WorldWideScience

Sample records for general acid-base catalyst

  1. The glmS ribozyme cofactor is a general acid-base catalyst.

    Science.gov (United States)

    Viladoms, Júlia; Fedor, Martha J

    2012-11-21

    The glmS ribozyme is the first natural self-cleaving ribozyme known to require a cofactor. The d-glucosamine-6-phosphate (GlcN6P) cofactor has been proposed to serve as a general acid, but its role in the catalytic mechanism has not been established conclusively. We surveyed GlcN6P-like molecules for their ability to support self-cleavage of the glmS ribozyme and found a strong correlation between the pH dependence of the cleavage reaction and the intrinsic acidity of the cofactors. For cofactors with low binding affinities, the contribution to rate enhancement was proportional to their intrinsic acidity. This linear free-energy relationship between cofactor efficiency and acid dissociation constants is consistent with a mechanism in which the cofactors participate directly in the reaction as general acid-base catalysts. A high value for the Brønsted coefficient (β ~ 0.7) indicates that a significant amount of proton transfer has already occurred in the transition state. The glmS ribozyme is the first self-cleaving RNA to use an exogenous acid-base catalyst.

  2. Activities of Heterogeneous Acid-Base Catalysts for Fragrances Synthesis: A Review

    Directory of Open Access Journals (Sweden)

    Hartati Hartati

    2013-06-01

    Full Text Available This paper reviews various types of heterogeneous acid-base catalysts for fragrances preparation. Catalytic activities of various types of heterogeneous acid and base catalysts in fragrances preparation, i.e. non-zeolitic, zeolitic, and mesoporous molecular sieves have been reported. Generally, heterogeneous acid catalysts are commonly used in fragrance synthesis as compared to heterogeneous base catalysts. Heteropoly acids and hydrotalcites type catalysts are widely used as heterogeneous acid and base catalysts, respectively. © 2013 BCREC UNDIP. All rights reservedReceived: 20th January 2013; Revised: 31st March 2013; Accepted: 1st April 2013[How to Cite: Hartati, H., Santoso, M., Triwahyono, S., Prasetyoko, D. (2013. Activities of Heterogeneous Acid-Base Catalysts for Fragrances Synthesis: A Review. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (1: 14-33. (doi:10.9767/bcrec.8.1.4394.14-33][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.1.4394.14-33] | View in  |

  3. Environmentally Benign Bifunctional Solid Acid and Base Catalysts

    NARCIS (Netherlands)

    Elmekawy, A.; Shiju, N.R.; Rothenberg, G.; Brown, D.R.

    2014-01-01

    Solid bifunctional acid-​base catalysts were prepd. in two ways on an amorphous silica support: (1) by grafting mercaptopropyl units (followed by oxidn. to propylsulfonic acid) and aminopropyl groups to the silica surface (NH2-​SiO2-​SO3H)​, and (2) by grafting only aminopropyl groups and then

  4. Efficacy of pretreating oil palm fronds with an acid-base mixture catalyst.

    Science.gov (United States)

    Jung, Young Hoon; Park, Hyun Min; Park, Yong-Cheol; Park, Kyungmoon; Kim, Kyoung Heon

    2017-07-01

    Oil palm fronds are abundant but recalcitrant to chemical pretreatment. Herein, an acid-base mixture was applied as a catalyst to efficiently pretreat oil palm fronds. Optimized conditions for the pretreatment were a 0.1M acidic acid-base mixture and 3min ramping to 190°C and 12min holding. The oil palm fronds pretreated and washed with the acid-base mixture exhibited an enzymatic digestibility of 85% by 15 FPU Accellerase 1000/g glucan after 72h hydrolysis, which was significantly higher than the enzymatic digestibilities obtained by acid or alkali pretreatment alone. This could be attributed to the synergistic actions of the acid and base, producing an 87% glucose recovery with 100% and 40.3% removal of xylan and lignin, respectively, from the solids. Therefore, an acid-base mixture can be a feasible catalyst to deconstruct oil palm fronds for sugar production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. General Base-General Acid Catalysis in Human Histone Deacetylase 8.

    Science.gov (United States)

    Gantt, Sister M Lucy; Decroos, Christophe; Lee, Matthew S; Gullett, Laura E; Bowman, Christine M; Christianson, David W; Fierke, Carol A

    2016-02-09

    Histone deacetylases (HDACs) regulate cellular processes such as differentiation and apoptosis and are targeted by anticancer therapeutics in development and in the clinic. HDAC8 is a metal-dependent class I HDAC and is proposed to use a general acid-base catalytic pair in the mechanism of amide bond hydrolysis. Here, we report site-directed mutagenesis and enzymological measurements to elucidate the catalytic mechanism of HDAC8. Specifically, we focus on the catalytic function of Y306 and the histidine-aspartate dyads H142-D176 and H143-D183. Additionally, we report X-ray crystal structures of four representative HDAC8 mutants: D176N, D176N/Y306F, D176A/Y306F, and H142A/Y306F. These structures provide a useful framework for understanding enzymological measurements. The pH dependence of kcat/KM for wild-type Co(II)-HDAC8 is bell-shaped with two pKa values of 7.4 and 10.0. The upper pKa reflects the ionization of the metal-bound water molecule and shifts to 9.1 in Zn(II)-HDAC8. The H142A mutant has activity 230-fold lower than that of wild-type HDAC8, but the pKa1 value is not altered. Y306F HDAC8 is 150-fold less active than the wild-type enzyme; crystal structures show that Y306 hydrogen bonds with the zinc-bound substrate carbonyl, poised for transition state stabilization. The H143A and H142A/H143A mutants exhibit activity that is >80000-fold lower than that of wild-type HDAC8; the buried D176N and D176A mutants have significant catalytic effects, with more subtle effects caused by D183N and D183A. These enzymological and structural studies strongly suggest that H143 functions as a single general base-general acid catalyst, while H142 remains positively charged and serves as an electrostatic catalyst for transition state stabilization.

  6. Boehmite-An Efficient and Recyclable Acid-Base Bifunctional Catalyst for Aldol Condensation Reaction.

    Science.gov (United States)

    Reshma, P C Rajan; Vikneshvaran, Sekar; Velmathi, Sivan

    2018-06-01

    In this work boehmite was used as an acid-base bifunctional catalyst for aldol condensation reactions of aromatic aldehydes and ketones. The catalyst was prepared by simple sol-gel method using Al(NO3)3·9H2O and NH4OH as precursors. The catalyst has been characterized by X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), Scanning Electron Microscopy (SEM), UV-visible spectroscopy (DRS), BET surface area analyses. Boehmite is successfully applied as catalyst for the condensation reaction between 4-nitrobenzaldehyde and acetone as a model substrate giving α, β-unsaturated ketones without any side product. The scope of the reaction is extended for various substituted aldehydes. A probable mechanism has been suggested to explain the cooperative behavior of the acidic and basic sites. The catalyst is environmentally friendly and easily recovered from the reaction mixture. Also the catalyst is reusable up to 3 catalytic cycles.

  7. Intermetallic nickel silicide nanocatalyst-A non-noble metal-based general hydrogenation catalyst.

    Science.gov (United States)

    Ryabchuk, Pavel; Agostini, Giovanni; Pohl, Marga-Martina; Lund, Henrik; Agapova, Anastasiya; Junge, Henrik; Junge, Kathrin; Beller, Matthias

    2018-06-01

    Hydrogenation reactions are essential processes in the chemical industry, giving access to a variety of valuable compounds including fine chemicals, agrochemicals, and pharmachemicals. On an industrial scale, hydrogenations are typically performed with precious metal catalysts or with base metal catalysts, such as Raney nickel, which requires special handling due to its pyrophoric nature. We report a stable and highly active intermetallic nickel silicide catalyst that can be used for hydrogenations of a wide range of unsaturated compounds. The catalyst is prepared via a straightforward procedure using SiO 2 as the silicon atom source. The process involves thermal reduction of Si-O bonds in the presence of Ni nanoparticles at temperatures below 1000°C. The presence of silicon as a secondary component in the nickel metal lattice plays the key role in its properties and is of crucial importance for improved catalytic activity. This novel catalyst allows for efficient reduction of nitroarenes, carbonyls, nitriles, N-containing heterocycles, and unsaturated carbon-carbon bonds. Moreover, the reported catalyst can be used for oxidation reactions in the presence of molecular oxygen and is capable of promoting acceptorless dehydrogenation of unsaturated N-containing heterocycles, opening avenues for H 2 storage in organic compounds. The generality of the nickel silicide catalyst is demonstrated in the hydrogenation of over a hundred of structurally diverse unsaturated compounds. The wide application scope and high catalytic activity of this novel catalyst make it a nice alternative to known general hydrogenation catalysts, such as Raney nickel and noble metal-based catalysts.

  8. Synthesis of biodiesel from waste vegetable oil with large amounts of free fatty acids using a carbon-based solid acid catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Qing; Gao, Jixian; Nawaz, Zeeshan; Liao, Yuhui; Wang, Dezheng; Wang, Jinfu [Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China)

    2010-08-15

    A carbon-based solid acid catalyst was prepared by the sulfonation of carbonized vegetable oil asphalt. This catalyst was employed to simultaneously catalyze esterification and transesterification to synthesis biodiesel when a waste vegetable oil with large amounts of free fatty acids (FFAs) was used as feedstock. The physical and chemical properties of this catalyst were characterized by a variety of techniques. The maximum conversion of triglyceride and FFA reached 80.5 wt.% and 94.8 wt.% after 4.5 h at 220 C, when using a 16.8 M ratio of methanol to oil and 0.2 wt.% of catalyst to oil. The high catalytic activity and stability of this catalyst was related to its high acid site density (-OH, Broensted acid sites), hydrophobicity that prevented the hydration of -OH species, hydrophilic functional groups (-SO{sub 3}H) that gave improved accessibility of methanol to the triglyceride and FFAs, and large pores that provided more acid sites for the reactants. (author)

  9. Biomass Conversion over Heteropoly Acid Catalysts

    KAUST Repository

    Zhang, Jizhe

    2015-04-01

    Biomass is a natural resource that is both abundant and sustainable. Its efficient utilization has long been the focus of research and development efforts with the aim to substitute it for fossil-based feedstock. In addition to the production of biofuels (e.g., ethanol) from biomass, which has been to some degree successful, its conversion to high value-added chemicals is equally important. Among various biomass conversion pathways, catalytic conversion is usually preferred, as it provides a cost-effective and eco-benign route to the desired products with high selectivities. The research of this thesis is focused on the conversion of biomass to various chemicals of commercial interest by selective catalytic oxidation. Molecular oxygen is chosen as the oxidant considering its low cost and environment friendly features in comparison with commonly used hydrogen peroxide. However, the activation of molecular oxygen usually requires high reaction temperatures, leading to over oxidation and thus lower selectivities. Therefore, it is highly desirable to develop effective catalysts for such conversion systems. We use kegging-type heteropoly acids (HPAs) as a platform for catalysts design because of their high catalytic activities and ease of medication. Using HPA catalysts allows the conversion taking place at relatively low temperature, which is beneficial to saving production cost as well as to improving the reaction selectivity. The strong acidity of HPA promotes the hydrolysis of biomass of giant molecules (e.g. cellulose), which is the first as well as the most difficult step in the conversion process. Under certain circumstances, a HPA combines the merits of homogeneous and heterogeneous catalysts, acting as an efficient homogeneous catalyst during the reaction while being easily separated as a heterogeneous catalyst after the reaction. We have successfully applied HPAs in several biomass conversion systems. Specially, we prepared a HPA-based bi-functional catalyst

  10. Influence of Catalyst Acid/Base Properties in Acrolein Production by Oxidative Coupling of Ethanol and Methanol.

    Science.gov (United States)

    Lilić, Aleksandra; Bennici, Simona; Devaux, Jean-François; Dubois, Jean-Luc; Auroux, Aline

    2017-05-09

    Oxidative coupling of methanol and ethanol represents a new route to produce acrolein. In this work, the overall reaction was decoupled in two steps, the oxidation and the aldolization, by using two consecutive reactors to investigate the role of the acid/base properties of silica-supported oxide catalysts. The oxidation of a mixture of methanol and ethanol to formaldehyde and acetaldehyde was performed over a FeMoO x catalyst, and then the product mixture was transferred without intermediate separation to a second reactor, in which the aldol condensation and dehydration to acrolein were performed over the supported oxides. The impact of the acid/base properties on the selectivity towards acrolein was investigated under oxidizing conditions for the first time. The acid/base properties of the catalysts were investigated by NH 3 -, SO 2 -, and methanol-adsorption microcalorimetry. A MgO/SiO 2 catalyst was the most active in acrolein production owing to an appropriate ratio of basic to acidic sites. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Synthesis of bio-based methacrylic acid by decarboxylation of itaconic acid and citric acid catalyzed by solid transition-metal catalysts

    NARCIS (Netherlands)

    Notre, le J.E.L.; Witte-van Dijk, S.C.M.; Haveren, van J.; Scott, E.L.; Sanders, J.P.M.

    2014-01-01

    Methacrylic acid, an important monomer for the plastics industry, was obtained in high selectivity (up to 84%) by the decarboxylation of itaconic acid using heterogeneous catalysts based on Pd, Pt and Ru. The reaction takes place in water at 200–2508C without any external added pressure, conditions

  12. Solid Silica-based Sulphonic Acid as an Efficient Green Catalyst for ...

    African Journals Online (AJOL)

    NJD

    Solid Silica-based Sulphonic Acid as an Efficient Green. Catalyst for the Selective Oxidation of Sulphides to. Sulphoxides using NaCIO in Aqueous Media. Ali Amoozadeh* and Firouzeh Nemati. Department of Chemistry, Faculty of Science, Semnan University, Semnan, Iran. Received 21 October 2008, revised 6 December ...

  13. Development of biomimetic catalytic oxidation methods and non-salt methods using transition metal-based acid and base ambiphilic catalysts

    Science.gov (United States)

    MURAHASHI, Shun-Ichi

    2011-01-01

    This review focuses on the development of ruthenium and flavin catalysts for environmentally benign oxidation reactions based on mimicking the functions of cytochrome P-450 and flavoenzymes, and low valent transition-metal catalysts that replace conventional acids and bases. Several new concepts and new types of catalytic reactions based on these concepts are described. PMID:21558760

  14. On the role of acidity in amorphous silica-alumina based catalysts

    NARCIS (Netherlands)

    Poduval, D.G.

    2011-01-01

    Amorphous silica-alumina (ASA) is widely used as a solid acid catalyst or as a carrier for well-dispersed metal sulfide or metal catalysts. They are often involved in hydrocracking catalyst formulations, especially so when the aim is to produce middle distillates from heavy oil fractions. With

  15. Development of biomimetic catalytic oxidation methods and non-salt methods using transition metal-based acid and base ambiphilic catalysts.

    Science.gov (United States)

    Murahashi, Shun-Ichi

    2011-01-01

    This review focuses on the development of ruthenium and flavin catalysts for environmentally benign oxidation reactions based on mimicking the functions of cytochrome P-450 and flavoenzymes, and low valent transition-metal catalysts that replace conventional acids and bases. Several new concepts and new types of catalytic reactions based on these concepts are described. (Communicated by Ryoji Noyori, M.J.A.).

  16. Formic acid oxidation at platinum-bismuth catalysts

    Directory of Open Access Journals (Sweden)

    Popović Ksenija Đ.

    2015-01-01

    Full Text Available The field of heterogeneous catalysis, specifically catalysis on bimetallic surfaces, has seen many advances over the past few decades. Bimetallic catalysts, which often show electronic and chemical properties that are distinct from those of their parent metals, offer the opportunity to obtain new catalysts with enhanced selectivity, activity, and stability. The oxidation of formic acid is of permanent interest as a model reaction for the mechanistic understanding of the electrooxidation of small organic molecules and because of its technical relevance for fuel cell applications. Platinum is one of the most commonly used catalysts for this reaction, despite the fact that it shows a few significant disadvantages: high cost and extreme susceptibility to poisoning by CO. To solve this problem, several approaches have been used, but generally, they all consist in the modification of platinum with a second element. Especially, bismuth has received significant attention as Pt modifier. According to the results presented in this survey dealing with the effects influencing the formic acid oxidation it was found that two types of Pt-Bi bimetallic catalysts (bulk and low loading deposits on GC showed superior catalytic activity in terms of the lower onset potential and oxidation current density, as well as exceptional stability compared to Pt. The findings in this report are important for the understanding of mechanism of formic acid electrooxidation on a bulk alloy and decorated surface, for the development of advanced anode catalysts for direct formic acid fuel cells, as well as for the synthesis of novel low-loading bimetallic catalysts. The use of bimetallic compounds as the anode catalysts is an effective solution to overcoming the problems of the formic acid oxidation current stability for long term applications. In the future, the tolerance of both CO poisoning and electrochemical leaching should be considered as the key factors in the development

  17. Recovery of vanadium (V) from used catalysts in sulfuric acid production units by oxalic acid

    International Nuclear Information System (INIS)

    Abdulbaki, M.; Shino, O.

    2009-07-01

    Vanadium penta oxide (V 2 O 5 ), is used, in large quantities as a catalyst for the oxidation of SO 2 to SO 3 in sulfuric acid production units, during the oxidation process the level of the oxidation declines with the time because of catalyst poisoning. So the spent catalyst is usually through out in a specified special places by General Fertilizer Company which causes a pollution of the land. The present paper, studies the recovery of vanadium from the spent catalyst by using the oxalic acid. The optimal conditions of spent catalyst leaching have been studied. It has been shown that 2%(w/w) of oxalic acid is the most suitable for leaching process at 70 degree centigrade. The precipitation of vanadium using some alkaline media NH 4 OH has been also studied, it has been shown that ammonium hydroxide was the best at 50 degree centigrade. (author)

  18. Catalytic Transformation of Ethylbenzene over Y-Zeolite-based Catalysts

    KAUST Repository

    Al-Khattaf, Sulaiman

    2008-11-19

    Catalytic transformation of ethylbenzene (EB) has been investigated over ultrastable Y (USY)-zeolite-based catalysts in a novel riser simulator at different operating conditions. The effect of reaction conditions on EB conversion is reported. The USY catalyst (FCC-Y) was modified by steaming to form a significantly lower acidity catalyst (FCC-SY). The current study shows that the FCC-SY catalyst favors EB disproportionation more than cracking. A comparison has been made between the results of EB conversion over the lowly acidic catalyst (FCC-SY) and the highly acidic catalyst (FCC-Y) under identical conditions. It was observed that increase in catalyst acidity favored cracking of EB at the expense of disproportionation. Kinetic parameters for EB disappearance during disproportionation reaction over the FCC-SY catalyst were calculated using the catalyst activity decay function based on time on stream (TOS). © 2008 American Chemical Society.

  19. The acidic properties of mixed tin and antimony oxide catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Irving, E.A.; Taylor, D.

    1978-01-01

    The acidic properties of mixed tin + antimony oxide catalysts were studied in the isomerization of 3,3-dimethyl-1-butene, cyclopropane, 1-butene, and cis-2-butene and the dehydration of isopropanol over the mixed oxides outgassed at room temperature and 698/sup 0/K. Only the zero-order portions of the reaction were used for calculations. With catalysts outgassed at room temperature, weakly acidic sites were present, and all the reactions probably occurred by a carbonium ion mechanism with Broensted acid sites as a source of protons. The rates increased with increasing antimony content to a maximum at approx. 50 at. % and then decreased with further increase in the antimony content. Outgassing of the catalysts at 698/sup 0/K increased the isomerization rate of 3,3-dimethyl-1-butene, but decreased those for cyclopropane and isopropanol due to poisoning by the propylene produced. For 1-butene and cis-2-butene and catalysts outgassed at 698/sup 0/K, only catalysts with less than 50Vertical Bar3< antimony were active. The catalysts were poisoned by treatment with bases or with sodium acetate. A proposed correlation between rates and acidity led to the conclusion that the catalyst composition corresponding to maximum acidity differs from that for maximum selective oxidation activity. Graphs and 10 references.

  20. Structure and acidity of individual Fluid Catalytic Cracking catalyst particles studied by synchrotron-based infrared micro-spectroscopy

    NARCIS (Netherlands)

    Buurmans, I.L.C.; Soulimani, F.; Ruiz Martinez, J.; van der Bij, H.E.; Weckhuysen, B.M.

    2013-01-01

    A synchrotron-based infrared micro-spectroscopy study has been conducted to investigate the structure as well as the Brønsted and Lewis acidity of Fluid Catalytic Cracking (FCC) catalyst particles at the individual particle level. Both fresh and laboratory-deactivated catalyst particles have been

  1. Effect of Iminodiacetic Acid-Modified Nieuwland Catalyst on the Acetylene Dimerization Reaction

    Directory of Open Access Journals (Sweden)

    Yanhe You

    2017-12-01

    Full Text Available The iminodiacetic acid-modified Nieuwland catalyst not only improves the conversion of acetylene but also increases the selectivity of monovinylacetylene (MVA. A catalyst system containing 4.5% iminodiacetic acid exhibited excellent performance, and the yield of MVA was maintained at 32% after 24 h, producing an increase in the yield by 12% relative to the Nieuwland catalyst system. Based on a variety of characterization methods analysis of the crystal precipitated from the catalyst solution, it can be inferred that the outstanding performance and lifetime of the catalyst system was due to the presence of iminodiacetic acid, which increases the electron density of Cu+ and adjusts the acidity of the catalytic solution.

  2. Starch saccharification by carbon-based solid acid catalyst

    Science.gov (United States)

    Yamaguchi, Daizo; Hara, Michikazu

    2010-06-01

    The hydrolysis of cornstarch using a highly active solid acid catalyst, a carbon material bearing SO 3H, COOH and OH groups, was investigated at 353-393 K through an analysis of variance (ANOVA) and an artificial neural network (ANN). ANOVA revealed that reaction temperature and time are significant parameters for the catalytic hydrolysis of starch. The ANN model indicated that the reaction efficiency reaches a maximum at an optimal condition (water, 0.8-1.0 mL; starch, 0.3-0.4 g; catalyst, 0.3 g; reaction temperature, 373 K; reaction time, 3 h). The relationship between the reaction and these parameters is discussed on the basis of the reaction mechanism.

  3. Investigation of heterogeneous solid acid catalyst performance on low grade feedstocks for biodiesel production: A review

    International Nuclear Information System (INIS)

    Mansir, Nasar; Taufiq-Yap, Yun Hin; Rashid, Umer; Lokman, Ibrahim M.

    2017-01-01

    Highlights: • Solid acid catalysts are proficient to esterifying high free fatty acid feedstocks to biodiesel. • Heterogeneous catalysts have the advantage of easy separation and reusability. • Heterogeneous basic catalysts have limitations due to high FFA of low cost feedstocks. • Solid catalysts having acid and base sites reveal better catalyst for biodiesel production. - Abstract: The conventional fossil fuel reserves are continually declining worldwide and therefore posing greater challenges to the future of the energy sources. Biofuel alternatives were found promising to replace the diminishing fossil fuels. However, conversion of edible vegetable oils to biodiesel using homogeneous acids and base catalysts is now considered as indefensible for the future particularly due to food versus fuel competition and other environmental problems related to catalyst system and feedstock. This review has discussed the progression in research and growth related to heterogeneous catalysts used for biodiesel production for low grade feedstocks. The heterogeneous base catalysts have revealed effective way to produce biodiesel, but it has the limitation of being sensitive to high free fatty acid (FFA) or low grade feedstocks. Alternatively, solid acid catalysts are capable of converting the low grade feedstocks to biodiesel in the presence of active acid sites. The paper presents a comprehensive review towards the investigation of solid acid catalyst performance on low grade feedstock, their category, properties, advantages, limitations and possible remedy to their drawbacks for biodiesel production.

  4. Synthesis of bio-based methacrylic acid by decarboxylation of itaconic acid and citric acid catalyzed by solid transition-metal catalysts.

    Science.gov (United States)

    Le Nôtre, Jérôme; Witte-van Dijk, Susan C M; van Haveren, Jacco; Scott, Elinor L; Sanders, Johan P M

    2014-09-01

    Methacrylic acid, an important monomer for the plastics industry, was obtained in high selectivity (up to 84%) by the decarboxylation of itaconic acid using heterogeneous catalysts based on Pd, Pt and Ru. The reaction takes place in water at 200-250 °C without any external added pressure, conditions significantly milder than those described previously for the same conversion with better yield and selectivity. A comprehensive study of the reaction parameters has been performed, and the isolation of methacrylic acid was achieved in 50% yield. The decarboxylation procedure is also applicable to citric acid, a more widely available bio-based feedstock, and leads to the production of methacrylic acid in one pot in 41% selectivity. Aconitic acid, the intermediate compound in the pathway from citric acid to itaconic acid was also used successfully as a substrate. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Synthesis and properties of catalysts prepared from silicomolybdovanadium heteropoly acid

    International Nuclear Information System (INIS)

    Chumachenko, N.N.; Tarasova, D.V.; Nikoro, T.A.; Yaroslavtseva, I.V.

    1984-01-01

    Catalytic properties of samples prepared of silicomolybdovanadium heteropoly acid (HPA) have been investigated. The massive catalyst is shown to be comparatively low effective in the reaction of acrolein oxidation to acrylic acid. Impregnation of coarse-dispersed silica gel by the HPA solution results in the formation of active and selective catalyst, whereas low-active catalyst of deep oxidation is formed on the base of high-dispersed silica gel. The obtained data are explained by the formation and stabilization of different forms of vanadium- and molybdenum-containing compounds on the carrier surface

  6. Liquid-Phase Catalytic Transfer Hydrogenation of Furfural over Homogeneous Lewis Acid-Ru/C Catalysts.

    Science.gov (United States)

    Panagiotopoulou, Paraskevi; Martin, Nickolas; Vlachos, Dionisios G

    2015-06-22

    The catalytic performance of homogeneous Lewis acid catalysts and their interaction with Ru/C catalyst are studied in the catalytic transfer hydrogenation of furfural by using 2-propanol as a solvent and hydrogen donor. We find that Lewis acid catalysts hydrogenate the furfural to furfuryl alcohol, which is then etherified with 2-propanol. The catalytic activity is correlated with an empirical scale of Lewis acid strength and exhibits a volcano behavior. Lanthanides are the most active, with DyCl3 giving complete furfural conversion and a 97 % yield of furfuryl alcohol at 180 °C after 3 h. The combination of Lewis acid and Ru/C catalysts results in synergy for the stronger Lewis acid catalysts, with a significant increase in the furfural conversion and methyl furan yield. Optimum results are obtained by using Ru/C combined with VCl3 , AlCl3 , SnCl4 , YbCl3 , and RuCl3 . Our results indicate that the combination of Lewis acid/metal catalysts is a general strategy for performing tandem reactions in the upgrade of furans. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Advances in Base-Free Oxidation of Bio-Based Compounds on Supported Gold Catalysts

    Directory of Open Access Journals (Sweden)

    Robert Wojcieszak

    2017-11-01

    Full Text Available The oxidation of bio-based molecules in general, and of carbohydrates and furanics in particular, is a highly attractive process. The catalytic conversion of renewable compounds is of high importance. Acids and other chemical intermediates issued from oxidation processes have many applications related, especially, to food and detergents, as well as to pharmaceutics, cosmetics, and the chemical industry. Until now, the oxidation of sugars, furfural, or 5-hydroxymethylfurfural has been mainly conducted through biochemical processes or with strong inorganic oxidants. The use of these processes very often presents many disadvantages, especially regarding products separation and selectivity control. Generally, the oxidation is performed in batch conditions using an appropriate catalyst and a basic aqueous solution (pH 7–9, while bubbling oxygen or air through the slurry. However, there is a renewed interest in working in base-free conditions to avoid the production of salts. Actually, this gives direct access to different acids or diacids without laborious product purification steps. This review focuses on processes applying gold-based catalysts, and on the catalytic properties of these systems in the base-free oxidation of important compounds: C5–C6 sugars, furfural, and 5-hydroxymethylfurfural. A better understanding of the chemical and physical properties of the catalysts and of the operating conditions applied in the oxidation reactions is essential. For this reason, in this review we put emphasis on these most impacting factors.

  8. Dissolution of Metal Supported Spent Auto Catalysts in Acids

    Directory of Open Access Journals (Sweden)

    Fornalczyk A.

    2016-03-01

    Full Text Available Metal supported auto catalysts, have been used in sports and racing cars initially, but nowadays their application systematically increases. In Metal Substrate (supported Converters (MSC, catalytic functions are performed by the Platinum Group Metals (PGM: Pt, Pd, Rh, similarly to the catalysts on ceramic carriers. The contents of these metals make that spent catalytic converters are valuable source of precious metals. All over the world there are many methods for the metals recovery from the ceramic carriers, however, the issue of platinum recovery from metal supported catalysts has not been studied sufficiently yet. The paper presents preliminary results of dissolution of spent automotive catalyst on a metal carrier by means of acids: H2SO4, HCl, HNO3, H3PO4. The main assumption of the research was the dissolution of base metals (Fe, Cr, Al from metallic carrier of catalyst, avoiding dissolution of PGMs. Dissolution was the most effective when concentrated hydrochloric acid, and 2M sulfuric acid (VI was used. It was observed that the dust, remaining after leaching, contained platinum in the level of 0.8% and 0.7%, respectively.

  9. Hydrogenation of Lactic Acid to 1,2-propanediol over Ru-based catalysts

    NARCIS (Netherlands)

    Liu, K.; Huang, X.; Pidko, E.A.; Hensen, E.J.M.

    2018-01-01

    The catalytic hydrogenation of lactic acid to 1,2-propanediol with supported Ru catalysts in water was investigated. The influence of catalyst support (activated carbon, γ-Al2O3, SiO2, TiO2, and CeO2) and promoters (Pd, Au, Mo, Re, Sn) on the catalytic performance was evaluated. Catalytic tests

  10. A General Simulator for Acid-Base Titrations

    Science.gov (United States)

    de Levie, Robert

    1999-07-01

    General formal expressions are provided to facilitate the automatic computer calculation of acid-base titration curves of arbitrary mixtures of acids, bases, and salts, without and with activity corrections based on the Davies equation. Explicit relations are also given for the buffer strength of mixtures of acids, bases, and salts.

  11. Steam Reforming of Acetic Acid over Co-Supported Catalysts: Coupling Ketonization for Greater Stability

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Stephen D. [Energy and Environmental; Spies, Kurt A. [Energy and Environmental; Mei, Donghai [Energy and Environmental; Kovarik, Libor [Energy and Environmental; Kutnyakov, Igor [Energy and Environmental; Li, Xiaohong S. [Energy and Environmental; Lebarbier Dagle, Vanessa [Energy and Environmental; Albrecht, Karl O. [Energy and Environmental; Dagle, Robert A. [Energy and Environmental

    2017-09-11

    We report on the markedly improved stability of a novel 2-bed catalytic system, as compared to a conventional 1-bed steam reforming catalyst, for the production of H2 from acetic acid. The 2-bed catalytic system comprises of i) a basic oxide ketonization catalyst for the conversion of acetic acid to acetone, and a ii) Co-based steam reforming catalyst, both catalytic beds placed in sequence within the same unit operation. Steam reforming catalysts are particularly prone to catalytic deactivation when steam reforming acetic acid, used here as a model compound for the aqueous fraction of bio-oil. Catalysts comprising MgAl2O4, ZnO, CeO2, and activated carbon (AC) both with and without Co-addition were evaluated for conversion of acetic acid and acetone, its ketonization product, in the presence of steam. It was found that over the bare oxide support only ketonization activity was observed and coke deposition was minimal. With addition of Co to the oxide support steam reforming activity was facilitated and coke deposition was significantly increased. Acetone steam reforming over the same Co-supported catalysts demonstrated more stable performance and with less coke deposition than with acetic acid feedstock. DFT analysis suggests that over Co surface CHxCOO species are more favorably formed from acetic acid versus acetone. These CHxCOO species are strongly bound to the Co catalyst surface and could explain the higher propensity for coke formation from acetic acid. Based on these findings, in order to enhance stability of the steam reforming catalyst a dual-bed (2-bed) catalyst system was implemented. Comparing the 2-bed and 1-bed (Co-supported catalyst only) systems under otherwise identical reaction conditions the 2-bed demonstrated significantly improved stability and coke deposition was decreased by a factor of 4.

  12. Citric acid induced promoted dispersion of Pt on the support and enhanced catalytic activities for a Pt-based catalyst

    Science.gov (United States)

    Cheng, Tianqiong; Wang, Jianli; Wang, Suning; Cui, Yajuan; Zhang, Hailong; Yan, Shuang; Yuan, Shandong; Chen, Yaoqiang

    2017-12-01

    Citric acid (CA), as the chelating agent, was introduced to obtain the enhanced Pt dispersion and catalytic activities for the Pt-based catalysts supported on oxygen-storage material. The role and content of CA were investigated systematically. It was found that the citric acid-assisted catalysts showed better Pt dispersion and smaller nanoparticle size of Pt. Thus, the catalyst had lower reduction temperature, preferable thermostability and possessed more oxidation state of Pt species under the oxidation atmosphere. The citric acid-induced fresh catalysts were excellent to convert CO and the corresponding aged ones exhibited higher activities for the elimination of all the target pollutants. Among the aged catalysts, P2-a (the mole ratio of Pt/CA is 2:1) presented the best performance. Particularly, compared with the reference sample (Pc-a), the light-off temperatures (T50) of NO, HC and CO for P2-a decreased by 39 °C, 42 °C and 72 °C, respectively, and the full-conversion temperatures (T90) of NO, HC and CO for P2-a decreased by 44 °C, 44 °C and 48 °C, respectively. Therefore, this work provides a facile and valid method to manufacture advanced catalysts for purification of the vehicle exhaust in the future.

  13. Molybdenum-containing acidic catalysts to convert cellulosic biomass to glycolic acid

    KAUST Repository

    Han, Yu

    2014-09-30

    Embodiments of the present invention include methods and compositions related to catabolic conversion of cellulosic biomass to glycolic acid using molybdenum-containing acidic catalysts. The invention includes the use of heteropoly and isopoly acids and salts as the molybdenum-containing multi-functional catalysts for biomass conversion. In embodiments of the invention, the reactions employ successive hydrolysis, retro-aldol fragmentation, and selective oxidation in a noble metal-free system.

  14. Direct conversion of cellulose to glycolic acid with a phosphomolybdic acid catalyst in a water medium

    KAUST Repository

    Zhang, Jizhe

    2012-08-03

    Direct conversion of cellulose to fine chemicals has rarely been achieved. We describe here an eco-benign route for directly converting various cellulose-based biomasses to glycolic acid in a water medium and oxygen atmosphere in which heteromolybdic acids act as multifunctional catalysts to catalyze the hydrolysis of cellulose, the fragmentation of monosaccharides, and the selective oxidation of fragmentation products. With commercial α-cellulose powder as the substrate, the yield of glycolic acid reaches 49.3%. This catalytic system is also effective with raw cellulosic biomass, such as bagasse or hay, as the starting materials, giving rise to remarkable glycolic acid yields of ∼30%. Our heteropoly acid-based catalyst can be recovered in solid form after reaction by distilling out the products and solvent for reuse, and it exhibits consistently high performance in multiple reaction runs. © 2012 American Chemical Society.

  15. Kinetics of acetic acid synthesis from ethanol over a Cu/SiO2 catalyst

    DEFF Research Database (Denmark)

    Voss, Bodil; Schjødt, Niels Christian; Grunwaldt, Jan-Dierk

    2011-01-01

    The dehydrogenation of ethanol via acetaldehyde for the synthesis of acetic acid over a Cu based catalyst in a new process is reported. Specifically, we have studied a Cu on SiO2 catalyst which has shown very high selectivity to acetic acid via acetaldehyde compared to competing condensation routes....... In light of this, an observed intrinsic activity difference between whole catalyst pellets and crushed pellets may be explained by the Cu crystal size and growth rate being functions of the catalyst particle size and time....

  16. Conversion of bio-feedstocks through acid and basic zeolites and catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Buzzoni, R.; Bosetti, A.; Delledonne, D.; Perego, C. [eni S.p.A. Research Centre for Non-Conventional Energy, Novara (Italy). Ist. eni Donegani

    2012-07-01

    Not far in the future, a significant part of fuels and chemicals will be originated by renewable biomass resources. In this respect, zeolite catalysts may help to develop a new generation of bio-fuel and chemical processes. In the new bio-paradigm not only acid but also basic materials will have an important and dominant role. Just to give some examples, basic zeolites based catalysts have been proposed for transesterification of triglyceride esters of fatty acids to biodiesel, for disrupting the lignin polymer by base catalyzed depolymerisation and for one pot lignin liquefaction by hydrogenation. (orig.)

  17. Dehydration of alcohols using solid acid catalysts

    OpenAIRE

    Cholerton, Mary

    2014-01-01

    Solid acid catalysts were prepared through silicon substitution into aluminophosphate frameworks. Silicon incorporation was confirmed using solid state nuclear magnetic resonance spectroscopy. The nature of the acid sites generated was determined using Fourier Transform infrared spectroscopy. These materials were tested as catalysts for the dehydration of ethanol to ethylene at low operating temperatures. The materials were active for dehydration of ethanol to ethylene with significant differ...

  18. High-performance oxygen reduction catalysts in both alkaline and acidic fuel cells based on pre-treating carbon material and iron precursor

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ping; Barkholtz, Heather M.; Wang, Ying; Xu, Weilin; Liu, Dijia; Zhuang, Lin

    2017-12-01

    We demonstrate a new and simple method for pre-treating the carbon material and iron precursor to prepare oxygen reduction reaction (ORR) catalysts, which can produce super-high performance and stability in alkaline solution, with high performance in acid solution. This strategy using cheap materials is simply controllable. Moreover, it has achieved smaller uniform nanoparticles to exhibit high stability, and the synergetic effect of Fe and N offered much higher performance in ORR than commercial Pt/C, with high maximum power density in alkaline and acid fuel cell test. So it can make this kind of catalysts be the most promising alternatives of Pt-based catalysts with best performance/price.

  19. Hydrogenation of levulinic acid to γ-valerolactone over anatase-supported Ru catalysts : Effect of catalyst synthesis protocols on activity

    NARCIS (Netherlands)

    Piskun, A.s.; Ftouni, J.; Tang, Z.; Weckhuysen, B.m.; Bruijnincx, P.c.a.; Heeres, Hero J.

    2018-01-01

    γ-Valerolactone (GVL) is a value-added renewable chemical with great potential and can be obtained from biomass by the hydrogenation of levulinic acid (LA) using metal-based catalysts, such as Ru/TiO2. We here report an in depth study of the effect of catalyst synthesis parameters on the performance

  20. Study of Pd-Au/MWCNTs formic acid electrooxidation catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Mikolajczuk, Anna; Borodzinski, Andrzej; Kedzierzawski, Piotr; Lesiak, Beata [Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa (Poland); Stobinski, Leszek [Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa (Poland); Faculty of Materials Science and Engineering, Warsaw University of Technology, ul. Woloska 141, 02-507 Warsaw (Poland); Koever, Laszlo; Toth, Jozsef [Institute of Nuclear Research, Hungarian Academy of Sciences (ATOMKI), P. O. Box 51, 4001 Debrecen (Hungary); Lin, Hong-Ming [Department of Materials Engineering, Tatung University, 40, Chungshan N. Rd., 3rd Sec, 104, Taipei (China)

    2010-12-15

    The Pd-Au multiwall carbon nanotubes (MWCNTs) supported catalyst exhibits higher power density in direct formic acid fuel cell (DFAFC) than similar Pd/MWCNTs catalyst. The Pd-Au/MWCNTs catalyst also exhibits higher activity and is more stable in electrooxidation reaction of formic acid during cyclic voltammetry (CV) measurements. After preparation by polyol method, the catalyst was subjected to two type of treatments: (I) annealing at 250 C in 100% of Ar, (II) reducing in 5% of H{sub 2} in Ar atmosphere at 200 C. It was observed that the catalyst after treatment I was completely inactive, whereas after treatment II exhibited high activity. In order to explain this effect the catalysts were characterized by electron spectroscopy methods. The higher initial catalytic activity of Pd-Au/MWCNTs catalyst than Pd/MWCNTs catalyst in reaction of formic acid electrooxidation was attributed to electronic effect of gold in Pd-Au solution, and larger content of small Au nanoparticles of 1 nm size. The catalytic inactivity of Pd-Au/MWCNTs catalysts annealed in argon is attributed to carbon amorphous overlayer covering of Pd oxide shell on the metallic nanoparticles. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Direct hydrothermal liquefaction of undried macroalgae Enteromorpha prolifera using acid catalysts

    International Nuclear Information System (INIS)

    Yang, Wenchao; Li, Xianguo; Liu, Shishi; Feng, Lijuan

    2014-01-01

    Highlights: • Bio-oil from liquefaction of wet E. prolifera was as feasible as dry powder. • Adding acid catalysts could improve the flow property of bio-oil. • Alkenes in the bio-oil converted to ketones in the presence of acid catalysts. • Content of 5-methyl furfural increased in the bio-oil obtained with acid catalysts. • Esters were formed in the bio-oil when adding sulfuric acid as a catalyst. - Abstract: Direct liquefaction of macroalgae Enteromorpha prolifera without predrying treatment was performed in a batch reactor. Effects of temperature, reaction time, biomass-to-water ratio and acid catalysts (sulfuric acid and acetic acid) on liquefaction products were investigated. Raw material and liquefaction products were analyzed by elemental analysis, Fourier transform infrared (FT-IR) and gas chromatography–mass spectrometry (GC–MS). Results showed that liquefaction at 290 °C for 20 min with 1:3 biomass-to-water ratio produced the highest bio-oil yield of 28.4 wt%, and high heating value (HHV) was 29.5 MJ/kg. Main components of bio-oil were fatty acids, ketones, alkenes and 5-methyl furfural, and main components of water soluble organics (WSOs) were pyridines, carboxylic acids and glycerol. In the bio-oil obtained with acid catalysts, content of ketones significantly increased while alkenes disappeared. Content of 5-methyl furfural also increased. Flow property of bio-oils was improved in the presence of acid catalysts. Moreover, esters were formed when adding sulfuric acid

  2. The use of niobium based catalysts for liquid fuel production

    Directory of Open Access Journals (Sweden)

    Reguera Frank Martin

    2004-01-01

    Full Text Available The catalytic properties of niobium based catalysts were investigated in the conversion of oleic acid to liquid fuels at atmospheric pressure and at 623 K. The catalytic tests were performed in a fixed bed and continuous flow reactor using an acid to catalyst ratio equal to 4 and N2 as carrier gas. The reaction products were analyzed by gas chromatography and acidity measurements. NH3 temperature programmed desorption, N2 adsorption-desorption (BET method and Xray diffraction were also performed in order to determine the structural and acidic properties of the catalysts. From the catalytic tests, it was detected the formation of compounds in the range of gasoline, diesel and lubricant oils. Higher catalytic activity and selectivity for diesel fuel were observed for the catalysts NbOPO4 and H3PO4/Nb2O5 that possesses higher acidities and surface areas.

  3. Reaction kinetics of free fatty acids esterification in palm fatty acid distillate using coconut shell biochar sulfonated catalyst

    Science.gov (United States)

    Hidayat, Arif; Rochmadi, Wijaya, Karna; Budiman, Arief

    2015-12-01

    Recently, a new strategy of preparing novel carbon-based solid acids has been developed. In this research, the esterification reactions of Palm Fatty Acid Distillate (PFAD) with methanol, using coconut shell biochar sulfonated catalyst from biomass wastes as catalyst, were studied. In this study, the coconut shell biochar sulfonated catalysts were synthesized by sulfonating the coconut shell biochar using concentrated H2SO4. The kinetics of free fatty acid (FFA) esterification in PFAD using a coconut shell biochar sulfonated catalyst was also studied. The effects of the mass ratio of catalyst to oil (1-10%), the molar ratio of methanol to oil (6:1-12:1), and the reaction temperature (40-60°C) were studied for the conversion of PFAD to optimize the reaction conditions. The results showed that the optimal conditions were an methanol to PFAD molar ratio of 12:1, the amount of catalyst of 10%w, and reaction temperature of 60°C. The proposed kinetic model shows a reversible second order reaction and represents all the experimental data satisfactorily, providing deeper insight into the kinetics of the reaction.

  4. Catalyst Degradation in High Temperature Proton Exchange Membrane Fuel Cells Based on Acid Doped Polybenzimidazole Membranes

    DEFF Research Database (Denmark)

    Cleemann, Lars Nilausen; Buazar, F.; Li, Qingfeng

    2013-01-01

    and multi‐walled carbon nanotubes were used as supports for electrode catalysts and evaluated in accelerated durability tests under potential cycling at 150 °C. Measurements of open circuit voltage, area specific resistance and hydrogen permeation through the membrane were carried out, indicating little...... contribution of the membrane degradation to the performance losses during the potential cycling tests. As the major mechanism of the fuel cell performance degradation, the electrochemical active area of the cathodic catalysts showed a steady decrease in the cyclic voltammetric measurements, which was also......Degradation of carbon supported platinum catalysts is a major failure mode for the long term durability of high temperature proton exchange membrane fuel cells based on phosphoric acid doped polybenzimidazole membranes. With Vulcan carbon black as a reference, thermally treated carbon black...

  5. Production of Biodiesel by Esterification of Free Fatty Acid over Solid Catalyst from Biomass Waste

    Science.gov (United States)

    Mukti, N. I. F.; Sutrisno, B.; Hidayat, A.

    2018-05-01

    Recently, low cost feedstocks have been utilized to replace vegetable oils in order to improve the economic feasibility of biodiesel. The esterification of free fatty acid (FFA) on Palm Fatty Acid Distillate (PFAD) with methanol using solid catalyst generated from bagasse fly ash is a promising method to convert FFA into biodiesel. In this research, the esterification of FFA on PFAD using the sulfonated bagasse fly ash catalyst was studied. The performances of the catalysts were evaluated in terms of the reaction temperatures, the molar ratios of methanol to PFAD, and the catalyst loading. The effects of the mass ratio of catalyst to oil (1-10%), the molar ratio of methanol to oil (6:1-12:1), and the reaction temperature (40-60°C) were studied for the conversion of PFAD to optimize the reaction conditions. The results showed that the optimum conditions were methanol to PFAD molar ratio of 12:1, the amount of catalyst of 10%wt. of PFAD, and reaction temperature of 6°C. The reusability of the solid acid carbon catalysts was also studied in this work. The catalytic activity decreased up to 38% after third cycle. The significant decline in catalyst esterification activity was due to acid site leaching. The physico-characteristics and acid site densities were analyzed by Nitrogen gas adsorption, surface functional groups by Fourier transform infrared spectroscopy (FT-IR), elemental analysis using X-ray fluorescent (XRF), and acid-base back titration methods for determination of acid density.

  6. Acid Dissolution of Depleted Uranium from Catalyst using Microwave

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Jin Hyun; Jeong, Seong Gi; Park, Kwang Heon [Kyunghee University, Yongin (Korea, Republic of)

    2011-05-15

    The separation process of uranium is one of the most important fields in nuclear industry because uranium is used primary in nuclear power plants. Uranium ores are treated by either acid or alkaline reagents. Uranium can be dissolved by acid or alkaline solutions. There are two oxidation states in which the hexavalent form, the oxide of which is UO{sub 3}, and the tetravalent form, the oxide of which is UO{sub 2}. However, depleted uranium(DU) has also been used as a catalyst in specialized chemical reaction such as ammoxidation. The preferred catalyst for propylene oxidation with ammonia was a uranium oxide-antimony oxide composition. The active phase of catalyst was known as USbO{sub 5} and USb{sub 3}O{sub 10}. There is pentavalent form. Waste catalyst containing DU was generated and stored in chemical industry. In this work, we removed DU from catalyst by acid dissolution

  7. Molybdenum-containing acidic catalysts to convert cellulosic biomass to glycolic acid

    KAUST Repository

    Han, Yu; Zhang, Jizhe; Liu, Xin

    2014-01-01

    Embodiments of the present invention include methods and compositions related to catabolic conversion of cellulosic biomass to glycolic acid using molybdenum-containing acidic catalysts. The invention includes the use of heteropoly and isopoly acids

  8. Liquefaction of kraft lignin by hydrocracking with simultaneous use of a novel dual acid-base catalyst and a hydrogenation catalyst.

    Science.gov (United States)

    Wang, Jindong; Li, Wenzhi; Wang, Huizhen; Ma, Qiaozhi; Li, Song; Chang, Hou-Min; Jameel, Hasan

    2017-11-01

    In this study, a novel catalyst, S 2 O 8 2- -KNO 3 /TiO 2 , which has active acidic and basic sites, was prepared and used in lignin hydrocracking with a co-catalyst, Ru/C. Ru/C is an efficient hydrogenation catalyst and S 2 O 8 2- -KNO 3 /TiO 2 is a dual catalyst, which could efficiently degrade lignin. This catalytic hydrogenation system can reduce solid products to less than 1%, while giving a high liquid product yield of 93%. Catalytic hydrocracking of kraft lignin at 320°C for 6h gave 93% liquid product with 0.5% solid product. Most of this liquid product was soluble in petroleum ether (60% of 93%), which is a clear liquid and comprises mainly of monomeric and dimeric degradation products. These results demonstrated that the combination of the two catalysts is an efficient catalyst for liquefaction of lignin, with little char formation (∼1%). This concept has the potential to produce valuable chemicals and fuels from lignin under moderate conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Biodiesel production from Silybum marianum L. seed oil with high FFA content using sulfonated carbon catalyst for esterification and base catalyst for transesterification

    International Nuclear Information System (INIS)

    Fadhil, Abdelrahman B.; Aziz, Akram M.; Al-Tamer, Marwa H.

    2016-01-01

    Highlights: • PET was converted to activated carbon and then sulfonated to prepare carbon acid catalyst. • Carbon acid catalyst was used for esterification of high acid value Silybum marianum L. seed oil. • Biodiesel was obtained with 96.98% efficiency. - Abstract: In this research work, waste of polyethylene terephthalate (PET) was converted into activated carbon and the latter was used in the preparation of a carbon acid catalyst. Waste of PET was converted into activated carbon via carbonization and steam activation, then the activated carbon was sulfonated using fuming sulfuric acid in order to produce the carbon acid catalyst. The prepared carbon acid catalyst was tested for esterification of high acid value non-edible oil, Silybum marianum L. seed oil (SMSO) via optimized protocol. Amount of the carbon acid catalyst, methanol to oil molar ratio, temperature and time were the experimental variables optimized. Esterification of SMSO with methanol using the prepared carbon acid catalyst reduced its parent acid value (20.0 mg KOH/g) to the acceptable limits for base-catalyzed transesterification (<2.0 mg KOH/g) using 6.0% w/w of the catalyst, 15:1 methanol to oil molar ratio, 68 °C reaction temperature and 180 min of reaction. The performance of the catalyst was reduced gradually during its recycling and reached to 60.0% at the 5th cycle. Kinetics of esterification of SMSO using the prepared carbon acid catalyst followed pseudo first order kinetics, and the activation energy was found to be 70.98 kJ/mol. The esterified oil was converted to biodiesel through optimized base-catalyzed transesterification with methanol. Biodiesel with (96.98% yield and purity of 96.69% w/w) yield was obtained using 0.80% KOH w/w, 6:1 methanol to oil molar ratio, 60 °C reaction temperature, 75 min of reaction and 600 rpm rate of stirring. The biodiesel properties were within the recommended biodiesel standards as prescribed by ASTM D 6751 and EN 14214. Transesterification of

  10. Elaboration and characterisation of acids catalyst for the obtention of amines

    International Nuclear Information System (INIS)

    Khemaissia, S.; Zaoui, B.; Nibou, D.

    1997-04-01

    The nuclear energy has shown the interest of aminated substances as solvents for removal and purification. These extractants are generally used in uranium ores treatment processes and several technology fields, specially, in organic and pharmaceutical industries. The present work deals with elaboration and characterization of acidic solid catalyst used in aminated extractants obtaining

  11. Enhancement of Biodiesel Production from Marine Alga, Scenedesmus sp. through In Situ Transesterification Process Associated with Acidic Catalyst

    Directory of Open Access Journals (Sweden)

    Ga Vin Kim

    2014-01-01

    Full Text Available The aim of this study was to increase the yield of biodiesel produced by Scenedesmus sp. through in situ transesterification by optimizing various process parameters. Based on the orthogonal matrix analysis for the acidic catalyst, the effects of the factors decreased in the order of reaction temperature (47.5% > solvent quantity (26.7% > reaction time (17.5% > catalyst amount (8.3%. Based on a Taguchi analysis, the effects of the factors decreased in the order of solvent ratio (34.36% > catalyst (28.62% > time (19.72% > temperature (17.32%. The overall biodiesel production appeared to be better using NaOH as an alkaline catalyst rather than using H2SO4 in an acidic process, at 55.07 ± 2.18% (based on lipid weight versus 48.41 ± 0.21%. However, in considering the purified biodiesel, it was found that the acidic catalyst was approximately 2.5 times more efficient than the alkaline catalyst under the following optimal conditions: temperature of 70°C (level 2, reaction time of 10 hrs (level 2, catalyst amount of 5% (level 3, and biomass to solvent ratio of 1 : 15 (level 2, respectively. These results clearly demonstrated that the acidic solvent, which combined oil extraction with in situ transesterification, was an effective catalyst for the production of high-quantity, high-quality biodiesel from a Scenedesmus sp.

  12. Enhancement of Biodiesel Production from Marine Alga, Scenedesmus sp. through In Situ Transesterification Process Associated with Acidic Catalyst

    Science.gov (United States)

    Kim, Ga Vin; Choi, WoonYong; Kang, DoHyung; Lee, ShinYoung; Lee, HyeonYong

    2014-01-01

    The aim of this study was to increase the yield of biodiesel produced by Scenedesmus sp. through in situ transesterification by optimizing various process parameters. Based on the orthogonal matrix analysis for the acidic catalyst, the effects of the factors decreased in the order of reaction temperature (47.5%) > solvent quantity (26.7%) > reaction time (17.5%) > catalyst amount (8.3%). Based on a Taguchi analysis, the effects of the factors decreased in the order of solvent ratio (34.36%) > catalyst (28.62%) > time (19.72%) > temperature (17.32%). The overall biodiesel production appeared to be better using NaOH as an alkaline catalyst rather than using H2SO4 in an acidic process, at 55.07 ± 2.18% (based on lipid weight) versus 48.41 ± 0.21%. However, in considering the purified biodiesel, it was found that the acidic catalyst was approximately 2.5 times more efficient than the alkaline catalyst under the following optimal conditions: temperature of 70°C (level 2), reaction time of 10 hrs (level 2), catalyst amount of 5% (level 3), and biomass to solvent ratio of 1 : 15 (level 2), respectively. These results clearly demonstrated that the acidic solvent, which combined oil extraction with in situ transesterification, was an effective catalyst for the production of high-quantity, high-quality biodiesel from a Scenedesmus sp. PMID:24689039

  13. Enhancement of biodiesel production from marine alga, Scenedesmus sp. through in situ transesterification process associated with acidic catalyst.

    Science.gov (United States)

    Kim, Ga Vin; Choi, Woonyong; Kang, Dohyung; Lee, Shinyoung; Lee, Hyeonyong

    2014-01-01

    The aim of this study was to increase the yield of biodiesel produced by Scenedesmus sp. through in situ transesterification by optimizing various process parameters. Based on the orthogonal matrix analysis for the acidic catalyst, the effects of the factors decreased in the order of reaction temperature (47.5%) > solvent quantity (26.7%) > reaction time (17.5%) > catalyst amount (8.3%). Based on a Taguchi analysis, the effects of the factors decreased in the order of solvent ratio (34.36%) > catalyst (28.62%) > time (19.72%) > temperature (17.32%). The overall biodiesel production appeared to be better using NaOH as an alkaline catalyst rather than using H2SO4 in an acidic process, at 55.07 ± 2.18% (based on lipid weight) versus 48.41 ± 0.21%. However, in considering the purified biodiesel, it was found that the acidic catalyst was approximately 2.5 times more efficient than the alkaline catalyst under the following optimal conditions: temperature of 70 °C (level 2), reaction time of 10 hrs (level 2), catalyst amount of 5% (level 3), and biomass to solvent ratio of 1 : 15 (level 2), respectively. These results clearly demonstrated that the acidic solvent, which combined oil extraction with in situ transesterification, was an effective catalyst for the production of high-quantity, high-quality biodiesel from a Scenedesmus sp.

  14. Palladium catalyst system comprising zwitterion and/or acid-functionalized ionic liquid

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention concerns a catalyst system in particular a catalyst system comprising Palladium (Pd), a zwitterion and/or an acid-functionalized ionic liquid, and one or more phosphine ligands, wherein the Pd catalyst can be provided by a complex precursor, such as Pd(CH3COO)2, PdCI2, Pd(CH3......COCHCOCH3), Pd (CF3COO)2, Pd(PPh3)4 or Pd2(dibenzylideneacetone)3. Such catalyst systems can be used for e.g. alkoxycarbonylation reactions, carboxylation reactions, and/or in a co-polymerization reaction, e.g. in the production of methyl propionate and/or propanoic acid, optionally in processes forming...... methyl methacrylate and/or methacrylic acid. Catalyst systems according to the invention are suitable for reactions forming separable product and catalyst phases and supported ionic liquid phase SILP applications....

  15. Highly active carbon supported Pd cathode catalysts for direct formic acid fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Mikolajczuk-Zychora, A., E-mail: amikolajczuk@ichf.edu.pl [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Borodzinski, A.; Kedzierzawski, P.; Mierzwa, B. [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Mazurkiewicz-Pawlicka, M. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw (Poland); Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, Warsaw (Poland); Stobinski, L. [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, Warsaw (Poland); Ciecierska, E. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw (Poland); Zimoch, A.; Opałło, M. [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland)

    2016-12-01

    Highlights: • Palladium catalyst used on the cathode DFAFC is comparable to commercial platinum catalyst. • The treatment of carbon supports in nitric acid(V) increases the electrochemically available metal surface area and the catalytic activity in oxygen reduction reaction of catalysts. - Abstract: One of the drawbacks of low-temperature fuel cells is high price of platinum-based catalysts used for the electroreduction of oxygen at the cathode of the fuel cell. The aim of this work is to develop the palladium catalyst that will replace commonly used platinum cathode catalysts. A series of palladium catalysts for oxygen reduction reaction (ORR) were prepared and tested on the cathode of Direct Formic Acid Fuel Cell (DFAFC). Palladium nanoparticles were deposited on the carbon black (Vulcan) and on multiwall carbon nanotubes (MWCNTs) surface by reduction of palladium(II) acetate dissolved in ethanol. Hydrazine was used as a reducing agent. The effect of functionalization of the carbon supports on the catalysts physicochemical properties and the ORR catalytic activity on the cathode of DFAFC was studied. The supports were functionalized by treatment in nitric acid for 4 h at 80 °C. The structure of the prepared catalysts has been characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscope (TEM) and cyclic voltammetry (CV). Hydrophilicity of the catalytic layers was determined by measuring contact angles of water droplets. The performance of the prepared catalysts has been compared with that of the commercial 20 wt.% Pt/C (Premetek) catalyst. The maximum power density obtained for the best palladium catalyst, deposited on the surface of functionalized carbon black, is the same as that for the commercial Pt/C (Premetek). Palladium is cheaper than platinum, therefore the developed cathode catalyst is promising for future applications.

  16. Aerobic Oxidation of Xylose to Xylaric acid in Water over Pt Catalysts.

    Science.gov (United States)

    Saha, Basudeb; Sadula, Sunitha

    2018-05-02

    Energy-efficient catalytic conversion of biomass intermediates to functional chemicals can enable bio-products viable. Herein, we report an efficient and low temperature aerobic oxidation of xylose to xylaric acid, a promising bio-based chemical for the production of glutaric acid, over commercial catalysts in water. Among several heterogeneous catalysts investigated, Pt/C exhibits the best activity. Systematic variation of reaction parameters in the pH range of 2.5 to 10 suggests that the reaction is fast at higher temperatures but high C-C scission of intermediate C5-oxidized products to low carbon carboxylic acids undermines xylaric acid selectivity. The C-C cleavage is also high in basic solution. The oxidation at neutral pH and 60 C achieves the highest xylaric acid yield (64%). O2 pressure and Pt-amount have significant influence on the reactivity. Decarboxylation of short chain carboxylic acids results in formation of CO2, causing some carbon loss; however such decarboxylation is slow in the presence of xylose. The catalyst retained comparable activity, in terms of product selectivity, after five cycles with no sign of Pt leaching. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Calcium and lanthanum solid base catalysts for transesterification

    Science.gov (United States)

    Ng, K. Y. Simon; Yan, Shuli; Salley, Steven O.

    2015-07-28

    In one aspect, a heterogeneous catalyst comprises calcium hydroxide and lanthanum hydroxide, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g. In another aspect, a heterogeneous catalyst comprises a calcium compound and a lanthanum compound, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g, and a total basicity of about 13.6 mmol/g. In further another aspect, a heterogeneous catalyst comprises calcium oxide and lanthanum oxide, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g. In still another aspect, a process for preparing a catalyst comprises introducing a base precipitant, a neutral precipitant, and an acid precipitant to a solution comprising a first metal ion and a second metal ion to form a precipitate. The process further comprises calcining the precipitate to provide the catalyst.

  18. Chromium–tungsten–titanium mixed oxides solid catalyst for fatty acid methyl ester synthesis from palm fatty acid distillate

    International Nuclear Information System (INIS)

    Wan, Zuraida; Hameed, B.H.

    2014-01-01

    Highlights: • Chromium–tungsten–titanium mixed oxides as solid catalyst. • Catalyst used for esterification of palm fatty acid distillate to methyl esters. • The maximum methyl ester content is 83%. • Catalyst has shown good activity and can be recycled for 4 times. - Abstract: Chromium–tungsten–titanium mixed oxides solid catalysts were prepared and evaluated in the esterification of palm fatty acid distillate (PFAD) to produce fatty acid methyl ester (FAME). Esterification was conducted in a batch reactor at 110–200 °C temperature ranges. The catalysts were characterized by several techniques such as BET, TEM, FTIR, TGA, XRD, EDX and SEM. The treatment conditions during catalyst preparation, effect of reaction parameters, leaching of the active species and the recycled use of the catalyst were investigated. The catalyst with formula CrWTiO 2 was found to be the most active with maximum FAME content of 83% obtained at best reaction conditions of 170 °C for 3 h, 2:1 (methanol to oil molar ratio) and 2 wt.% catalyst dosage. The catalyst can be recycled for 4 times. The results revealed CrWTiO 2 good potentials for use in esterification of high acid value oil

  19. Carbon-based strong solid acid for cornstarch hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Nata, Iryanti Fatyasari, E-mail: yanti_tkunlam@yahoo.com [Chemical Engineering Study Program, Faculty of Engineering, Lambung Mangkurat University, Jl. A. Yani Km. 36 Banjarbaru, South Kalimantan 70714 (Indonesia); Irawan, Chairul; Mardina, Primata [Chemical Engineering Study Program, Faculty of Engineering, Lambung Mangkurat University, Jl. A. Yani Km. 36 Banjarbaru, South Kalimantan 70714 (Indonesia); Lee, Cheng-Kang, E-mail: cklee@mail.ntust.edu.tw [Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Keelung Rd. Sec.4, Taipei 106, Taiwan (China)

    2015-10-15

    Highly sulfonated carbonaceous spheres with diameter of 100–500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO{sub 3}H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO{sub 3}H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRS concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst. - Highlights: • Carbon solid acid was successfully prepared by one-step hydrothermal carbonization. • The acrylic acid as monomer was effectively reduce the diameter size of particle. • The solid acid catalyst show good catalytic performance of starch hydrolysis. • The solid acid catalyst is not significantly deteriorated after repeated use.

  20. Carbon-based strong solid acid for cornstarch hydrolysis

    International Nuclear Information System (INIS)

    Nata, Iryanti Fatyasari; Irawan, Chairul; Mardina, Primata; Lee, Cheng-Kang

    2015-01-01

    Highly sulfonated carbonaceous spheres with diameter of 100–500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO 3 H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO 3 H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRS concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst. - Highlights: • Carbon solid acid was successfully prepared by one-step hydrothermal carbonization. • The acrylic acid as monomer was effectively reduce the diameter size of particle. • The solid acid catalyst show good catalytic performance of starch hydrolysis. • The solid acid catalyst is not significantly deteriorated after repeated use

  1. Support Screening Studies on the Hydrogenation of Levulinic Acid to γ-Valerolactone in Water Using Ru Catalysts

    Directory of Open Access Journals (Sweden)

    Anna Piskun

    2016-08-01

    Full Text Available γ-Valerolactone (GVL has been identified as a sustainable platform chemical for the production of carbon-based chemicals. Here we report a screening study on the hydrogenation of levulinic acid (LA to GVL in water using a wide range of ruthenium supported catalysts in a batch set-up (1 wt. % Ru, 90 °C, 45 bar of H2, 2 wt. % catalyst on LA. Eight monometallic catalysts were tested on carbon based(C, carbon nanotubes (CNT and inorganic supports (Al2O3, SiO2, TiO2, ZrO2, Nb2O5 and Beta-12.5. The best result was found for Ru/Beta-12.5 with almost quantitative LA conversion (94% and 66% of GVL yield after 2 h reaction. The remaining product was 4-hydroxypentanoic acid (4-HPA. Catalytic activity for a bimetallic RuPd/TiO2 catalyst was by far lower than for the monometallic Ru catalyst (9% conversion after 2 h. The effects of relevant catalyst properties (average Ru nanoparticle size, Brunauer-Emmett-Teller (BET surface area, micropore area and total acidity on catalyst activity were assessed.

  2. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction

    Science.gov (United States)

    Mahmood, Javeed; Li, Feng; Jung, Sun-Min; Okyay, Mahmut Sait; Ahmad, Ishfaq; Kim, Seok-Jin; Park, Noejung; Jeong, Hu Young; Baek, Jong-Beom

    2017-05-01

    The hydrogen evolution reaction (HER) is a crucial step in electrochemical water splitting and demands an efficient, durable and cheap catalyst if it is to succeed in real applications. For an energy-efficient HER, a catalyst must be able to trigger proton reduction with minimal overpotential and have fast kinetics. The most efficient catalysts in acidic media are platinum-based, as the strength of the Pt-H bond is associated with the fastest reaction rate for the HER. The use of platinum, however, raises issues linked to cost and stability in non-acidic media. Recently, non-precious-metal-based catalysts have been reported, but these are susceptible to acid corrosion and are typically much inferior to Pt-based catalysts, exhibiting higher overpotentials and lower stability. As a cheaper alternative to platinum, ruthenium possesses a similar bond strength with hydrogen (˜65 kcal mol-1), but has never been studied as a viable alternative for a HER catalyst. Here, we report a Ru-based catalyst for the HER that can operate both in acidic and alkaline media. Our catalyst is made of Ru nanoparticles dispersed within a nitrogenated holey two-dimensional carbon structure (Ru@C2N). The Ru@C2N electrocatalyst exhibits high turnover frequencies at 25 mV (0.67 H2 s-1 in 0.5 M H2SO4 solution; 0.75 H2 s-1 in 1.0 M KOH solution) and small overpotentials at 10 mA cm-2 (13.5 mV in 0.5 M H2SO4 solution; 17.0 mV in 1.0 M KOH solution) as well as superior stability in both acidic and alkaline media. These performances are comparable to, or even better than, the Pt/C catalyst for the HER.

  3. Antisolvent Precipitation for the Synthesis of Monodisperse Mesoporous Niobium Oxide Spheres as Highly Effective Solid Acid Catalysts

    KAUST Repository

    Li, Cheng Chao; Dou, Jian; Chen, Luwei; Lin, Jianyi; Zeng, Hua Chun

    2012-01-01

    We have developed a low-cost reaction protocol to synthesize mesoporous Nb 2O 5-based solid acid catalysts with external shape control. In the synthesis, monodisperse glycolated niobium oxide spheres (GNOS) were prepared by means of a simple antisolvent precipitation approach and subsequently converted to mesoporous niobium oxide spheres (MNOS) with a large surface area of 312m 2g -1 by means of the hydrothermal treatment. The antisolvent acetone used to obtain GNOS was recovered through distillation at high purity. The obtained mesoporous MNOS were functionalized further with sulfate anions at different temperatures or incorporated with tungstophosphoric acid to obtain recyclable solid acid catalysts. These MNOS-based catalysts showed excellent performance in a wide range of acid-catalyzed reactions, such as Friedel-Crafts alkylation, esterification, and hydrolysis of acetates. As they are monodisperse spheres with diameters in the submicrometer range, the catalysts can be easily separated and reused. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Antisolvent Precipitation for the Synthesis of Monodisperse Mesoporous Niobium Oxide Spheres as Highly Effective Solid Acid Catalysts

    KAUST Repository

    Li, Cheng Chao

    2012-03-20

    We have developed a low-cost reaction protocol to synthesize mesoporous Nb 2O 5-based solid acid catalysts with external shape control. In the synthesis, monodisperse glycolated niobium oxide spheres (GNOS) were prepared by means of a simple antisolvent precipitation approach and subsequently converted to mesoporous niobium oxide spheres (MNOS) with a large surface area of 312m 2g -1 by means of the hydrothermal treatment. The antisolvent acetone used to obtain GNOS was recovered through distillation at high purity. The obtained mesoporous MNOS were functionalized further with sulfate anions at different temperatures or incorporated with tungstophosphoric acid to obtain recyclable solid acid catalysts. These MNOS-based catalysts showed excellent performance in a wide range of acid-catalyzed reactions, such as Friedel-Crafts alkylation, esterification, and hydrolysis of acetates. As they are monodisperse spheres with diameters in the submicrometer range, the catalysts can be easily separated and reused. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Acidity, oxophilicity and hydrogen sticking probability of supported metal catalysts for hydrodeoxygenation process

    Science.gov (United States)

    Lup, A. Ng K.; Abnisa, F.; Daud, W. M. A. W.; Aroua, M. K.

    2018-03-01

    Hydrodeoxygenation is an oxygen removal process that occurs in the presence of hydrogen and catalysts. This study has shown the importance of acidity, oxophilicity and hydrogen sticking probability of supported metal catalysts in having high hydrodeoxygenation activity and selectivity. These properties are required to ensure the catalyst has high affinity for C-O or C=O bonds and the capability for the adsorption and activation of H2 and O-containing compounds. A theoretical framework of temperature programmed desorption technique was also discussed for the quantitative understanding of these properties. By using NH3-TPD, the nature and abundance of acid sites of catalyst can be determined. By using H2-TPD, the nature and abundance of metallic sites can also be determined. The desorption activation energy could also be determined based on the Redhead analysis of TPD spectra with different heating rates.

  6. Effects of water on the esterification of free fatty acids by acid catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji-Yeon; Kim, Deog-Keun; Lee, Jin-Suk [Korea Institute of Energy Research, 71-2, Jang-dong, Yuseong-gu, Daejeon 305-343 (Korea); Wang, Zhong-Ming [Guangzhou Institute of Energy Conversion, No. 2 Nengyuan Rd, Wushan, Tianhe, Guangzhou 510-640 (China)

    2010-03-15

    To maximize the production of biodiesel from soybean soapstock, the effects of water on the esterification of high-FFA (free fatty acid) oils were investigated. Oleic acid and high acid acid oil (HAAO) were esterified by reaction with methanol in the presence of Amberlyst-15 as a heterogeneous catalyst or sulfuric acid as a homogeneous catalyst. The yield of fatty acid methyl ester (FAME) was studied at oil to methanol molar ratios of 1:3 and 1:6 and reaction temperatures of 60 and 80 C. The rate of esterification of oleic acid significantly decreased as the initial water content increased to 20% of the oil. The activity of Amberlyst-15 decreased more rapidly than that of sulfuric acid, due to the direct poisoning of acid sites by water. Esterification using sulfuric acid was not affected by water until there was a 5% water addition at a 1:6 molar ratio of oil to methanol. FAME content of HAAO prepared from soapstock rapidly increased for the first 30 min of esterification. Following the 30-min mark, the rate of FAME production decreased significantly due to the accumulation of water. When methanol and Amberlyst-15 were removed from the HAAO after 30 min of esterification and fresh methanol and a catalyst were added, the time required to reach 85% FAME content was reduced from 6 h to 1.8 h. (author)

  7. Carbon-based strong solid acid for cornstarch hydrolysis

    Science.gov (United States)

    Nata, Iryanti Fatyasari; Irawan, Chairul; Mardina, Primata; Lee, Cheng-Kang

    2015-10-01

    Highly sulfonated carbonaceous spheres with diameter of 100-500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO3H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO3H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRS concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst.

  8. Meso- and macroporous sulfonated starch solid acid catalyst for esterification of palm fatty acid

    Directory of Open Access Journals (Sweden)

    Ibrahim M. Lokman

    2016-03-01

    Full Text Available In the present work, a heterogeneous solid acid catalyst was successfully developed from starch. The catalyst was prepared by a significant two-step process; the initial step was incomplete carbonization of starch (ICS at 400 °C for 12 h and consequently followed by sulfonation process using concentrated H2SO4 to produce sulfonated-incomplete carbonized starch (ICS-SO3H. The characterization of the ICS-SO3H catalyst was done for chemical and physical properties such as X-ray diffraction (XRD, ammonia-temperature programmed desorption (NH3-TPD, surface area analysis, thermal gravimetric analysis (TGA, elemental analysis and morphology analysis by scanning electron microscope (SEM. BET results showed the structure of ICS-SO3H consists of meso- and macro-porous properties, which allowed high density of the SO3H group attached on its carbon networks. The catalytic activity of ICS-SO3H catalyst was determined by analyzing the catalyst performance to esterify palm fatty acid distillate (PFAD and sequentially produced methyl ester. The maximum free fatty acid (FFA conversion and FAME yield were as high as 94.6% and 90.4%, respectively, at 75 °C using 10:1 methanol-to-PFAD molar ratio and 2 wt.% of catalyst within 3 h. The catalyst has sufficient potential to recycle up to 6 reactions without reactivation step and any remarkable loss of catalytic activity. It revealed that the heterogeneous ICS-SO3H catalyst exhibits high stability, reusability and catalytic activity.

