WorldWideScience

Sample records for general aviation aircraft

  1. Impact of Advanced Propeller Technology on Aircraft/Mission Characteristics of Several General Aviation Aircraft

    Science.gov (United States)

    Keiter, I. D.

    1982-01-01

    Studies of several General Aviation aircraft indicated that the application of advanced technologies to General Aviation propellers can reduce fuel consumption in future aircraft by a significant amount. Propeller blade weight reductions achieved through the use of composites, propeller efficiency and noise improvements achieved through the use of advanced concepts and improved propeller analytical design methods result in aircraft with lower operating cost, acquisition cost and gross weight.

  2. Mapping automotive like controls to a general aviation aircraft

    Science.gov (United States)

    Carvalho, Christopher G.

    The purpose of this thesis was to develop fly-by-wire control laws enabling a general aviation aircraft to be flown with automotive controls, i.e. a steering wheel and gas/brake pedals. There was a six speed shifter used to change the flight mode of the aircraft. This essentially allows the pilot to have control over different aspects of the flight profile such as climb/descend or cruise. A highway in the sky was used to aid in the navigation since it is not intuitive to people without flight experience how to navigate from the sky or when to climb and descend. Many believe that general aviation could become as widespread as the automobile. Every person could have a personal aircraft at their disposal and it would be as easy to operate as driving an automobile. The goal of this thesis is to fuse the ease of drivability of a car with flight of a small general aviation aircraft. A standard automotive control hardware setup coupled with variably autonomous control laws will allow new pilots to fly a plane as easily as driving a car. The idea is that new pilots will require very little training to become proficient with these controls. Pilots with little time to stay current can maintain their skills simply by driving a car which is typically a daily activity. A human factors study was conducted to determine the feasibility of the applied control techniques. Pilot performance metrics were developed to compare candidates with no aviation background and experienced pilots. After analyzing the relative performance between pilots and non-pilots, it has been determined that the control system is robust and easy to learn. Candidates with no aviation experience whatsoever can learn to fly an aircraft as safely and efficiently as someone with hundreds of hours of flight experience using these controls.

  3. Deicing System Protects General Aviation Aircraft

    Science.gov (United States)

    2007-01-01

    Kelly Aerospace Thermal Systems LLC worked with researchers at Glenn Research Center on deicing technology with assistance from the Small Business Innovation Research (SBIR) program. Kelly Aerospace acquired Northcoast Technologies Ltd., a firm that had conducted work on a graphite foil heating element under a NASA SBIR contract and developed a lightweight, easy-to-install, reliable wing and tail deicing system. Kelly Aerospace engineers combined their experiences with those of the Northcoast engineers, leading to the certification and integration of a thermoelectric deicing system called Thermawing, a DC-powered air conditioner for single-engine aircraft called Thermacool, and high-output alternators to run them both. Thermawing, a reliable anti-icing and deicing system, allows pilots to safely fly through ice encounters and provides pilots of single-engine aircraft the heated wing technology usually reserved for larger, jet-powered craft. Thermacool, an innovative electric air conditioning system, uses a new compressor whose rotary pump design runs off an energy-efficient, brushless DC motor and allows pilots to use the air conditioner before the engine even starts

  4. Modern Communication Devices in the General Aviation Aircraft Maintenance

    Directory of Open Access Journals (Sweden)

    Martin Novák

    2016-01-01

    Full Text Available The purpose of this article is to design a software that enables an integration of modern communication devices in the process of general aviation aircraft maintenance. The theoretical part deals with the legislative requirements of both maintenance and management processes for continuing airworthiness. The practical part focusses on software design and automation of the processes. An important part of the article is a chapter about economic evaluation based on the proposal of the solution.

  5. Multi-Fuel Rotary Engine for General Aviation Aircraft

    Science.gov (United States)

    Jones, C.; Ellis, D. R.; Meng, P. R.

    1983-01-01

    Design studies, conducted for NASA, of Advanced Multi-fuel General Aviation and Commuter Aircraft Rotary Stratified Charge Engines are summarized. Conceptual design studies of an advanced engine sized to provide 186/250 shaft KW/HP under cruise conditions at 7620/25,000 m/ft. altitude were performed. Relevant engine development background covering both prior and recent engine test results of the direct injected unthrottled rotary engine technology, including the capability to interchangeably operate on gasoline, diesel fuel, kerosene, or aviation jet fuel, are presented and related to growth predictions. Aircraft studies, using these resultant growth engines, define anticipated system effects of the performance and power density improvements for both single engine and twin engine airplanes. The calculated results indicate superior system performance and 30 to 35% fuel economy improvement for the Rotary-engine airplanes as compared to equivalent airframe concept designs with current baseline engines. The research and technology activities required to attain the projected engine performance levels are also discussed.

  6. The effects of aircraft certification rules on general aviation accidents

    Science.gov (United States)

    Anderson, Carolina Lenz

    The purpose of this study was to analyze the frequency of general aviation airplane accidents and accident rates on the basis of aircraft certification to determine whether or not differences in aircraft certification rules had an influence on accidents. In addition, the narrative cause descriptions contained within the accident reports were analyzed to determine whether there were differences in the qualitative data for the different certification categories. The certification categories examined were: Federal Aviation Regulations Part 23, Civil Air Regulations 3, Light Sport Aircraft, and Experimental-Amateur Built. The accident causes examined were those classified as: Loss of Control, Controlled Flight into Terrain, Engine Failure, and Structural Failure. Airworthiness certification categories represent a wide diversity of government oversight. Part 23 rules have evolved from the initial set of simpler design standards and have progressed into a comprehensive and strict set of rules to address the safety issues of the more complex airplanes within the category. Experimental-Amateur Built airplanes have the least amount of government oversight and are the fastest growing segment. The Light Sport Aircraft category is a more recent certification category that utilizes consensus standards in the approval process. Civil Air Regulations 3 airplanes were designed and manufactured under simpler rules but modifying these airplanes has become lengthy and expensive. The study was conducted using a mixed methods methodology which involves both quantitative and qualitative elements. A Chi-Square test was used for a quantitative analysis of the accident frequency among aircraft certification categories. Accident rate analysis of the accidents among aircraft certification categories involved an ANCOVA test. The qualitative component involved the use of text mining techniques for the analysis of the narrative cause descriptions contained within the accident reports. The Chi

  7. Computer program to predict noise of general aviation aircraft: User's guide

    Science.gov (United States)

    Mitchell, J. A.; Barton, C. K.; Kisner, L. S.; Lyon, C. A.

    1982-01-01

    Program NOISE predicts General Aviation Aircraft far-field noise levels at FAA FAR Part 36 certification conditions. It will also predict near-field and cabin noise levels for turboprop aircraft and static engine component far-field noise levels.

  8. Single-Lever Power Control for General Aviation Aircraft Promises Improved Efficiency and Simplified Pilot Controls

    Science.gov (United States)

    Musgrave, Jeffrey L.

    1997-01-01

    General aviation research is leading to major advances in internal combustion engine control systems for single-engine, single-pilot aircraft. These advances promise to increase engine performance and fuel efficiency while substantially reducing pilot workload and increasing flight safety. One such advance is a single-lever power control (SLPC) system, a welcome departure from older, less user-friendly, multilever engine control systems. The benefits of using single-lever power controls for general aviation aircraft are improved flight safety through advanced engine diagnostics, simplified powerplant operations, increased time between overhauls, and cost-effective technology (extends fuel burn and reduces overhaul costs). The single-lever concept has proven to be so effective in preliminary studies that general aviation manufacturers are making plans to retrofit current aircraft with the technology and are incorporating it in designs for future aircraft.

  9. Roles, uses, and benefits of general aviation aircraft in aerospace engineering education

    Science.gov (United States)

    Odonoghue, Dennis P.; Mcknight, Robert C.

    1994-01-01

    Many colleges and universities throughout the United States offer outstanding programs in aerospace engineering. In addition to the fundamentals of aerodynamics, propulsion, flight dynamics, and air vehicle design, many of the best programs have in the past provided students the opportunity to design and fly airborne experiments on board various types of aircraft. Sadly, however, the number of institutions offering such 'airborne laboratories' has dwindled in recent years. As a result, opportunities for students to apply their classroom knowledge, analytical skills, and engineering judgement to the development and management of flight experiments on an actual aircraft are indeed rare. One major reason for the elimination of flight programs by some institutions, particularly the smaller colleges, is the prohibitive cost of operating and maintaining an aircraft as a flying laboratory. The purpose of this paper is to discuss simple, low-cost, relevant flight experiments that can be performed using readily available general aviation aircraft. This paper examines flight experiments that have been successfully conducted on board the NASA Lewis Research Center's T-34B aircraft, as part of the NASA/AIAA/University Flight Experiment Program for Students (NAUFEPS) and discusses how similar experiments could be inexpensively performed on other general aviation aircraft.

  10. PIFCGT: A PIF autopilot design program for general aviation aircraft

    Science.gov (United States)

    Broussard, J. R.

    1983-01-01

    This report documents the PIFCGT computer program. In FORTRAN, PIFCGT is a computer design aid for determing Proportional-Integral-Filter (PIF) control laws for aircraft autopilots implemented with a Command Generator Tracker (CGT). The program uses Linear-Quadratic-Regulator synthesis algorithms to determine feedback gains, and includes software to solve the feedforward matrix equation which is useful in determining the command generator tracker feedforward gains. The program accepts aerodynamic stability derivatives and computes the corresponding aerodynamic linear model. The nine autopilot modes that can be designed include four maneuver modes (ROLL SEL, PITCH SEL, HDG SEL, ALT SEL), four final approach models (APR GS, APR LOCI, APR LOCR, APR LOCP), and a BETA HOLD mode. The program has been compiled and executed on a CDC computer.

  11. Propeller swirl effect on single-engine general-aviation aircraft stall-spin tendencies

    Science.gov (United States)

    Katz, Joseph; Feistel, Terry W.

    1987-01-01

    An investigation is conducted of the effect of a single engine, untapered low wing general aviation aircraft propeller's swirl on the craft's stall pattern. The asymmetrical character of the propeller's swirl can trigger an early stall of one of the wings, aggravating the spin-entry condition. It is shown that the combination of this propeller-induced effect with adverse sideslip can result in large and abrupt changes in the rolling moment, in such conditions as uncoordinated low speed turning maneuvers where the pilot yaws the aircraft with wings level, rather than rolling it.

  12. Accident-precipitating factors for crashes in turbine-powered general aviation aircraft.

    Science.gov (United States)

    Boyd, Douglas D; Stolzer, Alan

    2016-01-01

    General aviation (14CFR Part 91) accounts for 83% of civil aviation fatalities. While much research has focused on accident causes/pilot demographics in this aviation sector, studies to identify factors leading up to the crash (accident-precipitating factors) are few. Such information could inform on pre-emptive remedial action. With this in mind and considering the paucity of research on turbine-powered aircraft accidents the study objectives were to identify accident-precipitating factors and determine if the accident rate has changed over time for such aircraft operating under 14CFR Part 91. The NTSB Access database was queried for accidents in airplanes (engines and occurring between 1989 and 2013. We developed and utilized an accident-precipitating factor taxonomy. Statistical analyses employed logistic regression, contingency tables and a generalized linear model with Poisson distribution. The "Checklist/Flight Manual Not Followed" was the most frequent accident-precipitating factor category and carried an excess risk (OR 2.34) for an accident with a fatal and/or serious occupant injury. This elevated risk reflected an over-representation of accidents with fatal and/or serious injury outcomes (pengine aircraft are more frequent than their single engine counterparts and the decline (50%) in the turbine aircraft accident rate over the study period was likely due, in part, to a 6-fold increased representation of single engine airplanes. In conclusion, our study is the first to identify novel precursive factors for accidents involving turbine aircraft operating under 14CFR Part 91. This research highlights areas that should receive further emphasis in training/recurrency in a pre-emptive attempt to nullify candidate accident-precipitating factor(s).

  13. Aviation Maintenance Technology. General. G102 Fundamentals of Aircraft Maintenance. Instructor Material.

    Science.gov (United States)

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    These instructor materials for an aviation maintenance technology course contain four instructional modules. The modules cover the following topics: identifying basic components of aircraft, performing aircraft cleaning and corrosion control, interpreting blueprints and drawing sketches, identifying structural materials, and performing basic…

  14. Pilot Designed Aircraft Displays in General Aviation: An Exploratory Study and Analysis

    Science.gov (United States)

    Conaway, Cody R.

    From 2001-2011, the General Aviation (GA) fatal accident rate remained unchanged (Duquette & Dorr, 2014) with an overall stagnant accident rate between 2004 and 2013. The leading cause, loss of control in flight (NTSB, 2015b & 2015c) due to pilot inability to recognize approach to stall/spin conditions (NTSB, 2015b & 2016b). In 2013, there were 1,224 GA accidents in the U.S., accounting for 94% of all U.S. aviation accidents and 90% of all U.S. aviation fatalities that year (NTSB, 2015c). Aviation entails multiple challenges for pilots related to task management, procedural errors, perceptual distortions, and cognitive discrepancies. While machine errors in airplanes have continued to decrease over the years, human error still has not (NTSB, 2013). A preliminary analysis of a PC-based, Garmin G1000 flight deck was conducted with 3 professional pilots. Analyses revealed increased task load, opportunities for distraction, confusing perceptual ques, and hindered cognitive performance. Complex usage problems were deeply ingrained in the functionality of the system, forcing pilots to use fallible work arounds, add unnecessary steps, and memorize knob turns or button pushes. Modern computing now has the potential to free GA cockpit designs from knobs, soft keys, or limited display options. Dynamic digital displays might include changes in instrumentation or menu structuring depending on the phase of flight. Airspeed indicators could increase in size to become more salient during landing, simultaneously highlighting pitch angle on Attitude Indicators and automatically decluttering unnecessary information for landing. Likewise, Angle-of-Attack indicators demonstrate a great safety and performance advantage for pilots (Duquette & Dorr, 2014; NTSB, 2015b & 2016b), an instrument typically found in military platforms and now the Icon A5, light-sport aircraft (Icon, 2016). How does the design of pilots' environment---the cockpit---further influence their efficiency and

  15. Effect of winglets on performance and handling qualities of general aviation aircraft

    Science.gov (United States)

    Van Dam, C. P.; Holmes, B. J.; Pitts, C.

    1980-01-01

    Recent flight and wind tunnel evaluations of winglets mounted on general aviation airplanes have shown improvements in cruise fuel efficiency, and climbing and turning performance. Some of these analyses have also uncovered various effects of winglets on airplane handling qualities. Retrofitting an airplane with winglets can result in reduced cross wind take-off and landing capabilities. Also, winglets can have a detrimental effect on the lateral directional response characteristics of aircraft which have a moderate to high level of adverse yaw due to aileron. Introduction of an aileron-rudder-interconnect, and reduction of the effective dihedral by canting-in of the winglets, or addition of a lower winglet can eliminate these flying quality problems.

  16. A Review of Research and Development in Crashworthiness of General Aviation Aircraft: Seats, Restraints and Floor Structures

    Science.gov (United States)

    1990-02-01

    accident rates in general aviation. 3 q’ ) RtSUM~k Une recherche documentaire a W effectude afin de determiner l’dtat de nos connaissances sur les aspects...extensive computer analyses are necessary because the costs of full-scale aircraft tests are prohibitive. Wittlin 4 1) briefly outlined aircraft crash...subfloors. These analyses are required to defint the requirements for retrofit and new designs. The introduction of the FAA regulations [681 on dynamic

  17. Evaluation of PM emissions from two in-service gas turbine general aviation aircraft engines

    Science.gov (United States)

    Yu, Zhenhong; Liscinsky, David S.; Fortner, Edward C.; Yacovitch, Tara I.; Croteau, Philip; Herndon, Scott C.; Miake-Lye, Richard C.

    2017-07-01

    We determined particulate matter (PM) emissions in the exhaust plumes from two gas turbine aircraft engines: a CF34-3A1 turbofan engine and a TPE331-6-252B turboprop engine in a dedicated study on in-service general aviation aircraft. The engine power states were from 16% to 100% engine thrust. Both nucleation and soot mode particles were observed from the emission exhausts of the CF34-3A1 engine but only soot particle mode was detected from the TPE331-6-252B engine. For the CF34-3A1 engine, the contribution of soot mode to total PM emissions was dominant at high power, while at decreased engine power states nucleation mode organic PM became important. PM emissions indices of the TPE331-6-252B engine were found to be generally larger than those of the CF34-3A1 engine. For both engines, medium power conditions (40-60% of thrust) yielded the lowest PM emissions. For the TPE331-6-252B engine, volatile PM components including organic and sulfate were more than 50% in mass at low power, while non-volatile black carbon became dominant at high power conditions such as takeoff.

  18. Effect of Advanced Location Methods on Search and Rescue Duration for General Aviation Aircraft Accidents in the Contiguous United States

    Science.gov (United States)

    Wallace, Ryan J.

    2013-01-01

    The purpose of this study was to determine the impact of advanced search and rescue devices and techniques on search duration for general aviation aircraft crashes. The study assessed three categories of emergency locator transmitters, including 121.5 MHz, 406 MHz, and GPS-Assisted 406 MHz devices. The impact of the COSPAS-SARSAT organization…

  19. General Aviation Aircraft Safety, The Princeton University Conference (119th) Held at Princeton, N.J. on October 24-25 1973

    Science.gov (United States)

    1974-10-01

    Accident Records" 3 Charles 0. Miller, Director, Bureau of Aviation Safety, National Transportation Safety Board "General Aviation Accident Patterns...Accident Records Charles 0. Miller Director, Bureau of Aviation Safety National Transportation Safety Board The title of my paper today, "An Analysis...Bethesda, Maryland 20014 Aviation Consumer Magazine James Holahan Pan Am Bldg., Teterboro Airport Bally Tully Teterboro New Jersey 07608 Bede Aircraft

  20. Low-order nonlinear dynamic model of IC engine-variable pitch propeller system for general aviation aircraft

    Science.gov (United States)

    Richard, Jacques C.

    1995-01-01

    This paper presents a dynamic model of an internal combustion engine coupled to a variable pitch propeller. The low-order, nonlinear time-dependent model is useful for simulating the propulsion system of general aviation single-engine light aircraft. This model is suitable for investigating engine diagnostics and monitoring and for control design and development. Furthermore, the model may be extended to provide a tool for the study of engine emissions, fuel economy, component effects, alternative fuels, alternative engine cycles, flight simulators, sensors, and actuators. Results show that the model provides a reasonable representation of the propulsion system dynamics from zero to 10 Hertz.

  1. Input/output models for general aviation piston-prop aircraft fuel economy

    Science.gov (United States)

    Sweet, L. M.

    1982-01-01

    A fuel efficient cruise performance model for general aviation piston engine airplane was tested. The following equations were made: (1) for the standard atmosphere; (2) airframe-propeller-atmosphere cruise performance; and (3) naturally aspirated engine cruise performance. Adjustments are made to the compact cruise performance model as follows: corrected quantities, corrected performance plots, algebraic equations, maximize R with or without constraints, and appears suitable for airborne microprocessor implementation. The following hardwares are recommended: ignition timing regulator, fuel-air mass ration controller, microprocessor, sensors and displays.

  2. Sensitivity Analysis for Safety Design Verification of General Aviation Reciprocating Aircraft Engine

    Institute of Scientific and Technical Information of China (English)

    CAO Jiaokun; DING Shuiting

    2012-01-01

    This paper presents an application of global sensitivity analysis for system safety analysis of reciprocating aircraft engine.Compared with local sensitivity analysis results,global sensitivity analysis could provide more information on parameter interactions,which are significant in complex system safety analysis.First,a deterministic aviation reciprocating engine thermodynamics model is developed and parameters of interest are defined as random variables.Then,samples are generated by Monte Carlo method for the parameters used in engine model on the basis of definition of factor distribution.Eventually,results from engine model are generated and importance indices are calculated.Based on the analysis results,design is improved to satisfy the airworthiness requirements.The results reveal that by using global sensitivity analysis,the parameters could be ranked with respect to their importance,including first order indices and total sensitivity indices.By reducing the uncertainty of parameters and adjusting the range of inputs,safety criteria would be satisfied.

  3. General aviation in China

    Science.gov (United States)

    Hu, Xiaosi

    In the last four decades, China has accomplished economic reform successfully and grown to be a leading country in the world. As the "world factory", the country is able to manufacture a variety of industrial products from clothes and shoes to rockets and satellites. But the aviation industry has always been a weak spot and even the military relies on imported turbofan engines and jet fighters, not to mention the airlines. Recently China has launched programs such as ARJ21 and C919, and started reform to change the undeveloped situation of its aviation industry. As the foundation of the aviation industry, the development of general aviation is essential for the rise of commercial aviation. The primary goal of this study is to examine the general aviation industry and finds the issues that constrain the development of the industry in the system. The research method used in this thesis is the narrative research of qualitative approach since the policy instead of statistical data is analyzed. It appears that the main constraint for the general aviation industry is the government interference.

  4. GASP- GENERAL AVIATION SYNTHESIS PROGRAM

    Science.gov (United States)

    Galloway, T. L.

    1994-01-01

    The General Aviation Synthesis Program, GASP, was developed to perform tasks generally associated with the preliminary phase of aircraft design. GASP gives the analyst the capability of performing parametric studies in a rapid manner during preliminary design efforts. During the development of GASP, emphasis was placed on small fixed-wing aircraft employing propulsion systems varying from a single piston engine with a fixed pitch propeller through twin turboprop/turbofan systems as employed in business or transport type aircraft. The program is comprised of modules representing the various technical disciplines of design, integrated into a computational flow which ensures that the interacting effects of design variables are continuously accounted for in the aircraft sizing procedures. GASP provides a useful tool for comparing configurations, assessing aircraft performance and economics, and performing tradeoff and sensitivity studies. By utilizing GASP, the impact of various aircraft requirements and design factors may be studied in a systematic manner, with benefits being measured in terms of overall aircraft performance and economics. The GASP program consists of a control module and six "technology" submodules which perform the various independent studies required in the design of general aviation or small transport type aircraft. The six technology modules include geometry, aerodynamics, propulsion, weight and balance, mission analysis, and economics. The geometry module calculates the dimensions of the synthesized aircraft components based on such input parameters as number of passengers, aspect ratio, taper ratio, sweep angles, and thickness of wing and tail surfaces. The aerodynamics module calculates the various lift and drag coefficients of the synthesized aircraft based on inputs concerning configuration geometry, flight conditions, and type of high lift device. The propulsion module determines the engine size and performance for the synthesized aircraft

  5. Taxation of United States general aviation

    Science.gov (United States)

    Sobieralski, Joseph Bernard

    General aviation in the United States has been an important part of the economy and American life. General aviation is defined as all flying excluding military and scheduled airline operations, and is utilized in many areas of our society. The majority of aircraft operations and airports in the United States are categorized as general aviation, and general aviation contributes more than one percent to the United States gross domestic product each year. Despite the many benefits of general aviation, the lead emissions from aviation gasoline consumption are of great concern. General aviation emits over half the lead emissions in the United States or over 630 tons in 2005. The other significant negative externality attributed to general aviation usage is aircraft accidents. General aviation accidents have caused over 8000 fatalities over the period 1994-2006. A recent Federal Aviation Administration proposed increase in the aviation gasoline tax from 19.4 to 70.1 cents per gallon has renewed interest in better understanding the implications of such a tax increase as well as the possible optimal rate of taxation. Few studies have examined aviation fuel elasticities and all have failed to study general aviation fuel elasticities. Chapter one fills that gap and examines the elasticity of aviation gasoline consumption in United States general aviation. Utilizing aggregate time series and dynamic panel data, the price and income elasticities of demand are estimated. The price elasticity of demand for aviation gasoline is estimated to range from -0.093 to -0.185 in the short-run and from -0.132 to -0.303 in the long-run. These results prove to be similar in magnitude to automobile gasoline elasticities and therefore tax policies could more closely mirror those of automobile tax policies. The second chapter examines the costs associated with general aviation accidents. Given the large number of general aviation operations as well as the large number of fatalities and

  6. Entrepreneurship within General Aviation

    Science.gov (United States)

    Ullmann, Brian M.

    1995-01-01

    Many modern economic theories place great importance upon entrepreneurship in the economy. Some see the entrepreneur as the individual who bears risk of operating a business in the face of uncertainty about future conditions and who is rewarded through profits and losses. The 20th century economist Joseph Schumpter saw the entrepreneur as the medium by which advancing technology is incorporated into society as businesses seek competitive advantages through more efficient product development processes. Due to the importance that capitalistic systems place upon entrepreneurship, it has become a well studied subject with many texts to discuss how entrepreneurs can succeed in modern society. Many entrepreneuring and business management courses go so far as to discuss the characteristic phases and prominent challenges that fledgling companies face in their efforts to bring a new product into a competitive market. However, even with all of these aids, start-up companies fail at an enormous rate. Indeed, the odds of shepherding a new company through the travails of becoming a well established company (as measured by the ability to reach Initial Public Offering (IPO)) have been estimated to be six in 1,000,000. Each niche industry has characteristic challenges which act as barriers to entry for new products into that industry. Thus, the applicability of broad generalizations is subject to limitations within niche markets. This paper will discuss entrepreneurship as it relates to general aviation. The goals of this paper will be to: introduce general aviation; discuss the details of marrying entrepreneurship with general aviation; and present a sample business plan which would characterize a possible entrepreneurial venture.

  7. Product Liability and Moral Hazard: Evidence from General Aviation

    OpenAIRE

    2012-01-01

    Product liability law reduces the costs of accidents to consumers, thus reducing their incentives to invest in safety. We estimate the impact of tort liability on a subset of consumers who have significant control over the probability of an accident: the consumers of general aviation aircraft. The General Aviation Revitalization Act of 1994 exempted manufacturers of small aircraft from product liability claims when their aircraft reached 18 years of age. We use the exemption at age 18 to esti...

  8. Computer technology forecast study for general aviation

    Science.gov (United States)

    Seacord, C. L.; Vaughn, D.

    1976-01-01

    A multi-year, multi-faceted program is underway to investigate and develop potential improvements in airframes, engines, and avionics for general aviation aircraft. The objective of this study was to assemble information that will allow the government to assess the trends in computer and computer/operator interface technology that may have application to general aviation in the 1980's and beyond. The current state of the art of computer hardware is assessed, technical developments in computer hardware are predicted, and nonaviation large volume users of computer hardware are identified.

  9. Back symptoms in aviators flying different aircraft.

    Science.gov (United States)

    Grossman, Alon; Nakdimon, Idan; Chapnik, Leah; Levy, Yuval

    2012-07-01

    Back pain is a common complaint among military aviators of various aircraft. We attempted to define the epidemiologic characteristics of this complaint in military aviators of the Israeli Air Force. Aviators of various aircraft (fighter, attack helicopter, utility helicopter, and transport and cargo) completed 566 questionnaires. The questionnaires included various demographic variables as well as questions specifically addressing type of aircraft, location, and severity of pain. Questionnaires were analyzed according to aircraft type, weekly and total number of flight hours. Back pain was significantly more common among utility and attack helicopter pilots. Compared with only 64.02% of fighter pilots, 89.38% of utility and 74.55% of attack helicopter pilots reported some degree of back pain. Cervical region pain was more common among fighter pilots (47.2%) and utility helicopter pilots (47.3%) compared with attack helicopter (36.4%) and transport (22.3%) pilots. Cervical region pain of moderate-severe degree was more common among utility helicopter pilots (7.1%). Mid and low back pain at all degrees of severity were more common among helicopter pilots. A significant proportion of subjects suffered from pain in multiple regions, particularly among utility helicopter pilots (32.74%). Severity of pain was graded higher in all three regions (cervical, mid, and lower back) in utility helicopter pilots. Utility helicopter pilots have more prevalent and more severe back pain than pilots of other platforms. Yet, it is difficult to make a clear association between type of aircraft and the region of back pain.

  10. 26 CFR 48.4041-4 - Application of tax on sales of liquid for use as fuel in aircraft in noncommercial aviation.

    Science.gov (United States)

    2010-04-01

    ... fuel in aircraft in noncommercial aviation. 48.4041-4 Section 48.4041-4 Internal Revenue INTERNAL... aircraft in noncommercial aviation. (a) In general. The taxes imposed by subparagraphs (1)(A) and (2)(A) of... operator of an aircraft, for use as a fuel in the aircraft in noncommercial aviation. (b) Liability of tax...

  11. Cockpit Technology for Prevention of General Aviation Runway Incursions

    Science.gov (United States)

    Prinzel, Lawrence J., III; Jones, Denise R.

    2007-01-01

    General aviation accounted for 74 percent of runway incursions but only 57 percent of the operations during the four-year period from fiscal year (FY) 2001 through FY2004. Elements of the NASA Runway Incursion Prevention System were adapted and tested for general aviation aircraft. Sixteen General Aviation pilots, of varying levels of certification and amount of experience, participated in a piloted simulation study to evaluate the system for prevention of general aviation runway incursions compared to existing moving map displays. Pilots flew numerous complex, high workload approaches under varying weather and visibility conditions. A rare-event runway incursion scenario was presented, unbeknownst to the pilots, which represented a typical runway incursion situation. The results validated the efficacy and safety need for a runway incursion prevention system for general aviation aircraft.

  12. A Review of General Aviation Safety (1984-2017).

    Science.gov (United States)

    Boyd, Douglas D

    2017-07-01

    General aviation includes all civilian aviation apart from operations involving paid passenger transport. Unfortunately, this category of aviation holds a lackluster safety record, accounting for 94% of civil aviation fatalities. In 2014, of 1143 general aviation accidents, 20% were fatal compared with 0 of 29 airline mishaps in the United States. Herein, research findings over the past 30 yr will be reviewed. Accident risk factors (e.g., adverse weather, geographical region, post-impact fire, gender differences) will be discussed. The review will also summarize the development and implementation of stringent crashworthiness designs with multi-axis dynamic testing and head-injury protection and its impact on mitigating occupant injury severity. The benefits and drawbacks of new technology and human factor considerations associated with increased general aviation automation will be debated. Data on the safety of the aging general aviation population and increased drug usage will also be described. Finally, areas in which general aviation occupant survival could be improved and injury severity mitigated will be discussed with the view of equipping aircraft with 1) crash-resistant fuel tanks to reduce post-impact conflagration; 2) after-market ballistic parachutes for older aircraft; and 3) current generation electronic locator beacons to hasten site access by first responders.Boyd DD. A review of general aviation safety (1984-2017). Aerosp Med Hum Perform. 2017; 88(7):657-664.

  13. Advanced General Aviation Turbine Engine (GATE) study

    Science.gov (United States)

    Smith, R.; Benstein, E. H.

    1979-01-01

    The small engine technology requirements suitable for general aviation service in the 1987 to 1988 time frame were defined. The market analysis showed potential United States engines sales of 31,500 per year providing that the turbine engine sales price approaches current reciprocating engine prices. An optimum engine design was prepared for four categories of fixed wing aircraft and for rotary wing applications. A common core approach was derived from the optimum engines that maximizes engine commonality over the power spectrum with a projected price competitive with reciprocating piston engines. The advanced technology features reduced engine cost, approximately 50 percent compared with current technology.

  14. Development of Maintenance Demonstration System Based on General Aviation Aircraft of DA40%基于通航飞机DA40维修演示系统的开发

    Institute of Scientific and Technical Information of China (English)

    樊军; 吴月伟

    2012-01-01

    提高通用航空器维修人员的业务水平,是通用航空事业快速发展的基本保障.为满足通用航空维修运行的需要,研发针对通用飞机的维修演示系统平台,可有效提高维修人员的学习效率,且具有广阔的社会效益和经济效益.系统基于DA40飞机维修手册和维修培训教学大纲开发,能较好地测试演示系统各项功能的完整性,具有广泛的示范意义.%It is the guarantee to improve the ability of the maintenance men in general aircraft to maintain the rapid development of the general aviation. Research maintenance demonstration platform for general a-viation that meets the needs of maintenance operation of general aircraft which improves the learning efficiency of the aircrew and also has great social and economic benefits. The system is based on aircraft maintenance manual and training syllabus of DA40 and can test all the function of the de- monstration platform perfectly. It has a wide range of demonstration.

  15. First Annual FAA General Aviation Forecast Conference Proceedings

    Science.gov (United States)

    1991-03-01

    pilot’s perspective. I have a 30-year background as an executive in communications, principally in television , but I am also an aircraft owner and have...contrasting this with the business I came from -- television , which is gauged and governed by the TV rating business, which includes overnight ratings. We...ago following the Ceritos, California midair collision between a general aviation aircraft and a Mexicana airliner, the FAA released a study calling for

  16. Economic utilization of general aviation airport runways

    Science.gov (United States)

    Piper, R. R.

    1971-01-01

    The urban general aviation airport economics is studied in detail. The demand for airport services is discussed, and the different types of users are identified. The direct cost characteristics of the airport are summarized; costs to the airport owner are largely fixed, and, except at certain large airports, weight is not a significant factor in airport costs. The efficient use of an existing airport facility is explored, with the focus on the social cost of runway congestion as traffic density at the airport build up and queues form. The tradeoff between aircraft operating costs and airport costs is analyzed in terms of runway length. The transition from theory to practice is treated, and the policy of charging prices only on aircraft storage and fuel is felt likely to continue. Implications of the study from the standpoint of public policy include pricing that spreads traffic peaks to improve runway utilization, and pricing that discriminates against aircraft requiring long runways and causes owners to adopt V/STOL equipment.

  17. Effect of Cellular Phone and Radar Forensics on Search and Rescue Duration for General Aviation Aircraft Accidents in the Contiguous United States

    OpenAIRE

    Wallace, Ryan J

    2014-01-01

    Emergency Locator Transmitters (ELT) are generally the primary tool for locating distressed aircrews following an aircraft accident. In 2009, the International COSPAS-SARSAT organization ordered the cessation of 121.5 MHz ELT satellite monitoring to alleviate systemic false alarms and encourage pilots to upgrade ELTs to modern 406 MHz models. While most nations acquiesced to the mandate, the United States encountered severe resistance from pilot groups. As a result, 121.5 MHz ELTs are still i...

  18. Low-Cost Quality Control and Nondestructive Evaluation Technologies for General Aviation Structures

    Science.gov (United States)

    Cramer, K. Elliott; Gavinsky, Bob; Semanskee, Grant

    1998-01-01

    NASA's Advanced General Aviation Transport Experiments (AGATE) Program has as a goal to reduce the overall cost of producing private aviation aircraft while maintaining the safety of these aircraft. In order to successfully meet this goal, it is necessary to develop nondestructive inspection techniques which will facilitate the production of the materials used in these aircraft and assure the quality necessary to maintain airworthiness. This paper will discuss a particular class of general aviation materials and several nondestructive inspection techniques that have proven effective for making these inspections. Additionally, this paper will discuss the investigation and application of other commercially available quality control techniques applicable to these structures.

  19. Initial Assessment of Portable Weather Presentations for General Aviation Pilots

    OpenAIRE

    2015-01-01

    Objective: (a) To examine the potential benefits and effect on pilot flying behavior from the use of portable weather presentations and (b) to assess pilot sensitivity to weather symbology changes. Method: Seventy-three General Aviation (GA) pilots volunteered to participate in the study. During simulated flights, participants were randomly assigned either to an experimental group or to a control group and flew a simulated single-engine GA aircraft under Visual Flight Rules (VFR) while avoidi...

  20. Aviation Maintenance (Aircraft Mechanics & Aircraft & Instrument Repair Personnel). Aviation Careers Series. Revised.

    Science.gov (United States)

    Zaharevitz, Walter

    This booklet, one in a series on aviation careers, outlines career opportunities in aviation maintenance. The booklet provides the following information about aviation maintenance jobs: nature of the work, working conditions, where the jobs are, wages and benefits, opportunities for advancement, requirements to enter the job, opportunities for…

  1. General aviation fuel quality control

    Science.gov (United States)

    Poitz, H.

    1983-01-01

    Quality control measures for aviation gasoline, and some of the differences between quality control on avgas and mogas are discussed. One thing to keep in mind is that with motor gasoline you can always pull off to the side of the road. It's not so easy to do in an airplane. Consequently, there are reasons for having the tight specifications and the tight quality control measures on avgas as compared to motor gasoline.

  2. General Aviation Pilots Over 70 Years Old.

    Science.gov (United States)

    Vuorio, Alpo; Asmayawati, Saryani; Budowle, Bruce; Griffiths, Robin; Strandberg, Timo; Kuoppala, Jaana; Sajantila, Antti

    2017-02-01

    Currently it is not unusual for general aviation pilots in the United States to continue to fly beyond the age of 70, even into their 80s and 90s. Pilots have regular examinations according to protocols which do not specify special or additional requirements for pilots over 70 yr of age. Additionally, the third class medical reforms passed by the U.S. Senate on 15 July 2016 could potentially result in even less stringent medical certification requirements for general aviation pilots. Accident rates, medical parameters, autopsy findings, and toxicological findings from the U.S. National Transportation Safety Board (NTSB) general aviation (GA) accident database were analyzed to assess potential risk factors with accident outcomes. During 2003-2012, there were 114 (113 men, 1 woman) general aviation fatal accidents involving pilots ages 70 to 92 yr. A combination of 3 or more drugs were found in 13 (13%) of deceased pilots. The most frequent drugs were first generation antihistamines and antidepressants represented the next highest proportion of possible performance-affecting medications. This study indicates that there are critical medical factors that may contribute to fatal accidents among elderly pilots. Polypharmacy use should be taken into consideration, especially during periodic health examinations and fatal aviation investigations involving elderly pilots.Vuorio A, Asmayawati S, Budowle B, Griffiths R, Strandberg T, Kuoppala J, Sajantila A. General aviation pilots over 70 years old. Aerosp Med Hum Perform. 2017; 88(2):142-145.

  3. Differences in Characteristics of Aviation Accidents During 1993-2012 Based on Aircraft Type

    Science.gov (United States)

    Evans, Joni K.

    2015-01-01

    Civilian aircraft are available in a variety of sizes, engine types, construction materials and instrumentation complexity. For the analysis reported here, eleven aircraft categories were developed based mostly on aircraft size and engine type, and these categories were applied to twenty consecutive years of civil aviation accidents. Differences in various factors were examined among these aircraft types, including accident severity, pilot characteristics and accident occurrence categories. In general, regional jets and very light sport aircraft had the lowest rates of adverse outcomes (injuries, fatal accidents, aircraft destruction, major accidents), while aircraft with twin (piston) engines or with a single (piston) engine and retractable landing gear carried the highest incidence of adverse outcomes. The accident categories of abnormal runway contact, runway excursions and non-powerplant system/component failures occur frequently within all but two or three aircraft types. In contrast, ground collisions, loss of control - on ground/water and powerplant system/component failure occur frequently within only one or two aircraft types. Although accidents in larger aircraft tend to have less severe outcomes, adverse outcome rates also differ among accident categories. It may be that the type of accident has as much or more influence on the outcome as the type of aircraft.

  4. General aviation air traffic pattern safety analysis

    Science.gov (United States)

    Parker, L. C.

    1973-01-01

    A concept is described for evaluating the general aviation mid-air collision hazard in uncontrolled terminal airspace. Three-dimensional traffic pattern measurements were conducted at uncontrolled and controlled airports. Computer programs for data reduction, storage retrieval and statistical analysis have been developed. Initial general aviation air traffic pattern characteristics are presented. These preliminary results indicate that patterns are highly divergent from the expected standard pattern, and that pattern procedures observed can affect the ability of pilots to see and avoid each other.

  5. Aircraft Engine Technology for Green Aviation to Reduce Fuel Burn

    Science.gov (United States)

    Hughes, Christopher E.; VanZante, Dale E.; Heidmann, James D.

    2013-01-01

    The NASA Fundamental Aeronautics Program Subsonic Fixed Wing Project and Integrated Systems Research Program Environmentally Responsible Aviation Project in the Aeronautics Research Mission Directorate are conducting research on advanced aircraft technology to address the environmental goals of reducing fuel burn, noise and NOx emissions for aircraft in 2020 and beyond. Both Projects, in collaborative partnerships with U.S. Industry, Academia, and other Government Agencies, have made significant progress toward reaching the N+2 (2020) and N+3 (beyond 2025) installed fuel burn goals by fundamental aircraft engine technology development, subscale component experimental investigations, full scale integrated systems validation testing, and development validation of state of the art computation design and analysis codes. Specific areas of propulsion technology research are discussed and progress to date.

  6. Analysis of the Use Reliability and Failure on the Aviation Motor of General Aircraft TB-200%TB-200飞机航空电机的使用可靠性及故障分析

    Institute of Scientific and Technical Information of China (English)

    吕伟

    2012-01-01

    航空电机是现代飞机电气设备的重要组成部分.针对飞行训练中常用的TB-200型飞机,根据机载航空电机的故障数据,进行各类航空电机的使用可靠性分析.得出故障率、寿命分布函数和可靠度分布函数.比较了几种电机故障率与可靠性之间的差异.统计出各种航空电机的故障类型.分析了故障原因.最后总结了航空电机的维护注意事项.%The aviation motor is an important part of electrical equipment in modern aircrafts. To TB—200 aircraft used in flight training frequently, according to failure data of airborne aviation motors, the use reliability of various types of aviation motors are analyzed. As a result, the failure rate, the life distribution function and reliability distribution function are obtained and differences of failure rate and reliability among various types of motor are compared. By the statistics of the various types of aviation motor failures, the causes of the failures are analyzed and maintenance considerations of aviation motors are summarized.

  7. Human Factors Problems in General Aviation

    Science.gov (United States)

    1980-04-01

    of general aviation pilots, and, vhen relevant, pilots in general. This information was acquired through the use of both automated and manual searches... Bergey , 1978; Bolz and Eisele, 1979; FAA, 1979b; Smyth, 1980). These changes will result from a number of forces that are acting in concert to speed...not have been adequately addressed in the documentation. Literature Search. Both automated and manual search procedures were used in pursuit of a

  8. Recent technical advances in general purpose mobile Satcom aviation terminals

    Science.gov (United States)

    Sydor, John T.

    A second general aviation amplitude companded single sideband (ACSSB) aeronautical terminal was developed for use with the Ontario Air Ambulance Service (OAAS). This terminal is designed to have automatic call set up and take down and to interface with the Public Service Telephone Network (PSTN) through a ground earth station hub controller. The terminal has integrated RF and microprocessor hardware which allows such functions as beam steering and automatic frequency control to be software controlled. The terminal uses a conformal patch array system to provide almost full azimuthal coverage. Antenna beam steering is executed without relying on aircraft supplied orientation information.

  9. Recent technical advances in general purpose mobile Satcom aviation terminals

    Science.gov (United States)

    Sydor, John T.

    1990-01-01

    A second general aviation amplitude companded single sideband (ACSSB) aeronautical terminal was developed for use with the Ontario Air Ambulance Service (OAAS). This terminal is designed to have automatic call set up and take down and to interface with the Public Service Telephone Network (PSTN) through a ground earth station hub controller. The terminal has integrated RF and microprocessor hardware which allows such functions as beam steering and automatic frequency control to be software controlled. The terminal uses a conformal patch array system to provide almost full azimuthal coverage. Antenna beam steering is executed without relying on aircraft supplied orientation information.

  10. Fuzzy Logic Decoupled Lateral Control for General Aviation Airplanes

    Science.gov (United States)

    Duerksen, Noel

    1997-01-01

    It has been hypothesized that a human pilot uses the same set of generic skills to control a wide variety of aircraft. If this is true, then it should be possible to construct an electronic controller which embodies this generic skill set such that it can successfully control different airplanes without being matched to a specific airplane. In an attempt to create such a system, a fuzzy logic controller was devised to control aileron or roll spoiler position. This controller was used to control bank angle for both a piston powered single engine aileron equipped airplane simulation and a business jet simulation which used spoilers for primary roll control. Overspeed, stall and overbank protection were incorporated in the form of expert systems supervisors and weighted fuzzy rules. It was found that by using the artificial intelligence techniques of fuzzy logic and expert systems, a generic lateral controller could be successfully used on two general aviation aircraft types that have very different characteristics. These controllers worked for both airplanes over their entire flight envelopes. The controllers for both airplanes were identical except for airplane specific limits (maximum allowable airspeed, throttle ]ever travel, etc.). This research validated the fact that the same fuzzy logic based controller can control two very different general aviation airplanes. It also developed the basic controller architecture and specific control parameters required for such a general controller.

  11. Fuzzy Logic Decoupled Longitudinal Control for General Aviation Airplanes

    Science.gov (United States)

    Duerksen, Noel

    1996-01-01

    It has been hypothesized that a human pilot uses the same set of generic skills to control a wide variety of aircraft. If this is true, then it should be possible to construct an electronic controller which embodies this generic skill set such that it can successfully control difference airplanes without being matched to a specific airplane. In an attempt to create such a system, a fuzzy logic controller was devised to control throttle position and another to control elevator position. These two controllers were used to control flight path angle and airspeed for both a piston powered single engine airplane simulation and a business jet simulation. Overspeed protection and stall protection were incorporated in the form of expert systems supervisors. It was found that by using the artificial intelligence techniques of fuzzy logic and expert systems, a generic longitudinal controller could be successfully used on two general aviation aircraft types that have very difference characteristics. These controllers worked for both airplanes over their entire flight envelopes including configuration changes. The controllers for both airplanes were identical except for airplane specific limits (maximum allowable airspeed, throttle lever travel, etc.). The controllers also handled configuration changes without mode switching or knowledge of the current configuration. This research validated the fact that the same fuzzy logic based controller can control two very different general aviation airplanes. It also developed the basic controller architecture and specific control parameters required for such a general controller.

  12. Study of an advanced General Aviation Turbine Engine (GATE)

    Science.gov (United States)

    Gill, J. C.; Short, F. R.; Staton, D. V.; Zolezzi, B. A.; Curry, C. E.; Orelup, M. J.; Vaught, J. M.; Humphrey, J. M.

    1979-01-01

    The best technology program for a small, economically viable gas turbine engine applicable to the general aviation helicopter and aircraft market for 1985-1990 was studied. Turboshaft and turboprop engines in the 112 to 746 kW (150 to 1000 hp) range and turbofan engines up to 6672 N (1500 lbf) thrust were considered. A good market for new turbine engines was predicted for 1988 providing aircraft are designed to capitalize on the advantages of the turbine engine. Parametric engine families were defined in terms of design and off-design performance, mass, and cost. These were evaluated in aircraft design missions selected to represent important market segments for fixed and rotary-wing applications. Payoff parameters influenced by engine cycle and configuration changes were aircraft gross mass, acquisition cost, total cost of ownership, and cash flow. Significant advantage over a current technology, small gas turbine engines was found especially in cost of ownership and fuel economy for airframes incorporating an air-cooled high-pressure ratio engine. A power class of 373 kW (500 hp) was recommended as the next frontier for technology advance where large improvements in fuel economy and engine mass appear possible through component research and development.

  13. GASP- General Aviation Synthesis Program. Volume 1: Main program. Part 1: Theoretical development

    Science.gov (United States)

    Hague, D.

    1978-01-01

    The General Aviation synthesis program performs tasks generally associated with aircraft preliminary design and allows an analyst the capability of performing parametric studies in a rapid manner. GASP emphasizes small fixed-wing aircraft employing propulsion systems varying froma single piston engine with fixed pitch propeller through twin turboprop/ turbofan powered business or transport type aircraft. The program, which may be operated from a computer terminal in either the batch or interactive graphic mode, is comprised of modules representing the various technical disciplines integrated into a computational flow which ensures that the interacting effects of design variables are continuously accounted for in the aircraft sizing procedure. The model is a useful tool for comparing configurations, assessing aircraft performance and economics, performing tradeoff and sensitivity studies, and assessing the impact of advanced technologies on aircraft performance and economics.

  14. Aircraft Fuel, Hydraulic and Pneumatic Systems (Course Outlines), Aviation Mechanics 3 (Air Frame): 9067.01.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to familiarize the student with the operation, inspection, and repair of aircraft fuel, hydraulic, and pneumatic systems. It is designed to help the trainee master the knowledge and skills necessary to become an aviation airframe mechanic. The aviation airframe maintenance technician…

  15. Aviation.

    Science.gov (United States)

    Karl, Richard C

    2009-01-01

    An increased awareness of the need for safety in medicine in general and in surgery in particular has prompted comparisons between the cockpit and the operating room. These comparisons seem to make sense but tend to be oversimplified. Attempts in healthcare to mimic programs that have been credited for the safety of commercial aviation have met with varying results. The risk here is that oversimplified application of an aviation model may result in the abandonment of good ideas in medicine. This paper describes in more depth the differences between medicine and commercial aviation: from the hiring process, through initial operating experience, recurrent training, and the management of emergencies. These programs add up to a cultural difference. Aviation assumes that personnel are subject to mistake making and that systems and culture need to be constructed to catch and mitigate error; medicine is still focused on the perfection of each individual's performance. The implications of these differences are explored.

  16. Descriptive and analytical epidemiology of accidents in five categories of sport aviation aircraft

    NARCIS (Netherlands)

    van Doorn, R.R.A.; de Voogt, A.J.

    2011-01-01

    The present study reports and compares causes of, and factors contributing to, 2,118 documented accidents of sport aviation represented by diverse aircraft types including balloons and blimps, gliders, gyroplanes, and ultralights. For the 26-year period, accidents were aircraft-specific regarding

  17. Descriptive and analytical epidemiology of accidents in five categories of sport aviation aircraft

    NARCIS (Netherlands)

    van Doorn, R.R.A.; de Voogt, A.J.

    2011-01-01

    The present study reports and compares causes of, and factors contributing to, 2,118 documented accidents of sport aviation represented by diverse aircraft types including balloons and blimps, gliders, gyroplanes, and ultralights. For the 26-year period, accidents were aircraft-specific regarding da

  18. Cosmic radiation in aviation: radiological protection of Air France aircraft crew.

    Science.gov (United States)

    Desmaris, G

    2016-06-01

    Cosmic radiation in aviation has been a concern since the 1960s, and measurements have been taken for several decades by Air France. Results show that aircraft crew generally receive 3-4 mSv y(-1) for 750 boarding hours. Compliance with the trigger level of 6 mSv y(-1) is achieved by route selection. Work schedules can be developed for pregnant pilots to enable the dose to the fetus to be kept below 1 mSv. Crew members are informed of their exposition and the potential health impact. The upcoming International Commission on Radiological Protection (ICRP) report on cosmic radiation in aviation will provide an updated guidance. A graded approach proportionate with the time of exposure is recommended to implement the optimisation principle. The objective is to keep exposures of the most exposed aircraft members to reasonable levels. ICRP also recommends that information about cosmic radiation be disseminated, and that awareness about cosmic radiation be raised in order to favour informed decision-making by all concerned stakeholders.

