WorldWideScience

Sample records for gene transcription initiation

  1. Somatic hypermutation of immunoglobulin genes is linked to transcription initiation.

    Science.gov (United States)

    Peters, A; Storb, U

    1996-01-01

    To identify DNA sequences that target the somatic hypermutation process, the immunoglobulin gene promoter located upstream of the variable (V) region was duplicated upstream of the constant (C) region of a kappa transgene. Normally, kappa genes are somatically mutated only in the VJ region, but not in the C region. In B cell hybridomas from mice with this kappa transgene (P5'C), both the VJ region and the C region, but not the region between them, were mutated at similar frequencies, suggesting that the mutation mechanism is related to transcription. The downstream promoter was not occluded by transcripts from the upstream promoter. In fact, the levels of transcripts originating from the two promoters were similar, supporting a mutation model based on initiation of transcripts. Several "hot-spots" of somatic mutation were noted, further demonstrating that this transgene has the hallmarks of somatic mutation of endogenous immunoglobulin genes. A model linking somatic mutation to transcription-coupled DNA repair is proposed.

  2. Transcription initiation patterns indicate divergent strategies for gene regulation at the chromatin level.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Rach

    2011-01-01

    Full Text Available The application of deep sequencing to map 5' capped transcripts has confirmed the existence of at least two distinct promoter classes in metazoans: "focused" promoters with transcription start sites (TSSs that occur in a narrowly defined genomic span and "dispersed" promoters with TSSs that are spread over a larger window. Previous studies have explored the presence of genomic features, such as CpG islands and sequence motifs, in these promoter classes, but virtually no studies have directly investigated the relationship with chromatin features. Here, we show that promoter classes are significantly differentiated by nucleosome organization and chromatin structure. Dispersed promoters display higher associations with well-positioned nucleosomes downstream of the TSS and a more clearly defined nucleosome free region upstream, while focused promoters have a less organized nucleosome structure, yet higher presence of RNA polymerase II. These differences extend to histone variants (H2A.Z and marks (H3K4 methylation, as well as insulator binding (such as CTCF, independent of the expression levels of affected genes. Notably, differences are conserved across mammals and flies, and they provide for a clearer separation of promoter architectures than the presence and absence of CpG islands or the occurrence of stalled RNA polymerase. Computational models support the stronger contribution of chromatin features to the definition of dispersed promoters compared to focused start sites. Our results show that promoter classes defined from 5' capped transcripts not only reflect differences in the initiation process at the core promoter but also are indicative of divergent transcriptional programs established within gene-proximal nucleosome organization.

  3. [SWI/SNF Protein Complexes Participate in the Initiation and Elongation Stages of Drosophila hsp70 Gene Transcription].

    Science.gov (United States)

    Mazina, M Yu; Nikolenko, Yu V; Krasnov, A N; Vorobyeva, N E

    2016-02-01

    The participation of the SWI/SNF chromatin remodeling complex in the stimulation of the RNA polymerase II binding to gene promotors was demonstrated in all model eukaryotic organisms. It was shown eight years ago that the SWI/SNF complex influence on transcription is not limited to its role in initiation but also includes participation in elongation and alternative splicing. In the current work, we describe the subunit composition of the SWI/SNF complexes participating in initiation, preparing for the elongation and elongation of hsp70 gene transcription in Drosophila melanogaster. The data reveal the high mobility of the SWI/SNF complex composition during the hsp 70 gene transcription process. We suggest a model describing the process of sequential SWI/SNF complex formation during heat-shock induced transcription of the hsp 70 gene.

  4. A dinucleotide deletion in the ankyrin promoter alters gene expression, transcription initiation and TFIID complex formation in hereditary spherocytosis

    OpenAIRE

    Gallagher, Patrick G.; Nilson, Douglas G.; Wong, Clara; Weisbein, Jessica L.; Garrett-Beal, Lisa J.; Eber, Stephan W.; Bodine, David M.

    2017-01-01

    Ankyrin defects are the most common cause of hereditary spherocytosis (HS). In some HS patients, mutations in the ankyrin promoter have been hypothesized to lead to decreased ankyrin mRNA synthesis. The ankyrin erythroid promoter is a member of the most common class of mammalian promoters which lack conserved TATA, initiator or other promoter cis elements and have high G+C content, functional Sp1 binding sites and multiple transcription initiation sites. We identified a novel ankyrin gene pro...

  5. Transcription of ribosomal RNA genes is initiated in the third cell cycle of bovine embryos

    DEFF Research Database (Denmark)

    Jakobsen, Anne Sørig; Avery, Birthe; Dieleman, Steph J.

    2006-01-01

    of the embryonic genome. In the present study, ribosomal RNA (rRNA) transcription was investigated by visualization of the rRNA by fluorescent in situ hybridization, and subsequent visualization of the argyrophilic nucleolar proteins by silver staining. A total of 145 in vivo developed and 200 in vitro produced...... bovine embryos were investigated to allow comparison of transcription initiation. Signs of active transcription of rRNA were observed in the third cell cycle in 29% of the in vitro produced embryos (n=35) and in 58% of the in vivo developed embryos (n=11). Signs of active transcription of rRNA were...... not apparent in the early phase of the fourth cell cycle but restarted later on. All embryos in the fifth or later cell cycles were all transcribing rRNA. The signs of rRNA synthesis during the third and fourth embryonic cell cycles could be blocked by actinomycin D, which is a strong inhibitor of RNA...

  6. Eaf1p Is Required for Recruitment of NuA4 in Targeting TFIID to the Promoters of the Ribosomal Protein Genes for Transcriptional Initiation In Vivo.

    Science.gov (United States)

    Uprety, Bhawana; Sen, Rwik; Bhaumik, Sukesh R

    2015-09-01

    NuA4 (nucleosome acetyltransferase of H4) promotes transcriptional initiation of TFIID (a complex of TBP and TBP-associated factors [TAFs])-dependent ribosomal protein genes involved in ribosome biogenesis. However, it is not clearly understood how NuA4 regulates the transcription of ribosomal protein genes. Here, we show that NuA4 is recruited to the promoters of ribosomal protein genes, such as RPS5, RPL2B, and RPS11B, for TFIID recruitment to initiate transcription, and the recruitment of NuA4 to these promoters is impaired in the absence of its Eaf1p component. Intriguingly, impaired NuA4 recruitment in a Δeaf1 strain depletes recruitment of TFIID (a TAF-dependent form of TBP) but not the TAF-independent form of TBP to the promoters of ribosomal protein genes. However, in the absence of NuA4, SAGA (Spt-Ada-Gcn5-acetyltransferase) is involved in targeting the TAF-independent form of TBP to the promoters of ribosomal protein genes for transcriptional initiation. Thus, NuA4 plays an important role in targeting TFIID to the promoters of ribosomal protein genes for transcriptional initiation in vivo. Such a function is mediated via its targeted histone acetyltransferase activity. In the absence of NuA4, ribosomal protein genes lose TFIID dependency and become SAGA dependent for transcriptional initiation. Collectively, these results provide significant insights into the regulation of ribosomal protein gene expression and, hence, ribosome biogenesis and functions.

  7. Regulation of phosphoenolpyruvate carboxykinase gene transcription by insulin and cAMP: reciprocal actions on initiation and elongation.

    OpenAIRE

    1988-01-01

    Nuclei isolated from H4IIE rat hepatoma cells were used in an in vitro run-on assay, with probes directed against various regions of the phosphoenolpyruvate carboxykinase [GTP: oxaloacetate carboxy-lyase (transphosphorylating); EC 4.1.1.32] gene, to analyze whether transcription proceeds uniformly across this gene in response to insulin and cAMP treatment. Fewer polymerase II complexes were associated with the phosphoenolpyruvate carboxykinase gene after insulin treatment, as compared with cA...

  8. An MSC2 Promoter-lacZ Fusion Gene Reveals Zinc-Responsive Changes in Sites of Transcription Initiation That Occur across the Yeast Genome

    Science.gov (United States)

    Wu, Yi-Hsuan; Taggart, Janet; Song, Pamela Xiyao; MacDiarmid, Colin; Eide, David J.

    2016-01-01

    The Msc2 and Zrg17 proteins of Saccharomyces cerevisiae form a complex to transport zinc into the endoplasmic reticulum. ZRG17 is transcriptionally induced in zinc-limited cells by the Zap1 transcription factor. In this report, we show that MSC2 mRNA also increases (~1.5 fold) in zinc-limited cells. The MSC2 gene has two in-frame ATG codons at its 5’ end, ATG1 and ATG2; ATG2 is the predicted initiation codon. When the MSC2 promoter was fused at ATG2 to the lacZ gene, we found that unlike the chromosomal gene this reporter showed a 4-fold decrease in lacZ mRNA in zinc-limited cells. Surprisingly, β-galactosidase activity generated by this fusion gene increased ~7 fold during zinc deficiency suggesting the influence of post-transcriptional factors. Transcription of MSC2ATG2-lacZ was found to start upstream of ATG1 in zinc-replete cells. In zinc-limited cells, transcription initiation shifted to sites just upstream of ATG2. From the results of mutational and polysome profile analyses, we propose the following explanation for these effects. In zinc-replete cells, MSC2ATG2-lacZ mRNA with long 5’ UTRs fold into secondary structures that inhibit translation. In zinc-limited cells, transcripts with shorter unstructured 5’ UTRs are generated that are more efficiently translated. Surprisingly, chromosomal MSC2 did not show start site shifts in response to zinc status and only shorter 5’ UTRs were observed. However, the shifts that occur in the MSC2ATG2-lacZ construct led us to identify significant transcription start site changes affecting the expression of ~3% of all genes. Therefore, zinc status can profoundly alter transcription initiation across the yeast genome. PMID:27657924

  9. Structural basis of transcription initiation.

    Science.gov (United States)

    Zhang, Yu; Feng, Yu; Chatterjee, Sujoy; Tuske, Steve; Ho, Mary X; Arnold, Eddy; Ebright, Richard H

    2012-11-23

    During transcription initiation, RNA polymerase (RNAP) binds and unwinds promoter DNA to form an RNAP-promoter open complex. We have determined crystal structures at 2.9 and 3.0 Å resolution of functional transcription initiation complexes comprising Thermus thermophilus RNA polymerase, σ(A), and a promoter DNA fragment corresponding to the transcription bubble and downstream double-stranded DNA of the RNAP-promoter open complex. The structures show that σ recognizes the -10 element and discriminator element through interactions that include the unstacking and insertion into pockets of three DNA bases and that RNAP recognizes the -4/+2 region through interactions that include the unstacking and insertion into a pocket of the +2 base. The structures further show that interactions between σ and template-strand single-stranded DNA (ssDNA) preorganize template-strand ssDNA to engage the RNAP active center.

  10. Structure of the transcription initiation and termination sequences of seven early genes in the vaccinia virus HindIII D fragment.

    Science.gov (United States)

    Lee-Chen, G J; Bourgeois, N; Davidson, K; Condit, R C; Niles, E G

    1988-03-01

    The vaccinia virus HindIII D fragment is 16,060 bp in length and encodes 13 complete genes [E.G. Niles et al. (1986). Virology 153, 96-112; S. L. Weinrich and D. E. Hruby (1986). Nucleic Acids Res. 14, 3003-3016]. Six of these genes are expressed only at early times after infection and one gene is expressed at both early and late times [G. -J. Lee-Chen and E. G. Niles (1988). Virology 163, 52-63]. Transcript mapping by S1 nuclease protection studies was carried out and compared to the results of primer extension analyses, in order to locate map positions of the 5' termini of each early mRNA. The lengths of the products of in vitro transcription, from DNA templates which possess the transcription start regions of each of the early genes, were determined and compared to the lengths of DNA products generated by S1 nuclease protection and primer extension, in order to demonstrate that the 5' termini identified by S1 mapping and primer extension are due to transcription initiation and not to mRNA processing. For each of the early genes in the HindIII D fragment, transcription starts within 25 nucleotides of the translation initiation codon. The precise location of the 3' termini of each early transcript was identified by S1 nuclease mapping. In all but one case, the 3' ends map within 75 nucleotides of the putative transcription termination signal TTTTTNT [G. Rohrmann, L. Yuen, and B. Moss (1986).

  11. Structural basis of transcription initiation by RNA polymerase II.

    OpenAIRE

    Sainsbury, S.; Bernecky, C.; Cramer, P

    2015-01-01

    Transcription of eukaryotic protein-coding genes commences with the assembly of a conserved initiation complex, which consists of RNA polymerase II (Pol II) and the general transcription factors, at promoter DNA. After two decades of research, the structural basis of transcription initiation is emerging. Crystal structures of many components of the initiation complex have been resolved, and structural information on Pol II complexes with general transcription factors has recently been obtaine...

  12. Core promoter-specific gene regulation: TATA box selectivity and Initiator-dependent bi-directionality of serum response factor-activated transcription.

    Science.gov (United States)

    Xu, Muyu; Gonzalez-Hurtado, Elsie; Martinez, Ernest

    2016-04-01

    Gene-specific activation by enhancers involves their communication with the basal RNA polymerase II transcription machinery at the core promoter. Core promoters are diverse and may contain a variety of sequence elements such as the TATA box, the Initiator (INR), and the downstream promoter element (DPE) recognized, respectively, by the TATA-binding protein (TBP) and TBP-associated factors of the TFIID complex. Core promoter elements contribute to the gene selectivity of enhancers, and INR/DPE-specific enhancers and activators have been identified. Here, we identify a TATA box-selective activating sequence upstream of the human β-actin (ACTB) gene that mediates serum response factor (SRF)-induced transcription from TATA-dependent but not INR-dependent promoters and requires the TATA-binding/bending activity of TBP, which is otherwise dispensable for transcription from a TATA-less promoter. The SRF-dependent ACTB sequence is stereospecific on TATA promoters but activates in an orientation-independent manner a composite TATA/INR-containing promoter. More generally, we show that SRF-regulated genes of the actin/cytoskeleton/contractile family tend to have a TATA box. These results suggest distinct TATA-dependent and INR-dependent mechanisms of TFIID-mediated transcription in mammalian cells that are compatible with only certain stereospecific combinations of activators, and that a TBP-TATA binding mechanism is important for SRF activation of the actin/cytoskeleton-related gene family.

  13. Cloning and structure of a yeast gene encoding a general transcription initiation factor TFIID that binds to the TATA box.

    Science.gov (United States)

    Horikoshi, M; Wang, C K; Fujii, H; Cromlish, J A; Weil, P A; Roeder, R G

    1989-09-28

    The TATA sequence-binding factor TFIID plays a central role both in promoter activation by RNA polymerase II and other common initiation factors, and in promoter regulation by gene-specific factors. The sequence of yeast TFIID, which seems to be encoded by a single gene, contains interesting structural motifs that are possibly involved in these functions, and is similar to sequences of bacterial sigma factors.

  14. Structural basis of transcription initiation by RNA polymerase II.

    Science.gov (United States)

    Sainsbury, Sarah; Bernecky, Carrie; Cramer, Patrick

    2015-03-01

    Transcription of eukaryotic protein-coding genes commences with the assembly of a conserved initiation complex, which consists of RNA polymerase II (Pol II) and the general transcription factors, at promoter DNA. After two decades of research, the structural basis of transcription initiation is emerging. Crystal structures of many components of the initiation complex have been resolved, and structural information on Pol II complexes with general transcription factors has recently been obtained. Although mechanistic details await elucidation, available data outline how Pol II cooperates with the general transcription factors to bind to and open promoter DNA, and how Pol II directs RNA synthesis and escapes from the promoter.

  15. GlnR negatively regulates the transcription of the alanine dehydrogenase encoding gene ald in Amycolatopsis mediterranei U32 under nitrogen limited conditions via specific binding to its major transcription initiation site.

    Directory of Open Access Journals (Sweden)

    Ying Wang

    Full Text Available Ammonium assimilation is catalyzed by two enzymatic pathways, i.e., glutamine synthetase/glutamate synthase (GS/GOGAT and alanine dehydrogenase (AlaDH in Amycolatopsis mediterranei U32. Under nitrogen-rich conditions, the AlaDH pathway is the major route for ammonium assimilation, while the GS/GOGAT pathway takes over when the extracellular nitrogen supply is limited. The global nitrogen regulator GlnR was previously characterized to activate the transcription of the GS encoding gene glnA in response to nitrogen limitation and is demonstrated in this study as a repressor for the transcription of the AlaDH encoding gene ald, whose regulation is consistent with the switch of the ammonium assimilation pathways from AlaDH to GS/GOGAT responding to nitrogen limitation. Three transcription initiation sites (TISs of ald were determined with primer extension assay, among which transcription from aldP2 contributed the major transcripts under nitrogen-rich conditions but was repressed to an undetectable level in response to nitrogen limitation. Through DNase I footprinting assay, two separate regions were found to be protected by GlnR within ald promoter, within which three GlnR binding sites (a1, b1 sites in region I and a2 site in region II were defined. Interestingly, the major TIS aldP2 is located in the middle of a2 site within region II. Therefore, one may easily conclude that GlnR represses the transcription of ald via specific binding to the GlnR binding sites, which obviously blocks the transcription initiation from aldP2 and therefore reduces ald transcripts.

  16. Myeloidcell—lineage and premylocytic—stage—specific—expression of the mouse myeloperoxidase gene is controlled at initiation as well as elongation levels of transcription

    Institute of Scientific and Technical Information of China (English)

    ZHUJINGDE

    1999-01-01

    The myeloperoxidase (MPO) is an important microbicidal protein present at high concentration in the primary granule of mature granulocyte and its expression is regulated in both myeloidcell-lineage and premyelocytic-stagespecific manners.A better understanding of the underlying control mechanisms should provide insights into the temporal and co-ordinate regulation of the gene expression during granulopoiesis.We have identified its promoter by mapping the start(s) of transcription using various molecular approaches together with demonstrating the promoter function of the relevant DNA segment in a transient transfection reporter assay.Besides the major start of transcription mapped at G residue,11 nucleotide upstream of the 3' end of exon 0,the usage of that is specific to the MPO expressing cell lines,we have shown that irrespective of the MPO-expression status of the hematopoietic cells,transcription occurs broadly within a two kb region upstream of the 5' proximity of the gene,and is largely terminated in intron 2.These data support a model of the premyelocytic-stage-specific MPO expression,the control of which is operated at initiation as well as elongation levels of transcription.

  17. Alternative transcriptional initiation and alternative use of polyadenylation signals in the alphaB-crystallin gene expressed in different chicken tissues.

    Science.gov (United States)

    Macip, S; Mezquita, C; Mezquita, J

    1997-03-18

    Overexpression of alphaB-crystallin is associated with numerous neurodegenerative diseases and abnormal cell growth patterns. To study the mechanisms involved in the control of the transcriptional activity of the gene we have characterized its expression in different chicken tissues. The sequence of the alphaB-crystallin cDNA isolated from chicken testis and 6-day-old chick embryo is highly homologous to the duck alphaB-crystallin cDNA and differs from the previously reported chicken lens alphaB-crystallin cDNA in the 5' untranslated region (5'-UTR) and in one amino acid of the coding sequence. Four forms of the alphaB-crystallin cDNA detected in chicken testes arise from the use of alternative transcription initiation sites and alternative polyadenylation signals. The two principal hybridizing bands found in lens and embryonic tissues possess a short 5'-UTR and differ in the length of the 3'-UTR. Forms with longer 5'-UTR are present in testis, muscle, and heart. The use of different start sites and polyadenylation signals could modulate transcriptional activity and the stability of the messages. The expression of the alphaB-crystallin gene decreases from day 6 to day 8 of chick embryogenesis, in parallel with the expression of the polyubiquitin gene UbII.

  18. TAF7: traffic controller in transcription initiation.

    Science.gov (United States)

    Gegonne, Anne; Devaiah, Ballachanda N; Singer, Dinah S

    2013-01-01

    TAF7, a component of the TFIID complex, controls the first steps of transcription. It interacts with and regulates the enzymatic activities of transcription factors that regulate RNA polymerase II progression. Its diverse functions in transcription initiation are consistent with its essential role in cell proliferation.

  19. Regulated assembly of transcription factors and control of transcription initiation.

    Science.gov (United States)

    Beckett, D

    2001-11-30

    Proteins that function in regulation of transcription initiation are typically homo or hetero-oligomeric. Results of recent biophysical studies of transcription regulators indicate that the assembly of these proteins is often subject to regulation. This regulation of assembly dictates the frequency of transcription initiation via its influence on the affinity of a transcription regulator for DNA and its affect on target site selection. Factors that modulate transcription factor assembly include binding of small molecules, post-translational modification, DNA binding and interactions with other proteins. Here, the results of recent structural and/or thermodynamic studies of a number of transcription regulators that are subject to regulated assembly are reviewed. The accumulated data indicate that this phenomenon is ubiquitous and that mechanisms utilized in eukaryotes and prokaryotes share common features. Copyright 2001 Academic Press.

  20. The tumor-selective over-expression of the human Hsp 70 gene is attributed to the aberrant controls at both initiation and elongation levels of transcription

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The tumor selective over-expression of the human Hsp70 gene has been well documented in human tumors, linked to the poor prognosis, being refractory to chemo- and radio-therapies as well as the advanced stage of tumorous lesions in particular. However, both the nature and details of aberrations in the control of the Hsp70 expression in tumor remain enigmatic. By comparing various upstream segments of the Hsp70gene for each's ability to drive the luciferase reporter genes in the context of the tumor cell lines varying in their p53 status and an immortal normal liver cell line, we demonstrated in a great detail the defects in the control mechanisms at the both initiation and elongation levels of transcription being instrumental to the tumor selective profile of its expression. Our data should not only offer new insights into our understanding of the tumor specific over-expression of the human Hsp70 gene, but also paved the way for the rational utilization of the tumor selective mechanism with the Hsp70 at the central stage for targeting the therapeutic gene expression to human tumors.

  1. Cloning and characterization of the nitrate reductase-encoding gene from Chlorella vulgaris: structure and identification of transcription start points and initiator sequences.

    Science.gov (United States)

    Dawson, H N; Pendleton, L C; Solomonson, L P; Cannons, A C

    1996-06-01

    The reduction of nitrate to nitrite catalyzed by nitrate reductase (NR) is considered to be the rate-limiting and regulated step of nitrate assimilation, a major metabolic pathway occurring in a wide range of organisms which in turn supply the nutritional nitrogen requirements for other forms of life. Chlorella vulgaris NR mRNA levels are very responsive to changes in nitrogen source. In the presence of ammonia as the sole nitrogen source, under repressed conditions, NR mRNA is undetectable. Under inducing conditions, the removal of ammonia and addition of nitrate, rapid NR mRNA synthesis occurs. We are studying the elements involved in regulating the expression of this important gene. Two overlapping genomic clones (NRS1 and NR5') were isolated from a cosmid library. The two clones were sequenced and their sequences were aligned with that of a full-length NR cDNA. The gene is approximately 8 kb long and consists of 19 exons and 18 introns. Unlike NR isolated from other species, the exons which code for the functional domains of C. vulgaris are separated by introns. Two transcription start points (tsp) were identified and each is surrounded by potential initiator sequences. No TATA, CAAT or GC-rich promoter elements were located. A time course of NR induction revealed that while transcription initiation from one tsp remains at a constant level from the point of induction through steady state, the level of initiation from another tsp is high upon induction, but decreases as steady state is attained.

  2. Initiation and beyond: molecular determinants of gene regulation. Mechanisms of Transcription Control, A Jacques Monod Conference, sponsored by the Centre National de la Recherche Scientifique, Roscoff, France, September 30-October 4, 1991.

    Science.gov (United States)

    Umek, R M

    1992-03-01

    The study of the mechanisms of transcriptional control continues to be an exciting area of research. The characterization of the constituents of the initiation complex and their interactions are leading to a greater understanding of gene regulation. The findings presented at this meeting emphasized the need to understand these interactions in three-dimensional space to effectively account for the observed regulation of the initiation of transcription.

  3. The Evaluation and Comparison of Transcriptionally Targeted Noxa and Puma Killer Genes to Initiate Apoptosis Under Cancer-Specific Promoter CXCR1 in Hepatocarcinoma Gene Therapy

    Directory of Open Access Journals (Sweden)

    Khoshtinat Nikkhoi

    2016-09-01

    Full Text Available Background Cancerous cells proliferate as fast as possible without a proper surveillance system. This rapid cell division leads to enormous mutation rates, which help a tumor establish. Objectives This study evaluated the potential of inducing apoptosis using Noxa and Puma in a hepatocarcinoma cell line. Methods The current study generated two recombinant lentiviruses, pLEX-GCN and pLEX-GCP, bearing Noxa and Puma, respectively. Transduction of both genes to hepatocarcinoma (HepG2 was verified using fluorescent microscopic analysis, western blotting, and quantitative real-time polymerase chain reaction (PCR. To evaluate the potential of Noxa and Puma to initiate apoptosis, a caspase-9 real-time, MTT assay, and a 4’, 6-diamidino-2-phenylindole (DAPI reagent were performed to stain apoptotic cells. Results The data verified successful transduction to HepG2 and HEK293T. Higher relative expression of Noxa and Puma rather than the untransduced cell line showed these genes are expressed more in HepG2 in comparison to HEK293T. The results of the real-time PCR, MTT assay, and DAPI reagent illustrated that higher cells initiated apoptosis following Puma transduction rather than Noxa. Conclusions In this approach, the suicide gene was transferred to transformed cells and ignited apoptosis to exterminate them. Puma is a more potent killer gene and has higher capabilities to start intrinsic apoptosis pathway.

  4. Polycistronic transcription of fused cassettes and identification of translation initiation signals in an unusual gene cassette array from Pseudomonas aeruginosa [version 3; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Érica L. Fonseca

    2015-11-01

    Full Text Available The gene cassettes found in class 1 integrons are generally promoterless units composed by an open reading frame (ORF, a short 5’ untranslated region (UTR and a 3’ recombination site (attC. Fused gene cassettes are generated by partial or total loss of the attC from the first cassette in an array, creating, in some cases, a fusion with the ORF from the next cassette. These structures are rare and little is known about their mechanisms of mobilization and expression. The aim of this study was to evaluate the dynamic of mobilization and transcription of the gcu14-blaGES-1/aacA4 gene cassette array, which harbours a fused gene cassette represented by blaGES-1/aacA4. The cassette array was analyzed by Northern blot and real-time reverse transcription-polymerase chain reaction (RT-PCR in order to assess the transcription mechanism of blaGES-1/aacA4 fused cassette. Also, inverse polymerase chain reactions (PCR were performed to detect the free circular forms of gcu14, blaGES-1 and aacA4. The Northern blot and real time RT-PCR revealed a polycistronic transcription, in which the fused cassette blaGES-1/aacA4 is transcribed as a unique gene, while gcu14 (with a canonical attC recombination site has a monocistronic transcription. The gcu14 cassette, closer to the weak configuration of cassette promoter (PcW, had a higher transcription level than blaGES-1/aacA4, indicating that the cassette position affects the transcript amounts. The presence of ORF-11 at attI1, immediately preceding gcu14, and of a Shine-Dalgarno sequence upstream blaGES-1/aacA4 composes a scenario for the occurrence of array translation. Inverse PCR generated amplicons corresponding to gcu14, gcu14-aacA4 and gcu14-blaGES-1/aacA4 free circular forms, but not to blaGES-1 and aacA4 alone, indicating that the GES-1 truncated attC is not substrate of integrase activity and that these genes are mobilized together as a unique cassette. This study was original in showing the transcription

  5. A new way to start: nanoRNA-mediated priming of transcription initiation.

    Science.gov (United States)

    Nickels, Bryce E

    2012-01-01

    A recent study provides evidence that RNA polymerase uses 2- to ~4-nt RNAs, species termed "nanoRNAs," to prime transcription initiation in Escherichia coli. Priming of transcription initiation with nanoRNAs represents a previously undocumented component of transcription start site selection and gene expression.

  6. Transcription and translation of human F11R gene are required for an initial step of atherogenesis induced by inflammatory cytokines

    Science.gov (United States)

    2011-01-01

    Background - The F11 Receptor (F11R; aka JAM-A, JAM-1) is a cell adhesion protein present constitutively on the membrane surface of circulating platelets and within tight junctions of endothelial cells (ECs). Previous reports demonstrated that exposure of ECs to pro-inflammatory cytokines causes insertion of F11R molecules into the luminal surface of ECs, ensuing with homologous interactions between F11R molecules of platelets and ECs, and a resultant adhesion of platelets to the inflamed ECs. The main new finding of the present report is that the first step in this chain of events is the de-novo transcription and translation of F11R molecules, induced in ECs by exposure to inflammatory cytokines. Methods - The experimental approach utilized isolated, washed human platelet suspensions and cultured human venous endothelial cells (HUVEC) and human arterial endothelial cells (HAEC) exposed to the proinflammatory cytokines TNF-alpha and/or IFN-gamma, for examination of the ability of human platelets to adhere to the inflamed ECs thru the F11R. Our strategy was based on testing the effects of the following inhibitors on this activity: general mRNA synthesis inhibitors, inhibitors of the NF-kappaB and JAK/STAT pathways, and small interfering F11R-mRNA (siRNAs) to specifically silence the F11R gene. Results - Treatment of inflamed ECs with the inhibitors actinomycin, parthenolide or with AG-480 resulted in complete blockade of F11R- mRNA expression, indicating the involvement of NF-kappaB and JAK/STAT pathways in this induction. Transfection of ECs with F11R siRNAs caused complete inhibition of the cytokine-induced upregulation of F11R mRNA and inhibition of detection of the newly- translated F11R molecules in cytokine-inflamed ECs. The functional consequence of the inhibition of F11R transcription and translation was the significant blockade of the adhesion of human platelets to inflamed ECs. Conclusion - These results prove that de novo synthesis of F11R in ECs is

  7. Transcription and translation of human F11R gene are required for an initial step of atherogenesis induced by inflammatory cytokines

    Directory of Open Access Journals (Sweden)

    Kornecki Elizabeth

    2011-06-01

    Full Text Available Abstract Background - The F11 Receptor (F11R; aka JAM-A, JAM-1 is a cell adhesion protein present constitutively on the membrane surface of circulating platelets and within tight junctions of endothelial cells (ECs. Previous reports demonstrated that exposure of ECs to pro-inflammatory cytokines causes insertion of F11R molecules into the luminal surface of ECs, ensuing with homologous interactions between F11R molecules of platelets and ECs, and a resultant adhesion of platelets to the inflamed ECs. The main new finding of the present report is that the first step in this chain of events is the de-novo transcription and translation of F11R molecules, induced in ECs by exposure to inflammatory cytokines. Methods - The experimental approach utilized isolated, washed human platelet suspensions and cultured human venous endothelial cells (HUVEC and human arterial endothelial cells (HAEC exposed to the proinflammatory cytokines TNF-alpha and/or IFN-gamma, for examination of the ability of human platelets to adhere to the inflamed ECs thru the F11R. Our strategy was based on testing the effects of the following inhibitors on this activity: general mRNA synthesis inhibitors, inhibitors of the NF-kappaB and JAK/STAT pathways, and small interfering F11R-mRNA (siRNAs to specifically silence the F11R gene. Results - Treatment of inflamed ECs with the inhibitors actinomycin, parthenolide or with AG-480 resulted in complete blockade of F11R- mRNA expression, indicating the involvement of NF-kappaB and JAK/STAT pathways in this induction. Transfection of ECs with F11R siRNAs caused complete inhibition of the cytokine-induced upregulation of F11R mRNA and inhibition of detection of the newly- translated F11R molecules in cytokine-inflamed ECs. The functional consequence of the inhibition of F11R transcription and translation was the significant blockade of the adhesion of human platelets to inflamed ECs. Conclusion - These results prove that de novo synthesis

  8. Transcription of the soybean leghemoglobin genes during nodule development

    DEFF Research Database (Denmark)

    Marcker, Anne; Ø Jensen, Erik; Marcker, Kjeld A

    1984-01-01

    mechanism as is the case for vertebrate globin genes. Concomitantly with the increase in Lb gene transcription some of the other nodule specific plant genes are activated. These specific changes in the activities of the Lb and nodulin genes precede the activation of the bacterial nitrogenase gene. Thus......During the early stages of soybean nodule development the leghemoglobin (Lb) genes are activated sequentially in the opposite order to which they are arranged in the soybean genome. At a specific stage after the initial activation of all the Lb genes, a large increment occurs in the transcription...... of the Lb(c1), Lb(c3) and Lb(a) genes while the transcription of the Lb(c2) gene is not amplified to a similar extent. All the Lb genes retain significant activity for a long period during the lifetime of a nodule. Consequently the soybean Lb genes are not regulated by a developmental gene switching...

  9. Transcription of the soybean leghemoglobin genes during nodule development

    DEFF Research Database (Denmark)

    Marcker, Anne; Lund, Marianne; Jensen, Erik Ø

    1984-01-01

    During the early stages of soybean nodule development the leghemoglobin (Lb) genes are activated sequentially in the opposite order to which they are arranged in the soybean genome. At a specific stage after the initial activation of all the Lb genes, a large increment occurs in the transcription...... of the Lb(c1), Lb(c3) and Lb(a) genes while the transcription of the Lb(c2) gene is not amplified to a similar extent. All the Lb genes retain significant activity for a long period during the lifetime of a nodule. Consequently the soybean Lb genes are not regulated by a developmental gene switching...