  9. Palladium catalyst system comprising zwitterion and/or acid-​functionalized ionic liquid

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention concerns a catalyst system in particular a catalyst system comprising Palladium (Pd), a zwitterion and/or an acid-functionalized ionic liquid, and one or more phosphine ligands, wherein the Pd catalyst can be provided by a complex precursor, such as Pd(CH3COO)2, PdCI2, Pd(CH3...... methyl methacrylate and/or methacrylic acid. Catalyst systems according to the invention are suitable for reactions forming separable product and catalyst phases and supported ionic liquid phase SILP applications....

  10. Synthesis of a nano-crystalline solid acid catalyst from fly ash and its catalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Chitralekha Khatri; Ashu Rani [Government P.G. College, Kota (India). Environmental Chemistry Laboratory

    2008-10-15

    The synthesis of nano-crystalline activated fly ash catalyst (AFAC) with crystallite size of 12 nm was carried out by chemical and thermal treatment of fly ash, a waste material generated from coal-burning power plants. Fly ash was chemically activated using sulfuric acid followed by thermal activation at 600{sup o}C. The variation of surface and physico-chemical properties of the fly ash by activation methods resulted in improved acidity and therefore, catalytic activity for acid catalyzed reactions. The AFAC was characterized by X-ray diffraction, FT-IR spectroscopy, N{sub 2}-adsorption-desorption isotherm, scanning electron microscopy, flame atomic absorption spectrophotometry and sulfur content by CHNS/O elemental analysis. It showed amorphous nature due to high silica content (81%) and possessed high BET surface area (120 m{sup 2}/g). The catalyst was found to be highly active solid acid catalyst for liquid phase esterification of salicylic acid with acetic anhydride and methanol giving acetylsalicylic acid and methyl salicylate respectively. A maximum yield of 97% with high purity of acetylsalicylic acid (aspirin) and a very high conversion 87% of salicylic acid to methyl salicylate (oil of wintergreen) was obtained with AFAC. The surface acidity and therefore, catalytic activity in AFAC was originated by increased silica content, hydroxyl content and higher surface area as compared to fly ash. The study shows that coal generated fly ash can be converted into potential solid acid catalyst for acid catalyzed reactions. Furthermore, this catalyst may replace conventional environmentally hazardous homogeneous liquid acids making an ecofriendly; solvent free, atom efficient, solid acid based catalytic process. 27 refs., 5 figs., 2 tabs.

  11. Impact of anode catalyst layer porosity on the performance of a direct formic acid fuel cell

    International Nuclear Information System (INIS)

    Bauskar, Akshay S.; Rice, Cynthia A.

    2012-01-01

    Highlights: ► Lithium carbonate is used as a pore-former to increase porosity of anode catalyst layer. ► Maximum power density increased by 25%. ► Onset potential for formic acid electro-oxidation reduced by 30 mV for anode catalyst layer with 17.5 wt% pore-former. ► Electrochemical impedance spectra confirm increased formic acid concentration inside the anode catalyst layer pores. - Abstract: Direct formic acid fuel cells (DFAFCs) have attracted much attention in the last few years for portable electronic devices, due to their potential of being high efficiency power sources. They have the potential to replace the state-of-the-art batteries in cell phones, PDAs, and laptop computers if their power density and durability can be improved. In the present investigation, the influence of increased anode catalyst layer porosity on DFAFC power density performance is studied. Lithium carbonate (Li 2 CO 3 ) was used as a pore-former in this study because of its facile and complete removal after catalyst layer fabrication. The anode catalyst layers presented herein contained unsupported Pt/Ru catalyst and Li 2 CO 3 (in the range of 0–50 wt%) bound with proton conducting ionomer. Higher DFAFC performance is obtained because of the increased porosity within the anode catalyst layer through enhanced reactant and product mass transport. The maximum power density of DFAFC increased by 25% when pore-former was added to the anode catalyst ink. The formic acid onset potential for the anode catalyst layer with 17.5 wt% pore-former was reduced by 30 mV. A constant phase element based equivalent-circuit model was used to investigate anode impedance spectra. Fitted values for the anode impedance spectra confirm the improvement in performance due to an increase in formic acid concentration inside the anode catalyst layer pores along with efficient transport of reactants and products.

  12. Oscillatory behaviour of isomers of hydroxybenzoic acid with and without catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Nath, Masood A.; Rastogi, R.P.; Peerzada, G.M. [University of Kashmir, Srinagar (India). Dept. of Chemistry]. E-mail: nath_masood@yahoo.co.in

    2009-07-01

    The present work establishes and compares the oscillatory behaviour of mono-, di- and trihydroxybenzoic acids as organic substrates in acidic bromate (1.0 mol L{sup -1} H{sub 2}SO{sub 4}) without catalyst and in the presence of Mn{sup 2+} ion as the main catalyst. The oscillations are also affected by other catalyst such as Fe{sup 2+} ion. Further, the oscillations start diminishing in mixed catalyst systems. The experimental parameters were obtained potentiometrically and the results have been interpreted on the basis of FKN mechanism. (author)

  13. Polyvinylpolypyrrolidone Supported Brønsted Acidic Catalyst for Esterification

    Directory of Open Access Journals (Sweden)

    Song Wang

    2016-01-01

    Full Text Available A polyvinylpolypyrrolidone (PVPP supported Brønsted acidic catalyst ([PVPP-BS]HSO4 was prepared by coupling SO3H-functionalized polyvinylpolypyrrolidone with H2SO4 in this work. After the characterization through FT-IR, FESEM, TG, BET, and elemental analysis, it was found that 1,4-butane sultone (BS and sulfuric acid reacted with PVPP and were immobilized on PVPP surface. The prepared [PVPP-BS]HSO4 catalyst shows high catalytic activity for a series of esterification reactions and could be separated from the reacted mixture easily. Moreover, this catalyst could be recycled and reused for six times without significant loss of catalytic performance.

  14. Role of the acid-base properties of gallium-antimony oxide catalyst in oxidative ammonolysis of propane to acrylonitrile (AN)

    Energy Technology Data Exchange (ETDEWEB)

    Osipova, Z.G.; Sokolovskii, V.D.

    1979-07-01

    The role of the acid-base properties of gallium-antimony oxide catalyst in oxidative ammonolysis of propane to acrylonitrile (AN) was studied in a differential flow reactor at 550/sup 0/C, with the reaction mixture containing 5 3< by vol propane, 6 3< ammonia, and 18.6Vertical Bar3< oxygen diluted in helium, over ebulliated beds of a 5Vertical Bar3< Ga/Sb or a 1:3:1.5:1 Ga/Sb/Ni/P catalysts, the basicity of which was varied by adding 5 mole Vertical Bar3< of an alkaline earth metal (added as the nitrate and calcined). Both the rate of propane conversion and that of AN formation increased with increasing concentration of the basic sites (determined by back titration with benzoic acid) on both types of the catalysts and linearly correlated with the amount of nitrous oxide desorbed from the catalysts after the reaction. The presence of ammonia in the reaction mixture increased the activity and selectivity of the catalysts and the concentration of the active basic sites. Apparently, the reaction rate is limited by proton abstraction from a propane molecule with the formation of a carbanion stabilized on alkaline-earth metal cations. The rate-determining proton abstraction occurs on nucleophile basic sites, formed by dissociative adsorption of ammonia to form species such as NH, NH/sub 2/, and HNO, which are then oxidized to N/sub 2/ and N/sub 2/O.

  15. pKa modulation of the acid/base catalyst within GH32 and GH68: a role in substrate/inhibitor specificity?

    Directory of Open Access Journals (Sweden)

    Shuguang Yuan

    Full Text Available Glycoside hydrolases of families 32 (GH32 and 68 (GH68 belong to clan GH-J, containing hydrolytic enzymes (sucrose/fructans as donor substrates and fructosyltransferases (sucrose/fructans as donor and acceptor substrates. In GH32 members, some of the sugar substrates can also function as inhibitors, this regulatory aspect further adding to the complexity in enzyme functionalities within this family. Although 3D structural information becomes increasingly available within this clan and huge progress has been made on structure-function relationships, it is not clear why some sugars bind as inhibitors without being catalyzed. Conserved aspartate and glutamate residues are well known to act as nucleophile and acid/bases within this clan. Based on the available 3D structures of enzymes and enzyme-ligand complexes as well as docking simulations, we calculated the pKa of the acid-base before and after substrate binding. The obtained results strongly suggest that most GH-J members show an acid-base catalyst that is not sufficiently protonated before ligand entrance, while the acid-base can be fully protonated when a substrate, but not an inhibitor, enters the catalytic pocket. This provides a new mechanistic insight aiming at understanding the complex substrate and inhibitor specificities observed within the GH-J clan. Moreover, besides the effect of substrate entrance on its own, we strongly suggest that a highly conserved arginine residue (in the RDP motif rather than the previously proposed Tyr motif (not conserved provides the proton to increase the pKa of the acid-base catalyst.

  16. Highly active carbon supported Pd cathode catalysts for direct formic acid fuel cells

    Science.gov (United States)

    Mikolajczuk-Zychora, A.; Borodzinski, A.; Kedzierzawski, P.; Mierzwa, B.; Mazurkiewicz-Pawlicka, M.; Stobinski, L.; Ciecierska, E.; Zimoch, A.; Opałło, M.

    2016-12-01

    One of the drawbacks of low-temperature fuel cells is high price of platinum-based catalysts used for the electroreduction of oxygen at the cathode of the fuel cell. The aim of this work is to develop the palladium catalyst that will replace commonly used platinum cathode catalysts. A series of palladium catalysts for oxygen reduction reaction (ORR) were prepared and tested on the cathode of Direct Formic Acid Fuel Cell (DFAFC). Palladium nanoparticles were deposited on the carbon black (Vulcan) and on multiwall carbon nanotubes (MWCNTs) surface by reduction of palladium(II) acetate dissolved in ethanol. Hydrazine was used as a reducing agent. The effect of functionalization of the carbon supports on the catalysts physicochemical properties and the ORR catalytic activity on the cathode of DFAFC was studied. The supports were functionalized by treatment in nitric acid for 4 h at 80 °C. The structure of the prepared catalysts has been characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscope (TEM) and cyclic voltammetry (CV). Hydrophilicity of the catalytic layers was determined by measuring contact angles of water droplets. The performance of the prepared catalysts has been compared with that of the commercial 20 wt.% Pt/C (Premetek) catalyst. The maximum power density obtained for the best palladium catalyst, deposited on the surface of functionalized carbon black, is the same as that for the commercial Pt/C (Premetek). Palladium is cheaper than platinum, therefore the developed cathode catalyst is promising for future applications.

  17. Pt Nanostructures/N-Doped Carbon hybrid, an Efficient Catalyst for Hydrogen Evolution/Oxidation Reactions: Enhancing its Base Media Activity through Bifunctionality of the Catalyst.

    Science.gov (United States)

    Barman, Sudip; Kundu, Manas; Bhowmik, Tanmay; Mishra, Ranjit

    2018-06-04

    Design and synthesis of active catalyst for HER/HOR are important for the development of hydrogen based renewable technologies. We report synthesis of Pt nanostructures-N-doped carbon hybrid (Pt-(PtO2)-NSs/C) for HER/HOR applications. The HER activity of this Pt-(PtOx)-NSs/C catalyst is 4 and 6.5 times better than commercial Pt/C in acid and base. The catalyst exhibits a current density of 10 mA/cm2 at overpotentials of 5 and 51 mV with tafel slopes of 29 and 64mV/dec in in 0.5 M H2SO4 and 0.5 M KOH. This catalyst also showed superior HOR activity at all pH values. The HER/HOR activity of Pt-(PtOx)-NSs/C and PtOx-free Pt-Nanostructures/C (PtNSs/C) catalysts are comparable in acid. The presence of PtOx in Pt-(PtOx)-NSs/C makes this Pt-catalyst more HER/HOR active in base media. The activity of Pt-(PtOx)NSs/C catalyst is 5 fold higher than that of PtNSs/C catalyst in basic medium although their activity is comparable in acid. Hydrogen binding energy and oxophilicity are the two equivalent descriptors for HER/HOR in basic media. We propose a bi-functional mechanism for the enhanced alkaline HER/HOR activity of Pt(PtOx)-NSs/C catalyst. In bi-functional Pt-(PtOx)-NSs/C catalyst, PtOx provide an active site for OH- adsorption to form OHads which reacts with hydrogen intermediate (Hads), present at neighbouring Pt sites to form H2O leading to enhancement of HOR activity in basic medium This work may provide opportunity to develop catalysts for various renewable energy technologies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The enhancement of the hydrolysis of bamboo biomass in ionic liquid with chitosan-based solid acid catalysts immobilized with metal ions.

    Science.gov (United States)

    Cheng, Jie; Wang, Nan; Zhao, Dezhou; Qin, Dandan; Si, Wenqing; Tan, Yunfei; Wei, Shun'an; Wang, Dan

    2016-11-01

    Three kinds of sulfonated cross-linked chitosan (SCCR) immobilized with metal ions of Cu(2+), Fe(3+) and Zn(2+) individually were synthesized and firstly used as solid acid catalysts in the hydrolysis of bamboo biomass. FTIR spectra showed that metal ions had been introduced into SCCR and the N-metal ions coordinate bound was formed. The particle sizes of these catalysts were about 500-1000μm with a pore size of 50-160μm. All of the three kinds of catalysts performed well for bamboo hydrolysis with 1-butyl-3-methyl-imidazolium chloride used as solvent. The most effective one was sulfonated cross-linked chitosan immobilized with Fe(3+) (Fe(3+)-SCCR). TRS yields were up to 73.42% for hydrolysis of bamboo powder in [C4mim]Cl with Fe(3+)-SCCR at 120°C and 20RPM after 24h. These novel chitosan-based metal ions immobilized solid acid catalysts with ionic liquids as the solvent might be promising to facilitate cost-efficient conversion of biomass into biofuels and bioproducts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Conversion of polar and non-polar algae oil lipids to fatty acid methyl esters with solid acid catalysts--A model compound study.

    Science.gov (United States)

    Asikainen, Martta; Munter, Tony; Linnekoski, Juha

    2015-09-01

    Bio-based fuels are becoming more and more important due to the depleting fossil resources. The production of biodiesel from algae oil is challenging compared to terrestrial vegetable oils, as algae oil consists of polar fatty acids, such as phospholipids and glycolipids, as well as non-polar triglycerides and free fatty acids common in vegetable oils. It is shown that a single sulphonated solid acid catalyst can perform the esterification and transesterification reactions of both polar and non-polar lipids. In mild reaction conditions (60-70 °C) Nafion NR50 catalyst produces methyl palmitate (FAME) from the palmitic acid derivatives of di-, and tri-glyceride, free fatty acid, and phospholipid with over 80% yields, with the glycolipid derivative giving nearly 40% yields of FAME. These results demonstrate how the polar and non-polar lipid derivatives of algal oil can be utilised as feedstocks for biodiesel production with a single catalyst in one reaction step. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Cu2+ Montmorillonite K10 Clay Catalyst as a Green Catalyst for Production of Stearic Acid Methyl Ester: Optimization Using Response Surface Methodology (RSM

    Directory of Open Access Journals (Sweden)

    Enas A. Almadani

    2018-01-01

    Full Text Available Clay catalyst has received much attention to replace the homogeneous catalysts in the esterification reaction to produce fatty acid methyl ester as the source of biodiesel as it is low cost, easily available, as well as environmental friendly. However, the use of unmodified clay, in particular montmorillonite K10 (MMT K10, for the esterification of fatty acids showed that the acid conversion was less than 60% and this is not preferable to the production of biodiesel. In this study, synthesis of stearic acid methyl ester using Cu2+-MMT K10 (Cu-MMT K10 was successfully optimized via response surface methodo-logy (RSM based on 3-variable of Box-Behnken design (BB. The parameters were; reaction time (5-180 minutes, reaction temperature (80-120 oC and concentration of Cu2+ in MMT K10 (0.25-1 M. The use of RSM in optimizing the conversion of stearic acid was successfully developed as the actual experimental conversion of stearic acid was found similar to the actual values under the optimum conditions. The model equation predicted that the following conditions would generate the maximum conversion of stearic acid (87.05 %reaction time of 62 minutes, a reaction temperature of 80 oC and catalyst used is 1.0 M Cu-MMT K10. This finding can be considered as green catalytic process as it worked at moderate reaction temperature using low cost clay catalyst with a short reaction time. Copyright © 2018 BCREC Group. All rights reserved Received: 26th July 2017; Revised: 13rd January 2018; Accepted: 13rd January 2018; Available online: 22nd January 2018; Published regularly: 2nd April 2018 How to Cite: Almadani, E.A., Harun, F.W., Radzi, S.M., Muhamad, S.K. (2018. Cu2+ Montmorillonite K10 Clay Catalyst as a Green Catalyst for Production of Stearic Acid Methyl Ester: Optimization Using Response Surface Methodology (RSM. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (1: 187-195 (doi:10.9767/bcrec.13.1.1397.187-195

  1. Heteropoly acid promoted Cu and Fe catalysts for the selective catalytic reduction of NO with ammonia

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Mossin, Susanne L.; Riisager, Anders

    2011-01-01

    Cu/TiO2, Fe/TiO2 and heteropoly acid promoted Cu/TiO2, Fe/TiO2 catalysts were prepared and characterized by N2 physisorption, XRPD, NH3-TPD, H2-TPR and EPR. The catalysts exhibited only crystalline TiO2 phases with the active metals and promoters in highly dispersed state. The acidic properties...... activity and acidity was lower for promoted catalysts than for unpromoted catalysts. In the heteropoly acid promoted catalysts the SCR active Cu and Fe metals were protected from potassium poisons by bonding of the potassium to the Brønsted acid centres. Thus heteropoly acid promoted catalysts might...... be suitable for biomass fired power plant SCR applications....

  2. Esterification free fatty acid in palm fatty acid distillate using sulfonated rice husk ash catalyst

    Science.gov (United States)

    Hidayat, Arif; Sutrisno, Bachrun

    2017-01-01

    Indonesia, as one of the biggest palm oil producers and exporters in the world, is producing large amounts of low-grade oil such as Palm Fatty Acid Distillate (PFAD) from palm oil industries. The use of PFAD can reduce the cost of biodiesel production significantly, which makes PFAD a highly potential alternative feedstock for biodiesel production. In this paper, the esterification of free fatty acid (FFA) on PFAD was studied using rice husk ash (RHA) as heterogeneous catalyst. The rice husk ash catalyst was synthesized by sulfonation using concentrated sulfuric acid. The RHA catalyst were characterized by using different techniques, such as porosity analysis, Fourier transform infrared (FT-IR) spectroscopy, total number of acid sites and elemental analysis. The effects of the molar ratio of methanol to PFAD (1-10%), the molar ratio of methanol to PFAD (4:1-10:1), and the reaction temperature (40-60°C) were studied for the conversion of FFA to optimize the reaction conditions. The results showed that the optimal conditions were an methanol to PFAD molar ratio of 10:1, the catalyst amount of 10 wt% of PFAD, and reaction temperature of 60°C.

  3. Gas-phase Dehydration of Glycerol over Supported Silicotungstic Acids Catalysts

    International Nuclear Information System (INIS)

    Kim, Yong Tae; Park, Eun Duck; Jung, Kwang Deog

    2010-01-01

    The gas-phase dehydration of glycerol to acrolein was carried out over 10 wt % HSiW catalysts supported on different supports, viz. γ-Al 2 O 3 , SiO 2 -Al 2 O 3 , TiO 2 , ZrO 2 , SiO 2 , AC, CeO 2 and MgO. The same reaction was also conducted over each support without HSiW for comparison. Several characterization techniques, N 2 -physisorption, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), the temperature-programmed desorption of ammonia (NH 3 - TPD), temperature-programmed oxidation (TPO) with mass spectroscopy and CHNS analysis were employed to characterize the catalysts. The glycerol conversion generally increased with increasing amount of acid sites. Ceria showed the highest 1-hydroxyacetone selectivity at 315 .deg. C among the various metal oxides. The supported HSiW catalyst showed superior catalytic activity to that of the corresponding support. Among the supported HSiW catalysts, HSiW/ZrO 2 and HSiW/SiO 2 -Al 2 O 3 showed the highest acrolein selectivity. In the case of HSiW/ZrO 2 , the initial catalytic activity was recovered after the removal of the accumulated carbon species at 550 .deg. C in the presence of oxygen

  4. STARCH SULFURIC ACID: AN ALTERNATIVE, ECO-FRIENDLY CATALYST FOR BIGINELLI REACTION

    Directory of Open Access Journals (Sweden)

    Ramin Rezaei

    2013-12-01

    Full Text Available The one-pot multicomponent synthesis of 3,4-dihydropyrimidinone derivatives using starch sulfuric acid as an environmentally friendly biopolymer-based solid acid catalyst from aldehydes, β-keto esters and urea/ thiourea without solvent is described. Compared with classical Biginelli reaction conditions, this new method has the advantage of minimizing the cost operational hazards and environmental pollution, good yields, shorter reaction times and simple work-up.

  5. Pt/Ceria-based Catalysts for Small Alcohol Electrooxidation

    Science.gov (United States)

    Menendez-Mora, Christian L.

    nanoparticles as substrates was done. The general result was that ceria nanoparticles showed better electrocatalytic behavior towards the oxidation of methanol in alkaline medium. Finally, as an outreach activity, an educational module to reinforce the electrochemical concepts in the General Chemistry Laboratory course at UPR-RP was developed. The module was based on Volta's Experiment and an improvement on students learning was detected when comparing this activity with the normal Daniel's cell experience that is used in most Universities at the undergraduate level. In summary, the findings of this thesis conclude that ceria is a compound that may enhance platinum catalytic activity by CO oxidation, promoting the oxidation of alcohols in acidic and alkaline medium. Moreover, catalysis depends on the morphology of the ceria that is used as the catalysts support.

  6. Palm Frond and Spikelet as Environmentally Benign Alternative Solid Acid Catalysts for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Yahaya Muhammad Sani

    2015-04-01

    Full Text Available A carbonization-sulfonation method was utilized in synthesizing sulfonated mesoporous catalysts from palm tree biomass. Brunauer-Emmet-Teller (BET, powder X-ray diffraction (XRD, energy dispersive X-ray (EDX, and field emission scanning emission microscopy (FE-SEM analyses were used to evaluate the structural and textural properties of the catalysts. Further, Fourier transform infrared (FT-IR spectroscopy and titrimetric analyses measured the strong acid value and acidity distribution of the materials. These analyses indicated that the catalysts had large mesopore volume, large surface area, uniform pore size, and high acid density. The catalytic activity exhibited by esterifying used frying oil (UFO containing high (48% free fatty acid (FFA content further indicated these properties. All catalysts exhibited high activity, with sPTS/400 converting more than 98% FFA into fatty acid methyl esters (FAMEs. The catalyst exhibited the highest acid density, 1.2974 mmol/g, determined by NaOH titration. This is outstanding considering the lower reaction parameters of 5 h, 5:1 methanol-to-oil ratio, and a moderate temperature range between 100 and 200 °C. The study further illustrates the prospect of converting wastes into highly efficient, benign, and recyclable solid acid catalysts.

  7. Recent progress in synthesis and surface functionalization of mesoporous acidic heterogeneous catalysts for esterification of free fatty acid feedstocks: A review

    International Nuclear Information System (INIS)

    Soltani, Soroush; Rashid, Umer; Al-Resayes, Saud Ibrahim; Nehdi, Imededdine Arbi

    2017-01-01

    Highlights: • Mesoporous catalysts have potential to esterify the wastes feedstocks. • Surface area of mesoporous catalysts depends on materials synthesis methods. • Hydrophobic surface of sulfonated catalyst causes adsorption on FFA particles. • Mesoporous catalysts have large active sites to trap free fatty acids particles. • Recyclability of mesoporous catalyst is a key feature for biodiesel production. - Abstract: Biodiesel is considered as a sulfur free, non-toxic and biodegradable source of energy and its burning provide less pollution than petroleum based fuels. In case of using fried waste oils, animal’s fats and waste cultivated oil which contain high free fatty acid (FFA), esterification is taking place. Through esterification reaction, catalyst is an integral part which accelerates the FFA conversion to the methyl ester (ME) in shorter reaction time. Although, most of the current catalysts have some defect such as poor recyclability, less surface area and poor porosity. Mesoporous materials have been recently attracted remarkable interests because of its desirable properties, such as large and harmonized surface area, tuneable mesoporous channels with flexible pore size, excellent thermal stability, and post-functionalization surface characteristics. The combination of remarkable physico-chemical and textural properties as well as high activity has proposed them as advanced materials. In this review, it has been attempted to present the details of fundamental properties of mesoporous catalysts, various synthetic methods and formation mechanisms, and surface functionalization methodologies. The effects of various factors (such as surface area, porosity, acidity, post-calcination temperature, and reaction parameters) on esterification of different feedstocks are discussed in detail. Furthermore, the kinetic study of esterification reaction in the presence of mesoporous catalysts is also elaborated. At the end, remarkable challenges and outlooks

  8. Leaching behavior of lanthanum, nickel and iron from spent catalyst using inorganic acids

    Science.gov (United States)

    Astuti, W.; Prilitasari, N. M.; Iskandar, Y.; Bratakusuma, D.; Petrus, H. T. B. M.

    2018-01-01

    Highly technological applications of rare earth metals (REs) and scarcity of supply have become an incentive torecover the REs from various resources, which include high grade and low grade ores, as well as recycledwaste materials. Spent hydrocracking catalyst contain lanthanum and a variety of valuable metals such as nickel and iron. This study investigated the recovery of lanthanum, nickel and iron from spent hydrocracking catalyst by leaching using various inorganic acid (sulfuric acid, hydrochloric acid, and nitric acid). The effect of acid concentration, type of acid and leaching temperature was conducted to study the leaching behavior of each valuable metal from spent-catalyst. It has been shown that it is possible to recover more than 90% of lanthanum, however the leaching efficiency of nickel and iron in this process was very low. It can be concluded that the leaching process is selective for lanthanum recovery from hydrocracking spent-catalyst.

  9. Naphthenic acid removal from HVGO by alkaline earth metal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ding, L.; Rahimi, P.; Hawkins, R.; Bhatt, S.; Shi, Y. [National Centre for Upgrading Technology, Devon, AB (Canada); Natural Resources Canada, Devon, AB (Canada). CanmetENERGY

    2009-07-01

    This poster highlighted a study that investigated naphthenic acid removal from bitumen-derived heavy vacuum gas oil (HVGO) by thermal cracking and catalytic decarboxylation over alkaline earth-metal oxides and ZnO catalysts in a batch reactor and a continuous fixed-bed reactor. X-ray diffraction (XRD), thermogravimetric-differential thermal analysis (TG-DTA) temperature-programmed desorption (TPD) of carbon dioxide (CO{sub 2}-TPD), and scanning electron microscopy were used to characterize the fresh and spent catalysts. With MgO and ZnO, naphthenic acid removal proceeded via catalytic decarboxylation. No crystalline phase changes were observed after reaction. With CaO, multiple pathways such as catalytic decarboxylation, neutralization, and thermal cracking were responsible for naphthenic acid conversion. The spent catalysts contained Ca(OH){sub 2} and CaCO{sub 3}. With BaO, naphthenic acid conversion occurred through neutralization. All BaO was converted to Ba(OH){sub 2} during the reaction. tabs., figs.

  10. Sustainable production of acetaldehyde from lactic acid over the carbon catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Congming; Peng, Jiansheng; Li, Xinli; Zhai, Zhanjie; Gao, Hejun; Liao, Yunwen [China West Normal University, Nanchong (China); Bai, Wei; Jiang, Ning [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu (China)

    2016-01-15

    The synthesis of acetaldehyde from lactic acid over the carbon material catalysts was investigated. The carbon materials were characterized by scanning electron microscopy for morphologic features, by X-ray diffraction for crystal phases, by Fourier transform infrared spectroscopy for functional group structures, by N2 sorption for specific surface area and by ammonia temperature-programed desorption for acidity, respectively. Among the tested carbon catalysts, mesoporous carbon displayed the most excellent catalytic performance. By acidity analysis, the medium acidity is a crucial factor for catalytic performance: more medium acidity favored the formation of acetaldehyde from lactic acid. To verify, we compared the catalytic performance of fresh activated carbon with that of the activated carbon treated by nitric acid. Similarly, the modified activated carbon also displayed better activity due to a drastic increase of medium acidity amount. However, in contrast to fresh carbon nanotube, the treated sample displayed worse activity due to decrease of medium acidity amount. The effect of reaction temperature and time on stream on the catalytic performance was also investigated. Under the optimal reaction conditions, 100% lactic acid conversion and 91.6% acetaldehyde selectivity were achieved over the mesoporous carbon catalyst.

  11. Electrolytes for methanol-air fuel cells. I. The performance of methanol electro-oxidation catalysts in sulphuric acid and phosphoric acid electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Andrew, M.R.; McNicol, B.D.; Short, R.T.; Drury, J.S.

    1977-03-01

    Phosphoric acid and sulphuric acid have been compared as potential electrolytes for methanol-air fuel cells. The performances of typical electro-oxidation catalysts were measured in both electrolytes over a range of concentrations. With all catalysts the activity falls with increasing acid concentration. While this is to some extent due to the decrease in water activity at higher concentrations it seems that with both acids there is significant poisoning of the catalyst. The results can be explained for both electrolytes by assuming that adsorption of undissociated acid poisons the catalyst surfaces and that the reaction rate on the poisoned surfaces is proportional to the water activity.

  12. Esterification of Glycerol with Acetic Acid over Highly Active and Stable Alumina-based Catalysts: A Reaction Kinetics Study

    OpenAIRE

    Rane, S. A.; Pudi, S. M.; Biswas, P.

    2016-01-01

    The catalytic activity of Cu- or Ni monometallic and Cu-Ni bimetallic (Cu/Ni ratio = 3, 1, 0.33) catalysts supported on γ-Al2O3 and SO42–/γ-Al2O3 catalysts were evaluated for esterification of glycerol. The reactions were performed in a batch reactor under reflux at standard reaction conditions: temperature 110 °C, atmospheric pressure, glycerol to acetic acid molar ratio 1:9, and catalyst loading 0.25 g. The best catalytic activity was observed over 2 M SO42–/γ-Al2O3 catalyst, which showed t...

  13. Effect of metal ratio and calcination temperature of chromium based mixed oxides catalyst on FAME density from palm fatty acid distillate

    Science.gov (United States)

    Wan, Z.; Fatimah, S.; Shahar, S.; Noor, A. C.

    2017-09-01

    Mixed oxides chromium based catalysts were synthesized via sol-gel method for the esterification of palm fatty acid distillate (PFAD) to produce fatty acid methyl ester (FAME). The reactions were conducted in a batch reactor at reaction temperature of 160 °C for 4 h and methanol to PFAD molar ratio of 3:1. The effects of catalyst preparation conditions which are the mixed metal ratio and calcination temperature were studied. The various metal ratio of Cr:Mn (1:0, 0:1, 1:1, 1:2 and 2:1) and Cr:Ti (0:1, 1:1, 1:2 and 2:1) resulted in FAME density ranges from 1.041 g/cm3 to 0.853 g/cm3 and 1.107 g/cm3 to 0.836 g/cm3, respectively. The best condition catalyst was found to be Cr:Ti metal ratio of 1:2 and Cr:Mn metal ratio of 1:1. The calcination temperature of the mixed oxides between 300 °C to 700°C shows effect on the FAME density obtained in the reaction. The calcination at 500°C gave the lowest FAME density of 0.836 g/cm3 and 0.853 g/cm3 for Cr:Ti and Cr:Mn mixed oxides, respectively. The density of FAME is within the value range of the biodiesel fuel property. Thus, mixed oxides of Cr-Ti and Cr-Mn have good potentials as heterogeneous catalyst for FAME synthesis from high acid value oils such as PFAD.

  14. Boron-Based Catalysts for C-C Bond-Formation Reactions.

    Science.gov (United States)

    Rao, Bin; Kinjo, Rei

    2018-05-02

    Because the construction of the C-C bond is one of the most significant reactions in organic chemistry, the development of an efficient strategy has attracted much attention throughout the synthetic community. Among various protocols to form C-C bonds, organoboron compounds are not just limited to stoichiometric reagents, but have also made great achievements as catalysts because of the easy modification of the electronic and steric impacts on the boron center. This review presents recent developments of boron-based catalysts applied in the field of C-C bond-formation reactions, which are classified into four kinds on the basis of the type of boron catalyst: 1) highly Lewis acidic borane, B(C 6 F 5 ) 3 ; 2) organoboron acids, RB(OH) 2 , and their ester derivatives; 3) borenium ions, (R 2 BL)X; and 4) other miscellaneous kinds. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Esterification of Palmitic Acid with Methanol in the Presence of Macroporous Ion Exchange Resin as Catalyst

    Directory of Open Access Journals (Sweden)

    Amelia Qarina Yaakob and Subhash Bhatia

    2012-10-01

    Full Text Available The esterification of palmitic acid with methanol was studied in a batch reactor using macro porous ion exchange resin Amberlyst 15 as a catalyst. Methyl palmitate was produced from the reaction between palmitic acid and methanol in the presence of catalyst. The effects of processing parameters, molar ratio of alcohol to acid M, (4-10, catalyst loading (0-10 g cat/liter, water inhibition (0-2 mol/liter, agitator speed (200-800 rpm and reaction temperature (343-373K were studied. The experimental kinetic data were correlated using homogenous as well as heterogeneous models (based on single as well as dual site mechanisms. The activation energy of the reaction was 11.552 kJ/mol for forward reaction whilst 5.464 kJ/mol for backward reaction. The experimental data fitted well with the simulated data obtained from the kinetic models. Keywords: Palmitic Acid, Methanol, Esterification, Ion Exchange Resin, Kinetics.

  16. In-situ Spectroscopic Studies and Modelling of Crystallization Processes of Sulphuric Acid Catalysts

    DEFF Research Database (Denmark)

    Oehlers, C.; Fehrmann, Rasmus; Masters, Stephen Grenville

    1996-01-01

    Deactivation of commercial and prototype sulphuric acid catalysts has been investigated in-situ by ESR spectroscopy. The influence of support pore structure,and the chemical composition of the catalyst and the gas phase was dicussed.A statistical lattice model was applied to describe the crystall......Deactivation of commercial and prototype sulphuric acid catalysts has been investigated in-situ by ESR spectroscopy. The influence of support pore structure,and the chemical composition of the catalyst and the gas phase was dicussed.A statistical lattice model was applied to describe...

  17. New Titanium-Based Catalysts for the Synthesis of Poly(ethylene terephthalate)

    International Nuclear Information System (INIS)

    Yang, Youngkeun; Yoon, Seungwoong; Hwang, Yongtaek; Song, Bogeun

    2012-01-01

    Poly(ethylene terephthalate) (PET) is a polymer with relatively low cost and high performance, which is widely used in various applications such as bottles, textile fibers, films and engineering plastics for automobiles and electric industries. Commercial catalysts used for synthesis of PET are in general antimony (Sb) compounds. Antimony(III) oxide, antimony(III) acetate and antimony(III) glycolate are used as a catalyst in 95% of PET manufacturing industries worldwide. The few organoantimony compounds that have been identified in environmental and biological samples are all in the form of methylated Sb-species. The Sb trace element is extremely toxic to mammals, and interferes with embryonic and fetal development, also, carcinogenic to humans. In addition to being found in drinking water, food packaging and soft-drink bottles. According to the World Health Organization (WHO), Sb species concentration lower than 20 ppb are acceptable for drinking water. According to a recent study, in 14 brands of bottled water from Canada, Sb concentrations increased on average 19% during 6 months storage at room temperature, but 48 brands of water from 11 European countries increased on average 90% under identical conditions. Therefore, a very important challenge for polyester catalysis is to come-up with a new Sb-free catalysts with low environmental impact. Intensive efforts have been made to find other stable and more environmental friendly non-antimony catalysts, such as those based on titanium. Titanium-based catalysts have been known for many years and actually are used for polybutylene terephthalate (PBT) and polypropylene terephthalate (PPT) production, however, polycondensation (PC) of PET manufacture is not well studied in literature. To date, only few esterification processes have been applied for the synthesis of PET by titanium catalysts. Herein, we report an efficient synthesis characterization and polymerization of PET for a series of new nontoxic organotitanium

  18. MESOPOROUS ACID SOLID AS A CARRIER FOR METALLOCENE CATALYST IN ETHYLENE POLYMERIZATION AND A CATALYST IN CATALYTIC DEGRADATION OF POLYETHYLENE

    Institute of Scientific and Technical Information of China (English)

    Wen-xi Cheng; Li-ya Shi; Shi-yun Li; Hui Chen; Tao Tang

    2007-01-01

    The possibility of mesoporous acid solid as a carrier for metallocene catalyst in ethylene polymerization and catalyst for polyethylene(PE)catalytic degradation was investigated.Here,HMCM-41 and AlMCM-41.and mesoporous silicoaluminophosphate molecular sieves(SAPO1 and SAPO2)were synthesized and used as acid solid.Much more gases were produced during catalytic degradation in PE/acid solid mixtures via in situ polymerization than those via physical mixing.The particle size distribution results exhibited that the particle size of SAPO1 in the PE/SAO1 mixture via in situ polymerization was about 1/14 times of that of the original SAPO1 or SAPO1.supported metallocene catalyst.This work shows a novel technology for chemical recycling of polyolefin.

  19. Preparation and Characterization of a Solid Acid Catalyst from Macro Fungi Residue for Methyl Palmitate Production

    Directory of Open Access Journals (Sweden)

    Min Wang

    2015-07-01

    Full Text Available During the process of fungal polysaccharide extraction for health care products and food factories, a large quantity of macro-fungi residues are produced, but most of the residues are abandoned and become environmental pollutants. A solid acid catalyst, prepared by sulfonating carbonized Phellinus igniarius residue, was shown to be an efficient and environmentally benign catalyst for the esterification of palmitate acid (PA and methanol. As a comparison, two types of common biomass catalysts, wheat straws and wood chips, were prepared. In this study, characterizations, including scanning electron microscopy, thermo-gravimetric analysis, Fourier transform infrared spectrometry, Brunauer-Emmett-Teller assays and elemental analysis, and reaction conditions for the synthesis of methyl palmitate (MP using solid acid catalysts were investigated. Experiments showed that the solid acid catalyst prepared from P. igniarius residue had a higher catalytic activity than the other two catalysts, and the highest yield of MP catalyzed by P. igniarius residue solid acid catalyst was 91.5% under the following optimum conditions: molar ratio of methanol/PA of 10:1, reaction temperature of 60 °C, mass ratio of catalyst/substrate of 2%, and a reaction time of 1.5 h. Thus, the use of this catalyst offers a method for producing MP.

  20. Two-step microalgal biodiesel production using acidic catalyst generated from pyrolysis-derived bio-char

    International Nuclear Information System (INIS)

    Dong, Tao; Gao, Difeng; Miao, Chao; Yu, Xiaochen; Degan, Charles; Garcia-Pérez, Manuel; Rasco, Barbara; Sablani, Shyam S.; Chen, Shulin

    2015-01-01

    Highlights: • Highly active catalyst was prepared using bio-char co-produced in Auger pyrolysis. • Catalyst inhibitors in crude oil were effectively removed by a practical refinery process. • Free fatty acids (FFA) content in refined microalgal oil was reduced to less than 0.5%. • A total fatty acid methyl ester (FAME) yield of 99% was obtained via a two-step process. • The inexpensive bio-char catalyst is superior to Amberlyst-15 in pre-esterification. - Abstract: An efficient process for biodiesel production from fast-refined microalgal oil was demonstrated. A low cost catalyst prepared from pyrolysis-derived bio-char, was applied in pre-esterification to reduce free fatty acid (FFA) content. Results showed that the bio-char catalyst was highly active in esterification; however, the performance of the catalyst significantly reduced when crude microalgal oil was used as feedstock. To solve the problem caused by catalyst-fouling, a fast and scalable crude oil refinery procedure was carried out to remove chlorophyll and phospholipids that might degrade the catalyst and the quality of biodiesel. The activity and reusability of bio-char catalyst were remarkably improved in the fast-refined oil. FFA content in the refined microalgal oil was reduced to less than 0.5% after pre-esterification. The bio-char catalyst could be reused for 10 cycles without dramatic loss in activity. The pre-esterification fits the first-order kinetic reaction with activation energy of 42.16 kJ/mol. The activity of bio-char catalyst was superior to commercial Amberlyst-15 under the same reaction condition. A total fatty acid methyl ester (FAME, namely biodiesel) yield of 99% was obtained following the second-step CaO-catalyzed transesterification. The cost-effective bio-char catalyst has great potential for biodiesel production using feedstocks having high FFA content.

  1. Bio-inspired CO2 reduction by a rhenium tricarbonyl bipyridine-based catalyst appended to amino acids and peptidic platforms: incorporating proton relays and hydrogen-bonding functional groups.

    Science.gov (United States)

    Chabolla, S A; Machan, C W; Yin, J; Dellamary, E A; Sahu, S; Gianneschi, N C; Gilson, M K; Tezcan, F A; Kubiak, C P

    2017-06-02

    Herein, we report a new approach to bio-inspired catalyst design. The molecular catalyst employed in these studies is based on the robust and selective Re(bpy)(CO) 3 Cl-type (bpy = 2,2'-bipyridine) homogeneous catalysts, which have been extensively studied for their ability to reduce CO 2 electrochemically or photochemically in the presence of a photosensitizer. These catalysts can be highly active photocatalysts in their own right. In this work, the bipyridine ligand was modified with amino acids and synthetic peptides. These results build on earlier findings wherein the bipyridine ligand was functionalized with amide groups to promote dimer formation and CO 2 reduction by an alternate bimolecular mechanism at lower overpotential (ca. 250 mV) than the more commonly observed unimolecular process. The bio-inspired catalysts were designed to allow for the incorporation of proton relays to support reduction of CO 2 to CO and H 2 O. The coupling of amino acids tyrosine and phenylalanine led to the formation of two structurally similar Re catalyst/peptide catalysts for comparison of proton transport during catalysis. This article reports the synthesis and characterization of novel catalyst/peptide hybrids by molecular dynamics (MD simulations of structural dynamics), NMR studies of solution phase structures, and electrochemical studies to measure the activities of new bio-inspired catalysts in the reduction of CO 2.

  2. Silica-supported sulfonic acids as recyclable catalyst for esterification of levulinic acid with stoichiometric amounts of alcohols

    Directory of Open Access Journals (Sweden)

    Raimondo Maggi

    2016-10-01

    Full Text Available Converting biomass into value-added chemicals holds the key to sustainable long-term carbon resource management. In this context, levulinic acid, which is easily obtained from cellulose, is valuable since it can be transformed into a variety of industrially relevant fine chemicals. Here we present a simple protocol for the selective esterification of levulinic acid using solid acid catalysts. Silica supported sulfonic acid catalysts operate under mild conditions and give good conversion and selectivity with stoichiometric amounts of alcohols. The sulfonic acid groups are tethered to the support using organic tethers. These tethers may help in preventing the deactivation of the active sites in the presence of water.

  3. Hydrodeoxygenation of Levulinic Acid over Supported Catalysts

    NARCIS (Netherlands)

    Luo, Wenhao|info:eu-repo/dai/nl/341385972

    2014-01-01

    Levulinic acid (LA), which can be produced from the sugar fractions of lignocellulosic biomass, is a promising sustainable platform molecule that can play a major role in future biorefineries. The work described was aimed at the development of heterogeneous catalysts for the selective conversion of

  4. The kinetics and mechanism of methanol oxidation on Pt and PtRu catalysts in alkaline and acid media

    Directory of Open Access Journals (Sweden)

    JELENA LOVIC

    2007-07-01

    Full Text Available The kinetic of methanol electrochemical oxidation for a series of platinum and platinum–ruthenium catalysts was investigated. A correlation between the beginning of OHad adsorption and methanol oxidation was demonstarated on Pt single crystals and Pt nanocatalyst. The activity of the nano-structured Pt catalyst was compared with single crystal platinum electrodes assuming the Kinoshita model of nanoparticles. The ruthenium-containing catalysts shifted the onset of methanol oxidation to more negative potentials. The effect was more pronounced in acid than in alkaline media. Based on the established diagnostic criteria, the reaction between COad and OHad species according to the Langmuir–Hinshelwood mechanism was proposed as the rate determining step in alkaline and acid media on Pt and PtRu catalysts.

  5. Acidity Tunable Ionic Liquids as Catalysts for Conversion of Agar into Mixed Sugars

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Churl; Kim, Hoon Sik [Kyung Hee Univ., Seoul (Korea, Republic of); Ryu, Hyun Jin; Kim, Sang Hyoun; Yoon, Jeong Jun; Kim, Yong Jin [Korea Institute of Industrial Technology, Cheonan (Korea, Republic of)

    2010-02-15

    To summarize, various factors affecting yields of Gal, AG, and 5-HMF formation during saccharification were investigated using agar as a substrate in the presence of several bisulfate-based acidic ionic liquids as catalysts. The result was compared with employing sulfuric acid from the viewpoint of sugar yields and 5-HMF formation. [Bmim][HSO{sub 4}], [Hmim][HSO{sub 4}], [Morph] [HSO{sub 4}], [Bu{sub 4}N][HSO{sub 4}], [Bu{sub 4}P][HSO{sub 4}], [Chol][HSO{sub 4}] showed moderate to high yields of Gal and AG with a remarkable decrease in 5-HMF formation compared with sulfuric acid. Among them, [Chol][HSO{sub 4}] ionic liquid was found to exhibit the highest yield of sugars with an acceptable concentration of 5-HMF that does not inhibit the fermentation process. Generally, there are five major bottom lines for a bioethanol process to be economically viable: the feedstock must be plentiful, inexpensive, in high energy conversion rate, in low demand for food industry, and finally, has to be cultivated in sustainable systems.

  6. Catalyst in Basic Oleochemicals

    Directory of Open Access Journals (Sweden)

    Eva Suyenty

    2007-10-01

    Full Text Available Currently Indonesia is the world largest palm oil producer with production volume reaching 16 million tones per annum. The high crude oil and ethylene prices in the last 3 – 4 years contribute to the healthy demand growth for basic oleochemicals: fatty acids and fatty alcohols. Oleochemicals are starting to replace crude oil derived products in various applications. As widely practiced in petrochemical industry, catalyst plays a very important role in the production of basic oleochemicals. Catalytic reactions are abound in the production of oleochemicals: Nickel based catalysts are used in the hydrogenation of unsaturated fatty acids; sodium methylate catalyst in the transesterification of triglycerides; sulfonic based polystyrene resin catalyst in esterification of fatty acids; and copper chromite/copper zinc catalyst in the high pressure hydrogenation of methyl esters or fatty acids to produce fatty alcohols. To maintain long catalyst life, it is crucial to ensure the absence of catalyst poisons and inhibitors in the feed. The preparation methods of nickel and copper chromite catalysts are as follows: precipitation, filtration, drying, and calcinations. Sodium methylate is derived from direct reaction of sodium metal and methanol under inert gas. The sulfonic based polystyrene resin is derived from sulfonation of polystyrene crosslinked with di-vinyl-benzene. © 2007 BCREC UNDIP. All rights reserved.[Presented at Symposium and Congress of MKICS 2007, 18-19 April 2007, Semarang, Indonesia][How to Cite: E. Suyenty, H. Sentosa, M. Agustine, S. Anwar, A. Lie, E. Sutanto. (2007. Catalyst in Basic Oleochemicals. Bulletin of Chemical Reaction Engineering and Catalysis, 2 (2-3: 22-31.  doi:10.9767/bcrec.2.2-3.6.22-31][How to Link/DOI: http://dx.doi.org/10.9767/bcrec.2.2-3.6.22-31 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/6

  7. Staining of fluid-catalytic cracking catalysts: Localising Brønsted acidity within a single catalyst particle

    NARCIS (Netherlands)

    Buurmans, I.L.C.; Ruiz Martinez, J.; van Leeuwen, S.L.; van der Beek, D.; Bergwerff, J.A.; Knowles, W.V.; Vogt, Eelco; Weckhuysen, B.M.

    2012-01-01

    A time-resolved in situ micro-spectroscopic approach has been used to investigate the Brønsted acidic properties of fluid-catalytic-cracking (FCC) catalysts at the single particle level by applying the acid-catalysed styrene oligomerisation probe reaction. The reactivity of individual FCC components

  8. Feasibility study of various sulphonation methods for transforming carbon nanotubes into catalysts for the esterification of palm fatty acid distillate

    International Nuclear Information System (INIS)

    Shuit, Siew Hoong; Tan, Soon Huat

    2014-01-01

    Highlights: • First report on the production of biodiesel from low-value industrial by-product using sulphonated MWCNTs as catalyst. • Various sulphonation methods were used to transform MWCNTs into catalysts. • SO 3 H were successfully grafted on the surface of MWCNTs, which resulted in a high biodiesel yield and reuse capacity. • The maximum FAME yield by sulphonated MWCNTs was higher than for other popular solid acid catalysts. - Abstract: Sulphonated multi-walled carbon nanotubes were synthesised and utilised as catalysts to transform palm fatty acid distillate, the low-value by-product of palm oil refineries, into the more valuable product of biodiesel. The most common method to prepare carbon-based solid acid catalysts is thermal treatment with concentrated sulphuric acid, which is a time-consuming and energy-intensive process. Therefore, the feasibility of other sulphonation methods, such as the in situ polymerisation of acetic anhydride and sulphuric acid, the thermal decomposition of ammonium sulphate and the in situ polymerisation of poly(sodium4-styrenesulphonate), were examined in this study. The esterification reaction was performed at 170 °C for 3 h at a methanol to palm fatty acid distillate ratio of 20 and catalyst loading of 2 wt% in a pressurised reactor. The fatty acid methyl esters yields achieved by the sulphonated multi-walled carbon nanotubes prepared via thermal treatment with concentrated sulphuric acid, the in situ polymerisation of acetic anhydride and sulphuric acid, the thermal decomposition of ammonium sulphate and the in situ polymerisation of poly(sodium4-styrenesulphonate) were 78.1%, 85.8%, 88.0% and 93.4%, respectively. All catalysts could maintain a high catalytic activity even during the fifth cycle. Among the sulphonation methods, the in situ polymerisation of poly(sodium4-styrenesulphonate) produced the catalyst with the highest acid group density. In addition, the resonance structures of the benzenesulphonic acid

  9. Theoretical Study on Free Fatty Acid Elimination Mechanism for Waste Cooking Oils to Biodiesel over Acid Catalyst.

    Science.gov (United States)

    Wang, Kai; Zhang, Xiaochao; Zhang, Jilong; Zhang, Zhiqiang; Fan, Caimei; Han, Peide

    2016-05-01

    A theoretical investigation on the esterification mechanism of free fatty acid (FFA) in waste cooking oils (WCOs) has been carried out using DMol(3) module based on the density functional theory (DFT). Three potential pathways of FFA esterification reaction are designed to achieve the formation of fatty acid methyl ester (FAME), and calculated results show that the energy barrier can be efficiently reduced from 88.597kcal/mol to 15.318kcal/mol by acid catalyst. The molar enthalpy changes (ΔrHm°) of designed pathways are negative, indicating that FFA esterification reaction is an exothermic process. The obtained favorable energy pathway is: H(+) firstly activates FFA, then the intermediate combines with methanol to form a tetrahedral structure, and finally, producing FAME after removing a water molecule. The rate-determining step is the combination of the activated FFA with methanol, and the activation energy is about 11.513kcal/mol at 298.15K. Our results should provide basic and reliable theoretical data for further understanding the elimination mechanism of FFA over acid catalyst in the conversion of WCOs to biodiesel products. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Synthesis of Ricinoleic Acid Estolides by the Esterification of Ricinoleic Acids Using Functional Acid Ionic Liquids as Catalysts.

    Science.gov (United States)

    Wang, Gaoshang; Sun, Shangde

    2017-07-01

    Estolides of ricinoleic acid (RA) have been used as lubricants and pigment dispersant in many industries. In this paper, functional acid ionic liquids (ILs) were firstly used as catalysts to prepare RA estolides by the esterification of RAs in solvent-free system. Different ILs were used as catalysts for the esterification. Effect of reaction variables (IL amount, reaction temperature and reaction time) on the esterification were also investigated and optimized using response surface methodology (RSM). Among all tested ILs, [BSO 3 HMIM]TS showed the best performance for the esterification. Arrhenius equation for the esterification was lnV 0 =14.897-7558.7/T, and the activation energy (Ea) was 62.84 kJ/mol. A high degree of polymerization with an acid value of 48.0±2.5 mg KOH/g was achieved at the optimized conditions (IL load 12%, reaction temperature 140°C, and reaction time 12 h). The effect of reaction variables on the esterification decreased in the order of catalyst loading of IL > reaction temperature > reaction time.

  11. Kinetic study on the photocatalytic degradation of salicylic acid using ZnO catalyst

    International Nuclear Information System (INIS)

    Nageswara Rao, A.; Sivasankar, B.; Sadasivam, V.

    2009-01-01

    The photocatalytic degradation of salicylic acid was studied by a batch process using ZnO as the catalyst on irradiation with UV light. The effect of process parameters such as pH, catalyst loading and initial concentration of salicylic acid on the extent of degradation was investigated. The degradation of salicylic acid was found to be effective in the neutral pH range. The optimum catalyst loading was observed at 2.0 g/L. The process followed first order kinetics and the apparent rate constant decreased with increase in the initial concentration of salicylic acid. The mechanism for the degradation of salicylic acid could be explained on the basis of Langmuir-Hinshelwood mechanism. The complete mineralization of salicylic acid was observed in the presence of ZnO photocatalyst. The ZnO was found to be quite stable and undergoes photocorrosion only to a negligible extent.

  12. Surface treated carbon catalysts produced from waste tires for fatty acids to biofuel conversion

    Science.gov (United States)

    Hood, Zachary D.; Adhikari, Shiba P.; Wright, Marcus W.; Lachgar, Abdessadek; Li, Yunchao; Naskar, Amit K.; Paranthaman, Mariappan Parans

    2018-02-06

    A method of making solid acid catalysts includes the step of sulfonating waste tire pieces in a first sulfonation step. The sulfonated waste tire pieces are pyrolyzed to produce carbon composite pieces having a pore size less than 10 nm. The carbon composite pieces are then ground to produce carbon composite powders having a size less than 50 .mu.m. The carbon composite particles are sulfonated in a second sulfonation step to produce sulfonated solid acid catalysts. A method of making biofuels and solid acid catalysts are also disclosed.

  13. Deoxygenation of methyl laurate over Ni based catalysts: Influence of supports

    Science.gov (United States)

    Xia, Xiaoqiang; Chen, Hui; Bi, Yadong; Hu, Jianli

    2017-10-01

    The use of a series of nickel based catalysts supported over HZSM-5, Al2O3, C and ZrO2 in the deoxygenation of methyl laurate shows that the deoxygenation activity and deoxygenation pathway of nickel based catalysts can be affected by properties of catalysts. In the absence of H2, β-elimination of methyl laurate is the dominant reaction and a small amount of laurate acid is converted into undecane by direct decarboxylation. At the same time, the highly acidic support HZSM-5 gave higher conversion and C11 alkane selectivity. In the presence of H2, Ni/HZSM-5 catalyst showed a significantly high deoxygenation activity, producing 71% alkanes by methyl laurate conversion at 280 °C and 4MPa H2. While as on mildly acidic (Al2O3) and neutral (C) supports, a restricted hydrodeoxygenation activity was achieved but more oxygenate products were yielded. According to the analysis of intermediate product, the deoxygenation reaction of methyl laurate follows three distinct pathways: in the absence of H2, decarboxylation: C11H23COOCH3→C11H23COOH→C11H24; in the presence of H2, decarbonylation: C11H23COOCH3→C11H23COOH→C11H23CHO→C11H24; and hydrodeoxygenation: C11H23COOCH3 →C11H23COOH→C11H23CHO→C12H25OH→C12H26

  14. Preparation of a Carbon-Based Solid Acid Catalyst by Sulfonating Activated Carbon in a Chemical Reduction Process

    Directory of Open Access Journals (Sweden)

    Xiao-Yan Liu

    2010-10-01

    Full Text Available Sulfonated (SO3H-bearing activated carbon (AC-SO3H was synthesized by an aryl diazonium salt reduction process. The obtained material had a SO3H density of 0.64 mmol·g-1 and a specific surface area of 602 m2·g-1. The catalytic properties of AC-SO3H were compared with that of two commercial solid acid catalysts, Nafion NR50 and Amberlyst-15. In a 10-h esterification reaction of acetic acid with ethanol, the acid conversion with AC-SO3H (78% was lower than that of Amberlyst-15 (86%, which could be attributed to the fact that the SO3H density of the sulfonated carbon was lower than that of Amberlyst-15 (4.60 mmol·g-1. However, AC-SO3H exhibited comparable and even much higher catalytic activities than the commercial catalysts in the esterification of aliphatic acids with longer carbon chains such as hexanoic acid and decanoic acid, which may be due to the large specific surface area and mesoporous structures of the activated carbon. The disadvantage of AC-SO3H is the leaching of SO3H group during the reactions.

  15. Interpretation of pH-activity profiles for acid-base catalysis from molecular simulations.

    Science.gov (United States)

    Dissanayake, Thakshila; Swails, Jason M; Harris, Michael E; Roitberg, Adrian E; York, Darrin M

    2015-02-17

    The measurement of reaction rate as a function of pH provides essential information about mechanism. These rates are sensitive to the pK(a) values of amino acids directly involved in catalysis that are often shifted by the enzyme active site environment. Experimentally observed pH-rate profiles are usually interpreted using simple kinetic models that allow estimation of "apparent pK(a)" values of presumed general acid and base catalysts. One of the underlying assumptions in these models is that the protonation states are uncorrelated. In this work, we introduce the use of constant pH molecular dynamics simulations in explicit solvent (CpHMD) with replica exchange in the pH-dimension (pH-REMD) as a tool to aid in the interpretation of pH-activity data of enzymes and to test the validity of different kinetic models. We apply the methods to RNase A, a prototype acid-base catalyst, to predict the macroscopic and microscopic pK(a) values, as well as the shape of the pH-rate profile. Results for apo and cCMP-bound RNase A agree well with available experimental data and suggest that deprotonation of the general acid and protonation of the general base are not strongly coupled in transphosphorylation and hydrolysis steps. Stronger coupling, however, is predicted for the Lys41 and His119 protonation states in apo RNase A, leading to the requirement for a microscopic kinetic model. This type of analysis may be important for other catalytic systems where the active forms of the implicated general acid and base are oppositely charged and more highly correlated. These results suggest a new way for CpHMD/pH-REMD simulations to bridge the gap with experiments to provide a molecular-level interpretation of pH-activity data in studies of enzyme mechanisms.

  16. Characterization and Design of Zeolite Catalysts Solid Acidity, Shape Selectivity and Loading Properties

    CERN Document Server

    Niwa, Miki; Okumura, Kazu

    2010-01-01

    Zeolites are microporous, aluminosilicate minerals commonly used as commercial adsorbents. Zeolite-based catalysts are used by industrial chemical companies in the interconversion of hydrocarbons and the alkylation of aromatic compounds. The current book deals with the characterization of specific properties of Zeolites and calculations for the design of catalysts. Measurements and utilization of solid acidity, shape selectivity, and loading properties, that are three prominent properties of a Zeolite catalyst, are treated in detail. These features concern chemical vapor deposition of silica, shape selectivity, loading properties, solid activity, Brønsted or Lewis character, ammonia temperature programmed desorption, control of the pore-opening size by chemical vapor deposition of silica and XAFS analysis of metals being highly dispersed inside and outside a framework.

  17. Oxidation of ethoxylated fatty alcohols to alkylpolyglycol carboxylic acids using noble metals as catalysts

    Directory of Open Access Journals (Sweden)

    Sagredos, Angelos

    2009-09-01

    Full Text Available The conversion of ethoxylated fatty alcohols to the corresponding carboxylic acids through dehydrogenation/ oxidation using noble-metal catalysts has been studied. Ethoxylated primary aliphatic alcohols, ethoxylated random secondary aliphatic alcohols and ethoxylated alkylphenols have been converted to the corresponding acids in the presence of a base. The noble metal catalysts Palladium and Platinum were used without significant degradation of the ethoxyl chain in yields that exceeded 90%. On the other hand, the catalysts Rhodium and Ruthenium gave yields of about 80% and 60% respectively.La conversión de alcoholes grasos etoxilados a los correspondientes ácidos carboxílicos por deshidrogenación/ oxidación con metales nobles como catalizador ha sido estudiada. Alcoholes primarios alifáticos etoxilados, alcoholes alifáticos secundarios etoxilados al azar y alquilfenoles etoxilados han sido convertidos a los correspondientes ácidos en presencia de base. Los catalizadores paladio y platino fueron usados sin degradación significativa de las cadenas etoxiladas con un rendimiento que excedió del 90%. Por otra parte catalizadores de rodio y rutenio produjeron rendimientos del 80 y 60%, respectivamente.

  18. A Comparative Study of Basic, Amphoteric, and Acidic Catalysts in the Oxidative Coupling of Methanol and Ethanol for Acrolein Production.

    Science.gov (United States)

    Lilić, Aleksandra; Wei, Tiantian; Bennici, Simona; Devaux, Jean-François; Dubois, Jean-Luc; Auroux, Aline

    2017-09-11

    The impact of acid/base properties (determined by adsorption microcalorimetry) of various catalysts on the cross-aldolization of acetaldehyde and formaldehyde leading to acrolein was methodically studied in oxidizing conditions starting from a mixture of methanol and ethanol. The aldol condensation and further dehydration to acrolein were carried out on catalysts presenting various acid/base properties (MgO, Mg-Al oxides, Mg/SiO 2 , NbP, and heteropolyanions on silica, HPA/SiO 2 ). Thermodynamic calculations revealed that cross-aldolization is always favored compared with self-aldolization of acetaldehyde, which leads to crotonaldehyde formation. The presence of strong basic sites is shown to be necessary, but a too high amount drastically increases CO x production. On strong acid sites, production of acrolein and carbon oxides (CO x ) does not increase with temperature. The optimal catalyst for this process should be amphoteric with a balanced acid/base cooperation of medium strength sites and a small amount (150 kJ mol -1 ). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Sulfuric acid functional zirconium (or aluminum) incorporated mesoporous MCM-48 solid acid catalysts for alkylation of phenol with tert-butyl alcohol

    International Nuclear Information System (INIS)

    Jiang, Tingshun; Cheng, Jinlian; Liu, Wangping; Fu, Lie; Zhou, Xuping; Zhao, Qian; Yin, Hengbo

    2014-01-01

    Several zirconium (or aluminum) incorporated mesoporous MCM-48 solid acid catalysts (SO 4 2− /Zr-MCM-48 and SO 4 2− /Al-MCM-48) were prepared by the impregnation method and their physicochemical properties were characterized by means of XRD, FT-IR, TEM, NH 3 -TPD and N 2 physical adsorption. Also, the catalytic activities of these solid acid catalysts were evaluated by the alkylation of phenol with tert-butyl alcohol. The effect of weight hour space velocity (WHSV), reaction time and reaction temperature on catalytic properties was also studied. The results show that the SO 4 2− /Zr-MCM-48 and SO 4 2− /Al-MCM-48 still have good mesoporous structure and long range ordering. Compared with the Zr (or Al)–MCM-48 samples, SO 4 2− /Zr-MCM-48 and SO 4 2− /Al-MCM-48 solid acid catalysts have strong acidity and exhibit high activities in alkylation reaction of phenol with tert-butyl alcohol. The SO 4 2− /Zr-MCM-48-25 (molar ratio of Si/Zr=0.04) catalyst was found to be the most promising and gave the highest phenol conversion among all catalysts. A maximum phenol conversion of 91.6% with 4-tert-butyl phenol (4-TBP) selectivity of 81.8% was achieved when the molar ratio of tert-butyl alcohol:phenol is 2:1, reaction time is 2 h, the WHSV is 2 h −1 and the reaction temperature is 140 °C. - Highlights: • Sulfuric acid functional mesoporous solid acid catalysts were prepared via impregnation method. • The alkylation of phenol with tert-butyl alcohol was carried out over these solid acid catalysts. • The catalytic activity of SO 4 2− /Zr-MCM-48-25 catalyst is much higher than that of the others. • A maximum phenol conversion of 91.6% was achieved under optimum reaction conditions for SO 4 2− /Zr-MCM-48-25

  20. The utilization of leftover as acid catalyst to catalyse the transesterification and esterification reactions

    Science.gov (United States)

    Leung, K. K.; Yau, Y. H.

    2017-08-01

    Biodiesel (Fatty Acid Methyl Ester, FAME) is a green and renewable energy. It is carbon neutral and produces less air pollutants in combustion. In my project, the selected feedstock of biodiesel production is grease trap oil (GTO). It is extracted from restaurants, and needs pre-treatment. The triglycerides and free fatty acid (FFA) are the main components of GTO. Both triglycerides and free fatty acid can be converted to biodiesel (Fatty Acid Methyl Ester) by transesterification and esterification, through reaction with alcohol (methanol) and catalyst. In the processes, acidic catalyst is chosen to speed up the reactions. The catalyst used In the study, a heterogeneous solid acid is applied. It is waste cooked rice (WCR) collected from leftover. The WCR powder is pyrolysed in 400°C furnace 15 hours and blown with nitrogen gas (incomplete carbonization). The WCR black powder is then mixed with concentrated sulphuric acid and heat in 160°C furnace 15 hours and continuous blown with nitrogen gas (sulphonation). This heterogeneous solid acid is used in the both transesterification and esterification to produce FAME. Moreover, in the optimal reaction conditions, this catalyst offers a stable catalytic effect. After 20 times usage in optimal reaction condition, the catalytic activity remains unchanged.

  1. Process Parameters Optimization of Potential SO42-/ZnO Acid Catalyst for Heterogeneous Transesterification of Vegetable Oil to Biodiesel

    Directory of Open Access Journals (Sweden)

    Istadi Istadi

    2012-12-01

    Full Text Available Among the possible renewable energy resources, diesel fuels derived from triglycerides of vegetable oils and animal fats have shown potential as substitutes for petroleum-based diesel fuels. The biodiesel could be produced from vegetable oils over homogeneous catalyst, heterogeneous catalyst, or enzymatic catalyst. In this study, the synthesized SO42-/ZnO catalyst was explored to be used in the heterogeneous biodiesel production by using the vegetable oils and methanol. The study began with the preparation of SO42-/ZnO catalyst followed by the transesterification reaction between vegetable oil with methanol. The independent variables (reaction time and the weight ratio of catalyst/oil were optimized to obtain the optimum biodiesel (fatty acid methyl ester yield. The results of this study showed that the acid catalyst SO42-/ZnO was potential to be used as catalyst for biodiesel production through heterogeneous transesterification of vegetable oils. Optimum operating condition for this catalytic reaction was the weight ratio of catalyst/oil of 8:1 and reaction time of 2.6 h with respect to 75.5% yield of methyl ester products. The biodiesel product was also characterized to identify the respected fatty acid methyl ester components. Copyright © 2012 by BCREC UNDIP. All rights reserved. (Selected Paper from International Conference on Chemical and Material Engineering (ICCME 2012Received: 23rd October 2012, Revised: 25th November 2012, Accepted: 25th November 2012[How to Cite: I. Istadi, Didi D. Anggoro, Luqman Buchori, Inshani Utami, Roikhatus Solikhah, (2012. Process Parameters Optimization of Potential SO42-/ZnO Acid Catalyst for Heterogeneous Transesterification of Vegetable Oil to Biodiesel. Bulletin of Chemical Reaction Engineering & Catalysis, 7(2: 150-157. (doi:10.9767/bcrec.7.2.4064.150-157][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.2.4064.150-157 ] | View in 

  2. Preparation and application of zirconium sulfate supported on SAPO-34 molecular sieve as solid acid catalyst for esterification

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Dongyan, E-mail: xdy0156@sina.com; Ma, Hong; Cheng, Fei

    2014-05-01

    Graphical abstract: - Highlights: • SAPO-34 supported zirconium sulfate solid acid catalyst was prepared. • Esterification of acetic acid with ethanol can be catalyzed by ZS/SAPO-34. • The hydration of ZS is vital to the acidic property and catalytic performance. • The ZS/SAPO-34 catalyst treated at 200 °C shows good reusability. - Abstract: Zirconium sulfate (ZS) was supported on SAPO-34 molecular sieve by using an incipient wetness impregnation method with zirconium sulfate as the precursor. The as-prepared catalysts were used as solid acid catalyst for esterification reaction of acetic acid with ethanol. The influence of calcination temperature on the acidic property, catalytic activity, and reusability of ZS/SAPO-34 catalysts were mainly investigated. FT-IR, SEM, EDS and TG analysis have been carried out to demonstrate the characteristics of ZS/SAPO-34 catalysts. It was found that the 30 wt%ZS/SAPO-34 catalysts display the property of superacid irrespective of calcination temperature. The ZS/SAPO-34 catalyst treated at 200 °C can enhance the interaction between the supported ZS and SAPO-34 and keep the catalyst remaining substantially active after several reaction cycles. However, further increasing calcination temperature will cause the transfer of ZS from hydrate to anhydrous phase, and thus the decrease of activity.

  3. Preparation and application of zirconium sulfate supported on SAPO-34 molecular sieve as solid acid catalyst for esterification

    International Nuclear Information System (INIS)

    Xu, Dongyan; Ma, Hong; Cheng, Fei

    2014-01-01

    Graphical abstract: - Highlights: • SAPO-34 supported zirconium sulfate solid acid catalyst was prepared. • Esterification of acetic acid with ethanol can be catalyzed by ZS/SAPO-34. • The hydration of ZS is vital to the acidic property and catalytic performance. • The ZS/SAPO-34 catalyst treated at 200 °C shows good reusability. - Abstract: Zirconium sulfate (ZS) was supported on SAPO-34 molecular sieve by using an incipient wetness impregnation method with zirconium sulfate as the precursor. The as-prepared catalysts were used as solid acid catalyst for esterification reaction of acetic acid with ethanol. The influence of calcination temperature on the acidic property, catalytic activity, and reusability of ZS/SAPO-34 catalysts were mainly investigated. FT-IR, SEM, EDS and TG analysis have been carried out to demonstrate the characteristics of ZS/SAPO-34 catalysts. It was found that the 30 wt%ZS/SAPO-34 catalysts display the property of superacid irrespective of calcination temperature. The ZS/SAPO-34 catalyst treated at 200 °C can enhance the interaction between the supported ZS and SAPO-34 and keep the catalyst remaining substantially active after several reaction cycles. However, further increasing calcination temperature will cause the transfer of ZS from hydrate to anhydrous phase, and thus the decrease of activity

  4. Encapsulated heterogeneous base catalysts onto SBA-15 nanoporous material as highly active catalysts in the transesterification of sunflower oil to biodiesel

    Science.gov (United States)

    Albayati, Talib M.; Doyle, Aidan M.

    2015-02-01

    Alkali metals and their hydroxides, Na, NaOH, Li, and LiOH, were encapsulated onto SBA-15 nanoporous material as highly active catalysts for the production of biodiesel fuel from sunflower oil. The incipient wetness impregnation method was adopted for the prepared catalysts. The characterization properties of the catalysts and unmodified SBA-15 were determined using X-ray diffraction, scanning electron microscopy, EDAX, nitrogen adsorption-desorption porosimetry (Brunauer-Emmett-Teller), Fourier-transform infrared spectroscopy, and transmission electron microscopy. Transesterification was conducted in a batch reactor at atmospheric pressure and 65 °C. The catalysts were highly active with yields of fatty acid methyl ester (FAME) in the range 96-99 %. Na/SBA-15 catalyst was reused for seven consecutive cycles under the same reaction conditions; the yield to FAME on the final cycle was 96 %. This study shows that the alkali metals and their hydroxides supported on SBA-15-based catalyst are excellent catalysts for the biodiesel reaction.

  5. Encapsulated heterogeneous base catalysts onto SBA-15 nanoporous material as highly active catalysts in the transesterification of sunflower oil to biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Albayati, Talib M., E-mail: talib-albyati@yahoo.com [University of Technology, Department of Chemical Engineering (Iraq); Doyle, Aidan M., E-mail: a.m.doyle@mmu.ac.uk [Manchester Metropolitan University, Division of Chemistry and Environmental Science (United Kingdom)

    2015-02-15

    Alkali metals and their hydroxides, Na, NaOH, Li, and LiOH, were encapsulated onto SBA-15 nanoporous material as highly active catalysts for the production of biodiesel fuel from sunflower oil. The incipient wetness impregnation method was adopted for the prepared catalysts. The characterization properties of the catalysts and unmodified SBA-15 were determined using X-ray diffraction, scanning electron microscopy, EDAX, nitrogen adsorption–desorption porosimetry (Brunauer–Emmett–Teller), Fourier-transform infrared spectroscopy, and transmission electron microscopy. Transesterification was conducted in a batch reactor at atmospheric pressure and 65 °C. The catalysts were highly active with yields of fatty acid methyl ester (FAME) in the range 96–99 %. Na/SBA-15 catalyst was reused for seven consecutive cycles under the same reaction conditions; the yield to FAME on the final cycle was 96 %. This study shows that the alkali metals and their hydroxides supported on SBA-15-based catalyst are excellent catalysts for the biodiesel reaction.

  6. Encapsulated heterogeneous base catalysts onto SBA-15 nanoporous material as highly active catalysts in the transesterification of sunflower oil to biodiesel

    International Nuclear Information System (INIS)

    Albayati, Talib M.; Doyle, Aidan M.