  19. Challenge to Aviation: Hatching a Leaner Pterosauer. [Improving Commercial Aircraft Design for Greater Fuel Efficiency

    Science.gov (United States)

    Moss, F. E.

    1975-01-01

    Modifications in commercial aircraft design, particularly the development of lighter aircraft, are discussed as effective means of reducing aviation fuel consumption. The modifications outlined include: (1) use of the supercritical wing; (2) generation of the winglet; (3) production and flight testing of composite materials; and, (4) implementation of fly-by-wire control systems. Attention is also given to engineering laminar air flow control, improving cargo payloads, and adapting hydrogen fuels for aircraft use.

  20. Bibliography of NASA published reports on general aviation, 1975 to 1981

    Science.gov (United States)

    1981-01-01

    This bibliography lists 478 documents which relate to all heavier-than-air fixed wing aircraft exclusive of military types and those used for commercial air transport. An exception is the inclusion of commuter transport aircraft types within the general aviation category. NASA publications included in this bibliography are: conference publications (CP), reference publications (RP), technical memorandums (TM, TMX), technical notes (TN), technical papers (TP), and contractor reports (CR). In addition, papers and articles on NASA general aviation programs published by technical societies (AIAA, SAE, etc.) are included, as well as those listed in NASA's Scientific and Technical Aerospace Reports (STAR) Journal. Author and subject indexes are also provided to facilitate use of the bibliography.

  1. A concept for a fuel efficient flight planning aid for general aviation

    Science.gov (United States)

    Collins, B. P.; Haines, A. L.; Wales, C. J.

    1982-01-01

    A core equation for estimation of fuel burn from path profile data was developed. This equation was used as a necessary ingredient in a dynamic program to define a fuel efficient flight path. The resultant algorithm is oriented toward use by general aviation. The pilot provides a description of the desired ground track, standard aircraft parameters, and weather at selected waypoints. The algorithm then derives the fuel efficient altitudes and velocities at the waypoints.

  2. [Characteristics of a negative effect of aviation noise on hearing organ of aircraft maintenance personnel].

    Science.gov (United States)

    Zinkin, V N; Soldatov, S K; Sheshegov, P M

    2007-01-01

    Otolaryngological examination was carried out of 80 engineers and technicians engaged in maintenance of aircrafts in the airports. They are continuously exposed to occupational aviation noise and therefore are at risk for chronic neurosensory hypoacusis. Pure tone audiogram registers in them a rise in hearing thresholds throughout the whole band of frequencies studied. This means that aviation maintenance staff is exposed to noise containing highly intensive infrasound and high-frequency components. The detected pathology directly correlated with duration of exposure to noise. Development of neurosensory hypoacusis in aviation maintenance specialists starts earlier than in other specialists exposed to noise.

  3. General-aviation's view of progress in the aviation weather system

    Science.gov (United States)

    Lundgren, Douglas J.

    1988-01-01

    For all its activity statistics, general-aviation is the most vulnerable to hazardous weather. Of concern to the general aviation industry are: (1) the slow pace of getting units of the Automated Weather Observation System (AWOS) to the field; (2) the efforts of the National Weather Service to withdraw from both the observation and dissemination roles of the aviation weather system; (3) the need for more observation points to improve the accuracy of terminal and area forecasts; (4) the need for improvements in all area forecasts, terminal forecasts, and winds aloft forecasts; (5) slow progress in cockpit weather displays; (6) the erosion of transcribed weather broadcasts (TWEB) and other deficiencies in weather information dissemination; (7) the need to push to make the Direct User Access Terminal (DUAT) a reality; and (7) the need to improve severe weather (thunderstorm) warning systems.

  4. Comparison of alternate fuels for aircraft. [liquid hydrogen, liquid methane, and synthetic aviation kerosene

    Science.gov (United States)

    Witcofski, R. D.

    1979-01-01

    Liquid hydrogen, liquid methane, and synthetic aviation kerosene were assessed as alternate fuels for aircraft in terms of cost, capital requirements, and energy resource utilization. Fuel transmission and airport storage and distribution facilities are considered. Environmental emissions and safety aspects of fuel selection are discussed and detailed descriptions of various fuel production and liquefaction processes are given. Technological deficiencies are identified.

  5. General aviation accidents related to exceedance of airplane weight/center of gravity limits.

    Science.gov (United States)

    Boyd, Douglas D

    2016-06-01

    Obesity, affects a third of the US population and its corollary occupant weight adversely impacts safe flight operations. Increased aircraft weight results in longer takeoff/landing distances, degraded climb gradients and airframe failure may occur in turbulence. In this study, the rate, temporal changes, and lethality of accidents in piston-powered, general aviation aircraft related to exceeding the maximum aircraft weight/center of gravity (CG) limits were determined. Nation-wide person body mass were from the National Health and Nutrition Examination Survey. The NTSB database was used to identify accidents related to operation of aircraft outside of their weight/CG envelope. Statistical analyses employed T-tests, proportion tests and a Poisson distribution. While the average body mass climbed steadily (p<0.001) between 1999 and 2014 the rate of accidents related to exceedance of the weight/CG limits did not change (p=0.072). However, 57% were fatal, higher (p<0.001) than the 21% for mishaps attributed to other causes/factors. The majority (77%) of accidents were due to an overloaded aircraft operating within its CG limits. As to the phase of flight, accidents during takeoff and those occurring enroute carried the lowest (50%) and highest (85%) proportion of fatal accidents respectively. While the rate of general aviation accidents related to operating an aircraft outside of its weight/CG envelope has not increased over the past 15 years, these types of accidents carry a high risk of fatality. Airmen should be educated as to such risks and to dispel the notion held by some that flights may be safely conducted with an overloaded aircraft within its CG limits. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. General aviation design synthesis utilizing interactive computer graphics

    Science.gov (United States)

    Galloway, T. L.; Smith, M. R.

    1976-01-01

    Interactive computer graphics is a fast growing area of computer application, due to such factors as substantial cost reductions in hardware, general availability of software, and expanded data communication networks. In addition to allowing faster and more meaningful input/output, computer graphics permits the use of data in graphic form to carry out parametric studies for configuration selection and for assessing the impact of advanced technologies on general aviation designs. The incorporation of interactive computer graphics into a NASA developed general aviation synthesis program is described, and the potential uses of the synthesis program in preliminary design are demonstrated.

  7. Aviation Maintenance Technology. Airframe. A204. Aircraft Welding. Instructor Material.

    Science.gov (United States)

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This teacher's guide is designed to aid teachers in leading students through a module on aircraft welding on airframes. The module contains four units that cover the following topics: (1) gas welding and cutting; (2) brazing and soldering; (3) shielded metal arc welding; and (4) gas tungsten arc welding. Each unit follows a standardized format…

  8. Prevention of carbon monoxide exposure in general and recreational aviation.

    Science.gov (United States)

    Zelnick, Sanford D; Lischak, Michael W; Young, David G; Massa, Thomas V

    2002-08-01

    Carbon monoxide exposure is an important public health issue that poses a significant, albeit uncommon risk in aviation. Exposure is most common in single engine piston-driven aircraft where air is passed over the exhaust manifold to serve as cabin heat. Effective primary prevention of this exposure is the regular inspection and maintenance of aircraft exhaust systems, as required by law. For situations at special risk should exposure occur, and where there is concern for the public safety, installation of active warning devices for CO intrusion into cockpits may improve secondary prevention. Modern studies should be performed of occupation-specific abilities to support the 50 ppm FAA CO exposure standard and 50-70 ppm FAA Technical Standard Order (TSO) for CO monitors alerting pilots to the possibility of exhaust gas intrusion into their cockpits.

  9. Flight evaluation of Loran-C for general aviation area navigation

    Science.gov (United States)

    Hollister, W. M.; Natarajan, K.; Littlefield, J. A.

    1982-01-01

    This paper reports on a flight evaluation of Loran-C which was part of a long range study of area navigation systems for general aviation. Tests involved two different Loran-C receivers, 6 different aircraft, and a variety of antennas. Uncorrected position fixes were typically accurate to one quarter mile. With measured corrections, repeatability was good to within 200 ft. Signal reliability was 99.7%. The receiver was not sensitive to atmospheric noise. The time difference grid demonstrated a long term stability of 0.3 microsecond. Vertical whip and ADF E-field antennas were found suitable for airborne use. Loran-C was found satisfactory for instrument approaches to runways at general aviation airports where published latitude-longitude coordinates were available. Accuracy was further improved by using locally measured Loran-C time difference coordinates.

  10. A methodology to enable rapid evaluation of aviation environmental impacts and aircraft technologies

    Science.gov (United States)

    Becker, Keith Frederick

    Commercial aviation has become an integral part of modern society and enables unprecedented global connectivity by increasing rapid business, cultural, and personal connectivity. In the decades following World War II, passenger travel through commercial aviation quickly grew at a rate of roughly 8% per year globally. The FAA's most recent Terminal Area Forecast predicts growth to continue at a rate of 2.5% domestically, and the market outlooks produced by Airbus and Boeing generally predict growth to continue at a rate of 5% per year globally over the next several decades, which translates into a need for up to 30,000 new aircraft produced by 2025. With such large numbers of new aircraft potentially entering service, any negative consequences of commercial aviation must undergo examination and mitigation by governing bodies so that growth may still be achieved. Options to simultaneously grow while reducing environmental impact include evolution of the commercial fleet through changes in operations, aircraft mix, and technology adoption. Methods to rapidly evaluate fleet environmental metrics are needed to enable decision makers to quickly compare the impact of different scenarios and weigh the impact of multiple policy options. As the fleet evolves, interdependencies may emerge in the form of tradeoffs between improvements in different environmental metrics as new technologies are brought into service. In order to include the impacts of these interdependencies on fleet evolution, physics-based modeling is required at the appropriate level of fidelity. Evaluation of environmental metrics in a physics-based manner can be done at the individual aircraft level, but will then not capture aggregate fleet metrics. Contrastingly, evaluation of environmental metrics at the fleet level is already being done for aircraft in the commercial fleet, but current tools and approaches require enhancement because they currently capture technology implementation through post

  11. Misconceptions of Electric Propulsion Aircraft and Their Emergent Aviation Markets

    Science.gov (United States)

    Moore, Mark D.; Fredericks, Bill

    2014-01-01

    Over the past several years there have been aircraft conceptual design and system studies that have reached conflicting conclusions relating to the feasibility of full and hybrid electric aircraft. Some studies and propulsion discipline experts have claimed that battery technologies will need to improve by 10 to 20 times before electric aircraft can effectively compete with reciprocating or turbine engines. However, such studies have approached comparative assessments without understanding the compelling differences that electric propulsion offers, how these technologies will fundamentally alter the way propulsion integration is approached, or how these new technologies can not only compete but far exceed existing propulsion solutions in many ways at battery specific energy densities of only 400 watt hours per kilogram. Electric propulsion characteristics offer the opportunity to achieve 4 to 8 time improvements in energy costs with dramatically lower total operating costs, while dramatically improving efficiency, community noise, propulsion system reliability and safety through redundancy, as well as life cycle Green House Gas emissions. Integration of electric propulsion will involve far greater degrees of distribution than existing propulsion solutions due to their compact and scale-free nature to achieve multi-disciplinary coupling and synergistic integration with the aerodynamics, highlift system, acoustics, vehicle control, balance, and aeroelasticity. Appropriate metrics of comparison and differences in analysis/design tools are discussed while comparing electric propulsion to other disruptive technologies. For several initial applications, battery energy density is already sufficient for competitive products, and for many additional markets energy densities will likely be adequate within the next 7 years for vibrant introduction. Market evolution and early adopter markets are discussed, along with the investment areas that will fill technology gaps and

  12. Potential use of tiltrotor aircraft in Canadian aviation

    Science.gov (United States)

    Gazdag, Denyse; Alton, Larry

    1990-01-01

    The aviation system in Canada is described as it relates to the potential applicability of tiltrotor technology. Commuter service in two corridors, the Vancouver-Victoria route on the west coast and the heavily traveled Montreal-Toronto corridor in eastern Canada, are examined. The operation of air service from the near-downtown Toronto STOLport and from the Vancouver-Victoria downtown heliport facilities is described. The emergency medical services, search and rescue, and natural resources development sectors are described with regard to the needs that tiltrotor technology could uniquely meet in these areas. The airport construction program in isolated communities of northern Quebec and possible tiltrotor service in northern regions are reviewed. The Federal and provincial governments' financial support policy regarding the aeronautical industry is to encourage the establishment and expansion of businesses in the field of aeronautics and to make possible the acquisition of new technology. This policy has implications for the tiltrotor program.

  13. Aircraft emissions of methane and nitrous oxide during the alternative aviation fuel experiment.

    Science.gov (United States)

    Santoni, Gregory W; Lee, Ben H; Wood, Ezra C; Herndon, Scott C; Miake-Lye, Richard C; Wofsy, Steven C; McManus, J Barry; Nelson, David D; Zahniser, Mark S

    2011-08-15

    Given the predicted growth of aviation and the recent developments of alternative aviation fuels, quantifying methane (CH(4)) and nitrous oxide (N(2)O) emission ratios for various aircraft engines and fuels can help constrain projected impacts of aviation on the Earth's radiative balance. Fuel-based emission indices for CH(4) and N(2)O were quantified from CFM56-2C1 engines aboard the NASA DC-8 aircraft during the first Alternative Aviation Fuel Experiment (AAFEX-I) in 2009. The measurements of JP-8 fuel combustion products indicate that at low thrust engine states (idle and taxi, or 4% and 7% maximum rated thrusts, respectively) the engines emit both CH(4) and N(2)O at a mean ± 1σ rate of 170 ± 160 mg CH(4) (kg Fuel)(-1) and 110 ± 50 mg N(2)O (kg Fuel)(-1), respectively. At higher thrust levels corresponding to greater fuel flow and higher engine temperatures, CH(4) concentrations in engine exhaust were lower than ambient concentrations. Average emission indices for JP-8 fuel combusted at engine thrusts between 30% and 100% of maximum rating were -54 ± 33 mg CH(4) (kg Fuel)(-1) and 32 ± 18 mg N(2)O (kg Fuel)(-1), where the negative sign indicates consumption of atmospheric CH(4) in the engine. Emission factors for the synthetic Fischer-Tropsch fuels were statistically indistinguishable from those for JP-8.

  14. Causal Factors and Adverse Conditions of Aviation Accidents and Incidents Related to Integrated Resilient Aircraft Control

    Science.gov (United States)

    Reveley, Mary S.; Briggs, Jeffrey L.; Evans, Joni K.; Sandifer, Carl E.; Jones, Sharon Monica

    2010-01-01

    The causal factors of accidents from the National Transportation Safety Board (NTSB) database and incidents from the Federal Aviation Administration (FAA) database associated with loss of control (LOC) were examined for four types of operations (i.e., Federal Aviation Regulation Part 121, Part 135 Scheduled, Part 135 Nonscheduled, and Part 91) for the years 1988 to 2004. In-flight LOC is a serious aviation problem. Well over half of the LOC accidents included at least one fatality (80 percent in Part 121), and roughly half of all aviation fatalities in the studied time period occurred in conjunction with LOC. An adverse events table was updated to provide focus to the technology validation strategy of the Integrated Resilient Aircraft Control (IRAC) Project. The table contains three types of adverse conditions: failure, damage, and upset. Thirteen different adverse condition subtypes were gleaned from the Aviation Safety Reporting System (ASRS), the FAA Accident and Incident database, and the NTSB database. The severity and frequency of the damage conditions, initial test conditions, and milestones references are also provided.

  15. The Use of the Internet to Support General Aviation Research

    Science.gov (United States)

    Rowbottom, James H.

    1995-01-01

    For the past few years, innovation in the field of General Aviation (GA) has declined. The reason for this decline has not been because of a lack of ideas, but rather a lack of funds necessary to convert these ideas into reality. NASA implemented the Small Business Innovative Research (SBIR) program in an effort to promote new technology in General Aviation. Under this program, small business with good ideas present them to NASA who reviews them and determines their value potential in the GA market. If the company's idea proves worthy, NASA subsidizes their research in three phases that include the research, testing, development, and production of their product. The purpose of my internship this summer was to use the Internet to promote the work of SBIR companies globally to prospective investors.

  16. Federal Aviation Administration (FAA airworthiness certification for ceramic matrix composite components in civil aircraft systems

    Directory of Open Access Journals (Sweden)

    Gonczy Stephen T.

    2015-01-01

    Full Text Available Ceramic matrix composites (CMCs are being designed and developed for engine and exhaust components in commercial aviation, because they offer higher temperature capabilities, weight savings, and improved durability compared to metals. The United States Federal Aviation Administration (FAA issues and enforces regulations and minimum standards covering the safe manufacture, operation, and maintenance of civil aircraft. As new materials, these ceramic composite components will have to meet the certification regulations of the FAA for “airworthiness”. The FAA certification process is defined in the Federal Aviation Regulations (Title 14 of the Code of Federal Regulations, FAA policy statements, orders, advisory circulars, technical standard orders, and FAA airworthiness directives. These regulations and documents provide the fundamental requirements and guidelines for design, testing, manufacture, quality assurance, registration, operation, inspection, maintenance, and repair of aircraft systems and parts. For metallic parts in aircraft, the FAA certification and compliance process is well-established for type and airworthiness certification, using ASTM and SAE standards, the MMPDS data handbook, and FAA advisory circulars. In a similar manner for polymer matrix composites (PMC, the PMC industry and the FAA have jointly developed and are refining parallel guidelines for polymer matrix composites (PMCs, using guidance in FAA circulars and the CMH-17 PMC handbook. These documents discuss design methods and codes, material testing, property data development, life/durability assessment, production processes, QA procedures, inspection methods, operational limits, and repairs for PMCs. For ceramic composites, the FAA and the CMC and aerospace community are working together (primarily through the CMH-17 CMC handbook to define and codify key design, production, and regulatory issues that have to be addressed in the certification of CMC components in

  17. Blood lead level and types of aviation fuel in aircraft maintenance crew.

    Science.gov (United States)

    Park, Won-Ju; Gu, Hye-Min; Lee, Suk-Ho

    2013-10-01

    This study inquired into any significant difference in blood lead levels (BLLs) among aircraft maintenance crews at the air-bases, each with a different aviation fuel in use, and confirmed an environmental impact of leaded aviation gasoline (AVGAS). This study included a total of 256 male aircraft maintenance personnel, among whom 105 used only AVGAS as their aviation fuel, while 151 used only jet propellant 8 (JP-8), a kerosene variety. BLLs were measured and the data on related factors were obtained. The arithmetic and geometric means of BLLs of the personnel at the airbases that used only AVGAS were 4.20 microg x dl(-1) and 4.01 microg x dl(-1) and that used only JP-8 were 3.79 microg x dl(-1) and 3.57 microg x dl(-1), respectively. The BLLs of the maintenance crew of the main workspace that was located within a 200-m distance from the runway were higher than those of the main workspace that was located 200 m or farther from the runway. The longer the work hours in the runway or the longer the work duration, the higher the BLLs of the maintenance crew. This investigation exposed the fact that a body's BLL could be increased by AVGAS emissions through the examination of aircraft maintenance crew. This result is in agreement with results of previous studies that suggest proximity to an airport may be associated with elevated BLLs for adults and children. Collectively, the results of the current study and previous research suggest that long-duration inhabitation and/or activities in close proximity to an air facility should be limited given that lead poses known health risks.

  18. Measurements of nitrous acid in commercial aircraft exhaust at the Alternative Aviation Fuel Experiment.

    Science.gov (United States)

    Lee, Ben H; Santoni, Gregory W; Wood, Ezra C; Herndon, Scott C; Miake-Lye, Richard C; Zahniser, Mark S; Wofsy, Steven C; Munger, J William

    2011-09-15

    The Alternative Aviation Fuel Experiment (AAFEX), conducted in January of 2009 in Palmdale, California, quantified aerosol and gaseous emissions from a DC-8 aircraft equipped with CFM56-2C1 engines using both traditional and synthetic fuels. This study examines the emissions of nitrous acid (HONO) and nitrogen oxides (NO(x) = NO + NO(2)) measured 145 m behind the grounded aircraft. The fuel-based emission index (EI) for HONO increases approximately 6-fold from idle to takeoff conditions but plateaus between 65 and 100% of maximum rated engine thrust, while the EI for NO(x) increases continuously. At high engine power, NO(x) EI is greater when combusting traditional (JP-8) rather than Fischer-Tropsch fuels, while HONO exhibits the opposite trend. Additionally, hydrogen peroxide (H(2)O(2)) was identified in exhaust plumes emitted only during engine idle. Chemical reactions responsible for emissions and comparison to previous measurement studies are discussed.

  19. An evaluation of differential Omega for general aviation area navigation

    Science.gov (United States)

    Hollister, W. M.; Dodge, S. M.

    1974-01-01

    This paper reports on a study which compared the expected cost and performance of Differential Omega with that of Loran-C and VORTAC for general aviation area navigation. Analysis is directed toward a comparison of the systems with respect to specified performance parameters and the cost-effectiveness of each system in relation to the specifications. Loran-C offers the highest performance with respect to accuracy. Differential Omega requires the least expenditure. It was found cost ineffective to attempt to obtain complete coverage by expanding the existing VORTAC system.

  20. Pilots' perception of risks and hazards in general aviation.

    Science.gov (United States)

    O'Hare, D

    1990-07-01

    A sample of licensed pilots completed the Aeronautical Risk Judgment Questionnaire (ARJQ) which was developed to obtain data on pilots' perceptions of their abilities, willingness to take risks, hazard awareness, and judgments of the risks of general aviation. A subset of these subjects was tested on a computerised test of flight decision-making involving a proposed VFR flight in marginal weather conditions. Results from the ARJQ indicate relatively low levels of risk and hazard awareness combined with a generally optimistic self-appraisal of abilities by this sample of general aviation pilots. Younger subjects (under 30) were found to rate the likelihood of being involved in an accident more highly than did older pilots. Experienced pilots obtained higher scores on a measure of "personal invulnerability" from factors commonly associated with accidents. This does not appear to be due simply to overconfidence in their abilities, since it was the younger and less experienced pilots who held the most unrealistically optimistic appraisals of their ability. Pilots who proceeded with the computerised flight rate themselves as having a greater willingness to take risks, and were likely to be younger and have higher total hours than those who rejected the flight. They were also found to have significantly higher scores on the measure of "personal invulnerability." The results are discussed in relation to previous epidemiological findings and possible safety prevention strategies.

  1. Model-based aviation advice on distal volcanic ash clouds by assimilating aircraft in situ measurements

    Science.gov (United States)

    Fu, Guangliang; Heemink, Arnold; Lu, Sha; Segers, Arjo; Weber, Konradin; Lin, Hai-Xiang

    2016-07-01

    The forecast accuracy of distal volcanic ash clouds is important for providing valid aviation advice during volcanic ash eruption. However, because the distal part of volcanic ash plume is far from the volcano, the influence of eruption information on this part becomes rather indirect and uncertain, resulting in inaccurate volcanic ash forecasts in these distal areas. In our approach, we use real-life aircraft in situ observations, measured in the northwestern part of Germany during the 2010 Eyjafjallajökull eruption, in an ensemble-based data assimilation system combined with a volcanic ash transport model to investigate the potential improvement on the forecast accuracy with regard to the distal volcanic ash plume. We show that the error of the analyzed volcanic ash state can be significantly reduced through assimilating real-life in situ measurements. After a continuous assimilation, it is shown that the aviation advice for Germany, the Netherlands and Luxembourg can be significantly improved. We suggest that with suitable aircrafts measuring once per day across the distal volcanic ash plume, the description and prediction of volcanic ash clouds in these areas can be greatly improved.

  2. Emergency Highway Landings in General Aviation and the Possible Role of Media Reports.

    Science.gov (United States)

    Holzman, Emily; de Voogt, Alex

    2017-05-01

    To examine the causes and factors of airplane landings on highways and the dangers to occupants of vehicles on the ground. The U.S. National Transportation Safety Board online database provided 133 accidents involving a highway landing dating from 2000 to 2013. Supplemental information was sought in online media archives, which reported on 53 of these accidents. Collisions with highway-related objects, other options for landing, and witness accounts were added categories extracted from the narrative statements and media reports. Highway landings occur mostly due to mechanical failures, ineffective preflight or in-flight planning, and fuel exhaustion, in addition to a lack of alternate landing options for a pilot of a fixed-wing aircraft. Most of the landings (N = 108) lead to minor or no injuries at all. A significant proportion of 7 out of 19 collisions with powerlines resulted in a fatality, as opposed to other types of accidents. Collisions with motor vehicles (N = 29) caused minor (N = 23) and serious (N = 2) injuries to people on the ground. Main online media archives covered less than half of all accidents (39.8%). While highway landings are not a recommended landing alternative, mitigation strategies should include a focus on avoiding powerlines and vehicles on the ground. Unfortunately, online media archives are not yet a consistent source of information for general aviation accidents.Holzman E, de Voogt A. Emergency highway landings in general aviation and the possible role of media reports. Aerosp Med Hum Perform. 2017; 88(5):497-499.

  3. Conceptual Design and Structural Optimization of NASA Environmentally Responsible Aviation (ERA) Hybrid Wing Body Aircraft

    Science.gov (United States)

    Quinlan, Jesse R.; Gern, Frank H.

    2016-01-01

    Simultaneously achieving the fuel consumption and noise reduction goals set forth by NASA's Environmentally Responsible Aviation (ERA) project requires innovative and unconventional aircraft concepts. In response, advanced hybrid wing body (HWB) aircraft concepts have been proposed and analyzed as a means of meeting these objectives. For the current study, several HWB concepts were analyzed using the Hybrid wing body Conceptual Design and structural optimization (HCDstruct) analysis code. HCDstruct is a medium-fidelity finite element based conceptual design and structural optimization tool developed to fill the critical analysis gap existing between lower order structural sizing approaches and detailed, often finite element based sizing methods for HWB aircraft concepts. Whereas prior versions of the tool used a half-model approach in building the representative finite element model, a full wing-tip-to-wing-tip modeling capability was recently added to HCDstruct, which alleviated the symmetry constraints at the model centerline in place of a free-flying model and allowed for more realistic center body, aft body, and wing loading and trim response. The latest version of HCDstruct was applied to two ERA reference cases, including the Boeing Open Rotor Engine Integration On an HWB (OREIO) concept and the Boeing ERA-0009H1 concept, and results agreed favorably with detailed Boeing design data and related Flight Optimization System (FLOPS) analyses. Following these benchmark cases, HCDstruct was used to size NASA's ERA HWB concepts and to perform a related scaling study.

  4. Aircraft Wood Structures, Covering and Finishing Methods (Course Outline), Aviation Mechanics 2 (Air Frame): 9065.01.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to familiarize the student with aircraft wood structures and related Federal Aviation Agency requirements. Topics outlined are identification of defects on wood samples, defining terms used on wood structures, inspecting wood structure together with servicing and repair of wood…

  5. Future aviation fuels overview

    Science.gov (United States)

    Reck, G. M.

    1980-01-01

    The outlook for aviation fuels through the turn of the century is briefly discussed and the general objectives of the NASA Lewis Alternative Aviation Fuels Research Project are outlined. The NASA program involves the evaluation of potential characteristics of future jet aircraft fuels, the determination of the effects of those fuels on engine and fuel system components, and the development of a component technology to use those fuels.

  6. Relationship between Recent Flight Experience and Pilot Error General Aviation Accidents

    Science.gov (United States)

    Nilsson, Sarah J.

    Aviation insurance agents and fixed-base operation (FBO) owners use recent flight experience, as implied by the 90-day rule, to measure pilot proficiency in physical airplane skills, and to assess the likelihood of a pilot error accident. The generally accepted premise is that more experience in a recent timeframe predicts less of a propensity for an accident, all other factors excluded. Some of these aviation industry stakeholders measure pilot proficiency solely by using time flown within the past 90, 60, or even 30 days, not accounting for extensive research showing aeronautical decision-making and situational awareness training decrease the likelihood of a pilot error accident. In an effort to reduce the pilot error accident rate, the Federal Aviation Administration (FAA) has seen the need to shift pilot training emphasis from proficiency in physical airplane skills to aeronautical decision-making and situational awareness skills. However, current pilot training standards still focus more on the former than on the latter. The relationship between pilot error accidents and recent flight experience implied by the FAA's 90-day rule has not been rigorously assessed using empirical data. The intent of this research was to relate recent flight experience, in terms of time flown in the past 90 days, to pilot error accidents. A quantitative ex post facto approach, focusing on private pilots of single-engine general aviation (GA) fixed-wing aircraft, was used to analyze National Transportation Safety Board (NTSB) accident investigation archival data. The data were analyzed using t-tests and binary logistic regression. T-tests between the mean number of hours of recent flight experience of tricycle gear pilots involved in pilot error accidents (TPE) and non-pilot error accidents (TNPE), t(202) = -.200, p = .842, and conventional gear pilots involved in pilot error accidents (CPE) and non-pilot error accidents (CNPE), t(111) = -.271, p = .787, indicate there is no

  7. GASP- General Aviation Synthesis Program. Volume 6: Performance

    Science.gov (United States)

    Hague, D.

    1978-01-01

    Aircraft performance modeling requires consideration of propulsion, aerodynamics, and weight characteristics. Eleven subroutines used in modeling aircraft performance are presented and their interactions considered. Manuals for performance model users and programmers are included.

  8. General Aviation Aircraft Utilization in the Construction Industry.

    Science.gov (United States)

    1987-01-01

    helicopter is significantly more expensive than a conventional crane. However, there are other factors which must be talen into consideration, namely the items...Opportunities Through Technology Transfer", SAE Technical Paper 840703, Society of Automotive Engineers/ 400 commonwealth Drive/ Warrendale, Pa. 15096 8... Technology Aerospace Review (STAR). The function of this search was primarily to develop a sound foundation of key words or categories on which to base the

  9. The NASA Environmentally Responsible Aviation Project/General Electric Open Rotor Test Campaign

    Science.gov (United States)

    Van Zante, Dale

    2013-01-01

    The Open Rotor is a modern version of the UnDucted Fan (UDF) that was flight tested in the late 1980's through a partnership between NASA and General Electric (GE). Tests were conducted in the 9'x15' Low Speed Wind Tunnel and the 8'x6' Supersonic Wind Tunnel starting in late 2009 and completed in early 2012. Aerodynamic and acoustic data were obtained for takeoff, approach and cruise simulations. GE was the primary partner, but other organizations were involved such as Boeing and Airbus who provided additional hardware for fuselage simulations. This test campaign provided the acoustic and performance characteristics for modern open rotor blades designs." NASA and GE conducted joint systems analysis to evaluate how well new blade designs would perform on a B737 class aircraft, and compared the results to an advanced higher bypass ratio turbofan." Acoustic shielding experiments were performed at NASA GRC and Boeing LSAF facilities to provide data for noise estimates of unconventional aircraft configurations with Open Rotor propulsion systems." The work was sponsored by NASA's aeronautics programs, including the Subsonic Fixed Wing (SFW) and the Environmentally Responsible Aviation (ERA) projects."

  10. A system-of-systems modeling methodology for strategic general aviation design decision-making

    Science.gov (United States)

    Won, Henry Thome

    General aviation has long been studied as a means of providing an on-demand "personal air vehicle" that bypasses the traffic at major commercial hubs. This thesis continues this research through development of a system of systems modeling methodology applicable to the selection of synergistic product concepts, market segments, and business models. From the perspective of the conceptual design engineer, the design and selection of future general aviation aircraft is complicated by the definition of constraints and requirements, and the tradeoffs among performance and cost aspects. Qualitative problem definition methods have been utilized, although their accuracy in determining specific requirement and metric values is uncertain. In industry, customers are surveyed, and business plans are created through a lengthy, iterative process. In recent years, techniques have developed for predicting the characteristics of US travel demand based on travel mode attributes, such as door-to-door time and ticket price. As of yet, these models treat the contributing systems---aircraft manufacturers and service providers---as independently variable assumptions. In this research, a methodology is developed which seeks to build a strategic design decision making environment through the construction of a system of systems model. The demonstrated implementation brings together models of the aircraft and manufacturer, the service provider, and most importantly the travel demand. Thus represented is the behavior of the consumers and the reactive behavior of the suppliers---the manufacturers and transportation service providers---in a common modeling framework. The results indicate an ability to guide the design process---specifically the selection of design requirements---through the optimization of "capability" metrics. Additionally, results indicate the ability to find synergetic solutions, that is solutions in which two systems might collaborate to achieve a better result than acting

  11. Scale-free Graphs for General Aviation Flight Schedules

    Science.gov (United States)

    Alexandov, Natalia M. (Technical Monitor); Kincaid, Rex K.

    2003-01-01

    In the late 1990s a number of researchers noticed that networks in biology, sociology, and telecommunications exhibited similar characteristics unlike standard random networks. In particular, they found that the cummulative degree distributions of these graphs followed a power law rather than a binomial distribution and that their clustering coefficients tended to a nonzero constant as the number of nodes, n, became large rather than O(1/n). Moreover, these networks shared an important property with traditional random graphs as n becomes large the average shortest path length scales with log n. This latter property has been coined the small-world property. When taken together these three properties small-world, power law, and constant clustering coefficient describe what are now most commonly referred to as scale-free networks. Since 1997 at least six books and over 400 articles have been written about scale-free networks. In this manuscript an overview of the salient characteristics of scale-free networks. Computational experience will be provided for two mechanisms that grow (dynamic) scale-free graphs. Additional computational experience will be given for constructing (static) scale-free graphs via a tabu search optimization approach. Finally, a discussion of potential applications to general aviation networks is given.

  12. Measurement of the effect of manufacturing deviations on natural laminar flow for a single engine general aviation airplane

    Science.gov (United States)

    1987-01-01

    Renewed interest in natural laminar flow (NLF) had rekindled designer concern that manufacuring deviations may destroy the effectiveness of NLF for an operational aircraft. Experiments are summarized that attemtped to measure total drag changes associated with three different wing surface conditions on an aircraft typical of current general aviation high performance singles. The speed power technique was first used in an attempt to quantify the changes in total drag. Predicted and measured boundary layer transition locations for three different wing surface conditions were also compared, using two different forms of flow visualization. The three flight test phases included: assessment of an unpainted airframe, flight tests of the same aircraft after painstakingly filling and sanding the wings to design contours, and similar measurement after this aricraft was painted. In each flight phase, transition locations were monitored using with sublimating chemicals or pigmented oil. Two-dimensional drag coefficients were estimated using the Eppler-Somers code and measured with a wake rake in a method very similar to Jones' pitot traverse method. The net change in two-dimensional drag coefficient was approximately 20 counts between the unpainted aircraft and the hand-smoothed aircraft for typical cruise flight conditions.

  13. GASP- General Aviation Synthesis Program. Volume 5: Weight

    Science.gov (United States)

    Hague, D.

    1978-01-01

    Subroutines for determining the weights of propulsion system related components and the airframe components of an aircraft configuration are presented. Subroutines that deal with design load conditions, aircraft balance, and tail sizing are included. Options for turbine and internal combustion engines are provided.

  14. NASA's Role in Aeronautics: A Workshop. Volume IV - General Aviation.

    Science.gov (United States)

    National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.

    The central task of a 1980 workshop on the role of the National Aeronautics and Space Administration (NASA) in aeronautics was to examine the relationship of NASA's research capabilities to the state of U.S. aviation and to make recommendations about NASA's future role in aeronautics. The findings and recommendations of the Panel on General…

  15. Physical environment. [environmental impact statement required for general aviation airport construction

    Science.gov (United States)

    1975-01-01

    Environmental legislation affecting airports and the more common environmental effects resulting from airport construction are discussed with special emphasis on general aviation airports. The discussion is focused on the regulation of noise, pollution, and water quality.

  16. Proceedings of the AIAA/FAA Joint Symposium on General Aviation Systems Held in Ocean City, New Jersey on 11-12 April 1990

    Science.gov (United States)

    1990-05-01

    ALUMINUM COVER-•DE \\ A-357 AGED CAST ALUMINUM DE HOUSING A356 CAST ALUMINUM ROTOR A-357 AGED INVESTMENT CAST INVESTMENT CAST MODULAR IRON OR 174PH ASTM...the Fatigue Behavior 34 of Aluminum Lithium Alloys Ali Eftekhari / Jorge E. Talia Wichita State University * ETBE in General Aviation Aircraft...University ABSTRACT The principal objective of this research was to investigate paint removal by mechanical means, i.e., blasting, from aluminum structural

  17. 14 CFR 33.82 - General.

    Science.gov (United States)

    2010-01-01

    ... and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.82 General. Before each endurance... installation on the engine must be established and recorded....

  18. 14 CFR 33.42 - General.

    Science.gov (United States)

    2010-01-01

    ... and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Reciprocating Aircraft Engines § 33.42 General. Before each... of installation on the engine must be established and recorded....

  19. Impacts of alternative fuels in aviation on microphysical aerosol properties and predicted ice nuclei concentration at aircraft cruise altitude

    Science.gov (United States)

    Weinzierl, B.; D'Ascoli, E.; Sauer, D. N.; Kim, J.; Scheibe, M.; Schlager, H.; Moore, R.; Anderson, B. E.; Ullrich, R.; Mohler, O.; Hoose, C.

    2015-12-01

    In the past decades air traffic has been substantially growing affecting air quality and climate. According to the International Civil Aviation Authority (ICAO), in the next few years world passenger and freight traffic is expected to increase annually by 6-7% and 4-5%, respectively. One possibility to reduce aviation impacts on the atmosphere and climate might be the replacement of fossil fuels by alternative fuels. However, so far the effects of alternative fuels on particle emissions from aircraft engines and their ability to form contrails remain uncertain. To study the effects of alternative fuels on particle emissions and the formation of contrails, the Alternative Fuel Effects on Contrails and Cruise Emissions (ACCESS) field experiment was conducted in California. In May 2014, the DLR Falcon 20 and the NASA HU-25 jet aircraft were instrumented with an extended aerosol and trace gas payload probing different types of fuels including JP-8 and JP-8 blended with HEFA (Hydroprocessed Esters and Fatty Acids) while the NASA DC8 aircraft acted as the source aircraft for ACCESS-2. Emission measurements were taken in the DC8 exhaust plumes at aircraft cruise level between 9-12 km altitude and at distances between 50 m and 20 km behind the DC8 engines. Here, we will present results from the ACCESS-2 aerosol measurements which show a 30-60% reduction of the non-volatile (mainly black carbon) particle number concentration in the aircraft exhaust for the HEFA-blend compared to conventional JP-8 fuel. Size-resolved particle emission indices show the largest reductions for larger particle sizes suggesting that the HEFA blend contains fewer and smaller black carbon particles. We will combine the airborne measurements with a parameterization of deposition nucleation developed during a number of ice nucleation experiments at the AIDA chamber in Karlsruhe and discuss the impact of alternative fuels on the abundance of potential ice nuclei at cruise conditions.

  20. A General Retention Model Applied to the Naval Aviator.

    Science.gov (United States)

    1980-06-01

    motivation is useful. One such theory is the motivation theory developed by Abraham Maslow (1970) which is based on a hierarchy of needs. Maslow argued...and stability come next in his hierarchy. Once these needs are largely 7 satisfied, Maslow believes that the need to belong and to feel needed become...aviator career progress is portrayed by an inverted pyramid divided horizontally into four sections. The sections represent the different stages a career

  1. General Aviation: Hours Flown and Avionics Purchase Decisions.

    Science.gov (United States)

    1978-05-01

    cost and income on hours flown for the various hours flown categories will be considered in Section 2-4 of this chapter. 19 For the benefit of the...omitted because of irrelevance. 59 - 7it Results for the age related factors are as expected-- cider aircraft fly fewer and more recent vintage aircraft...based on the incremental benefits acquired by the "add-one," or simply a function of a larger number of owners having only one or the other type of

  2. Design of a Ground Monitoring and Control System for General Aviation Based on Multilink Communication%基于多链路通信的通用航空地面监控系统设计

    Institute of Scientific and Technical Information of China (English)

    李恒; 何东林; 张益; 赵泽西; 邓胜吉

    2016-01-01

    China' s domestic general aviation is facing the problems of single communication means and be-ing lack of moving target monitoring data. To solve above problems,a multilink general aviation communi-cation monitoring system is presented which is based on the combination of automatic dependent surveil-lance - broadcast ( ADS-B ) link, Beidou link and mobile communication link. As one of the important components of this system,the general aviation ground monitoring and control system is responsible for re-ceiving three links data,general aviation aircraft data processing and collection,aircraft conflict detection, intelligent distribution of general aviation aircraft information and so on. At the same time,in consideration of ground surveillance requirements of seamless,immediate,accurate and continuous monitoring for general a-viation aircraft,multilink automatic handover and fusion is proposed. Real general aviation airport data test results prove that general aviation ground monitoring and control system can process three links data quickly and provide real-time,continuous and seamless aircraft monitoring service for general aviation customers.%针对国内通用航空通信手段单一、活动目标监视数据匮乏的问题,提出了一种基于广播式自动相关监视( ADS-B)链路、“北斗”链路、移动通信链路的多链路通用航空(通航)通信监视系统。通航地面监控系统作为该系统中重要组成之一,承担着多链路数据接收、通航飞机信息处理和收集、航空器冲突检测、通航飞机信息智能分发等重要工作。考虑到地面对通航飞机飞行轨迹的无缝、及时、精确、连续的监视需求,提出了一种多链路自动切换与融合技术。通航机场现场测试证明:通航地面监控系统能够快速有效地处理3种链路数据,为通航用户提供实时、连续、无缝的通航飞机监视服务。

  3. General Aviation Activity and Avionics Survey. Calendar Year 1991

    Science.gov (United States)

    1991-01-01

    o »<u;R a. r O l ^a l gig jgig z$%z EHM » ZHÜIK EH i 0) H 01 MM W * * UHdP«’ CO W op of i E 7-72 r- i too * • • OH OOO oo m oo...Rules (IFR) navigation; and 3) IFR approach. These additions have had a strong impact on the reported total number of aircraft with LRNAV equipment

  4. Dynamically Scaled Modular Aircraft for Flight-Based Aviation Safety Research Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Area-I, Incorporated personnel have led the design, fabrication, and flight testing of twelve unmanned aircraft and one manned aircraft. Partnered with NASA and...

  5. Integration of structural health monitoring solutions onto commercial aircraft via the Federal Aviation Administration structural health monitoring research program

    Science.gov (United States)

    Swindell, Paul; Doyle, Jon; Roach, Dennis

    2017-02-01

    The Federal Aviation Administration (FAA) started a research program in structural health monitoring (SHM) in 2011. The program's goal was to understand the technical gaps of implementing SHM on commercial aircraft and the potential effects on FAA regulations and guidance. The program evolved into a demonstration program consisting of a team from Sandia National Labs Airworthiness Assurance NDI Center (AANC), the Boeing Corporation, Delta Air Lines, Structural Monitoring Systems (SMS), Anodyne Electronics Manufacturing Corp (AEM) and the FAA. This paper will discuss the program from the selection of the inspection problem, the SHM system (Comparative Vacuum Monitoring-CVM) that was selected as the inspection solution and the testing completed to provide sufficient data to gain the first approved use of an SHM system for routine maintenance on commercial US aircraft.

  6. 通用航空业发展若干问题%On Several Issues in General Aviation

    Institute of Scientific and Technical Information of China (English)

    单磊

    2015-01-01

    随着无人机技术的发展、国内外地缘政治、经济形势的演变和国内经济结构的调整,通用航空产业在未来20年内面临着极大的发展机遇和挑战。加快空域管理体制改革,完善无人机技术标准体系,保持通用航空飞行器的质量一致性以及运用可靠性验证方法和手段,是推动通用航空产业自主创新和转变升级的关键。%With the development of UAV technology, according to the evolutions of the domestic and international geopolitics, the changes of the economic situation and the needs of domestic economic restructuring, in the next twenty years, The General Aviation Industry is facing a great of developmental opportunities and challenges. Ability to promote the reforms of airspace management system, can be or not to improve the technical standard system and the verifying methods and tools of The General Aviation Aircraft's quality consistency and reliability, are the key of The General Aviation Industry to innovate and the national economic structure to become the mode such as green, low-carbon, Environmental Protection and sustainable development. The author analyzes it and gives advices.

  7. GASP- General Aviation Synthesis Program. Volume 2: Geometry

    Science.gov (United States)

    Hague, D.

    1978-01-01

    The gross characteristics of an aircraft under study are specified to the subroutines SIZE. The principal quantities specified are both geometric (lengths and areas) and operational (altitude and Mach number). The sequence of computations carried out by SIZE is controlled by the parameter NPC which is passed into SIZE by COMMON. When NPC-0, the computation is initialized. Subsequently, NPC is set to 2 and the program advances through the geometric computations. Geometry models for the fuselage, wing, empennage, cabin pressurization, and nacelle area are examined.

  8. Legal environment and operation of general aviation aerodromes – the overview

    Directory of Open Access Journals (Sweden)

    Henryk JAFERNIK

    2015-12-01

    Full Text Available The functioning of general aviation aerodromes in Poland are regulated by more than 20 national and international legal acts. Knowledge about air law and its application ensures safe operations and flights at aerodromes and airfields. This paper summarizes source of law for general aviation and associated with its development strategies and reports. In the development of general aviation important role play small aerodromes, which are a “meeting point” for air transport sector and local economy, increase investments and tourism attractiveness of the region as well as are "meaningful way for the development of the region". Despite this, there is no legal act comprehensively regulating the issue of financial support for investment at important local aerodromes.

  9. General Aviation Flight Test of Advanced Operations Enabled by Synthetic Vision

    Science.gov (United States)

    Glaab, Louis J.; Hughhes, Monica F.; Parrish, Russell V.; Takallu, Mohammad A.

    2014-01-01

    A flight test was performed to compare the use of three advanced primary flight and navigation display concepts to a baseline, round-dial concept to assess the potential for advanced operations. The displays were evaluated during visual and instrument approach procedures including an advanced instrument approach resembling a visual airport traffic pattern. Nineteen pilots from three pilot groups, reflecting the diverse piloting skills of the General Aviation pilot population, served as evaluation subjects. The experiment had two thrusts: 1) an examination of the capabilities of low-time (i.e., <400 hours), non-instrument-rated pilots to perform nominal instrument approaches, and 2) an exploration of potential advanced Visual Meteorological Conditions (VMC)-like approaches in Instrument Meteorological Conditions (IMC). Within this context, advanced display concepts are considered to include integrated navigation and primary flight displays with either aircraft attitude flight directors or Highway In The Sky (HITS) guidance with and without a synthetic depiction of the external visuals (i.e., synthetic vision). Relative to the first thrust, the results indicate that using an advanced display concept, as tested herein, low-time, non-instrument-rated pilots can exhibit flight-technical performance, subjective workload and situation awareness ratings as good as or better than high-time Instrument Flight Rules (IFR)-rated pilots using Baseline Round Dials for a nominal IMC approach. For the second thrust, the results indicate advanced VMC-like approaches are feasible in IMC, for all pilot groups tested for only the Synthetic Vision System (SVS) advanced display concept.

  10. Biodegradation of international jet A-1 aviation fuel by microorganisms isolated from aircraft tank and joint hydrant storage systems.

    Science.gov (United States)

    Itah, A Y; Brooks, A A; Ogar, B O; Okure, A B

    2009-09-01

    Microorganisms contaminating international Jet A-1 aircraft fuel and fuel preserved in Joint Hydrant Storage Tank (JHST) were isolated, characterized and identified. The isolates were Bacillus subtillis, Bacillus megaterium, Flavobacterium oderatum, Sarcina flava, Micrococcus varians, Pseudomonas aeruginosa, Bacillus licheniformis, Bacillus cereus and Bacillus brevis. Others included Candida tropicalis, Candida albicans, Saccharomyces estuari, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Aspergillus flavus, Aspergillus niger, Aspergillus fumigatus, Cladosporium resinae, Penicillium citrinum and Penicillium frequentans. The viable plate count of microorganisms in the Aircraft Tank ranged from 1.3 (+/-0.01) x 104 cfu/mL to 2.2 (+/-1.6) x 104 cfu/mL for bacteria and 102 cfu/mL to 1.68 (+/-0.32) x 103 cfu/mL for fungi. Total bacterial counts of 1.79 (+/-0.2) x 104 cfu/mL to 2.58 (+/-0.04) x 104 cfu/mL and total fungal count of 2.1 (+/-0.1) x 103 cfu/mL to 2.28 (+/-0.5) x 103 cfu/mL were obtained for JHST. Selected isolates were re-inoculated into filter sterilized aircraft fuels and biodegradation studies carried out. After 14 days incubation, Cladosporium resinae exhibited the highest degradation rate with a percentage weight loss of 66 followed by Candida albicans (60.6) while Penicillium citrinum was the least degrader with a weight loss of 41.6%. The ability of the isolates to utilize the fuel as their sole source of carbon and energy was examined and found to vary in growth profile between the isolates. The results imply that aviation fuel could be biodegraded by hydrocarbonoclastic microorganisms. To avert a possible deterioration of fuel quality during storage, fuel pipe clogging and failure, engine component damage, wing tank corrosion and aircraft disaster, efficient routine monitoring of aircraft fuel systems is advocated.

  11. New principles of periodic aircraft maintenance conditions definition in accordance with aviation safety criteria

    Directory of Open Access Journals (Sweden)

    S. V. Daletskiy

    2015-01-01

    Full Text Available Based on the reliability theory schemes of justifying the volume and structural principles of periodic maintenance (repair of civil aircraft depending on operational conditions meeting the requirements on the failure-free operation, aircraft durability and flight safety are considered.

  12. 32 CFR 766.13 - Sale of aviation fuel, oil, services and supplies.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Sale of aviation fuel, oil, services and... aviation fuel, oil, services and supplies. (a) General policy. In accordance with sections 1107 and 1108 of... Aviation fuel, oil, services, and supplies are not sold to civil aircraft in competition with...

  13. A Study of EL2 Pilots' Radio Communication in the General Aviation Environment

    Science.gov (United States)

    Estival, Dominique; Molesworth, Brett

    2009-01-01

    This paper reports on the preliminary stages of a project designed to investigate communication problems in General Aviation and assess the utility of language technologies as a means of mitigation. The study presented in this paper is the first of a three-part study, in which we aim to investigate the extent to which the English language…

  14. Model-based aviation advice on distal volcanic ash clouds by assimilating aircraft in situ measurements

    NARCIS (Netherlands)

    Fu, G.; Heemink, A.; Lu, S.; Segers, A.; Weber, K.; Lin, H.X.

