to observing from home or from a local park, yet it can be much more. Tim Treadwell explores all the possibilities of astronomical and space-related activities that are available on day trips and longer vacations. These activities range from observatory visits and other simple ways to build an astronomy event into a holiday, to full blown specialized astronomy travel. Many trips give the opportunity to visit some of the world’s famous attractions. On most vacations it can be a matter of just taking a day (or night) out of your schedule to fit in an astronomy event, but larger, dedicated pilgrimages are also possible. How to make the most of astronomy potential on a holiday, whether observing on the beach in Hawaii with the Telescope Guy or visiting Star City in Russia, is covered in detail. Go to a star party, explore the national parks or see the northern lights! ...

  4. Source modelling at the dawn of gravitational-wave astronomy

    Science.gov (United States)

    Gerosa, Davide

    2016-09-01

    The age of gravitational-wave astronomy has begun. Gravitational waves are propagating spacetime perturbations ("ripples in the fabric of space-time") predicted by Einstein's theory of General Relativity. These signals propagate at the speed of light and are generated by powerful astrophysical events, such as the merger of two black holes and supernova explosions. The first detection of gravitational waves was performed in 2015 with the LIGO interferometers. This constitutes a tremendous breakthrough in fundamental physics and astronomy: it is not only the first direct detection of such elusive signals, but also the first irrefutable observation of a black-hole binary system. The future of gravitational-wave astronomy is bright and loud: the LIGO experiments will soon be joined by a network of ground-based interferometers; the space mission eLISA has now been fully approved by the European Space Agency with a proof-of-concept mission called LISA Pathfinder launched in 2015. Gravitational-wave observations will provide unprecedented tests of gravity as well as a qualitatively new window on the Universe. Careful theoretical modelling of the astrophysical sources of gravitational-waves is crucial to maximize the scientific outcome of the detectors. In this Thesis, we present several advances on gravitational-wave source modelling, studying in particular: (i) the precessional dynamics of spinning black-hole binaries; (ii) the astrophysical consequences of black-hole recoils; and (iii) the formation of compact objects in the framework of scalar-tensor theories of gravity. All these phenomena are deeply characterized by a continuous interplay between General Relativity and astrophysics: despite being a truly relativistic messenger, gravitational waves encode details of the astrophysical formation and evolution processes of their sources. We work out signatures and predictions to extract such information from current and future observations. At the dawn of a revolutionary

  5. Tools of radio astronomy

    CERN Document Server

    Wilson, Thomas L; Hüttemeister, Susanne

    2013-01-01

    This 6th edition of “Tools of Radio Astronomy”, the most used introductory text in radio astronomy, has been revised to reflect the current state of this important branch of astronomy. This includes the use of satellites, low radio frequencies, the millimeter/sub-mm universe, the Cosmic Microwave Background and the increased importance of mm/sub-mm dust emission. Several derivations and presentations of technical aspects of radio astronomy and receivers, such as receiver noise, the Hertz dipole and  beam forming have been updated, expanded, re-worked or complemented by alternative derivations. These reflect advances in technology. The wider bandwidths of the Jansky-VLA and long wave arrays such as LOFAR and mm/sub-mm arrays such as ALMA required an expansion of the discussion of interferometers and aperture synthesis. Developments in data reduction algorithms have been included. As a result of the large amount of data collected in the past 20 years, the discussion of solar system radio astronomy, dust em...

  6. Managing Astronomy Research Data: Case Studies of Big and Small Research Projects

    Science.gov (United States)

    Sands, Ashley E.

    2015-01-01

    data workforce encompasses a greater breadth of educational backgrounds. Results show that teams of individuals with distinct expertise are key to ensuring the long-term preservation and usability of astronomy datasets.

  7. Discovering Astronomy Through Poetry

    Science.gov (United States)

    Mannone, John C.

    2011-05-01

    The literature is replete with astronomical references. And much of that literature is poetry. Using this fact, not only can the teacher infuse a new appreciation of astronomy, but also, the student has the opportunity to rediscover history through astronomy. Poetry can be an effective icebreaker in the introduction of new topics in physics and astronomy, as well as a point of conclusion to a lecture. This presentation will give examples of these things from the ancient literature (sacred Hebraic texts), classical literature (Homer's Iliad and Odyssey), traditional poetry (Longfellow, Tennyson and Poe) and modern literature (Frost, Kooser, and others, including the contemporary work of this author).

  8. Astronomy in the Service of Christianity

    Science.gov (United States)

    McCluskey, Stephen C.

    Medieval European scholars drew on ancient traditions of astronomical knowledge to develop astronomical practices that served the needs of religious institutions by defining the sacred time and sacred space of religious ritual. Techniques employing the luni-solar calendar to determine the date of Easter, observations of the stars and Sun to determine the time of prayer, and orienting churches astronomically to face the symbolically important direction, east, were widely practiced. These varieties of religious astronomy were employed by persons of varying levels of education, working within a variety of contexts.

  9. Transmission of Babylonian Astronomy to Other Cultures

    Science.gov (United States)

    Jones, Alexander

    Babylonian astronomy and astrology were extensively transmitted to other civilizations in the second and first millennia BC. Greek astronomy in particular was largely shaped by knowledge of Babylonian observations and mathematical astronomy.

  10. Optical Astronomy in Post-Apartheid South Africa: 1994 to 2004

    Science.gov (United States)

    Whitelock, P. A.

    2004-10-01

    The progress of optical astronomy in post-apartheid South Africa is discussed. Particular emphasis is given to the socio-political climate which embraced the idea of a 10-m class telescope as a flagship project that would lead to widespread development in science, technology and education - not only in South Africa, but across the subcontinent.

  11. General educational disciplines practice-oriented training in intermediate vocational education

    Directory of Open Access Journals (Sweden)

    Liya G. Skorobogatova

    2011-01-01

    Full Text Available The article concerns crucial issues of practice-oriented training in Russia's intermediate vocational education, designates directions of general educational disciplines study in intermediate vocational education.

  12. The challenge of teaching astronomy with 0 dollars

    Science.gov (United States)

    Ros, Rosa Maria; García, Beatriz

    2015-08-01

    The training courses on Astronomy are necessary for teachers in all the countries. Normally they are more necessary in developing countries that in other ones. The challenge is to do this work without expenses. NASE, Network for Astronomy School Education, organizes courses for teachers in service and future teachers practically free of charge. The host country only pays accommodation and meals of NASE visitors. But the most interesting aspect of NASE is that presents a lot of activities to carry out in the classroom by 0 dollars using “learning by doing” methodology. After more than 60 courses in about 20 countries we can show several examples of materials generated by participants themselves during the course. With this materials they can make observations and reasoning about their observations in order to understand the astronomy concepts which appear in the curricula of different levels of formal education.Waste materials, cardboard or paper, pieces of string or wire, a stick or a CD, some milk or a drop of oil can be very useful to produce a spectrograph, a photometer, a sundial, a goniometer or a quadrant. The imagination and creativity can replace funding which are difficult to achieve in secondary and primary schools in small towns or villages. NASE is a solution for teachers. which discover that they can explain, in a simple way, complex concepts using models and observations that do not need any money!Participants in NASE courses receive instructions in order to work with NASE materials and after the courses they can find (and create) complementary materials at the NASE website, in order to continue working in the same way. We receive some contributions from some of them that we publish at our web.http:www.naseprogram.org

  13. The UltraLightweight Technology for Research in Astronomy (ULTRA) Project

    Science.gov (United States)

    Twarog, B. A.; Anthony-Twarog, B. J.; Shawl, S. J.; Hale, R.; Taghavi, R.; Fesen, R.; Etzel, P. B.; Martin, R.; Romeo, R.

    2004-12-01

    The collaborative focus of four academic departments (Univ. of Kansas Aerospace Engineering, Univ. of Kansas Physics & Astronomy, San Diego State University Astronomy and Dartmouth College Astronomy) and a private industry partner (Composite Mirror Applications, Inc.-CMA, Inc.) is a three-year plan to develop and test UltraLightweight Technology for Research in Astronomy (ULTRA). The ULTRA technology, using graphite fiber composites to fabricate mirrors and telescope structures, offers a versatile and cost-effective tool for optical astronomy, including the economical fabrication and operation of telescopes ranging from small (1m or smaller) aperture for education and research to extremely large (30m+) segmented telescopes (ELTs). The specific goal of this NSF-funded three-year Major Research Instrumentation project is to design, build, and test a 1m-class optical tube assembly (OTA) and mirrors constructed entirely from composites. In the first year of the project, the team has built and is field-testing two 0.4m prototypes to validate the optical surfaces and figures of the mirrors and to test and refine the structural dynamics of the OTA. Preparation for design and construction of the 1m telescope is underway. When completed in late 2005, the ULTRA telescope will be operated remotely from Mt. Laguna Observatory east of San Diego, where it will undergo a period of intensive optical and imaging tests. A 0.4m prototype OTA with mirrors (12 kg total weight) will be on display at the meeting. Support of this work by NSF through grants AST-0320784 and AST-0321247, NASA grant NCC5-600, the University of Kansas, and San Diego State University is gratefully acknowledged.

  14. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Journal of Astrophysics and Astronomy. JOAA-D-15-00122. Power spectrum density of stochastic oscillating accretion disk. G. B. Long, J. W. Ou and Y. G. Zheng. JOAA-D-15-00124. Stochastic oscillations of general relativistic disks described by a fractional Langevin equation with fractional Gaussian noise. Wang Zhi-Yun ...

  15. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy; Volume 37; Issue 2. Issue front cover thumbnail. Volume 37, Issue 2. June 2016. Article ID 8. Stochastic Oscillations of General Relativistic Disks Described by a Fractional Langevin Equation with Fractional Gaussian Noise · Wang Zhi-Yun Chen Pei-Jie · More Details ...

  16. Demographics in Astronomy and Astrophysics

    Science.gov (United States)

    Ulvestad, James S.

    2011-05-01

    Astronomy has been undergoing a significant demographic shift over the last several decades, as shown by data presented in the 2000 National Research Council (NRC) report "Federal Funding of Astronomical Research," and the 2010 NRC report, "New Worlds, New Horizons in Astronomy and Astrophysics." For example, the number of advertised postdoctoral positions in astronomy has increased much more rapldly than the number of faculty positions, contributing to a holding pattern of early-career astronomers in multiple postdoctoral positions. This talk will summarize some of the current demographic trends in astronomy, including information about gender and ethnic diversity, and describe some of the possible implications for the future. I thank the members of the Astro2010 Demographics Study Group, as well as numerous white-paper contributors to Astro2010, for providing data and analyses.

  17. Two Eyes, 3D: A New Project to Study Stereoscopy in Astronomy Education

    Science.gov (United States)

    Price, Aaron; SubbaRao, M.; Wyatt, R.

    2012-01-01

    "Two Eyes, 3D" is a 3-year NSF funded research project to study the educational impacts of using stereoscopic representations in informal settings. The project funds two experimental studies. The first is focused on how children perceive various spatial qualities of scientific objects displayed in static 2D and 3D formats. The second is focused on how adults perceive various spatial qualities of scientific objects and processes displayed in 2D and 3D movie formats. As part of the project, two brief high-definition films about variable stars will be developed. Both studies will be mixed-method and look at prior spatial ability and other demographic variables as covariates. The project is run by the American Association of Variable Star Observers, Boston Museum of Science and the Adler Planetarium and Astronomy Museum with consulting from the California Academy of Sciences. Early pilot results will be presented. All films will be released into the public domain, as will the assessment software designed to run on tablet computers (iOS or Android).

  18. Ancient Indian Astronomy in Introductory Texts

    Science.gov (United States)

    Narahari Achar, B. N.

    1997-10-01

    It is customary in introductory survey courses in astronomy to devote some time to the history of astronomy. In the available text books only the Greek contribution receives any attention. Apart from Stonehenge and Chichenitza pictures, contributions from Babylon and China are some times mentioned. Hardly any account is given of ancient Indian astronomy. Even when something is mentioned it is incomplete or incorrect or both. Examples are given from several text books currently available. An attempt is made to correct this situation by sketching the contributions from the earliest astronomy of India, namely Vedaanga Jyotisha.

  19. Federal STEM Policy and Politics and Their Impact on Astronomy EPO: Reflections and Provocations

    Science.gov (United States)

    Schultz, G.; Storksdieck, M.; Canright, S.

    2015-11-01

    The federal government invests more than $3 billion each year across its various units in supporting STEM education and outreach. Efforts in recent years to understand and better coordinate these investments have resulted in considerable pushback, particularly those efforts that aimed at consolidation and elimination of programs deemed ineffective or duplicative. While initial plans to streamline federal STEM education were defeated, many agencies nonetheless saw cuts and elimination, and a high-level effort to coordinate STEM education at the cross-agency level is now gaining steam (CoSTEM: Committee on Science, Technology, Engineering, and Mathematics Education). What do all of these developments mean for education and public outreach in astronomy and related fields? How should this community operate within the opportunities and threats that CoSTEM might pose? Former director of the National Academy of Science's Board on Science Education, and now director of the Center for Research on Lifelong STEM Learning, Martin Storksdieck, reflected on past and recent developments from the perspective of a close observer, and from the perspective of someone who has been involved in astronomy education research and evaluation for nearly 20 years. Shelley Canright, Senior Advisor for Education Integration at the NASA Office of Education, shared her insights and perspectives with respect to CoSTEM and EPO, in particular from co-chairing the Federal Coordination in Science, Technology, Engineering, and Mathematics Education (FC-STEM) group.

  20. Submillimetre-wave astronomy

    International Nuclear Information System (INIS)

    Beckman, J.E.; Phillips, J.P.

    1982-01-01

    Observations in the 100-1000-micron band and the instruments used to obtain them are discussed in contributions to the Submillimeter Wave Astronomy Conference held at Queen Mary College, London, in September 1981. The major subject areas covered are large-scale structure and radiative transfer within interstellar clouds, spectroscopic observations of molecular sources, interstellar chemistry, and submillimeter (SM) instrumentation. Reports are included on the formation of giant cloud complexes, cool molecular clouds, models for hot-centered and externally heated clouds, dust in Bok globules, airborne FIR and SM spectroscopy, rotational transitions of CH3OH and NH2 near 1.2 mm, high-velocity flows and molecular jets, FIR emissions from late-type galaxies, ion-grain collisions as a source of interstellar molecules, bandpass filters for SM astronomy, the SM receiver of the future, HF techniques in heterodyne astronomy, and the mm-wave cosmic background

  1. The Cost of Astronomy

    DEFF Research Database (Denmark)

    Dorch, Bertil F.

    Using Scopus and national sources, I have investigated the evolution of the cost of publishing in Danish astronomy on a fine scale over a number of years. I find that the number of publications per year from Danish astronomers increased by a factor of four during 15 years: naturally, the correspo......Using Scopus and national sources, I have investigated the evolution of the cost of publishing in Danish astronomy on a fine scale over a number of years. I find that the number of publications per year from Danish astronomers increased by a factor of four during 15 years: naturally......, the corresponding potential cost of publishing must have increased similarly. The actual realized cost of publishing in core journals are investigated for a high profile Danish astronomy research institutions. I argue that the situation is highly unstable if the current cost scenario continues, and I speculate...... that Danish astronomy is risking a scholarly communication collapse due to the combination of increasing subscription cost, increased research output, and increased direct publishing costs related to Open access and other page charges....

  2. Music and Astronomy Under the Stars

    Science.gov (United States)

    Lubowich, D.

    2008-11-01

    Bring telescope to where the people are! Music and Astronomy Under the Stars is a public astronomy outreach program at community parks during and after free summer music concerts and outdoor movie nights. This project also includes daytime activities because there are some afternoon concerts and daylight children's concerts, and observations using remotely operated telescopes in cloudy weather. While there have been many astronomy outreach activities and telescope observations at city sidewalks and parks, this program targets a completely different audience---music lovers who are attending free summer concerts held in community parks. The music lovers who may never have visited a science museum, planetarium, or star party will be exposed to telescope observations and astronomy information with no additional travel costs. This program will permit the entire community to participate in telescope observations and view astronomical video information to enhance the public appreciation of astronomy. This program will also reach underrepresented and underserved groups (women, minorities, older adults). The population base for the initial target audience (Nassau and Suffolk Counties, New York) is 2,500,000. My partners are the Amateur Observers' Society of New York (AOS) and the Towns of Oyster Bay, Hempstead, North Hempstead, and Huntington. Music and Astronomy Under the Stars is program that should continue beyond the International Year of Astronomy 2009 (IYA2009) and can be expanded into a national program.