    2015-01-01

    Alkali metals and their hydroxides, Na, NaOH, Li, and LiOH, were encapsulated onto SBA-15 nanoporous material as highly active catalysts for the production of biodiesel fuel from sunflower oil. The incipient wetness impregnation method was adopted for the prepared catalysts. The characterization properties of the catalysts and unmodified SBA-15 were determined using X-ray diffraction, scanning electron microscopy, EDAX, nitrogen adsorption–desorption porosimetry (Brunauer–Emmett–Teller), Fourier-transform infrared spectroscopy, and transmission electron microscopy. Transesterification was conducted in a batch reactor at atmospheric pressure and 65 °C. The catalysts were highly active with yields of fatty acid methyl ester (FAME) in the range 96–99 %. Na/SBA-15 catalyst was reused for seven consecutive cycles under the same reaction conditions; the yield to FAME on the final cycle was 96 %. This study shows that the alkali metals and their hydroxides supported on SBA-15-based catalyst are excellent catalysts for the biodiesel reaction

  7. Hydrodenitrogenation of heavy oil--1. Survey of hydrodenitrogenation catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, M.; Ono, T.; Togari, O.

    1979-11-01

    Forty catalysts consisting of binary oxides of silica/alumina, zirconium dioxide, titanium dioxide, or magnesium oxide or alumina/boron oxide, titanium dioxide, zirconium dioxide, or phosphorus pentoxide in various proportions, or of alumina alone, were screened for their activity for hydrodenitrogenation (kn) and hydrodesulfurization (ks) of a Gach Saran vacuum gas oil containing 0.16Vertical Bar3< nitrogen and 2.0Vertical Bar3< sulfur. The activities were correlated with the acid amount and acid strength of the catalysts as measured by temperature-programed desorption of ammonia. The mixed oxides of silica had low kn and low ks, and the kn was proportional to the acidity. The unmixed alumina catalysts showed low kn and high ks and no obvious relationship between activity and acidity. The binary alumina catalysts showed high kn and high ks and no obvious correlation between acidity and activity. Generally, catalysts with high acid strength had the lowest kn, especially the unmixed alumina.

  8. From Conventional Lewis Acids to Heterogeneous Montmorillonite K10: Eco-Friendly Plant-Based Catalysts Used as Green Lewis Acids.

    Science.gov (United States)

    Hechelski, Marie; Ghinet, Alina; Louvel, Brice; Dufrénoy, Pierrick; Rigo, Benoît; Daïch, Adam; Waterlot, Christophe

    2018-04-25

    The concept of green chemistry began in the USA in the 1990s. Since the publication of the 12 principles of this concept, many reactions in organic chemistry have been developed, and chemical products have been synthesized under environmentally friendly conditions. Lewis acid mediated synthetic transformations are by far the most numerous and best studied. However, the use of certain Lewis acids may cause risks to environmental and human health. This Review discusses the evolution of Lewis acid catalyzed reactions from a homogeneous liquid phase to the solid phase to yield the expected organic molecules under green, safe conditions. In particular, recent developments and applications of biosourced catalysts from plants are highlighted. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Production of Jet Fuel-Range Hydrocarbons from Hydrodeoxygenation of Lignin over Super Lewis Acid Combined with Metal Catalysts

    International Nuclear Information System (INIS)

    Wang, Hongliang; Wang, Huamin; Kuhn, Eric; Tucker, Melvin P.; Yang, Bin

    2017-01-01

    Super Lewis acids containing the triflate anion [e.g., Hf(OTf) 4 , Ln(OTf) 3 , In(OTf) 3 , Al(OTf) 3 ] and noble metal catalysts (e.g., Ru/C, Ru/Al2O 3 ) formed efficient catalytic systems to generate saturated hydrocarbons from lignin in high yields. In such catalytic systems, the metal triflates mediated rapid ether bond cleavage through selective bonding to etheric oxygens while the noble metal catalyzed subsequent hydrodeoxygenation (HDO) reactions. Near theoretical yields of hydrocarbons were produced from lignin model compounds by the combined catalysis of Hf(OTf)4 and ruthenium-based catalysts. When a technical lignin derived from a pilot-scale biorefinery was used, more than 30 wt % of the hydrocarbons produced with this catalytic system were cyclohexane and alkylcyclohexanes in the jet fuel range. Super Lewis acids are postulated to strongly interact with lignin substrates by protonating hydroxyl groups and ether linkages, forming intermediate species that enhance hydrogenation catalysis by supported noble metal catalysts. Meanwhile, the hydrogenation of aromatic rings by the noble metal catalysts can promote oxygenation reactions catalyzed by super Lewis acids.

  10. Production of Jet Fuel-Range Hydrocarbons from Hydrodeoxygenation of Lignin over Super Lewis Acid Combined with Metal Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongliang [Department of Biological Systems Engineering, Washington State University, Richland WA 99354 USA; Current address: Center of Biomass Engineering/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193 PR China; Wang, Huamin [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Kuhn, Eric [National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway Golden CO 80401 USA; Tucker, Melvin P. [National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway Golden CO 80401 USA; Yang, Bin [Department of Biological Systems Engineering, Washington State University, Richland WA 99354 USA

    2017-11-14

    Super Lewis acids containing the triflate anion (e.g. Hf(OTf)4, Ln(OTf)3, Al(OTf)3) and noble metal catalysts (e.g. Ru/C, Ru/Al2O3) formed efficient catalytic systems to generate saturated hydrocarbons from lignin in high yields. In such catalytic systems, the metal triflates mediated rapid ether bond cleavage via selective bonding to etheric oxygens while the noble metal catalysed subsequent hydrodeoxygenation (HDO) reactions. Near theoretical yields of hydrocarbons were produced from lignin model compounds by the combined catalysis of Hf(OTf)4 and ruthenium-based catalysts. When a technical lignin derived from a pilot-scale biorefinery was used, more than 30 wt% of the hydrocarbons produced with this catalytic system were cyclohexane and alkylcyclohexanes in the jet fuel range. Super Lewis acids are postulated to strongly interact with lignin substrates via protonating hydroxyls and ether linkages, forming intermediate species that enhance hydrogenation catalysis by supported noble metal catalysts. Meanwhile, the hydrogenation of aromatic rings by the noble metal catalysts can promote oxygenation reactions catalysed by super Lewis acids.

  11. Catalytic hydroprocessing of simulated coal tars. 2. Effect of acid catalysts on the hydroconversion of model compounds on a sulphided Ni-Mo/Al/sub 2/O/sub 3/ catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Lemberton, J.L.; Touzeyidio, M.; Guisnet, M. (Laboratoire de Catalyse en Chimie Organique CNRS, Poitiers (France))

    1989-09-15

    Acid catalysts were added to sulphided Ni-Mo/Al/sub 2/O/sub 3/ catalyst in order to obtain a higher hydrocracking activity. The hydroconversion of phenanthrene, alone or in the presence of carbazole and/or 1-naphthol, was chosen as a model reaction. The presence of acid catalysts greatly increases the conversion of phenanthrene and allows significant amounts of light products to be obtained. In the presence of carbazole or of 1-naphthol, acid catalysts create a small increase in phenanthrene conversion, but light products are no longer obtained as the acid sites are poisoned either by adsorption of ammonia from carbazole decomposition, or by extensive coke deposition generated from 1-naphthol. In the presence of carbazole and 1-naphthol, there is no longer any effect of the acid catalysts on the hydroconversion of phenanthrene, owing to complete inhibition of the acid sites. 12 refs., 5 tabs.

  12. Enhancement of alkylation catalysts for improved supercritical fluid regeneration

    Science.gov (United States)

    Ginosar, Daniel M.; Petkovic, Lucia M.

    2010-12-28

    A method of modifying an alkylation catalyst to reduce the formation of condensed hydrocarbon species thereon. The method comprises providing an alkylation catalyst comprising a plurality of active sites. The plurality of active sites on the alkylation catalyst may include a plurality of weakly acidic active sites, intermediate acidity active sites, and strongly acidic active sites. A base is adsorbed to a portion of the plurality of active sites, such as the strongly acidic active sites, selectively poisoning the strongly acidic active sites. A method of modifying the alkylation catalyst by providing an alkylation catalyst comprising a pore size distribution that sterically constrains formation of the condensed hydrocarbon species on the alkylation catalyst or by synthesizing the alkylation catalyst to comprise a decreased number of strongly acidic active sites is also disclosed, as is a method of improving a regeneration efficiency of the alkylation catalyst.

  13. Picolinamide-Based Iridium Catalysts for Dehydrogenation of Formic Acid in Water: Effect of Amide N Substituent on Activity and Stability.

    Science.gov (United States)

    Kanega, Ryoichi; Onishi, Naoya; Wang, Lin; Murata, Kazuhisa; Muckerman, James T; Fujita, Etsuko; Himeda, Yuichiro

    2018-03-01

    To develop highly efficient catalysts for dehydrogenation of formic acid in water, we investigated several Cp*Ir catalysts with various amide ligands. The catalyst with an N-phenylpicolinamide ligand exhibited a TOF of 118 000 h -1 at 60 °C. A constant rate (TOF>35 000 h -1 ) was maintained for six hours, and a TON of 1 000 000 was achieved at 50 °C. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Sulfuric acid functional zirconium (or aluminum) incorporated mesoporous MCM-48 solid acid catalysts for alkylation of phenol with tert-butyl alcohol

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Tingshun, E-mail: tshjiang@mail.ujs.edu.cn; Cheng, Jinlian; Liu, Wangping; Fu, Lie; Zhou, Xuping; Zhao, Qian; Yin, Hengbo

    2014-10-15

    Several zirconium (or aluminum) incorporated mesoporous MCM-48 solid acid catalysts (SO{sub 4}{sup 2−}/Zr-MCM-48 and SO{sub 4}{sup 2−}/Al-MCM-48) were prepared by the impregnation method and their physicochemical properties were characterized by means of XRD, FT-IR, TEM, NH{sub 3}-TPD and N{sub 2} physical adsorption. Also, the catalytic activities of these solid acid catalysts were evaluated by the alkylation of phenol with tert-butyl alcohol. The effect of weight hour space velocity (WHSV), reaction time and reaction temperature on catalytic properties was also studied. The results show that the SO{sub 4}{sup 2−}/Zr-MCM-48 and SO{sub 4}{sup 2−}/Al-MCM-48 still have good mesoporous structure and long range ordering. Compared with the Zr (or Al)–MCM-48 samples, SO{sub 4}{sup 2−}/Zr-MCM-48 and SO{sub 4}{sup 2−}/Al-MCM-48 solid acid catalysts have strong acidity and exhibit high activities in alkylation reaction of phenol with tert-butyl alcohol. The SO{sub 4}{sup 2−}/Zr-MCM-48-25 (molar ratio of Si/Zr=0.04) catalyst was found to be the most promising and gave the highest phenol conversion among all catalysts. A maximum phenol conversion of 91.6% with 4-tert-butyl phenol (4-TBP) selectivity of 81.8% was achieved when the molar ratio of tert-butyl alcohol:phenol is 2:1, reaction time is 2 h, the WHSV is 2 h{sup −1} and the reaction temperature is 140 °C. - Highlights: • Sulfuric acid functional mesoporous solid acid catalysts were prepared via impregnation method. • The alkylation of phenol with tert-butyl alcohol was carried out over these solid acid catalysts. • The catalytic activity of SO{sub 4}{sup 2−}/Zr-MCM-48-25 catalyst is much higher than that of the others. • A maximum phenol conversion of 91.6% was achieved under optimum reaction conditions for SO{sub 4}{sup 2−}/Zr-MCM-48-25.

  15. Process for hydroprocessing heavy oils utilizing sepiolite-based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Auden, C.A.; Yan, T.-Y.

    1986-04-15

    A process is described for demetallizing and desulfurizing a hydrocarbon oil comprising contacting the hydrocarbon oil in the presence of hydrogen and a sepiolite-based catalyst composition under conditions of pressure and temperature sufficient to effect demetallization and desulfurization. The sepiolite-based catalyst composition has been prepared by first contacting the sepiolite with an aqueous solution of a first metal salt, then contacting the resultant metal ion-exchanged sepiolite with an aqueous solution of a compound of a second metal selected from the group consisting of molybdenum, tungsten and vanadium, and finally contacting the resultant metal-exchanged sepiolite product with an aqueous solution of a magnesium compound, thereby effecting a magnesium ion-exchange with the metal-exchanged sepiolite product and neutralizing acid sites on the sepiolite product.

  16. Formic Acid Modified Co3O4-CeO2 Catalysts for CO Oxidation

    Directory of Open Access Journals (Sweden)

    Ruishu Shang

    2016-03-01

    Full Text Available A formic acid modified catalyst, Co3O4-CeO2, was prepared via facile urea-hydrothermal method and applied in CO oxidation. The Co3O4-CeO2-0.5 catalyst, treated by formic acid at 0.5 mol/L, performed better in CO oxidation with T50 obtained at 69.5 °C and T100 obtained at 150 °C, respectively. The characterization results indicate that after treating with formic acid, there is a more porous structure within the Co3O4-CeO2 catalyst; meanwhile, despite of the slightly decreased content of Co, there are more adsorption sites exposed by acid treatment, as suggested by CO-TPD and H2-TPD, which explains the improvement of catalytic performance.

  17. Self-Assembled Nanocomposite Organic Polymers with Aluminum and Scandium as Heterogeneous Water-Compatible Lewis Acid Catalysts.

    Science.gov (United States)

    Miyamura, Hiroyuki; Sonoyama, Arisa; Hayrapetyan, Davit; Kobayashi, Shū

    2015-09-01

    While water-compatible Lewis acids have great potential as accessible and environmentally benign catalysts for various organic transformations, efficient immobilization of such Lewis acids while keeping high activity and without leaching of metals even under aqueous conditions is a challenging task. Self-assembled nanocomposite catalysts of organic polymers, carbon black, aluminum reductants, and scandium salts as heterogeneous water-compatible Lewis acid catalysts are described. These catalysts could be successfully applied to various C-C bond-forming reactions without leaching of metals. Scanning transmission electron microscopy analyses revealed that the nanocomposite structure of Al and Sc was fabricated in these heterogeneous catalysts. It is noted that Al species, which are usually decomposed rapidly in the presence of water, are stabilized under aqueous conditions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Solid acid catalysts in heterogeneous n-alkanes hydroisomerisation ...

    African Journals Online (AJOL)

    As the current global environmental concerns have prompted regulations to reduce the level of aromatic compounds, particularly benzene and its derivatives in gasoline, ydroisomerisation of n-alkanes is becoming a major alternative for enhancing octane number. Series of solid acid catalysts comprising of Freidel crafts, ...

  19. Catalyst evaluation for oxygen reduction reaction in concentrated phosphoric acid at elevated temperatures

    Science.gov (United States)

    Hu, Yang; Jiang, Yiliang; Jensen, Jens Oluf; Cleemann, Lars N.; Li, Qingfeng

    2018-01-01

    Phosphoric acid is the common electrolyte for high-temperature polymer electrolyte fuel cells (HT-PEMFCs) that have advantages such as enhanced CO tolerance and simplified heat and water management. The currently used rotating disk electrode technique is limited to tests in dilute solutions at low temperatures and hence is not suitable for catalyst evaluation for HT-PEMFCs. In this study, we have designed and constructed a half-cell setup to measure the intrinsic activities of catalysts towards the oxygen reduction reaction (ORR) in conditions close to HT-PEMFC cathodes. By optimization of the hydrophobic characteristics of electrodes and the catalyst layer thickness, ORR activities of typical Pt/C catalysts are successfully measured in concentrated phosphoric acid at temperatures above 100 °C. In terms of mass-specific activities, the catalyst exhibits about two times higher activity in the half-cell electrode than that observed in fuel cells, indicating the feasibility of the technique as well as the potential for further improvement of fuel cell electrode performance.

  20. Transformation of Unsaturated Fatty Acids/Esters to Corresponding Keto Fatty Acids/Esters by Aerobic Oxidation with Pd(II)/Lewis Acid Catalyst.

    Science.gov (United States)

    Senan, Ahmed M; Zhang, Sicheng; Zeng, Miao; Chen, Zhuqi; Yin, Guochuan

    2017-08-16

    Utilization of renewable biomass to partly replace the fossil resources in industrial applications has attracted attention due to the limited fossil feedstock with the increased environmental concerns. This work introduced a modified Wacker-type oxidation for transformation of unsaturated fatty acids/esters to the corresponding keto fatty acids/esters, in which Cu 2+ cation was replaced with common nonredox metal ions, that is, a novel Pd(II)/Lewis acid (LA) catalyst. It was found that adding nonredox metal ions can effectively promote Pd(II)-catalyzed oxidation of unsaturated fatty acids/esters to the corresponding keto fatty acids/esters, even much better than Cu 2+ , and the promotional effect is highly dependent on the Lewis acidity of added nonredox metal ions. The improved catalytic efficiency is attributed to the formation of heterobimetallic Pd(II)/LA species, and the oxidation mechanism of this Pd(II)/LA catalyst is also briefly discussed.

  1. Green synthesis of 3,4-dihydropyrimidinones using nano Fe3O4@meglumine sulfonic acid as a new efficient solid acid catalyst under microwave irradiation

    Directory of Open Access Journals (Sweden)

    Leila Moradi

    2018-01-01

    Full Text Available Design, synthesis and characterization of nano Fe3O4@meglumine sulfonic acid as a new solid acid catalyst for the simple and green one pot multicomponent synthesis of 3,4-dihydropyrimidin-2(1H-ones/thiones was studied. New solid acid catalyst was prepared through a clean and simple protocol and characterized using FTIR, VSM, TGA, SEM, elemental analysis (CHN and XRD techniques. Heterogenization of homogeneous catalyst as a green approach is a useful method for enhancing the efficiency of catalyst. Presented study was a new method for attachment of homogeneous highly soluble catalyst (meglumine sulfate to the magnetite nanoparticle surfaces for preparing a heterogeneous and effective catalyst. Obtained heterogeneous and reusable solid acid catalyst has high performance in the synthesis of Biginelli compounds. The reaction was performed under microwave irradiation as a rapid and green condition. Easy work up as well as excellent yield (90–98% of products in short reaction times (40–200 s and reusable catalyst are the main advantages of presented procedure. Reaction products were characterized in details using physical and chemical techniques such as melting point, 1H NMR, 13C NMR and FTIR.

  2. Conversion of corn stalk into furfural using a novel heterogeneous strong acid catalyst in γ-valerolactone.

    Science.gov (United States)

    Xu, Zhiping; Li, Wenzhi; Du, Zhijie; Wu, Hao; Jameel, Hasan; Chang, Hou-Min; Ma, Longlong

    2015-12-01

    A novel solid acid catalyst was prepared by the copolymerization of p-toluenesulfonic acid and paraformaldehyde and then characterized by FT-IR, TG/DTG, HRTEM and N2-BET. Furfural was successfully produced by the dehydration of xylose and xylan using the novel catalyst in γ-valerolactone. This investigation focused on effects of various reaction conditions including solvent, acid catalyst, reaction temperature, residence time, water concentration, xylose loading and catalyst dosage on the dehydration of xylose to furfural. It was found that the solid catalyst displayed extremely high activity for furfural production. 80.4% furfural yield with 98.8% xylose conversion was achieved at 170°C for 10 min. The catalyst could be recycled at least five times without significant loss of activity. Furthermore, 83.5% furfural yield and 19.5% HMF yield were obtained from raw corn stalk under more severe conditions (190°C for 100 min). Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. A molecular molybdenum–schiff base electro-catalyst for generating hydrogen from acetic acid or water

    International Nuclear Information System (INIS)

    Cao, Jie-Ping; Fang, Ting; Zhou, Ling-Ling; Fu, Ling-Zhi; Zhan, Shuzhong

    2014-01-01

    Highlights: • The reaction of ligand, H 2 L and MoCl 5 gives a Mo(VI) complex [MoL(O) 2 ] 1. • Complex 1 is capable of catalyzing hydrogen evolution from acetic acid and water. • TOF reaches a maximum of 68 (DMF) and 356 (buffer, pH 6) moles/h, respectively. • Sustained proton reduction catalysis occurs over a 69 h period and no decomposition of 1. - ABSTRACT: The reaction of 2-pyridylamino-N,N-bis(2-methylene-4-ethyl-6-tert-butylphenol) (H 2 L) and MoCl 5 gives a molybdenum(VI) complex [MoL(O) 2 ] 1, a new molecular electrocatalyst, which has been determined by X-ray crystallography. Electrochemical studies show that complex 1 can catalyze hydrogen evolution from acetic acid or aqueous buffer. Turnover frequency (TOF) reaches a maximum of 68 (in N,N-Dimethylformamide (DMF)) and 356 (in buffer, pH 6.0) moles of hydrogen per mole of catalyst per hour, respectively. Sustained proton reduction catalysis occurs at glassy carbon (GC) electrode to give H 2 over a 69 h electrolysis period and no observable decomposition of the catalyst

  4. Electrooxidations of ethanol, acetaldehyde and acetic acid using PtRuSn/C catalysts prepared by modified alcohol-reduction process

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Gang [Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 (United States); Swaidan, Raja [Department of Chemical Engineering, Cooper Union, New York, NY 10003 (United States); Cui, Guofeng [School of Chemistry and Chemical Engineering, Sun-Yat Sen University, Guangzhou 510275 (China)

    2007-10-11

    Well-dispersed ternary PtRuSn catalysts of various atomic ratios (60:30:10, 60:20:20 and 60:10:30) were deposited onto carbon using modified alcohol-reduction process for electrochemical oxidation of ethanol. The alloy phase structure and surface morphology for each variation of the PtRuSn/C catalysts were determined by XRD and HRTEM. In order to evaluate the contributions of Ru and Sn in the different stages of ethanol oxidation, electrochemical oxidations of adsorbed CO, ethanol, acetaldehyde and acetic acid were performed on each PtRuSn/C catalyst. The results indicated that the Ru-rich PtRuSn/C catalyst (60:30:10) exhibited the lowest onset potential for the electrooxidations of adsorbed CO, ethanol and acetaldehyde, revealing that the removal through oxidation of the intermediate C{sub 1} and C{sub 2} species from Pt sites is primarily attributed to the Ru and Pt{sub 3}Sn alloy structures. However, for the overall oxidation of ethanol, the Sn-rich PtRuSn/C catalyst (60:10:30) containing PtSn phase and SnO{sub 2} structure is favorable for the activation of C-C bond breaking, thereby generating higher current density (mass activity) at higher potentials. Moreover, in the electrooxidation of acetic acid, a remarkable improvement for oxidizing acetic acid to C{sub 1} species was observed in the Sn-rich PtRuSn/C catalyst (60:10:30), while the Ru-rich PtRuSn/C catalyst (60:30:10) was almost incapable of breaking the C-C bond to further oxidize acetic acid. The possible reasons for the different reactivities on the studied PtRuSn/C catalysts were discussed based on the removal of intermediates and activation of the C-C bonds on the different surfaces. (author)

  5. Enhancing Cooperativity in Bifunctional Acid–Pd Catalysts with Carboxylic Acid-Functionalized Organic Monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Coan, Patrick D. [Department of Chemical and Biological Engineering, University of Colorado—Boulder, Boulder, Colorado 80309, United States; Ellis, Lucas D. [Department of Chemical and Biological Engineering, University of Colorado—Boulder, Boulder, Colorado 80309, United States; Griffin, Michael B. [National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States; Schwartz, Daniel K. [Department of Chemical and Biological Engineering, University of Colorado—Boulder, Boulder, Colorado 80309, United States; Medlin, J. Will [Department of Chemical and Biological Engineering, University of Colorado—Boulder, Boulder, Colorado 80309, United States

    2018-03-01

    Cooperative catalysts containing a combination of noble metal hydrogenation sites and Bronsted acid sites are critical for many reactions, including the deoxygenation (DO) of biomass-derived oxygenates in the upgrading of pyrolysis oil. One route toward the design of cooperative catalysts is to tether two different catalytically active functions so that they are in close proximity while avoiding undesirable interactions that can block active sites. Here, we deposited carboxylic acid (CA)-functionalized organophosphonate monolayers onto Al2O3-supported Pd nanoparticle catalysts to prepare bifunctional catalysts containing both Bronsted acid and metal sites. Modification with phosphonic acids (PAs) improved activity and selectivity for gas-phase DO reactions, but the degree of improvement was highly sensitive to both the presence and positioning of the CA group, suggesting a significant contribution from both the PA and CA sites. Short spacer lengths of 1-2 methylene groups between the phosphonate head and CA tail were found to yield the best DO rates and selectivities, whereas longer chains performed similarly to self-assembled monolayers having alkyl tails. Results from a combination of density functional theory and Fourier transform infrared spectroscopy suggested that the enhanced catalyst performance on the optimally positioned CAs was due to the generation of strong acid sites on the Al2O3 support adjacent to the metal. Furthermore, the high activity of these sites was found to result from a hydrogen-bonded cyclic structure involving cooperativity between the phosphonate head group and CA tail function. More broadly, these results indicate that functional groups tethered to supports via organic ligands can influence catalytic chemistry on metal nanoparticles.

  6. Preparation of Copper (II) Containing Phosphomolybdic Acid Salt as Catalyst for the Synthesis of Biodiesel by Esterification.

    Science.gov (United States)

    Cai, Jie; Zhang, Qiu-Yun; Wei, Fang-Fang; Huang, Jin-Shu; Feng, Yun-Mei; Ma, Hai-Tao; Zhang, Yutao-

    2018-04-01

    Copper (II) containing phosphomolybdic acid (PMA) catalysts were synthesized by ion exchange method and characterization using various physico-chemical techniques such as X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), thermogravimetric (TG) and scanning electron microscopy (SEM). The characterization results showed that the Keggin ions were retained in the catalysts and possessed well thermal stability. The catalytic esterification of lauric acid with methanol could be easily achieved about 78.7% conversion under optimum condition, the catalyst also contributed to the stability of the catalyst in which it can be reused for a certain time. This study demonstrated an alternative approach to biodiesel production with high efficiency by Cu (II) ion exchanged phosphomolybdic acid catalyst in the esterification catalytic.

  7. Production of Jet Fuel-Range Hydrocarbons from Hydrodeoxygenation of Lignin over Super Lewis Acid Combined with Metal Catalysts.

    Science.gov (United States)

    Wang, Hongliang; Wang, Huamin; Kuhn, Eric; Tucker, Melvin P; Yang, Bin

    2018-01-10

    Super Lewis acids containing the triflate anion [e.g., Hf(OTf) 4 , Ln(OTf) 3 , In(OTf) 3 , Al(OTf) 3 ] and noble metal catalysts (e.g., Ru/C, Ru/Al 2 O 3 ) formed efficient catalytic systems to generate saturated hydrocarbons from lignin in high yields. In such catalytic systems, the metal triflates mediated rapid ether bond cleavage through selective bonding to etheric oxygens while the noble metal catalyzed subsequent hydrodeoxygenation (HDO) reactions. Near theoretical yields of hydrocarbons were produced from lignin model compounds by the combined catalysis of Hf(OTf) 4 and ruthenium-based catalysts. When a technical lignin derived from a pilot-scale biorefinery was used, more than 30 wt % of the hydrocarbons produced with this catalytic system were cyclohexane and alkylcyclohexanes in the jet fuel range. Super Lewis acids are postulated to strongly interact with lignin substrates by protonating hydroxyl groups and ether linkages, forming intermediate species that enhance hydrogenation catalysis by supported noble metal catalysts. Meanwhile, the hydrogenation of aromatic rings by the noble metal catalysts can promote deoxygenation reactions catalyzed by super Lewis acids. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Impacts of acid gases on mercury oxidation across SCR catalyst

    International Nuclear Information System (INIS)

    Zhuang, Ye; Laumb, Jason; Liggett, Richard; Holmes, Mike; Pavlish, John

    2007-01-01

    A series of bench-scale experiments were completed to evaluate acid gases of HCl, SO 2 , and SO 3 on mercury oxidation across a commercial selective catalytic reduction (SCR) catalyst. The SCR catalyst was placed in a simulated flue gas stream containing O 2 , CO 2 , H 2 O, NO, NO 2 , and NH 3 , and N 2 . HCl, SO 2 , and SO 3 were added to the gas stream either separately or in combination to investigate their interactions with mercury over the SCR catalyst. The compositions of the simulated flue gas represent a medium-sulfur and low- to medium-chlorine coal that could represent either bituminous or subbituminous. The experimental data indicated that 5-50 ppm HCl in flue gas enhanced mercury oxidation within the SCR catalyst, possibly because of the reactive chlorine species formed through catalytic reactions. An addition of 5 ppm HCl in the simulated flue gas resulted in mercury oxidation of 45% across the SCR compared to only 4% mercury oxidation when 1 ppm HCl is in the flue gas. As HCl concentration increased to 50 ppm, 63% of Hg oxidation was reached. SO 2 and SO 3 showed a mitigating effect on mercury chlorination to some degree, depending on the concentrations of SO 2 and SO 3 , by competing against HCl for SCR adsorption sites. High levels of acid gases of HCl (50 ppm), SO 2 (2000 ppm), and SO 3 (50 ppm) in the flue gas deteriorate mercury adsorption on the SCR catalyst. (author)

  9. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts

    Science.gov (United States)

    Shan, Junjun; Li, Mengwei; Allard, Lawrence F.; Lee, Sungsik; Flytzani-Stephanopoulos, Maria

    2017-11-01

    An efficient and direct method of catalytic conversion of methane to liquid methanol and other oxygenates would be of considerable practical value. However, it remains an unsolved problem in catalysis, as typically it involves expensive or corrosive oxidants or reaction media that are not amenable to commercialization. Although methane can be directly converted to methanol using molecular oxygen under mild conditions in the gas phase, the process is either stoichiometric (and therefore requires a water extraction step) or is too slow and low-yielding to be practical. Methane could, in principle, also be transformed through direct oxidative carbonylation to acetic acid, which is commercially obtained through methane steam reforming, methanol synthesis, and subsequent methanol carbonylation on homogeneous catalysts. However, an effective catalyst for the direct carbonylation of methane to acetic acid, which might enable the economical small-scale utilization of natural gas that is currently flared or stranded, has not yet been reported. Here we show that mononuclear rhodium species, anchored on a zeolite or titanium dioxide support suspended in aqueous solution, catalyse the direct conversion of methane to methanol and acetic acid, using oxygen and carbon monoxide under mild conditions. We find that the two products form through independent pathways, which allows us to tune the conversion: three-hour-long batch-reactor tests conducted at 150 degrees Celsius, using either the zeolite-supported or the titanium-dioxide-supported catalyst, yield around 22,000 micromoles of acetic acid per gram of catalyst, or around 230 micromoles of methanol per gram of catalyst, respectively, with selectivities of 60-100 per cent. We anticipate that these unusually high activities, despite still being too low for commercial application, may guide the development of optimized catalysts and practical processes for the direct conversion of methane to methanol, acetic acid and other useful

  10. 31P NMR Chemical Shifts of Phosphorus Probes as Reliable and Practical Acidity Scales for Solid and Liquid Catalysts.

    Science.gov (United States)

    Zheng, Anmin; Liu, Shang-Bin; Deng, Feng

    2017-10-11

    Acid-base catalytic reaction, either in heterogeneous or homogeneous systems, is one of the most important chemical reactions that has provoked a wide variety of industrial catalytic processes for production of chemicals and petrochemicals over the past few decades. In view of the fact that the catalytic performances (e.g., activity, selectivity, and reaction mechanism) of acid-catalyzed reactions over acidic catalysts are mostly dictated by detailed acidic features, viz. type (Brønsted vs Lewis acidity), amount (concentration), strength, and local environments (location) of acid sites, information on and manipulation of their structure-activity correlation are crucial for optimization of catalytic performances as well as innovative design of novel effective catalysts. This review aims to summarize recent developments on acidity characterization of solid and liquid catalysts by means of experimental 31 P nuclear magnetic resonance (NMR) spectroscopy using phosphorus probe molecules such as trialkylphosphine (TMP) and trialkylphosphine oxides (R 3 PO). In particular, correlations between the observed 31 P chemical shifts (δ 31 P) of phosphorus (P)-containing probes and acidic strengths have been established in conjuction with density functional theory (DFT) calculations, rendering practical and reliable acidity scales for Brønsted and Lewis acidities at the atomic level. As illustrated for a variety of different solid and liquid acid systems, such as microporous zeolites, mesoporous molecular sieves, and metal oxides, the 31 P NMR probe approaches were shown to provide important acid features of various catalysts, surpassing most conventional methods such as titration, pH measurement, Hammett acidity function, and some other commonly used physicochemical techniques, such as calorimetry, temperature-programmed desorption of ammonia (NH 3 -TPD), Fourier transformed infrared (FT-IR), and 1 H NMR spectroscopies.

  11. Electrocatalytic properties of carbon-supported Pt-Ru catalysts with the high alloying degree for formic acid electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu.; Zhou, Yiming; Tang, Yawen; Lu, Tianhong [College of Chemistry and Environmental Science, Nanjing Normal University, Nanjing 210097 (China)

    2010-07-01

    A series of carbon-supported bimetallic Pt-Ru catalysts with high alloying degree and different Pt/Ru atomic ratio have been prepared by a chemical reduction method in the H{sub 2}O/ethanol/tetrahydrofuran (THF) mixture solvent. The structural and electronic properties of catalysts are characterized using X-ray reflection (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM). The electrooxidation of formic acid on these Pt-Ru nanoparticles are investigated by using cyclic voltammetry, chronoamperometry and CO-stripping measurements. The results of electrochemical measurements illustrate that the alloying degree and Pt/Ru atomic ratio of Pt-Ru catalyst play an important role in the electrocatalytic activity of the Pt-Ru/C catalyst for formic acid electrooxidation due to the bifunctional mechanism and the electronic effect. Since formic acid is an intermediate in the methanol electrooxidation on Pt electrode in acidic electrolyte, the observation provides an additional fundamental understanding of the structure-activity relationship of Pt-Ru catalyst for methanol electrooxidation. (author)

  12. Aerobic Oxidation of Alcohols over Gold Catalysts: Role of Acid and Base

    DEFF Research Database (Denmark)

    Klitgaard, Søren Kegnæs; DeLa Riva, Andrew T.; Helveg, Stig

    2008-01-01

    Gold nanoparticles are deposited on potassium titanate nanowires and used as heterogeneous catalysts in the aerobic oxidation of benzyl alcohol in methanol to methyl benzoate at ambient conditions. The presence of a catalytic amount of base promotes the reaction and the formation of free benzoic...

  13. Cu2+ Montmorillonite K10 Clay Catalyst as a Green Catalyst for Production of Stearic Acid Methyl Ester: Optimization Using Response Surface Methodology (RSM)

    OpenAIRE

    Enas A. Almadani; Farah W. Harun; Salina M. Radzi; Syamsul K. Muhamad

    2018-01-01

    Clay catalyst has received much attention to replace the homogeneous catalysts in the esterification reaction to produce fatty acid methyl ester as the source of biodiesel as it is low cost, easily available, as well as environmental friendly. However, the use of unmodified clay, in particular montmorillonite K10 (MMT K10), for the esterification of fatty acids showed that the acid conversion was less than 60% and this is not preferable to the production of biodiesel. In this study, synthesis...

  14. Fructose dehydration to 5-hydroxymethylfurfural over solid acid catalysts in a biphasic system

    NARCIS (Netherlands)

    Ordomskiy, V.; Schouten, J.C.; Schaaf, van der J.; Nijhuis, T.A.

    2012-01-01

    Different acidic heterogeneous catalysts like alumina, aluminosilicate, zirconium phosphate, niobic acid, ion-exchange resin Amberlyst-15, and zeolite MOR have been studied in fructose dehydration to 5-hydroxymethylfurfural (HMF). The acidity of these materials was characterized using

  15. Dehydration of D-xylose to furfural using acid-functionalized MWCNTs catalysts

    Science.gov (United States)

    Termvidchakorn, Chompoopitch; Itthibenchapong, Vorranutch; Songtawee, Siripit; Chamnankid, Busaya; Namuangruk, Supawadee; Faungnawakij, Kajornsak; Charinpanitkul, Tawatchai; Khunchit, Radchadaporn; Hansupaluk, Nanthiya; Sano, Noriaki; Hinode, Hirofumi

    2017-09-01

    Acid-functionalized multi-wall carbon nanotubes (MWCNTs) catalysts were prepared by a wet chemical sonication with various acid solutions, i.e. H2SO4, H3PO4, HNO3, and HCl. Sulfonic groups and carboxyl groups were detected on MWCNTs with H2SO4 treatment (s-MWCNTs), while only carboxyl groups were presented from other acid treatments. The catalytic dehydration of D-xylose into furfural was evaluated using a batch reactor at 170 °C for 3 h under N2 pressure of 15 bar. The highest furfural selectivity was achieved around 57% by s-MWCNTs catalyst, suggesting a positive role of the sulfonic functionalized groups. The effect of Co species was related to their Lewis acid property resulting in the enhancement of xylose conversion with low selectivity to furfural product. Invited talk at 5th Thailand International Nanotechnology Conference (Nano Thailand-2016), 27-29 November 2016, Nakhon Ratchasima, Thailand.

  16. Development of sustainable Palladium-based catalysts for removal of persistent contaminants from drinking water

    Science.gov (United States)

    Shuai, Danmeng

    Pd-based catalytic reduction has emerged as an advanced treatment technology for drinking water decontamination, and a suite of persistent contaminants including oxyanions, N-nitrosoamines, and halogenated compounds are amenable to catalytic reduction. The primary goal of this study is to develop novel Pd-based catalysts with enhanced performance (i.e., activity, selectivity, and sustainability) to remove contaminants from drinking water. The effects of water quality (i.e., co-contaminants in water matrix), catalyst support, and catalyst metal were explored, and they provide insights for preparing catalysts with faster kinetics, higher selectivity, and extended lifetime. Azo dyes are wide-spread contaminants, and they are potentially co-exisiting with target contaminants amenable for catalytic removal. The probe azo dye methyl orange (MO) enhanced catalytic reduction kinetics of a suite of oxyanions (i.e., nitrate, nitrite, bromate, chlorate, and perchlorate) and diatrizoate significantly but not N-nitrosodimethylamine (NDMA) with a variety of Pd-based catalysts. Nitrate was selected as a probe contaminant, and several different azo dyes (i.e., (methyl orange, methyl red, fast yellow AB, metanil yellow, acid orange 7, congo red, eriochrome black T, acid red 27, acid yellow 11, and acid yellow 17) were evaluated for their ability to enhance reduction. A hydrogen atom shuttling mechanism was proposed and a kinetic model was proposed based on Bronsted-Evans-Polanyi (BEP) theory, and they suggest sorbed azo dyes and reduced hydrazo dyes shuttle hydrogen atoms to oxyanions or diatrizoate to enhance their reduction kinetics. Next, vapor-grown carbon nanofiber (CNF) supports were used to explore the effects of Pd nanoparticle size and interior versus exterior loading on nitrite reduction activity and selectivity (i.e., dinitrogen over ammonia production). In order to evaluate the amount of interior versus exterior loading of Pd nanoparticles, a fast and accurate geometric

  17. Synthesis of Alkylpoly glucoside from Dextrose-Decanol in the Presence of Silicotungstic Acid Sol-Gel Catalyst

    International Nuclear Information System (INIS)

    Izazi Azzahidah Amin; Mohd Ambar Yarmo; Nik Idris Nik Yusoff

    2013-01-01

    The purpose of this study is to synthesis alkylpoly glucoside via condensation of decanol with dextrose in the presence of heterogenous catalyst. In this study, silicotungstic acid sol-gel (STSG) prepared using sol-gel was used as solid acid catalyst. The catalyst was characterized using BET surface area measurement, X-ray Diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS) surface analysis. The final product was easy to be separated from catalyst without the need of a further neutralization. Silicotungstic acid sol-gel has been found efficient to be solid catalyst for synthesis alkylpoly glucosides. Condensation reaction was carried out 8 hours at 110-120 degree Celsius under vacuum condition at 10 mmHg. The determination of decyl glucoside has been achieved by LC/ ESI-MS/ MS (ToF) giving a mass peak at m/z = 343.2 correspond to the m/z of [M+Na] + . Alkylpoly glucoside produced was analysed by FTIR, 1 H and 13 C NMR spectrometric technique. (author)

  18. Heteropoly acid promoted V2O5/TiO2 catalysts for NO abatement with ammonia in alkali containing flue gases

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Jensen, Anker Degn; Riisager, Anders

    2011-01-01

    V2O5/TiO2 and heteropoly acid promoted V2O5/TiO2 catalysts were prepared and characterized by N2 physisorption, XRPD and NH3-TPD. The influence of the calcination temperature from 400 to 700 1C on crystallinity and acidic properties was studied and compared with the activity for the selective...... catalytic reduction (SCR) of NO with ammonia. The SCR activity of heteropoly acid promoted catalysts was found to be much higher than for unpromoted catalysts. The stability of heteropoly acid promoted catalysts is dependent on calcination temperature and there is a gradual decrease in SCR activity...... and acidity with increase in calcination temperatures. Furthermore, the heteropoly acid promoted V2O5/TiO2 catalysts showed excellent alkali deactivation resistance and might therefore be alternative deNOx catalysts in biomass fired power plants....

  19. Alkaline earth layered benzoates as reusable heterogeneous catalysts for the methyl esterification of benzoic acid

    Directory of Open Access Journals (Sweden)

    Swamy Arêa Maruyama

    2012-01-01

    Full Text Available This paper describes the synthesis and characterization of layered barium, calcium and strontium benzoates and evaluates the potential of these materials as catalysts in the synthesis of methyl benzoate. The methyl esterification of benzoic acid was investigated, where the effects of temperature, alcohol:acid molar ratio and amount of catalyst were evaluated. Ester conversions of 65 to 70% were achieved for all the catalysts under the best reaction conditions. The possibility of recycling these metallic benzoates was also demonstrated, evidenced by unaltered catalytic activity for three consecutive reaction cycles.

  20. ESTERIFICATION OF FATTY ACID FROM PALM OIL WASTE (SLUDGE OIL BY USING ALUM CATALYST

    Directory of Open Access Journals (Sweden)

    Thamrin Usman

    2010-06-01

    Full Text Available Esterification of fatty acids from palm oil waste (sludge oil as biodiesel liquid base has been done by using alum [Al2(SO43.14H2O] catalyst. Some reaction variables like reaction time, catalyst quantity, and molar ratio of sample-reactant was applied for optimal reaction. Yield of 94.66% was obtained at reaction condition 65 °C, 5 h, sample-reactant ratio 1:20, and catalyst quantity 3% (w/w. GC-MS analysis request showed that composition of methyl esters biodiesel are methyl caproic (0.67%, methyl lauric (0.21%, methyl miristic (1.96%, methyl palmitic (49.52%, methyl oleic (41.51%, and methyl stearic (6.13%. Physical properties of synthesized product (viscosity, refraction index and density are similar with those of commercial product.   Keywords: alum, biodiesel, esterification, sludge oil

  1. Esterification of free fatty acids in biodiesel production with sulphonated pyrolysed carbohydrate catalysts

    DEFF Research Database (Denmark)

    Madsen, Anders Theilgaard; Riisager, Anders; Fehrmann, Rasmus

    The pre-treatment of free fatty acids in oils and fats in biodiesel production is of pivotal importance, and esterification in acidic medium must be done prior to basic transesterification of glycerides. The free fatty acids may be converted over an acidic catalyst of sulphonated pyrolysed...

  2. Boric acid as cost-effective and recyclable catalyst for trimethylsilyl protection and deprotection of alcohols and phenols

    Energy Technology Data Exchange (ETDEWEB)

    Rostami, Amin; Akradi, Jamal; Ahmad-Jangi, Firoz, E-mail: a_rostami372@yahoo.co [University of Kurdistan, Sanandaj (Iran, Islamic Republic of). Faculty of Science. Dept. of Chemistry

    2010-07-01

    Boric acid has been used as a green, selective and recyclable catalyst for trimethysilylation of alcohols and phenols using hexamethyldisilazane in acetonitrile. Deprotection of trimethylsilyl ethers to their parent alcohols and phenols was also achieved using this catalyst in water at room temperature. The salient features of this methodology are cheap processing, mild acidity conditions, excellent yields of products and easy availability of the catalyst. (author)

  3. Preparation, characterization and first application of aerosil silica supported acidic ionic liquid as a reusable heterogeneous catalyst for the synthesis of 2,3-dihydroquinazoline-4(1H)-ones

    Energy Technology Data Exchange (ETDEWEB)

    Yassaghi, Ghazaleh; Davodnia, Abolghasem; Allameh, Sadegh; Zarebidaki, Atefeh; Tavakolihoseini, Niloofar [Islamic Azad Univ., Mashhad (Iran, Islamic Republic of)

    2012-04-15

    A new heterogeneous acidic catalyst was successfully prepared by impregnation of silica (Aerosil 300) by an acidic ionic liquid, named 1-(4-sulfonic acid)butyl pyridinium hydrogen sulfate [PYC{sub 4}SO{sub 3}H][HSO{sub 4}], and characterized using FT-IR spectroscopy, the N{sub 2} adsorption/desorption analysis (BET), thermal analysis (TG/DTG), and X-ray diffraction (XRD) techniques. The amount of loaded acidic ionic liquid on Aerosil 300 support was determined by acid-base titration. This new solid acidic supported heterogeneous catalyst exhibits excellent activity in the synthesis of 2-aryl-2,3-dihydroquinazoline-4(1H)-ones by cyclo condensation reaction of 2-aminobenzamide with aromatic aldehydes under solvent-free conditions and the desired products were obtained in very short reaction times with high yields. This catalyst has the advantages of an easy catalyst separation from the reaction medium and lower problems of corrosion. Recycling of the catalyst and avoidance of using harmful organic solvent are other advantages of this simple procedure.

  4. Removal of free fatty acid in Palm Fatty Acid Distillate using sulfonated carbon catalyst derived from biomass wastefor biodiesel production

    Science.gov (United States)

    Hidayat, Arif; Rochmadi; Wijaya, Karna; Budiman, Arief

    2016-01-01

    In this research, the esterification of PFAD using the sulfonatedcoconut shell biochar catalyst was studied. Carbon solid catalysts were prepared by a sulfonation of carbonized coconut shells. The performances of the catalysts were evaluated in terms of the reaction temperatures, the molar ratios of methanol to PFAD, the catalyst loading and the reaction times. The reusability of the solid acid carbon catalysts was also studied in this work. The results indicated that the FFA conversion was significantly increased with increasing catalyst loading and reaction times. It can be concluded that the optimal conditions were an PFAD to methanol molar ratio of 1:12, the amount of catalyst of 10%w, and reaction temperature of 60oC.At this optimum condition, the conversion to biodieselreached 88%.

  5. Sulfuric acid baking and leaching of spent Co-Mo/Al2O3 catalyst.

    Science.gov (United States)

    Kim, Hong-In; Park, Kyung-Ho; Mishra, Devabrata

    2009-07-30

    Dissolution of metals from a pre-oxidized refinery plant spent Co-Mo/Al(2)O(3) catalyst have been tried through low temperature (200-450 degrees C) sulfuric acid baking followed by mild leaching process. Direct sulfuric acid leaching of the same sample, resulted poor Al and Mo recoveries, whereas leaching after sulfuric acid baking significantly improved the recoveries of above two metals. The pre-oxidized spent catalyst, obtained from a Korean refinery plant found to contain 40% Al, 9.92% Mo, 2.28% Co, 2.5% C and trace amount of other elements such as Fe, Ni, S and P. XRD results indicated the host matrix to be poorly crystalline gamma- Al(2)O(3). The effect of various baking parameters such as catalyst-to-acid ratio, baking temperature and baking time on percentage dissolutions of metals has been studied. It was observed that, metals dissolution increases with increase in the baking temperature up to 300 degrees C, then decreases with further increase in the baking temperature. Under optimum baking condition more than 90% Co and Mo, and 93% Al could be dissolved from the spent catalyst with the following leaching condition: H(2)SO(4)=2% (v/v), temperature=95 degrees C, time=60 min and Pulp density=5%.

  6. Highly Selective Hydrogenation of Levulinic Acid to γ-Valerolactone Over Ru/ZrO2 Catalysts

    NARCIS (Netherlands)

    Filiz, B.C.; Gnanakumar, E.S.; Martinez-Arias, A.; Gengler, R.; Rudolf, P.; Rothenberg, G.; Shiju, N.R.

    We studied the catalytic hydrogenation of levulinic acid over zirconia supported ruthenium catalysts. Four different Ru/ZrO2 catalysts were prepared by different pre-treatments and using different zirconium supports (ZrOx(OH)4−2x and ZrO2). Although the final compositions of the catalysts are the

  7. Highly Selective Hydrogenation of Levulinic Acid to gamma-Valerolactone Over Ru/ZrO2 Catalysts

    NARCIS (Netherlands)

    Filiz, Bilge Coskuner; Gnanakumar, Edwin S.; Martinez-Arias, Arturo; Gengler, Regis; Rudolf, Petra; Rothenberg, Gadi; Shiju, N. Raveendran

    We studied the catalytic hydrogenation of levulinic acid over zirconia supported ruthenium catalysts. Four different Ru/ZrO2 catalysts were prepared by different pre-treatments and using different zirconium supports (ZrOx(OH)(4-2x) and ZrO2). Although the final compositions of the catalysts are the

  8. Nb-Based Zeolites: Efficient bi-Functional Catalysts for the One-Pot Synthesis of Succinic Acid from Glucose

    Directory of Open Access Journals (Sweden)

    Magdi El Fergani

    2017-12-01

    Full Text Available The one-pot production of succinic acid from glucose was investigated in pure hot water as solvent using Nb (0.02 and 0.05 moles%-Beta zeolites obtained by a post-synthesis methodology. Structurally, they are comprised of residual framework Al-acid sites, extra-framework isolated Nb (V and Nb2O5 pore-encapsulated clusters. The Nb-modified Beta-zeolites acted as bi-functional catalysts in which glucose is dehydrated to levulinic acid (LA which, further, suffers an oxidation process to succinic acid (SA. After the optimization of the reaction conditions, that is, at 180 °C, 18 bar O2, and 12 h reaction time, the oxidation of glucose occurred with a selectivity to succinic acid as high as 84% for a total conversion.

  9. Study on the mechanism of a manganese-based catalyst for catalytic NOX flue gas denitration

    Science.gov (United States)

    Zhang, Lei; Wen, Xin; Lei, Zhang; Gao, Long; Sha, Xiangling; Ma, Zhenhua; He, Huibin; Wang, Yusu; Jia, Yang; Li, Yonghui

    2018-04-01

    Manganese-based bimetallic catalysts were prepared with self-made pyrolysis coke as carrier and its denitration performance of low-temperature SCR (selective catalyst reduction) was studied. The effects of different metal species, calcination temperature, calcination time and the metal load quantity on the denitration performance of the catalyst were studied by orthogonal test. The denitration mechanism of the catalyst was analyzed by XRD (X-ray diffraction), SEM (scanning electron microscope), BET test and transient test. The experiments show that: * The denitration efficiency of Mn-based bimetallic catalysts mainly relates to the metal type, the metal load quantity and the catalyst adjuvant type. * The optimal catalyst preparation conditions are as follows: the load quantity of monometallic MnO2 is 10%, calcined at 300°C for 4h, and then loaded with 8% CeO2, calcined at 350°Cfor 3h. * The denitration mechanism of manganese-based bimetallic oxide catalysts is stated as: NH3 is firstly adsorbed by B acid center Mn-OH which nears Mn4+==O to form NH4+, NH4+ was then attacked by the gas phase NO to form N2, H2O and Mn3+-OH. Finally, Mn3+-OH was oxidized by O2 to regenerate Mn4+.

  10. Study on the mechanism of a manganese-based catalyst for catalytic NOX flue gas denitration

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2018-04-01

    Full Text Available Manganese-based bimetallic catalysts were prepared with self-made pyrolysis coke as carrier and its denitration performance of low-temperature SCR (selective catalyst reduction was studied. The effects of different metal species, calcination temperature, calcination time and the metal load quantity on the denitration performance of the catalyst were studied by orthogonal test. The denitration mechanism of the catalyst was analyzed by XRD (X-ray diffraction, SEM (scanning electron microscope, BET test and transient test. The experiments show that: ① The denitration efficiency of Mn-based bimetallic catalysts mainly relates to the metal type, the metal load quantity and the catalyst adjuvant type. ② The optimal catalyst preparation conditions are as follows: the load quantity of monometallic MnO2 is 10%, calcined at 300°C for 4h, and then loaded with 8% CeO2, calcined at 350°Cfor 3h. ③ The denitration mechanism of manganese-based bimetallic oxide catalysts is stated as: NH3 is firstly adsorbed by B acid center Mn-OH which nears Mn4+==O to form NH4+, NH4+ was then attacked by the gas phase NO to form N2, H2O and Mn3+-OH. Finally, Mn3+-OH was oxidized by O2 to regenerate Mn4+.

  11. Effects of Weight Hourly Space Velocity and Catalyst Diameter on Performance of Hybrid Catalytic-Plasma Reactor for Biodiesel Synthesis over Sulphated Zinc Oxide Acid Catalyst

    Directory of Open Access Journals (Sweden)

    Luqman Buchori

    2017-05-01

    Full Text Available Biodiesel synthesis through transesterification of soybean oil with methanol on hybrid catalytic-plasma reactor over sulphated zinc oxide (SO42-/ZnO active acid catalyst was investigated. This research was aimed to study effects of Weight Hourly Space Velocity (WHSV and the catalyst diameter on performance of the hybrid catalytic-plasma reactor for biodiesel synthesis. The amount (20.2 g of active sulphated zinc oxide solid acid catalysts was loaded into discharge zone of the reactor. The WHSV and the catalyst diameter were varied between 0.89 to 1.55 min-1 and 3, 5, and 7 mm, respectively. The molar ratio of methanol to oil as reactants of 15:1 is fed to the reactor, while operating condition of the reactor was kept at reaction temperature of 65 oC and ambient pressure. The fatty acid methyl ester (FAME component in biodiesel product was identified by Gas Chromatography - Mass Spectrometry (GC-MS. The results showed that the FAME yield decreases with increasing WHSV. It was found that the optimum FAME yield was achieved of 56.91 % at WHSV of 0.89 min-1 and catalyst diameter of 5 mm and reaction time of 1.25 min. It can be concluded that the biodiesel synthesis using the hybrid catalytic-plasma reactor system exhibited promising the FAME yield. Copyright © 2017 BCREC Group. All rights reserved Received: 15th November 2016; Revised: 24th December 2016; Accepted: 16th February 2017 How to Cite: Buchori, L., Istadi, I., Purwanto, P. (2017. Effects of Weight Hourly Space Velocity and Catalyst Diameter on Performance of Hybrid Catalytic-Plasma Reactor for Biodiesel Synthesis over Sulphated Zinc Oxide Acid Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (2: 227-234 (doi:10.9767/bcrec.12.2.775.227-234 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.2.775.227-234

  12. Heteropoly acid promoted catalyst for SCR of NOx with ammonia

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention concerns the selective removal of nitrogen oxides (NOx) from gases. In particular, the invention concerns a process, a highly alkali metal resistant heteropoly acid promoted catalyst and the use of said catalyst for removal of NOx from exhaust or flue gases, said gases...... comprising alkali or earth alkali metals. Such gases comprise for example flue gases arising from the burning of biomass, combined biomass and fossil fuel, and from waste incineration units. The process comprises the selective catalytic reduction (SCR) of NOx, such as nitrogen dioxide (NO2) and nitrogen...

  13. Ultrasound-assisted biodiesel production by a novel composite of Fe(III)-based MOF and phosphotangestic acid as efficient and reusable catalyst.

    Science.gov (United States)

    Nikseresht, Ahmad; Daniyali, Asra; Ali-Mohammadi, Mahdi; Afzalinia, Ahmad; Mirzaie, Abbas

    2017-07-01

    In this work, esterification of oleic acid by various alcohols is achieved with high yields under ultrasonic irradiation. This reaction performed with a novel heterogeneous catalyst that fabricated by heteropoly acid and Fe(III)-based MOF, namely MIL-53 (Fe). Syntheses of MIL-53 and encapsulation process carry out by ultrasound irradiation at ambient temperature and atmospheric pressure. The prepared composite was characterized by various techniques such as XRD, FT-IR, SEM, BET and ICP that demonstrate excellent catalytic activities, while being highly convenient to synthesize. The obtained results revealed that ultrasound irradiation could be used for the appropriate and rapid biodiesel production. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. A smart strategy to fabricate Ru nanoparticle inserted porous carbon nanofibers as highly efficient levulinic acid hydrogenation catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ying; Sun, Cheng-Jun; Brown, Dennis E.; Zhang, Liqiang; Yang, Feng; Zhao, Hairui; Wang, Yue; Ma, Xiaohui; Zhang, Xin; Ren, Yang

    2016-01-01

    Herein, we first put forward a smart strategy to in situ fabricate Ru nanoparticle (NP) inserted porous carbon nanofibers by one-pot conversion of Ru-functionalized metal organic framework fibers. Such fiber precursors are skillfully constructed by cooperative assembly of different proportional RuCl3 and Zn(Ac)2·2H2O along with trimesic acid (H3BTC) in the presence of N,N-dimethylformamide. The following high-temperature pyrolysis affords uniform and evenly dispersed Ru NPs (ca. 12-16 nm), which are firmly inserted into the hierarchically porous carbon nanofibers formed simultaneously. The resulting Ru-carbon nanofiber (Ru-CNF) catalysts prove to be active towards the liquid-phase hydrogenation of levulinic acid (LA) to γ-valerolactone (GVL), a biomass-derived platform molecule with wide applications in the preparation of renewable chemicals and liquid transportation fuels. The optimal GVL yield of 96.0% is obtained, corresponding to a high activity of 9.23 molLAh–1gRu–1, 17 times of that using the commercial Ru/C catalyst. Moreover, the Ru-CNF catalyst is extremely stable, and can be cycled up to 7 times without significant loss of reactivity. Our strategy demonstrated here reveals new possibilities to make proficient metal catalysts, and provides a general way to fabricate metal-carbon nanofiber composites available for other applications.

  15. Biodiesel production from acid oils and ethanol using a solid basic resin as catalyst

    International Nuclear Information System (INIS)

    Marchetti, J.M.; Errazu, A.F.

    2010-01-01

    In the search of an alternative fuel to substitute diesel fuel, biodiesel appears as one of the most promising sources of energy for diesel engines because of its environmental advantages and also due to the evolution of the petroleum market. Refined oil is the conventional raw material for the production of this biofuel; however, its major disadvantage is the high cost of its production. Therefore, frying oils, waste oils, crude oils and/or acid oils are being tested as alternative raw materials; nevertheless, there will be some problems if a homogeneous basic catalyst (NaOH) is employed due to the high amount of free fatty acid present in the raw oil. In this work, the transesterification reaction of acid oil using solid resin, Dowex monosphere 550 A, was studied as an alternative process. Ethanol was employed to have a natural and sustainable final product. The reaction temperature's effects, the initial amount of free fatty acid, the molar ratio of alcohol/oil and the type of catalyst (homogeneous or heterogeneous) over the main reaction are analyzed and their effects compared. The results obtained show that the solid resin is an alternative catalyst to be used to produce fatty acid ethyl esters (FAEEs) by a transesterification reaction with a final conversion over 90%. On the other hand, the time required to achieve this conversion is bigger than the one required using conventional technology which employs a homogeneous basic catalyst. This reaction time needs to be optimized. (author)

  16. Hydrothermal synthesis and characterization of zirconia based catalysts

    Science.gov (United States)

    Caillot, T.; Salama, Z.; Chanut, N.; Cadete Santos Aires, F. J.; Bennici, S.; Auroux, A.

    2013-07-01

    In this work, three equimolar mixed oxides ZrO2/CeO2, ZrO2/TiO2, ZrO2/La2O3 and a reference ZrO2 have been synthesized by hydrothermal method. The structural and surface properties of these materials have been fully characterized by X-ray diffraction, transmission electron microscopy, surface area measurement, chemical analysis, XPS, infrared spectroscopy after adsorption of pyridine and adsorption microcalorimetry of NH3 and SO2 probe molecules. All investigated mixed oxides are amphoteric and possess redox centers on their surface. Moreover, hydrothermal synthesis leads to catalysts with higher surface area and with better acid-base properties than classical coprecipitation method. Both Lewis and Brønsted acid sites are present on the surface of the mixed oxides. Compared to the other samples, the ZrO2/TiO2 material appears to be the best candidate for further application in acid-base catalysis.

  17. Acetic Acid Formation by Selective Aerobic Oxidation of Aqueous Ethanol over Heterogeneous Ruthenium Catalysts

    DEFF Research Database (Denmark)

    Gorbanev, Yury; Kegnæs, Søren; Hanning, Christopher William

    2012-01-01

    Heterogeneous catalyst systems comprising ruthenium hydroxide supported on different carrier materials, titania, alumina, ceria, and spinel (MgAl2O4), were applied in selective aerobic oxidation ethanol to form acetic acid, an important bulk chemical and food ingredient. The catalysts were...

  18. Efficacy of Catalysts in the Batch Esterification of the Fatty Acids of ...

    African Journals Online (AJOL)

    The methyl, ethyl, propyl and butyl esters of the fatty acids of Thevetia peruviana seed oil were successfully prepared by the batch-esterification procedures. Various acid catalyst and various molar ratios of fatty acid to alcohol were investigated. H3PO4 was found to be ineffective to catalyze the esterification of the free fatty ...

  19. Synthesis and characterization of new chiral ketopinic acid-derived catalysts immobilized on polystyrene-bound imidazole

    Directory of Open Access Journals (Sweden)

    Hassan Yusuf

    2017-02-01

    Full Text Available Four new chiral ketopinic acid-derived catalysts were anchored on a polystyrene-bound imidazole via non-covalent bond. The resulting heterogeneous catalysts were successfully characterized using IR, SEM, and TGA analyses.

  20. Preparation of catalysts based on Cu-Mn for combustion of n-hexane

    International Nuclear Information System (INIS)

    Picasso, Gino; Belleza, Freddy; Zavala, Cesar; Lopez, Alcides; Sun Kou, Rosario

    2014-01-01

    Catalysts based on Cu-Mn mixed oxides (with molar ratio Cu/Mn in the range of 0,33 to 3) have been prepared by sol-gel method of self-combustion for removal of n-hexane. Two combustion agents, citric acid and ethylenglycol, were applied to study their influence in the final catalyst. Additionally, simple oxides have been synthesized using the same procedure for comparison reasons. The catalysts were characterized by X-ray diffraction (XRD) and sorption of N_2 (BET method). All samples depicted surfaces, preferentially assigned to mesoporosity whose values ranged from 4 to 50 m"2/g. All XRD difractograms of mixed samples showed the presence of a good crystalinity indepently of composition, with the formation of spinel-hopcalite phase meanwhile Mn and Cu simple oxide showed peaks attributed to Mn_O_3, Mn_3O_4 and CuO, respectively. Curves of activity, measured as number of VOC molecules converted per hour and per gram of catalyst, considering the specific surface, showed that mixed oxides with more Mn content were the best, additionally, the sample prepared from citric acid was more active than the corresponding values to simple oxides, probably due to the better specific surface and the better spinel-hopcalite structure obtained. (author)

  1. Nanocomposite catalyst with palladium nanoparticles encapsulated in a polymeric acid: A model for tandem environmental catalysis

    KAUST Repository

    Isimjan, Tayirjan T.

    2013-04-01

    The synthesis and characterization of a novel hybrid nanocomposite catalyst comprised of palladium nanoparticles embedded in polystyrene sulfonic acid (PSSH) and supported on metal oxides is reported. The catalysts are intended for application in green catalysis, and they are shown to be effective in the hydrolysisreduction sequence of tandem catalytic reactions required for conversion of 2-phenyl-1,3-dioxolane to toluene or of phenol to cyclohexane. The two distinct components in the catalyst, Pd nanoparticles and acidic PSSH, are capable of catalyzing sequential reactions in one pot under mild conditions. This work has demonstrated a powerful approach toward designing highperformance, multifunctional, scalable, and environmentally friendly nanostructured tandem catalysts. © 2013 American Chemical Society.

  2. Radiolytic Synthesis of Pt-Ru Catalysts Based on Functional Polymer-Grafted MWNT and Their Catalytic Efficiency for CO and MeOH

    Directory of Open Access Journals (Sweden)

    Dae-Soo Yang

    2011-01-01

    Full Text Available Pt-Ru catalysts based on functional polymer-grafted MWNT (Pt-Ru@FP-MWNT were prepared by radiolytic deposition of Pt-Ru nanoparticles on functional polymer-grafted multiwalled carbon nanotube (FP-MWNT. Three different types of functional polymers, poly(acrylic acid (PAAc, poly(methacrylic acid (PMAc, and poly(vinylphenyl boronic acid (PVPBAc, were grafted on the MWNT surface by radiation-induced graft polymerization (RIGP. Then, Pt-Ru nanoparticles were deposited onto the FP-MWNT supports by the reduction of metal ions using γ-irradiation to obtain Pt-Ru@FP-MWNT catalysts. The Pt-Ru@FP-MWNT catalysts were then characterized by XRD, XPS, TEM ,and elemental analysis. The catalytic efficiency of Pt-Ru@FP-MWNT catalyst was examined for CO stripping and MeOH oxidation for use in a direct methanol fuel cell (DMFC. The Pt-Ru@PVPBAc-MWNT catalyst shows enhanced activity for electro-oxidation of CO and MeOH oxidation over that of the commercial E-TEK catalyst.

  3. A review of carbon-based and non-carbon-based catalyst supports for the selective catalytic reduction of nitric oxide.

    Science.gov (United States)

    Anthonysamy, Shahreen Binti Izwan; Afandi, Syahidah Binti; Khavarian, Mehrnoush; Mohamed, Abdul Rahman Bin

    2018-01-01

    Various types of carbon-based and non-carbon-based catalyst supports for nitric oxide (NO) removal through selective catalytic reduction (SCR) with ammonia are examined in this review. A number of carbon-based materials, such as carbon nanotubes (CNTs), activated carbon (AC), and graphene (GR) and non-carbon-based materials, such as Zeolite Socony Mobil-5 (ZSM-5), TiO 2 , and Al 2 O 3 supported materials, were identified as the most up-to-date and recently used catalysts for the removal of NO gas. The main focus of this review is the study of catalyst preparation methods, as this is highly correlated to the behaviour of NO removal. The general mechanisms involved in the system, the Langmuir-Hinshelwood or Eley-Riedeal mechanism, are also discussed. Characterisation analysis affecting the surface and chemical structure of the catalyst is also detailed in this work. Finally, a few major conclusions are drawn and future directions for work on the advancement of the SCR-NH 3 catalyst are suggested.

  4. Kinetics study of levulinic acid production from corncobs by tin tetrachloride as catalyst.

    Science.gov (United States)

    Qing, Qing; Guo, Qi; Wang, Pengbo; Qian, Hongjia; Gao, Xiaohang; Zhang, Yue

    2018-07-01

    Levulinic acid (LA) is an ideal platform chemical that can be produced through acid-catalyzed dehydration and hydrolysis of hexose sugars obtained from lignocellulosic materials. In this study, SnCl 4 was identified as an efficient catalyst for LA production and the reaction kinetics was investigated in a single water phase under different reaction conditions. The Box-Behnken design response surface methodology (RSM) was applied to determine the optimized reaction conditions and three individual variables including reaction temperature, duration, and catalyst concentration were evaluated. An appealing LA yield of 76.0% was achieved at 193 °C and 17 min with 82 mM SnCl 4 catalyst. A kinetics model was developed to predict the yields of glucose, HMF, and LA, which are tally with the experimental results. The analysis of the related kinetic parameters and the results of the RSM experiment helped to provide insights into the interplay between various reaction steps with SnCl 4 as catalysts. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. PROCESS FOR HYDROGENOLYSIS OF ALPHA-HYDROXY ESTERS OR ACIDS USING A HETEROGENEOUS CATALYST

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to a method for hydrogenolysis of alpha-hydroxy esters or acids, comprising reacting the alpha-hydroxy ester or acid in the presence of a heterogeneous catalyst. The present invention also relates to a method for producing propionic acid ester, and the use of any...

  6. Effects of Lewis acidity of metal oxide promoters on the activity and selectivity of Co-based Fischer–Tropsch synthesis catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Gregory R.; Bell, Alexis T. (LBNL); (UCB)

    2016-06-17

    Metal oxides of Ce, Gd, La, Mn, and Zr were investigated as promoters for improving the activity and selectivity of Co-based FTS catalysts. The extent to which these promoters decrease the selectivity toward CH4 and increase the selectivity toward C5+ hydrocarbons was found to depend on both the loading and the composition of the oxide promoter. Elemental mapping by STEM–EDS revealed that the propensity for a given metal oxide to associate with Co affects the sensitivity of the product distribution to changes in promoter loading. For all promoters, a sufficiently high loading resulted in the product distributions becoming insensitive to further increases in promoter loading, very likely due to the formation of a half monolayer of promoter oxide over the Co surface. Simulations suggest that the fraction of Co active sites that are adjacent to the promoter moieties approaches unity at this degree of coverage. The oxidation state of the promoter metal cation under reaction conditions, determined by in situ XANES measurements, was used to calculate relative Lewis acidity of the promoter metal cation. A strong positive correlation was found between the C5+ product selectivity and the Lewis acidity of the promoter metal cations, suggesting that the promotional effects are a consequence of Lewis acid–base interactions between the reaction intermediates and the promoter metal cations. Rate data obtained at different pressures were used to estimate the apparent rate coefficient and the CO adsorption constant appearing in the Langmuir–Hinshelwood expression that describes the CO consumption kinetics for both unpromoted and the metal oxide-promoted catalysts. Both parameters exhibited positive correlations with the promoter Lewis acidity. In conclusion, these results are consistent with the hypothesis that the metal cations of the promoter act as Lewis acids that interact with the O atom of adsorbed CO to facilitate CO adsorption and

  7. Selective production of aromatics from alkylfurans over solid acid catalysts

    DEFF Research Database (Denmark)

    Wang, Dong; Dumesic, James A.; Osmundsen, Christian Mårup

    2013-01-01

    to deactivation by carbon deposition than do microporous materials. Results from Raman spectroscopy and the trend of turnover frequency with varying tungsten surface densities for a series of WOx-ZrO2 catalysts are consistent with previous investigations of other acid-catalyzed reactions; this suggests...

  8. Preparation of a novel carbon-based solid acid from cassava stillage residue and its use for the esterification of free fatty acids in waste cooking oil.

    Science.gov (United States)

    Wang, Lingtao; Dong, Xiuqin; Jiang, Haoxi; Li, Guiming; Zhang, Minhua

    2014-04-01

    A novel carbon-based solid acid catalyst was prepared by the sulfonation of incompletely carbonized cassava stillage residue (CSR) with concentrated sulfuric acid, and employed to catalyze the esterification of methanol and free fatty acids (FFAs) in waste cooking oil (WCO). The effects of the carbonization and the sulfonation temperatures on the pore structure, acid density and catalytic activity of the CSR-derived catalysts were systematically investigated. Low temperature carbonization and high temperature sulfonation can cause the collapse of the carbon framework, while high temperature carbonization is not conducive to the attachment of SO3H groups on the surface. The catalyst showed high catalytic activity for esterification, and the acid value for WCO is reduced to below 2mg KOH/g after reaction. The activity of catalyst can be well maintained after five cycles. CSR can be considered a promising raw material for the production of a new eco-friendly solid acid catalyst. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. MOLECULAR SIEVES AS CATALYSTS FOR METHANOL DEHYDRATION IN THE LPDMEtm PROCESS; TOPICAL

    International Nuclear Information System (INIS)

    Andrew W. Wang

    2002-01-01

    Several classes of molecular sieves were investigated as methanol dehydration catalysts for the LPDME(trademark) (liquid-phase dimethyl ether) process. Molecular sieves offer a number of attractive features as potential catalysts for the conversion of methanol to DME. These include (1) a wide range of acid strengths, (2) diverse architectures and channel connectivities that provide latitude for steric control, (3) high active site density, (4) well-investigated syntheses and characterization, and (5) commercial availability in some cases. We directed our work in two areas: (1) a general exploration of the catalytic behavior of various classes of molecular sieves in the LPDME(trademark) system and (2) a focused effort to prepare and test zeolites with predominantly Lewis acidity. In our general exploration, we looked at such diverse materials as chabazites, mordenites, pentasils, SAPOs, and ALPOs. Our work with Lewis acidity sought to exploit the structural advantages of zeolites without the interfering effects of deleterious Broensted sites. We used zeolite Ultrastable Y (USY) as our base material because it possesses a high proportion of Lewis acid sites. This work was extended by modifying the USY through ion exchange to try to neutralize residual Broensted acidity

  10. Enhanced life of proton exchange membrane fuel cell catalysts using perfluorosulfonic acid stabilized carbon support

    International Nuclear Information System (INIS)

    Cheng Niancai; Mu Shichun; Chen Xiaojing; Lv Haifeng; Pan Mu; Edwards, Peter P.

    2011-01-01

    We report a new and simple solution to increase life of Pt/C catalysts using the proton-conducting polymer (perfluorosulfonic acid, PFSA) stabilized carbon support (denoted these catalysts as Pt/NFC catalysts) as compared to conventional Pt/C catalysts commonly used in PEM fuel cells. A high catalytic activity of the catalyst is observed by both CV (cyclic voltammetry) and ORR (oxygen reduction reaction) measurements. Especially, our own catalysts have a 60% better life as compared to Pt/C under electrochemically accelerated durability test conditions. The loss rate of electrochemical active area (ECA) for Pt/NFC catalysts is only 0.007 m 2 g -1 cycle -1 , compared to a value of 0.011 m 2 g -1 cycle -1 for Pt/C.