    2016-01-01

    The forecast accuracy of distal volcanic ash clouds is important for providing valid aviation advice during volcanic ash eruption. However, because the distal part of volcanic ash plume is far from the volcano, the influence of eruption information on this part becomes rather indirect and uncertain,

  15. Expanding Fixed-Wing Aircraft Capability in US Army Aviation Operations

    Science.gov (United States)

    2009-06-12

    Aircraft (FCA) program. Also in 2005, the Air Force expressed a need for a small airlifter and proposed development of the Light Cargo Aircraft ( LCA ...and LCA into the JCA program with the Army as program lead for both services. In 2007, the C-27J Spartan, a vastly improved version of the C-27A...limited by fuel consumption and maintenance readiness. The Stryker Brigade Combat Team (SBCT) is a lightly armored, motorized infantry brigade that

  16. General Roy S. Geiger, USMC: Marine Aviator, Joint Force Commander

    Science.gov (United States)

    2007-06-01

    under the wings of their planes. Brigadier General Roy Geiger, with seemingly iron nerves and tireless muscles, forced them back into their planes...that justified a separate service, independent of the Army. The Army, meanwhile, was determined to preserve its force structure in the frenzy of

  17. Progress of Aircraft System Noise Assessment with Uncertainty Quantification for the Environmentally Responsible Aviation Project

    Science.gov (United States)

    Thomas, Russell H.; Burley, Casey L.; Guo, Yueping

    2016-01-01

    Aircraft system noise predictions have been performed for NASA modeled hybrid wing body aircraft advanced concepts with 2025 entry-into-service technology assumptions. The system noise predictions developed over a period from 2009 to 2016 as a result of improved modeling of the aircraft concepts, design changes, technology development, flight path modeling, and the use of extensive integrated system level experimental data. In addition, the system noise prediction models and process have been improved in many ways. An additional process is developed here for quantifying the uncertainty with a 95% confidence level. This uncertainty applies only to the aircraft system noise prediction process. For three points in time during this period, the vehicle designs, technologies, and noise prediction process are documented. For each of the three predictions, and with the information available at each of those points in time, the uncertainty is quantified using the direct Monte Carlo method with 10,000 simulations. For the prediction of cumulative noise of an advanced aircraft at the conceptual level of design, the total uncertainty band has been reduced from 12.2 to 9.6 EPNL dB. A value of 3.6 EPNL dB is proposed as the lower limit of uncertainty possible for the cumulative system noise prediction of an advanced aircraft concept.

  18. Methodology to Improve Aviation Security With Terrorist Using Aircraft as a Weapon

    Science.gov (United States)

    2013-09-01

    Whitcomb Chair , Department of Systems Engineering iv THIS PAGE INTENTIONALLY LEFT BLANK v ABSTRACT The aviation industry is a large... wheelchair -bound man was stopped by airport security when he began distributing leaflets to publicize his cause. “Shortly after his standoff with airport...security, the disgruntled petitioner detonated his devices” (FlorCruz, 2013). Airport security had seen the wheelchair -bound man distributing

  19. Convection Weather Detection by General Aviation Pilots with Convectional and Data-Linked Graphical Weather Information Sources

    Science.gov (United States)

    Chamberlain, James P.; Latorella, Kara A.

    2001-01-01

    This study compares how well general aviation (GA) pilots detect convective weather in flight with different weather information sources. A flight test was conducted in which GA pilot test subjects were given different in-flight weather information cues and flown toward convective weather of moderate or greater intensity. The test subjects were not actually flying the aircraft, but were given pilot tasks representative of the workload and position awareness requirements of the en route portion of a cross country GA flight. On each flight, one test subject received weather cues typical of a flight in visual meteorological conditions (VMC), another received cues typical of flight in instrument meteorological conditions (IMC), and a third received cues typical of flight in IMC but augmented with a graphical weather information system (GWIS). The GWIS provided the subject with near real time data-linked weather products, including a weather radar mosaic superimposed on a moving map with a symbol depicting the aircraft's present position and direction of track. At several points during each flight, the test subjects completed short questionnaires which included items addressing their weather situation awareness and flight decisions. In particular, test subjects were asked to identify the location of the nearest convective cells. After the point of nearest approach to convective weather, the test subjects were asked to draw the location of convective weather on an aeronautical chart, along with the aircraft's present position. This paper reports preliminary results on how accurately test subjects provided with these different weather sources could identify the nearest cell of moderate or greater intensity along their route of flight. Additional flight tests are currently being conducted to complete the data set.

  20. Aviation Maintenance Technology. Airframe. A203. Aircraft Fabric Covering, Painting, and Finishing. Instructor Material.

    Science.gov (United States)

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This teacher's guide is designed to aid teachers in leading students through a module on airframe building and repair, including fabric covering, painting, and finishing. The module contains two units that cover the following topics: (1) inspecting, testing, and installing aircraft fabric coverings and (2) applying dope, paint, and trim. Each unit…

  1. Laser in situ keratomileusis flap stability in an aviator following aircraft ejection.

    Science.gov (United States)

    Richmond, Christopher J; Barker, Patrick D; Levine, Edgar M; Hofmeister, Elizabeth M

    2016-11-01

    We present the case of a 28-year-old male F/A-18F Super Hornet naval flight officer who ejected from an aircraft at 13 000 feet at a speed in excess of 350 knots 7 years after uneventful laser in situ keratomileusis (LASIK). The patient was evaluated the day after the ejection. No LASIK flap complications or epithelial defects were found, and the corrected distance visual acuity was 20/15 in both eyes.

  2. A Summary of Crew Workload and Situational Awareness Ratings for U.S. Army Aviation Aircraft

    Science.gov (United States)

    2014-06-01

    Operational Test ( IOT ) ARH BHIVE 2 Common Aviation Architecture System (CAAS) Assessment LUT CH-47F BHIVE 2 CAAS Assessment Horizontal...Forward-Looking Infrared (FLIR) sensor was difficult to control. In the case of the 3-D conformal tests for CH-47F and UH-60L/M, higher workload...64D – Integrated (UAS) 2.60 2.90 AH-64E IOT 2.50 2.50 AH-64E LUT 4.22 3.22 ARH – CAAS 3.71 3.94 ARH LUT 7.39 4.11 CH-47F – CAAS 2.66 2.70 CH-47F

  3. Aviation environmental technology and science

    Institute of Scientific and Technical Information of China (English)

    Zhang Yanzhong

    2008-01-01

    Expatiating on the impact of aviation on the environment and aviation environmental protection projects are ex- pounded, and analyzing on the atmosphere pollution and effects on the aviation noise of aircraft discharge. Researching the approach to control aircraft exhaust pollution and noise pollution, and proposing the technology and management measures to reduce air pollution.

  4. Crew Factors in Flight Operations XV: Alertness Management in General Aviation Education Module

    Science.gov (United States)

    Rosekind, Mark R.; Co, Elizabeth L.; Neri, David F.; Oyung, Raymond L.; Mallis, Melissa M.; Cannon, Mary M. (Technical Monitor)

    2002-01-01

    Regional operations encompass a broad range of pilots and equipment. This module is intended to help all those involved in regional aviation, including pilots, schedulers, dispatchers, maintenance technicians, policy makers, and others, to understand the physiological factors underlying fatigue, how flight operations affect fatigue, and what can be done to counteract fatigue and maximize alertness and performance in their operations. The overall purpose of this module is to promote aviation safety, performance, and productivity. It is intended to meet three specific objectives: (1) to explain the current state of knowledge about the physiological mechanisms underlying fatigue; (2) to demonstrate how this knowledge can be applied to improving flight crew sleep, performance, and alertness; and (3) to offer strategies for alertness management. Aviation Safety Reporting System (ASRS) and National Transportation Safety Board (NISH) reports are used throughout this module to demonstrate that fatigue is a safety issue in the regional operations community. The appendices at the end of this module include the ASRS reports used for the examples contained in this publication, brief introductions to sleep disorders and relaxation techniques, summaries of relevant NASA publications, and a list of general readings on sleep, sleep disorders, and circadian rhythms.

  5. Transient effects of harsh luminous conditions on the visual performance of aviators in a civil aircraft cockpit.

    Science.gov (United States)

    Yang, Biao; Lin, Yandan; Sun, Yaojie

    2013-03-01

    The aim of this work was to examine how harsh luminous conditions in a cockpit, such as lightning in a thunderstorm or direct sunlight immediately after an aircraft passes through clouds, may affect the visual performance of pilots, and how to improve it. Such lighting conditions can result in the temporary visual impairment of aviators, which may greatly increase the risk of accidents. Tests were carried out in a full-scale simulator cockpit in which two kinds of dynamic lighting scenes, namely pulse changed and step changed lighting, were used to represent harsh luminous conditions. Visual acuity (VA), reaction time (RT) and identification accuracy (IA) were recorded as dependent variables. Data analysis results indicate that standardized VA values decreased significantly in both pulsing and step conditions in comparison with the dark condition. Standardized RT values increased significantly in the step condition; on the contrary, less reaction time was observed in the pulsing condition. Such effects could be reduced by an ambient illumination provided by a fluorescent lamp in both conditions. The results are to be used as a principle for optimizing lighting design with a thunderstorm light.

  6. Interaction between Crosswind and Aviation-Fuel Fire Engulfing a Full-Scale Composite-Type Aircraft: A Numerical Study

    Directory of Open Access Journals (Sweden)

    Hui Ying Wang

    2015-05-01

    Full Text Available This numerical study focuses on the fire phenomenology associated with the presence of a composite-type aircraft immersed, at one particular location and orientation, within a large aviation-fuel fire in a moving fluid medium. An extension of the eddy dissipation concept is incorporated, allowing one to investigate the roles of the wind speed and its direction on the fire growth, heat flux distribution and smoke products, such as carbon monoxide and soot. The predicted flame shape compares well with the measurements for an intermediate-scale fire. The outcome of the study is interesting, and the interaction model between turbulence and combustion is indeed adequate. The prediction indicates that interaction between the large object and fire environment combined with the influence of wind conditions dramatically affects the continuous flame shape. The increase of the wind speed results in an alteration of the distribution of the incident heat fluxes to the engulfed fuselage skin for a case where the fire and fuselage are of comparable size. The highest heat flux occurs on the windward side of the fuselage for the low and medium winds, but on the leeward side of the fuselage for the high wind. The peak in heat flux to the medium or high wind is almost equal in magnitude, but about a factor four increase of that to the low wind.

  7. GENERALIZED LANDSCAPE THEORY: AGENT-BASED APPROACH TO ALLIANCE FORMATIONS IN CIVIL AVIATION INDUSTRY

    Institute of Scientific and Technical Information of China (English)

    Kyoichi Kijima

    2001-01-01

    The purpose of this paper is to generalize Landscape theory proposed by R.Axelrod and, then, to apply it to the civil aviation industry for simulating alliance formations in it. Landscape theory provides a well-known agent-based simulation model for analyzing alliance (or coalition) formation process. When a set N of agents or autonomous decision makers is given, the theory assumes that each agent tries to make a coalition in such a way that the resulting alliance minimizes its frustration. The theory is essentially based on two premises. One is that a propensity is symmetric,i.e., the propensity of agent i toward j is exactly the same as that of j toward i for anyagents i and j in N. The other is that the number of alliances is restricted to two, i.e., at any moment N is partitioned into two parties. Though the two basic premises underpin the theory and make the model simple and operational, they do not always reflect alliance formation processes in a realistic way. A generalized Landscape theory that this paper proposes removes them and allows asymmetric propensity and existence of alliances of any number. Since the premises are essential for the model, the generalization requires a drastic reconstruction of the whole idea of the theory. Finally, we analyze a real alliance formation process in the civil aviation industry.This analysis provides interesting insights about the industry as well as some validation of our generalized Landscape theory.

  8. Introduction of Enhanced Vision System and its Application for General Aviation

    Directory of Open Access Journals (Sweden)

    Roman Matyáš

    2015-10-01

    Full Text Available Enhanced Vision System (EVS technology has been developing since 1980s. The research itself has been mainly focused on controlling Unmanned Aerial Vehicles (UAVs. In this area, some methods were successfully tested, from take-off to landing. This paper is meant to be an introduction for further research and testing within general aviation area for use of EVS technology by high experienced as well as low experienced pilots in order to increase the level of safety during critical stages of flight.

  9. Evaluation of a pneumatic boot deicing system on a general aviation wing model

    Science.gov (United States)

    Albright, A. E.; Kohlman, D. L.; Schweikhard, W. G.; Evanich, P.

    1981-01-01

    The aerodynamic characteristics of a typical modern general aviation airfoil were investigated with and without a pneumatic boot ice protection system. The ice protection effectiveness of the boot was studied. This includes the change in drag on the airfoil with the boot inflated and deflated, the change in drag due to primary and residual ice formation, drag change due to cumulative residual ice formation, and parameters affecting boot effectiveness. Boot performance was not affected by tunnel total temperature or velocity. Marginal effect in performance was associated with angle of attack. Significant effects on performance were caused by variations in droplet size, LWC, ice cap thickness inflation pressure, and surface treatment.

  10. A comparative analysis of area navigation systems in general aviation. M.S. Thesis

    Science.gov (United States)

    Dodge, S. M.

    1973-01-01

    Radio navigation systems which offer the capabilities of area navigation to general aviation operators are discussed. The systems considered are: (1) the VORTAC system, (2) the Loran-C system, and (3) the Differential Omega system. The inital analyses are directed toward a comparison of the systems with respect to their compliance to specified performance parameters and to the cost effectiveness of each system in relation to those specifications. Further analyses lead to the development of system cost sensitivity charts, and the employment of these charts allows conclusions to be drawn relative to the cost-effectiveness of the candidate navigation system.

  11. An examination of aviation accidents in the context of a conflict of interests between law enforcement, insurers, commissions for aircraft accident investigations and other entities

    Directory of Open Access Journals (Sweden)

    Tomasz BALCERZAK

    2017-06-01

    Full Text Available The sole purpose of air accident investigations should be the prevention of accidents and incidents in the future without apportioning blame or liability. Any civil aviation safety system is based on feedback and lessons learned from accidents and incidents, which require the strict application of rules on confidentiality in order to ensure the availability of valuable sources of information in the future. Therefore, related data, especially sensitive safety information, should be protected in an appropriate manner. Information provided by a person in the framework of a safety investigation should not be used against that person, in full respect of constitutional principles, as well as national and international law. Each “involved person” in an accident or another serious incident should promptly notify the competent investigating authority of the state of the event. An “involved person” means the owner, a member of the crew, the operator of the aircraft involved in an accident or other serious incident, or any person involved in the maintenance, design, manufacture of the affected aircraft or in the training of its crews, as well as any person involved in air traffic control, providing flight information or providing airport services to the aircraft in question, the staff of the national civil aviation authority, or staff of the European Aviation Safety Agency. The protection level of the organization (employer: employees who report an event or replace applications following an event with regard to the appropriate reporting systems should not face any prejudice from their employer because of information provided by the applicant. The protection does not cover (exclusions: infringement with wilful misconduct (direct intent, recklessness infringement; infringement committed by a clear and serious disregard of the obvious risks; and serious professional negligence of an unquestionably duty of care required under the circumstances

  12. Comprehensive Technical Report, General Electric Direct-Air-Cycle Aircraft Nuclear Propulsion Program; Aircraft Nuclear Propulsion Application Studies

    Energy Technology Data Exchange (ETDEWEB)

    Comassar, S.

    1962-04-30

    This volume is one of twenty-one summarizing the Aircraft Nuclear Propulsion Program of the General Electric Company. This portion describes the studies of advanced applications of nuclear reactors that were performed, including various types of aircraft, missiles, space vehicles, ships, and portable power plants.

  13. Comprehensive Technical Report, General Electric Direct-Air-Cycle Aircraft Nuclear Propulsion Program; Aircraft Nuclear Propulsion Application Studies

    Energy Technology Data Exchange (ETDEWEB)

    Comassar, S.

    1962-04-30

    This volume is one of twenty-one summarizing the Aircraft Nuclear Propulsion Program of the General Electric Company. This portion describes the studies of advanced applications of nuclear reactors that were performed, including various types of aircraft, missiles, space vehicles, ships, and portable power plants.

  14. Assessment of a Conceptual Flap System Intended for Enhanced General Aviation Safety

    Science.gov (United States)

    Campbell, Bryan A.; Carter, Melissa B.

    2017-01-01

    A novel multielement trailing-edge flap system for light general aviation airplanes was conceived for enhanced safety during normal and emergency landings. The system is designed to significantly reduce stall speed, and thus approach speed, with the goal of reducing maneuveringflight accidents and enhancing pilot survivability in the event of an accident. The research objectives were to assess the aerodynamic performance characteristics of the system and to evaluate the extent to which it provided both increased lift and increased drag required for the low-speed landing goal. The flap system was applied to a model of a light general aviation, high-wing trainer and tested in the Langley 12- Foot Low-Speed Wind Tunnel. Data were obtained for several device deflection angles, and component combinations at a dynamic pressure of 4 pounds per square foot. The force and moment data supports the achievement of the desired increase in lift with substantially increased drag, all at relatively shallow angles of attack. The levels of lift and drag can be varied through device deflection angles and inboard/outboard differential deflections. As such, it appears that this flap system may provide an enabling technology to allow steep, controllable glide slopes for safe rapid descent to landing with reduced stall speed. However, a simple flat-plate lower surface spoiler (LSS) provided either similar or superior lift with little impact on pitch or drag as compared to the proposed system. Higher-fidelity studies are suggested prior to use of the proposed system.

  15. Slicing Recognition of Aircraft Integral Panel Generalized Pocket

    Institute of Scientific and Technical Information of China (English)

    Yu Fangfang; Du Baorui; Ren Wenjie; Zheng Guolei; Chu Hongzhen

    2008-01-01

    To automatically obtain a machining area in numerical control (NC) programming, a data model of generalized pocket is estab-lished by analyzing aireraft integral panel characteristics, and a feature recognition approach is proposed. First, by reference to the prao- tieal slice-machining process of an aircraft integral panel, both the part and the blank are sliced in the Z-axis direction; hence a feature profile is created acceding to the slicing planes and the contours are formed by the intersection of the slicing planes with the part and its blanK. Second, the auxiliary features of the generalized pocket are also determined based on the face type and the position, to correct the profile of the pocket. Finally, the generalized pocket feature relationship tree is constructed by matching the vertical relationships among the features. Machining feature information produced by using this method can be directly used to calculate the cutter path. The validity and practicability of the method is verified by NC programming for aircraft panels.

  16. Post stapedotomy aviation: A changing scenario.

    Science.gov (United States)

    Rajguru, Renu

    2014-01-01

    Aeromedical implications of stapedotomy like rapid barometric changes and G forces are generally thought to put an end to the aviation career of an aviator. Aviation industry has grown tremendously in the last few decades, and aviation now is not only occupational but also recreational. The Indian Military Aviation rules state that, "Stapedectomy cases will be assessed permanently unfit for flying duties. These cases will be cautioned against flying in an unpressurised aircraft." The basis of this is the aeromedical concerns associated with stapedotomy as clinical conditions which are of minor significance on the ground may become aggravated in the air. With an ever expanding civil and military aviation industry, the number of aviators who have undergone stapedotomy has also increased. Though grounding the aircrew is the safest option, but if medical certification is denied to all, then the majority who can fly safely will also be excluded, thus denying the organization of its trained resources. This paper discusses post otosclerosis and post stapedotomy aeromedical concerns, reviews existing literature concerning post stapedotomy aviation and various post stapedotomy aviation policies.

  17. Post stapedotomy aviation: A changing scenario

    Directory of Open Access Journals (Sweden)

    Renu Rajguru

    2014-01-01

    Full Text Available Aeromedical implications of stapedotomy like rapid barometric changes and G forces are generally thought to put an end to the aviation career of an aviator. Aviation industry has grown tremendously in the last few decades, and aviation now is not only occupational but also recreational. The Indian Military Aviation rules state that, "Stapedectomy cases will be assessed permanently unfit for flying duties. These cases will be cautioned against flying in an unpressurised aircraft." The basis of this is the aeromedical concerns associated with stapedotomy as clinical conditions which are of minor significance on the ground may become aggravated in the air. With an ever expanding civil and military aviation industry, the number of aviators who have undergone stapedotomy has also increased. Though grounding the aircrew is the safest option, but if medical certification is denied to all, then the majority who can fly safely will also be excluded, thus denying the organization of its trained resources. This paper discusses post otosclerosis and post stapedotomy aeromedical concerns, reviews existing literature concerning post stapedotomy aviation and various post stapedotomy aviation policies.

  18. An analysis of the effectiveness of emergency locator transmitters to reduce response time and locate wreckage in U.S. general aviation accidents

    Science.gov (United States)

    Jesudoss, Ajit

    Emergency Locator Transmitters (ELT) help search crews to locate aircraft in distress and to rescue survivors. This study analyzed ELT data from U.S. General Aviation accidents during the period 2006 to 2010. This study examined the effectiveness of ELTs in terms of ELT Success Rate (ESR) and False Negative Rate (FNR) based on ELT-Aided. This study found a significant difference between ELT-Operated and ELT-Aided. The ESR was found to be 38.58% whereas the FNR was found to be 61.42 %. The Missing Data Ratio (MDR), where accident reports had no ELT information, was found to be above 95%. Recommendations were made to include ELT information in all accident reports and to stress the importance of including response time in the accident report. Also the significant differences between ELT-Operated and ELT-Aided were explained.

  19. Aircraft Crew Radiation Exposure in Aviation Altitudes During Quiet and Solar Storm Periods

    Science.gov (United States)

    Beck, Peter

    The European Commission Directorate General Transport and Energy published in 2004 a summary report of research on aircrew dosimetry carried out by the EURADOS working group WG5 (European Radiation Dosimetry Group, http://www.eurados.org/). The aim of the EURADOS working group WG5 was to bring together, in particular from European research groups, the available, preferably published, experimental data and results of calculations, together with detailed descriptions of the methods of measurement and calculation. The purpose is to provide a dataset for all European Union Member States for the assessment of individual doses and/or to assess the validity of different approaches, and to provide an input to technical recommendations by the experts and the European Commission. Furthermore EURADOS (European Radiation Dosimetry Group, http://www.eurados.org/) started to coordinate research activities in model improvements for dose assessment of solar particle events. Preliminary results related to the European research project CONRAD (Coordinated Network for Radiation Dosimetry) on complex mixed radiation fields at workplaces are presented. The major aim of this work is the validation of models for dose assessment of solar particle events, using data from neutron ground level monitors, in-flight measurement results obtained during a solar particle event and proton satellite data. The radiation protection quantity of interest is effective dose, E (ISO), but the comparison of measurement results obtained by different methods or groups, and comparison of measurement results and the results of calculations, is done in terms of the operational quantity ambient dose equivalent, H* (10). This paper gives an overview of aircrew radiation exposure measurements during quiet and solar storm conditions and focuses on dose results using the EURADOS In-Flight Radiation Data Base and published data on solar particle events

  20. Tactical Versus Strategic Behavior: General Aviation Piloting in Convective Weather Scenarios

    Science.gov (United States)

    Latorella, Kara A.; Chamberlain, James P.

    2002-01-01

    We commonly describe environments and behavioral responses to environmental conditions as 'tactical' and 'strategic.' However theoretical research defining relevant environmental characteristics is rare, as are empirical investigations that would inform such theory. This paper discusses General Aviation (GA) pilots' descriptions of tactical/strategic conditions with respect to weather flying, and evaluates their ratings along a tactical/strategic scale in response to real convective weather scenarios experienced during a flight experiment with different weather information cues. Perceived risk was significantly associated with ratings for all experimental conditions. In addition, environmental characteristics were found to be predictive of ratings for Traditional IMC (instrument meteorological conditions), i.e., aural weather information only, and Traditional VMC (visual meteorological conditions), i.e., aural information and an external view. The paper also presents subjects' comments regarding use of Graphical Weather Information Systems (GWISs) to support tactical and strategic weather flying decisions and concludes with implications for the design and use of GWISs.

  1. An Evaluation of Automatic Control System Concepts for General Aviation Airplanes

    Science.gov (United States)

    Stewart, E. C.

    1990-01-01

    A piloted simulation study of automatic longitudinal control systems for general aviation airplanes has been conducted. These automatic control systems were designed to make the simulated airplane easy to fly for a beginning or infrequent pilot. Different control systems are presented and their characteristics are documented. In a conventional airplane control system each cockpit controller commands combinations of both the airspeed and the vertical speed. The best system in the present study decoupled the airspeed and vertical speed responses to cockpit controller inputs. An important feature of the automatic system was that neither changing flap position nor maneuvering in steeply banked turns affected either the airspeed or the vertical speed. All the pilots who flew the control system simulation were favorably impressed with the very low workload and the excellent handling qualities of the simulated airplane.

  2. Emergency Locator Transmitter System Performance During Three Full-Scale General Aviation Crash Tests

    Science.gov (United States)

    Littell, Justin D.; Stimson, Chad M.

    2016-01-01

    Full-scale crash tests were conducted on three Cessna 172 aircraft at NASA Langley Research Center's Landing and Impact Research facility during the summer of 2015. The purpose of the three tests was to evaluate the performance of commercially available Emergency Locator Transmitter (ELT) systems and support development of enhanced installation guidance. ELTs are used to provide location information to Search and Rescue (SAR) organizations in the event of an aviation distress situation, such as a crash. The crash tests simulated three differing severe but survivable crash conditions, in which it is expected that the onboard occupants have a reasonable chance of surviving the accident and would require assistance from SAR personnel. The first simulated an emergency landing onto a rigid surface, while the second and third simulated controlled flight into terrain. Multiple ELT systems were installed on each airplane according to federal regulations. The majority of the ELT systems performed nominally. In the systems which did not activate, post-test disassembly and inspection offered guidance for non-activation cause in some cases, while in others, no specific cause could be found. In a subset of installations purposely disregarding best practice guidelines, failure of the ELT-to-antenna cabling connections were found. Recommendations for enhanced installation guidance of ELT systems will be made to the Radio Technical Commission for Aeronautics (RTCA) Special Committee 229 for consideration for adoption in a future release of ELT minimum operational performance specifications. These recommendations will be based on the data gathered during this test series as well as a larger series of crash simulations using computer models that will be calibrated based on these data

  3. 航母航空弹药组成及需求分析%The composition and requirement analysis of aviation ammunition in aircraft carrier

    Institute of Scientific and Technical Information of China (English)

    史文强; 陈练; 蒋志勇

    2012-01-01

    为了保证持续的打击能力,舰载机必须往返于航母和战场上空,通过飞行甲板上的挂弹作业完成弹药补给,因而挂弹架次以及弹药需求量对于航空作业的规划安排具有重要意义.针对美国现役“尼米兹”级航母及其舰载机F/A-18E/F“超级大黄蜂”,重点分析了航母航空弹药类型及舰载机挂弹配置;讨论了作战架次的基本组成并总结了挂弹架次计算的基本步骤.以“尼米兹”级和“福特”级航母为例,详细计算了挂弹架次以及航空弹药需求量,并对弹药库自持力进行分析.结果表明,舰载机挂弹架次和航空弹药需求之间存在互相制约的关系.弹药需求量的分析对于航母设计和作战使用具有一定参考价值.%In order to ensure the sustained strike ability,embarked aircraft's should fly between the aircraft carrier and the midair of battlefield,completing the ammunition supplies by ordnance handling on the flight deck. Therefore, arming sortie of embarked aircrafts and requirement for ammunition have an important significance for planning arrangement of aviation operation. Based on the operation experience of USS Niinitz and F/A-l 8E/F Super Hornet onboard, analysis was firstly focused on the main types of aviation ammunition and the basic ordnance configuration for embarked aircraft. Then following by the discussion about breakdown of strike sorties and basic calculation steps of arming sortie, attention was drawn to the detailed calculation of arming sortie and ammunition requirement for USS Nimitz and Ford class aircraft carrier( CVN78). In the end,analysis was also performed on the self-supplying capacity of magazine stock in aircraft carrier. The conclusion is that it is interdependent between the arming sortie and requirement for ammunition. Paper's research production is valuable to the design and operation for aircraft carrier.

  4. 中国通用航空租赁发展政策建议研究%Study on policy suggestions of general aviation leasing development in China

    Institute of Scientific and Technical Information of China (English)

    吴桐水; 罗先飞

    2013-01-01

    通用航空租赁的发展将满足通用航空发展中的融资需求,改善中国通用航空制造业的市场环境,带动通用航空及其关联产业的发展.根据通用航空租赁业务流程,从内、外部原因来分析中国通用航空租赁主要存在的问题.研究提出了促进中国通用航空租赁发展的相关政策建议,从而推进中国通用航空租赁的发展.%The development of general aviation leasing will meet the financing needs in the development of general aviation, improve the market environment of China's general aviation manufacturing industry, and spur the development of general aviation and its related industries. In this paper, analyze the main problems of China's general aviation leasing from internal and external reasons according to the business processes of general aviation leasing. The study propose the policy suggestions of the general aviation leasing development in order to improve the development of China's general aviation leasing.

  5. The Future of Green Aviation

    Science.gov (United States)

    Edwards, Thomas

    2012-01-01

    Dr. Edwards'presentation provides an overview of aviation's economic impact in the U.S. including aviation's impact on environment and energy. The presentation discusses NASA's contributions to the advancement of commercial aircraft design highlighting the technology drivers and recent technology advancements for addressing community noise, energy efficiency and emissions. The presentation concludes with a preview of some of NASA's integrated systems solutions, such as novel aircraft concepts and advancements in propulsion that will enable the future of more environmentally compatible aviation.

  6. A measurement model for general noise reaction in response to aircraft noise

    NARCIS (Netherlands)

    Kroesen, M.; Schreckenberg, D.

    2011-01-01

    In this paper a measurement model for general noise reaction (GNR) in response to aircraft noise is developed to assess the performance of aircraft noise annoyance and a direct measure of general reaction as indicators of this concept. For this purpose GNR is conceptualized as a superordinate latent

  7. GASP- General Aviation Synthesis Program. Volume 4: Propulsion. Part 1: Theoretical development

    Science.gov (United States)

    Hague, D.

    1978-01-01

    Propulsion system performance is computed during engine sizing and whenver aircraft performance is computed. The propulsion model user's and programmer's manual is presented. Routines are provided for jet and propeller driven aircraft.

  8. Economic consequences of aviation system disruptions: A reduced-form computable general equilibrium analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhenhua; Rose, Adam Z.; Prager, Fynnwin; Chatterjee, Samrat

    2017-01-01

    The state of the art approach to economic consequence analysis (ECA) is computable general equilibrium (CGE) modeling. However, such models contain thousands of equations and cannot readily be incorporated into computerized systems used by policy analysts to yield estimates of economic impacts of various types of transportation system failures due to natural hazards, human related attacks or technological accidents. This paper presents a reduced-form approach to simplify the analytical content of CGE models to make them more transparent and enhance their utilization potential. The reduced-form CGE analysis is conducted by first running simulations one hundred times, varying key parameters, such as magnitude of the initial shock, duration, location, remediation, and resilience, according to a Latin Hypercube sampling procedure. Statistical analysis is then applied to the “synthetic data” results in the form of both ordinary least squares and quantile regression. The analysis yields linear equations that are incorporated into a computerized system and utilized along with Monte Carlo simulation methods for propagating uncertainties in economic consequences. Although our demonstration and discussion focuses on aviation system disruptions caused by terrorist attacks, the approach can be applied to a broad range of threat scenarios.

  9. Drugs in Aviation - A Review | Muntingh | South African Family Practice

    African Journals Online (AJOL)

    The Aviation Medicine Department of the South African Civil Aviation ... poor concentration, shift-work problems, inadequate training or lack of motivation? ... other aviation personnel e.g. ATC, cabin crew (CC) and aircraft maintenance officers

  10. Defense Logistics Agency Aviation Generally Purchased SoleSource Spare Parts From the General Electric Company at Fair and Reasonable Prices, but Improvements Could Be Made (Redacted)

    Science.gov (United States)

    2015-07-24

    including: • FAR Subpart 2.1, “ Definitions ;” • FAR Part 10, “ Market Research;” • DFARS Subpart 215.4, “Contract Pricing ;” • DFARS PGI 212.1...Defense Logistics Agency Aviation Generally Purchased Sole‑Source Spare Parts From the General Electric Company at Fair and Reasonable Prices , but...Purchased Sole‑Source Spare Parts From the General Electric Company at Fair and Reasonable Prices , but Improvements Could Be Made Visit us at

  11. RISK DEFINITION IN CIVIL UNMANNED AVIATION

    Directory of Open Access Journals (Sweden)

    Volodymyr Kharchenko

    2016-12-01

    Full Text Available Objective: The risks in unmanned civil aviation are considered as one of the most important. In the article is proved applicability of ensuring the flight safety of aircraft and considered the basic risks of manned civil aviation. Methods: Analyzed statistical data on aviation accidents, organized probabilities distribution of aviation accidents for manned and unmanned civil aviation to identify factors that influence the occurrence of emergency situations in manned and unmanned aviation. Results: We proposed typology of risk components in civil aviation and systematized methods and techniques to reduce risks. Over the analogies defined possible risks, their causes and remedies in civil unmanned aircraft. Weight coefficients distribution was justified between risk types for development of recommendations on risk management in unmanned civil aviation. Discussion: We found that the most probable risk in manned civil aviation is the human factor, organization of air traffic control, design flaws of unmanned aviation system as a whole, as well as maintenance of unmanned aviation system.

  12. Determination of the Emissions from an Aircraft Auxiliary Power Unit (APU) during the Alternative Aviation Fuel Experiment (AAFEX)

    Science.gov (United States)

    The emissions from a Garrett-AiResearch (now Honeywell) Model GTCP85-98CK APU were determined as part of the National Aeronautics and Space Administration's (NASA's) Alternative Aviation Fuels Experiment using both JP-8 and a coal-derived Fischer Tropsch fuel (FT-2). Measurements...

  13. Aircraft Fuel, Fuel Metering, Induction and Exhaust Systems (Course Outline), Aviation Mechanics (Power Plant): 9057.02.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to help the trainee gain the skills and knowledge necessary to become an aviation powerplant mechanic. The course outlines the theory of operation of various fuel systems, fuel metering, induction, and exhaust system components with an emphasis on troubleshooting, maintenance, and…

  14. Present and potential security threats posed to civil aviation

    Directory of Open Access Journals (Sweden)

    Stanislav SZABO

    2012-06-01

    Full Text Available Aircraft presents ideal object for terrorist attack. Apart from the risks posed by possible terrorist attacks on airborne aircraft, air terrorism includes the threats to general aviation on the ground, including airports and surrounding infrastructure. Air oriented terrorism in all of its forms can undermine public confidence in the safety of air travel, which could result in negative effects for certain airlines and other firms in aviation industry due to decline in passenger travel and cargo shipment. This article is giving an overview about the redoubtable present and potential future threats posed to in-flight security, and possibilities and solutions how to mitigate the risks on acceptable level.

  15. A fuel-efficient cruise performance model for general aviation piston engine airplanes. Ph.D. Thesis. Final Report

    Science.gov (United States)

    Parkinson, R. C. H.

    1983-01-01

    A fuel-efficient cruise performance model which facilitates maximizing the specific range of General Aviation airplanes powered by spark-ignition piston engines and propellers is presented. Airplanes of fixed design only are considered. The uses and limitations of typical Pilot Operating Handbook cruise performance data, for constructing cruise performance models suitable for maximizing specific range, are first examined. These data are found to be inadequate for constructing such models. A new model of General Aviation piston-prop airplane cruise performance is then developed. This model consists of two subsystem models: the airframe-propeller-atmosphere subsystem model; and the engine-atmosphere subsystem model. The new model facilitates maximizing specific range; and by virtue of its implicity and low volume data storge requirements, appears suitable for airborne microprocessor implementation.

  16. Secure ADS-B: Towards Airborne Communications Security in the Federal Aviation Administration’s Next Generation Air Transportation System

    Science.gov (United States)

    2014-03-01

    Global Positioning System ICAO International Civil Aviation Organization IFF Identification Friend or Foe IFR Instrument Flight Rules IMO...Instrument Flight Rules ( IFR ). Under VFR, typically used by General Aviation (GA) aircraft operating under 18,000 feet, the pilot is primarily responsible...for seeing other aircraft and maintaining safe separation. This ceiling is also known as Flight Level 180 (FL180). Under IFR , used by commercial and

  17. Spinal Disease in Aviators and Its Relationship to G-Exposure, Age, Aircraft Seating Angle, Exercise and Other Lifestyle Factors

    Science.gov (United States)

    2000-08-01

    13-degree angle of the F- helpful in prevention. 15. This increased seat angle of the F-16 may result in increased neck flexion in order to allow the...16 seat removed from the NHP category due to a history of angle may result in an increase in neck flexion and, previous neck injury. Twenty-seven...such as cervical flexion . Of the total of 35 HP aviators surveyed, 7 or 20% admitted Finally, the study fails to adequately address the effects to

  18. Brigadier General Theodore C Lyster [correction of Lister], MD: father of American aviation medicine.

    Science.gov (United States)

    Barrios, J; O'Leary, J P

    2000-07-01

    Aviation medicine came into existence as a recognized entity when certain standards were established during and shortly after World War I. During this time, accident rates were high. In fact, a larger number of pilots were dying in accidents than in combat. Figures from Great Britain's casualty list at the close of the first year of World War I indicated that for every 100 aviators killed, 60 died as a result of some individual physical defect, 30 from some form of recklessness or careless behavior, 8 as a result of some mechanical defect in the airplane, and only 2 at the hands of the enemy. Aviators were found to be in poor physical condition. Because there were no established regulations with regard to workloads, aviators were frequently found to have been flying to a point beyond exhaustion. Because of workload, chronic fatigue, and emotional stress, aviators were constantly called upon to perform superhuman feats when not in peak physical condition. Errors in judgement were common. The majority of pilots lost weight as a somatic sign of stress. This was recognized by Theodore Lyster [corrected] who had recently been appointed as the Chief Surgeon, Aviation Section of the U.S. Army. Such problems were not diagnosed by medical officers because they were not trained to recognize them. Theodore Charles Lyster [corrected] was the son of Captain William J. and Martha Doughty Lyster [corrected]. He was an Army "brat" who entered the world on July 10, 1875. His childhood was spent in various posts around the country. At the age of 7, Lyster [corrected] contracted yellow fever while living in Fort Brown, TX. The boy was treated by William Gorgas, a young post surgeon. Gorgas was credited with the young boy's recovery. Later, Gorgas was to marry Lyster's [corrected] aunt making Lyster [corrected] his nephew by marriage. Having survived the yellow fever infection, young Lyster [corrected] had a lifelong immunity to the disease.

  19. General Aviation Pilot and Aircraft Activity Survey. Triannual Summary Report 1990 Data

    Science.gov (United States)

    1991-01-01

    816-374-2160 Retail Sales Outlet, 8660 Cherry Lane, Laurel, MD 20707; Los Angeles Bookstore, Arco Plaza, Level (C), 505 South 301-953-7974. Order...RICO BERRY FIELD COMPOSITE SQUADRON GROUP 4 PUERTO RICO WING MT. JULIET, TENNESSEE PONCE, PUERTO RICO CLEVELAND COMPOSITE SQUADRON JUANA DIAZ HIGH

  20. Scaled Model Technology for Flight Research of General Aviation Aircraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Our proposed future Phase II activities are aimed at developing a scientifically based "tool box" for flight research using scaled models. These tools will be of...

  1. Penetration of High Intensity Radiated Fields (HIRF) Into General Aviation Aircraft

    Science.gov (United States)

    Balanis, Constantine A.; Birtcher, Craig R.; Georgakopoulos, Stavros V.; Panaretos, Anastasios H.

    2004-01-01

    The ability to design and achieve electromagnetic compatibility is becoming more challenging with the rapid development of new electronic products and technologies. The importance of electromagnetic interference (EMI) and electromagnetic compatibility (EMC) issues stems from the fact that the ambient electromagnetic environment has become very hostile; that is, it increases both in density and intensity, while the current trend in technology suggests the number of electronic devices increases in homes, businesses, factories, and transportation vehicles. Furthermore, the operating frequency of products coming into the market continuously increases. While cell phone technology has exceeded 1 GHz and Bluetooth operates at 2.4 GHz, products involving satellite communications operate near 10 GHz and automobile radar systems involve frequencies above 40 GHz. The concern about higher frequencies is that they correspond to smaller wavelengths, therefore electromagnetic waves are able to penetrate equipment enclosure through apertures or even small cracks more easily. In addition, electronic circuits have become small in size, and they are usually placed on motherboards or housed in boxes in very close proximity. Cosite interference and coupling in all electrical and electronic circuit assemblies are two essential issues that have to be examined in every design.

  2. Uptake of HNO3 on aviation kerosene and aircraft engine soot: influences of H2O or/and H2SO4.

    Science.gov (United States)

    Loukhovitskaya, Ekaterina E; Talukdar, Ranajit K; Ravishankara, A R

    2013-06-13

    The uptake of HNO3 on aviation kerosene soot (TC-1 soot) was studied in the absence and presence of water vapor at 295 and 243 K. The influence of H2SO4 coating of the TC-1 soot surface on HNO3 uptake was also investigated. Only reversible uptake of HNO3 was observed. HONO and NO2, potential products of reactive uptake of HNO3, were not observed under any conditions studied here. The uptake of nitric acid increased slightly with relative humidity (RH). Coating of the TC-1 soot surface with sulfuric acid decreased the uptake of HNO3 and did not lead to displacement of H2SO4 from the soot surface. A limited set of measurements was carried out on soot generated by aircraft engine combustor (E-soot) with results similar to those on TC-1 soot. The influence of water on HNO3 uptake on E-soot appeared to be more pronounced than on TC-1 soot. Our results suggest that HNO3 loss in the upper troposphere due to soot is not significant except perhaps in aircraft exhaust plumes. Our results also suggest that HNO3 is not converted to either NO2 or HONO upon its uptake on soot in the atmosphere.

  3. Fleet Aviation Maintenance Organic Support (FAMOS) Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose:The Fleet Aviation Maintenance Organic Support (FAMOS) Laboratory at the Naval Air Warfare Center Aircraft Division, Lakehurst, NJ provides rapid engineering...

  4. International Aviation (Selected Articles)

    Science.gov (United States)

    1991-06-05

    users, achieving clear social benefits. Fig.3 The First MD-82 Model Aircraft Successfully Co-Producea by China and the U.S. (Photo by Fu Tongyi) The...of origin: China Translated by: SCITRAN F33657-84-D-0165 Requester: FTD/TTTMM/Moorman Approved for public release; Distribution unlimited. THIS...is the China Aviation Company and the Central Aviation Company from before liberation. From the 1950s onward, it mostly did repairs on fuselages. In

  5. Analysis of Data Processing Errors Inherent Part 36 of the Federal Aviation Regulations (FAR) Aircraft Noise Certification.

    Science.gov (United States)

    1980-09-01

    instrumentation such as radar tracking, theodolite triangulation, laser trajectography or photographic scaling. The aircraft position must be measured during the...4 2.2.3 Radar .......... .................... 5 3.0 ATMOSPHERIC CORRECTION ........ ................. 6 3.1 Atmospheric Correction...47 6.1.3 Radar . . . . . . . . . . . . . . . . . . . . 47 6.1.4 Costs ....... .................... ... 47 6.2 Atmospheric Correction

  6. Aircraft

    Science.gov (United States)

    Hibbs, Bart D.; Lissaman, Peter B. S.; Morgan, Walter R.; Radkey, Robert L.

    1998-01-01

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gasses for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well.

  7. Aircraft

    Science.gov (United States)

    Hibbs, B.D.; Lissaman, P.B.S.; Morgan, W.R.; Radkey, R.L.

    1998-09-22

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing`s top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gases for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well. 31 figs.

  8. Lightning hazards overview: Aviation requirements and interests

    Science.gov (United States)

    Corn, P. B.

    1979-01-01

    A ten-year history of USAF lightning incidents is presented along with a discussion of the problems posed by lightning to current aircraft, and the hazards it constitutes to the electrical and electronic subsystems of new technology aircraft. Lightning technical protection technical needs, both engineering and operational, include: (1) in-flight data on lightning electrical parameters; (2) tech base and guidelines for protection of advanced systems and structures; (3) improved laboratory test techniques; (4) analysis techniques for predicting induced effects; (5) lightning strike incident data from general aviation; (6) lightning detection systems; (7) pilot reports on lightning strikes; and (8) better training in lightning awareness.

  9. 14 CFR 33.57 - General conduct of block tests.

    Science.gov (United States)

    2010-01-01

    ... Section 33.57 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Reciprocating Aircraft Engines § 33.57 General conduct of block tests. (a) The applicant may, in conducting the block tests, use separate engines of...

  10. 14 CFR 33.99 - General conduct of block tests.

    Science.gov (United States)

    2010-01-01

    ... Section 33.99 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.99 General conduct of block tests. (a) Each applicant may, in making a block test, use separate engines of identical design...

  11. 14 CFR 91.711 - Special rules for foreign civil aircraft.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Special rules for foreign civil aircraft. 91.711 Section 91.711 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Foreign Aircraft Operations and Operations of...

  12. An overview of NASA research on positive displacement type general aviation engines

    Science.gov (United States)

    Kempke, E. E.; Willis, E. A.

    1979-01-01

    The paper surveys the current status of the aviation positive displacement engine programs underway at the NASA Lewis Research Center. The program encompasses conventional, lightweight diesel, and rotary combustion engines. Attention is given to topics such as current production type engine improvement, cooling drag reduction, fuel injection, and experimental and theoretical combustion studies. It is shown that the program's two major technical thrusts are directed toward lean operation of current production type spark ignition engines and advanced alternative engine concepts. Finally, an Otto cycle computer model is also covered.

  13. Remote sensing and GIS analyses for emergency manouvering and forced landing areas definition as a support for general aviation flights

    Science.gov (United States)

    Skocki, Krzysztof

    2016-08-01

    This paper summarizes the preliminary analyses of using existing remote sensing data, medium and high-resolution satellite and airborne data to define safe emergency landing and maneuvering areas to be used by small aircrafts operating from small airports and airfields in Poland. The pilots need to know such places in the interest of safe flight operations. In common practice, flying instructors typically show the student pilot fields around the airfield supposed to be suitable for emergency or precautionary landing (or ditching) in the initial phase of the training. Although it looks to cover the most basic needs, the problem still exists in relation to guest pilots. To fill this gap, the unified safety map document covering the safe emergency areas around the airfields is proposed in this research. Use of satellite high resolution data, as well as aerial photos, infrastructure information, with use of GIS tools (like buffer zones, distance, equal-time circles or position lines) enable to check the terrain around selected airfields and define possible areas suitable for emergency operations. In the second phase of work, selected areas will be described in terms of easy navigation, possible infrastructure around them, rescue possibilities, radio signal coverage, and others. The selected areas should be also checked for typical cover and surface hardness and stability (eg. with use of moisture estimation on the base of middle-resolution satellite data). Its planned to prepare one combined and separate sheets of the final map for various aircraft characteristics (`classes' of small Cessna-related, big Cessna-related, fast low-wing Diamond-like, two-engine Piper-like). The presented concept should highly increase the safety operations for small aviation in secondary airports and airfields, where the information available is limited. There is also a possibility to make a similar maps for `cruise', which means the areas with dense traffic between the airports/airfields.

  14. 西部地区通用航空发展分析%Analysis on General Aviation Development of Western Region

    Institute of Scientific and Technical Information of China (English)

    冯军红

    2015-01-01

    General aviation is a strategic emerging industries supported by the state,with the further reform policy of general aviation,the western region in a huge development opportunities.According to the current development of general aviation,analyzes the market demand for general aviation in the western region,put forward the development countermeasures from support policies,low-altitude airspace management,airport layout,the analysis provides a basis decision making for sustainable development of China's business aviation.%通用航空是国家重点支持发展的战略性新兴产业,随着通用航空发展政策的进一步改革,西部地区通用航空迎来巨大的发展机遇。根据我国通用航空的发展现状,分析了西部地区通用航空的市场需求,从扶持政策、低空空域管理、机场布局等方面提出了适合西部地区通用航空发展的对策,该分析为西部地区通用航空可持续发展提供决策依据。

  15. Costs of IQ Loss from Leaded Aviation Gasoline Emissions.

    Science.gov (United States)

    Wolfe, Philip J; Giang, Amanda; Ashok, Akshay; Selin, Noelle E; Barrett, Steven R H

    2016-09-06

    In the United States, general aviation piston-driven aircraft are now the largest source of lead emitted to the atmosphere. Elevated lead concentrations impair children's IQ and can lead to lower earnings potentials. This study is the first assessment of the nationwide annual costs of IQ losses from aircraft lead emissions. We develop a general aviation emissions inventory for the continental United States and model its impact on atmospheric concentrations using the community multi-scale air quality model (CMAQ). We use these concentrations to quantify the impacts of annual aviation lead emissions on the U.S. population using two methods: through static estimates of cohort-wide IQ deficits and through dynamic economy-wide effects using a computational general equilibrium model. We also examine the sensitivity of these damage estimates to different background lead concentrations, showing the impact of lead controls and regulations on marginal costs. We find that aircraft-attributable lead contributes to $1.06 billion 2006 USD ($0.01-$11.6) in annual damages from lifetime earnings reductions, and that dynamic economy-wide methods result in damage estimates that are 54% larger. Because the marginal costs of lead are dependent on background concentration, the costs of piston-driven aircraft lead emissions are expected to increase over time as regulations on other emissions sources are tightened.

  16. Design Guidelines, Experimental Investigation and Numerical Analysis of a New Twin Engine Commuter Aircraft

    OpenAIRE

    Corcione, Salvatore

    2015-01-01

    At the end of the year 2011, statistical data reports that the average age of general aviation registered aircraft is 46 years for single-engine piston powered aircraft and 15 years for single-engine turboprop aircraft. The average age for twin-engine 8-12 seats aircraft is 42 years for piston powered models and about 29 years for twin-engine turboprop commuter aircraft. These data show the need of a new aircraft model, also characterized by the application of new technologies like c...