  10. Non-canonical transcription initiation: the expanding universe of transcription initiating substrates.

    Science.gov (United States)

    Barvík, Ivan; Rejman, Dominik; Panova, Natalya; Šanderová, Hana; Krásný, Libor

    2016-10-30

    RNA polymerase (RNAP) is the central enzyme of transcription of the genetic information from DNA into RNA. RNAP recognizes four main substrates: ATP, CTP, GTP and UTP. Experimental evidence from the past several years suggests that, besides these four NTPs, other molecules can be used to initiate transcription: (i) ribooligonucleotides (nanoRNAs) and (ii) coenzymes such as NAD(+), NADH, dephospho-CoA and FAD. The presence of these molecules at the 5' ends of RNAs affects the properties of the RNA. Here, we discuss the expanding portfolio of molecules that can initiate transcription, their mechanism of incorporation, effects on RNA and cellular processes, and we present an outlook toward other possible initiation substrates.

  11. Molecular basis of transcription initiation in Archaea.

    Science.gov (United States)

    De Carlo, Sacha; Lin, Shih-Chieh; Taatjes, Dylan J; Hoenger, Andreas

    2010-01-01

    Compared with eukaryotes, the archaeal transcription initiation machinery-commonly known as the Pre-Initiation Complex-is relatively simple. The archaeal PIC consists of the TFIIB ortholog TFB, TBP, and an 11-subunit RNA polymerase (RNAP). The relatively small size of the entire archaeal PIC makes it amenable to structural analysis. Using purified RNAP, TFB, and TBP from the thermophile Pyrococcus furiosus, we assembled the biochemically active PIC at 65ºC. The intact archaeal PIC was isolated by implementing a cross-linking technique followed by size-exclusion chromatography, and the structure of this 440 kDa assembly was determined using electron microscopy and single-particle reconstruction techniques. Combining difference maps with crystal structure docking of various sub-domains, TBP and TFB were localized within the macromolecular PIC. TBP/TFB assemble near the large RpoB subunit and the RpoD/L "foot" domain behind the RNAP central cleft. This location mimics that of yeast TBP and TFIIB in complex with yeast RNAP II. Collectively, these results define the structural organization of the archaeal transcription machinery and suggest a conserved core PIC architecture.

  12. MADS-box gene evolution - structure and transcription patterns

    DEFF Research Database (Denmark)

    Johansen, Bo; Pedersen, Louise Buchholt; Skipper, Martin;

    2002-01-01

    Mads-box genes, ABC model, Evolution, Phylogeny, Transcription patterns, Gene structure, Conserved motifs......Mads-box genes, ABC model, Evolution, Phylogeny, Transcription patterns, Gene structure, Conserved motifs...

  13. Conserved TAAATG sequence at the transcriptional and translational initiation sites of vaccinia virus late genes deduced by structural and functional analysis of the HindIII H genome fragment.

    Science.gov (United States)

    Rosel, J L; Earl, P L; Weir, J P; Moss, B

    1986-11-01

    The sequence of the 8,600-base-pair HindIII H fragment, located at the center of the vaccinia virus genome, was determined to analyze several late genes. Seven major complete open reading frames (ORFs) and two that started from or continued into adjacent DNA segments were identified. ORFs were closely spaced and present on both DNA strands. Some adjacent ORFs had oppositely oriented overlapping termination codons or contiguous stop and start codons. Nucleotide compositional analysis indicated that the A-T frequency was consistently lowest in the first codon position. The sizes of the polypeptides predicted from the DNA sequence were compared with those determined by polyacrylamide gel electrophoresis of cell-free translation products of mRNAs selected by hybridization to cloned single-stranded DNA segments or synthesized in vitro by bacteriophage T7 RNA polymerase. Six transcripts that initiated within the HindIII H DNA fragment were detected, and of these, four were synthesized only at late times, one was synthesized only early, and one was synthesized early and late. The sites on the genome corresponding to the 5' ends of the transcripts were located by high-resolution nuclease S1 analysis. For late genes, the transcriptional and translational initiation sites mapped within a few nucleotides of each other, and in each case the sequence TAAATGG occurred at the start of the ORF. The extremely short leader and the absence of A or G in the -3 position, relative to the first nucleotide of the initiation codon, distinguishes the majority of vaccinia virus late genes from eucaryotic and vaccinia virus early genes.

  14. Dynamic regulation of the transcription initiation landscape at single nucleotide resolution during vertebrate embryogenesis

    NARCIS (Netherlands)

    C. Nepal (Chirag); Y. Hadzhiev (Yavor); C. Previti (Christopher); V. Haberle (Vanja); N. Li (Nan); H. Takahashi (Hiroyuki); A.M. Suzuki (Ana Maria); Y. Sheng (Ying); R.F. Abdelhamid (Rehab); S. Anand (Santosh); P.A. Gehrig (Paola A.); A. Akalin (Altuna); C. Kockx (Christel); A. Van Der Sloot (Antoine); W.F.J. van IJcken (Wilfred); O. Armant (Olivier); S. Rastegar (Sepand); C. Watson (Craig); U. Strähle (Uwe); E. Stupka (Elia); P. Carninci (Piero); B. Lenhard (Boris); F. Müller (Ferenc)

    2013-01-01

    textabstractSpatiotemporal control of gene expression is central to animal development. Core promoters represent a previously unanticipated regulatory level by interacting with cis-regulatory elements and transcription initiation in different physiological and developmental contexts. Here, we provid

  15. Structural basis of eukaryotic gene transcription.

    Science.gov (United States)

    Boeger, Hinrich; Bushnell, David A; Davis, Ralph; Griesenbeck, Joachim; Lorch, Yahli; Strattan, J Seth; Westover, Kenneth D; Kornberg, Roger D

    2005-02-07

    An RNA polymerase II promoter has been isolated in transcriptionally activated and repressed states. Topological and nuclease digestion analyses have revealed a dynamic equilibrium between nucleosome removal and reassembly upon transcriptional activation, and have further shown that nucleosomes are removed by eviction of histone octamers rather than by sliding. The promoter, once exposed, assembles with RNA polymerase II, general transcription factors, and Mediator in a approximately 3 MDa transcription initiation complex. X-ray crystallography has revealed the structure of RNA polymerase II, in the act of transcription, at atomic resolution. Extension of this analysis has shown how nucleotides undergo selection, polymerization, and eventual release from the transcribing complex. X-ray and electron crystallography have led to a picture of the entire transcription initiation complex, elucidating the mechanisms of promoter recognition, DNA unwinding, abortive initiation, and promoter escape.

  16. The eukaryotic gene transcription machinery.

    Science.gov (United States)

    Kornberg, R D

    2001-08-01

    Seven purified proteins may be combined to reconstitute regulated, promoter-dependent RNA polymerase II transcription: five general transcription factors, Mediator, and RNA polymerase II. The entire system has been conserved across species from yeast to humans. The structure of RNA polymerase II, consisting of 10 polypeptides with a mass of about 500 kDa, has been determined at atomic resolution. On the basis of this structure, that of an actively transcribing RNA polymerase II complex has been determined as well.

  17. Gene Transcription Profile of the Detached Retina (An AOS Thesis)

    Science.gov (United States)

    Zacks, David N.

    2009-01-01

    Purpose: Separation of the neurosensory retina from the retinal pigment epithelium (RPE) yields many morphologic and functional consequences, including death of the photoreceptor cells, Müller cell hypertrophy, and inner retinal rewiring. Many of these changes are due to the separation-induced activation of specific genes. In this work, we define the gene transcription profile within the retina as a function of time after detachment. We also define the early activation of kinases that might be responsible for the detachment-induced changes in gene transcription. Methods: Separation of the retina from the RPE was induced in Brown-Norway rats by the injection of 1% hyaluronic acid into the subretinal space. Retinas were harvested at 1, 7, and 28 days after separation. Gene transcription profiles for each time point were determined using the Affymetrix Rat 230A gene microarray chip. Transcription levels in detached retinas were compared to those of nondetached retinas with the BRB-ArrayTools Version 3.6.0 using a random variance analysis of variance (ANOVA) model. Confirmation of the significant transcriptional changes for a subset of the genes was performed using microfluidic quantitative real-time polymerase chain reaction (qRT-PCR) assays. Kinase activation was explored using Western blot analysis to look for early phosphorylation of any of the 3 main families of mitogen-activated protein kinases (MAPK): the p38 family, the Janus kinase family, and the p42/p44 family. Results: Retinas separated from the RPE showed extensive alterations in their gene transcription profile. Many of these changes were initiated as early as 1 day after separation, with significant increases by 7 days. ANOVA analysis defined 144 genes that had significantly altered transcription levels as a function of time after separation when setting a false discovery rate at ≤0.1. Confirmatory RT-PCR was performed on 51 of these 144 genes. Differential transcription detected on the microarray

  18. Making ends meet: Coordination between RNA 3'end processing and transcription initiation

    DEFF Research Database (Denmark)

    Andersen, Pia Kjølhede; Jensen, Torben Heick; Lykke-Andersen, Søren

    2013-01-01

    RNA polymerase II (RNAPII)-mediated gene transcription initiates at promoters and ends at terminators. Transcription termination is intimately connected to 3'-end processing of the produced RNA and already when loaded at the promoter, RNAPII starts to become configured for this downstream event....... Conversely, RNAPII is 'reset' as part of the 3'-end processing/termination event, thus preparing the enzyme for its next round of transcription--possibly on the same gene. There is both direct and circumstantial evidence for preferential recycling of RNAPII from the gene terminator back to its own promoter......, which supposedly increases the efficiency of the transcription process under conditions where RNAPII levels are rate limiting. Here, we review differences and commonalities between initiation and 3'-end processing/termination processes on various types of RNAPII transcribed genes. In doing so, we...

  19. Identification and initial characterization of the 3' end of gene transcripts encoding putative members of the pheromone receptor subfamily in Lepidoptera

    Institute of Scientific and Technical Information of China (English)

    Stephen F. Garczynski; Kevin W. Wanner; Thomas R. Unruh

    2012-01-01

    Semiochemicals,including pheromones and kairomones,used in pest management programs reduce the need for chemical insecticides,and understanding their interactions with their membrane receptors may help make them more effective in the field.Identification of odorant receptors in the Lepidoptera has mainly been achieved using bioinformatics to search DNA sequences generated by genome or expressed sequence tag (EST) sequencing projects.This study reports a rapid method to identify members of the pheromone receptor subfamily in Lepidoptera.Degenerate oligonucleotide primers were designed against a conserved amino acid sequence in the carboxyl terminus of known lepidopteran pheromone receptors,and the primers were used in a 3' rapid amplification of complementary DNA (cDNA) ends procedure.Polymerase chain reaction products generated from seven different lepidopteran species were TA cloned and sequenced.The eDNA sequences of 25 transcripts were determined to encode potential members of the pheromone receptor subfamily.These cDNAs ranged from 238 to 642 bp and encoded 49-54 amino acids of the carboxyl terminus.Analysis of the 3' untranslated region reveals that most of the transcripts contain multiple polyadenylation signal sequences,and in the case ofManduca sexta,an alternate polyadenylation signal appears to be used in transcript processing.The 3' untranslated region was also useful in determining unique receptors encoded by transcripts having highly similar nucleotide and amino acid sequences.Overall,this technique provides a complementary method of pheromone receptor identification in EST sequencing projects,or can be used as a stand-alone method in conjunction with 5' rapid amplification of cDNA ends procedures.

  20. Topologies for perfect adaptation in gene transcription

    Science.gov (United States)

    Shi, Wenjia; Tang, Chao

    2014-03-01

    Adaptation is commonly used in sensory systems and signaling networks to allow the detection of further stimuli. Despite enzymatic network topologies for adaptation have been investigated systematically, the topology of transcriptional network that could perform adaptation still remains unclear, due to the complexity of transcriptional regulation. Here, we systematically investigated all three-node transcriptional networks, and found the topologies of transcriptional networks for adaptation are different from that of enzymatic ones. While both negative feedback loop (NFBL) and incoherent feed forward loop (IFFL) are capable of performing adaptation analytically, a positive self-regulation on buffer node is necessary for NFBL topology and more flexible structures emerge for IFFL than that of enzymatic networks. Most of the simulation results agree with analytical predictions. This study may explain the mechanism of adapted gene regulation behavior and supply a design table for gene regulatory adaptation.

  1. CoSMoS unravels mysteries of transcription initiation.

    Science.gov (United States)

    Gourse, Richard L; Landick, Robert

    2012-02-17

    Using a fluorescence method called colocalization single-molecule spectroscopy (CoSMoS), Friedman and Gelles dissect the kinetics of transcription initiation at a bacterial promoter. Ultimately, CoSMoS could greatly aid the study of the effects of DNA sequence and transcription factors on both prokaryotic and eukaryotic promoters.

  2. CoSMoS Unravels Mysteries of Transcription Initiation

    OpenAIRE

    Gourse, Richard L.; Landick, Robert

    2012-01-01

    Using a fluorescence method called colocalization single-molecule spectroscopy (CoSMoS), Friedman and Gelles dissect the kinetics of transcription initiation at a bacterial promoter. Ultimately, CoSMoS could greatly aid the study of the effects of DNA sequence and transcription factors on both prokaryotic and eukaryotic promoters.

  3. Mechanisms of Antisense Transcription Initiation from the 3′ End of the GAL10 Coding Sequence In Vivo

    Science.gov (United States)

    Malik, Shivani; Durairaj, Geetha

    2013-01-01

    In spite of the important regulatory functions of antisense transcripts in gene expression, it remains unknown how antisense transcription is initiated. Recent studies implicated RNA polymerase II in initiation of antisense transcription. However, how RNA polymerase II is targeted to initiate antisense transcription has not been elucidated. Here, we have analyzed the association of RNA polymerase II with the antisense initiation site at the 3′ end of the GAL10 coding sequence in dextrose-containing growth medium that induces antisense transcription. We find that RNA polymerase II is targeted to the antisense initiation site at GAL10 by Reb1p activator as well as general transcription factors (e.g., TFIID, TFIIB, and Mediator) for antisense transcription initiation. Intriguingly, while GAL10 antisense transcription is dependent on TFIID, its sense transcription does not require TFIID. Further, the Gal4p activator that promotes GAL10 sense transcription is dispensable for antisense transcription. Moreover, the proteasome that facilitates GAL10 sense transcription does not control its antisense transcription. Taken together, our results reveal that GAL10 sense and antisense transcriptions are regulated differently and shed much light on the mechanisms of antisense transcription initiation. PMID:23836882

  4. Structural basis of transcription initiation by bacterial RNA polymerase holoenzyme.

    Science.gov (United States)

    Basu, Ritwika S; Warner, Brittany A; Molodtsov, Vadim; Pupov, Danil; Esyunina, Daria; Fernández-Tornero, Carlos; Kulbachinskiy, Andrey; Murakami, Katsuhiko S

    2014-08-29

    The bacterial RNA polymerase (RNAP) holoenzyme containing σ factor initiates transcription at specific promoter sites by de novo RNA priming, the first step of RNA synthesis where RNAP accepts two initiating ribonucleoside triphosphates (iNTPs) and performs the first phosphodiester bond formation. We present the structure of de novo transcription initiation complex that reveals unique contacts of the iNTPs bound at the transcription start site with the template DNA and also with RNAP and demonstrate the importance of these contacts for transcription initiation. To get further insight into the mechanism of RNA priming, we determined the structure of initially transcribing complex of RNAP holoenzyme with 6-mer RNA, obtained by in crystallo transcription approach. The structure highlights RNAP-RNA contacts that stabilize the short RNA transcript in the active site and demonstrates that the RNA 5'-end displaces σ region 3.2 from its position near the active site, which likely plays a key role in σ ejection during the initiation-to-elongation transition. Given the structural conservation of the RNAP active site, the mechanism of de novo RNA priming appears to be conserved in all cellular RNAPs. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. The Role of Multiple Transcription Factors In Archaeal Gene Expression

    Energy Technology Data Exchange (ETDEWEB)

    Charles J. Daniels

    2008-09-23

    Since the inception of this research program, the project has focused on two central questions: What is the relationship between the 'eukaryal-like' transcription machinery of archaeal cells and its counterparts in eukaryal cells? And, how does the archaeal cell control gene expression using its mosaic of eukaryal core transcription machinery and its bacterial-like transcription regulatory proteins? During the grant period we have addressed these questions using a variety of in vivo approaches and have sought to specifically define the roles of the multiple TATA binding protein (TBP) and TFIIB-like (TFB) proteins in controlling gene expression in Haloferax volcanii. H. volcanii was initially chosen as a model for the Archaea based on the availability of suitable genetic tools; however, later studies showed that all haloarchaea possessed multiple tbp and tfb genes, which led to the proposal that multiple TBP and TFB proteins may function in a manner similar to alternative sigma factors in bacterial cells. In vivo transcription and promoter analysis established a clear relationship between the promoter requirements of haloarchaeal genes and those of the eukaryal RNA polymerase II promoter. Studies on heat shock gene promoters, and the demonstration that specific tfb genes were induced by heat shock, provided the first indication that TFB proteins may direct expression of specific gene families. The construction of strains lacking tbp or tfb genes, coupled with the finding that many of these genes are differentially expressed under varying growth conditions, provided further support for this model. Genetic tools were also developed that led to the construction of insertion and deletion mutants, and a novel gene expression scheme was designed that allowed the controlled expression of these genes in vivo. More recent studies have used a whole genome array to examine the expression of these genes and we have established a linkage between the expression of

  6. Transcriptional enhancer from milk protein genes

    Energy Technology Data Exchange (ETDEWEB)

    Casperson, Gerald F. (Ballwin, MO); Schmidhauser, Christian T. (Berkeley, CA); Bissell, Mina J. (Berkeley, CA)

    1999-01-01

    The invention relates to novel enhancer nucleotide sequences which stimulate transcription of heterologous DNA in cells in culture. The enhancers are derived from major milk protein genes by the process of deletion mapping and functional analysis. The invention also relates to expression vectors containing the novel enhancers.

  7. Transcriptional enhancer from milk protein genes

    Energy Technology Data Exchange (ETDEWEB)

    Casperson, G.F.; Schmidhauser, C.T.; Bissell, M.J.

    1999-12-21

    The invention relates to novel enhancer nucleotide sequences which stimulate transcription of heterologous DNA in cells in culture. The enhancers are derived from major milk protein genes by the process of deletion mapping and functional analysis. The invention also relates to expression vectors containing the novel enhancers.

  8. Effects of rate-limiting steps in transcription initiation on genetic filter motifs.

    Science.gov (United States)

    Häkkinen, Antti; Tran, Huy; Yli-Harja, Olli; Ribeiro, Andre S

    2013-01-01

    The behavior of genetic motifs is determined not only by the gene-gene interactions, but also by the expression patterns of the constituent genes. Live single-molecule measurements have provided evidence that transcription initiation is a sequential process, whose kinetics plays a key role in the dynamics of mRNA and protein numbers. The extent to which it affects the behavior of cellular motifs is unknown. Here, we examine how the kinetics of transcription initiation affects the behavior of motifs performing filtering in amplitude and frequency domain. We find that the performance of each filter is degraded as transcript levels are lowered. This effect can be reduced by having a transcription process with more steps. In addition, we show that the kinetics of the stepwise transcription initiation process affects features such as filter cutoffs. These results constitute an assessment of the range of behaviors of genetic motifs as a function of the kinetics of transcription initiation, and thus will aid in tuning of synthetic motifs to attain specific characteristics without affecting their protein products.

  9. [Immunoglobulin genes in lymphoid cells and regulation of their transcription].

    Science.gov (United States)

    Stepchenko, A G; Urakov, D N; Luchina, N N; Deev, S M; Polianovskiĭ, O L

    1990-01-01

    The hybridoma genomes contain polyploid sets of immunoglobulin genes. We have shown, that the hybridoma PTF-02 genome contains three genes of heavy chains and two genes of light chains. The genes responsible for antibody synthesis were cloned and their structure were determined. Investigation of the kappa gene transcription and its fragments which contain regulatory sequences revealed a nuclear factor. The latter interacts with the octanucleotide localized at the promoter region of the kappa gene. The purified factor activates the transcription of the kappa gene in a heterologous cell-free system. Together with the tissue-specific factor there is also an universal factor interacting with the octanucleotide sequence. We have shown an additional factor in lymphoid cells interact with the protein which binds to the octanucleotide sequence. We have shown an additional factor in lymphoid cells interacting with the protein which binds to the octanucleotide sequence. As a result, there is a family of factors which interact with ATTTGCAT sequence. One major factor (m.w. 60 +/- 2 kDa) is an obligatory component for the initiation of immunoglobulin genes transcription.

  10. Intron and intronless transcription of the chicken polyubiquitin gene UbII.

    Science.gov (United States)

    Mezquita, J; López-Ibor, B; Pau, M; Mezquita, C

    1993-03-22

    We have previously reported that the chicken polyubiquitin gene UbII is preferentially expressed during spermatogenesis and we show here that UbII is the predominant polyubiquitin gene expressed in early embryogenesis. Two main initiation sites were detected. Transcription from the initiation site used in early embryos results in the presence of an intron in the 5'-untranslated region of the transcripts as has been reported for other polyubiquitin messages. In mature testis, however, the use of a different initiation site, located within the intron, produces intronless transcripts. Distinct promoter sequences, present in each initiation site, may regulate the differential expression observed in this gene.

  11. Initiation and regulation of paramyxovirus transcription and replication.

    Science.gov (United States)

    Noton, Sarah L; Fearns, Rachel

    2015-05-01

    The paramyxovirus family has a genome consisting of a single strand of negative sense RNA. This genome acts as a template for two distinct processes: transcription to generate subgenomic, capped and polyadenylated mRNAs, and genome replication. These viruses only encode one polymerase. Thus, an intriguing question is, how does the viral polymerase initiate and become committed to either transcription or replication? By answering this we can begin to understand how these two processes are regulated. In this review article, we present recent findings from studies on the paramyxovirus, respiratory syncytial virus, which show how its polymerase is able to initiate transcription and replication from a single promoter. We discuss how these findings apply to other paramyxoviruses. Then, we examine how trans-acting proteins and promoter secondary structure might serve to regulate transcription and replication during different phases of the paramyxovirus replication cycle.

  12. Angiotensinogen Gene Transcription in Pulmonary Fibrosis

    Science.gov (United States)

    Uhal, Bruce D.; Dang, My-Trang T.; Li, Xiaopeng; Abdul-Hafez, Amal

    2012-01-01

    An established body of literature supports the hypothesis that activation of a local tissue angiotensin (ANG) system in the extravascular tissue compartment of the lungs is required for lung fibrogenesis. Transcriptional activation of the angiotensinogen (AGT) gene is believed to be a critical and necessary step in this activation. This paper summarizes the data in support of this theory and discusses transcriptional regulation of AGT, with an emphasis on lung AGT synthesis as a determinant of fibrosis severity. Genetic data linking AGT polymorphisms to the severity of disease in Idiopathic Pulmonary Fibrosis are also discussed. PMID:22500179

  13. Angiotensinogen Gene Transcription in Pulmonary Fibrosis

    Directory of Open Access Journals (Sweden)

    Bruce D. Uhal

    2012-01-01

    Full Text Available An established body of literature supports the hypothesis that activation of a local tissue angiotensin (ANG system in the extravascular tissue compartment of the lungs is required for lung fibrogenesis. Transcriptional activation of the angiotensinogen (AGT gene is believed to be a critical and necessary step in this activation. This paper summarizes the data in support of this theory and discusses transcriptional regulation of AGT, with an emphasis on lung AGT synthesis as a determinant of fibrosis severity. Genetic data linking AGT polymorphisms to the severity of disease in Idiopathic Pulmonary Fibrosis are also discussed.

  14. A code for transcription initiation in mammalian genomes

    DEFF Research Database (Denmark)

    Frith, Martin C.; Valen, Eivind Dale; Krogh, Anders

    2007-01-01

    that initiation events are clustered on the chromosomes at multiple scales - clusters within clusters - indicating multiple regulatory processes. Within the smallest of such clusters, which can be interpreted as core promoters, the local DNA sequence predicts the relative transcription start usage of each...... of large- and small-scale effects: the selection of transcription start sites is largely governed by the local DNA sequence, whereas the transcriptional activity of a locus is regulated at a different level; it is affected by distal features or events such as enhancers and chromatin remodeling....

  15. A bacteriophage transcription regulator inhibits bacterial transcription initiation by σ-factor displacement.

    Science.gov (United States)

    Liu, Bing; Shadrin, Andrey; Sheppard, Carol; Mekler, Vladimir; Xu, Yingqi; Severinov, Konstantin; Matthews, Steve; Wigneshweraraj, Sivaramesh

    2014-04-01

    Bacteriophages (phages) appropriate essential processes of bacterial hosts to benefit their own development. The multisubunit bacterial RNA polymerase (RNAp) enzyme, which catalyses DNA transcription, is targeted by phage-encoded transcription regulators that selectively modulate its activity. Here, we describe the structural and mechanistic basis for the inhibition of bacterial RNAp by the transcription regulator P7 encoded by Xanthomonas oryzae phage Xp10. We reveal that P7 uses a two-step mechanism to simultaneously interact with the catalytic β and β' subunits of the bacterial RNAp and inhibits transcription initiation by inducing the displacement of the σ(70)-factor on initial engagement of RNAp with promoter DNA. The new mode of interaction with and inhibition mechanism of bacterial RNAp by P7 underscore the remarkable variety of mechanisms evolved by phages to interfere with host transcription.

  16. Transcriptional analysis of Pleurotus ostreatus laccase genes.

    Science.gov (United States)

    Pezzella, Cinzia; Lettera, Vincenzo; Piscitelli, Alessandra; Giardina, Paola; Sannia, Giovanni

    2013-01-01

    Fungal laccases (p-diphenol:oxygen oxidoreductase; EC 1.10.3.2) are multi-copper-containing oxidases that catalyse the oxidation of a great variety of phenolic compounds and aromatic amines through simultaneous reduction of molecular oxygen to water. Fungi generally produce several laccase isoenzymes encoded by complex multi-gene families. The Pleurotus ostreatus genome encodes 11 putative laccase coding genes, and only six different laccase isoenzymes have been isolated and characterised so far. Laccase expression was found to be regulated by culture conditions and developmental stages even if the redundancy of these genes still raises the question about their respective functions in vivo. In this context, laccase transcript profiling analysis has been used to unravel the physiological role played by the different isoforms produced by P. ostreatus. Even if reported results depict a complex picture of the transcriptional responses exhibited by the analysed laccase genes, they were allowed to speculate on the isoform role in vivo. Among the produced laccases, LACC10 (POXC) seems to play a major role during vegetative growth, since its transcription is downregulated when the fungus starts the fructification process. Furthermore, a new tessera has been added to the puzzling mosaic of the heterodimeric laccase LACC2 (POXA3). LACC2 small subunit seems to play an additional physiological role during fructification, beside that of LACC2 complex activation/stabilisation.

  17. Harmonics of circadian gene transcription in mammals.

    Directory of Open Access Journals (Sweden)

    Michael E Hughes

    2009-04-01

    Full Text Available The circadian clock is a molecular and cellular oscillator found in most mammalian tissues that regulates rhythmic physiology and behavior. Numerous investigations have addressed the contribution of circadian rhythmicity to cellular, organ, and organismal physiology. We recently developed a method to look at transcriptional oscillations with unprecedented precision and accuracy using high-density time sampling. Here, we report a comparison of oscillating transcription from mouse liver, NIH3T3, and U2OS cells. Several surprising observations resulted from this study, including a 100-fold difference in the number of cycling transcripts in autonomous cellular models of the oscillator versus tissues harvested from intact mice. Strikingly, we found two clusters of genes that cycle at the second and third harmonic of circadian rhythmicity in liver, but not cultured cells. Validation experiments show that 12-hour oscillatory transcripts occur in several other peripheral tissues as well including heart, kidney, and lungs. These harmonics are lost ex vivo, as well as under restricted feeding conditions. Taken in sum, these studies illustrate the importance of time sampling with respect to multiple testing, suggest caution in use of autonomous cellular models to study clock output, and demonstrate the existence of harmonics of circadian gene expression in the mouse.

  18. Harmonics of circadian gene transcription in mammals.

    Science.gov (United States)

    Hughes, Michael E; DiTacchio, Luciano; Hayes, Kevin R; Vollmers, Christopher; Pulivarthy, S; Baggs, Julie E; Panda, Satchidananda; Hogenesch, John B

    2009-04-01

    The circadian clock is a molecular and cellular oscillator found in most mammalian tissues that regulates rhythmic physiology and behavior. Numerous investigations have addressed the contribution of circadian rhythmicity to cellular, organ, and organismal physiology. We recently developed a method to look at transcriptional oscillations with unprecedented precision and accuracy using high-density time sampling. Here, we report a comparison of oscillating transcription from mouse liver, NIH3T3, and U2OS cells. Several surprising observations resulted from this study, including a 100-fold difference in the number of cycling transcripts in autonomous cellular models of the oscillator versus tissues harvested from intact mice. Strikingly, we found two clusters of genes that cycle at the second and third harmonic of circadian rhythmicity in liver, but not cultured cells. Validation experiments show that 12-hour oscillatory transcripts occur in several other peripheral tissues as well including heart, kidney, and lungs. These harmonics are lost ex vivo, as well as under restricted feeding conditions. Taken in sum, these studies illustrate the importance of time sampling with respect to multiple testing, suggest caution in use of autonomous cellular models to study clock output, and demonstrate the existence of harmonics of circadian gene expression in the mouse.

  19. Faithful transcription initiation from a mitochondrial promoter in transgenic plastids.

    Science.gov (United States)

    Bohne, Alexandra-Viola; Ruf, Stephanie; Börner, Thomas; Bock, Ralph

    2007-01-01

    The transcriptional machineries of plastids and mitochondria in higher plants exhibit striking similarities. All mitochondrial genes and part of the plastid genes are transcribed by related phage-type RNA polymerases. Furthermore, the majority of mitochondrial promoters and a subset of plastid promoters show a similar structural organization. We show here that the plant mitochondrial atpA promoter is recognized by plastid RNA polymerases in vitro and in vivo. The Arabidopsis phage-type RNA polymerase RpoTp, an enzyme localized exclusively to plastids, was found to recognize the mitochondrial atpA promoter in in vitro assays suggesting the possibility that mitochondrial promoters might function as well in plastids. We have, therefore, generated transplastomic tobacco plants harboring in their chloroplast genome the atpA promoter fused to the coding region of the bacterial nptII gene. The chimeric nptII gene was found to be efficiently transcribed in chloroplasts. Mapping of the 5' ends of the nptII transcripts revealed accurate recognition of the atpA promoter by the chloroplast transcription machinery. We show further that the 5' untranslated region (UTR) of the mitochondrial atpA transcript is capable of mediating translation in chloroplasts. The functional and evolutionary implications of these findings as well as possible applications in chloroplast genome engineering are discussed.

  20. Transcriptional delay stabilizes bistable gene networks

    Science.gov (United States)

    Gupta, Chinmaya; López, José Manuel; Ott, William; Josić, Krešimir; Bennett, Matthew R.

    2014-01-01

    Transcriptional delay can significantly impact the dynamics of gene networks. Here we examine how such delay affects bistable systems. We investigate several stochastic models of bistable gene networks and find that increasing delay dramatically increases the mean residence times near stable states. To explain this, we introduce a non-Markovian, analytically tractable reduced model. The model shows that stabilization is the consequence of an increased number of failed transitions between stable states. Each of the bistable systems that we simulate behaves in this manner. PMID:23952450

  1. Post-transcriptional gene silencing across kingdoms.

    Science.gov (United States)

    Cogoni, C; Macino, G

    2000-12-01

    Post-transcriptional gene silencing (PTGS) as a consequence of the introduction of either transgenes or double-stranded RNA molecules has been found to occur in a number of species. In the past year, studies in different systems have greatly enhanced our understanding of the molecular mechanisms of these phenomena. The ubiquitous presence of PTGS in both the plant and animal kingdoms and the finding of common genetic mechanisms suggest that PTGS is a universal gene-regulation system fundamental in biological processes such as protection against viruses and transposons.

  2. Zinc triggers a complex transcriptional and post-transcriptional regulation of the metal homeostasis gene FRD3 in Arabidopsis relatives.

    Science.gov (United States)

    Charlier, Jean-Benoit; Polese, Catherine; Nouet, Cécile; Carnol, Monique; Bosman, Bernard; Krämer, Ute; Motte, Patrick; Hanikenne, Marc

    2015-07-01

    In Arabidopsis thaliana, FRD3 (FERRIC CHELATE REDUCTASE DEFECTIVE 3) plays a central role in metal homeostasis. FRD3 is among a set of metal homeostasis genes that are constitutively highly expressed in roots and shoots of Arabidopsis halleri, a zinc hyperaccumulating and hypertolerant species. Here, we examined the regulation of FRD3 by zinc in both species to shed light on the evolutionary processes underlying the evolution of hyperaccumulation in A. halleri. We combined gene expression studies with the use of β-glucuronidase and green fluorescent protein reporter constructs to compare the expression profile and transcriptional and post-transcriptional regulation of FRD3 in both species. The AtFRD3 and AhFRD3 genes displayed a conserved expression profile. In A. thaliana, alternative transcription initiation sites from two promoters determined transcript variants that were differentially regulated by zinc supply in roots and shoots to favour the most highly translated variant under zinc-excess conditions. In A. halleri, a single transcript variant with higher transcript stability and enhanced translation has been maintained. The FRD3 gene thus undergoes complex transcriptional and post-transcriptional regulation in Arabidopsis relatives. Our study reveals that a diverse set of mechanisms underlie increased gene dosage in the A. halleri lineage and illustrates how an environmental challenge can alter gene regulation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  3. Landscape and Dynamics of Transcription Initiation in the Malaria Parasite Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Sophie H. Adjalley

    2016-03-01

    Full Text Available A comprehensive map of transcription start sites (TSSs across the highly AT-rich genome of P. falciparum would aid progress toward deciphering the molecular mechanisms that underlie the timely regulation of gene expression in this malaria parasite. Using high-throughput sequencing technologies, we generated a comprehensive atlas of transcription initiation events at single-nucleotide resolution during the parasite intra-erythrocytic developmental cycle. This detailed analysis of TSS usage enabled us to define architectural features of plasmodial promoters. We demonstrate that TSS selection and strength are constrained by local nucleotide composition. Furthermore, we provide evidence for coordinate and stage-specific TSS usage from distinct sites within the same transcription unit, thereby producing transcript isoforms, a subset of which are developmentally regulated. This work offers a framework for further investigations into the interactions between genomic sequences and regulatory factors governing the complex transcriptional program of this major human pathogen.