  11. Catalytic production of Jatropha biodiesel and hydrogen with magnetic carbonaceous acid and base synthesized from Jatropha hulls

    International Nuclear Information System (INIS)

    Zhang, Fan; Tian, Xiao-Fei; Fang, Zhen; Shah, Mazloom; Wang, Yi-Tong; Jiang, Wen; Yao, Min

    2017-01-01

    Graphical abstract: Jatropha seeds were extracted oil for biodiesel production and the hulls were carbonized to load active sites as magnetic carbonaceous solid acid and base catalysts. Crude Jatropha oil was esterified to decrease its acid value to 1.3 from 17.2 mg KOH/g by the solid acid, and subsequently transesterified to biodiesel (96.7% yield) catalyzed by the solid base. After 3 cycles and magnetically separated, the deactivated base was catalyzed the hydrothermal gasification of biodiesel by-product (crude glycerol) with gasification rate of 81% and 82% H_2 purity. - Highlights: • High acid value (AV) crude oil was extracted from Jatropha seeds with waste hulls produced. • Carbonizing the hulls and loading active sites produced magnetic carbonaceous acid and base. • The acid reduced AV of crude oil to 1.3 from 17.2 mg KOH/g and separated for 3 cycles. • The base achieved 97.5% biodiesel yield and magnetically separated for recycles. • After 3 cycles, the deactivated base catalyzed the hydrothermal gasification of glycerol. - Abstract: Magnetic carbonaceous solid acid (C-SO_3H@Fe/JHC) and base (Na_2SiO_3@Ni/JRC) catalysts were synthesized by loading active groups on the carbonaceous supporters derived from Jatropha-hull hydrolysate and hydrolysis residue. Characterization of their morphology, magnetic saturation, functional groups and total acid/base contents were performed by various techniques. Additional acidic functional groups that formed with Jatropha-hull hydrolysate contributed to the high acidity of C-SO_3H@Fe/JHC catalyst for the pretreatment (esterification) of crude Jatropha oil with high acid values (AV). The AV of esterified Jatropha oil dropped down from 17.2 to 1.3 mg KOH/g, achieving a high biodiesel yield of 96.7% after subsequent transesterification reaction with Na_2SiO_3@Ni/JRC base that was cycled at least 3 times with little loss of catalysis activity. Both solid acid and base catalysts were easily recovered by magnetic force

  12. Solid phosphoric acid oligomerisation: Manipulating diesel selectivity by controlling catalyst hydration

    International Nuclear Information System (INIS)

    Prinsloo, Nicolaas M.

    2006-01-01

    Solid phosphoric acid (SPA) catalyst is traditionally used in crude oil refineries to produce unhydrogenated motor-gasoline by propene and butene oligomerisation. SPA is also used in High-Temperature Fischer-Tropsch refineries (HTFT) to produce synthetic fuels albeit with a different emphasis. The petrol/diesel ratio of an HTFT refinery is very different from crude refining and it is often necessary to shift this ratio depending on market requirements. The influence of hydration was investigated as a means of improving diesel selectivity. This was achieved by studying SPA over a hydration range of 99-110% H 3 PO 4 , a temperature range of 140-230 o C and using C 3 -C 6 model and synthetic FT-derived olefinic feedstocks. A direct correlation was found between the selectivity towards diesel range products and the distribution of the phosphoric acid species viz. H 3 PO 4 , H 4 P 2 O 7 and H 5 P 3 O 10 . For various olefinic feedstocks, diesel selectivity increased with decreasing catalyst hydration with a maximum around 108% H 3 PO 4 for propene oligomerisation. Commercial tests confirmed the increase in diesel selectivity with lowered catalyst hydration. (author)

  13. Transesterification of Jatropha oil with dimethyl carbonate to produce fatty acid methyl ester over reusable Ca–La–Al mixed-oxide catalyst

    International Nuclear Information System (INIS)

    Syamsuddin, Y.; Murat, M.N.; Hameed, B.H.

    2015-01-01

    Highlights: • Transesterification of Jatropha oil over CaO-based catalyst. • Physicochemical properties of the synthesized catalyst. • Best reaction condition for FAME synthesis. • The catalyst showed high activity and stability for transesterification with Jatropha oil. - Abstract: Jatropha oil (JO) was transesterified with dimethyl carbonate (DMC) to produce fatty acid methyl ester (FAME) over synthesized Ca–La–Al mixed-oxide catalyst. The influence of different parameters on transesterification of Jatropha oil was investigated in a batch reactor. These parameters included reaction temperature (110–160 °C), reaction time (30–240 min), DMC-to-oil molar ratio (4:1–18:1) and catalyst loading amount (1–10 wt.%, based on the oil weight). The mixed-oxide catalyst with a molar ratio of 6:2:1 (Ca–La–Al) showed high catalytic activity for FAME synthesis. More than 90% of FAME was obtained under the following reaction conditions: 150 °C, reaction temperature; 180 min, reaction time; 15:1, DMC-to-oil molar ratio; and 7 wt.% amount of catalyst loading. The catalyst also exhibited high stability and could be reused for up to five cycles with less than 5% yield reduction per cycle.

  14. Nanocomposite catalyst with palladium nanoparticles encapsulated in a polymeric acid: A model for tandem environmental catalysis

    KAUST Repository

    Isimjan, Tayirjan T.; He, Quan; Liu, Yong; Zhu, Jesse; Puddephatt, Richard J.; Anderson, Darren Jason

    2013-01-01

    The synthesis and characterization of a novel hybrid nanocomposite catalyst comprised of palladium nanoparticles embedded in polystyrene sulfonic acid (PSSH) and supported on metal oxides is reported. The catalysts are intended for application

  15. Synthesis and Characterization of Silicotungstic Acid Nanoparticles Via Sol Gel Technique as a Catalyst in Esterification Reaction

    International Nuclear Information System (INIS)

    Wan Nor Roslam Wan Ishak; Manal Ismail

    2011-01-01

    The purpose of this work is to study the synthesis, characterization and catalytic performance of silicotungstic acid-silica sol gel (STA-SG) as acid catalyst in esterification reaction. The activity and selectivity of STA-SG have been investigated and compared to the STA bulk (STAB) and sulphuric acid (H 2 SO 4 ). The synthesized catalysts were characterized by various techniques shown that the STA-SG catalyst is relatively high in surface area compared to STAB of 460.11 m 2 /g and 0.98 m 2 /g, respectively. From the XPS analyses, there was a significant formation of W-O-Si, W-O-W and Si-O-Si bonding in STA-SG compared to that in STAB. Both the H 2 SO 4 and the STAB gave high conversion of 100 % and 98 %, while lower selectivity of glycerol monooleate (GMO) with 81.6 % and 89.9 %, respectively. On the contrary, the STA-SG enabled a conversion of 94 %, while significantly higher GMO selectivity of 95 % rendering it the more efficient acid catalyst. (author)

  16. Modelling of the partial oxidation of {alpha}, {beta}-unsaturated aldehydes on Mo-V-oxides based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Boehnke, H.; Petzoldt, J.C.; Stein, B.; Weimer, C.; Gaube, J.W. [Technische Univ. Darmstadt (Germany). Inst. fuer Chemische Technologie

    1998-12-31

    A kinetic model based on the Mars-van Krevelen mechanism that allows to describe the microkinetics of the heterogeneously catalysed partial oxidation of {alpha}, {beta}-unsaturated aldehydes is presented. This conversion is represented by a network, composed of the oxidation of the {alpha}, {beta}-unsaturated aldehyde towards the {alpha}, {beta}-unsaturated carboxylic acid and the consecutive oxidation of the acid as well as the parallel reaction of the aldehyde to products of deeper oxidation. The reaction steps of aldehyde respectively acid oxidation and catalyst reoxidation have been investigated separately in transient experiments. The combination of steady state and transient experiments has led to an improved understanding of the interaction of the catalyst with the aldehyde and the carboxylic acids as well as to a support of the kinetic model assumptions. (orig.)

  17. Catalytic conversion of xylose and corn stalk into furfural over carbon solid acid catalyst in γ-valerolactone.

    Science.gov (United States)

    Zhang, Tingwei; Li, Wenzhi; Xu, Zhiping; Liu, Qiyu; Ma, Qiaozhi; Jameel, Hasan; Chang, Hou-min; Ma, Longlong

    2016-06-01

    A novel carbon solid acid catalyst was synthesized by the sulfonation of carbonaceous material which was prepared by carbonization of sucrose using 4-BDS as a sulfonating agent. TEM, N2 adsorption-desorption, elemental analysis, XPS and FT-IR were used to characterize the catalyst. Then, the catalyst was applied for the conversion of xylose and corn stalk into furfural in GVL. The influence of the reaction time, temperature and dosage of catalyst on xylose dehydration were also investigated. The Brønsted acid catalyst exhibited high activity in the dehydration of xylose, with a high furfural yield of 78.5% at 170°C in 30min. What's more, a 60.6% furfural yield from corn stalk was achieved in 100min at 200°C. The recyclability of the sulfonated carbon catalyst was perfect, and it could be reused for 5times without the loss of furfural yields. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Pt-Ni and Pt-M-Ni (M = Ru, Sn Anode Catalysts for Low-Temperature Acidic Direct Alcohol Fuel Cells: A Review

    Directory of Open Access Journals (Sweden)

    Ermete Antolini

    2017-01-01

    Full Text Available In view of a possible use as anode materials in acidic direct alcohol fuel cells, the electro-catalytic activity of Pt-Ni and Pt-M-Ni (M = Ru, Sn catalysts for methanol and ethanol oxidation has been widely investigated. An overview of literature data regarding the effect of the addition of Ni to Pt and Pt-M on the methanol and ethanol oxidation activity in acid environment of the resulting binary and ternary Ni-containing Pt-based catalysts is presented, highlighting the effect of alloyed and non-alloyed nickel on the catalytic activity of these materials.

  19. Overcoming the Instability of Nanoparticle-Based Catalyst Films in Alkaline Electrolyzers by using Self-Assembling and Self-Healing Films

    NARCIS (Netherlands)

    Barwe, Stefan; Masa, Justus; Andronescu, Corina; Mei, Bastian; Schuhmann, Wolfgang; Ventosa, Edgar

    2017-01-01

    Engineering stable electrodes using highly active catalyst nanopowders for electrochemical water splitting remains a challenge. We report an innovative and general approach for attaining highly stable catalyst films with self-healing capability based on the in situ self-assembly of catalyst

  20. Enhanced life of proton exchange membrane fuel cell catalysts using perfluorosulfonic acid stabilized carbon support

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Niancai [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070 (China); Mu Shichun, E-mail: msc@whut.edu.c [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070 (China); Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, OX1 3QR (United Kingdom); Chen Xiaojing; Lv Haifeng; Pan Mu [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070 (China); Edwards, Peter P. [Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, OX1 3QR (United Kingdom)

    2011-02-01

    We report a new and simple solution to increase life of Pt/C catalysts using the proton-conducting polymer (perfluorosulfonic acid, PFSA) stabilized carbon support (denoted these catalysts as Pt/NFC catalysts) as compared to conventional Pt/C catalysts commonly used in PEM fuel cells. A high catalytic activity of the catalyst is observed by both CV (cyclic voltammetry) and ORR (oxygen reduction reaction) measurements. Especially, our own catalysts have a 60% better life as compared to Pt/C under electrochemically accelerated durability test conditions. The loss rate of electrochemical active area (ECA) for Pt/NFC catalysts is only 0.007 m{sup 2} g{sup -1} cycle{sup -1}, compared to a value of 0.011 m{sup 2} g{sup -1} cycle{sup -1} for Pt/C.

  1. Rh-Based Mixed Alcohol Synthesis Catalysts: Characterization and Computational Report

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, Karl O.; Glezakou, Vassiliki Alexandra; Rousseau, Roger J.; Engelhard, Mark H.; Varga, Tamas; Colby, Robert J.; Jaffe, John E.; Li, Xiaohong S.; Mei, Donghai; Windisch, Charles F.; Kathmann, Shawn M.; Lemmon, Teresa L.; Gray, Michel J.; Hart, Todd R.; Thompson, Becky L.; Gerber, Mark A.

    2013-08-01

    The U.S. Department of Energy is conducting a program focused on developing a process for the conversion of biomass to bio-based fuels and co-products. Biomass-derived syngas is converted thermochemically within a temperature range of 240 to 330°C and at elevated pressure (e.g., 1200 psig) over a catalyst. Ethanol is the desired reaction product, although other side compounds are produced, including C3 to C5 alcohols; higher (i.e., greater than C1) oxygenates such as methyl acetate, ethyl acetate, acetic acid and acetaldehyde; and higher hydrocarbon gases such as methane, ethane/ethene, propane/propene, etc. Saturated hydrocarbon gases (especially methane) are undesirable because they represent a diminished yield of carbon to the desired ethanol product and represent compounds that must be steam reformed at high energy cost to reproduce CO and H2. Ethanol produced by the thermochemical reaction of syngas could be separated and blended directly with gasoline to produce a liquid transportation fuel. Additionally, higher oxygenates and unsaturated hydrocarbon side products such as olefins also could be further processed to liquid fuels. The goal of the current project is the development of a Rh-based catalyst with high activity and selectivity to C2+ oxygenates. This report chronicles an effort to characterize numerous supports and catalysts to identify particular traits that could be correlated with the most active and/or selective catalysts. Carbon and silica supports and catalysts were analyzed. Generally, analyses provided guidance in the selection of acceptable catalyst supports. For example, supports with high surface areas due to a high number of micropores were generally found to be poor at producing oxygenates, possibly because of mass transfer limitations of the products formed out of the micropores. To probe fundamental aspects of the complicated reaction network of CO with H2, a computational/ theoretical investigation using quantum mechanical and ab

  2. Comparison of sulfuric and hydrochloric acids as catalysts in hydrolysis of Kappaphycus alvarezii (cottonii).

    Science.gov (United States)

    Meinita, Maria Dyah Nur; Hong, Yong-Ki; Jeong, Gwi-Taek

    2012-01-01

    In this study, hydrolysis of marine algal biomass Kappaphhycus alvarezii using two different acid catalysts was examined with the goal of identifying optimal reaction conditions for the formation of sugars and by-products. K. alvarezii were hydrolyzed by autoclave using sulfuric acid or hydrochloric acid as catalyst with different acid concentrations (0.1-1.0 M), substrate concentrations (1.0-13.5%), hydrolysis time (10-90 min) and hydrolysis temperatures (100-130 (°)C). A difference in galactose, glucose, reducing sugar and total sugar content was observed under the different hydrolysis conditions. Different by-product compounds such as 5-hydroxymethylfurfural and levulinic acid were also observed under the different reaction conditions. The optimal conditions for hydrolysis were achieved at a sulfuric acid concentration, temperature and reaction time of 0.2 M, 130 °C and 15 min, respectively. These results may provide useful information for the development of more efficient systems for biofuel production from marine biomass.

  3. Wet oxidation of glycerol into fine organic acids: catalyst selection and kinetic evaluation

    Directory of Open Access Journals (Sweden)

    J. E. N. Brainer

    2014-12-01

    Full Text Available The liquid phase oxidation of glycerol was performed producing fine organic acids. Catalysts based on Pt, Pd and Bi supported on activated carbon were employed to perform the conversion of glycerol into organic acids at 313 K, 323 K and 333 K, under atmospheric pressure (1.0 bar, in a mechanically agitated slurry reactor (MASR. The experimental results indicated glycerol conversions of 98% with production of glyceric, tartronic and glycolic acids, and dihydroxyacetone. A yield of glyceric acid of 69.8%, and a selectivity of this compound of 70.6% were reached after 4 h of operation. Surface mechanisms were proposed and rate equations were formulated to represent the kinetic behavior of the process. Selective formation of glyceric acid was observed, and the kinetic parameter values indicated the lowest activation energy (38.5 kJ/mol for its production reaction step, and the highest value of the adsorption equilibrium constant of the reactant glycerol (10-4 dm³/mol.

  4. Deactivation of vanadia-based commercial SCR catalysts by polyphosphoric acids

    DEFF Research Database (Denmark)

    Castellino, Francesco; Rasmussen, Søren Birk; Jensen, Anker Degn

    2008-01-01

    Commercial vanadia-based SCR monoliths have been exposed to flue gases in a pilot-scale Setup into which phosphoric acid has been added and the deactivation has been followed during the exposure time. Separate measurements by SMPS showed that the phosphoric acid formed polyphosphoric acid aerosols...

  5. Preparation and characterization Al3+-bentonite Turen Malang for esterification fatty acid (palmitic acid, oleic acid and linoleic acid)

    Science.gov (United States)

    Abdulloh, Abdulloh; Aminah, Nanik Siti; Triyono, Mudasir, Trisunaryanti, Wega

    2016-03-01

    Catalyst preparation and characterization of Al3+-bentonite for esterification of palmitic acid, oleic acid and linoleic acid has been done. Al3+-bentonite catalyst was prepared from natural bentonite of Turen Malang through cation exchange reaction using AlCl3 solution. The catalysts obtained were characterized by XRD, XRF, pyridine-FTIR and surface area analyser using the BET method. Catalyst activity test of Al3+-bentonite for esterification reaction was done at 65°C using molar ratio of metanol-fatty acid of 30:1 and 0.25 g of Al3+-bentonite catalyst for the period of ½, 1, 2, 3, 4 and 5 hours. Based on the characterization results, the Al3+-bentonite Turen Malang catalyst has a d-spacing of 15.63 Ǻ, acid sites of Brönsted and Lewis respectively of 230.79 µmol/g and 99.39 µmol/g, surface area of 507.3 m2/g and the average of radius pore of 20.09 Å. GC-MS analysis results of the oil phase after esterification reaction showed the formation of biodiesel (FAME: Fatty acid methyl ester), namely methyl palmitate, methyl oleate and methyl linoleate. The number of conversions resulted in esterification reaction using Al3+-bentonite Turen Malang catalyst was 74.61%, 37.75%, and 20, 93% for the esterification of palmitic acid, oleic acid and linoleic acid respectively.

  6. An additional role for the Brønsted acid-base catalysts of mandelate racemase in transition state stabilization.

    Science.gov (United States)

    Nagar, Mitesh; Bearne, Stephen L

    2015-11-10

    Mandelate racemase (MR) catalyzes the interconversion of the enantiomers of mandelate and serves as a paradigm for understanding the enzyme-catalyzed abstraction of an α-proton from a carbon acid substrate with a high pKa. The enzyme utilizes a two-base mechanism with Lys 166 and His 297 acting as Brønsted acid and base catalysts, respectively, in the R → S reaction direction. In the S → R reaction direction, their roles are reversed. Using isothermal titration calorimetry (ITC), MR is shown to bind the intermediate/transition state (TS) analogue inhibitor benzohydroxamate (BzH) in an entropy-driven process with a value of ΔCp equal to -358 ± 3 cal mol(-1) K(-1), consistent with an increased number of hydrophobic interactions. However, MR binds BzH with an affinity that is ∼2 orders of magnitude greater than that predicted solely on the basis of hydrophobic interactions [St. Maurice, M., and Bearne, S. L. (2004) Biochemistry 43, 2524], suggesting that additional specific interactions contribute to binding. To test the hypothesis that cation-π/NH-π interactions between the side chains of Lys 166 and His 297 and the aromatic ring and/or the hydroxamate/hydroximate moiety of BzH contribute to the binding of BzH, site-directed mutagenesis was used to generate the MR variants K166M, K166C, H297N, and K166M/H297N and their binding affinity for various ligands determined using ITC. Comparison of the binding affinities of these MR variants with the intermediate/TS analogues BzH and cyclohexanecarbohydroxamate revealed that cation-π/NH-π interactions between His 297 and the hydroxamate/hydroximate moiety and the phenyl ring of BzH contribute approximately 0.26 and 0.91 kcal/mol to binding, respectively, while interactions with Lys 166 contribute approximately 1.74 and 1.74 kcal/mol, respectively. Similarly, comparison of the binding affinities of these mutants with substrate analogues revealed that Lys 166 contributes >2.93 kcal/mol to the binding of (R

  7. Carbon catalysts for electrochemical hydrogen peroxide production in acidic media

    DEFF Research Database (Denmark)

    Čolić, Viktor; Yang, Sungeun; Révay, Zsolt

    2018-01-01

    Hydrogen peroxide is a commodity chemical, as it is an environmentally friendly oxidant. The electrochemical production of H2O2 from oxygen and water by the reduction of oxygen is of great interest, as it would allow the decentralized, on-site, production of pure H2O2. The ability to run...... the reaction in an acidic electrolyte with high performance is particularly important, as it would allow the use of polymer solid electrolytes and the production of pH-neutral hydrogen peroxide. Carbon catalysts, which are cheap, abundant, durable and can be highly selective show promise as potential catalysts...... for such systems. In this work, we examine the electrocatalytic performance and properties of seven commercially available carbon materials for H2O2 production by oxygen electroreduction. We show that the faradaic efficiencies for the reaction lie in a wide range of 18-82% for different carbon catalysts. In order...

  8. Solid acid catalysis from fundamentals to applications

    CERN Document Server

    Hattori, Hideshi

    2014-01-01

    IntroductionTypes of solid acid catalystsAdvantages of solid acid catalysts Historical overviews of solid acid catalystsFuture outlookSolid Acids CatalysisDefinition of acid and base -Brnsted acid and Lewis acid-Acid sites on surfacesAcid strengthRole of acid sites in catalysisBifunctional catalysisPore size effect on catalysis -shape selectivity-Characterization of Solid Acid Catalysts Indicator methodTemperature programmed desorption (TPD) of ammoniaCalorimetry of adsorption of basic moleculesInfrare

  9. Recovery of vanadium (V) from spent catalysts used in sulfuric acid production units by acid or alkaline leaching

    International Nuclear Information System (INIS)

    Abdulbaki, M.; Stas, J.; Shino, O.; Asaad, K.; Al-Kassemi, H.; Al-Qabani, F.

    2008-01-01

    The present paper, studies the recovery of vanadium from the spent catalyst by using acidic or alkaline leaching technique. The optimal conditions of spent catalyst leaching have been studied. It has been shown that 20%(w/w) of sulfuric acid is the most suitable for leaching process at 70 Centigrade. The precipitation of vanadium using some alkaline media (Na 2 CO 3 , (NH 4 )CO 3 and NH 4 OH) has been also studied, it has been shown that ammonium hydroxide was the best at 60 degree, and iron was co-precipitated with vanadium which pollute the obtained red cake. So it is necessary to use liquid-liquid extraction technique for the separation between vanadium and iron and to have iron free red cake. (author)

  10. Effects of catalyst-bed’s structure parameters on decomposition and combustion characteristics of an ammonium dinitramide (ADN)-based thruster

    International Nuclear Information System (INIS)

    Yu, Yu-Song; Li, Guo-Xiu; Zhang, Tao; Chen, Jun; Wang, Meng

    2015-01-01

    Highlights: • The decomposition and combustion process is investigated by numerical method. • Heat transfer in catalyst bed is modeled using non-isothermal and radiation model. • The wall heat transfer can impact on the distribution of temperature and species. • The value of catalyst bed length, diameter and wall thickness are optimized. - Abstract: The present investigation numerically studies the evolutions of decomposition and combustion within an ADN-based thruster, and the effects of the catalyst-bed’s three structure parameters (length, diameter, and wall thickness) on the general performance of ADN-based thruster have been systematically investigated. Based upon the calculated results, it can be known that the distribution of temperature gives a Gaussian manner at the exits of the catalyst-bed and the combustion chamber, and the temperature can be obviously effected by each the three structure parameters of the catalyst-bed. With the rise of each the three structure parameter, the temperature will first increases and decreases, and there exists an optimal design value making the temperature be the highest. Via the comparison on the maximal temperature at combustion chamber’s exit and the specific impulse, it can be obtained that the wall thickness plays an important role in the influences on the general performance of ADN-based thruster while the catalyst-bed’s length has the weak effects on the general performance among the three structure parameters.

  11. Understanding the Performance and Stability of Supported Ni-Co-Based Catalysts in Phenol HDO

    Directory of Open Access Journals (Sweden)

    Thuan M. Huynh

    2016-11-01

    Full Text Available Performances of bimetallic catalysts (Ni-Co supported on different acidic carriers (HZSM-5, HBeta, HY, ZrO2 and corresponding monometallic Ni catalysts in aqueous phase hydrodeoxygenation of phenol were compared in batch and continuous flow modes. The results revealed that the support acidity plays an important role in deoxygenation as it mainly controls the oxygen-removing steps in the reaction network. At the same time, sufficient hydrothermal stability of a solid catalyst is essential. Batch experiments revealed 10Ni10Co/HZSM-5 to be the best-performing catalyst in terms of conversion and cyclohexane yield. Complementary continuous runs provided more insights into the relationship between catalyst structure, efficiency and stability. After 24 h on-stream, the catalyst still reveals 100% conversion and a slight loss (from 100% to 90% in liquid hydrocarbon selectivity. The observed alloy of Co with Ni increased dispersion and stability of Ni-active sites, and combination with HZSM-5 resulted in a well-balanced ratio of metal and acid sites which promoted all necessary steps in preferred pathways. This was proved by studies of fresh and spent catalysts using various characterization techniques (N2 physisorption, X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, transmission electron microscopy (TEM and infrared spectroscopy of adsorbed pyridine (pyr-IR.

  12. Reductive dechlorination of trichloroacetic acid (TCAA) by electrochemical process over Pd-In/Al_2O_3 catalyst

    International Nuclear Information System (INIS)

    Liu, Yanzhen; Mao, Ran; Tong, Yating; Lan, Huachun; Zhang, Gong; Liu, Huijuan; Qu, Jiuhui

    2017-01-01

    Highlights: • TCAA was efficiently removed by Pd-In/Al_2O_3 based electro-reductive process. • The active species for TCAA electroreduction involved electron (e"−) and atomic H*. • The atomic H* played a major contribution to TCAA removal. - Abstract: Electrochemical reduction treatment was found to be a promising method for dechlorination of Trichloroacetic acid (TCAA), and acceleration of electron transfer or enhancement of the concentration of atomic H* significantly improve the electrochemical dechlorination process. Bimetallic Pd-based catalysts have the unique property of simultaneously catalyzing the production of atomic H* and reducing target pollutants. Herein, a bimetallic Pd–In electrocatalyst with atomic ratio of 1:1 was evenly deposited on an Al_2O_3 substrate, and the bimetallic Pd-In structure was confirmed via X-ray photoelectron spectroscopy (XPS). Electrochemical removal of trichloroacetic acid (TCAA) by the Pd-In/Al_2O_3 catalyst was performed in a three-dimensional reactor. 94% of TCAA with the initial concentration of 500 μg L"−"1 could be degraded within 30 min under a relatively low current density (0.9 mA cm"−"2). In contrast to the presence of refractory intermediates (dichloroacetic acid (DCAA)) found in the Pd/Al_2O_3 system, TCAA could be thoroughly reduced to monochloroacetic acid (MCAA) using Pd-In/Al_2O_3 catalysts. According to scavenger experiments, an electron transfer process and atomic H* formation function both existed in the TCAA reduction process, and the enhanced indirect atomic H* reduction process (confirmed by ESR signals) played a chief role in the TCAA removal. Moreover, the synergistic effects of Pd and In were proven to be able to enhance both direct electron transfer and indirect atomic H* formation, indicating a promising prospect for bimetallic electrochemical reduction treatment.

  13. Catalyst for Decomposition of Nitrogen Oxides

    Science.gov (United States)

    Schryer, David R. (Inventor); Jordan, Jeffrey D. (Inventor); Akyurtlu, Ates (Inventor); Akyurtlu, Jale (Inventor)

    2015-01-01

    This invention relates generally to a platinized tin oxide-based catalyst. It relates particularly to an improved platinized tin oxide-based catalyst able to decompose nitric oxide to nitrogen and oxygen without the necessity of a reducing gas.

  14. Magnetic nanoparticle supported phosphotungstic acid: An efficient catalyst for the synthesis of xanthene derivatives

    Science.gov (United States)

    Patel, Nipun; Katheriya, Deepak; Dadhania, Harsh; Dadhania, Abhishek

    2018-05-01

    Magnetic nanoparticle supported phosphotungstic acid (Fe3O4@SiO2-HPW) was applied as a highly efficient catalyst for the synthesis of 14H-dibenzoxanthene derivatives via condensation reaction of 2-naphthol and aryl aldehydes. The catalyst was found highly efficient for the synthesis of xanthene derivatives under solvent free condition. The catalyst showed high activity and stability during the reaction and provided excellent yield of the corresponding products in short reaction time. All the synthesized compounds were characterized through FT-IR, 1H-NMR and 13C-NMR spectroscopic techniques. Furthermore, the catalyst is magnetically recoverable and can be reused several times without significant loss of its catalytic activity.

  15. Use of Biomass as a Sustainable and Green Fuel with Alkali-Resistant DeNOx Catalysts based on Sulfated or Tungstated Zirconia

    DEFF Research Database (Denmark)

    Due-Hansen, Johannes; Fehrmann, Rasmus; Christensen, Claus H.

    poisons is the use of supports with highly acidic properties, which would interact stronger with potassium than the vanadium species. Among those, sulfated and tungstated zirconica appears very attractive, since their surface acidity can be tuned in a wide range by varying the preparation procedure, WOX......, sulfated, and tungstated zirconia were prepared and tested. The influence of potassium additives on the acidity and activity was studied and the results were compared with traditional V2O5-WO3/TiO2 catalyst. Resistance of the catalysts towards poisoning with potassium was found to depend dramatically...... on the crystallinity and surface acidity of the support used. Better resistance of the samples based on sulfated and tungstated zirconia seems to be connected with the fact that a significant part of the potassium on the surface of the catalyst preferentially interact with strong acid sites of the support thus...

  16. PMO-immobilized Au(I)-NHC complexes: Heterogeneous catalysts for sustainable processes

    KAUST Repository

    van der Voort, Pascal

    2017-11-08

    A stable Periodic Mesoporous Organosilica (PMO) with accessible sulfonic acid functionalities is prepared via a one-pot-synthesis and is used as solid support for highly active catalysts, consisting of gold(I)-N-heterocyclic carbene (NHC) complexes. The gold complexes are successfully immobilized on the nanoporous hybrid material via a straightforward acid-base reaction with the corresponding [Au(OH)(NHC)] synthon. This catalyst design strategy results in a boomerang-type catalyst, allowing the active species to detach from the surface to perform the catalysis and then to recombine with the solid after all the starting material is consumed. This boomerang behavior is assessed in the hydration of alkynes. The tested catalysts were found to be active in the latter reaction, and after an acidic work-up, the IPr*-based gold catalyst can be recovered and then reused several times without any loss in efficiency

  17. Aluminium and titanium modified mesoporous TUD-1: A bimetal acid catalyst for Biginelli reaction

    Science.gov (United States)

    Pasupathi, M.; Santhi, N.; Pachamuthu, M. P.; Alamelu Mangai, G.; Ragupathi, C.

    2018-05-01

    Using a simple, non-surfactant template triethanolamine (TEA), bimetal (Al3+ and Ti4+ ions) incorporated mesoporous catalyst AlTiTUD-1 (Si/Al+Ti = 50) was synthesized. The catalyst was characterized by XRD (Low and High angle), N2 Sorption, FTIR, SEM, TEM, DR UV Visible, and pyridine adsorbed FT-IR techniques. The XRD and N2 sorption studies confirmed its amorphous, mesoporous nature, which possessed a BET surface area of 590 m2 g-1 and pore diameter of 4.4 nm. The Al3+ and Ti4+ co-ordination within the TUD-1 was evaluated by DR UV-Vis. Pyridine adsorbed FTIR revealed both Bronsted (B) and Lewis (L) acidity, which is responsible for the catalytic activity. The acid catalyst showed a good catalytic performance in Biginelli type multicomponent coupling reaction for the substituted aldehydes, ethyl acetoacetate and thiourea to yield about 70% in reflux condition.

  18. Study on the Hydrolysis Kinetics of Xylan on Different Acid Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Na, Byeong-Il; Lee, Jae-Won [Chonnam National University, Gwangju (Korea, Republic of)

    2014-04-15

    In this study, we investigated kinetic model for the acid-catalyzed xylan hydrolysis at temperature 120-150 .deg. C. Also, we analyzed the kinetic parameters for xylose production and furfural decomposition. The hydrolysis of xylan and the degradation of xylose were promoted by high reaction temperature and acid concentration. The optimal hydrolysis condition for the highest reaction rate constants (k{sub 1}) was different depending on the acid catalysts. Among sulfuric, oxalic and maleic acid, the xylan reaction rate constants (k{sub 1}) to xylose had the highest value of 0.0241 min{sup -1} when 100 mM sulfuric acid was used at 120 .deg. C. However, sulfuric acid induced more xylose degradation compared to oxalic and maleic acid hydrolysis. The activation energy for xylan degradation was the highest when sulfuric acid was used.

  19. Application of zirconia modified with KOH as heterogeneous solid base catalyst to new non-edible oil for biodiesel

    International Nuclear Information System (INIS)

    Takase, Mohammed; Zhang, Min; Feng, Weiwei; Chen, Yao; Zhao, Ting; Cobbina, Samuel J.; Yang, Liuqing; Wu, Xiangyang

    2014-01-01

    Highlights: • Silybum marianum contain high amount of oil (46%) and Linoleic acids (65.68%). • Incipient wetness impregnation method was used to load KOH on ZrO 2. • KOH(32%)/ZrO 2 -5 was used to transesterificate Silybum marianum to biodiesel. • Conversion yield of triglycerides to biodiesel (90.8%) at 60 °C was obtained in 2 h. • The properties of the biodiesel were comparable to international standards. - Abstract: This study seeks to investigate zirconia modified with KOH as heterogeneous solid base catalyst for transesterification of new non-edible, Silybum marianum (oil content 46%, FFA 0.68% and linoleic acid 65.68%) oil using methanol to biodiesel. Having screened the catalytic performance of ZrO 2 loaded with different K-compounds, 32% KOH loaded on ZrO 2 was chosen. The catalyst was prepared using incipient wetness impregnation method. Following drying (after impregnation) and calcination at 530 °C for 5 h, the catalyst was characterized by means of Hammett indicators, XRD, FTIR, SEM, TGA and N 2 adsorption desorption measurements. It was found that the yield of the fatty acid methyl esters (FAME) was related to the catalyst base strength. The catalyst had granular and porous structures with high basicity and superior catalytic performance for the transesterification reaction. Maximum yield (90.8%) was obtained at 15:1 methanol to oil molar ratio, 6% catalyst amount, 60 °C reaction temperature in 2 h. The catalyst maintained sustained activity after five times of usage. The oxidative stability and iodine value were the only unsuitable properties of the biodiesel (out of range) but can easily be improved. The cetane number, flash point and the cold flow properties among others were however, comparable to international standards. The study indicated that KOH(32%)/ZrO 2 -5 is an economically, suitable catalyst for producing biodiesel from S. marianum oil which is a potential new non-edible feedstock that can contribute positively to biodiesel

  20. Alternative SILP-SCR Catalysts based on Guanidinium Chromates

    DEFF Research Database (Denmark)

    Due-Hansen, Johannes; Riisager, Anders; Ståhl, Kenny

    There is an increasing global concern about human caused emissions of pollutants like sulfur and nitrogen oxides to the atmosphere leading to, e.g. smog and acid rain damaging to the human health and the environment. Selective catalytic reduction (SCR) of NOx with ammonia as reductant is the most...... duct. There is therefore a demand for alkali-resistant SCR catalysts more flexible regarding temperature of operation and position in the duct. Supported ionic liquid phase (SILP) catalysts with 1,1,3,3-Tetramethylguanidinium (TMGH+) and a chromium oxide anion supported on anatase have exhibited...

  1. The application of aberration-corrected electron microscopy to the characterization of gold-based catalysts

    Science.gov (United States)

    Herzing, Andrew A.

    prepared using more traditional methods. The combination of STEM-HAADF imaging and XEDS mapping has been used to characterize these catalysts and a strong correlation between the catalytic activity and the enhanced degree of metal dispersion over the support is demonstrated. Thirdly, a systematic series of Au-Pd/Al2O3 catalysts has been studied in order to characterize the effects of various heat treatments on the development of core-shell morphologies within the bi-metallic particles and its subsequent effect on their catalytic performance for H2O 2 synthesis. STEM-XEDS spectrum imaging was employed in order to determine the degree of alloying and segregation behavior within the individual Au-Pd particles as a function of calcination/reduction temperature. It was found that the as prepared catalyst contained homogeneous Au-Pd alloy particles and that a Pd-rich shell/Au-rich core morphology gradually developed upon calcination. Subsequent reduction of the catalyst caused a large fraction of the particles to invert and form Pd-rich core/Au-rich shell structures. These changes are related to both the activity and stability of the catalyst. Finally, the washing of activated carbon support materials in acid was found to be extremely beneficial for producing Au-Pd catalysts for the direct synthesis of H2O2. STEM-HAADF imaging revealed that the acid-washing treatment increased the dispersion of the metal on the carbon supports. Aberration-corrected STEM-XEDS spectrum imaging demonstrated a strong size dependence of the Au-Pd particle composition. Crucially, the acid-washing pre-treatment enhanced the alloying of Au and Pd by suppressing the formation of large (> 25 nm) Au-rich particles. In summary, the application of aberration-corrected HAADF imaging and STEM-XEDS spectrum imaging to the characterization of Au-based catalysts has enhanced the understanding of the structural and chemical features that determine their catalytic behavior. Specifically, they have allowed us to

  2. Design of an effective bifunctional catalyst organotriphosphonic acid-functionalized ferric alginate (ATMP-FA) and optimization by Box-Behnken model for biodiesel esterification synthesis of oleic acid over ATMP-FA.

    Science.gov (United States)

    Liu, Wei; Yin, Ping; Liu, Xiguang; Qu, Rongjun

    2014-12-01

    Biodiesel production has become an intense research area because of rapidly depleting energy reserves and increasing petroleum prices together with environmental concerns. This paper focused on the optimization of the catalytic performance in the esterification reaction of oleic acid for biodiesel production over the bifunctional catalyst organotriphosphonic acid-functionalized ferric alginate ATMP-FA. The reaction parameters including catalyst amount, ethanol to oleic acid molar ratio and reaction temperature have been optimized by response surface methodology (RSM) using the Box-Behnken model. It was found that the reaction temperature was the most significant factor, and the best conversion ratio of oleic acid could reach 93.17% under the reaction conditions with 9.53% of catalyst amount and 8.62:1 of ethanol to oleic acid molar ratio at 91.0 °C. The research results show that two catalytic species could work cooperatively to promote the esterification reaction, and the bifunctional ATMP-FA is a potential catalyst for biodiesel production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. A Novel FCC Catalyst Based on a Porous Composite Material Synthesized via an In Situ Technique

    Directory of Open Access Journals (Sweden)

    Shu-Qin Zheng

    2015-11-01

    Full Text Available To overcome diffusion limitations and improve transport in microporous zeolite, the materials with a wide-pore structure have been developed. In this paper, composite microspheres with hierarchical porous structure were synthesized by an in situ technique using sepiolite, kaolin and pseudoboehmite as raw material. A novel fluid catalytic cracking (FCC catalyst for maximizing light oil yield was prepared based on the composite materials. The catalyst was characterized by XRD, FT-IR, SEM, nitrogen adsorption-desorption techniques and tested in a bench FCC unit. The results indicated that the catalyst had more meso- and macropores and more acid sites than the reference catalyst, and thus can increase light oil yield by 1.31 %, while exhibiting better gasoline and coke selectivity.

  4. POROUS ALUMINOPHOSPHATES :From Molecular Sieves to Designed Acid Catalysts

    Science.gov (United States)

    Pastore, H. O.; Coluccia, S.; Marchese, L.

    2005-08-01

    This review covers the synthesis, characterization, and physico-chemical properties of microporous and mesoporous aluminophosphates and silicoaluminophosphates molecular sieves. Particular emphasis is given to the materials that have found applications as acid catalysts. We consider the evolution of the synthesis procedures from the first discoveries to the current methodologies and give perspectives for new possible synthesis strategies. Emphasis is given to the use of specially prepared precursors/reactants designed for the use as molecular sieves. Experimental (especially MAS-NMR and FTIR spectroscopy) and theoretical approaches to the description of the Si insertion into the ALPO framework and to the acidic properties of SAPOs and MeAPSOs materials are discussed.

  5. CATALYSTS NHI Thermochemical Systems FY 2009 Year-End Report

    International Nuclear Information System (INIS)

    Ginosar, Daniel M.

    2009-01-01

    Fiscal Year 2009 work in the Catalysts project focused on advanced catalysts for the decomposition of sulfuric acid, a reaction common to both the Sulfur-Iodine (S-I) cycle and the Hybrid Sulfur cycle. Prior years effort in this project has found that although platinum supported on titanium oxide will be an acceptable catalyst for sulfuric acid decomposition in the integrated laboratory scale (ILS) project, the material has short comings, including significant cost and high deactivation rates due to sintering and platinum evaporation. For pilot and larger scale systems, the catalyst stability needs to be improved significantly. In Fiscal Year 2008 it was found that at atmospheric pressure, deactivation rates of a 1 wt% platinum catalyst could be reduced by 300% by adding either 0.3 wt% iridium (Ir) or 0.3 wt% ruthenium (Ru) to the catalyst. In Fiscal Year 2009, work focused on examining the platinum group metal catalysts activity and stability at elevated pressures. In addition, simple and complex metal oxides are known to catalyze the sulfuric acid decomposition reaction. These metal oxides could offer activities comparable to platinum but at significantly reduced cost. Thus a second focus for Fiscal Year 2009 was to explore metal oxide catalysts for the sulfuric acid decomposition reaction. In Fiscal Year 2007 several commercial activated carbons had been identified for the HI decomposition reaction; a reaction specific to the S-I cycle. Those materials should be acceptable for the pilot scale project. The activated carbon catalysts have some disadvantages including low activity at the lower range of reactor operating temperature (350 to 400 C) and a propensity to generate carbon monoxide in the presence of water that could contaminate the hydrogen product, but due to limited funding, this area had low priority in Fiscal Year 2009. Fiscal Year 2009 catalyst work included five tasks: development, and testing of stabilized platinum based H2SO4 catalysts

  6. Direct catalytic conversion of brown seaweed-derived alginic acid to furfural using 12-tungstophosphoric acid catalyst in tetrahydrofuran/water co-solvent

    International Nuclear Information System (INIS)

    Park, Geonu; Jeon, Wonjin; Ban, Chunghyeon; Woo, Hee Chul; Kim, Do Heui

    2016-01-01

    Highlights: • Furfural was produced by catalytic conversion of macroalgae-derived alginic acid. • 12-Tungstophosphoric acid (H_3PW_1_2O_4_0) showed remarkable catalytic performance. • Tetrahydrofuran (THF) as a reaction medium significantly enhanced production of furfural. - Abstract: Furfural, a biomass-derived platform chemical, was produced by acid-catalyzed reaction of alginic acid extracted from brown seaweed. Three acid catalysts, H_2SO_4, Amberlyst15 and 12-tungstophosphoric acid (H_3PW_1_2O_4_0), were compared to evaluate their catalytic performance for the alginic acid conversion. The H_3PW_1_2O_4_0 catalyst showed the highest catalytic activity, yielding the maximum furfural yield (33.8%) at 180 °C for 30 min in tetrahydrofuran/water co-solvent. Higher reaction temperature promoted the conversion of alginic acid to furfural, but the transformation of furfural to humin was also accelerated. To our knowledge, this is the highest furfural yield among studies about the direct catalytic conversion of alginic acid. Furthermore, products distribution with time-on-stream was investigated in detail, which led us to propose a reaction pathway.

  7. Microwave-assisted degradation of acid orange using a conjugated polymer, polyaniline, as catalyst

    Directory of Open Access Journals (Sweden)

    Ufana Riaz

    2014-01-01

    Full Text Available Microwave-assisted photocatalytic degradation of dyes is one of the emerging technologies for waste water remediation. Microwave effectively accelerates photocatalytic degradation, when microwave electrodeless lamp (MEL substitutes traditional UV lamp as light source. This setup can be extremely simplified if MEL and photocatalyst can be replaced by a catalyst which can work under microwave irradiation in the absence of any light source. The present work reports for the first time degradation of acid orange 7 (AO under microwave irradiation using polyaniline (PANI as catalyst in the absence of any UV lamp as light source. The degradation/decolourization was carried out in neutral acidic and basic media and was monitored spectrophotometrically to evaluate the ability of microwave irradiation to degrade AO. Microwave irradiation showed excellent performance as it completely decolourizes AO dye solution in 10 min. With the advantages of low cost and rapid processing, this novel catalyst is expected to gain promising application in the treatment of various dyestuff wastewaters on a large scale.

  8. Support screening studies on the hydrogenation of levulinic acid to γ‐valerolactone in water using RU catalysts

    NARCIS (Netherlands)

    Piskun, Anna; Winkelman, Jozef G M; Tang, Zhenchen; Heeres, Hero Jan

    2016-01-01

    γ-Valerolactone (GVL) has been identified as a sustainable platform chemical for the production of carbon-based chemicals. Here we report a screening study on the hydrogenation of levulinic acid (LA) to GVL in water using a wide range of ruthenium supported catalysts in a batch set-up (1 wt. % Ru,

  9. DEVELOPMENT OF ATTRITION RESISTANT IRON-BASED FISCHER-TROPSCH CATALYSTS

    International Nuclear Information System (INIS)

    Adeyinka A. Adeyiga

    2001-01-01

    The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H 2 ) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. The use of iron-based catalysts is attractive not only due to their low cost and ready availability, but also due to their high water-gas shift activity which makes it possible to use these catalysts with low H 2 /CO ratios. However, a serious problem with use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, makes the separation of catalyst from the oil/wax product very difficult if not impossible, and results in a steady loss of catalyst from the reactor. Recently, fundamental understanding of physical attrition is being addressed by incorporating suitable binders into the catalyst recipe. This has resulted in the preparation of a spray dried Fe-based catalyst having aps of 70 mm with high attrition resistance. This Fe-based attrition resistant, active and selective catalyst gave 95% CO conversion through 125 hours of testing in a fixed-bed at 270 C, 1.48 MPa, H 2 /CO=0.67 and 2.0 NL/g-cat/h with C 5 + selectivity of >78% and methane selectivity of <5%. However, further development of the catalyst is needed to address the chemical attrition due to phase changes that any Fe-catalyst goes through potentially causing internal stresses within the particle and resulting in weakening, spalling or cracking. The objective of this research is to develop robust iron-based Fischer-Tropsch catalysts that have suitable activity, selectivity and stability to be used in the slurry bubble column reactor. Specifically we aim to develop to: (i) improve the performance and preparation procedure of the high activity, high attrition resistant, high alpha iron-based

  10. A phenyl-sulfonic acid anchored carbon-supported platinum catalyst for polymer electrolyte fuel cell electrodes

    International Nuclear Information System (INIS)

    Selvarani, G.; Sahu, A.K.; Choudhury, N.A.; Sridhar, P.; Pitchumani, S.; Shukla, A.K.

    2007-01-01

    A method, to anchor phenyl-sulfonic acid functional groups with the platinum catalyst supported onto a high surface-area carbon substrate, is reported. The use of the catalyst in the electrodes of a polymer electrolyte fuel cell (PEFC) helps enhancing its performance. Characterization of the catalyst by Fourier transform infra red (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and point-of-zero-charge (PZC) studies suggests that the improvement in performance of the PEFC is facilitated not only by enlarging the three-phase boundary in the catalyst layer but also by providing ionic-conduction paths as well as by imparting negative charge to platinum sites with concomitant oxidation of sulfur present in the carbon support. It is argued that the negatively charged platinum sites help repel water facilitating oxygen to access the catalyst sites. The PEFC with modified carbon-supported platinum catalyst electrodes exhibits 40% enhancement in its power density as compared to the one with unmodified carbon-supported platinum catalyst electrodes

  11. Nano-structured noble metal catalysts based on hexametallate architecture for the reforming of hydrocarbon fuels

    Science.gov (United States)

    Gardner, Todd H.

    2015-09-15

    Nano-structured noble metal catalysts based on hexametallate lattices, of a spinel block type, and which are resistant to carbon deposition and metal sulfide formation are provided. The catalysts are designed for the reforming of hydrocarbon fuels to synthesis gas. The hexametallate lattices are doped with noble metals (Au, Pt, Rh, Ru) which are atomically dispersed as isolated sites throughout the lattice and take the place of hexametallate metal ions such as Cr, Ga, In, and/or Nb. Mirror cations in the crystal lattice are selected from alkali metals, alkaline earth metals, and the lanthanide metals, so as to reduce the acidity of the catalyst crystal lattice and enhance the desorption of carbon deposit forming moieties such as aromatics. The catalysts can be used at temperatures as high as 1000.degree. C. and pressures up to 30 atmospheres. A method for producing these catalysts and applications of their use also is provided.

  12. Acid monolayer functionalized iron oxide nanoparticle catalysts

    Science.gov (United States)

    Ikenberry, Myles

    Superparamagnetic iron oxide nanoparticle functionalization is an area of intensely active research, with applications across disciplines such as biomedical science and heterogeneous catalysis. This work demonstrates the functionalization of iron oxide nanoparticles with a quasi-monolayer of 11-sulfoundecanoic acid, 10-phosphono-1-decanesulfonic acid, and 11-aminoundecanoic acid. The carboxylic and phosphonic moieties form bonds to the iron oxide particle core, while the sulfonic acid groups face outward where they are available for catalysis. The particles were characterized by thermogravimetric analysis (TGA), transmission electron microscopy (TEM), potentiometric titration, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectrometry (XPS), and dynamic light scattering (DLS). The sulfonic acid functionalized particles were used to catalyze the hydrolysis of sucrose at 80° and starch at 130°, showing a higher activity per acid site than the traditional solid acid catalyst Amberlyst-15, and comparing well against results reported in the literature for sulfonic acid functionalized mesoporous silicas. In sucrose catalysis reactions, the phosphonic-sulfonic nanoparticles (PSNPs) were seen to be incompletely recovered by an external magnetic field, while the carboxylic-sulfonic nanoparticles (CSNPs) showed a trend of increasing activity over the first four recycle runs. Between the two sulfonic ligands, the phosphonates produced a more tightly packed monolayer, which corresponded to a higher sulfonic acid loading, lower agglomeration, lower recoverability through application of an external magnetic field, and higher activity per acid site for the hydrolysis of starch. Functionalizations with 11-aminoundecanoic acid resulted in some amine groups binding to the surfaces of iron oxide nanoparticles. This amine binding is commonly ignored in iron oxide

  13. Gold nanoparticles stabilized by starch polymer and their use as catalyst in homocoupling of phenylboronic acid

    Directory of Open Access Journals (Sweden)

    Kittiyaporn Wongmanee

    2017-10-01

    Full Text Available In this study, gold nanoparticles (Au NPs stabilized by a starch polymer have been successfully prepared and characterized via a number of techniques including X-ray photoelectron spectroscopy (XPS, X-ray diffraction (XRD, UV-visible spectroscopy (UV-vis, transmission electron microscopy (TEM, and dynamic light scattering (DLS measurements. The catalytic activity of starch-stabilized Au NPs was also examined toward the homocoupling of phenylboronic acid in water using oxygen in air as oxidant at an ambient temperature (25 ± 1 °C. Several parameters including the catalyst loading, base equivalent (eq., base type, and reaction time were studied. This study offers a simple, inexpensive and environmentally friendly procedure for the stabilization of colloidal gold catalysts using a hydroxyl-rich structure of starch polymer with a great promise through potential applications in related fields.

  14. Effect of Pretreatment with Sulfuric Acid on Catalytic Hydrocracking of Fe/AC Catalysts

    Directory of Open Access Journals (Sweden)

    Ruiyu Wang

    2017-01-01

    Full Text Available Activated carbon (AC was modified by H2SO4 and used as a support for catalyst. The Fe2S3/AC-T catalyst was prepared by deposition-precipitation method and used to catalyze hydrocracking of coal-related model compound, di(1-naphthylmethane (DNM. The properties of catalyst were studied by N2 adsorption-desorption, X-ray diffraction, and scanning electron microscopy. The result showed that ferric sulfate and acidic centers had synergetic effect on hydrocracking of DNM when using Fe2S3/AC-T as catalyst, the optimal loading of Fe is 9 wt.%. Hydroconversion of the extraction residue from Guizhou bituminous coal was also studied using Fe2S3/AC-T as the catalyst. The reaction was conducted in cyclohexane under 0.8 Mpa of initial hydrogen pressure at 310°C. The reaction mixture was extracted with petroleum ether and analyzed by GC/MS. Amounts of organic compounds which fall into the categories of homologues of benzene and naphthalene were detected. It suggested that the catalyst could effectively catalyze the cleavage of C-C-bridged bonds.

  15. Deoxygenation of Palmitic and Lauric Acids over Pt/ZIF-67 Membrane/Zeolite 5A Bead Catalysts.

    Science.gov (United States)

    Yang, Liqiu; Carreon, Moises A

    2017-09-20

    The deoxygenation of palmitic and lauric acids over 0.5 wt % Pt/ZIF-67 membrane/zeolite 5A bead catalysts is demonstrated. Almost complete conversion (% deoxygenation of ≥95%) of these two fatty acids was observed over both fresh and recycled catalyst after a 2 h reaction time. The catalysts displayed high selectivity to pentadecane and undecane via decarboxylation reaction pathway even at low 0.5 wt % Pt loading. Selectivity to pentadecane and undecane as high as ∼92% and ∼94% was observed under CO 2 atmosphere when palmitic and lauric acids were used respectively as reactants. Depending on the reaction gas atmosphere, two distinctive reaction pathways were observed: decarboxylation and hydrodeoxygenation. Specifically, it was found that decarboxylation reaction pathway was more favorable in the presence of helium and CO 2 , while hydrodeoxygenation pathway strongly competed against the decarboxylation pathway when hydrogen was employed during the deoxygenation reactions. Esters were identified as the key reaction intermediates leading to decarboxylation and hydrodeoxygenation pathways.

  16. Nannochloropsis algae pyrolysis with ceria-based catalysts for production of high-quality bio-oils.

    Science.gov (United States)

    Aysu, Tevfik; Sanna, Aimaro

    2015-10-01

    Pyrolysis of Nannochloropsis was carried out in a fixed-bed reactor with newly prepared ceria based catalysts. The effects of pyrolysis parameters such as temperature and catalysts on product yields were investigated. The amount of bio-char, bio-oil and gas products, as well as the compositions of the resulting bio-oils was determined. The results showed that both temperature and catalyst had significant effects on conversion of Nannochloropsis into solid, liquid and gas products. The highest bio-oil yield (23.28 wt%) and deoxygenation effect was obtained in the presence of Ni-Ce/Al2O3 as catalyst at 500°C. Ni-Ce/Al2O3 was able to retain 59% of the alga starting energy in the bio-oil, compared to only 41% in absence of catalyst. Lower content of acids and oxygen in the bio-oil, higher aliphatics (62%), combined with HHV show promise for production of high-quality bio-oil from Nannochloropsis via Ni-Ce/Al2O3 catalytic pyrolysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Hydrotreatment of bio-oil over Ni-based catalyst.

    Science.gov (United States)

    Zhang, Xinghua; Wang, Tiejun; Ma, Longlong; Zhang, Qi; Jiang, Ting

    2013-01-01

    Inexpensive non-sulfided Ni-based catalysts were evaluated for hydrotreatments using phenol as model compound. HZSM-5, a zeolite with different ratio of Si/Al and γ-Al(2)O(3) were impregnated with Ni(NO(3))(2) · 6H(2)O and calcined at 450 °C. Conversion rates and product distribution for treatment of phenol at 160-240 °C in the presence of catalysts with nickel loads of 6, 10, 14 and 17 wt.% were determined. Phenol conversion was highest (91.8%) at 240 °C in the presence of HZSM-5(Si/Al = 38) loaded with 10% Ni. When hydrotreatment was carried out with bio-oil obtained from pyrolysis of pine sawdust under the optimal conditions determined for phenol, the pH of bio-oil increased from 2.27 to 4.07, and the hydrogen content increased from 6.28 to 7.01 wt.%. The decrease in acidity is desirable for the use of upgraded bio-oil. Copyright © 2012. Published by Elsevier Ltd.

  18. Insight into the Effect of Sn on CO and Formic Acid Oxidation at PtSn Catalysts

    DEFF Research Database (Denmark)

    Stevanović, S.; Tripković, D.; Tripkovic, Vladimir

    2014-01-01

    The role of Sn on the catalytic activity for CO and formic acid oxidation is studied by comparing the activities of differently treated PtSn/C and Pt/C catalysts. The catalysts are prepared by a microwave-assisted polyol synthesis method. As revealed by scanning tunneling and transmission electron...

  19. General analytical procedure for determination of acidity parameters of weak acids and bases.

    Science.gov (United States)

    Pilarski, Bogusław; Kaliszan, Roman; Wyrzykowski, Dariusz; Młodzianowski, Janusz; Balińska, Agata

    2015-01-01

    The paper presents a new convenient, inexpensive, and reagent-saving general methodology for the determination of pK a values for components of the mixture of diverse chemical classes weak organic acids and bases in water solution, without the need to separate individual analytes. The data obtained from simple pH-metric microtitrations are numerically processed into reliable pK a values for each component of the mixture. Excellent agreement has been obtained between the determined pK a values and the reference literature data for compounds studied.

  20. Hydrogenation of Levulinic Acid over Nickel Catalysts Supported on Aluminum Oxide to Prepare γ-Valerolactone

    Directory of Open Access Journals (Sweden)

    Jie Fu

    2015-12-01

    Full Text Available Four types of nickel catalysts supported on aluminum oxide (Ni/Al2O3 with different nickel loadings were synthesized using the co-precipitation method and were used for the hydrogenation of levulinic acid (LA to prepare γ-valerolactone (GVL. The synthesized Ni/Al2O3 catalysts exhibited excellent catalytic activity in dioxane, and the activity of the catalysts was excellent even after being used four times in dioxane. The catalytic activity in dioxane as a solvent was found to be superior to the activity in water. Nitrogen physisorption, X-ray diffraction, and transmission electron microscopy were employed to characterize the fresh and used catalysts. The effects of the nickel loading, temperature, hydrogen pressure, and substrate/catalyst ratio on the catalytic activity were investigated.

  1. Mordenite - Type Zeolite SCR Catalysts with Iron or Copper

    DEFF Research Database (Denmark)

    2012-01-01

    Cu/mordenite catalysts were found to be highly active for the SCR of NO with NH3 and exhibited high resistance to alkali poisoning. Redox and acidic properties of Cu/mordenite were well preserved after poisoning with potassium unlike that of vanadium catalysts. Fe-mordenite catalysts also reveale...... to be essential requirements for the high alkali resistance. Mordenite-type zeolite based catalysts could therefore be attractive alternatives to conventional SCR catalysts for biomass fired power plant flue gas treatment....

  2. Enhanced furfural production from raw corn stover employing a novel heterogeneous acid catalyst.

    Science.gov (United States)

    Li, Wenzhi; Zhu, Yuanshuai; Lu, Yijuan; Liu, Qiyu; Guan, Shennan; Chang, Hou-Min; Jameel, Hasan; Ma, Longlong

    2017-12-01

    With the aim to enhance the direct conversion of raw corn stover into furfural, a promising approach was proposed employing a novel heterogeneous strong acid catalyst (SC-CaC t -700) in different solvents. The novel catalyst was characterized by elemental analysis, N 2 adsorption-desorption, FT-IR, XPS, TEM and SEM. The developed catalytic system demonstrated superior efficacy for furfural production from raw corn stover. The effects of reaction temperature, residence time, catalyst loading, substrate concentration and solvent were investigated and optimized. 93% furfural yield was obtained from 150mg corn stover at 200°C in 100min using 45mg catalyst in γ-valerolactone (GVL). In comparison, 51.5% furfural yield was achieved in aqueous media under the same conditions (200°C, 5h, and 45mg catalyst), which is of great industrial interest. Furfural was obtained from both hemicelluloses and cellulose in corn stover, which demonstrated a promising routine to make the full use of biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Polystyrene-supported pyridinium chloroaluminate ionic liquid as a new heterogeneous Lewis acid catalyst for selective synthesis of benzimidazoles

    Directory of Open Access Journals (Sweden)

    Parvanak Boroujeni Kaveh

    2013-01-01

    Full Text Available Polystyrene-supported pyridinium chloroaluminate ionic liquid was prepared from the reaction of Merrifield resin with pyridine followed by reaction with aluminium chloride. This catalyst was used as a new chemoselective Lewis acid catalyst for the exclusive synthesis of 2-substituted benzimidazoles from the reaction of aldehydes with o-phenylenediamines. The catalyst is stable (as a bench top catalyst and can be easily recovered and reused without appreciable change in its efficiency.

  4. Biodiesel production from esterification of free fatty acid over PA/NaY solid catalyst

    International Nuclear Information System (INIS)

    Liu, Wei; Yin, Ping; Zhang, Jiang; Tang, Qinghua; Qu, Rongjun

    2014-01-01

    Highlights: • Biodiesel production from esterification of oleic acid was catalyzed by PA/NaY. • The influences of the process operating parameters were studied. • RSM was employed to optimize the experimental conditions. • The kinetic equation of the esterification reaction was investigated. - Abstract: Because of the incitements from increasing petroleum prices, diminishing petroleum reserves and the environmental consequences of exhaust gases from petroleum fueled engines, biodiesel has been used as a substitute of the regular diesel in recent years. In this paper, biodiesel production from the esterification of the free fatty oil oleic acid with ethanol catalyzed by PA/NaY (PA = organic phosphonic acid) was investigated, and the effect of reaction conditions such as PA loading, catalyst amount, molar ratio of alcohol to acid, reaction temperature and reaction time on the esterification reaction was examined. The process optimization using response surface methodology (RSM) was performed and the interactions between the operational variables were elucidated. The optimum values for maximum conversion ratio of oleic acid could be obtained by using a Box–Behnken center-united design with a minimum of experimental work. The oleic acid conversion reached 79.51 ± 0.68% with the molar ratio of alcohol to oleic acid being 7:1 and 1.7 g PA/NaY catalyst (20 ml of PA loading) at 105 °C for 7 h. Moreover, a kinetic model for the esterification catalyzed by PA/NaY catalyst was established. By fitting the kinetic model with the experimental results, the reaction order n = 2, activation energy of the positive reaction Ea + = 43.41 kJ/mol and that of the reverse reaction Ea − = 59.74 kJ/mol were obtained

  5. Methanol oxidation at platinum electrodes in acid solution: comparison between model and real catalysts

    Directory of Open Access Journals (Sweden)

    A. V. TRIPKOVIC

    2006-12-01

    Full Text Available Methanol oxidation in acid solution was studied at platinum single crystals, Pt(hkl, as the model catalyst, and at nanostructural platinum supported on high surface area carbon, Pt/C, as the real catalyst. The linear extrapolation method was used to determine the beginning of hydroxyl anion adsorption. Structural sensitivity of the adsorption was proved and a correlation with the onset of the methanol oxidation current was established at all catalysts. Bisulfate and chloride anions were found to decrease the methanol oxidation rate, but probably did not influence the reaction parth. The specific activity for the reaction increased in the sequence Pt(110 < Pt/C < Pt(111, suggesting that the activity of the supported Pt catalyst can be correlated with the activities of the dominating crystal planes on its surface.

  6. Reuse of Hydrotreating Spent Catalyst

    International Nuclear Information System (INIS)

    Habib, A.M.; Menoufy, M.F.; Amhed, S.H.

    2004-01-01

    All hydro treating catalysts used in petroleum refining processes gradually lose activity through coking, poisoning by metal, sulfur or halides or lose surface area from sintering at high process temperatures. Waste hydrotreating catalyst, which have been used in re-refining of waste lube oil at Alexandria Petroleum Company (after 5 years lifetime) compared with the same fresh catalyst were used in the present work. Studies are conducted on partial extraction of the active metals of spent catalyst (Mo and Ni) using three leaching solvents,4% oxidized oxalic acid, 10% aqueous sodium hydroxide and 10% citric acid. The leaching experiments are conducting on the de coked extrude [un crushed] spent catalyst samples. These steps are carried out in order to rejuvenate the spent catalyst to be reused in other reactions. The results indicated that 4% oxidized oxalic acid leaching solution gave total metal removal 45.6 for de coked catalyst samples while NaOH gave 35% and citric acid gave 31.9 % The oxidized leaching agent was the most efficient leaching solvent to facilitate the metal removal, and the rejuvenated catalyst was characterized by the unchanged crystalline phase The rejuvenated catalyst was applied for hydrodesulfurization (HDS) of vacuum gas oil as a feedstock, under different hydrogen pressure 20-80 bar in order to compare its HDS activity

  7. Polyoxometalate electrocatalysts based on earth-abundant metals for efficient water oxidation in acidic media

    Science.gov (United States)

    Blasco-Ahicart, Marta; Soriano-López, Joaquín; Carbó, Jorge J.; Poblet, Josep M.; Galan-Mascaros, J. R.

    2018-01-01

    Water splitting is a promising approach to the efficient and cost-effective production of renewable fuels, but water oxidation remains a bottleneck in its technological development because it largely relies on noble-metal catalysts. Although inexpensive transition-metal oxides are competitive water oxidation catalysts in alkaline media, they cannot compete with noble metals in acidic media, in which hydrogen production is easier and faster. Here, we report a water oxidation catalyst based on earth-abundant metals that performs well in acidic conditions. Specifically, we report the enhanced catalytic activity of insoluble salts of polyoxometalates with caesium or barium counter-cations for oxygen evolution. In particular, the barium salt of a cobalt-phosphotungstate polyanion outperforms the state-of-the-art IrO2 catalyst even at pH < 1, with an overpotential of 189 mV at 1 mA cm-2. In addition, we find that a carbon-paste conducting support with a hydrocarbon binder can improve the stability of metal-oxide catalysts in acidic media by providing a hydrophobic environment.

  8. SiC nanocrystals as Pt catalyst supports for fuel cell applications

    DEFF Research Database (Denmark)

    Dhiman, Rajnish; Morgen, Per; Skou, E.M.

    2013-01-01

    A robust catalyst support is pivotal to Proton Exchange Membrane Fuel Cells (PEMFCs) to overcome challenges such as catalyst support corrosion, low catalyst utilization and overall capital cost. SiC is a promising candidate material which could be applied as a catalyst support in PEMFCs. Si...... on the nanocrystals of SiC-SPR and SiC-NS by the polyol method. The SiC substrates are subjected to an acid treatment to introduce the surface groups, which help to anchor the Pt nano-catalysts. These SiC based catalysts have been found to have a higher electrochemical activity than commercially available Vulcan...... based catalysts (BASF & HISPEC). These promising results signal a new era of SiC based catalysts for fuel cell applications....

  9. In-situ hydrodeoxygenation of phenol by supported Ni catalyst-explanation for catalyst performance

    DEFF Research Database (Denmark)

    Wang, Ze; Zeng, Ying; Lin, Weigang

    2017-01-01

    In-situ hydrodeoxygenation of phenol with aqueous hydrogen donor over supported Ni catalyst was investigated. The supported Ni catalysts exerted very poor performance, if formic acid was used as the hydrogen donor. Catalyst modification by loading K, Na, Mg or La salt could not make the catalyst...... performance improved. If gaseous hydrogen was used as the hydrogen source the activity of Ni/Al2O3 was pretty high. CO2 was found poisonous to the catalysis, due to the competitive adoption of phenol with CO2. If formic acid was replaced by methanol, the catalyst performance improved remarkably, with major...... products of cyclohexanone and cyclohexanol. The better effect of methanol enlightened the application of the supported Ni catalyst in in-situ hydrodeoxygenation of phenol....

  10. Hydrogenation of Levulinic Acid to gamma-Valerolactone in Water Using Millimeter Sized Supported Ru Catalysts in a Packed Bed Reactor

    NARCIS (Netherlands)

    Piskun, A. S.; de Haan, J. E.; Wilbers, E.; de Bovenkamp, H. H. van; Tang, Z.; Heeres, Hero

    gamma-Valerolactone (GVL) has been identified as a sustainable platform chemical for the production of carbon-based chemicals. We here report an experimental study on the catalytic hydrogenation of levulinic acid (LA) in water to GVL in a packed bed reactor using supported Ru catalysts (carbon,

  11. Cavitation assisted synthesis of fatty acid methyl esters from sustainable feedstock in presence of heterogeneous catalyst using two step process.

    Science.gov (United States)

    Dubey, Sumit M; Gole, Vitthal L; Gogate, Parag R

    2015-03-01

    The present work reports the intensification aspects for the synthesis of fatty acid methyl esters (FAME) from a non-edible high acid value Nagchampa oil (31 mg of KOH/g of oil) using two stage acid esterification (catalyzed by H₂SO₄) followed by transesterification in the presence of heterogeneous catalyst (CaO). Intensification aspects of both stages have been investigated using sonochemical reactors and the obtained degree of intensification has been established by comparison with the conventional approach based on mechanical agitation. It has been observed that reaction temperature for esterification reduced from 65 to 40 °C for the ultrasonic approach whereas there was a significant reduction in the optimum reaction time for transesterification from 4h for the conventional approach to 2.5h for the ultrasound assisted approach. Also the reaction temperature reduced marginally from 65 to 60 °C and yield increased from 76% to 79% for the ultrasound assisted approach. Energy requirement and activation energy for both esterification and transesterification was lower for the ultrasound based approach as compared to the conventional approach. The present work has clearly established the intensification obtained due to the use of ultrasound and also illustrated the two step approach for the synthesis of FAME from high acid value feedstock based on the use of heterogeneous catalyst for the transesterification step. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Synthesis of Hydrocarbons from H2-Deficient Syngas in Fischer-Tropsch Synthesis over Co-Based Catalyst Coupled with Fe-Based Catalyst as Water-Gas Shift Reaction

    Directory of Open Access Journals (Sweden)

    Ting Ma

    2015-01-01

    Full Text Available The effects of metal species in an Fe-based catalyst on structural properties were investigated through the synthesis of Fe-based catalysts containing various metal species such, as Mn, Zr, and Ce. The addition of the metal species to the Fe-based catalyst resulted in high dispersions of the Fe species and high surface areas due to the formation of mesoporous voids about 2–4 nm surrounded by the catalyst particles. The metal-added Fe-based catalysts were employed together with Co-loaded beta zeolite for the synthesis of hydrocarbons from syngas with a lower H2/CO ratio of 1 than the stoichiometric H2/CO ratio of 2 for the Fischer-Tropsch synthesis (FTS. Among the catalysts, the Mn-added Fe-based catalyst exhibited a high activity for the water-gas shift (WGS reaction with a comparative durability, leading to the enhancement of the CO hydrogenation in the FTS in comparison with Co-loaded beta zeolite alone. Furthermore, the loading of Pd on the Mn-added Fe-based catalyst enhanced the catalytic durability due to the hydrogenation of carbonaceous species by the hydrogen activated over Pd.

  13. Sulfonated reduced graphene oxide as a highly efficient catalyst for direct amidation of carboxylic acids with amines using ultrasonic irradiation.

    Science.gov (United States)

    Mirza-Aghayan, Maryam; Tavana, Mahdieh Molaee; Boukherroub, Rabah

    2016-03-01

    Sulfonated reduced graphene oxide nanosheets (rGO-SO3H) were prepared by grafting sulfonic acid-containing aryl radicals onto chemically reduced graphene oxide (rGO) under sonochemical conditions. rGO-SO3H catalyst was characterized by Fourier-transform infrared (FT-IR) spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy (XPS). rGO-SO3H catalyst was successfully applied as a reusable solid acid catalyst for the direct amidation of carboxylic acids with amines into the corresponding amides under ultrasonic irradiation. The direct sonochemical amidation of carboxylic acid takes place under mild conditions affording in good to high yields (56-95%) the corresponding amides in short reaction times. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Highly Selective Liquid-Phase Benzylation of Anisole with Solid-Acid Zeolite Catalysts

    DEFF Research Database (Denmark)

    Poreddy, Raju; Shunmugavel, Saravanamurugan; Riisager, Anders

    2015-01-01

    Zeolites were evaluated as solid acid catalysts for the liquid-phase benzylation of anisole with benzyl alcohol, benzyl bromide, and benzyl chloride at 80 °C. Among the examined zeolites, H-mordenite-10 (H-MOR-10) demonstrated particular high activity (>99 %) and excellent selectivity (>96...

  15. The Comparison of Hydrochloric Acid and Phosphoric Acid Treatments in the Preparation of Montmorillonite Catalysts for RNA Synthesis

    Science.gov (United States)

    Aldersley, Michael Frank; Joshi, Prakash C.; Huang, Yixing

    2017-09-01

    The treatment of clay minerals with a preliminary acid wash and titration to pH 7 has proven to generate catalysts for the most interesting of oligomerization reactions in which activated RNA-nucleotides generate oligomers up to 40-mers. Significantly, not all clay minerals become catalytic following this treatment and none are catalytic in the absence of such treatment. The washing procedure has been modified and explored further using phosphoric acid and the outcomes are compared to those obtained when clay samples are prepared following a hydrochloric acid wash.

  16. Selective Aerobic Oxidation of 5-Hydroxymethylfurfural in Water Over Solid Ruthenium Hydroxide Catalysts with Magnesium-Based Supports

    DEFF Research Database (Denmark)

    Gorbanev, Yury; Kegnæs, Søren; Riisager, Anders

    2011-01-01

    Solid catalyst systems comprised of ruthenium hydroxide supported on magnesium-based carrier materials (spinel, magnesium oxide and hydrotalcite) were investigated for the selective, aqueous aerobic oxidation of the biomass-derived chemical 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid...