  17. Parametric Modeling Simulation Study on Locking Mechanism for Aviation Aircraft%航空飞行器锁机构参数化建模仿真研究

    Institute of Scientific and Technical Information of China (English)

    刘霞; 王三民; 单宁; 孙远涛

    2013-01-01

    Locking mechanism of aviation aircraft is very important for perform mission.But its study is centralized on experiment field.In order to avoid motion interference of locking mechanism efficiency and design it reasonably,the method of parametric modeling and kinematics simulation was put forward in the paper.The optimum model of dimension calculation was established based on strength analysis of locking mechanism.Its dimension parameter was design.Its solid model was realized based on parametric method.The kinematics simulation model of locking mechanism was established.And its motion state was simulated.The results show that designed locking mechanism has good motion continuity and has no motion interference.It can realize close and open effectively.In the working process of locking mechanism,lock hook is close to lock bar with steady speed before 32 second.They piece on speedily and realize lock tightly after 32 second.Acceleration of lock hook increases quickly and produces larger speed and force in the instancy of lock tighten.This agrees satisfactorily with actual situation.Above results show that the model can simulate the actual motion state of aviation aircraft locking mechanism effectively and offer some theoretical basis for design and use of locking mechanism.%研究锁机构优化设计,对航空飞行器任务完成起着至关重要的作用.由于以往研究多集中在实验仿制方面,开展仿真理论研究的较少,针对上述问题提,出了一种能有效避免锁机构运动干涉,合理设计锁机构的参数化建模和运动学仿真模型.利用锁机构强度分析的尺寸优化方法,设计了锁机构厚度、宽度以及销轴与杆件的接触长度等尺寸参数,实现了锁机构的参数化实体建模,建立了锁机构的运动学仿真模型,进行运动状态仿真.结果表明,设计的锁机构运动连续性好,无运动干涉现象,能实现有效闭合、开启.锁钩工作行程中,第32s

  18. The United States national volcanic ash operations plan for aviation

    Science.gov (United States)

    Albersheim, Steven; Guffanti, Marianne

    2009-01-01

    Volcanic-ash clouds are a known hazard to aviation, requiring that aircraft be warned away from ash-contaminated airspace. The exposure of aviation to potential hazards from volcanoes in the United States is significant. In support of existing interagency operations to detect and track volcanic-ash clouds, the United States has prepared a National Volcanic Ash Operations Plan for Aviation to strengthen the warning process in its airspace. The US National Plan documents the responsibilities, communication protocols, and prescribed hazard messages of the Federal Aviation Administration, National Oceanic and Atmospheric Administration, US Geological Survey, and Air Force Weather Agency. The plan introduces a new message format, a Volcano Observatory Notice for Aviation, to provide clear, concise information about volcanic activity, including precursory unrest, to air-traffic controllers (for use in Notices to Airmen) and other aviation users. The plan is online at http://www.ofcm.gov/p35-nvaopa/pdf/FCM-P35-2007-NVAOPA.pdf. While the plan provides general operational practices, it remains the responsibility of the federal agencies involved to implement the described procedures through orders, directives, etc. Since the plan mirrors global guidelines of the International Civil Aviation Organization, it also provides an example that could be adapted by other countries.

  19. Flight evaluation of the effect of winglets on performance and handling qualities of a single-engine general aviation airplane

    Science.gov (United States)

    Holmes, B. J.; Vandam, C. P.; Brown, P. W.; Deal, P. L.

    1980-01-01

    A flight evaluation was conducted to determine the effects of winglets on the performance and handling qualities of a light, single-engine general aviation airplane. The performance measurements were made with a pace airplane to provide calibrated airspeeds; uncalibrated panel instruments in the test airplane were used to provide additional quantitative performance data. These tests were conducted with winglets on and off during the same day to measure relative performance effects. Handling qualities were evaluated by means of pilot comments. Winglets increased cruise speed 8 knots (5.6 percent) at 3962 m (13,000 ft) density altitude and 51 percent maximum continuous power setting. Maximum speed at 3962 m was virtually unchanged. Rate of climb increased approximately 6 percent, or 0.25 m/sec (50 ft/min), at 1524 m (5000 ft). Stall speed was virtually unchanged. Handling qualities were favorably affected.

  20. 通用航空RDSS机载设备研究及设计%Research and Design on General Aviation RDSS Airborne Equipment

    Institute of Scientific and Technical Information of China (English)

    李莉

    2016-01-01

    本文设计了一套集成RDSS卫星通信和3G/4G数据通信的机载设备,实现通用航空飞行器的应急通信与定位功能,提供低成本多通道的数据通信,强化了飞行器的安全保障,补充通用航空空域管制的覆盖区域。设备具备体积小,集成度高,可以根据用户需求自定制,具有较高的可扩展性和可裁剪性,电源部分采用软开关控制方式,具有较强的可靠性和可维护性。%This paper designs a set of airborne equipment integrated with RDSS satellite communication and 3G/4G data communication. This airborne equipment realizes the function of emergency communications and positioning of common aero vehicle, provides the data communication of low cost and multi channels, and strengthens the security of aircraft, supplements the coverage of general aviation airspace control. This equipment has a small size and high integration, and it can be customized according to the user needs, and has the ability of high expansibility and scalability. The power part of RDSS airborne equipment adopts soft switch control mode, and has the strong reliability and maintainability.

  1. Aeroelastic Optimization of Generalized Tube and Wing Aircraft Concepts Using HCDstruct Version 2.0

    Science.gov (United States)

    Quinlan, Jesse R.; Gern, Frank H.

    2017-01-01

    Major enhancements were made to the Higher-fidelity Conceptual Design and structural optimization (HCDstruct) tool developed at NASA Langley Research Center (LaRC). Whereas previous versions were limited to hybrid wing body (HWB) configurations, the current version of HCDstruct now supports the analysis of generalized tube and wing (TW) aircraft concepts. Along with significantly enhanced user input options for all air- craft configurations, these enhancements represent HCDstruct version 2.0. Validation was performed using a Boeing 737-200 aircraft model, for which primary structure weight estimates agreed well with available data. Additionally, preliminary analysis of the NASA D8 (ND8) aircraft concept was performed, highlighting several new features of the tool.

  2. Special Operations Forces Aviation on a Shoestring Budget: An Effectiveness Analysis of Light and Medium Fixed Wing Aircraft

    Science.gov (United States)

    2012-12-01

    XXI Seminario Internacional Cátedra Alfredo Kindelán, Madrid, Spain, November 14, 2011). 2 have clearly demonstrated the benefit of dedicated and...to the XXI Seminario Internacional Cátedra Alfredo Kindelán, Madrid, Spain, 14 November 2011, and has been adopted by NATO. In his speech at the...domestic, regional, and transnational threats. As Lieutenant General Kisner declared in his Speech to XXI Seminario Internacional Catedra Alfredo

  3. Aircraft control surface failure detection and isolation using the OSGLR test. [orthogonal series generalized likelihood ratio

    Science.gov (United States)

    Bonnice, W. F.; Motyka, P.; Wagner, E.; Hall, S. R.

    1986-01-01

    The performance of the orthogonal series generalized likelihood ratio (OSGLR) test in detecting and isolating commercial aircraft control surface and actuator failures is evaluated. A modification to incorporate age-weighting which significantly reduces the sensitivity of the algorithm to modeling errors is presented. The steady-state implementation of the algorithm based on a single linear model valid for a cruise flight condition is tested using a nonlinear aircraft simulation. A number of off-nominal no-failure flight conditions including maneuvers, nonzero flap deflections, different turbulence levels and steady winds were tested. Based on the no-failure decision functions produced by off-nominal flight conditions, the failure detection and isolation performance at the nominal flight condition was determined. The extension of the algorithm to a wider flight envelope by scheduling on dynamic pressure and flap deflection is examined. Based on this testing, the OSGLR algorithm should be capable of detecting control surface failures that would affect the safe operation of a commercial aircraft. Isolation may be difficult if there are several surfaces which produce similar effects on the aircraft. Extending the algorithm over the entire operating envelope of a commercial aircraft appears feasible.

  4. Aircraft Derived Data Validation Algorithms

    Science.gov (United States)

    2012-08-06

    to be equipped with Flight Management Systems (FMSs) that use sophisticated digital computers to assist pilots, allowing them to fly more fuel...some basic data is prepared. These include calculations of aircraft position projeted on a three-dimensional Cartesian coordinate system, and...Administration FMS Flight Management System GA General Aviation NextGen Next Generation Air Transportation System NGA National Geospatial-Intelligence

  5. 14 CFR 91.415 - Changes to aircraft inspection programs.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Changes to aircraft inspection programs. 91.415 Section 91.415 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES...

  6. The identification of factors contributing to self-reported anomalies in civil aviation.

    Science.gov (United States)

    Andrzejczak, Chris; Karwowski, Waldemar; Thompson, William

    2014-01-01

    The main objective of this study was to analyze anomalies voluntarily reported by pilots in civil aviation sector and identify factors leading to such anomalies. Experimental data were obtained from the NASA aviation safety reporting system (ASRS) database. These data contained a range of text records spanning 30 years of civilian aviation, both commercial (airline operations) and general aviation (private aircraft). Narrative data as well as categorical data were used. The associations between incident contributing factors and self-reported anomalies were investigated using data mining and correspondence analysis. The results revealed that a broadly defined human factors category and weather conditions were the main contributors to self-reported civil aviation anomalies. New associations between identified factors and reported anomaly conditions were also reported.

  7. Multiscale predictions of aviation-attributable PM2.5 for U.S. airports modeled using CMAQ with plume-in-grid and an aircraft-specific 1-D emission model

    Science.gov (United States)

    Woody, M. C.; Wong, H.-W.; West, J. J.; Arunachalam, S.

    2016-12-01

    Aviation activities represent an important and unique mode of transportation, but also impact air quality. In this study, we aim to quantify the impact of aircraft on air quality, focusing on aviation-attributable PM2.5 at scales ranging from local (a few kilometers) to continental (spanning hundreds of kilometers) using the Community Multiscale Air Quality-Advanced Plume Treatment (CMAQ-APT) model. In our CMAQ-APT simulations, a plume scale treatment is applied to aircraft emissions from 99 major U.S. airports over the contiguous U.S. in January and July 2005. In addition to the plume scale treatment, we account for the formation of non-traditional secondary organic aerosols (NTSOA) from the oxidation of semivolatile and intermediate volatility organic compounds (S/IVOCs) emitted from aircraft, and utilize alternative emission estimates from the Aerosol Dynamics Simulation Code (ADSC). ADSC is a 1-D plume scale model that estimates engine specific PM and S/IVOC emissions at ambient conditions, accounting for relative humidity and temperature. We estimated monthly and contiguous U.S. average aviation-attributable PM2.5 to be 2.7 ng m-3 in January and 2.6 ng m-3 in July using CMAQ-APT with ADSC emissions. This represents an increase of 40% and 12% in January and July, respectively, over impacts using traditional modeling approaches (traditional emissions without APT). The maximum fine scale (subgrid scale) hourly impacts at a major airport were 133.6 μg m-3 in January and 165.4 μg m-3 in July, considerably higher than the maximum grid-based impacts at the airport of 4.3 μg m-3 in January and 0.5 μg m-3 in July.

  8. 78 FR 26103 - Proposed Standard Operating Procedure (SOP) of the Aircraft Certification Service (AIR) Project...

    Science.gov (United States)

    2013-05-03

    ... Federal Aviation Administration Proposed Standard Operating Procedure (SOP) of the Aircraft Certification... comments on, the Aircraft Certification Service (AIR) standard operating procedure (SOP) describing the... comments on the SOP to: Federal Aviation Administration (FAA) Aircraft Certification Service,...

  9. Office of Inspector General audit report on the U.S. Department of Energy`s aircraft activities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-01-01

    On October 19, 1998, the Office of Inspector General (OIG) was asked to undertake a review of the Department of Energy`s aircraft activities. It was also requested that they report back within 90 days. The OIG has gathered information concerning the number of aircraft, the level of utilization, and the cost of the Department`s aircraft operations. They have also briefly summarized four issues that, in their judgment, may require management attention.

  10. Alternative aviation turbine fuels

    Science.gov (United States)

    Grobman, J.

    1977-01-01

    The efficient utilization of fossil fuels by future jet aircraft may necessitate the broadening of current aviation turbine fuel specifications. The most significant changes in specifications would be an increased aromatics content and a higher final boiling point in order to minimize refinery energy consumption and costs. These changes would increase the freezing point and might lower the thermal stability of the fuel and could cause increased pollutant emissions, increased smoke and carbon formation, increased combustor liner temperatures, and poorer ignition characteristics. This paper discusses the effects that broadened specification fuels may have on present-day jet aircraft and engine components and the technology required to use fuels with broadened specifications.

  11. Effects of Video Weather Training Products, Web-Based Preflight Weather Briefing, and Local Versus Non-Local Pilots on General Aviation Pilot Weather Knowledge and Flight Behavior. Phase 1

    Science.gov (United States)

    2010-01-01

    of weather . International Journal of Aviation Psychol- ogy, 13, 173-87 . A1 A P P E N D IX A W eb p re fli gh t br ie fin g sc re en...monitoring of the 121.5 MHz frequency on February 1, 2009. If you fly an aircraft with an ELT , please visit <A href

  12. Aircraft cybernetics

    Science.gov (United States)

    1977-01-01

    The use of computers for aircraft control, flight simulation, and inertial navigation is explored. The man-machine relation problem in aviation is addressed. Simple and self-adapting autopilots are described and the assets and liabilities of digital navigation techniques are assessed.

  13. Volcanic hazards and aviation safety

    Science.gov (United States)

    Casadevall, Thomas J.; Thompson, Theodore B.; Ewert, John W.; ,

    1996-01-01

    An aeronautical chart was developed to determine the relative proximity of volcanoes or ash clouds to the airports and flight corridors that may be affected by volcanic debris. The map aims to inform and increase awareness about the close spatial relationship between volcanoes and aviation operations. It shows the locations of the active volcanoes together with selected aeronautical navigation aids and great-circle routes. The map mitigates the threat that volcanic hazards pose to aircraft and improves aviation safety.

  14. Wind-tunnel investigation of a Fowler flap and spoiler for an advanced general aviation wing

    Science.gov (United States)

    Paulson, J. W., Jr.

    1976-01-01

    The wing was tested without fuselage or empennage and was fitted with approximately three-quarter span Fowler flaps and half span spoilers. The spoilers were hinged at the 70 percent chord point and vented when the flaps were deflected. Static longitudinal and lateral aerodynamic data were obtained over an angle of attack range of -8 deg to 22 deg for various flap deflections and positions, spoiler geometries, and vent lip geometries. Lateral characteristics indicate that the spoilers are generally adequate for lateral control. In general, the spoiler effectiveness increases with increasing angle of attack, increases with increasing flap deflections, and is influenced by vent lip geometry. In addition, the data show that some two-dimensional effects on spoiler effectiveness are reduced in the three-dimensional case. Results also indicate significant increase in lift coefficient as the Fowler flaps are deflected; when the flap was fully deflected, the maximum wing lift coefficient was increased about 96 percent.

  15. Light aircraft engines, the potential and problems for use of automotive fuels. Phase I. Literature search. Final report, October 1979-September 1980

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, D.J.; Morrison, K.; Remondino, M.; Slopsema, T.

    1980-12-01

    A comprehensive data research and analysis for evaluating the use of automotive fuels as a substitute for aviation grade fuel by piston-type general aviation aircraft engines is presented. Historically known problems and potential problems with fuels were reviewed for possible impact relative to application to an aircraft operational environment. This report reviews areas such as: fuel specification requirements, combustion knock, preignition, vapor lock, spark plug fouling, additives for fuel and oil, and storage stability.

  16. REACTOR AND SHIELD PHYSICS. Comprehensive Technical Report, General Electric Direct-Air-Cycle, Aircraft Nuclear Propulsion Program.

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, W.E.; Simpson, J.D.

    1962-01-01

    This volume is one of twenty-one summarizing the Aircraft Nuclear Propulsion Program of the General Electric Company. This volume describes the experimental and theoretical work accomplished in the areas of reactor and shield physics.

  17. Small Aircraft RF Interference Path Loss

    Science.gov (United States)

    Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Szatkowski, George N.; Mielnik, John J.; Salud, Maria Theresa P.

    2007-01-01

    Interference to aircraft radio receivers is an increasing concern as more portable electronic devices are allowed onboard. Interference signals are attenuated as they propagate from inside the cabin to aircraft radio antennas mounted on the outside of the aircraft. The attenuation level is referred to as the interference path loss (IPL) value. Significant published IPL data exists for transport and regional category airplanes. This report fills a void by providing data for small business/corporate and general aviation aircraft. In this effort, IPL measurements are performed on ten small aircraft of different designs and manufacturers. Multiple radio systems are addressed. Along with the typical worst-case coupling values, statistical distributions are also reported that could lead to better interference risk assessment.

  18. Small Aircraft RF Interference Path Loss Measurements

    Science.gov (United States)

    Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Szatkowski, George N.; Mielnik, John J.; Salud, Maria Theresa P.

    2007-01-01

    Interference to aircraft radio receivers is an increasing concern as more portable electronic devices are allowed onboard. Interference signals are attenuated as they propagate from inside the cabin to aircraft radio antennas mounted on the outside of the aircraft. The attenuation level is referred to as the interference path loss (IPL) value. Significant published IPL data exists for transport and regional category airplanes. This report fills a void by providing data for small business/corporate and general aviation aircraft. In this effort, IPL measurements are performed on ten small aircraft of different designs and manufacturers. Multiple radio systems are addressed. Along with the typical worst-case coupling values, statistical distributions are also reported that could lead to more meaningful interference risk assessment.

  19. Aviation and Climate - An updated list of status of research on the effects of climate emissions from aircraft; Luftfart og klima. En oppdatert oversikt over status for forskning paa klimaeffekter av utslipp fra fly

    Energy Technology Data Exchange (ETDEWEB)

    Lund, Marianne T.; Berntsen, Jan S.; Fuglestvedt, Jan S. [Center for international climate and environmental research, Oslo, (Norway)

    2011-07-01

    Today carries approximately 23,000 flights over 2.2 billion passengers annually. On a global basis air travel accounts for almost 2 to 2.5 percent of the total anthropogenic Co2 emissions. Domestic civil aviation in Norway emitted 1.05 million tonnes of Co2 in 2008, according to reporting to the United Nations Framework Convention on Climate Change (UNFCCC, 2011). Emissions from international aviation from Norwegian airports in 2008 was just under 1.2 million tonnes of Co2 (National Inventory Report, 2010). Aviation is a sector that has been growing: in Norway the emissions from domestic aviation increased by 55 percent from 1990 to 2008, and also globally emissions have increased. There has been an even more powerful increase in traffic, but this increase did not been steady: The development is closely linked to the economy and the reduction is observed in periods of economic downturn. New technology and streamlining flight patterns made aircraft more energy efficient, which has helped to reduce emissions, but it has not been enough to compensate for the strong growth in traffic. If this trend continues, the total emissions from aviation increase further. In addition to Co2 consists emissions from airplanes a variety of other components that affect the climate, either directly or indirectly through chemical and physical processes in the atmosphere. This is not unique to aviation, but also apply to other sectors. The impact is complex and complicated, some mechanisms provide a cooling, others warming. Some effects are regional and have a geographic (and per day) variation in radiative forcing. Regional heterogeneous forcing can potentially change temperature and pressure distribution in the atmosphere and hence circulation patterns. The various emissions also have very different lifetimes in the atmosphere and affects the climate of the different time scales. For a number of mechanisms providing climate change are the chemical and meteorological conditions in the

  20. Research on General Airport's Aviation Fuel Supply Model in China%我国通用机场航油保障模式探析

    Institute of Scientific and Technical Information of China (English)

    张凤

    2016-01-01

    通用机场航油供应由于需求分散、需求量小、设施建设滞后、保障能力低以及物流环节长等因素,尚未统一建立起完善的航油保障模式,一定程度上制约了我国通用机场的发展。在分析我国现行的通用机场航油保障模式现状及其存在问题的基础上,给出提升我国通用航空航油保障水平的对策与建议,旨在为民航主管部门制定行业政策和广大通航企业保障航油供应提供建设性的意见,推进我国通航产业持续快速发展。%Due to factors such as scattered and low demand ,backward facility construction ,low guarantee capability ,and long logistics ,our country has not uniformly established the perfect fuel guarantee mode , which restrains the development of general airports to some extent .The paper offers the countermeasures and suggestions on promoting the guarantee level of general aviation fuel on the basis of analyzing the cur-rent status and problems of general airport fuel guarantee mode ,aiming to provide constructive suggestions for civil aviation administrations to work out industrial policies and for general aviation enterprises to guar-antee fuel supply ,and further facilitating the sustainable and rapid development of our country's general a-viation industry .

  1. Corporate Social Responsibility in Aviation

    Science.gov (United States)

    Phillips, Edwin D.

    2006-01-01

    The dialog within aviation management education regarding ethics is incomplete without a discussion of corporate social responsibility (CSR). CSR research requires discussion involving: (a) the current emphasis on CSR in business in general and aviation specifically; (b) business and educational theory that provide a basis for aviation companies to engage in socially responsible actions; (c) techniques used by aviation and aerospace companies to fulfill this responsibility; and (d) a glimpse of teaching approaches used in university aviation management classes. The summary of this research suggests educators explain CSR theory and practice to students in industry and collegiate aviation management programs. Doing so extends the discussion of ethical behavior and matches the current high level of interest and activity within the aviation industry toward CSR.

  2. Aircraft type influence on contrail properties

    Directory of Open Access Journals (Sweden)

    P. Jeßberger

    2013-05-01

    Full Text Available The investigation of the impact of aircraft parameters on contrail properties helps to better understand the climate impact from aviation. Yet, in observations, it is a challenge to separate aircraft and meteorological influences on contrail formation. During the CONCERT campaign in November 2008, contrails from 3 Airbus passenger aircraft of type A319-111, A340-311 and A380-841 were probed at cruise under similar meteorological conditions with in-situ instruments on board the DLR research aircraft Falcon. Within the 2 min old contrails detected near ice saturation, we find similar effective diameters Deff (5.2–5.9 μm, but differences in particle number densities nice (162–235 cm−3 and in vertical contrail extensions (120–290 m, resulting in large differences in contrail optical depths τ (0.25–0.94. Hence larger aircraft produce optically thicker contrails. Based on the observations, we apply the EULAG-LCM model with explicit ice microphysics and in addition the Contrail and Cirrus Prediction model CoCiP to calculate the aircraft type impact on young contrails under identical meteorological conditions. The observed increase in τ for heavier aircraft is confirmed by the models, yet for generally smaller τ. An aircraft dependence of climate relevant contrail properties persists during contrail lifetime, adding importance to aircraft dependent model initialization. We finally derive an analytical relationship between contrail, aircraft and meteorological parameters. Near ice saturation, contrail width × τ scales linearly with fuel flow rate as confirmed by observations. For higher saturation ratios approximations from theory suggest a non-linear increase in the form (RHI–12/3. Summarized our combined results could help to more accurately assess the climate impact from aviation using an aircraft dependent contrail parameterization.

  3. Aviation Warrant Officer Program and Enlisted Aviator Study

    Science.gov (United States)

    1977-11-01

    Advanced Courses Hours Instructional Segement Purose 4 Enlisted Personnel Procedures for enlisted person- Management nel classification, assignment...way that will provide "aircraft qualified" aviators to operational units. The units would then conduct unit training to support whatever geographic

  4. The Naval Aviation Enterprise Type/Model/Series Team and Its Effect on AH-1W Readiness

    Science.gov (United States)

    2012-03-23

    Team Structure 28 9 Current Readiness Process The Current Readiness Process assesses the readiness metrics, or Key Performance Indicators ( KPIs ...CR CFT and the Marine Corps leadership to shift resources to close the gap. Aircraft Readiness Aircraft availability is one of the KPIs that the T...Commandant of Aviation DRRS Defense Readiness Reporting System FMC Full Mission Capable GAO General Accounting Office GSE Ground Support Equipment KPI

  5. Securing General Aviation

    Science.gov (United States)

    2009-03-03

    a student pilot intentionally crashed a small single-engine airplane into a skyscraper in downtown Tampa, Florida on January 5, 2002. The pilot...Nuclear Regulatory Commission to Correspondence from Rep. Edward J. Markey (D-MA), Member, Energy and Commerce Committee, U.S. House of...managed basis” at GA airports. Also, the act requires the TSA to complete a feasibility study to assess the concept of providing grants to GA airport

  6. 32 CFR 855.18 - Aviation fuel and oil purchases.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Aviation fuel and oil purchases. 855.18 Section... AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits § 855.18 Aviation fuel and..., Air Force Stock Fund and DPSC Assigned Item Procedures, 5 purchase of Air Force fuel and oil may...

  7. Development and Evaluation of an Air Quality Modeling Approach to Assess Near-Field Impacts of Lead Emissions from Piston-Engine Aircraft Operating on Leaded Aviation Gasoline

    Science.gov (United States)

    Since aviation gasoline is now the largest remaining source of lead (Pb) emissions to the air in the United States, there is increased interest by regulatory agencies and the public in assessing the impacts on residents living in close proximity to these sources. An air quality m...

  8. 我国航空租赁公司飞机融资业务考察%On Aircraft Financing Business of Chinese Aviation Leasing Companies

    Institute of Scientific and Technical Information of China (English)

    石斌; 李心愉

    2015-01-01

    China is the aviation leasing market with the most growth potential, as a result of which, the leasing companies in China face significant opportunities. The article, based on the analysis on the current development of aviation financing as well as the five main problems of several representative Chinese leasing companies who are developing operating leasing business, gives three suggestions of easing excessive financial regulatory barriers from the governmental management, promoting development of aviation financing related fields and improving comprehensive capacity of the companies, and provides some reference for further development for aviation financing business.%我国民航市场已成为全球最具潜力的飞机租赁市场,航空租赁业迎来重要发展机遇。本文在分析我国代表性金融租赁公司开展飞机融资业务的现状及面临问题的基础上,从管理层调整金融监管办法、航空租赁业推动飞机融资领域配套发展、金融租赁公司加强自身能力建设三个层面提出了若干政策建议。

  9. Augmented reality application utility for aviation maintenance work instruction

    Science.gov (United States)

    Pourcho, John Bryan

    Current aviation maintenance work instructions do not display information effectively enough to prevent costly errors and safety concerns. Aircraft are complex assemblies of highly interrelated components that confound troubleshooting and can make the maintenance procedure difficult (Drury & Gramopadhye, 2001). The sophisticated nature of aircraft maintenance necessitates a revolutionized training intervention for aviation maintenance technicians (United States General Accounting Office, 2003). Quite simply, the paper based job task cards fall short of offering rapid access to technical data and the system or component visualization necessary for working on complex integrated aircraft systems. Possible solutions to this problem include upgraded standards for paper based task cards and the use of integrated 3D product definition used on various mobile platforms (Ropp, Thomas, Lee, Broyles, Lewin, Andreychek, & Nicol, 2013). Previous studies have shown that incorporation of 3D graphics in work instructions allow the user to more efficiently and accurately interpret maintenance information (Jackson & Batstone, 2008). For aircraft maintenance workers, the use of mobile 3D model-based task cards could make current paper task card standards obsolete with their ability to deliver relevant, synchronized information to and from the hangar. Unlike previous versions of 3D model-based definition task cards and paper task cards, which are currently used in the maintenance industry, 3D model based definition task cards have the potential to be more mobile and accessible. Utilizing augmented reality applications on mobile devices to seamlessly deliver 3D product definition on mobile devices could increase the efficiency, accuracy, and reduce the mental workload for technicians when performing maintenance tasks (Macchiarella, 2004). This proposal will serve as a literary review of the aviation maintenance industry, the spatial ability of maintenance technicians, and benefits of

  10. Cyber threats within civil aviation

    Science.gov (United States)

    Heitner, Kerri A.

    Existing security policies in civil aviation do not adequately protect against evolving cyber threats. Cybersecurity has been recognized as a top priority among some aviation industry leaders. Heightened concerns regarding cyber threats and vulnerabilities surround components utilized in compliance with the Federal Aviation Administration's (FAA) Next Generation Air Transportation (NextGen) implementation. Automated Dependent Surveillance-B (ADS-B) and Electronic Flight Bags (EFB) have both been exploited through the research of experienced computer security professionals. Civil aviation is essential to international infrastructure and if its critical assets were compromised, it could pose a great risk to public safety and financial infrastructure. The purpose of this research was to raise awareness of aircraft system vulnerabilities in order to provoke change among current national and international cybersecurity policies, procedures and standards. Although the education of cyber threats is increasing in the aviation industry, there is not enough urgency when creating cybersecurity policies. This project intended to answer the following questions: What are the cyber threats to ADS-B of an aircraft in-flight? What are the cyber threats to EFB? What is the aviation industry's response to the issue of cybersecurity and in-flight safety? ADS-B remains unencrypted while the FAA's mandate to implement this system is rapidly approaching. The cyber threat of both portable and non-portable EFB's have received increased publicity, however, airlines are not responding quick enough (if at all) to create policies for the use of these devices. Collectively, the aviation industry is not being proactive enough to protect its aircraft or airport network systems. That is not to say there are not leaders in cybersecurity advancement. These proactive organizations must set the standard for the future to better protect society and it's most reliable form of transportation.

  11. Subsidies in Aviation

    Directory of Open Access Journals (Sweden)

    Stefan Gössling

    2017-07-01

    Full Text Available Relatively little attention has been paid to the existence of subsidies in aviation. As the sector’s importance for economic development is often highlighted, this paper seeks to provide a conceptual overview of the various forms of subsidies in aviation, as a contribution to a more holistic understanding of economic interrelationships. Based on a purposive sampling strategy, existing forms of subsidies are identified and categorized along the value chain. Focus is on industrialized countries, for which more information is available. Results indicate that significant subsidies are extended to manufacturers, infrastructure providers and airlines. These contribute to global economic growth related to aviation, but they also influence capacity in global aviation markets, strengthen the market position of individual airlines, and create conflicts between airlines and the countries they are based in. While the actual scale of subsidies cannot be determined within the scope of this paper, it provides a discussion of options to empirically assess the effects of aviation subsidies on market outcomes. Finally, general conclusions regarding the impact of subsidies on the overall sustainability of the air transport sector are drawn: These include rapidly growing capacity in the aviation system, economic vulnerabilities, and negative climate change related impacts. Results call for a better understanding of the distribution, character and implications of subsidies.

  12. Research on the Cost Estimating of China's Aviation Aircraft Development Project Based on the Parametric Method%基于参数法的我国航空飞机研制项目成本估算研究

    Institute of Scientific and Technical Information of China (English)

    张海峰; 姜海燕; 王发丽

    2014-01-01

    在分析参数法成本估算的基础上,针对飞机研制项目分析成本影响因素,运用相关性分析确定影响成本的关键影响因素,构建飞机研制项目成本影响因素模型,并在此基础上运用多元非线性回归分析建立飞机研制项目的参数法成本估算模型,最后从航空飞机制造企业、研发机构和政府三个角度对我国航空飞机研制项目实施参数法成本估算提出建议。%The modern aircraft development work has significant characteristics,such as the more complex product struc-ture,the longer development cycle,the higher risks and poor reproducibility.And the cost estimating of development pro-ject is difficult.Based on the method of parametric cost estimating,the paper analyzes the influencing factors of aircraft de-velopment project costs,and uses the correlation analysis to determine the key influencing factors of project costs and estab-lish the cost impact factor model.And on this basis,the paper uses multiple nonlinear regression analysis method to estab-lish the cost estimation model of aircraft development project.Finally,the recommendations of using the method of paramet-ric cost estimating to estimate the cost of China's aviation aircraft development project are given from the three aspects of en-terprise,development institution and government.

  13. BASIC PRINCIPLES FOR THE MODERN CLASSIFICATION OF UNMANNED AVIATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    В.П. Харченко

    2012-12-01

    Full Text Available  In view of the basic contemporary classification criteria attempted the classification of unmanned aircraft systems have been attempted  on the basis of available scientific and technical potential, of their applications features,  and prospects for development of information and the aircraft manufacturing technologies. Based on the global trends analysis of unmanned aircraft systems development in determining the prospects for development of unmanned aircraft systems as a class has been discussed the need to use a single general classification system features that reflects the level of functional independence of the aircraft belonging to the UAS and takes into account not only the level of technical excellence, but also the level of development information and logistics systems. The formation principles of unmanned aircraft systems and complexes have been considered due to the UAC development problems, including the issues of the complex architectonics, its full composition, unmanned aircraft controlling methods, and the procedures for the unmanned aviation complex use as a whole taking into account the peculiarities the different UAVs categories application.

  14. 77 FR 39623 - Airworthiness Standards: Aircraft Engines; Technical Amendment

    Science.gov (United States)

    2012-07-05

    ... Federal Aviation Administration 14 CFR Part 33 Airworthiness Standards: Aircraft Engines; Technical.... SUMMARY: This amendment clarifies aircraft engine vibration test requirements in the airworthiness... 33--AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES 0 1. The authority citation for part 33 continues...

  15. 14 CFR 25.117 - Climb: general.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Climb: general. 25.117 Section 25.117 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Performance § 25.117 Climb: general. Compliance with...

  16. 14 CFR 29.64 - Climb: General.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Climb: General. 29.64 Section 29.64 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Performance § 29.64 Climb: General. Compliance with...

  17. High-Speed Propeller for Aircraft

    Science.gov (United States)

    Sagerser, D. A.; Gatzen, B. S.

    1986-01-01

    Engine efficiency increased. Propeller blades required to be quite thin and highly swept to minimize compressibility losses and propeller noise during high-speed cruise. Use of 8 or 10 blades with highpropeller-power loading allows overall propeller diameter to be kept relatively small. Area-ruled spinner and integrated nacelle shape reduce compressibility losses in propeller hub region. Finally, large modern turboshaft engine and gearbox provide power to advanced propeller. Fuel savings of 30 to 50 percent over present systems anticipated. Propfan system adaptable to number of applications, such as highspeed (subsonic) business and general-aviation aircraft, and military aircraft including V/STOL.

  18. The Participation of Ukrainian Companies in Building the Mechanisms for Naval Aviation

    Directory of Open Access Journals (Sweden)

    Andrey I. Kharuk

    2015-03-01

    Full Text Available The main program for the development and production of equipment for naval aviation, carried out in Ukraine in 1910 - 1980. The author comes to the conclusion that naval aviation has never been a priority area for the Ukrainian aviation industry. However, throughout its history, the aircrafts intended for naval aviation, developed and in some cases introduced into serial production.

  19. 78 FR 54385 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine

    Science.gov (United States)

    2013-09-04

    ... Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine AGENCY: Federal Aviation Administration... directive (AD) for various aircraft equipped with Rotax Aircraft Engines 912 A Series Engine. This AD...; phone: +43 7246 601 0; fax: +43 7246 601 9130; Internet: http://www.rotax-aircraft-engines.com . You...

  20. High Speed Mobility Through On-Demand Aviation

    Science.gov (United States)

    Moore, Mark D.; Goodrich, Ken; Viken, Jeff; Smith, Jeremy; Fredericks, Bill; Trani, Toni; Barraclough, Jonathan; German, Brian; Patterson, Michael

    2013-01-01

    Game changing advances come about by the introduction of new technologies at a time when societal needs create the opportunity for new market solutions. A unique opportunity exists for NASA to bring about such a mobility revolution in General Aviation, extendable to other aviation markets, to maintain leadership in aviation by the United States. This report outlines the research carried out so far under NASA's leadership towards developing a new mobility choice, called Zip Aviation1,2,3. The feasibility, technology and system gaps that need to be addressed, and pathways for successful implementation have been investigated to guide future investment. The past decade indicates exciting trends in transportation technologies, which are quickly evolving. Automobiles are embracing automation to ease driver tasks as well as to completely control the vehicle with added safety (Figure 1). Electric propulsion is providing zero tail-pipe emission vehicles with dramatically lower energy and maintenance costs. These technologies have not yet been applied to aviation, yet offer compelling potential benefits across all aviation markets, and in particular to General Aviation (GA) as an early adopter market. The benefits of such an adoption are applicable in the following areas: ?? Safety: The GA market experiences accident rates that are substantially higher than automobiles or commercial airlines, with 7.5 fatal accidents per 100 million vehicle miles compared to 1.3 for automobiles and.068 for airlines. Approximately 80% of these accidents are caused by some form of pilot error, with another 13% caused by single point propulsion system failure. ?? Emissions: Environmental constraints are pushing for the elimination of 100Low Lead (LL) fuel used in most GA aircraft, with aviation fuel the #1 source of lead emissions into the environment. Aircraft also have no emission control systems (i.e. no catalytic converters etc.), so they are gross hydrocarbon polluters compared to

  1. Research on the Layout of General Aviation Rescue Point%通用航空应急救援点布局方法研究

    Institute of Scientific and Technical Information of China (English)

    朱燕; 邵荃; 贾萌; 张海蛟; 张金石

    2015-01-01

    Considering fast and efficient features of general aviation rescue,we established an analytic hierarchy model of influencing factors on general aviation search and rescue point layout,to figure out the weight of each affected spots and surrounding construction of emergency rescue points. Then,the p-center model of emergency facility location problem is combined in,which is to make maximum distance between the rescue points and the affected point minimal. Finally,we proposed a new general aviation emergency rescue point layout method,which is a combination of qualitative and quantitative analysis. It can determine the number of rescue point and plan network layout of the service and coverage relationship. Considering the structured and unstructured factors of general aviation rescue,it has met the requirements of the most efficient,fairness and lowest cost. So,it has great significance for the development of rescue point network layout.%在考虑通用航空搜救快速、高效特点的基础上,构建了通用航空救援点布局影响因素的层次分析模型,针对布局考虑因素对各个受灾点及周边建设应急救援点的需求影响进行权重计算,结合应急设施选址问题中的p-中心模型,即使得救援点至受灾点的最大距离最小,提出了一种结合定性和定量分析的通用航空应急救援点的布局方法,确定了救援点的数量,对救援点和受灾点的救援服务关系进行网络布局,综合考虑了通航搜救的结构化和非结构化因素,并满足了通航搜救效率最大、公平性、成本最低等要求。该方法的提出对通航救援点布局工作发展具有重要意义。

  2. General aviation and community development; Summer Faculty Fellowship Program in Engineering Systems Design, Hampton, Va., June 2-August 15, 1975, Report

    Science.gov (United States)

    Sincoff, M. Z.; Dajani, J. S.

    1975-01-01

    The document summarizes the results of a faculty program in engineering systems design whose primary aim was to provide a framework for communication and collaboration between academic personnel, research engineers, and scientists in government agencies and private industry. Other objectives were to provide a useful study of a broadly based societal problem, requiring the coordinated efforts of a multidisciplinary team, and to generate experience in the development of systems design and multidisciplinary activities. The success of the program is evidenced by the resulting study of general aviation and community development, characterized by thorough scrutiny of ideas, philosophies, and academic perspectives.

  3. 78 FR 15110 - Aviation Rulemaking Advisory Committee; Engine Bird Ingestion Requirements-New Task

    Science.gov (United States)

    2013-03-08

    ... Federal Aviation Administration Aviation Rulemaking Advisory Committee; Engine Bird Ingestion Requirements... and assess the adequacy of certain portions of the existing engine bird ingestion requirements. This... bird ingestion type certification standards for aircraft turbine engines to better address the...

  4. Effects of Video Weather Training Products, Web-Based Preflight Weather Briefing, and Local Versus Non-Local Pilots on General Aviation Pilot Weather Knowledge and Flight Behavior, Phase 3

    Science.gov (United States)

    2010-11-01

    Weather Knowledge and Flight Behavior, Phase 3 DOT/FAA/AM-10/17 Office of Aerospace Medicine Washington, DC 20591 OK-11-0024-JAH Federal Aviation...Vs. Non-Local Pilots on General Aviation Pilot Weather Knowledge and Flight Behavior, Phase 3 6. Performing Organization Code 7. Author(s...behavior in Phase 2; (2) Whole-group (N=50) weather knowledge test scores were significantly lower (19%, p<.001) than average FAA certification exam

  5. 48 CFR 246.408-71 - Aircraft.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Aircraft. 246.408-71... Aircraft. (a) The Federal Aviation Administration (FAA) has certain responsibilities and prerogatives in connection with some commercial aircraft and of aircraft equipment and accessories (Pub. L. 85-726 (72 Stat...

  6. 14 CFR 252.13 - Small aircraft.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Small aircraft. 252.13 Section 252.13 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.13 Small aircraft. Air carriers shall prohibit smoking on aircraft...

  7. The Feasibility of Implementing an Expert System for Aircraft Maintenance Discrepancy Scheduling with the Naval Aviation Logistics Command Management Information system (NALCOMIS).

    Science.gov (United States)

    1985-09-01

    priority rating is medium c. Rule .gOBJECT: BOOK I. sWOTS ENIR-IE9- Title A Guide To Expert Systems * Author Waterman, Donald A. Publisher Addison...responsibility of the MCO. It also falls to him to maintain historical aircraft files and monitor 3M documentation. VIDS boards and material...Reduce awaiting parts inventory levels at the SSC. - Reduce the administrative burden of maintenance personnel in meeting 3M system requirements

  8. CERTIFICATION - The final and critical stage of every civil or military aviation program

    Directory of Open Access Journals (Sweden)

    Vasile STEFAN

    2012-06-01

    Full Text Available As a general rule the final step in every aviation program is the certification of the airplane, an important step in which the airplane, the engins and the equipments are checked by an authority or commission according to the airworthiness rules. The main scope of the certification is to promote a safe aviation product and to protect the general public from unnecessary risk. In all the contries the national authorieties require a civil certificability for all the parts or equipments and a full aircraft certification for a new or wholly modified airplane. The military aircrafts must pased and respond to a specific way of certification and many actual efforts are done in order to unify the diffrent national rules in this field. This paper presents the existing situation in the certification of civil and military airplans and the actual measures done for the unification of certification procedures in the world.

  9. Aviation Noise Impacts: State of the Science

    Science.gov (United States)

    Basner, Mathias; Clark, Charlotte; Hansell, Anna; Hileman, James I.; Janssen, Sabine; Shepherd, Kevin; Sparrow, Victor

    2017-01-01

    Noise is defined as “unwanted sound.” Aircraft noise is one, if not the most detrimental environmental effect of aviation. It can cause community annoyance, disrupt sleep, adversely affect academic performance of children, and could increase the risk for cardiovascular disease of people living in the vicinity of airports. In some airports, noise constrains air traffic growth. This consensus paper was prepared by the Impacts of Science Group of the Committee for Aviation Environmental Protection of the International Civil Aviation Organization and summarizes the state of the science of noise effects research in the areas of noise measurement and prediction, community annoyance, children’s learning, sleep disturbance, and health. It also briefly discusses civilian supersonic aircraft as a future source of aviation noise.

  10. Using random forests to diagnose aviation turbulence

    OpenAIRE

    2013-01-01

    Atmospheric turbulence poses a significant hazard to aviation, with severe encounters costing airlines millions of dollars per year in compensation, aircraft damage, and delays due to required post-event inspections and repairs. Moreover, attempts to avoid turbulent airspace cause flight delays and en route deviations that increase air traffic controller workload, disrupt schedules of air crews and passengers and use extra fuel. For these reasons, the Federal Aviation Administration and the N...

  11. 14 CFR 23.63 - Climb: General.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Climb: General. 23.63 Section 23.63 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Performance § 23.63...

  12. 14 CFR 35.33 - General.

    Science.gov (United States)

    2010-01-01

    ... and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS Tests and Inspections § 35.33 General. (a) Each applicant must furnish test article(s... nature of the test. If needed for substantiation, the applicant may test a different...

  13. Transport Aircraft System Identification from Wind Tunnel Data

    Science.gov (United States)

    Murphy, Patrick C.; Klein, Vladislav

    2008-01-01

    Recent studies have been undertaken to investigate and develop aerodynamic models that predict aircraft response in nonlinear unsteady flight regimes for transport configurations. The models retain conventional static and rotary dynamic terms but replace conventional acceleration terms with more general indicial functions. In the Integrated Resilient Aircraft Controls project of the NASA Aviation Safety Program one aspect of the research is to apply these current developments to transport configurations to facilitate development of advanced controls technology. This paper describes initial application of a more general modeling methodology to the NASA Langley Generic Transport Model, a sub-scale flight test vehicle.

  14. 75 FR 70074 - Consensus Standards, Light-Sport Aircraft

    Science.gov (United States)

    2010-11-16

    ... Federal Aviation Administration Consensus Standards, Light-Sport Aircraft AGENCY: Federal Aviation... provisions of the Sport Pilot and Light-Sport Aircraft rule issued July 16, 2004, and effective September 1, 2004. ASTM International Committee F37 on Light Sport Aircraft developed the revised standards...

  15. 76 FR 45647 - Consensus Standards, Light-Sport Aircraft

    Science.gov (United States)

    2011-07-29

    ... Federal Aviation Administration Consensus Standards, Light-Sport Aircraft AGENCY: Federal Aviation... to the provisions of the Sport Pilot and Light-Sport Aircraft rule issued July 16, 2004, and effective September 1, 2004. ASTM International Committee F37 on Light Sport Aircraft developed the...

  16. Global Commercial Aviation Emissions Inventory for 2004

    Science.gov (United States)

    Wilkerson, J.; Balasubramanian, S.; Malwitz, A.; Wayson, R.; Fleming, G.; Jacobson, M. Z.; Naiman, A.; Lele, S.

    2008-12-01

    In 2004, the global commercial aircraft fleet included more than 13,000 aircraft flying over 30 billion km, burning more than 100 million tons of fuel. All this activity incurs substantial amounts of fossil-fuel combustion products at the cruise altitude within the upper troposphere and lower stratosphere that could potentially affect the atmospheric composition and climate. These emissions; such as CO, CO2, PM, NOx, SOx, are not distributed uniformly over the earth, so understanding the temporal and spatial distributions is an important component for modeling aviation climate impacts. Previous studies for specific years have shown that nearly all activity occurs in the northern hemisphere, and most is within mid-latitudes. Simply scaling older data by the annual global industry growth of 3-5 percent may provide emission trends which are not representative of geographically varying growth in aviation sector that has been noted over the past years. India, for example, increased its domestic aviation activity recently by 46 percent in one year. Therefore, it is important that aircraft emissions are best characterized and represented in the atmospheric models for impacts analysis. Data containing all global commercial flights for 2004 was computed using the Federal Aviation Administration's Aviation Environmental Design Tool (AEDT) and provided by the Volpe National Transportation Systems Center. The following is a summary of this data which illustrates the global aviation footprint for 2004, and provides temporal and three-dimensional spatial distribution statistics of several emissions constituents.

  17. 14 CFR 43.13 - Performance rules (general).

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Performance rules (general). 43.13 Section 43.13 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT MAINTENANCE, PREVENTIVE MAINTENANCE, REBUILDING, AND ALTERATION § 43.13 Performance rules (general). (a)...

  18. An Advanced Open-Source Aircraft Design Platform for Personal Air Vehicle Geometry, Aerodynamics, and Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Innovators working to revolutionize air travel through personal aviation pioneers need innovative aircraft design tools. Vehicle Sketch Pad (VSP) is an aircraft...

  19. Rating hydrogen as a potential aviation fuel

    Science.gov (United States)

    Witcofski, R. D.

    1980-01-01

    The viability of liquid hydrogen, liquid methane, and synthetic aviation kerosene as future alternate fuels for transport aircraft is analyzed, and the results of a comparative assessment are given in terms of cost, energy resource utilization, areas of fuel production, transmission airport facilities, and ultimate use in the aircraft. Important safety (fires) and some environmental aspects (CO2 balance) are also described. It is concluded that fuel price estimates indicate the price of synthetic aviation kerosene (synjet) would be approximately half of the price calculated for liquid hydrogen and somewhat less than that of liquid methane, with synjet from oil shale reported to be the least expensive.

  20. Selected supplies prognosis problems of aviation techniques

    Science.gov (United States)

    Żurek, J.; Czapla, R.

    2016-06-01

    Aviation technology, i.e. aircraft, control and airfield infrastructure wear out, become defective and need servicing. It seems indispensible to maintain facilities and spare parts at a level necessary to keep the technology in commission. The paper discusses the factors influencing spare parts supply requirements to secure air operations. Aviation technology has been classified with regard to various criteria, which influence the choice of supply management strategies, along with availability and aircraft exploitation cost. The method of optimization of the stock for a complex system characterized by series reliability structure according to the wear-out and cost criteria assuming Poisson's process of demand has been presented.

  1. 77 FR 1626 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine

    Science.gov (United States)

    2012-01-11

    ... Equipped With Rotax Aircraft Engines 912 A Series Engine AGENCY: Federal Aviation Administration (FAA), DOT... various aircraft equipped with Rotax Aircraft Engines 912 A series engine. This AD results from mandatory... Rotax Aircraft Engines BRP has issued Alert Service Bulletin ASB- 912-059 and ASB-914-042...

  2. 76 FR 31465 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine

    Science.gov (United States)

    2011-06-01

    ... Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine AGENCY: Federal Aviation Administration...://www.rotax-aircraft-engines.com . You may review copies of the referenced service information at the... by examining the MCAI in the AD docket. Relevant Service Information Rotax Aircraft Engines...

  3. 森林火灾应急扑救中航空飞机装备的种类及技术%Type of Aviation Aircraft Equipment and Technology for Forest Fire Emergency Suppression

    Institute of Scientific and Technical Information of China (English)

    高仲亮; 王秋华; 舒立福; 张明远

    2014-01-01

    As an important part of forest fire monitoring and fighting,aviation aircraft consist of fixed-wing aircraft and heli-copters. They attack fast and flexibly,without terrain restrictions,and can realize airborne command,aircraft landing for fire suppression,line-down fire suppression, chemical-based fire suppression,bucket fire suppression,artificial precipitation and fire suppression during glide. In view of such disadvantags as the restrictions involved in the implementation of aerial fire sup-pression,low utilization rate of water and low efficiency of fire suppression, and such advantages as water-based fire suppres-sion and the low cost,safety and environmental protection features of water,it is proposed that water is the best fire extin-guishing agent and water mist is the best way of fire extinctio. Improvement of the utilization rate of water-based fire extinc-tion,research and development of water mist-based fire extinguishing system and new types of airborne water mist fire extin-guishing bombs to exert their superiority in forest fire fighting will be the development direction of aerial fire suppression.%航空飞机是监测和扑救森林火灾的重要组成部分,分为固定翼机和直升机。航空飞机具有出击迅速、机动灵活、不受地形限制等优点,能进行空中指挥、机降灭火、索降灭火、化学灭火、吊桶灭火以及人工增雨和滑降灭火等作业。针对航空灭火水利用率和灭火效率低的缺点,以及水灭火的优越性和水的廉价、安全环保特性,提出水是最好的灭火剂,细水雾是其最佳的作用方式。提高水灭火的利用率、研发细水雾灭火系统和新型机载细水雾灭火弹,发挥其扑救森林火灾的优越性,将是航空灭火的发展方向。

  4. Estimation of the Aircraft CO2 Emission of China's Civil Aviation During 1960-2009%1960-2009年中国民航飞机的CO2逐年排放变化

    Institute of Scientific and Technical Information of China (English)

    何吉成

    2011-01-01

    基于中国民航部门逐年统计数据,计算了1960- 2009年中国民航飞机的CO2逐年排放量,分析了中国民肮飞机CO2排放强度及其变化特点.结果表明:中国民航飞机CO2总排放量由1960年的12.0万t增至2009年的4144万t;CO2排放强度呈明显的降低趋势,由1960年的2.9 kg/换算吨公里降至2009年的0.96 kg/换算吨公里,年均降低0.04 kg/换算吨公里.中国民肮飞机的CO2排放量占整个交通运输仓储和邮政行业CO2排放量的比例较低,仅占6.6%,占全国化石燃料燃烧CO2排放量的比例也很小,平均只有0.25%.%Based on the annual production data collected by Chinese Civil Aviation Statistic Center, the yearly CO2 emission of aircrafts during 1960-2009 was calculated, and the emission intensity and its dynamic characteristics were analyzed. The results show that the total CO2 emission of aircrafts in China increased from 120 kt in 1960 to 41.44 Mt in 2009. The emission intensity of CO2 decreased from 2.9 kg/(converted t · Km) in 1960 to 0.96 kg/(converted t · km) in 2009 at an average rate of 0.04 kg/(converted t · km) per year. The average proportion of the CO2 emission of aircrafts to the total CO2 emission from the sector of transportation, storage and post was 6.6% in the period of 1980-2005, and to the total emission from fossil fuel combustion was 0.25% in the period of 1971-2008.