  4. Yeast DNA sequences initiating gene expression in Escherichia coli.

    Science.gov (United States)

    Lewin, Astrid; Tran, Thi Tuyen; Jacob, Daniela; Mayer, Martin; Freytag, Barbara; Appel, Bernd

    2004-01-01

    DNA transfer between pro- and eukaryotes occurs either during natural horizontal gene transfer or as a result of the employment of gene technology. We analysed the capacity of DNA sequences from a eukaryotic donor organism (Saccharomyces cerevisiae) to serve as promoter region in a prokaryotic recipient (Escherichia coli) by creating fusions between promoterless luxAB genes from Vibrio harveyi and random DNA sequences from S. cerevisiae and measuring the luminescence of transformed E. coli. Fifty-four out of 100 randomly analysed S. cerevisiae DNA sequences caused considerable gene expression in E. coli. Determination of transcription start sites within six selected yeast sequences in E. coli confirmed the existence of bacterial -10 and -35 consensus sequences at appropriate distances upstream from transcription initiation sites. Our results demonstrate that the probability of transcription of transferred eukaryotic DNA in bacteria is extremely high and does not require the insertion of the transferred DNA behind a promoter of the recipient genome.

  5. NanoRNAs: a class of small RNAs that can prime transcription initiation in bacteria.

    Science.gov (United States)

    Nickels, Bryce E; Dove, Simon L

    2011-10-07

    It has been widely assumed that all transcription in cells occur using NTPs only (i.e., de novo). However, it has been known for several decades that both prokaryotic and eukaryotic RNA polymerases can utilize small (2 to ∼5 nt) RNAs to prime transcription initiation in vitro, raising the possibility that small RNAs might also prime transcription initiation in vivo. A new study by Goldman et al. has now provided the first evidence that priming with so-called "nanoRNAs" (i.e., 2 to ∼5 nt RNAs) can, in fact, occur in vivo. Furthermore, this study provides evidence that altering the extent of nanoRNA-mediated priming of transcription initiation can profoundly influence global gene expression. In this perspective, we summarize the findings of Goldman et al. and discuss the prospect that nanoRNA-mediated priming of transcription initiation represents an underappreciated aspect of gene expression in vivo. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Mechanisms of post-transcriptional gene regulation in bacterial biofilms

    Directory of Open Access Journals (Sweden)

    Viveka eVadyvaloo

    2014-03-01

    Full Text Available Abstract Biofilms are characterized by a dense multicellular community of microorganisms that can be formed by the attachment of bacteria to an inert surface and to each other. The development of biofilm involves the initial attachment of planktonic bacteria to a surface, followed by replication, cell-to-cell adhesion to form microcolonies, maturation and detachment. Mature biofilms are embedded in a self-produced extracellular polymeric matrix composed primarily of bacterial-derived exopolysaccharides, specialized proteins, adhesins and occasionally DNA. Because the synthesis and assembly of biofilm matrix components is an exceptionally complex process, the transition between its different phases requires the coordinate expression and simultaneous regulation of many genes by complex genetic networks involving all levels of gene regulation. The finely controlled intracellular level of the chemical second messenger molecule, cyclic-di-GMP is central to the post-transcriptional mechanisms governing the switch between the motile planktonic lifestyle and the sessile biofilm forming state in many bacteria. Several other post-transcriptional regulatory mechanisms are known to dictate biofilm development and assembly and these include RNA-binding proteins, small non-coding RNAs, toxin-antitoxin systems, riboswitches and RNases. Post-transcriptional regulation is therefore a powerful molecular mechanism employed by bacteria to rapidly adjust to the changing environment and to fine tune gene expression to the developmental needs of the cell. In this review, we discuss post-transcriptional mechanisms that influence the biofilm developmental cycle in a variety of pathogenic bacteria.

  7. Modular construction of mammalian gene circuits using TALE transcriptional repressors.

    Science.gov (United States)

    Li, Yinqing; Jiang, Yun; Chen, He; Liao, Weixi; Li, Zhihua; Weiss, Ron; Xie, Zhen

    2015-03-01

    An important goal of synthetic biology is the rational design and predictable implementation of synthetic gene circuits using standardized and interchangeable parts. However, engineering of complex circuits in mammalian cells is currently limited by the availability of well-characterized and orthogonal transcriptional repressors. Here, we introduce a library of 26 reversible transcription activator-like effector repressors (TALERs) that bind newly designed hybrid promoters and exert transcriptional repression through steric hindrance of key transcriptional initiation elements. We demonstrate that using the input-output transfer curves of our TALERs enables accurate prediction of the behavior of modularly assembled TALER cascade and switch circuits. We also show that TALER switches using feedback regulation exhibit improved accuracy for microRNA-based HeLa cancer cell classification versus HEK293 cells. Our TALER library is a valuable toolkit for modular engineering of synthetic circuits, enabling programmable manipulation of mammalian cells and helping elucidate design principles of coupled transcriptional and microRNA-mediated post-transcriptional regulation.

  8. The "fourth dimension" of gene transcription.

    Science.gov (United States)

    O'Malley, Bert W

    2009-05-01

    The three dimensions of space provide our relationship to position on the earth, but the fourth dimension of time has an equally profound influence on our lives. Everything from light and sound to weather and biology operate on the principle of measurable temporal periodicity. Consequently, a wide variety of time clocks affect all aspects of our existence. The annual (and biannual) cycles of activity, metabolism, and mating, the monthly physiological clocks of women and men, and the 24-h diurnal rhythms of humans are prime examples. Should it be surprising to us that the fourth dimension also impinges upon gene expression and that the genome itself is regulated by the fastest running of all biological clocks? Recent evidence substantiates the existence of such a ubiquitin-dependent transcriptional clock that is based upon the activation and destruction of transcriptional coactivators.

  9. Transcriptional regulation of human thromboxane synthase gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.D.; Baek, S.J.; Fleischer, T [Univ. of Maryland Medical School, Baltimore, MD (United States)] [and others

    1994-09-01

    The human thromboxane synthase (TS) gene encodes a microsomal enzyme catalyzing the conversion of prostaglandin endoperoxide into thromboxane A{sub 2}(TxA{sub 2}), a potent inducer of vasoconstriction and platelet aggregation. A deficiency in platelet TS activity results in bleeding disorders, but the underlying molecular mechanism remains to be elucidated. Increased TxA{sub 2} has been associated with many pathophysiological conditions such as cardiovascular disease, pulmonary hypertension, pre-eclampsia, and thrombosis in sickle cell patients. Since the formation of TxA{sub 2} is dependent upon TS, the regulation of TS gene expression may presumably play a crucial role in vivo. Abrogation of the regulatory mechanism in TS gene expression might contribute, in part, to the above clinical manifestations. To gain insight into TS gene regulation, a 1.7 kb promoter of the human TS gene was cloned and sequenced. RNase protection assay and 5{prime} RACE protocols were used to map the transcription initiation site to nucleotide A, 30 bp downstream from a canonical TATA box. Several transcription factor binding sites, including AP-1, PU.1, and PEA3, were identified within this sequence. Transient expression studies in HL-60 cells transfected with constructs containing various lengths (0.2 to 5.5 kb) of the TS promoter/luciferase fusion gene indicated the presence of multiple repressor elements within the 5.5 kb TS promoter. However, a lineage-specific up-regulation of TS gene expression was observed in HL-60 cells induced by TPA to differentiate along the macrophage lineage. The increase in TS transcription was not detectable until 36 hr after addition of the inducer. These results suggest that expression of the human TS gene may be regulated by a mechanism involving repression and derepression of the TS promoter.

  10. Regulation of axillary meristem initiation by transcription factors and plant hormones

    Directory of Open Access Journals (Sweden)

    Minglei eYang

    2016-02-01

    Full Text Available One distinctive feature of plant post-embryonic development is that plants can undergo reiterative growth and continuous organogenesis throughout their lifetimes. Axillary meristems in leaf axils play a central role in this growth and differences in meristem initiation and development produce the diversity of plant architecture. Studies in the past fifteen years have shown that several transcription factors and phytohormones affect axillary meristem initiation. In this review, we highlight recent research using systems biology approaches to examine the regulatory hierarchies underlying axillary meristem initiation and the role of auxins and cytokinins in axillary meristem initiation and development. This research revealed a developmental mechanism in which phytohormone signals act with a gene regulatory network containing multiple transcription factors to contribute to the initiation of axillary meristems.

  11. FRUITING GENES OF SCHIZOPHYLLUM-COMMUNE ARE TRANSCRIPTIONALLY REGULATED

    NARCIS (Netherlands)

    SCHUREN, FHJ; VANDERLENDE, TR; WESSELS, JGH

    Fruiting genes in Schizophyllum commune are controlled by the mating-type genes and other regulatory genes. To examine whether differential accumulation of mRNAs for these fruiting genes is caused by transcriptional regulation, run-on transcription assaYs were performed with nuclei isolated from

  12. FRUITING GENES OF SCHIZOPHYLLUM-COMMUNE ARE TRANSCRIPTIONALLY REGULATED

    NARCIS (Netherlands)

    SCHUREN, FHJ; VANDERLENDE, TR; WESSELS, JGH

    1993-01-01

    Fruiting genes in Schizophyllum commune are controlled by the mating-type genes and other regulatory genes. To examine whether differential accumulation of mRNAs for these fruiting genes is caused by transcriptional regulation, run-on transcription assaYs were performed with nuclei isolated from cul

  13. FRUITING GENES OF SCHIZOPHYLLUM-COMMUNE ARE TRANSCRIPTIONALLY REGULATED

    NARCIS (Netherlands)

    SCHUREN, FHJ; VANDERLENDE, TR; WESSELS, JGH

    1993-01-01

    Fruiting genes in Schizophyllum commune are controlled by the mating-type genes and other regulatory genes. To examine whether differential accumulation of mRNAs for these fruiting genes is caused by transcriptional regulation, run-on transcription assaYs were performed with nuclei isolated from cul

  14. Tat gets the "green" light on transcription initiation

    Directory of Open Access Journals (Sweden)

    Kashanchi Fatah

    2005-11-01

    Full Text Available Abstract Human immunodeficiency virus type 1 (HIV-1 Tat transactivation is an essential step in the viral life cycle. Over the past several years, it has become widely accepted that Tat exerts its transcriptional effect by binding the transactivation-responsive region (TAR and enhancing transcriptional elongation. Consistent with this hypothesis, it has been shown that Tat promotes the binding of P-TEFb, a transcription elongation factor composed of cyclin T1 and cdk9, and the interaction of Tat with P-TEFb and TAR leads to hyperphosphorylation of the C-terminal domain (CTD of RNA Pol II and increased processivity of RNA Pol II. A recent report, however, has generated renewed interest that Tat may also play a critical role in transcription complex (TC assembly at the preinitiation step. Using in vivo chromatin immunoprecipitation assays, the authors reported that the HIV TC contains TBP but not TBP-associated factors. The stimulatory effect involved the direct interaction of Tat and P-TEFb and was evident at the earliest step of TC assembly, the TBP-TATA box interaction. In this article, we will review this data in context of earlier data which also support Tat's involvement in transcriptional complex assembly. Specifically, we will discuss experiments which demonstrated that Tat interacted with TBP and increased transcription initiation complex stability in cell free assays. We will also discuss studies which demonstrated that over expression of TBP alone was sufficient to obtain Tat activated transcription in vitro and in vivo. Finally, studies using self-cleaving ribozymes which suggested that Tat transactivation was not compatible with pausing of the RNA Pol II at the TAR site will be discussed.

  15. Dissecting the stochastic transcription initiation process in live Escherichia coli.

    Science.gov (United States)

    Lloyd-Price, Jason; Startceva, Sofia; Kandavalli, Vinodh; Chandraseelan, Jerome G; Goncalves, Nadia; Oliveira, Samuel M D; Häkkinen, Antti; Ribeiro, Andre S

    2016-06-01

    We investigate the hypothesis that, in Escherichia coli, while the concentration of RNA polymerases differs in different growth conditions, the fraction of RNA polymerases free for transcription remains approximately constant within a certain range of these conditions. After establishing this, we apply a standard model-fitting procedure to fully characterize the in vivo kinetics of the rate-limiting steps in transcription initiation of the Plac/ara-1 promoter from distributions of intervals between transcription events in cells with different RNA polymerase concentrations. We find that, under full induction, the closed complex lasts ∼788 s while subsequent steps last ∼193 s, on average. We then establish that the closed complex formation usually occurs multiple times prior to each successful initiation event. Furthermore, the promoter intermittently switches to an inactive state that, on average, lasts ∼87 s. This is shown to arise from the intermittent repression of the promoter by LacI. The methods employed here should be of use to resolve the rate-limiting steps governing the in vivo dynamics of initiation of prokaryotic promoters, similar to established steady-state assays to resolve the in vitro dynamics. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  16. Structural Basis of RNA Polymerase I Transcription Initiation.

    Science.gov (United States)

    Engel, Christoph; Gubbey, Tobias; Neyer, Simon; Sainsbury, Sarah; Oberthuer, Christiane; Baejen, Carlo; Bernecky, Carrie; Cramer, Patrick

    2017-03-23

    Transcription initiation at the ribosomal RNA promoter requires RNA polymerase (Pol) I and the initiation factors Rrn3 and core factor (CF). Here, we combine X-ray crystallography and cryo-electron microscopy (cryo-EM) to obtain a molecular model for basal Pol I initiation. The three-subunit CF binds upstream promoter DNA, docks to the Pol I-Rrn3 complex, and loads DNA into the expanded active center cleft of the polymerase. DNA unwinding between the Pol I protrusion and clamp domains enables cleft contraction, resulting in an active Pol I conformation and RNA synthesis. Comparison with the Pol II system suggests that promoter specificity relies on a distinct "bendability" and "meltability" of the promoter sequence that enables contacts between initiation factors, DNA, and polymerase. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Mammalian glutaminase Gls2 gene encodes two functional alternative transcripts by a surrogate promoter usage mechanism.

    Directory of Open Access Journals (Sweden)

    Mercedes Martín-Rufián

    Full Text Available BACKGROUND: Glutaminase is expressed in most mammalian tissues and cancer cells, but the regulation of its expression is poorly understood. An essential step to accomplish this goal is the characterization of its species- and cell-specific isoenzyme pattern of expression. Our aim was to identify and characterize transcript variants of the mammalian glutaminase Gls2 gene. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrate for the first time simultaneous expression of two transcript variants from the Gls2 gene in human, rat and mouse. A combination of RT-PCR, primer-extension analysis, bioinformatics, real-time PCR, in vitro transcription and translation and immunoblot analysis was applied to investigate GLS2 transcripts in mammalian tissues. Short (LGA and long (GAB transcript forms were isolated in brain and liver tissue of human, rat and mouse. The short LGA transcript arises by a combination of two mechanisms of transcriptional modulation: alternative transcription initiation and alternative promoter. The LGA variant contains both the transcription start site (TSS and the alternative promoter in the first intron of the Gls2 gene. The full human LGA transcript has two in-frame ATGs in the first exon, which are missing in orthologous rat and mouse transcripts. In vitro transcription and translation of human LGA yielded two polypeptides of the predicted size, but only the canonical full-length protein displayed catalytic activity. Relative abundance of GAB and LGA transcripts showed marked variations depending on species and tissues analyzed. CONCLUSIONS/SIGNIFICANCE: This is the first report demonstrating expression of alternative transcripts of the mammalian Gls2 gene. Transcriptional mechanisms giving rise to GLS2 variants and isolation of novel GLS2 transcripts in human, rat and mouse are presented. Results were also confirmed at the protein level, where catalytic activity was demonstrated for the human LGA protein. Relative abundance of GAB and

  18. Transcriptional interference among the murine beta-like globin genes.

    Science.gov (United States)

    Hu, Xiao; Eszterhas, Susan; Pallazzi, Nicolas; Bouhassira, Eric E; Fields, Jennifer; Tanabe, Osamu; Gerber, Scott A; Bulger, Michael; Engel, James Douglas; Groudine, Mark; Fiering, Steven

    2007-03-01

    Mammalian beta-globin loci contain multiple genes that are activated at different developmental stages. Studies have suggested that the transcription of one gene in a locus can influence the expression of the other locus genes. The prevalent model to explain this transcriptional interference is that all potentially active genes compete for locus control region (LCR) activity. To investigate the influence of transcription by the murine embryonic genes on transcription of the other beta-like genes, we generated mice with deletions of the promoter regions of Ey and betah1 and measured transcription of the remaining genes. Deletion of the Ey and betah1 promoters increased transcription of betamajor and betaminor 2-fold to 3-fold during primitive erythropoiesis. Deletion of Ey did not affect betah1 nor did deletion of betah1 affect Ey, but Ey deletion uniquely activated transcription from betah0, a beta-like globin gene immediately downstream of Ey. Protein analysis showed that betah0 encodes a translatable beta-like globin protein that can pair with alpha globin. The lack of transcriptional interference between Ey and betah1 and the gene-specific repression of betah0 did not support LCR competition among the embryonic genes and suggested that direct transcriptional interference from Ey suppressed betah0.

  19. Effects of hemorrhage on cytokine gene transcription.

    Science.gov (United States)

    Shenkar, R; Abraham, E

    1993-08-01

    Injury and blood loss are often followed by infection and the rapid development of organ system dysfunction, frequently involving mucosal sites, such as the lung and intestine. To examine possible mechanisms contributing to these conditions, we used semiquantitative polymerase chain reactions to determine cytokine mRNA expression among cellular populations isolated from mucosal and systemic anatomic sites of mice at predetermined time points following 30% blood volume hemorrhage with resuscitation 1 hr later. Within 1 hr after hemorrhage, significant increases were observed in mRNA levels for IL-1 alpha, IL-1 beta, IL-5, and TGF-beta in intraparenchymal pulmonary mononuclear cells. The levels of TGF-beta transcripts among alveolar macrophages were increased 1 hr following blood loss, and increase in IL-1 alpha transcripts was found starting 2 hr posthemorrhage. Cells from Peyer's patches showed significant increases in mRNA levels for IL-1 beta, IL-2, IL-5, IL-6, IFN-gamma, and TGF-beta during the 4 hr following hemorrhage. Significant increases in mRNA levels for IL-1 beta, TNF-alpha, and TGF-beta were present within 4 hr of blood loss among cells isolated from mesenteric lymph nodes. The expression of mRNA for most cytokines was not significantly altered in splenocytes or peripheral blood mononuclear cells at any time point following hemorrhage. These experiments demonstrate that blood loss, even if resuscitated, produces significant increases in proinflammatory and immunoregulatory cytokine gene transcription as early as 1 hr following hemorrhage. These posthemorrhage alterations in cytokine mRNA expression were particularly prominent at mucosal sites, suggesting a mechanism for the increased incidence of pulmonary and intestinal involvement in organ system failure following severe blood loss and injury.

  20. Transcriptional, post-transcriptional and post-translational regulations of gene expression during leaf polarity formation

    Institute of Scientific and Technical Information of China (English)

    Lin Xu; Li Yang; Hai Huang

    2007-01-01

    Leaf morphogenesis requires the establishment of adaxial-abaxial polarity after primordium initiation from the shoot apical meristem (SAM). Several families of transcription factors are known to play critical roles in promoting adaxial or abaxial leaf fate. Recently, post-transcriptional gene silencing pathways have been shown to regulate the establishment of leaf polarity, providing novel and exciting insights into leaf development. For example, microRNAs (miR165/166)and a trans-acting siRNA (TAS3-derived tasiR-ARF) have been shown to repress the expression of several key transcription factor genes. In addition, yet another level of regulation, post-translational regulation, has been revealed recently by studies on the role of the 26S proteasome in leaf polarity. Although our understanding regarding the molecular mechanisms underlying establishment of adaxial-abaxial polarity has greatly improved, there is still much that remains elusive.This review aims to discuss recent progress, as well as the remaining questions, regarding the molecular mechanisms underlying leaf polarity formation.

  1. Overlapping transcription structure of human cytomegalovirus UL140 and UL141 genes

    Indian Academy of Sciences (India)

    Yanping Ma; Mali Li; Bo Zheng; Ning Wang; Shuang Gao; Lin Wang; Qi Ying; Zhengrong Sun; Qiang Ruan

    2013-03-01

    Transcription of human cytomegalovirus UL/b′ region has been studied extensively for some genes. In this study, transcripts of the UL140 and UL141, two of the UL/b′ genes, were identified in late RNAs of three HCMV isolates using Northern blot hybridization, cDNA library screening and RACE-PCR. At least three transcripts with length of 2800, 2400 and 1700 nt, as well as a group of transcripts of about 1000–1300 nt, were found in this gene region with an accordant 3′ ends. Among the transcripts, two initiated upstream of the start code of the UL140 gene and contained the UL140 and UL141 open reading frame (ORF), one initiated in the middle of the UL140 gene, and could encode short ORFs upstream of the UL141 ORF. A group of transcripts initiated upstream or downstream of the start code of the UL141 gene, and could encode `nested’ ORFs, including the UL141 ORF. These `nested’ ORFs possess different initiation sites but the same termination site as that of the UL141 ORF.

  2. A universal transcription pause sequence is an element of initiation factor σ70-dependent pausing

    Science.gov (United States)

    Bird, Jeremy G.; Strobel, Eric J.; Roberts, Jeffrey W.

    2016-01-01

    The Escherichia coli σ70 initiation factor is required for a post-initiation, promoter-proximal pause essential for regulation of lambdoid phage late gene expression; potentially, σ70 acts at other sites during transcription elongation as well. The pause is induced by σ70 binding to a repeat of the promoter −10 sequence. After σ70 binding, further RNA synthesis occurs as DNA is drawn (or ‘scrunched’) into the enzyme complex, presumably exactly as occurs during initial synthesis from the promoter; this synthesis then pauses at a defined site several nucleotides downstream from the active center position when σ70 first engages the −10 sequence repeat. We show that the actual pause site in the stabilized, scrunched complex is the ‘elemental pause sequence’ recognized from its frequent occurrence in the E. coli genome. σ70 binding and the elemental pause sequence together, but neither alone, produce a substantial transcription pause. PMID:27098041

  3. Transcriptional Activation of Inflammatory Genes: Mechanistic Insight into Selectivity and Diversity.

    Science.gov (United States)

    Ahmed, Afsar U; Williams, Bryan R G; Hannigan, Gregory E

    2015-11-11

    Acute inflammation, an integral part of host defence and immunity, is a highly conserved cellular response to pathogens and other harmful stimuli. An inflammatory stimulation triggers transcriptional activation of selective pro-inflammatory genes that carry out specific functions such as anti-microbial activity or tissue healing. Based on the nature of inflammatory stimuli, an extensive exploitation of selective transcriptional activations of pro-inflammatory genes is performed by the host to ensure a defined inflammatory response. Inflammatory signal transductions are initiated by the recognition of inflammatory stimuli by transmembrane receptors, followed by the transmission of the signals to the nucleus for differential gene activations. The differential transcriptional activation of pro-inflammatory genes is precisely controlled by the selective binding of transcription factors to the promoters of these genes. Among a number of transcription factors identified to date, NF-κB still remains the most prominent and studied factor for its diverse range of selective transcriptional activities. Differential transcriptional activities of NF-κB are dictated by post-translational modifications, specificities in dimer formation, and variability in activation kinetics. Apart from the differential functions of transcription factors, the transcriptional activation of selective pro-inflammatory genes is also governed by chromatin structures, epigenetic markers, and other regulators as the field is continuously expanding.

  4. Mechanistic basis for transcriptional bursting of ribosomal genes in E. coli

    Science.gov (United States)

    Choubey, Sandeep; Sanchez, Alvaro; Kondev, Jane

    2012-02-01

    Upon adding more ribosomal genes to the E. coli cell, it adjusts the overall transcription of these genes by reducing the average transcription rate per gene, so as to keep constant the level of ribosomal RNA in the cell. It was observed that this reduction in the average transcription level per gene is accompanied by the generation of transcriptional bursts. The biophysical mechanism responsible for this type of transcriptional control is not yet known. We consider three possible mechanisms suggested in the literature: proximal pausing by RNA polymerase, cooperative recruitment of RNA polymerase by DNA supercoiling, and competition between RNA polymerase and a transcription factor for binding to regulatory DNA. We compute the expected statistical properties of transcription initiation for each one of these models,and compare our predictions with published distributions of distances between the polymerases transcribing the ribosomal genes, obtained from electron micrographs.We use this data to estimate the rates of transcription initiation, which are found to be in good agreement with independent measurements. We also show that the three mechanisms considered here can be discriminated by comparing their predictions for the mean and the variance of interpolymerase distances.

  5. Brd4 marks select genes on mitotic chromatin and directs postmitotic transcription.

    Science.gov (United States)

    Dey, Anup; Nishiyama, Akira; Karpova, Tatiana; McNally, James; Ozato, Keiko

    2009-12-01

    On entry into mitosis, many transcription factors dissociate from chromatin, resulting in global transcriptional shutdown. During mitosis, some genes are marked to ensure the inheritance of their expression in the next generation of cells. The nature of mitotic gene marking, however, has been obscure. Brd4 is a double bromodomain protein that localizes to chromosomes during mitosis and is implicated in holding mitotic memory. In interphase, Brd4 interacts with P-TEFb and functions as a global transcriptional coactivator. We found that throughout mitosis, Brd4 remained bound to the transcription start sites of many M/G1 genes that are programmed to be expressed at the end of, or immediately after mitosis. In contrast, Brd4 did not bind to genes that are expressed at later phases of cell cycle. Brd4 binding to M/G1 genes increased at telophase, the end phase of mitosis, coinciding with increased acetylation of histone H3 and H4 in these genes. Increased Brd4 binding was accompanied by the recruitment of P-TEFb and de novo M/G1 gene transcription, the events impaired in Brd4 knockdown cells. In sum, Brd4 marks M/G1 genes for transcriptional memory during mitosis, and upon exiting mitosis, this mark acts as a signal for initiating their prompt transcription in daughter cells.

  6. Regulation of Axillary Meristem Initiation by Transcription Factors and Plant Hormones.

    Science.gov (United States)

    Yang, Minglei; Jiao, Yuling

    2016-01-01

    One distinctive feature of plant post-embryonic development is that plants can undergo reiterative growth and continuous organogenesis throughout their lifetimes. Axillary meristems (AMs) in leaf axils play a central role in this growth and differences in meristem initiation and development produce the diversity of plant architecture. Studies in the past 15 years have shown that several transcription factors (TFs) and phytohormones affect AM initiation. In this review, we highlight recent research using systems biology approaches to examine the regulatory hierarchies underlying AM initiation and the role of auxins and cytokinins in AM initiation and development. This research revealed a developmental mechanism in which phytohormone signals act with a gene regulatory network containing multiple TFs to contribute to the initiation of AMs.

  7. Modular composition of gene transcription networks.

    Directory of Open Access Journals (Sweden)

    Andras Gyorgy

    2014-03-01

    Full Text Available Predicting the dynamic behavior of a large network from that of the composing modules is a central problem in systems and synthetic biology. Yet, this predictive ability is still largely missing because modules display context-dependent behavior. One cause of context-dependence is retroactivity, a phenomenon similar to loading that influences in non-trivial ways the dynamic performance of a module upon connection to other modules. Here, we establish an analysis framework for gene transcription networks that explicitly accounts for retroactivity. Specifically, a module's key properties are encoded by three retroactivity matrices: internal, scaling, and mixing retroactivity. All of them have a physical interpretation and can be computed from macroscopic parameters (dissociation constants and promoter concentrations and from the modules' topology. The internal retroactivity quantifies the effect of intramodular connections on an isolated module's dynamics. The scaling and mixing retroactivity establish how intermodular connections change the dynamics of connected modules. Based on these matrices and on the dynamics of modules in isolation, we can accurately predict how loading will affect the behavior of an arbitrary interconnection of modules. We illustrate implications of internal, scaling, and mixing retroactivity on the performance of recurrent network motifs, including negative autoregulation, combinatorial regulation, two-gene clocks, the toggle switch, and the single-input motif. We further provide a quantitative metric that determines how robust the dynamic behavior of a module is to interconnection with other modules. This metric can be employed both to evaluate the extent of modularity of natural networks and to establish concrete design guidelines to minimize retroactivity between modules in synthetic systems.

  8. Modular composition of gene transcription networks.

    Science.gov (United States)

    Gyorgy, Andras; Del Vecchio, Domitilla

    2014-03-01

    Predicting the dynamic behavior of a large network from that of the composing modules is a central problem in systems and synthetic biology. Yet, this predictive ability is still largely missing because modules display context-dependent behavior. One cause of context-dependence is retroactivity, a phenomenon similar to loading that influences in non-trivial ways the dynamic performance of a module upon connection to other modules. Here, we establish an analysis framework for gene transcription networks that explicitly accounts for retroactivity. Specifically, a module's key properties are encoded by three retroactivity matrices: internal, scaling, and mixing retroactivity. All of them have a physical interpretation and can be computed from macroscopic parameters (dissociation constants and promoter concentrations) and from the modules' topology. The internal retroactivity quantifies the effect of intramodular connections on an isolated module's dynamics. The scaling and mixing retroactivity establish how intermodular connections change the dynamics of connected modules. Based on these matrices and on the dynamics of modules in isolation, we can accurately predict how loading will affect the behavior of an arbitrary interconnection of modules. We illustrate implications of internal, scaling, and mixing retroactivity on the performance of recurrent network motifs, including negative autoregulation, combinatorial regulation, two-gene clocks, the toggle switch, and the single-input motif. We further provide a quantitative metric that determines how robust the dynamic behavior of a module is to interconnection with other modules. This metric can be employed both to evaluate the extent of modularity of natural networks and to establish concrete design guidelines to minimize retroactivity between modules in synthetic systems.

  9. E2F Transcription Factors Control the Roller Coaster Ride of Cell Cycle Gene Expression

    NARCIS (Netherlands)

    Thurlings, Ingrid; de Bruin, Alain

    2016-01-01

    Initially, the E2F transcription factor was discovered as a factor able to bind the adenovirus E2 promoter and activate viral genes. Afterwards it was shown that E2F also binds to promoters of nonviral genes such as C-MYC and DHFR, which were already known at that time to be important for cell growt

  10. Cohesin modulates transcription of estrogen-responsive genes.

    Science.gov (United States)

    Antony, Jisha; Dasgupta, Tanushree; Rhodes, Jenny M; McEwan, Miranda V; Print, Cristin G; O'Sullivan, Justin M; Horsfield, Julia A

    2015-03-01

    The cohesin complex has essential roles in cell division, DNA damage repair and gene transcription. The transcriptional function of cohesin is thought to derive from its ability to connect distant regulatory elements with gene promoters. Genome-wide binding of cohesin in breast cancer cells frequently coincides with estrogen receptor alpha (ER), leading to the hypothesis that cohesin facilitates estrogen-dependent gene transcription. We found that cohesin modulates the expression of only a subset of genes in the ER transcription program, either activating or repressing transcription depending on the gene target. Estrogen-responsive genes most significantly influenced by cohesin were enriched in pathways associated with breast cancer progression such as PI3K and ErbB1. In MCF7 breast cancer cells, cohesin depletion enhanced transcription of TFF1 and TFF2, and was associated with increased ER binding and increased interaction between TFF1 and its distal enhancer situated within TMPRSS3. In contrast, cohesin depletion reduced c-MYC mRNA and was accompanied by reduced interaction between a distal enhancer of c-MYC and its promoters. Our data indicates that cohesin is not a universal facilitator of ER-induced transcription and can even restrict enhancer-promoter communication. We propose that cohesin modulates transcription of estrogen-dependent genes to achieve appropriate directionality and amplitude of expression.

  11. Transcription dynamics of inducible genes modulated by negative regulations.

    Science.gov (United States)

    Li, Yanyan; Tang, Moxun; Yu, Jianshe

    2015-06-01

    Gene transcription is a stochastic process in single cells, in which genes transit randomly between active and inactive states. Transcription of many inducible genes is also tightly regulated: It is often stimulated by extracellular signals, activated through signal transduction pathways and later repressed by negative regulations. In this work, we study the nonlinear dynamics of the mean transcription level of inducible genes modulated by the interplay of the intrinsic transcriptional randomness and the repression by negative regulations. In our model, we integrate negative regulations into gene activation process, and make the conventional assumption on the production and degradation of transcripts. We show that, whether or not the basal transcription is temporarily terminated when cells are stimulated, the mean transcription level grows in the typical up and down pattern commonly observed in immune response genes. With the help of numerical simulations, we clarify the delicate impact of the system parameters on the transcription dynamics, and demonstrate how our model generates the distinct temporal gene-induction patterns in mouse fibroblasts discerned in recent experiments.