  17. PREPARATION, CHARACTERIZATIONS AND MODIFICATION OF Ni-Pd/NATURAL ZEOLITE CATALYSTS

    Directory of Open Access Journals (Sweden)

    Wega Trisunaryanti

    2010-06-01

    Full Text Available Preparation, and modification of Ni-Pd/natural zeolite as well as their characterizations had been carried out. The aim of this research for the fututure is to prepare the best characters catalyst for the conversion of waste plastics fraction to gasoline fraction (C5-C12 hydrocarbons. The preparation of catalysts was performed by reacting a natural zeolite with the precursor of Ni(NO32. 9H2O and PdCl2 in an ammonia solution (25%. The modifications were performed by varying the rasio of Ni/Pd loaded to the zeolite, whereas the Pd was previously loaded and total metal content was 1 wt.% based on the zeolite. The characterization of catalysts included determination of acidity gravimetrically by adsorption of ammonia or pyridine vapour  base method, metal content by Atomic Adsorption Spectrophotometer (AAS and X-ray Fluoresence (XRF and crystallinity by X-ray Diffraction (XRD. The treatment of catalysts using Etilene Diamine Tetra Acetic acid  (EDTA was performed to study the metal distribution on the outer or inner surface of the zeolite. The characterization results showed that the loading of metals to the zeolite increased its acidity and decreased its spesific surface area, however, did not defect its crystallnity.  The metals loaded on the zeolite were distributed inside the pore and at outer surface of the zeolite. For all catalyst samples, the acidities determined using ammonia were higher than those of pyridine, and the acidities determined before the EDTA treatment was lower than those after the treatment.  Metal contents of the zeolite before the EDTA treatment were higher than those after the treatment. The EDTA treatment enhanced the crystallinity of the sampel. The relationship between the metal rasio towards the acidity of the catalyst samples were in variation. Catalyst samples produced in this research have good characters, thus promisingly can be used for conversion process of waste plastics to gasoline fraction.    Keywords

  18. Method of performing sugar dehydration and catalyst treatment

    Science.gov (United States)

    Hu, Jianli [Kennewick, WA; Holladay, Johnathan E [Kennewick, WA; Zhang, Xinjie [Burlington, MA; Wang, Yong [Richland, WA

    2010-06-01

    The invention includes a method of treating a solid acid catalyst. After exposing the catalyst to a mixture containing a sugar alcohol, the catalyst is washed with an organic solvent and is then exposed to a second reaction mixture. The invention includes a process for production of anhydrosugar alcohol. A solid acid catalyst is provided to convert sugar alcohol in a first sample to an anhydrosugar alcohol. The catalyst is then washed with an organic solvent and is subsequently utilized to expose a second sample. The invention includes a method for selective production of an anhydrosugar. A solid acid catalyst is provided within a reactor and anhydrosugar alcohol is formed by flowing a starting sugar alcohol into the reactor. The acid catalyst is then exposed to an organic solvent which allows a greater amount of additional anhydrosugar to be produced than would occur without exposing the acid catalyst to the organic solvent.

  19. Metaloxide--ZrO2 catalysts for the esterification and transesterification of free fatty acids and triglycerides to obtain bio-diesel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Manhoe; Salley, Steven O.; Ng, K. Y. Simon

    2016-09-06

    Mixed metal oxide catalysts (ZnO, CeO, La2O3, NiO, Al203, SiO2, TiO2, Nd2O3, Yb2O3, or any combination of these) supported on zirconia (ZrO2) or hydrous zirconia are provided. These mixed metal oxide catalysts can be prepared via coprecipitation, impregnation, or sol-gel methods from metal salt precursors with/without a Zirconium salt precursor. Metal oxides/ZrO2 catalyzes both esterification and transesterification of oil containing free fatty acids in one batch or in single stage. In particular, these mixed metal oxides supported or added on zirconium oxide exhibit good activity and selectivity for esterification and transesterification. The low acid strength of this catalyst can avoid undesirable side reaction such as alcohol dehydration or cracking of fatty acids. Metal oxides/ZrO2 catalysts are not sensitive to any water generated from esterification. Thus, esterification does not require a water free condition or the presence of excess methanol to occur when using the mixed metal oxide catalyst. The FAME yield obtained with metal oxides/ZrO2 is higher than that obtained with homogeneous sulfuric acid catalyst. Metal oxides/ZrO2 catalasts can be prepared as strong pellets and in various shapes for use directly in a flow reactor. Furthermore, the pellet has a strong resistance toward dissolution to aqueous or oil phases.

  20. An introduction to catalyst

    International Nuclear Information System (INIS)

    Jeon, Hak Je

    1988-11-01

    This book explains basic conception of catalyst such as definition, velocity of chemical reaction and velocity of catalyst reaction, absorption with absorption energy and chemical absorption, pore structure with the role of pore and measurement of pore structure, catalyst activity on solid structure, electrical property on catalyst activity, choice and design of catalyst, catalytic reaction with reaction velocity and chemical equilibrium and reaction velocity model, measurement of reaction velocity and material analysis, catalyst for mixed compound, catalyst for solid acid and catalyst for supported metal.

  1. Catalytic Oxidation of Phenol over Zeolite Based Cu/Y-5 Catalyst: Part 1: Catalyst Preparation and Characterization

    Directory of Open Access Journals (Sweden)

    K. Maduna Valkaj

    2015-01-01

    -Mead method of nonlinear regression. On the basis of the obtained results of characterization process and conducted catalytic tests, the following can be observed. Zeolite structure of the prepared catalyst was confirmed through powder X-ray diffraction, scanning electron microscopy and adsorption techniques. Their catalytic performance was monitored in terms of phenol and total organic carbon (TOC conversions, hydrogen peroxide decomposition, by-product distribution and degree of copper leached into the aqueous solution. The obtained experimental results indicate that in the space of 180 minutes, the use of these catalysts allows almost total elimination of phenol and significant removal of total organic carbon content with the use of small amounts of catalyst (0.1 g dm–3 and substoichiometric level (71.4 % of oxidant required for complete oxidation of organic pollutant. The main product among aromatics was catechol, followed by hydroquinone and benzoquinone, which exhibited the typical pattern for a series reaction scheme. The distribution of carboxylic acids was as follows: maleic, fumaric, acetic and oxalic acids. These low-molecular carboxylic acids and aromatic compounds were responsible for the TOC that remained after almost complete removal of phenol. Moreover, one of the most interesting options was to use CWPO as a pre-treatment prior to biological treatment, for simple organic acids that are highly biodegradable. During the reactions, destabilization of the catalyst was observed in terms of leaching of copper from zeolite into the reaction mixture, but the previous investigations of similar catalytic systems showed that the activity of the solid catalyst was not due to the homogeneous contribution of the copper leached from the catalyst, but was more likely due to the activity of the heterogeneous catalyst. Further investigations on the mechanism of catalyst destabilization and methods of stabilization are the subject of the following article in the series. The

  2. Nature of the activates places of the acid solid catalysts of the sulphated metallic oxides type

    International Nuclear Information System (INIS)

    Gomez, Miguel A; Fontalvo Javier

    1998-01-01

    In this revision the state of the knowledge is presented with respect to the understanding of the nature of the active places for the strongly acid solid catalysts of the type sulphated metallic oxides. The results presented by means of models are based on the characterization of the properties physicochemical carried out by means of technical as XPS, to GO, NMR etc., and the evaluation of the catalytic activity in different applications

  3. CATALYSTS BASED ON UKRAINIAN NATURAL SORBENTS FOR LOW-TEMPERATURE CARBON MONOXIDE OXIDATION MEANT FOR INDIVIDUAL RESPIRATORY PROTECTIVE DEVICES

    Directory of Open Access Journals (Sweden)

    T. L. Rakyts’ka

    2015-11-01

    Full Text Available In spite of a great number of patented formulas of catalysts for neutralization of carbon monoxide (CO which is the most widespread atmospheric pollutant, only batch-produced hopcalite and alumina supported palladium (Pd/Al2O3 are used in practice. The named catalysts have significant defects: hopcalite is poisonable in the presence of water vapor and Pd/Al2O3 is characterized by the great content of palladium. We have found the possibility of using inexpensive Ukrainian natural sorbents differing by their mineralogical and chemical compositions, i.e. zeolites, bentonites, basalt tuffs, and disperse silicas, as supports for development and subsequent application of palladium(II and copper(II based catalysts for carbon monoxide oxidation. Acid-thermally modified Ukrainian sorbents have been found to be proper for obtaining supported copper-palladium complexes the most catalytically active in the reaction. Application of Ukrainian natural tripolis permitted to avoid the step of acid-thermal modification complicating the technique of catalyst production. As was found, the origin and phase composition of tripolis affect the activity of catalysts supported on them in the reaction of low-temperature Co oxidation. The most active catalyst permitting sanitary purification of air from CO to a level permissible for atmosphere of populated areas have been obtained in the case of insignificantly (thermally or hydrothermally modified tripoli from Konoplianskoe deposit.

  4. Pt -based anode catalysts for direct ethanol fuel cells

    International Nuclear Information System (INIS)

    Hoyos, Bibian; Sanchez, Carlos; Gonzalez, Javier

    2007-01-01

    In this work it is studied the electro-catalytic behavior of pure platinum and platinum-based alloys with Ru, Sn, Ir, and Os supported on carbon to the ethanol electro-oxidation in aims to develop anodic catalysts for direct ethanol fuel cells, additionally, porous electrodes and membrane electrode assemblies were built for proton exchange membrane fuel cells in which the electrodes were tested. Catalysts characterization was made by cyclic voltammetry whereas the fuel cells behavior tests were made by current-potential polarization curves. in general, all alloys show a lower on-set reaction potential and a higher catalytic activity than pure platinum. However, in the high over potential zone, pure platinum has higher catalytic activity than the alloys. In agreement with these results, the alloys studied here could be useful in fuel cells operating on moderated and low current

  5. Cationic mononuclear ruthenium carboxylates as catalyst prototypes for self-induced hydrogenation of carboxylic acids.

    Science.gov (United States)

    Naruto, Masayuki; Saito, Susumu

    2015-08-28

    Carboxylic acids are ubiquitous in bio-renewable and petrochemical sources of carbon. Hydrogenation of carboxylic acids to yield alcohols produces water as the only byproduct, and thus represents a possible next generation, sustainable method for the production of these alternative energy carriers/platform chemicals on a large scale. Reported herein are molecular insights into cationic mononuclear ruthenium carboxylates ([Ru(OCOR)](+)) as prototypical catalysts for the hydrogenation of carboxylic acids. The substrate-derived coordinated carboxylate was found to function initially as a proton acceptor for the heterolytic cleavage of dihydrogen, and subsequently also as an acceptor for the hydride from [Ru-H](+), which was generated in the first step (self-induced catalysis). The hydrogenation proceeded selectively and at high levels of functional group tolerance, a feature that is challenging to achieve with existing heterogeneous/homogeneous catalyst systems. These fundamental insights are expected to significantly benefit the future development of metal carboxylate-catalysed hydrogenation processes of bio-renewable resources.

  6. Aerobic oxidation of aqueous ethanol using heterogeneous gold catalysts: Efficient routes to acetic acid and ethyl acetate

    DEFF Research Database (Denmark)

    Jørgensen, Betina; Christiansen, Sofie Egholm; Thomsen, M.L.D.

    2007-01-01

    The aerobic oxidation of aqueous ethanol to produce acetic acid and ethyl acetate was studied using heterogeneous gold catalysts. Comparing the performance of Au/MgAl2O4 and Au/TiO2 showed that these two catalysts exhibited similar performance in the reaction. By proper selection of the reaction...

  7. Niobium, catalyst repair kit

    International Nuclear Information System (INIS)

    Tanabe, K.

    1991-01-01

    This paper reports that niobium oxides, when small amounts are added to known catalysts, enhance catalytic activity and selectivity and prolong catalyst life. Moreover, niobium oxides exhibit a pronounced effect as supports of metal or metal oxide catalysts. Recently we found that the surface acidity of hydrated niobium pentoxide, niobic acid (Nb 2 O 5 · nH 2 O), corresponds to the acidity of 70% sulfuric acid and exhibits high catalytic activity, selectivity, and stability for acid-catalyzed reactions in which water molecules participate. Although there are few differences in electronegativity and ionic radius between niobium and its neighbors in the periodic table, it is interesting that the promoter effect, support effect, and acidic nature of niobium compounds are quite different from those of compounds of the surrounding elements. Here we review what's known of niobium compounds from the viewpoint of their pronounced catalytic behavior

  8. The influence of Mn species on the SO2 removal of Mn-based activated carbon catalysts

    International Nuclear Information System (INIS)

    Qu, Yi-Fan; Guo, Jia-Xiu; Chu, Ying-Hao; Sun, Ming-Chao; Yin, Hua-Qiang

    2013-01-01

    Using Mn(NO 3 ) 2 as precursor, a series of Mn-based activated carbon catalysts were prepared by ultrasound-assisted excessive impregnation method and characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and temperature programmed reduction (TPR). The influences of Mn species and nitric acid pretreatment on the removal role of SO 2 were investigated. MnO and Mn 3 O 4 coexist in catalysts calcined at 650 and 800 °C and exhibit best SO 2 removal ability, whereas Mn 2 O 3 formed in the catalyst calcined at 500 °C and shows poor activity. After treatment by nitric acid, the C=O of activated carbon support increases and the crystal size of MnO decreases, resulting in the enhancement of the catalytic activity. During reaction process, manganese oxides are gradually transferred into MnO 2 . And this change directly results in a decrease of activity. But the SO 2 removal rate has been maintained in the range of 30–40%, indicating that MnO 2 still has a certain SO 2 removal ability.

  9. Oleic Acid Based Polyesters of Trimethylolpropane and Pentaerythritol for Bio lubricant Application

    International Nuclear Information System (INIS)

    Hamizah Ammarah Mahmud; Nadia Salih; Jumat Salimon

    2015-01-01

    The production of polyesters based on oleic acid and trimethylolpropane (TMP) or pentaerythritol (PE) as potential bio lubricant were carried out. The esterification processes between oleic acid with TMP or PE were carried out using sulfuric acid as a catalyst. The esterification process produced high yield between 92 %-94 % w/w respectively. The formation of polyesters was confirmed using gas chromatography (GC-FID), Fourier Transform Infrared Spectroscopy (FTIR) and Nuclear Magnetic Resonance (NMR). The polyesters were analyzed for basic lubrication physicochemical properties. The results showed that polyesters of both TMP and PE having high viscosity index between 200-309, good pour points ranging from -42 to -59 degree Celsius and high flash points of 280 - 300 degree Celsius respectively. The polyesters also showed good thermal oxidative stability with TGA onset temperatures above 180 degree Celsius. In general both products are plausible to be used as bio lubricant for industrial application. (author)

  10. Pd/C Synthesized with Citric Acid: An Efficient Catalyst for Hydrogen Generation from Formic Acid/Sodium Formate

    Science.gov (United States)

    Wang, Zhi-Li; Yan, Jun-Min; Wang, Hong-Li; Ping, Yun; Jiang, Qing

    2012-01-01

    A highly efficient hydrogen generation from formic acid/sodium formate aqueous solution catalyzed by in situ synthesized Pd/C with citric acid has been successfully achieved at room temperature. Interestingly, the presence of citric acid during the formation and growth of the Pd nanoparticles on carbon can drastically enhance the catalytic property of the resulted Pd/C, on which the conversion and turnover frequency for decomposition of formic acid/sodium formate system can reach the highest values ever reported of 85% within 160 min and 64 mol H2 mol−1 catalyst h−1, respectively, at room temperature. The present simple, low cost, but highly efficient CO-free hydrogen generation system at room temperature is believed to greatly promote the practical application of formic acid system on fuel cells. PMID:22953041

  11. Synthesis and characterization of ternary Pt-Ni-M/C (M=Cu, Fe, Ce, Mo, W) nano-catalysts for low temperature fuel cells

    International Nuclear Information System (INIS)

    Ahmed, Riaz; Jamil, Rabia; Ansari, Muhammad Shahid

    2014-01-01

    Ternary metal catalysts were synthesized by impregnation method. The mixture of metal solutions was reduced slowly under inert atmosphere and the reduced metals were deposited on the Vulcan Carbon(VC). Tungsten, molybdenum, cerium, iron and copper were added to specified amounts of platinum and nickel. Addition of nickel generally improves catalytic activity of platinum. The XRD of the catalysts was done and the crystallite size and other parameters were calculated. Crystallite sizes were in the range of 5 to 16 nm. Electrochemical surface areas of the catalysts were determined by cyclic voltammetry (CV) in acidic media and are compared. Electro oxidation of methanol on the catalysts was done and peak potential, peak current, mass activity of the catalysts were calculated and are compared. These parameters were determined in acidic and basic media. It was found that mass activity increased significantly in basic media. Rate constants for the electro oxidation of methanol were also calculated in acidic and basic media and are compared and discussed. Rate constants were generally higher in basic media. Ternary catalysts showed improved catalytic activity than the binary catalyst. Nano alloying improved the catalytic activity and stability of the ternary catalysts

  12. H3PO4/Al2O3 catalysts: characterization and catalytic evaluation of oleic acid conversion to biofuels and biolubricant

    Directory of Open Access Journals (Sweden)

    Lucia Regina Raddi de Araujo

    2006-06-01

    Full Text Available Al2O3 and H3PO4/Al2O3 catalysts were investigated in the conversion of oleic acid to biofuels and biolubricant at 1 atm and at 623 K. The catalytic tests were performed in a fixed bed and continuous flow reactor, using an oleic acid-catalyst ratio of 4 and N2 as the carrier gas. The reaction products were analyzed by gas chromatography and acidity measurements. N2 adsorption-desorption, X ray diffraction, 31P nuclear magnetic resonance and FT-IR spectroscopy were also employed to evaluate the textural, structural and acidic properties of the catalysts. The results showed that phosphoric acid impregnation improved the alumina decarboxylation activities, generating hydrocarbons in the range of gasoline, diesel oil and lubricant oil. The best catalytic performance was achieved with the highest surface area alumina impregnated with H3PO4, which was the solid that allied high total acidity with a large quantity of mesopores.

  13. Deactivation of molybdate catalysts by nitrogen bases

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.

    1982-10-01

    Nitrogen bases present in petroleum deactivate the surface of molybdate catalysts. The detrimental effect is attributed either to interactions of the bases with Lewis sites via unpaired electrons on nitrogen or to their ability to remove proton from the surface. The later effect results in a decrease of concentration of Bronsted sites known to be active in catalytic reactions. This enhances rate of coke forming reactions. Resistence of molybdate catalysts to coke formation depends on the form and redistribution of active ingredients on the surface. This can be effected by conditions applied during preparation and pretreatment of the catalysts. Processing parameters used during catalytic hydrotreatment are also important; i.e., the coke formation is slow under conditions ensuring high rate of removal of basic nitrogen containing compounds.

  14. Utilization of eggshell waste as low-cost solid base catalyst for biodiesel production from used cooking oil

    Science.gov (United States)

    Asri, N. P.; Podjojono, B.; Fujiani, R.; Nuraini

    2017-05-01

    A solid CaO-based catalyst of waste eggshell was developed for biodiesel production from used cooking oil. The waste eggshell powder was calcined in air at 90° C for 4 h to convert calcium species in the eggshells into active CaO catalysts. The characterization of CaO catalyst was done by XRD and BET analysis. The CaO catalyst was then introduced for transesterification of used cooking oil (UCO) for testing of its catalytic activity. The experiment was conducted in batch type reactor that consists of three-neck glass equipped by reflux condenser and magnetic stirrer. Before tranesterification process, the UCO was treated by coconut coir powder in order to reduce the free fatty acid content. The result showed that the catalyst was potentially use for transesterification of used cooking oil into biodiesel with relatively high yield of 75.92% was achieved at reaction temperature, reaction time, molar ratio UCO to methanol and catalyst amount of 65° C, 7 h, 1:15 and 6%, respectively.

  15. Anion-π Catalysts with Axial Chirality.

    Science.gov (United States)

    Wang, Chao; Matile, Stefan

    2017-09-04

    The idea of anion-π catalysis is to stabilize anionic transition states by anion-π interactions on aromatic surfaces. For asymmetric anion-π catalysis, π-acidic surfaces have been surrounded with stereogenic centers. This manuscript introduces the first anion-π catalysts that operate with axial chirality. Bifunctional catalysts with tertiary amine bases next to π-acidic naphthalenediimide planes are equipped with a bulky aromatic substituent in the imide position to produce separable atropisomers. The addition of malonic acid half thioesters to enolate acceptors is used for evaluation. In the presence of a chiral axis, the selective acceleration of the disfavored but relevant enolate addition was much better than with point chirality, and enantioselectivity could be observed for the first time for this reaction with small-molecule anion-π catalysts. Enantioselectivity increased with the π acidity of the π surface, whereas the addition of stereogenic centers around the aromatic plane did not cause further improvements. These results identify axial chirality of the active aromatic plane generated by atropisomerism as an attractive strategy for asymmetric anion-π catalysis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Oxidation catalyst

    Science.gov (United States)

    Ceyer, Sylvia T.; Lahr, David L.

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  17. The Comparison of Hydrochloric Acid and Phosphoric Acid Treatments in the Preparation of Montmorillonite Catalysts for RNA Synthesis.

    Science.gov (United States)

    Aldersley, Michael Frank; Joshi, Prakash C; Huang, Yixing

    2017-09-01

    The treatment of clay minerals with a preliminary acid wash and titration to pH 7 has proven to generate catalysts for the most interesting of oligomerization reactions in which activated RNA-nucleotides generate oligomers up to 40-mers. Significantly, not all clay minerals become catalytic following this treatment and none are catalytic in the absence of such treatment. The washing procedure has been modified and explored further using phosphoric acid and the outcomes are compared to those obtained when clay samples are prepared following a hydrochloric acid wash.

  18. Biosourced polymetallic catalysts: an efficient means to synthesize underexploited platform molecules from carbohydrates.

    Science.gov (United States)

    Escande, Vincent; Olszewski, Tomasz K; Petit, Eddy; Grison, Claude

    2014-07-01

    Polymetallic hyperaccumulating plants growing on wastes from former mining activity were used as the starting material in the preparation of novel plant-based Lewis acid catalysts. The preparation of biosourced Lewis acid catalysts is a new way to make use of mining wastes. These catalysts were characterized by X-ray fluorescence, X-ray diffraction, inductively coupled plasma mass spectrometry, and direct infusion electrospray ionization mass spectrometry. These analyses revealed a complex composition of metal species, present mainly as polymetallic chlorides. The catalysts proved to be efficient and recyclable in a solid-state version of the Garcia Gonzalez reaction, which has been underexploited until now in efforts to use carbohydrates from biomass. This methodology was extended to various carbohydrates to obtain the corresponding polyhydroxyalkyl furans in 38-98% yield. These plant-based catalysts may be a better alternative to classical Lewis acid catalysts that were previously used for the Garcia Gonzalez reaction, such as ZnCl2 , FeCl3 , and CeCl3 , which are often unrecyclable, require aqueous treatments, or rely on metals, the current known reserves of which will be consumed in the coming decades. Moreover, the plant-based catalysts allowed novel control of the Garcia Gonzalez reaction, as two different products were obtained depending on the reaction conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hanguang; Hwang, Sooyeon; Wang, Maoyu; Feng, Zhenxing; Karakalos, Stavros; Luo, Langli; Qiao, Zhi; Xie, Xiaohong; Wang, Chongmin; Su, Dong; Shao, Yuyan; Wu, Gang (BNL); (Oregon State U.); (SC); (PNNL); (Buffalo)

    2017-09-26

    It remains a grand challenge to replace platinum group metal (PGM) catalysts with earth-abundant materials for the oxygen reduction reaction (ORR) in acidic media, which is crucial for large-scale deployment of proton exchange membrane fuel cells (PEMFCs). Here, we report a high-performance atomic Fe catalyst derived from chemically Fe-doped zeolitic imidazolate frameworks (ZIFs) by directly bonding Fe ions to imidazolate ligands within 3D frameworks. Although the ZIF was identified as a promising precursor, the new synthetic chemistry enables the creation of well-dispersed atomic Fe sites embedded into porous carbon without the formation of aggregates. The size of catalyst particles is tunable through synthesizing Fe-doped ZIF nanocrystal precursors in a wide range from 20 to 1000 nm followed by one-step thermal activation. Similar to Pt nanoparticles, the unique size control without altering chemical properties afforded by this approach is able to increase the number of PGM-free active sites. The best ORR activity is measured with the catalyst at a size of 50 nm. Further size reduction to 20 nm leads to significant particle agglomeration, thus decreasing the activity. Using the homogeneous atomic Fe model catalysts, we elucidated the active site formation process through correlating measured ORR activity with the change of chemical bonds in precursors during thermal activation up to 1100 °C. The critical temperature to form active sites is 800 °C, which is associated with a new Fe species with a reduced oxidation number (from Fe3+ to Fe2+) likely bonded with pyridinic N (FeN4) embedded into the carbon planes. Further increasing the temperature leads to continuously enhanced activity, linked to the rise of graphitic N and Fe–N species. The new atomic Fe catalyst has achieved respectable ORR activity in challenging acidic media (0.5 M H2SO4), showing a half-wave potential of 0.85 V vs RHE and leaving only a 30 mV gap with Pt/C (60 μgPt/cm2). Enhanced stability

  20. Zirconyl (IV Nitrate as Efficient and Reusable Solid Lewis Acid Catalyst for the Synthesis of Benzimidazole Derivatives

    Directory of Open Access Journals (Sweden)

    Pratapsinha B. Gorepatil

    2013-01-01

    Full Text Available The present paper introduces a simple and efficient method for the synthesis of substituted benzimidazoles by heterocyclization of different o-phenylenediamines and substituted aromatic carboxylic acid/aldehyde in the presence of zirconyl nitrate as catalyst in ethanol under reflux, which produced excellent yield of corresponding benzimidazoles in a short reaction time with reusability of catalyst.

  1. Transesterification of edible, non-edible and used cooking oils for biodiesel production using calcined layered double hydroxides as reusable base catalysts.

    Science.gov (United States)

    Sankaranarayanan, Sivashunmugam; Antonyraj, Churchil A; Kannan, S

    2012-04-01

    Fatty acid methyl esters (FAME) were produced from edible, non-edible and used cooking oils with different fatty acid contents by transesterification with methanol using calcined layered double hydroxides (LDHs) as solid base catalysts. Among the catalysts, calcined CaAl2-LDH (hydrocalumite) showed the highest activity with >90% yield of FAME using low methanol:oil molar ratio (<6:1) at 65 °C in 5 h. The activity of the catalyst was attributed to its high basicity as supported by Hammett studies and CO(2)-TPD measurements. The catalyst was successfully reused in up to four cycles. Some of the properties such as density, viscosity, neutralization number and glycerol content of the obtained biodiesel matched well with the standard DIN values. It is concluded that a scalable heterogeneously catalyzed process for production of biodiesel in high yields from a wide variety of triglyceride oils including used oils is possible using optimized conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Synthesis of waste cooking oil based biodiesel via ferric-manganese promoted molybdenum oxide / zirconia nanoparticle solid acid catalyst: influence of ferric and manganese dopants.

    Science.gov (United States)

    Alhassan, Fatah H; Rashid, Umer; Taufiq-Yap, Yun Hin

    2015-01-01

    The utilization of ferric-manganese promoted molybdenum oxide/zirconia (Fe-Mn- MoO3/ZrO2) (FMMZ) solid acid catalyst for production of biodiesel was demonstrated. FMMZ is produced through impregnation reaction followed by calcination at 600°C for 3 h. The characterization of FMMZ had been done using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA), temperature programmed desorption of NH3 (TPD-NH3), transmission electron microscopy(TEM) and Brunner-Emmett-Teller (BET) surface area measurement. The effect of waste cooking oil methyl esters (WCOME's) yield on the reactions variables such as reaction temperature, catalyst loading, molar ratio of methanol/oil and reusability were also assessed. The catalyst was used to convert the waste cooking oil into corresponding methyl esters (95.6%±0.15) within 5 h at 200℃ reaction temperature, 600 rpm stirring speed, 1:25 molar ratio of oil to alcohol and 4% w/w catalyst loading. The reported catalyst was successfully recycled in six connective experiments without loss in activity. Moreover, the fuel properties of WCOME's were also reported using ASTM D 6751 methods.

  3. Graphene-Based Nanomaterials as Heterogeneous Acid Catalysts: A Comprehensive Perspective

    Directory of Open Access Journals (Sweden)

    Bhaskar Garg

    2014-09-01

    Full Text Available Acid catalysis is quite prevalent and probably one of the most routine operations in both industrial processes and research laboratories worldwide. Recently, “graphene”, a two dimensional single-layer carbon sheet with hexagonal packed lattice structure, imitative of nanomaterials, has shown great potential as alternative and eco-friendly solid carbocatalyst for a variety of acid-catalyzed reactions. Owing to their exceptional physical, chemical, and mechanical properties, graphene-based nanomaterials (G-NMs offer highly stable Brønsted acidic sites, high mass transfer, relatively large surface areas, water tolerant character, and convenient recoverability as well as recyclability, whilst retaining high activity in acid-catalyzed chemical reactions. This comprehensive review focuses on the chemistry of G-NMs, including their synthesis, characterization, properties, functionalization, and up-to-date applications in heterogeneous acid catalysis. In line with this, in certain instances readers may find herein some criticisms that should be taken as constructive and would be of value in understanding the scope and limitations of current approaches utilizing graphene and its derivatives for the same.

  4. The activation mechanism of Fe-based olefin metathesis catalysts

    KAUST Repository

    Poater, Albert; Pump, Eva; Vummaleti, Sai V. C.; Cavallo, Luigi

    2014-01-01

    Density functional theory calculations have been used to describe the first turnover for olefin metathesis reaction of a homogenous Fe-based catalyst bearing a N-heterocyclic carbene ligand with methoxyethene as a substrate. Equal to conventional Ru-based catalysts, the activation of its Fe congener occurs through a dissociative mechanism, however with a more exothermic reaction energy profile. Predicted upper energy barriers were calculated to be on average ∼2 kcal/mol more beneficial for Fe catalyzed metathesis. Overall, this present computational study emphasises on advantages of Fe-based metathesis and gives a potential recipe for the design of an efficient Fe-based olefin metathesis catalysts. © 2014 Elsevier B.V.

  5. The activation mechanism of Fe-based olefin metathesis catalysts

    KAUST Repository

    Poater, Albert

    2014-08-01

    Density functional theory calculations have been used to describe the first turnover for olefin metathesis reaction of a homogenous Fe-based catalyst bearing a N-heterocyclic carbene ligand with methoxyethene as a substrate. Equal to conventional Ru-based catalysts, the activation of its Fe congener occurs through a dissociative mechanism, however with a more exothermic reaction energy profile. Predicted upper energy barriers were calculated to be on average ∼2 kcal/mol more beneficial for Fe catalyzed metathesis. Overall, this present computational study emphasises on advantages of Fe-based metathesis and gives a potential recipe for the design of an efficient Fe-based olefin metathesis catalysts. © 2014 Elsevier B.V.

  6. Metal Chlorides Supported Solid Catalysts for F-C Acylations of Arenes

    Institute of Scientific and Technical Information of China (English)

    李阳; 刘云龙; 穆曼曼; 陈立功

    2015-01-01

    A series of metal chlorides supported solid catalysts were prepared by simple wet impregnation method. Their catalytic performances for Friedel-Crafts acylation of toluene with benzoyl chloride were evaluated and the excellent results were obtained over FeCl3/SiO2. These catalysts were characterized by BET, NH3-TPD and FT-IR of pyridine adsorption to clarify the structure-activity relationship. It was found that FeCl3/SiO2 has larger pore size and pore volume than other catalysts, which increased the accessibility of the catalyst. In addition, FeCl3/SiO2 ex-hibited higher molar ratio of Lewis acid sites and Brφnsted acid sites, which might be another reason for the in-crease of toluene conversion. Furthermore, the reaction parameters, including temperature, time and molar ratio, were optimized. Under the optimized conditions, 91.2%, conversion and 82.0%, selectivity were obtained. Mean-while, the generality of the catalyst was demonstrated by the acylations of alkyl substituted aromatics. Finally, the catalyst was reused for four runs with slight loss in catalytic activity, which attributed to the drain of the active component.

  7. Esterification free fatty acid in sludge palm oil using ZrO2/SO42- - rice husk ash catalyst

    Science.gov (United States)

    Hidayat, Arif; Sutrisno, Bachrun

    2017-05-01

    Indonesia, as one of the biggest palm oil producers and exporters in the world, is producing large amounts of low-grade oil such as sludge palm oil (SPO) from palm oil industries. The use of SPO can lower the cost of biodiesel production significantly, which makes SPO a highly potential alternative feedstock for biodiesel production. In this paper, the esterification of free fatty acid on sludge palm oil was studied using rice husk ash as heterogeneous solid catalysts. Heterogeneous solid catalysts offer significant advantages of eliminating separation, corrosion, toxicity and environmental problems. In this paper the esterification of SPO, a by-product from palm oil industry, in the presence of modified rice husk ash catalysts was studied. The rice husk ash catalysts were synthesized by impregnating of Zirconia (Zr) on rice husk ash followed by sulfonation. The rice husk ash catalysts were characterized by using different techniques, such as FT-IR, XRD, and porous analysis. The effects of the mass ratio of catalyst to oil (1 - 10%), the molar ratio of methanol to oil (4:1 - 10:1), and the reaction temperature (40 - 60°C) were studied for the conversion of free fatty acids (FFAs) to optimize the reaction conditions. The results showed that the optimal conditions were an methanol to oil molar ratio of 10:1, the amount of catalyst of 10%w, and reaction temperature of 60°C.

  8. Recovery of iron oxides from acid mine drainage and their application as adsorbent or catalyst.

    Science.gov (United States)

    Flores, Rubia Gomes; Andersen, Silvia Layara Floriani; Maia, Leonardo Kenji Komay; José, Humberto Jorge; Moreira, Regina de Fatima Peralta Muniz

    2012-11-30

    Iron oxide particles recovered from acid mine drainage represent a potential low-cost feedstock to replace reagent-grade chemicals in the production of goethite, ferrihydrite or magnetite with relatively high purity. Also, the properties of iron oxides recovered from acid mine drainage mean that they can be exploited as catalysts and/or adsorbents to remove azo dyes from aqueous solutions. The main aim of this study was to recover iron oxides with relatively high purity from acid mine drainage to act as a catalyst in the oxidation of dye through a Fenton-like mechanism or as an adsorbent to remove dyes from an aqueous solution. Iron oxides (goethite) were recovered from acid mine drainage through a sequential precipitation method. Thermal treatment at temperatures higher than 300 °C produces hematite through a decrease in the BET area and an increase in the point of zero charge. In the absence of hydrogen peroxide, the solids adsorbed the textile dye Procion Red H-E7B according to the Langmuir model, and the maximum amount adsorbed decreased as the temperature of the thermal treatment increased. The decomposition kinetics of hydrogen peroxide is dependent on the H(2)O(2) concentration and iron oxides dosage, but the second-order rate constant normalized to the BET surface area is similar to that for different iron oxides tested in this and others studies. These results indicate that acid mine drainage could be used as a source material for the production of iron oxide catalysts/adsorbents, with comparable quality to those produced using analytical-grade reagents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Catalytic oxidative conversion of cellulosic biomass to formic acid and acetic acid with exceptionally high yields

    KAUST Repository

    Zhang, Jizhe

    2014-09-01

    Direct conversion of raw biomass materials to fine chemicals is of great significance from both economic and ecological perspectives. In this paper, we report that a Keggin-type vanadium-substituted phosphomolybdic acid catalyst, namely H4PVMo11O40, is capable of converting various biomass-derived substrates to formic acid and acetic acid with high selectivity in a water medium and oxygen atmosphere. Under optimized reaction conditions, H4PVMo11O40 gave an exceptionally high yield of formic acid (67.8%) from cellulose, far exceeding the values achieved in previous catalytic systems. Our study demonstrates that heteropoly acids are generally effective catalysts for biomass conversion due to their strong acidities, whereas the composition of metal addenda atoms in the catalysts has crucial influence on the reaction pathway and the product selectivity. © 2013 Elsevier B.V.

  10. Development of Non-Noble Metal Ni-Based Catalysts for Dehydrogenation of Methylcyclohexane

    KAUST Repository

    Al-ShaikhAli, Anaam H.

    2016-11-30

    Liquid organic chemical hydride is a promising candidate for hydrogen storage and transport. Methylcyclohexane (MCH) to toluene (TOL) cycle has been considered as one of the feasible hydrogen carrier systems, but selective dehydrogenation of MCH to TOL has only been achieved using the noble Pt-based catalysts. The aim of this study is to develop non-noble, cost-effective metal catalysts that can show excellent catalytic performance, mainly maintaining high TOL selectivity achievable by Pt based catalysts. Mono-metallic Ni based catalyst is a well-known dehydrogenation catalyst, but the major drawback with Ni is its hydrogenolysis activity to cleave C-C bonds, which leads to inferior selectivity towards dehydrogenation of MCH to TOL. This study elucidate addition of the second metal to Ni based catalyst to improve the TOL selectivity. Herein, ubiquitous bi-metallic nanoparticles catalysts were investigated including (Ni–M, M: Ag, Zn, Sn or In) based catalysts. Among the catalysts investigated, the high TOL selectivity (> 99%) at low conversions was achieved effectively using the supported NiZn catalyst under flow of excess H2. In this work, a combined study of experimental and computational approaches was conducted to determine the main role of Zn over Ni based catalyst in promoting the TOL selectivity. A kinetic study using mono- and bimetallic Ni based catalysts was conducted to elucidate reaction mechanism and site requirement for MCH dehydrogenation reaction. The impact of different reaction conditions (feed compositions, temperature, space velocity and stability) and catalyst properties were evaluated. This study elucidates a distinctive mechanism of MCH dehydrogenation to TOL reaction over the Ni-based catalysts. Distinctive from Pt catalyst, a nearly positive half order with respect to H2 pressure was obtained for mono- and bi-metallic Ni based catalysts. This kinetic data was consistent with rate determining step as (somewhat paradoxically) hydrogenation

  11. Preparation of biodiesel from soybean oil by using heterogeneous catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Ferdous, Kaniz; Rakib Uddin, M.; Islam, M.A. [Department of Chemical Engineering and Polymer Science, Shah Jalal University of Science and Technology, Sylhet 3114 (Bangladesh); Khan, Maksudur R. [Department of Chemical Engineering and Polymer Science, Shah Jalal University of Science and Technology, Sylhet 3114 (Bangladesh); Faculty of Chemical and Natural Resources Engineering, University Malaysia Pahang, 26300 Gambang, Kuantan, Pahang (Malaysia)

    2013-07-01

    The predicted shortage of fossil fuels and related environmental concerns has recently attracted significant attention to search alternative fuel. Biodiesel is one of the alternatives to fossil fuel. Now-a-days, most biodiesel is produced by the transesterification of oils using methanol and a homogeneous base catalyst. The use of homogeneous catalysts is normally limited to batch mode processing followed by a catalyst separation step. The immiscible glycerol phase, which accumulates during the course of the reaction, solubilizes the homogeneous base catalyst and therefore, withdraws from the reaction medium. Moreover, other difficulties of using homogeneous base catalysts relate to their sensitivity to free fatty acid (FFA) and water and resulting saponification phenomenon. High energy consumption and costly separation of the catalyst from the reaction mixture have inspired the use of heterogeneous catalyst. The use of heterogeneous catalysts does not lead to the formation of soaps through neutralization of FFA and saponification of oil. In the present paper, biodiesel was prepared from crude (soybean) oil by transesterification reaction using heterogeneous base catalyst name calcium oxide (CaO). Various reaction parameters were optimized and the biodiesel properties were evaluated.

  12. Hydrodeoxygenation of phenol over Pd catalysts by in-situ generated hydrogen from aqueous reforming of formic acid

    DEFF Research Database (Denmark)

    Zeng, Ying; Wang, Ze; Lin, Weigang

    2016-01-01

    Hydrodeoxygenation of phenol, as model compound of bio-oil, was investigated over Pd catalysts, using formic acid as a hydrogen donor. The order of activity for deoxygenation of phenol with Pd catalysts was found to be: Pd/SiO2 > Pd/MCM-41 > Pd/CA > Pd/Al2O3 > Pd/HY approximate to Pd/ZrO2 ≈ Pd...

  13. Catalytic Upgrading of bio-oil using 1-octene and 1-butanol over sulfonic acid resin catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhijun; Wang, Qingwen; Tripathi, Prabhat; Pittman, Charles U.

    2011-02-04

    Raw bio-oil from fast pyrolysis of biomass must be refined before it can be used as a transporation fuel, a petroleum refinery feed or for many other fuel uses. Raw bio-oil was upgraded with the neat model olefin, 1-octene, and with 1-octene/1-butanol mixtures over sulfonic acid resin catalysts frin 80 to 150 degrees celisus in order to simultaneously lower water content and acidity and to increase hydrophobicity and heating value. Phase separation and coke formation were key factors limiting the reaction rate during upgrading with neat 1-octene although octanols were formed by 1-octene hydration along with small amounts of octyl acetates and ethers. GC-MS analysis confirmed that olefin hydration, carboxylic acid esterification, acetal formation from aldehydes and ketones and O- and C-alkylations of phenolic compounds occurred simultaneously during upgrading with 1-octene/1-butanol mixtures. Addition of 1-butanol increased olefin conversion dramatically be reducing mass transfer restraints and serving as a cosolvent or emulsifying agent. It also reacted with carboxylic acids and aldehydes/ketones to form esters, and acetals, respectively, while also serving to stabilize bio-oil during heating. 1-Butanol addition also protected the catalysts, increasing catalyst lifetime and reducing or eliminationg coking. Upgrading sharply increased ester content and decreased the amounts of levoglucosan, polyhydric alcohols and organic acids. Upgrading lowered acidity (pH value rise from 2.5 to >3.0), removed the uppleasant ordor and increased hydrocarbon solubility. Water content decreased from 37.2% to < 7.5% dramatically and calorific value increased from 12.6 MJ kg to about 30.0 MJ kg.

  14. Facile one-pot synthesis of porphyrin based porous polymer networks (PPNs) as biomimetic catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Zou, LF; Feng, DW; Liu, TF; Chen, YP; Fordham, S; Yuan, S; Tian, J; Zhou, HC

    2015-01-01

    Stable porphyrin based porous polymer networks, PPN-23 and PPN-24, have been synthesized through a facile one-pot approach by the aromatic substitution reactions of pyrrole and aldehydes. PPN-24(Fe) shows high catalytic efficiency as a biomimetic catalyst in the oxidation reaction of 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) in the presence of H2O2.

  15. Boric acid as a mild and efficient catalyst for one-pot synthesis of 1

    Indian Academy of Sciences (India)

    Abstract. An efficient green chemistry method has been developed for the synthesis of 1-amidoalkyl-2-naphthol derivatives via a one-pot three-component condensation of 2-naphthol, aldehydes and amide in the presence of boric acid as a mild catalyst.

  16. Ethanolysis conversion of spent frying oils over aluminium, calcium-phosphate based bi-functional formulated catalysts. Catalytic activity assessment study

    Energy Technology Data Exchange (ETDEWEB)

    Al-Zaini, Essam O.; Chesterfield, Dean; Adesina, Adesoji A. [The Univ. of New South Wales, Sydney (Australia). Reactor Engineering and Technology Group; Olsen, John [The Univ. of New South Wales, Sydney (Australia). School of Mechanical and Manufacturing Engineering

    2013-06-01

    The current study compares the catalytic performance of two bi-functional solid catalysts for the transesterification of waste cooking vegetable oil in presence of bio-ethanol acyl-acceptor. The two catalysts were aluminum oxide and seashell-derived calcium oxide supported K{sub 3}PO{sub 4}. The catalytic activity of the produced catalyst samples were assessed and evaluated in terms of their textural and surface chemical properties. Evaluative runs showed that increased amounts of K{sub 3}PO{sub 4} have differently controlled the textural and surface chemical property of the finally synthesised catalyst samples. The behaviour revealed a strong correlation between the percentage yield of ethyl esters EEY% and acid-base site density and strength between the two types of catalysts. Possible leaching test of the catalysts was also used as a measure of performance and as a result, the optimum catalyst, on the basis of both ester yield and resistance to leaching was identified as the sample containing between 10 and 15wt% of K{sub 3}PO{sub 4} on AlO{sub 3} and CaO respectively. (orig.)

  17. Furfural production in biphasic media using an acidic ionic liquid as a catalyst.

    Science.gov (United States)

    Peleteiro, Susana; Santos, Valentín; Parajó, Juan C

    2016-11-20

    Ionic liquids are valuable tools for biorefineries. This study provides an experimental assessment on the utilization of an acidic ionic liquid (1-butyl-3-methylimidazolium hydrogen sulfate) as a catalyst for furfural production in water/solvent media. The substrates employed in experiments were commercial xylose (employed as a reference compound) or hemicellulosic saccharides obtained by hydrothermal processing of Eucalyptus globulus wood (which were employed as produced, after membrane concentration or after freeze-drying). A variety of reaction conditions (defined by temperature, reaction time and type of organic solvent) were considered. The possibility of recycling the catalyst was assessed in selected experiments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. pH-dependent release of trace elements including platinum group elements (PGEs) from gasoline and diesel catalysts

    Science.gov (United States)

    Sucha, Veronika; Mihaljevic, Martin; Ettler, Vojtech; Strnad, Ladislav

    2014-05-01

    The release of trace metals and platinum group elements (PGEs) from automobile exhaust catalysts represents a remarkable source of higly dispersed environmental contamination. Especially, PGEs have shown increasing research interest due to their possible bioaccessibility. In our research, we focused on leaching behaviour of trace metals from gasoline and diesel automobile catalysts. While catalysts for gasoline engines contain a mixture of Pt-Pd-Rh or Pd-Rh, catalysts for diesel engines are composed only of Pt. We used dust from two crushed gasoline and two crushed diesel catalysts (new and aged). The dust of gasoline catalysts contains significant concentrations of Pt (700 mg.kg-1), Pd (11 000 mg.kg-1) and Rh (700 mg.kg-1). And the dust of diesel catalysts are composed of Pt (3 900 mg.kg-1) and they contains negligible amounts of Pd dan Rh (leaching of trace metals from dust we used pH-stat leaching test according to the European standard CEN/TS 14997. The concentrations of cations: PGEs (Pt, Pd a Rh), K, Na, Ca, Mg, Al, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, Pb, La and Ce were determined by inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectrometry (AAS), and anions: F-, Cl-, SO42- and NO3- by high-performance liquid chromatography. Although the dusts from catalysts were relatively stable to acid/base influence, the leaching of trace metals from catalysts showed a dependence on pH. Generally, the highest concentrations were released under acidic conditions. The leaching of PGEs was higher for Pt in diesel catalysts and for Pd and Rh in gasoline catalysts. The highest concentrations of Zn and Pb were observed in old catalysts. The rare earth metals were released more from gasoline catalysts. Catalysts particles represent health risk especially with respect to their PGEs contents.

  19. The generalized lewis acid-base titration of palladium and niobium

    Science.gov (United States)

    Cima, M.; Brewer, L.

    1988-12-01

    The high thermodynamic stability of alloys composed of platinum group metals and group IVB and VB metals has been explained by an electronic interaction analogous to the Lewis acid-base concept for nontransition elements. The analogy is further demonstrated by the titration of palladium by addition of niobium. The activity of niobium in solid palladium was measured as a function of concentration by solid-state galvanic cells and study of the ternary oxide phase diagram. The galvanic cells were of the type Pt/NbO2,Nb2O4.8/YDTJNbOy,Nbpd/Pt where the solid electrolyte is yttria-doped thoria (YDT). Ternary phase diagrams for the Pd-Nb-0 and Rh-Nb-0 systems were obtained by characterizing samples equilibrated at 1000 °C. The phase relationships found in the ternary diagrams were also used to derive thermochemical data for the alloys. Thermochemical quantities for other acid-base stabilized alloys such as Nb-Rh, Ti-Pd, and Ti-Rh were also measured. The excess partial molar ΔGxs/R of niobium at infinite dilution was determined to be -31 kilo-Kelvin at 1000 °C, and the AG°JR of formation of a mole of NbPd3.55 is —21 kilo-Kelvin. These results and those for the other systems are used to assess the importance of valence electron configuration, nuclear charge, and crystal field effects in the context of generalized Lewis acid-base theory. It is concluded that both the nuclear charge of the atom and crystal field splitting of the valence orbitals significantly affect the basicity of the platinum group metals.

  20. Base adsorption calorimetry for characterising surface acidity: a comparison between pulse flow and conventional ''static'' techniques

    International Nuclear Information System (INIS)

    Felix, S.P.; Savill-Jowitt, C.; Brown, D.R.

    2005-01-01

    A pulsed flow adsorption microcalorimeter (pulse-FMC) has been developed by modifying a Setaram 111. It is tested in comparison with a conventional pulsed static adsorption microcalorimeter (pulse-SMC) for characterising surface acidity of solid acid catalysts. Small pulses of 1% ammonia in helium are delivered to an activated catalyst sample and its surface acidity is differentially profiled in terms of the molar enthalpy of ammonia adsorption (ΔH ads o ) using a combination of differential scanning calorimeter (DSC) and a downstream thermal conductivity detector (TCD). The pulsing action and its sequences are controlled by in-house developed software and the TCD output also is logged into a PC. Thus, the pulse-FMC is fully automated. Two sulfonated polystyrene resin-type catalysts, Amberlyst 15 and Amberlyst 35, a zeolite of the type H + -ZSM-5 (CT 410) and an acid activated clay (Fulcat 220) are characterised at appropriate temperatures using both the new technique and the conventional static base adsorption method. ΔH ads o versus surface coverage profiles of all the four catalysts obtained from both pulse-FMC and the conventional method are found to be comparable. Results are interpreted in terms of the extent to which NH 3 adsorption on the catalysts surface is under thermodynamic control in the two methods

  1. Attrition Resistant Fischer-Tropsch Catalysts Based on FCC Supports

    Energy Technology Data Exchange (ETDEWEB)

    Adeyiga, Adeyinka

    2010-02-05

    Commercial spent fluid catalytic cracking (FCC) catalysts provided by Engelhard and Albemarle were used as supports for Fe-based catalysts with the goal of improving the attrition resistance of typical F-T catalysts. Catalysts with the Ruhrchemie composition (100 Fe/5 Cu/4.2 K/25 spent FCC on mass basis) were prepared by wet impregnation. XRD and XANES analysis showed the presence of Fe{sub 2}O{sub 3} in calcined catalysts. FeC{sub x} and Fe{sub 3}O{sub 4} were present in the activated catalysts. The metal composition of the catalysts was analyzed by ICP-MS. F-T activity of the catalysts activated in situ in CO at the same conditions as used prior to the attrition tests was measured using a fixed bed reactor at T = 573 K, P = 1.38 MPa and H{sub 2}:CO ratio of 0.67. Cu and K promoted Fe supported over Engelhard provided spent FCC catalyst shows relatively good attrition resistance (8.2 wt% fines lost), high CO conversion (81%) and C{sub 5}+ hydrocarbons selectivity (18.3%).

  2. Catalysts and methods of using the same

    Energy Technology Data Exchange (ETDEWEB)

    Slowing, Igor Ivan; Kandel, Kapil

    2017-02-14

    The present invention provides a catalyst including a mesoporous silica nanoparticle and a catalytic material comprising iron. In various embodiments, the present invention provides methods of using and making the catalyst. In some examples, the catalyst can be used to hydrotreat fatty acids or to selectively remove fatty acids from feedstocks.

  3. A novel method for synthesis of phosphomolybdic acid-modified Pd/C catalysts for oxygen reduction reaction

    Science.gov (United States)

    Zhu, Mingyuan; Gao, Xiaoling; Luo, Guangqin; Dai, Bin

    2013-03-01

    This manuscript reports a convenient method for immobilizing phosphomolybdic acid (HPMo) on polyaniline (PAN-) functionalized carbon supports. The obtained HPMo-PAN-C sample is used as the support to prepare a Pd/HPMo-PAN-C catalyst. The samples are characterized by Fourier transform infrared spectroscopy, transmission electron microscopy and X-ray diffraction analysis. The results suggest that HPMo retains its Keggin structure and that the presence of HPMo reduces the average particle size of the Pd nano-particles in the obtained Pd/HPMo-PAN-C catalyst. Electro-chemical measurements in 0.5 M HClO4 solution reveal that the Pd/HPMo-PAN-C catalyst has higher catalytic activity for oxygen reduction reactions than does a Pd/C catalyst prepared using a similar procedure. The stability of the Pd/HPMo-PAN-C catalyst is evaluated by multiple-cycle voltammetry techniques; the mass catalytic activity decreases by only 10% after 100 scanning cycles.

  4. General Chemistry Students' Conceptual Understanding and Language Fluency: Acid-Base Neutralization and Conductometry

    Science.gov (United States)

    Nyachwaya, James M.

    2016-01-01

    The objective of this study was to examine college general chemistry students' conceptual understanding and language fluency in the context of the topic of acids and bases. 115 students worked in groups of 2-4 to complete an activity on conductometry, where they were given a scenario in which a titration of sodium hydroxide solution and dilute…

  5. Synthesis of acid-base bifunctional mesoporous materials by oxidation and thermolysis

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiaofang [College of Chemistry, Jilin University, Jiefang Road 2519, Changchun 130023 (China); Zou, Yongcun [State Key Laboratory of Inoranic Synthesis and Preparative Chemistryg, College of Chemistry, Jilin University, Changchun 130012 (China); Wu, Shujie; Liu, Heng [College of Chemistry, Jilin University, Jiefang Road 2519, Changchun 130023 (China); Guan, Jingqi, E-mail: guanjq@jlu.edu.cn [College of Chemistry, Jilin University, Jiefang Road 2519, Changchun 130023 (China); Kan, Qiubin, E-mail: qkan@jlu.edu.cn [College of Chemistry, Jilin University, Jiefang Road 2519, Changchun 130023 (China)

    2011-06-15

    Graphical abstract: A novel and efficient method has been developed for the synthesis of acid-base bifunctional catalyst. The obtained sample of SO{sub 3}H-MCM-41-NH{sub 2} containing amine and sulfonic acids exhibits excellent catalytic activity in aldol condensation reaction. Research highlights: {yields} Synthesize acid-base bifunctional mesoporous materials SO{sub 3}H-MCM-41-NH{sub 2}. {yields} Oxidation and then thermolysis to generate acidic site and basic site. {yields} Exhibit good catalytic performance in aldol condensation reaction between acetone and various aldehydes. -- Abstract: A novel and efficient method has been developed for the synthesis of acid-base bifunctional catalyst SO{sub 3}H-MCM-41-NH{sub 2}. This method was achieved by co-condensation of tetraethylorthosilicate (TEOS), 3-mercaptopropyltrimethoxysilane (MPTMS) and (3-triethoxysilylpropyl) carbamicacid-1-methylcyclohexylester (3TAME) in the presence of cetyltrimethylammonium bromide (CTAB), followed by oxidation and then thermolysis to generate acidic site and basic site. X-ray diffraction (XRD) and transmission electron micrographs (TEM) show that the resultant materials keep mesoporous structure. Thermogravimetric analysis (TGA), X-ray photoelectron spectra (XPS), back titration, solid-state {sup 13}C CP/MAS NMR and solid-state {sup 29}Si MAS NMR confirm that the organosiloxanes were condensed as a part of the silica framework. The bifunctional sample (SO{sub 3}H-MCM-41-NH{sub 2}) containing amine and sulfonic acids exhibits excellent acid-basic properties, which make it possess high activity in aldol condensation reaction between acetone and various aldehydes.

  6. Nano carbon supported platinum catalyst interaction behavior with perfluorosulfonic acid ionomer and their interface structures

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma

    2016-01-01

    behavior of Nafion ionomer on platinized carbon nano fibers (CNFs), carbon nano tubes (CNTs) and amorphous carbon (Vulcan). The interaction is affected by the catalyst surface oxygen groups as well as porosity. Comparisons between the carbon supports and platinized equivalents are carried out. It reveals......The interaction between perfluorosulfonic acid ionomer and supported platinum catalyst is essential. It directly influences platinum accessibility, stability of carbon support and platinum, proton conductivity and electron conductivity in an electrode. In this study, we compare the adsorption...... that the platinization step modifies the surface nature of the carbon supports in terms of specific surface area, crystallinity and especially porosity; therefore, ionomer adsorption over carbon is not always representative for the ionomer adsorption over carbon supported catalyst, though indicative. Moreover...

  7. Iridium-catalyst-based autonomous bubble-propelled graphene micromotors with ultralow catalyst loading.

    Science.gov (United States)

    Wang, Hong; Sofer, Zdeněk; Eng, Alex Yong Sheng; Pumera, Martin

    2014-11-10

    A novel concept of an iridium-based bubble-propelled Janus-particle-type graphene micromotor with very high surface area and with very low catalyst loading is described. The low loading of Ir catalyst (0.54 at %) allows for fast motion of graphene microparticles with high surface area of 316.2 m(2)  g(-1). The micromotor was prepared with a simple and scalable method by thermal exfoliation of iridium-doped graphite oxide precursor composite in hydrogen atmosphere. Oxygen bubbles generated from the decomposition of hydrogen peroxide at the iridium catalytic sites provide robust propulsion thrust for the graphene micromotor. The high surface area and low iridium catalyst loading of the bubble-propelled graphene motors offer great possibilities for dramatically enhanced cargo delivery. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A general protocol for the synthesis of Pt-Sn/C catalysts for the ethanol electrooxidation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Liu, B.; Lee, Z.Y.; Cheng, C.H.; Lee, J.Y. [Chemical and Biomolecular Engineering, National University of Singapore (Singapore); Chia, Z.W. [NUS Graduate School for Integrative Sciences and Engineering (NGS), Centre for Life Sciences (CeLS), Singapore (Singapore); Liu, Z.L. [Institute of Materials Research and Engineering, 3 Research Link, Singapore 117602 (Singapore)

    2012-08-15

    A general protocol for the synthesis of Pt-Sn/C catalysts for ethanol electrooxidation by the polyol method is developed after a systematic variation of the preparation variables. This protocol enables the complete transfer of all catalytic elements in the preparation solution to the catalyst support; thereby providing a convenient means of catalyst composition control. Water is a necessary co-solvent for ethylene glycol in the polyol synthesis of Pt-Sn/C catalysts. The best preparation medium for controlling the particle size to small sizes is 0.1 M NaOH solution in a mixture of equal volumes of water and ethylene glycol. With this medium composition Pt-Sn/C catalysts with the optimized target Pt:Sn atomic ratio of 3:1 could be expeditiously prepared for ethanol electrooxidation. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Attrition resistant Fischer-Tropsch catalyst and support

    Science.gov (United States)

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2004-05-25

    A catalyst support having improved attrition resistance and a catalyst produced therefrom. The catalyst support is produced by a method comprising the step of treating calcined .gamma.-alumina having no catalytic material added thereto with an acidic aqueous solution having an acidity level effective for increasing the attrition resistance of the calcined .gamma.-alumina.

  10. Method of Heating a Foam-Based Catalyst Bed

    Science.gov (United States)

    Fortini, Arthur J.; Williams, Brian E.; McNeal, Shawn R.

    2009-01-01

    A method of heating a foam-based catalyst bed has been developed using silicon carbide as the catalyst support due to its readily accessible, high surface area that is oxidation-resistant and is electrically conductive. The foam support may be resistively heated by passing an electric current through it. This allows the catalyst bed to be heated directly, requiring less power to reach the desired temperature more quickly. Designed for heterogeneous catalysis, the method can be used by the petrochemical, chemical processing, and power-generating industries, as well as automotive catalytic converters. Catalyst beds must be heated to a light-off temperature before they catalyze the desired reactions. This typically is done by heating the assembly that contains the catalyst bed, which results in much of the power being wasted and/or lost to the surrounding environment. The catalyst bed is heated indirectly, thus requiring excessive power. With the electrically heated catalyst bed, virtually all of the power is used to heat the support, and only a small fraction is lost to the surroundings. Although the light-off temperature of most catalysts is only a few hundred degrees Celsius, the electrically heated foam is able to achieve temperatures of 1,200 C. Lower temperatures are achievable by supplying less electrical power to the foam. Furthermore, because of the foam s open-cell structure, the catalyst can be applied either directly to the foam ligaments or in the form of a catalyst- containing washcoat. This innovation would be very useful for heterogeneous catalysis where elevated temperatures are needed to drive the reaction.

  11. Supramolecular water oxidation with rubda-based catalysts

    KAUST Repository

    Richmond, Craig J.

    2014-11-05

    Extremely slow and extremely fast new water oxidation catalysts based on the Rubda (bda = 2,2′-bipyri-dine-6,6′-dicarboxylate) systems are reported with turnover frequencies in the range of 1 and 900 cycless"1, respectively. Detailed analyses of the main factors involved in the water oxidation reaction have been carried out and are based on a combination of reactivity tests, electrochemical experiments, and DFT calculations. These analyses give a convergent interpretation that generates a solid understanding of the main factors involved in the water oxidation reaction, which in turn allows the design of catalysts with very low energy barriers in all the steps involved in the water oxidation catalytic cycle. We show that for this type of system p-stacking interactions are the key factors that influence reactivity and by adequately controlling them we can generate exceptionally fast water oxidation catalysts.

  12. Optimization of Acid Orange 7 Degradation in Heterogeneous Fenton-like Reaction Using Fe3-xCoxO4 Catalyst

    Science.gov (United States)

    Ibrahim, M. Z.; Alrozi, R.; Zubir, N. A.; Bashah, N. A.; Ali, S. A. Md; Ibrahim, N.

    2018-05-01

    The oxidation process such as heterogeneous Fenton and/or Fenton-like reactions is considered as an effective and efficient method for treatment of dye degradation. In this study, the degradation of Acid Orange 7 (AO7) was investigated by using Fe3-xCoxO4 as a heterogeneous Fenton-like catalyst. Response surface methodology (RSM) was used to optimize the operational parameters condition and the interaction of two or more parameters. The parameter studies were catalyst dosage (X1 ), pH (X2 ) and H2O2 concentration (X3 ) towards AO7 degradation. Based on analysis of variance (ANOVA), the derived quadratic polynomial model was significant whereby the predicted values matched the experimental values with regression coefficient of R2 = 0.9399. The optimum condition for AO7 degradation was obtained at catalyst dosage of 0.84 g/L, pH of 3 and H2O2 concentration of 46.70 mM which resulted in 86.30% removal of AO7 dye. These findings present new insights into the influence of operational parameters in the heterogeneous Fenton-like oxidation of AO7 using Fe3-xCoxO4 catalyst.

  13. Improved Catalysts for Heavy Oil Upgrading Based on Zeolite Y Nanoparticles Encapsulated Stable Nanoporous Host

    Energy Technology Data Exchange (ETDEWEB)

    Conrad Ingram; Mark Mitchell

    2006-09-30

    The addition of hydrothermally-aged zeolite Y precursor to an SBA-15 synthesis mixture under a mildly acidic condition resulted in the formation of mesoporous aluminosilicate catalyst, Al-SBA-15, containing strong Broensted acid sites and aluminum (Al) stabilized in a totally tetrahedral coordination. The physicochemical characteristics of the catalyst varied as a function of the synthesis conditions. The catalyst possessed surface areas ranging between 690 and 850 m{sup 2}/g, pore sizes ranging from 5.6 to 7.5 nm, and pore volumes up 1.03 cm{sup 3}, which were comparable to the parent SBA-15 synthesized under similar conditions. Two wt% Al was present in the catalyst that was obtained from the reaction mixture that contained the highest Al content. The Al remained stable in totally tetrahedral coordination after calcination at 550 C. The Al-SBA-15 mesoporous catalyst showed significant catalytic activity for cumene dealkylation, and the activity increased as the amount of zeolite precursor added to the SBA-15 mixture was increased. In preparation for the final phase of the project, the catalyst was embedded into psuedoboemite alumina (catapal B) matrix and then formed into pellets. In the final phase of the project, the pelletized catalyst will be evaluated for the conversion of heavy petroleum feedstocks to naphtha and middle distillates.

  14. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons

    Science.gov (United States)

    Zecevic, Jovana; Vanbutsele, Gina; de Jong, Krijn P.; Martens, Johan A.

    2015-12-01

    The ability to control nanoscale features precisely is increasingly being exploited to develop and improve monofunctional catalysts. Striking effects might also be expected in the case of bifunctional catalysts, which are important in the hydrocracking of fossil and renewable hydrocarbon sources to provide high-quality diesel fuel. Such bifunctional hydrocracking catalysts contain metal sites and acid sites, and for more than 50 years the so-called intimacy criterion has dictated the maximum distance between the two types of site, beyond which catalytic activity decreases. A lack of synthesis and material-characterization methods with nanometre precision has long prevented in-depth exploration of the intimacy criterion, which has often been interpreted simply as ‘the closer the better’ for positioning metal and acid sites. Here we show for a bifunctional catalyst—comprising an intimate mixture of zeolite Y and alumina binder, and with platinum metal controllably deposited on either the zeolite or the binder—that closest proximity between metal and zeolite acid sites can be detrimental. Specifically, the selectivity when cracking large hydrocarbon feedstock molecules for high-quality diesel production is optimized with the catalyst that contains platinum on the binder, that is, with a nanoscale rather than closest intimacy of the metal and acid sites. Thus, cracking of the large and complex hydrocarbon molecules that are typically derived from alternative sources, such as gas-to-liquid technology, vegetable oil or algal oil, should benefit especially from bifunctional catalysts that avoid locating platinum on the zeolite (the traditionally assumed optimal location). More generally, we anticipate that the ability demonstrated here to spatially organize different active sites at the nanoscale will benefit the further development and optimization of the emerging generation of multifunctional catalysts.

  15. Paraffin Alkylation Using Zeolite Catalysts in a slurry reactor: Chemical Engineering Principles to Extend Catalyst Lifetime

    NARCIS (Netherlands)

    Jong, K.P. de; Mesters, C.M.A.M.; Peferoen, D.G.R.; Brugge, P.T.M. van; Groot, C. de

    1996-01-01

    The alkylation of isobutane with 2-butene is carried out using a zeolitic catalyst in a well stirred slurry reactor. Whereas application of fixed bed technology using a solid acid alkylation catalyst has in the led to catalysts lifetimes in the range of minutes, in this work we report catalyst

  16. The influence of calcination temperatures on the acid-based properties and catalytic activity for the 1,3-butadiene synthesis from ethanol/acetaldehyde mixture

    Science.gov (United States)

    Gao, Meixiang; Jiang, Haoxi; Zhang, Minhua

    2018-05-01

    The influences of the calcination temperature on the catalysts' acid-based properties and catalytic activity for the 1,3-butadiene synthesis from ethanol are investigated. The results show that the 2 wt% ZrO2/Nano-SiO2 calcined at 773 K shows the best performance with the selectivity of 93.18% and conversion of 58.52% when reacted at 593 K, a WHSV of 1.8 h-1 and 3.5:1 volume ratio ethanol-to-acetaldehyde in an atmospheric fixed-bed reactor. Prepared catalysts were characterized by N2 adsorption-desorption, XRD, temperature-programmed desorption of NH3 and CO2, FTIR spectroscopy of adsorbed pyridine and CO2. Based on the relationship between the catalyst activity and its properties, the fact can be presumed that the formation and strength of Zrsbnd Osbnd Si bond determines the acid-based properties of the catalyst. In addition, moderate-intensity weak acid-basic sites are more suitable for ethanol conversion to BD with the amount of acid and basic sites as close as possible.

  17. Industrial wastewater advanced treatment via catalytic ozonation with an Fe-based catalyst.

    Science.gov (United States)

    Li, Xufang; Chen, Weiyu; Ma, Luming; Wang, Hongwu; Fan, Jinhong

    2018-03-01

    An Fe-based catalyst was used as a heterogeneous catalyst for the ozonation of industrial wastewater, and key operational parameters (pH and catalyst dosage) were studied. The results indicated that the Fe-based catalyst significantly improved the mineralization of organic pollutants in wastewater. TOC (total organic carbon) removal was high, at 78.7%, with a catalyst concentration of 200 g/L, but only 31.6% with ozonation alone. The Fe-based catalyst significantly promoted ozone decomposition by 70% in aqueous solution. Hydroxyl radicals (·OH) were confirmed to be existed directly via EPR (electron paramagnetic resonance) experiments, and ·OH were verified to account for about 34.4% of TOC removal with NaHCO 3 as a radical scavenger. Through characterization by SEM-EDS (field emission scanning electron microscope with energy-dispersive spectrometer), XRD (X-ray powder diffraction) and XPS (X-ray photoelectron spectroscopy), it was deduced that FeOOH on the surface of the catalyst was the dominant contributor to the catalytic efficiency. The catalyst was certified as having good stability and excellent reusability based on 50 successive operations and could be used as a filler simultaneously. Thereby, it is a promising catalyst for practical industrial wastewater advanced treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Hantzsch reaction and quinoxaline synthesis using 1-methyl-3-(2-(sulfooxyethyl-1H-imidazol-3-ium chloride as a new, efficient and BrØnsted acidic ionic liquid catalyst

    Directory of Open Access Journals (Sweden)

    Sami Sajjadifar

    2013-10-01

    Full Text Available In this work, the efficiency, generality and applicability of new BrØnsted acidic ionic liquid (BAIL 1-methyl-3-(2-(sulfooxyethyl-1H-imidazol-3-ium chloride {[Msei]Cl} as heterogeneous and green catalyst for organic transformations are studied. Herein, the following one-pot multi-component reactions in the presence of [Msei]Cl are investigated: (i the synthesis of quinoxaline derivatives from the reaction of phenylenediamines and 1,2-diketones in EtOH under mild conditions (room temperature, (ii the preparation of 1,4-dihydropyridines from one-pot multi component condensation of 1,3-dicarbonyl compounds, NH4OAcand aldehydes under solvent-free conditions at moderate temperature (90 °C. High yields, relatively short reaction times, efficiency, generality, clean process, simple methodology, low cost, easy work-up, ease of preparation and regeneration of the catalyst and green conditions (in the synthesis of the quinoxaline derivatives are advantages of the application of [Mesi]Cl as catalyst in the above organic reactions.

  19. Inverting the diastereoselectivity of the mukaiyama-michael addition with graphite-based catalysts

    KAUST Repository

    Acocella, Maria Rosaria

    2014-02-07

    Here, we show that graphite-based catalysts, mainly graphite oxide (GO) and exfoliated GO, are effective recyclable catalysts for a relevant stereoselective Mukaiyama-Michael addition, outperforming currently available catalysts. Moreover, the graphite-based catalysts described here invert the diastereoselectivity relative to that observed with known catalysts, with the unprecedented large prevalence of the anti diastereoisomer. This inverted diastereoselectivity is increased when the catalyst concentration is reduced and after catalyst recycling. Density functional theory calculations suggest that the selectivity is determined by two types of supramolecular interactions operating between the catalyst and the substrates at the diastereoselectivity- determining transition state, specifically, the π-stacking of b-nitrostyrene with graphite and the van der Waals interaction between the SiMe3 group of the silyl ether and the graphite. © 2013 American Chemical Society.

  20. Commercial- and whitewashing-grade limestone as a heterogeneous catalyst for synthesis of fatty acid methyl esters from used frying oil (UFO)

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Shweta; Singh, Bhaskar; Sharma, Yogesh C. [Banaras Hindu University, Department of Applied Chemistry, Institute of Technology, Varanasi (India); Frometa, Amado Enrique N. [Universidad Tecnologica de Izucar de Matamoros, Puebla (Mexico)

    2012-12-15

    Commercial-grade limestone used in whitewashing which is a low-cost material has been used as a catalyst for the synthesis of fatty acid methyl esters. The catalyst was characterized by differential thermal analysis/thermogravimetric analysis, X-ray diffraction, and Fourier transform infrared spectroscopy for the study of its physicochemical nature. The catalyst was calcined at 900 C for 2.5 h for the decomposition of calcium carbonate to calcium oxide. The catalyst was further activated by dissolving 1.5 wt% of catalyst in 30 ml methanol (7.5:1, methanol to used frying oil molar ratio) and stirred at 25 C for 1 h on a magnetic stirrer. The transesterification reaction was performed using calcium oxide as a catalyst and then with the ''activated calcium oxide.'' The conversion obtained was 94.4 % with calcium oxide and was found to be lower for the ''activated calcium oxide'' (i.e., 87.36 %). The conversion increased to 96.8 % on increasing the catalyst amount to 2.0 wt% in 5 h. A high yield (>95 %) of fatty acid methyl esters was observed when either calcium oxide or ''activated calcium oxide'' was taken as catalyst. The catalytic activity of calcium oxide obtained from low-grade limestone has been found to be comparable with the laboratory-grade CaO. (orig.)

  1. Progress on the mechanistic understanding of SO2 oxidation catalysts

    DEFF Research Database (Denmark)

    Lapina, Olga B.; Bal'zhinimaev, B.S.; Boghosian, Soghomon

    1999-01-01

    Production, Goskhimizdat (in Russian), Moscow, 1954, p. 348]. In recent years these catalysts have also been used to clean flue gases and other SO; containing, industrial off-gases. In spite of the importance and long utilization of these industrial processes, the catalytic active species and the reaction......For almost a century vanadium oxide based catalysts have been the dominant materials in industrial processes for sulfuric acid production. A vast body of information leading to fundamental knowledge on the catalytic process was obtained by Academician [G.K. Boreskov, Catalysis in Sulphuric Acid...... mechanism. A multiinstrumental investigation that combine the efforts of four groups from four different countries has been carried out on the model system as well as on working industrial catalysts. Detailed information has been obtained on the complex and on the redox chemistry of vanadium. Based on this...