  3. Crimson Tide: The Harvard Books on Astronomy

    Science.gov (United States)

    Lindner, R. P.

    2001-12-01

    The Harvard Books on Astronomy, a series of crimson clad, fully illustrated volumes, cornered, for more than a generation, the market of readers interested in astronomy. A large number of astronomers owe their first serious initiation to the literature of astronomy to these books. Their style, presentation, design, and tone marked a clear departure from the inherited traditions in the field. Each summed up a field, awarded points for merit, and staked out paths for future study. No doubt each of the more mature readers of this abstract has his or her favorite volume, and even his or her own favorite edition of a particular volume. How the volumes evolved and what happened to the series with Harlow Shapley's retirement are not only questions in the history of the book but also form a commentary on the standards of scientific writing for the educated public. For this the major evidence comes from the volumes by Shapley himself, Leo Goldberg and Lawrence Aller, and the Boks. This paper discusses the origins of the series, the purpose of the works, the varying successes of the volumes, and the impact they had on the future astronomical community. In part, this is a contribution to the impact of Harlow Shapley upon the wider field and the role of Harvard in the American astronomical community. It is also a meditation upon the ways of recruitment into the field and forming ways of looking at research problems.

  4. Comparison of Student Performance in Video Game Format vs. Traditional Approach in Introductory Astronomy Classes

    Science.gov (United States)

    Barringer, Daniel; Kregenow, Julia M.; Palma, Christopher; Plummer, Julia

    2015-01-01

    In Spring of 2014, Penn State debuted an online Introductory Astronomy (AST 001) section that was designed as a video game. Previous studies have shown that well-designed games help learners to build accurate understanding of embedded concepts and processes and aid learner motivation, which strongly contributes to a student's willingness to learn. We start by presenting the learning gains as measured with the Test of Astronomy Standards (TOAST) from this new course design. We further compare the learning gains from the video game section with learning gains measured from more traditional online formats and in-person lecture sections of AST 001 taught at Penn State over the last five years to evaluate the extent to which this new medium for online Astronomy education supports student learning.

  5. Introduction to methods of approximation in physics and astronomy

    CERN Document Server

    van Putten, Maurice H P M

    2017-01-01

    This textbook provides students with a solid introduction to the techniques of approximation commonly used in data analysis across physics and astronomy. The choice of methods included is based on their usefulness and educational value, their applicability to a broad range of problems and their utility in highlighting key mathematical concepts. Modern astronomy reveals an evolving universe rife with transient sources, mostly discovered - few predicted - in multi-wavelength observations. Our window of observations now includes electromagnetic radiation, gravitational waves and neutrinos. For the practicing astronomer, these are highly interdisciplinary developments that pose a novel challenge to be well-versed in astroparticle physics and data-analysis. The book is organized to be largely self-contained, starting from basic concepts and techniques in the formulation of problems and methods of approximation commonly used in computation and numerical analysis. This includes root finding, integration, signal dete...

  6. The ALIVE Project: Astronomy Learning in Immersive Virtual Environments

    Science.gov (United States)

    Yu, K. C.; Sahami, K.; Denn, G.

    2008-06-01

    The Astronomy Learning in Immersive Virtual Environments (ALIVE) project seeks to discover learning modes and optimal teaching strategies using immersive virtual environments (VEs). VEs are computer-generated, three-dimensional environments that can be navigated to provide multiple perspectives. Immersive VEs provide the additional benefit of surrounding a viewer with the simulated reality. ALIVE evaluates the incorporation of an interactive, real-time ``virtual universe'' into formal college astronomy education. In the experiment, pre-course, post-course, and curriculum tests will be used to determine the efficacy of immersive visualizations presented in a digital planetarium versus the same visual simulations in the non-immersive setting of a normal classroom, as well as a control case using traditional classroom multimedia. To normalize for inter-instructor variability, each ALIVE instructor will teach at least one of each class in each of the three test groups.

  7. Professional Development in the International Year of Astronomy: Expanding the Universe in the Classroom

    Science.gov (United States)

    Reinfeld, Erika L.; Harman, P.; Lee, M. H.; Bailey, J. M.

    2008-05-01

    The International Year of Astronomy offers unparalleled opportunity to expand our audiences’ understanding about the universe. However, many learners, students and adults alike, are unfamiliar with the universe beyond the solar system. This collaborative workshop explores strategies for teacher professional development around the origin and evolution of the universe, using the resources of the Beyond the Solar System Professional Development Project as a guide. The Beyond the Solar System (BtSS) Professional Development Project is a NASA-supported initiative from the Harvard-Smithsonian Center for Astrophysics (CfA) designed to foster public understanding of NASA's exciting astronomy and space science research. The BtSS portfolio includes video resources, assessment tools, data about common student ideas, content presentations, online telescope investigations, and other classroom activities designed to deepen content knowledge and improve the quality of teaching and learning about current scientific models and evidence for the origin and evolution of our universe of galaxies. During this session, members of the BtSS Leadership Team from around the country will share their experience using these resources in educator workshops and teacher-training courses, and facilitate discussions among workshop participants about how these materials and pedagogical strategies can be used in their own professional development efforts during the International Year of Astronomy. EPO specialists and scientists will engage in focused exploration of the project's DVD--"Expanding the Universe in the Classroom"--in order make explicit connections between the themes of the International Year of Astronomy and their own work. The goals of this workshop are to equip professional development providers to support IYA education efforts in classrooms, afterschool programs, and informal education venues and to raise awareness about the opportunities for continuing Galileo's legacy of discovery

  8. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy; Volume 34; Issue 1. General Editorial on Publication Ethics. Ram Sagar R. Ramaswamy N. Mukunda. Volume 34 Issue 1 March 2013 pp 1-2. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/joaa/034/01/0001-0002 ...

  9. Future Professional Communication in Astronomy II

    Science.gov (United States)

    Accomazzi, Alberto

    The present volume gathers together the talks presented at the second colloquium on the Future Professional Communication in Astronomy (FPCAII), held at the Harvard-Smithsonian Center for Astrophysics (Cambridge, MA) on 13-14 April 2010. This meeting provided a forum for editors, publishers, scientists, librarians and officers of learned societies to discuss the future of the field. The program included talks from leading researchers and practitioners and drew a crowd of approximately 50 attendees from 10 countries. These proceedings contain contributions from invited and contributed talks from leaders in the field, touching on a number of topics. Among them: The role of disciplinary repositories such as ADS and arXiv in astronomy and the physical sciences; Current status and future of Open Access Publishing models and their impact on astronomy and astrophysics publishing; Emerging trends in scientific article publishing: semantic annotations, multimedia content, links to data products hosted by astrophysics archives; Novel approaches to the evaluation of facilities and projects based on bibliometric indicators; Impact of Government mandates, Privacy laws, and Intellectual Property Rights on the evolving digital publishing environment in astronomy; Communicating astronomy to the public: the experience of the International Year of Astronomy 2009.

  10. Cosmos in Concert: Combining astronomy and classical music

    Science.gov (United States)

    Kremer, Kyle

    2018-01-01

    Cosmos in Concert is an outreach initiative designed to combine astronomy education with classical music. Over the past several years, this program has presented large-scale multimedia shows for symphony orchestras, educational programs at K-12 schools, and research-oriented university collaborations designed to develop techniques for the sonification of data. Cosmos in Concert has collaborated with institutions including Fermi National Lab, the Adler Planetarium, the Bienen School of Music, and the Colburn School of Music. In this talk, I will give a brief overview of some of the main Cosmos in Concert initiatives and discuss ways these initiatives may be implemented at other institutions.

  11. Astronomy4Kids: Utilizing online video forums to teach basic planetary concepts to children (pre-K to 2nd-grade)

    Science.gov (United States)

    Pearson, Richard L.

    2016-10-01

    We have developed Astronomy4Kids to help cultivate the next generation of scientists by using technology to reach every interested child in both formal and informal learning environments. This online video series fills the void of effective STEM education tools for children under the age of 8. Our first collection of videos discuss many planetary topics, including the following: planet and moon formation theories, solar and lunar eclipses, and the seasonal effect of the Earth's tilt. As education and outreach become a larger focus of groups such as AAS and NASA, it is imperative to include programs such as Astronomy4Kids to extend these initiatives to younger age groups.Traditionally, this age group has been viewed as too young to be introduced to physics and astronomy concepts. However, child development research is consistently demonstrating the amazing plasticity of a young child's mind: the younger one is introduced to a complex concept, the easier it is to grasp later on. Following the philosophies of Fred Rogers, we present children with a real, relatable, instructor allowing them to focus on the concepts being presented.The format of Astronomy4Kids includes short instruction video clips that usually include a hands-on activity that is easily reproduced at home or in the classroom. This permits flexibility in how the video series is utilized. Within formal classroom or after-school situations, teachers and instructors can lead the discussion and activity with help from the video and supplemental materials (e.g. worksheets, concept outlines, etc.). Informal environments permit the viewer to complete the tasks on their own or simply enjoy the presentation. The video series can be found on YouTube (under "Astronomy 4 Kids") or Facebook (at www.facebook.com/astronomy4kids); we have also expanded to Instagram (www.instragram.com/astronomy4kids) and Pinterest (www.pinterest.com/astronomy4kids).

  12. General Education and Special Education Teachers' Attitudes towards Inclusion

    Science.gov (United States)

    Hernandez, David A.; Hueck, Susan; Charley, Carmen

    2016-01-01

    The purpose of this study was to examine the difference in general education and special education teachers' attitudes towards inclusion of students with disabilities and to ascertain if levels of self-efficacy, teacher type, and education level were predictors of teachers' attitudes towards inclusion. Data were collected from 118 elementary and…

  13. The Impact of the Next Generation Science Standards on Future Professional Development and Astronomy Education Research

    Science.gov (United States)

    Buxner, Sanlyn

    2013-06-01

    The Next Generation Science Standards will have a profound impact on the future science education of students and professional development for teachers. The science and engineering practices, crosscutting concepts, and disciplinary core ideas laid out in the Framework for K-12 Science Education (NRC, 2011) will change the focus and methods of how we prepare teachers to meet these new standards. Extending beyond just the use of inquiry in the classroom, teachers will need support designing and implementing integrated experiences for students that require them to apply knowledge of content and practices. Integrating the three dimensions central to the new standards will pose curricular challenges and create opportunities for innovative space science projects and instruction. The science research and technology community will have an important role in supporting authentic classroom practices as well as training and support of teachers in these new ways of presenting science and technology. These changes will require a new focus for teacher professional development and new ways to research impacts of teacher training and changes in classroom practice. In addition, new and innovative tools will be needed to assess mastery of students’ knowledge of practices and the ways teachers effectively help students achieve these new goals. The astronomy education community has much to offer as K-12 and undergraduate level science educators rethink and redefine what it means to be scientifically literate and figure out how to truly measure the success of these new ways of teaching science.

  14. Music and Astronomy Under the Stars 2009

    Science.gov (United States)

    Lubowich, D.

    2010-08-01

    Bring telescopes to where the people are! Music and Astronomy Under the Stars is a three-year NASA-funded astronomy outreach program at community parks during and after music concerts and outdoor family events—such as a Halloween Stars-Spooky Garden Walk. While there have been many astronomy outreach activities and telescope observations at city sidewalks and parks, this program targets a completely different audience: music lovers who are attending summer concerts held in community parks. These music lovers who may never have visited a science museum, planetarium, or star party are exposed to telescope observations and astronomy information with no additional travel costs. Music and Astronomy Under the Stars increased awareness, engagement, and interest in astronomy at classical, pop, rock, and ethnic music concerts. This program includes solar observing before the concerts, telescope observations including a live image projection system, an astronomical video presentation, and astronomy banners/posters. Approximately 500-16,000 people attended each event and 25% to 50% of the people at each event participated in the astronomy program. This program also reached underrepresented and underserved groups (women, minorities, older adults). The target audience (Nassau and Suffolk Counties, New York) is 2,900,000 people, which is larger than combined population of Atlanta, Boston, Denver, Minneapolis, and San Francisco. Although eleven events were planned in 2009, two were canceled due to rain and our largest event, the NY Philharmonic in the Park (attended by 67,000 people in 2008), was cancelled for financial reasons. Our largest event in 2009 was the Tanglewood Music Festival, Lenox MA, attended by 16,000 people where over 5000 people participated in astronomy activities. The Amateur Observers' Society of New York assisted with the NY concerts and the Springfield STARS astronomy club assisted at Tanglewood. In 2009 over 15,000 people participated in astronomy

  15. Brazilian Eratosthenes Project: autonomy of teachers in experimental activities of Astronomy

    Directory of Open Access Journals (Sweden)

    Rodolfo Langhi

    2017-05-01

    Full Text Available Research results point to the use of experimental activities in Science Education as one of the most efficient strategies to arouse interest and dedication of the students. One of the important considerations about the experimental activities is that there is no effective contribution to the use of kits with ready scripts, closed procedures and measurement of expected experimental results. This limits the autonomy of the teachers and students in the teaching-learning process. Specifically on Astronomy Education, the researches show the importance of considering the observational component and practice of this science. Then, our research question was structured: which elements subsidize the construction of teacher autonomy in the development and implementation of experimental activities in order to effectively contribute to the teaching of Astronomy? We developed this research in the context of Brazilian Eratosthenes Project, through a discourse analysis of a group of teachers participating in this project since 2010. Our results reveal the predominance of a training model cast in an approach extremely focused on the content and under the technical rationality, with few elements contributing to the construction the autonomy of teaching. On the other hand, a historical analysis of Eratosthenes Project and the activities developed by some of the participants indicate potential regarding the development of elements that can enable these professionals to exercise independently their profession, to develop and implement experimental activities unstructured in the interdisciplinary teaching of Astronomy.

  16. Overview of lunar-based astronomy.

    Science.gov (United States)

    Smith, H. J.

    The Moon offers both significant advantages and drawbacks for astronomy. Recognition of these characteristics can clarify the objectives toward which developments should be directed and can help to inhibit premature or excessive selling of lunar developments on the basis of astronomy.

  17. Twenty Years of One Astronomy Teacher Professional Development - The EXES Teacher Associate Program at UT Austin

    Science.gov (United States)

    Finkelstein, Keely; Hemenway, Mary Kay; Sneden, Chris; Lacy, John; Richter, Matthew J.; EXES Teacher Associates

    2018-01-01

    The Astronomy Department and McDonald Observatory at the University of Texas at Austin has and continues to offer a suite of different astronomy based K-12 teacher professional development programs. One of our longest running, and most successful programs, is reaching its 20th anniversary, the EXES Teacher Associate Program, which was started in 1998. The EXES Teacher Associate program features sustained and continued professional development opportunities for K-12 science and math educators. It consists of 6 times per year day-long meetings, coupled with other professional development opportunities provided at various times. In total, there are approximately 30 active members of the group currently, but more than 90 teachers have participated in this group over its 20 year history. The program has had astronomy education as its focus throughout its history, but different partnerships and collaborations with other programs have supported the group and have allowed for a variety of professional development opportunities and themes for educators to engage in. We will give an overview of this program, present evaluation data and teacher feedback related to program success and student impact, and highlight a few specific program opportunities that are unique and have been shown to be most impactful for participants.