  12. Structure of the initiation-competent RNA polymerase I and its implication for transcription

    Science.gov (United States)

    Pilsl, Michael; Crucifix, Corinne; Papai, Gabor; Krupp, Ferdinand; Steinbauer, Robert; Griesenbeck, Joachim; Milkereit, Philipp; Tschochner, Herbert; Schultz, Patrick

    2016-07-01

    Eukaryotic RNA polymerase I (Pol I) is specialized in rRNA gene transcription synthesizing up to 60% of cellular RNA. High level rRNA production relies on efficient binding of initiation factors to the rRNA gene promoter and recruitment of Pol I complexes containing initiation factor Rrn3. Here, we determine the cryo-EM structure of the Pol I-Rrn3 complex at 7.5 Å resolution, and compare it with Rrn3-free monomeric and dimeric Pol I. We observe that Rrn3 contacts the Pol I A43/A14 stalk and subunits A190 and AC40, that association re-organizes the Rrn3 interaction interface, thereby preventing Pol I dimerization; and Rrn3-bound and monomeric Pol I differ from the dimeric enzyme in cleft opening, and localization of the A12.2 C-terminus in the active centre. Our findings thus support a dual role for Rrn3 in transcription initiation to stabilize a monomeric initiation competent Pol I and to drive pre-initiation complex formation.

  13. Small RNAs targeting transcription start site induce heparanase silencing through interference with transcription initiation in human cancer cells.

    Directory of Open Access Journals (Sweden)

    Guosong Jiang

    Full Text Available Heparanase (HPA, an endo-h-D-glucuronidase that cleaves the heparan sulfate chain of heparan sulfate proteoglycans, is overexpressed in majority of human cancers. Recent evidence suggests that small interfering RNA (siRNA induces transcriptional gene silencing (TGS in human cells. In this study, transfection of siRNA against -9/+10 bp (siH3, but not -174/-155 bp (siH1 or -134/-115 bp (siH2 region relative to transcription start site (TSS locating at 101 bp upstream of the translation start site, resulted in TGS of heparanase in human prostate cancer, bladder cancer, and gastric cancer cells in a sequence-specific manner. Methylation-specific PCR and bisulfite sequencing revealed no DNA methylation of CpG islands within heparanase promoter in siH3-transfected cells. The TGS of heparanase did not involve changes of epigenetic markers histone H3 lysine 9 dimethylation (H3K9me2, histone H3 lysine 27 trimethylation (H3K27me3 or active chromatin marker acetylated histone H3 (AcH3. The regulation of alternative splicing was not involved in siH3-mediated TGS. Instead, siH3 interfered with transcription initiation via decreasing the binding of both RNA polymerase II and transcription factor II B (TFIIB, but not the binding of transcription factors Sp1 or early growth response 1, on the heparanase promoter. Moreover, Argonaute 1 and Argonaute 2 facilitated the decreased binding of RNA polymerase II and TFIIB on heparanase promoter, and were necessary in siH3-induced TGS of heparanase. Stable transfection of the short hairpin RNA construct targeting heparanase TSS (-9/+10 bp into cancer cells, resulted in decreased proliferation, invasion, metastasis and angiogenesis of cancer cells in vitro and in athymic mice models. These results suggest that small RNAs targeting TSS can induce TGS of heparanase via interference with transcription initiation, and significantly suppress the tumor growth, invasion, metastasis and angiogenesis of cancer cells.

  14. Absolute measurement of gene transcripts with Selfie-digital PCR.

    Science.gov (United States)

    Podlesniy, Petar; Trullas, Ramon

    2017-08-21

    Absolute measurement of the number of RNA transcripts per gene is necessary to compare gene transcription among different tissues or experimental conditions and to assess transcription of genes that have a variable copy number per cell such as mitochondrial DNA. Here, we present a method called Selfie-digital PCR that measures the absolute amount of an RNA transcript produced by its own coding DNA at a particular moment. Overcoming the limitations of previous approaches, Selfie-digital PCR allows for the quantification of nuclear and mitochondrial gene transcription in a strand-specific manner that is comparable among tissues and cell types that differ in gene copy number or metabolic state. Using Selfie-digital PCR, we found that, with the exception of the liver, different organs exhibit marked variations in mitochondrial DNA copy number but similar transcription of mitochondrial DNA heavy and light chains, thus suggesting a preferential role of mitochondrial DNA abundance over its transcription in organ function. Moreover, the strand-specific analysis of mitochondrial transcription afforded by Selfie-digital PCR showed that transcription of the heavy strand was significantly higher than that of the light strand in all the tissues studied.

  15. Sequential changes in chromatin structure during transcriptional activation in the beta globin LCR and its target gene.

    Science.gov (United States)

    Kim, Kihoon; Kim, AeRi

    2010-09-01

    Chromatin structure is modulated during transcriptional activation. The changes include the association of transcriptional activators, formation of hypersensitive sites and covalent modifications of histones. To understand the order of the various changes accompanying transcriptional activation, we analyzed the mouse beta globin gene, which is transcriptionally inducible in erythroid MEL cells over a time course of HMBA treatment. Transcription of the globin genes requires the locus control region (LCR) consisting of several hypersensitive sites (HSs). Erythroid specific transcriptional activators such as NF-E2, GATA-1, TAL1 and EKLF were associated with the LCR in the uninduced state before transcriptional activation. The HSs of the LCR were formed in this state as revealed by high sensitivity to DNase I and MNase attack. However the binding of transcriptional activators and the depletion of histones were observed in the promoter of the beta globin gene only after transcriptional activation. In addition, various covalent histone modifications were sequentially detected in lysine residues of histone H3 during the activation. Acetylation of K9, K36 and K27 was notable in both LCR HSs and gene after induction but before transcriptional initiation. Inactive histone marks such as K9me2, K36me2 and K27me2 were removed coincident with transcriptional initiation in the gene region. Taken together, these results indicate that LCR has a substantially active structure in the uninduced state while transcriptional activation serially adds active marks, including histone modifications, and removes inactive marks in the target gene of the LCR.

  16. Core Promoter Plasticity Between Maize Tissues and Genotypes Contrasts with Predominance of Sharp Transcription Initiation Sites.

    Science.gov (United States)

    Mejía-Guerra, María Katherine; Li, Wei; Galeano, Narmer F; Vidal, Mabel; Gray, John; Doseff, Andrea I; Grotewold, Erich

    2015-12-01

    Core promoters are crucial for gene regulation, providing blueprints for the assembly of transcriptional machinery at transcription start sites (TSSs). Empirically, TSSs define the coordinates of core promoters and other regulatory sequences. Thus, experimental TSS identification provides an essential step in the characterization of promoters and their features. Here, we describe the application of CAGE (cap analysis of gene expression) to identify genome-wide TSSs used in root and shoot tissues of two maize (Zea mays) inbred lines (B73 and Mo17). Our studies indicate that most TSS clusters are sharp in maize, similar to mice, but distinct from Arabidopsis thaliana, Drosophila melanogaster, or zebra fish, in which a majority of genes have broad-shaped TSS clusters. We established that ∼38% of maize promoters are characterized by a broader TATA-motif consensus, and this motif is significantly enriched in genes with sharp TSSs. A noteworthy plasticity in TSS usage between tissues and inbreds was uncovered, with ∼1500 genes showing significantly different dominant TSSs, sometimes affecting protein sequence by providing alternate translation initiation codons. We experimentally characterized instances in which this differential TSS utilization results in protein isoforms with additional domains or targeted to distinct subcellular compartments. These results provide important insights into TSS selection and gene expression in an agronomically important crop.

  17. Regulation of Insulin Gene Transcription by Multiple Histone Acetyltransferases

    OpenAIRE

    2012-01-01

    Glucose-stimulated insulin gene transcription is mainly regulated by a 340-bp promoter region upstream of the transcription start site by beta-cell-enriched transcription factors Pdx-1, MafA, and NeuroD1. Previous studies have shown that histone H4 hyperacetylation is important for acute up-regulation of insulin gene transcription. Until now, only the histone acetyltransferase (HAT) protein p300 has been shown to be involved in this histone H4 acetylation event. In this report we investigated...

  18. Transcriptional and post-transcriptional regulation of nucleotide excision repair genes in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Lefkofsky, Hailey B. [Translational Oncology Program, University of Michigan Medical School, Ann Arbor, MI (United States); Veloso, Artur [Translational Oncology Program, University of Michigan Medical School, Ann Arbor, MI (United States); Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI (United States); Bioinformatics Program, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI (United States); Ljungman, Mats, E-mail: ljungman@umich.edu [Translational Oncology Program, University of Michigan Medical School, Ann Arbor, MI (United States); Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI (United States); Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI (United States)

    2015-06-15

    Nucleotide excision repair (NER) removes DNA helix-distorting lesions induced by UV light and various chemotherapeutic agents such as cisplatin. These lesions efficiently block the elongation of transcription and need to be rapidly removed by transcription-coupled NER (TC-NER) to avoid the induction of apoptosis. Twenty-nine genes have been classified to code for proteins participating in nucleotide excision repair (NER) in human cells. Here we explored the transcriptional and post-transcriptional regulation of these NER genes across 13 human cell lines using Bru-seq and BruChase-seq, respectively. Many NER genes are relatively large in size and therefore will be easily inactivated by UV-induced transcription-blocking lesions. Furthermore, many of these genes produce transcripts that are rather unstable. Thus, these genes are expected to rapidly lose expression leading to a diminished function of NER. One such gene is ERCC6 that codes for the CSB protein critical for TC-NER. Due to its large gene size and high RNA turnover rate, the ERCC6 gene may act as dosimeter of DNA damage so that at high levels of damage, ERCC6 RNA levels would be diminished leading to the loss of CSB expression, inhibition of TC-NER and the promotion of cell death.

  19. Transcription variants of SLA-7, a swine non classical MHC class I gene.

    Science.gov (United States)

    Hu, Rui; Lemonnier, Gaëtan; Bourneuf, Emmanuelle; Vincent-Naulleau, Silvia; Rogel-Gaillard, Claire

    2011-06-03

    In pig, very little information is available on the non classical class I (Ib) genes of the Major Histocompatibility Complex (MHC) i.e. SLA-6, -7 and -8. Our aim was to focus on the transcription pattern of the SLA-7 gene. RT-PCR experiments were carried out with SLA-7 specific primers targeting either the full coding sequence (CDS) from exon 1 to the 3 prime untranslated region (3UTR) or a partial CDS from exon 4 to the 3UTR. We show that the SLA-7 gene expresses a full length transcript not yet identified that refines annotation of the gene with eight exons instead of seven as initially described from the existing RefSeq RNA. These two RNAs encode molecules that differ in cytoplasmic tail length. In this study, another SLA-7 transcript variant was characterized, which encodes a protein with a shorter alpha 3 domain, as a consequence of a splicing site within exon 4. Surprisingly, a cryptic non canonical GA-AG splicing site is used to generate this transcript variant. An additional SLA-7 variant was also identified in the 3UTR with a splicing site occurring 31 nucleotides downstream to the stop codon. In conclusion, the pig SLA-7 MHC class Ib gene presents a complex transcription pattern with two transcripts encoding various molecules and transcripts that do not alter the CDS and may be subject to post-transcriptional regulation.

  20. Statistical modelling of transcript profiles of differentially regulated genes

    Directory of Open Access Journals (Sweden)

    Sergeant Martin J

    2008-07-01

    Full Text Available Abstract Background The vast quantities of gene expression profiling data produced in microarray studies, and the more precise quantitative PCR, are often not statistically analysed to their full potential. Previous studies have summarised gene expression profiles using simple descriptive statistics, basic analysis of variance (ANOVA and the clustering of genes based on simple models fitted to their expression profiles over time. We report the novel application of statistical non-linear regression modelling techniques to describe the shapes of expression profiles for the fungus Agaricus bisporus, quantified by PCR, and for E. coli and Rattus norvegicus, using microarray technology. The use of parametric non-linear regression models provides a more precise description of expression profiles, reducing the "noise" of the raw data to produce a clear "signal" given by the fitted curve, and describing each profile with a small number of biologically interpretable parameters. This approach then allows the direct comparison and clustering of the shapes of response patterns between genes and potentially enables a greater exploration and interpretation of the biological processes driving gene expression. Results Quantitative reverse transcriptase PCR-derived time-course data of genes were modelled. "Split-line" or "broken-stick" regression identified the initial time of gene up-regulation, enabling the classification of genes into those with primary and secondary responses. Five-day profiles were modelled using the biologically-oriented, critical exponential curve, y(t = A + (B + CtRt + ε. This non-linear regression approach allowed the expression patterns for different genes to be compared in terms of curve shape, time of maximal transcript level and the decline and asymptotic response levels. Three distinct regulatory patterns were identified for the five genes studied. Applying the regression modelling approach to microarray-derived time course data

  1. Structural basis of initial RNA polymerase II transcription.

    Science.gov (United States)

    Cheung, Alan C M; Sainsbury, Sarah; Cramer, Patrick

    2011-11-04

    During transcription initiation by RNA polymerase (Pol) II, a transient open promoter complex (OC) is converted to an initially transcribing complex (ITC) containing short RNAs, and to a stable elongation complex (EC). We report structures of a Pol II-DNA complex mimicking part of the OC, and of complexes representing minimal ITCs with 2, 4, 5, 6, and 7 nucleotide (nt) RNAs, with and without a non-hydrolyzable nucleoside triphosphate (NTP) in the insertion site +1. The partial OC structure reveals that Pol II positions the melted template strand opposite the active site. The ITC-mimicking structures show that two invariant lysine residues anchor the 3'-proximal phosphate of short RNAs. Short DNA-RNA hybrids adopt a tilted conformation that excludes the +1 template nt from the active site. NTP binding induces complete DNA translocation and the standard hybrid conformation. Conserved NTP contacts indicate a universal mechanism of NTP selection. The essential residue Q1078 in the closed trigger loop binds the NTP 2'-OH group, explaining how the trigger loop couples catalysis to NTP selection, suppressing dNTP binding and DNA synthesis.

  2. Nuclear respiratory factor 1 mediates the transcription initiation of insulin-degrading enzyme in a TATA box-binding protein-independent manner.

    Directory of Open Access Journals (Sweden)

    Lang Zhang

    Full Text Available CpG island promoters often lack canonical core promoter elements such as the TATA box, and have dispersed transcription initiation sites. Despite the prevalence of CpG islands associated with mammalian genes, the mechanism of transcription initiation from CpG island promoters remains to be clarified. Here we investigate the mechanism of transcription initiation of the CpG island-associated gene, insulin-degrading enzyme (IDE. IDE is ubiquitously expressed, and has dispersed transcription initiation sites. The IDE core promoter locates within a 32-bp region, which contains three CGGCG repeats and a nuclear respiratory factor 1 (NRF-1 binding motif. Sequential mutation analysis indicates that the NRF-1 binding motif is critical for IDE transcription initiation. The NRF-1 binding motif is functional, because NRF-1 binds to this motif in vivo and this motif is required for the regulation of IDE promoter activity by NRF-1. Furthermore, the NRF-1 binding site in the IDE promoter is conserved among different species, and dominant negative NRF-1 represses endogenous IDE expression. Finally, TATA-box binding protein (TBP is not associated with the IDE promoter, and inactivation of TBP does not abolish IDE transcription, suggesting that TBP is not essential for IDE transcription initiation. Our studies indicate that NRF-1 mediates IDE transcription initiation in a TBP-independent manner, and provide insights into the potential mechanism of transcription initiation for other CpG island-associated genes.

  3. The relationship between transcription initiation RNAs and CCCTC-binding factor (CTCF localization

    Directory of Open Access Journals (Sweden)

    Taft Ryan J

    2011-08-01

    Full Text Available Abstract Background Transcription initiation RNAs (tiRNAs are nuclear localized 18 nucleotide RNAs derived from sequences immediately downstream of RNA polymerase II (RNAPII transcription start sites. Previous reports have shown that tiRNAs are intimately correlated with gene expression, RNA polymerase II binding and behaviors, and epigenetic marks associated with transcription initiation, but not elongation. Results In the present work, we show that tiRNAs are commonly found at genomic CCCTC-binding factor (CTCF binding sites in human and mouse, and that CTCF sites that colocalize with RNAPII are highly enriched for tiRNAs. To directly investigate the relationship between tiRNAs and CTCF we examined tiRNAs originating near the intronic CTCF binding site in the human tumor suppressor gene, p21 (cyclin-dependent kinase inhibitor 1A gene, also known as CDKN1A. Inhibition of CTCF-proximal tiRNAs resulted in increased CTCF localization and increased p21 expression, while overexpression of CTCF-proximal tiRNA mimics decreased CTCF localization and p21 expression. We also found that tiRNA-regulated CTCF binding influences the levels of trimethylated H3K27 at the alternate upstream p21 promoter, and affects the levels of alternate p21 (p21alt transcripts. Extending these studies to another randomly selected locus with conserved CTCF binding we found that depletion of tiRNA alters nucleosome density proximal to sites of tiRNA biogenesis. Conclusions Taken together, these data suggest that tiRNAs modulate local epigenetic structure, which in turn regulates CTCF localization.

  4. Defective transcription initiation causes postnatal growth failure in a mouse model of nucleotide excision repair (NER) progeria

    Science.gov (United States)

    Kamileri, Irene; Karakasilioti, Ismene; Sideri, Aria; Kosteas, Theodoros; Tatarakis, Antonis; Talianidis, Iannis; Garinis, George A.

    2012-01-01

    Nucleotide excision repair (NER) defects are associated with cancer, developmental disorders and neurodegeneration. However, with the exception of cancer, the links between defects in NER and developmental abnormalities are not well understood. Here, we show that the ERCC1-XPF NER endonuclease assembles on active promoters in vivo and facilitates chromatin modifications for transcription during mammalian development. We find that Ercc1−/− mice demonstrate striking physiological, metabolic and gene expression parallels with Taf10−/− animals carrying a liver-specific transcription factor II D (TFIID) defect in transcription initiation. Promoter occupancy studies combined with expression profiling in the liver and in vitro differentiation cell assays reveal that ERCC1-XPF interacts with TFIID and assembles with POL II and the basal transcription machinery on promoters in vivo. Whereas ERCC1-XPF is required for the initial activation of genes associated with growth, it is dispensable for ongoing transcription. Recruitment of ERCC1-XPF on promoters is accompanied by promoter-proximal DNA demethylation and histone marks associated with active hepatic transcription. Collectively, the data unveil a role of ERCC1/XPF endonuclease in transcription initiation establishing its causal contribution to NER developmental disorders. PMID:22323595

  5. Transcription mediated insulation and interference direct gene cluster expression switches.

    Science.gov (United States)

    Nguyen, Tania; Fischl, Harry; Howe, Françoise S; Woloszczuk, Ronja; Serra Barros, Ana; Xu, Zhenyu; Brown, David; Murray, Struan C; Haenni, Simon; Halstead, James M; O'Connor, Leigh; Shipkovenska, Gergana; Steinmetz, Lars M; Mellor, Jane

    2014-11-19

    In yeast, many tandemly arranged genes show peak expression in different phases of the metabolic cycle (YMC) or in different carbon sources, indicative of regulation by a bi-modal switch, but it is not clear how these switches are controlled. Using native elongating transcript analysis (NET-seq), we show that transcription itself is a component of bi-modal switches, facilitating reciprocal expression in gene clusters. HMS2, encoding a growth-regulated transcription factor, switches between sense- or antisense-dominant states that also coordinate up- and down-regulation of transcription at neighbouring genes. Engineering HMS2 reveals alternative mono-, di- or tri-cistronic and antisense transcription units (TUs), using different promoter and terminator combinations, that underlie state-switching. Promoters or terminators are excluded from functional TUs by read-through transcriptional interference, while antisense TUs insulate downstream genes from interference. We propose that the balance of transcriptional insulation and interference at gene clusters facilitates gene expression switches during intracellular and extracellular environmental change.

  6. Genome Binding and Gene Regulation by Stem Cell Transcription Factors

    NARCIS (Netherlands)

    J.H. Brandsma (Johan)

    2016-01-01

    markdownabstractNearly all cells of an individual organism contain the same genome. However, each cell type transcribes a different set of genes due to the presence of different sets of cell type-specific transcription factors. Such transcription factors bind to regulatory regions such as promoters

  7. Anaerobic regulation of transcription initiation in the arcDABC operon of Pseudomonas aeruginosa.

    OpenAIRE

    Gamper, M; Zimmermann, A.; Haas, D.

    1991-01-01

    The arcDABC operon of Pseudomonas aeruginosa encodes the enzymes of the arginine deiminase pathway, which is inducible under conditions of oxygen limitation and serves to generate ATP from arginine. The 5' end of arc mRNA extracted from anaerobically grown cells was determined by S1 and primer extension mapping. The transcription initiation site was located upstream of the arcD gene and 41.5 bp downstream of the center of the sequence TTGAC....ATCAG. This sequence, termed the ANR box, is simi...

  8. Transcription without XPB Establishes a Unified Helicase-Independent Mechanism of Promoter Opening in Eukaryotic Gene Expression.

    Science.gov (United States)

    Alekseev, Sergey; Nagy, Zita; Sandoz, Jérémy; Weiss, Amélie; Egly, Jean-Marc; Le May, Nicolas; Coin, Frederic

    2017-02-02

    Transcription starts with the assembly of pre-initiation complexes on promoters followed by their opening. Current models suggest that class II gene transcription requires ATP and the TFIIH XPB subunit to open a promoter. Here, we observe that XPB depletion surprisingly leaves transcription virtually intact. In contrast, inhibition of XPB ATPase activity affects transcription, revealing that mRNA expression paradoxically accommodates the absence of XPB while being sensitive to the inhibition of its ATPase activity. The XPB-depleted TFIIH complex is recruited to active promoters and contributes to transcription. We finally demonstrate that the XPB ATPase activity is only used to relieve a transcription initiation block imposed by XPB itself. In the absence of this block, transcription initiation can take place without XPB ATPase activity. These results suggest that a helicase is dispensable for mRNA transcription, thereby unifying the mechanism of promoter DNA opening for the three eukaryotic RNA polymerases.

  9. Roles of histones and nucleosomes in gene transcription

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This article reviews the latest research developments in the field of eukaryotic gene regulation by the structural alterations of chromatin and nucleosomes. The following issues are briefly addressed: (ⅰ) nucleosome and histone modifications by both the ATP-dependent remodel- ing com-plexes and the histone acetyltransferases and their roles in gene activation; (ⅱ) competitive binding of histones and transcription factors on gene promoters, and transcription repression by nucleosomes; and (ⅲ) influences of linker histone H1 on gene regulation. Meanwhile, the significance and impact of these new research progresses, as well as issues worthwhile for further study are commented.

  10. Transcription termination between polo and snap, two closely spaced tandem genes of D. melanogaster.

    Science.gov (United States)

    Henriques, Telmo; Ji, Zhe; Tan-Wong, Sue Mei; Carmo, Alexandre M; Tian, Bin; Proudfoot, Nicholas J; Moreira, Alexandra

    2012-01-01

    Transcription termination of RNA polymerase II between closely spaced genes is an important, though poorly understood, mechanism. This is true, in particular, in the Drosophila genome, where approximately 52% of tandem genes are separated by less than 1 kb. We show that a set of Drosophila tandem genes has a negative correlation of gene expression and display several molecular marks indicative of promoter pausing. We find that an intergenic spacing of 168 bp is sufficient for efficient transcription termination between the polo-snap tandem gene pair, by a mechanism that is independent of Pcf11 and Xrn2. In contrast, analysis of a tandem gene pair containing a longer intergenic region reveals that termination occurs farther downstream of the poly(A) signal and is, in this case, dependent on Pcf11 and Xrn2. For polo-snap, displacement of poised polymerase from the snap promoter by depletion of the initiation factor TFIIB results in an increase of polo transcriptional read-through. This suggests that poised polymerase is necessary for transcription termination. Interestingly, we observe that polo forms a TFIIB dependent gene loop between its promoter and terminator regions. Furthermore, in a plasmid containing the polo-snap locus, deletion of the polo promoter causes an increase in snap expression, as does deletion of polo poly(A) signals. Taken together, our results indicate that polo forms a gene loop and polo transcription termination occurs by an Xrn2 and Pcf11 independent mechanism that requires TFIIB.

  11. Effects of single-base substitutions within the acanthamoeba castellanii rRNA promoter on transcription and on binding of transcription initiation factor and RNA polymerase I

    Energy Technology Data Exchange (ETDEWEB)

    Kownin, P.; Bateman, E.; Paule, M.R.

    1988-02-01

    Single-point mutations were introduced into the promoter region of the Acanthamoeba castellanii rRNA gene by chemical mutagen treatment of a single-stranded clone in vitro, followed by reverse transcription and cloning of the altered fragment. The promoter mutants were tested for transcription initiation factor (TIF) binding by a template commitment assay plus DNase I footprinting and for transcription by an in vitro runoff assay. Point mutations within the previously identified TIF interaction region (between -20 and -47, motifs A and B) indicated that TIF interacts most strongly with a sequence centered at -29 and less tightly with sequences upstream and downstream. Some alterations of the base sequence closer to the transcription start site (and outside the TIF-protected site) also significantly decrease specific RNA synthesis in vitro. These were within the region which is protected from DNAse I digestion by polymerase I, but these mutations did not detectably affect the binding of polymerase to the promoter.

  12. Modulation of Aanat gene transcription in the rat pineal gland.

    Science.gov (United States)

    Ho, Anthony K; Chik, Constance L

    2010-01-01

    The main function of the rat pineal gland is to transform the circadian rhythm generated in the suprachiasmatic nucleus into a rhythmic signal of circulating melatonin characterized by a large nocturnal increase that closely reflects the duration of night period. This is achieved through the tight coupling between environmental lighting and the expression of arylalkylamine-N-acetyltransferase, the rhythm-controlling enzyme in melatonin synthesis. The initiation of Aanat transcription at night is controlled largely by the norepinephrine-stimulated phosphorylation of cAMP response element-binding protein by protein kinase A. However, to accurately reflect the duration of darkness, additional signaling mechanisms also participate to fine-tune the temporal profile of adrenergic-induced Aanat transcription. Here, we reviewed some of these signaling mechanisms, with emphasis on the more recent findings. These signaling mechanisms can be divided into two groups: those involving modification of constitutively expressed proteins and those requiring synthesis of new proteins. This review highlights the pineal gland as an excellent model system for studying neurotransmitter-regulated rhythmic gene expression.

  13. Accelerated gene evolution through replication-transcription conflicts.

    Science.gov (United States)

    Paul, Sandip; Million-Weaver, Samuel; Chattopadhyay, Sujay; Sokurenko, Evgeni; Merrikh, Houra

    2013-03-28

    Several mechanisms that increase the rate of mutagenesis across the entire genome have been identified; however, how the rate of evolution might be promoted in individual genes is unclear. Most genes in bacteria are encoded on the leading strand of replication. This presumably avoids the potentially detrimental head-on collisions that occur between the replication and transcription machineries when genes are encoded on the lagging strand. Here we identify the ubiquitous (core) genes in Bacillus subtilis and determine that 17% of them are on the lagging strand. We find a higher rate of point mutations in the core genes on the lagging strand compared with those on the leading strand, with this difference being primarily in the amino-acid-changing (nonsynonymous) mutations. We determine that, overall, the genes under strong negative selection against amino-acid-changing mutations tend to be on the leading strand, co-oriented with replication. In contrast, on the basis of the rate of convergent mutations, genes under positive selection for amino-acid-changing mutations are more commonly found on the lagging strand, indicating faster adaptive evolution in many genes in the head-on orientation. Increased gene length and gene expression amounts are positively correlated with the rate of accumulation of nonsynonymous mutations in the head-on genes, suggesting that the conflict between replication and transcription could be a driving force behind these mutations. Indeed, using reversion assays, we show that the difference in the rate of mutagenesis of genes in the two orientations is transcription dependent. Altogether, our findings indicate that head-on replication-transcription conflicts are more mutagenic than co-directional conflicts and that these encounters can significantly increase adaptive structural variation in the coded proteins. We propose that bacteria, and potentially other organisms, promote faster evolution of specific genes through orientation

  14. Transcriptionally regulated, prostate-targeted gene therapy for prostate cancer.

    Science.gov (United States)

    Lu, Yi

    2009-07-02

    Prostate cancer is the most frequently diagnosed cancer and the second leading cause of cancer deaths in American males today. Novel and effective treatment such as gene therapy is greatly desired. The early viral based gene therapy uses tissue-nonspecific promoters, which causes unintended toxicity to other normal tissues. In this chapter, we will review the transcriptionally regulated gene therapy strategy for prostate cancer treatment. We will describe the development of transcriptionally regulated prostate cancer gene therapy in the following areas: (1) Comparison of different routes for best viral delivery to the prostate; (2) Study of transcriptionally regulated, prostate-targeted viral vectors: specificity and activity of the transgene under several different prostate-specific promoters were compared in vitro and in vivo; (3) Selection of therapeutic transgenes and strategies for prostate cancer gene therapy (4) Oncolytic virotherapy for prostate cancer. In addition, the current challenges and future directions in this field are also discussed.

  15. Transcriptional control of hepatocanalicular transporter gene expression

    NARCIS (Netherlands)

    Muller, M

    2000-01-01

    Transport processes for larger organic solutes at the canalicular membrane are mainly driven by members of the superfamily of ATP-binding cassette (ABC) transporters. The funct ions of these transporters range from bile component secretion to xenobiotica and phase II-conjugate export. The transcript

  16. Expression liver-directed genes by employing synthetic transcriptional control units

    Institute of Scientific and Technical Information of China (English)

    Marie-Luise Lemken; Wolfgang A. Wybranietz; Ulrike Schmidt; Florian Graepler; Sorin Armeanu; Michael Bitzer; Ulrich M. Lauer

    2005-01-01

    AIM: To generate and characterize the synthetic transcriptional control units for transcriptional targeting of the liver,thereby compensating for the lack of specificity of currently available gene therapeutic vector systems.METHODS: Synthetic transcriptional control unit constructs were generated and analyzed for transcriptional activities in different cell types by FACS quantification, semi-quantitative RT-PCR, and Western blotting. RESULTS: A new bifunctionally-enhanced green fluorescent protein (EGFP)/neor fusion gene cassette was generated,and could flexibly be used both for transcript quantification and for selection of stable cell clones. Then, numerous synthetic transcriptional control units consisting of a minimal promoter linked to "naturally" derived composite enhancer elements from liver-specific expressed genes or binding sites of liver-specific transcription factors were inserted upstream of this reporter cassette. Following liposome-mediated transfection, EGFP reporter protein quantification by FACS analysis identified constructs encoding multimerized composite elements of the apolipoprotein B100 (ApoB) promoter or the ornithin transcarbamoylase (OTC) enhancer to exhibit maximum transcriptional activities in liver originating cell lines, but only background levels in non-liver originating cell lines. In contrast, constructs encoding only singular binding sites of liver-specific transcription factors, namely hepatocyte nuclear factor (HNF)1, HNF3, HNF4, HNF5, or CAAT/enhancer binding protein (C/EBP) only achieved background levels of EGFP expression. Finally, both semi-quantitative RT-PCR and Western blotting analysis of Hep3B cells demonstrated maximum transcriptional activities for a multimeric 4xApoB cassette construct, which fully complied with the data obtained by initial FACS analysis.CONCLUSION: Synthetic transcriptional control unit constructs not only exhibit a superb degree of structural compactness, but also provide new means for liver

  17. Transcriptional regulation of bone sialoprotein gene by interleukin-11.

    Science.gov (United States)

    Wang, Shuang; Sasaki, Yoko; Zhou, Liming; Matsumura, Hiroyoshi; Araki, Shouta; Mezawa, Masaru; Takai, Hideki; Chen, Zhen; Ogata, Yorimasa

    2011-05-01

    Interleukin-11 (IL-11) is a stromal cell-derived cytokine that belongs to the interleukin-6 family of cytokines. IL-11 has many biological activities and has roles in hematopoiesis, immune responses, the nervous system and bone metabolism. Bone sialoprotein (BSP) is a mineralized tissue-specific protein expressed in differentiated osteoblasts that appears to function in the initial mineralization of bone. IL-11 (20 ng/ml) increased BSP mRNA and protein levels at 12h in osteoblast-like ROS 17/2.8 cells. In a transient transfection assay, IL-11 (20 ng/ml) increased luciferase activity of the construct (-116 to +60) in ROS 17/2.8 cells and rat bone marrow stromal cells. Introduction of 2 bp mutations to the luciferase constructs showed that the effects of IL-11 were mediated by a cAMP response element (CRE), a fibroblast growth factor 2 response element (FRE) and a homeodomain protein-binding site (HOX). Luciferase activities induced by IL-11 were blocked by protein kinase A inhibitor, tyrosine kinase inhibitor and ERK1/2 inhibitor. Gel shift analyses showed that IL-11 (20 ng/ml) increased nuclear protein binding to CRE, FRE and HOX. CREB1, phospho-CREB1, c-Fos, c-Jun, JunD and Fra2 antibodies disrupted the formation of CRE-protein complexes. Dlx5, Msx2, Runx2 and Smad1 antibodies disrupted FRE- and HOX-protein complex formations. These studies demonstrate that IL-11 stimulates BSP transcription by targeting CRE, FRE and HOX sites in the proximal promoter of the rat BSP gene. Moreover, phospho-CREB1, c-Fos, c-Jun, JunD, Fra2, Dlx5, Msx2, Runx2 and Smadl transcription factors appear to be key regulators of IL-11 effects on BSP transcription.

  18. Tuning of Recombinant Protein Expression in Escherichia coli by Manipulating Transcription, Translation Initiation Rates, and Incorporation of Noncanonical Amino Acids.