  2. The influence of Mn species on the SO{sub 2} removal of Mn-based activated carbon catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Yi-Fan [College of Architecture and Environment, Sichuan University, Chengdu 610065 (China); Guo, Jia-Xiu, E-mail: guojiaxiu@scu.edu.cn [College of Architecture and Environment, Sichuan University, Chengdu 610065 (China); National Engineering Technology Research Center for Flue Gas Desulfurization, Chengdu 610065 (China); Chu, Ying-Hao [College of Architecture and Environment, Sichuan University, Chengdu 610065 (China); National Engineering Technology Research Center for Flue Gas Desulfurization, Chengdu 610065 (China); Sun, Ming-Chao [College of Architecture and Environment, Sichuan University, Chengdu 610065 (China); Yin, Hua-Qiang, E-mail: hqyin@scu.edu.cn [College of Architecture and Environment, Sichuan University, Chengdu 610065 (China); National Engineering Technology Research Center for Flue Gas Desulfurization, Chengdu 610065 (China)

    2013-10-01

    Using Mn(NO{sub 3}){sub 2} as precursor, a series of Mn-based activated carbon catalysts were prepared by ultrasound-assisted excessive impregnation method and characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and temperature programmed reduction (TPR). The influences of Mn species and nitric acid pretreatment on the removal role of SO{sub 2} were investigated. MnO and Mn{sub 3}O{sub 4} coexist in catalysts calcined at 650 and 800 °C and exhibit best SO{sub 2} removal ability, whereas Mn{sub 2}O{sub 3} formed in the catalyst calcined at 500 °C and shows poor activity. After treatment by nitric acid, the C=O of activated carbon support increases and the crystal size of MnO decreases, resulting in the enhancement of the catalytic activity. During reaction process, manganese oxides are gradually transferred into MnO{sub 2}. And this change directly results in a decrease of activity. But the SO{sub 2} removal rate has been maintained in the range of 30–40%, indicating that MnO{sub 2} still has a certain SO{sub 2} removal ability.

  3. Synthesis of mesoporous Cr/ZSM-5 and W-Cr/ZSM-5 zeolite catalysts for oxidation of unsaturated fatty acid

    Directory of Open Access Journals (Sweden)

    Phan Huy Hoang

    2017-10-01

    Full Text Available The mesoporous Cr/ZSM-5 and W-Cr/ZSM-5 zeolites have been successfully synthesized by loading chromium and tungsten on zeolite support. The metal loaded ZSM-5 catalysts were analyzed by several characterizations such as XRD, SEM-EDS, TEM, and BET. The catalytic activities and recycle efficiency were also investigated by applying catalysts for oxidation of oleic acid. These catalysts exhibited the high catalytic efficiency for cleavage of double bond with the use of H2O2. The oleic conversion of 88.7% and 93.3% could be achieved for Cr/ZSM-5 and W-Cr/ZSM-5 catalyst, respectively. Moreover, the modified ZSM-5 catalysts also demonstrated a long life time and high stability.

  4. Hydrodeoxygenation of phenols as lignin models under acid-free conditions with carbon-supported platinum catalysts.

    Science.gov (United States)

    Ohta, Hidetoshi; Kobayashi, Hirokazu; Hara, Kenji; Fukuoka, Atsushi

    2011-11-28

    Carbon-supported Pt catalysts are highly active and reusable for the aqueous-phase hydrodeoxygenation of phenols as lignin models without adding any acids. It is suggested that Pt/carbon facilitates the hydrogenation of phenols and the hydrogenolysis of the resulting cyclohexanols.

  5. Effect of Al content on the gas-phase dehydration of glycerol over silica-alumina-supported silicotungstic acid catalysts

    International Nuclear Information System (INIS)

    Kim, Yong Tae; You, Su Jin; Park, Eun Duck; Jung, Kwangdeog

    2012-01-01

    The gas-phase dehydration of glycerol to acrolein was carried out over silicotungstic acid (H 4 SiW 12 O 40 ·xH 2 O, HSiW) catalysts supported on SiO 2 , η-Al 2 O 3 , and silica-alumina with different Al contents. The HSiW catalysts supported on silica-alumina showed higher glycerol conversions and acrolein yields during the initial 2 h at 315.deg.C than did SiO 2 - and η-Al 2 O 3 -supported HSiW catalysts. Among the tested catalysts, HSiW/Si 0.9 Al 0.1Ox exhibited the highest space-time yield during the initial 2 h. The loaded HSiW species can change the acid types and suppress the formation of carbonaceous species on Al-rich silica-alumina. The deactivated HSiW supported on silica-alumina can be fully regenerated after calcination in air at 500.deg.C. As long as the molar ratio between water and glycerol was in the range of 2-11, the acrolein selectivity increased significantly with increasing water content in the feed, while the surface carbon content decreased owing to the suppression of heavy compounds

  6. Green acetylation of solketal and glycerol formal by heterogeneous acid catalysts to form a biodiesel fuel additive.

    Science.gov (United States)

    Dodson, Jennifer R; Leite, Thays d C M; Pontes, Nathália S; Peres Pinto, Bianca; Mota, Claudio J A

    2014-09-01

    A glut of glycerol has formed from the increased production of biodiesel, with the potential to integrate the supply chain by using glycerol additives to improve biodiesel properties. Acetylated acetals show interesting cold flow and viscosity effects. Herein, a solventless heterogeneously catalyzed process for the acetylation of both solketal and glycerol formal to new products is demonstrated. The process is optimized by studying the effect of acetylating reagent (acetic acid and acetic anhydride), reagent molar ratios, and a variety of commercial solid acid catalysts (Amberlyst-15, zeolite Beta, K-10 Montmorillonite, and niobium phosphate) on the conversion and selectivities. High conversions (72-95%) and selectivities (86-99%) to the desired products results from using acetic anhydride as the acetylation reagent and a 1:1 molar ratio with all catalysts. Overall, there is a complex interplay between the solid catalyst, reagent ratio, and acetylating agent on the conversion, selectivities, and byproducts formed. The variations are discussed and explained in terms of reactivity, thermodynamics, and reaction mechanisms. An alternative and efficient approach to the formation of 100% triacetin involves the ring-opening, acid-catalyzed acetylation from solketal or glycerol formal with excesses of acetic anhydride. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Methods and catalysts for making biodiesel from the transesterification and esterification of unrefined oils

    Science.gov (United States)

    Yan, Shuli [Detroit, MI; Salley, Steven O [Grosse Pointe Park, MI; Ng, K Y. Simon [West Bloomfield, MI

    2012-04-24

    A method of forming a biodiesel product and a heterogeneous catalyst system used to form said product that has a high tolerance for the presence of water and free fatty acids (FFA) in the oil feedstock is disclosed. This catalyst system may simultaneously catalyze both the esterification of FAA and the transesterification of triglycerides present in the oil feedstock. The catalyst system according to one aspect of the present disclosure represents a class of zinc and lanthanum oxide heterogeneous catalysts that include different ratios of zinc oxide to lanthanum oxides (Zn:La ratio) ranging from about 10:0 to 0:10. The Zn:La ratio in the catalyst is believed to have an effect on the number and reactivity of Lewis acid and base sites, as well as the transesterification of glycerides, the esterification of fatty acids, and the hydrolysis of glycerides and biodiesel.

  8. Cyclic Acetalization of Furfural on Porous Aluminosilicate Acid Catalysts

    Directory of Open Access Journals (Sweden)

    Hartati Hartati

    2016-12-01

    Full Text Available Porous aluminosilicate materials included microporous and mesoporous ZSM-5, hierarchical aluminosilicates, and mesoporous aluminosilicate were tested for acetalization of furfural (furan-2-carbaldehyde with propylene glycol. The existing synthesis methods for aluminosilicate and ZSM-5 were modified to produce aluminosilicate material with hierarchical porous structure. Catalytic activity in acetalization of furfural by propylene glycol were conducted by refluxed of the mixture of furfural, propylene glycol and catalyst, using toluene as solvent and nitrobenzene as internal standard, at 106 °C for 4 h. The result showed that a combination of two structure directing agents, tetrapropylammonium hydroxide (TPAOH and cetyltrimethylammonium bromide (CTAB and modification of catalytic crystallization produced an active aluminosilicate framework that provides a wide access for a bulky reactants and strong acid sites to catalyze the reaction. The pore structure and the strength of the Brønsted acid sites were crucial for the high conversion of furfural to produce a cyclic acetal.

  9. Efficient hydrogenation of biomass-derived furfural and levulinic acid on the facilely synthesized noble-metal-free Cu–Cr catalyst

    International Nuclear Information System (INIS)

    Yan, Kai; Chen, Aicheng

    2013-01-01

    Biomass-derived platform intermediate furfural and levulinic acid were efficiently hydrogenated to the value-added furfuryl alcohol and promising biofuel γ-valerolactone, respectively, using a noble-metal-free Cu–Cr catalyst, which was facilely and successfully synthesized by a modified co-precipitation method using the cheap metal nitrates. In the first hydrogenation of furfural, 95% yield of furfuryl alcohol was highly selectively produced at 99% conversion of furfural under the mild conditions. For the hydrogenation of levulinic acid, 90% yield of γ-valerolactone was highly selectively produced at 97.8% conversion. Besides, the physical properties of the resulting Cu–Cr catalysts were studied by XRD (X-ray diffraction), EDX (Energy-dispersive X-ray), TEM (Transmission electron microscopy) and XPS (X-ray photoelectron spectroscopy) to reveal their influence on the catalytic performance. Subsequently, different reaction parameters were studied and it was found that Cu 2+ /Cr 3+ ratios (0.5, 1 and 2), reaction temperature (120–220 °C) and hydrogen pressure (35–70 bar) presented important influence on the catalytic activities. In the end, the stability of the Cu–Cr catalysts was also studied. - Highlights: • A noble-metal-free Cu–Cr catalyst was successfully synthesized using metal nitrates. • Cu–Cr catalysts were highly selective hydrogenation of biomass-derived furfural to FA. • Cu–Cr catalysts were efficient for hydrogenation of biomass-derived LA to biofuel GVL. • The physical properties of the resulting Cu–Cr catalysts were systematically studied. • Reaction parameters and stability in the hydrogenation of furfural were studied in details

  10. Effect of Mo-Doped Mesoporous Al-SSP Catalysts for the Catalytic Dehydration of Ethanol to Ethylene

    Directory of Open Access Journals (Sweden)

    Titinan Chanchuey

    2016-01-01

    Full Text Available The catalytic dehydration of ethanol to ethylene over the mesoporous Al-SSP and Mo-doped Al-SSP catalysts was investigated. The Al-SSP catalyst was first synthesized by the modified sol-gel method and then doped with Mo by impregnation to obtain 1% Mo/Al-SSP and 5% Mo/Al-SSP catalysts (1 and 5 wt% of Mo. The final catalysts were characterized using various techniques such as XRD, N2 physisorption, SEM/EDX, TEM, and NH3-TPD. The catalytic activity for all catalysts in gas-phase ethanol dehydration reaction was determined at temperature range of 200°C to 400°C. It was found that the most crucial factor influencing the catalytic activities appears to be the acidity. The acid property of catalysts depended on the amount of Mo loading. Increased Mo loading in Al-SSP resulted in increased weak acid sites, which enhanced the catalytic activity. Besides acidity, the high concentration of Al at surface of catalyst is also essential to obtain high activity. Based on the results, the most suitable catalyst in this study is 1% Mo/Al-SSP catalyst, which can produce ethylene yield of ca. 90% at 300°C with slight amounts of diethyl ether (DEE and acetaldehyde.

  11. Bio-inspired MOF-based Catalysts for Lignin Valorization.

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, Mark D.; Stavila, Vitalie; Ramakrishnan, Parthasarathi; Davis, Ryan Wesley

    2014-09-01

    for the C-O bond hydrogenolysis in model compounds, which mimic the b-O-4, a-O-4, and 4-O-5 linkages of natural lignin. The versatile IRMOF-74(n) series is proposed as a platform for creating efficient hydrogenolysis catalysts as it not only displays tunable pore sizes, but also has the required thermal and chemical stability. The catalytic C-O bond cleavage occurs at 10 bar hydrogen pressure and temperatures as low as 120 degC. The conversion efficiency of the aromatic ether substrates into the corresponding hydrocarbons and phenols varies as PhCH 2 CH 2 OPh > PhCH 2 OPh > PhOPh (Ph = phenyl), while the catalytic activity generally follows the following trend Ni@IRMOF-74>Ti@IRMOF-74>IRMOF-74. Conversions as high as 80%, coupled with good selectivity for hydrogenolysis vs. hydrogenation, highlight the potential of MOF-based catalysts for the selective cleavage of recalcitrant aryl-ether bonds found in lignin and other biopolymers. This project supports the DOE Integrated Biorefinery Program goals, the objective of which is to convert biomass to fuels and high-value chemicals, by addressing an important technology gap: the lack of low-temperature catalysts suitable for industrial lignin degradation. Biomass, which is %7E30 wt% lignin, constitutes a potentially major source of platform chemicals that could improve overall profitability and productivity of all energy-related products, thereby benefiting consumers and reducing national dependence on imported oil. Additionally, DoD has a strong interest in low-cost drop-in fuels (Navy Biofuel Initiative) and has signed a Memorandum of Understanding with DOE and USDA to develop a sustainable biofuels industry.

  12. Discovery of technical methanation catalysts based on computational screening

    DEFF Research Database (Denmark)

    Sehested, Jens; Larsen, Kasper Emil; Kustov, Arkadii

    2007-01-01

    Methanation is a classical reaction in heterogeneous catalysis and significant effort has been put into improving the industrially preferred nickel-based catalysts. Recently, a computational screening study showed that nickel-iron alloys should be more active than the pure nickel catalyst and at ...

  13. Solvent-Free Biginelli Condensation using Tungstate Sulfuric Acid: a Powerful and Reusable Catalyst for Selective Synthesis

    Directory of Open Access Journals (Sweden)

    Rezvan Rezaee Nasab

    2014-07-01

    Full Text Available Tungstate sulfuric acid (TSA has been prepared and used as a recyclable catalyst for the Biginelli syn-thesis of some biologically active quinazolinones/thiones under solvent-free conditions. This method has advantages such as the avoidance of organic solvents, high yield of pure products, short reaction times, and operational simplicity.  © 2014 BCREC UNDIP. All rightsReceived: 28th April 2014; Revised: 15th May 2014; Accepted: 26th May 2014[ How to Cite: Nasab, R.R., Karami, B., Khodabakhshi, S. (2014. Selective Solvent‐free Biginelli Condensation using Tungstate Sulfuric Acid as Powerful and Reusable Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (2: 142-154. (doi:10.9767/bcrec.9.2.6794.148-154][ Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.2.6794.148-154

  14. Simple activation by acid of latent Ru-NHC-based metathesis initiators bearing 8-quinolinolate co-ligands

    KAUST Repository

    Wappel, Julia

    2016-01-28

    A straightforward synthesis utilizing the ring-opening metathesis polymerization (ROMP) reaction is described for acid-triggered N,O-chelating ruthenium-based pre-catalysts bearing one or two 8-quinolinolate ligands. The innovative pre-catalysts were tested regarding their behavior in ROMP and especially for their use in the synthesis of poly(dicyclopentadiene) (pDCPD). Bearing either the common phosphine leaving ligand in the first and second Grubbs olefin metathesis catalysts, or the Ru–O bond cleavage for the next Hoveyda-type catalysts, this work is a step forward towards the control of polymer functionalization and living or switchable polymerizations.

  15. Simple activation by acid of latent Ru-NHC-based metathesis initiators bearing 8-quinolinolate co-ligands

    KAUST Repository

    Wappel, Julia; Fischer, Roland C; Cavallo, Luigi; Slugovc, Christian; Poater, Albert

    2016-01-01

    A straightforward synthesis utilizing the ring-opening metathesis polymerization (ROMP) reaction is described for acid-triggered N,O-chelating ruthenium-based pre-catalysts bearing one or two 8-quinolinolate ligands. The innovative pre-catalysts were tested regarding their behavior in ROMP and especially for their use in the synthesis of poly(dicyclopentadiene) (pDCPD). Bearing either the common phosphine leaving ligand in the first and second Grubbs olefin metathesis catalysts, or the Ru–O bond cleavage for the next Hoveyda-type catalysts, this work is a step forward towards the control of polymer functionalization and living or switchable polymerizations.

  16. A recyclable Au(I) catalyst for selective homocoupling of arylboronic acids: significant enhancement of nano-surface binding for stability and catalytic activity.

    Science.gov (United States)

    Zhang, Xin; Zhao, Haitao; Wang, Jianhui

    2010-08-01

    Au nanoparticles stabilized by polystyrene-co-polymethacrylic acid microspheres (PS-co-PMAA) were prepared and characterized via X-ray diffraction (XRD), and transmission electron microscope (TEM). The Au nanoparticles supported on the microspheres showed highly selective catalytic activity for homo-coupling reactions of arylboronic acids in a system of aryl-halides and arylboronic acids. X-ray photoelectron spectroscopy (XPS) spectra of the catalyst shows large amounts of Au(I) complexes band to the surface of the Au nanoparticles, which contributes to the selective homocoupling of the arylboronic acids. More importantly, this supported Au complex is a highly recyclable catalyst. The supported Au catalyst can be recycled and reused at least 6 times for a phenylboronic acid reactant, whereas the parent complex shows very low catalytic activity for this compound. The high catalytic activity of this material is attributed to: (1) the high surface to volume ratio which leads to more active sites being exposed to reactants; (2) the strong surface binding of the Au nanoparticle to the Au(I) complexes, which enhances both the stability and the catalytic activity of these complexes.

  17. Reducible oxide based catalysts

    Science.gov (United States)

    Thompson, Levi T.; Kim, Chang Hwan; Bej, Shyamal K.

    2010-04-06

    A catalyst is disclosed herein. The catalyst includes a reducible oxide support and at least one noble metal fixed on the reducible oxide support. The noble metal(s) is loaded on the support at a substantially constant temperature and pH.

  18. Silica Sulfuric Acid: An Eco-Friendly and Reusable Catalyst for Synthesis of Benzimidazole Derivatives

    Directory of Open Access Journals (Sweden)

    Bahareh Sadeghi

    2013-01-01

    Full Text Available Silica sulfuric acid (SiO2-OSO3H as an eco-friendly, readily available, and reusable catalyst is applied to benzimidazole derivatives synthesis under reflux in ethanol. The procedure is very simple and the products are isolated with an easy workup in good-to-excellent yields.

  19. Overcoming the Instability of Nanoparticle-Based Catalyst Films in Alkaline Electrolyzers by using Self-Assembling and Self-Healing Films.

    Science.gov (United States)

    Barwe, Stefan; Masa, Justus; Andronescu, Corina; Mei, Bastian; Schuhmann, Wolfgang; Ventosa, Edgar

    2017-07-10

    Engineering stable electrodes using highly active catalyst nanopowders for electrochemical water splitting remains a challenge. We report an innovative and general approach for attaining highly stable catalyst films with self-healing capability based on the in situ self-assembly of catalyst particles during electrolysis. The catalyst particles are added to the electrolyte forming a suspension that is pumped through the electrolyzer. Particles with negatively charged surfaces stick onto the anode, while particles with positively charged surfaces stick to the cathode. The self-assembled catalyst films have self-healing properties as long as sufficient catalyst particles are present in the electrolyte. The proof-of-concept was demonstrated in a non-zero gap alkaline electrolyzer using NiFe-LDH and Ni x B catalyst nanopowders for anode and cathode, respectively. Steady cell voltages were maintained for at least three weeks during continuous electrolysis at 50-100 mA cm -2 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Esterification of oil adsorbed on palm decanter cake into methyl ester using sulfonated rice husk ash as heterogeneous acid catalyst

    Science.gov (United States)

    Hindryawati, Noor; Erwin, Maniam, Gaanty Pragas

    2017-02-01

    Palm Decanter cake (PDC) which is categorized as the waste from palm oil mill has been found to contain residual crude palm oil. The oil adsorbed on the PDC (PDC-oil) can be extracted and potentially used as feedstock for biodiesel production. Feedstock from waste like PDC-oil is burdened with high free fatty acids (FFAs) which make the feedstock difficult to be converted into biodiesel using basic catalyst. Therefore, in this study, a solid acid, RHA-SO3H catalyst was synthesized by sulfonating rice husk ash (RHA) with concentrated sulfuric acid. The RHA-SO3H prepared was characterized with TGA, FTIR, BET, XRD, FE-SEM, and Hammett indicators (methyl red, bromophenol blue, and crystal violet). PDC was found to have about 11.3 wt. % oil recovered after 1 hour extraction using ultrasound method. The presence of sulfonate group was observed in IR spectrum, and the surface area of RHA-SO3H was reduced to 37 m2.g-1 after impregnation of sulfonate group. The RHA-SO3H catalyst showed that it can work for both esterification of free fatty acid which is present in PDC-oil, and transesterification of triglycerides into methyl ester. The results showed highest methyl ester content of 70.2 wt.% at optimal conditions, which was 6 wt.% catalyst amount, methanol to oil molar ratio of 17:1 for 5 hours at 120 °C.

  1. Supported phosphate and carbonate salts for heterogeneous catalysis of triglycerides to fatty acid methyl esters

    Science.gov (United States)

    Britton, Stephanie Lynne

    Fatty acid methyl esters made from vegetable oil, or biodiesel, have been identified as a substitute for diesel derived from crude oil. Biodiesel is currently made using a homogeneous base catalyst to perform the transesterification of triglycerides with methanol to generate fatty acid methyl esters (FAME). The use of a homogeneous catalyst necessitates additional purification of the product and byproducts before sale, and the catalyst is consumed and discarded. The development of a heterogeneous basic catalyst for the production of FAME is desirable. Tribasic phosphate salts and dibasic carbonate salts are active for the production of FAME but generally operate as homogeneous catalysts. Supporting these phosphate and carbonate salts on mesoporous MCM-41, microporous silica gel, and nonporous a-alumina proved successful to greater or lesser degrees depending on the identity of the support and pretreatment of the support. Although these salts were supported and were active for the production of FAME from canola oil, they proved to be operating as homogeneous catalysts due to leaching of the active species off the surface of the support. Further investigation of the active species present in the tribasic phosphate catalysts identified the active support as orthophosphate, and NMR studies revealed the phosphorus to be present as orthophosphate and diphosphate in varying proportions in each catalyst. Evaluation of the acid-washing support pretreatment process revealed that the exposure of the support to acid plays a large role in the development of activity on the surface of the catalyst, but manipulation of these parameters did not prevent leaching of the active site off the surface of the catalyst. Alternate methods of support pretreatment were no more effective in preventing leaching. Tribasic phosphate supported on silica gel is not effective as a heterogeneous catalyst for FAME production from triglycerides because of the lack of stability of the phosphate on the

  2. Improved Catalysts for Heavy Oil Upgrading Based on Zeolite Y Nanoparticles Encapsulated Stable Nanoporous Host

    Energy Technology Data Exchange (ETDEWEB)

    Conrad Ingram; Mark Mitchell

    2007-03-31

    The addition of hydrothermally-aged zeolite Y precursor to an SBA-15 synthesis mixture under a mildly acidic condition resulted in the formation of a mesoporous aluminosilicate catalyst, AlSBA-15. The Al-SBA-15 mesoporous catalyst contains strong Br{umlt o}nsted acid sites and aluminum (Al) stabilized in a totally tetrahedral coordination. The physicochemical characteristics of the catalyst varied as a function of the synthesis conditions. The catalyst possessed surface areas ranging between 690 and 850 m{sup 2}/g, pore sizes ranging from 5.6 to 7.5 nm, and pore volumes up 1.03 cm{sup 3}, which were comparable to the parent SBA-15 synthesized under similar conditions. Two wt % Al was present in the catalyst that was obtained from the reaction mixture that contained the highest Al content. The Al remained stable in totally tetrahedral coordination after calcination at a temperature of 550 C. The Al-SBA-15 mesoporous catalyst showed significant catalytic activity for cumene dealkylation, and the activity increased as the amount of zeolite precursor added to the SBA-15 mixture was increased. In preparation for the final phase of the project, the catalyst was embedded into a psuedoboemite alumina (catapal B) matrix and then formed into pellets. In the final phase of the project, the pelletized catalyst is being evaluated for the conversion of a heavy petroleum feedstock to naphtha and middle distillates. This phase was significantly delayed during the past six months due to a serious malfunction of the fume hoods in the Clark Atlanta University's Research Center for Science and Technology, where the project is being conducted. The fume hood system was repaired and the catalyst evaluation is now underway.

  3. Effects of preparation method and active metal content on of Ni/kieselguhr catalyst activity

    International Nuclear Information System (INIS)

    Galuh Widiyarti; Wuryaningsih Sri Rahayu

    2010-01-01

    The preparation and the active metal content influence the activity of catalyst. Study has been conducted to see the activity of Ni/kieselguhr based on preparation method and Nickel (Ni) contents in the catalyst in the laboratory scale. The Ni/kieselguhr catalyst were prepared by impregnation and precipitation methods, with Ni active contents of 10, 20, and 30 % by weight. The catalysts characterization was analyzed using X-Ray Diffraction (XRD). Catalysts activities were analyzed based on decreasing of iodine number from hydrogenation of crude palm oil for 2 hours. The activity tests results show that precipitation catalysts are more active than impregnation catalysts. The decreasing in iodine number of fatty acid after 2 hours of hydrogenation process using precipitation catalysts and impregnation catalysts are 51.53 and 21.85 %, respectively. In addition, the catalysts are more active with increasing Ni contents. (author)

  4. Synthesis, characterization and catalytic activity of acid-base bifunctional materials through protection of amino groups

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yanqiu [College of Chemistry, Jilin University, Changchun 130023 (China); College of Chemistry, Mudanjiang Normal University, Mudanjiang 157012 (China); Liu, Heng; Yu, Xiaofang [College of Chemistry, Jilin University, Changchun 130023 (China); Guan, Jingqi, E-mail: guanjq@jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130023 (China); Kan, Qiubin, E-mail: qkan@mail.jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130023 (China)

    2012-03-15

    Graphical abstract: Acid-base bifunctional mesoporous material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized under low acidic medium through protection of amino groups. Highlights: Black-Right-Pointing-Pointer The acid-base bifunctional material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized through protection of amino groups. Black-Right-Pointing-Pointer The obtained bifunctional material was tested for aldol condensation. Black-Right-Pointing-Pointer The SO{sub 3}H-SBA-15-NH{sub 2} catalyst containing amine and sulfonic acid groups exhibited excellent acid-basic properties. -- Abstract: Acid-base bifunctional mesoporous material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized under low acidic medium through protection of amino groups. X-ray diffraction (XRD), N{sub 2} adsorption-desorption, transmission electron micrographs (TEM), back titration, {sup 13}C magic-angle spinning (MAS) NMR and {sup 29}Si magic-angle spinning (MAS) NMR were employed to characterize the synthesized materials. The obtained bifunctional material was tested for aldol condensation reaction between acetone and 4-nitrobenzaldehyde. Compared with monofunctional catalysts of SO{sub 3}H-SBA-15 and SBA-15-NH{sub 2}, the bifunctional sample of SO{sub 3}H-SBA-15-NH{sub 2} containing amine and sulfonic acid groups exhibited excellent acid-basic properties, which make it possess high activity for the aldol condensation.

  5. Biodiesel production from non-edible Silybum marianum oil using heterogeneous solid base catalyst under ultrasonication.

    Science.gov (United States)

    Takase, Mohammed; Chen, Yao; Liu, Hongyang; Zhao, Ting; Yang, Liuqing; Wu, Xiangyang

    2014-09-01

    The aim of this study is to investigate modified TiO2 doped with C4H4O6HK as heterogeneous solid base catalyst for transesterification of non-edible, Silybum marianum oil to biodiesel using methanol under ultrasonication. Upon screening the catalytic performance of modified TiO2 doped with different K-compounds, 0.7 C4H4O6HK doped on TiO2 was selected. The preparation of the catalyst was done using incipient wetness impregnation method. Having doped modified TiO2 with C4H4O6HK, followed by impregnation, drying and calcination at 600 °C for 6 h, the catalyst was characterized by XRD, FTIR, SEM, BET, TGA, UV and the Hammett indicators. The yield of the biodiesel was proportional to the catalyst basicity. The catalyst had granular and porous structures with high basicity and superior performance. Combined conditions of 16:1 molar ratio of methanol to oil, 5 wt.% catalyst amount, 60 °C reaction temperature and 30 min reaction time was enough for maximum yield of 90.1%. The catalyst maintained sustained activity after five cycles of use. The oxidative stability which was the main problem of the biodiesel was improved from 2.0 h to 3.2h after 30 days using ascorbic acid as antioxidant. The other properties including the flash point, cetane number and the cold flow ones were however, comparable to international standards. The study indicated that Ti-0.7-600-6 is an efficient, economical and environmentally, friendly catalyst under ultrasonication for producing biodiesel from S. marianum oil with a substantial yield. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Esterification of oleic acid in a three-phase, fixed-bed reactor packed with a cation exchange resin catalyst.

    Science.gov (United States)

    Son, Sung Mo; Kimura, Hiroko; Kusakabe, Katsuki

    2011-01-01

    Esterification of oleic acid was performed in a three-phase fixed-bed reactor with a cation exchange resin catalyst (Amberlyst-15) at high temperature, which was varied from 80 to 120 °C. The fatty acid methyl ester (FAME) yields in the fixed-bed reactor were increased with increases in the reaction temperature, methanol flow rate and bed height. Moreover, the FAME yields were higher than those obtained using a batch reactor due to an equilibrium shift toward the product that resulted from continuous evaporation of the produced water. In addition, there was no catalyst deactivation during the esterification of oleic acid. However, addition of sunflower oil to the oleic acid reduced the FAME yield obtained from simultaneous esterification and transesterification. The FAME yield was 97.5% at a reaction temperature of 100 °C in the fixed-bed with a height of 5 cm when the methanol and oleic acid feed rates were 8.6 and 9.0 mL/h, respectively. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. A comparative study of alumina-supported Ni catalysts prepared by photodeposition and impregnation methods on the catalytic ozonation of 2,4-dichlorophenoxyacetic acid

    International Nuclear Information System (INIS)

    Rodríguez, Julia L.; Valenzuela, Miguel A.; Tiznado, Hugo; Poznyak, Tatiana; Chairez, Isaac; Magallanes, Diana

    2017-01-01

    The heterogeneous catalytic ozonation on unsupported and supported oxides has been successfully tested for the removal of several refractory compounds in aqueous solution. In this work, alumina-supported nickel catalysts prepared by photodeposition and impregnation methods were compared in the catalytic ozonation of 2,4-dichlorophenoxyacetic acid (2,4-D). The catalysts were characterized by high-resolution electron microscopy and X-ray photoelectron spectroscopy. The photochemical decomposition of Ni acetylacetonate to produce Ni(OH) 2 , NiO, and traces of Ni° deposited on alumina was achieved in the presence of benzophenone as a sensitizer. A similar surface composition was found with the impregnated catalyst after its reduction with hydrogen at 500 °C and exposed to ambient air. Results indicated a higher initial activity and maleic acid (byproduct) concentration with the photodeposited catalyst (1 wt% Ni) compared to the impregnated catalyst (3 wt% Ni). These findings suggest the use of the photodeposition method as a simple and reliable procedure for the preparation of supported metal oxide/metal catalysts under mild operating conditions.

  8. A comparative study of alumina-supported Ni catalysts prepared by photodeposition and impregnation methods on the catalytic ozonation of 2,4-dichlorophenoxyacetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez, Julia L., E-mail: ozliliana@yahoo.com.mx [Lab. Ing. Química Ambiental. ESIQIE–Instituto Politécnico Nacional (Mexico); Valenzuela, Miguel A. [Lab.Catálisis y Materiales. ESIQIE–Instituto Politécnico Nacional. Zacatenco (Mexico); Tiznado, Hugo [Centro de Nanociencias y Nanotecnología. CNyN Universidad Nacional Autónoma de México (Mexico); Poznyak, Tatiana [Lab. Ing. Química Ambiental. ESIQIE–Instituto Politécnico Nacional (Mexico); Chairez, Isaac [Departamento de Bioprocesos, UPIBI- Instituto Politécnico Nacional (Mexico); Magallanes, Diana [Lab. Ing. Química Ambiental. ESIQIE–Instituto Politécnico Nacional (Mexico)

    2017-02-15

    The heterogeneous catalytic ozonation on unsupported and supported oxides has been successfully tested for the removal of several refractory compounds in aqueous solution. In this work, alumina-supported nickel catalysts prepared by photodeposition and impregnation methods were compared in the catalytic ozonation of 2,4-dichlorophenoxyacetic acid (2,4-D). The catalysts were characterized by high-resolution electron microscopy and X-ray photoelectron spectroscopy. The photochemical decomposition of Ni acetylacetonate to produce Ni(OH){sub 2}, NiO, and traces of Ni° deposited on alumina was achieved in the presence of benzophenone as a sensitizer. A similar surface composition was found with the impregnated catalyst after its reduction with hydrogen at 500 °C and exposed to ambient air. Results indicated a higher initial activity and maleic acid (byproduct) concentration with the photodeposited catalyst (1 wt% Ni) compared to the impregnated catalyst (3 wt% Ni). These findings suggest the use of the photodeposition method as a simple and reliable procedure for the preparation of supported metal oxide/metal catalysts under mild operating conditions.

  9. A trifunctional mesoporous silica-based, highly active catalyst for one-pot, three-step cascade reactions.

    Science.gov (United States)

    Biradar, Ankush V; Patil, Vijayshinha S; Chandra, Prakash; Doke, Dhananjay S; Asefa, Tewodros

    2015-05-18

    We report the synthesis of a trifunctional catalyst containing amine, sulphonic acid and Pd nanoparticle catalytic groups anchored on the pore walls of SBA-15. The catalyst efficiently catalyzes one-pot three-step cascade reactions comprising deacetylation, Henry reaction and hydrogenation, giving up to ∼100% conversion and 92% selectivity to the final product.

  10. Solvent free oxidation of primary alcohols and diols using thymine iron(III) catalyst.

    Science.gov (United States)

    Al-Hunaiti, Afnan; Niemi, Teemu; Sibaouih, Ahlam; Pihko, Petri; Leskelä, Markku; Repo, Timo

    2010-12-28

    In this study, we developed an efficient and selective iron-based catalyst system for the synthesis of ketones from secondary alcohols and carboxylic acids from primary alcohol. In situ generated iron catalyst of thymine-1-acetate (THA) and FeCl(3) under solvent-free condition exhibits high activity. As an example, 1-octanol and 2-octanol were oxidized to 1-octanoic acid and 2-octanone with 89% and 98% yields respectively.

  11. Effects of impregnation methods and drying conditions on quinoline hydrodenitrogenation over Ni-W based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Fang; Qiu, Zegang; Zhao, Liangfu; Xiang, Hongwei [Institute of Coal Chemistry, Chinese Academy of Sciences (China); Guo, Shaoqing [Taiyuan University of Science and Technology (China)

    2014-04-15

    The effects of impregnation methods (co-impregnation and sequential impregnation) and drying conditions (air and vacuum) on the structure and catalytic behavior of MCM-41 supported Ni-W catalysts were investigated. The catalysts were characterized by powder X-ray diffraction (XRD) analysis, Fourier-transform infrared spectroscopy (FT-IR), diffuse reflectance UV-Vis absorbance spectroscopy (DRS), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and pyridine adsorbed infrared spectroscopy (Py-IR) techniques. They were tested for hydrodenitrogenation (HDN) of quinoline at temperatures of 300-400 deg C. The HDN results showed that the catalysts prepared by co-impregnation were more active than the catalysts prepared by sequential impregnation and the catalysts prepared by drying under vacuum were more active than the catalysts dried in air. Characterization revealed that the co-impregnation method and drying under vacuum promoted the dispersion of W, the formation of the active phases, and the formation of acidic sites on the catalysts. (author)

  12. Metal–organic framework-based catalysts: Chemical fixation of CO2 with epoxides leading to cyclic organic carbonates

    Directory of Open Access Journals (Sweden)

    M. Hassan eBeyzavi

    2015-01-01

    Full Text Available As a C1 feedstock, CO2 has the potential to be uniquely highly economical in both a chemical and a financial sense. In particular, the highly atom-economical acid-catalyzed cycloaddition of CO2 to epoxides to yield cyclic organic carbonates (OCs, a functionality having many important industrial applications, is an attractive reaction for the utilization of CO2 as a chemical feedstock. Metal–organic frameworks (MOFs are promising candidates in catalysis as they are a class of crystalline, porous and functional materials with remarkable properties including great surface area, high stability, open channels and permanent porosity. MOFs structure tunability and their affinity for CO2, makes them great catalysts for the formation of OCs using CO2 and epoxides. In this review, we examine MOF-based catalytic materials for the cycloaddition of carbon dioxide to epoxides. Catalysts are grouped based on the location of catalytic sites, i.e., at the struts, nodes, defect sites, or some combination thereof. Additionally, important features of each catalyst system are critically discussed.

  13. Preparation and characterization of alumina supported nickel-oxalate catalyst for the hydrodeoxygenation of oleic acid into normal and iso-octadecane biofuel

    International Nuclear Information System (INIS)

    Ayodele, O.B.; Togunwa, Olayinka S.; Abbas, Hazzim F.; Daud, Wan Mohd Ashri Wan

    2014-01-01

    Highlights: • Preparation of nickel oxalate complex as catalyst precursor. • Incorporation of nickel oxalate complex into alumina support. • Characterization of the alumina supported nickel oxalate catalyst. • Hydrodeoxygenation of oleic acid with nickel oxalate catalyst. • Nickel oxalate catalyst reusability studies. - Abstract: In this study, nickel II oxalate complex (NiOx) was prepared by functionalization of nickel with oxalic acid (OxA) and incorporated into Al 2 O 3 to synthesize alumina supported nickel oxalate (NiOx/Al 2 O 3 ) catalyst for the hydrodeoxygenation (HDO) of oleic acid (OA) into biofuel. The synthesized NiOx/Al 2 O 3 was characterized and the X-ray fluorescence and elemental dispersive X-ray results showed that NiOx was successfully incorporated into the structure of Al 2 O 3 . The X-ray diffraction and Raman spectroscopy results confirmed that highly dispersed Ni species are present in the NiOx/Al 2 O 3 due to the functionalization with OxA. The catalytic activity of the NiOx/Al 2 O 3 on the HDO of OA produced a mixture of 21% iso-C18 and 72% n-C18 at a 360 °C, 20 bar, 30 mg NiOx/Al 2 O 3 loading pressure and gas flow rate of 100 mL/min. The presence of i-C 18 was ascribed to the OxA functionalization which increased the acidity of NiOx/Al 2 O 3 . The NiOx/Al 2 O 3 reusability study showed consistent HDO ability after 5 runs. These results are promising for further research into biofuel production for commercialization

  14. Inverting the diastereoselectivity of the mukaiyama-michael addition with graphite-based catalysts

    KAUST Repository

    Acocella, Maria Rosaria; Mauro, Marco; Falivene, Laura; Cavallo, Luigi; Guerra, Gaetano

    2014-01-01

    , the graphite-based catalysts described here invert the diastereoselectivity relative to that observed with known catalysts, with the unprecedented large prevalence of the anti diastereoisomer. This inverted diastereoselectivity is increased when the catalyst

  15. Biopropionic acid production via molybdenumcatalyzed deoxygenation of lactic acid

    NARCIS (Netherlands)

    Korstanje, T.J.; Kleijn, H.; Jastrzebski, J.T.B.H.; Klein Gebbink, R.J.M.

    2013-01-01

    As the search for non-fossil based building blocks for the chemical industry increases, new methods for the deoxygenation of biomass-derived substrates are required. Here we present the deoxygenation of lactic acid to propionic acid, using a catalyst based on the non-noble and abundant metal

  16. The combination of ascorbic acid 6-palmitate and [Fe III 3(µ3-O)]7+ as a catalyst for the oxidation of unsaturated lipids

    NARCIS (Netherlands)

    Micciche, F.; Long, G.J.; Shahin, A.M.; Grandjean, F.; Ming, W.; Haveren, van J.; Linde, van der R.

    2007-01-01

    Recently, iron 2-ethylhexanoate (Fe-eh, 1) in combination with ascorbic acid 6-palmitate (AsA6p) has been reported as a good catalytic system for the oxidation of ethyl linoleate (EL), an unsaturated lipid. In response to the fascinating chemistry of this bio-inspired iron-based catalyst the

  17. 3-[(3-(Trimethoxysilylpropylthio]propane-1-oxy-sulfonic acid: An efficient recyclable heterogeneous catalyst for the synthesis of 3,4-dihydropyrimidin-2(1H-ones/thiones

    Directory of Open Access Journals (Sweden)

    Srinivasa Rao Jetti

    2017-05-01

    Full Text Available An efficient method for the synthesis of 3,4-dihydropyrimidin-2(1H-ones and thiones through one-pot three-component reaction of ethyl acetoacetate, aryl aldehyde and urea or thiourea in ethanol using 3-[(3-(trimethoxysilylpropylthio]propane-1-oxy-sulfonic acid as catalyst is described. The use of 3-[(3-(trimethoxysilylpropylthio]propane-1-oxy-sulfonic acid as a catalyst offers several advantages such as high yields, short reaction times, mild reaction condition and a recyclable catalyst with a very easy work up.

  18. Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hanguang [Department; Hwang, Sooyeon [Center; Wang, Maoyu [School; Feng, Zhenxing [School; Karakalos, Stavros [Department; Luo, Langli [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Qiao, Zhi [Department; Xie, Xiaohong [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Wang, Chongmin [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Su, Dong [Center; Shao, Yuyan [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Wu, Gang [Department

    2017-09-26

    To significantly reduce the cost of proton exchange membrane (PEM) fuel cells, current Pt must be replaced by platinum-metal-group (PGM)-free catalysts for the oxygen reduction reaction (ORR) in acid. We report here a new class of high-performance atomic iron dispersed carbon catalysts through controlled chemical doping of iron ions into zinc-zeolitic imidazolate framework (ZIF), a type of metal-organic framework (MOF). The novel synthetic chemistry enables accurate size control of Fe-doped ZIF catalyst particles with a wide range from 20 to 1000 nm without changing chemical properties, which provides a great opportunity to increase the density of active sites that is determined by the particle size. We elucidated the active site formation mechanism by correlating the chemical and structural changes with thermal activation process for the conversion from Fe-N4 complex containing hydrocarbon networks in ZIF to highly active FeNx sites embedded into carbon. A temperature of 800oC was identified as the critical point to start forming pyridinic nitrogen doping at the edge of the graphitized carbon planes. Further increasing heating temperature to 1100oC leads to increase of graphitic nitrogen, generating possible synergistic effect with FeNx sites to promote ORR activity. The best performing catalyst, which has well-defined particle size around 50 nm and abundance of atomic FeNx sites embedded into carbon structures, achieve a new performance milestone for the ORR in acid including a half-wave potential of 0.85 V vs RHE and only 20 mV loss after 10,000 cycles in O2 saturated H2SO4 electrolyte. The new class PGM-free catalyst with approaching activity to Pt holds great promise for future PEM fuel cells.

  19. Direct synthesis of acid-base bifunctionalized hexagonal mesoporous silica and its catalytic activity in cascade reactions.

    Science.gov (United States)

    Shang, Fanpeng; Sun, Jianrui; Wu, Shujie; Liu, Heng; Guan, Jingqi; Kan, Qiubin

    2011-03-01

    A series of efficient acid-base bifunctionalized hexagonal mesoporous silica (HMS) catalysts contained aminopropyl and propanesulfonic acid have been synthesized through a simple co-condensation by protection of amino group. The results of small-angle XRD, TEM, and N(2) adsorption-desorption measurements show that the resultant materials have mesoscopic structures. X-ray photoelectron spectroscopies, elemental analysis (EA), back titration, (29)Si NMR and (13)C NMR confirm that the organosiloxanes were condensed as a part of the silica framework. The resultant catalysts exhibit excellent acid-basic properties, which make them possess high activity for one-pot deacetalization-Knoevenagel and deacetalization-nitroaldol (Henry) reactions. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Vapour phase dehydration of glycerol to acrolein over tungstated zirconia catalysts

    Science.gov (United States)

    Rao Ginjupalli, Srinivasa; Mugawar, Sowmya; Rajan N., Pethan; Kumar Balla, Putra; Chary Komandur, V. R.

    2014-08-01

    Tetragonal (TZ) and monoclinic (MZ) polymorphs of zirconia supports were synthesised by sol-gel method followed by variation of the calcination temperature. Tungstated (10 wt% WO3) supported on the zirconia polymorphs were prepared by impregnation method by using ammonium metatungstate precursor. The physico-chemical properties of the calcined catalysts were characterised by X-ray diffraction, UV-vis diffused reflectance spectroscopy, X-ray photoelectron spectroscopy (XPS), surface area and pore size distribution measurements to gain insight into the effect of morphology of the catalyst textural properties, and structure. The surface acidic properties have been determined by NH3 TPD method and also with FT-IR spectra of pyridine adsorption. Vapour phase dehydration of glycerol to acrolein was employed to investigate the catalytic functionalities. Glycerol conversion and acrolein selectivity was mainly dependent on the fraction of moderate acid sites with majority of them are due to Brønsted acidic sites. Monoclinic zirconia based catalysts have shown the highest activity and acrolein selectivity compared to the corresponding tetragonal zirconia catalysts.

  1. Vapour phase dehydration of glycerol to acrolein over tungstated zirconia catalysts

    International Nuclear Information System (INIS)

    Rao Ginjupalli, Srinivasa; Mugawar, Sowmya; Rajan, Pethan N.; Kumar Balla, Putra; Chary Komandur, V.R.

    2014-01-01

    Tetragonal (TZ) and monoclinic (MZ) polymorphs of zirconia supports were synthesised by sol–gel method followed by variation of the calcination temperature. Tungstated (10 wt% WO 3 ) supported on the zirconia polymorphs were prepared by impregnation method by using ammonium metatungstate precursor. The physico-chemical properties of the calcined catalysts were characterised by X-ray diffraction, UV–vis diffused reflectance spectroscopy, X-ray photoelectron spectroscopy (XPS), surface area and pore size distribution measurements to gain insight into the effect of morphology of the catalyst textural properties, and structure. The surface acidic properties have been determined by NH 3 TPD method and also with FT-IR spectra of pyridine adsorption. Vapour phase dehydration of glycerol to acrolein was employed to investigate the catalytic functionalities. Glycerol conversion and acrolein selectivity was mainly dependent on the fraction of moderate acid sites with majority of them are due to Brønsted acidic sites. Monoclinic zirconia based catalysts have shown the highest activity and acrolein selectivity compared to the corresponding tetragonal zirconia catalysts.

  2. Vapour phase dehydration of glycerol to acrolein over tungstated zirconia catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Rao Ginjupalli, Srinivasa; Mugawar, Sowmya; Rajan, Pethan N.; Kumar Balla, Putra; Chary Komandur, V.R., E-mail: kvrchary@iict.res.in

    2014-08-01

    Tetragonal (TZ) and monoclinic (MZ) polymorphs of zirconia supports were synthesised by sol–gel method followed by variation of the calcination temperature. Tungstated (10 wt% WO{sub 3}) supported on the zirconia polymorphs were prepared by impregnation method by using ammonium metatungstate precursor. The physico-chemical properties of the calcined catalysts were characterised by X-ray diffraction, UV–vis diffused reflectance spectroscopy, X-ray photoelectron spectroscopy (XPS), surface area and pore size distribution measurements to gain insight into the effect of morphology of the catalyst textural properties, and structure. The surface acidic properties have been determined by NH{sub 3} TPD method and also with FT-IR spectra of pyridine adsorption. Vapour phase dehydration of glycerol to acrolein was employed to investigate the catalytic functionalities. Glycerol conversion and acrolein selectivity was mainly dependent on the fraction of moderate acid sites with majority of them are due to Brønsted acidic sites. Monoclinic zirconia based catalysts have shown the highest activity and acrolein selectivity compared to the corresponding tetragonal zirconia catalysts.

  3. Recent progress of ordered mesoporous silica-supported chiral metallic catalysts

    Directory of Open Access Journals (Sweden)

    LIU Rui

    2013-02-01

    Full Text Available Recently,ordered silica-based mesoporous chiral organometallics-functionalized heterogeneous catalysts have attracted extensive research interest due to their excellent properties,such as easy preparation,high activity and convenient recycle.This review mainly summarizesthe generally prepared strategy and the silica-based organometallics-functionalized heterogeneous catalysts reported in the literatures.

  4. Effect of the Pd/MWCNTs anode catalysts preparation methods on their morphology and activity in a direct formic acid fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Lesiak, B., E-mail: blesiak-orlowska@ichf.edu.pl [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa (Poland); Mazurkiewicz, M.; Malolepszy, A. [Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warszawa (Poland); Stobinski, L. [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa (Poland); Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warszawa (Poland); Mierzwa, B.; Mikolajczuk-Zychora, A.; Juchniewicz, K.; Borodzinski, A. [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa (Poland); Zemek, J.; Jiricek, P. [Institute of Physics, Academy of Sciences of the Czech Republic, 162-53 Prague 6, Cukrovarnicka 10 (Czech Republic)

    2016-11-30

    Highlights: • Catalysts properties studied by XRD, STEM, XPS methods. • Differences in Pd particle size, content of Pd, functional groups, PdC{sub x.}. • Catalytic activity studied in a Direct Formic Acid Fuel Cell. • Highest activity–catalyst prepared using a strong reducing agent (NaBH{sub 4}). - Abstract: Impact of Pd/MWCNTs catalysts preparation method on the catalysts morphology and activity in a formic acid electrooxidation reaction was investigated. Three reduction methods of Pd precursor involving reduction in a high pressure microwave reactor (Pd1), reduction with NaBH{sub 4} (Pd2) and microwave-assisted polyol method (Pd3) were used in this paper. Crystallites size and morphology were studied using the scanning transmission electron microscopy (STEM), X-ray diffraction (XRD), whereas elemental composition, Pd chemical state and functional groups content by the X-ray photoelectron spectroscopy (XPS). The prepared catalysts were tested in a direct formic acid fuel cell (DFAFC) as an anode material. The catalytic activity was correlated with a mean fraction of the total Pd atoms exposed at the surface (FE). The value of FE was calculated from the crystallites size distribution determined by the STEM measurements. Non-linear dependence of a current density versus FE, approaching the maximum at FE≈0.25 suggests that the catalytic process proceeded at Pd nanocrystallites faces, with inactive edges and corners. Pd2 catalyst exhibited highest activity due to its smallest Pd crystallites (3.2 nm), however the absence of Pd crystallites aggregation and low content of carbon in PdC{sub x} phase, i.e. x = 4 at.% may also affect the observed.

  5. Effect of the Pd/MWCNTs anode catalysts preparation methods on their morphology and activity in a direct formic acid fuel cell

    International Nuclear Information System (INIS)

    Lesiak, B.; Mazurkiewicz, M.; Malolepszy, A.; Stobinski, L.; Mierzwa, B.; Mikolajczuk-Zychora, A.; Juchniewicz, K.; Borodzinski, A.; Zemek, J.; Jiricek, P.

    2016-01-01

    Highlights: • Catalysts properties studied by XRD, STEM, XPS methods. • Differences in Pd particle size, content of Pd, functional groups, PdC x. . • Catalytic activity studied in a Direct Formic Acid Fuel Cell. • Highest activity–catalyst prepared using a strong reducing agent (NaBH 4 ). - Abstract: Impact of Pd/MWCNTs catalysts preparation method on the catalysts morphology and activity in a formic acid electrooxidation reaction was investigated. Three reduction methods of Pd precursor involving reduction in a high pressure microwave reactor (Pd1), reduction with NaBH 4 (Pd2) and microwave-assisted polyol method (Pd3) were used in this paper. Crystallites size and morphology were studied using the scanning transmission electron microscopy (STEM), X-ray diffraction (XRD), whereas elemental composition, Pd chemical state and functional groups content by the X-ray photoelectron spectroscopy (XPS). The prepared catalysts were tested in a direct formic acid fuel cell (DFAFC) as an anode material. The catalytic activity was correlated with a mean fraction of the total Pd atoms exposed at the surface (FE). The value of FE was calculated from the crystallites size distribution determined by the STEM measurements. Non-linear dependence of a current density versus FE, approaching the maximum at FE≈0.25 suggests that the catalytic process proceeded at Pd nanocrystallites faces, with inactive edges and corners. Pd2 catalyst exhibited highest activity due to its smallest Pd crystallites (3.2 nm), however the absence of Pd crystallites aggregation and low content of carbon in PdC x phase, i.e. x = 4 at.% may also affect the observed.

  6. ALKALI RESISTANT CATALYST

    DEFF Research Database (Denmark)

    2008-01-01

    The present invention concerns the selective removal of nitrogen oxides (NOx) from gasses. In particular, the invention concerns a process, a catalyst and the use of a catalyst for the selective removal of nitrogen oxides in the presence of ammonia from gases containing a significant amount...... of alkali metal and/or alkali-earth compounds which process comprises using a catalyst combined of (i) a formed porous superacidic support, said superacidic support having an Hammett acidity stronger than Ho=-12, and (ii) a metal oxide catalytic component deposited on said superacidic support selected from...

  7. Supported zirconium sulfate on carbon nanotubes as water-tolerant solid acid catalyst

    International Nuclear Information System (INIS)

    Juan, Joon Ching; Jiang Yajie; Meng Xiujuan; Cao Weiliang; Yarmo, Mohd Ambar; Zhang Jingchang

    2007-01-01

    A new solid acid of zirconium sulfate (CZ) was successfully supported on carbon nanotube (CNT) for esterification reaction. Preparation conditions of the supported CZ have been investigated, to obtain highest catalytic activity for esterification reaction. XRD, TEM, BET, X-ray photoelectron spectra (XPS) and in situ FTIR analysis has also been carried out to understand the characteristics of the catalyst. In the esterification of acrylic acid with n-octanol, the supported CZ exhibited high catalytic activity and stability. The catalytic activity was nearly unchanged during four times of reuse. XRD and TEM analysis indicated that CZ was finely dispersed on CNT. XPS analysis shows that the CZ species was preserved and the chemical environment of the CZ has changed after loaded on CNT. This finding show that CNT as CZ support is an efficient water-tolerant solid acid

  8. Alkylation of isobutane by butenes on zirconium sulfate catalysts

    International Nuclear Information System (INIS)

    Lavrenov, A.V.; Perelevskij, E.V.; Finevich, V.P.; Zajkovskij, V.I.; Paukshtis, E.A.; Duplyakiv, V.K.; Bal'zhinimaev, B.S.

    2003-01-01

    Preparation of applied zirconium sulfate catalysts obtained by the method of impregnation is investigated. Results of comparative study of structural, acid-base and catalytic properties of sulfated zirconium dioxide applied on silica gel and aluminium oxide are represented. Intervals of values of synthesis basic parameters and characteristics of catalysts properties providing achievement of high activity and selectivity in isobutane alkylation by butenes in liquid phase are determined [ru

  9. Resin catalysts and method of preparation

    Science.gov (United States)

    Smith, L.A. Jr.

    1986-12-16

    Heat stabilized catalyst compositions are prepared from nuclear sulfonic acid, for example, macroporous crosslinked polyvinyl aromatic compounds containing sulfonic acid groups are neutralized with a metal of Al, Fe, Zn, Cu, Ni, ions or mixtures and alkali, alkaline earth metals or ammonium ions by contacting the resin containing the sulfonic acid with aqueous solutions of the metals salts and alkali, alkaline earth metal or ammonium salts. The catalysts have at least 50% of the sulfonic acid groups neutralized with metal ions and the balance of the sulfonic acid groups neutralized with alkali, alkaline earth ions or ammonium ions.

  10. Highly Efficient Procedure for the Synthesis of Fructone Fragrance Using a Novel Carbon based Acid

    Directory of Open Access Journals (Sweden)

    Xuezheng Liang

    2010-08-01

    Full Text Available The novel carbon based acid has been synthesized via one-step hydrothermal carbonization of furaldehyde and hydroxyethylsulfonic acid. A highly efficient procedure for the synthesis of fructone has been developed using the novel carbon based acid. The results showed that the catalyst possessed high activity for the reaction, giving a yield of over 95%. The advantages of high activity, stability, reusability and low cost for a simple synthesis procedure and wide applicability to various diols and β-keto esters make this novel carbon based acid one of the best choices for the reaction.

  11. Oxidative dehydrogenation of ethane on rare-earth oxide-based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Buyevskaya, O.; Baerns, M. [Institut fuer Angewandte Chemie Berlin-Adlershof e.V., Berlin (Germany)

    1998-12-31

    Results on the oxidative dehydrogenation of ethane on rare-earth oxide (REO) based catalysts (Na-P-Sm-O, Sm-Sr(Ca)-O, La-Sr-O and Nd-Sr-O) are described. Oxygen adsorption was found to be a key factor which determines the activity of this type of catalysts. Continuous flow experiments in the presence of catalysts which reveal strong oxygen adsorption showed that the reaction mixture is ignited resulting in an enhanced heat generation at the reactor inlet. The heat produced by the oxidative reactions was sufficient under the conditions chosen for the endothermic thermal pyrolysis which takes place preferentially in the gas phase. Ignition of the reaction mixture is an important catalyst function. Contrary to non-catalytic oxidative dehydrogenation, reaction temperatures above 700 C could be achieved without significant external heat input. Ethylene yields of up to 34-45% (S=66-73%) were obtained on REO-based catalysts under non-isothermal conditions (T{sub max}=810-865 C) at contact times in the order of 30 to 40 ms. (orig.)

  12. Catalytic upgrading of oleic acid into biofuel using Mo modified zeolite supported Ni oxalate catalyst functionalized with fluoride ion

    International Nuclear Information System (INIS)

    Ayodele, O.B.; Abbas, Hazzim F.; Daud, Wan Mohd Ashri Wan

    2014-01-01

    Highlights: • Modification of zeolite with freshly prepared molybdenum oxalate. • Functionalization of Ni oxalate with HF and incorporation into Mo modified zeolite. • Characterization of synthesized Mo modified zeolite supported Ni oxalate catalyst. • Deoxygenation of oleic acid with the synthesized zeolite supported catalyst. • Reusability study on the synthesized zeolite supported catalyst. - Abstract: In this study, fluoride ion functionalized nickel oxalate supported on molybdenum modified zeolite (NiMoFOx/Zeol) catalyst was synthesized, characterized and tested on the hydrodeoxygenation (HDO) of oleic acid (OA) into paraffinic fuel. The NiMoFOx/Zeol characterization results confirmed the presence of both Ni and Mo as well as the formation of NiMoO 4 which is a highly HDO reactive specie at 2θ value of 43.6° according to the XRD result. NiMoFOx/Zeol also showed loss in crystallinity and reduction in the average particle size leading to increase in the pore volume and specific surface area due to the combined effects of fluoride ion presence, oxalic acid functionalization and calcination. The effect of temperature, pressure and NiMoFOx/Zeol loading studied showed that initial increase in their values increased the yield of the target fractions until some points where reduction was observed. The best observed experimental conditions to hydrodeoxygenate 40 g (∼45 mL) of OA into 75% n-C 18 and 23% i-C 18 were 360 °C, 30 mg NiMoFOx/Zeol loading and 20 bar using 100 mL H 2 /min. The presence of i-C 18 was due to the functionalization of the catalyst with fluoride ion. The catalyst reusability result displayed excellent qualities with marginal loss of only 2% in activity after third reuse due to the improved synthesis protocol that employed organometallic precursor. The results are strongly encouraging for further studies toward industrialization of HDO process

  13. Esterification of Fatty Acids with Short-Chain Alcohols over Commercial Acid Clays in a Semi-Continuous Reactor

    Directory of Open Access Journals (Sweden)

    Mohamed H. Frikha

    2009-11-01

    Full Text Available Production of fatty acid esters from stearic, oleic, and palmitic acids and short-chain alcohols (methanol, ethanol, propanol, and butanol for the production of biodiesel was investigated in this work. A series of montmorillonite-based clays catalysts (KSF, KSF/0, KP10, and K10 were used as acidic catalysts. The influence of the specific surface area and the acidity of the catalysts on the esterification rate were investigated. The best catalytic activities were obtained with KSF/0 catalyst. The esterification reaction has been carried out efficiently in a semi-continuous reactor at 150°C temperature higher than the boiling points of water and alcohol. The reactor used enabled the continuous removal of water and esterification with hydrated alcohol (ethanol 95% without affecting the original activity of the clay.

  14. Development and reactivity tests of Ce-Zr-based Claus catalysts for coal gas cleanup

    Energy Technology Data Exchange (ETDEWEB)

    No-Kuk Park; Dong Cheul Han; Gi Bo Han; Si Ok Ryu; Tae Jin Lee; Ki Jun Yoon [Yeungnam University, Gyeongbuk (Republic of Korea). National Research Laboratory, School of Chemical Engineering and Technology

    2007-09-15

    Claus reaction (2H{sub 2}S + SO{sub 2} {leftrightarrow} 3/nS{sub n} + 2H{sub 2}O) was used to clean the gasified coal gas and the reactivity of several metal oxide-based catalysts on Claus reaction was investigated at various operating conditions. In order to convert H{sub 2}S contained in the gasified coal gas to elemental sulfur during Claus reaction, the catalysts having the high activity under the highly reducing condition with the moisture should be developed. CeO{sub 2}, ZrO{sub 2}, and Ce{sub 1-x}Zr{sub x}O{sub 2} catalysts were prepared for Claus reaction and their reactivity changes due to the existence of the reducing gases and H{sub 2}O in the fuel gas was investigated in this study. The Ce-based catalysts shows that their activity was deteriorated by the reduction of the catalyst due to the reducing gases at higher than 220{sup o}C. Meanwhile, the effect of the reducing gases on the catalytic activity was not considerable at low temperature. The activities of all three catalysts were degraded on the condition that the moisture existed in the test gas. Specifically, the Ce-based catalysts were remarkably deactivated by their sulfation. The Ce-Zr-based catalyst had a high catalytic activity when the reducing gases and the moisture co-existed in the simulated fuel gas. The deactivation of the Ce-Zr-based catalyst was not observed in this study. The lattice oxygen of the Ce-based catalyst was used for the oxidation of H{sub 2}S and the lattice oxygen vacancy on the catalyst was contributed to the reduction of SO{sub 2}. ZrO{sub 2} added to the Ce-Zr-based catalyst improved the redox properties of the catalyst in Claus reaction by increasing the mobility of the lattice oxygen of CeO{sub 2}. 21 refs., 14 figs.

  15. Characterization of three-way automotive catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kenik, E.A.; More, K.L. [Oak Ridge National Laboratory, TN (United States); LaBarge, W. [General Motors-AC Delco Systems, Flint, MI (United States)] [and others

    1995-05-01

    This has been the second year of a CRADA between General Motors - AC Delco Systems (GM-ACDS) and Martin Marietta Energy Systems (MMES) aimed at improved performance/lifetime of platinum-rhodium based three-way-catalysts (TWC) for automotive emission control systems. While current formulations meet existing emission standards, higher than optimum Pt-Rh loadings are often required. In additionk, more stringent emission standards have been imposed for the near future, demanding improved performance and service life from these catalysts. Understanding the changes of TWC conversion efficiency with ageing is a critical need in improving these catalysts.

  16. Solvent-Free Esterification of Carboxylic Acids Using Supported Iron Oxide Nanoparticles as an Efficient and Recoverable Catalyst

    Directory of Open Access Journals (Sweden)

    Fatemeh Rajabi

    2016-07-01

    Full Text Available Supported iron oxide nanoparticles on mesoporous materials (FeNP@SBA-15 have been successfully utilized in the esterification of a variety carboxylic acids including aromatic, aliphatic, and long-chain carboxylic acids under convenient reaction conditions. The supported catalyst could be easily recovered after reaction completion and reused several times without any loss in activity after up to 10 runs.

  17. Supramolecular water oxidation with Ru-bda-based catalysts.

    Science.gov (United States)

    Richmond, Craig J; Matheu, Roc; Poater, Albert; Falivene, Laura; Benet-Buchholz, Jordi; Sala, Xavier; Cavallo, Luigi; Llobet, Antoni

    2014-12-22

    Extremely slow and extremely fast new water oxidation catalysts based on the Ru-bda (bda=2,2'-bipyridine-6,6'-dicarboxylate) systems are reported with turnover frequencies in the range of 1 and 900 cycles s(-1) , respectively. Detailed analyses of the main factors involved in the water oxidation reaction have been carried out and are based on a combination of reactivity tests, electrochemical experiments, and DFT calculations. These analyses give a convergent interpretation that generates a solid understanding of the main factors involved in the water oxidation reaction, which in turn allows the design of catalysts with very low energy barriers in all the steps involved in the water oxidation catalytic cycle. We show that for this type of system π-stacking interactions are the key factors that influence reactivity and by adequately controlling them we can generate exceptionally fast water oxidation catalysts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. In situ fast pyrolysis of biomass with zeolite catalysts for bioaromatics/gasoline production: A review

    International Nuclear Information System (INIS)

    Galadima, Ahmad; Muraza, Oki

    2015-01-01

    Highlights: • Biomass upgrading by fast pyrolysis is an attractive bioaromatics production. • Zeolite catalysts are key important systems considered for the process. • Catalytic activity depend on zeolite structure, acidity and textural features. • Recent literature on the role of the zeolite catalysts critically tailored. • Hierarchical zeolites are prospective catalysts for industrial applications. - Abstract: The fast pyrolysis of biomass-based feedstocks is currently gaining considerable attention as an industrial and sustainable option for the production of gasoline-range bioaromatics. The complex composition of biomass molecules and a series of reactions involved during the upgrading process require the incorporation of sufficiently acidic and topological catalysts. This paper carefully documents and analyzes recent publications that have investigated the properties of zeolites to enhance the yield of bioaromatics during in situ fast pyrolysis. Issues related to the effects of zeolite’s textural, topological and acidic properties are critically examined. Factors responsible for catalyst deactivation and the mechanistic roles of the catalysts used are discussed. This paper also explores the prospects of hierarchical zeolites and municipal solid waste (MSW) as catalysts and feedstocks for the fast pyrolysis process.

  19. Systematically controlled pore system of ordered mesoporous carbons using phosphoric acid as the in situ generated catalysts for carbonization and activation

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Xing; Lee, Chang Hyun; Kim, Jin Hoe; You, Dae Jong; Shon, Jeong Kuk; Kim, Ji Man [Dept. of Chemistry, Sungkyunkwan University, Suwon (Korea, Republic of); Pak, Chan Ho [Fuel Cell Group, Corporate R and D Center, Samsung SDI Co. Ltd., Yongin (Korea, Republic of)

    2015-08-15

    We report on a facile synthesis of the ordered mesoporous carbon (OMC) materials with systematically controlled microporosity and mesoporosity simultaneously through the nano-replication route using phosphoric acid as the acid catalyst and activation agent. The use of phosphoric acid affects the pore structures of OMC materials, such as the formation of numerous micropores by activation of the carbon framework and the enlargement of mesopores by spontaneous phase separation during the carbonization. The mesopore sizes, surface areas, total pore volumes, and micropore volumes of the OMC materials are highly dependent on the phosphoric acid content and can be systematically controlled in the range 3.7–7.5 nm, 1027–2782 m{sup 2} g{sup -1}, 1.12–3.53 cm{sup 3} g{sup -1} and 0.34–0.95 cm{sup 3} g{sup -1}, respectively. OMC materials with systematically controlled pore structures were successfully synthesized using phosphoric acid as the carbonization catalyst and mesoporous silica materials with cubic Ia3d and 2-D hexagonal mesostructures as the templates. The phosphoric acid in the synthesis of ordered mesoporous carbon materials acts as the chemical activating agent for micropore generation of the carbon framework and pore-expanding agent for controlling of mesopore size, in addition to functioning as the acid catalyst. The present synthesis pathway is very useful for preparing OMC materials with tunable mesopore sizes and well-developed microporosities at the same time.

  20. Multiphase catalysts for selective reduction of NOx with hydrocarbons

    International Nuclear Information System (INIS)

    Maisuls, S.E.

    2000-01-01

    Among the existing proposed solutions to reduce emission of NOx there is a promising alternative, the so-called (HC-SCR) selective catalytic reduction of NOx using hydrocarbons as reductant. This thesis is part of a worldwide effort devoted to gain knowledge on the selective catalytic reduction of NOx with hydrocarbons with the final goal to contribute to the development of suitable catalysts for the above mentioned process. Chapter 2 describes the details of the experimental set-up and of the analytical methods employed. Among the catalyst for HC-SCR, Co-based catalyst are known to be active and selective, thus, a study on a series of Co-based catalysts, supported on zeolites, was undertaken and the results are presented in Chapter 3. Correlation between catalytic characteristics and kinetic results are employed to understand the working catalyst and this is used as a basis for catalyst optimization. With the intention to prepare a multi-functional catalyst that will preserve the desired characteristics of the individual components, minimizing their negative aspects, catalysts based on Co-Pt, supported on ZSM-5, were investigated. In Chapter 4 the results of this study are discussed. A bimetallic Co-Pt/ZSM-5 catalysts with low Pt contents (0.1 wt %) showed a synergistic effect by combining high stability and activity of Pt catalysts with the high N2 selectivity of Co catalysts. Furthermore, it was found to be sulfur- and water-tolerant. Its positive qualities brought us to study the mechanism that takes place over this catalyst during HC-SCR. The results of an in-situ i.r mechanistic study over this catalyst is reported in Chapter 5. From the results presented in Chapter 5 a mechanism operating over the Co-Pt/ZSM-5 catalyst is proposed. The modification of Co catalyst with Pt improved the catalysts. However, further improvement was found to be hindered by high selectivity to N2O. Since Rh catalysts are generally less selective to N2O, the modification of Co

  1. UTILIZATION OF CASSAVA WASTE IN THE PRODUCTION OF PLYWOOD ADHESIVE EKSTENDER WITH DEXTRIN (WITH ACID CATALYST

    Directory of Open Access Journals (Sweden)

    Piyantina Rukmini

    2017-10-01

    Full Text Available Abstract- Require of manihot Esculinta Crantz in Indonesia rises in every year as growth of Indonesian people, bioethanol industry,and animal food. Raw material that use in this research is cassava wastes. This research aimed to know the utilization of cassava waste, the optimum condition process of dextrin, and to know the variable that influent the utilization of cassava waste in the production of adhesive ekstender ( catalyst concentration and time. The dekstrin process need beaker glass, stirrer, electric stove with oilbatch heater, thermometer, screening 80 mesh. Cassava wastes that keep on several days is burned without water at 800 C for 1 hours. Then drops acid catalyst ion the beaker glass with different concentration. Then the temperature is raised until 1100C for 1 hour. After the drying process, make it cool then screen it in to screener 80 mesh. The results show that on the higher concentration of acid, dextrin will get on the higher concentration. At the certain concentration of acid, dekstrin will not get in the high concentration. Maximum efficiency of the concentration of acid is 0,8 N. Keeping long day for cassava waste can make lower the concentration of dextrin. The best keeping day is the first day until four day.

  2. UTILIZATION OF CASSAVA WASTE IN THE PRODUCTION OF PLYWOOD ADHESIVE EKSTENDER WITH DEXTRIN (WITH ACID CATALYST

    Directory of Open Access Journals (Sweden)

    Piyantina Rukmini

    2017-10-01

    Full Text Available Require of manihot Esculinta Crantz in Indonesia rises in every year as growth of Indonesian people, bioethanol industry,and animal food. Raw material that use in this research is cassava wastes. This research aimed to know the utilization of cassava waste, the optimum condition process of dextrin, and to know the variable that influent the utilization of cassava waste in the production of adhesive ekstender ( catalyst concentration and time. The dekstrin process need beaker glass, stirrer, electric stove with oilbatch heater, thermometer, screening 80 mesh. Cassava wastes that keep on several days is burned without water at 800 C for 1 hours. Then drops acid catalyst ion the beaker glass with different concentration. Then the temperature is raised until 1100C for 1 hour. After the drying process, make it cool then screen it in to screener 80 mesh. The results show that on the higher concentration of acid, dextrin will get on the higher concentration. At the certain concentration of acid, dekstrin will not get in the high concentration. Maximum efficiency of the concentration of acid is 0,8 N. Keeping long day for cassava waste can make lower the concentration of dextrin. The best keeping day is the first day until four day.