  18. The knowledge of the history of astronomy and a proposal to improve it

    Science.gov (United States)

    Saucedo Morales, Julio Cesar; Loera Gonzalez, Pablo

    In this work we present the results of a survey conducted in Hermosillo, Sonora, México, among several different samples to assess the knowledge of the History of Astronomy (HoA), and at the same time, to evaluate the degree of success of the Astronomy Basic Course (ABC) in teaching this particular subject. We claim that astronomy has always been an important player in the history of civilization; however, as the results of this study indicate, this is not widely known. An example of this is that the work of great astronomers such as Aristarchus and Hipparchus are known to only a small fraction of the population. But people find astronomy attractive, which gives us an opportunity to fill gaps in astronomical knowledge. We present our experience of 25 years (the first half of these in the classroom, and the second half both in classroom and virtual mode through the Internet) teaching astronomy to the public with the ABC. In about 60 hours of class spread over a 3-month period, the ABC covers some of the most relevant topics of astronomy, one of which is a 3-hour session on the HoA, which it is taught trying to captivate the attention of wide audiences while discussing the contributions of astronomy to humankind. Although the level of knowledge of the HoA is somewhat disappointing, meaning that much work needs to be done, we have also found that it really pays off to offer opportunities like the ABC to the public. This success encourages us to present a proposal to extend the ABC, to teach it not just in Spanish as we have been done so far, but also in English and perhaps other languages, collaborations to improve it and to spread its use as an outreach and STEM educational device are most welcome.

  19. Frederik Kaiser (1808-1872) and the Modernisation of Dutch Astronomy

    Science.gov (United States)

    van der Heijden, Petra

    Frederik Kaiser was the director of Leiden Observatory from 1837 until his death in 1872. Educated by his German-born uncle Johan Frederik Keyser (1766-1823), who was a proficient amateur astronomer, Kaiser proved to be a real observational talent. Despite the poor conditions in which he worked, his observations soon rivalled with the best in the world. Kaiser's contributions to astronomical practice include the foundation of a new, completely up-to-date observatory building in Leiden, and the introduction of statistics and precision measurements in daily practice at the observatory. Moreover he was the author of several bestselling books on popular astronomy. Kaiser had an extensive correspondence with colleagues all over Europe, mostly in Germany. Correpondents include Airy, Argelander, Von Auwers, Bessel, Encke, John Herschel, LeVerrier, Von Littrow, Schumacher, Otto W. Struve, as well as several geodesists and instrument makers. Preliminary research indicates that Frederik Kaiser played a crucial role in the revival of Dutch astronomy in the second half of the 19th century. This project aims at analysing and explaining Kaiser's activities in science, institutionalisation and popularisation, in the context of national and international developments in 19th-century astronomy and scientific culture.

  20. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Home; Journals; Journal of Astrophysics and Astronomy; Volume 36; Issue 1. Issue front cover thumbnail. Volume 36, Issue 1. March 2015, pages a-254. Dynamical Plasma Processes in the Sun and Sun-like Stars. pp a-b. General Editorial on Publication Ethics · More Details Fulltext PDF. pp 1-3. Editorial.

  1. Astronomy Student Activities Using Stellarium Software

    Science.gov (United States)

    Benge, Raymond D.; Tuttle, S. R.

    2012-01-01

    Planetarium programs can be used to provide a valuable learning experience for introductory astronomy students. Educational activities can be designed to utilize the capabilities of the software to display the sky, coordinates, motions in the sky, etc., in order to learn basic astronomical concepts. Most of the major textbook publishers have an option of bundling planetarium software and even laboratory activities using such software with textbooks. However, commercial planetarium software often is updated on a different schedule from the textbook revision and new edition schedule. The software updates also sometimes occur out of sync with college textbook adoption deadlines. Changes in software and activity curriculum often translate into increases costs for students and the college. To provide stability to the process, faculty at Tarrant County College have developed a set of laboratory exercises, entitled Distant Nature, using free open source Stellarium software. Stellarium is a simple, yet powerful, program that is available in formats that run on a variety of operating systems (Windows, Apple, linux). A web site was developed for the Distant Nature activities having a set version of Stellarium that students can download and install on their own computers. Also on the web site, students can access the instructions and worksheets associated with the various Stellarium based activities. A variety of activities are available to support two semesters of introductory astronomy. The Distant Nature web site has been used for one year with Tarrant County College astronomy students and is now available for use by other institutions. The Distant Nature web site is http://www.stuttle1.com/DN_Astro/index.html .

  2. Planets in Inuit Astronomy

    Science.gov (United States)

    MacDonald, John

    2018-02-01

    Inuit are an indigenous people traditionally inhabiting the Arctic and sub-Arctic regions of Greenland, Canada, Alaska, and parts of Russia's Chukchi Peninsula. Across this vast region, Inuit society, while not entirely homogeneous either culturally or linguistically, nevertheless shares a fundamental cosmology, in part based on a common understanding of the sky and its contents. Traditionally, Inuit used prominent celestial objects—the sun, moon, and major circumpolar asterisms—as markers for estimating the passage of time, as wayfinding and directional aids, and, importantly, as the basis of several of the foundational myths and legends underpinning their society's social order and mores. Random inquiries on Inuit astronomy made by European visitors after initial contact through the mid-18th and early 20th centuries were characteristically haphazard and usually peripheral to some other line of ethnological enquiry, such as folklore or mythology. In addition, the early accounts of Inuit star lore were often prone to misrepresentation due to several factors, including European cultural bias, translation inadequacies, a deficiency of general astronomical knowledge on the part of most commentators, and, most significantly, a failure—sometimes due to lack of opportunity—to conduct systematic observations of the sky in the presence of Inuit knowledge holders. Early accounts therefore tended to diminish the cultural significance of Inuit astronomy, almost to the point of insignificance. Unfortunately, by the time systematic fieldwork began on the topic, in the mid-1980s, unalloyed information on Inuit astronomical knowledge was already elusive, more and more compromised by European acculturation and substitution and, notably, by light pollution—a consequence of the increasing urbanization of Inuit communities beginning in the late 1950s. For the residents of most Arctic settlements, street lights reflecting off the snow have virtually eliminated the evocative

  3. Music and Astronomy Under The Stars after 4 years and 50,000 People

    Science.gov (United States)

    Lubowich, Donald A.

    2013-01-01

    Since 2009 my NASA-funded Music and Astronomy Under the Stars (MAUS) program has brought astronomy to 50,000 music lovers at the National Mall (co-sponsor OSTP); Central Park Jazz, Newport Folk, Ravinia, or Tanglewood music festivals; and classical, folk, pop/rock, opera, Caribbean, or county-western concerts in parks assisted by astronomy clubs (55 events; 28parks). MAUS combines solar, optical, and radio telescope observations; live image projection; large posters/banners (From the Earth to the Universe and Visions of the Universe); videos; and hands-on activities (Night Sky Network; Harvard-Smithsonian CfA); imaging with a cell phone mount; and hand-outs(with info on science museums, astronomy clubs, and citizen science before and after the concerts or at intermission. Yo-Yo-Ma, the Chicago and Boston Symphony Orchestras, the McCoy Tyner Quartet, Ravi Coltrane, Esperanza Spalding, the Stanley Clarke Band, Phish, Blood Sweat and Tears, Deep Purple, Patti Smith, Tony Orlando, and Ronan Tynan performed at these concerts. MAUS reached underserved groups and attracted large enthusiastic crowds. Many young children participated in this family learning experience-often the first time they looked through a telescope. Lessons learned: plan early; create partnerships with parks and astronomy clubs; test equipment; have backup equipment; create professional displays; select the best location to obtain a largest number of participants; use media/www sites to promote the events; use many telescopes for multipletargets; project a live image or video; select equipment that is easy to use, store, set-up, and take down; use hands-on astronomy activities; position the displays for maximum visibility (they became teachable moments); and have educator hand-outs. While < 50% of the participants attended a science museum or took part in astronomy programs in the previous year (based on our survey), they found MAUS enjoyable and understandable; learned about astronomy; wanted to learn

  4. Highlighting the History of Astronomy in the Asia-Pacific Region

    CERN Document Server

    Nakamura, Tsuko; Strom, Richard G; ICOA-6 Conference

    2011-01-01

    This book provides readers with the results of recent research from some of the world's leading historians of astronomy on aspects of Arabic, Australian, Chinese, Japanese, and North and South American astronomy and astrophysics. It contains peer-reviewed papers gathered from the International Conferences on Oriental Astronomy 6 (ICO-6) with the chosen theme of "Highlighting the History of Astronomy in the Asia-Pacific Region." Of particular note are the sections on Arabic astronomy, Asian applied astronomy and the history of Australian radio astronomy, and the chapter on Peruvian astronomy. This title is a valuable complement for those with research interests in applied historical astronomy; archaeoastronomy; calendars, manuscripts, and star charts; historical instruments and observatories, and the history of radio astronomy.

  5. Lunar based gamma ray astronomy

    International Nuclear Information System (INIS)

    Haymes, R.C.

    1985-01-01

    Gamma ray astronomy represents the study of the universe on the basis of the electromagnetic radiation with the highest energy. Gamma ray astronomy provides a crucial tool for the understanding of astronomical phenomena, taking into account nucleosynthesis in supernovae, black holes, active galaxies, quasars, the sources of cosmic rays, neutron stars, and matter-antimatter annihilation. Difficulties concerning the conduction of studies by gamma ray astronomy are related to the necessity to perform such studies far from earth because the atmosphere is a source of gamma rays. Studies involving the use of gamma ray instruments in earth orbit have been conducted, and more gamma ray astronomy observations are planned for the future. Imperfections of studies conducted in low earth orbit could be overcome by estalishing an observatory on the moon which represents a satellite orbiting at 60 earth radii. Details concerning such an observatory are discussed. 5 references

  6. Modern Gravitational Lens Cosmology for Introductory Physics and Astronomy Students

    Science.gov (United States)

    Huwe, Paul; Field, Scott

    2015-01-01

    Recent and exciting discoveries in astronomy and cosmology have inspired many high school students to learn about these fields. A particularly fascinating consequence of general relativity at the forefront of modern cosmology research is gravitational lensing, the bending of light rays that pass near massive objects. Gravitational lensing enables…

  7. The Transit of Venus: an Opportunity to Promote Astronomy

    Science.gov (United States)

    Ros, R. M.

    The transit of Venus was an excellent opportunity to promote Astronomy to everybody. In particular this occasion was used to encourage interest in Astronomy in schools. In our society, which has a good quality of life, interest in science has decreased. Every year the number of students interested in studying science degrees at university is smaller than in previous years. Our new generations do not seem to be motivated to study in the field of science. Probably this situation is a consequence of the lack of understanding of the true meaning of science. Of course, it is not possible that a student would decide to study a topic that they do not know about. In the media science appears less than sports, cinema, or business! In consequence, the general public is more concerned about items other than science. On June 8th we took advantage of an opportunity to introduce science and Astronomy into the lives of everybody, but especially in schools. This paper will show two projects related to the transit in schools: ”Pilla el Tránsito de Venus” and ”VT-2004” and a short appendix to another project for schools ”ALMA-ITP”

  8. Indian Astronomy: History of

    Science.gov (United States)

    Mercier, R.; Murdin, P.

    2002-01-01

    From the time of A macronryabhat under dota (ca AD 500) there appeared in India a series of Sanskrit treatises on astronomy. Written always in verse, and normally accompanied by prose commentaries, these served to create an Indian tradition of mathematical astronomy which continued into the 18th century. There are as well texts from earlier centuries, grouped under the name Jyotishaveda macronn d...

  9. Dark Skies Awareness Programs for the U.S. International Year of Astronomy

    Science.gov (United States)

    Walker, Constance E.; U. S. IYA Dark Skies Working Group

    2009-01-01

    The loss of a dark night sky as a natural resource is a growing concern. It impacts not only astronomical research, but also our ecology, health, safety, economics and energy conservation. For this reason, "Dark Skies are a Universal Resource” is one of seven primary themes of the U.S. International Year of Astronomy program in 2009. Its goal is to raise public awareness of the impact of artificial lighting on local environments by getting people involved in a variety of dark skies-related programs. To reach this goal, activities have been developed that: 1) Teach about dark skies using new technology (e.g., an activity-based planetarium show on DVD, podcasting, social networking, Second Life) 2) Provide thematic events on light pollution at star parties and observatory open houses (Dark Skies Discovery Sites, Astronomy Nights in the (National) Parks, Sidewalk Astronomy Nights) 3) Organize an event in the arts (e.g., a photography contest) 4) Involve citizen-scientists in unaided-eye and digital-meter star counting programs, as well as RFI monitoring (e.g., GLOBE at Night and Quiet Skies) and 5) Raise awareness about the link between light pollution and public health, economic issues, ecological consequences, energy conservation, safety and security (e.g., the Dark Skies Toolkit, Good Neighbor Lighting, Earth Hour, National Dark Skies Week, traveling exhibits and a 6-minute video tutorial). To deliver these programs, strategic networks have been established with astronomy clubs (ASP's Night Sky Network's astronomy clubs and the Astronomical League), science and nature centers (Astronomy from the Ground Up and the Association of Science and Technology), educational programs (Project ASTRO and GLOBE) and the International Dark-sky Association. The poster will describe the "know-how” and the means for people to become community advocates in promoting Dark Skies programs as public events at their home institutions. For more information, visit http://astronomy2009

  10. Highlights of Astronomy, Vol. 15

    Science.gov (United States)

    Corbett, Ian

    2010-11-01

    Preface; Part I. Gruber Cosmology Prize Lecture; Part II. Invited Discourses; Part III. Joint Discussions: 1. Dark matter in early-type galaxies Léon V. E. Koopmans and Tommaso Treu; 2. Diffuse light in galaxy clusters Magda Arnaboldi and Ortwin Gerhard; 3. Neutron stars - timing in extreme environments Tomaso Belloni, Mariano Méndez and Chengmin Zhang; 4. Progress in understanding the physics of Ap and related stars Margarida Cunha; 5. Modelling the Milky Way in the age of Gaia Annie C. Robin; 6. Time and astronomy Pascale Defraigne; 7. Astrophysical outflows and associated accretion phenomena Elisabete M. de Gouveia Dal Pino and Alex C. Raga; 8. Hot interstellar matter in elliptical galaxies Dong-Woo Kim and Silvia Pellegrini; 9. Are the fundamental constants varying with time? Paolo Molaro and Elisabeth Vangioni; 10. 3D views on cool stellar atmospheres - theory meets observation K. N. Nagendra, P. Bonifacio and H. G. Ludwig; 11. New advances in helio- and astero-seismology; 12. The first galaxies - theoretical predictions and observational clues; 13. Eta Carinae in the context of the most massive stars Theodore R. Gull and Augusto Damineli; 14. The ISM of galaxies in the far-infrared and sub-millimetre; 15. Magnetic fields in diffuse media Elisabete M. de Gouveia Dal Pino and Alex Lazarian; 16. IHY global campaign - whole heliosphere interval; Part IV. Special Sessions: SpS 1. IR and sub-mm spectroscopy - a new tool for studying stellar evolution Glenn Wahlgren, Hans Käufl and Florian Kerber; SpS 2. The international year of astronomy Pedro Russo, Catherine Cesarsky and Lars Lindberg Christensen; SpS 3. Astronomy in Antarctica in 2009 Michael G. Burton; SpS 4. Astronomy education between past and future J. P. De Greve; SpS 5. Accelerating the rate of astronomical discovery Ray P. Norris; SpS 6. Planetary systems as potential sites for life Régis Courtin, Alan Boss and Michel Mayor; SpS 7. Young stars, brown dwarfs, and protoplanetary disks Jane Gregorio

  11. A Community-Centered Astronomy Research Program (Abstract)

    Science.gov (United States)

    Boyce, P.; Boyce, G.