    Science.gov (United States)

    Schlesinger, Orr; Chemla, Yonatan; Heltberg, Mathias; Ozer, Eden; Marshall, Ryan; Noireaux, Vincent; Jensen, Mogens Høgh; Alfonta, Lital

    2017-03-09

    Protein synthesis in cells has been thoroughly investigated and characterized over the past 60 years. However, some fundamental issues remain unresolved, including the reasons for genetic code redundancy and codon bias. In this study, we changed the kinetics of the Eschrichia coli transcription and translation processes by mutating the promoter and ribosome binding domains and by using genetic code expansion. The results expose a counterintuitive phenomenon, whereby an increase in the initiation rates of transcription and translation lead to a decrease in protein expression. This effect can be rescued by introducing slow translating codons into the beginning of the gene, by shortening gene length or by reducing initiation rates. On the basis of the results, we developed a biophysical model, which suggests that the density of co-transcriptional-translation plays a role in bacterial protein synthesis. These findings indicate how cells use codon bias to tune translation speed and protein synthesis.

  19. Transcriptional regulation of the Hansenula polymorpha GSH2 gene in the response to cadmium ion treatment

    Directory of Open Access Journals (Sweden)

    O. V. Blazhenko

    2014-02-01

    Full Text Available In a previous study we cloned GSH2 gene, encoding γ-glutamylcysteine synthetase (γGCS in the yeast Hansenula рolymorpha. In this study an analysis of molecular organisation of the H. рolymorpha GSH2 gene promoter was conducted and the potential binding sites of Yap1, Skn7, Creb/Atf1, and Cbf1 transcription factors were detected. It was established that full regulation of GSH2 gene expression in the response to cadmium and oxidative stress requires the length of GSH2 promoter to be longer than 450 bp from the start of translation initiation. To study the transcriptional regulation of H. polymorpha GSH2 gene recombinant strain, harbouring­ a reporter system, in which 1.832 kb regulatory region of GSH2 gene was fused to structural and terminatory regions of alcohol oxidase gene, was constructed. It was shown that maximum increase in H. polymorpha GSH2 gene transcription by 33% occurs in the rich medium under four-hour incubation with 1 μM concentration of cadmium ions. In the minimal medium the GSH2 gene expression does not correlate with the increased total cellular glutathione levels under cadmium ion treatment. We assume that the increased content of total cellular glutathione under cadmium stress in the yeast H. polymorpha probably is not controlled on the level of GSH2 gene transcription.

  20. Antisense transcription as a tool to tune gene expression.

    Science.gov (United States)

    Brophy, Jennifer A N; Voigt, Christopher A

    2016-01-14

    A surprise that has emerged from transcriptomics is the prevalence of genomic antisense transcription, which occurs counter to gene orientation. While frequent, the roles of antisense transcription in regulation are poorly understood. We built a synthetic system in Escherichia coli to study how antisense transcription can change the expression of a gene and tune the response characteristics of a regulatory circuit. We developed a new genetic part that consists of a unidirectional terminator followed by a constitutive antisense promoter and demonstrate that this part represses gene expression proportionally to the antisense promoter strength. Chip-based oligo synthesis was applied to build a large library of 5,668 terminator-promoter combinations that was used to control the expression of three repressors (PhlF, SrpR, and TarA) in a simple genetic circuit (NOT gate). Using the library, we demonstrate that antisense promoters can be used to tune the threshold of a regulatory circuit without impacting other properties of its response function. Finally, we determined the relative contributions of antisense RNA and transcriptional interference to repressing gene expression and introduce a biophysical model to capture the impact of RNA polymerase collisions on gene repression. This work quantifies the role of antisense transcription in regulatory networks and introduces a new mode to control gene expression that has been previously overlooked in genetic engineering.

  1. Dissecting specific and global transcriptional regulation of bacterial gene expression

    NARCIS (Netherlands)

    Gerosa, Luca; Kochanowski, Karl; Heinemann, Matthias; Sauer, Uwe

    2013-01-01

    Gene expression is regulated by specific transcriptional circuits but also by the global expression machinery as a function of growth. Simultaneous specific and global regulation thus constitutes an additional-but often neglected-layer of complexity in gene expression. Here, we develop an experiment

  2. Assessment of Site Specific Mutational Effect on Transcription Initiation at Escherichia coli Promoter

    Directory of Open Access Journals (Sweden)

    S. Kannan

    2009-01-01

    Full Text Available Problem statement: It is widely accepted thought that the weak promoters control the RNA synthesis and play regulatory role in complex genetic networks in bacterial system. An experiment had been designed to address whether mutations in the -16/-17 region affect the rate of transcription at an activator-independent promoter in E. coli or not? Approach: The aim of this study was to determine whether mutations in the -16/-17 region affect the rate of expression at an activator-dependent promoter in JM109 strain of E. coli. Primers were constructed to amplify the mutant promoter genes through PCR. The amplified PCR product was checked and then inserted into the MCS region of pAA128 plasmid. Further the plasmid vector was transformed into JM109 strain of E. coli and then cloned the selected transformats. Finally, the plasmid from each mutant colony was then sequenced using the protocol supplied with the Amersham Pharmacia Biotech T7 sequencing Kit. The JM109 cultures for which the sequences were determined, then assayed for ß-galactosidase activity to assess the rate of gene expression from the altered promoters. Results: The present investigation revealed that the extended-10 promoter region has a substantial effect on the rate of transcription at weak promoter sequence and also bearing little resemblance to the consensus sequence recognized by RNA. The expression of the genetically engineered plasmid proved that the 2 bps (-16 and -17 base pair found adjacently upstream of the extended-10 promoter have an effect on the level of transcription. This was achieved by site specific base substitutions into the weak promoter of a modified lac operon lacking any activator or repressor binding sites. The results from gene expression assays of several mutants showed a distinct preference for either GG or TT located adjacently upstream of the extended promoter element. Thus the present study emphasized that

  3. Co-transcriptional folding is encoded within RNA genes

    Directory of Open Access Journals (Sweden)

    Miklós István

    2004-08-01

    Full Text Available Abstract Background Most of the existing RNA structure prediction programs fold a completely synthesized RNA molecule. However, within the cell, RNA molecules emerge sequentially during the directed process of transcription. Dedicated experiments with individual RNA molecules have shown that RNA folds while it is being transcribed and that its correct folding can also depend on the proper speed of transcription. Methods The main aim of this work is to study if and how co-transcriptional folding is encoded within the primary and secondary structure of RNA genes. In order to achieve this, we study the known primary and secondary structures of a comprehensive data set of 361 RNA genes as well as a set of 48 RNA sequences that are known to differ from the originally transcribed sequence units. We detect co-transcriptional folding by defining two measures of directedness which quantify the extend of asymmetry between alternative helices that lie 5' and those that lie 3' of the known helices with which they compete. Results We show with statistical significance that co-transcriptional folding strongly influences RNA sequences in two ways: (1 alternative helices that would compete with the formation of the functional structure during co-transcriptional folding are suppressed and (2 the formation of transient structures which may serve as guidelines for the co-transcriptional folding pathway is encouraged. Conclusions These findings have a number of implications for RNA secondary structure prediction methods and the detection of RNA genes.

  4. Transcriptional Wiring of Cell Wall-Related Genes in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Marek Mutwil; Colin Ruprecht; Federico M. Giorgi; Martin Bringmann; Bj(o)rn Usadel; Staffan Persson

    2009-01-01

    Transcriptional coordination, or co-expression, of genes may signify functional relatedness of the correspond-ing proteins. For example, several genes involved in secondary cell wall cellulose biosynthesis are co-expressed with genes engaged in the synthesis of xylan, which is a major component of the secondary cell wall. To extend these types of anal-yses, we investigated the co-expression relationships of all Carbohydrate-Active enZYmes (CAZy)-related genes for Arabidopsis thaliana. Thus, the intention was to transcriptionally link different cell wall-related processes to each other, and also to other biological functions. To facilitate easy manual inspection, we have displayed these interactions as networks and matrices, and created a web-based interface (http://aranet.mpimp-golm.mpg.de/corecarb) containing downloadable files for all the transcriptional associations.

  5. Superposition of transcriptional behaviors determines gene state.

    Directory of Open Access Journals (Sweden)

    Sol Efroni

    Full Text Available We introduce a novel technique to determine the expression state of a gene from quantitative information measuring its expression. Adopting a productive abstraction from current thinking in molecular biology, we consider two expression states for a gene--Up or Down. We determine this state by using a statistical model that assumes the data behaves as a combination of two biological distributions. Given a cohort of hybridizations, our algorithm predicts, for the single reading, the probability of each gene's being in an Up or a Down state in each hybridization. Using a series of publicly available gene expression data sets, we demonstrate that our algorithm outperforms the prevalent algorithm. We also show that our algorithm can be used in conjunction with expression adjustment techniques to produce a more biologically sound gene-state call. The technique we present here enables a routine update, where the continuously evolving expression level adjustments feed into gene-state calculations. The technique can be applied in almost any multi-sample gene expression experiment, and holds equal promise for protein abundance experiments.

  6. Organization and transcription of the dnaA and dnaN genes of Escherichia coli.

    Science.gov (United States)

    Sakakibara, Y; Tsukano, H; Sako, T

    1981-01-01

    The locations of the linked dnaA and dnaN genes of Escherichia coli in a specialized transducing lambda phage genome have been determined by electron microscopic heteroduplex analysis, using phages with deletions or insertions in the dnaA or dnaN gene. The transcription initiation sites for the dna genes were also localized by electron microscopic analysis of DNA-RBA heteroduplex molecules formed between the E. coli DNA fragment of the phage genome and the in vitro transcription products of the fragment. The dnaN gene was found to be transcribed in the same direction as the dnaA gene, and predominantly from the promoter of the dnaA gene.

  7. Expression of a Mutant kcnj2 Gene Transcript in Zebrafish.

    Science.gov (United States)

    Leong, Ivone U S; Skinner, Jonathan R; Shelling, Andrew N; Love, Donald R

    2013-01-01

    Long QT 7 syndrome (LQT7, also known as Andersen-Tawil syndrome) is a rare autosomal-dominant disorder that causes cardiac arrhythmias, periodic paralysis, and dysmorphic features. Mutations in the human KCNJ2 gene, which encodes for the subunit of the potassium inwardly-rectifying channel (IK1), have been associated with the disorder. The majority of mutations are considered to be dominant-negative as mutant proteins interact to limit the function of wild type KCNJ2 proteins. Several LQT7 syndrome mouse models have been created that vary in the physiological similarity to the human disease. To complement the LQT7 mouse models, we investigated the usefulness of the zebrafish as an alternative model via a transient approach. Initial bioinformatic analysis identified the zebrafish orthologue of the human KCNJ2 gene, together with a spatial expression profile that was similar to that of human. The expression of a kcnj2-12 transcript carrying an in-frame deletion of critical amino acids identified in human studies resulted in embryos that exhibited defects in muscle development, thereby affecting movement, a decrease in jaw size, pupil-pupil distance, and signs of scoliosis. These defects correspond to some phenotypes expressed by human LQT7 patients.

  8. Alkane biosynthesis genes in cyanobacteria and their transcriptional organization

    Directory of Open Access Journals (Sweden)

    Stephan eKlähn

    2014-07-01

    Full Text Available In cyanobacteria, alkanes are synthesized from a fatty acyl-ACP by two enzymes, acyl-acyl carrier protein reductase (AAR and aldehyde deformylating oxygenase (ADO. Despite the great interest in the exploitation for biofuel production, nothing is known about the transcriptional organization of their genes or the physiological function of alkane synthesis. The comparison of 115 microarray datasets indicates the relatively constitutive expression of aar and ado genes. The analysis of 181 available genomes showed that in 90% of the genomes both genes are present, likely indicating their physiological relevance. In 61% of them they cluster together with genes encoding acetyl-CoA carboxyl transferase and a short chain dehydrogenase, strengthening the link to fatty acid metabolism and in 76% of the genomes they are located in tandem, suggesting constraints on the gene arrangement. However, contrary to the expectations for an operon, we found in Synechocystis sp. PCC 6803 specific promoters for the two genes, sll0208 (ado and sll0209 (aar, that give rise to monocistronic transcripts. Moreover, the upstream located ado gene is driven by a proximal as well as a second, distal, promoter, from which a third transcript, the ~160 nt sRNA SyR9 is transcribed. Thus, the transcriptional organization of the alkane biosynthesis genes in Synechocystis sp. PCC 6803 is of substantial complexity. We verified all three promoters to function independently from each other and show a similar promoter arrangement also in the more distant Nodularia spumigena, Trichodesmium erythraeum, Anabaena sp. PCC 7120, Prochlorococcus MIT9313 and MED4. The presence of separate regulatory elements and the dominance of monocistronic mRNAs suggest the possible autonomous regulation of ado and aar. The complex transcriptional organization of the alkane synthesis gene cluster has possible metabolic implications and should be considered when manipulating the expression of these genes in

  9. Chromosomal contact permits transcription between coregulated genes

    CSIR Research Space (South Africa)

    Fanucchi, Stephanie

    2013-10-01

    Full Text Available . To ask whether chromosomal contacts are required for cotranscription in multigene complexes, we devised a strategy using TALENs to cleave and disrupt gene loops in a well-characterized multigene complex. Monitoring this disruption using RNA FISH...

  10. Initial Symbiont Contact Orchestrates Host Organ-wide Transcriptional Changes that Prime Tissue Colonization

    Science.gov (United States)

    Kremer, Natacha; Philipp, Eva E.R.; Carpentier, Marie-Christine; Brennan, Caitlin A.; Kraemer, Lars; Altura, Melissa A.; Augustin, René; Häsler, Robert; Heath-Heckman, Elizabeth A. C.; Peyer, Suzanne M.; Schwartzman, Julia; Rader, Bethany; Ruby, Edward G.; Rosenstiel, Philip; McFall-Ngai, Margaret J.

    2013-01-01

    SUMMARY Upon transit to colonization sites, bacteria often experience critical priming that prepares them for subsequent, specific interactions with the host; however, the underlying mechanisms are poorly described. During initiation of the symbiosis between the bacterium Vibrio fischeri and its squid host, which can be observed directly and in real time, ~5 V. fischeri cells aggregate along the mucociliary membranes of a superficial epithelium prior to entering host tissues. Here we show that these few early host-associated symbionts specifically induce robust changes in host gene expression that are critical to subsequent colonization steps. This exquisitely sensitive response to its specific symbiotic partner includes the upregulation of a host endochitinase, whose activity hydrolyzes polymeric chitin in the mucus into chitobiose, thereby priming the symbiont and also producing a chemoattractant gradient that promotes V. fischeri migration into host tissues. Thus, the host responds transcriptionally upon initial symbiont contact, which facilitates subsequent colonization. PMID:23954157

  11. TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes.

    Science.gov (United States)

    Matys, V; Kel-Margoulis, O V; Fricke, E; Liebich, I; Land, S; Barre-Dirrie, A; Reuter, I; Chekmenev, D; Krull, M; Hornischer, K; Voss, N; Stegmaier, P; Lewicki-Potapov, B; Saxel, H; Kel, A E; Wingender, E

    2006-01-01

    The TRANSFAC database on transcription factors, their binding sites, nucleotide distribution matrices and regulated genes as well as the complementing database TRANSCompel on composite elements have been further enhanced on various levels. A new web interface with different search options and integrated versions of Match and Patch provides increased functionality for TRANSFAC. The list of databases which are linked to the common GENE table of TRANSFAC and TRANSCompel has been extended by: Ensembl, UniGene, EntrezGene, HumanPSD and TRANSPRO. Standard gene names from HGNC, MGI and RGD, are included for human, mouse and rat genes, respectively. With the help of InterProScan, Pfam, SMART and PROSITE domains are assigned automatically to the protein sequences of the transcription factors. TRANSCompel contains now, in addition to the COMPEL table, a separate table for detailed information on the experimental EVIDENCE on which the composite elements are based. Finally, for TRANSFAC, in respect of data growth, in particular the gain of Drosophila transcription factor binding sites (by courtesy of the Drosophila DNase I footprint database) and of Arabidopsis factors (by courtesy of DATF, Database of Arabidopsis Transcription Factors) has to be stressed. The here described public releases, TRANSFAC 7.0 and TRANSCompel 7.0, are accessible under http://www.gene-regulation.com/pub/databases.html.

  12. Assessing coral stress responses using molecular biomarkers of gene transcription.

    Science.gov (United States)

    Morgan, M B; Vogelien, D L; Snell, T W

    2001-03-01

    We present a method for detecting rapid changes in coral gene expression at the messenger ribonucleic acid (mRNA) level. The staghorn coral Acropora cervicornis was exposed to 1 and 10 microg/L permethrin and 25 and 50 microg/L copper for 4 h. Using differential display polymerase chain reaction (PCR), mRNA associated with each toxicant exposure were reverse transcribed into complementary DNA (cDNA) fragments that were subsequently amplified and isolated. Six differentially expressed cDNA fragments were further developed into molecular probes that were used in Northern dot blots to determine the change in transcription levels of target transcripts. Changes in mRNA abundance were quantified by densitometry of chemiluminescence of digoxigenin-labeled probes hybridizing to target mRNA transcripts. The six gene probes showed varying degrees of sensitivity to the toxicants as well as specificity between toxicants. These probes were hybridized in Southern blots to genomic DNA from A. formosa sperm, which lacks zooxanthellae, to demonstrate that the genes coding for the mRNA transcripts produced are found within the coral genome. The gene probes developed in this study provide coral biologists with a new tool for coral assessment. Gene probes are sensitive, toxicant-specific biomarkers of coral stress responses with which gene sequence information can be obtained, providing a mechanism for identifying the stressor altering the gene expression.

  13. Global analysis of gene transcription regulation in prokaryotes.

    Science.gov (United States)

    Zhou, D; Yang, R

    2006-10-01

    Prokaryotes have complex mechanisms to regulate their gene transcription, through the action of transcription factors (TFs). This review deals with current strategies, approaches and challenges in the understanding of i) how to map the repertoires of TF and operon on a genome, ii) how to identify the specific cis-acting DNA elements and their DNA-binding TFs that are required for expression of a given gene, iii) how to define the regulon members of a given TF, iv) how a given TF interacts with its target promoters, v) how these TF-promoter DNA interactions constitute regulatory networks, and vi) how transcriptional regulatory networks can be reconstructed by the reverse-engineering methods. Our goal is to depict the power of newly developed genomic techniques and computational tools, alone or in combination, to dissect the genetic circuitry of transcription regulation, and how this has the tremendous potential to model the regulatory networks in the prokaryotic cells.

  14. Combinatorial Gene Regulation through Kinetic Control of the Transcription Cycle.

    Science.gov (United States)

    Scholes, Clarissa; DePace, Angela H; Sánchez, Álvaro

    2017-01-25

    Cells decide when, where, and to what level to express their genes by "computing" information from transcription factors (TFs) binding to regulatory DNA. How is the information contained in multiple TF-binding sites integrated to dictate the rate of transcription? The dominant conceptual and quantitative model is that TFs combinatorially recruit one another and RNA polymerase to the promoter by direct physical interactions. Here, we develop a quantitative framework to explore kinetic control, an alternative model in which combinatorial gene regulation can result from TFs working on different kinetic steps of the transcription cycle. Kinetic control can generate a wide range of analog and Boolean computations without requiring the input TFs to be simultaneously bound to regulatory DNA. We propose experiments that will illuminate the role of kinetic control in transcription and discuss implications for deciphering the cis-regulatory "code."

  15. Building predictive gene signatures through simultaneous assessment of transcription factor activation and gene expression.

    Science.gov (United States)

    Building predictive gene signatures through simultaneous assessment of transcription factor activation and gene expression Exposure to many drugs and environmentally-relevant chemicals can cause adverse outcomes. These adverse outcomes, such as cancer, have been linked to mol...

  16. Insulin regulation of rat growth hormone gene transcription.

    OpenAIRE

    1986-01-01

    We have previously shown that insulin suppresses growth hormone (GH) messenger (m) RNA levels in rat pituitary cells. To further delineate the molecular mechanism of insulin action, the effect of insulin treatment on GH gene transcription rates was examined in GH3 pituitary cells grown in serum-free defined medium. A transcriptional run-off assay was performed when intact isolated nuclei were allowed to continue RNA synthesis in an in vitro reaction. Specific incorporation of [32P]GTP into RN...

  17. Transcriptional Modulation of Heat-Shock Protein Gene Expression

    OpenAIRE

    Anastasis Stephanou; Latchman, David S.

    2011-01-01

    Heat-shock proteins (Hsps) are molecular chaperones that are ubiquitously expressed but are also induced in cells exposed to stressful stimuli. Hsps have been implicated in the induction and propagation of several diseases. This paper focuses on regulatory factors that control the transcription of the genes encoding Hsps. We also highlight how distinct transcription factors are able to interact and modulate Hsps in different pathological states. Thus, a better understanding of the complex sig...

  18. Transcriptional modulation of heat-shock protein gene expression.

    OpenAIRE

    A. Stephanou; Latchman, D S

    2011-01-01

    Heat-shock proteins (Hsps) are molecular chaperones that are ubiquitously expressed but are also induced in cells exposed to stressful stimuli. Hsps have been implicated in the induction and propagation of several diseases. This paper focuses on regulatory factors that control the transcription of the genes encoding Hsps. We also highlight how distinct transcription factors are able to interact and modulate Hsps in different pathological states. Thus, a better understanding of the complex sig...

  19. Genetic networks controlled by the bacterial replication initiator and transcription factor DnaA in Bacillus subtilis.

    Science.gov (United States)

    Washington, Tracy A; Smith, Janet L; Grossman, Alan D

    2017-10-01

    DnaA is the widely conserved bacterial AAA+ ATPase that functions as both the replication initiator and a transcription factor. In many organisms, DnaA controls expression of its own gene and likely several others during growth and in response to replication stress. To evaluate the effects of DnaA on gene expression, separate from its role in replication initiation, we analyzed changes in mRNA levels in Bacillus subtilis cells with and without dnaA, using engineered strains in which dnaA is not essential. We found that dnaA was required for many of the changes in gene expression in response to replication stress. We also found that dnaA indirectly affected expression of several regulons during growth, including those controlled by the transcription factors Spo0A, AbrB, PhoP, SinR, RemA, Rok and YvrH. These effects were largely mediated by the effects of DnaA on expression of sda. DnaA activates transcription of sda, and Sda inhibits histidine protein kinases required for activation of the transcription factor Spo0A. We also found that loss of dnaA caused a decrease in the development of genetic competence. Together, our results indicate that DnaA plays an important role in modulating cell physiology, separate from its role in replication initiation. © 2017 John Wiley & Sons Ltd.

  20. Synaptic, transcriptional, and chromatin genes disrupted in autism

    Science.gov (United States)

    De Rubeis, Silvia; He, Xin; Goldberg, Arthur P.; Poultney, Christopher S.; Samocha, Kaitlin; Cicek, A Ercument; Kou, Yan; Liu, Li; Fromer, Menachem; Walker, Susan; Singh, Tarjinder; Klei, Lambertus; Kosmicki, Jack; Fu, Shih-Chen; Aleksic, Branko; Biscaldi, Monica; Bolton, Patrick F.; Brownfeld, Jessica M.; Cai, Jinlu; Campbell, Nicholas J.; Carracedo, Angel; Chahrour, Maria H.; Chiocchetti, Andreas G.; Coon, Hilary; Crawford, Emily L.; Crooks, Lucy; Curran, Sarah R.; Dawson, Geraldine; Duketis, Eftichia; Fernandez, Bridget A.; Gallagher, Louise; Geller, Evan; Guter, Stephen J.; Hill, R. Sean; Ionita-Laza, Iuliana; Gonzalez, Patricia Jimenez; Kilpinen, Helena; Klauck, Sabine M.; Kolevzon, Alexander; Lee, Irene; Lei, Jing; Lehtimäki, Terho; Lin, Chiao-Feng; Ma'ayan, Avi; Marshall, Christian R.; McInnes, Alison L.; Neale, Benjamin; Owen, Michael J.; Ozaki, Norio; Parellada, Mara; Parr, Jeremy R.; Purcell, Shaun; Puura, Kaija; Rajagopalan, Deepthi; Rehnström, Karola; Reichenberg, Abraham; Sabo, Aniko; Sachse, Michael; Sanders, Stephan J.; Schafer, Chad; Schulte-Rüther, Martin; Skuse, David; Stevens, Christine; Szatmari, Peter; Tammimies, Kristiina; Valladares, Otto; Voran, Annette; Wang, Li-San; Weiss, Lauren A.; Willsey, A. Jeremy; Yu, Timothy W.; Yuen, Ryan K.C.; Cook, Edwin H.; Freitag, Christine M.; Gill, Michael; Hultman, Christina M.; Lehner, Thomas; Palotie, Aarno; Schellenberg, Gerard D.; Sklar, Pamela; State, Matthew W.; Sutcliffe, James S.; Walsh, Christopher A.; Scherer, Stephen W.; Zwick, Michael E.; Barrett, Jeffrey C.; Cutler, David J.; Roeder, Kathryn; Devlin, Bernie; Daly, Mark J.; Buxbaum, Joseph D.

    2014-01-01

    Summary The genetic architecture of autism spectrum disorder involves the interplay of common and rare variation and their impact on hundreds of genes. Using exome sequencing, analysis of rare coding variation in 3,871 autism cases and 9,937 ancestry-matched or parental controls implicates 22 autosomal genes at a false discovery rate (FDR) < 0.05, and a set of 107 autosomal genes strongly enriched for those likely to affect risk (FDR < 0.30). These 107 genes, which show unusual evolutionary constraint against mutations, incur de novo loss-of-function mutations in over 5% of autistic subjects. Many of the genes implicated encode proteins for synaptic, transcriptional, and chromatin remodeling pathways. These include voltage-gated ion channels regulating propagation of action potentials, pacemaking, and excitability-transcription coupling, as well as histone-modifying enzymes and chromatin remodelers, prominently histone post-translational modifications involving lysine methylation/demethylation. PMID:25363760

  1. Human DJ-1-specific Transcriptional Activation of Tyrosine Hydroxylase Gene*

    Science.gov (United States)

    Ishikawa, Shizuma; Taira, Takahiro; Takahashi-Niki, Kazuko; Niki, Takeshi; Ariga, Hiroyoshi; Iguchi-Ariga, Sanae M. M.

    2010-01-01

    Loss-of-function mutation in the DJ-1 gene causes a subset of familial Parkinson disease. The mechanism underlying DJ-1-related selective vulnerability in the dopaminergic pathway is, however, not known. DJ-1 has multiple functions, including transcriptional regulation, and one of transcriptional target genes for DJ-1 is the tyrosine hydroxylase (TH) gene, the product of which is a key enzyme for dopamine biosynthesis. It has been reported that DJ-1 is a neuroprotective transcriptional co-activator that sequesters a transcriptional co-repressor polypyrimidine tract-binding protein-associated splicing factor (PSF) from the TH gene promoter. In this study, we found that knockdown of human DJ-1 by small interference RNA in human dopaminergic cell lines attenuated TH gene expression and 4-dihydroxy-l-phenylalanine production but that knockdown or knock-out of mouse DJ-1 in mouse cell lines or in mice did not affect such expression and TH activity. In reporter assays using the human TH gene promoter linked to the luciferase gene, stimulation of TH promoter activity was observed in human cells, but not mouse cells, that had been transfected with DJ-1. Although human DJ-1 and mouse DJ-1 were associated either with human or with mouse PSF, TH promoter activity inhibited by PSF was restored by human DJ-1 but not by mouse DJ-1. Chromatin immunoprecipitation assays revealed that the complex of PSF with DJ-1 bound to the human but not the mouse TH gene promoter. These results suggest a novel species-specific transcriptional regulation of the TH promoter by DJ-1 and one of the mechanisms for no reduction of TH in DJ-1-knock-out mice. PMID:20938049

  2. Regulation of neural gene transcription by optogenetic inhibition of the RE1-silencing transcription factor.

    Science.gov (United States)

    Paonessa, Francesco; Criscuolo, Stefania; Sacchetti, Silvio; Amoroso, Davide; Scarongella, Helena; Pecoraro Bisogni, Federico; Carminati, Emanuele; Pruzzo, Giacomo; Maragliano, Luca; Cesca, Fabrizia; Benfenati, Fabio

    2016-01-01

    Optogenetics provides new ways to activate gene transcription; however, no attempts have been made as yet to modulate mammalian transcription factors. We report the light-mediated regulation of the repressor element 1 (RE1)-silencing transcription factor (REST), a master regulator of neural genes. To tune REST activity, we selected two protein domains that impair REST-DNA binding or recruitment of the cofactor mSin3a. Computational modeling guided the fusion of the inhibitory domains to the light-sensitive Avena sativa light-oxygen-voltage-sensing (LOV) 2-phototrophin 1 (AsLOV2). By expressing AsLOV2 chimeras in Neuro2a cells, we achieved light-dependent modulation of REST target genes that was associated with an improved neural differentiation. In primary neurons, light-mediated REST inhibition increased Na(+)-channel 1.2 and brain-derived neurotrophic factor transcription and boosted Na(+) currents and neuronal firing. This optogenetic approach allows the coordinated expression of a cluster of genes impinging on neuronal activity, providing a tool for studying neuronal physiology and correcting gene expression changes taking place in brain diseases.

  3. Reference genes for normalizing transcription in diploid and tetraploid Arabidopsis.

    Science.gov (United States)

    Wang, Haibin; Wang, Jingjing; Jiang, Jiafu; Chen, Sumei; Guan, Zhiyong; Liao, Yuan; Chen, Fadi

    2014-10-27

    Published transcription data from a set of 19 diploid Arabidopsis thaliana and 5 tetraploid (3 allo- and 2 auto- tetraploid) Arabidopsis accessions were re-analysed to identify reliable reference genes for normalization purposes. Five conventional and 16 novel reference genes previously derived from microarray data covering a wide range of abundance in absolute expression levels in diploid A. thaliana Col-0 were employed. Transcript abundance was well conserved for all 21 potential reference genes in the diploid A. thaliana accessions, with geNorm and NormFinder analysis indicating that AT5G46630, AT1G13320, AT4G26410, AT5G60390 and AT5G08290 were the most stable. However, conservation was less good among the tetraploid accessions, with the transcription of seven of the 21 genes being undetectable in all allotetraploids. The most stable gene was AT5G46630, while AT1G13440 was the unstable one. Hence, the choice of reference gene(s) for A. thaliana is quite wide, but with respect to the analysis of transcriptomic data derived from the tetraploids, it is probably necessary to select more than one reference gene.

  4. A growth-dependent transcription initiation factor (TIF-IA) interacting with RNA polymerase I regulates mouse ribosomal RNA synthesis.

    Science.gov (United States)

    Schnapp, A; Pfleiderer, C; Rosenbauer, H; Grummt, I

    1990-09-01

    Control of mouse ribosomal RNA synthesis in response to extracellular signals is mediated by TIF-IA, a regulatory factor whose amount or activity correlates with cell proliferation. Factor TIF-IA interacts with RNA polymerase I (pol I), thus converting it into a transcriptionally active holoenzyme, which is able to initiate specifically at the rDNA promoter in the presence of the other auxiliary transcription initiation factors, designated TIF-IB, TIF-IC and UBF. With regard to several criteria, the growth-dependent factor TIF-IA behaves like a bacterial sigma factor: (i) it associates physically with pol I, (ii) it is required for initiation of transcription, (iii) it is present in limiting amounts and (iv) under certain salt conditions, it is chromatographically separable from the polymerase. In addition, evidence is presented that dephosphorylation of pol I abolishes in vitro transcription initiation from the ribosomal gene promoter without significantly affecting the polymerizing activity of the enzyme at nonspecific templates. The involvement of both a regulatory factor and post-translational modification of the transcribing enzyme provides an efficient and versatile mechanism of rDNA transcription regulation which enables the cell to adapt ribosome synthesis rapidly to a variety of extracellular signals.

  5. Virus-induced opposite effect on Bombyx mori gene transcriptions

    Directory of Open Access Journals (Sweden)

    Y Yin

    2016-09-01

    Full Text Available Bombyx mori bidensovirus (BmBDV and Bombyx mori nucleopolyhedrovirus (BmNPV are serious pathogens of Bombyx mori. In this study, we reported the changes of transcription level of several immune genes, including bmi, argo, dicer, cap1, cap3 and car, in Bombyx mori midgut after exposure to BmBDV or BmNPV. Silkworm strains 798 (anti-BmBDV and 306 (susceptible to BmBDV were subjected to BmBDV infection, and NB (anti-BmNPV and HUABA (35 (susceptible to BmNPV were subjected to BmNPV infection. The results showed that the transcription levels differ largely among different silkworm strains, and that the extent to which the gene transcriptions were affected by the viruses was different. However, both BmNPV and BmBDV viruses can reverse the transcription patterns of these genes when the silkworms were administered with the viruses compared with those control groups. The transcript levels of bmi and dicer were decreased in 798 and 306 strains that were inoculated with BmBDV compared with their respective controls, but were increased in NB and HUABA (35 inoculated with BmNPV. The transcript levels of argo and cap3 were risen in 798, 306 and NB strains when inoculated with their respective viruses, but were decreased in HUABA (35 strain. The transcript levels of cap1 were risen in all silkworm strains, while the levels of car were decreased in 798, 306 and HUABA (35 strains, and increased in NB strain when inoculated with their respective viruses. These findings may contribute to more in-depth understanding on functions of these genes in virus infection and proliferation.