  5. AGATE计划与美国通用航空复合材料%The AGATE program and American general aviation composite

    Institute of Scientific and Technical Information of China (English)

    李珂

    2013-01-01

    In the AGATE program, a series of affordable new technologies, standards and certification methods for general aviation were developed. This article discusses mainly composite, including the AGATE methodology, materials that were developed and in accordance with the AGATE methodology, and usage and evaluation of these materials from users.%通过先进通用航空技术实验(AGATE)计划,美国为通用飞机开发了一系列可负担的新技术、标准以及验证方法.着重阐述了其中的复合材料部分,具体包括“AGATE方法”的内容与特点,各复合材料制造商根据该方法研发、鉴定的AGATE材料,以及用户对这些材料的使用和评价.

  6. Greener Aviation with Virtual Sensors: A Case Study

    Data.gov (United States)

    National Aeronautics and Space Administration — The environmental impact of aviation is enormous given the fact that in the US alone there are nearly 6 million flights per year of commercial aircraft. This...

  7. Discovering Anomalous Aviation Safety Events Using Scalable Data Mining Algorithms

    Data.gov (United States)

    National Aeronautics and Space Administration — The worldwide civilian aviation system is one of the most complex dynamical systems created. Most modern commercial aircraft have onboard flight data recorders that...

  8. Trends in the Development of China’s Aviation Industry

    OpenAIRE

    2010-01-01

    The Chinese leadership has identified the aviation industry as a strategic priority. This policy brief assesses progress in China’s aviation industry, with a focus on 2009–2010. A review of major developments in China’s civilian and military aircraft programs reveals a trend in China’s approach to advancing its aviation industry: dependence on foreign partnerships alongside investment in indigenous research and development. It remains to be seen if this hybrid techno-globalist and techno-nati...

  9. Safer Aviation Materials Tested

    Science.gov (United States)

    Palaszewski, Bryan A.

    2001-01-01

    A series of thermally stable polymer samples were tested. These materials are called low heat release materials and are designed for aircraft interior decorative materials. The materials are designed to give off a minimum amount of noxious gases when heated, which increases the possibility that people can escape from a burning aircraft. New cabin materials have suitably low heat release so that fire does not spread, toxic chemicals are not given off, and the fire-emergency escape time for crew and passengers is lengthened. These low heat-release materials have a variety of advantages and applications: interiors for ground-based facilities, interiors of space vehicles, and many commercial fire-protection environments. A microscale combustion calorimeter at the Federal Aviation Administration's (FAA) Technical Center tested NASA Langley Research Center materials samples. The calorimeter is shown. A sharp, quantitative, and reproducible heat-release-rate peak is obtained in the microscale heat-release-rate test. The newly tested NASA materials significantly reduced the heat release capacity and total heat release. The thermal stability and flammability behavior of the samples was very good. The new materials demonstrated a factor of 4 reduction in total heat release over ULTEM (a currently used material). This information is provided in the following barchart. In other tests, the materials showed greater than a factor 9 reduction in heat-release capacity over ULTEM. The newly tested materials were developed for low dielectric constant, low color, and good solubility. A scale up of the material samples is needed to determine the repeatability of the performance in larger samples. Larger panels composed of the best candidate materials will be tested in a larger scale FAA Technical Center fire facility. The NASA Glenn Research Center, Langley (Jeff Hinkley), and the FAA Technical Center (Richard Lyon) cooperatively tested these materials for the Accident Mitigation

  10. Innovation Engineer Aviation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    China National Guizhou Aviation Industry (Group) Co.Ltd. originally started as an aviation base for development and production,initiated in 1964 by China’s former Premier Zhou Enlai.Situated in a mountainous area,the base formerly specialized in manufacturing fighter trainer aircraft and air- craft engines as an important constituent of major construction projects at the strategic rear base.This can be considered as the group’s first step on the thorny path of development. At that time,thousands of young people devoted their youth to the construction of the group.Among them was Tan Weidong,who 40 years later became chairman of board, leading 46 subsidiary enterprises and institutions.Staffed with a total of 51,000 employees,the group has over the years become a large state-owned enterprise integrating production of both military and civilian products.On the sidelines of the 2006-07 China Automotive Summit Forum,recently held in Guiyang, Guizhou Province of southwest China,Tan shared with Beijing Review his experience of innovating.

  11. Avionics: The main contributor to innovation in aviation

    NARCIS (Netherlands)

    Theunissen, E.

    2010-01-01

    Avionics refers to Electronic systems used in Aviation, and the word itself is a blend of Aviation and Electronics. Avionics are not only essential for today’s commercial and military aircraft to fly, but also enable their integration into the overall traffic management system. For safety critical

  12. Avionics: The main contributor to innovation in aviation

    NARCIS (Netherlands)

    Theunissen, E.

    2010-01-01

    Avionics refers to Electronic systems used in Aviation, and the word itself is a blend of Aviation and Electronics. Avionics are not only essential for today’s commercial and military aircraft to fly, but also enable their integration into the overall traffic management system. For safety critical a

  13. Simulating the global atmospheric black carbon cycle: a revisit to the contribution of aircraft emissions

    Directory of Open Access Journals (Sweden)

    J. Hendricks

    2004-06-01

    Full Text Available The black carbon (BC burden of the upper troposphere and lowermost stratosphere (UTLS is investigated with the general circulation model (GCM ECHAM4. The special focus is the contribution of aircraft emissions to the UTLS BC loading. Previous studies on the role of aircraft emissions in the global BC cycle either neglect BC sources located at the Earth's surface or simplify the BC cycle by assuming pre-defined BC residence times. Here, the global BC cycle including emissions, transport, and removal is explicitly simulated. The BC emissions considered include surface sources as well as BC from aviation. This enables a consistent calculation of the relative contribution of aviation to the global atmospheric BC cycle. As a further extension to the previous studies, the aviation-induced perturbation of the UTLS BC particle number concentration is investigated. Several sensitivity studies were performed to evaluate the uncertainties associated with the model predictions. The simulated UTLS BC concentrations are compared to in-situ observations. The simulations suggest that the large-scale contribution of aviation to the UTLS BC mass budget typically amounts to only a few percent, even in the most frequented flight regions. The aviation impact far away from these regions is negligible. The simulated aircraft contributions to the UTLS BC particle number concentration are much larger compared to the corresponding mass perturbations. The simulations suggest that aviation can cause large-scale increases in the UTLS BC particle number concentration of more than 30% in regions highly frequented by aircraft. The relative effect shows a pronounced annual variation with the largest relative aviation impact occurring during winter.

  14. Simulating the global atmospheric black carbon cycle: a revisit to the contribution of aircraft emissions

    Directory of Open Access Journals (Sweden)

    J. Hendricks

    2004-01-01

    Full Text Available The black carbon (BC burden of the upper troposphere and lowermost stratosphere (UTLS is investigated with the general circulation model (GCM ECHAM4. The special focus is the contribution of aircraft emissions to the UTLS BC loading. Previous studies on the role of aircraft emissions in the global BC cycle either neglect BC sources located at the Earth's surface or simplify the BC cycle by assuming pre-defined BC residence times. Here, the global BC cycle including emissions, transport, and removal is explicitly simulated. The BC emissions considered include surface sources as well as BC from aviation. This enables a consistent calculation of the relative contribution of aviation to the global atmospheric BC cycle. As a further extension to the previous studies, the aviation-induced perturbation of the UTLS BC particle number concentration is investigated. The uncertainties associated with the model predictions are evaluated by means of several sensitivity studies. Especially, the sensitivity of the results to different assumptions on the BC hygroscopic properties is analysed. The simulated UTLS BC concentrations are compared to in-situ observations. The simulations suggest that the large-scale contribution of aviation to the UTLS BC mass budget typically amounts to only a few percent, even in the most frequented flight regions. The aviation impact far away from these regions is negligible. The simulated aircraft contributions to the UTLS BC particle number concentration are much larger compared to the corresponding mass perturbations. The simulations suggest that aviation can cause large-scale increases in the UTLS BC particle number concentration of more than 30% in regions highly frequented by aircraft. The relative effect shows a pronounced annual variation with the largest relative aviation impact occurring during winter.

  15. Overview of Aviation Fuel Markets for Biofuels Stakeholders

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, C.; Newes, E.; Schwab, A.; Vimmerstedt, L.

    2014-07-01

    This report is for biofuels stakeholders interested the U.S. aviation fuel market. Jet fuel production represents about 10% of U.S. petroleum refinery production. Exxon Mobil, Chevron, and BP top producers, and Texas, Louisiana, and California are top producing states. Distribution of fuel primarily involves transport from the Gulf Coast to other regions. Fuel is transported via pipeline (60%), barges on inland waterways (30%), tanker truck (5%), and rail (5%). Airport fuel supply chain organization and fuel sourcing may involve oil companies, airlines, airline consortia, airport owners and operators, and airport service companies. Most fuel is used for domestic, commercial, civilian flights. Energy efficiency has substantially improved due to aircraft fleet upgrades and advanced flight logistic improvements. Jet fuel prices generally track prices of crude oil and other refined petroleum products, whose prices are more volatile than crude oil price. The single largest expense for airlines is jet fuel, so its prices and persistent price volatility impact industry finances. Airlines use various strategies to manage aviation fuel price uncertainty. The aviation industry has established goals to mitigate its greenhouse gas emissions, and initial estimates of biojet life cycle greenhouse gas emissions exist. Biojet fuels from Fischer-Tropsch and hydroprocessed esters and fatty acids processes have ASTM standards. The commercial aviation industry and the U.S. Department of Defense have used aviation biofuels. Additional research is needed to assess the environmental, economic, and financial potential of biojet to reduce greenhouse gas emissions and mitigate long-term upward price trends, fuel price volatility, or both.

  16. Multiple Kernel Learning for Heterogeneous Anomaly Detection: Algorithm and Aviation Safety Case Study

    Science.gov (United States)

    Das, Santanu; Srivastava, Ashok N.; Matthews, Bryan L.; Oza, Nikunj C.

    2010-01-01

    The world-wide aviation system is one of the most complex dynamical systems ever developed and is generating data at an extremely rapid rate. Most modern commercial aircraft record several hundred flight parameters including information from the guidance, navigation, and control systems, the avionics and propulsion systems, and the pilot inputs into the aircraft. These parameters may be continuous measurements or binary or categorical measurements recorded in one second intervals for the duration of the flight. Currently, most approaches to aviation safety are reactive, meaning that they are designed to react to an aviation safety incident or accident. In this paper, we discuss a novel approach based on the theory of multiple kernel learning to detect potential safety anomalies in very large data bases of discrete and continuous data from world-wide operations of commercial fleets. We pose a general anomaly detection problem which includes both discrete and continuous data streams, where we assume that the discrete streams have a causal influence on the continuous streams. We also assume that atypical sequence of events in the discrete streams can lead to off-nominal system performance. We discuss the application domain, novel algorithms, and also discuss results on real-world data sets. Our algorithm uncovers operationally significant events in high dimensional data streams in the aviation industry which are not detectable using state of the art methods

  17. Comprehensive Technical Report, General Electric Direct-Air-Cycle Aircraft Nuclear Propulsion Program, Program Summary and References

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, G.; Rothstein, A.J.

    1962-06-28

    This is one of twenty-one volumes sumarizing the Aircraft Nuclear Propulsion Program of the General Electric Company. This volume discusses the background to the General Electric program, and summarizes the various direct-air-cycle nuclear test assemblies and power plants that were developed. Because of the requirements of high performance, low weight, and small size, vast improvements in existing technology were required to meet the flight objectives. The technological progress achieved during the program is also summarized. The last appendix contains a compilation of the abstracts, tables of contents, and reference lists of the other twenty volumes.

  18. Green Aviation – A Paradigm shift from Quantitative to Qualitative Growth

    OpenAIRE

    Gollnick, Volker

    2013-01-01

    Changing global climate and energy situation requires new reflexion of aviation development. To enable aviation development and growth a change from quantitative growth in terms of aircraft, movements and passengers to qualitative development as a source for business should be considered. Classical aviation technologies reached a high level of maturity. Further development will be driven by communication systems and services

  19. Alternative Aviation Fuel Experiment (AAFEX)

    Science.gov (United States)

    Anderson, B. E.; Beyersdorf, A. J.; Hudgins, C. H.; Plant, J. V.; Thornhill, K. L.; Winstead, E. L.; Ziemba, L. D.; Howard, R.; Corporan, E.; Miake-Lye, R. C.; Herndon, S. C.; Timko, M.; Woods, E.; Dodds, W.; Lee, B.; Santoni, G.; Whitefield, P.; Hagen, D.; Lobo, P.; Knighton, W. B.; Bulzan, D.; Tacina, K.; Wey, C.; VanderWal, R.; Bhargava, A.

    2011-01-01

    The rising cost of oil coupled with the need to reduce pollution and dependence on foreign suppliers has spurred great interest and activity in developing alternative aviation fuels. Although a variety of fuels have been produced that have similar properties to standard Jet A, detailed studies are required to ascertain the exact impacts of the fuels on engine operation and exhaust composition. In response to this need, NASA acquired and burned a variety of alternative aviation fuel mixtures in the Dryden Flight Research Center DC-8 to assess changes in the aircraft s CFM-56 engine performance and emission parameters relative to operation with standard JP-8. This Alternative Aviation Fuel Experiment, or AAFEX, was conducted at NASA Dryden s Aircraft Operations Facility (DAOF) in Palmdale, California, from January 19 to February 3, 2009 and specifically sought to establish fuel matrix effects on: 1) engine and exhaust gas temperatures and compressor speeds; 2) engine and auxiliary power unit (APU) gas phase and particle emissions and characteristics; and 3) volatile aerosol formation in aging exhaust plumes

  20. Aviation Lubricants

    Science.gov (United States)

    Lansdown, A. R.; Lee, S.

    Aviation lubricants must be extremely reliable, withstand high specific loadings and extreme environmental conditions within short times. Requirements are critical. Piston engines increasingly use multi-grade oils, single grades are still used extensively, with anti-wear and anti-corrosion additives for some classes of engines. The main gas turbine lubricant problem is transient heat exposure, the main base oils used are synthetic polyol esters which minimise thermal degradation. Aminic anti-oxidants are used together with anti-wear/load-carrying, corrosion inhibitor and anti-foam additives. The majority of formulation viscosities are 5 cSt at 100°C. Other considerations are seal compatibility and coking tendency.

  1. The Small Aircraft Transportation System (SATS): Research Collaborations with the NASA Langley Research Center

    Science.gov (United States)

    Tarry, Scott E.; Bowen, Brent D.; Nickerson, Jocelyn S.

    2002-01-01

    The aviation industry is an integral part of the world s economy. Travelers have consistently chosen aviation as their mode of transportation as it is reliable, time efficient and safe. The out- dated Hub and Spoke system, coupled with high demand, has led to delays, cancellations and gridlock. NASA is developing innovative solutions to these and other air transportation problems. This research is being conducted through partnerships with federal agencies, industry stakeholders, and academia, specifically the University of Nebraska at Omaha. Each collaborator is pursuing the NASA General Aviation Roadmap through their involvement in the expansion of the Small Aircraft Transportation System (SATS). SATS will utilize technologically advanced small aircraft to transport travelers to and from rural and isolated communities. Additionally, this system will provide a safe alternative to the hub and spoke system, giving more time to more people through high-speed mobility and increased accessibility.

  2. Initial Cognitive Performance Predicts Longitudinal Aviator Performance

    Science.gov (United States)

    Jo, Booil; Adamson, Maheen M.; Kennedy, Quinn; Noda, Art; Hernandez, Beatriz; Zeitzer, Jamie M.; Friedman, Leah F.; Fairchild, Kaci; Scanlon, Blake K.; Murphy, Greer M.; Taylor, Joy L.

    2011-01-01

    Objectives. The goal of the study was to improve prediction of longitudinal flight simulator performance by studying cognitive factors that may moderate the influence of chronological age. Method. We examined age-related change in aviation performance in aircraft pilots in relation to baseline cognitive ability measures and aviation expertise. Participants were aircraft pilots (N = 276) aged 40–77.9. Flight simulator performance and cognition were tested yearly; there were an average of 4.3 (± 2.7; range 1–13) data points per participant. Each participant was classified into one of the three levels of aviation expertise based on Federal Aviation Administration pilot proficiency ratings: least, moderate, or high expertise. Results. Addition of measures of cognitive processing speed and executive function to a model of age-related change in aviation performance significantly improved the model. Processing speed and executive function performance interacted such that the slowest rate of decline in flight simulator performance was found in aviators with the highest scores on tests of these abilities. Expertise was beneficial to pilots across the age range studied; however, expertise did not show evidence of reducing the effect of age. Discussion. These data suggest that longitudinal performance on an important real-world activity can be predicted by initial assessment of relevant cognitive abilities. PMID:21586627

  3. KC-46 Tanker Aircraft: Program Generally on Track, but Upcoming Schedule Remains Challenging

    Science.gov (United States)

    2014-04-01

    10 Currently, Air Force fixed- wing aircraft refuel with the “flying boom.” The boom is a rigid, telescoping tube that an operator on the tanker...related to aerial refueling—the centerline drogue system and wing aerial refueling pod. Boeing still considers the instability of these components to be

  4. Civil aviation, air pollution and human health

    Science.gov (United States)

    Harrison, Roy M.; Masiol, Mauro; Vardoulakis, Sotiris

    2015-04-01

    Air pollutant emissions from aircraft have been subjected to less rigorous control than road traffic emissions, and the rapid growth of global aviation is a matter of concern in relation to human exposures to pollutants, and consequent effects upon health. Yim et al (2015 Environ. Res. Lett. 3 034001) estimate exposures globally arising from aircraft engine emissions of primary particulate matter, and from secondary sulphates and ozone, and use concentration-response functions to calculate the impact upon mortality, which is monetised using the value of statistical life. This study makes a valuable contribution to estimating the magnitude of public health impact at various scales, ranging from local, near airport, regional and global. The results highlight the need to implement future mitigation actions to limit impacts of aviation upon air quality and public health. The approach adopted in Yim et al only accounts for the air pollutants emitted by aircraft engine exhausts. Whilst aircraft emissions are often considered as dominant near runways, there are a number of other sources and processes related to aviation that still need to be accounted for. This includes impacts of nitrate aerosol formed from NOx emissions, but probably more important, are the other airport-related emissions from ground service equipment and road traffic. By inclusion of these, and consideration of non-fatal impacts, future research will generate comprehensive estimates of impact related to aviation and airports.

  5. 14 CFR 21.127 - Tests: aircraft.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Tests: aircraft. 21.127 Section 21.127 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS Production Under Type Certificate Only § 21.127 Tests: aircraft. (a) Each...

  6. Personal Aircraft Point to the Future of Transportation

    Science.gov (United States)

    2010-01-01

    NASA's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs, as well as a number of Agency innovations, have helped Duluth, Minnesota-based Cirrus Design Corporation become one of the world's leading manufacturers of general aviation aircraft. SBIRs with Langley Research Center provided the company with cost-effective composite airframe manufacturing methods, while crashworthiness testing at the Center increased the safety of its airplanes. Other NASA-derived technologies on Cirrus SR20 and SR22 aircraft include synthetic vision systems that help pilots navigate and full-plane parachutes that have saved the lives of more than 30 Cirrus pilots and passengers to date. Today, the SR22 is the world's top-selling Federal Aviation Administration (FAA)-certified single-engine airplane.

  7. Aircraft Emissions Characterization

    Science.gov (United States)

    1988-03-01

    sample from each trap through a heated (1500C) six-port valve ’ Carle Instruments Model 5621) and onto the analytical column. The coLoponents in each...Environmental Protection, Vol. II. Aircraft Engine Emissions, Int. Civil Aviation Organ., 1981. 7. Nebel , G. J., "Benzene in Auto Exhaust," J. Air Poll

  8. 通用航空空中游览航线设计研究%Design of General Aviation Air Tour Routes

    Institute of Scientific and Technical Information of China (English)

    覃睿; 李雪娇; 王瑞; 党亚茹

    2015-01-01

    With the rapid development of the general aviation industry,helicopter touring emerges due to its unique advan-tages in viewing range and comfortable experience. During a helicopter air tour,the selection of a travelling route definitely decides the sightseeing effect. Therefore,how to design air tour routes has become a major issue. This article analyzes the factors influencing the design of air tour routes,and gives a more detailed description on how to better design the routes, which will help policy-makers do the planning from a more comprehensive perspective to facilitate the use of helicopters in tourism to further promote the development of both general aviation industry and tourism industry.%随着通用航空业的蓬勃发展,直升飞机游览由于在取景范围和舒适度上有着独到的优点,已成为旅游的较好选择。在利用直升机空中游览时,航线的选择是决定游览效果的关键性决策,如何更好地设计空中游览航线成为空中游览的一项重大问题。分析了空中游览航线设计的影响因素,并就如何设计出更好的航线做了较为详细的说明,有利于决策者从更加全面的角度设计航线,使直升机在旅游业上得到更好的应用,同时合理利用直升飞机游览将有利于通用航空业进一步发展,也将促进旅游业的兴盛。

  9. Global civil aviation black carbon emissions.

    Science.gov (United States)

    Stettler, Marc E J; Boies, Adam M; Petzold, Andreas; Barrett, Steven R H

    2013-09-17

    Aircraft black carbon (BC) emissions contribute to climate forcing, but few estimates of BC emitted by aircraft at cruise exist. For the majority of aircraft engines the only BC-related measurement available is smoke number (SN)-a filter based optical method designed to measure near-ground plume visibility, not mass. While the first order approximation (FOA3) technique has been developed to estimate BC mass emissions normalized by fuel burn [EI(BC)] from SN, it is shown that it underestimates EI(BC) by >90% in 35% of directly measured cases (R(2) = -0.10). As there are no plans to measure BC emissions from all existing certified engines-which will be in service for several decades-it is necessary to estimate EI(BC) for existing aircraft on the ground and at cruise. An alternative method, called FOX, that is independent of the SN is developed to estimate BC emissions. Estimates of EI(BC) at ground level are significantly improved (R(2) = 0.68), whereas estimates at cruise are within 30% of measurements. Implementing this approach for global civil aviation estimated aircraft BC emissions are revised upward by a factor of ~3. Direct radiative forcing (RF) due to aviation BC emissions is estimated to be ~9.5 mW/m(2), equivalent to ~1/3 of the current RF due to aviation CO2 emissions.

  10. Space Weather Effects on Aircraft Navigation

    Science.gov (United States)

    Stanley, J. C.; Cade, W. B.

    2012-12-01

    Many aircraft today use satellites for GPS navigation, arrival and departure to and from airspaces, and for "shooting" non-precision and precision Instrument Approaches into airports. Also in development is an Air Traffic Control system based on satellite technology that seeks to modernize current air traffic control and improve safety, eventually phasing out radar (though not yet in the very near future). Due to the general, commercial, and military aviation fields all becoming more and more reliant on satellite and GPS technologies, the effects of space weather events on these systems is of paramount concern to militaries, airlines, private pilots, and other aviation operators. In this study we analyze data from airlines and other resources regarding effects on satellite and GPS systems, which is crucial to the conduct of safe flight operations now and improving systems for future and continued use.

  11. Aviation Expo Taking off

    Institute of Scientific and Technical Information of China (English)

    Liu Xinwen; Bai Yifeng

    2007-01-01

    @@ The 12nd Beijing Aviation Expo(Aviation Expo/China 2007) was held this September 19-22 at the China International Exhibition Center.Beijing Aviation Expo is the ONLY aviation exhibition (Civil & Military,including Airport & Air Traffic Control) organized in Beijing,taking place every two years.It is also the most influential aviation exhibition with the longest history in China.

  12. Aircraft Simulator Data Requirements Study. Volume II

    Science.gov (United States)

    1977-01-01

    23143 ( Wep ), "Data, Technical Aircraft; for the Design of Aviation Training Devices," was to be used as a guide for the preparation of the new standard. 2...made, displays, etc., utilizing the "hot mockup ." The really useful data can only result from flight tests and can be obtained at any time after tile... mockup " and the preliminary tactical tape used in the tests. It will represent the best system data that will generally be obtained. k The last data

  13. Aviation turbine fuels: An assessment of alternatives

    Science.gov (United States)

    1982-01-01

    The general outlook for aviation turbine fuels, the effect that broadening permissible aviation turbine fuel properties could have on the overall availability of such fuels, the fuel properties most likely to be affected by use of lower grade petroleum crudes, and the research and technology required to ensure that aviation turbine fuels and engines can function satisfactorily with fuels having a range of fuel properties differing from those of current specification fuel are assessed. Views of industry representatives on alternative aviation turbine fuels are presented.

  14. Aviation turbulence processes, detection, prediction

    CERN Document Server

    Lane, Todd

    2016-01-01

    Anyone who has experienced turbulence in flight knows that it is usually not pleasant, and may wonder why this is so difficult to avoid. The book includes papers by various aviation turbulence researchers and provides background into the nature and causes of atmospheric turbulence that affect aircraft motion, and contains surveys of the latest techniques for remote and in situ sensing and forecasting of the turbulence phenomenon. It provides updates on the state-of-the-art research since earlier studies in the 1960s on clear-air turbulence, explains recent new understanding into turbulence generation by thunderstorms, and summarizes future challenges in turbulence prediction and avoidance.

  15. 77 FR 42455 - Airworthiness Directives; Piper Aircraft, Inc. Airplanes

    Science.gov (United States)

    2012-07-19

    ... Federal Aviation Administration 14 CFR Part 39 RIN 2120-AA64 Airworthiness Directives; Piper Aircraft, Inc... directive (AD) for all Piper Aircraft, Inc. (type certificate previously held by The New Piper Aircraft Inc... receive about this proposed AD. Discussion Three forced landings of Piper Aircraft, Inc. Model...

  16. Global, regional and local health impacts of civil aviation emissions

    Science.gov (United States)

    Yim, Steve H. L.; Lee, Gideon L.; Lee, In Hwan; Allroggen, Florian; Ashok, Akshay; Caiazzo, Fabio; Eastham, Sebastian D.; Malina, Robert; Barrett, Steven R. H.

    2015-03-01

    Aviation emissions impact surface air quality at multiple scales—from near-airport pollution peaks associated with airport landing and take off (LTO) emissions, to intercontinental pollution attributable to aircraft cruise emissions. Previous studies have quantified aviation’s air quality impacts around a specific airport, in a specific region, or at the global scale. However, no study has assessed the air quality and human health impacts of aviation, capturing effects on all aforementioned scales. This study uses a multi-scale modeling approach to quantify and monetize the air quality impact of civil aviation emissions, approximating effects of aircraft plume dynamics-related local dispersion (˜1 km), near-airport dispersion (˜10 km), regional (˜1000 km) and global (˜10 000 km) scale chemistry and transport. We use concentration-response functions to estimate premature deaths due to population exposure to aviation-attributable PM2.5 and ozone, finding that aviation emissions cause ˜16 000 (90% CI: 8300-24 000) premature deaths per year. Of these, LTO emissions contribute a quarter. Our estimate shows that premature deaths due to long-term exposure to aviation-attributable PM2.5 and O3 lead to costs of ˜21 bn per year. We compare these costs to other societal costs of aviation and find that they are on the same order of magnitude as global aviation-attributable climate costs, and one order of magnitude larger than aviation-attributable accident and noise costs.

  17. Research on dynamics mechanism and mode of general aviation safety management system self-organizing evolvement%通用航空安全体系自组织演化动力学机制与模式研究

    Institute of Scientific and Technical Information of China (English)

    许红军; 田俊改

    2012-01-01

    建立符合通用航空发展规律的通用航空安全管理理论体系,是通用航空发展的前提.本文以通用航空发展特点为基础,应用自组织理论对通用航空发展的组织特性进行了分析,研究了通用航空安全体系自组织生成模式的前提条件和动因,剖析了通用航空安全体系自组织演化的内外部动力因素,以及其相互作用方式和过程,从而解构出通用航空安全体系自组织演化的动力学机制—涨落机制、创新机制、选择机制和学习机制,在此基础上,构建了通用航空安全体系自组织演化动力学模型.最后,结合实际对我国通用航空安全管理体系建设提出了相应的建议.%To establish a comprehensive and effective safety management system is a prerequisite for sustainable development of general aviation. In this paper,based on self-organizing theory, the organization characters of general aviation were analyzed. Then, the prerequisite for general aviation safety management system evolvement was studied and the exterior and interior dynamics factors which drive the self-organizing evolvement of general aviation safety management system were analyzed, as well as their interaction mechanism and process, thereby the dynamics mechanism of the general aviation safety management system evolvement were deconstructed which included fluctuating mechanism, invocation mechanism, choosing mechanism and learning mechanism. Finally, some suggestions were put forward to develop the general aviation safety management system.

  18. The ahead project: Advanced hybrid engines for aircraft development

    NARCIS (Netherlands)

    Rao, A.G.; Yin, F.

    2013-01-01

    Aviation is an ever-increasing market and more passengers and cargo are carried each year. The world is becoming ever more connected. However, this does come at a price: aviation has a marked in!uence on the environment. If aviation is to thrive in the future, breakthroughs in aircraft design and pr

  19. Technical Documentation Challenges in Aviation Maintenance: A Proceedings Report

    Science.gov (United States)

    2012-11-01

    Repair, and Overhaul organizations ( MROs ) where each aircraft must be maintained by maintenance documentation specific to the aircraft owner and...registry number. This means that an MRO is likely to have different work instructions for each aircraft in the shop, even though they are the same...documentation for aviation maintenance. All 28 attendees possessed considerable expertise from either operations or science, including MROs , Original

  20. Impact of aviation upon the atmosphere. Introduction

    Energy Technology Data Exchange (ETDEWEB)

    Carpentier, J. [Comite Avion-Ozone, 75 - Paris (France)

    1997-12-31

    The commercial air traffic, either for business or for tourism will induce a special increase of long haul flights, with cruising altitudes of about 10 to 12 km. These altitudes correspond to the upper troposphere for the low latitudes (tropical zones) and to the lower stratosphere for middle and high latitudes. The prospect of a world air traffic multiplied by a factor 2 within the next fifteen years, with an increasing part of the long-haul flights, raises the problem of the impact of aircraft emissions on the upper troposphere and on the lower stratosphere. The air traffic growth which is forecast for the next two decades as well as for long term will be larger than the GDP growth. But technical progress concerning airframes, engines, navigation systems and improvements of air traffic control and airports will keep the aircraft emissions growth at a rate which will not exceed the GDP growth rate. The aviation`s share of global anthropogenic emissions will remain lower than 3 percent. The regulations related to NO{sub x} emissions from aircraft will reduce the aviation`s share of nitrogen oxides from human sources at a level of 1 percent. (R.P.)

  1. 75 FR 50865 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engines

    Science.gov (United States)

    2010-08-18

    ... Equipped With Rotax Aircraft Engines 912 A Series Engines AGENCY: Federal Aviation Administration (FAA... 912 A series engine installed in various aircraft does not have an engine type certificate; instead, the engine is part of the aircraft type design. Comments We gave the public the opportunity...

  2. 75 FR 32315 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engines

    Science.gov (United States)

    2010-06-08

    ... Equipped With Rotax Aircraft Engines 912 A Series Engines AGENCY: Federal Aviation Administration (FAA... certificated in the United States. However, the Model 912 A series engine installed in various aircraft does not have an engine type certificate; instead, the engine is part of the aircraft type design. You...

  3. 76 FR 40219 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine

    Science.gov (United States)

    2011-07-08

    ... Equipped With Rotax Aircraft Engines 912 A Series Engine AGENCY: Federal Aviation Administration (FAA), DOT... Rotax Aircraft Engines Mandatory Service Bulletin SB-912-058 SB-914-041, dated April 15, 2011, listed in... 601 0; fax: +43 7246 601 9130; Internet: http://www.rotax-aircraft-engines.com . You may review...

  4. 14 CFR 43.7 - Persons authorized to approve aircraft, airframes, aircraft engines, propellers, appliances, or...

    Science.gov (United States)

    2010-01-01

    ... FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT MAINTENANCE, PREVENTIVE MAINTENANCE... holder of a repairman certificate (light-sport aircraft) with a maintenance rating may approve an... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Persons authorized to approve aircraft...

  5. 77 FR 24251 - Consensus Standards, Light-Sport Aircraft

    Science.gov (United States)

    2012-04-23

    ... Federal Aviation Administration Consensus Standards, Light-Sport Aircraft AGENCY: Federal Aviation... availability of three new and three revised consensus standards relating to the provisions of the Sport Pilot and Light-Sport Aircraft rule issued July 16, 2004, and effective September 1, 2004....

  6. 78 FR 35085 - Consensus Standards, Light-Sport Aircraft

    Science.gov (United States)

    2013-06-11

    ... Federal Aviation Administration Consensus Standards, Light-Sport Aircraft AGENCY: Federal Aviation... availability of one new and seven revised consensus standards relating to the provisions of the Sport Pilot and Light-Sport Aircraft rule issued July 16, 2004, and effective September 1, 2004. ASTM...

  7. Indoor air quality investigation on commercial aircraft.

    Science.gov (United States)

    Lee, S C; Poon, C S; Li, X D; Luk, F

    1999-09-01

    Sixteen flights had been investigated for indoor air quality (IAQ) on Cathay Pacific aircraft from June 1996 to August 1997. In general, the air quality on Cathay Pacific aircraft was within relevant air quality standards because the average age of aircraft was less than 2 years. Carbon dioxide (CO2) levels on all flights measured were below the Federal Aviation Administration (FAA) standard (30,000 ppm). The CO2 level was substantially higher during boarding and de-boarding than cruise due to low fresh air supply. Humidity on the aircraft was low, especially for long-haul flights. Minimum humidity during cruise was below the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) minimum humidity standard (20%). The average temperature was within a comfortable temperature range of 23 +/- 2 degrees C. The vertical temperature profile on aircraft was uniform and below the International Standard Organization (ISO) standard. Carbon monoxide levels were below the FAA standard (50 ppm). Trace amount of ozone detected ranged from undetectable to 90 ppb, which was below the FAA standard. Particulate level was low for most non-smoking flights, but peaks were observed during boarding and de-boarding. The average particulate level in smoking flights (138 micrograms/m3) was higher than non-smoking flights (7.6 micrograms/m3). The impact on IAQ by switching from low-mode to high-mode ventilation showed a reduction in CO2 levels, temperature, and relative humidity.

  8. Aircraft Electronics Maintenance Training Simulator. Curriculum Outlines.

    Science.gov (United States)

    Blackhawk Technical Coll., Janesville, WI.

    Instructional materials are provided for nine courses in an aircraft electronics maintenance training program. Courses are as follows: aviation basic electricity, direct current and alternating current electronics, basic avionic installations, analog electronics, digital electronics, microcomputer electronics, radio communications, aircraft…

  9. 78 FR 20168 - Twenty Fourth Meeting: RTCA Special Committee 203, Unmanned Aircraft Systems

    Science.gov (United States)

    2013-04-03

    ... Federal Aviation Administration Twenty Fourth Meeting: RTCA Special Committee 203, Unmanned Aircraft Systems AGENCY: Federal Aviation Administration (FAA), U.S. Department of Transportation (DOT). ACTION.../Approval of Twenty Third Plenary Meeting Summary Leadership Update Workgroup Progress...

  10. Metabolic Syndrome and Cardio-Cerebrovascular Risk Disparities Between Pilots and Aircraft Mechanics.

    Science.gov (United States)

    Kim, Myeong-Bo; Kim, Hyun-Jin; Kim, Soo-Hyeon; Lee, Suk-Ho; Lee, Se-Ho; Park, Won-Ju

    2017-09-01

    In the Republic of Korea Air Force, the health of pilots is strictly supervised, but there is comparatively not enough interest in aircraft mechanics' health. Among mechanics, who are heavily involved in military aircraft maintenance, the occurrence of sudden cardio-cerebrovascular diseases (CCVDs) is a possible risk factor during the maintenance process, which should be performed perfectly. We performed health examinations on 2123 male aircraft pilots and 1271 aircraft mechanics over 30 yr of age and determined the prevalence of metabolic syndrome (MetS), an important risk factor for CCVDs. The prevalence of MetS in the aircraft mechanics (21.3%) was significantly higher than in the pilots (12.6%), and the gap in prevalence tended to grow as age increased. Among aircraft mechanics in their 30s and 40s, the prevalence of MetS was lower than in the general population. However, the prevalence of MetS among aircraft mechanics in their 50s (36.0%) was similar to that in the general population (35.7%). Systematic health management is needed for aircraft mechanics for aviation safety and for the maintenance of military strength via the prevention of CCVDs.Kim M-B, Kim H-J, Kim S-H, Lee S-H, Lee S-H, Park W-J. Metabolic syndrome and cardio-cerebrovascular risk disparities between pilots and aircraft mechanics. Aerosp Med Hum Perform. 2017; 88(9):866-870.

  11. Discussion on Law of Developing General Aviation Industry in International Tourism Island%国际旅游岛发展通用航空产业的法律探讨

    Institute of Scientific and Technical Information of China (English)

    刘云亮; 张鹏

    2012-01-01

    我国启动的低空空域管理制度改革给海南发展通用航空产业提供了良好机遇。建设海南国际旅游岛,可以充分利用经济特区立法权,认真规划海南通用航空产业的发展,制定海南发展通用航空产业的政策和地方法规,鼓励海南通用航空及其产业链发展,推出海南高端的空中旅游项目,使海南成为国家低空空域管理改革的先行试验区。%Starting up the reform of low-altitude airspace management system provides a good opportunity for Hainan to develop general aviation industry.To construct Hainan international tourism island,we can make full use of legislation for the Special Economic Zone Authority,lay out the development of Hainan general aviation industry and launch high-end air tour.We can make Hainan the first pilot area of reform on national low-altitude airspace management by instituting policies and local regulations and encouraging the development of industry chain of general aviation industry.

  12. Design of General Aviation Emergency Communication, Surveillance and Rescue Service System Based on RDSS%基于北斗RDSS的通用航空应急通讯监视及救援系统设计

    Institute of Scientific and Technical Information of China (English)

    郑金华

    2016-01-01

    The design and engineering demonstration of general aviation emergency communication, surveillance and rescue service system based on BDS RDSS are described in the paper. After the project is completed, the navigation, communications, surveillance, meteorology, rescue, air traffic control services will be provided for general aviation airplane in Shaanxi province. And this will improve the ability of emergency treatment of low-altitude airspace traffic control department in Shaanxi province, enhancing the BDS system applied in the field of general aviation.%本文介绍了基于北斗RDSS的通用航空应急通讯监视及救援系统设计方案和工程示范内容。同时,该系统的应用示范和试运行,将为陕西省的通航飞机提供导航、通信、监视、气象、情报、救援和空中交通管制服务,提高陕西省低空空管部门的紧急事件处理能力,加强北斗系统在通用航空领域的应用。

  13. The Impacts of Rising Temperatures on Aircraft Takeoff Performance

    Science.gov (United States)

    Coffel, Ethan; Thompson, Terence R.; Horton, Radley M.

    2017-01-01

    Steadily rising mean and extreme temperatures as a result of climate change will likely impact the air transportation system over the coming decades. As air temperatures rise at constant pressure, air density declines, resulting in less lift generation by an aircraft wing at a given airspeed and potentially imposing a weight restriction on departing aircraft. This study presents a general model to project future weight restrictions across a fleet of aircraft with different takeoff weights operating at a variety of airports. We construct performance models for five common commercial aircraft and 19 major airports around the world and use projections of daily temperatures from the CMIP5 model suite under the RCP 4.5 and RCP 8.5 emissions scenarios to calculate required hourly weight restriction. We find that on average, 10 - 30% of annual flights departing at the time of daily maximum temperature may require some weight restriction below their maximum takeoff weights, with mean restrictions ranging from 0.5 to 4% of total aircraft payload and fuel capacity by mid- to late century. Both mid-sized and large aircraft are affected, and airports with short runways and high temperatures, or those at high elevations, will see the largest impacts. Our results suggest that weight restriction may impose a non-trivial cost on airlines and impact aviation operations around the world and that adaptation may be required in aircraft design, airline schedules, and/or runway lengths.

  14. SOLAR POWER THE FUTURE OF AVIATION INDUSTRY

    Directory of Open Access Journals (Sweden)

    Vineet Kumar Vashishtha,

    2011-03-01

    Full Text Available Solar powered aircraft capable of continuous flight was a dream some years ago, but this great challenge has become feasible today. Quite a few manned and unmanned solar powered aircraft have been developed and flown in the last 30 years. The research activities carried out till now have been mainly focused on flying wings or conventional aircraft configurations, with a great emphasis on the technological aspects. Solar powered aircraft uses solar panel to collect the solar radiation for immediate use but it also store the remaining part forthe night flight. The paper deals with the current state of art of empower the aviation industry with solar power and the shortcoming and the future aspect.

  15. Quantifying the risk of extreme aviation accidents

    Science.gov (United States)

    Das, Kumer Pial; Dey, Asim Kumer

    2016-12-01

    Air travel is considered a safe means of transportation. But when aviation accidents do occur they often result in fatalities. Fortunately, the most extreme accidents occur rarely. However, 2014 was the deadliest year in the past decade causing 111 plane crashes, and among them worst four crashes cause 298, 239, 162 and 116 deaths. In this study, we want to assess the risk of the catastrophic aviation accidents by studying historical aviation accidents. Applying a generalized Pareto model we predict the maximum fatalities from an aviation accident in future. The fitted model is compared with some of its competitive models. The uncertainty in the inferences are quantified using simulated aviation accident series, generated by bootstrap resampling and Monte Carlo simulations.

  16. Investment Strategy Based on Aviation Accidents: Are there abnormal returns?

    Directory of Open Access Journals (Sweden)

    Marcos Rosa Costa

    2013-06-01

    Full Text Available This article investigates whether an investment strategy based on aviation accidents can generate abnormal returns. We performed an event study considering all the aviation accidents with more than 10 fatalities in the period from 1998 to 2009 and the stock market performance of the respective airlines and aircraft manufacturers in the days after the event. The tests performed were based on the model of Campbell, Lo & MacKinlay (1997 for definition of abnormal returns, by means of linear regression between the firms’ stock returns and the return of a market portfolio used as a benchmark. This enabled projecting the expected future returns of the airlines and aircraft makers, for comparison with the observed returns after each event. The result obtained suggests that an investment strategy based on aviation accidents is feasible because abnormal returns can be obtained in the period immediately following an aviation disaster.

  17. Workload management and geographic disorientation in aviation incidents: A review of the ASRS data base

    Science.gov (United States)

    Williams, Henry P.; Tham, Mingpo; Wickens, Christopher D.

    1993-01-01

    NASA's Aviation Safety Reporting System (ASRS) incident reports are reviewed in two related areas: pilots' failures to appropriately manage tasks, and breakdowns in geographic orientation. Examination of 51 relevant reports on task management breakdowns revealed that altitude busts and inappropriate runway usee were the most frequently reported consequences. Task management breakdowns appeared to occur at all levels of expertise, and prominent causal factors were related to breakdowns in crew communications, over-involvement with the flight management system and, for small (general aviation) aircraft, preoccupation with weather. Analysis of the 83 cases of geographic disorientation suggested that these too occurred at all levels of pilot experience. With regard to causal factors, a majority was related to poor cockpit resource management, in which inattention led to a loss of geographic awareness. Other leading causes were related to poor weather and poor decision making. The potential of the ASRS database for contributing to research and design issues is addressed.

  18. Human Factors in Aviation Maintenance. Phase 1

    Science.gov (United States)

    1991-11-01

    communication in the aircraft logs , pi- during the visit? lots would sometimes verbally describe the per- formance of the plane to a lead mechanic’ or...however, handwritten input may eventually be usefl for implemeinting technology in aviation maintenance and spcf Ic maneac’ ctiiis. other applications...functions. When the auto is referred for service of a int ermittent or other problem, the data recorder may be hooked up by modem to enable e data log to

  19. 76 FR 31823 - Regulation of Fractional Aircraft Ownership Programs and On-Demand Operations; Technical Amendment

    Science.gov (United States)

    2011-06-02

    ... Afghanistan, Agriculture, Air traffic control, Aircraft, Airmen, Airports, Aviation safety, Canada, Cuba, Ethiopia, Freight, Mexico, Noise control, Political candidates, Reporting and recordkeeping...

  20. CID Aircraft slap-down

    Science.gov (United States)

    1984-01-01

    In this photograph the B-720 is seen during the moments of initial impact. The left wing is digging into the lakebed while the aircraft continues sliding towards wing openers. In 1984 NASA Dryden Flight Research Facility and the Federal Aviation Administration (FAA) teamed-up in a unique flight experiment called the Controlled Impact Demonstration (CID). The test involved crashing a Boeing 720 aircraft with four JT3C-7 engines burning a mixture of standard fuel with an additive, Anti-misting Kerosene (AMK), designed to supress fire. In a typical aircraft crash, fuel spilled from ruptured fuel tanks forms a fine mist that can be ignited by a number of sources at the crash site. In 1984 the NASA Dryden Flight Research Facility (after 1994 a full-fledged Center again) and the Federal Aviation Administration (FAA) teamed-up in a unique flight experiment called the Controlled Impact Demonstration (CID), to test crash a Boeing 720 aircraft using standard fuel with an additive designed to supress fire. The additive, FM-9, a high-molecular-weight long-chain polymer, when blended with Jet-A fuel had demonstrated the capability to inhibit ignition and flame propagation of the released fuel in simulated crash tests. This anti-misting kerosene (AMK) cannot be introduced directly into a gas turbine engine due to several possible problems such as clogging of filters. The AMK must be restored to almost Jet-A before being introduced into the engine for burning. This restoration is called 'degradation' and was accomplished on the B-720 using a device called a 'degrader.' Each of the four Pratt & Whitney JT3C-7 engines had a 'degrader' built and installed by General Electric (GE) to break down and return the AMK to near Jet-A quality. In addition to the AMK research the NASA Langley Research Center was involved in a structural loads measurement experiment, which included having instrumented dummies filling the seats in the passenger compartment. Before the final flight on December 1

  1. CID Aircraft slap-down

    Science.gov (United States)

    1984-01-01

    In this photograph the B-720 is seen during the moments of initial impact. The left wing is digging into the lakebed while the aircraft continues sliding towards wing openers. In 1984 NASA Dryden Flight Research Facility and the Federal Aviation Administration (FAA) teamed-up in a unique flight experiment called the Controlled Impact Demonstration (CID). The test involved crashing a Boeing 720 aircraft with four JT3C-7 engines burning a mixture of standard fuel with an additive, Anti-misting Kerosene (AMK), designed to supress fire. In a typical aircraft crash, fuel spilled from ruptured fuel tanks forms a fine mist that can be ignited by a number of sources at the crash site. In 1984 the NASA Dryden Flight Research Facility (after 1994 a full-fledged Center again) and the Federal Aviation Administration (FAA) teamed-up in a unique flight experiment called the Controlled Impact Demonstration (CID), to test crash a Boeing 720 aircraft using standard fuel with an additive designed to supress fire. The additive, FM-9, a high-molecular-weight long-chain polymer, when blended with Jet-A fuel had demonstrated the capability to inhibit ignition and flame propagation of the released fuel in simulated crash tests. This anti-misting kerosene (AMK) cannot be introduced directly into a gas turbine engine due to several possible problems such as clogging of filters. The AMK must be restored to almost Jet-A before being introduced into the engine for burning. This restoration is called 'degradation' and was accomplished on the B-720 using a device called a 'degrader.' Each of the four Pratt & Whitney JT3C-7 engines had a 'degrader' built and installed by General Electric (GE) to break down and return the AMK to near Jet-A quality. In addition to the AMK research the NASA Langley Research Center was involved in a structural loads measurement experiment, which included having instrumented dummies filling the seats in the passenger compartment. Before the final flight on December 1

  2. Federal Aircraft Cost and Utilization Data

    Data.gov (United States)

    General Services Administration — Federal aviation data is submitted quarterly to the Federal Aviation Interactive Reporting System (FARIS) IT application. This is a GSA system which is a secure,...

  3. Louis H. Bauer and the origins of civil aviation medicine.

    Science.gov (United States)

    Kraus, Theresa L

    2012-12-01

    With the passage of the Air Commerce Act in May 1926, civil aviation safety became a federal responsibility under the Department of Commerce (DoC). In November of that year, Louis Hopewell Bauer (1888-1964) became the DoC's first Aviation Medical Director. After earning his medical degree at the Harvard School of Medicine in 1912, Bauer joined the U.S. Army Medical Corps, where he helped develop the role of the military flight surgeon and then served as director of the Army's School of Aviation Medicine. Upon taking the federal position, he undertook to define medical standards and examination frequencies for civilian pilots and identifiy disqualifying conditions that could compromise a pilot's ability to operate an aircraft safely. Bauer also personally selected 57 private physicians (soon to be known as Aviation Medical Examiners) distributed across the country to give medical examinations for pilot licenses. Bauer subsequently played a leading role in organizing the Aviation Medical Association in 1929.

  4. Effects of acoustic treatment on the interior noise levels of a twin-engine propeller aircraft - Experimental flight results and theoretical predictions

    Science.gov (United States)

    Beyer, T. B.; Powell, C. A.; Daniels, E. F.; Pope, L. D.

    1984-01-01

    In-flight noise level measurements were made within two cabin configurations of a general aviation business aircraft. The Fairchild Merlin IVC twin-engine aircraft was tested with bare walls and fiberglass insulation and in an executive trim configuration. Narrow-band and octave format data were subjected to analyses which permitted identification of the blade passage harmonics (BPH). Cabin noise level reductions (insertion losses) due to added insulation varied with position in the cabin, the BPH number, cabin pressure, and engine torque. The measurements were closely predicted using the propeller aircraft interior noise (PAIN) mode.