    2017-12-01

    (Abstract only) The Boyce Research Initiatives and Education Foundation (BRIEF) is providing semester-long, hands-on, astronomy research experiences for students of all ages that results in their publishing peer-reviewed papers. The course in astronomy and double star research has evolved from a face-to-face learning experience with two instructors to an online hybrid course that simultaneously supports classroom instruction at a variety of schools in the San Diego area. Currently, there are over 65 students enrolled in three community colleges, seven high schools, and one university as well as individual adult learners. Instructional experience, courseware, and supporting systems were developed and refined through experience gained in classroom settings from 2014 through 2016. Topics of instruction include Kepler's Laws, basic astrometry, properties of light, CCD imaging, use of filters for varying stellar spectral types, and how to perform research, scientific writing, and proposal preparation. Volunteer instructors were trained by taking the course and producing their own research papers. An expanded program was launched in the fall semester of 2016. Twelve papers from seven schools were produced; eight have been accepted for publication by the Journal of Double Star Observations (JDSO) and the remainder are in peer review. Three additional papers have been accepted by the JDSO and two more are in process papers. Three college professors and five advanced amateur astronomers are now qualified volunteer instructors. Supporting tools are provided by a BRIEF server and other online services. The server-based tools range from Microsoft Office and planetarium software to top-notch imaging programs and computational software for data reduction for each student team. Observations are performed by robotic telescopes worldwide supported by BRIEF. With this success, student demand has increased significantly. Many of the graduates of the first semester course wanted to

  12. Visual lunar and planetary astronomy

    CERN Document Server

    Abel, Paul G

    2013-01-01

    With the advent of CCDs and webcams, the focus of amateur astronomy has to some extent shifted from science to art. The object of many amateur astronomers is now to produce “stunning images” that, although beautiful, are not intended to have scientific merit. Paul Abel has been addressing this issue by promoting visual astronomy wherever possible – at talks to astronomical societies, in articles for popular science magazines, and on BBC TV’s The Sky at Night.   Visual Lunar and Planetary Astronomy is a comprehensive modern treatment of visual lunar and planetary astronomy, showing that even in the age of space telescopes and interplanetary probes it is still possible to contribute scientifically with no more than a moderately priced commercially made astronomical telescope.   It is believed that imaging and photography is somehow more objective and more accurate than the eye, and this has led to a peculiar “crisis of faith” in the human visual system and its amazing processing power. But by anal...

  13. Data structures and languages in support of parallel image processing for astronomy

    International Nuclear Information System (INIS)

    Tanimoto, S.L.

    1985-01-01

    This paper discusses data structures, and aspects of programming languages and systems that are relevant to image processing of astronomy data. Emphasis is on image processing computations, because this kind of data processing is obviously a ripe one for parallelism and is important in astronomy. However, some discussion of general possibilities are also presented. The role of algorithms is examined since they are not dependent on a particular language. As an implementation of an algorithm a program is equally tied to data structure, operations, architecture and language, and therefore the issue of programming resides in the center of the tetrahedron

  14. The Expanding Universe of Astronomy on Tap

    Science.gov (United States)

    Livermore, Rachael C.; Morris, Brett; Narayan, Gautham; Morrison, Sarah J.; Schneider, Evan; Bozek, Brandon; Rice, Emily L.; Hummels, Cameron B.; Garofali, Kristen; Martinez, Raquel; Li, Yuan; Green, Joel D.; LaMassa, Stephanie M.; Silvia, Devin W.; Schwamb, Megan E.; Arcavi, Iair; Silverman, Jeffrey M.

    2017-01-01

    Astronomy on Tap (AoT) is a constellation of free public outreach presentations held in bars. AoT events aim to engage audiences who might not choose to attend public lectures in a university setting by creating an informal atmosphere and combining scientific talks with music, games, and prizes. The events have a flexible format, typically consisting of between one and three astronomy-related presentations, sometimes with additional games and trivia, and some locations also produce merchandise. The flexible structure means that the format can be adapted to the resources available in the location and the time commitment the local organizers are willing to make. Some events are broadcast online through live streaming, with some others being posted to YouTube. In conjunction with an active social media presence, this ensures engagement beyond those able to attend events in person. Astronomy on Tap events have now been held in 20 cities around the world and are typically organised by postdocs and graduate students, with some involvement from faculty and outreach or education staff. Holding these events under the global AoT constellation facilitates knowledge transfer, sharing of resources, and networking opportunities for scientists interested in outreach/communication. The events have been highly successful, with some locations regularly attracting more than 200 people per month. In this poster we describe the goals and characteristics of AoT events, the different adaptations by various locations, the resources we have developed, and provide information for those interested in starting a new event in their location.

  15. Gamma astronomy

    International Nuclear Information System (INIS)

    Cesarsky, C.; Cesarsky, J.P.

    1986-01-01

    This article overviews the gamma astronomy research. Sources already observed, and what causes to give to them; the galactic radiation and its interpretation; techniques already used and current projects [fr

  16. Creative and Tactile Astronomy: Exploring the Universe Using All the Senses

    Science.gov (United States)

    Borges, Isabel; Canas, Lina; Alexander, Alison; Wiltsher, Ruth

    2015-01-01

    Creative and Tactile Astronomy is an educational project developed by English and Portuguese teachers. Isabel Borges and Lina Canas from Portugal and Alison Alexander and Ruth Wiltsher from the United Kingdom met for the first time at the 2013 Science on Stage Festival in Slubice-Oder, on the border between Germany and Poland. As a consequence of…

  17. Extragalactic astronomy

    International Nuclear Information System (INIS)

    Sersic, J.L.

    1982-01-01

    This book condenses the author's yearly semester lectures on 'Extra galactic Astronomy' held almost without interruption over two decades at Cordoba University for students of Astronomy. After a first chapter on Morphology and Classification of galaxies, the second gives most of the basic information about normal galaxies as individuals. Active galaxies are described in chapter III whilst chapter IV deals with the mutual relationship between galaxies and their environment. The Scale of distance is considered in chapter V. Distance indicators are introduced and several conflicting viewpoints of different schools are presented. Chapter VI deals with Cosmology, just to give the necessary elements for chapter VII where the relation between gravitational instability and galaxy formation is discussed. Chapter VIII is an appendix containing additional notes. (Auth.)

  18. Diagrammatic Representational Constraints of Spatial Scale in Earth-Moon System Astronomy Instruction

    Science.gov (United States)

    Taylor, Roger S.; Grundstrom, Erika D.

    2011-01-01

    Given that astronomy heavily relies on visual representations it is especially likely for individuals to assume that instructional materials, such as visual representations of the Earth-Moon system (EMS), would be relatively accurate. However, in our research, we found that images in middle-school textbooks and educational webpages were commonly…

  19. German General Staff Officer Education and Current Challenges

    National Research Council Canada - National Science Library

    Groeters, Thomas

    2006-01-01

    "German General Staff Officer Education and Current Challenges" examines the institutional education of German General Staff Officers, as experienced by the author, and offers a "Conceptual Competency...

  20. Bringing Astronomy Directly to New Audiences (50,000 People) at Outdoor Concerts and Music Festivals

    Science.gov (United States)

    Lubowich, D.

    2014-07-01

    My NASA-funded Music and Astronomy Under the Stars (MAUS) has brought astronomy to 50,000 music lovers at the National Mall (co-sponsor OSTP); Central Park Jazz, Newport Folk, Ravinia, or Tanglewood music festivals; and classical, folk, pop/rock, opera, Caribbean, or county-western concerts in parks assisted by astronomy clubs (55 events since 2009). Yo-Yo-Ma, the Chicago and Boston Symphony Orchestras, Ravi Coltrane, Esperanza Spalding, Phish, Blood Sweat and Tears, Deep Purple, Tony Orlando, and Wilco performed at these events. MAUS combines solar, optical, and radio telescope observations; large posters/banners (From the Earth to the Universe; Visions of the Universe); videos; hands-on activities (Night Sky Network; Harvard-Smithsonian CfA); imaging with a cell phone mount; and hand-outs (info on science museums, astronomy clubs, and citizen science) before and after the concerts or at intermission. MAUS reached underserved groups and attracted large enthusiastic crowds. Many young children participated in this family learning experience-often the first time they looked through a telescope. Outcomes: While education!

  1. Special Education and General Education--Coordinated or Separated? A Study of Curriculum Planning for Pupils with Special Educational Needs

    Science.gov (United States)

    Nilsen, Sven

    2017-01-01

    The central issue of this article is the coordination between special and general education in curriculum planning for pupils with special educational needs. The focus is on individual education plans (IEPs) in special education and work plans in general education. This is also viewed in relation to how special and general education teachers…

  2. The History of Radio Astronomy and the National Radio Astronomy Observatory: Evolution Toward Big Science

    Science.gov (United States)

    Malphrus, Benjamin Kevin

    1990-01-01

    The purpose of this study is to examine the sequence of events that led to the establishment of the NRAO, the construction and development of instrumentation and the contributions and discovery events and to relate the significance of these events to the evolution of the sciences of radio astronomy and cosmology. After an overview of the resources, a brief discussion of the early days of the science is given to set the stage for an examination of events that led to the establishment of the NRAO. The developmental and construction phases of the major instruments including the 85-foot Tatel telescope, the 300-foot telescope, the 140-foot telescope, and the Green Bank lnterferometer are examined. The technical evolution of these instruments is traced and their relevance to scientific programs and discovery events is discussed. The history is told in narrative format that is interspersed with technical and scientific explanations. Through the use of original data technical and scientific information of historical concern is provided to elucidate major developments and events. An interpretive discussion of selected programs, events and technological developments that epitomize the contributions of the NRAO to the science of radio astronomy is provided. Scientific programs conducted with the NRAO instruments that were significant to galactic and extragalactic astronomy are presented. NRAO research programs presented include continuum and source surveys, mapping, a high precision verification of general relativity, and SETI programs. Cosmic phenomena investigated in these programs include galactic and extragalactic HI and HII, emission nebula, supernova remnants, cosmic masers, giant molecular clouds, radio stars, normal and radio galaxies, and quasars. Modern NRAO instruments including the VLA and VLBA and their scientific programs are presented in the final chapter as well as plans for future NRAO instruments such as the GBT.

  3. The Explorer program for astronomy and astrophysics

    International Nuclear Information System (INIS)

    Savage, B.D.; Becklin, E.E.; Cassinelli, J.P.; Dupree, A.K.; Elliot, J.L.; Hoffmann, W.F.; Hudson, H.S.; Jura, M.; Kurfess, J.; Murray, S.S.

    1986-01-01

    This report was prepared to provide NASA with a strategy for proceeding with Explorer-class programs for research in space astronomy and astrophysics. The role of Explorers in astronomy and astrophysics and their past accomplishments are discussed, as are current and future astronomy and astrophysics Explorers. Specific cost needs for an effective Explorer program are considered

  4. International Olympiad on Astronomy and Astrophysics

    Science.gov (United States)

    Soonthornthum, B.; Kunjaya, C.

    2011-01-01

    The International Olympiad on Astronomy and Astrophysics, an annual astronomy and astrophysics competition for high school students, is described. Examples of problems and solutions from the competition are also given. (Contains 3 figures.)

  5. Impact of Information and Communication Technology on Information Seeking Behavior of Users in Astronomy and Astrophysics Centers of India: A Survey

    Science.gov (United States)

    Sahu, H. K.; Singh, S. N.

    2010-10-01

    This study is based on a survey designed to determine the Information Seeking Behavior (ISB) of Astronomy and Astrophysics users in India. The main objective of the study is to determine the sources consulted and the general pattern of the information-gathering system of users and the impact of Information and Communication Technology (ICT) on the Astronomy and Astrophysics user's Information Seeking Behavior. It examines various Information and Communication Technology-based resources and methods of access and use. A descriptive sample stratified method has been used and data was collected using a questionnaire as the main tool. The response rate was 72%. Descriptive statistics were also employed and data have been presented in tables and graphs. The study is supported by earlier studies. It shows that Astronomy and Astrophysics users have developed a unique Information Seeking Behavior to carry out their education and research. The vast majority of respondents reported that more information is available from a variety of e-resources. Consequently, they are able to devote more time to seek out relevant information in the current Information and Communication Technology scenario. The study also indicates that respondents use a variety of information resources including e-resources for teaching and research. Books and online databases such as the NASA Astrophysics Data System (ADS) were considered more important as formal sources of information. E-mail and face-to-face communications are used extensively by users as informal sources of information. It also reveals that despite the presence of electronic sources, Astronomy and Astrophysics users are still using printed materials. This study should to help to improve various Information and Communication Technology-based services. It also suggests that GOI should adopt Information and Communication Technology-based Information Centers and Libraries services and recommends a network-based model for Astronomy and

  6. Science in General Education

    Science.gov (United States)

    Read, Andrew F.

    2013-01-01

    General education must develop in students an appreciation of the power of science, how it works, why it is an effective knowledge generation tool, and what it can deliver. Knowing what science has discovered is desirable but less important.

  7. ``Dark Skies are a Universal Resource'' Programs Planned for the International Year of Astronomy

    Science.gov (United States)

    Walker, C. E.; Berglund, K.; Bueter, C.; Crelin, B.; Duriscoe, D.; Moore, C.; Gauthier, A.; Gay, P. L.; Foster, T.; Heatherly, S. A.; Maddalena, R.; Mann, T.; Patten, K.; Pompea, S. M.; Sparks, R.; Schaaf, F.; Simmons, M.; Smith, C.; Smith, M.; Tafreshi, B.

    2008-11-01

    In an effort to help more people appreciate the ongoing loss of a dark night sky for much of the world's population and to raise public knowledge about diverse impacts of excess artificial lighting on local environments, the International Year of Astronomy's Dark Skies Working Group has established six ``Dark Skies'' programs and six ``Dark Skies'' resources. The Dark Skies programs include GLOBE at Night (with Earth Hour), Astronomy Nights in the [National] Parks, Dark Skies Discovery Sites, Quiet Skies, Good Neighbor Lighting, and a digital photography contest. Resources include the light education toolkit, the ``Let There Be Night'' DVD and planetarium program, the 6-minute video, online interactions like Second Life, podcasts, and traveling exhibits. The programs and resources are summarized here, as they were in a poster for the June 2008 ASP/AAS conference. For more information on these programs and resources, visit http://astronomy2009.us/darkskies/.

  8. Astronomy Outreach Activites through the University of California, Irvine

    Science.gov (United States)

    Thornton, Carol E.; Smecker-Hane, T.

    2006-06-01

    We discuss our efforts to bring astronomy to local schools and classrooms through the UCI Astronomy Outreach program. This is part of a faculty-led outreach program entitled Outreach in Astronomy & Astrophysics with the UCI Observatory, funded by an NSF FOCUS grant to the University of California, Irvine. We primarily schedule visits with K-12 teachers in the Compton, Newport/Mesa and Santa Ana Unified School Districts, but often see scout troops and classes from other nearby schools. Often these schools don’t have the funding needed to bring their students to us, so we take small, portable telescopes to the schools, for both day and night visits, to give the students a chance to not only see a telescope, but to use one as well. For the schools that can find transportation to bring their students to campus, we include a tour of our observatory dome housing a 24-inch telescope used for outreach events and undergraduate research. In addition, we give interactive lectures and demonstrations to involve the students and get them excited about careers in science and science in general. We find that we help stimulate discussions before and after our visits, which can often help start or end a unit of astronomy within the schools’ curricula. We show feedback from teachers we have visited including the strengths of the program and suggestions/improvements for the future. For more information, see http://www.physics.uci.edu/%7Eobservat/tour_program.htmlFunding provided by NSF grant EHR-0227202 (PI: Ronald Stern).

  9. Global Collaborative STEM Education

    Science.gov (United States)

    Meabh Kelly, Susan; Smith, Walter

    2016-04-01

    Global Collaborative STEM Education, as the name suggests, simultaneously supports two sets of knowledge and skills. The first set is STEM -- science, technology, engineering and math. The other set of content knowledge and skills is that of global collaboration. Successful global partnerships require awareness of one's own culture, the biases embedded within that culture, as well as developing awareness of the collaborators' culture. Workforce skills fostered include open-mindedness, perseverance when faced with obstacles, and resourceful use of technological "bridges" to facilitate and sustain communication. In respect for the 2016 GIFT Workshop focus, Global Collaborative STEM Education projects dedicated to astronomy research will be presented. The projects represent different benchmarks within the Global Collaborative STEM Education continuum, culminating in an astronomy research experience that fully reflects how the global STEM workforce collaborates. To facilitate wider engagement in Global Collaborative STEM Education, project summaries, classroom resources and contact information for established international collaborative astronomy research projects will be disseminated.

  10. Evaluation of Music And Astronomy Under The Stars: Bringing Science To New Audiences At Music Events

    Science.gov (United States)

    Lubowich, D.; Torff, B.