  3. Comparison of sodium borohydride hydrolysis kinetics on Co-based nanocomposite catalysts

    International Nuclear Information System (INIS)

    Hristov, Georgi; Chorbadzhiyska, Elitsa; Mitov, Mario; Rashkov, Rashko; Hubenova, Yolina

    2011-01-01

    In this study, we compared the results, obtained with several Co-based nanocomposites (CoMnB, CoNiMnB and CoNiMoW) produced by electrodeposition on Ni-foam, as catalysts for the sodium borohydride hydrolysis reaction. Based on the comparative analyses, we propose CoNiMnB electrodeposits as most suitable catalysts for development of Hydrogen-on-Demand (HOD) system, while CoNiMoW ones as potential anodes for Direct Borohydride Fuel Cells (DBFCs). Keywords: Hydrogen-on-Demand (HOD), Nanocomposites, Hydrolysis, Catalyst, Kinetic

  4. Co-Production of Electricity and Hydrogen Using a Novel Iron-based Catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Hilaly, Ahmad; Georgas, Adam; Leboreiro, Jose; Arora, Salil; Head, Megann; Trembly, Jason; Turk, Brian; Gupta, Raghubir

    2011-09-30

    The primary objective of this project was to develop a hydrogen production technology for gasification applications based on a circulating fluid-bed reactor and an attrition resistant iron catalyst. The work towards achieving this objective consisted of three key activities: Development of an iron-based catalyst suitable for a circulating fluid-bed reactor; Design, construction, and operation of a bench-scale circulating fluid-bed reactor system for hydrogen production; Techno-economic analysis of the steam-iron and the pressure swing adsorption hydrogen production processes. This report describes the work completed in each of these activities during this project. The catalyst development and testing program prepared and iron-based catalysts using different support and promoters to identify catalysts that had sufficient activity for cyclic reduction with syngas and steam oxidation and attrition resistance to enable use in a circulating fluid-bed reactor system. The best performing catalyst from this catalyst development program was produced by a commercial catalyst toll manufacturer to support the bench-scale testing activities. The reactor testing systems used during material development evaluated catalysts in a single fluid-bed reactor by cycling between reduction with syngas and oxidation with steam. The prototype SIP reactor system (PSRS) consisted of two circulating fluid-bed reactors with the iron catalyst being transferred between the two reactors. This design enabled demonstration of the technical feasibility of the combination of the circulating fluid-bed reactor system and the iron-based catalyst for commercial hydrogen production. The specific activities associated with this bench-scale circulating fluid-bed reactor systems that were completed in this project included design, construction, commissioning, and operation. The experimental portion of this project focused on technical demonstration of the performance of an iron-based catalyst and a

  5. Hydrotreatment of heavy oil from coal liquefaction on Sulfide Ni - W Catalysts

    International Nuclear Information System (INIS)

    Zhi-ping Lei; Li-juan Gao; Heng-fu Shui; Shi-biao, Ren; Zhi-cai Wang; Kang-shi Gang

    2011-01-01

    Heavy oil (distillation temperature: 320-340 deg C) derived from the direct coal liquefaction process using Shengli coal were hydrotreated using sulfided Ni-Mo/Al 2 O 3 , Ni-W/Al 2 O 3 , and Ni-W/SiO 2 catalysts respectively. The sulfided catalysts were characterized by BET, XRD, H 2 -TPR and NH 3 -TPD respectively. The evaluations of the hydrodenitrogenation (HDN) and hydrodearomatization (HDA) properties of heavy oil on the three catalysts were carried out at 400 deg C and 5.0 MPa initial H2 pressure. The W-based catalysts displayed better performances than Mo-based catalysts for the HDN and HDA reactions. Al 2 O 3 supported catalysts were found to have higher catalytic activities than on SiO 2 supported ones. The activities of sulfided catalysts were associated mainly with the nature of active sites, acidity, metal sulfide crystallite size and the amount of the reducible sulfur species of metal sulfide. (author)

  6. Esterification of phenyl acetic acid with p-cresol using metal cation exchanged montmorillonite nanoclay catalysts.

    Science.gov (United States)

    Bhaskar, M; Surekha, M; Suma, N

    2018-02-01

    The liquid phase esterification of phenyl acetic acid with p -cresol over different metal cation exchanged montmorillonite nanoclays yields p -cresyl phenyl acetate. Different metal cation exchanged montmorillonite nanoclays (M n +  = Al 3+ , Zn 2+ , Mn 2+ , Fe 3+ , Cu 2+ ) were prepared and the catalytic activity was studied. The esterification reaction was conducted by varying molar ratio of the reactants, reaction time and catalyst amount on the yield of the ester. Among the different metal cation exchanged catalysts used, Al 3+ -montmorillonite nanoclay was found to be more active. The characterization of the material used was studied under different techniques, namely X-ray diffraction, scanning electron microscopy and thermogravimetric analysis. The product obtained, p -cresyl phenyl acetate, was identified by thin-layer chromotography and confirmed by Fourier transform infrared, 1 H NMR and 13 C NMR. The regeneration activity of used catalyst was also investigated up to fourth generation.

  7. Process for Making a Noble Metal on Tin Oxide Catalyst

    Science.gov (United States)

    Davis, Patricia; Miller, Irvin; Upchurch, Billy

    2010-01-01

    To produce a noble metal-on-metal oxide catalyst on an inert, high-surface-area support material (that functions as a catalyst at approximately room temperature using chloride-free reagents), for use in a carbon dioxide laser, requires two steps: First, a commercially available, inert, high-surface-area support material (silica spheres) is coated with a thin layer of metal oxide, a monolayer equivalent. Very beneficial results have been obtained using nitric acid as an oxidizing agent because it leaves no residue. It is also helpful if the spheres are first deaerated by boiling in water to allow the entire surface to be coated. A metal, such as tin, is then dissolved in the oxidizing agent/support material mixture to yield, in the case of tin, metastannic acid. Although tin has proven especially beneficial for use in a closed-cycle CO2 laser, in general any metal with two valence states, such as most transition metals and antimony, may be used. The metastannic acid will be adsorbed onto the high-surface-area spheres, coating them. Any excess oxidizing agent is then evaporated, and the resulting metastannic acid-coated spheres are dried and calcined, whereby the metastannic acid becomes tin(IV) oxide. The second step is accomplished by preparing an aqueous mixture of the tin(IV) oxide-coated spheres, and a soluble, chloride-free salt of at least one catalyst metal. The catalyst metal may be selected from the group consisting of platinum, palladium, ruthenium, gold, and rhodium, or other platinum group metals. Extremely beneficial results have been obtained using chloride-free salts of platinum, palladium, or a combination thereof, such as tetraammineplatinum (II) hydroxide ([Pt(NH3)4] (OH)2), or tetraammine palladium nitrate ([Pd(NH3)4](NO3)2).

  8. Titanium Dioxide as a Catalyst Support in Heterogeneous Catalysis

    Science.gov (United States)

    Bagheri, Samira; Muhd Julkapli, Nurhidayatullaili; Bee Abd Hamid, Sharifah

    2014-01-01

    The lack of stability is a challenge for most heterogeneous catalysts. During operations, the agglomeration of particles may block the active sites of the catalyst, which is believed to contribute to its instability. Recently, titanium oxide (TiO2) was introduced as an alternative support material for heterogeneous catalyst due to the effect of its high surface area stabilizing the catalysts in its mesoporous structure. TiO2 supported metal catalysts have attracted interest due to TiO2 nanoparticles high activity for various reduction and oxidation reactions at low pressures and temperatures. Furthermore, TiO2 was found to be a good metal oxide catalyst support due to the strong metal support interaction, chemical stability, and acid-base property. The aforementioned properties make heterogeneous TiO2 supported catalysts show a high potential in photocatalyst-related applications, electrodes for wet solar cells, synthesis of fine chemicals, and others. This review focuses on TiO2 as a support material for heterogeneous catalysts and its potential applications. PMID:25383380

  9. Bio diesel synthesis from pongamia pinnata oil over modified CeO2 catalysts

    International Nuclear Information System (INIS)

    Venkatesh; Sathgatta Z, M. S.; Manjunatha, S.; Thammannigowda V, V.

    2014-01-01

    This study investigates the use of CeO 2 , ZrO 2 , Mg O and CeO 2 -ZrO 2 , CeO 2 -Mg O, CeO 2 -ZrO 2 -Mg O mixed oxides as solid base catalysts for the transesterification of Pongamia pinnata oil with methanol to produce bio diesel. SO 4 2- /CeO 2 and SO 4 2- /CeO 2 -ZrO 2 were also prepared and used as solid acid catalysts for esterification of Pongamia pinnata oil (P-oil) to reduce the % of free fatty acid (FFA) in P-oil. The oxide catalysts were prepared by an incipient wetness impregnation method and characterized by techniques such as NH 3 -Tpd for surface acidity, CO 2 -Tpd for surface basicity and powder X-ray diffraction for crystallinity. The effect of nature of the catalyst, methanol to P-oil molar ratio and reaction time in esterification as well as in transesterification was investigated. The catalytic materials were reactive d and reused for five reaction cycles and the results showed that the ceria based catalysts have reasonably good reusability both in esterification and transesterification reaction. The test results also revealed that the CeO 2 -ZrO 2 modified with Mg O could have potential for use in the large scale bio diesel production. (Author)

  10. Characterization and Regeneration of Pt-Catalysts Deactivated in Municipal Waste Flue Gas

    DEFF Research Database (Denmark)

    Rasmussen, Søren Birk; Kustov, Arkadii; Due-Hansen, Johannes

    2006-01-01

    Severe deactivation was observed for industrially aged catalysts used in waste incineration plants and tested in lab-scale. Possible compounds that cause deactivation of these Pt-based CO oxidation catalysts have been studied. Kinetic observations of industrial and model catalysts showed...... that siloxanes were the most severe catalyst poisons, although acidic sulfur compounds also caused deactivation. Furthermore, a method for on-site regeneration without shutdown of the catalytic flue gas cleaning system has been developed, i.e. an addition of H-2/N-2 gas to the off-gas can completely restore...... the activity of the deactivated catalysts. (c) 2006 Elsevier B.V. All rights reserved....

  11. Brown algae hydrolysis in 1-n-butyl-3-methylimidazolium chloride with mineral acid catalyst system.

    Science.gov (United States)

    Malihan, Lenny B; Nisola, Grace M; Chung, Wook-Jin

    2012-08-01

    The amenability of three brown algal species, Sargassum fulvellum, Laminaria japonica and Undaria pinnatifida, to hydrolysis were investigated using the ionic liquid (IL), 1-n-butyl-3-methylimidazolium chloride ([BMIM]Cl). Compositional analyses of the brown algae reveal that sufficient amounts of sugars (15.5-29.4 wt.%) can be recovered. Results from hydrolysis experiments show that careful selection of the type of mineral acid as catalyst and control of acid loading could maximize the recovery of sugars. Optimal reaction time and temperature were determined from the kinetic studies on the sequential reducing sugar (TRS) formation and degradation. Optimal reaction times were determined based on the extent of furfurals formation as TRS degradation products. X-ray diffraction and environmental scanning electron microscopy confirmed the suitability of [BMIM]Cl as solvent for the hydrolysis of the three brown algae. Overall results show the potential of brown algae as renewable energy resources for the production of valuable chemicals and biofuels. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Hydroisomerization of n-dodecane over Pt/Al-MCM-48 catalysts.

    Science.gov (United States)

    Yun, Soyoung; Park, Young-Kwon; Jeong, Soon-Yong; Han, Jeongsik; Jeon, Jong-Ki

    2014-04-01

    The objective of this study is to evaluate the catalytic potential of Pt/Al-MCM-48 catalysts in hydroisomerization of n-dodecane. The effects of the Si/Al ratio and platinum loading on the acid characteristics of Al-MCM-48 and the catalytic performance in n-dodecane hydroisomerization were analyzed. The catalysts were characterized by X-ray diffraction, nitrogen adsorption, infrared spectroscopy of pyridine adsorption, and temperature programmed desorption of ammonia. The number of weak strength acid sites on Al-MCM-48 increased with 0.5 wt% platinum loading. The weak strength acid sites of Pt/Al-MCM-48 catalysts were ascribed to Lewis acid sites, which can be confirmed by NH3-TPD and FTIR spectra of pyridine adsorption. Iso-dodecane can be produced with high selectivity in n-dodecane hydrosisomerization over Pt/Al-MCM-48 catalysts. This is attributed to the mild acidic properties of Pt/Al-MCM-48 catalysts.

  13. Evaluation of mechanical properties in metal wire mesh supported selective catalytic reduction (SCR) catalyst structures

    Science.gov (United States)

    Rajath, S.; Siddaraju, C.; Nandakishora, Y.; Roy, Sukumar

    2018-04-01

    The objective of this research is to evaluate certain specific mechanical properties of certain stainless steel wire mesh supported Selective catalytic reduction catalysts structures wherein the physical properties of the metal wire mesh and also its surface treatments played vital role thereby influencing the mechanical properties. As the adhesion between the stainless steel wire mesh and the catalyst material determines the bond strength and the erosion resistance of catalyst structures, surface modifications of the metal- wire mesh structure in order to facilitate the interface bonding is therefore very important to realize enhanced level of mechanical properties. One way to enhance such adhesion properties, the stainless steel wire mesh is treated with the various acids, i.e., chromic acid, phosphoric acid including certain mineral acids and combination of all those in various molar ratios that could generate surface active groups on metal surface that promotes good interface structure between the metal- wire mesh and metal oxide-based catalyst material and then the stainless steel wire mesh is dipped in the glass powder slurry containing some amount of organic binder. As a result of which the said catalyst material adheres to the metal-wire mesh surface more effectively that improves the erosion profile of supported catalysts structure including bond strength.

  14. Heteropoly acid encapsulated into zeolite imidazolate framework (ZIF-67) cage as an efficient heterogeneous catalyst for Friedel–Crafts acylation

    Energy Technology Data Exchange (ETDEWEB)

    Ammar, Muhammad; Jiang, Sai; Ji, Shengfu, E-mail: jisf@mail.buct.edu.cn

    2016-01-15

    A new strategy has been developed for the encapsulation of the phosphotungstic heteropoly acid (H{sub 3}PW{sub 12}O{sub 40} denoted as PTA) into zeolite imidazolate framework (ZIF-67) cage and the PTA@ZIF-67(ec) catalysts with different PTA content were prepared. The structure of the catalysts was characterized by XRD, BET, SEM, FT-IR, ICP-AES and TG. The catalytic activity and recovery properties of the catalysts for the Friedel-Crafts acylation of anisole with benzoyl chloride were evaluated. The results showed that 14.6–31.7 wt% PTA were encapsulated in the ZIF-67 cage. The PTA@ZIF-67(ec) catalysts had good catalytic activity for Friedel-Crafts acylation. The conversion of anisole can reach ~100% and the selectivity of the production can reach ~94% over 26.5 wt% PTA@ZIF-67(ec) catalyst under the reaction condition of 120 °C and 6 h. After reaction, the catalyst can be easily separated from the reaction mixture by the centrifugation. The recovered catalyst can be reused five times and the selectivity can be kept over 90%. - Graphical abstract: The PTA@ZIF-67 catalysts with different PTA content were prepared by encapsulating the PTA into ZIF-67 cage and the as-synthesized catalysts exhibited good catalytic activity for the Friedel–Craft acylation of anisole with benzoyl chloride.

  15. Effect of thermal treatment conditions on properties of vanadium molybdenum oxide catalyst in acrolein oxidation reaction to acrylic acid

    International Nuclear Information System (INIS)

    Gorshkova, T.P.; Tarasova, D.V.; Olen'kova, I.P.; Andrushkevich, T.V.; Nikoro, T.A.

    1984-01-01

    The effect of thermal treatment conditions (temperature and gas medium) on properties of vanadium molybdenum oxide catalyst in acrolein oxidation reaction to acrylic acid is investigated. It is shown that active and selective catalysts are formed in the course of thermal decomposition of the drying product of ammonium metavanadate and paramolybdate under the conditions ensuring the vanadium ion reduction up to tetravalent state with conservation of molybdenum oxidation degree equal to 6. It is possible to realize it either by treatment of the catalyst calcinated in the air flow at 300 deg by the reaction mixture at the activation stage or by gas-reducer flow treatment at 280 deg. Thermal treatment in the reducing medium of the oxidized catalyst does not lead to complete regeneration of its properties

  16. Transesterification of linoleic and oleic sunflower oils to biodiesel using CaO as a solid base catalyst

    Directory of Open Access Journals (Sweden)

    Predojević Zlatica

    2012-01-01

    Full Text Available The purpose of this work is to characterize biodiesel (i.e. methyl esters, MEs produced from linoleic and oleic sunflower oils (LSO and OSO, respectively by alkali transesterification with methanol and CaO as a heterogeneous catalyst under different reaction parameters. The parameters investigated were the methanol/oil molar ratio (4.5:1, 6:1, 7.5:1, 9:1 and 12:1 and the mass ratio of CaO to oil (2% and 3%. The physical and chemical properties of the feedstocks and MEs, like density at 15oC, kinematic viscosity at 40oC, acid value, iodine value, saponification value, cetane index, fatty acid (methyl ester composition, were determined in order to investigate the effects of LSO and OSO properties and reaction parameters on the product characteristics, yields and purity. The properties of feedstock had decisive effect on the physical and chemical properties of MEs as majority of them did not differ significantly under studied reaction conditions. The MEs produced generally met the criteria required for commercial biodiesel; in fact, the only exception was in the case of iodine value of ME produced from LSO. The product yields only slightly changed with the applied conditions; the highest yield (99.22% was obtained for ME-LSO produced at 6 mol% methanol to oil ratio, while the lowest one (93.20% was for ME-OSO produced under the lowest methanol/oil molar ratio (4.5:1. The applied catalyst amounts had similar influence on the oil conversion to biodiesel. The yields of ME-LSOs were in general somewhat higher than those obtained for ME-OSOs under the same conditions, which was attributed to the influence of the respective feedstocks' acid value and viscosity.

  17. Effect of Surface Modification by Chelating Agents on Fischer- Tropsch Performance of Co/SiO{sub 2} Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Bambal, Ashish S.; Kugler, Edwin L.; Gardner, Todd H.; Dadyburjor, Dady B.

    2013-11-14

    The silica support of a Co-based catalyst for Fischer-Tropsch (FT) synthesis was modified by the chelating agents (CAs) nitrilotriacetic acid (NTA) and ethylenediaminetetraacetic acid (EDTA). After the modification, characterization of the fresh and spent catalysts show reduced crystallite sizes, a better-dispersed Co₃O₄ phase on the calcined samples, and increased metal dispersions for the reduced samples. The CA-modified catalysts display higher CO conversions, product yields, reaction rates and rate constants. The improved FT performance of CA-modified catalysts is attributed to the formation of stable complexes with Co. The superior performance of the EDTA-modified catalyst in comparison to the NTA-modified catalyst is due to the higher affinity of the former for complex formation with Co ions.

  18. In-Water and Neat Batch and Continuous-Flow Direct Esterification and Transesterification by a Porous Polymeric Acid Catalyst

    OpenAIRE

    Heeyoel Baek; Maki Minakawa; Yoichi M. A. Yamada; Jin Wook Han; Yasuhiro Uozumi

    2016-01-01

    A porous phenolsulphonic acid?formaldehyde resin (PAFR) was developed. The heterogeneous catalyst PAFR was applied to the esterification of carboxylic acids and alcohols, affording the carboxylic acid esters in a yield of up to 95% where water was not removed from the reaction mixture. Surprisingly, the esterification in water as a solvent proceeded to afford the desired esters in high yield. PAFR provided the corresponding esters in higher yield than other homogeneous and heterogeneous catal...

  19. Electrochemical characterization of nano-sized Pd-based catalysts as cathode materials in direct methanol fuel cells.

    Science.gov (United States)

    Choi, M; Han, C; Kim, I T; An, J C; Lee, J J; Lee, H K; Shim, J

    2011-01-01

    To improve the catalytic activity of palladium (Pd) as a cathode catalyst in direct methanol fuel cells (DMFCs), we prepared palladium-titanium oxide (Pd-TiO2) catalysts which the Pd and TiO2 nanoparticles were simultaneously impregnated on carbon. We selected Pd and TiO2 as catalytic materials because of their electrochemical stability in acid solution. The crystal structure and the loading amount of Pd and TiO2 on carbon were characterized by X-ray diffraction (XRD) and energy dispersive X-ray microanalysis (EDX). The electrochemical characterization of Pd-TiO2/C catalysts for the oxygen reduction reaction was carried out in half and single cell systems. The catalytic activities of the Pd-TiO2 catalysts were strongly influenced by the TiO2 content. In the single cell test, the Pd-TiO2 catalysts showed very comparable performance to the Pt catalyst.

  20. Methanetrisulfonic Acid: A Highly Efficient Strongly Acidic Catalyst for Wagner-Meerwein Rearrangement, Friedel-Crafts Alkylation and Acylation Reactions. Examples from Vitamin E Synthesis

    Directory of Open Access Journals (Sweden)

    Francesco Pace

    2009-04-01

    Full Text Available Methanetrisulfonic acid had been prepared for the first time over 140 years ago, but it was used only scarcely in chemical transformations. In the course of our activities dealing with key-steps of industrial syntheses of vitamins, e.g. economically important vitamin E (acetate, we found that methanetrisulfonic acid is an extremely effective catalyst in a variety of reactions. Examples of its applications are Wagner-Meerwein rearrangements, Friedel-Crafts alkylations and ring closures, as well as acylation reactions. Use of this catalyst in truly catalytic amounts (0.04-1.0 mol% resulted in highly selective transformations and yields over 95%. (Remark by the authors: We are describing only one example each for the various types of reactions. Therefore, it would be more appropriate to write (here and in the Introduction and in the Conclusion sections: “Wagner-Meerwein rearrangement, Friedel-Crafts alkylation and ring closure, as well as acylation reactions”

  1. Improved synthesis of isostearic acid using zeolite catalysts

    Science.gov (United States)

    Isostearic acids are unique and important biobased products with superior properties. Unfortunately, they are not widely utilized in industry because they are produced as byproducts from a process called clay-catalyzed oligomerization of tall oil fatty acids. Generally, this clay method results in...

  2. Synthesis of fatty acid methyl ester from the transesterification of high- and low-acid-content crude palm oil (Elaeis guineensis) and karanj oil (Pongamia pinnata) over a calcium-lanthanum-aluminum mixed-oxides catalyst.

    Science.gov (United States)

    Syamsuddin, Y; Murat, M N; Hameed, B H

    2016-08-01

    The synthesis of fatty acid methyl ester (FAME) from the high- and low-acid-content feedstock of crude palm oil (CPO) and karanj oil (KO) was conducted over CaO-La2O3-Al2O3 mixed-oxide catalyst. Various reaction parameters were investigated using a batch reactor to identify the best reaction condition that results in the highest FAME yield for each type of oil. The transesterification of CPO resulted in a 97.81% FAME yield with the process conditions of 170°C reaction temperature, 15:1 DMC-to-CPO molar ratio, 180min reaction time, and 10wt.% catalyst loading. The transesterification of KO resulted in a 96.77% FAME yield with the conditions of 150°C reaction temperature, 9:1 DMC-to-KO molar ratio, 180min reaction time, and 5wt.% catalyst loading. The properties of both products met the ASTM D6751 and EN 14214 standard requirements. The above results showed that the CaO-La2O3-Al2O3 mixed-oxide catalyst was suitable for high- and low-acid-content vegetable oil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Development of Non-Noble Metal Ni-Based Catalysts for Dehydrogenation of Methylcyclohexane

    KAUST Repository

    Shaikh Ali, Anaam

    2016-01-01

    to TOL has only been achieved using the noble Pt-based catalysts. The aim of this study is to develop non-noble, cost-effective metal catalysts that can show excellent catalytic performance, mainly maintaining high TOL selectivity achievable by Pt based

  4. The black rock series supported SCR catalyst for NO x removal.

    Science.gov (United States)

    Xie, Bin; Luo, Hang; Tang, Qing; Du, Jun; Liu, Zuohua; Tao, Changyuan

    2017-09-01

    Black rock series (BRS) is of great potential for their plenty of valued oxides which include vanadium, iron, alumina and silica oxides, etc. BRS was used for directly preparing of selective catalytic reduction (SCR) catalyst by modifying its surface texture with SiO 2 -TiO 2 sols and regulating its catalytic active constituents with V 2 O 5 and MoO 3 . Consequently, 90% NO removal ratio was obtained within 300-400 °C over the BRS-based catalyst. The structure and properties of the BRS-based catalyst were characterized by the techniques of N 2 adsorption-desorption, X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), H 2 -temperature programmed reduction (H 2 -TPR), and NH 3 -temperature programmed desorption (NH 3 -TPD). The results revealed that the BRS-based catalyst possesses favorable properties for NO x removal, including highly dispersed active components, abundant surface-adsorbed oxygen O α , well redox property, and numerous Brønsted acid sites. Particularly, the BRS-based catalyst exhibited considerable anti-poisoning performance compared with commercial TiO 2 -based catalyst. The former catalyst shows a NO conversion surpassing 80% from 300 to 400 °C for potassium poisoning, and a durability of SO 2 and H 2 O exceeding 85% at temperatures from 300 to 450 °C.

  5. Durability Issues of High Temperature Proton Exchange Membrane Fuel Cells Based on Acid Doped Polybenzimidazole Membranes

    DEFF Research Database (Denmark)

    . As a critical concern, issues of long term durability of PBI based fuel cells are addressed in this talk, including oxidative degradation of the polymer, mechanical failures of the membrane, acid leaching out, corrosion of carbon support and sintering of catalysts particles. Excellent polymer durability has...... or ionically cross-linking and structure modification With load, thermal or startup-shutdown cycling, the performance loss was found to be much bigger, about 300 µV per cycle or 40 µV per operating hour, due to the increased acid loss and catalyst support corrosion, particularly under open circuit voltage...... operation. Further efforts are outlined to the future work....

  6. Selective methane chlorination to methyl chloride by zeolite Y-based catalysts

    Science.gov (United States)

    Joo, Hyeonho; Kim, Daeho; Lim, Kwang Soo; Choi, Yong Nam; Na, Kyungsu

    2018-03-01

    The CH4 chlorination over Y zeolites was investigated to produce CH3Cl in a high yield. Three different catalytic systems based on Y zeolite were tested for enhancement of CH4 conversion and CH3Cl selectivity: (i) HY zeolites in H+-form having various Si/Al ratios, (ii) Pt/HY zeolites supporting Pt metal nanoparticles, (iii) Pt/NaY zeolites in Na+-form supporting Pt metal nanoparticles. The reaction was carried out using the gas mixture of CH4 and Cl2 with the respective flow rates of 15 and 10 mL min-1 at 300-350 °C using a fixed-bed reactor under a continuous gas flow condition (gas hourly space velocity = 3000 mL g-1 h-1). Above the reaction temperature of 300 °C, the CH4 chlorination is spontaneous even in the absence of catalyst, achieving 23.6% of CH4 conversion with 73.4% of CH3Cl selectivity. Under sufficient supplement of thermal energy, Cl2 molecules can be dissociated to two chlorine radicals, which triggered the C-H bond activation of CH4 molecule and thereby various chlorinated methane products (i.e., CH3Cl, CH2Cl2, CHCl3, CCl4) could be produced. When the catalysts were used under the same reaction condition, enhancement in the CH4 conversion was observed. The Pt-free HY zeolite series with varied Si/Al ratios gave around 27% of CH4 conversion, but there was a slight decrease in CH3Cl selectivity with about 64%. Despite the difference in acidity of HY zeolites having different Si/Al ratios, no prominent effect of the Si/Al ratios on the catalytic performance was observed. This suggests that the catalytic contribution of HY zeolites under the present reaction condition is not strong enough to overcome the spontaneous CH4 chlorination. When the Pt/HY zeolite catalysts were used, the CH4 conversion reached further up to 30% but the CH3Cl selectivity decreased to 60%. Such an enhancement of CH4 conversion could be attributed to the strong catalytic activity of HY and Pt/HY zeolite catalysts. However, both catalysts induced the radical cleavage of Cl2

  7. Gas chromatography and silver-ion high-performance liquid chromatography analysis of conjugated linoleic acid isomers in free fatty acid form using sulphuric acid in methanol as catalyst.

    Science.gov (United States)

    Luna, Pilar; Juárez, Manuela; de la Fuente, Miguel Angel

    2008-09-12

    This study used GC and silver-ion HPLC to examine the effects of temperature and time on methylation of individual and mixtures of conjugated linoleic acid (CLA) isomers in free fatty acid form using sulphuric acid as catalyst. In the conditions tested (temperatures between 20 and 50 degrees C and times between 10 and 60 min) methylation was complete while avoiding isomerization of conjugated dienes and the formation of artefacts that could interfere with chromatographic determinations. An analytical method using solvent extraction of the lipids followed by selective elution of the free fatty acids from aminopropyl bonded phase columns and methylation with H(2)SO(4) in mild conditions was then applied to determine the CLA isomers in free fatty acid form in rumen fluid, and the results were evaluated.

  8. Alternative deNOx catalysts and technologies

    DEFF Research Database (Denmark)

    Due-Hansen, Johannes

    The present thesis entitled Alternative deNOx Catalysts and technologies revolves around the topic of removal of nitrogen oxides. Nitrogen oxides, NOx, are unwanted byproducts formed during combustion (e.g. in engines or power plants). If emitted to the atmosphere, they are involved...... in the formation of acid rain and photochemical smog. Some basic concepts and reactions regarding the formation and removal of NOx are presented in chapter 1 and 2. Two approaches are undertaken in the present work to reduce the emission of NOx: by means of catalytic removal, and by NO absorption in ionic liquids....... The commercial catalyst used for the selective catalytic reduction (SCR) of nitrogen oxides exhibits high activity and selectivity towards N2. However, the vanadia-titania-based catalyst used is very sensitive to deactivation by alkali-species (primarily potassium), which are typically present in high amounts...

  9. Alkali-Resistant Mechanism of a Hollandite DeNOx Catalyst.

    Science.gov (United States)

    Hu, Pingping; Huang, Zhiwei; Gu, Xiao; Xu, Fei; Gao, Jiayi; Wang, Yue; Chen, Yaxin; Tang, Xingfu

    2015-06-02

    A thorough understanding of the deactivation mechanism by alkalis is of great importance for rationally designing improved alkali-resistant deNOx catalysts, but a traditional ion-exchange mechanism cannot often accurately describe the nature of the deactivation, thus hampering the development of superior catalysts. Here, we establish a new exchange-coordination mechanism on the basis of the exhaustive study on the strong alkali resistance of a hollandite manganese oxide (HMO) catalyst. A combination of isothermal adsorption measurements of ammonia with X-ray absorption near-edge structure spectra and X-ray photoelectron spectra reveals that alkali metal ions first react with protons from Brønsted acid sites of HMO via the ion exchange. Synchrotron X-ray diffraction patterns and extended X-ray absorption fine structure spectra coupled with theoretical calculations demonstrate that the exchanged alkali metal ions are subsequently stabilized at size-suitable cavities in the HMO pores via a coordination model with an energy savings. This exchange-coordination mechanism not only gives a wholly convincing explanation for the intrinsic nature of the deactivation of the reported catalysts by alkalis but also provides a strategy for rationally designing improved alkali-resistant deNOx catalysts in general.

  10. Catalytic Hydrogenation of Levulinic Acid in Water into g-Valerolactone over Bulk Structure of Inexpensive Intermetallic Ni-Sn Alloy Catalysts

    Directory of Open Access Journals (Sweden)

    Rodiansono Rodiansono

    2015-07-01

    Full Text Available A bulk structure of inexpensive intermetallic nickel-tin (Ni-Sn alloys catalysts demonstrated highly selective in the hydrogenation of levulinic acid in water into g-valerolactone. The intermetallic Ni-Sn catalysts were synthesized via a very simple thermochemical method from non-organometallic precursor at low temperature followed by hydrogen treatment at 673 K for 90 min. The molar ratio of nickel salt and tin salt was varied to obtain the corresponding Ni/Sn ratio of 4.0, 3.0, 2.0, 1.5, and 0.75. The formation of Ni-Sn alloy species was mainly depended on the composition and temperature of H2 treatment. Intermetallics Ni-Sn that contain Ni3Sn, Ni3Sn2, and Ni3Sn4 alloy phases are known to be effective heterogeneous catalysts for levulinic acid hydrogenation giving very excellence g-valerolactone yield of >99% at 433 K, initial H2 pressure of 4.0 MPa within 6 h. The effective hydrogenation was obtained in H2O without the formation of by-product. Intermetallic Ni-Sn(1.5 that contains Ni3Sn2 alloy species demonstrated very stable and reusable catalyst without any significant loss of its selectivity. © 2015 BCREC UNDIP. All rights reserved. Received: 26th February 2015; Revised: 16th April 2015; Accepted: 22nd April 2015  How to Cite: Rodiansono, R., Astuti, M.D., Ghofur, A., Sembiring, K.C. (2015. Catalytic Hydrogenation of Levulinic Acid in Water into g-Valerolactone over Bulk Structure of Inexpensive Intermetallic Ni-Sn Alloy Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (2: 192-200. (doi:10.9767/bcrec.10.2.8284.192-200Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.2.8284.192-200  

  11. Leaching of vanadium from sulphuric acid manufacture spent catalysts

    Directory of Open Access Journals (Sweden)

    García, Diego Juan

    2001-02-01

    Full Text Available Recovery of vanadium contained in spent catalysts from the manufacture of sulphuric acid has been studied in this work, resulting in an industrial multistage process for the treatment of them avoiding direct deposition or dumping. Characterization of supplied spent catalysts samples, confirmed vanadium levels showed in the literature. The study of variables influencing leaching process: type of leaching agent, leaching agent concentration, S/L ratio, stirring speed and temperature, allows to fix the most advantageous conditions using industrial application criterion and verifying that the process is difusión controlled. The work is completed by developing an industrial leaching cycle simulation with the aim of reproducing real performance of spent catalyst, proposing operating conditions, and verifying the non-toxic character of the final residue obtained.

    En el presente trabajo se ha estudiado la recuperación del vanadio contenido en los catalizadores agotados procedentes de la fabricación del ácido sulfúrico, planteando un proceso industrial multietapa para el tratamiento de estos residuos, evitando su deposición o vertido directos. La caracterización de las muestras de catalizadores agotados disponibles confirmó los valores encontrados en la bibliografía. Se estudiaron las variables que influyen en el proceso de lixiviación (tipo de agente de lixiviación y concentración del mismo, relación S/L, velocidad de agitación y temperatura definiendo las condiciones más adecuadas desde el punto de vista industrial y verificando que el proceso está controlado por mecanismos difusionales. El trabajo se completa con la simulación de un ciclo industrial de lavado del catalizador y la verificación de la nula toxicidad de los lixiviados obtenidos por degradación del residuo final. 24 Aplicación de la resistencia de ruido al estudio de pinturas ricas en zinc Noise resistance applied to the study of zinc rich paints

  12. Impeded solid state reactions and transformations in ceramic catalysts supports and catalysts

    Directory of Open Access Journals (Sweden)

    Ernő E. Kiss

    2012-12-01

    Full Text Available Impeded chemical reactions and impeded polymorphous transformation in materials are discussed, as desired effects, for stabilization of ceramic catalyst supports and ceramic based catalysts. This paper gives a short overview about the possibilities of slowing down the aging processes in ceramic catalyst supports and catalysts. Special attention is given to alumina and titania based catalysts.

  13. In situ FTIRS study of ethanol electro-oxidation on anode catalysts in direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Q.; Sun, G.; Jiang, L.; Zhu, M.; Yan, S.; Wang, G.; Xin, Q. [Chinese Academy of Sciences, Dalian (China). Dalian Inst. of Chemical Physics; Chen, Q.; Li, J.; Jiang, Y.; Sun, S. [Xiamen Univ., Xiamen (China). State Key Lab. for Physical Chemistry of Solid Surfaces

    2006-07-01

    The low activation of ethanol oxidation at lower temperatures is an obstacle to the development of cost-effective direct ethanol fuel cells (DEFCs). This study used a modified polyol method to prepare carbon-supported platinum (Pt) based catalysts. Carbon supported Pt-based catalysts were fabricated by a modified polyol method and characterized through transmission electron spectroscopy (TEM) and X-ray diffraction (XRD). Results of the study showed that the particles in the Pt/C and PtRu/C and PtSn/C catalysts were distributed on the carbon support uniformly. Diffraction peaks of the Pt shifted positively in the PtRu/C catalysts and negatively in the PtSn/C catalysts. In situ Fourier Transform Infra-red spectroscopy (FTIR) was used to investigate the adsorption and oxidation process of ethanol on the catalysts. Results showed that the electrocatalytic activity of ethanol oxidation on the materials was enhanced. Linear bonded carbon monoxide (CO) was the most strongly absorbed species, and the main products produced by the catalysts were carbon dioxide (CO{sub 2}), acetaldehyde, and acetic acid. Results showed that the PtRu/C catalyst broke the C-C bond more easily than the Pt/C and PtSn/C compounds. However, the results of a linear sweep voltammogram analysis showed that ethanol oxidation of the PtSn/C was enhanced. Bands observed on the compound indicated the formation of acetic acid and acetaldehyde. It was concluded that the enhancement of PtSn/C for ethanol oxidation was due to the formation of acetic acid and acetaldehyde at lower potentials. 4 refs., 1 fig.

  14. Tailoring the Synergistic Bronsted-Lewis acidic effects in Heteropolyacid catalysts: Applied in Esterification and Transesterification Reactions

    OpenAIRE

    Tao, Meilin; Xue, Lifang; Sun, Zhong; Wang, Shengtian; Wang, Xiaohong; Shi, Junyou

    2015-01-01

    In order to investigate the influences of Lewis metals on acidic properties and catalytic activities, a series of Keggin heteropolyacid (HPA) catalysts, HnPW11MO39 (M = TiIV, CuII, AlIII, SnIV, FeIII, CrIII, ZrIV and ZnII; for Ti and Zr, the number of oxygen is 40), were prepared and applied in the esterification and transesterification reactions. Only those cations with moderate Lewis acidity had a higher impact. Ti Substituted HPA, H5PW11TiO40, posse lower acid content compared with TixH3−4...

  15. Ultrasound-assisted oxidative desulfurization process of liquid fuel by phosphotungstic acid encapsulated in a interpenetrating amine-functionalized Zn(II)-based MOF as catalyst.

    Science.gov (United States)

    Afzalinia, Ahmad; Mirzaie, Abbas; Nikseresht, Ahmad; Musabeygi, Tahereh

    2017-01-01

    In this work, ultrasound-assisted oxidative desulfurization (UAOD) of liquid fuels performed with a novel heterogeneous highly dispersed Keggin-type phosphotungstic acid (H 3 PW 12 O 40 , PTA) catalyst that encapsulated into an amino-functionalized MOF (TMU-17-NH 2 ). The prepared composite exhibits high catalytic activity and reusability in oxidative desulfurization of model fuel. Ultrasound-assisted oxidative desulfurization (UAOD) is a new way to performed oxidation reaction of sulfur-contain compounds rapidly, economically, environment-friendly and safely, under mild conditions. Ultrasound waves can be apply as an efficient tool to decrease the reaction time and improves oxidative desulfurization system performance. PTA@TMU-17-NH 2 could be completely performed desulfurization of the model oil by 20mg of catalyst, O/S molar ratio of 1:1 in presence of MeCN as extraction solvent. The obtained results indicated that the conversions of DBT to DBTO 2 achieve 98% after 15min in ambient temperature. In this work, we prepared TMU-17-NH 2 and PTA/TMU-17-NH 2 composite by ultrasound irradiation for first time and employed in UAOD process. Prepared catalyst exhibit an excellent reusability without PTA leaching and loss of activity. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Different catalysts for new polyols for rigid PUR-PIR foams

    Directory of Open Access Journals (Sweden)

    Liszkowska Joanna

    2015-12-01

    Full Text Available New polyols were synthesized with 2-hydroxypropane-1.2.3-tricarboxylic acid and butane-1,4-diol (1.4-BD. The synthesis was performed using different catalysts in the amount of 0.1%. Used catalyst: Tyzor TPT, tin(II acetate, sulfuric(IV acid. The fourth reaction was conducted without the use of a catalyst. The polyols’ properties were evaluated with regards to the usefulness in rigid polyurethane-polyisocyanurate (PUR-PIR foams (acid value, density, pH and solubility, FTIR spectra. Based on the research, it was evaluated that only the polyol synthesized using Tyzor TPT (E6 was useful in production of rigid PUR-PIR foams. Its hydroxyl number was 496 mgKOH/g and its viscosity was about 14 552 mPa · s. A series of five foams P6.1–P6.5 was produced with this polyol. Rigid foams test results indicated that the amount of this compound in the foam substantially affects its compressive strength, density and their retention. The foams have low brittleness values.

  17. Bimetallic catalysts for continuous catalytic wet air oxidation of phenol.

    Science.gov (United States)

    Fortuny, A; Bengoa, C; Font, J; Fabregat, A

    1999-01-29

    Catalytic wet oxidation has proved to be effective at eliminating hazardous organic compounds, such as phenol, from waste waters. However, the lack of active long-life oxidation catalysts which can perform in aqueous phase is its main drawback. This study explores the ability of bimetallic supported catalysts to oxidize aqueous phenol solutions using air as oxidant. Combinations of 2% of CoO, Fe2O3, MnO or ZnO with 10% CuO were supported on gamma-alumina by pore filling, calcined and later tested. The oxidation was carried out in a packed bed reactor operating in trickle flow regime at 140 degrees C and 900 kPa of oxygen partial pressure. Lifetime tests were conducted for 8 days. The pH of the feed solution was also varied. The results show that all the catalysts tested undergo severe deactivation during the first 2 days of operation. Later, the catalysts present steady activity until the end of the test. The highest residual phenol conversion was obtained for the ZnO-CuO, which was significantly higher than that obtained with the 10% CuO catalyst used as reference. The catalyst deactivation is related to the dissolution of the metal oxides from the catalyst surface due to the acidic reaction conditions. Generally, the performance of the catalysts was better when the pH of the feed solution was increased.

  18. Catalytic Upgrading of 5-Hydroxymethylfurfural to Drop-in Biofuels by Solid Base and Bifunctional Metal-Acid Catalysts.

    Science.gov (United States)

    Bohre, Ashish; Saha, Basudeb; Abu-Omar, Mahdi M

    2015-12-07

    Design and synthesis of effective heterogeneous catalysts for the conversion of biomass intermediates into long chain hydrocarbon precursors and their subsequent deoxygenation to hydrocarbons is a viable strategy for upgrading lignocellulose into distillate range drop-in biofuels. Herein, we report a two-step process for upgrading 5-hydroxymethylfurfural (HMF) to C9 and C11 fuels with high yield and selectivity. The first step involves aldol condensation of HMF and acetone with a water tolerant solid base catalyst, zirconium carbonate (Zr(CO3 )x ), which gave 92 % C9 -aldol product with high selectivity at nearly 100 % HMF conversion. The as-synthesised Zr(CO3 )x was analysed by several analytical methods for elucidating its structural properties. Recyclability studies of Zr(CO3 )x revealed a negligible loss of its activity after five consecutive cycles over 120 h of operation. Isolated aldol product from the first step was hydrodeoxygenated with a bifunctional Pd/Zeolite-β catalyst in ethanol, which showed quantitative conversion of the aldol product to n-nonane and 1-ethoxynonane with 40 and 56 % selectivity, respectively. 1-Ethoxynonane, a low oxygenate diesel range fuel, which we report for the first time in this paper, is believed to form through etherification of the hydroxymethyl group of the aldol product with ethanol followed by opening of the furan ring and hydrodeoxygenation of the ether intermediate. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Efficient aspartic acid production by a psychrophile-based simple biocatalyst.

    Science.gov (United States)

    Tajima, Takahisa; Hamada, Mai; Nakashimada, Yutaka; Kato, Junichi

    2015-10-01

    We previously constructed a Psychrophile-based Simple bioCatalyst (PSCat) reaction system, in which psychrophilic metabolic enzymes are inactivated by heat treatment, and used it here to study the conversion of aspartic acid from fumaric acid mediated by the activity of aspartate ammonia-lyase (aspartase). In Escherichia coli, the biosynthesis of aspartic acid competes with that of L-malic acid produced from fumaric acid by fumarase. In this study, E. coli aspartase was expressed in psychrophilic Shewanella livingstonensis Ac10 heat treated at 50 °C for 15 min. The resultant PSCat could convert fumaric acid to aspartic acid without the formation of L-malic acid because of heat inactivation of psychrophilic fumarase activity. Furthermore, alginate-immobilized PSCat produced high yields of aspartic acid and could be re-used nine times. The results of our study suggest that PSCat can be applied in biotechnological production as a new approach to increase the yield of target compounds.

  20. Characterization of alumina supported molybdenum catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Pastura, N M; Carmo, L M.P.M.; Sachett, C M.M.; Lam, Y L [Instituto Militar de Engenharia, Rio de Janeiro (Brazil). Secao de Quimica

    1983-10-01

    In order to optimize a bifunctional catalyst (acid and hydrogenating) of Mo/Al/sub 2/O/sub 3/, oxygen adsorption at 195 K and ethanol dehydration at 480-520 K were carried out using a series of these catalysts. The increase of Mo content increased the quantity of adsorbed oxygen, thus indicating that the number of hydrogenating sites also increased. The specific activity of ethanol dehydration varied slightly, indicating that the number of acid sites remains almost constant. On the other hand, the selectivity in ethylene (versus ether) increased markedly. This may be attributed to the increase in acid force of the acid sites.

  1. Characterization of alumina supported molybdenum catalysts

    International Nuclear Information System (INIS)

    Pastura, N.M.; Carmo, L.M.P.M.; Sachett, C.M.M.; Lam, Y.L.

    1983-01-01

    In order to optimize a bifunctional catalyst (acid and hydrogenating) of Mo/Al 2 O 3 , oxygen adsorption at 195 K and ethanol dehydration at 480-520 K were carried out using a series of these catalysts. The increase of Mo content increased the quantity of adsorbed oxygen, thus indicating that the number of hydrogenating sites also increased. The specific activity of ethanol dehydration varied slightly, indicating that the number of acid sites remains almost constant. On the other hand, the selectivity in ethylene (versus ether) increased markedly. This may be attributed to the increase in acid force of the acid sites. (C.L.B.) [pt

  2. Continuous synthesis of Oleyl Oleate in supercritical carbon oxide using solid p-Toluenesulfonic Acid as catalyst

    International Nuclear Information System (INIS)

    Ghaziaskar, H.; Ikushima, Y.

    2000-01-01

    Supercritical carbon dioxide (Sc-CO 2 ) was used as solvent to synthesize oleyl oleate as an analog of Jojoba oil from oleic acid and oleyl alcohol with high conversion (100%) of the acid into ester in a short time of 100 min. Utilizing a low cost solid catalyst, p-toluenesulfonic acid monohydrate , the esterification reaction was performed, without any prior preparation step, in a flow mode, at a pressure of 147 bar and a temperature of 60 d eg C. This method seems industrially suitable for the production of oleyl oleate. The solubility of a mixture of oleyl alcohol and oleic acid in Sc-CO 2 were also measured to calculate the alcohol to acid ratio and the esterification yield

  3. Synthesis of biodiesel from pongamia oil using heterogeneous ion-exchange resin catalyst.

    Science.gov (United States)

    Jaya, N; Selvan, B Karpanai; Vennison, S John

    2015-11-01

    Biodiesel is a clean-burning renewable substitute fuel for petroleum. Biodiesel could be effectively produced by transesterification reaction of triglycerides of vegetable oils with short-chain alcohols in the presence of homogeneous or heterogeneous catalysts. Conventionally, biodiesel manufacturing processes employ strong acids or bases as catalysts. But, separation of the catalyst and the by-product glycerol from the product ester is too expensive to justify the product use as an automobile fuel. Hence heterogeneous catalysts are preferred. In this study, transesterification of pongamia oil with ethanol was performed using a solid ion-exchange resin catalyst. It is a macro porous strongly basic anion exchange resin. The process parameters affecting the ethyl ester yield were investigated. The reaction conditions were optimized for the maximum yield of fatty acid ethyl ester (FAEE) of pongamia oil. The properties of FAEE were compared with accepted standards of biodiesel. Engine performance was also studied with pongamia oil diesel blend and engine emission characteristics were observed. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Synthesis H-Zeolite catalyst by impregnation KI/KIO3 and performance test catalyst for biodiesel production

    Science.gov (United States)

    Widayat, W.; Rizky Wicaksono, Adit; Hakim Firdaus, Lukman; Okvitarini, Ndaru

    2016-02-01

    The objective of this research is to produce H-catalyst catalyst that was impregnated with KI/KIO3. The catalyst was analyzed about surface area, X-Ray Diffraction (XRD) and performance test of catalyst for biodiesel production. An H-Zeolite catalyst was synthesized from natural zeolite with chemical treatment processing, impregnation KI/KIO3 and physical treatment. The results shows that the surface area of the catalyst by 27.236 m2/g at a concentration of 5% KI. XRD analysis shows peak 2-θ at 23.627o indicating that KI was impregnated on H-zeolite catalyst. The catalyst was tested in production of biodiesel using palm oil with conventional methods for 3 hour at temperature of 70-80 oC. The result for conversion Fatty Acid Methyl Ester (FAME) reached maximum value on 87.91% under production process using catalyst 5% KIO3-H zeolite.

  5. Reusability and Stability Tests of Calcium Oxide Based Catalyst (K2O/CaO-ZnO for Transesterification of Soybean Oil to Biodiesel

    Directory of Open Access Journals (Sweden)

    Istadi Istadi

    2016-03-01

    Full Text Available This paper was purposed for testing reusability and stability of calcium oxide-based catalyst (K2O/CaO-ZnO over transesterification reaction of soybean oil with methanol to produce biodiesel. The K2O/CaO-ZnO catalyst was synthesized by co-precipitation method of calcium and zinc nitrates followed by impregnation of potassium nitrate. The fresh and used catalysts were tested after regeneration. The catalysts were characterized by Scanning Electron Microscopy (SEM, X-ray Diffraction (XRD, and BET Surface Area in order to compare the catalyst structure between the fresh and used catalysts. The catalyst testing in transesterification proses was carried out at following operating conditions, i.e. catalyst weight of 6 wt.%, oil to methanol mole ratio of 1:15, and temperature of 60 oC. In addition, metal oxide leaching of K2O/CaO-ZnO catalyst during reaction was also tested. From the results, the catalysts exhibited high catalytic activity (80% fatty acid methyl ester (FAME yield after three-cycles of usage and acceptable reusability after regeneration. The catalyst also showed acceptable stability of catalytic activity, even after three-cycles of usage. Copyright © 2016 BCREC GROUP. All rights reserved Received: 10th November 2015; Revised: 16th January 2016; Accepted: 16th January 2016 How to Cite: Istadi, I., Mabruro, U., Kalimantini, B.A.,  Buchori, L., Anggoro, D.D. (2016. Reusability and Stability Tests of Calcium Oxide Based Catalyst (K2O/CaO-ZnO for Transesterification of Soybean Oil to Biodiesel. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (1: 34-39. (doi:10.9767/bcrec.11.1.413.34-39 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.1.413.34-39

  6. Synthesis and Characterization of Tin (IV Tungstate Nanoparticles – A Solid Acid Catalyst

    Directory of Open Access Journals (Sweden)

    Manoj Sadanandan

    2012-12-01

    Full Text Available Tin (IV tungstate, a tetravalent metal acid salt was synthesized in the nanoform by chemical coprecipitation method using EDTA as capping agent. The material was found to be stable in mineral acids, bases and organic solvents except  in HF and aquaregia. The material was characterized using EDS, TG/DTA, FTIR, XRD, SEM, HRTEM and BET surface area measurement. The molecular formula of the compound is 2SnO2 3WO3.5H2O determined from elemental analysis using TG/DTA. Surface morphology and particle size were obtained using SEM and HRTEM. The surface area was found to be 205-225m2/g. The Na+ exchange capacity found to be 3.8 meq/g, indicates the presence of surface hydroxyl group and hence the presence of Bronsted acid sites. The catalytic activity of the material was tested by using esterification and oxidation as model reactions. For the esterification of different alcohols, the percentage yield was found to be high for n-alcohol compared to isomeric alcohols. Oxidation of benzyl alcohol gives benzaldehyde and benzoic acid as the only products. Copyright © 2012 by BCREC UNDIP. All rights reservedReceived: 12nd June 2012, Revised: 23rd July 2012, Accepted: 29th July 2012[How to Cite: S. Manoj, R. Beena, (2012. Synthesis and Characterization of tin(IV Tungstate Nanoparticles – A Solid Acid Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (2: 105-111. doi:10.9767/bcrec.7.2.3622.105-111] [How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.2.3622.105-111 ] | View in 

  7. Synthesis of Dicyclopentadiene Oligomer Over Nanoporous Al-MCM-41 Catalysts.

    Science.gov (United States)

    Park, Eunseo; Kim, Jinhan; Yim, Jin-Heong; Han, Jeongsik; Kwon, Tae Soo; Park, Y K; Jeon, Jong-Ki

    2016-05-01

    One step reaction composed of DCPD oligomerization and DCPD oligomer isomerization was investigated over nanoporous Al-MCM-41 catalysts. The effects of aluminum grafting over MCM-41 on the catalyst characteristics were studied with respect to the synthesis of TCPD isomer. Physical and chemical properties of the catalysts were analyzed by N2 adsorption, temperature-programmed desorption of ammonia, and infrared spectroscopy of adsorbed pyridine. The overall number of acid sites as well as the number of Lewis acid sites increased with increasing of aluminum content over MCM-41. When utilizing MCM-41 and Al-MCM-41 as the catalyst, DCPD oligomerization reaction activity greatly increased compared to the thermal reaction. The highest TCPD isomer selectivity over the Al-MCM-41 catalyst with the highest aluminum content could be ascribed to the largest amount of acid sites. This study showed an increased level of TCPD isomer selectivity by an increasing level of Lewis acid sites through aluminum addition over MCM-41.

  8. Hydrotreatment of heavy oil from coal liquefaction on Sulfide Ni - W Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Zhi-ping Lei; Li-juan Gao; Heng-fu Shui; Shi-biao, Ren; Zhi-cai Wang; Kang-shi Gang, E-mail: shhf@ahut.edu.c [Anhui University of Technology, Maanshan (China). School of Chemistry and Chemical Engineering. Anhui Key Lab. of Coal Clean Conversion and Utilization

    2011-07-01

    Heavy oil (distillation temperature: 320-340 deg C) derived from the direct coal liquefaction process using Shengli coal were hydrotreated using sulfided Ni-Mo/Al{sub 2}O{sub 3}, Ni-W/Al{sub 2}O{sub 3}, and Ni-W/SiO{sub 2} catalysts respectively. The sulfided catalysts were characterized by BET, XRD, H{sub 2}-TPR and NH{sub 3}-TPD respectively. The evaluations of the hydrodenitrogenation (HDN) and hydrodearomatization (HDA) properties of heavy oil on the three catalysts were carried out at 400 deg C and 5.0 MPa initial H2 pressure. The W-based catalysts displayed better performances than Mo-based catalysts for the HDN and HDA reactions. Al{sub 2}O{sub 3} supported catalysts were found to have higher catalytic activities than on SiO{sub 2} supported ones. The activities of sulfided catalysts were associated mainly with the nature of active sites, acidity, metal sulfide crystallite size and the amount of the reducible sulfur species of metal sulfide. (author)

  9. Methanol conversion to hydrocarbons using modified clinoptilolite catalysts. Investigation of catalyst lifetime and reactivation

    Energy Technology Data Exchange (ETDEWEB)

    Hutchings, G J; Themistocleous, T; Copperthwaite, R G

    1988-10-17

    A study of the deactivation and reactivation of modified clinoptilolite catalysts for methanol conversion to hydrocarbons is reported. Clinoptilolite catalysts, modified by either ammonium ion exchange or hydrochloric acid treatment, exhibit a short useful catalyst lifetime for this reaction (ca. 2-3 h) due to a high rate of coke deposition (3-5.10/sup -3/ g carbon/g catalyst/h). A comparative study of reactivation using oxygen, nitrous oxide and ozone/oxygen as oxidants indicated that nitrous oxide reactivation gives improved catalytic performance when compared to the activity and lifetime of the fresh catalyst. Both oxygen and ozone/oxygen were found to be ineffective for the reactivation of clinoptilolite. Initial studies of in situ on-line reactivation are also described. 3 figs., 15 refs., 4 tabs.

  10. Supramolecular water oxidation with rubda-based catalysts

    KAUST Repository

    Richmond, Craig J.; Matheu, Roc; Poater, Albert; Falivene, Laura; Benet-Buchholz, Jordi; Sala, Xavier; Cavallo, Luigi; Llobet, Antoni A.

    2014-01-01

    Extremely slow and extremely fast new water oxidation catalysts based on the Rubda (bda = 2,2′-bipyri-dine-6,6′-dicarboxylate) systems are reported with turnover frequencies in the range of 1 and 900 cycless"1, respectively. Detailed analyses

  11. Strategies for improving the performance and stability of Ni-based catalysts for reforming reactions.

    Science.gov (United States)

    Li, Shuirong; Gong, Jinlong

    2014-11-07

    Owing to the considerable publicity that has been given to petroleum related economic, environmental, and political problems, renewed attention has been focused on the development of highly efficient and stable catalytic materials for the production of chemical/fuel from renewable resources. Supported nickel nanoclusters are widely used for catalytic reforming reactions, which are key processes for generating synthetic gas and/or hydrogen. New challenges were brought out by the extension of feedstock from hydrocarbons to oxygenates derivable from biomass, which could minimize the environmental impact of carbonaceous fuels and allow a smooth transition from fossil fuels to a sustainable energy economy. This tutorial review describes the recent efforts made toward the development of nickel-based catalysts for the production of hydrogen from oxygenated hydrocarbons via steam reforming reactions. In general, three challenges facing the design of Ni catalysts should be addressed. Nickel nanoclusters are apt to sinter under catalytic reforming conditions of high temperatures and in the presence of steam. Severe carbon deposition could also be observed on the catalyst if the surface carbon species adsorbed on metal surface are not removed in time. Additionally, the production of hydrogen rich gas with a low concentration of CO is a challenge using nickel catalysts, which are not so active in the water gas shift reaction. Accordingly, three strategies were presented to address these challenges. First, the methodologies for the preparation of highly dispersed nickel catalysts with strong metal-support interaction were discussed. A second approach-the promotion in the mobility of the surface oxygen-is favored for the yield of desired products while promoting the removal of surface carbon deposition. Finally, the process intensification via the in situ absorption of CO2 could produce a hydrogen rich gas with low CO concentration. These approaches could also guide the design

  12. Deoxyribonucleic acid directed metallization of platinum nanoparticles on graphite nanofibers as a durable oxygen reduction catalyst for polymer electrolyte fuel cells

    Science.gov (United States)

    Peera, S. Gouse; Sahu, A. K.; Arunchander, A.; Nath, Krishna; Bhat, S. D.

    2015-11-01

    Effective surface functionalization to the hydrophobic graphite nanofibers (GNF) is performed with the biomolecule, namely deoxy-ribo-nucleic-acid (DNA) via π-π interactions. Pt nanoparticles are impregnated on GNF-DNA composite by ethylene glycol reduction method (Pt/GNF-DNA) and its effect on electro catalytic activity for oxygen reduction reaction (ORR) is systemically studied. Excellent dispersion of Pt nanoparticles over GNF-DNA surfaces with no evidence on particle aggregation is a remarkable achievement in this study. This result in higher electro chemical surface area of the catalyst, enhanced ORR behavior with significant enhancement in mass activity. The catalyst is validated in H2-O2 polymer electrolyte fuel cell (PEFC) and a peak power density of 675 mW cm-2 is achieved at a load current density of 1320 mA cm-2 with a minimal catalyst loading of 0.1 mg cm-2 at a cell temperature of 70 °C and 2 bar absolute pressure. Repeated potential cycling up to 10000 cycles in acidic media is also performed for this catalyst and found excellent stability with only 60 mV drop in the ORR half wave potential. The superior behavior of Pt/GNF-DNA catalyst is credited to the robust fibrous structure of GNF and its effective surface functionalization process via π-π interaction.

  13. The Effect of Acidic and Redox Properties of V2O5/CeO2-ZrO2 Catalysts in Selective Catalytic Reduction of NO by NH3

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Riisager, Anders; Fehrmann, Rasmus

    2009-01-01

    V2O5 supported ZrO2 and CeO2–ZrO2 catalysts were prepared and characterized by N2 physisorption, XRPD, TPR, and NH3-TPD methods. The influence of calcination temperature from 400 to 600 °C on crystallinity, acidic and redox properties were studied and compared with the catalytic activity...... in the selective catalytic reduction (SCR) of NO with ammonia. The surface area of the catalysts decreased gradually with increasing calcination temperature. The SCR activity of V2O5/ZrO2 catalysts was found to be related with the support crystallinity, whereas V2O5/CeO2–ZrO2 catalysts were also dependent...... on acidic and redox properties of the catalyst. The V2O5/CeO2–ZrO2 catalysts showed high activity and selectivity for reduction of NO with NH3....

  14. The Deoxygenation Pathways of Palmitic Acid into Hydrocarbons on Silica-Supported Ni12P5 and Ni2P Catalysts

    Directory of Open Access Journals (Sweden)

    Wenjun Zhou

    2018-04-01

    Full Text Available Pure Ni12P5/SiO2 and pure Ni2P/SiO2 catalysts were obtained by adjusting the Ni and P molar ratios, while Ni/SiO2 catalyst was prepared as a reference against which the deoxygenation pathways of palmitic acid were investigated. The catalysts were characterized by N2 adsorption, X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, transmission election microscopy (TEM, infrared spectroscopy of pyridine adsorption (Py-IR, H2-adsorption and temperature-programmed desorption of hydrogen (H2-TPD. The crystallographic planes of Ni(111, Ni12P5(400, Ni2P(111 were found mainly exposed on the above three catalysts, respectively. It was found that the deoxygenation pathway of palmitic acid mainly proceeded via direct decarboxylation (DCO2 to form C15 on Ni/SiO2. In contrast, on the Ni12P5/SiO2 catalyst, there were two main competitive pathways producing C15 and C16, one of which mainly proceeded via the decarbonylation (DCO to form C15 accompanying water formation, and the other pathway produced C16 via the dehydration of hexadecanol intermediate, and the yield of C15 was approximately twofold that of C16. Over the Ni2P/SiO2 catalyst, two main deoxygenation pathways formed C15, one of which was mainly the DCO pathway and the other was dehydration accompanying the hexadecanal intermediate and then direct decarbonylation without water formation. The turn over frequency (TOF followed the order: Ni12P5/SiO2 > Ni/SiO2 > Ni2P/SiO2.

  15. Assessing College Students' Understanding of Acid Base Chemistry Concepts

    Science.gov (United States)

    Wan, Yanjun Jean

    2014-01-01

    Typically most college curricula include three acid base models: Arrhenius', Bronsted-Lowry's, and Lewis'. Although Lewis' acid base model is generally thought to be the most sophisticated among these three models, and can be further applied in reaction mechanisms, most general chemistry curricula either do not include Lewis' acid base model, or…

  16. Deep desulfurization of diesel via peroxide oxidation using phosphotungstic acid as phase transfer catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Sachdeva, T.O.; Pant, K.K. [Department of Chemical Engineering, Indian Institute of Technology, Delhi, New Delhi, 110016 (India)

    2010-09-15

    High sulfur level in diesel fuel has been identified as a major contributor to air pollutant in term of sulfur dioxide (SO{sub x}) through diesel fueled vehicles. The main aim of the present work is to develop a promising methodology for ultra deep desulfurization of diesel fuel using oxidation followed by phase transfer of oxidized sulfur. Experiments were carried out in a batch reactor using n-decane as the model diesel compound and also using commercial diesel feedstock. To remove sulfur tetraoctylammonium bromide, phosphotungstic acid, and hydrogen peroxide were used as phase transfer agent, catalyst and oxidant respectively. The percent sulfur removal increases with increasing the initial concentration of sulfur in fuel and with increasing the reaction temperature. Similar trends were observed when commercial diesel was used to carry out desulfurization studies. The amphiphilic catalyst serves as a catalyst and also as an emulsifying agent to stabilize the emulsion droplets. The effects of temperature, agitation speed, quantity of catalyst and the phase transfer agent were studied to estimate the optimal conditions for the reactions. The sulfur removal from a commercial diesel by phase transfer catalysis has been found effective and removal efficiency was more than 98%. Kinetic experiments carried out for the desulfurization revealed that the sulfur removal results are best fitted to a pseudo first order kinetics and the apparent activation energy of desulfurization was 30.6 kJ/mol. (author)

  17. Deep desulfurization of diesel via peroxide oxidation using phosphotungstic acid as phase transfer catalyst

    International Nuclear Information System (INIS)

    Sachdeva, T.O.; Pant, K.K.

    2010-01-01

    High sulfur level in diesel fuel has been identified as a major contributor to air pollutant in term of sulfur dioxide (SO x ) through diesel fueled vehicles. The main aim of the present work is to develop a promising methodology for ultra deep desulfurization of diesel fuel using oxidation followed by phase transfer of oxidized sulfur. Experiments were carried out in a batch reactor using n-decane as the model diesel compound and also using commercial diesel feedstock. To remove sulfur tetraoctylammonium bromide, phosphotungstic acid, and hydrogen peroxide were used as phase transfer agent, catalyst and oxidant respectively. The percent sulfur removal increases with increasing the initial concentration of sulfur in fuel and with increasing the reaction temperature. Similar trends were observed when commercial diesel was used to carry out desulfurization studies. The amphiphilic catalyst serves as a catalyst and also as an emulsifying agent to stabilize the emulsion droplets. The effects of temperature, agitation speed, quantity of catalyst and the phase transfer agent were studied to estimate the optimal conditions for the reactions. The sulfur removal from a commercial diesel by phase transfer catalysis has been found effective and removal efficiency was more than 98%. Kinetic experiments carried out for the desulfurization revealed that the sulfur removal results are best fitted to a pseudo first order kinetics and the apparent activation energy of desulfurization was 30.6 kJ/mol. (author)

  18. C-C Coupling on Single-Atom-Based Heterogeneous Catalyst.

    Science.gov (United States)

    Zhang, Xiaoyan; Sun, Zaicheng; Wang, Bin; Tang, Yu; Nguyen, Luan; Li, Yuting; Tao, Franklin Feng

    2018-01-24

    Compared to homogeneous catalysis, heterogeneous catalysis allows for ready separation of products from the catalyst and thus reuse of the catalyst. C-C coupling is typically performed on a molecular catalyst which is mixed with reactants in liquid phase during catalysis. This homogeneous mixing at a molecular level in the same phase makes separation of the molecular catalyst extremely challenging and costly. Here we demonstrated that a TiO 2 -based nanoparticle catalyst anchoring singly dispersed Pd atoms (Pd 1 /TiO 2 ) is selective and highly active for more than 10 Sonogashira C-C coupling reactions (R≡CH + R'X → R≡R'; X = Br, I; R' = aryl or vinyl). The coupling between iodobenzene and phenylacetylene on Pd 1 /TiO 2 exhibits a turnover rate of 51.0 diphenylacetylene molecules per anchored Pd atom per minute at 60 °C, with a low apparent activation barrier of 28.9 kJ/mol and no cost of catalyst separation. DFT calculations suggest that the single Pd atom bonded to surface lattice oxygen atoms of TiO 2 acts as a site to dissociatively chemisorb iodobenzene to generate an intermediate phenyl, which then couples with phenylacetylenyl bound to a surface oxygen atom. This coupling of phenyl adsorbed on Pd 1 and phenylacetylenyl bound to O ad of TiO 2 forms the product molecule, diphenylacetylene.

  19. Process and catalysts for the gasification of methanol. [German Patent

    Energy Technology Data Exchange (ETDEWEB)

    Harris, N.; Dennis, A.J.; Shevels, T.F.

    1975-02-13

    The invention concerns catalysts and catalytic processes for the gasification of methanol which is used to manufacture methane from methanol. Mixtures of iron and chromium oxide, phosphate, phosphoric acid, tungstate, tungstic acid, aluminium phosphate, aluminium oxide are suitable as dehydrating catalysts. Gasification takes place together with steam and dehydrogenating catalysts at high temperature. The molar ratios steam: methanol are described.

  20. Formic acid decomposition on Pt1/Cu (111) single platinum atom catalyst: Insights from DFT calculations and energetic span model analysis

    Science.gov (United States)

    Wang, Ying-Fan; Li, Kun; Wang, Gui-Chang

    2018-04-01

    Inspired by the recent surface experimental results that the monatomic Pt catalysts has more excellent hydrogen production that Cu(111) surface, the mechanism of decomposition of formic acid on Cu(111) and single atom Pt1/Cu(111) surface was studied by periodic density functional theory calculations in the present work. The results show that the formic acid tends to undergo dehydrogenation on both surfaces to obtain the hydrogen product of the target product, and the selectivity and catalytic activity of Pt1/Cu (111) surface for formic acid dehydrogenation are better. The reason is that the single atom Pt1/Cu(111) catalyst reduces the reaction energy barrier (i.e., HCOO → CO2 + H) of the critical step of the dehydrogenation reaction due to the fact that the single atom Pt1/Cu(111) catalyst binds formate weakly compared to that of Cu (111) one. Moreover, it was found that the Pt1/Cu (111) binds CO more strongly than that of Cu (111) one and thus leading to the difficult for the formation of CO. These two factors would make the single Pt atom catalyst had the high selectivity for the H2 production. It is hoped that the present work may help people to design the efficient H2 production from HCOOH decomposition by reduce the surface binding strength of HCOO species, for example, using the low coordination number active site like single atom or other related catalytic system.

  1. Construction of Bifunctional Co/H-ZSM-5 Catalysts for the Hydrodeoxygenation of Stearic Acid to Diesel-range Alkanes.

    Science.gov (United States)

    Wu, Guangjun; Zhang, Nan; Dai, Weili; Guan, Naijia; Li, Landong

    2018-04-27

    Bifunctional Co/H-ZSM-5 zeolites were prepared by surface organometallic chemistry grafting route, namely by the stoichiometric reaction between cobaltocene and the Brønsted acid sites in zeolites, and applied to the model reaction of stearic acid catalytic hydrodeoxygenation. Cobalt species existed in the form of isolated Co2+ ions at exchange positions after grafting, transformed to CoO species on the surface of zeolite and stabilized inside zeolite channels upon calcination in air, and finally reduced to metallic cobalt species of homogeneous clusters of ca. 1.5 nm by hydrogen. During this process, the Brønsted acid sites of H-ZSM-5 zeolites could be preserved with acid strength slightly reduced. The as-prepared bifunctional catalyst exhibited a ~16 times higher activity in stearic acid hydrodeoxygenation (2.11 gSAgcat-1h-1) than the reference catalyst (0.13 gSAgcat-1h-1) prepared by solid-state ion exchange, and a high C18/C17 ratio of ~24 was achieved as well. The remarkable hydrodeoxygenation performance of bifunctional Co/H-ZSM-5 could be explained from the effective synergy between the uniformed metallic cobalt clusters and the Brønsted acid sites in H-ZSM-5 zeolite. The simplified reaction network and kinetics of stearic acid hydrodeoxygenation catalyzed by the as-prepared bifunctional Co/H-ZSM-5 zeolites were also investigated. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Catalytic dehydration of ethanol using transition metal oxide catalysts.

    Science.gov (United States)

    Zaki, T

    2005-04-15

    The aim of this work is to study catalytic ethanol dehydration using different prepared catalysts, which include Fe(2)O(3), Mn(2)O(3), and calcined physical mixtures of both ferric and manganese oxides with alumina and/or silica gel. The physicochemical properties of these catalysts were investigated via X-ray powder diffraction (XRD), acidity measurement, and nitrogen adsorption-desorption at -196 degrees C. The catalytic activities of such catalysts were tested through conversion of ethanol at 200-500 degrees C using a catalytic flow system operated under atmospheric pressure. The results obtained indicated that the dehydration reaction on the catalyst relies on surface acidity, whereas the ethylene production selectivity depends on the catalyst chemical constituents.

  3. Performance and selectivity of PtxSn/C electro-catalysts for ethanol oxidation prepared by reduction with different formic acid concentrations

    International Nuclear Information System (INIS)

    Zignani, Sabrina C.; Baglio, Vincenzo; Linares, José J.; Monforte, Giuseppe; Gonzalez, Ernesto R.; Aricò, Antonino S.

    2012-01-01

    Carbon supported Pt–Sn catalysts were prepared by reduction of Pt and Sn precursors with formic acid and characterized in terms of structure, morphology and surface properties. The electrocatalytic activity for ethanol oxidation was studied in a direct ethanol fuel cell (DEFC) at 70 °C and 90 °C. Electrochemical and physico-chemical data indicated that a proper balance of Pt and Sn species in the near surface region was necessary to maximize the reaction rate. The best atomic surface composition, in terms of electrochemical performance, was Pt:Sn 65:35 corresponding to a bulk composition 75:25 namely Pt 3 Sn 1 /C. The reaction products of ethanol electro-oxidation in single cell and their distribution as a function of the nature of catalyst were determined. Essentially, acetaldehyde and acetic acid were detected as the main reaction products; whereas, a lower content of CO 2 was formed. The selectivity toward acetic acid vs. acetaldehyde increased with the increase of the Sn content and decreased by decreasing the concentration of the reducing agent used in the catalyst preparation. According to the recent literature, these results have been interpreted on the basis of ethanol adsorption characteristics and ligand effects occurring for Sn-rich electrocatalysts.

  4. The role of zeolites in the deactivation of multifunctional fischer-tropsch synthesis catalysts: the interaction between HZSM-5 and Fe-based Ft-catalysts

    Directory of Open Access Journals (Sweden)

    P. C. Zonetti

    2013-12-01

    Full Text Available In order to produce gasoline directly from syngas, HZSM-5 can be added to the Fischer-Tropsch catalyst. However, this catalytic system shows an important deactivation rate. Aiming at describing this phenomenon, Fe-based catalysts and physical mixtures containing these catalysts and HZSM-5 were employed in this reaction. All these systems were characterized using the following techniques: XRD, XPS, TPR and TPD of CO. This work shows that HZSM-5 interacts with the Fe-based Fischer-Tropsch catalyst during the reduction step, decreasing the Fe concentration on the catalytic surface and thus lowering the activity of the catalytic system in the Fischer-Tropsch Synthesis.

  5. The role of zeolites in the deactivation of multifunctional Fischer-Tropsch Synthesis catalysts: the interaction between HZSM-5 and Fe-based FT-catalysts

    International Nuclear Information System (INIS)

    Zonetti, P.C.; Gaspar, A.B.; Mendes, F.M.T.; Appel, L.G.; Avillez, R. R. de; Sousa-Aguiar, E.F.