  5. Aircraft Data Acquisition

    OpenAIRE

    Elena BALMUS

    2016-01-01

    The introduction of digital systems instead of analog ones has created a major separation in the aviation technology. Although the digital equipment made possible that the increasingly faster controllers take over, we should say that the real world remains essentially analogue [4]. Fly-by-wire designers attempting to control and measure the real feedback of an aircraft were forced to find a way to connect the analogue environment to their digital equipment. In order to manage the implications...

  6. Maintenance of air worthiness of aircrafts

    Directory of Open Access Journals (Sweden)

    В. А. Горячев

    2000-09-01

    Full Text Available Described are modem conditions of operation of Russian civil aviation, state of aircraft stock, the main principles of maintaining air worthiness of airplanes and helicopters. Considered is a stage by stage prolongation of the service life of each specimen of aircraft with certification being obligatory

  7. BEST: A Learner-Centered Workplace Literacy Partnership of the Vermont Institute for Self-Reliance and General Electric Aircraft Engines Rutland, VT. Final Performance Report.

    Science.gov (United States)

    Lashof, Judith R.

    The Vermont Institute for Self Reliance (VISR) conducted a Basic Educational Skills for Training (BEST) program, a national demonstration project in workplace literacy, from April 1990 to March 1992. BEST provided learner-centered, context-based literacy instruction onsite, on company time, at two General Electric (GE) Aircraft Engines Rutland…

  8. 75 FR 36034 - Advance Notice of Proposed Rulemaking on Lead Emissions From Piston-Engine Aircraft Using Leaded...

    Science.gov (United States)

    2010-06-24

    ...-Engine Aircraft Using Leaded Aviation Gasoline; Extension of Comment Period AGENCY: Environmental... Rulemaking on Lead Emissions From Piston-Engine Aircraft Using Leaded Aviation Gasoline (hereinafter referred...-engine aircraft, or if insufficient information exists, to commence a study. In addition to...

  9. 75 FR 9016 - Fifth Meeting: RTCA Special Committee 221: Aircraft Secondary Barriers and Alternative Flight...

    Science.gov (United States)

    2010-02-26

    ... Alternative Flight Deck Security Procedures AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 221 meeting: Aircraft Secondary Barriers and Alternative Flight Deck... Special Committee 221: Aircraft Secondary Barriers and Alternative Flight Deck Security Procedures....

  10. 75 FR 52591 - Seventh Meeting: RTCA Special Committee 221: Aircraft Secondary Barriers and Alternative Flight...

    Science.gov (United States)

    2010-08-26

    ... and Alternative Flight Deck Security Procedures AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 221 meeting: Aircraft Secondary Barriers and Alternative Flight... RTCA Special Committee 221: Aircraft Secondary Barriers and Alternative Flight Deck Security...

  11. 76 FR 38741 - Tenth Meeting: RTCA Special Committee 221: Aircraft Secondary Barriers and Alternative Flight...

    Science.gov (United States)

    2011-07-01

    ... Alternative Flight Deck Security Procedures AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 221 meeting: Aircraft Secondary Barriers and Alternative Flight Deck... Special Committee 221: Aircraft Secondary Barriers and Alternative Flight Deck Security Procedures....

  12. Environmentally Responsible Aviation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Created in 2009 as part of NASA's Aeronautics Research Mission Directorate's Integrated Systems Research Program, the Environmentally Responsible Aviation...

  13. 78 FR 26556 - Airworthiness Directives; Piper Aircraft, Inc. Airplanes

    Science.gov (United States)

    2013-05-07

    ... Federal Aviation Administration 14 CFR Part 39 RIN 2120-AA64 Airworthiness Directives; Piper Aircraft, Inc...: This document withdraws a notice of proposed rulemaking (NPRM) that would have applied to all Piper Aircraft, Inc. (type certificate previously held by The New Piper Aircraft Inc.) Models PA-18 and...

  14. 14 CFR 45.31 - Marking of export aircraft.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Marking of export aircraft. 45.31 Section 45.31 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT IDENTIFICATION AND REGISTRATION MARKING Nationality and Registration Marks § 45.31 Marking of export aircraft. A...

  15. 14 CFR 21.128 - Tests: aircraft engines.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Tests: aircraft engines. 21.128 Section 21.128 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... engines. (a) Each person manufacturing aircraft engines under a type certificate only shall subject...

  16. 77 FR 45979 - Airworthiness Directives; Piper Aircraft, Inc. Airplanes

    Science.gov (United States)

    2012-08-02

    ...] RIN 2120-AA64 Airworthiness Directives; Piper Aircraft, Inc. Airplanes AGENCY: Federal Aviation... airworthiness directive (AD) for certain Piper Aircraft, Inc. (type certificate previously held by The New Piper... Federal holidays. For service information identified in this proposed AD, contact Piper Aircraft, Inc...

  17. Predicting Visibility of Aircraft

    Science.gov (United States)

    Watson, Andrew; Ramirez, Cesar V.; Salud, Ellen

    2009-01-01

    Visual detection of aircraft by human observers is an important element of aviation safety. To assess and ensure safety, it would be useful to be able to be able to predict the visibility, to a human observer, of an aircraft of specified size, shape, distance, and coloration. Examples include assuring safe separation among aircraft and between aircraft and unmanned vehicles, design of airport control towers, and efforts to enhance or suppress the visibility of military and rescue vehicles. We have recently developed a simple metric of pattern visibility, the Spatial Standard Observer (SSO). In this report we examine whether the SSO can predict visibility of simulated aircraft images. We constructed a set of aircraft images from three-dimensional computer graphic models, and measured the luminance contrast threshold for each image from three human observers. The data were well predicted by the SSO. Finally, we show how to use the SSO to predict visibility range for aircraft of arbitrary size, shape, distance, and coloration. PMID:19462007

  18. Education as a Basic Element of Improving Professional Important Qualities of Aviation Technical Maintenance Personnel

    Directory of Open Access Journals (Sweden)

    Gorbačovs Oļegs

    2016-12-01

    Full Text Available In this article the importance of professional qualities, competence and their increase, directly dependent on the training of aviation technical maintenance personnel and determination the level of flight safety is covered. This publication analyses necessary training and requirements for aviation technical personnel involved in aircraft maintenance, as well as the requirements for aviation training organizations, defined as per Part-147, for such personnel preparation and training.

  19. Ash cloud aviation advisories

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, T.J.; Ellis, J.S. [Lawrence Livermore National Lab., CA (United States); Schalk, W.W.; Nasstrom, J.S. [EG and G, Inc., Pleasanton, CA (United States)

    1992-06-25

    During the recent (12--22 June 1991) Mount Pinatubo volcano eruptions, the US Air Force Global Weather Central (AFGWC) requested assistance of the US Department of Energy`s Atmospheric Release Advisory Capability (ARAC) in creating volcanic ash cloud aviation advisories for the region of the Philippine Islands. Through application of its three-dimensional material transport and diffusion models using AFGWC meteorological analysis and forecast wind fields ARAC developed extensive analysis and 12-hourly forecast ash cloud position advisories extending to 48 hours for a period of five days. The advisories consisted of ``relative`` ash cloud concentrations in ten layers (surface-5,000 feet, 5,000--10,000 feet and every 10,000 feet to 90,000 feet). The ash was represented as a log-normal size distribution of 10--200 {mu}m diameter solid particles. Size-dependent ``ashfall`` was simulated over time as the eruption clouds dispersed. Except for an internal experimental attempt to model one of the Mount Redoubt, Alaska, eruptions (12/89), ARAC had no prior experience in modeling volcanic eruption ash hazards. For the cataclysmic eruption of 15--16 June, the complex three-dimensional atmospheric structure of the region produced dramatically divergent ash cloud patterns. The large eruptions (> 7--10 km) produced ash plume clouds with strong westward transport over the South China Sea, Southeast Asia, India and beyond. The low-level eruptions (< 7 km) and quasi-steady-state venting produced a plume which generally dispersed to the north and east throughout the support period. Modeling the sequence of eruptions presented a unique challenge. Although the initial approach proved viable, further refinement is necessary and possible. A distinct need exists to quantify eruptions consistently such that ``relative`` ash concentrations relate to specific aviation hazard categories.

  20. 14 CFR 21.21 - Issue of type certificate: normal, utility, acrobatic, commuter, and transport category aircraft...

    Science.gov (United States)

    2010-01-01

    ...; aircraft engines; propellers. 21.21 Section 21.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION...; manned free balloons; special classes of aircraft; aircraft engines; propellers. Link to an amendment..., special class of aircraft, or an aircraft engine or propeller, if— (a) The product qualifies under §...

  1. Subsonic Ultra Green Aircraft Research

    Science.gov (United States)

    Bradley, Marty K.; Droney, Christopher K.

    2011-01-01

    This Final Report summarizes the work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team in Phase 1, which includes the time period of October 2008 through March 2010. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech. The team completed the development of a comprehensive future scenario for world-wide commercial aviation, selected baseline and advanced configurations for detailed study, generated technology suites for each configuration, conducted detailed performance analysis, calculated noise and emissions, assessed technology risks, and developed technology roadmaps. Five concepts were evaluated in detail: 2008 baseline, N+3 reference, N+3 high span strut braced wing, N+3 gas turbine battery electric concept, and N+3 hybrid wing body. A wide portfolio of technologies was identified to address the NASA N+3 goals. Significant improvements in air traffic management, aerodynamics, materials and structures, aircraft systems, propulsion, and acoustics are needed. Recommendations for Phase 2 concept and technology projects have been identified.

  2. Characteristics of civil aviation atmospheric hazards

    Science.gov (United States)

    Marshall, Robert E.; Montoya, J.; Richards, Mark A.; Galliano, J.

    1994-01-01

    Clear air turbulence, wake vortices, dry hail, and volcanic ash are hazards to civil aviation that have not been brought to the forefront of public attention by a catastrophic accident. However, these four hazards are responsible for major and minor injuries, emotional trauma, significant aircraft damage, and in route and terminal area inefficiency. Most injuries occur during clear air turbulence. There is significant aircraft damage for any volcanic ash encounter. Rolls induced by wake vortices occur near the ground. Dry hail often appears as an area of weak echo on the weather radar. This paper will present the meteorological, electromagnetic, and spatiotemporal characteristics of each hazard. A description of a typical aircraft encounter with each hazard will be given. Analyzed microwave and millimeter wave sensor systems to detect each hazard will be presented.

  3. Aviation safety and ICAO

    NARCIS (Netherlands)

    Huang, Jiefang

    2009-01-01

    The thesis addresses the issue of aviation safety under the rule of law. Aviation safety is a global concern. While air transport is considered a safe mode of travel, it is susceptible to inherent risks of flight, the use of force, and terrorist acts. Consequently, within the framework of the

  4. Aviation. Teacher Resources.

    Science.gov (United States)

    2001

    This teacher's guide contains information, lesson plans, and diverse student learning activities focusing on aviation. The guide is divided into seven sections: (1) "Drawing Activities" (Airmail Art; Eyewitness; Kite Power); (2) "Geography" (U.S. Airports); (3) "Information" (Aviation Alphabet; Glossary; Four Forces…

  5. Aviation safety and ICAO

    NARCIS (Netherlands)

    Huang, Jiefang

    2009-01-01

    The thesis addresses the issue of aviation safety under the rule of law. Aviation safety is a global concern. While air transport is considered a safe mode of travel, it is susceptible to inherent risks of flight, the use of force, and terrorist acts. Consequently, within the framework of the Intern

  6. Industrial neuroscience in aviation evaluation of mental states in aviation personnel

    CERN Document Server

    Borghini, Gianluca; Di Flumeri, Gianluca; Babiloni, Fabio

    2017-01-01

    This book discusses the emerging field of industrial neuroscience, and reports on the authors’ cutting-edge findings in the evaluation of mental states, including mental workload, cognitive control and training of personnel involved either in the piloting of aircraft and helicopters, or in managing air traffic. It encompasses neuroimaging and cognitive psychology techniques and shows how they have been successfully applied in the evaluation of human performance and human-machine interactions, and to guarantee a proper level of safety in such operational contexts. With an introduction to the most relevant concepts of neuroscience, neurophysiological techniques, simulators and case studies in aviation environments, it is a must-have for both students and scientists in the field of aeronautic and biomedical engineering, as well as for various professionals in the aviation world. This is the first book to intensively apply neurosciences to the evaluation of human factors and mental states in aviation.

  7. Piloted simulation study of an ILS approach of a twin-pusher business/commuter turboprop aircraft configuration

    Science.gov (United States)

    Riley, Donald R.; Brandon, Jay M.; Glaab, Louis J.

    1994-01-01

    A six-degree-of-freedom nonlinear simulation of a twin-pusher, turboprop business/commuter aircraft configuration representative of the Cessna ATPTB (Advanced turboprop test bed) was developed for use in piloted studies with the Langley General Aviation Simulator. The math models developed are provided, simulation predictions are compared with with Cessna flight-test data for validation purposes, and results of a handling quality study during simulated ILS (instrument landing system) approaches and missed approaches are presented. Simulated flight trajectories, task performance measures, and pilot evaluations are presented for the ILS approach and missed-approach tasks conducted with the vehicle in the presence of moderate turbulence, varying horizontal winds and engine-out conditions. Six test subjects consisting of two research pilots, a Cessna test pilot, and three general aviation pilots participated in the study. This effort was undertaken in cooperation with the Cessna Aircraft Company.

  8. Aviation Climate Change Research Initiative (ACCRI) - An Update

    Science.gov (United States)

    Gupta, M. L.

    2009-12-01

    Aviation plays an important role in global and domestic economic development and transport mobility. There are environmental concerns associated with aviation noise and emissions. Aircraft climate impacts are primarily due to release of emissions at the cruise altitude in the upper troposphere and lower stratosphere. Even though small in magnitude at present, aviation climate impacts will likely increase with projected growth in air transport demand unless scientifically informed and balanced mitigation solutions are implemented in a timely manner. There are large uncertainties associated with global and regional non-CO2 aviation climate impacts which need to be well quantified and constrained to support decision making. To meet future aviation capacity needs, the United States is developing and implementing a dynamic, flexible and scalable Next Generation Air Transportation System (NextGen) that is safe, secure, efficient and environmentally sound. One of the stated NextGen environmental goals is to limit or reduce the impacts of aviation emissions on global climate. With the support from the participating agencies of the U.S. Climate Change Science Program, the Federal Aviation Administration (FAA) has developed Aviation Climate Change Research Initiative (ACCRI) with the main objective to identify and address key scientific gaps and uncertainties that are most likely to be achieved in near (up to 18 months) and mid (up to 36 months) term horizons while providing timely scientific input to inform decision making. Till date, ACCRI funded activities have resulted in release of 8 subject-specific whitepapers and a report on The Way Forward. These documents can be accessed via http://www.faa.gov/about/office_org/headquarters_offices/aep/aviation_climate/media/ACCRI_Report_final.pdf. This presentation will provide details on prioritized key scientific gaps and uncertainties to better characterize aviation climate impacts. This presentation will also include a brief

  9. Rapid evaluation of buildings and infrastructure to accidental and deliberate aircraft impact

    Energy Technology Data Exchange (ETDEWEB)

    Tennant, D., E-mail: tennant@wai.com [Weidlinger Associates, Inc., 6301 Indian School Road NE, Suite 501, Albuquerque, NM 87122 (United States); Levine, H., E-mail: levine@ca.wai.com [Weidlinger Associates, Inc., 399 W. El Camino Real, Suite 200, Mountain View, CA 94040 (United States); Mould, J.; Vaughan, D. [Weidlinger Associates, Inc., 399 W. El Camino Real, Suite 200, Mountain View, CA 94040 (United States)

    2014-04-01

    Recent events involving the impact of large transport aircraft such as the Boeing 767 and 757 into the World Trade Center Towers and the Pentagon have revealed the vulnerability of such structures to terrorist attack. Incidents involving smaller general aviation aircraft have shown the damage that this class of plane can do beyond a protected perimeter. These incidents have elicited inquiries with regard to the effects of impacts of these aircraft types into other critical facilities including aboveground and below ground storage facilities, nuclear power plants, damns and other military and civilian installations. A significant capability to evaluate these threats has been developed during the past 10 years. Small medium and large aircraft have been impacted into buried and aboveground reinforced concrete and light steel frame storage facilities. Both explicit aircraft models and Riera functions (a simplified aircraft impact loading function) have been used to generate an extensive data base. The effects of engines impacting have been studied separately as penetrators. Illustrated in this paper is validation of computational tools for impacts into structures and the initial development of a generalized evaluation tool for rapid evaluation of threats and consequence of aircraft impact into protected facilities.

  10. National volcanic ash operations plan for aviation

    Science.gov (United States)

    ,; ,

    2007-01-01

    The National Aviation Weather Program Strategic Plan (1997) and the National Aviation Weather Initiatives (1999) both identified volcanic ash as a high-priority informational need to aviation services. The risk to aviation from airborne volcanic ash is known and includes degraded engine performance (including flameout), loss of visibility, failure of critical navigational and operational instruments, and, in the worse case, loss of life. The immediate costs for aircraft encountering a dense plume are potentially major—damages up to $80 million have occurred to a single aircraft. Aircraft encountering less dense volcanic ash clouds can incur longer-term costs due to increased maintenance of engines and external surfaces. The overall goal, as stated in the Initiatives, is to eliminate encounters with ash that could degrade the in-flight safety of aircrews and passengers and cause damage to the aircraft. This goal can be accomplished by improving the ability to detect, track, and forecast hazardous ash clouds and to provide adequate warnings to the aviation community on the present and future location of the cloud. To reach this goal, the National Aviation Weather Program established three objectives: (1) prevention of accidental encounters with hazardous clouds; (2) reduction of air traffic delays, diversions, or evasive actions when hazardous clouds are present; and (3) the development of a single, worldwide standard for exchange of information on airborne hazardous materials. To that end, over the last several years, based on numerous documents (including an OFCMsponsored comprehensive study on aviation training and an update of Aviation Weather Programs/Projects), user forums, and two International Conferences on Volcanic Ash and Aviation Safety (1992 and 2004), the Working Group for Volcanic Ash (WG/VA), under the OFCM-sponsored Committee for Aviation Services and Research, developed the National Volcanic Ash Operations Plan for Aviation and Support of the

  11. 78 FR 63015 - Exhaust Emissions Standards for New Aircraft Gas Turbine Engines and Identification Plate for...

    Science.gov (United States)

    2013-10-23

    ... Aircraft Gas Turbine Engines and Identification Plate for Aircraft Engines AGENCY: Federal Aviation... aircraft engines which, in the EPA Administrator's judgment, causes or contributes to air pollution that... aircraft engine emission standards for oxides of nitrogen (NO X ), compliance flexibilities, and...

  12. AWE: Aviation Weather Data Visualization Environment

    Science.gov (United States)

    Spirkovska, Lilly; Lodha, Suresh K.; Norvig, Peter (Technical Monitor)

    2000-01-01

    Weather is one of the major causes of aviation accidents. General aviation (GA) flights account for 92% of all the aviation accidents, In spite of all the official and unofficial sources of weather visualization tools available to pilots, there is an urgent need for visualizing several weather related data tailored for general aviation pilots. Our system, Aviation Weather Data Visualization Environment AWE), presents graphical displays of meteorological observations, terminal area forecasts, and winds aloft forecasts onto a cartographic grid specific to the pilot's area of interest. Decisions regarding the graphical display and design are made based on careful consideration of user needs. Integral visual display of these elements of weather reports is designed for the use of GA pilots as a weather briefing and route selection tool. AWE provides linking of the weather information to the flight's path and schedule. The pilot can interact with the system to obtain aviation-specific weather for the entire area or for his specific route to explore what-if scenarios and make "go/no-go" decisions. The system, as evaluated by some pilots at NASA Ames Research Center, was found to be useful.

  13. Environmentally Responsible Aviation: Propulsion Research to Enable Fuel Burn, Noise and Emissions Reduction

    Science.gov (United States)

    Van Zante, Dale; Suder, Kenneth

    2015-01-01

    The NASA Environmentally Responsible Aviation (ERA) program is maturing technologies to enable simultaneous reduction of fuel burn, noise and emissions from an aircraft engine system. Three engine related Integrated Technology Demonstrations (ITDs) have been completed at Glenn Research Center in collaboration with Pratt Whitney, General Electric and the Federal Aviation Administration. The engine technologies being matured are: a low NOx, fuel flexible combustor in partnership with Pratt Whitney; an ultra-high bypass, ducted propulsor system in partnership with Pratt Whitney and FAA; and high pressure ratio, front-stage core compressor technology in partnership with General Electric. The technical rationale, test configurations and overall results from the test series in each ITD are described. ERA is using system analysis to project the benefits of the ITD technologies on potential aircraft systems in the 2025 timeframe. Data from the ITD experiments were used to guide the system analysis assumptions. Results from the current assessments for fuel burn, noise and oxides of nitrogen emissions are presented.

  14. Atmospheric effects of aviation. Bringing together science, technology and policy

    Energy Technology Data Exchange (ETDEWEB)

    Wesoky, H.L.; Friedl, R.R. [National Aeronautics and Space Administration, Washington, DC (United States)

    1997-12-31

    Sustained growth of the aviation industry could be threatened by environmental concerns. But collaboration of scientists, technologists and policy makers is helping to assess potential problems, and to consider appropriate measures for control of aircraft emissions. The structure of that collaboration is discussed along with status of the scientific assessments. (author) 15 refs.

  15. A STEM-Based, High School Aviation Course

    Science.gov (United States)

    Surra, Alex; Litowitz, Len S.

    2015-01-01

    The authors describe a vocational training course that was developed to give more than just an overview of how aircraft work, or a course on how to fly. This training course was a half-year course in aviation technology. Powered flight is an area of interest for many students, and the intent of creating a curriculum rich with science, technology,…

  16. Fidelity Requirements for Army Aviation Training Devices: Issues and Answers

    Science.gov (United States)

    2008-04-01

    Manual (ATM) tasks which may no longer reflect the "real world" demands of current combat scenarios in Afghanistan and Iraq. DOTD is concerned that...of Aviation Psychology, 8(3). 277-292. Lenorovitz, J. M. (1990, June 25). Indian A320 crash probe data show crew improperly configured aircraft

  17. A STEM-Based, High School Aviation Course

    Science.gov (United States)

    Surra, Alex; Litowitz, Len S.

    2015-01-01

    The authors describe a vocational training course that was developed to give more than just an overview of how aircraft work, or a course on how to fly. This training course was a half-year course in aviation technology. Powered flight is an area of interest for many students, and the intent of creating a curriculum rich with science, technology,…

  18. Hydrocarbon Biocomponents use in Aviation Fuels - Preliminary Analysis of Issues

    Directory of Open Access Journals (Sweden)

    Gawron Bartosz

    2015-01-01

    Full Text Available Article is related to the aspect of the introduction of biofuels to power turbine aircraft engines. The paper presents the current trends in the use of alternative fuels in aviation and the problems connected with the introduction of hydrocarbon biocomponents. It is pointed to the need to take research and implementation works in the field of the subject, also in Poland.

  19. Travel, speed and entertainment in cinema territories and aviation

    Directory of Open Access Journals (Sweden)

    João Luís Jesus Fernandes

    2016-02-01

    Full Text Available Book review and critical reading of a book that crosses cinema and the aviation transport, a work that understands the latter as a territory of cinema diffusion. The films shown in the aircraft are designed to entertain the passengers, keep them calm, but also to promote marketing campaigns and lifestyles.

  20. Aviation Maintenance Safety Articles, January/February 1990

    Science.gov (United States)

    1990-02-01

    have been going more ery rooms into an inferno . smoothly. We had a steady Flames shot out eight feet flow of aircraft into the pat- 2 from the skin of...mulled over some lasting impressions of this mishap. These are thoughts this ship’s-company aviator feels the need to share with his brown -shoe buddies

  1. 不同机种不同体训方法对海军飞行员体测效果观察%Effects of different types of aircraft and different physical training methods on the physical examination results of naval aviators

    Institute of Scientific and Technical Information of China (English)

    魏本领; 王杨; 王伟; 任克; 费航

    2015-01-01

    目的:比较不同机种不同体训方法对海军飞行员体测效果。方法按照数字表法随机选取来我院疗养的100名海军飞行员,按照训练方法的不同分为甲、乙2组。甲组采取的体训方案为:不区分机种类型进行体训,包括无氧和有氧训练,无重点倾向。乙组根据学员分配机种不同类型,进行针对性训练:其中歼击机类,重点训练飞行员下肢和腹部肌肉爆发力,包括负重深蹲起立、仰卧起坐、深蹲高跳等能增强下肢和腹部肌肉爆发力的训练项目(无氧训练);运输机类,重点训练有氧耐力,项目包括3000 m跑、游泳等增加身体有氧耐力的训练项目(有氧训练)。结果乙组学员无论是歼击机类还是运输机类在肺部通气量、潮气量、血液中红细胞、血红蛋白数值、肺部最大摄氧量及心功能指数上,对比甲组学员,在训练1、2个月后差异无统计学意义(P>0.05),而训练3个月后,差异均有统计学意义(P<0.05)。结论对不同机种海军飞行员采取不同体训方法,要比采取相同体训方法的效果具有优越性。%Objective To compare the effects of different physical training methods on the physical examination results of naval aviators flying different types of aircraft .Methods One hundred naval aviation cadets who stayed in the sanitarium were selected for the study, and were randomly divided into group A and group B , in accordance with different training methods .The physical training protocol for group A was as follows:physical training including anaerobic training and aerobic training was conducted without distinction of aircraft types and tendency of training emphasis .The cadets of group B received orientational training in accordance with different types of aircraft they were designated to .For the aviators of fighter planes , the focuses of training were the lower limbs and abdominal muscle explosive

  2. FAA-NASA Sixth International Conference on the Continued Airworthiness of Aircraft Structures

    Science.gov (United States)

    1995-12-01

    British Airways Human Factors in Aviation Maintenance: Current FAA Research .............................. 91 William T. Shepherd, Federal Aviation...Development of Advanced Structural Analysis Methodologies for Predicting W idespread Fatigue Damage in Aircraft Structures...where satellite communications to transmit aircraft position data derived from GPS directly to controllers via data link. On June 21, FAA and Qantas

  3. 14 CFR 198.1 - Eligibility of aircraft operation for insurance.

    Science.gov (United States)

    2010-01-01

    ... insurance. 198.1 Section 198.1 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) WAR RISK INSURANCE AVIATION INSURANCE § 198.1 Eligibility of aircraft operation for insurance. An aircraft operation is eligible for insurance if— (a) The President of the United States...

  4. 76 FR 55293 - Special Conditions: Diamond Aircraft Industries, Model DA-40NG; Electronic Engine Control (EEC...

    Science.gov (United States)

    2011-09-07

    ... TRANSPORTATION Federal Aviation Administration 14 CFR Part 23 Special Conditions: Diamond Aircraft Industries, Model DA-40NG; Electronic Engine Control (EEC) System AGENCY: Federal Aviation Administration (FAA), DOT... Diamond Aircraft Industries (DAI), model DA-40NG airplane. This airplane will have a novel or...

  5. The Aging Military Aviator: A Review and Annotated Bibliography

    Science.gov (United States)

    1993-01-01

    aviation pilots. Very shortly thereafter, the International Civil Aviation Organization ( ICAO ) issued a similar policy affecting its member countries...lack of general methods of evaluating an individual’s monocular depth perception. If binocular vision is so vital to aviation, how does one explain...aged pilots with reduced binocular vision, or even monocular vision, accomplishing landings and other tasks requiring depth perception? Quite obviously

  6. 78 FR 9789 - Airworthiness Directives; Schweizer Aircraft Corporation

    Science.gov (United States)

    2013-02-12

    ... Certification Office, Engine & Propeller Directorate, 1600 Stewart Ave., suite 410, Westbury, NY 11590... inspection panel kit and stabilizer mount doublers. The Type Certificate for these helicopters transferred...: Stephen Kowalski, Aviation Safety Engineer, New York Aircraft Certification Office, Engine &...

  7. Estimated revenues of VAT and fuel tax on aviation

    Energy Technology Data Exchange (ETDEWEB)

    Korteland, M.; Faber, J.

    2013-07-15

    International aviation is exempt from VAT, both on their inputs (e.g. on fuel or aircraft) and on their revenues (e.g. on tickets). In the EU, aviation fuel is also exempt from the minimum fuel excise tariffs. This report calculates the potential revenues of VAT on tickets and fuel tax on jet fuel. If VAT were to be levied on tickets while other aviation taxes were simultaneously abolished, this would yield revenues in the order of EUR 7 billion. Excise duty on jet fuel would raise revenues in the order of EUR 20 billion. These figures do not take into account the impact of the cost increases on demand for aviation into account. Since higher costs will reduce demand, the estimates can be considered an upper bound.

  8. ICAO AVIATION OCCURRENCE CATEGORIES SIGNIFICANTLY AFFECTING AVIATION SAFETY IN POLAND FROM 2008 TO 2015

    Directory of Open Access Journals (Sweden)

    Paweł GŁOWACKI

    2017-03-01

    Full Text Available Poland, as a member of the EU, is represented within the ICAO, by the European Aviation Safety Agency. However, this does not relieve our country from the responsibility of developing a state safety programme (SSP. The need to set up such a programme, which has to be specific to every country involved in aviation operation, was introduced by the ICAO’s Annex 19. One of the important points in Annex 19 is: “5.2.1 Each State shall establish and maintain a safety database to facilitate the effective analysis of information on actual or potential safety deficiencies obtained, including that from its incident reporting systems, and to determine any actions required for the enhancement of safety”. The Polish Civil Aviation Authority, along with other databases, manages the European Coordination Centre for Aviation Incident Reporting Systems (ECCAIRS. The authors (who are specialists dealing with exploitation processes in aviation have conducted a laborious processing of the data contained in the ECCAIRS database, analysing them based on various criteria: aviation occurrence categories (as defined by the ICAO, phases of flight for different airports in Poland etc. Aircraft with an maximum take-off mass (MTOM 5,700 kg (commercial aviation were considered separately. It was found that the most events are those that relate to power plant (SCF-PP airframes and related system (SCF-NP failures, followed by collisions with birds (BIRD, events related to airports (ADRM and events related to the required separation of aircraft (MAC. For lighter aircraft, the dominant categories are ARC, CTOL, GTOW and LOC-I events. The article presents a proposed method for predicting the number of events, determining the alert levels for the next years and assuming a normal distribution (Gaussian. It is one of the first attempts to use actual data contained in the database of events on airports in Poland. The results of this analysis may support the decisions of

  9. Aircraft Ground Operation, Servicing, Fluid Lines and Fittings, Mechanics Privileges and Limitations, and Maintenance Publications, Forms and Records (Course Outline), Aviation Mechanics 1 (Power and Frame): 9073.02.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    The course outline consists of five instructional blocks of several units each: (1) Aircraft Ground Operation and Servicing; (2) Fluid Lines and Fittings; (3) Mechanics Requirements, Privileges and Limitations; (4) Maintenance Publications; and, (5) Maintenance forms and Records. It is a basic course of knowledge and skills necessary to any…

  10. 我国航空市场支线飞机运营故障统计分析%Statistic Analysis on the Operation Faults of Regional Aircraft in Chinese Aviation Market

    Institute of Scientific and Technical Information of China (English)

    陈兴华; 胡静; 张润生

    2011-01-01

    对我国支线飞机以及运营在支线航线上的干线飞机在运行过程中产生的大量故障与可靠性数据进行收集,通过对已发生的重大故障或影响小的故障信息的整理、统计与分析,获得各相关机型侄运行过程中表现出来的故障特点,从而归纳出机型之间故障分布的共性,为飞机设计与改型提供需要重点关注的ATA章节建议,为我国自主研制的飞机设计与改型提供有益的参考。%The faults and reliability data are collected, which come from operating of regional aircraft and other aircrafts operation on the regional flight course. By coordinating and analyzing these fault information, the fault characteristics of type behaving from operating can be obtained respectively. Finally it can find the common features of types fault distribution, which can provide the ATA chapters focused for aircraft design and modification and also supply the references for our new aircraft design.

  11. Research on aviation fuel instability

    Science.gov (United States)

    Baker, C. E.; Bittker, D. A.; Cohen, S. M.; Seng, G. T.

    1984-01-01

    The problems associated with aircraft fuel instability are discussed. What is currently known about the problem is reviewed and a research program to identify those areas where more research is needed is discussed. The term fuel instability generally refers to the gums, sediments, or deposits which can form as a result of a set of complex chemical reactions when a fuel is stored for a long period at ambient conditions or when the fuel is thermally stressed inside the fuel system of an aircraft.

  12. WRF simulation of the atmospheric conditions in some aircraft accidents

    OpenAIRE

    Lozano Sánchez, Miguel

    2013-01-01

    Aviation, probably more than any other mode of transportation, is greatly affected by weather. Commercial aviation must deal with storms, fogs, windshears, ash from the volcanoes, intense rain, turbulences and other weather phenomena regularly. In this document are exposed in detail the effects of these phenomena on the aircraft's performance and on the airport facilities. Additionally, it is performed too, a study of the impact that these weather phenomena have had in aviation in the period ...

  13. Indirect economic drivers for end-of-life handling in the aviation sector

    NARCIS (Netherlands)

    De Brito, M.P.; Van der Laan, E.A.; Moleveld, M.

    2009-01-01

    An important issue that is getting increasing attention in the aviation sector is the handling of end-of-life aircraft. Traditionally, retired aircraft are parked in the desert waiting for a buyer, but more attractive options are available. There is some literature on direct economic factors

  14. Indirect economic drivers for end-of-life handling in the aviation sector

    NARCIS (Netherlands)

    De Brito, M.P.; Van der Laan, E.A.; Moleveld, M.

    2009-01-01

    An important issue that is getting increasing attention in the aviation sector is the handling of end-of-life aircraft. Traditionally, retired aircraft are parked in the desert waiting for a buyer, but more attractive options are available. There is some literature on direct economic factors influen

  15. Improving Aviation Safety in Indonesia: How Many More Accidents?

    Directory of Open Access Journals (Sweden)

    Ridha Aditya Nugraha

    2016-12-01

    Full Text Available Numerous and consecutive aircraft accidents combined with a consistent failure to meet international safety standards in Indonesia, namely from the International Civil Aviation Organization and the European Aviation Safety Agency have proven a nightmare for the country’s aviation safety reputation. There is an urgent need for bureaucracy reform, harmonization of legislation, and especially ensuring legal enforcement, to bring Indonesian aviation safety back to world standards. The Indonesian Aviation Law of 2009 was enacted to reform the situation in Indonesia. The law has become the ground for drafting legal framework under decrees of the Minister of Transportation, which have allowed the government to perform follow-up actions such as establishing a single air navigation service provider and guaranteeing the independency of the Indonesian National Transportation Safety Committee. A comparison with Thailand is made to enrich the perspective. Finally, foreign aviation entities have a role to assist states, in this case Indonesia, in improving its aviation safety, considering the global nature of air travel.

  16. Aircraft LTO emissions regulations and implementations at European airports

    Science.gov (United States)

    Yunos, Siti Nur Mariani Mohd; Ghafir, Mohammad Fahmi Abdul; Wahab, Abas Ab

    2017-04-01

    Aviation affects the environment via the emission of pollutants from aircraft, impacting human health and ecosystem. Impacts of aircraft operations at lower ground towards local air quality have been recognized. Consequently, various standards and regulations have been introduced to address the related emissions. This paper discussed both environmental regulations by focusing more on the implementations of LTO emissions charges, an incentive-based regulation introduced in Europe as an effort to fill the gap in addressing the environmental issues related to aviation.

  17. 75 FR 9327 - Aircraft Noise Certification Documents for International Operations

    Science.gov (United States)

    2010-03-02

    ... as required by the International Civil Aviation Organization (ICAO), and to ensure compliance between domestic U.S. regulations and ICAO Annex 16, Amendment 8. DATES: This amendment becomes effective May 3... United States using aircraft subject to the International Civil Aviation Organization (ICAO) Annex 16...

  18. Based on DEA-M almquist Listed Domestic General Aviation Business Performance Evaluation%基于DEA-Malmquist的国内通用航空上市企业经营绩效评价

    Institute of Scientific and Technical Information of China (English)

    姜宝山; 王志红; 苏伟弢

    2014-01-01

    运用DEA-M almquist指数法,对22家通用航空上市企业的指标数据进行了静态、动态效率分析。结果发现,2012年决策样本中有77%的通用航空上市企业综合效率小于1.000,纯技术效率和规模效率都没有达到最优状态,导致其综合效率低下,没有成为样本标杆企业;2008-2012年只有5家企业的全要素生产率指数大于1.000,所有样本企业都出现了技术退步的现象。由此可以看出,技术落后成为提高我国通用航空上市企业经营绩效水平的主要阻碍,技术创新成为现实选择,并在最后给出相应建议。%Based on the 22 listed companies in general aviation indicator data ,DEA-Malmquist index method for static and dynamic efficiency analysis was used . The results showed that in 2012 77% of the sample making general aviation listed companies was less than 1 .000 in comprehensive efficiency ,and the pure technical efficiency and the scale efficiency had not reached the optimal state ,resulting in low efficiency of its comprehensive sample did not become a benchmark for enterprises . The period of 2008-2012 only five companies TFP index greater than 1 .000 ,all the sample enterprises emerged in the phenomenon of regression techniques . Therefore , the technology regression in general aviation companies was the major obstacle .Consequently ,the technology progress would be a realistic choice in improving our operating performance level And finally the corresponding recommendations were given .

  19. Aviation Accidents and Stock Market Reaction: Evidence from Borsa Istanbul

    Directory of Open Access Journals (Sweden)

    Ender Demir

    2015-03-01

    Full Text Available Behavioral finance literature shows that a variety of mood variables affect the stock prices. Aviation accidents are uncommon that generally cause a high number of casualties. Therefore, they have a strong social repercussion in the country. This negative sentiment driven by bad mood might affect the investment decisions of investors. This study examines the effect of aviation accidents on Borsa Istanbul Index and Borsa Istanbul Transportation Index. Turkish aviation companies had only 5 serious accidents from 1990 to 2013. On the contrary to the previous findings, it is found that the aviation disasters do not have any effect on the stock market.

  20. Progress on coal-derived fuels for aviation systems

    Science.gov (United States)

    Witcofski, R. D.

    1978-01-01

    Synthetic aviation kerosene (Syn. Jet-A), liquid methane (LCH4), and liquid hydrogen (LH2) appear to be the most promising coal-derived fuels. Liquid hydrogen aircraft configurations, their fuel systems, and their ground requirements at the airport are identified. These aircraft appear viable, particularly for long haul use, where aircraft fueled with coal derived LH2 would consume 9 percent less coal resources than would aircraft fueled with coal derived Syn. Jet-A. Distribution of hydrogen from the point of manufacture to airports may pose problems. Synthetic JET-A would appear to cause fewer concerns to the air transportation industry. Of the three candidate fuels, LCH4 is the most energy efficient to produce, and an aircraft fueled with coal derived LCH4 may provide both the most efficient utilization of coal resources and the least expensive ticket as well.

  1. Improving Fuel Statistics for Danish Aviation

    DEFF Research Database (Denmark)

    Winther, M.

    Institute) model estimates the fuel use per flight for all flights leaving Danish airports in 1998, while the annual Danish CORINAIR inventories are based on improved LTO/aircraft type statistics. A time series of fuel use from 1985 to 2000 is also shown for flights between Denmark and Greenland/the Faroe...... Islands, obtained with the NERI model. In addition a complete overview of the aviation fuel use from the two latter areas is given, based on fuel sale information from Statistics Greenland and Statistics Faroe Islands, and fuel use data from airline companies. The fuel use figures are presented on a level...

  2. Improving Fuel Statistics for Danish Aviation

    DEFF Research Database (Denmark)

    Winther, M.

    This report contains fuel use figures for Danish civil aviation broken down into domestic and international numbers from 1985 to 2000, using a refined fuel split procedure and official fuel sale totals. The results from two different models are used. The NERI (National Environmental Research...... Institute) model estimates the fuel use per flight for all flights leaving Danish airports in 1998, while the annual Danish CORINAIR inventories are based on improved LTO/aircraft type statistics. A time series of fuel use from 1985 to 2000 is also shown for flights between Denmark and Greenland/the Faroe...

  3. Aircraft Operations Classification System

    Science.gov (United States)

    Harlow, Charles; Zhu, Weihong

    2001-01-01

    Accurate data is important in the aviation planning process. In this project we consider systems for measuring aircraft activity at airports. This would include determining the type of aircraft such as jet, helicopter, single engine, and multiengine propeller. Some of the issues involved in deploying technologies for monitoring aircraft operations are cost, reliability, and accuracy. In addition, the system must be field portable and acceptable at airports. A comparison of technologies was conducted and it was decided that an aircraft monitoring system should be based upon acoustic technology. A multimedia relational database was established for the study. The information contained in the database consists of airport information, runway information, acoustic records, photographic records, a description of the event (takeoff, landing), aircraft type, and environmental information. We extracted features from the time signal and the frequency content of the signal. A multi-layer feed-forward neural network was chosen as the classifier. Training and testing results were obtained. We were able to obtain classification results of over 90 percent for training and testing for takeoff events.

  4. Aviation graduates' competencies, 2000--2007: Perceptions of aviation educators and industry representatives in the United States

    Science.gov (United States)

    Bridewell, John B.

    This study surveyed the perceptions of collegiate aviation educators, collegiate aviation institution representatives, and aviation industry stakeholders who were members of the University Aviation Association as of February 5, 2007. Survey forms were sent to 353 prospective participants and there was an overall response rate of 47.6%. The survey consisted of a list of 16 knowledge and skill competencies with Likert-type responses for each participant to indicate the level of importance each placed upon those competencies for collegiate aviation graduates and of the level of satisfaction each had that collegiate aviation graduates actually possessed those competencies upon graduation. Two open-ended questions pertained to the strengths and weaknesses of collegiate aviation programs or their graduates. Another allowed for general comments. The statistical analyses indicated that all three groups were most satisfied with graduates' technical skills and least satisfied with communications skills. Analyses indicated that a balance of technical skills and a liberal education was essential for program success. All knowledge and skill competencies were shown to have high to very high importance levels, but only medium to high satisfaction levels. Results indicated that graduates were perceived to possess all stated competencies, but to a lesser degree than desired. Successful collegiate aviation programs existed, but there was room for improvement. Success was program or graduate speck, with no ubiquitous definition of what constituted a successful collegiate aviation program. Aviation industry needs must be addressed by academia for any collegiate aviation program to be successful, but results indicated that the aviation industry needs to take a larger role in the development and refinement of collegiate aviation programs. Finances for institutions, programs, and students were a major concern for the foreseeable future. Administrators should consider how their actions

  5. Ageing aircraft research in the Netherlands

    Science.gov (United States)

    Dejonge, J. B.; Bartelds, G.

    1992-01-01

    The problems of aging aircraft are worldwide. Hence, international cooperative actions to overcome or prevent problems should be taken. The Federal Aviation Administration (FAA) and the Netherlands Civil Aviation Department (RLD) signed a Memorandum of Cooperation in the area of structural integrity, with specific reference to research on problems in the area of aging aircraft. Here, an overview is given of aging research that is going on in the Netherlands. The work described is done largely at the National Aerospace Laboratory; much of the research is part of the forementioned cooperative agreement.

  6. Potential global jamming transition in aviation networks

    CERN Document Server

    Ezaki, Takahiro

    2015-01-01

    In this paper, we propose a nonlinear transport model for an aviation network. The takeoff rate from an airport is characterized by the degree of ground congestion. Due to the effect of "surface congestion," the performance of an airport deteriorates because of inefficient configurations of waiting aircraft on the ground. Using a simple transport model, we performed simulations on a U. S. airport network and found a global jamming transition induced by local surface congestion. From a physical perspective, the mechanism of the transition is studied analytically and the resulting aircraft distribution is discussed considering system dynamics. This study shows that the knowledge of the relationship between a takeoff rate and a congestion level on the ground is vital for efficient air traffic operations.

  7. THE ORGANIZATION OF ECOLOGICAL PROTECTION OF THE AVIATION ACCIDENT AREA

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available The environmental impact by civil aviation activity at all stages of air-transport service life cycle is considered in the article. Negative emergency aviation situations make certain changes to life cycle of the service offered by air transport that is reflected in negative ecological environmental impact at the place of accident. The integrated approach to an assess- ment of such influence is required. The amount of the polluting substances getting into the soil of the ecosystem at the site of an aircraft accident can be considerably reduced by means of timely extraction by carbon adsorption of the aviation fuel and special liquids, that is soil detoxication is required.Expediency of placement of the special sorption barrier passing on the border of the aviation accident area and representing the water-permeable sleeve filled with a sorbent is proved. The stage-by-stage sequence of the detoxication works is offered and it is recommended to apply their carrying out in civil aviation in the form of the obligatory task imput- ed to the administrative subcommittee, which is a part of the aircraft accident investigation committee.The sequence of works is presented in the form of the plan schedule of necessary actions. Dependence for calcula- tion of the amount of petrochemicals getting into the soil in the considered situations is offered.

  8. Prospective Safety Analysis and the Complex Aviation System

    Science.gov (United States)

    Smith, Brian E.

    2013-01-01

    Fatal accident rates in commercial passenger aviation are at historic lows yet have plateaued and are not showing evidence of further safety advances. Modern aircraft accidents reflect both historic causal factors and new unexpected "Black Swan" events. The ever-increasing complexity of the aviation system, along with its associated technology and organizational relationships, provides fertile ground for fresh problems. It is important to take a proactive approach to aviation safety by working to identify novel causation mechanisms for future aviation accidents before they happen. Progress has been made in using of historic data to identify the telltale signals preceding aviation accidents and incidents, using the large repositories of discrete and continuous data on aircraft and air traffic control performance and information reported by front-line personnel. Nevertheless, the aviation community is increasingly embracing predictive approaches to aviation safety. The "prospective workshop" early assessment tool described in this paper represents an approach toward this prospective mindset-one that attempts to identify the future vectors of aviation and asks the question: "What haven't we considered in our current safety assessments?" New causation mechanisms threatening aviation safety will arise in the future because new (or revised) systems and procedures will have to be used under future contextual conditions that have not been properly anticipated. Many simulation models exist for demonstrating the safety cases of new operational concepts and technologies. However the results from such models can only be as valid as the accuracy and completeness of assumptions made about the future context in which the new operational concepts and/or technologies will be immersed. Of course that future has not happened yet. What is needed is a reasonably high-confidence description of the future operational context, capturing critical contextual characteristics that modulate

  9. The Use of a Satellite Communications System for Command and Control of the National Aeronautics and Space Administration Surrogate Unmanned Aerial System Research Aircraft

    Science.gov (United States)

    Howell, Charles T.; Jones, Frank; Hutchinson, Brian; Joyce, Claude; Nelson, Skip; Melum, Mike

    2017-01-01

    The NASA Langley Research Center has transformed a Cirrus Design SR22 general aviation (GA) aircraft into an Unmanned Aerial Systems (UAS) Surrogate research aircraft which has served for several years as a platform for unmanned systems research and development. The aircraft is manned with a Safety Pilot and a Research Systems Operator (RSO) that allows for flight operations almost any-where in the national airspace system (NAS) without the need for a Federal Aviation Administration (FAA) Certificate of Authorization (COA). The UAS Surrogate can be remotely controlled from a modular, transportable ground control station (GCS) like a true UAS. Ground control of the aircraft is accomplished by the use of data links that allow the two-way passage of the required data to control the aircraft and provide the GCS with situational awareness. The original UAS Surrogate data-link system was composed of redundant very high frequency (VHF) data radio modems with a maximum range of approximately 40 nautical miles. A new requirement was developed to extend this range beyond visual range (BVR). This new requirement led to the development of a satellite communications system that provided the means to command and control the UAS Surrogate at ranges beyond the limits of the VHF data links. The system makes use of the Globalstar low earth orbit (LEO) satellite communications system. This paper will provide details of the development, implementation, and flight testing of the satellite data communications system on the UAS Surrogate research aircraft.

  10. 1985 Lindbergh lecture. Some personal perspectives on aviation progress.

    Science.gov (United States)

    Engen, D D

    1986-05-01

    Aviation has opened new opportunities for both individual achievement and public service during the past 80 years. The author discusses his experiences during the second half of the modern era of powered flight, including combat activities during World War II, work as a test pilot developing flying techniques for the first jets, challenging the world altitude record, and assessing the performance capacities of different aircraft. The lecture devotes special attention to aerobatic flying, especially the properties of the spin. The author relates these personal experiences to the responsibilities of guiding modern aviation to improved public service in the coming years.

  11. 14 CFR 91.25 - Aviation Safety Reporting Program: Prohibition against use of reports for enforcement purposes.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aviation Safety Reporting Program... AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES General § 91.25 Aviation Safety Reporting Program: Prohibition against...

  12. Federal Aviation Administration Curriculum Guide for Aviation Magnet Schools Programs.

    Science.gov (United States)

    Strickler, Mervin K., Jr.

    The Federal Aviation Administration (FAA) and its predecessor organizations, Civil Aeronautics Agency (CAA) and the Civil Aeronautics Administration (CAA) have pioneered the use of aviation education in working with schools and colleges of the nation to attain their objectives. This publication includes: a brief history of the role of aviation in…

  13. Safety Study in Aviation

    OpenAIRE

    2016-01-01

    The objective of this article is to provide a brief look at safety studies, which are a necessary part of every change of system or a new system in aviation. The main focus is put on the area of air traffic management, because it affects most of the aviation stakeholders. The article begins with a description of safety and safety assessment of changes in systems. Then it discusses analysis of processes, hazard identification and risk assessment. Main part focuses on Safety studies and briefly...

  14. Safety Study in Aviation

    Directory of Open Access Journals (Sweden)

    Marek Štumper

    2016-07-01

    Full Text Available The objective of this article is to provide a brief look at safety studies, which are a necessary part of every change of system or a new system in aviation. The main focus is put on the area of air traffic management, because it affects most of the aviation stakeholders. The article begins with a description of safety and safety assessment of changes in systems. Then it discusses analysis of processes, hazard identification and risk assessment. Main part focuses on Safety studies and briefly describes the elements of the study. At the end, possible ways of safety study evaluation are mentioned.