    2014-07-01

    Evaluations were conducted of the 2009-2012 NASA-funded Music and Astronomy Under the Stars (MAUS) program at outdoor concerts (see the separate MAUS poster at this meeting). MAUS promoted lifelong learning by providing opportunities for the public to look through telescopes, participate in hands-on activities, and view posters, banners, and videos at events where large numbers of people are gathered. Surveys were given to 1.6% of the concertgoers at MAUS events with the participants expressing their level of agreement on a four-point scale with the following statements: “The astronomy at this event has been an enjoyable experience;” “It has been easy to comprehend the astronomy at this event;” “This event has helped me learn new things about astronomy;” “This event has made me want to learn more about astronomy;” and “This event has increased my interest in science.” On a scale where 1 = strongly disagree, 2 = disagree, 3 = agree, and 4 = strongly agree, MAUS received high ratings (>3.34/4) on all outcomes. MAUS successfully reached people at different concerts who had little interest in science. MAUS appealed to concert attendees of both genders, all ages, multiple levels of education, and all musical tastes. MAUS positively influenced the public's knowledge of and interest in astronomy. The high ratings from virtually all respondents indicate that the gains were not restricted to science enthusiasts. The data strongly supports the conclusion that MAUS—bringing astronomy to people at musical events—is effective!

  11. Enriching Student Learning of Astronomy in Online Courses via Hybrid Texts

    Science.gov (United States)

    Montgomery, M.

    2016-01-01

    Hybrid texts such as Horizons: Exploring the Universe, Hybrid (with CengageNOW) and Universe, Hybrid (with CengageNOW) are designed for higher education learning of astronomy in undergraduate online courses. In these hybrid texts, quiz and test bank questions have been revised to minimize easy look-up of answers by students via the Internet and discussion threads have been re-designed to allow for student selection of learning and for personalized learning, for example. By establishing connections between the student and the course content, student learning is enriched, students spend more time learning the material, student copying of answers is minimized, and student social engagement on the subject matter is increased. In this presentation, we discuss how Hybrid texts in Astronomy can increase student learning in online courses.

  12. Secondary General Education Teachers' Attitudes toward Inclusion

    Science.gov (United States)

    Wilson, Valerie A.

    2014-01-01

    Since the inception of the Individuals with Disabilities Education Improvement Act, educators have struggled with including students with disabilities in the general education classroom with their nondisabled peers. The inclusion educational model was utilized in this study to explore secondary teachers' attitudes toward inclusive educational…

  13. A Companion to Astronomy and Astrophysics Chronology and Glossary with Data Tables

    CERN Document Server

    Lang, Kenneth R

    2006-01-01

    Astronomy and Astrophysics is a comprehensive, fundamental, up-to-date reference book. It is filled with vital information and basic facts for amateur astronomers and professional astrophysicists, and for anyone interested in the Universe, from the Earth and other planets to the stars, galaxies and beyond. Although serious and thorough, the language, and ideas will attract the general reader, as well as students and professionals. Astronomy and Astrophysics consists of two main parts, a Timeline and a Dictionary. The Timeline is a concise history, arranged chronologically, which provides the complete story of cosmic discovery from early Chinese and Greek astronomy to the latest findings of modern astrophysics and robotic spacecraft. It provides a sense of destination and flow in our growing awareness of the Universe. Each entry in the unfolding narrative is written in a concise, light and friendly style that will be appreciated by all, without being weighted down with incomprehensible specialized terms. The s...

  14. Astronomy: a proposal to promote meaningful learning of basic concepts of Astronomy in the shaping of teachers of High School Education

    Directory of Open Access Journals (Sweden)

    Luiz Marcelo Darroz

    2013-04-01

    Full Text Available One presents, in this article, the process of drawing up and developing a didactic proposal about basic concepts of Astronomy. This proposal, which sought to build an educational path for the occurrence of significant learning of the concepts covered, was developed under an extension course to a group of 13 students graduating from teacher training in High School of a public school in Passo Fundo, Rio Grande do Sul. Initially one has developed the teaching methodology following from the Theory of Meaningful Learning Conceptions. The traces of meaningful learning have been obtained by means of instruments of research and evaluation, such as conceptual maps and role playing of the studied contents where the students transposed the approached subjects into new contexts. The obtained results from the learning questionnaires reached a high rate of hits. Through the registries of the meetings and the representations by drawings of the concepts, one has noticed that the students have genuinely understood the approached subjects. Through the conceptual maps the students were able to establish a progressive differentiation and an integrative reconciliation of the concepts. Thus, it was concluded that a methodology that takes into consideration what the student already knows it is essential to develop the joy of Science, the construction of meaning and appreciation of what is being learned.

  15. Institutional Problems and Solutions of General Education in Chinese Universities

    Science.gov (United States)

    Meng, Weiqing; Huang, Wei

    2018-01-01

    Embedding general education in the Chinese university education system is a considerably complex systemic project, and a lack of institutional arrangements beneficial to general education has always been a key barrier in implementation. Currently, the main institutional restricting factors for university general education include substantial…

  16. Exploring Metacogntive Visual Literacy Tasks for Teaching Astronomy

    Science.gov (United States)

    Slater, Timothy F.; Slater, S.; Dwyer, W.

    2010-01-01

    Undoubtedly, astronomy is a scientific enterprise which often results in colorful and inspirational images of the cosmos that naturally capture our attention. Students encountering astronomy in the college classroom are often bombarded with images, movies, simulations, conceptual cartoons, graphs, and charts intended to convey the substance and technological advancement inherent in astronomy. For students who self-identify themselves as visual learners, this aspect can make the science of astronomy come alive. For students who naturally attend to visual aesthetics, this aspect can make astronomy seem relevant. In other words, the visual nature that accompanies much of the scientific realm of astronomy has the ability to connect a wide range of students to science, not just those few who have great abilities and inclinations toward the mathematical analysis world. Indeed, this is fortunate for teachers of astronomy, who actively try to find ways to connect and build astronomical understanding with a broad range of student interests, motivations, and abilities. In the context of learning science, metacognition describes students’ self-monitoring, -regulation, and -awareness when thinking about learning. As such, metacognition is one of the foundational pillars supporting what we know about how people learn. Yet, the astronomy teaching and learning community knows very little about how to operationalize and support students’ metacognition in the classroom. In response, the Conceptual Astronomy, Physics and Earth sciences Research (CAPER) Team is developing and pilot-testing metacogntive tasks in the context of astronomy that focus on visual literacy of astronomical phenomena. In the initial versions, students are presented with a scientifically inaccurate narrative supposedly describing visual information, including images and graphical information, and asked to assess and correct the narrative, in the form of peer evaluation. To guide student thinking, students

  17. Large Instrument Development for Radio Astronomy

    Science.gov (United States)

    Fisher, J. Richard; Warnick, Karl F.; Jeffs, Brian D.; Norrod, Roger D.; Lockman, Felix J.; Cordes, James M.; Giovanelli, Riccardo

    2009-03-01

    This white paper offers cautionary observations about the planning and development of new, large radio astronomy instruments. Complexity is a strong cost driver so every effort should be made to assign differing science requirements to different instruments and probably different sites. The appeal of shared resources is generally not realized in practice and can often be counterproductive. Instrument optimization is much more difficult with longer lists of requirements, and the development process is longer and less efficient. More complex instruments are necessarily further behind the technology state of the art because of longer development times. Including technology R&D in the construction phase of projects is a growing trend that leads to higher risks, cost overruns, schedule delays, and project de-scoping. There are no technology breakthroughs just over the horizon that will suddenly bring down the cost of collecting area. Advances come largely through careful attention to detail in the adoption of new technology provided by industry and the commercial market. Radio astronomy instrumentation has a very bright future, but a vigorous long-term R&D program not tied directly to specific projects needs to be restored, fostered, and preserved.

  18. General Education: An Academic Adviser's Perspective

    Science.gov (United States)

    White, Eric R.

    2013-01-01

    The component of the baccalaureate degree referred to as general education is at risk. General education is losing traction in the curriculum, as calls for graduate students on a faster time schedule and a desire to produce readily employable graduates head the list of higher education objectives. Little attention is paid to how students come to…

  19. Itinerant deaf educator and general educator perceptions of the D/HH push-in model.

    Science.gov (United States)

    Rabinsky, Rebecca J

    2013-01-01

    A qualitative case study using the deaf and hard of hearing (D/HH) push-in model was conducted on the perceptions of 3 itinerant deaf educators and 3 general educators working in 1 school district. Participants worked in pairs of 1 deaf educator and 1 general educator at 3 elementary schools. Open-ended research questions guided the study, which was concerned with teachers' perceptions of the model in general and with the model's advantages, disadvantages, and effectiveness. Data collected from observations, one-to-one interviews, and a focus group interview enabled the investigator to uncover 4 themes: Participants (a) had an overall positive experience, (b) viewed general education immersion as an advantage, (c) considered high noise levels a disadvantage, and (d) believed the effectiveness of the push-in model was dependent on several factors, in particular, the needs of the student and the nature of the general education classroom environment.

  20. Texas-style Fundraising and Public Relations for the International Year of Astronomy

    Science.gov (United States)

    Preston, Sandra; Barna, J. W.; Geiger, S.; Johnson, R.; Rimm, N.; Griffin, J.; Watson, K.

    2008-05-01

    McDonald Observatory can be a leader in Texas for the International Year of Astronomy (IYA09) celebration. Our strategy builds on the IYA09 program, tailoring it for the Texas audience, while also nationally promoting McDonald Observatory, UT Astronomy, the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) and our partnership in the Giant Magellan Telescope (GMT). We will also use this opportunity to make a concentrated outreach effort toward the Hispanic and Spanish-speaking communities in Texas and the nation, aligning with the IYA09 objective for improving relations with underrepresented and minority populations. Fundraising is a key ingredient to our success in 2009 and the future. With NASA Office of Space Science funding for education and public outreach being rethought, we will be focusing on new sources for fundraising, including private donations and corporate sponsorship, augmented by planned giving. We will take advantage of the timing to raise funds for special IYA09 programs, as well as for our large telescope projects HETDEX and GMT, along with our endowment and planned giving programs for education, outreach, and research. We will work with the UT McCombs School of Business on corporate sponsorship. During this time we will also go through a branding experience that will visually unify McDonald Observatory, UT Astronomy, and the education and public outreach programs. A consistent brand that can be used on the website and other media is our goal to build a stronger public presence that will aid us in our fundraising efforts. A Public Relations Internship Project produced a report to help launch this process. We are working with the UT College of Communications Advertising Department and with Hill Strategic Brand Solutions in Houston, Texas. We hope that our efforts will produce Texas-sized results!

  1. Strategies for Teaching Astronomy

    Science.gov (United States)

    Bennett, J.

    2000-12-01

    No matter whether you are teaching school children, undergraduates, or colleagues, a few key strategies are always useful. I will present and give examples for the following five key strategies for teaching astronomy. 1. Provide a Contextual Framework: It is much easier to learn new facts or concepts if they can be ``binned" into some kind of pre-existing mental framework. Unless your listeners are already familiar with the basic ideas of modern astronomy (such as the hierarchy of structure in the universe, the scale of the universe, and the origin of the universe), you must provide this before going into the details of how we've developed this modern picture through history. 2. Create Conditions for Conceptual Change: Many people hold misconceptions about astronomical ideas. Therefore we cannot teach them the correct ideas unless we first help them unlearn their prior misconceptions. 3. Make the Material Relevant: It's human nature to be more interested in subjects that seem relevant to our lives. Therefore we must always show students the many connections between astronomy and their personal concerns, such as emphasizing how we are ``star stuff" (in the words of Carl Sagan), how studying other planets helps us understand our own, and so on. 4. Limit Use of Jargon: The number of new terms in many introductory astronomy books is larger than the number of words taught in many first courses in foreign language. This means the books are essentially teaching astronomy in a foreign language, which is a clear recipe for failure. We must find ways to replace jargon with plain language. 5. Challenge Your Students: Don't dumb your teaching down; by and large, students will rise to meet your expectations, as long as you follow the other strategies and practice good teaching.

  2. Women's and Men's Career Choices in Astronomy and Astrophysics

    Science.gov (United States)

    Ivie, Rachel; White, Susan; Chu, Raymond Y.

    2016-01-01

    The Longitudinal Study of Astronomy Graduate Students (LSAGS) arose from the 2003 Women in Astronomy Conference, where it was noted that a majority of young members of the American Astronomical Society were women. The astronomy community wishes to make every effort to retain young women in astronomy, so they commissioned a longitudinal study to be…

  3. Undergraduate Education with the WIYN 0.9-m Telescope

    Science.gov (United States)

    Pilachowski, Catherine A.

    2017-01-01

    Several models have been explored at Indiana University Bloomington for undergraduate student engagement in astronomy using the WIYN 0.9-m telescope at Kitt Peak. These models include individual student research projects using the telescope, student observations as part of an observational techniques course for majors, and enrichment activities for non-science majors in general education courses. Where possible, we arrange for students to travel to the telescope. More often, we are able to use simple online tools such as Skype and VNC viewers to give students an authentic observing experience. Experiences with the telescope motivate students to learn basic content in astronomy, including the celestial sphere, the electromagnetic spectrum, telescopes and detectors, the variety of astronomical objects, date reduction processes, image analysis, and color image creation and appreciation. The WIYN 0.9-m telescope is an essential tool for our program at all levels of undergraduate education

  4. The knowledge in astronomy of the students of technology in industrial automation

    Science.gov (United States)

    Voelzke, Marcos Rincon; Capasso Moraes, Ataliba

    2016-07-01

    This work is part of a research of the academic Masters in Science in Education at the Cruzeiro do Sul University, in Brazil. It seeks to present the results of the survey conducted among students of the technology course in industrial automation at the Federal Institute São Paulo at the Campus Cubatão. In the first step, the students' lack of knowledge to the related primary concepts of Astronomy turned out. Correcting these deficiencies found, external to the program content, a Basic Course in Astronomy, containing dialogued or expository lectures with the aid of audiovisual resources and access to textbooks. Analysed the responses of this second step, it was found that students had a significant improvement in learning.

  5. Making Space for Specialized Astronomy Resources

    Science.gov (United States)

    MacMillan, D.

    2007-10-01

    With the growth of both free and subscription-based resources, articles on astronomy have never been easier to find. Locating the best and most current materials for any given search, however, now requires multiple tools and strategies dependent on the query. An analysis of the tools currently available shows that while astronomy is well-served by Google Scholar, Scopus and Inspec, its literature is best accessed through specialized resources such as ADS (Astrophysics Data System). While no surprise to astronomers, this has major implications for those of us who teach information literacy skills to astronomy students and work in academic settings where astronomy is just one of many subjects for which our non-specialist colleagues at the reference desk provide assistance. This paper will examine some of the implications of this analysis for library instruction, reference assistance and training, and library webpage development.

  6. Astronomy in the Big Data Era

    Directory of Open Access Journals (Sweden)

    Yanxia Zhang

    2015-05-01

    Full Text Available The fields of Astrostatistics and Astroinformatics are vital for dealing with the big data issues now faced by astronomy. Like other disciplines in the big data era, astronomy has many V characteristics. In this paper, we list the different data mining algorithms used in astronomy, along with data mining software and tools related to astronomical applications. We present SDSS, a project often referred to by other astronomical projects, as the most successful sky survey in the history of astronomy and describe the factors influencing its success. We also discuss the success of Astrostatistics and Astroinformatics organizations and the conferences and summer schools on these issues that are held annually. All the above indicates that astronomers and scientists from other areas are ready to face the challenges and opportunities provided by massive data volume.