  6. Translational repression contributes greater noise to gene expression than transcriptional repression.

    Science.gov (United States)

    Komorowski, Michał; Miekisz, Jacek; Kierzek, Andrzej M

    2009-01-01

    Stochastic effects in gene expression may result in different physiological states of individual cells, with consequences for pathogen survival and artificial gene network design. We studied the contributions of a regulatory factor to gene expression noise in four basic mechanisms of negative gene expression control: 1), transcriptional regulation by a protein repressor, 2), translational repression by a protein; 3), transcriptional repression by RNA; and 4), RNA interference with the translation. We investigated a general model of a two-gene network, using the chemical master equation and a moment generating function approach. We compared the expression noise of genes with the same effective transcription and translation initiation rates resulting from the action of different repressors, whereas previous studies compared the noise of genes with the same mean expression level but different initiation rates. Our results show that translational repression results in a higher noise than repression on the promoter level, and that this relationship does not depend on quantitative parameter values. We also show that regulation of protein degradation contributes more noise than regulated degradation of mRNA. These are unexpected results, because previous investigations suggested that translational regulation is more accurate. The relative magnitude of the noise introduced by protein and RNA repressors depends on the protein and mRNA degradation rates, and we derived expressions for the threshold below which the noise introduced by a protein repressor is higher than the noise introduced by an RNA repressor.

  7. Transcriptional interference networks coordinate the expression of functionally-related genes clustered in the same genomic loci

    Directory of Open Access Journals (Sweden)

    Zsolt eBoldogkoi

    2012-07-01

    Full Text Available The regulation of gene expression is essential for normal functioning of biological systems in every form of life. Gene expression is primarily controlled at the level of transcription, especially at the phase of initiation. Non-coding RNAs are one of the major players at every level of genetic regulation, including the control of chromatin organisation, transcription, various post-transcriptional processes and translation. In this study, the Transcriptional Interference Network (TIN hypothesis was put forward in an attempt to explain the global expression of antisense RNAs and the overall occurrence of tandem gene clusters in the genomes of various biological systems ranging from viruses to mammalian cells. The TIN hypothesis suggests the existence of a novel layer of genetic regulation, based on the interactions between the transcriptional machineries of neighbouring genes at their overlapping regions, which are assumed to play a fundamental role in coordinating gene expression within a cluster of functionally-linked genes. It is claimed that the transcriptional overlaps between adjacent genes are much more widespread in genomes than is thought today. The Waterfall model of the TIN hypothesis postulates a unidirectional effect of upstream genes on the transcription of downstream genes within a cluster of tandemly-arrayed genes, while the Seesaw model proposes a mutual interdependence of gene expression between the oppositely-oriented genes. The TIN represents an auto-regulatory system with an exquisitely timed and highly synchronised cascade of gene expression in functionally-linked genes located in close physical proximity to each other. In this study, we focused on herpesviruses. The reason for this lies in the compressed nature of viral genes, which allows a tight regulation and an easier investigation of the transcriptional interactions between genes. However, I believe that the same or similar principles can be applied to cellular

  8. Direct ultrasensitive electrochemical biosensing of pathogenic DNA using homogeneous target-initiated transcription amplification

    Science.gov (United States)

    Yan, Yurong; Ding, Shijia; Zhao, Dan; Yuan, Rui; Zhang, Yuhong; Cheng, Wei

    2016-01-01

    Sensitive and specific methodologies for detection of pathogenic gene at the point-of-care are still urgent demands in rapid diagnosis of infectious diseases. This work develops a simple and pragmatic electrochemical biosensing strategy for ultrasensitive and specific detection of pathogenic nucleic acids directly by integrating homogeneous target-initiated transcription amplification (HTITA) with interfacial sensing process in single analysis system. The homogeneous recognition and specific binding of target DNA with the designed hairpin probe triggered circular primer extension reaction to form DNA double-strands which contained T7 RNA polymerase promoter and served as templates for in vitro transcription amplification. The HTITA protocol resulted in numerous single-stranded RNA products which could synchronously hybridized with the detection probes and immobilized capture probes for enzyme-amplified electrochemical detection on the biosensor surface. The proposed electrochemical biosensing strategy showed very high sensitivity and selectivity for target DNA with a dynamic response range from 1 fM to 100 pM. Using salmonella as a model, the established strategy was successfully applied to directly detect invA gene from genomic DNA extract. This proposed strategy presented a simple, pragmatic platform toward ultrasensitive nucleic acids detection and would become a versatile and powerful tool for point-of-care pathogen identification.

  9. Regulation of transcription of cell division genes in the Escherichia coli dcw cluster.

    Science.gov (United States)

    Vicente, M; Gomez, M J; Ayala, J A

    1998-04-01

    The Escherichia coli dcw cluster contains cell division genes, such as the phylogenetically ubiquitous ftsZ, and genes involved in peptidoglycan synthesis. Transcription in the cluster proceeds in the same direction as the progress of the replication fork along the chromosome. Regulation is exerted at the transcriptional and post-transcriptional levels. The absence of transcriptional termination signals may, in principle, allow extension of the transcripts initiated at the up-stream promoter (mraZ1p) even to the furthest down-stream gene (envA). Complementation tests suggest that they extend into ftsW in the central part of the cluster. In addition, the cluster contains other promoters individually regulated by cis- and trans-acting signals. Dissociation of the expression of the ftsZ gene, located after ftsQ and A near the 3' end of the cluster, from its natural regulatory signals leads to an alteration in the physiology of cell division. The complexities observed in the regulation of gene expression in the cluster may then have an important biological role. Among them, LexA-binding SOS boxes have been found at the 5' end of the cluster, preceding promoters which direct the expression of ftsI (coding for PBP3, the penicillin-binding protein involved in septum formation). A gearbox promoter, ftsQ1p, forms part of the signals regulating the transcription of ftsQ, A and Z. It is an inversely growth-dependent mechanism driven by RNA polymerase containing sigma s, the factor involved in the expression of stationary phase-specific genes. Although the dcw cluster is conserved to a different extent in a variety of bacteria, the regulation of gene expression, the presence or absence of individual genes, and even the essentiality of some of them, show variations in the phylogenetic scale which may reflect adaptation to specific life cycles.

  10. Post-transcriptional regulation of gene expression in Yersinia species

    Directory of Open Access Journals (Sweden)

    Chelsea A Schiano

    2012-11-01

    Full Text Available Proper regulation of gene expression is required by bacterial pathogens to respond to continually changing environmental conditions and the host response during the infectious process. While transcriptional regulation is perhaps the most well understood form of controlling gene expression, recent studies have demonstrated the importance of post-transcriptional mechanisms of gene regulation that allow for more refined management of the bacterial response to host conditions. Yersinia species of bacteria are known to use various forms of post-transcriptional regulation for control of many virulence-associated genes. These include regulation by cis- and trans-acting small non-coding RNAs, RNA-binding proteins, RNases, and thermoswitches. The effects of these and other regulatory mechanisms on Yersinia physiology can be profound and have been shown to influence type III secretion, motility, biofilm formation, host cell invasion, intracellular survival and replication, and more. In this review, we will discuss these and other post-transcriptional mechanisms and their influence on virulence gene regulation, with a particular emphasis on how these processes influence the virulence of Yersinia in the host.

  11. GGRNA: an ultrafast, transcript-oriented search engine for genes and transcripts.

    Science.gov (United States)

    Naito, Yuki; Bono, Hidemasa

    2012-07-01

    GGRNA (http://GGRNA.dbcls.jp/) is a Google-like, ultrafast search engine for genes and transcripts. The web server accepts arbitrary words and phrases, such as gene names, IDs, gene descriptions, annotations of gene and even nucleotide/amino acid sequences through one simple search box, and quickly returns relevant RefSeq transcripts. A typical search takes just a few seconds, which dramatically enhances the usability of routine searching. In particular, GGRNA can search sequences as short as 10 nt or 4 amino acids, which cannot be handled easily by popular sequence analysis tools. Nucleotide sequences can be searched allowing up to three mismatches, or the query sequences may contain degenerate nucleotide codes (e.g. N, R, Y, S). Furthermore, Gene Ontology annotations, Enzyme Commission numbers and probe sequences of catalog microarrays are also incorporated into GGRNA, which may help users to conduct searches by various types of keywords. GGRNA web server will provide a simple and powerful interface for finding genes and transcripts for a wide range of users. All services at GGRNA are provided free of charge to all users.

  12. Resveratrol regulates gene transcription via activation of stimulus-responsive transcription factors.

    Science.gov (United States)

    Thiel, Gerald; Rössler, Oliver G

    2017-03-01

    Resveratrol (trans-3,4',5-trihydroxystilbene), a polyphenolic phytoalexin of grapes and other fruits and plants, is a common constituent of our diet and of dietary supplements. Many health-promoting benefits have been connected with resveratrol in the treatment of cardiovascular diseases, cancer, diabetes, inflammation, neurodegeneration, and diseases connected with aging. To explain the pleiotropic effects of resveratrol, the molecular targets of this compound have to be identified on the cellular level. Resveratrol induces intracellular signal transduction pathways which ultimately lead to changes in the gene expression pattern of the cells. Here, we review the effect of resveratrol on the activation of the stimulus-responsive transcription factors CREB, AP-1, Egr-1, Elk-1, and Nrf2. Following activation, these transcription factors induce transcription of delayed response genes. The gene products of these delayed response genes are ultimately responsible for the changes in the biochemistry and physiology of resveratrol-treated cells. The activation of stimulus-responsive transcription factors may explain many of the intracellular activities of resveratrol. However, results obtained in vitro may not easily be transferred to in vivo systems.

  13. Transcript analysis of 250 novel yeast genes from chromosome XIV.

    Science.gov (United States)

    Planta, R J; Brown, A J; Cadahia, J L; Cerdan, M E; de Jonge, M; Gent, M E; Hayes, A; Kolen, C P; Lombardia, L J; Sefton, M; Oliver, S G; Thevelein, J; Tournu, H; van Delft, Y J; Verbart, D J; Winderickx, J

    1999-03-15

    The European Functional Analysis Network (EUROFAN) is systematically analysing the function of novel Saccharomyces cerevisiae genes revealed by genome sequencing. As part of this effort our consortium has performed a detailed transcript analysis for 250 novel ORFs on chromosome XIV. All transcripts were quantified by Northern analysis under three quasi-steady-state conditions (exponential growth on rich fermentative, rich non-fermentative, and minimal fermentative media) and eight transient conditions (glucose derepression, glucose upshift, stationary phase, nitrogen starvation, osmo-stress, heat-shock, and two control conditions). Transcripts were detected for 82% of the 250 ORFs, and only one ORF did not yield a transcript of the expected length (YNL285w). Transcripts ranged from low (62%), moderate (16%) to high abundance (2%) relative to the ACT1 mRNA. The levels of 73% of the 206 chromosome XIV transcripts detected fluctuated in response to the transient states tested. However, only a small number responded strongly to the transients: eight ORFs were induced upon glucose upshift; five were repressed by glucose; six were induced in response to nitrogen starvation; three were induced in stationary phase; five were induced by osmo-stress; four were induced by heat-shock. These data provide useful clues about the general function of these ORFs and add to our understanding of gene regulation on a genome-wide basis.

  14. Most "dark matter" transcripts are associated with known genes.

    Science.gov (United States)

    van Bakel, Harm; Nislow, Corey; Blencowe, Benjamin J; Hughes, Timothy R

    2010-05-18

    A series of reports over the last few years have indicated that a much larger portion of the mammalian genome is transcribed than can be accounted for by currently annotated genes, but the quantity and nature of these additional transcripts remains unclear. Here, we have used data from single- and paired-end RNA-Seq and tiling arrays to assess the quantity and composition of transcripts in PolyA+ RNA from human and mouse tissues. Relative to tiling arrays, RNA-Seq identifies many fewer transcribed regions ("seqfrags") outside known exons and ncRNAs. Most nonexonic seqfrags are in introns, raising the possibility that they are fragments of pre-mRNAs. The chromosomal locations of the majority of intergenic seqfrags in RNA-Seq data are near known genes, consistent with alternative cleavage and polyadenylation site usage, promoter- and terminator-associated transcripts, or new alternative exons; indeed, reads that bridge splice sites identified 4,544 new exons, affecting 3,554 genes. Most of the remaining seqfrags correspond to either single reads that display characteristics of random sampling from a low-level background or several thousand small transcripts (median length = 111 bp) present at higher levels, which also tend to display sequence conservation and originate from regions with open chromatin. We conclude that, while there are bona fide new intergenic transcripts, their number and abundance is generally low in comparison to known exons, and the genome is not as pervasively transcribed as previously reported.

  15. Most "dark matter" transcripts are associated with known genes.

    Directory of Open Access Journals (Sweden)

    Harm van Bakel

    2010-05-01

    Full Text Available A series of reports over the last few years have indicated that a much larger portion of the mammalian genome is transcribed than can be accounted for by currently annotated genes, but the quantity and nature of these additional transcripts remains unclear. Here, we have used data from single- and paired-end RNA-Seq and tiling arrays to assess the quantity and composition of transcripts in PolyA+ RNA from human and mouse tissues. Relative to tiling arrays, RNA-Seq identifies many fewer transcribed regions ("seqfrags" outside known exons and ncRNAs. Most nonexonic seqfrags are in introns, raising the possibility that they are fragments of pre-mRNAs. The chromosomal locations of the majority of intergenic seqfrags in RNA-Seq data are near known genes, consistent with alternative cleavage and polyadenylation site usage, promoter- and terminator-associated transcripts, or new alternative exons; indeed, reads that bridge splice sites identified 4,544 new exons, affecting 3,554 genes. Most of the remaining seqfrags correspond to either single reads that display characteristics of random sampling from a low-level background or several thousand small transcripts (median length = 111 bp present at higher levels, which also tend to display sequence conservation and originate from regions with open chromatin. We conclude that, while there are bona fide new intergenic transcripts, their number and abundance is generally low in comparison to known exons, and the genome is not as pervasively transcribed as previously reported.

  16. Tracing the dynamics of gene transcripts after organismal death

    Science.gov (United States)

    2017-01-01

    In life, genetic and epigenetic networks precisely coordinate the expression of genes—but in death, it is not known if gene expression diminishes gradually or abruptly stops or if specific genes and pathways are involved. We studied this by identifying mRNA transcripts that apparently increase in relative abundance after death, assessing their functions, and comparing their abundance profiles through postmortem time in two species, mouse and zebrafish. We found mRNA transcript profiles of 1063 genes became significantly more abundant after death of healthy adult animals in a time series spanning up to 96 h postmortem. Ordination plots revealed non-random patterns in the profiles by time. While most of these transcript levels increased within 0.5 h postmortem, some increased only at 24 and 48 h postmortem. Functional characterization of the most abundant transcripts revealed the following categories: stress, immunity, inflammation, apoptosis, transport, development, epigenetic regulation and cancer. The data suggest a step-wise shutdown occurs in organismal death that is manifested by the apparent increase of certain transcripts with various abundance maxima and durations. PMID:28123054

  17. Discovery of inhibitors of aberrant gene transcription from Libraries of DNA binding molecules: inhibition of LEF-1-mediated gene transcription and oncogenic transformation.

    Science.gov (United States)

    Stover, James S; Shi, Jin; Jin, Wei; Vogt, Peter K; Boger, Dale L

    2009-03-11

    The screening of a >9000 compound library of synthetic DNA binding molecules for selective binding to the consensus sequence of the transcription factor LEF-1 followed by assessment of the candidate compounds in a series of assays that characterized functional activity (disruption of DNA-LEF-1 binding) at the intended target and site (inhibition of intracellular LEF-1-mediated gene transcription) resulting in a desired phenotypic cellular change (inhibit LEF-1-driven cell transformation) provided two lead compounds: lefmycin-1 and lefmycin-2. The sequence of screens defining the approach assures that activity in the final functional assay may be directly related to the inhibition of gene transcription and DNA binding properties of the identified molecules. Central to the implementation of this generalized approach to the discovery of DNA binding small molecule inhibitors of gene transcription was (1) the use of a technically nondemanding fluorescent intercalator displacement (FID) assay for initial assessment of the DNA binding affinity and selectivity of a library of compounds for any sequence of interest, and (2) the technology used to prepare a sufficiently large library of DNA binding compounds.

  18. Sequential logic model deciphers dynamic transcriptional control of gene expressions.

    Directory of Open Access Journals (Sweden)

    Zhen Xuan Yeo

    Full Text Available BACKGROUND: Cellular signaling involves a sequence of events from ligand binding to membrane receptors through transcription factors activation and the induction of mRNA expression. The transcriptional-regulatory system plays a pivotal role in the control of gene expression. A novel computational approach to the study of gene regulation circuits is presented here. METHODOLOGY: Based on the concept of finite state machine, which provides a discrete view of gene regulation, a novel sequential logic model (SLM is developed to decipher control mechanisms of dynamic transcriptional regulation of gene expressions. The SLM technique is also used to systematically analyze the dynamic function of transcriptional inputs, the dependency and cooperativity, such as synergy effect, among the binding sites with respect to when, how much and how fast the gene of interest is expressed. PRINCIPAL FINDINGS: SLM is verified by a set of well studied expression data on endo16 of Strongylocentrotus purpuratus (sea urchin during the embryonic midgut development. A dynamic regulatory mechanism for endo16 expression controlled by three binding sites, UI, R and Otx is identified and demonstrated to be consistent with experimental findings. Furthermore, we show that during transition from specification to differentiation in wild type endo16 expression profile, SLM reveals three binary activities are not sufficient to explain the transcriptional regulation of endo16 expression and additional activities of binding sites are required. Further analyses suggest detailed mechanism of R switch activity where indirect dependency occurs in between UI activity and R switch during specification to differentiation stage. CONCLUSIONS/SIGNIFICANCE: The sequential logic formalism allows for a simplification of regulation network dynamics going from a continuous to a discrete representation of gene activation in time. In effect our SLM is non-parametric and model-independent, yet

  19. Modulation of DNA binding by gene-specific transcription factors.

    Science.gov (United States)

    Schleif, Robert F

    2013-10-01

    The transcription of many genes, particularly in prokaryotes, is controlled by transcription factors whose activity can be modulated by controlling their DNA binding affinity. Understanding the molecular mechanisms by which DNA binding affinity is regulated is important, but because forming definitive conclusions usually requires detailed structural information in combination with data from extensive biophysical, biochemical, and sometimes genetic experiments, little is truly understood about this topic. This review describes the biological requirements placed upon DNA binding transcription factors and their consequent properties, particularly the ways that DNA binding affinity can be modulated and methods for its study. What is known and not known about the mechanisms modulating the DNA binding affinity of a number of prokaryotic transcription factors, including CAP and lac repressor, is provided.

  20. E2F Transcription Factors Control the Roller Coaster Ride of Cell Cycle Gene Expression.

    Science.gov (United States)

    Thurlings, Ingrid; de Bruin, Alain

    2016-01-01

    Initially, the E2F transcription factor was discovered as a factor able to bind the adenovirus E2 promoter and activate viral genes. Afterwards it was shown that E2F also binds to promoters of nonviral genes such as C-MYC and DHFR, which were already known at that time to be important for cell growth and DNA metabolism, respectively. These findings provided the first clues that the E2F transcription factor might be an important regulator of the cell cycle. Since this initial discovery in 1987, several additional E2F family members have been identified, and more than 100 targets genes have been shown to be directly regulated by E2Fs, the majority of these are important for controlling the cell cycle. The progression of a cell through the cell cycle is accompanied with the increased expression of a specific set of genes during one phase of the cell cycle and the decrease of the same set of genes during a later phase of the cell cycle. This roller coaster ride, or oscillation, of gene expression is essential for the proper progression through the cell cycle to allow accurate DNA replication and cell division. The E2F transcription factors have been shown to be critical for the temporal expression of the oscillating cell cycle genes. This review will focus on how the oscillation of E2Fs and their targets is regulated by transcriptional, post-transcriptional and post-translational mechanism in mammals, yeast, flies, and worms. Furthermore, we will discuss the functional impact of E2Fs on the cell cycle progression and outline the consequences when E2F expression is disturbed.

  1. Synthetic Transcription Amplifier System for Orthogonal Control of Gene Expression in Saccharomyces cerevisiae

    Science.gov (United States)

    Rantasalo, Anssi; Czeizler, Elena; Virtanen, Riitta; Rousu, Juho; Lähdesmäki, Harri; Penttilä, Merja

    2016-01-01

    This work describes the development and characterization of a modular synthetic expression system that provides a broad range of adjustable and predictable expression levels in S. cerevisiae. The system works as a fixed-gain transcription amplifier, where the input signal is transferred via a synthetic transcription factor (sTF) onto a synthetic promoter, containing a defined core promoter, generating a transcription output signal. The system activation is based on the bacterial LexA-DNA-binding domain, a set of modified, modular LexA-binding sites and a selection of transcription activation domains. We show both experimentally and computationally that the tuning of the system is achieved through the selection of three separate modules, each of which enables an adjustable output signal: 1) the transcription-activation domain of the sTF, 2) the binding-site modules in the output promoter, and 3) the core promoter modules which define the transcription initiation site in the output promoter. The system has a novel bidirectional architecture that enables generation of compact, yet versatile expression modules for multiple genes with highly diversified expression levels ranging from negligible to very strong using one synthetic transcription factor. In contrast to most existing modular gene expression regulation systems, the present system is independent from externally added compounds. Furthermore, the established system was minimally affected by the several tested growth conditions. These features suggest that it can be highly useful in large scale biotechnology applications. PMID:26901642

  2. Synthetic Transcription Amplifier System for Orthogonal Control of Gene Expression in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Anssi Rantasalo

    Full Text Available This work describes the development and characterization of a modular synthetic expression system that provides a broad range of adjustable and predictable expression levels in S. cerevisiae. The system works as a fixed-gain transcription amplifier, where the input signal is transferred via a synthetic transcription factor (sTF onto a synthetic promoter, containing a defined core promoter, generating a transcription output signal. The system activation is based on the bacterial LexA-DNA-binding domain, a set of modified, modular LexA-binding sites and a selection of transcription activation domains. We show both experimentally and computationally that the tuning of the system is achieved through the selection of three separate modules, each of which enables an adjustable output signal: 1 the transcription-activation domain of the sTF, 2 the binding-site modules in the output promoter, and 3 the core promoter modules which define the transcription initiation site in the output promoter. The system has a novel bidirectional architecture that enables generation of compact, yet versatile expression modules for multiple genes with highly diversified expression levels ranging from negligible to very strong using one synthetic transcription factor. In contrast to most existing modular gene expression regulation systems, the present system is independent from externally added compounds. Furthermore, the established system was minimally affected by the several tested growth conditions. These features suggest that it can be highly useful in large scale biotechnology applications.

  3. The transcriptional interactome: gene expression in 3D.

    Science.gov (United States)

    Schoenfelder, Stefan; Clay, Ieuan; Fraser, Peter

    2010-04-01

    Transcription in the eukaryotic nucleus has long been thought of as conforming to a model in which RNA polymerase complexes are recruited to and track along isolated templates. However, a more dynamic role for chromatin in transcriptional regulation is materializing: enhancer elements interact with promoters forming loops that often bridge considerable distances and genomic loci, even located on different chromosomes, undergo chromosomal associations. These associations amass to form an extensive 'transcriptional interactome', enacted at functional subnuclear compartments, to which genes dynamically relocate. The emerging view is that long-range chromosomal associations between genomic regions, and their repositioning in the three-dimensional space of the nucleus, are key contributors to the regulation of gene expression. 2010 Elsevier Ltd. All rights reserved.

  4. Thermodynamics-based models of transcriptional regulation with gene sequence.

    Science.gov (United States)

    Wang, Shuqiang; Shen, Yanyan; Hu, Jinxing

    2015-12-01

    Quantitative models of gene regulatory activity have the potential to improve our mechanistic understanding of transcriptional regulation. However, the few models available today have been based on simplistic assumptions about the sequences being modeled or heuristic approximations of the underlying regulatory mechanisms. In this work, we have developed a thermodynamics-based model to predict gene expression driven by any DNA sequence. The proposed model relies on a continuous time, differential equation description of transcriptional dynamics. The sequence features of the promoter are exploited to derive the binding affinity which is derived based on statistical molecular thermodynamics. Experimental results show that the proposed model can effectively identify the activity levels of transcription factors and the regulatory parameters. Comparing with the previous models, the proposed model can reveal more biological sense.

  5. Immunoglobulin genes and their transcriptional control in teleosts.

    Science.gov (United States)

    Hikima, Jun-ichi; Jung, Tae-Sung; Aoki, Takashi

    2011-09-01

    Immunoglobulin (Ig), which exists only in jawed vertebrates, is one of the most important molecules in adaptive immunity. In the last two decades, many teleost Ig genes have been identified by in silico data mining from the enormous gene and EST databases of many fish species. In this review, the organization of Ig gene segments, the expressed Ig isotypes and their transcriptional controls are discussed. The Ig heavy chain (IgH) locus in teleosts encodes the variable (V), the diversity (D), the joining (J) segments and three different isotypic constant (C) regions including Cμ, Cδ, and Cζ/τ genes, and is organized as a "translocon" type like the IgH loci of higher vertebrates. In contrast, the Ig light (L) chain locus is arranged in a "multicluster" or repeating set of VL, JL, and CL segments. The IgL chains have four isotypes; two κ L1/G and L3/F), σ (L2) and λ. The transcription of IgH genes in teleosts is regulated by a VH promoter and the Eμ3' enhancer, which both function in a B cell-specific manner. The location of the IgH locus, structure and transcriptional function of the Eμ3' enhancer are important to our understanding of the evolutional changes that have occurred in the IgH gene locus.

  6. Regulation of human protein S gene (PROS1) transcription

    NARCIS (Netherlands)

    Wolf, Cornelia de

    2006-01-01

    This thesis describes the investigation of the transcriptional regulation of the gene for anticoagulant plasma Protein S, PROS1. Protein S is a cofactor for Protein C in the Protein C anticoagulant pathway. The coagulation cascade is negatively regulated by this pathway through inactivation of activ

  7. Glucocorticoid control of gene transcription in neural tissue

    NARCIS (Netherlands)

    Morsink, Maarten Christian

    2007-01-01

    Glucocorticoid hormones exert modulatory effects on neural function in a delayed genomic fashion. The two receptor types that can bind glucocorticoids, the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR), are ligand-inducible transcription factors. Therefore, changes in gene exp

  8. Gene transcription analysis during interaction between potato and Ralstonia solanacearum

    NARCIS (Netherlands)

    Li, G.C.; Jin, L.P.; Wang, X.W.; Xie, K.Y.; Yang, Y.; Vossen, van der E.A.G.; Huang, S.W.; Qu, D.Y.

    2010-01-01

    Bacterial wilt (BW) caused by Ralstonia solanacearum (Rs) is an important quarantine disease that spreads worldwide and infects hundreds of plant species. The BW defense response of potato is a complicated continuous process, which involves transcription of a battery of genes. The molecular mechanis

  9. Regulation of human protein S gene (PROS1) transcription

    NARCIS (Netherlands)

    Wolf, Cornelia de

    2006-01-01

    This thesis describes the investigation of the transcriptional regulation of the gene for anticoagulant plasma Protein S, PROS1. Protein S is a cofactor for Protein C in the Protein C anticoagulant pathway. The coagulation cascade is negatively regulated by this pathway through inactivation of

  10. Gene transcripts as potential diagnostic markers for allergic contact dermatitis

    DEFF Research Database (Denmark)

    Hansen, Malene Barré; Skov, Lone; Menné, Torkil;

    2005-01-01

    The standard procedure for diagnosing allergic contact dermatitis is to perform a patch test. Because this has several disadvantages, the development of a new in vitro test system would be of immense value. Gene transcripts that distinguish allergics from non-allergics may have the potential...

  11. TIP48/Reptin and H2A.Z requirement for initiating chromatin remodeling in estrogen-activated transcription.

    Directory of Open Access Journals (Sweden)

    Mathieu Dalvai

    2013-04-01

    Full Text Available Histone variants, including histone H2A.Z, are incorporated into specific genomic sites and participate in transcription regulation. The role of H2A.Z at these sites remains poorly characterized. Our study investigates changes in the chromatin environment at the Cyclin D1 gene (CCND1 during transcriptional initiation in response to estradiol in estrogen receptor positive mammary tumour cells. We show that H2A.Z is present at the transcription start-site and downstream enhancer sequences of CCND1 when the gene is poorly transcribed. Stimulation of CCND1 expression required release of H2A.Z concomitantly from both these DNA elements. The AAA+ family members TIP48/reptin and the histone variant H2A.Z are required to remodel the chromatin environment at CCND1 as a prerequisite for binding of the estrogen receptor (ERα in the presence of hormone. TIP48 promotes acetylation and exchange of H2A.Z, which triggers a dissociation of the CCND1 3' enhancer from the promoter, thereby releasing a repressive intragenic loop. This release then enables the estrogen receptor to bind to the CCND1 promoter. Our findings provide new insight into the priming of chromatin required for transcription factor access to their target sequence. Dynamic release of gene loops could be a rapid means to remodel chromatin and to stimulate transcription in response to hormones.

  12. Transcriptional Activation of Virulence Genes of Rhizobium etli.

    Science.gov (United States)

    Wang, Luyao; Lacroix, Benoît; Guo, Jianhua; Citovsky, Vitaly

    2017-03-15

    Recently, Rhizobium etli, in addition to Agrobacterium spp., has emerged as a prokaryotic species whose genome encodes a functional machinery for DNA transfer to plant cells. To understand this R. etli-mediated genetic transformation, it would be useful to define how its vir genes respond to the host plants. Here, we explored the transcriptional activation of the vir genes contained on the R. etli p42a plasmid. Using a reporter construct harboring lacZ under the control of the R. etli virE promoter, we show that the signal phenolic molecule acetosyringone (AS) induces R. etli vir gene expression both in an R. etli background and in an Agrobacterium tumefaciens background. Furthermore, in both bacterial backgrounds, the p42a plasmid also promoted plant genetic transformation with a reporter transfer DNA (T-DNA). Importantly, the R. etli vir genes were transcriptionally activated by AS in a bacterial species-specific fashion in regard to the VirA/VirG signal sensor system, and this activation was induced by signals from the natural host species of this bacterium but not from nonhost plants. The early kinetics of transcriptional activation of the major vir genes of R. etli also revealed several features distinct from those known for A. tumefaciens: the expression of the virG gene reached saturation relatively quickly, and virB2, which in R. etli is located outside the virB operon, was expressed only at low levels and did not respond to AS. These differences in vir gene transcription may contribute to the lower efficiency of T-DNA transfer of R. etli p42a than of T-DNA transfer of pTiC58 of A. tumefaciensIMPORTANCE The region encoding homologs of Agrobacterium tumefaciens virulence genes in the Rhizobium etli CE3 p42a plasmid was the first endogenous virulence system encoded by the genome of a non-Agrobacterium species demonstrated to be functional in DNA transfer and stable integration into the plant cell genome. In this study, we explored the transcriptional

  13. Dissection of TALE-dependent gene activation reveals that they induce transcription cooperatively and in both orientations

    Science.gov (United States)

    Streubel, Jana; Baum, Heidi; Grau, Jan; Stuttman, Johannes; Boch, Jens

    2017-01-01

    Plant-pathogenic Xanthomonas bacteria inject transcription activator-like effector proteins (TALEs) into host cells to specifically induce transcription of plant genes and enhance susceptibility. Although the DNA-binding mode is well-understood it is still ambiguous how TALEs initiate transcription and whether additional promoter elements are needed to support this. To systematically dissect prerequisites for transcriptional initiation the activity of one TALE was compared on different synthetic Bs4 promoter fragments. In addition, a large collection of artificial TALEs spanning the OsSWEET14 promoter was compared. We show that the presence of a TALE alone is not sufficient to initiate transcription suggesting the requirement of additional supporting promoter elements. At the OsSWEET14 promoter TALEs can initiate transcription from various positions, in a synergistic manner of multiple TALEs binding in parallel to the promoter, and even by binding in reverse orientation. TALEs are known to shift the transcriptional start site, but our data show that this shift depends on the individual position of a TALE within a promoter context. Our results implicate that TALEs function like classical enhancer-binding proteins and initiate transcription in both orientations which has consequences for in planta target gene prediction and design of artificial activators. PMID:28301511

  14. Identification of HTF (HER2 transcription factor) as an AP-2 (activator protein-2) transcription factor and contribution of the HTF binding site to ERBB2 gene overexpression.

    Science.gov (United States)

    Vernimmen, Douglas; Begon, Dominique; Salvador, Christophe; Gofflot, Stéphanie; Grooteclaes, Madeleine; Winkler, Rosita

    2003-02-15

    The ERBB2 gene is overexpressed in 30% of human breast cancers and this is correlated with poor prognosis. Overexpression of the ERBB2 gene is due to increased transcription and gene amplification. Our previous studies have identified a new cis element in the ERBB2 promoter which is involved in the gene's overexpression. This cis element, located 501 bp upstream from the main ERBB2 transcription initiation site, binds a transcription factor called HTF (HER2 transcription factor). We report here the identification of HTF as an AP-2 (activator protein-2) transcription factor. The new cis element is bound by AP-2 with high affinity, compared with a previously described AP-2 binding site located 284 bp downstream. Co-transfection of an AP-2alpha expression vector with a reporter vector containing the newly identified AP-2 binding site in front of a minimal ERBB2 promoter induced a dose-dependent increase in transcriptional activity. We examined the contribution of the new AP-2 binding site to ERBB2 overexpression. For this purpose we abolished the new and/or the previously described AP-2 binding sequence by site-directed mutagenesis. The results show that the two functional AP-2 sites in the first 700 bp of the ERBB2 promoter co-operate to achieve maximal transcriptional activity.