  15. Airport Careers. Aviation Careers Series. Revised.

    Science.gov (United States)

    Zaharevitz, Walter

    This booklet, one in a series on aviation careers, outlines the variety of careers available in airports. The first part of the booklet provides general information about careers at airports, while the main part of the booklet outlines the following nine job categories: airport director, assistant airport director, engineers, support personnel,…

  16. Airline Careers. Aviation Careers Series. Revised.

    Science.gov (United States)

    Zaharevitz, Walter

    This booklet, one in a series on aviation careers, outlines the variety of careers available in airlines. The first part of the booklet provides general information about careers in the airline industry, including salaries, working conditions, job requirements, and projected job opportunities. In the main part of the booklet, the following 22 job…

  17. Age and expertise effects in aviation decision making and flight control in a flight simulator.

    Science.gov (United States)

    Kennedy, Quinn; Taylor, Joy L; Reade, Gordon; Yesavage, Jerome A

    2010-05-01

    Age (due to declines in cognitive abilities necessary for navigation) and level of aviation expertise are two factors that may affect aviation performance and decision making under adverse weather conditions. We examined the roles of age, expertise, and their relationship on aviation decision making and flight control performance during a flight simulator task. Seventy-two IFR-rated general aviators, aged 19-79 yr, made multiple approach, holding pattern entry, and landing decisions while navigating under Instrument Flight Rules weather conditions. Over three trials in which the fog level varied, subjects decided whether or not to land the aircraft. They also completed two holding pattern entries. Subjects' flight control during approaches and holding patterns was measured. Older pilots (41+ yr) were more likely than younger pilots to land when visibility was inadequate (older pilots' mean false alarm rate: 0.44 vs 0.25). They also showed less precise flight control for components of the approach, performing 0.16 SD below mean approach scores. Expertise attenuated an age-related decline in flight control during holding patterns: older IFR/CFI performed 0.73 SD below mean score; younger IFR/CFI, younger CFII/ATP, older CFII/ATP: 0.32, 0.26, 0.03 SD above mean score. Additionally, pilots with faster processing speed (by median split) had a higher mean landing decision false alarm rate (0.42 vs 0.28), yet performed 0.14 SD above the mean approach control score. Results have implications regarding specialized training for older pilots and for understanding processes involved in older adults' real world decision making and performance.

  18. Perspectives for Sustainable Aviation Biofuels in Brazil

    Directory of Open Access Journals (Sweden)

    Luís A. B. Cortez

    2015-01-01

    Full Text Available The aviation industry has set ambitious goals to reduce carbon emissions in coming decades. The strategy involves the use of sustainable biofuels, aiming to achieve benefits from environmental, social, and economic perspectives. In this context, Brazilian conditions are favorable, with a mature agroindustry that regularly produces automotive biofuel largely adopted by Brazilian road vehicles, while air transportation has been growing at an accelerating pace and a modern aircraft industry is in place. This paper presents the main conclusions and recommendations from a broad assessment of the technological, economic, and sustainability challenges and opportunities associated with the development of drop-in aviation biofuels in Brazil. It was written by a research team that prepared the initial reports and conducted eight workshops with the active participation of more than 30 stakeholders encompassing the private sector, government institutions, NGOs, and academia. The main outcome was a set of guidelines for establishing a new biofuels industry, including recommendations for (a filling the identified research and development knowledge gaps in the production of sustainable feedstock; (b overcoming the barriers in conversion technology, including scaling-up issues; (c promoting greater involvement and interaction between private and government stakeholders; and (d creating a national strategy to promote the development of aviation biofuels.

  19. The Demand for Single Engine Piston Aircraft,

    Science.gov (United States)

    1987-08-01

    composites more quickly because of the absence of certi- ficatjcr: requirements. Less conventional configurations such as carar( wings and winglets are...smooth contours and surfaces. Composites offer much promise and are already in use in winos of a number of aircraft. Winglets reduce vortex drag by...Vore Aviation Corporation in Albuquerque, NM. It is a high-wing, composite , tricycle-gear aircraft designed primarily for the training and personal

  20. Adapting existing training standards for unmanned aircraft: finding ways to train staff for unmanned aircraft operations

    CSIR Research Space (South Africa)

    Burger, CR

    2011-09-01

    Full Text Available are governed by the Civil Aviation Authority (CAA) under the terms of an interim policy1. This policy?s paragraph 4.3 describes the process for obtaining a Certificate of Waiver or Authorisation. There is also provision for the issuance of an airworthiness... experience as Designated Flight Examiner for the South African Civil Aviation Authority, and on his three- year project to analyse the strategic development of required technologies to facilitate unmanned aircraft operations in civil airspace. II...

  1. A psychologist's view of validating aviation systems

    Science.gov (United States)

    Stein, Earl S.; Wagner, Dan

    1994-01-01

    and the tremendous build-up of aviation during the war, there were still aircraft designs that were man killers (no sexism implied since all combat pilots were men). One classic design error that was identified fifty years ago was the multipointer altimeter, which could easily be misread especially by a pilot under considerable task load. It has led to flying fully operational aircraft into the terrain. The authors of the research which formally identified this problem put 'Human Errors' in quotes to express their dissatisfaction with the traditional approach to accident investigation. It traditionally places the burden of guilt on the operator. Some of these altimeters still exist in older aircraft to this day.

  2. Global Simulation of Aviation Operations

    Science.gov (United States)

    Sridhar, Banavar; Sheth, Kapil; Ng, Hok Kwan; Morando, Alex; Li, Jinhua

    2016-01-01

    The simulation and analysis of global air traffic is limited due to a lack of simulation tools and the difficulty in accessing data sources. This paper provides a global simulation of aviation operations combining flight plans and real air traffic data with historical commercial city-pair aircraft type and schedule data and global atmospheric data. The resulting capability extends the simulation and optimization functions of NASA's Future Air Traffic Management Concept Evaluation Tool (FACET) to global scale. This new capability is used to present results on the evolution of global air traffic patterns from a concentration of traffic inside US, Europe and across the Atlantic Ocean to a more diverse traffic pattern across the globe with accelerated growth in Asia, Australia, Africa and South America. The simulation analyzes seasonal variation in the long-haul wind-optimal traffic patterns in six major regions of the world and provides potential time-savings of wind-optimal routes compared with either great circle routes or current flight-plans if available.

  3. 78 FR 23329 - Aircraft Access to SWIM Working Group Meeting

    Science.gov (United States)

    2013-04-18

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Aircraft Access to SWIM Working Group Meeting Meeting Announcement... attend and participate in an Aircraft Access to SWIM Working Group Meeting scheduled for Thursday, May...

  4. 77 FR 57534 - Airworthiness Directives; Piper Aircraft, Inc. Airplanes

    Science.gov (United States)

    2012-09-18

    ... TRANSPORTATION Federal Aviation Administration 14 CFR Part 39 RIN 2120-AA64 Airworthiness Directives; Piper... all Piper Aircraft, Inc. Models PA-31, PA-31-325, and PA-31-350 airplanes. The existing AD currently... identified in this proposed AD, contact Piper Aircraft, Inc., 2926 Piper Drive, Vero Beach, Florida...

  5. How Effective Is Communication Training For Aircraft Crews

    Science.gov (United States)

    Linde, Charlotte; Goguen, Joseph; Devenish, Linda

    1992-01-01

    Report surveys communication training for aircraft crews. Intended to alleviate problems caused or worsened by poor communication and coordination among crewmembers. Focuses on two training methods: assertiveness training and grid-management training. Examines theoretical background of methods and attempts made to validate their effectiveness. Presents criteria for evaluating applicability to aviation environment. Concludes communication training appropriate for aircraft crews.

  6. 14 CFR 135.419 - Approved aircraft inspection program.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Approved aircraft inspection program. 135.419 Section 135.419 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Maintenance, Preventive Maintenance, and Alterations § 135.419 Approved aircraft inspection program....

  7. 77 FR 22187 - Technical Amendment; Airworthiness Standards-Aircraft Engines

    Science.gov (United States)

    2012-04-13

    .... SUMMARY: This amendment corrects a number of errors in the airworthiness standards for aircraft engine...: AIRCRAFT ENGINES 0 1. The authority citation for part 33 continues to read as follows: Authority: 49 U.S.C... Federal Aviation Administration 14 CFR Part 33 Technical Amendment; Airworthiness...

  8. 77 FR 50054 - Airworthiness Directives; Cessna Aircraft Company Airplanes

    Science.gov (United States)

    2012-08-20

    ... Directives; Cessna Aircraft Company Airplanes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... certain Cessna Aircraft Company Models 172R and 172S airplanes. This proposed AD was prompted by reports... tube assembly and the airplane structure; and adjustment as necessary. We are proposing this AD...

  9. Volcanic Ash -Aircraft Encounter Damages: in Volcanological Point of View

    Science.gov (United States)

    Aydar, Erkan; Aladaǧ, Çaǧdaş Hakan; Menteş, Turhan

    2017-04-01

    The jet era or age began at 1930 and 40's in aviation sector, with the production of first jet engine for the aircrafts. Since 1950's, the commercial aviation with regular flights were established. Civil aviation and air-transport drastically increased due to intensive demand, and declared at least 10 fold since 1970 by IATA report. Parallelly to technological and economical developpement, the commercial jets became more comfortable, secure and rapid, bringing the world smaller, the countries closer. On the other hand, according to Global Volcanism Program Catalogues of Smithsonian Institute, about 1,500 volcanoes have erupted in the Holocene, 550 of them have had historical eruptions and considered as active. Besides an average of 55-60 volcanoes erupt each year, and about 8-10 of these eruptions produce ash clouds that reach aircraft flight altitudes (Salinas and Watt, 2004). Volcanic ash can be expected to be in air routes at altitudes greater than 9 km (30,000 ft) for roughly 20 days per year worldwide (Miller &Casadeval, 2000). A precious compilation of incidents due to encounters of aircrafts with volcanic ash clouds covering the years between 1953 and 2009 was used in this work (Guffanti et al., 2010-USGS Report) with an additional information on Eyfjallajökull-2010 eruption. According to this compilation,129 incidents happened within the concerned time interval. The damages, in general, fall in second and third class of Severity index, indicating the damages are limited on airframe of the planes, or some abrasions in jet engine, windblast etc.. We focused on fourth class of severity index involving the damages on jet engine of aircraft (engine fail) due to ingestion of volcanic ash and investigate eruption style and caused damage relationships. During the eruptive sequences of Mts Saint Helen (USA), Galunggung (Indonesia, 2 incidents), Redoubt (USA), Pinatubo (Philipinnes), Unzen (Japan), Manam (Papua New Guinea), Soufriere Hills (Lesser Antilles), Chaiten

  10. Politics of aviation fields

    Science.gov (United States)

    Vivent, Jacques

    1922-01-01

    In short, the "politics of aviation" lies in a few propositions: the need of having as large a number of fields as possible and of sufficient area; the utilization of the larger part of the existing military fields; the selection of uncultivated or unproductive fields, whenever technical conditions permit; ability to disregard (save in exceptional cases) objections of an agricultural nature.

  11. Aviation Forecasting in ICAO

    Science.gov (United States)

    Mcmahon, J.

    1972-01-01

    Opinions or plans of qualified experts in the field are used for forecasting future requirements for air navigational facilities and services of international civil aviation. ICAO periodically collects information from Stators and operates on anticipated future operations, consolidates this information, and forecasts the future level of activity at different airports.

  12. Probabilistic model, analysis and computer code for take-off and landing related aircraft crashes into a structure

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, R.

    1996-02-06

    A methodology is presented that allows the calculation of the probability that any of a particular collection of structures will be hit by an aircraft in a take-off or landing related accident during a specified window of time with a velocity exceeding a given critical value. A probabilistic model is developed that incorporates the location of each structure relative to airport runways in the vicinity; the size of the structure; the sizes, types, and frequency of use of commercial, military, and general aviation aircraft which take-off and land at these runways; the relative frequency of take-off and landing related accidents by aircraft type; the stochastic properties of off-runway crashes, namely impact location, impact angle, impact velocity, and the heading, deceleration, and skid distance after impact; and the stochastic properties of runway overruns and runoffs, namely the position at which the aircraft exits the runway, its exit velocity, and the heading and deceleration after exiting. Relevant probability distributions are fitted from extensive commercial, military, and general aviation accident report data bases. The computer source code for implementation of the calculation is provided.

  13. Concept to Reality: Contributions of the Langley Research Center to US Civil Aircraft of the 1990s

    Science.gov (United States)

    Chambers, Joseph R.

    2003-01-01

    This document is intended to be a companion to NASA SP-2000-4519, 'Partners in Freedom: Contributions of the Langley Research Center to U.S. Military Aircraft of the 1990s'. Material included in the combined set of volumes provides informative and significant examples of the impact of Langley's research on U.S. civil and military aircraft of the 1990s. This volume, 'Concept to Reality: Contributions of the NASA Langley Research Center to U.S. Civil Aircraft of the 1990s', highlights significant Langley contributions to safety, cruise performance, takeoff and landing capabilities, structural integrity, crashworthiness, flight deck technologies, pilot-vehicle interfaces, flight characteristics, stall and spin behavior, computational design methods, and other challenging technical areas for civil aviation. The contents of this volume include descriptions of some of the more important applications of Langley research to current civil fixed-wing aircraft (rotary-wing aircraft are not included), including commercial airliners, business aircraft, and small personal-owner aircraft. In addition to discussions of specific aircraft applications, the document also covers contributions of Langley research to the operation of civil aircraft, which includes operating problems. This document is organized according to disciplinary technologies, for example, aerodynamics, structures, materials, and flight systems. Within each discussion, examples are cited where industry applied Langley technologies to specific aircraft that were in operational service during the 1990s and the early years of the new millennium. This document is intended to serve as a key reference for national policy makers, internal NASA policy makers, Congressional committees, the media, and the general public. Therefore, it has been written for a broad general audience and does not presume any significant technical expertise. An extensive bibliography is provided for technical specialists and others who desire a

  14. Aircraft landing using GPS

    Science.gov (United States)

    Lawrence, David Gary

    The advent of the Global Positioning System (GPS) is revolutionizing the field of navigation. Commercial aviation has been particularly influenced by this worldwide navigation system. From ground vehicle guidance to aircraft landing applications, GPS has the potential to impact many areas of aviation. GPS is already being used for non-precision approach guidance; current research focuses on its application to more critical regimes of flight. To this end, the following contributions were made: (1) Development of algorithms and a flexible software architecture capable of providing real-time position solutions accurate to the centimeter level with high integrity. This architecture was used to demonstrate 110 automatic landings of a Boeing 737. (2) Assessment of the navigation performance provided by two GPS-based landing systems developed at Stanford, the Integrity Beacon Landing System, and the Wide Area Augmentation System. (3) Preliminary evaluation of proposed enhancements to traditional techniques for GPS positioning, specifically, dual antenna positioning and pseudolite augmentation. (4) Introduction of a new concept for positioning using airport pseudolites. The results of this research are promising, showing that GPS-based systems can potentially meet even the stringent requirements of a Category III (zero visibility) landing system. Although technical and logistical hurdles still exist, it is likely that GPS will soon provide aircraft guidance in all phases of flight, including automatic landing, roll-out, and taxi.

  15. Frequency Analysis of Aircraft hazards for License Application

    Energy Technology Data Exchange (ETDEWEB)

    K. Ashley

    2006-10-24

    The preclosure safety analysis for the monitored geologic repository at Yucca Mountain must consider the hazard that aircraft may pose to surface structures. Relevant surface structures are located beneath the restricted airspace of the Nevada Test Site (NTS) on the eastern slope of Yucca Mountain, near the North Portal of the Exploratory Studies Facility Tunnel (Figure 1). The North Portal is located several miles from the Nevada Test and Training Range (NTTR), which is used extensively by the U.S. Air Force (USAF) for training and test flights (Figure 1). The NTS airspace, which is controlled by the U.S. Department of Energy (DOE) for NTS activities, is not part of the NTTR. Agreements with the DOE allow USAF aircraft specific use of the airspace above the NTS (Reference 2.1.1 [DIRS 103472], Section 3.1.1 and Appendix A, Section 2.1; and Reference 2.1.2 [DIRS 157987], Sections 1.26 through 1.29). Commercial, military, and general aviation aircraft fly within several miles to the southwest of the repository site in the Beatty Corridor, which is a broad air corridor that runs approximately parallel to U.S. Highway 95 and the Nevada-California border (Figure 2). These aircraft and other aircraft operations are identified and described in ''Identification of Aircraft Hazards'' (Reference 2.1.3, Sections 6 and 8). The purpose of this analysis is to estimate crash frequencies for aircraft hazards identified for detailed analysis in ''Identification of Aircraft Hazards'' (Reference 2.1.3, Section 8). Reference 2.1.3, Section 8, also identifies a potential hazard associated with electronic jamming, which will be addressed in this analysis. This analysis will address only the repository and not the transportation routes to the site. The analysis is intended to provide the basis for: (1) Categorizing event sequences related to aircraft hazards; (2) Identifying design or operational requirements related to aircraft hazards.

  16. 78 FR 3356 - Airworthiness Directives; Various Aircraft Equipped With Wing Lift Struts

    Science.gov (United States)

    2013-01-16

    ... Directives; Various Aircraft Equipped With Wing Lift Struts AGENCY: Federal Aviation Administration (FAA... airworthiness directive (AD) that applies to certain aircraft equipped with wing lift struts. The existing AD... Joint Aircraft System Component (JASC)/Air Transport Association (ATA) of America Code 57, Wings....

  17. 77 FR 38463 - Issuance of Special Airworthiness Certificates for Light-Sport Category Aircraft

    Science.gov (United States)

    2012-06-28

    ...-Sport Category Aircraft AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of policy; request for comments. SUMMARY: Based upon its assessment of the special light-sport aircraft (SLSA... Operation of Light-Sport Aircraft, was published in the Federal Register (69 FR 44772). The rule...

  18. 14 CFR 135.443 - Airworthiness release or aircraft maintenance log entry.

    Science.gov (United States)

    2010-01-01

    ... maintenance log entry. 135.443 Section 135.443 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... release or aircraft maintenance log entry. (a) No certificate holder may operate an aircraft after... (2) An appropriate entry in the aircraft maintenance log. (b) The airworthiness release or log...

  19. 75 FR 82329 - Airworthiness Directives; Piper Aircraft, Inc. (Type Certificate Previously Held by The New Piper...

    Science.gov (United States)

    2010-12-30

    ... Federal Aviation Administration 14 CFR Part 39 RIN 2120-AA64 Airworthiness Directives; Piper Aircraft, Inc. (Type Certificate Previously Held by The New Piper Aircraft, Inc.) Models PA-46-310P, PA- 46-350P, and... certain Piper Aircraft, Inc. Models PA-46-310P and PA-46-350P airplanes that are equipped with a Lewis...

  20. 76 FR 72128 - Airworthiness Directives; Thielert Aircraft Engines GmbH (TAE) Reciprocating Engines

    Science.gov (United States)

    2011-11-22

    ... Directives; Thielert Aircraft Engines GmbH (TAE) Reciprocating Engines AGENCY: Federal Aviation... engines installed on, but not limited to, Diamond Aircraft Industries Model DA 42 airplanes. The existing... prevent engine in- flight shutdown, possibly resulting in reduced control of the aircraft. DATES: We...

  1. 77 FR 14316 - Airworthiness Directives; Piper Aircraft, Inc. (Type Certificate Previously Held by The New Piper...

    Science.gov (United States)

    2012-03-09

    .... (Type Certificate Previously Held by The New Piper Aircraft Inc.) Airplanes AGENCY: Federal Aviation... previously held by The New Piper Aircraft Inc.) Models PA-31T and PA- 31T1 airplanes. The existing AD... the Federal Register for certain Piper Aircraft, Inc. (type certificate previously held by The...

  2. Suppression of chlorine activation on aviation-produced volatile particles

    Directory of Open Access Journals (Sweden)

    S. K. Meilinger

    2002-07-01

    Full Text Available We examine the effect of nm-sized aircraft-induced aqueous sulfuric acid (H2SO4/H2O particles on atmospheric ozone as a function of temperature. Our calculations are based on a previously derived parameterization for the regional-scale perturbations of the sulfate surface area density due to air traffic in the North Atlantic Flight Corridor (NAFC and a chemical box model. We confirm large scale model results that at temperatures T > 210 K additional ozone loss -- mainly caused by hydrolysis of BrONO2 and N2O5 -- scales in proportion with the aviation-produced increase of the background aerosol surface area. However, at lower temperatures (< 210 K we isolate two effects which efficiently reduce the aircraft-induced perturbation: (1 background particles growth due to H2O and HNO3 uptake enhance scavenging losses of aviation-produced liquid particles and (2 the Kelvin effect efficiently limits chlorine activation on the small aircraft-induced droplets by reducing the solubility of chemically reacting species. These two effects lead to a substantial reduction of heterogeneous chemistry on aircraft-induced volatile aerosols under cold conditions. In contrast we find contrail ice particles to be potentially important for heterogeneous chlorine activation and ozone depletion. These features have not been taken into consideration in previous global studies of the atmospheric impact of aviation. Therefore, to parameterize them in global chemistry and transport models, we propose the following parameterisation: scale the hydrolysis reactions by the aircraft-induced surface area increase, and neglect heterogeneous chlorine reactions on liquid plume particles but not on ice contrails and aircraft induced ice clouds.

  3. Guidelines for Federal Aviation Administration Regional Aviation Education Coordinators and Aviation Education Facilitators.

    Science.gov (United States)

    Strickler, Mervin K., Jr.

    This publication is designed to provide both policy guidance and examples of how to work with various constituencies in planning and carrying out appropriate Federal Aviation Administration (FAA) aviation education activities. Information is provided on the history of aerospace/aviation education, FAA educational materials, aerospace/aviation…

  4. Synthetic and Biomass Alternate Fueling in Aviation

    Science.gov (United States)

    Hendricks, R. C.; Bushnell, D. M.

    2009-01-01

    While transportation fueling can accommodate a broad range of alternate fuels, aviation fueling needs are specific, such as the fuel not freezing at altitude or become too viscous to flow properly or of low bulk energy density that shortens range. The fuel must also be compatible with legacy aircraft, some of which are more than 50 years old. Worldwide, the aviation industry alone uses some 85-95 billion gallons of hydrocarbon-based fossil fuel each year, which is about 10% of the transportation industry. US civil aviation alone consumes nearly 14 billion gallons. The enormity of the problem becomes overwhelming, and the aviation industry is taking alternate fueling issues very seriously. Biofuels (algae, cyanobacteria, halophytes, weeds that use wastelands, wastewater and seatwater), when properly sourced, have the capacity to be drop-in fuel replacements for petroleum fuels. As such, biojet from such sources solves the aviation CO2 emissions issue without the downsides of 'conventional' biofuels, such as competing with food and fresh water resources. Of the many current fundamental problems, the major biofuel problem is cost. Both research and development and creative engineering are required to reduce these biofuels costs. Research is also ongoing in several 'improvement' areas including refining/processing and biologics with greater disease resistance, greater bio-oil productivity, reduced water/nutrient requirements, etc. The authors' current research is aimed at aiding industry efforts in several areas. They are considering different modeling approaches, growth media and refining approaches, different biologic feedstocks, methods of sequestering carbon in the processes, fuel certification for aviation use and, overall, ensuring that biofuels are feasible from all aspects - operability, capacity, carbon cycle and financial. The authors are also providing common discussion grounds/opportunities for the various parties, disciplines and concerned organization to

  5. Aviation medicine and the Army.

    Science.gov (United States)

    Vyrnwy-Jones, P; Thornton, R

    1984-10-01

    The purpose of this short series of articles is not to present the reader with a vast amount of technical data, soon to be forgotten, but to provide some items of general interest from the past, present, and future of Army aviation. Obviously there will be a concentration on medical matters, but the aim is to give the reader a feel for the rapid progress being made in helicopter design and the likely problems we may face in the future. The first article serves as an introduction to the series and three further articles will cover various aspects of the speciality. The second will be concerned with AAC helicopter accidents and will include accident investigation, crashworthiness and the contribution made by pilot error. The third article will cover major environmental problems of helicopters, particularly noise, vibration and thermal stress. The fourth article will examine ways in which microprocessors and modern technology will affect future helicopter and ancillary equipment development; for instance, a helicopter with no external windows has been suggested, 'The Iron Cockpit'. The fifth article will be concerned with the clinical aspects of Army Aviation medicine.

  6. Feasibility Study of Radiometry for Airborne Detection of Aviation Hazards

    Science.gov (United States)

    Gimmestad, Gary G.; Papanicolopoulos, Chris D.; Richards, Mark A.; Sherman, Donald L.; West, Leanne L.; Johnson, James W. (Technical Monitor)

    2001-01-01

    Radiometric sensors for aviation hazards have the potential for widespread and inexpensive deployment on aircraft. This report contains discussions of three aviation hazards - icing, turbulence, and volcanic ash - as well as candidate radiometric detection techniques for each hazard. Dual-polarization microwave radiometry is the only viable radiometric technique for detection of icing conditions, but more research will be required to assess its usefulness to the aviation community. Passive infrared techniques are being developed for detection of turbulence and volcanic ash by researchers in this country and also in Australia. Further investigation of the infrared airborne radiometric hazard detection approaches will also be required in order to develop reliable detection/discrimination techniques. This report includes a description of a commercial hyperspectral imager for investigating the infrared detection techniques for turbulence and volcanic ash.

  7. The engineering options for mitigating the climate impacts of aviation.

    Science.gov (United States)

    Williams, Victoria

    2007-12-15

    Aviation is a growing contributor to climate change, with unique impacts due to the altitude of emissions. If existing traffic growth rates continue, radical engineering solutions will be required to prevent aviation becoming one of the dominant contributors to climate change. This paper reviews the engineering options for mitigating the climate impacts of aviation using aircraft and airspace technologies. These options include not only improvements in fuel efficiency, which would reduce carbon dioxide (CO2) emissions, but also measures to reduce non-CO2 impacts including the formation of persistent contrails. Integrated solutions to optimize environmental performance will require changes to airframes, engines, avionics, air traffic control systems and airspace design. While market-based measures, such as offset schemes and emissions trading, receive growing attention, this paper sets out the crucial role of engineering in the challenge to develop a 'green air traffic system'.

  8. 40 CFR 87.6 - Aircraft safety.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Aircraft safety. 87.6 Section 87.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES General Provisions § 87.6 Aircraft safety. The provisions...

  9. Naval Aviation Vision

    Science.gov (United States)

    2012-01-01

    jungle strips, mountainous fire support bases, and desert airfields; and they have gone into combat in nearly every clime on the planet , from the...under similar environmental conditions, while fitting within the same shipboard footprint. The CH-53K also will provide lift capability under high...tomorrow: aircraft 60 E-6B Mercury Derived from Boeing’s 707 aircraft, the E-6B supports U.S. Strategic Command with command, control, and

  10. Soviet Frontal Aviation.

    Science.gov (United States)

    1980-06-01

    earth, the fighter aircraft’s manuever capabilities are limited, especially during group flight. The opportunity for ground visual orientation is...ircraft has not lost its significance, but rather it is used as a stco) in Iie evolucion to contemporary tactics. lThe 1e51 ’ of Lne Great Patriotic War...successfully, especially when they are supporting ground forces. In zones of weak air defense, the destruction of moving targets is best accomplished by aircraft

  11. Wind turbines and aviation interests - European experience and practice

    Energy Technology Data Exchange (ETDEWEB)

    Jago, P.; Taylor, N.

    2002-07-01

    The approach of other European countries to the effects of wind turbines on civil and military aviation has been studied in order to determine the applicability of these experiences to UK stakeholders. The background to the study is traced, and the restriction on the siting of turbines due to the hazards posed to aviation and defence interests, and the potential effects on radar for air traffic control, defence and low flying aircraft are examined. The planning and siting issues in different European countries, the planning system in the UK, and the safeguarding of aerodromes and military sites are discussed along with issues involved in low flying aircraft and search and rescue operations, and the marking and illumination of wind farms.

  12. Aviation effects on already-existing cirrus clouds

    Science.gov (United States)

    Tesche, Matthias; Achtert, Peggy; Glantz, Paul; Noone, Kevin J.

    2016-06-01

    Determining the effects of the formation of contrails within natural cirrus clouds has proven to be challenging. Quantifying any such effects is necessary if we are to properly account for the influence of aviation on climate. Here we quantify the effect of aircraft on the optical thickness of already-existing cirrus clouds by matching actual aircraft flight tracks to satellite lidar measurements. We show that there is a systematic, statistically significant increase in normalized cirrus cloud optical thickness inside mid-latitude flight tracks compared with adjacent areas immediately outside the tracks.

  13. Propulsion controlled aircraft research

    Science.gov (United States)

    Fullerton, C. Gordon

    1993-01-01

    The NASA Dryden Flight Research Facility has been conducting flight, ground simulator, and analytical studies to investigate the use of thrust modulation on multi-engine aircraft for emergency flight control. Two general methods of engine only control have been studied; manual manipulation of the throttles by the pilot, and augmented control where a computer commands thrust levels in response to pilot attitude inputs and aircraft motion feedbacks. This latter method is referred to as the Propulsion Controlled Aircraft (PCA) System. A wide variety of aircraft have been investigated. Simulation studies have included the B720, F-15, B727, B747 and MD-11. A look at manual control has been done in actual flight on the F15, T-38, B747, Lear 25, T-39, MD-11 and PA-30 Aircraft. The only inflight trial of the augmented (PCA) concept has been on an F15, the results of which will be presented below.

  14. An Integrated Framework for Fostering Human Factor Sustainability and Increased Safety in Aviation Ramp Operations

    OpenAIRE

    2015-01-01

    The aviation work environment has one of the highest accident rates of any industry sector in the United States, resulting in significant costs for both employee injuries and equipment damage. In fact, injury rates exceed rates found in areas that are widely recognized as hazardous, such as construction and mining, and it is estimated that aircraft ground damage costs are as high as 5 billion to 10 billion dollars per year. Purdue University’s Aviation Technology Department has conducted nume...

  15. FOG RISKS IN AVIATION. CASE STUDY: PLANE CRASH AT SMOLENSK (RUSSIA) ON 10.04.2010

    OpenAIRE

    2013-01-01

    Fog, irrespective of its forms, has a negative impact on all aviation activities. Fog severely diminishes visibility, sometimes to such an extent that landing may become impossible. Fog is a serious weather threat and hazard in aviation and may produce deadly events. One such unfortunate event took place at Smolensk (Russia), on 10.04.2010, when the presidential aircraft, which was transporting Poland’s President, together with an official delegation, to commemorate 70 years from the Katyn ma...

  16. Classification of Air Force Aviation Accidents: Mishap trends and Prevention

    Science.gov (United States)

    2006-06-02

    proactive are Flight Operational Quality Assurance (FOQA) and Line Operational Safety Audits ( LOSA ). These two safety initiatives collect data during...2004). LOSA , is similar to an annual flight physical, periodically using expert observers to collect data on flight crew performance as the pilots...interact with the aircraft, the operational environment, and each other (Federal Aviation Administration [FAA], 2006). LOSA is not a check-ride, only an

  17. Effectiveness of Condition-Based Maintenance in Army Aviation

    Science.gov (United States)

    2009-06-12

    quickly moved ahead with applying these new technologies to maintenance programs. Aviation maintainers started utilizing magnetic flux, ultrasound ...was mission abort rate. A mission abort occurs when an operational aircraft assigned to perform a mission, becomes unable to perform its assigned...a failure occur during mission execution. A study from AMRDEC in January 2009 referenced the mean time between maintenance abort for a handful of

  18. Considerations Regarding Development of Alternative Propulsion in Aviation

    Directory of Open Access Journals (Sweden)

    Sanja Steiner

    2012-10-01

    Full Text Available Ecological indications and the depletion of fossil fuel resourcesare the main reasons for current studies of alternativepropulsion in aviation i.e. for searching for new regenerativeenergy sources. The technical and technological presumptionsfor the transfer from the conventional to alternative fuel aremore radical than the transition from piston to jet propulsion.The main problems include the production of liquefied hydrogen,the necessary aircraft structure modifications, and the requiredinfrastntcture supporl.

  19. 14 CFR 91.117 - Aircraft speed.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aircraft speed. 91.117 Section 91.117... AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules General § 91.117 Aircraft speed. (a) Unless otherwise authorized by the Administrator, no person may operate an aircraft below 10...

  20. Fatal aviation accidents in Lower Saxony from 1979 to 1996.

    Science.gov (United States)

    Ast, F W; Kernbach-Wighton, G; Kampmann, H; Koops, E; Püschel, K; Tröger, H D; Kleemann, W J

    2001-06-01

    So far no national or regional studies have been published in Germany regarding the number of fatal aviation accidents and results of autopsy findings. Therefore, we evaluated all fatal aviation accidents occurring in Lower Saxony from 1979 to 1996. A total of 96 aviation accidents occurred in this period involving 73 aeroplanes. The crashes resulted in the death of 154 people ranging in age from 19 to 68 years. The greatest number of victims in a single crash of an aircraft was (n=7). Other types of fatal accidents were crashes of aircraft and helicopter while on the ground (n=5), hot-air balloons (n=2), parachutes (n=10), hang glider accidents (n=5) and the striking of a bystander by a model airplane. Autopsies were performed on 68 of the 154 victims (44.2%), including 39 of the 73 pilots (53.4%). Some of the autopsies yielded findings relevant to the cause of the accident: gunshot wounds, the presence of alcohol or drugs in blood and preexisting diseases. Our findings emphasize the need for autopsy on all aviation accident victims, especially pilots, as this is the only reliable method to uncover all factors contributing to an accident.

  1. Airborne volcanic ash; a global threat to aviation

    Science.gov (United States)

    Neal, Christina A.; Guffanti, Marianne C.

    2010-01-01

    The world's busy air traffic corridors pass over or downwind of hundreds of volcanoes capable of hazardous explosive eruptions. The risk to aviation from volcanic activity is significant - in the United States alone, aircraft carry about 300,000 passengers and hundreds of millions of dollars of cargo near active volcanoes each day. Costly disruption of flight operations in Europe and North America in 2010 in the wake of a moderate-size eruption in Iceland clearly demonstrates how eruptions can have global impacts on the aviation industry. Airborne volcanic ash can be a serious hazard to aviation even hundreds of miles from an eruption. Encounters with high-concentration ash clouds can diminish visibility, damage flight control systems, and cause jet engines to fail. Encounters with low-concentration clouds of volcanic ash and aerosols can accelerate wear on engine and aircraft components, resulting in premature replacement. The U.S. Geological Survey (USGS), in cooperation with national and international partners, is playing a leading role in the international effort to reduce the risk posed to aircraft by volcanic eruptions.

  2. Economic impact and effectiveness of radiation protection measures in aviation during a ground level enhancement

    Directory of Open Access Journals (Sweden)

    Matthiä Daniel

    2015-01-01

    Full Text Available In addition to the omnipresent irradiation from galactic cosmic rays (GCR and their secondary products, passengers and aircraft crew may be exposed to radiation from solar cosmic rays during ground level enhancements (GLE. In general, lowering the flight altitude and changing the flight route to lower latitudes are procedures applicable to immediately reduce the radiation exposure at aviation altitudes. In practice, however, taking such action necessarily leads to modifications in the flight plan and the consequential, additional fuel consumption constrains the mitigating measures. In this work we investigate in a case study of the ground level event of December 13th 2006 how potential mitigation procedures affect the total radiation exposure during a transatlantic flight from Seattle to Cologne taking into account constraints concerning fuel consumption and range.

  3. New Generation Meteorological Satellite Imager Aviation Decision Support Applications for Detection of Convection, Turbulence, and Volcanic Ash

    Science.gov (United States)

    Feltz, Wayne

    2016-04-01

    A suite of aviation related decision support products have been in development to meet GOES-R science requirements since 2008 and are being evaluated to assess meteorological hazards to aircraft in flight derived from the current generation of European Spinning Enhanced Visible and Infrared Imager (SEVIRI) imager data. This presentation will focus on GOES-R Advanced Baseline Imager (ABI) measurement requirements relating to satellite-based aviation convective, turbulence, and volcanic ash/SO2 products that can be applied globally on next generation geostationary imagers including the Japanese Himawari, South Korean COMS (AMI), and European Metop-SG imagers. These new methodologies have relevance on current generation GOES and SEVIRI imagers, and overview will include discussion on how product utility has been improved through satellite GOES-R/JPSS Proving Ground NOAA testbed activities. Satellite-based decision support for aviation context toward improvement of future air transportation route planning and warning for the general public with emphasis on successfully bridging research to operations will also be discussed with anticipated October 2016 launch of GOES-R.

  4. Self-Directed Violence Aboard U.S. Navy Aircraft Carriers: An Examination of General and Shipboard-Specific Risk and Protective Factors.

    Science.gov (United States)

    Saitzyk, Arlene; Vorm, Eric

    2016-04-01

    Self-directed violence (SDV), which includes suicidal ideation with and without intent, suicidal preparatory behaviors and attempts with and without harm, non-suicidal self-directed violence, and completed suicide, has been a rising concern in the military. Military shipboard personnel may represent a unique subset of this population due to the distinct nature of deployment stressors and embedded supports. As such, one might expect differences in the prevalence of SDV between this group and other active duty personnel, signifying a distinct operational impact. This study analyzed the prevalence of SDV among personnel assigned or deployed to U.S. Navy aircraft carriers, and examined whether occurrences varied by descriptors commonly identified in the literature (e.g., age, gender, marital status, pay grade/rank). This study also examined characteristics specific to life aboard a U.S. Navy aircraft carrier in order to better understand the issues particular to this population. Descriptive analyses and relative risk findings suggested similarities in demographic risk factors to the general military population, but also striking differences related to occupational specialty and assigned department. This study is the first to shed light on risk and protective factors relevant to shipboard personnel.

  5. SUSTAINABLE GROWTH OF THE COMMERCIAL AVIATION INDUSTRY IN MALAYSIA USING A SYSTEM DYNAMICS APPROACH

    Directory of Open Access Journals (Sweden)

    B. S. TAN

    2015-09-01

    Full Text Available The environmental impact of the commercial aviation industry for an emerging economy like Malaysia is under-studied. The focus on the subject has thus far concentrated either on non geographical performance of the aviation industry or technical performance of aircrafts and that leaves the sustainability of the commercial aviation industry for an economy, or more specifically, an emerging economy least understood. Hence, this paper aims to investigate the sustainability of the growth of the commercial aviation industry in Malaysia and its impact upon the environment using a system dynamics approach. VENSIM is employed to model the commercial aviation industry in Malaysia as a dynamic system to evaluate the CO2 emitted from each component within the industry in order to forecast its overall CO2 emission. Results from the analysis show that sustainable growth can be affected by adopting short and long term strategies identified in this study.

  6. GEMACS (General EM Model for the Analysis of Computer Systems) Frequency-Domain Analysis to Determine the Lightning Induced Electromagnetic Skin Current Distributions on an Aircraft.

    Science.gov (United States)

    1986-12-01

    Static Electricity. Paper No 17: 1-9. Fort Worth TX, June 21- 23, 1983. 40. Rustan, P.L. and J. Moreau . "Aircraft Lightning Attach- ment at Low Altitudes...John F. and Gustave L. Weinstock. Aircraft Related Lightning Mechanisms: Technical Report. Contract F33615-71-C-1581. McDonnell Aircraft Company, St

  7. Trends in the Development of China’s Aviation Industry

    OpenAIRE

    2010-01-01

    The Chinese leadership has identified the aviation industry as a strategic priority. This policy brief assesses progress in China’s aviation industry, with a focus on 2009–2010. A review of major developments in China’s civilian and military aircraft programs reveals a trend in China’s approach to advancing its aviation industry: dependence on foreign partnerships alongside investment in indigenous research and development. It remains to be seen if this hybrid techno-globalist and tec...

  8. Determination of phenolic antioxidants in aviation jet fuel.

    Science.gov (United States)

    Bernabei, M; Bocchinfuso, G; Carrozzo, P; De Angelis, C

    2000-02-25

    The world-wide aviation jet fuel used for civil and military aircraft is of a kerosene type. To avoid peroxide production after the refinery process a specific antioxidant additive should be added on fuel. The antioxidants generally used are based on hindered phenols in a range of concentration 10-20 microg/ml. In the present work a specific method to measure the concentration of phenolic antioxidants is shown. The method is based on a liquid chromatographic technique with electrochemical detection. The technique, because of its selectivity, does not require sample pre-treatments. The analysis of a 5-10 ml fuel sample can be performed in less than 10 min with a sensitivity of 0.1 microg/ml and a RSD=2.5%. A comparison with another highly selective gas chromatographic technique with mass spectrometric detection with selected ion monitoring (GC-MS-SIM) is reported. The sensitivity of GC-MS-SIM method was 2 microg/ml with a RSD=3.1%.

  9. Petri net-based modelling of human-automation conflicts in aviation.

    Science.gov (United States)

    Pizziol, Sergio; Tessier, Catherine; Dehais, Frédéric

    2014-01-01

    Analyses of aviation safety reports reveal that human-machine conflicts induced by poor automation design are remarkable precursors of accidents. A review of different crew-automation conflicting scenarios shows that they have a common denominator: the autopilot behaviour interferes with the pilot's goal regarding the flight guidance via 'hidden' mode transitions. Considering both the human operator and the machine (i.e. the autopilot or the decision functions) as agents, we propose a Petri net model of those conflicting interactions, which allows them to be detected as deadlocks in the Petri net. In order to test our Petri net model, we designed an autoflight system that was formally analysed to detect conflicting situations. We identified three conflicting situations that were integrated in an experimental scenario in a flight simulator with 10 general aviation pilots. The results showed that the conflicts that we had a-priori identified as critical had impacted the pilots' performance. Indeed, the first conflict remained unnoticed by eight participants and led to a potential collision with another aircraft. The second conflict was detected by all the participants but three of them did not manage the situation correctly. The last conflict was also detected by all the participants but provoked typical automation surprise situation as only one declared that he had understood the autopilot behaviour. These behavioural results are discussed in terms of workload and number of fired 'hidden' transitions. Eventually, this study reveals that both formal and experimental approaches are complementary to identify and assess the criticality of human-automation conflicts. Practitioner Summary: We propose a Petri net model of human-automation conflicts. An experiment was conducted with general aviation pilots performing a scenario involving three conflicting situations to test the soundness of our formal approach. This study reveals that both formal and experimental approaches

  10. Tropospheric sampling with aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Daum, P.H.; Springston, S.R.

    1991-03-01

    Aircraft constitute a unique environment which places stringent requirements on the instruments used to measure the concentrations of atmospheric trace gases and aerosols. Some of these requirements such as minimization of size, weight, and power consumption are general; others are specific to individual techniques. This review presents the basic principles and considerations governing the deployment of trace gas and aerosol instrumentation on an aircraft. An overview of common instruments illustrates these points and provides guidelines for designing and using instruments on aircraft-based measurement programs.

  11. SOLAR AIRCRAFT DESIGN

    OpenAIRE

    RAHMATI, Sadegh; GHASED, Amir

    2015-01-01

    Abstract. Generally domain Aircraft uses conventional fuel. These fuel having limited life, high cost and pollutant. Also nowadays price of petrol and other fuels are going to be higher, because of scarcity of those fuels. So there is great demand of use of non-exhaustible unlimited source of energy like solar energy. Solar aircraft is one of the ways to utilize solar energy. Solar aircraft uses solar panel to collect the solar radiation for immediate use but it also store the remaining part ...

  12. Lightning hazards to aircraft

    Science.gov (United States)

    Corn, P. B.

    1978-01-01

    Lightning hazards and, more generally, aircraft static electricity are discussed by a representative for the Air Force Flight Dynamics Laboratory. An overview of these atmospheric electricity hazards to aircraft and their systems is presented with emphasis on electrical and electronic subsystems. The discussion includes reviewing some of the characteristics of lightning and static electrification, trends in weather and lightning-related mishaps, some specific threat mechanisms and susceptible aircraft subsystems and some of the present technology gaps. A roadmap (flow chart) is presented to show the direction needed to address these problems.

  13. Aviation System Analysis Capability Air Carrier Investment Model-Cargo

    Science.gov (United States)

    Johnson, Jesse; Santmire, Tara

    1999-01-01

    The purpose of the Aviation System Analysis Capability (ASAC) Air Cargo Investment Model-Cargo (ACIMC), is to examine the economic effects of technology investment on the air cargo market, particularly the market for new cargo aircraft. To do so, we have built an econometrically based model designed to operate like the ACIM. Two main drivers account for virtually all of the demand: the growth rate of the Gross Domestic Product (GDP) and changes in the fare yield (which is a proxy of the price charged or fare). These differences arise from a combination of the nature of air cargo demand and the peculiarities of the air cargo market. The net effect of these two factors are that sales of new cargo aircraft are much less sensitive to either increases in GDP or changes in the costs of labor, capital, fuel, materials, and energy associated with the production of new cargo aircraft than the sales of new passenger aircraft. This in conjunction with the relatively small size of the cargo aircraft market means technology improvements to the cargo aircraft will do relatively very little to spur increased sales of new cargo aircraft.

  14. Candida keroseneae sp. nov., a novel contaminant of aviation kerosene.

    Science.gov (United States)

    Buddie, A G; Bridge, P D; Kelley, J; Ryan, M J

    2011-01-01

    To characterize and identify a novel contaminant of aviation fuel. Micro-organisms (yeasts and bacteria) were isolated from samples of aviation fuel. A yeast that proved to have been unrecorded previously was isolated from more than one fuel sample. This novel yeast proved to be a new species of Candida and is described here. Ribosomal RNA gene sequence analyses of internal transcribed spacer (ITS) regions (including 5·8S subunit) plus the 26S D1/D2 domains showed the strains to cluster within the Candida membranifaciens clade nearest to, but distinct from, Candida tumulicola. Phenotypic tests were identical for both isolates. Physiological and biochemical tests supported their position as a separate taxon. The yeast was assessed for its effect on the main constituent hydrocarbons of aviation fuel. Two strains (IMI 395605(T) and IMI 395606) belonging to the novel yeast species, Candida keroseneae, were isolated from samples of aircraft fuel (kerosene), characterized and described herein with reference to their potential as contaminants of aviation fuel. As a result of isolating a novel yeast from aviation fuel, the implications for microbial contamination of such fuel should be considered more widely than previously thought. © 2010 CAB International. Letters in Applied Microbiology © 2010 The Society for Applied Microbiology.

  15. Systems Analysis of NASA Aviation Safety Program: Final Report

    Science.gov (United States)

    Jones, Sharon M.; Reveley, Mary S.; Withrow, Colleen A.; Evans, Joni K.; Barr, Lawrence; Leone, Karen

    2013-01-01

    A three-month study (February to April 2010) of the NASA Aviation Safety (AvSafe) program was conducted. This study comprised three components: (1) a statistical analysis of currently available civilian subsonic aircraft data from the National Transportation Safety Board (NTSB), the Federal Aviation Administration (FAA), and the Aviation Safety Information Analysis and Sharing (ASIAS) system to identify any significant or overlooked aviation safety issues; (2) a high-level qualitative identification of future safety risks, with an assessment of the potential impact of the NASA AvSafe research on the National Airspace System (NAS) based on these risks; and (3) a detailed, top-down analysis of the NASA AvSafe program using an established and peer-reviewed systems analysis methodology. The statistical analysis identified the top aviation "tall poles" based on NTSB accident and FAA incident data from 1997 to 2006. A separate examination of medical helicopter accidents in the United States was also conducted. Multiple external sources were used to develop a compilation of ten "tall poles" in future safety issues/risks. The top-down analysis of the AvSafe was conducted by using a modification of the Gibson methodology. Of the 17 challenging safety issues that were identified, 11 were directly addressed by the AvSafe program research portfolio.

  16. Suppression of chlorine activation on aviation-produced volatile particles

    Directory of Open Access Journals (Sweden)

    S. K. Meilinger

    2002-01-01

    Full Text Available We examine the effect of nanometer-sized aircraft-induced aqueous sulfuric acid (H2SO4/H2O particles on atmospheric ozone as a function of temperature. Our calculations are based on a previously derived parameterization for the regional-scale perturbations of the sulfate surface area density due to air traffic in the North Atlantic Flight Corridor (NAFC and a chemical box model. We confirm large scale model results that at temperatures T>210 K additional ozone loss -- mainly caused by hydrolysis of BrONO2 and N2O5 -- scales in proportion with the aviation-produced increase of the background aerosol surface area. However, at lower temperatures (2O and HNO3 uptake enhance scavenging losses of aviation-produced liquid particles and (2 the Kelvin effect efficiently limits chlorine activation on the small aircraft-induced droplets by reducing the solubility of chemically reacting species. These two effects lead to a substantial reduction of heterogeneous chemistry on aircraft-induced volatile aerosols under cold conditions. In contrast we find contrail ice particles to be potentially important for heterogeneous chlorine activation and reductions in ozone levels. These features have not been taken into consideration in previous global studies of the atmospheric impact of aviation. Therefore, to parameterize them in global chemistry and transport models, we propose the following parameterisation: scale the hydrolysis reactions by the aircraft-induced surface area increase, and neglect heterogeneous chlorine reactions on liquid plume particles but not on ice contrails and aircraft induced ice clouds.

  17. NASA Alternative Aviation Fuel Research

    Science.gov (United States)

    Anderson, B. E.; Beyersdorf, A. J.; Thornhill, K. L., II; Moore, R.; Shook, M.; Winstead, E.; Ziemba, L. D.; Crumeyrolle, S.