  7. Interdisciplinary Astronomy Activities

    Science.gov (United States)

    Nerantzis, Nikolaos; Mitrouda, Aikaterini; Reizopoulou, Ioanna; Sidiropoulou, Eirini; Hatzidimitriou, Antonios

    2016-04-01

    On November 9th, 2015, three didactical hours were dedicated to Interdisciplinary Astronomy Activities (http://wp.me/p6Hte2-1I). Our students and their teachers formed three groups and in rotation, were engaged with the following activities: (a) viewing unique images of the Cosmos in the mobile planetarium STARLAB (http://www.planitario.gr/tholos-starlab-classic-standard.html), (b) watching the following videos: Journey to the end of the universe (https://youtu.be/Ufl_Nwbl8xs), Rosetta update (https://youtu.be/nQ9ivd7wv30), The Solar System (https://youtu.be/d66dsagrTa0), Ambition the film (https://youtu.be/H08tGjXNHO4) in the school's library. Students and teachers were informed about our solar system, the Rosetta mission, the universe, etc. and (c) tactile activities such as Meet our home and Meet our neighbors (http://astroedu.iau.org, http://nuclio.org/astroneighbours/resources) and the creation of planets' 3D models (Geology-Geography A' Class Student's book, pg.15). With the activities above we had the pleasure to join the Cosmic Light Edu Kit / International Year of Light 2015 program. After our Interdisciplinary Astronomy Activities, we did a "small" research: our students had to fill an evaluation about their educational gains and the results can be found here http://wp.me/p6Hte2-2q. Moreover, we discussed about Big Ideas of Science (http://wp.me/p3oRiZ-dm) and through the "big" impact of the Rosetta mission & the infinity of our universe, we print posters with relevant topics and place them to the classrooms. We thank Rosa Doran (Nuclio - President of the Executive Council) for her continuous assistance and support on innovative science teaching proposals. She is an inspiration.

  8. An Inaugural Girl Scout Destinations Astronomy Camp

    Science.gov (United States)

    Lebofsky, Larry A.; McCarthy, Donald W.; Wright, Joe; Wright, Rita; Mace, Mikayla; Floyd, Charmayne

    2017-10-01

    The University of Arizona (UA) conducted its first teenage Girl Scout Destinations Astronomy Camp. This program was preceded by 24 Leadership Workshops for Adult Girl Scout Leaders, initially supported by EPO funding from NIRCam for JWST. For five days in late June, 24 girls (ages 13-17 years) attended from 16 states. The Camp was led by UA astronomers and long-term educators. Representing Girl Scouts of the USA (GSUSA) were a husband/wife amateur astronomer team who are SOFIA Airborne Astronomy and NASA Solar System Ambassadors. Other leaders included a Stanford undergraduate engineering student who is a lifelong Girl Scout and Gold Award recipient and a recent UA Master’s degree science journalist. The Camp is a residential, hands-on “immersion” adventure in scientific exploration using telescopes in southern Arizona’s Catalina Mountains near Tucson. Under uniquely dark skies girls become real astronomers, operating telescopes (small and large) and associated technologies, interacting with scientists, obtaining images and quantitative data, investigating their own questions, and most importantly having fun actually doing science and building observing equipment. Girls achieve a basic understanding of celestial objects, how and why they move, and their historical significance, leading to an authentic understanding of science, research, and engineering. Girls can lead these activities back home in their own troops and councils, encouraging others to consider STEM field careers. These programs are supported by a 5-year NASA Collaborative Agreement, Reaching for the Stars: NASA Science for Girl Scouts (www.seti.org/GirlScoutStars), through the SETI Institute in collaboration with the UA, GSUSA, Girl Scouts of Northern California, the Astronomical Society of the Pacific, and Aries Scientific, Inc. The Girl Scout Destinations Astronomy Camp aligns with the GSUSA Journey: It’s Your Planet-Love It! and introduces the girls to some of the activities being

  9. Some historical crossroads between astronomy and visual neuroscience

    Science.gov (United States)

    Berlucchi, G.

    The histories of astronomy and visual neuroscience share some important events. Observation of the sky provided early basic information about visual acuity and sensitivity to light and their variations at different retinal locations. Some of the early tests of visual functions were inspired by astronomical knowledge existing since antiquity and possibly since human prehistory. After science became a hallmark of human civilization, astronomy played a crucial part in the discovery of the laws of nature. At the turn of the 19th century, astronomers discovered interindividual variability in detecting the time of stellar transit and tried to measure the so-called personal equation, a supposedly inherent individual bias in making observations, judgements and measurements. Convinced that the reliability of scientific observations depended on the reliability of the observer, they were the first scientists to realize that studying man and human psychophysiology was essential for achieving accuracy and objectivity in astronomy and other sciences alike. There is general consensus that the science of experimental psychology grew out of astronomy and physiology in connection with the development of the reaction time method and the so-called mental chronometry. The crucial role of the observer in astronomical observations appears to have been neglected by astronomers in the second half of the 19th century after Giovanni Schiaparelli described ``canals" on the surface of the planet Mars. Percival Lowell and others thought that these canals had been constructed by a Martian intelligent population in order to distribute water from the polar regions to the equatorial deserts on the planet. Since it has been ascertained that the Mars canals seen by Schiaparelli do not exist, some speculations are offered from a neuroscientific viewpoint as to why he and others were mistaken in their observations of Mars.

  10. Advances in astronomy and astrophysics 9

    CERN Document Server

    Kopal, Zdenek

    1972-01-01

    Advances in Astronomy and Astrophysics, Volume 9 covers reviews on the advances in astronomy and astrophysics. The book presents reviews on the Roche model and its applications to close binary systems. The text then describes the part played by lunar eclipses in the evolution of astronomy; the classical theory of lunar eclipses; deviations from geometrical theory; and the methods of photometric observations of eclipses. The problems of other phenomena related in one way or another to lunar eclipses are also considered. The book further tackles the infrared observation on the eclipsed moon, as

  11. SEAC 2011 Stars and Stones: Voyages in Archaeoastronomy and Cultural Astronomy

    Science.gov (United States)

    Pimenta, F.; Ribeiro, N.; Silva, F.; Campion, N.; Joaquinito, A.; Tirapicos, L.

    2015-05-01

    Since Prehistory the sky has always been integrated as part of the cosmovision of human societies. The sky played a fundamental role not only in the orientation in space, time organization, ritual practices or celestial divination but also as an element of power. Migrations and voyages are intrinsic to humankind, they opened the routes for cultural diffusion and trade, but also for power dominance. Following these routes is also to follow cultural diversity and how human societies met or clashed. The sky and astronomical phenomena provided the tools for time reckoning, calendar organization and celestial navigation that supported those voyages. Astronomy gives us today the capacity to reproduce the sky, opening a window through which we can glimpse how those societies perceived, integrated and manipulated the sky into their world-views and their myths and, ultimately, into their social organization. A voyage is always a meeting of different worlds and eventually a process to accept diversity and thus we challenged the participants of the 19th meeting of the European Society for Astronomy in Culture to present their papers in the form of a voyage or an encounter for the following topics: - Techniques of celestial navigation and orientation of the past. Astronomical navigation and nautical instruments in the XIVth, XVth and XVIth centuries; - Expressions of astronomical knowledge in architecture and monuments, rock art, archaeology and landscape. People migration, a meeting between different cultures; - History of astronomy. An encounter between different conceptions; - Astronomy and the Jesuits. A meeting between different worlds; - Astronomy in antiquity. A meeting between different knowledge; - Ethno-astronomy, Cultural Astronomy and myths, voyages in space and in time through different cultures; - To where is Archaeoastronomy voyaging? A round table about Archaeoastronomy, Cultural Astronomy and Education. The 19th meeting of the European Society for Astronomy in

  12. 47 CFR 2.107 - Radio astronomy station notification.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Radio astronomy station notification. 2.107....107 Radio astronomy station notification. (a) Pursuant to No. 1492 of Article 13 and Section F of Appendix 3 to the international Radio Regulations (Geneva, 1982), operators of radio astronomy stations...

  13. Cultural Astronomy in Armenia and in the World

    Science.gov (United States)

    Farmanyan, S. V.; Mickaelian, A. M.

    2016-12-01

    Cultural Astronomy is the reflection of sky events in various fields of nations' culture. In foreign literature, this field is also called "Astronomy in Culture" or "Astronomy and Culture". Cultural astronomy is the set of interdisciplinary fields studying the astronomical systems of current or ancient societies and cultures. It is manifested in Religion, Mythology, Folklore, Poetry, Art, Linguistics and other fields. In recent years, considerable attention has been paid to this sphere, particularly international organizations were established, conferences are held and journals are published. Armenia is also rich in cultural astronomy. The present paper focuses on Armenian archaeoastronomy and cultural astronomy, including many creations related to astronomical knowledge; calendars, rock art, mythology, etc. On the other hand, this subject is rather poorly developed in Armenia; there are only individual studies on various related issues (especially many studies related to Anania Shirakatsi) but not coordinated actions to manage this important field of investigation.

  14. Gamma ray astronomy

    International Nuclear Information System (INIS)

    Fichtel, C.E.

    1975-01-01

    The first certain detection of celestial high energy gamma rays came from a satellite experiment flown on the third Orbiting Solar Observatory (OSO-111). A Gamma ray spark chamber telescope with substantively greater sensitivity and angular resolution (a few degrees) flown on the second Small Astronomy Satellite (SAS-II) has now provided a better picture of the gamma ray sky, and particularly the galactic plane and pulsars. This paper will summarize the present picture of gamma ray astronomy as it has developed at this conference from measurements made with experiments carried out on balloons, those remaining on the ground, and ones flown on satellites. (orig.) [de

  15. Europe Unveils 20-Year Plan for Brilliant Future in Astronomy

    Science.gov (United States)

    2008-11-01

    Astronomy is enjoying a golden age of fundamental, exciting discoveries. Europe is at the forefront, thanks to 50 years of progress in cooperation. To remain ahead over the next two to three decades, Europe must prioritise and coordinate the investment of its financial and human resources even more closely. The ASTRONET network, backed by the entire European scientific community, supported by the European Commission, and coordinated by the CNRS, today presents its Roadmap for a brilliant future for European astronomy. ESO's European Extremely Large Telescope is ranked as one of two top-priority large ground-based projects. Astronet and the E-ELT ESO PR Photo 43a/08 The E-ELT Europe is a leader in astronomy today, with the world's most successful optical observatory, ESO's Very Large Telescope, and cutting-edge facilities in radio astronomy and in space. In an unprecedented effort demonstrating the potential of European scientific cooperation, all of European astronomy is now joining forces to define the scientific challenges for the future and construct a common plan to address them in a cost-effective manner. In 2007, a top-level Science Vision was prepared to assess the most burning scientific questions over the next quarter century, ranging from dark energy to life on other planets. European astronomy now presents its Infrastructure Roadmap, a comprehensive 20-year plan to coordinate national and community investments to meet these challenges in a cost-effective manner. The Roadmap not only prioritises the necessary new frontline research facilities from radio telescopes to planetary probes, in space and on the ground, but also considers such key issues as existing facilities, human resources, ICT infrastructure, education and outreach, and cost -- of operations as well as construction. This bold new initiative -- ASTRONET -- was created by the major European funding agencies with support from the European Commission and is coordinated by the National Institute

  16. The Early Astronomy Toolkit was Universal

    Science.gov (United States)

    Schaefer, Bradley E.

    2018-01-01

    From historical, anthropological, and archaeological records, we can reconstruct the general properties of the earliest astronomy for many cultures worldwide, and they all share many similar characteristics. The 'Early Astronomy Toolkit' (EAT) has the Earth being flat, and the heavens as a dome overhead populated by gods/heroes that rule Nature. The skies provided omens in a wide variety of manners, with eclipses, comets, and meteors always being evil and bad. Constellations were ubiquitous pictures of gods, heroes, animals, and everyday items; all for story telling. The calendars were all luni-solar, with no year counts and months only named by seasonal cues (including solstice observations and heliacal risings) with vague intercalation. Time of day came only from the sun's altitude/azimuth, while time at night came from star risings. Graves are oriented astronomically, and each culture has deep traditions of quartering the horizon. The most complicated astronomical tools were just a few sticks and stones. This is a higher level description and summary of the astronomy of all ancient cultures.This basic EAT was universal up until the Greeks, Mesopotamians, and Chinese broke out around 500 BC and afterwards. Outside the Eurasian milieu, with few exceptions (for example, planetary position measures in Mexico), this EAT represents astronomy for the rest of the world up until around 1600 AD. The EAT is present in these many cultures with virtually no variations or extensions. This universality must arise either from multiple independent inventions or by migration/diffusion. The probability of any culture independently inventing all 19 items in the EAT is low, but any such calculation has all the usual problems. Still, we realize that it is virtually impossible for many cultures to independently develop all 19 items in the EAT, so there must be a substantial fraction of migration of the early astronomical concepts. Further, the utter lack, as far as I know, of any

  17. Accessible Astronomy.

    Science.gov (United States)

    Glickstein, Neil

    1994-01-01

    Describes the development of a theme-based, multidisciplinary course. The article partitions into the following sections: (1) Constructing the Course; (2) Putting the Ideas to Work; (3) Connecting Science and Society; and (4) The Arts and Astronomy. (ZWH)

  18. The Effect of Media on Preservice Science Teachers' Attitudes toward Astronomy and Achievement in Astronomy Class

    Science.gov (United States)

    Bektasli, Behzat

    2013-01-01

    Studies show that it is hard to change students' attitudes toward science. This study specifically explored if media affect preservice science teachers' attitudes toward astronomy and their astronomy achievement. The sample for the pilot study consisted of 196 preservice science and mathematics teachers for attitude assessment and 230 preservice…

  19. Science and Mathematics in Astronomy

    Science.gov (United States)

    Woolack, Edward

    2009-01-01

    A brief historical introduction to the development of observational astronomy will be presented. The close historical relationship between the successful application of mathematical concepts and advances in astronomy will be presented. A variety of simple physical demonstrations, hands-on group activities, and puzzles will be used to understand how the properties of light can be used to understand the contents of our universe.

  20. Handbook Of X-ray Astronomy

    Science.gov (United States)

    Arnaud, Keith A.; Smith, R. K.; Siemiginowska, A.; Edgar, R. J.; Grant, C. E.; Kuntz, K. D.; Schwartz, D. A.

    2011-09-01

    This poster advertises a book to be published in September 2011 by Cambridge University Press. Written for graduate students, professional astronomers and researchers who want to start working in this field, this book is a practical guide to x-ray astronomy. The handbook begins with x-ray optics, basic detector physics and CCDs, before focussing on data analysis. It introduces the reduction and calibration of x-ray data, scientific analysis, archives, statistical issues and the particular problems of highly extended sources. The book describes the main hardware used in x-ray astronomy, emphasizing the implications for data analysis. The concepts behind common x-ray astronomy data analysis software are explained. The appendices present reference material often required during data analysis.

  1. Extragalactic astronomy and cosmology an introduction

    CERN Document Server

    Schneider, Peter

    2015-01-01

    Accounting for the astonishing developments in the field of Extragalactic Astronomy and Cosmology, this second edition has been updated and substantially expanded. Starting with the description of our home galaxy, the Milky Way, this cogently written textbook introduces the reader to the astronomy of galaxies, their structure, active galactic nuclei, evolution and large scale distribution in the Universe. After an extensive and thorough introduction to modern observational and theoretical cosmology, the focus turns to the formation of structures and astronomical objects in the early Universe. The basics of classical astronomy and stellar astrophysics needed for extragalactic astronomy are provided in the appendix. The new edition incorporates some of the most spectacular results from new observatories like the Galaxy Evolution Explorer, Herschel, ALMA, WMAP and Planck, as well as new instruments and multi-wavelength campaigns which have expanded our understanding of the Universe and the objects populating it....

  2. Listening in the General Education Curriculum

    Science.gov (United States)

    Wolvin, Andrew D.

    2012-01-01

    Research supports the point that listening skills play an important role in 21st century personal, academic, and professional success. This article argues that educators should include listening, a critical communication competency, in the oral communication course in the general education curriculum. (Contains 1 table.)

  3. Armenia as a Regional Centre for Astronomy for Development activities

    Science.gov (United States)

    Mickaelian, A.