  15. Exercise attenuates the fasting-induced transcriptional activation of metabolic genes in skeletal muscle.

    Science.gov (United States)

    Hildebrandt, A L; Neufer, P D

    2000-06-01

    Fasting elicits a progressive increase in lipid metabolism within skeletal muscle. To determine the effects of fasting on the transcriptional regulation of genes important for metabolic control in skeletal muscle composed of different fiber types, nuclei from control and fasted (24 and 72 h) rats were subjected to nuclear run-on analysis using an RT-PCR-based technique. Fasting increased (P < 0.05) transcription rate of the muscle-specific uncoupling protein-3 gene (UCP3) 14.3- to 21.1-fold in white gastrocnemius (WG; fast-twitch glycolytic) and 5.5- to 7.5-fold in red gastrocnemius (RG; fast-twitch oxidative) and plantaris (PL; mixed) muscles. No change occurred in soleus (slow-twitch oxidative) muscle. Fasting also increased transcription rate of the lipoprotein lipase (LPL), muscle carnitine palmitoyltransferase I (CPT I), and long-chain acyl-CoA dehydrogenase (LCAD) genes 1.7- to 3.7-fold in WG, RG, and PL muscles. Transcription rate responses were similar after 24 and 72 h of fasting. Surprisingly, increasing metabolic demand during the initial 8 h of starvation (two 2-h bouts of treadmill running) attenuated the 24-h fasting-induced transcriptional activation of UCP3, LPL, CPT I, and LCAD in RG and PL muscles, suggesting the presence of opposing regulatory mechanisms. These data demonstrate that fasting elicits a fiber type-specific coordinate increase in the transcription rate of several genes involved in and/or required for lipid metabolism and indicate that exercise may attenuate the fasting-induced transcriptional activation of specific metabolic genes.

  16. Structure and in vitro transcription of human globin genes.

    Science.gov (United States)

    Proudfoot, N J; Shander, M H; Manley, J L; Gefter, M L; Maniatis, T

    1980-09-19

    The alpha-like and beta-like subunits of human hemoglobin are encoded by a small family of genes that are differentially expressed during development. Through the use of molecular cloning procedures, each member of this gene family has been isolated and extensively characterized. Although the alpha-like and beta-like globin genes are located on different chromosomes, both sets of genes are arranged in closely linked clusters. In both clusters, each of the genes is transcribed from the same DNA strand, and the genes are arranged in the order of their expressions during development. Structural comparisons of immediately adjacent genes within each cluster have provided evidence for the occurrence of gene duplication and correction during evolution and have led to the discovery of pseudogenes, genes that have acquired numerous mutations that prevent their normal expression. Recently, in vivo and in vitro systems for studying the expression of cloned eukaryotic genes have been developed as a means of identifying DNA sequences that are necessary for normal gene function. This article describes the application of an in vitro transcription procedure to the study of human globin gene expression.

  17. Germ line transcription in mice bearing neor gene downstream of Igamma3 exon in the Ig heavy chain locus.

    Science.gov (United States)

    Samara, Maha; Oruc, Zeliha; Dougier, Hei-Lanne; Essawi, Tamer; Cogné, Michel; Khamlichi, Ahmed Amine

    2006-04-01

    Class switch recombination (CSR) is preceded by germ line transcription that initiates from promoters upstream of switch (S) sequences and terminates downstream of associated constant genes. Previous work showed that germ line transcripts and their processing are required for CSR and that germ line transcription is regulated in a major part by a regulatory region located downstream of the Ig heavy chain locus. This long-range, polarized effect can be disturbed by inserting an expressed neomycine resistance (neo(r)) gene. To contribute to a better understanding of the mechanism of such a long-distance regulation, we generated knock-in mice in which a neo(r) gene was inserted downstream of Igamma3 exon leaving intact all the necessary elements for germ line transcription and splicing. We show that the expressed neo(r) gene interferes with transcription initiation from Igamma3, and that it impairs but does not block S recombination to Cgamma3. Moreover, we show for the first time that the neo(r) gene provides through chimeric neo(r)-Cgamma3 transcripts the necessary elements for splicing of germ line transcripts by activating two novel cryptic splice sites, one in the coding region of the intronless neo(r) gene and the other in the Igamma3-Cgamma3 intron.

  18. 分离植物目的基因全长cDNA和启动子的新方法--快速定位转录起始位点(RITIS)%Isolation of Full-length cDNA and Promoter of Target Gene from Plant by Rapid Identification of Transcriptional Initiation Site (RITIS)

    Institute of Scientific and Technical Information of China (English)

    冯丽; 任茂智; 罗洪发; 何光华

    2006-01-01

    by rapid identification of transcriptional initiation site (RITIS). Transcriptional initiation site (TIS) is cut-offpoint of promoter and transcript of target gene. Accurate position of TIS is the key for full-length cDNA and promoter isolation. Exons in transcript downstream TIS can be amplified by means of RT-PCR whereaspromoter sequence cannot be obtained in the same way. Taking advantage of this principle, we develop the approach of R1TIS which can be used to define the promoter region and the 5'-untranslated region of the gene efficiently and circumvents laborious cDNA libraries construction for full-length cDNA and promoter isolation.

  19. Gene transcription in polar bears (Ursus maritimus) from disparate populations

    Science.gov (United States)

    Bowen, Lizabeth; Miles, A. Keith; Waters, Shannon C.; Meyerson, Randi; Rode, Karyn D.; Atwood, Todd C.

    2015-01-01

    Polar bears in the Beaufort (SB) and Chukchi (CS) Seas experience different environments due primarily to a longer history of sea ice loss in the Beaufort Sea. Ecological differences have been identified as a possible reason for the generally poorer body condition and reproduction of Beaufort polar bears compared to those from the Chukchi, but the influence of exposure to other stressors remains unknown. We use molecular technology, quantitative PCR, to identify gene transcription differences among polar bears from the Beaufort and Chukchi Seas as well as captive healthy polar bears. We identified significant transcriptional differences among a priori groups (i.e., captive bears, SB 2012, SB 2013, CS 2013) for ten of the 14 genes of interest (i.e., CaM, HSP70, CCR3, TGFβ, COX2, THRα, T-bet, Gata3, CD69, and IL17); transcription levels of DRβ, IL1β, AHR, and Mx1 did not differ among groups. Multivariate analysis also demonstrated separation among the groups of polar bears. Specifically, we detected transcript profiles consistent with immune function impairment in polar bears from the Beaufort Sea, when compared with Chukchi and captive polar bears. Although there is no strong indication of differential exposure to contaminants or pathogens between CS and SB bears, there are clearly differences in important transcriptional responses between populations. Further investigation is warranted to refine interpretation of potential effects of described stress-related conditions for the SB population.

  20. Cooperative binding of transcription factors promotes bimodal gene expression response.

    Directory of Open Access Journals (Sweden)

    Pablo S Gutierrez

    Full Text Available In the present work we extend and analyze the scope of our recently proposed stochastic model for transcriptional regulation, which considers an arbitrarily complex cis-regulatory system using only elementary reactions. Previously, we determined the role of cooperativity on the intrinsic fluctuations of gene expression for activating transcriptional switches, by means of master equation formalism and computer simulation. This model allowed us to distinguish between two cooperative binding mechanisms and, even though the mean expression levels were not affected differently by the acting mechanism, we showed that the associated fluctuations were different. In the present generalized model we include other regulatory functions in addition to those associated to an activator switch. Namely, we introduce repressive regulatory functions and two theoretical mechanisms that account for the biphasic response that some cis-regulatory systems show to the transcription factor concentration. We have also extended our previous master equation formalism in order to include protein production by stochastic translation of mRNA. Furthermore, we examine the graded/binary scenarios in the context of the interaction energy between transcription factors. In this sense, this is the first report to show that the cooperative binding of transcription factors to DNA promotes the "all-or-none" phenomenon observed in eukaryotic systems. In addition, we confirm that gene expression fluctuation levels associated with one of two cooperative binding mechanism never exceed the fluctuation levels of the other.

  1. Transcriptional control in the segmentation gene network of Drosophila.

    Directory of Open Access Journals (Sweden)

    Mark D Schroeder

    2004-09-01

    Full Text Available The segmentation gene network of Drosophila consists of maternal and zygotic factors that generate, by transcriptional (cross- regulation, expression patterns of increasing complexity along the anterior-posterior axis of the embryo. Using known binding site information for maternal and zygotic gap transcription factors, the computer algorithm Ahab recovers known segmentation control elements (modules with excellent success and predicts many novel modules within the network and genome-wide. We show that novel module predictions are highly enriched in the network and typically clustered proximal to the promoter, not only upstream, but also in intronic space and downstream. When placed upstream of a reporter gene, they consistently drive patterned blastoderm expression, in most cases faithfully producing one or more pattern elements of the endogenous gene. Moreover, we demonstrate for the entire set of known and newly validated modules that Ahab's prediction of binding sites correlates well with the expression patterns produced by the modules, revealing basic rules governing their composition. Specifically, we show that maternal factors consistently act as activators and that gap factors act as repressors, except for the bimodal factor Hunchback. Our data suggest a simple context-dependent rule for its switch from repressive to activating function. Overall, the composition of modules appears well fitted to the spatiotemporal distribution of their positive and negative input factors. Finally, by comparing Ahab predictions with different categories of transcription factor input, we confirm the global regulatory structure of the segmentation gene network, but find odd skipped behaving like a primary pair-rule gene. The study expands our knowledge of the segmentation gene network by increasing the number of experimentally tested modules by 50%. For the first time, the entire set of validated modules is analyzed for binding site composition under a

  2. Global transcriptional profiling reveals Streptococcus agalactiae genes controlled by the MtaR transcription factor

    Directory of Open Access Journals (Sweden)

    Cvek Urska

    2008-12-01

    Full Text Available Abstract Background Streptococcus agalactiae (group B Streptococcus; GBS is a significant bacterial pathogen of neonates and an emerging pathogen of adults. Though transcriptional regulators are abundantly encoded on the GBS genome, their role in GBS pathogenesis is poorly understood. The mtaR gene encodes a putative LysR-type transcriptional regulator that is critical for the full virulence of GBS. Previous studies have shown that an mtaR- mutant transports methionine at reduced rates and grows poorly in normal human plasma not supplemented with methionine. The decreased virulence of the mtaR mutant was correlated with a methionine transport defect; however, no MtaR-regulated genes were identified. Results Microarray analysis of wild-type GBS and an mtaR mutant revealed differential expression of 12 genes, including 1 upregulated and 11 downregulated genes in the mtaR mutant. Among the downregulated genes, we identified a cluster of cotranscribed genes encoding a putative methionine transporter (metQ1NP and peptidase (pdsM. The expression of four genes potentially involved in arginine transport (artPQ and arginine biosynthesis (argGH was downregulated and these genes localized to two transcriptional units. The virulence factor cspA, which encodes an extracellular protease, was downregulated. Additionally, the SAN_1255 locus, which putatively encodes a protein displaying similarity to plasminogen activators, was downregulated. Conclusion To our knowledge, this is the first study to describe the global influence of MtaR on GBS gene expression. This study implicates the metQ1NP genes as encoding the MtaR-regulated methionine transporter, which may provide a mechanistic explanation for the methionine-dependent growth defect of the mtaR mutant. In addition to modulating the expression of genes involved in metabolism and amino acid transport, inactivation of mtaR affected the expression of other GBS genes implicated in pathogenesis. These findings

  3. A transcript finishing initiative for closing gaps in the human transcriptome

    DEFF Research Database (Denmark)

    Sogayar, Mari Cleide; Camargo, Anamaria A; Bettoni, Fabiana

    2004-01-01

    We report the results of a transcript finishing initiative, undertaken for the purpose of identifying and characterizing novel human transcripts, in which RT-PCR was used to bridge gaps between paired EST clusters, mapped against the genomic sequence. Each pair of EST clusters selected for experi...

  4. Analysis of the transcription initiation mechanism of tomato spotted wilt virus

    NARCIS (Netherlands)

    Duijsings, D.M.J.M.

    2001-01-01

    Genome replication and transcription of Tomato spotted wilt virus (TSWV, genus Tospovirus ) follows in most aspects the general rules for negative strand RNA viruses with segmented genomes. One common feature is the occurrence of "cap snatching" during transcription initiation. During this process,

  5. Effects of transcriptional pausing on gene expression dynamics.

    Directory of Open Access Journals (Sweden)

    Tiina Rajala

    2010-03-01

    Full Text Available Stochasticity in gene expression affects many cellular processes and is a source of phenotypic diversity between genetically identical individuals. Events in elongation, particularly RNA polymerase pausing, are a source of this noise. Since the rate and duration of pausing are sequence-dependent, this regulatory mechanism of transcriptional dynamics is evolvable. The dependency of pause propensity on regulatory molecules makes pausing a response mechanism to external stress. Using a delayed stochastic model of bacterial transcription at the single nucleotide level that includes the promoter open complex formation, pausing, arrest, misincorporation and editing, pyrophosphorolysis, and premature termination, we investigate how RNA polymerase pausing affects a gene's transcriptional dynamics and gene networks. We show that pauses' duration and rate of occurrence affect the bursting in RNA production, transcriptional and translational noise, and the transient to reach mean RNA and protein levels. In a genetic repressilator, increasing the pausing rate and the duration of pausing events increases the period length but does not affect the robustness of the periodicity. We conclude that RNA polymerase pausing might be an important evolvable feature of genetic networks.

  6. Transcriptional Regulation of the p16 Tumor Suppressor Gene.

    Science.gov (United States)

    Kotake, Yojiro; Naemura, Madoka; Murasaki, Chihiro; Inoue, Yasutoshi; Okamoto, Haruna

    2015-08-01

    The p16 tumor suppressor gene encodes a specific inhibitor of cyclin-dependent kinase (CDK) 4 and 6 and is found altered in a wide range of human cancers. p16 plays a pivotal role in tumor suppressor networks through inducing cellular senescence that acts as a barrier to cellular transformation by oncogenic signals. p16 protein is relatively stable and its expression is primary regulated by transcriptional control. Polycomb group (PcG) proteins associate with the p16 locus in a long non-coding RNA, ANRIL-dependent manner, leading to repression of p16 transcription. YB1, a transcription factor, also represses the p16 transcription through direct association with its promoter region. Conversely, the transcription factors Ets1/2 and histone H3K4 methyltransferase MLL1 directly bind to the p16 locus and mediate p16 induction during replicative and premature senescence. In the present review, we discuss the molecular mechanisms by which these factors regulate p16 transcription.

  7. Transcriptional Modulation of Heat-Shock Protein Gene Expression

    Directory of Open Access Journals (Sweden)

    Anastasis Stephanou

    2011-01-01

    Full Text Available Heat-shock proteins (Hsps are molecular chaperones that are ubiquitously expressed but are also induced in cells exposed to stressful stimuli. Hsps have been implicated in the induction and propagation of several diseases. This paper focuses on regulatory factors that control the transcription of the genes encoding Hsps. We also highlight how distinct transcription factors are able to interact and modulate Hsps in different pathological states. Thus, a better understanding of the complex signaling pathways regulating Hsp expression may lead to novel therapeutic targets.

  8. Transcriptional modulation of heat-shock protein gene expression.

    Science.gov (United States)

    Stephanou, Anastasis; Latchman, David S

    2011-01-01

    Heat-shock proteins (Hsps) are molecular chaperones that are ubiquitously expressed but are also induced in cells exposed to stressful stimuli. Hsps have been implicated in the induction and propagation of several diseases. This paper focuses on regulatory factors that control the transcription of the genes encoding Hsps. We also highlight how distinct transcription factors are able to interact and modulate Hsps in different pathological states. Thus, a better understanding of the complex signaling pathways regulating Hsp expression may lead to novel therapeutic targets.

  9. The interaction between bacterial transcription factors and RNA polymerase during the transition from initiation to elongation.

    Science.gov (United States)

    Yang, Xiao; Lewis, Peter J

    2010-01-01

    There are three stages of transcription: initiation, elongation and termination, and traditionally there has been a clear distinction between the stages. The specificity factor sigma is completely released from bacterial RNA polymerase after initiation, and then recycled for another round of transcription. Elongation factors then associate with the polymerase followed by termination factors (where necessary). These factors dissociate prior to initiation of a new round of transcription. However, there is growing evidence suggesting that sigma factors can be retained in the elongation complex. The structure of bacterial RNAP in complex with an essential elongation factor NusA has recently been published, which suggested rather than competing for the major σ binding site, NusA binds to a discrete region on RNAP. A model was proposed to help explain the way in which both factors could be associated with RNAP during the transition from transcription initiation to elongation.

  10. Modulation of Re-initiation of Measles Virus Transcription at Intergenic Regions by PXD to NTAIL Binding Strength.

    Science.gov (United States)

    Bloyet, Louis-Marie; Brunel, Joanna; Dosnon, Marion; Hamon, Véronique; Erales, Jenny; Gruet, Antoine; Lazert, Carine; Bignon, Christophe; Roche, Philippe; Longhi, Sonia; Gerlier, Denis

    2016-12-01

    Measles virus (MeV) and all Paramyxoviridae members rely on a complex polymerase machinery to ensure viral transcription and replication. Their polymerase associates the phosphoprotein (P) and the L protein that is endowed with all necessary enzymatic activities. To be processive, the polymerase uses as template a nucleocapsid made of genomic RNA entirely wrapped into a continuous oligomer of the nucleoprotein (N). The polymerase enters the nucleocapsid at the 3'end of the genome where are located the promoters for transcription and replication. Transcription of the six genes occurs sequentially. This implies ending and re-initiating mRNA synthesis at each intergenic region (IGR). We explored here to which extent the binding of the X domain of P (XD) to the C-terminal region of the N protein (NTAIL) is involved in maintaining the P/L complex anchored to the nucleocapsid template during the sequential transcription. Amino acid substitutions introduced in the XD-binding site on NTAIL resulted in a wide range of binding affinities as determined by combining protein complementation assays in E. coli and human cells and isothermal titration calorimetry. Molecular dynamics simulations revealed that XD binding to NTAIL involves a complex network of hydrogen bonds, the disruption of which by two individual amino acid substitutions markedly reduced the binding affinity. Using a newly designed, highly sensitive dual-luciferase reporter minigenome assay, the efficiency of re-initiation through the five measles virus IGRs was found to correlate with NTAIL/XD KD. Correlatively, P transcript accumulation rate and F/N transcript ratios from recombinant viruses expressing N variants were also found to correlate with the NTAIL to XD binding strength. Altogether, our data support a key role for XD binding to NTAIL in maintaining proper anchor of the P/L complex thereby ensuring transcription re-initiation at each intergenic region.

  11. Motif Participation by Genes in E. coli Transcriptional Networks

    Directory of Open Access Journals (Sweden)

    Michael eMayo

    2012-09-01

    Full Text Available Motifs are patterns of recurring connections among the genes of genetic networks that occur more frequently than would be expected from randomized networks with the same degree sequence. Although the abundance of certain three-node motifs, such as the feed-forward loop, is positively correlated with a networks’ ability to tolerate moderate disruptions to gene expression, little is known regarding the connectivity of individual genes participating in multiple motifs. Using the transcriptional network of the bacterium Escherichia coli, we investigate this feature by reconstructing the distribution of genes participating in feed-forward loop motifs from its largest connected network component. We contrast these motif participation distributions with those obtained from model networks built using the preferential attachment mechanism employed by many biological and man-made networks. We report that, although some of these model networks support a motif participation distribution that appears qualitatively similar to that obtained from the bacterium Escherichia coli, the probability for a node to support a feed-forward loop motif may instead be strongly influenced by only a few master transcriptional regulators within the network. From these analyses we conclude that such master regulators may be a crucial ingredient to describe coupling among feed-forward loop motifs in transcriptional regulatory networks.

  12. Transcriptional oscillation of canonical clock genes in mouse peripheral tissues

    Directory of Open Access Journals (Sweden)

    Nakahata Yasukazu

    2004-10-01

    Full Text Available Abstract Background The circadian rhythm of about 24 hours is a fundamental physiological function observed in almost all organisms from prokaryotes to humans. Identification of clock genes has allowed us to study the molecular bases for circadian behaviors and temporal physiological processes such as hormonal secretion, and has prompted the idea that molecular clocks reside not only in a central pacemaker, the suprachiasmatic nuclei (SCN of hypothalamus in mammals, but also in peripheral tissues, even in immortalized cells. Furthermore, previous molecular dissection revealed that the mechanism of circadian oscillation at a molecular level is based on transcriptional regulation of clock and clock-controlled genes. Results We systematically analyzed the mRNA expression of clock and clock-controlled genes in mouse peripheral tissues. Eight genes (mBmal1, mNpas2, mRev-erbα, mDbp, mRev-erbβ, mPer3, mPer1 and mPer2; given in the temporal order of the rhythm peak showed robust circadian expressions of mRNAs in all tissues except testis, suggesting that these genes are core molecules of the molecular biological clock. The bioinformatics analysis revealed that these genes have one or a combination of 3 transcriptional elements (RORE, DBPE, and E-box, which are conserved among human, mouse, and rat genome sequences, and indicated that these 3 elements may be responsible for the biological timing of expression of canonical clock genes. Conclusions The observation of oscillatory profiles of canonical clock genes is not only useful for physiological and pathological examination of the circadian clock in various organs but also important for systematic understanding of transcriptional regulation on a genome-wide basis. Our finding of the oscillatory expression of canonical clock genes with a temporal order provides us an interesting hypothesis, that cyclic timing of all clock and clock-controlled genes may be dependent on several transcriptional elements

  13. Transcriptional Characterization of Porcine Leptin and Leptin Receptor Genes.

    Directory of Open Access Journals (Sweden)

    Dafne Pérez-Montarelo

    Full Text Available The leptin (LEP and its receptor (LEPR regulate food intake and energy balance through hypothalamic signaling. However, the LEP-LEPR axis seems to be more complex and its expression regulation has not been well described. In pigs, LEP and LEPR genes have been widely studied due to their relevance. Previous studies reported significant effects of SNPs located in both genes on growth and fatness traits. The aim of this study was to determine the expression profiles of LEP and LEPR across hypothalamic, adipose, hepatic and muscle tissues in Iberian x Landrace backcrossed pigs and to analyze the effects of gene variants on transcript abundance. To our knowledge, non porcine LEPR isoforms have been described rather than LEPRb. A short porcine LEPR isoform (LEPRa, that encodes a protein lacking the intracellular residues responsible of signal transduction, has been identified for the first time. The LEPRb isoform was only quantifiable in hypothalamus while LEPRa appeared widely expressed across tissues, but at higher levels in liver, suggesting that both isoforms would develop different roles. The unique LEP transcript showed expression in backfat and muscle. The effects of gene variants on transcript expression revealed interesting results. The LEPRc.1987C>T polymorphism showed opposite effects on LEPRb and LEPRa hypothalamic expression. In addition, one out of the 16 polymorphisms identified in the LEPR promoter region revealed high differential expression in hepatic LEPRa. These results suggest a LEPR isoform-specific regulation at tissue level. Conversely, non-differential expression of LEP conditional on the analyzed polymorphisms could be detected, indicating that its regulation is likely affected by other mechanisms rather than gene sequence variants. The present study has allowed a transcriptional characterization of LEP and LEPR isoforms on a range of tissues. Their expression patterns seem to indicate that both molecules develop peripheral

  14. Transcriptional Characterization of Porcine Leptin and Leptin Receptor Genes.

    Science.gov (United States)

    Pérez-Montarelo, Dafne; Fernández, Almudena; Barragán, Carmen; Noguera, Jose L; Folch, Josep M; Rodríguez, M Carmen; Ovilo, Cristina; Silió, Luis; Fernández, Ana I

    2013-01-01

    The leptin (LEP) and its receptor (LEPR) regulate food intake and energy balance through hypothalamic signaling. However, the LEP-LEPR axis seems to be more complex and its expression regulation has not been well described. In pigs, LEP and LEPR genes have been widely studied due to their relevance. Previous studies reported significant effects of SNPs located in both genes on growth and fatness traits. The aim of this study was to determine the expression profiles of LEP and LEPR across hypothalamic, adipose, hepatic and muscle tissues in Iberian x Landrace backcrossed pigs and to analyze the effects of gene variants on transcript abundance. To our knowledge, non porcine LEPR isoforms have been described rather than LEPRb. A short porcine LEPR isoform (LEPRa), that encodes a protein lacking the intracellular residues responsible of signal transduction, has been identified for the first time. The LEPRb isoform was only quantifiable in hypothalamus while LEPRa appeared widely expressed across tissues, but at higher levels in liver, suggesting that both isoforms would develop different roles. The unique LEP transcript showed expression in backfat and muscle. The effects of gene variants on transcript expression revealed interesting results. The LEPRc.1987C>T polymorphism showed opposite effects on LEPRb and LEPRa hypothalamic expression. In addition, one out of the 16 polymorphisms identified in the LEPR promoter region revealed high differential expression in hepatic LEPRa. These results suggest a LEPR isoform-specific regulation at tissue level. Conversely, non-differential expression of LEP conditional on the analyzed polymorphisms could be detected, indicating that its regulation is likely affected by other mechanisms rather than gene sequence variants. The present study has allowed a transcriptional characterization of LEP and LEPR isoforms on a range of tissues. Their expression patterns seem to indicate that both molecules develop peripheral roles apart from

  15. The Pioneer Transcription Factor FoxA Maintains an Accessible Nucleosome Configuration at Enhancers for Tissue-Specific Gene Activation.

    Science.gov (United States)

    Iwafuchi-Doi, Makiko; Donahue, Greg; Kakumanu, Akshay; Watts, Jason A; Mahony, Shaun; Pugh, B Franklin; Lee, Dolim; Kaestner, Klaus H; Zaret, Kenneth S

    2016-04-01

    Nuclear DNA wraps around core histones to form nucleosomes, which restricts the binding of transcription factors to gene regulatory sequences. Pioneer transcription factors can bind DNA sites on nucleosomes and initiate gene regulatory events, often leading to the local opening of chromatin. However, the nucleosomal configuration of open chromatin and the basis for its regulation is unclear. We combined low and high levels of micrococcal nuclease (MNase) digestion along with core histone mapping to assess the nucleosomal configuration at enhancers and promoters in mouse liver. We find that MNase-accessible nucleosomes, bound by transcription factors, are retained more at liver-specific enhancers than at promoters and ubiquitous enhancers. The pioneer factor FoxA displaces linker histone H1, thereby keeping enhancer nucleosomes accessible in chromatin and allowing other liver-specific transcription factors to bind and stimulate transcription. Thus, nucleosomes are not exclusively repressive to gene regulation when they are retained with, and exposed by, pioneer factors.

  16. Retention of transcription initiation factor sigma(70) in transcription elongation: Single-molecule analysis

    OpenAIRE

    Kapanidis, A. N.; Margeat, E; Laurence, T A; Doose, S.; Ho, S O; Mukhopadhyay, J.; Kortkhonjia, E; Mekler, V; Ebright, R H; S. Weiss

    2005-01-01

    We report a single-molecule assay that defines, simultaneously, the translocational position of a protein complex relative to DNA and the subunit stoichiometry of the complex. We applied the assay to define translocational positions and sigma(70) contents of bacterial transcription elongation complexes in vitro. The results confirm ensemble results indicating that a large fraction, similar to 70%-90%, of early elongation complexes retain sigma(70) and that a determinant for sigma(70) recognit...

  17. Transcriptional analysis of the DNA polymerase gene of shrimp white spot syndrome virus.

    Science.gov (United States)

    Chen, Li-Li; Wang, Han-Ching; Huang, Chiu-Jung; Peng, Shao-En; Chen, Yen-Gu; Lin, Shin-Jen; Chen, Wei-Yu; Dai, Chang-Feng; Yu, Hon-Tsen; Wang, Chung-Hsiung; Lo, Chu-Fang; Kou, Guang-Hsiung

    2002-09-15

    The white spot syndrome virus DNA polymerase (DNA pol) gene (WSSV dnapol) has already been tentatively identified based on the presence of highly conserved motifs, but it shows low overall homology with other DNA pols and is also much larger (2351 amino acid residues vs 913-1244 aa). In the present study we perform a transcriptional analysis of the WSSV dnapol gene using the total RNA isolated from WSSV-infected shrimp at different times after infection. Northern blot analysis with a WSSV dnapol-specific riboprobe found a major transcript of 7.5 kb. 5'-RACE revealed that the major transcription start point is located 27 nucleotides downstream of the TATA box, at the nucleotide residue A within a CAGT motif, one of the initiator (Inr) motifs of arthropods. In a temporal expression analysis using differential RT-PCR, WSSV dnapol transcripts were detected at low levels at 2-4 h.p.i., increased at 6 h.p.i., and remained fairly constant thereafter. This is similar to the previously reported transcription patterns for genes encoding the key enzyme of nucleotide metabolism, ribonucleotide reductase. Phylogenetic analysis showed that the DNA pols from three different WSSV isolates form an extremely tight cluster. In addition, similar to an earlier phylogenetic analysis of WSSV protein kinase, the phylogenetic tree of viral DNA pols further supports the suggestion that WSSV is a distinct virus (likely at the family level) that does not belong to any of the virus families that are currently recognized.

  18. Dynamic Post-Transcriptional Regulation of HIV-1 Gene Expression

    Science.gov (United States)

    Kula, Anna; Marcello, Alessandro

    2012-01-01

    Gene expression of the human immunodeficiency virus type 1 (HIV-1) is a highly regulated process. Basal transcription of the integrated provirus generates early transcripts that encode for the viral products Tat and Rev. Tat promotes the elongation of RNA polymerase while Rev mediates the nuclear export of viral RNAs that contain the Rev-responsive RNA element (RRE). These RNAs are exported from the nucleus to allow expression of Gag-Pol and Env proteins and for the production of full-length genomic RNAs. A balance exists between completely processed mRNAs and RRE-containing RNAs. Rev functions as an adaptor that recruits cellular factors to re-direct singly spliced and unspliced viral RNAs to nuclear export. The aim of this review is to address the dynamic regulation of this post-transcriptional pathway in light of recent findings that implicate several novel cellular cofactors of Rev function. PMID:24832221

  19. Dynamic Post-Transcriptional Regulation of HIV-1 Gene Expression

    Directory of Open Access Journals (Sweden)

    Alessandro Marcello

    2012-07-01

    Full Text Available Gene expression of the human immunodeficiency virus type 1 (HIV-1 is a highly regulated process. Basal transcription of the integrated provirus generates early transcripts that encode for the viral products Tat and Rev. Tat promotes the elongation of RNA polymerase while Rev mediates the nuclear export of viral RNAs that contain the Rev-responsive RNA element (RRE. These RNAs are exported from the nucleus to allow expression of Gag-Pol and Env proteins and for the production of full-length genomic RNAs. A balance exists between completely processed mRNAs and RRE-containing RNAs. Rev functions as an adaptor that recruits cellular factors to re-direct singly spliced and unspliced viral RNAs to nuclear export. The aim of this review is to address the dynamic regulation of this post-transcriptional pathway in light of recent findings that implicate several novel cellular cofactors of Rev function.

  20. Differentiation driven changes in the dynamic organization of Basal transcription initiation.

    Directory of Open Access Journals (Sweden)

    Giuseppina Giglia-Mari

    2009-10-01

    Full Text Available Studies based on cell-free systems and on in vitro-cultured living cells support the concept that many cellular processes, such as transcription initiation, are highly dynamic: individual proteins stochastically bind to their substrates and disassemble after reaction completion. This dynamic nature allows quick adaptation of transcription to changing conditions. However, it is unknown to what extent this dynamic transcription organization holds for postmitotic cells embedded in mammalian tissue. To allow analysis of transcription initiation dynamics directly into living mammalian tissues, we created a knock-in mouse model expressing fluorescently tagged TFIIH. Surprisingly and in contrast to what has been observed in cultured and proliferating cells, postmitotic murine cells embedded in their tissue exhibit a strong and long-lasting transcription-dependent immobilization of TFIIH. This immobilization is both differentiation driven and development dependent. Furthermore, although very statically bound, TFIIH can be remobilized to respond to new transcriptional needs. This divergent spatiotemporal transcriptional organization in different cells of the soma revisits the generally accepted highly dynamic concept of the kinetic framework of transcription and shows how basic processes, such as transcription, can be organized in a fundamentally different fashion in intact organisms as previously deduced from in vitro studies.

  1. Chromatin looping and eRNA transcription precede the transcriptional activation of gene in the β-globin locus.

    Science.gov (United States)

    Kim, Yea Woon; Lee, Sungkung; Yun, Jangmi; Kim, AeRi

    2015-03-18

    Enhancers are closely positioned with actively transcribed target genes by chromatin looping. Non-coding RNAs are often transcribed on active enhancers, referred to as eRNAs (enhancer RNAs). To explore the kinetics of enhancer-promoter looping and eRNA transcription during transcriptional activation, we induced the β-globin locus by chemical treatment and analysed cross-linking frequency between the β-globin gene and locus control region (LCR) and the amount of eRNAs transcribed on the LCR in a time course manner. The cross-linking frequency was increased after chemical induction but before the transcriptional activation of gene in the β-globin locus. Transcription of eRNAs was increased in concomitant with the increase in cross-linking frequency. These results show that chromatin looping and eRNA transcription precedes the transcriptional activation of gene. Concomitant occurrence of the two events suggests functional relationship between them.