    2015-12-01

    We present an overview of research conducted by NASA Aeronautics Research Mission Directorate to evaluate the performance and emissions of "drop-in" alternative jet fuels, highlighting experiment design and results from the Alternative Aviation Fuel Experiments (AAFEX-I & -II) and Alternative Fuel-Effects on Contrails and Cruise Emissions flight series (ACCESS-I & II). These projects included almost 100 hours of sampling exhaust emissions from the NASA DC-8 aircraft in both ground and airborne operation and at idle to takeoff thrust settings. Tested fuels included Fischer-Tropsch (FT) synthetic kerosenes manufactured from coal and natural-gas feedstocks; Hydro-treated Esters and Fatty-Acids (HEFA) fuels made from beef-tallow and camelina-plant oil; and 50:50 blends of these alternative fuels with Jet A. Experiments were also conducted with FT and Jet A fuels doped with tetrahydrothiophene to examine the effects of fuel sulfur on volatile aerosol and contrail formation and microphysical properties. Results indicate that although the absence of aromatic compounds in the alternative fuels caused DC-8 fuel-system leaks, the fuels did not compromise engine performance or combustion efficiency. And whereas the alternative fuels produced only slightly different gas-phase emissions, dramatic reductions in non-volatile particulate matter (nvPM) emissions were observed when burning the pure alternative fuels, particularly at low thrust settings where particle number and mass emissions were an order of magnitude lower than measured from standard jet fuel combustion; 50:50 blends of Jet A and alternative fuels typically reduced nvPM emissions by ~50% across all thrust settings. Alternative fuels with the highest hydrogen content produced the greatest nvPM reductions. For Jet A and fuel blends, nvPM emissions were positively correlated with fuel aromatic and naphthalene content. Fuel sulfur content regulated nucleation mode aerosol number and mass concentrations within aging

  18. Simulated 2050 aviation radiative forcing from contrails and aerosols

    Science.gov (United States)

    Chen, Chih-Chieh; Gettelman, Andrew

    2016-06-01

    The radiative forcing from aviation-induced cloudiness is investigated by using the Community Atmosphere Model Version 5 (CAM5) in the present (2006) and the future (through 2050). Global flight distance is projected to increase by a factor of 4 between 2006 and 2050. However, simulated contrail cirrus radiative forcing in 2050 can reach 87 mW m-2, an increase by a factor of 7 from 2006, and thus does not scale linearly with fuel emission mass. This is due to non-uniform regional increase in air traffic and different sensitivities for contrail radiative forcing in different regions. CAM5 simulations indicate that negative radiative forcing induced by the indirect effect of aviation sulfate aerosols on liquid clouds in 2050 can be as large as -160 mW m-2, an increase by a factor of 4 from 2006. As a result, the net 2050 radiative forcing of contrail cirrus and aviation aerosols may have a cooling effect on the planet. Aviation sulfate aerosols emitted at cruise altitude can be transported down to the lower troposphere, increasing the aerosol concentration, thus increasing the cloud drop number concentration and persistence of low-level clouds. Aviation black carbon aerosols produce a negligible net forcing globally in 2006 and 2050 in this model study. Uncertainties in the methodology and the modeling are significant and discussed in detail. Nevertheless, the projected percentage increase in contrail radiative forcing is important for future aviation impacts. In addition, the role of aviation aerosols in the cloud nucleation processes can greatly influence on the simulated radiative forcing from aircraft-induced cloudiness and even change its sign. Future research to confirm these results is necessary.

  19. Aviation Fuel System Reliability and Fail-Safety Analysis. Promising Alternative Ways for Improving the Fuel System Reliability

    Directory of Open Access Journals (Sweden)

    I. S. Shumilov

    2017-01-01

    Full Text Available The paper deals with design requirements for an aviation fuel system (AFS, AFS basic design requirements, reliability, and design precautions to avoid AFS failure. Compares the reliability and fail-safety of AFS and aircraft hydraulic system (AHS, considers the promising alternative ways to raise reliability of fuel systems, as well as elaborates recommendations to improve reliability of the pipeline system components and pipeline systems, in general, based on the selection of design solutions.It is extremely advisable to design the AFS and AHS in accordance with Aviation Regulations АП25 and Accident Prevention Guidelines, ICAO (International Civil Aviation Association, which will reduce risk of emergency situations, and in some cases even avoid heavy disasters.ATS and AHS designs should be based on the uniform principles to ensure the highest reliability and safety. However, currently, this principle is not enough kept, and AFS looses in reliability and fail-safety as compared with AHS. When there are the examined failures (single and their combinations the guidelines to ensure the AFS efficiency should be the same as those of norm-adopted in the Regulations АП25 for AHS. This will significantly increase reliability and fail-safety of the fuel systems and aircraft flights, in general, despite a slight increase in AFS mass.The proposed improvements through the use of components redundancy of the fuel system will greatly raise reliability of the fuel system of a passenger aircraft, which will, without serious consequences for the flight, withstand up to 2 failures, its reliability and fail-safety design will be similar to those of the AHS, however, above improvement measures will lead to a slightly increasing total mass of the fuel system.It is advisable to set a second pump on the engine in parallel with the first one. It will run in case the first one fails for some reasons. The second pump, like the first pump, can be driven from the

  20. Aviation Safety Hotline Information System -

    Data.gov (United States)

    Department of Transportation — The Aviation Safety Hotline Information System (ASHIS) collects, stores, and retrieves reports submitted by pilots, mechanics, cabin crew, passengers, or the public...

  1. Special Issue: Aviation Alternative Fuels

    Directory of Open Access Journals (Sweden)

    Yang Zhang

    2014-12-01

    Full Text Available The investigation of aviation alternative fuels has increased significantly in recent years in an effort to reduce the environment and climate impact by aviation industry. Special requirements have to be met for qualifying as a suitable aviation fuel. The fuel has to be high in energy content per unit of mass and volume, thermally stable and avoiding freezing at low temperatures. There are also many other special requirements on viscosity, ignition properties and compatibility with the typical aviation materials. There are quite a few contending alternative fuels which can be derived from coal, natural gas and biomass.[...

  2. Longitudinal control of aircraft dynamics based on optimization of PID parameters

    Science.gov (United States)

    Deepa, S. N.; Sudha, G.

    2016-03-01

    Recent years many flight control systems and industries are employing PID controllers to improve the dynamic behavior of the characteristics. In this paper, PID controller is developed to improve the stability and performance of general aviation aircraft system. Designing the optimum PID controller parameters for a pitch control aircraft is important in expanding the flight safety envelope. Mathematical model is developed to describe the longitudinal pitch control of an aircraft. The PID controller is designed based on the dynamic modeling of an aircraft system. Different tuning methods namely Zeigler-Nichols method (ZN), Modified Zeigler-Nichols method, Tyreus-Luyben tuning, Astrom-Hagglund tuning methods are employed. The time domain specifications of different tuning methods are compared to obtain the optimum parameters value. The results prove that PID controller tuned by Zeigler-Nichols for aircraft pitch control dynamics is better in stability and performance in all conditions. Future research work of obtaining optimum PID controller parameters using artificial intelligence techniques should be carried out.

  3. Representational Momentum in Aviation

    Science.gov (United States)

    Blattler, Colin; Ferrari, Vincent; Didierjean, Andre; Marmeche, Evelyne

    2011-01-01

    The purpose of this study was to examine the effects of expertise on motion anticipation. We conducted 2 experiments in which novices and expert pilots viewed simulated aircraft landing scenes. The scenes were interrupted by the display of a black screen and then started again after a forward or backward shift. The participant's task was to…

  4. Representational Momentum in Aviation

    Science.gov (United States)

    Blattler, Colin; Ferrari, Vincent; Didierjean, Andre; Marmeche, Evelyne

    2011-01-01

    The purpose of this study was to examine the effects of expertise on motion anticipation. We conducted 2 experiments in which novices and expert pilots viewed simulated aircraft landing scenes. The scenes were interrupted by the display of a black screen and then started again after a forward or backward shift. The participant's task was to…

  5. Aviation Officer Requirements Study.

    Science.gov (United States)

    1982-08-31

    In the dynamics of the planning process, when potential force level changes are fre- quent, these computations are tedious and subject to error . Since...was tedious and subject to both computational and entry errors . The current ver- sion of the model corrects this deficiency. The Aviation Officer...k.N )) ,iFY(Fr\\) ,NniALT c nTn ,TIVP.W £-430 PROJ3 = POS-:(PRn1 Z=m4m) f-440 PROC, = Pnr3(PrOnf2="-) E.4! - INI T (1-F(20) )TR(PrOFL,. 137> C,460 = TIPO

  6. The Role of Stereopsis in Aviation: Literature Review

    Science.gov (United States)

    2013-08-01

    phenomenon of depth perception is a summation of both monocular and binocular cues. Monocular cues, including retinal image size, linear perspective, motion...2008:349-79. 2. Cibis PA. Problems of depth perception in monocular and binocular flying. J Aviat Med 1952; 23(6):612-22. 3. Green R G. Perception ...position to surrounding objects, is generally considered essential for military aviation. Depth perception is of particular importance, as many

  7. Climate Change and International Civil Aviation Negotiations

    Directory of Open Access Journals (Sweden)

    Veronica Korber Gonçalves

    Full Text Available Abstract The International Civil Aviation Organization (ICAO has discussed ways of regulating greenhouse gas (GHG emissions by civil aircraft for almost 20 years. Over the past four years, a consensus has developed about a market-based mechanism in the form of a carbon offset system. This article describes the route to the agreement reached by ICAO’s 39th Assembly, in order to contextualise the results and point out some of its limitations. It points to two main factors that contributed to the consensus: the role of the European Union, which sought to lead the negotiations, and the choice of a flexible and ultimately weak mechanism that received support from the international airlines.

  8. Outlook for alternative energy sources. [aviation fuels

    Science.gov (United States)

    Card, M. E.

    1980-01-01

    Predictions are made concerning the development of alternative energy sources in the light of the present national energy situation. Particular emphasis is given to the impact of alternative fuels development on aviation fuels. The future outlook for aircraft fuels is that for the near term, there possibly will be no major fuel changes, but minor specification changes may be possible if supplies decrease. In the midterm, a broad cut fuel may be used if current development efforts are successful. As synfuel production levels increase beyond the 1990's there may be some mixtures of petroleum-based and synfuel products with the possibility of some shale distillate and indirect coal liquefaction products near the year 2000.

  9. METHOD IMPROVEMENT FOR DETERMINING THE TECHNICAL LEVEL OF CIVIL AIRCRAFT

    Directory of Open Access Journals (Sweden)

    2016-01-01

    incorporate features of general aviation aircraft operation. However, according to the authors of this article, this method requires some clarification. This is the subject of this article where the technical level generalized index equation is refinedand with the use of which the technical level of civil long-range aircraft is determined.

  10. 75 FR 26885 - Airworthiness Directives; Sikorsky Aircraft Corporation Model S-76A, B, and C Helicopters

    Science.gov (United States)

    2010-05-13

    ... W12-140, 1200 New Jersey Avenue, SE., Washington, DC. FOR FURTHER INFORMATION CONTACT: Terry Fahr..., Boston Aircraft Certification Office, FAA, ATTN: Terry Fahr, Aviation Safety Engineer, 12 New England...

  11. Aircraft Based Imaging Probe for the Study of Icing Environments Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Icing environments are of great concern in commercial and military aviation. An aircraft-based, imaging probe is being proposed for the reliable and accurate...

  12. Exposure to airborne organophosphates originating from hydraulic and turbine oils among aviation technicians and loaders.

    Science.gov (United States)

    Solbu, Kasper; Daae, Hanne Line; Thorud, Syvert; Ellingsen, Dag Gunnar; Lundanes, Elsa; Molander, Paal

    2010-12-01

    This study describes the potential for occupational exposure to organophosphates (OPs) originating from turbine and hydraulic oils, among ground personnel within the aviation industry. The OPs tri-n-butyl phosphate (TnBP), dibutyl phenyl phosphate (DBPP), triphenyl phosphate (TPP) and tricresyl phosphate (TCP) have been emphasized due to their use in such oils. Oil aerosol/vapor and total volatile organic compounds (tVOCs) in air were also determined. In total, 228 and 182 OPs and oil aerosol/vapor samples from technician and loader work tasks during work on 42 and 21 aircrafts, respectively, were collected in pairs. In general, the measured exposure levels were below the limit of quantification (LOQ) for 84%/98% (oil aerosol) and 82%/90% (TCP) of the samples collected during technician/loader work tasks. The air concentration ranges for all samples related to technician work were work the corresponding air concentration ranges were jet engine aircrafts. Investigation of provoked exposure situations revealed substantially higher exposure levels of the contaminants when compared to regular conditions, illustrated by oil aerosol and TCP concentrations up to 240 and 31 mg m(-3), respectively. The tailored OP and the general oil aerosol sampling methods were compared, displaying the advantages of tailored OP sampling for such exposure assessments.

  13. The Russian Aviation in the First World War: the Features of Artillery Fire Correction

    Directory of Open Access Journals (Sweden)

    Vladimir B. Karataev

    2017-03-01

    Full Text Available The article discusses theregulations and combat use of the Russian aviation during the First World War. The attention is paid to the implementation of the exploration and correction of artillery fire from the airplane. The authors have selected as sources the documents of the Central state historical archive of Georgia, in which there are reflected the materials governing the use of airplanes on the fronts of the First World War. The authors used the general scientific methods (analysis, synthesis, concretization, generalization, as well as the traditional methods of historical analysis. The authors used the historical-situational method, which involves the study of historical facts in the context of the studied era in conjunction with the "neighboring" events and facts. At the conclusion of the study, it should be noted that the use of aircraft has passed a long way of developmentduring the First World War. There were expanded the spectra of the use of aircraft in war, from intelligence and reconnaissance and adjustment to using the airplanes as fighters and bombers. The change of the functional responsibilities required the establishment of clear and implemented quickly regulations in a combat situation, and such instructions governing the actions of the crew were created during the war.

  14. Icing – A Risk Factor in Aviation.Case Study: the Plane Crash in the Apuseni Mountains (Romania) on 20.01.2014.

    OpenAIRE

    2015-01-01

    Icing - a risk factor in aviation. Case study: The plane crash in the Apuseni Mountains (Romania) on 20.01.2014. Icing is a potentially harmful weather phenomenon for flight safety. Icing, irrespective of its forms, has a negative impact on all aviation activities since it severely impedes the aerodynamic properties of an aircraft, sometimes to such an extent that flying and landing may become impossible. Icing is a serious weather threat to aviation and may ultimately lead to deadly events. ...

  15. Assessing Knowledge Retention of an Immersive Serious Game vs. a Traditional Education Method in Aviation Safety.

    Science.gov (United States)

    Chittaro, Luca; Buttussi, Fabio

    2015-04-01

    Thanks to the increasing availability of consumer head-mounted displays, educational applications of immersive VR could now reach to the general public, especially if they include gaming elements (immersive serious games). Safety education of citizens could be a particularly promising domain for immersive serious games, because people tend not to pay attention to and benefit from current safety materials. In this paper, we propose an HMD-based immersive game for educating passengers about aviation safety that allows players to experience a serious aircraft emergency with the goal of surviving it. We compare the proposed approach to a traditional aviation safety education method (the safety card) used by airlines. Unlike most studies of VR for safety knowledge acquisition, we do not focus only on assessing learning immediately after the experience but we extend our attention to knowledge retention over a longer time span. This is a fundamental requirement, because people need to retain safety procedures in order to apply them when faced with danger. A knowledge test administered before, immediately after and one week after the experimental condition showed that the immersive serious game was superior to the safety card. Moreover, subjective as well as physiological measurements employed in the study showed that the immersive serious game was more engaging and fear-arousing than the safety card, a factor that can contribute to explain the obtained superior retention, as we discuss in the paper.

  16. PROSPECTS OF UKRAINE LOW-COST AVIATION

    Directory of Open Access Journals (Sweden)

    Nataliia Kasianova

    2016-06-01

    Full Text Available Purpose: The purpose of the article is to show that the budgetary development of aviation in the market of domestic flights in Ukraine will not only increase the use of the aircraft by the end user, but also maximize the profits for the domestic airlines. Methods: We used economic analysis methods to assess the costs for air travel. The necessity of the use of passengers load factor was justified, indicators of the efficiency of the airline were calculated. The advantages of the air transport compared to the rail transport were shown on the basis of a comparative analysis. Results: We considered the relationship between the volume of air traffic and the revenue of the potential clients. The feasibility of reducing prices on air tickets to the level of railway tariffs was proved. The concept of low cost airlines was defined, the factors to decrease the air travel prices were identified. Maximisation of the airline profits can be achieved with an affordable price, which will increase passenger traffic. Discussion: In Ukraine there is an urgent need for new solutions that would help airlines to successfully conduct its business and meet the needs of passengers on domestic routes. There is no doubt that in times of economic crisis, inflation has a significant impact on the real incomes of consumers, and this study proves the feasibility of establishing a low-budget domestic aviation and its use on domestic routes during the economic crisis.

  17. Russian eruption warning systems for aviation

    Science.gov (United States)

    Neal, C.; Girina, O.; Senyukov, S.; Rybin, A.; Osiensky, J.; Izbekov, P.; Ferguson, G.

    2009-01-01

    More than 65 potentially active volcanoes on the Kamchatka Peninsula and the Kurile Islands pose a substantial threat to aircraft on the Northern Pacific (NOPAC), Russian Trans-East (RTE), and Pacific Organized Track System (PACOTS) air routes. The Kamchatka Volcanic Eruption Response Team (KVERT) monitors and reports on volcanic hazards to aviation for Kamchatka and the north Kuriles. KVERT scientists utilize real-time seismic data, daily satellite views of the region, real-time video, and pilot and field reports of activity to track and alert the aviation industry of hazardous activity. Most Kurile Island volcanoes are monitored by the Sakhalin Volcanic Eruption Response Team (SVERT) based in Yuzhno-Sakhalinsk. SVERT uses daily moderate resolution imaging spectroradiometer (MODIS) satellite images to look for volcanic activity along this 1,250-km chain of islands. Neither operation is staffed 24 h per day. In addition, the vast majority of Russian volcanoes are not monitored seismically in real-time. Other challenges include multiple time-zones and language differences that hamper communication among volcanologists and meteorologists in the US, Japan, and Russia who share the responsibility to issue official warnings. Rapid, consistent verification of explosive eruptions and determination of cloud heights remain significant technical challenges. Despite these difficulties, in more than a decade of frequent eruptive activity in Kamchatka and the northern Kuriles, no damaging encounters with volcanic ash from Russian eruptions have been recorded. ?? Springer Science+Business Media B.V. 2009.

  18. 78 FR 41183 - Federal Aviation Administration

    Science.gov (United States)

    2013-07-09

    ... Federal Aviation Administration Meeting: RTCA Program Management Committee AGENCY: Federal Aviation Administration (FAA), U.S. Department of Transportation (DOT). ACTION: Notice of RTCA Program Management.... Paige Williams, Management Analyst, NextGen, Business Operations Group, Federal Aviation...

  19. 75 FR 6433 - Federal Aviation Administration

    Science.gov (United States)

    2010-02-09

    ... Federal Aviation Administration Notice of Availability of a Draft Environmental Assessment and Public...: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Availability of a Draft Environmental... Chicago, Illinois. SUMMARY: The Federal Aviation Administration (FAA) proposes to fund, construct,...

  20. 76 FR 78966 - Federal Aviation Administration

    Science.gov (United States)

    2011-12-20

    ... Federal Aviation Administration Approval of Noise Compatibility Program for Kona International Airport at Keahole, Keahole, North Kona, HI AGENCY: Federal Aviation Administration, DOT. ACTION: Notice. SUMMARY: The Federal Aviation Administration (FAA) announces its findings on the noise compatibility...

  1. 77 FR 64837 - Federal Aviation Administration

    Science.gov (United States)

    2012-10-23

    ... Federal Aviation Administration Fourth Meeting: RTCA Special Committee 227, Standards of Navigation Performance AGENCY: Federal Aviation Administration (FAA), U.S. Department of Transportation (DOT). ACTION... 15, 2012. Kathy Hitt, Management Analyst, Business Operations Group, Federal Aviation...

  2. 75 FR 12809 - Federal Aviation Administration

    Science.gov (United States)

    2010-03-17

    ... Federal Aviation Administration Notice of Intent To Rule on Request To Release Airport Property at the Dallas/Fort Worth International Airport, DFW Airport, Texas AGENCY: Federal Aviation Administration (FAA... Aviation Administration, Southwest Region, Airports Division, Texas Airports Development Office,...

  3. 78 FR 13395 - Federal Aviation Administration

    Science.gov (United States)

    2013-02-27

    ... Federal Aviation Administration Notice of Availability of Draft Alaska National Interest Lands Conservation Act (ANILCA) Section 810 Subsistence Evaluation. AGENCY: Federal Aviation Administration (FAA... Aviation Administration, Airports Division, 222 West 7th Avenue, Box 14, Anchorage, AK 99513. 5....

  4. Aircraft Carriers

    DEFF Research Database (Denmark)

    Nødskov, Kim; Kværnø, Ole

    There are many indications that China is actively researching the design of an aircraft carrier. It is unknown whether China will initiate the actual acquisition of a carrier, but the indications that are available of their research into aircraft carriers and carrier-capable aircraft, as well...... as their purchases of aircraft carrier systems, makes it more than likely that the country is preparing such an acquisition. China has territorial disputes in the South China Sea over the Spratly Islands and is also worried about the security of its sea lines of communications, by which China transports the majority...... of its foreign trade, as well as its oil imports, upon which the country is totally dependent. China therefore has good reasons for acquiring an aircraft carrier to enable it to protect its national interests. An aircraft carrier would also be a prominent symbol of China’s future status as a great power...

  5. JOHN WESTON, THE "GRANDFATHER OF AVIATION IN SOUTH AFRICA"

    Directory of Open Access Journals (Sweden)

    J.J. Oberholzer

    2012-02-01

    Full Text Available In "Militaria" 2/1 (1970 mention was made of M. J. L. Weston, D.Sc., F.R.G.S., F.R.S.A., A.I.E.E. in relation to the training of our first military aircraft pilots and the proposed establishment of a South African Air Force as well as a South African Flying School (p. 14 et seq. He was a consulting engineer and one of the foremost stalwarts in the field of civil and military aviation and the manufacture of aircraft in our country. Dr. Weston directed a request at the beginning of 1913, as mentioned in this publication, to the then Under Secretary for Defence, with a view to acquiring the authority to train military aircraft pilots, but without success.

  6. Aviation instruction through flight simulation and related learning

    Science.gov (United States)

    Green, Mavis Frankel

    The use of simulation in General Aviation flight training is an emergent practice and promises to increase substantially. Training through simulation is not addressed in the primary publication used to train flight instructors, however. In effect, training devices have been added into the curriculum by those using the technology as a cross between flight and ground instruction. The significance of how one learns in a training device is the potential effect on both in-flight learning and normal practices. A review of the literature, document review, interviews with flight instructors and students, and observations of instructional sessions in training devices, provided data to answer the prime research question: (a) What type(s) of learning best explain how learners are socialized to aviation through the use of simulation technology? One segment of the general aviation population, college and university flight programs, was sampled. Four types of learning provided a conceptual framework: reception; autonomous; guided inquiry; and social cognitive operationalized as cognitive apprenticeship. A central dilemma was identified from the data collected. This dilemma is the extent to which aviation and aviation instruction in training devices is perceived by instructors as being either safe or risky. Two sub-dilemmas of the central dilemma are also identified: (1) whether the perception of aviation on the part of instructors is one of control or autonomy and (2) whether aviators use and should be taught routines or innovation;. Three ways of viewing the aviation environment were identified from the combination of these sub-dilemmas by instructors: (1) aviation as safe; (2) aviation as somewhat safe; and (3) aviation as risky. Resolution of the fundamental dilemma results in an emergent view of aviation as risky and the implications of this view are discussed. Social cognitive learning operationalized as cognitive apprenticeship as an appropriate type of learning for high

  7. Transport Aircraft System Identification Using Roll and Yaw Oscillatory Wind Tunnel Data

    Science.gov (United States)

    Murphy, Patrick C.; Klein, Vladislav

    2010-01-01

    Continued studies have been undertaken to investigate and develop aerodynamic models that predict aircraft response in nonlinear unsteady flight regimes for transport configurations. The models retain conventional static and dynamic terms but replace conventional acceleration terms with indicial functions. In the Subsonic Fixed Wing Project of the NASA Fundamental Aeronautics Program and the Integrated Resilient Aircraft Controls project of the NASA Aviation Safety Program one aspect of the research is to apply these current developments to transport configurations to facilitate development of advanced simulation and control design technology. This paper continues development and application of a more general modeling methodology to the NASA Langley Generic Transport Model, a sub-scale flight test vehicle. In the present study models for the lateral-directional aerodynamics are developed.

  8. Design for air-to-air refuelling operations; new passenger and tanker aircraft design for AAR scenarios

    NARCIS (Netherlands)

    Li, M.O.

    2014-01-01

    Air-to-air refuelling is a way to improve fuel efficiency of the overall transport system without waiting for the improvement of basic aviation technology. To take full advantage of such an operation, both passenger aircraft and tanker aircraft (which deliver required fuel to the passenger aircraft

  9. Is electronic life-cycle tracking of aircraft parts degrading readiness?

    OpenAIRE

    2013-01-01

    Approved for public release; distribution is unlimited. The Naval Aviation Logistics Command Managed Information System (NALCOMIS), the current Navy and Marine Corps electronic tracking system for aircraft components, provides complete, up-to-date life-cycle information about aircraft and associated components to all maintenance agencies across the Naval Aviation Enterprise (NAE). By design, the system is meant to facilitate efficient receipt, repair, documentation, and transfer of all air...

  10. 78 FR 73993 - Special Conditions: Cessna Model 680 Series Airplanes; Aircraft Electronic System Security...

    Science.gov (United States)

    2013-12-10

    ... part of the type certification basis for Cessna Model 680 Series airplanes. System Security Protection... Federal Aviation Administration 14 CFR Part 25 Special Conditions: Cessna Model 680 Series Airplanes; Aircraft Electronic System Security Protection From Unauthorized External Access AGENCY: Federal Aviation...

  11. Life-cycle analysis of alternative aviation fuels in GREET

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, A.; Han, J.; Wang, M.; Carter, N.; Stratton, R.; Hileman, J.; Malwitz, A.; Balasubramanian, S. (Energy Systems)

    2012-07-23

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1{_}2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or (2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55-85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources - such as natural gas and coal - could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet

  12. Life-Cycle Analysis of Alternative Aviation Fuels in GREET

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Han, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Carter, N. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Stratton, R. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Hileman, J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Malwitz, A. [Volpe National Transportation Systems Center, Cambridge, MA (United States); Balasubramanian, S. [Volpe National Transportation Systems Center, Cambridge, MA (United States)

    2012-06-01

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1_2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or(2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55–85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources — such as natural gas and coal — could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet

  13. System for Secure Integration of Aviation Data

    Science.gov (United States)

    Kulkarni, Deepak; Wang, Yao; Keller, Rich; Chidester, Tom; Statler, Irving; Lynch, Bob; Patel, Hemil; Windrem, May; Lawrence, Bob

    2007-01-01

    The Aviation Data Integration System (ADIS) of Ames Research Center has been established to promote analysis of aviation data by airlines and other interested users for purposes of enhancing the quality (especially safety) of flight operations. The ADIS is a system of computer hardware and software for collecting, integrating, and disseminating aviation data pertaining to flights and specified flight events that involve one or more airline(s). The ADIS is secure in the sense that care is taken to ensure the integrity of sources of collected data and to verify the authorizations of requesters to receive data. Most importantly, the ADIS removes a disincentive to collection and exchange of useful data by providing for automatic removal of information that could be used to identify specific flights and crewmembers. Such information, denoted sensitive information, includes flight data (here signifying data collected by sensors aboard an aircraft during flight), weather data for a specified route on a specified date, date and time, and any other information traceable to a specific flight. The removal of information that could be used to perform such tracing is called "deidentification." Airlines are often reluctant to keep flight data in identifiable form because of concerns about loss of anonymity. Hence, one of the things needed to promote retention and analysis of aviation data is an automated means of de-identification of archived flight data to enable integration of flight data with non-flight aviation data while preserving anonymity. Preferably, such an automated means would enable end users of the data to continue to use pre-existing data-analysis software to identify anomalies in flight data without identifying a specific anomalous flight. It would then also be possible to perform statistical analyses of integrated data. These needs are satisfied by the ADIS, which enables an end user to request aviation data associated with de-identified flight data. The ADIS

  14. A Grounded Theory Study of Aircraft Maintenance Technician Decision-Making

    Science.gov (United States)

    Norcross, Robert

    Aircraft maintenance technician decision-making and actions have resulted in aircraft system errors causing aircraft incidents and accidents. Aircraft accident investigators and researchers examined the factors that influence aircraft maintenance technician errors and categorized the types of errors in an attempt to prevent similar occurrences. New aircraft technology introduced to improve aviation safety and efficiency incur failures that have no information contained in the aircraft maintenance manuals. According to the Federal Aviation Administration, aircraft maintenance technicians must use only approved aircraft maintenance documents to repair, modify, and service aircraft. This qualitative research used a grounded theory approach to explore the decision-making processes and actions taken by aircraft maintenance technicians when confronted with an aircraft problem not contained in the aircraft maintenance manuals. The target population for the research was Federal Aviation Administration licensed aircraft and power plant mechanics from across the United States. Nonprobability purposeful sampling was used to obtain aircraft maintenance technicians with the experience sought in the study problem. The sample population recruitment yielded 19 participants for eight focus group sessions to obtain opinions, perceptions, and experiences related to the study problem. All data collected was entered into the Atlas ti qualitative analysis software. The emergence of Aircraft Maintenance Technician decision-making themes regarding Aircraft Maintenance Manual content, Aircraft Maintenance Technician experience, and legal implications of not following Aircraft Maintenance Manuals surfaced. Conclusions from this study suggest Aircraft Maintenance Technician decision-making were influenced by experience, gaps in the Aircraft Maintenance Manuals, reliance on others, realizing the impact of decisions concerning aircraft airworthiness, management pressures, and legal concerns

  15. Behavioral Traits and Airport Type Affect Mammal Incidents with U.S. Civil Aircraft

    Science.gov (United States)

    Schwarz, Kristin B.; Belant, Jerrold L.; Martin, James A.; DeVault, Travis L.; Wang, Guiming

    2014-10-01

    Wildlife incidents with aircraft cost the United States (U.S.) civil aviation industry >US1.4 billion in estimated damages and loss of revenue from 1990 to 2009. Although terrestrial mammals represented only 2.3 % of wildlife incidents, damage to aircraft occurred in 59 % of mammal incidents. We examined mammal incidents (excluding bats) at all airports in the Federal Aviation Administration (FAA) National Wildlife Strike Database from 1990 to 2010 to characterize these incidents by airport type: Part-139 certified (certificated) and general aviation (GA). We also calculated relative hazard scores for species most frequently involved in incidents. We found certificated airports had more than twice as many incidents as GA airports. Incidents were most frequent in October ( n = 215 of 1,764 total) at certificated airports and November ( n = 111 of 741 total) at GA airports. Most (63.2 %) incidents at all airports ( n = 1,523) occurred at night but the greatest incident rate occurred at dusk (177.3 incidents/hr). More incidents with damage ( n = 1,594) occurred at GA airports (38.6 %) than certificated airports (19.0 %). Artiodactyla (even-toed ungulates) incidents incurred greatest (92.4 %) damage costs ( n = 326; US51.8 million) overall and mule deer ( Odocoileus hemionus) was the most hazardous species. Overall, relative hazard score increased with increasing log body mass. Frequency of incidents was influenced by species relative seasonal abundance and behavior. We recommend airport wildlife officials evaluate the risks mammal species pose to aircraft based on the hazard information we provide and consider prioritizing management strategies that emphasize reducing their occurrence on airport property.

  16. General Aviation Activity and Avionics Survey 1984

    Science.gov (United States)

    1985-10-01

    W- so CO wo in C𔃾 0 N s I- -A~ g n CD In ; - V- 0) M so M C 0 Go m N N -) z go go N .-0) in in4 in :: do in m 5. N -. A3 o ~ 0 iso m 0 0 N so 0) N so...FRNCLN4A236 27011 LYC 0540 41533 FRNCLN4AC160 27002 LYC 0540 41534 FRNKLN4ACISO 27003 LYC 0540 41535 FRNKLN4ACI50 27004 LYC 0540 41538 FRNKLN4ACi7i

  17. General Aviation Activity and Avionics Survey

    Science.gov (United States)

    1988-11-01

    0 us 4 U 0 ZN i s-~w-w 0 0 09 .j 04 1-. -w N 0I.. 0m Mo N 4% NO N 0 - 0 N MD N 0n0- 0- 0 -0. * 4. M - o* V* 0 0* v0 2j Ge 4cJ 0- ON l 0M M4t 4 0 isO ...0540 41530 RROYCETYNE 54510 FRNKLN4AC150 27002 LYC 0540 41531 RROYCEVIPER 10201 FRNKLN4ACISO 27003 LYC 0540 41533 FRNKLN4ACI5O 27004 LYC 0540 41534

  18. General Aviation Activity and Avionics Survey 1982.

    Science.gov (United States)

    1983-12-01

    is F- C- i I.. <Z< 04K 4 K 4 K mm <.1 -.5 9.JO M 5 I. .J0 - AI. C 1.-’ 01- 1 0 0 -. t- 0 t- a 00 o 0 o0 mo0 w 0 is owe ao Ewa wm wo iso - 24 .0 4%~ 4...0540 41531 PCKARDV1650 49001 FRNKLN4AC50 27002 LYC 0540 41532 PWA 6T02 dT12 FRNKLN4AC0 27003 LYC 0540 41533 PWA JT12 52042 FRNKLN4AC10 27004 LYC 0540...41534 PWA OT15 52060 2RNKLN4ACI76 7009 LYC 0540 41535 PWA BT15 52 12 FRNLA 64 270073󈨋 FRNKLN4ACI7 27002 LYC 0540 41538 PWA IOT3C 4.T3C

  19. General Aviation Activity and Avionics Survey

    Science.gov (United States)

    1988-01-01

    Slope 1154 i44.5%) Microwave System No Par 2.3(.9%) VOR NA VIGA TION EQUIPMENT 100 -7nelVR _1:;:68 1(26.2%) 200 Channel VOR 200 Channel VOR .119 0(45 9...OTHER NA VIGA TION EQUIPMENT Radar Altimeter 19. 1(7.3%) Weather Radar 22.4 (8.6%) Thunderstorm Detection Equipment = 14.3(5.5%) No Navigation

  20. General Aviation Weather Encounter Case Studies

    Science.gov (United States)

    2012-09-01

    LLWS AND IFR CONDS. NON MSL HGTS DENOTED BY AGL OR CIG . . SYNOPSIS...HI PRES RDG OVR SWRN VA-SERN NC BY 13Z OVR SERN VA- CNTRL NC. QUASI STNR FNT...SCT120 BKN CI. 06Z SRN PTN BKN150 TOP FL250. OTLK...VFR 10Z XTRM SRN PTN MVFR CIG SHRASN. PIEDMONT...SCT-BKN CI. 03Z SCT150 BKN CI. OTLK...VFR. CSTL

  1. General aviation single pilot IFR autopilot study

    Science.gov (United States)

    Bergeron, H. P.

    1983-01-01

    Five levels of autopilot complexity were flown in a single engine IFR simulation for several different IFR terminal operations. A comparison was made of the five levels of complexity ranging from no autopilot to a fully coupled lateral and vertical guidance mode to determine the relative benefits versus complexity/cost of state-of-the-art autopilot capability in the IFR terminal area. Of the five levels tested, the heading select mode made the largest relative difference in decreasing workload and simplifying the approach task. It was also found that the largest number of blunders was detected with the most highly automated mode. The data also showed that, regardless of the autopilot mode, performance during an IFR approach was highly dependent on the type of approach being flown. These results indicate that automation can be useful when making IFR approaches in a high workload environment, but also that some disturbing trends are associated with some of the higher levels of automation found in state-of-the-art autopilots.

  2. Aircraft Low Altitude Wind Shear Detection and Warning System.

    Science.gov (United States)

    Sinclair, Peter C.; Kuhn, Peter M.

    1991-01-01

    that the apparently weak and innocuous MBs present to both commercial transport pilots as well as the much larger number of pilots who fly the smaller general aviation and executive aircraft.

  3. Flying Unmanned Aircraft: A Pilot's Perspective

    Science.gov (United States)

    Pestana, Mark E.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) is pioneering various Unmanned Aircraft System (UAS) technologies and procedures which may enable routine access to the National Airspace System (NAS), with an aim for Next Gen NAS. These tools will aid in the development of technologies and integrated capabilities that will enable high value missions for science, security, and defense, and open the door to low-cost, extreme-duration, stratospheric flight. A century of aviation evolution has resulted in accepted standards and best practices in the design of human-machine interfaces, the displays and controls of which serve to optimize safe and efficient flight operations and situational awareness. The current proliferation of non-standard, aircraft-specific flight crew interfaces in UAS, coupled with the inherent limitations of operating UAS without in-situ sensory input and feedback (aural, visual, and vestibular cues), has increased the risk of mishaps associated with the design of the "cockpit." The examples of current non- or sub- standard design features range from "annoying" and "inefficient", to those that are difficult to manipulate or interpret in a timely manner, as well as to those that are "burdensome" and "unsafe." A concerted effort is required to establish best practices and standards for the human-machine interfaces, for the pilot as well as the air traffic controller. In addition, roles, responsibilities, knowledge, and skill sets are subject to redefining the terms, "pilot" and "air traffic controller", with respect to operating UAS, especially in the Next-Gen NAS. The knowledge, skill sets, training, and qualification standards for UAS operations must be established, and reflect the aircraft-specific human-machine interfaces and control methods. NASA s recent experiences flying its MQ-9 Ikhana in the NAS for extended duration, has enabled both NASA and the FAA to realize the full potential for UAS, as well as understand the implications of

  4. Synthetic and Biomass Alternate Fueling in Aviation

    Science.gov (United States)

    Hendricks, R.C.; Bushnell, D.M.

    2009-01-01

    Worldwide, aviation alone uses 85 to 95 billion gallons of nonrenewable fossil fuel per year (2008). General transportation fueling can accommodate several different fuels; however, aviation fuels have very specific requirements. Biofuels have been flight demonstrated, are considered renewable, have the capacity to become "drop-in" replacements for Jet-A fuel, and solve the CO2 climate change problem. The major issue is cost; current biomass biofuels are not economically competitive. Biofuel feedstock sources being researched are halophytes, algae, cyanobacteria, weeds-to-crops, wastes with contingent restraints on use of crop land, freshwater, and climate change. There are five major renewable energy sources: solar thermal, solar photovoltaic, wind, drilled geothermal and biomass, each of which have an order of magnitude greater capacity to meet all energy needs. All five address aspects of climate change; biomass has massive potential as an energy fuel feedstock.

  5. SHM reliability and implementation - A personal military aviation perspective

    Science.gov (United States)

    Lindgren, Eric A.

    2016-02-01

    Structural Health Monitoring has been proposed as a solution to address the needs of military aviation to reduce the time and cost to perform nondestructive inspections. While the potential to realize significant benefits exist, there are considerations that have to be addressed before such systems can be integrated into military platforms. Some considerations are pervasive to all aviation, such as how to assess the reliability and reproducible capability of these systems. However, there are other challenges unique to military aviation that must be overcome before these types of systems can be used. This presentation and paper are intended as a complement to the review of the outcome of the SAE G-11 SHM committee special workshop on SHM reliability in April of 2015. It will address challenges unique to military aviation that stem from different approaches to managing structural integrity (i.e. safety), frequency of use, design differences, various maintenance practices, and additional descriptions addressing differences in the execution of inspections. The objective of this presentation is to improve the awareness of the research and development community to the different and unique requirements found in military aviation, including the differences between countries, services, and aircraft type. This information should assist the research and development community in identifying and attacking key challenges. It is not intended to be comprehensive overview of all stakeholders' perspectives, but to serve as a launch point for additional discussion and exploration of opportunities to realize the potential of Structural Health Monitoring to assist in the management of military aviation assets. The views expressed in this publication are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the United States Government.

  6. Aircraft Design

    Science.gov (United States)

    Bowers, Albion H. (Inventor); Uden, Edward (Inventor)

    2016-01-01

    The present invention is an aircraft wing design that creates a bell shaped span load, which results in a negative induced drag (induced thrust) on the outer portion of the wing; such a design obviates the need for rudder control of an aircraft.

  7. 78 FR 72141 - Aviation Rulemaking Advisory Committee; Meeting

    Science.gov (United States)

    2013-12-02

    ... Federal Aviation Administration Aviation Rulemaking Advisory Committee; Meeting AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Aviation Rulemaking Advisory Committee (ARAC) meeting. SUMMARY: The... December 12, 2013. ADDRESSES: The meeting will take place at the Federal Aviation Administration, 800...

  8. 78 FR 34139 - Aviation Rulemaking Advisory Committee; Meeting

    Science.gov (United States)

    2013-06-06

    ... Federal Aviation Administration Aviation Rulemaking Advisory Committee; Meeting AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Aviation Rulemaking Advisory Committee (ARAC) meeting. SUMMARY: The... 13, 2013. ADDRESSES: The meeting will take place at the Federal Aviation Administration, 800...

  9. 78 FR 50138 - Aviation Rulemaking Advisory Committee; Meeting

    Science.gov (United States)

    2013-08-16

    ... Federal Aviation Administration Aviation Rulemaking Advisory Committee; Meeting AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Aviation Rulemaking Advisory Committee (ARAC) meeting. SUMMARY: The... September 12, 2013. ADDRESSES: The meeting will take place at the Federal Aviation Administration, 800...

  10. 75 FR 60493 - Aviation Rulemaking Advisory Committee; Renewal

    Science.gov (United States)

    2010-09-30

    ... Federal Aviation Administration Aviation Rulemaking Advisory Committee; Renewal AGENCY: Federal Aviation... Regulations, the FAA gives notice it has renewed the Aviation Rulemaking Advisory Committee (ARAC) for a 2..., Executive Director, Aviation Rulemaking Advisory Committee. BILLING CODE 4910-13-P ...

  11. ASSESSMENT OF RUNWAY ACCIDENT HAZARDS IN NIGERIA AVIATION SECTOR

    Directory of Open Access Journals (Sweden)

    Akinyemi Olasunkanmi Oriola

    2015-06-01

    Full Text Available Aviation crashes all over the world have recently been on the high rise, stemming from negligence, mechanical faults, weather, ground control errors, pilot errors, taxing and maintenance crew errors as probable reasons for such accidents. This study models the probabilistic risk assessment of runway accident hazards in Nigeria aviation sector. Six categories of runway accident hazards with their corresponding basic events were identified and modeled using fault tree analysis method of probabilistic risk assessment. The six categories of runway accident hazards are runway surface conditions, weather conditions, collision risk, aircraft system failure, approach/takeoff procedures and human factors. The Fault Tree developed is a system of OR-gates and the weights for each hazard were derived through a domain/expert opinion. The estimated probability of occurrence of runway accident which is the top event of the Fault Tree model is 0.2624. Fault Tree Analysis; thus, identifies the most likely root causes of runway accident through importance measures. The results of the analysis show close relationship of runway accidents in Nigeria aviation sector with aircraft system failure, approach/takeoff procedures, human factor, weather conditions and collision risk.

  12. The NASA Langley Research Center's Unmanned Aerial System Surrogate Research Aircraft

    Science.gov (United States)

    Howell, Charles T., III; Jessup, Artie; Jones, Frank; Joyce, Claude; Sugden, Paul; Verstynen, Harry; Mielnik, John

    2010-01-01

    Research is needed to determine what procedures, aircraft sensors and other systems will be required to allow Unmanned Aerial Systems (UAS) to safely operate with manned aircraft in the National Airspace System (NAS). The NASA Langley Research Center has transformed a Cirrus Design SR22 general aviation (GA) aircraft into a UAS Surrogate research aircraft to serve as a platform for UAS systems research, development, flight testing and evaluation. The aircraft is manned with a Safety Pilot and systems operator that allows for flight operations almost anywhere in the NAS without the need for a Federal Aviation Administration (FAA) Certificate of Authorization (COA). The UAS Surrogate can be controlled from a modular, transportable ground station like a true UAS. The UAS Surrogate is able to file and fly in the NAS with normal traffic and is a better platform for real world UAS research and development than existing vehicles flying in restricted ranges or other sterilized airspace. The Cirrus Design SR22 aircraft is a small, singleengine, four-place, composite-construction aircraft that NASA Langley acquired to support NASA flight-research programs like the Small Aircraft Transportation System (SATS) Project. Systems were installed to support flight test research and data gathering. These systems include: separate research power; multi-function flat-panel displays; research computers; research air data and inertial state sensors; video recording; data acquisition; data-link; S-band video and data telemetry; Common Airborne Instrumentation System (CAIS); Automatic Dependent Surveillance-Broadcast (ADS-B); instrumented surfaces and controls; and a systems operator work station. The transformation of the SR22 to a UAS Surrogate was accomplished in phases. The first phase was to modify the existing autopilot to accept external commands from a research computer that was connected by redundant data-link radios to a ground control station. An electro-mechanical auto

  13. Aircraft wire system laboratory development : phase I progress report.

    Energy Technology Data Exchange (ETDEWEB)

    Dinallo, Michael Anthony; Lopez, Christopher D.

    2003-08-01

    An aircraft wire systems laboratory has been developed to support technical maturation of diagnostic technologies being used in the aviation community for detection of faulty attributes of wiring systems. The design and development rationale of the laboratory is based in part on documented findings published by the aviation community. The main resource at the laboratory is a test bed enclosure that is populated with aged and newly assembled wire harnesses that have known defects. This report provides the test bed design and harness selection rationale, harness assembly and defect fabrication procedures, and descriptions of the laboratory for usage by the aviation community.

  14. Environmentally safe aviation fuels

    Science.gov (United States)

    Liberio, Patricia D.

    1995-01-01

    In response to the Air Force directive to remove Ozone Depleting Chemicals (ODC's) from military specifications and Defense Logistics Agency's Hazardous Waste Minimization Program, we are faced with how to ensure a quality aviation fuel without using such chemicals. Many of these chemicals are found throughout the fuel and fuel related military specifications and are part of test methods that help qualify the properties and quality of the fuels before they are procured. Many years ago there was a directive for military specifications to use commercially standard test methods in order to provide standard testing in private industry and government. As a result the test methods used in military specifications are governed by the American Society of Testing and Materials (ASTM). The Air Force has been very proactive in the removal or replacement of the ODC's and hazardous materials in these test methods. For example, ASTM D3703 (Standard Test Method for Peroxide Number of Aviation Turbine Fuels), requires the use of Freon 113, a known ODC. A new rapid, portable hydroperoxide test for jet fuels similar to ASTM D3703 that does not require the use of ODC's has been developed. This test has proved, in limited testing, to be a viable substitute method for ASTM D3703. The Air Force is currently conducting a round robin to allow the method to be accepted by ASTM and therefore replace the current method. This paper will describe the Air Force's initiatives to remove ODC's and hazardous materials from the fuel and fuel related military specifications that the Air Force Wright Laboratory.

  15. Refining and blending of aviation turbine fuels.

    Science.gov (United States)

    White, R D

    1999-02-01

    Aviation turbine fuels (jet fuels) are similar to other petroleum products that have a boiling range of approximately 300F to 550F. Kerosene and No.1 grades of fuel oil, diesel fuel, and gas turbine oil share many similar physical and chemical properties with jet fuel. The similarity among these products should allow toxicology data on one material to be extrapolated to the others. Refineries in the USA manufacture jet fuel to meet industry standard specifications. Civilian aircraft primarily use Jet A or Jet A-1 fuel as defined by ASTM D 1655. Military aircraft use JP-5 or JP-8 fuel as defined by MIL-T-5624R or MIL-T-83133D respectively. The freezing point and flash point are the principle differences between the finished fuels. Common refinery processes that produce jet fuel include distillation, caustic treatment, hydrotreating, and hydrocracking. Each of these refining processes may be the final step to produce jet fuel. Sometimes blending of two or more of these refinery process streams are needed to produce jet fuel that meets the desired specifications. Chemical additives allowed for use in jet fuel are also defined in the product specifications. In many cases, the customer rather than the refinery will put additives into the fuel to meet their specific storage or flight condition requirements.

  16. Wind Information Uplink to Aircraft Performing Interval Management Operations

    Science.gov (United States)

    Ahmad, Nashat N.; Barmore, Bryan E.; Swieringa, Kurt A.

    2016-01-01

    provider. This is generally a global environmental prediction obtained from a weather model such as the Rapid Refresh (RAP) from the National Centers for Environmental Prediction (NCEP). The weather forecast data will have errors relative to the actual, or truth, winds that the aircraft will encounter. The second source of uncertainty is that only a small subset of the forecast data can be uplinked to the aircraft for use by the FIM equipment. This results in loss of additional information. The Federal Aviation Administration (FAA) and RTCA are currently developing standards for the communication of wind and atmospheric data to the aircraft for use in NextGen operations. This study examines the impact of various wind forecast sampling methods on IM performance metrics to inform the standards development.

  17. The importance of contrail ice formation for mitigating the climate impact of aviation

    Science.gov (United States)

    Kärcher, B.

    2016-04-01

    Aircraft contrails and the cirrus clouds arising from them contribute substantially to aviation-induced climate forcing. The share of aviation in anthropogenic climate change can be reduced by avoiding contrail cirrus formation. The mitigation potential of altering the contrail formation stage is explored using a microphysical model to show how reductions in soot particle number emissions from jet engines, reductions in mean soot particle size, and a decrease in the supersaturation of aircraft exhaust plumes substantially lowers the optical depth of young contrails thereby decreasing the occurrence, lifetime, and radiative impact of contrail cirrus. The improved scientific understanding of initial ice formation processes allows atmospheric effects of mitigation options related to contrail cirrus to be investigated in unprecedented detail, especially those associated with the use of alternative aviation fuels. This study will enable a leap forward toward more reliable simulations addressing global climatic effects of contrail-induced cloudiness.

  18. First NASA Aviation Safety Program Weather Accident Prevention Project Annual Review

    Science.gov (United States)

    Colantonio, Ron

    2000-01-01

    The goal of this Annual Review was to present NASA plans and accomplishments that will impact the national aviation safety goal. NASA's WxAP Project focuses on developing the following products: (1) Aviation Weather Information (AWIN) technologies (displays, sensors, pilot decision tools, communication links, etc.); (2) Electronic Pilot Reporting (E-PIREPS) technologies; (3) Enhanced weather products with associated hazard metrics; (4) Forward looking turbulence sensor technologies (radar, lidar, etc.); (5) Turbulence mitigation control system designs; Attendees included personnel from various NASA Centers, FAA, National Weather Service, DoD, airlines, aircraft and pilot associations, industry, aircraft manufacturers and academia. Attendees participated in discussion sessions aimed at collecting aviation user community feedback on NASA plans and R&D activities. This CD is a compilation of most of the presentations presented at this Review.

  19. 32 CFR 705.5 - Taking of photos on board naval ships, aircraft and installations by members of the general public.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Taking of photos on board naval ships, aircraft... Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS PUBLIC AFFAIRS REGULATIONS § 705.5 Taking of photos on board naval ships, aircraft and installations by...

  20. The search and rescue satellite mission - A basis for international cooperation. [in aircraft crash and marine distress

    Science.gov (United States)

    Redisch, W. N.; Trudell, B. J.

    1978-01-01

    The use of geostationary and polar-orbiting satellites to monitor and locate signals of the Emergency Locator Transmitter (ELT) and Emergency Position Indicating Radio Beacon (EPIB) of general aviation aircraft and inspected marine vessels respectively is described. The joint U.S. Canada/France SARSAT demonstration program will require a minimum of four minutes of mutual visibility of distress transmitter, local user terminal and satellite to obtain a location by Doppler tracking. The program consisting of placing instrumentation on-board three of the Tiros-N series of NOAA operational satellites is attracting interest also from other countries including the USSR, Norway, Australia, and Japan.