    2015-03-01

    The Byurakan Astrophysical Observatory (BAO, Armenia, http://www.bao.am) are among the candidate IAU Regional Nodes for Astronomy for Development activities. It is one of the main astronomical centers of the former Soviet Union and the Middle East region. At present there are 48 qualified researchers at BAO, including six Doctors of Science and 30 PhDs. Five important observational instruments are installed at BAO, the larger ones being 2.6m Cassegrain (ZTA-2.6) and 1m Schmidt (the one that provided the famous Markarian survey). BAO is regarded as a national scientific-educational center, where a number of activities are being organized, such as: international conferences (4 IAU symposia and 1 IAU colloquium, JENAM-2007, etc.), small workshops and discussions, international summer schools (1987, 2006, 2008 and 2010), and Olympiads. BAO collaborates with scientists from many countries. The Armenian Astronomical Society (ArAS, http://www.aras.am/) is an NGO founded in 2001; it has 93 members and it is rather active in the organization of educational, amateur, popular, promotional and other matters. The Armenian Virtual Observatory (ArVO, http://www.aras.am/Arvo/arvo.htm) is one of the 17 national VO projects forming the International Virtual Observatories Alliance (IVOA) and is the only VO project in the region serving also for educational purposes. A number of activities are planned, such as management, coordination and evaluation of the IAU programs in the area of development and education, establishment of the new IAU endowed lectureship program and organization of seminars and public lectures, coordination and initiation of fundraising activities for astronomy development, organization of regional scientific symposia, conferences and workshops, support to Galileo Teacher Training Program (GTTP), production/publication of educational and promotional materials, etc.

  4. Special Education in General Education Classrooms: Cooperative Teaching Using Supportive Learning Activities.

    Science.gov (United States)

    Johnson, Robin R.; And Others

    1995-01-01

    Supportive learning activities were implemented in a multiple-baseline time series design across four fifth-grade classrooms to evaluate the effects of a cooperative teaching alternative (supportive learning) on teaching behavior, the behavior and grades of general and special education students, and the opinions of general education teachers.…

  5. IAU South West and Central Asian Regional Office of Astronomy for Development

    Science.gov (United States)

    Mickaelian, A. M.; Hakopian, S. A.; Farmanyan, S. V.; Mikayelyan, G. A.

    2017-12-01

    The International Astronomical Union (IAU) announced its Strategic Plan on Astronomy for Development in 2009, during the International Year of Astronomy (IYA). One of its main components was the creation of the Office of Astronomy for Development (OAD) and corresponding Regional Offices (ROADs) for implementation and coordination of its aims. The OAD was created in Cape Town, South Africa and later on ROADs were created in 8 regions. Since 2015, Armenia hosts one of them, IAU South West Asian (SWA), later renamed to South West and Central Asian (SWCA) ROAD. At present, already 6 countries have officially joined (Armenia, Georgia, Iran, Kazakhstan, Tajikistan, and Turkey), but the Office serves for a rather broad region, from Eastern Europe to Central Asia. Armenia's geographical location and its historical role in astronomy (both for well-known archaeoastronomical heritage and the presence of the famous Byurakan Astrophysical Observatory (BAO) founded by Viktor Ambartsumian in 1946) serve as a link between Europe and Eastern Partnership countries, Middle East and Asia in general. We run activities in 3 directions, Task Forces (TF): TF1 Universities and Research, TF2 Children and Schools and TF3 Public Outreach. We present our projects and all other accomplishments and discuss the role of our ROAD in maintaining contacts and development of astronomy in the region, as well as contacts between Europe and the Eastern Partnership countries. Most up-to-date information about the IAU SWCA ROAD is available on its webpage at http://iau-swa-road.aras.am/eng/index.php.

  6. Multiverso: Rock'n'Astronomy

    Science.gov (United States)

    Caballero, J. A.

    2012-05-01

    In the last few years, there have been several projects involving astronomy and classical music. But have a rock band ever appeared at a science conference or an astronomer at a rock concert? We present a project, Multiverso, in which we mix rock and astronomy, together with poetry and video art (Caballero, 2010). The project started in late 2009 and has already reached tens of thousands people in Spain through the release of an album, several concert-talks, television, radio, newspapers and the internet.

  7. Understanding the bullying dynamic among students in special and general education.

    Science.gov (United States)

    Swearer, Susan M; Wang, Cixin; Maag, John W; Siebecker, Amanda B; Frerichs, Lynae J

    2012-08-01

    Students in general and special education experience bullying. However, few empirical investigations have examined involvement in bullying along the bully/victim continuum (i.e., as a bully, victim, or bully-victim) among students with disabilities. A total of 816 students, ages 9 to 16, participated in the present study. From this total sample 686 were not receiving special education services (categorized as "no disability"), and 130 were receiving special education services (categorized as "observable disability," "non-observable disability," and "behavioral disability"). Data on students' involvement in bullying, office referrals, and prosocial behavior were collected. Results indicated that students with behavioral disorders and those with observable disabilities reported bullying others more and being victimized more than their general education counterparts. Students with behavioral disorders also had significantly more office referrals than students in general education. Seventh graders in general education reported more bullying behavior than sixth graders and ninth grades in general education. Fifth graders in general education reported more victimization than students in all other grades in general education. However, the grade differences were not significant for students in special education. No gender differences on bullying and victimization were found. Students with disabilities reported less engagement in prosocial behaviors than their general education peers. Implications for bullying prevention and intervention across both general and special education are discussed. Copyright © 2012. Published by Elsevier Ltd.

  8. Re-evaluating Traditional Predictors of Incoming Knowledge in Astronomy 101 and Implications for Course Revitalization

    Science.gov (United States)

    Berryhill, K. J.; Slater, T. F.; Slater, S. J.; Harbour, C.; Forrester, J. H.

    2016-12-01

    A wide range of incoming knowledge is seen in students taking introductory astronomy courses. Using the Test Of Astronomy STandards (TOAST) as a pre-course measure of incoming knowledge, an evaluation was completed to discover any explanation for this variation. It would be reasonable to suggest that this could result from the variety we see in student's motivation, self-efficacy, general scholastic achievement, their high school science experience, or even whether one or more of their parents is in a STEM field. In this re-evaluation, there was no correlation seen between the above and the student's pre-test scores. Instead, the only predictor of pretest scores was student's exposure to astronomy through informal learning opportunities. This leads to important implications for faculty revitalizing their courses to improve student learning.

  9. News clippings for introductory astronomy

    Science.gov (United States)

    Bobrowsky, Matthew

    1999-09-01

    Most students entering our introductory astronomy course for nonscience majors arrive not merely lacking scientific facts-they also have misconceptions about the nature of science, and many have a handicapping ``science anxiety'' (in addition to math anxiety). So I have added a ``current science'' requirement to our introductory course. Each student must compile a file of five astronomy news articles taken from readily available sources.

  10. Higher education and general studies in Nigeria: A philosophical ...

    African Journals Online (AJOL)

    Higher education and general studies in Nigeria: A philosophical investigation. ... Mgbakoigba: Journal of African Studies ... national policy on education on tertiary or higher education reveals a startling chasm of gap between the goals of the policy through General Studies Programme and their expected actualizations.

  11. Astronomy and astrology

    Science.gov (United States)

    Zarka, Philippe

    2011-06-01

    Astrology meets a large success in our societies, from the private to the political sphere as well as in the media, in spite of the demonstrated inaccuracy of its psychological as well as operational predictions. We analyse here the relations between astrology and astronomy, as well as the criticisms opposed by the latter to the former. We show that most of these criticisms are weak. Much stronger ones emerge from the analysis of the astrological practice compared to the scientific method, leading us to conclude to the non-scientificity of astrology. Then we return to the success of astrology, and from its analysis we propose a renewed (and prophylactic) rôle for astronomy in society.

  12. X-ray astronomy

    International Nuclear Information System (INIS)

    Giacconi, R.; Setti, G.

    1980-01-01

    This book contains the lectures, and the most important seminars held at the NATO meeting on X-Ray astronomy in Erice, July 1979. The meeting was an opportune forum to discuss the results of the first 8-months of operation of the X-ray satellite, HEAO-2 (Einstein Observatory) which was launched at the end of 1978. Besides surveying these results, the meeting covered extragalactic astronomy, including the relevant observations obtained in other portions of the electromagnetic spectrum (ultra-violet, optical, infrared and radio). The discussion on galactic X-ray sources essentially covered classical binaries, globular clusters and bursters and its significance to extragalactic sources and to high energy astrophysics was borne in mind. (orig.)

  13. High-energy astronomy in the U.K

    International Nuclear Information System (INIS)

    Pounds, K.A.

    1976-01-01

    Highlights of British research on radio galaxies, x-ray astronomy, and hot black holes are described. The prospects for international collaboration on space projects, in particular x-ray astronomy, are discussed

  14. L'astronomie et son histoire

    CERN Document Server

    Roy, Jean-René

    1982-01-01

    Le livre de Jean-René Roy nous présente une vaste synthèse des connaissances présentes en astronomie. Le grand mérite du livre est de dérouler son sujet en parallèle avec une histoire de l'astronomie. Le côté historique est ici beaucoup plus qu'un luxe. Il redonne leurs dimensions vraies aux réponses qu'apporte l'astronomie. Pour bien sentir la nature d'une étape franchie, il faut aussi avoir vécu la situation telle qu'elle se présentait avant. Et les fiches personnelles incluses dans le livre ont l'intérêt de nous rapprocher encore plus du "" feu de l'action "". Écrit dans un style direct et

  15. From Survey to Education: How Augmented Reality Can Contribute to the Study and Dissemination of Archaeo-astronomy

    Science.gov (United States)

    Schiavottiello, N.

    2009-08-01

    The study and practice of archaeo-astronomy comprehend disciplines such as archaeology, positional astronomy, history and the studies of locals mythology as well as technical survey theory and practice. The research often start with an archaeological survey in order to record possible structural orientation of a particular monument towards specific cardinal directions. In a second stage theories about the visible orientations and possible alignments of a specific structure or part of a structure are drawn; often achieved with the use of some in house tools. These tools sometimes remain too ``esoteric'' and not always user friendly, especially if later they would have to be used for education purposes. Moreover they are borrowed from tools used in other disciplines such us astronomical, image processing and architectural software, thus resulting in a complicate process of trying to merge data that should instead be born in the same environment at the first place. Virtual realities have long entered our daily life in research, education and entertainment; those can represent natural models because of their 3D nature of representing data. However on an visual interpretation level what they often represent are displaced models of the reality, whatever viewed on personal computers or with ``immersive'' techniques. These can result very useful at a research stage or in order to show concepts that requires specific point of view, however they often struggle to explore all our senses to the mere detriment of our vision. A possible solution could be achieved by simply visiting the studied site, however when visiting a particular place it is hard to visualize in one simple application environment, all previously pursued analysis. This is necessary in order to discover the meaning of a specific structure and to propose new theories. Augmented reality in this sense could bridge the gap that exist when looking at this particular problem. This can be achieved with the creation

  16. Bibliographic Resources for the Historian of Astronomy

    Science.gov (United States)

    Corbin, B. G.

    1999-12-01

    Many large library collections now have online bibliographic catalogs on the web. These provide many hidden resources for the historian of astronomy. Special searching techniques will allow the historian to scan bibliographic records of hundreds of entries relating to biographies of astronomers, collected works of astronomers, ancient and medieval astronomy and many other historical subjects. Abstract databases such as the Astrophysics Data System and ARIBIB are also adding much historical bibliographic information. ARIBIB will eventually contain scanned images of the Astronomischer Jahresbericht containing bibliographic entries for all literature of astronomy from 1899 to 1968 and Astronomy and Astrophysics Abstracts from 1969 to present. Commercial services such as UnCover and FirstSearch provide a means of reaching bibliographic entries for journal and book literature in the history of astronomy which were not easily located in the past. A broad overview of these collections and services will be given, and searching techniques for finding ``hidden" bibliographic data will be presented. Web page addresses will be given for all sources covered.

  17. The future of astronomy in Australia

    Science.gov (United States)

    Sadler, Elaine M.

    2017-09-01

    Australian astronomy has a bright future, thanks largely to recent government investments in major new telescopes, instruments and research centres. There are some short-term challenges as Australia's focus continues to shift from the current (mainly) national facilities for radio and optical astronomy to new multinational and global facilities.

  18. Science Education & Advocacy: Tools to Support Better Education Policies

    Science.gov (United States)

    O'Donnell, Christine; Cunningham, B.; Hehn, J. G.

    2014-01-01

    Education is strongly affected by federal and local policies, such as testing requirements and program funding, and many scientists and science teachers are increasingly interested in becoming more engaged with the policy process. To address this need, I worked with the American Association of Physics Teachers (AAPT) --- a professional membership society of scientists and science teachers that is dedicated to enhancing the understanding and appreciation of physics through teaching --- to create advocacy tools for its members to use, including one-page leave-behinds, guides for meeting with policymakers, and strategies for framing issues. In addition, I developed a general tutorial to aid AAPT members in developing effective advocacy strategies to support better education policies. This work was done through the Society for Physics Students (SPS) Internship program, which provides a range of opportunities for undergraduates, including research, education and public outreach, and public policy. In this presentation, I summarize these new advocacy tools and their application to astronomy education issues.

  19. Relation of Astronomy to other Sciences, Culture and Society

    Science.gov (United States)

    Harutyunian, H. A.; Mickaelian, A. M.; Farmanyan, S. V.

    2015-07-01

    The book contains the Proceedings of XIII Annual Meeting of the Armenian Astronomical Society "Relation of Astronomy to other Sciences, Culture and Society". It consists of 9 main sections: "Introductory", "Astronomy and Philosophy", "Astrobiology", "Space-Earth Connections", "Astrostatistics and Astroinformatics", "Astronomy and Culture, Astrolinguistics", "Archaeoastronomy", "Scientific Tourism and Scientific Journalism", and "Armenian Astronomy". The book may be interesting to astronomers, philosophers, biologists, culturologists, linguists, historians, archaeologists and to other specialists, as well as to students.

  20. The GalileoMobile Project: sharing astronomy with students and teachers around the world

    Science.gov (United States)

    Benitez Herrera, Sandra; Del Sordo, Fabio; Spinelli, Patricia; Ntormousi, Eva

    2015-08-01

    Astronomy is an inspiring tool that can be used to motivate children to learn more about the world, to encourage critical thinking, and engage them in different scientific disciplines. Although many outreach programs bring astronomy to the classroom, most of them act in developed countries and rely heavily on internet connection. This leaves pupils and teachers in remote areas with little access to the latest space missions and the modern astronomical advances. GalileoMobile is an itinerant astronomy education initiative aiming to bridge this gap by donating educational material and organizing activities, experiments and teacher workshops at schools in rural areas. The initiative is run on a voluntary basis by an international team of astronomers, educators, and science communicators, working together to stimulate curiosity and interest in learning, to exchange different visions of the cosmos and to inspire a feeling of unity "under the same sky" between people from different cultures. Since the creation of the project in 2008, we have travelled to Chile, Bolivia, Peru, India, Uganda, Brazil and Colombia, and worked with about 70 schools. From our experiences, we learnt that 1) bringing experts from other countries is very stimulating for children and encourages a collaboration beyond borders; 2) inquiry-based methods are important for making the learning process more effective; 3) involving local educators in our activities helps the longstanding continuation of the project. We are incorporating these lessons learned into a new concept of the project. Constellation 2015, aims to establish a South American network of schools committed to the long-term organisation of astronomical outreach activities amongst their pupils and local communities. Constellation was declared Cosmic Light Project by the International Year of Light 2015 and awarded funding by the OAD. At this Focus Meeting, we will present the outcomes from our latest expeditions in Brazil and Colombia in

  1. Analysis of knowledge in astronomy of the students of technology in industrial automation

    Science.gov (United States)

    Voelzke, Marcos Rincon; Capasso Moraes, Ataliba

    2015-08-01

    This work is part of a research of the academic Masters in Science in Education at the Cruzeiro do Sul University, in Brazil. It seeks to present the results of the survey conducted among students of the technology course in industrial automation at the Federal Institute São Paulo at the Campus Cubatão. In the first step, the students’ lack of knowledge to the related primary concepts of Astronomy turned out. Correcting these deficiencies found, external to the program content, a Basic Course in Astronomy, containing dialogued or expository lectures with the aid of audiovisual resources and access to textbooks. Analysed the responses of this second step, it was found that students had a significant improvement in learning.

  2. Astronomy Outreach Activities for Special Needs Children and Their Families

    Science.gov (United States)

    Lubowich, D.