    2013-01-01

    In order to produce gasoline directly from syngas, HZSM-5 can be added to the Fischer-Tropsch catalyst. However, this catalytic system shows an important deactivation rate. Aiming at describing this phenomenon, Fe-based catalysts and physical mixtures containing these catalysts and HZSM-5 were employed in this reaction. All these systems were characterized using the following techniques: XRD, XPS, TPR and TPD of CO. This work shows that HZSM-5 interacts with the Fe-based Fischer-Tropsch catalyst during the reduction step, decreasing the Fe concentration on the catalytic surface and thus lowering the activity of the catalytic system in the Fischer-Tropsch Synthesis. (author)

  6. The role of zeolites in the deactivation of multifunctional Fischer-Tropsch Synthesis catalysts: the interaction between HZSM-5 and Fe-based FT-catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Zonetti, P.C.; Gaspar, A.B.; Mendes, F.M.T.; Appel, L.G., E-mail: lucia.appel@int.gov.br [Instituto Nacional de Tecnologia (INT/MCT), Rio de Janeiro, RJ (Brazil); Avillez, R. R. de [Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil); Sousa-Aguiar, E.F. [Centro de Pesquisa Leopoldo Americo Miguez de Mello (CENPES/PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2013-10-15

    In order to produce gasoline directly from syngas, HZSM-5 can be added to the Fischer-Tropsch catalyst. However, this catalytic system shows an important deactivation rate. Aiming at describing this phenomenon, Fe-based catalysts and physical mixtures containing these catalysts and HZSM-5 were employed in this reaction. All these systems were characterized using the following techniques: XRD, XPS, TPR and TPD of CO. This work shows that HZSM-5 interacts with the Fe-based Fischer-Tropsch catalyst during the reduction step, decreasing the Fe concentration on the catalytic surface and thus lowering the activity of the catalytic system in the Fischer-Tropsch Synthesis. (author)

  7. Co-Zn-Al based hydrotalcites as catalysts for Fischer-Tropsch process

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, C.L.; Pirola, C.; Boffito, D.C.; Di Fronzo, A. [Univ. degli Studi di Milano (Italy). Dipt. di Chimica Fisica ed Elettrochimica; Di Michele, A. [Univ. degli Studi di Perugia (Italy). Dipt. di Fisica; Vivani, R.; Nocchetti, M.; Bastianini, M.; Gatto, S. [Univ. degli Studi di Perugia (Italy). Dipt. di Chimica

    2011-07-01

    Co-Zn-Al based hydrotalcites have been investigated as catalysts for the well-known Fischer- Tropsch synthesis. A series of ternary hydrotalcites in nitrate form was prepared with the urea method in order to obtain active catalysts for the above mentioned process. The thermal activation at 350 C gives raise to finely dispersed metallic Co on the mixed oxides, so resulting in retaining the metal distribution of the parent compounds. An optimization study concerning the amount of cobalt of the prepared catalysts (range 15-70% mol, metal based) and the reaction temperature (220-260 C) is reported. All the samples have been fully characterized (BET, ICP-OES, XRPD, TG-DTA, FT-IR, SEM and TEM) and tested in a laboratory pilot plant. Tests to evaluate the stability of these materials were carried out in stressed conditions concerning both the activation and the operating temperatures and pressures (up to 350 C and 2.0 MPa). The obtained results suggest the possibility of using synthetic hydrotalcites as suitable Co-based catalysts for the Fischer-Tropsch synthesis. (orig.)

  8. Studies of Heterogenous Palladium and Related Catalysts for Aerobic Oxidation of Primary Alcohols

    Science.gov (United States)

    Ahmed, Maaz S.

    Development of aerobic oxidation methods is of critical importance for the advancement of green chemistry, where the only byproduct produced is water. Recent work by our lab has produced an efficient Pd based heterogenous catalyst capable of preforming the aerobic oxidation of a wide spectrum of alcohols to either carboxylic acid or methyl ester. The well-defined catalyst PdBi 0.35Te0.23/C (PBT/C) catalyst has been shown to can perform the aerobic oxidation of alcohols to carboxylic acids in basic conditions. Additionally, we explored this catalyst for a wide range of alcohols and probed the nature of the selectivity of PBT/C for methyl esterification over other side products. Finally, means by which the catalyst operates with respect to oxidation states of the three components, Pd, Bi, and Te, was probed. Carboxylic acids are an important functional group due to their prevalence in various pharmaceutically active agents, agrochemicals, and commodity scale chemicals. The well-defined catalyst PBT/C catalyst was discovered to be effective for the oxidation of a wide spectrum of alcohols to carboxylic acid. The demonstrated substrate scope and functional group tolerance are the widest reported for an aerobic heterogeneous catalyst. Additionally, the catalyst has been implemented in a packed bed reactor with quantitative yield of benzoic acid maintained throughout a two-day run. Biomass derived 5-(hydroxymethyl)furfural (HMF) is also oxidized to 2,5-furandicarboxylic acid (FDCA) in high yield. Exploration of PBT/C for the oxidative methyl esterification was found to exhibit exquisite selectivity for the initial oxidation of primary alcohol instead of methanol, which is the bulk solvent. We explored this selectivity and conclude that it results from various substrate-surface interactions, which are not attainable by methanol. The primary alcohol can outcompete the methanol for binding on the catalyst surface through various interactions between the side chain of the

  9. Investigation of a Pt3Sn/C Electro-Catalyst in a Direct Ethanol Fuel Cell Operating at Low Temperatures for Portable Applications

    OpenAIRE

    Zignani, S. C.; Gonzalez, E. R.; Baglio, V.; Siracusano, S.; Arico, A. S.

    2012-01-01

    A 20% Pt3Sn/C catalyst was prepared by reduction with formic acid and used in a direct ethanol fuel cell at low temperatures. The electro-catalytic activity of this bimetallic catalyst was compared to that of a commercial 20% Pt/C catalyst. The PtSn catalyst showed better results in the investigated temperature range (30 degrees-70 degrees C). Generally, Sn promotes ethanol oxidation by adsorption of OH species at considerably lower potentials compared to Pt, allowing the occurrence of a bifu...

  10. Optimization of transesterification of rubber seed oil using heterogeneous catalyst calcium oxide

    Science.gov (United States)

    Inggrid, Maria; Kristanto, Aldi; Santoso, Herry

    2015-12-01

    Biodiesel is an alternative fuel manufactured with the help of alkali hydroxide catalyst through transesterification reaction of vegetable oil. This study aims to examine methods and the most suitable conditions for transesterification reaction producing biodiesel from crude rubber seed oil by varying process parameters such as the molar ratio of alcohol, CaO amount as the alkaline catalyst, and reaction time. The rubber seed oil has a high level of free fatty acid content, which means the use of homogenous alkaline catalyst gives some technological problems such as soap formation which leaded in difficulty in the separation and purification of the product. Calcium oxide (CaO) is one of the most favorable heterogeneous base catalysts because it's reusable, noncorrosive, and low cost. Pre-treatment was performed by acid esterification with H2SO4 as the catalyst to decrease the content of free fatty acid in the rubber seed oil, in this pretreatment process the 12% FFA of crude oil could be reduced to below 3% FFA. The product after esterification process was then transesterified by alkaline transesterification by varying process parameters to convert triglyceride into biodiesel. The study found that maximum curvature for biodiesel yield occurred at 9:1 molar ratio of alcohol, 5%w catalyst loading, and 3 hours reaction time. Design expert software is used to determine the optimum point from experimental data. The result showed that the optimum yield of methyl ester from transesterification was 73.5 % by mass with 0.69 degree of desirability. The yielded methyl ester was tested for its density, viscosity, acid number, and solubility to meet SNI requirement standards.

  11. Carbon-free H2 production from ammonia triggered at room temperature with an acidic RuO2/γ-Al2O3 catalyst.

    Science.gov (United States)

    Nagaoka, Katsutoshi; Eboshi, Takaaki; Takeishi, Yuma; Tasaki, Ryo; Honda, Kyoko; Imamura, Kazuya; Sato, Katsutoshi

    2017-04-01

    Ammonia has been suggested as a carbon-free hydrogen source, but a convenient method for producing hydrogen from ammonia with rapid initiation has not been developed. Ideally, this method would require no external energy input. We demonstrate hydrogen production by exposing ammonia and O 2 at room temperature to an acidic RuO 2 /γ-Al 2 O 3 catalyst. Because adsorption of ammonia onto the catalyst is exothermic, the catalyst bed is rapidly heated to the catalytic ammonia autoignition temperature, and subsequent oxidative decomposition of ammonia produces hydrogen. A differential calorimeter combined with a volumetric gas adsorption analyzer revealed a large quantity of heat evolved both with chemisorption of ammonia onto RuO 2 and acidic sites on the γ-Al 2 O 3 and with physisorption of multiple ammonia molecules.

  12. Highly active carbon supported ternary PdSnPtx (x=0.1-0.7) catalysts for ethanol electro-oxidation in alkaline and acid media.

    Science.gov (United States)

    Wang, Xiaoguang; Zhu, Fuchun; He, Yongwei; Wang, Mei; Zhang, Zhonghua; Ma, Zizai; Li, Ruixue

    2016-04-15

    A series of trimetallic PdSnPtx (x=0.1-0.7)/C catalysts with varied Pt content have been synthesized by co-reduction method using NaBH4 as a reducing agent. These catalysts were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV) and chronoamperometry (CA). The electrochemical results show that, after adding a minor amount of Pt dopant, the resultant PdSnPtx/C demonstrated more superior catalytic performance toward ethanol oxidation as compared with that of mono-/bi-metallic Pd/C or PdSn/C in alkaline solution and the PdSnPt0.2/C with optimal molar ratio reached the best. In acid solution, the PdSnPt0.2/C also depicted a superior catalytic activity relative to the commercial Pt/C catalyst. The possible enhanced synergistic effect between Pd, Sn/Sn(O) and Pt in an alloyed state should be responsible for the as-revealed superior ethanol electro-oxidation performance based upon the beneficial electronic effect and bi-functional mechanism. It implies the trimetallic PdSnPt0.2/C with a low Pt content has a promising prospect as anodic electrocatalyst in fields of alkali- and acid-type direct ethanol fuel cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. New insights into Cu/SSZ-13 SCR catalyst acidity. Part I: Nature of acidic sites probed by NH 3 titration

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Jinyong; Gao, Feng; Kamasamudram, Krishna; Currier, Neal; Peden, Charles H. F.; Yezerets, Aleksey

    2017-04-01

    In this work we investigated an unusual acidity feature of a Cu/SSZ-13 catalyst used in selective catalytic reduction of NOx with NH3 (NH3-SCR). In particular, this catalyst showed two distinct NH3 desorption peaks in NH3-TPD measurements, in contrast to single, unresolved desorption peaks observed for other Cu-exchanged zeolites conventionally used in the SCR studies, including its isostructural but chemically different analogue Cu/SAPO-34. We further observed that the intensities of the two TPD peaks, which represented the amount of stored NH3, changed in opposite directions in response to progressive mild hydrothermal aging, while the total storage capacity was preserved. We proposed an explanation for this remarkable behavior, by using model reference samples and additional characterization techniques. At least three NH3 storage sites were identified: two distinct populations of Cu sites responsible for low-temperature NH3 storage, and Brønsted acid sites responsible for high-temperature NH3 storage. Contrary to the commonly accepted mechanism that Brønsted acid site loss during hydrothermal aging is driven by dealumination, we concluded that the decline in the number of Brønsted acid sites upon mild hydrothermal aging for Cu/SSZ-13 was not due to dealumination, but rather transformation of Cu sites, i.e., gradual conversion of ZCuOH (Cu2+ singly coordinated with Zeolite) to Z2Cu (Cu2+ doubly coordinated with Zeolite). This transformation was responsible for the increased low-temperature desorption peak in NH3-TPD since each ZCuOH adsorbed ~1 NH3 molecule while each Z2Cu adsorbed ~2 NH3 molecules under the conditions used here. These findings were used in Part II of this series of studies to develop a method for quantifying hydrothermal ageing of industrial Cu/SSZ-13 SCR catalysts. Authors would like to thank Randall Jines for his help with collecting the reactor data, Nancy W. Washton for measuring the NMR data and Tamas Varga for in-situ XRD measurements

  14. Preparation of acid-base bifunctional mesoporous KIT-6 (KIT: Korea Advanced Institute of Science and Technology) and its catalytic performance in Knoevenagel reaction

    International Nuclear Information System (INIS)

    Xu, Ling; Wang, Chunhua; Guan, Jingqi

    2014-01-01

    Acid-base bifunctional mesoporous catalysts Al-KIT-6-NH 2 containing different aluminum content have been synthesized through post synthetic grafting method. The materials were characterized by X-ray diffraction (XRD), scanning electron micrographs (SEM), transmission electron micrographs (TEM), Fourier-transform infrared spectroscopy (FTIR), IR spectra of pyridine adsorption, NH 3 -TPD and TG analysis. The characterization results indicated that the pore structure of KIT-6 was well kept after the addition of aluminum and grafting of aminopropyl groups. The acid amount of Al-KIT-6 increased with enhancing aluminum content. Catalytic results showed that weak acid and weak base favor the Knoevenagel reaction, while catalysts with strong acid and weak base exhibited worse catalytic behavior. - Graphical abstract: The postulated steps of mechanism for the acid-base catalyzed process are as follows: (1) the aldehyde gets activated by the surface acidic sites which allow the amine undergoes nucleophilic to attack the carbonyl carbon of benzaldehyde. (2) Water is released in the formation of imine intermediate. (3) The ethyl cyanoacetate reacts with the intermediate. (4) The benzylidene ethyl cyanoacetate is formed and the amine is regenerated. - Highlights: • KIT-6 and Al-KIT-6-NH 2 with different Si/Al ratios has been successfully prepared. • 79.4% Yield was obtained over 46-Al-KIT-6-NH 2 within 20 min in Knoevenagel reaction. • Low Al-content Al-KIT-6-NH 2 shows better catalytic stability than high Al-content catalysts. • There is acid-base synergistic effect in Knoevenagel reaction

  15. Preparation of acid-base bifunctional mesoporous KIT-6 (KIT: Korea Advanced Institute of Science and Technology) and its catalytic performance in Knoevenagel reaction

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ling [College of Chemistry and Chemical Engineering, Inner Mongolia University for Nationalities, Tongliao 028000 (China); Wang, Chunhua [Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, Changchun 130023 (China); Guan, Jingqi, E-mail: guanjq@jlu.edu.cn [Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, Changchun 130023 (China)

    2014-05-01

    Acid-base bifunctional mesoporous catalysts Al-KIT-6-NH{sub 2} containing different aluminum content have been synthesized through post synthetic grafting method. The materials were characterized by X-ray diffraction (XRD), scanning electron micrographs (SEM), transmission electron micrographs (TEM), Fourier-transform infrared spectroscopy (FTIR), IR spectra of pyridine adsorption, NH{sub 3}-TPD and TG analysis. The characterization results indicated that the pore structure of KIT-6 was well kept after the addition of aluminum and grafting of aminopropyl groups. The acid amount of Al-KIT-6 increased with enhancing aluminum content. Catalytic results showed that weak acid and weak base favor the Knoevenagel reaction, while catalysts with strong acid and weak base exhibited worse catalytic behavior. - Graphical abstract: The postulated steps of mechanism for the acid-base catalyzed process are as follows: (1) the aldehyde gets activated by the surface acidic sites which allow the amine undergoes nucleophilic to attack the carbonyl carbon of benzaldehyde. (2) Water is released in the formation of imine intermediate. (3) The ethyl cyanoacetate reacts with the intermediate. (4) The benzylidene ethyl cyanoacetate is formed and the amine is regenerated. - Highlights: • KIT-6 and Al-KIT-6-NH{sub 2} with different Si/Al ratios has been successfully prepared. • 79.4% Yield was obtained over 46-Al-KIT-6-NH{sub 2} within 20 min in Knoevenagel reaction. • Low Al-content Al-KIT-6-NH{sub 2} shows better catalytic stability than high Al-content catalysts. • There is acid-base synergistic effect in Knoevenagel reaction.

  16. Advanced technologies in biodiesel new advances in designed and optimized catalysts

    CERN Document Server

    Islam, Aminul

    2015-01-01

    The inadequacy of fossil fuel is the main driving force of the future sustainable energy around the world. Since heterogeneous catalysis is used in chemical industry for biodiesel production, achieving optimal catalytic performance is a significant issue for chemical engineers and chemists. Enormous attention has been placed in recent years on the selection of heterogeneous catalyst in biodiesel industry, where the catalyst could be facilitated highly selective toward desired products, easily handled, separated from the reaction medium, and subsequently reused. This book stresses an overview on the contributions of tailored solid acid and base catalysts to catalytic biodiesel synthesis, and the in uences of heterogeneous catalyst properties on biodiesel yield in order to develop a better understanding of catalyst design for the green production process as well as practical applications in the biodiesel industry.

  17. Hydrothermally Stable Fe–W–Ti SCR Catalysts Prepared by Deposition–Precipitation

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Schill, Leonhard; Mossin, Susanne

    2014-01-01

    Fe/TiO2 based catalysts were prepared by incipient wetness impregnation and deposition–precipitation (DP). The catalysts were characterized by activity measurements, N2 physisorption, X-ray powder diffraction, electron paramagnetic resonance spectroscopy, energy dispersive X-ray spectroscopy, H2......-temperature programmed reduction and NH3-temperature programmed desorption. The 3 wt% Fe–10 wt% WO3/TiO2 (3Fe–10WTi-DP) catalyst prepared by DP using ammonium carbamate as a precipitating agent was found to be the most active and hydrothermally stable with 11 vol% H2O in air at 650 °C for 3 h....... The hydrothermal stability of the catalyst can be attributed to the retained crystal structure, and mild change in acidic and redox properties of the catalyst. Furthermore, hydrothermal stability of the 3Fe–10WTi-DP catalyst is competitive with that of 3Fe–ZSM-5 and much better than 3V2O5–10WO3–TiO2 catalysts...

  18. Synthesis of fatty acid methyl ester from crude jatropha (Jatropha curcas Linnaeus) oil using aluminium oxide modified Mg-Zn heterogeneous catalyst.

    Science.gov (United States)

    Olutoye, M A; Hameed, B H

    2011-06-01

    The synthesis of fatty acid methyl esters (FAME) as a substitute to petroleum diesel was investigated in this study from crude jatropha oil (CJO), a non-edible, low-cost alternative feedstock, using aluminium modified heterogeneous basic oxide (Mg-Zn) catalyst. The transesterification reaction with methanol to methyl esters yielded 94% in 6h with methanol-oil ratio of 11:1, catalyst loading of 8.68 wt.% at 182°C and the properties of CJO fuel produced were determine and found to be comparable to the standards according to ASTM. In the range of experimental parameters investigated, it showed that the catalyst is selective to production of methyl esters from oil with high free fatty acid (FFA) and water content of 7.23% and 3.28%, respectively in a single stage process. Thus, jatropha oil is a promising feedstock for methyl ester production and large scale cultivation will help to reduce the product cost. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Preparation of hydrophobic Pt-catalysts for decontamination of nuclear effluents

    International Nuclear Information System (INIS)

    Ionita, Gh.; Popescu, I.; Retegan, T.; Stefanescu, I.

    2005-01-01

    Based on the long experience of the authors, in the preparation, testing and evaluation of the performances of hydrophobic catalysts, and based on the reviewed references, this paper presents up-to-date R and D activities on the preparation methods and applications of the hydrophobic catalysts, in deuterium and tritium separation. The objectives of the paper are: (1) to provide a database for selection of the most appropriate catalyst and catalytic packing for above mentioned processes, (2) to evaluate the potentiality of hydrophobic Pt-catalysts in the deuterium and tritium separation (3) to asses and to find a new procedure for preparation a new improved hydrophobic catalyst. The merits of the hydrophobic catalysts are shown in comparison to hydrophilic catalysts. As results of the review some general conclusions about the applications of hydrophobic catalysts in environmental field are as follow: (1) the hydrophobic Pt-catalysts packed in the trickle bed reactors showed a high catalytic activity and long stability; (2) the utilization of the hydrophobic Pt-catalysts for tritium removal from liquid and gaseous effluent in nuclear field was entirely confirmed on industrial scale; (3) the extension of the utilization of the hydrophobic Pt-catalysts in other new processes, which take place in presence of liquid water or high humidity are subjected to testing. (author)

  20. Preparation of hydrophobic Pt-catalysts for decontamination of nuclear effluents

    International Nuclear Information System (INIS)

    Ionita, Gh.; Popescu, I.; Retegan, T.; Stefanescu, I.

    2004-01-01

    Based on the long experience of the authors, in the preparation, testing and evaluation of the performances of hydrophobic catalysts, and based on the reviewed references, this paper presents up-to-date R and D activities on the preparation methods and applications of the hydrophobic catalysts, in deuterium and tritium separation. The objectives of the paper are: - to provide a database for selection of the most appropriate catalyst and catalytic packing for above mentioned processes; - to evaluate the potentiality of hydrophobic Pt-catalysts in the deuterium and tritium separation; - to assess and to find a new procedure for preparation a new improved hydrophobic catalyst. The merits of the hydrophobic catalysts are shown in comparison to hydrophilic catalysts. As results of the review some general conclusions about the applications of hydrophobic catalysts in environmental field are as follows: - the hydrophobic Pt-catalysts packed in the trickle bed reactors showed a high catalytic activity and long stability; - the utilization of the hydrophobic Pt-catalysts for tritium removal from liquid and gaseous effluent in nuclear field was entirely confirmed on industrial scale; - the extension of the utilization of the hydrophobic Pt-catalysts in other new processes, which take place in presence of liquid water or high humidity are subject to testing. (authors)

  1. Effective Liquid-phase Nitration of Benzene Catalyzed by a Stable Solid Acid Catalyst: Silica Supported Cs{sub 2.5}H{sub 0.5}PMo{sub 12}O{sub 40}

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Shu-wen; Liu, Li-jun; Zhang, Qian; Wang, Liang-yin [Liaocheng University, Liaocheng (China)

    2012-04-15

    Silica supported Cs{sub 2.5}H{sub 0.5}PMo{sub 12}O{sub 40} catalyst was prepared through sol-gel method with ethyl silicate-40 as silicon resource and characterized by X-ray diffraction, infrared spectroscopy, scanning electron microscopy, nitrogen adsorption-desorption and potentiometric titration methods. The Cs{sub 2.5}H{sub 0.5}PMo{sub 12}O{sub 40} particles with Keggin-type structure well dispersed on the surface of silica, and the catalyst exhibited high surface area and acidity. The catalytic performance of the catalysts for benzene liquid-phase nitration was examined with 65% nitric acid as nitrating agent, and the effects of various parameters were tested, which including temperature, time and amount of catalyst, reactants ratio, especially the recycle of catalyst was emphasized. Benzene was effectively nitrated to mononitro-benzene with high conversion (95%) in optimized conditions. Most importantly, the supported catalyst was proved has excellent stability in the nitration progress, and there were no any other organic solvent and sulfuric acid were used in the reaction system, so the liquid-phase nitration of benzene that we developed was an eco-friendly and attractive alternative for the commercial technology

  2. Electrocatalytic Activity and Stability of M-Fe Catalysts Synthesized by Polymer Complex Method for PEFC Cathode

    KAUST Repository

    Ou, Yiwei

    2011-11-01

    The polymerized complex (PC) method was used to synthesize highly dispersed iron-based catalysts for the oxygen reduction reaction (ORR). The catalysts were prepared with an addition of 1,10-phenanthroline (Phen) and transition metals (M), such as Ta, Ti, and W, in an attempt to enhance the ORR activity and durability of the catalysts. The composition and properties of the catalysts were characterized by thermogravimetric analysis, X-ray diffraction, and X-ray photoelectron spectroscopy. The catalyst components, after extensive dissolution in a strong acid solution, were characterized by inductively coupled plasma mass spectroscopy and ultraviolet-visible spectroscopy. It was found that the Ti-Fe catalyst showed improved ORR performance, and the Ta-Fe catalyst showed enhanced stability towards ORR in acidic solution. The catalytic activity and stability for ORR was observed by adding Ti or Ta into the catalyst formulation, suggesting that the interaction between added hetero-ions (Ti and Ta) and ionic Fe active sites was beneficial for the ORR. A single-cell test with the synthesized catalyst in the cathode initially generated a high power density, but the low stability remains an issue to be solved.

  3. Electrocatalytic Activity and Stability of M-Fe Catalysts Synthesized by Polymer Complex Method for PEFC Cathode

    KAUST Repository

    Ou, Yiwei; Kumagai, Hiromu; Yin, Fengxiang; Okada, Saori; Hatasawa, Haruna; Morioka, Hiroyuki; Takanabe, Kazuhiro; Kubota, Jun; Domen, Kazunari

    2011-01-01

    The polymerized complex (PC) method was used to synthesize highly dispersed iron-based catalysts for the oxygen reduction reaction (ORR). The catalysts were prepared with an addition of 1,10-phenanthroline (Phen) and transition metals (M), such as Ta, Ti, and W, in an attempt to enhance the ORR activity and durability of the catalysts. The composition and properties of the catalysts were characterized by thermogravimetric analysis, X-ray diffraction, and X-ray photoelectron spectroscopy. The catalyst components, after extensive dissolution in a strong acid solution, were characterized by inductively coupled plasma mass spectroscopy and ultraviolet-visible spectroscopy. It was found that the Ti-Fe catalyst showed improved ORR performance, and the Ta-Fe catalyst showed enhanced stability towards ORR in acidic solution. The catalytic activity and stability for ORR was observed by adding Ti or Ta into the catalyst formulation, suggesting that the interaction between added hetero-ions (Ti and Ta) and ionic Fe active sites was beneficial for the ORR. A single-cell test with the synthesized catalyst in the cathode initially generated a high power density, but the low stability remains an issue to be solved.

  4. Fatty acid methyl ester synthesis catalyzed by solid superacid catalyst SO{sub 4}{sup 2-}/ZrO{sub 2}-TiO{sub 2}/La{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yan; Zhang, Xiao-Dong; Sun, Li; Zhang, Jie; Xu, Hai-Peng [Energy Research Institute of Shandong Academy of Sciences, Jinan 250014 (China)

    2010-01-15

    A new type of solid superacid catalyst with the composition of SO{sub 4}{sup 2-}/ZrO{sub 2}-TiO{sub 2} loaded with lanthanum was prepared by precipitation and impregnation. The catalytic performance for the synthesis of fatty acid methyl ester from fatty acid and methanol was investigated. The influences of preparation conditions on catalyst performance were studied, the optimum results of which showed that amount of La(NO{sub 3}){sub 3} was 0.1 wt.%, the concentration of H{sub 2}SO{sub 4} for impregnation was 0.5 mol l{sup -1} and calcination temperature was 550 C. In addition, the effects of reaction parameters on esterification efficiency were also studied. With the catalyst amount of 5 wt.%, methanol amount of 1 ml/g fatty acid (FA) and reaction duration of 5 h at 60 C, the conversion ratio could reach above 95%. The catalyst recycled without any treatments could exhibit high activity with the conversion efficiency of above 90% after being reused five times. (author)

  5. Investigation of the behaviour of solid acid catalysts for acylations and cyanisations of aromatics. Final report; Untersuchungen zur Wirkungsweise von festen sauren Katalysatoren bei Acylierungen und Cyanierungen von Aromaten. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Kemnitz, E.

    2002-01-01

    The present state of the art in the field of FRIEDEL-CRAFTS-ACYLATIONS is characterized by the application of homogenous catalysts (at least stochiometric amounts) like AlCl{sub 3} or FeCl{sub 3}. Problems arising from this application are corrosions, difficult product separations from the catalyst and the origin of acid waste water. Hence, the aim of this project was the development of suitable solid catalysts which overcome the problems ascribed above. Sulfated zirconia (SZ) was found to be an excellent solid Br.o/nsted-acid to be used especially in their aerogel or cryogel form. Thus with this catalyst system, in the benzoylation of anisol nearly 100% conversion may be achieved. In this way it could be proved, that with SZ a solid Br.o/nsted-acid might be available which gives reasonable hope to substitute in a near future, at least for some reactions, the classical homogeneous catalysts and to overcome their problems in use. (orig.)

  6. An Erbium-Based Bifuctional Heterogeneous Catalyst: A Cooperative Route Towards C-C Bond Formation

    Directory of Open Access Journals (Sweden)

    Manuela Oliverio

    2014-07-01

    Full Text Available Heterogeneous bifuctional catalysts are multifunctional synthetic catalysts enabling efficient organic transformations by exploiting two opposite functionalities without mutual destruction. In this paper we report the first Er(III-based metallorganic heterogeneous catalyst, synthesized by post-calcination MW-assisted grafting and modification of the natural aminoacid L-cysteine. The natural acid–base distance between sites was maintained to assure the cooperation. The applicability of this new bifunctional heterogeneous catalyst to C-C bond formation and the supposed mechanisms of action are discussed as well.

  7. Development of a Practical Hydrogen Storage System Based on Liquid Organic Hydrogen Carriers and a Homogeneous Catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Craig [Hawaii Hydrogen Carriers, LLC, Honolulu, HI (United States); Brayton, Daniel [Hawaii Hydrogen Carriers, LLC, Honolulu, HI (United States); Jorgensen, Scott W. [General Motors, LLC, Warren, MI (United States). Research and Development Center. Chemical and Material Systems Lab.; Hou, Peter [General Motors, LLC, Warren, MI (United States). Research and Development Center. Chemical and Material Systems Lab.

    2017-03-24

    The objectives of this project were: 1) optimize a hydrogen storage media based on LOC/homogeneous pincer catalyst (carried out at Hawaii Hydrogen Carriers, LLC) and 2) develop space, mass and energy efficient tank and reactor system to house and release hydrogen from the media (carried out at General Motor Research Center).

  8. The active component of vanadium-molybdenum catalysts for the oxidation of acrolein to acrylic acid

    International Nuclear Information System (INIS)

    Andrushkevich, T.V.; Kuznetsova, T.G.

    1986-01-01

    The catalytic properties of the vanadium-molybdenum oxide system were investigated in the oxidation of acrolein to acrylic acid. The active component of the catalyst is the compound VMo 3 O 11 , the maximum amount of which is observed at a content of 7-15 mole% V 2 O 4 . The compound VMo 3 O 11 is formed in the thermodecomposition of silicomolybdovanadium heteropoly acids or isopoly compounds, reduced with respect to vanadium, and contains V 4+ and Mo 6+ . The optimum treatment for the formation of this compound is treatment in the reaction mixture at 400 degrees C

  9. Polyphosphoric acid supported on Ni0.5Zn0.5Fe2O4 nanoparticles as a magnetically-recoverable green catalyst for the synthesis of pyranopyrazoles

    Directory of Open Access Journals (Sweden)

    Farid Moeinpour

    2017-05-01

    Full Text Available Polyphosphoric acid supported on silica coated Ni0.5Zn0.5Fe2O4 nanoparticles was found to be magnetically separable, highly efficient, eco-friendly, green and recyclable heterogeneous catalyst. This new catalyst at first was fully characterized by TEM, SEM, FTIR and XRD techniques and then catalytic activity of this catalyst was investigated in the synthesis of 5-cyano-1,4-dihydropyrano[2,3-c]pyrazoles. Also the Ni0.5Zn0.5Fe2O4 magnetic nanoparticle-supported polyphosphoric acid could be reused at least six times without significant loss of activity. It could be recovered easily by applying an external magnet.

  10. Facile and Low-Cost Preparation of Nb/Al Oxide Catalyst with High Performance for the Conversion of Kiwifruit Waste Residue to Levulinic Acid

    Directory of Open Access Journals (Sweden)

    Rui Wang

    2015-09-01

    Full Text Available The kiwifruit industry is booming worldwide. As a result, a great deal of kiwifruit waste residue (KWR containing monosaccharides is produced and discarded. This material shows great potential for the production of platform chemicals. In this study, a series of Nb/Al oxide catalysts were synthesized via a facile and low-cost coprecipitation method, and their structures were characterized using: thermal gravimetric analysis (TGA, XRD, FESEM, TEM, X-ray photoelectron spectroscopy (XPS, NH3-TPD, N2 adsorption-desorption, and FTIR-Pyridine adsorption. Experimental results of sugar-to-levulinic acid (LA conversion revealed that the 20%Nb/Al oxide catalyst provided the highest catalytic performance and durability in terms of LA yield from fructose (74.2% at 463 K after 10 min and from glucose (47.5% at 473 K after 15 min. Notably, the 20% Nb/Al oxide catalyst with a 10% dosage is capable of converting kiwifruit waste residue to LA at 473 K after 10 min. In conclusion, the enhanced catalytic performance was obtained due to the high acidity, and large surface areaof Nb/Al oxide catalyst.

  11. Hydrotreatment of solvolytically liquefied lignocellulosic biomass over NiMo/Al2O3 catalyst: Reaction mechanism, hydrodeoxygenation kinetics and mass transfer model based on FTIR

    International Nuclear Information System (INIS)

    Grilc, M.; Likozar, B.; Levec, J.

    2014-01-01

    Raw residual wood biomass, containing cellulose, hemicellulose and lignin, was liquefied at low temperature by ultrasound-assisted solvolysis and acidolysis by glycerol, diethylene glycol and p-toluenesulfonic acid. Liquefied biomass was consequently upgraded by hydrotreatment utilizing heterogeneous catalysis over NiMo/Al 2 O 3 bifunctional catalyst. Effects of temperature (200−350 °C), heating rate (2.5–10.0 K min −1 ), hydrogen/nitrogen pressure (2−8 MPa), mixing (250−1000 min −1 ), hydrogen donor solvent (tetralin) and catalyst contents on deoxygenation were established. Reactions of liquefaction products, such as levulinic acid, were quantified based on their functional groups by Fourier transform infrared spectroscopy, whereas catalyst was examined by scanning electron microscopy, energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction analysis (XRD). Chemical kinetics of hydrodeoxygenation (HDO), decarbonylation and decarboxylation were determined by originally developed lumped model, based on reaction mechanisms and pathways, while the external mass transfer resistance proved to be negligible under the applied hydrodynamic conditions. The presence of hydrocracking reactions was confirmed by a decrease in product viscosity, and the upgrade for energetic or fuel applications by measurements of calorific value. - Highlights: • Liquefaction of waste lignocellulosic biomass with glycerol at low temperature. • Hydrotreatment, hydrocracking and hydrodeoxygenation of liquefied waste biomass. • Deoxygenation using heterogeneous catalysis over NiMo/Al 2 O 3 bifunctional catalyst. • Proposal of reaction mechanism; chemical kinetics and mass transfer considerations. • Effect of temperature, heating rate, pressure, mixing, solvent and catalyst content

  12. Bio diesel synthesis from pongamia pinnata oil over modified CeO{sub 2} catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Venkatesh; Sathgatta Z, M. S.; Manjunatha, S.; Thammannigowda V, V., E-mail: mohamed.shamshuddin@gmail.com [HMS Institute of Technology, Chemistry Research Laboratory, NH4, Kyathsandra, Tumkur, 572104 Karnataka (India)

    2014-07-01

    This study investigates the use of CeO{sub 2}, ZrO{sub 2}, Mg O and CeO{sub 2}-ZrO{sub 2}, CeO{sub 2}-Mg O, CeO{sub 2}-ZrO{sub 2}-Mg O mixed oxides as solid base catalysts for the transesterification of Pongamia pinnata oil with methanol to produce bio diesel. SO{sub 4}{sup 2-}/CeO{sub 2} and SO{sub 4}{sup 2-}/CeO{sub 2}-ZrO{sub 2} were also prepared and used as solid acid catalysts for esterification of Pongamia pinnata oil (P-oil) to reduce the % of free fatty acid (FFA) in P-oil. The oxide catalysts were prepared by an incipient wetness impregnation method and characterized by techniques such as NH{sub 3}-Tpd for surface acidity, CO{sub 2}-Tpd for surface basicity and powder X-ray diffraction for crystallinity. The effect of nature of the catalyst, methanol to P-oil molar ratio and reaction time in esterification as well as in transesterification was investigated. The catalytic materials were reactive d and reused for five reaction cycles and the results showed that the ceria based catalysts have reasonably good reusability both in esterification and transesterification reaction. The test results also revealed that the CeO{sub 2}-ZrO{sub 2} modified with Mg O could have potential for use in the large scale bio diesel production. (Author)

  13. Preparation and Performance of Modified Red Mud-Based Catalysts for Selective Catalytic Reduction of NOx with NH3

    Directory of Open Access Journals (Sweden)

    Jingkun Wu

    2018-01-01

    Full Text Available Bayer red mud was selected, and the NH3-SCR activity was tested in a fixed bed in which the typical flue gas atmosphere was simulated. Combined with XRF, XRD, BET, SEM, TG and NH3-Temperature Programmed Desorption (TPD characterization, the denitration characteristics of Ce-doped red mud catalysts were studied on the basis of alkali-removed red mud. The results showed that typical red mud was a feasible material for denitration catalyst. Acid washing and calcining comprised the best treatment process for raw red mud, which reduced the content of alkaline substances, cleared the catalyst pore and optimized the particle morphology with dispersion. In the temperature range of 300–400 °C, the denitrification efficiency of calcined acid washing of red mud catalyst (ARM was more than 70%. The doping of Ce significantly enhanced NH3 adsorption from weak, medium and strong acid sites, reduced the crystallinity of α-Fe2O3 in ARM, optimized the specific surface area and broadened the active temperature window, which increased the NOx conversion rate by an average of nearly 20% points from 250–350 °C. The denitration efficiency of Ce0.3/ARM at 300 °C was as high as 88%. The optimum conditions for the denitration reaction of the Ce0.3/ARM catalyst were controlled as follows: Gas Hourly Space Velocity (GHSV of 30,000 h−1, O2 volume fraction of 3.5–4% and the NH3/NO molar ratio ([NH3/NO] of 1.0. The presence of SO2 in the feed had an irreversible negative effect on the activity of the Ce0.3/ARM catalyst.

  14. Transesterification of waste oil to biodiesel using Brønsted acid ionic liquid as catalyst

    Directory of Open Access Journals (Sweden)

    C. Xie

    2013-05-01

    Full Text Available Brønsted acid ionic liquids were employed for the preparation of biodiesel using waste oil as the feedstock. It was found that IL 1–(3–sulfonic acidpropyl–3–methylimidazole hydrosulfate–[HO3S-pmim]HSO4 was an efficient catalyst for the reaction under the optimum conditions: n(oil:n(methanol 1:12, waste oil 15.0 g, ionic liquid 2.0 g, reaction temperature 120 oC and reaction time 8 h, the yield of biodiesel was more than 96%. The reusability of the ionic liquid was also investigated. When the ionic liquid was repeatedly used for five times, the yield of product was still more than 93%. Therefore, an efficient and environmentally friendly catalyst was provided for the synthesis of biodiesel from waste oils.

  15. Synthesis and characterization of MCM-41-supported nano zirconia catalysts

    Directory of Open Access Journals (Sweden)

    Mohamed S. Abdel Salam

    2015-03-01

    Full Text Available Series of MCM-41 supported sulfated Zirconia (SZ catalysts with different loadings (2.5–7.5% wt. were prepared using direct impregnation method. The acquired solid catalysts were characterized structurally and chemically using X-RD, HRTEM, BET, FT-IR, Raman spectroscopy and TPD analysis. The acidity of the solid catalysts was investigated through cumene cracking and isopropanol dehydration at different temperatures. As the SZ loading increases, the surface acidity of the mesoporous catalysts was enhanced, this was reflected by the higher catalytic activity toward cumene cracking and isopropanol dehydration.

  16. Properties of Pt/C catalyst modified by chemical vapor deposition of Cr as a cathode of phosphoric acid fuel cell

    International Nuclear Information System (INIS)

    Seo, Sang Joon; Joh, Han-Ik; Kim, Hyun Tae; Moon, Sang Heup

    2006-01-01

    Cr-modified Pt/C catalysts were prepared by the chemical vapour deposition (CVD) of Cr on Pt/C, and their performance as a cathode of phosphoric acid fuel cell (PAFC) was compared with the case of catalysts containing Cr added by impregnation (IMP). The catalyst prepared by CVD showed a higher activity for oxygen reduction reaction (ORR) than one prepared by IMP. There was an optimum amount of Cr that yielded the maximum mass activity of the catalyst because the gain in the intrinsic activity due to the promotional effect of Cr was counterbalanced by the loss of exposed Pt surface area as a result of the Cr introduction. Nevertheless, the activity increase at the optimum amount of Cr was greater for the CVD catalyst than for the IMP catalyst. Also, the optimum amount of Cr to yield the maximum activity was smaller for the former catalyst [Cr/Pt] CVD = 0.6, than for the latter, [Cr/Pt] IMP = 1.0. The enhancement of the Pt catalyst activity by Cr addition is attributed to two factors: changes in the surface Pt-Pt spacing and the electronic modification of the Pt surface. The formation of a Pt-Cr alloy, as confirmed by X-ray diffraction, decreased the lattice parameter of Pt, which was beneficial to the catalyst activity for ORR. X-ray photoelectron spectroscopy results showed that the binding energies of Pt electrons were shifted to higher energies due to Cr modification. Accordingly, the electron density of Pt was lowered and the Pt-O bond became weak on the Cr-modified catalysts, which was also beneficial to the catalyst activity for ORR. The promotion of oxygen reduction on Cr-modified catalysts was confirmed by measuring the cyclic voltammograms of the catalysts. All the above changes were made more effectively for catalysts prepared by CVD than for those prepared by IMP because the former method allowed Cr to interact more closely with the Pt surface than the latter, which was demonstrated by the characterization of catalysts in this study

  17. Recent development of active nanoparticle catalysts for fuel cell reactions

    Energy Technology Data Exchange (ETDEWEB)

    Mazumder, Vismadeb; Lee, Youngmin; Sun, Shouheng [Department of Chemistry Brown University Providence, RI (United States)

    2010-04-23

    This review focuses on the recent advances in the synthesis of nanoparticle (NP) catalysts of Pt-, Pd- and Au-based NPs as well as composite NPs. First, new developments in the synthesis of single-component Pt, Pd and Au NPs are summarized. Then the chemistry used to make alloy and composite NP catalysts aiming to enhance their activity and durability for fuel cell reactions is outlined. The review next introduces the exciting new research push in developing CoN/C and FeN/C as non-Pt catalysts. Examples of size-, shape- and composition-dependent catalyses for oxygen reduction at cathode and formic acid oxidation at anode are highlighted to illustrate the potentials of the newly developed NP catalysts for fuel cell applications. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  18. Kinetic Study on the Esterification of Palm Fatty Acid Distillate (PFAD) Using Heterogeneous Catalyst

    Science.gov (United States)

    Rofiqah, U.; Djalal, R. A.; Sutrisno, B.; Hidayat, A.

    2018-05-01

    Esterification with heterogeneous catalysts is believed to have advantages compared to homogeneous catalysts. Palm Fatty Acid Distillate (PFAD) was esterified by ZrO2 -SO4 2-/natural zeolite at temperature variation of 55°C, 60°C, and 65°C to produce biodiesel. Determination of reaction kinetics was done by experiment and modeling. Kinetic study was approached using pseudo-homogeneous model of first order. For experiment, reaction kinetics were 0.0031 s-1, 0.0054 s-1, and 0.00937 s-1 for a temperature of 55 °C, 60 °C and 65 °C, respectively. For modelling, reaction kinetics were 0.0030 s-1, 0.0055 s-1, and 0.0090 s-1 for a temperature of 55°C, 60°C and 65°C, respectively. Rate and conversion of reaction are getting increased by increasing temperature.

  19. Alternative deNO{sub x} catalysts and technologies

    Energy Technology Data Exchange (ETDEWEB)

    Due-Hansen, J.

    2010-06-15

    Two approaches are undertaken in the present work to reduce the emission of NO{sub x}: by means of catalytic removal, and by NO absorption in ionic liquids. The commercial catalyst used for the selective catalytic reduction (SCR) of nitrogen oxides exhibits high activity and selectivity towards N{sub 2}. However, the vanadia-titania-based catalyst used is very sensitive to deactivation by alkali-species (primarily potassium), which are typically present in high amounts in the flue gas when biomass is combusted. By co-firing with large amounts of CO{sub 2}-neutral straw or wood (to meet stringent CO{sub 2} emission legislation), the lifetime of the traditional SCR catalyst is thus significantly reduced due to the presence of deactivating species originating from the fuel. To develop a catalyst less susceptible to the poisons present in the flue gas, a number of catalysts have been synthesized and tested in the present work, all based on commercially available supports. A highly acidic support consisting of sulfated zirconia was chosen based on preliminary studies. A number of different active species distributed on the support were investigated, such as iron, copper and vanadium oxides. However, based on the catalysts performance in the SCR reaction and their resistances towards potassium, the most promising candidate of the formulations studied was the vanadia-loaded catalyst, i.e. V{sub 2}O{sub 5}-SO{sub 4}2-ZrO{sub 2}. This work, together with an introduction to the catalytic removal of NO{sub x}, are described in chapter 3. The remainder of the first part is concerned with the catalytic NO{sub x} removal (chapter 4) and it addresses the upscaling of the best catalyst candidate. The catalyst was mixed with the natural binding clay (sepiolite) to upscale the selected catalyst to the monolithic level, suitable for installation in gas stream with high flows, e.g. a flue gas duct of a power plant. A series of catalyst pellets with increasing levels of sepiolite were

  20. Origin of Life and the Phosphate Transfer Catalyst

    Science.gov (United States)

    Piast, Radosław W.; Wieczorek, Rafał M.

    2017-03-01

    In this paper, we revisit several issues relevant to origin-of-life research and propose a Phosphate Transfer Catalyst hypothesis that furthers our understanding of some of the key events in prebiotic chemical evolution. In the Phosphate Transfer Catalyst hypothesis, we assume the existence of hypothetical metallopeptides with phosphate transfer activity that use abundant polyphosphates as both substrates and energy sources. Nonspecific catalysis by this phosphate transfer catalyst would provide a variety of different products such as phosphoryl amino acids, nucleosides, polyphosphate nucleotides, nucleic acids, and aminoacylated nucleic acids. Moreover, being an autocatalytic set and metabolic driver at the same time, it could possibly replicate itself and produce a collective system of two polymerases; a nucleic acid able to catalyze peptide bond formation and a peptide able to polymerize nucleic acids. The genetic code starts at first as a system that reduces the energy barrier by bringing substrates (2'/3' aminoacyl-nucleotides) together, an ancestral form of the catalysis performed by modern ribosomes.

  1. Epoxidation catalyst and process

    Science.gov (United States)

    Linic, Suljo; Christopher, Phillip

    2010-10-26

    Disclosed herein is a catalytic method of converting alkenes to epoxides. This method generally includes reacting alkenes with oxygen in the presence of a specific silver catalyst under conditions suitable to produce a yield of the epoxides. The specific silver catalyst is a silver nanocrystal having a plurality of surface planes, a substantial portion of which is defined by Miller indices of (100). The reaction is performed by charging a suitable reactor with this silver catalyst and then feeding the reactants to the reactor under conditions to carry out the reaction. The reaction may be performed in batch, or as a continuous process that employs a recycle of any unreacted alkenes. The specific silver catalyst has unexpectedly high selectivity for epoxide products. Consequently, this general method (and its various embodiments) will result in extraordinarily high epoxide yields heretofore unattainable.

  2. Selective Ring Opening of 1-Methylnaphthalene Over NiW-Supported Catalyst Using Dealuminated Beta Zeolite.

    Science.gov (United States)

    Kim, Eun-Sang; Lee, You-Jin; Kim, Jeong-Rang; Kim, Joo-Wan; Kim, Tae-Wan; Chae, Ho-Jeong; Kim, Chul-Ung; Lee, Chang-Ha; Jeong, Soon-Yong

    2016-02-01

    Nanoporous Beta zeolite was dealuminated by weak acid treatment for reducing the acidity. Bi-functional catalysts were prepared using commercial Beta zeolites and the dealuminated zeolites for acidic function, NiW for metallic function. 1-Methylnaphthalene was selected as a model compound for multi-ring aromatics in heavy oil, and its selective ring opening reaction has been investigated using the prepared bi-functional catalysts with different acidity in fixed bed reaction system. The dealuminated Beta zeolites, which crystal structure and nanoporosity were maintained, showed the higher SiO2/Al2O3 ratio and smaller acidity than their original zeolite. NiW-supported catalyst using the dealuminated Beta zeolite with SiO2/Al203 mole ratio of 55 showed the highest performance for the selective ring opening. The acidity of catalyst seemed to play an important role as active sites for the selective ring opening of 1-methylnaphthalene but there should be some optimum catalyst acidity for the reaction. The acidity of Beta zeolite could be controlled by the acid treatment and the catalyst with the optimum acidity for the selective ring opening could be prepared.

  3. Characterization of three-way automotive catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kenik, E.A.; More, K.L. [Oak Ridge National Lab., TN (United States); LaBarge, W. [Delphi Automotive Systems, Flint, MI (United States)] [and others

    1997-04-01

    The CRADA between Delphi Automotive Systems (Delphi; formerly General Motors - AC Delco, Systems) and Lockheed Martin Energy Research (LMER) on automotive catalysts was completed at the end of FY96, after a ten month, no-cost extension. The CRADA was aimed at improved performance and lifetime of noble metal based three-way-catalysts (TWC), which are the primary catalytic system for automotive emission control systems. While these TWC can meet the currently required emission standards, higher than optimum noble metal loadings are often required to meet lifetime requirements. In addition, more stringent emission standards will be imposed in the near future, demanding improved performance and service life from these catalysts. Understanding the changes of TWC conversion efficiency with ageing is a critical need in improving these catalysts. Initially in a fresh catalyst, the active material is often distributed on a very fine scale, approaching single atoms or small atomic clusters. As such, a wide range of analytical techniques have been employed to provide high spatial resolution characterization of the evolving state of the catalytic material.

  4. Esterification of fatty acids using sulfated zirconia and composites activated carbon/sulfated zirconia catalysts

    International Nuclear Information System (INIS)

    Brum, Sarah S.; Santos, Valeria C. dos; Destro, Priscila; Guerreiro, Mario Cesar

    2011-01-01

    In this work sulfated zirconia (SZr) and activated carbon/SZr composites produced by impregnation method with or without heating treatment step (CABC/SZr-I and CABC/SZr-I SC) and by the method of synthesis of SZr on the carbon (CABC/SZr-S) was used as catalysts in the esterification reactions of fatty acids. The SZr presented very active, conversions higher than 90% were obtained after 2 h of reaction. The activity of the composite CABC/SZr-I20%SC was up to 92%, however, this was directly related to time and temperature reactions. CABC/SZr-I and CABC/SZr-S were less active in esterification reactions, what could be attributed to its low acidity. (author)

  5. Synthesis of MoVTeNb Oxide Catalysts with Tunable Particle Dimensions

    DEFF Research Database (Denmark)

    Kolenko, Yury V.; Zhang, Wei; d'Alnoncourt, Raoul Naumann

    2011-01-01

    Reliable procedures for the controlled synthesis of phase-pure MoVTeNb mixed oxides with M1 structure (ICSD 55097) and tunable crystal dimensions were developed to study the structure sensitivity of the selective oxidation of propane to acrylic acid. A series of powdered M1 catalysts...... catalysts were studied in the selective oxidation of propane to acrylic acid, revealing that active sites appear on the entire M1 surface and illustrating the high sensitivity of catalyst performance on the catalyst synthesis method....

  6. 3D-modelling of bifunctional core-shell catalysts for the production of fuels from biomass-based synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Wenjin; Lee, Seung Cheol; Li, Hui; Pfeifer, Peter; Dittmeyer, Roland [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany). Inst. for Micro Process Engineering (IMVT)

    2013-09-01

    Until now, the main route for the production of DME from synthesis gas in industry is methanol synthesis on a metallic catalyst and subsequent dehydration of methanol on an acid catalyst (two-step process). A single-step process using bifunctional catalysts to perform the two steps simultaneously would be preferred e.g. due to thermodynamic considerations; but this is impeded by the higher volumetric heat release which may cause deactivation of the methanol synthesis catalyst function. Thus we propose to conduct the reaction in a microchannel reactor. However, in order to increase the productivity of the microchannel reactor and to lower the investment costs, we aim at a high selectivity and activity of the catalyst. The continuously removal of methanol by dehydration on an acidic ZSM-5 catalyst as shell improves the thermodynamic conditions of methanol synthesis in the CuO/ZnO/Al{sub 2}O{sub 3} core; thus, the synthesis gas conversion can be higher than that determined by the thermodynamics of pure methanol synthesis. The molecular sieving in the zeolite layer can further lead to higher selectivity of DME at milder reaction conditions. However, mass transport limitation of the synthesis gas to the catalyst core should not hinder the reaction, and therefore a more detailed investigation is required. In order to computer-aided optimize the catalyst structure and the operating conditions for core-shell catalysts, a simulation model should be developed to study the coupled reaction and transport processes in core-shell catalysts. In this simulation model the complicated interaction of diffusion and reaction in the zeolite layer (shell) must be detailed by a network model to describe its structure and the mechanisms effectively. In addition, suitable diffusion and kinetic models are required to describe the mass transport and reactions in the layer. Suitable networks, diffusion and kinetic models are discussed for 3D simulations in this contribution. (orig.)

  7. Alternative alkali resistant deNOx catalysts

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Kristensen, Steffen Buus; Due-Hansen, Johannes

    2012-01-01

    by onepot sol–gel method. All catalysts were characterized by BET, XRPD and NH3-TPD. Initial SCR activities of 8 out of 9 catalysts showed higher NO conversion at least at one temperature in the temperature range 300–500 ◦C compared to the conventional V2O5-WO3/TiO2 catalyst. After potassium poisoning (100......Alternative alkali resistant deNOx catalysts were prepared using three different supports ZrO2, TiO2 and Mordenite zeolite. The majority of the catalysts were prepared by incipient wetness impregnation of a commercial support, with vanadium, copper or iron precursor, one catalyst was prepared......–130 µmol of K/g of catalyst) the relative drop in SCR activity and acidity was lower for all the alternative catalysts compared to the industrial V2O5-WO3/TiO2 catalyst. Furthermore, Cu/MOR and Nano-V2O5/Sul-TiO2 catalysts showed 8–16 times higher SCR activities than the conventional even after high...

  8. Biodiesel fuel production from waste cooking oil using radiation-grafted fibrous catalysts

    Science.gov (United States)

    Ueki, Yuji; Saiki, Seiichi; Hoshina, Hiroyuki; Seko, Noriaki

    2018-02-01

    Waste cooking oil, which can be used as a raw material for biodiesel fuel (BDF), contains two kinds of oil components: triglycerides (TGs) and free fatty acids (FFAs). Therefore, both alkaline-type and acid-type catalysts are needed to produce BDF from waste cooking oil. In this study, an alkaline-type grafted fibrous catalyst bearing OH- ions was synthesized by radiation-induced emulsion grafting of 4-chloromethylstyrene onto a polyethylene-coated polypropylene (PE/PP) nonwoven fabric, amination with trimethylamine, and further treatment with NaOH. Furthermore, an acid-type catalyst bearing H+ ions was synthesized by radiation-induced emulsion grafting of ethyl p-styrenesulfonate onto a PE/PP nonwoven fabric, saponification with NaOH, and protonation with HNO3. The OH- and H+ densities of the grafted fibrous catalysts were controlled by the grafting yield. The maximum OH- and H+ densities of the catalysts were 3.6 mmol-OH-/g-catalyst and 3.4 mmol-H+/g-catalyst, respectively. The performances of the catalysts were evaluated in the batchwise transesterification of TGs and ethanol, and the batchwise esterification of FFAs and ethanol. In both cases, TGs and FFAs were gradually converted into BDF. The mixed oil and four actual waste cooking oils, which contained both TGs and FFAs, were completely converted into BDF by sequential catalytic reactions with the acid-type grafted fibrous catalyst and then the alkaline-type grafted fibrous catalyst.

  9. Uniformly active phase loaded selective catalytic reduction catalysts (V_2O_5/TNTs) with superior alkaline resistance performance

    International Nuclear Information System (INIS)

    Wang, Haiqiang; Wang, Penglu; Chen, Xiongbo; Wu, Zhongbiao

    2017-01-01

    Highlights: • VOSO_4 exhibited better synergistic effect with titanate nanotubes than NH_4VO_3. • Ion-exchange reaction occurs between VOSO_4 and titanate nanotubes. • Ion-exchange resulting in uniformly vanadium distribution on titanate nanotubes. • VOSO_4-based catalyst exhibited impressive SCR activity and alkaline resistance. - Abstract: In this work, protonated titanate nanotubes was performed as a potential useful support and different vanadium precursors (NH_4VO_3 and VOSO_4) were used to synthesize deNO_x catalysts. The results showed that VOSO_4 exhibited better synergistic effect with titanate nanotubes than NH_4VO_3, which was caused by the ion-exchange reaction. Then high loading content of vanadium, uniformly active phase distribution, better dispersion of vanadium, more acid sites, better V"5"+/V"4"+ redox cycles and superior oxygen mobility were achieved. Besides, VOSO_4-based titanate nanotubes catalysts also showed enhanced alkaline resistance than particles (P25) based catalysts. It was strongly associated with its abundant acid sites, large surface area, flexible redox cycles and oxygen transfer ability. For the loading on protonated titanate nanotubes, active metal with cation groups was better precursors than anion ones. V_2O_5/TNTs catalyst was a promising substitute for the commercial vanadium catalysts and the work conducted herein provided a useful idea to design uniformly active phase loaded catalyst.

  10. The n-butyl amine TPD measurement of Brönsted acidity for solid catalysts by simultaneous TG/DTG-DTA

    Science.gov (United States)

    Sasca, V.; Avram, Livia; Verdes, Orsina; Popa, A.

    2010-06-01

    The method for Brönsted acidity measurement based on TPD of alkyl amines desorption by gas-chromatography or thermogravimetry was adapted for simultaneous TG/DTG-DTA analysis. The acidity measurements were focused on the 12-tungstophosphoric acid (H 3PW 12O 40) and its salts, especially with Cesium since these posses the highest Brönsted acidity and they are among the most interesting catalysts. The n-butyl amine (NBA) desorption takes place in three steps for Cs xH 3- xPW 12O 40, x = 0-2, and four steps for the Cs 2.5H 0.5PW 12O 40. The steps of desorption correspond to the release of NBA molecules in stages, as NBA or butene molecules resulted from the Hofmann elimination reaction and NH 3 + H 2O formed by decomposition of ammonium salt. The quantities of desorption products, C 4H 8 and NH 3 + H 2O, corresponding to the stages with the maximum desorption rates at 400-420 °C, respectively 560-600 °C, are in the stoichiometric ratio with the Brönsted acidity.

  11. Two-Stage Conversion of High Free Fatty Acid Jatropha curcas Oil to Biodiesel Using Brønsted Acidic Ionic Liquid and KOH as Catalysts

    Directory of Open Access Journals (Sweden)

    Subrata Das

    2014-01-01

    Full Text Available Biodiesel was produced from high free fatty acid (FFA Jatropha curcas oil (JCO by two-stage process in which esterification was performed by Brønsted acidic ionic liquid 1-(1-butylsulfonic-3-methylimidazolium chloride ([BSMIM]Cl followed by KOH catalyzed transesterification. Maximum FFA conversion of 93.9% was achieved and it reduced from 8.15 wt% to 0.49 wt% under the optimum reaction conditions of methanol oil molar ratio 12 : 1 and 10 wt% of ionic liquid catalyst at 70°C in 6 h. The ionic liquid catalyst was reusable up to four times of consecutive runs under the optimum reaction conditions. At the second stage, the esterified JCO was transesterified by using 1.3 wt% KOH and methanol oil molar ratio of 6 : 1 in 20 min at 64°C. The yield of the final biodiesel was found to be 98.6% as analyzed by NMR spectroscopy. Chemical composition of the final biodiesel was also determined by GC-MS analysis.

  12. Tailoring the Synergistic Bronsted-Lewis acidic effects in Heteropolyacid catalysts: Applied in Esterification and Transesterification Reactions.

    Science.gov (United States)

    Tao, Meilin; Xue, Lifang; Sun, Zhong; Wang, Shengtian; Wang, Xiaohong; Shi, Junyou

    2015-09-16

    In order to investigate the influences of Lewis metals on acidic properties and catalytic activities, a series of Keggin heteropolyacid (HPA) catalysts, HnPW11MO39 (M = Ti(IV), Cu(II), Al(III), Sn(IV), Fe(III), Cr(III), Zr(IV) and Zn(II); for Ti and Zr, the number of oxygen is 40), were prepared and applied in the esterification and transesterification reactions. Only those cations with moderate Lewis acidity had a higher impact. Ti Substituted HPA, H5PW11TiO40, posse lower acid content compared with Ti(x)H(3-4x)PW12O40 (Ti partial exchanged protons in saturated H3PW12O40), which demonstrated that the Lewis metal as an addenda atom (H5PW11TiO40) was less efficient than those as counter cations (Ti(x)H(3-4x)PW12O40). On the other hand, the highest conversion reached 92.2% in transesterification and 97.4% in esterification. Meanwhile, a good result was achieved by H5PW11TiO40 in which the total selectivity of DAG and TGA was 96.7%. In addition, calcination treatment to H5PW11TiO40 make it insoluble in water which resulted in a heterogeneous catalyst feasible for reuse.

  13. Mechanism-Based Design of Green Oxidation Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Rybak-Akimova, Elena [Tufts Univ., Medford, MA (United States)

    2015-03-16

    situation. Growing families of synthetic iron complexes that resemble active sites of metalloenzymes produce metal-based intermediates (rather than hydroxyl radicals) in reactions with oxygen donors. These complexes are very promising for selective oxygen and peroxide activation. In order to understand the mechanisms of metal-based small molecule activation, kinetically competent metal-oxygen intermediates must be identified. One of the grand challenges identified by the Department of Energy workshop "Catalysis for Energy" is understanding mechanisms and dynamics of catalyzed reactions. The research summarized herein focuses on detailed characterization of the formation and reactivity of various iron-peroxo- and iron-oxo intermediates that are involved in catalysis. Rates of rapid reactions were studied at low temperatures by a specialized technique termed cryogenic stopped-flow spectrophotometry. These measurements identified reaction conditions which favor the formation of catalytically competent oxidants. Chemical structures of reactive complexes was determined, and new, efficient catalysts for hydrocarbon oxidation were synthesized. Importantly, these catalysts are selective, they promote oxidation of hydrocarbons at a specific site. The catalysts are also efficient and robust, hundreds of cycles of substrate oxidation occur within minutes at room temperature. Furthermore, they enable utilization of environmentally friendly oxidants, such as hydrogen peroxide, which produces water as the only byproduct. Mechanistic insights uncovered the role of various acid-containing additives in catalytic oxidations. Proton delivery to the active catalytic sites facilitated oxidations, similarly to the catalytic pathways in metal-containing enzymes. Under certain conditions, two metals in one complex can act in concert, modeling the reactivity of a bacterial enzyme which converts methane into methanol. In related studies, a family of nickel complexes that react with carbon dioxide at

  14. Development of industrial hydrogenating catalyst on rhenium base

    International Nuclear Information System (INIS)

    Chistyakova, G.A.; Bat', I.I.; Rebrova, V.V.

    1975-01-01

    Processes for forming rhenium catalysts on carbon carrier and their catalytic properties in nitrobenzene (NB) reduction were studied. Application of an ammonia preparation to the carbon surface produced impregnated carbon saturated at room temperature with a water solution of the ammonia preparation, taken in a volume equal to the volumetric capacity of the carbon. With one impregnation, 2% rhenium was taken up. Catalysts containing more than 5% rhenium were obtained by impregnating the carbon with heating and use of more concentrated solutions. Catalysts made in this way and dried at 100 0 C had the composition Re 2 OH/carbon/. The most active catalysts were those reduced at 200-250 0 C; higher temperatures, up to 300-500 0 C, decreased the activity. Study of the catalytic properties of the rhenium catalysts in a liquid phase reduction of NB showed that the specific activity of rhenium depends only slightly on the content of the active component in the catalyst and is close to the specific activity of palladium and considerably exceeds that of nickel. Study of the effect of the NB concentration and hydrogen pressure on the activity and stability of the 5% rhenium catalyst indicated that with NB concentrations from 50 to 10% the process takes place at an essentially constant rate; the order of the reaction was close to zero with an apparent activation energy of about 7000 cal/mole. At pressures of 15-200 atm the yield with the 5% catalyst was proportional to the hydrogen pressure. A big advantage of the rhenium catalysts in the reduction of NB is their high selectivity. With a higher activity than palladium and nickel catalysts, 5% rhenium catalyst produces a high operating capacity in a wide range of contact charges, which has considerable significance for industrial use in contact apparatus of the column type. Comparison of the costs of rhenium catalysts and granular carbon carrier with those of nickel, platinum, and palladium showed that 5% rhenium catalyst can

  15. Synthesis and application of new polymer bound catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Fetterly, Brandon Michael [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    Nitric acid has been shown to be a weak acid in acetonitrile. It is conceivable that a nitrate salt of a weakly Lewis acidic cation could furnish a ''naked'' nitrate anion as a basic catalyst in a variety of reactions in non-aqueous solvents. Such a nitrate salt could also be bound to a polymeric support via the cation, thereby allowing for reclamation and recycling of the nitrate ion. This subject is dealt with in Chapter 2, wherein my contributions consisted of performing all the reactions with the polymer supported catalyst and carrying out the experiments necessary to shed light on the reaction mechanisms. Chapter 3 contains a description of the structure and catalytic properties of an azidoproazaphosphatrane. This compound is an air-stable versatile catalyst that has proven useful not only homogeneously, but also when bound to a solid support. The synthesis of a polymer bound proazaphosphatrane containing a trivalent phosphorus is presented in Chapter 4. Such a compound has been sought after by our group for a number of years. Not only does the synthesis I have accomplished for it allow for easier separation of proazaphosphatrane catalysts from reaction mixtures, but recycling of the base is made much simpler. Proazaphosphatranes are useful homogeneous catalysts that activate atoms in other reagents, thus enhancing their reactivity. The next chapters deal with two such reactions with aldehydes and ketones, namely silylcyanations with trialkylsilylcyanides (Chapters 5 and 6) and reductions with poly(methylhydrosiloxane), in Chapter 7. In Chapter 5, Zhigang Wang performed the initial optimization and scoping of the reaction, while repetitions of the scoping experiments for reproducibility, determination of diastereomeric ratios, and experiments aimed at elucidating aspects of the mechanism were performed by me. The proazaphosphatrane coordinates to the silicon atom in both cases, thereby allowing the aforementioned reactions to proceed under

  16. Pt/SnO2-based CO-oxidation catalysts for long-life closed-cycle CO2 lasers

    Science.gov (United States)

    Schryer, David R.; Upchurch, Billy T.; Hess, Robert V.; Wood, George M.; Sidney, Barry D.; Miller, Irvin M.; Brown, Kenneth G.; Vannorman, John D.; Schryer, Jacqueline; Brown, David R.

    1990-01-01

    Noble-metal/tin-oxide based catalysts such as Pt/SnO2 have been shown to be good catalysts for the efficient oxidation of CO at or near room temperature. These catalysts require a reductive pretreatment and traces of hydrogen or water to exhibit their full activity. Addition of Palladium enhances the activity of these catalysts with about 15 to 20 percent Pt, 4 percent Pd, and the balance SnO2 being an optimum composition. Unfortunately, these catalysts presently exhibit significant decay due in part to CO2 retention, probably as a bicarbonate. Research on minimizing the decay in activity of these catalysts is currently in progress. A proposed mechanism of CO oxidation on Pt/SnO2-based catalysts has been developed and is discussed.

  17. Magnetism for understanding catalyst analysis of purified carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Bellouard, Christine; Mercier, Guillaume; Cahen, Sébastien; Ghanbaja, Jaafar; Medjahdi, Ghouti [Institut Jean Lamour, CNRS-Université de Lorraine, BP 70239, 54506 Vandoeuvre-lès-Nancy (France); Gleize, Jérôme [Laboratoire de Chimie Physique-Approche Multi-échelle de Milieux Complexes-Université de Lorraine, 1 Bd Arago, 57078 Metz (France); Lamura, Gianrico [CNR-SPIN – Dipartimento di Fisica, via Dodecaneso 33, 16146 Genova (Italy); Hérold, Claire [Institut Jean Lamour, CNRS-Université de Lorraine, BP 70239, 54506 Vandoeuvre-lès-Nancy (France); Vigolo, Brigitte, E-mail: Brigitte.Vigolo@univ-lorraine.fr [Institut Jean Lamour, CNRS-Université de Lorraine, BP 70239, 54506 Vandoeuvre-lès-Nancy (France)

    2016-08-01

    The precise quantification of catalyst residues in purified carbon nanotubes is often a major issue in view of any fundamental and/or applicative studies. More importantly, since the best CNTs are successfully grown with magnetic catalysts, their quantification becomes strictly necessary to better understand intrinsic properties of CNT. For these reasons, we have deeply analyzed the catalyst content remained in nickel–yttrium arc-discharge single walled carbon nanotubes purified by both a chlorine-gas phase and a standard acid-based treatment. The study focuses on Ni analysis which has been investigated by transmission electron microscopy, X-ray diffraction, thermogravimetry analysis, and magnetic measurements. In the case of the acid-based treatment, all quantifications result in a decrease of the nanocrystallized Ni by a factor of two. In the case of the halogen gas treatment, analysis and quantification of Ni content is less straightforward: a huge difference appears between X-ray diffraction and thermogravimetry results. Thanks to magnetic measurements, this disagreement is explained by the presence of Ni{sup 2+} ions, belonging to NiCl{sub 2} formed during the Cl-based purification process. In particular, NiCl{sub 2} compound appears under different magnetic/crystalline phases: paramagnetic or diamagnetic, or well intercalated in between carbon sheets with an ordered magnetic phase at low temperature. - Highlights: • Cl-gas treatment of Ni catalyst of carbon nanotubes leads to NiCl{sub 2} residue. • Magnetic measurements show the transformation of Ni{sup 0} in Ni{sup 2+}through a purification process. • High temperature Cl treatment removes 75% of metallic impurities. • Cl-purification yields to an amount of metal of 1.5% in arc-discharge CNT samples.

  18. Tannic acid- and natural organic matter-coated magnetite as green Fenton-like catalysts for the removal of water pollutants

    International Nuclear Information System (INIS)

    Nadejde, C.; Neamtu, M.; Hodoroaba, V.-D.; Schneider, R. J.; Paul, A.; Ababei, G.; Panne, U.

    2015-01-01

    The use of magnetic materials as heterogeneous catalysts has attracted increasing attention in the last years since they proved to be promising candidates for water treatment. In the present study, two types of surface-modified magnetite (Fe 3 O 4 ) nanoparticles, coated with non-hazardous naturally occurring agents—either tannic acid (TA) or dissolved natural organic matter—were evaluated as magnetic heterogeneous catalysts. Chemical synthesis (co-precipitation) was chosen to yield the nanocatalysts due to its well-established simplicity and efficiency. Subsequently, the properties of the final products were fully assessed by various characterization techniques. The catalytic activity in heterogeneous oxidation of aqueous solutions containing a model pollutant, Bisphenol A (BPA), was comparatively studied. The effect of operational parameters (catalyst loading, H 2 O 2 dosage, and UV light irradiation) on the degradation performance of the oxidation process was investigated. The optimum experimental parameters were found to be 1.0 g/L of catalysts and 10 mM H 2 O 2 , under UV irradiation. The highest mineralization rates were observed for Fe 3 O 4 -TA catalyst. More than 80 % of BPA was removed after 30 min of reaction time under the specified experimental conditions. The obtained results showed that the two catalysts studied here are suitable candidates for the removal of pollutants in wastewaters by means of heterogeneous reaction using a green sustainable treatment method

  19. Cobalt oxide-based catalysts deposited by cold plasma for proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kazimierski, P.; Jozwiak, L.; Sielski, J.; Tyczkowski, J., E-mail: jacek.tyczkowski@p.lodz.pl

    2015-11-02

    In proton exchange membrane fuel cells (PEMFC), both the anodic hydrogen oxidation reaction and the cathodic oxygen reduction reaction (ORR) require appropriate catalysts. So far, platinum-based catalysts are still the best option for this purpose. However, because these catalysts are too expensive for making commercially viable fuel cells, extensive research over the past decade has focused on developing noble metal-free alternative catalysts. In this paper, an approach based on cobalt oxide films fabricated by plasma-enhanced metal-organic chemical vapor deposition is presented. Such a material can be used to prepare catalysts for ORR in PEMFC. The films containing CoO{sub X} were deposited on a carbon paper thereby forming the electrode. Morphology and atomic composition of the films were investigated by scanning electron microscopy and energy-dispersive X-ray spectroscopy, respectively. The possibility of their application as the electro-catalyst for ORR in PEMFC was investigated and the electro-catalytic activities were evaluated by the electrochemical measurements and single cell tests. It was found that the fuel cell with Pt as the anode catalyst and CoO{sub X} deposit as the cathode catalyst was characterized by the open circuit voltage of 635 mV, Tafel slope of approx. 130 mV/dec and the maximum power density of 5.3 W/m{sup 2}. - Highlights: • Cobalt oxide catalyst for proton exchange membrane fuel cells was plasma deposited. • The catalyst exhibits activity for the oxygen reduction reaction. • Morphology and atomic composition of the catalyst were determined.

  20. Statistical Optimization for Acid Hydrolysis of Microcrystalline Cellulose and Its Physiochemical Characterization by Using Metal Ion Catalyst

    Directory of Open Access Journals (Sweden)

    Md. Ziaul Karim

    2014-10-01

    Full Text Available Hydrolyzing the amorphous region while keeping the crystalline region unaltered is the key technology for producing nanocellulose. This study investigated if the dissolution properties of the amorphous region of microcrystalline cellulose can be enhanced in the presence of Fe3+ salt in acidic medium. The process parameters, including temperature, time and the concentration of metal chloride catalyst (FeCl3, were optimized by using the response surface methodology (RSM. The experimental observation demonstrated that temperature and time play vital roles in hydrolyzing the amorphous sections of cellulose. This would yield hydrocellulose with higher crystallinity. The factors that were varied for the production of hydrocellulose were the temperature (x1, time (x2 and FeCl3 catalyst concentration (x3. Responses were measured in terms of percentage of crystallinity (y1 and the yield (y2 of the prepared hydrocellulose. Relevant mathematical models were developed. Analysis of variance (ANOVA was carried out to obtain the most significant factors influencing the responses of the percentage of crystallinity and yield. Under optimum conditions, the percentage of crystallinity and yield were 83.46% and 86.98% respectively, at 90.95 °C, 6 h, with a catalyst concentration of 1 M. The physiochemical characteristics of the prepared hydrocellulose were determined in terms of XRD, SEM, TGA and FTIR analyses. The addition of FeCl3 salt in acid hydrolyzing medium is a novel technique for substantially increasing crystallinity with a significant morphological change.