    2010-08-01

    I present the results of two NASA-IDEAS/STScI sponsored astronomy outreach programs for seriously ill children and their families staying at the Ronald McDonald House of Long Island (New Hyde Park, NY) and for children hospitalized at the Children's Medical Center, Winthrop University Hospital (Mineola, NY). These programs are designed for children of all ages and include STSCi's Tonight's Sky (monthly guide to the sky); telescope observations of the Moon, Sun, planets, nebulae, and stars; and hands-on activities. During cloudy weather remote/robotic telescope observations are shown. Edible demonstrations using chocolate, marshmallows, and popcorn are used to stimulate interest. The staff at the Ronald McDonald House and Children's Medical Center are being trained to use the telescope and to do demonstrations. These educational activities help children and their families learn about astronomy while providing a diversion to take their minds off their illness during a stressful time.

  3. Radio astronomy on the moon

    International Nuclear Information System (INIS)

    Burns, J.O.; Asbell, J.

    1987-01-01

    The advantages and opportunities for radio astronomy on the moon during the early to mid 21st century are reviewed. In particular, it is argued that the lack of atmosphere, the extremely low seismic activity, the low RF background, and the natural cryogenic environment make the moon (particularly the far side and the poles) a nearly ideal locale for submillimeter/FIR to VLF (below 10 MHz) radio astronomy. 22 references

  4. Problems facing promotion of astronomy in Arab countries

    Science.gov (United States)

    Osman, Anas M. I.

    Promotion of astronomy in Arab countries is facing many scientific and technical problems. Teaching astronomy starts very late in schools, with very simple and limited courses. Many teachers lack a suitable astronomical background, which can lead to incorrect understanding by students of many astronomical ideas and phenomena. Teaching astronomy at higher levels is also very limited, for example: among the 16 universities in Egypt, astronomy is taught in only two faculties of science, just for two years. Graduate students find many difficulties in obtaining jobs related to astronomical activities and this is a serious limitation on the attraction of the study of astronomy. On the other hand, astronomical institutions are suffering from a serious lack of the new sophisticated equipment, while the budget allotted for maintenance is very small, and there is a serious shortage of technical staff. The training of astronomers and technicians is badly needed, since good research work depends on modern technological equipment and the complicated software used in controlling such equipment and in data analysis. Good libraries are needed for promotion of astronomy especially, the Internet facilities available for the staff is very limited. The effects of culture are very clear; many authorities in developing countries believe that astronomy is a luxury. Finally, most of astronomers are engaged with a lot of administration for all matters, so the free time left for science is very limited.

  5. HF Radio Astronomy from a Small Satellite

    Science.gov (United States)

    2016-06-15

    SSC16-XI-03 HF Radio Astronomy from a Small Satellite Frank C. Robey1, Mary Knapp2, Alan J. Fenn1, Mark Silver1, Kerry Johnson1 Frank J. Lind3...frequency end of the electromagnetic spectrum (below 15 MHz) is one of the least explored windows in observational astronomy . Observations at these...pdf. [Accessed: 17-Oct-2015]. 3. G. Hallinan, “The Owens Valley LWA,” in Exascale Radio Astronomy , 2014, vol. 2. 4. C. J. Lonsdale, R. J. Cappallo

  6. Development of Astronomy at the Planetarium of Havana. Project

    Science.gov (United States)

    Alvarez, Oscar

    2015-08-01

    In December 2009 to celebrate the International Year of Astronomy was inaugurated in Havana with a great constructive effort the only Planetarium in regular public service, currently serving in Cuba.After 5 years of operation open to the public is time to propose a series of activities that raise its level of activity as a Cultural Center of Science and Technology.The establishment of a cathedra of Astronomy and Astrophysics attached to a center of Higher Education once the staff acquire sufficient capacity and experience to conduct research programs is proposed, and also, to provide scientific expertise to educators in supporting the national system of education and outreach of the Cultural Center.In addition to becoming a member of the International Association of Planetariums, its active members will participate to international and national events, will increase our national membership in the International Astronomical Union and its commissions, an also to the Red Pop UNESCO and other related groups of IberoamericaIn order to ensure the scientific life of its main technical staff, efforts will be made to establish agreements with Higher Education related centers such as the Faculty of Physics at the University of Havana, the Higher Institute of Applied Science and Technology and other schools allowing professional activities of staff in these institutions to the Cultural Centre as university extension. This includes the maintenance of university students of all specialties covering fixed shifts as guides / aids in attention to visitors.The Cultural Center is designed as a modern concept embedded in a Colonial architecture and traditional external environment. Exhibitions, shows the space and other facilities - will provide visitors a set of tools to bring back home, concepts and information about the universe before it was too remote and too complex for the average citizen. It is undoubtedly a unique educational opportunity in the country to demystify the

  7. Starguides plus a world-wide directory of organizations in astronomy and related space sciences

    CERN Document Server

    Heck, André

    2004-01-01

    StarGuides Plus represents the most comprehensive and accurately validated collection of practical data on organizations involved in astronomy, related space sciences and other related fields This invaluable reference source (and its companion volume, StarBriefs Plus) should be on the reference shelf of every library, organization or individual with any interest in these areas The coverage includes relevant universities, scientific committees, institutions, associations, societies, agencies, companies, bibliographic services, data centers, museums, dealers, distributors, funding organizations, journals, manufacturers, meteorological services, national norms & standard institutes, parent associations & societies, publishers, software producers & distributors, and so on Besides astronomy and associated space sciences, related fields such as aeronautics, aeronomy, astronautics, atmospheric sciences, chemistry, communications, computer sciences, data processing, education, electronics, engineering, en...

  8. Some Daytime Activities in Solar Astronomy

    Science.gov (United States)

    Burin, Michael J.

    2016-01-01

    This century's transits of Venus (2004, 2012) captured significant public attention, reminding us that the wonders of astronomy need not be confined to the night. And while nighttime telescope viewing gatherings (a.k.a. "star parties") are perennially popular, astronomy classes are typically held in the daytime. The logistics of…

  9. Student Comprehension of Mathematics through Astronomy

    Science.gov (United States)

    Search, Robert

    2016-01-01

    The purpose of this study is to examine how knowledge of astronomy can enhance college-level learning situations involving mathematics. The fundamental symbiosis between mathematics and astronomy was established early in the 17th century when Johannes Kepler deduced the 3 basic laws of planetary motion. This mutually harmonious relationship…

  10. Organizing Astronomy Popularization and Teacher Training Workshops in Nigeria: A paradigm shift in Sourcing funds

    Science.gov (United States)

    Chukwudi Okpala, Kingsley; Iheanyi Okere, Bonaventure

    2015-08-01

    Funding for astronomy popularization and workshops has become a huge challenge in recent times especially for developing countries like Nigeria. However, a modification of the primary and secondary school curriculum to include space science topics in the school system has led to a ripe desire by the relevant agencies/corporate bodies to make commitments towards the astronomy popularization activities as part of their social responsibility. Considering the size of Nigeria, there is need for a shift in paradigm for sourcing resources to tackle the dart of funds for organizing educational activities in a sustainable manner. Recently a teacher training and science popularization workshop was organized as a first in a series of subsequent workshops geared towards having a sustainable means of popularizing astronomy for development in Nigeria. Principally, the key lies in the partnership with schools and other corporate bodies in addition to the usual governmental actions. Experiences from this workshop will be enumerated with the hope of inspiring the same success in similar societies.

  11. Core List of Astronomy and Physics Journals

    Science.gov (United States)

    Bryson, Liz; Fortner, Diane; Yorks, Pamela

    This is a list of highly-used and highly-cited physics and astronomy journals. "Use" is measured largely on paper-journal counts from selective academic research-level libraries. Citation count titles are drawn from Institute for Scientific Information (ISI) data. Recognition is given to entrepreneurial electronic-only or new-style electronic journals. Selective news, magazine, and general science journals are omitted. The compilers welcome questions, suggestions for additions, or other advice. Comments may be sent c/o Diane Fortner, Physics Library, University of California, Berkeley. Dfortner@library.berkeley.edu

  12. The decade of discovery in astronomy and astrophysics

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The conference presents papers on recommended ground- and space-based initiatives for the 1990s. The need to restore the research infrastructure at the university level is addressed as well as ways of achieving a balanced space program. Consideration is also given to science opportunities, astronomy and the computer revolution, lunar astronomy, policy opportunities, and astronomy as a national asset

  13. Implementing E-Learning Designed Courses in General Education

    Science.gov (United States)

    Nuangchalerm, Prasart; Sakkumduang, Krissada; Uhwha, Suleepornn; Chansirisira, Pacharawit

    2014-01-01

    The aim of this study is to implement e-learning designed course for general education. The study employed 3 phases for developing e-learning course: contextual study, designing, and implementing. Two courses general education, 217 undergraduate students are participated the study. Research tool consisted of interview about e-learning form and…

  14. Bringing Astronomy Directly to People Who Do Not Come to Star Parties, Science Museums, or Science Festivals

    Science.gov (United States)

    Lubowich, Donald A.

    2013-01-01

    My successful programs have included telescope observations, hands-on activities, and edible astronomy demonstrations for: outdoor concerts or music festivals; the National Mall; churches, synagogues, seminaries, or clergy conferences; the Ronald McDonald House of Long Island (New Hyde Park, NY), the Winthrop University Hospital Children’s Medical Center (Mineola, NY); the Fresh Air Fund summer camps; a Halloween star party with costumed kids looking through telescopes; a Super Bowl Star Party; the World Science Festival (NYC); the Princeton University Science and Engineering Expo; the USA Science and Engineering Festival; and the NYC Columbus Day Parade. These outreach activities have reached thousands of people including many young girls. Information was also provided about local science museums, citizen science projects, astronomy educational sites, and astronomy clubs to encourage learning after these events. In 2010 I created Astronomy Night on the National Mall (co-sponsored the White House Office of Science and Technology Policy) with the participation of astronomy clubs, Chandra X-Ray Center, STScI, NASA, NOAO, NSF and the National Air and Space Museum. Since 2009 my NASA-funded Music and Astronomy Under the Stars (MAUS) program has brought astronomy to 50,000 music lovers who attended the Central Park Jazz, Newport Folk, Tanglewood, or Ravinia music festivals or classical, folk, rock, pop, opera, or county-western concerts in local parks assisted by astronomy clubs. MAUS is an evening, nighttime, and cloudy weather traveling astronomy program combining solar, optical, and radio telescope observations; a live image projection system; large outdoor posters and banners; videos; and hands-on activities before and after the concerts or at intermission. Yo-Yo-Ma and the Chicago Symphony or Boston Symphony Orchestras, the McCoy Tyner Quartet with Ravi Coltrane, Esperanza Spalding, the Stanley Clarke Band, Phish, Blood Sweat and Tears, Deep Purple, Patti Smith

  15. Cal-Bridge and CAMPARE: Engaging Underrepresented Students in Physics and Astronomy

    Science.gov (United States)

    Rudolph, Alexander L.; Cal-Bridge and CAMPARE Teams

    2018-01-01

    We describe two programs, Cal-Bridge and CAMPARE, with the common mission of increasing participation of groups traditionally underrepresented in astronomy, through summer research opportunities, in the case of CAMPARE, scholarships in the case of Cal-Bridge, and significant mentoring in both programs, creating a national impact on their numbers successfully pursuing a PhD in the field.In 8 years, the CAMPARE program has sent 112 students, >80% from underrepresented groups, to conduct summer research at one of 14 major research institutions throughout the country. Of the CAMPARE scholars who have graduated with a Bachelor’s degree, almost two-thirds (65%) have completed or are pursuing graduate education in physics, astronomy, or a related field, at institutions including UCLA, UC Riverside, UC Irvine, UC Santa Barbara, USC, Stanford, Univ. of Arizona, Univ. of Washington, Univ. of Rochester, Michigan State Univ., Georgia Tech, Georgia State Univ., Kent State, Indiana Univ., Univ. of Oregon, Syracuse Univ., Montana State Univ., and the Fisk-Vanderbilt Master’s-to-PhD program.Now entering its fourth year, the Cal-Bridge program is a CSU-UC Bridge program comprised of >140 physics and astronomy faculty from 9 University of California (UC), 15 California State University (CSU), and 30 California Community College (CCC) campuses throughout California. In the first four years, 34 Cal-Bridge Scholars have been selected, including 22 Hispanic, 3 African-American and 13 women students, 10 of whom are from URM groups. Thirty (30) of the 34 Cal-Bridge Scholars are first generation college students. In the last two years, 11 of 13 Cal-Bridge Scholars have begun PhD programs in physics or astronomy at top PhD programs nationally. Three (3) of these 11 scholars have won NSF Graduate Research Fellowships; one more received an Honorable Mention. The next cohort applies this fall.Cal-Bridge provides much deeper mentoring and professional development experiences over the last

  16. The National Astronomy Consortium (NAC)

    Science.gov (United States)

    Von Schill, Lyndele; Ivory, Joyce

    2017-01-01

    The National Astronomy Consortium (NAC) program is designed to increase the number of underrepresented minority students into STEM and STEM careers by providing unique summer research experiences followed by long-term mentoring and cohort support. Hallmarks of the NAC program include: research or internship opportunities at one of the NAC partner sites, a framework to continue research over the academic year, peer and faculty mentoring, monthly virtual hangouts, and much more. NAC students also participate in two professional travel opportunities each year: the annual NAC conference at Howard University and poster presentation at the annual AAS winter meeting following their summer internship.The National Astronomy Consortium (NAC) is a program led by the National Radio Astronomy Consortium (NRAO) and Associated Universities, Inc. (AUI), in partnership with the National Society of Black Physicist (NSBP), along with a number of minority and majority universities.

  17. Astronomy on Tap: science engagement in the pub

    Science.gov (United States)

    Livermore, Rachael C.; Silverman, Jeffrey Michael

    2015-08-01

    Astronomy on Tap is a series of free lectures by astronomers in the pub, aimed at disseminating the latest research to the public in an informal setting. Started in New York City in 2013, Astronomy on Tap has now expanded to seven cities across North and South America. Organized by local astronomers, each event features talks by astronomers from local institutions or visitors, or others whose professions or hobbies intersect with astronomy, along with games and opportunities for the public to interact with professional astronomers. The largest Astronomy on Tap events are in Austin, Texas, attracting over 150 people each month, which consists of populations outside of the self-selected groups that might be reached by more formal EPO activities. The organisers of Astronomy on Tap in Austin (AoTATX) will discuss the impact of and feedback from all of the locations, and present information on setting up new satellite locations.

  18. How, precisely, can astronomy be of benefit to anyone?

    NARCIS (Netherlands)

    Jones, Bernard J. T.; VallsGabaud, D; Boksenberg, A

    Astronomy as an observational science is technology driven both from the point of view of data, acquisition and of data processing and visualisation. Astronomy exploits a very wide base of technologies which are developed, enhanced and extended by users. Consequently, astronomy can return new and

  19. The history of astronomy a very short introduction

    CERN Document Server

    Hoskin, Michael

    2003-01-01

    The History of Astronomy: A Very Short Introduction traces the history of Western astronomy, from prehistoric times to the origins of astrophysics in the mid-nineteenth century and the technical developments since the Second World War. Astronomy, perhaps the first of the sciences, was already well developed by the time of Christ — the arithmetical astronomy of the Babylonians was merged with the Greek geometrical approach. This legacy was transmitted to the West via Islam and led to the Copernican revolution, which in turn led to Kepler and Newton, who provided the principles on which the exploration of the solar system and the stars continued in the eighteenth- and nineteenth centuries.

  20. Infrared Astronomy Satellite

    Science.gov (United States)

    Ferrera, G. A.

    1981-09-01

    In 1982, the Infrared Astronomy Satellite (IRAS) will be launched into a 900-km sun-synchronous (twilight) orbit to perform an unbiased, all-sky survey of the far-infrared spectrum from 8 to 120 microns. Observations telemetered to ground stations will be compiled into an IR astronomy catalog. Attention is given the cryogenically cooled, 60-cm Ritchey-Chretien telescope carried by the satellite, whose primary and secondary mirrors are fabricated from beryllium by means of 'Cryo-Null Figuring'. This technique anticipates the mirror distortions that will result from cryogenic cooling of the telescope and introduces dimensional compensations for them during machining and polishing. Consideration is also given to the interferometric characterization of telescope performance and Cryo/Thermal/Vacuum simulated space environment testing.