  2. Characterization of S1 nuclease sensitive site at transcription initiation region of Attacus ricini rDNA

    Institute of Scientific and Technical Information of China (English)

    何明亮; 赵慕钧; 靳嘉瑞; 李载平

    1997-01-01

    A single-stranded S1 nuclease hypersensitive site which contains a d(AT)18 sequence structure locat-ed in the 5 -non transcription spacer of silkworm A . ricini ribosomal RNA gene has been reported[1] Using starved-refed silkworms, another S1 nuclease sensitive site was found existing in the rDNA chromatin, while under merely starving, this S1 sensitive site disappeared[2] . Recently this inducible S1 sensitive site has been further determined. It consists of a d(GT)10-d(AT)10 special DNA sequence at the transcription initiation region, and shows a behavior of ease in DNA-unwinding, indicating that S1 nuclease sensitive sites may have an important function in the regulation of rDNA transcription and replication.

  3. Stochastic model for gene transcription on Drosophila melanogaster embryos

    Science.gov (United States)

    Prata, Guilherme N.; Hornos, José Eduardo M.; Ramos, Alexandre F.

    2016-02-01

    We examine immunostaining experimental data for the formation of stripe 2 of even-skipped (eve) transcripts on D. melanogaster embryos. An estimate of the factor converting immunofluorescence intensity units into molecular numbers is given. The analysis of the eve dynamics at the region of stripe 2 suggests that the promoter site of the gene has two distinct regimes: an earlier phase when it is predominantly activated until a critical time when it becomes mainly repressed. That suggests proposing a stochastic binary model for gene transcription on D. melanogaster embryos. Our model has two random variables: the transcripts number and the state of the source of mRNAs given as active or repressed. We are able to reproduce available experimental data for the average number of transcripts. An analysis of the random fluctuations on the number of eves and their consequences on the spatial precision of stripe 2 is presented. We show that the position of the anterior or posterior borders fluctuate around their average position by ˜1 % of the embryo length, which is similar to what is found experimentally. The fitting of data by such a simple model suggests that it can be useful to understand the functions of randomness during developmental processes.

  4. Transcriptional analysis of exopolysaccharides biosynthesis gene clusters in Lactobacillus plantarum.

    Science.gov (United States)

    Vastano, Valeria; Perrone, Filomena; Marasco, Rosangela; Sacco, Margherita; Muscariello, Lidia

    2016-04-01

    Exopolysaccharides (EPS) from lactic acid bacteria contribute to specific rheology and texture of fermented milk products and find applications also in non-dairy foods and in therapeutics. Recently, four clusters of genes (cps) associated with surface polysaccharide production have been identified in Lactobacillus plantarum WCFS1, a probiotic and food-associated lactobacillus. These clusters are involved in cell surface architecture and probably in release and/or exposure of immunomodulating bacterial molecules. Here we show a transcriptional analysis of these clusters. Indeed, RT-PCR experiments revealed that the cps loci are organized in five operons. Moreover, by reverse transcription-qPCR analysis performed on L. plantarum WCFS1 (wild type) and WCFS1-2 (ΔccpA), we demonstrated that expression of three cps clusters is under the control of the global regulator CcpA. These results, together with the identification of putative CcpA target sequences (catabolite responsive element CRE) in the regulatory region of four out of five transcriptional units, strongly suggest for the first time a role of the master regulator CcpA in EPS gene transcription among lactobacilli.

  5. Evaluation of new reference genes in papaya for accurate transcript normalization under different experimental conditions.

    Science.gov (United States)

    Zhu, Xiaoyang; Li, Xueping; Chen, Weixin; Chen, Jianye; Lu, Wangjin; Chen, Lei; Fu, Danwen

    2012-01-01

    Real-time reverse transcription PCR (RT-qPCR) is a preferred method for rapid and accurate quantification of gene expression studies. Appropriate application of RT-qPCR requires accurate normalization though the use of reference genes. As no single reference gene is universally suitable for all experiments, thus reference gene(s) validation under different experimental conditions is crucial for RT-qPCR analysis. To date, only a few studies on reference genes have been done in other plants but none in papaya. In the present work, we selected 21 candidate reference genes, and evaluated their expression stability in 246 papaya fruit samples using three algorithms, geNorm, NormFinder and RefFinder. The samples consisted of 13 sets collected under different experimental conditions, including various tissues, different storage temperatures, different cultivars, developmental stages, postharvest ripening, modified atmosphere packaging, 1-methylcyclopropene (1-MCP) treatment, hot water treatment, biotic stress and hormone treatment. Our results demonstrated that expression stability varied greatly between reference genes and that different suitable reference gene(s) or combination of reference genes for normalization should be validated according to the experimental conditions. In general, the internal reference genes EIF (Eukaryotic initiation factor 4A), TBP1 (TATA binding protein 1) and TBP2 (TATA binding protein 2) genes had a good performance under most experimental conditions, whereas the most widely present used reference genes, ACTIN (Actin 2), 18S rRNA (18S ribosomal RNA) and GAPDH (Glyceraldehyde-3-phosphate dehydrogenase) were not suitable in many experimental conditions. In addition, two commonly used programs, geNorm and Normfinder, were proved sufficient for the validation. This work provides the first systematic analysis for the selection of superior reference genes for accurate transcript normalization in papaya under different experimental conditions.

  6. Evaluation of new reference genes in papaya for accurate transcript normalization under different experimental conditions.

    Directory of Open Access Journals (Sweden)

    Xiaoyang Zhu

    Full Text Available Real-time reverse transcription PCR (RT-qPCR is a preferred method for rapid and accurate quantification of gene expression studies. Appropriate application of RT-qPCR requires accurate normalization though the use of reference genes. As no single reference gene is universally suitable for all experiments, thus reference gene(s validation under different experimental conditions is crucial for RT-qPCR analysis. To date, only a few studies on reference genes have been done in other plants but none in papaya. In the present work, we selected 21 candidate reference genes, and evaluated their expression stability in 246 papaya fruit samples using three algorithms, geNorm, NormFinder and RefFinder. The samples consisted of 13 sets collected under different experimental conditions, including various tissues, different storage temperatures, different cultivars, developmental stages, postharvest ripening, modified atmosphere packaging, 1-methylcyclopropene (1-MCP treatment, hot water treatment, biotic stress and hormone treatment. Our results demonstrated that expression stability varied greatly between reference genes and that different suitable reference gene(s or combination of reference genes for normalization should be validated according to the experimental conditions. In general, the internal reference genes EIF (Eukaryotic initiation factor 4A, TBP1 (TATA binding protein 1 and TBP2 (TATA binding protein 2 genes had a good performance under most experimental conditions, whereas the most widely present used reference genes, ACTIN (Actin 2, 18S rRNA (18S ribosomal RNA and GAPDH (Glyceraldehyde-3-phosphate dehydrogenase were not suitable in many experimental conditions. In addition, two commonly used programs, geNorm and Normfinder, were proved sufficient for the validation. This work provides the first systematic analysis for the selection of superior reference genes for accurate transcript normalization in papaya under different experimental

  7. Role of the σ54 Activator Interacting Domain in Bacterial Transcription Initiation

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, Alexander R. [Univ. of California, Berkeley, CA (United States); Wemmer, David E. [Univ. of California, Berkeley, CA (United States)

    2016-10-11

    Bacterial sigma factors are subunits of RNA polymerase that direct the holoenzyme to specific sets of promoters in the genome and are a central element of regulating transcription. Most polymerase holoenzymes open the promoter and initiate transcription rapidly after binding. However, polymerase containing the members of the σ54 family must be acted on by a transcriptional activator before DNA opening and initiation occur. A key domain in these transcriptional activators forms a hexameric AAA + ATPase that acts through conformational changes brought on by ATP hydrolysis. Contacts between the transcriptional activator and σ54 are primarily made through an N-terminal σ54 activator interacting domain (AID). To better understand this mechanism of bacterial transcription initiation, we characterized the σ54 AID by NMR spectroscopy and other biophysical methods and show that it is an intrinsically disordered domain in σ54 alone. In this paper, we identified a minimal construct of the Aquifex aeolicus σ54 AID that consists of two predicted helices and retains native-like binding affinity for the transcriptional activator NtrC1. Using the NtrC1 ATPase domain, bound with the non-hydrolyzable ATP analog ADP-beryllium fluoride, we studied the NtrC1–σ54 AID complex using NMR spectroscopy. We show that the σ54 AID becomes structured after associating with the core loops of the transcriptional activators in their ATP state and that the primary site of the interaction is the first predicted helix. Finally, understanding this complex, formed as the first step toward initiation, will help unravel the mechanism of σ54 bacterial transcription initiation.

  8. Characterization of a transcription factor involved in mother cell specific transcription of the yeast HO gene.

    OpenAIRE

    Stillman, D J; Bankier, A T; Seddon, A; Groenhout, E G; Nasmyth, K A

    1988-01-01

    The yeast HO gene, which encodes an endonuclease involved in initiating mating type interconversion, is expressed in mother cells but not in daughters. It has been demonstrated that the SWI5 gene, which is an activator of HO expression, plays a critical role in this differential mother/daughter expression of HO. In this paper we describe the cloning and sequencing of the SWI5 gene. The predicted amino acid sequence derived from the cloned SWI5 gene shows homology with the repeated DNA-binding...

  9. Post-transcriptional regulation of the chicken thymidine kinase gene.

    Science.gov (United States)

    Groudine, M; Casimir, C

    1984-02-10

    In attempting to understand the molecular basis of the control of chicken thymidine kinase (cTK) gene expression, we have examined the steady state cTK RNA content, and the patterns of DNA methylation, chromatin structure and endogenous nuclear runoff transcription of this gene in dividing and non-dividing cells. Our results reveal that the steady state level of cTK poly A+ RNA is correlated with the divisional activity of normal avian cells and tissues. However, no differences in the pattern of Hpa II site methylation or chromatin structure are found among cells containing high or undetectable levels of steady state cTK RNA. In addition, no differences in cTK transcription as assayed by nuclear runoff experiments are detectable in isolated nuclei derived from dividing or non-dividing cells containing high or low levels of steady state cTK RNA. These results suggest that the principal control of chicken thymidine kinase gene expression is post-transcriptional in nature.

  10. The obesity-associated Fto gene is a transcriptional coactivator.

    Science.gov (United States)

    Wu, Qiong; Saunders, Rudel A; Szkudlarek-Mikho, Maria; Serna, Ivana de la; Chin, Khew-Voon

    2010-10-22

    The fat mass and obesity associated, FTO, gene has been shown to be associated with obesity in human in several genome-wide association scans. In vitro studies suggest that Fto may function as a single-stranded DNA demethylase. In addition, homologous recombination-targeted knockout of Fto in mice resulted in growth retardation, loss of white adipose tissue, and increase energy metabolism and systemic sympathetic activation. Despite these intense investigations, the exact function of Fto remains unclear. We show here that Fto is a transcriptional coactivator that enhances the transactivation potential of the CCAAT/enhancer binding proteins (C/EBPs) from unmethylated as well as methylation-inhibited gene promoters. Fto also exhibits nuclease activity. We showed further that Fto enhances the binding C/EBP to unmethylated and methylated DNA. The coactivator role of FTO in modulating the transcriptional regulation of adipogenesis by C/EBPs is consistent with the temporal progressive loss of adipose tissue in the Fto-deficient mice, thus suggesting a role for Fto in the epigenetic regulation of the development and maintenance of fat tissue. How FTO reactivates transcription from methyl-repressed gene needs to be further investigated.

  11. Differential gene expression regulated by oscillatory transcription factors.

    Directory of Open Access Journals (Sweden)

    Luca Cerone

    Full Text Available Cells respond to changes in the internal and external environment by a complex regulatory system whose end-point is the activation of transcription factors controlling the expression of a pool of ad-hoc genes. Recent experiments have shown that certain stimuli may trigger oscillations in the concentration of transcription factors such as NF-κB and p53 influencing the final outcome of the genetic response. In this study we investigate the role of oscillations in the case of three different well known gene regulatory mechanisms using mathematical models based on ordinary differential equations and numerical simulations. We considered the cases of direct regulation, two-step regulation and feed-forward loops, and characterized their response to oscillatory input signals both analytically and numerically. We show that in the case of indirect two-step regulation the expression of genes can be turned on or off in a frequency dependent manner, and that feed-forward loops are also able to selectively respond to the temporal profile of oscillating transcription factors.

  12. Neurotoxocarosis alters myelin protein gene transcription and expression.

    Science.gov (United States)

    Heuer, Lea; Beyerbach, Martin; Lühder, Fred; Beineke, Andreas; Strube, Christina

    2015-06-01

    Neurotoxocarosis is an infection of the central nervous system caused by migrating larvae of the common dog and cat roundworms (Toxocara canis and Toxocara cati), which are zoonotic agents. As these parasites are prevalent worldwide and neuropathological and molecular investigations on neurotoxocarosis are scare, this study aims to characterise nerve fibre demyelination associated with neurotoxocarosis on a molecular level. Transcription of eight myelin-associated genes (Cnp, Mag, Mbp, Mog, Mrf-1, Nogo-A, Plp1, Olig2) was determined in the mouse model during six time points of the chronic phase of infection using qRT-PCR. Expression of selected proteins was analysed by Western blotting or immunohistochemistry. Additionally, demyelination and neuronal damage were investigated histologically. Significant differences (p ≤ 0.05) between transcription rates of T. canis-infected and uninfected control mice were detected for all analysed genes while T. cati affected five of eight investigated genes. Interestingly, 2', 3 ´-cyclic nucleotide 3'-phosphodiesterase (Cnp) and myelin oligodendrocyte glycoprotein (Mog) were upregulated in both T. canis- and T. cati-infected mice preceding demyelination. Later, CNPase expression was additionally enhanced. As expected, myelin basic protein (Mbp) was downregulated in cerebra and cerebella of T. canis-infected mice when severe demyelination was present 120 days post infectionem (dpi). The transcriptional pattern observed in the present study appears to reflect direct traumatic and hypoxic effects of larval migration as well as secondary processes including host immune reactions, demyelination and attempts to remyelinate damaged areas.

  13. Transcriptional regulation of cathelicidin genes in chicken bone marrow cells.

    Science.gov (United States)

    Lee, Sang In; Jang, Hyun June; Jeon, Mi-hyang; Lee, Mi Ock; Kim, Jeom Sun; Jeon, Ik-Soo; Byun, Sung June

    2016-04-01

    Cathelicidins form a family of vertebrate-specific immune molecules with an evolutionarily conserved gene structure. We analyzed the expression patterns of cathelicidin genes (CAMP, CATH3, and CATHB1) in chicken bone marrow cells (BMCs) and chicken embryonic fibroblasts (CEFs). We found that CAMP and CATHB1 were significantly up-regulated in BMCs, whereas the expression of CATH3 did not differ significantly between BMCs and CEFs. To study the mechanism underlying the up-regulation of cathelicidin genes in BMCs, we predicted the transcription factors (TFs) that bind to the 5'-flanking regions of cathelicidin genes. CEBPA, EBF1, HES1, MSX1, and ZIC3 were up-regulated in BMCs compared to CEFs. Subsequently, when a siRNA-mediated knockdown assay was performed for MSX1, the expression of CAMP and CATHB1 was decreased in BMCs. We also showed that the transcriptional activity of the CAMP promoter was decreased by mutation of the MSX1-binding sites present within the 5'-flanking region of CAMP. These results increase our understanding of the regulatory mechanisms controlling cathelicidin genes in BMCs.

  14. Synaptic, transcriptional and chromatin genes disrupted in autism.

    Science.gov (United States)

    De Rubeis, Silvia; He, Xin; Goldberg, Arthur P; Poultney, Christopher S; Samocha, Kaitlin; Cicek, A Erucment; Kou, Yan; Liu, Li; Fromer, Menachem; Walker, Susan; Singh, Tarinder; Klei, Lambertus; Kosmicki, Jack; Shih-Chen, Fu; Aleksic, Branko; Biscaldi, Monica; Bolton, Patrick F; Brownfeld, Jessica M; Cai, Jinlu; Campbell, Nicholas G; Carracedo, Angel; Chahrour, Maria H; Chiocchetti, Andreas G; Coon, Hilary; Crawford, Emily L; Curran, Sarah R; Dawson, Geraldine; Duketis, Eftichia; Fernandez, Bridget A; Gallagher, Louise; Geller, Evan; Guter, Stephen J; Hill, R Sean; Ionita-Laza, Juliana; Jimenz Gonzalez, Patricia; Kilpinen, Helena; Klauck, Sabine M; Kolevzon, Alexander; Lee, Irene; Lei, Irene; Lei, Jing; Lehtimäki, Terho; Lin, Chiao-Feng; Ma'ayan, Avi; Marshall, Christian R; McInnes, Alison L; Neale, Benjamin; Owen, Michael J; Ozaki, Noriio; Parellada, Mara; Parr, Jeremy R; Purcell, Shaun; Puura, Kaija; Rajagopalan, Deepthi; Rehnström, Karola; Reichenberg, Abraham; Sabo, Aniko; Sachse, Michael; Sanders, Stephan J; Schafer, Chad; Schulte-Rüther, Martin; Skuse, David; Stevens, Christine; Szatmari, Peter; Tammimies, Kristiina; Valladares, Otto; Voran, Annette; Li-San, Wang; Weiss, Lauren A; Willsey, A Jeremy; Yu, Timothy W; Yuen, Ryan K C; Cook, Edwin H; Freitag, Christine M; Gill, Michael; Hultman, Christina M; Lehner, Thomas; Palotie, Aaarno; Schellenberg, Gerard D; Sklar, Pamela; State, Matthew W; Sutcliffe, James S; Walsh, Christiopher A; Scherer, Stephen W; Zwick, Michael E; Barett, Jeffrey C; Cutler, David J; Roeder, Kathryn; Devlin, Bernie; Daly, Mark J; Buxbaum, Joseph D

    2014-11-13

    The genetic architecture of autism spectrum disorder involves the interplay of common and rare variants and their impact on hundreds of genes. Using exome sequencing, here we show that analysis of rare coding variation in 3,871 autism cases and 9,937 ancestry-matched or parental controls implicates 22 autosomal genes at a false discovery rate (FDR) < 0.05, plus a set of 107 autosomal genes strongly enriched for those likely to affect risk (FDR < 0.30). These 107 genes, which show unusual evolutionary constraint against mutations, incur de novo loss-of-function mutations in over 5% of autistic subjects. Many of the genes implicated encode proteins for synaptic formation, transcriptional regulation and chromatin-remodelling pathways. These include voltage-gated ion channels regulating the propagation of action potentials, pacemaking and excitability-transcription coupling, as well as histone-modifying enzymes and chromatin remodellers-most prominently those that mediate post-translational lysine methylation/demethylation modifications of histones.

  15. A new PKLR gene mutation in the R-type promoter region affects the gene transcription causing pyruvate kinase deficiency.

    Science.gov (United States)

    Manco, L; Ribeiro, M L; Máximo, V; Almeida, H; Costa, A; Freitas, O; Barbot, J; Abade, A; Tamagnini, G

    2000-09-01

    Mutations in the PKLR gene responsible for pyruvate kinase (PK)-deficient anaemia are mainly located in the coding regions: 11 are in the splicing sites and, recently, three mutations have been described in the promoter region. We now report a novel point mutation A-->G on nucleotide 72, upstream from the initiation codon of the PKLR gene, in four Portuguese PK-deficient patients. This new regulatory mutation occurs within the most proximal of the four GATA motifs (GATA-A element) in the R-type promoter region. In two patients who were homozygous for this mutation, a semiquantitative reverse transcription polymerase chain reaction (PCR) procedure was used to evaluate the amount of R-PK mRNA transcript in the reticulocytes. The mRNA level was about five times lower than in normal controls, demonstrating that the PKLR gene transcription is severely affected, most probably because the -72A-->G point mutation disables the binding of the erythroid transcription factor GATA-1 to the GATA-A element. Supporting these data, the two patients homozygous for the -72A-->G mutation had severe haemolytic anaemia and were transfusion dependent until splenectomy. Two other patients who were compound heterozygous for this mutation and the previously described missense mutation 1456C-->T had a mild condition.

  16. Large heterogeneity of mitochondrial DNA transcription and initiation of replication exposed by single-cell imaging.

    Science.gov (United States)

    Chatre, Laurent; Ricchetti, Miria

    2013-02-15

    Mitochondrial DNA (mtDNA) replication and transcription are crucial for cell function, but these processes are poorly understood at the single-cell level. We describe a novel fluorescence in situ hybridization protocol, called mTRIP (mitochondrial transcription and replication imaging protocol), that reveals simultaneously mtDNA and RNA, and that can also be coupled to immunofluorescence for in situ protein examination. mTRIP reveals mitochondrial structures engaged in initiation of DNA replication by identification of a specific sequence in the regulatory D-loop, as well as unique transcription profiles in single human cells. We observe and quantify at least three classes of mitochondrial structures: (i) replication initiation active and transcript-positive (Ia-Tp); (ii) replication initiation silent and transcript-positive (Is-Tp); and (iii) replication initiation silent and transcript-negative (Is-Tn). Thus, individual mitochondria are dramatically heterogeneous within the same cell. Moreover, mTRIP exposes a mosaic of distinct nucleic acid patterns in the D-loop, including H-strand versus L-strand transcripts, and uncoupled rRNA transcription and mtDNA initiation of replication, which might have functional consequences in the regulation of the mtDNA. Finally, mTRIP identifies altered mtDNA processing in cells with unbalanced mtDNA content and function, including in human mitochondrial disorders. Thus, mTRIP reveals qualitative and quantitative alterations that provide additional tools for elucidating the dynamics of mtDNA processing in single cells and mitochondrial dysfunction in diseases.

  17. Discrete redox signaling pathways regulate photosynthetic light-harvesting and chloroplast gene transcription.

    Directory of Open Access Journals (Sweden)

    John F Allen

    Full Text Available In photosynthesis in chloroplasts, two related regulatory processes balance the actions of photosystems I and II. These processes are short-term, post-translational redistribution of light-harvesting capacity, and long-term adjustment of photosystem stoichiometry initiated by control of chloroplast DNA transcription. Both responses are initiated by changes in the redox state of the electron carrier, plastoquinone, which connects the two photosystems. Chloroplast Sensor Kinase (CSK is a regulator of transcription of chloroplast genes for reaction centres of the two photosystems, and a sensor of plastoquinone redox state. We asked whether CSK is also involved in regulation of absorbed light energy distribution by phosphorylation of light-harvesting complex II (LHC II. Chloroplast thylakoid membranes isolated from a CSK T-DNA insertion mutant and from wild-type Arabidopsis thaliana exhibit similar light- and redox-induced (32P-labelling of LHC II and changes in 77 K chlorophyll fluorescence emission spectra, while room-temperature chlorophyll fluorescence emission transients from Arabidopsis leaves are perturbed by inactivation of CSK. The results indicate indirect, pleiotropic effects of reaction centre gene transcription on regulation of photosynthetic light-harvesting in vivo. A single, direct redox signal is transmitted separately to discrete transcriptional and post-translational branches of an integrated cytoplasmic regulatory system.

  18. Transcriptional Truncation of the Long Coding Imprinted Gene Usp29.

    Directory of Open Access Journals (Sweden)

    Hongzhi He

    Full Text Available Usp29 (Ubiquitin-specific protease 29 is a paternally expressed gene located upstream of another imprinted gene Peg3. In the current study, the transcription of this long coding gene spanning a 250-kb genomic distance was truncated using a knockin allele. According to the results, paternal transmission of the mutant allele resulted in reduced body and litter sizes whereas the maternal transmission caused no obvious effects. In the paternal mutant, the expression levels of Usp29 were reduced to 14-18% level of the wild-type littermates due to the Poly-A signal included in the knockin cassette. Expression analyses further revealed an unusual female-specific up-regulation of the adjacent imprinted gene Zfp264 in the mutant. Consistent with this, the promoter of Zfp264 was hypomethylated only in the female mutant. Interestingly, this female-specific hypomethylation by the knockin allele was not detected in the offspring of an interspecific crossing, indicating its sensitivity to genetic background. Overall, the results suggest that the transcription of Usp29 may be involved in DNA methylation setting of Zfp264 promoter in a sex-specific manner.

  19. WRKY transcription factor genes in wild rice Oryza nivara.

    Science.gov (United States)

    Xu, Hengjian; Watanabe, Kenneth A; Zhang, Liyuan; Shen, Qingxi J

    2016-08-01

    The WRKY transcription factor family is one of the largest gene families involved in plant development and stress response. Although many WRKY genes have been studied in cultivated rice (Oryza sativa), the WRKY genes in the wild rice species Oryza nivara, the direct progenitor of O. sativa, have not been studied. O. nivara shows abundant genetic diversity and elite drought and disease resistance features. Herein, a total of 97 O. nivara WRKY (OnWRKY) genes were identified. RNA-sequencing demonstrates that OnWRKY genes were generally expressed at higher levels in the roots of 30-day-old plants. Bioinformatic analyses suggest that most of OnWRKY genes could be induced by salicylic acid, abscisic acid, and drought. Abundant potential MAPK phosphorylation sites in OnWRKYs suggest that activities of most OnWRKYs can be regulated by phosphorylation. Phylogenetic analyses of OnWRKYs support a novel hypothesis that ancient group IIc OnWRKYs were the original ancestors of only some group IIc and group III WRKYs. The analyses also offer strong support that group IIc OnWRKYs containing the HVE sequence in their zinc finger motifs were derived from group Ia WRKYs. This study provides a solid foundation for the study of the evolution and functions of WRKY genes in O. nivara.

  20. The onset of foreign gene transcription in nuclear-transferred embryos of fish

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The transcriptional onset of hGH-transgene in fish was studied in the following three cases: the first is in MThGH-transgenic F4 common carp (Cyprinus carpio) embryos, the second is in nuclear-transferred embryos supported by the transgenic F4 embryonic nuclei, and the third is in nuclear-transferred embryos supported by the transgenic F4 tail-fin nuclei. RT-PCR results show that the hGH-transgene initiates its transcriptional activity from early-gastrula stage, the early blas-tula stage and even 16-cell stage in the first, second and third cases, respectively. It looks like that fish egg cytoplasm could just offer a very restricted reprogramming on transcriptional activity of specific gene in differentiated cell nuclei by nuclear transplantation.

  1. The onset of foreign gene transcription in nuclear-transferred embryos of fish

    Institute of Scientific and Technical Information of China (English)

    孙永华; 陈尚萍; 汪亚平; 朱作言

    2000-01-01

    The transcriptional onset ot hGH-transgene in fish was studied in the following three cases: the first is in MThGH-transgenic F4 common carp (Cyprinus carpio) embryos, the second is in nuclear-transferred embryos supported by the transgenic F4 embryonic nuclei, and the third is in nuclear-transferred embryos supported by the transgenic F4 tail-fin nuclei. RT-PCR results show that the hGH-transgene initiates its transcriptional activity from early-gastrula stage, the early blastula stage and even 16-cell stage in the first, second and third cases, respectively. It looks like that fish egg cytoplasm could just offer a very restricted reprogramming on transcriptional activity of specific gene in differentiated cell nuclei by nuclear transplantation.

  2. Transcriptional silencing of multiple genes in trophozoites of Entamoeba histolytica.

    Directory of Open Access Journals (Sweden)

    Rivka Bracha

    2006-05-01

    Full Text Available In a previous work we described the transcriptional silencing of the amoebapore A (AP-A gene (Ehap-a of Entamoeba histolytica strain HM-1:IMSS. The silencing occurred following transfection with a plasmid containing a 5' upstream region (473 bp of Ehap-a that included a truncated segment (140 bp of a short interspersed nuclear element (SINE1. Silencing remained in effect even after removal of the plasmid (clone G3. Neither short interfering RNA nor methylated DNA were detected, but the chromatin domain of Ehap-a in the gene-silenced trophozoites was modified. Two other similar genes (Ehap-b and one encoding a Saposin-like protein, SAPLIP 1 also became silenced. In the present work we demonstrate the silencing of a second gene of choice, one that encodes the light subunit of the Gal/GalNAc inhibitable lectin (Ehlgl1 and the other, the cysteine proteinase 5 (EhCP-5. This silencing occurred in G3 trophozoites transfected with a plasmid in which the 473 bp 5' upstream Ehap-a fragment was directly ligated to the second gene. Transcriptional silencing occurred in both the transgene and the chromosomal gene. SINE1 sequences were essential, as was a direct connection between the Ehap-a upstream region and the beginning of the open reading frame of the second gene. Gene silencing did not occur in strain HM-1:IMSS with any of these plasmid constructs. The trophozoites with two silenced genes were virulence-attenuated as were those of clone G3. In addition, trophozoites not expressing Lgl1 and AP-A proteins had a significantly reduced ability to cap the Gal/GalNAc-lectin to the uroid region when incubated with antibodies against the heavy (170 kDa subunit of the lectin. Lysates of trophozoites lacking cysteine proteinase 5 and AP-A proteins had 30% less cysteine proteinase activity than those of HM-1:IMSS strain or the G3 clone. Silencing of other genes in G3 amoebae could provide a model to study their various functions. In addition, double gene

  3. Transcriptional silencing of multiple genes in trophozoites of Entamoeba histolytica.

    Directory of Open Access Journals (Sweden)

    2006-05-01

    Full Text Available In a previous work we described the transcriptional silencing of the amoebapore A (AP-A gene (Ehap-a of Entamoeba histolytica strain HM-1:IMSS. The silencing occurred following transfection with a plasmid containing a 5' upstream region (473 bp of Ehap-a that included a truncated segment (140 bp of a short interspersed nuclear element (SINE1. Silencing remained in effect even after removal of the plasmid (clone G3. Neither short interfering RNA nor methylated DNA were detected, but the chromatin domain of Ehap-a in the gene-silenced trophozoites was modified. Two other similar genes (Ehap-b and one encoding a Saposin-like protein, SAPLIP 1 also became silenced. In the present work we demonstrate the silencing of a second gene of choice, one that encodes the light subunit of the Gal/GalNAc inhibitable lectin (Ehlgl1 and the other, the cysteine proteinase 5 (EhCP-5. This silencing occurred in G3 trophozoites transfected with a plasmid in which the 473 bp 5' upstream Ehap-a fragment was directly ligated to the second gene. Transcriptional silencing occurred in both the transgene and the chromosomal gene. SINE1 sequences were essential, as was a direct connection between the Ehap-a upstream region and the beginning of the open reading frame of the second gene. Gene silencing did not occur in strain HM-1:IMSS with any of these plasmid constructs. The trophozoites with two silenced genes were virulence-attenuated as were those of clone G3. In addition, trophozoites not expressing Lgl1 and AP-A proteins had a significantly reduced ability to cap the Gal/GalNAc-lectin to the uroid region when incubated with antibodies against the heavy (170 kDa subunit of the lectin. Lysates of trophozoites lacking cysteine proteinase 5 and AP-A proteins had 30% less cysteine proteinase activity than those of HM-1:IMSS strain or the G3 clone. Silencing of other genes in G3 amoebae could provide a model to study their various functions. In addition, double gene

  4. Transcription of meiotic-like-pathway genes in Giardia intestinalis

    Directory of Open Access Journals (Sweden)

    Sandra P Melo

    2008-06-01

    Full Text Available The reproductive mechanism of Giardia intestinalis, considered one of the earliest divergent eukaryotes, has not been fully defined yet. Some evidence supports the hypothesis that Giardia is an exclusively asexual organism with a clonal population structure. However, the high genetic variability, the variation in ploidy during its life cycle, the low heterozygosity and the existence of genes involved in the meiotic-like recombination pathway in the parasite's genome cast doubt on exclusively asexual nature of Giardia. In this work, semiquantitative RT-PCR analysis was used to assess the transcription pattern of three meiosis-like-specific genes involved in homologues recombination: dmc1, hop1 and spo11. The mRNAs were amplified during the parasite's differentiation processes, encystation and excystation, and expression was found at each stage of its life cycle. A semiquantitative assessment also suggests that expression of some of the genes is regulated during encystation process.

  5. Transcription of meiotic-like-pathway genes in Giardia intestinalis.

    Science.gov (United States)

    Melo, Sandra P; Gómez, Vanessa; Castellanos, Isabel C; Alvarado, Magda E; Hernández, Paula C; Gallego, Amanda; Wasserman, Moisés

    2008-06-01

    The reproductive mechanism of Giardia intestinalis, considered one of the earliest divergent eukaryotes, has not been fully defined yet. Some evidence supports the hypothesis that Giardia is an exclusively asexual organism with a clonal population structure. However, the high genetic variability, the variation in ploidy during its life cycle, the low heterozygosity and the existence of genes involved in the meiotic-like recombination pathway in the parasite's genome cast doubt on exclusively asexual nature of Giardia. In this work, semiquantitative RT-PCR analysis was used to assess the transcription pattern of three meiosis-like-specific genes involved in homologues recombination: dmc1, hop1 and spo11. The mRNAs were amplified during the parasite's differentiation processes, encystation and excystation, and expression was found at each stage of its life cycle. A semiquantitative assessment also suggests that expression of some of the genes is regulated during encystation process.

  6. Gene transcriptional networks integrate microenvironmental signals in human breast cancer.

    Science.gov (United States)

    Xu, Ren; Mao, Jian-Hua

    2011-04-01

    A significant amount of evidence shows that microenvironmental signals generated from extracellular matrix (ECM) molecules, soluble factors, and cell-cell adhesion complexes cooperate at the extra- and intracellular level. This synergetic action of microenvironmental cues is crucial for normal mammary gland development and breast malignancy. To explore how the microenvironmental genes coordinate in human breast cancer at the genome level, we have performed gene co-expression network analysis in three independent microarray datasets and identified two microenvironment networks in human breast cancer tissues. Network I represents crosstalk and cooperation of ECM microenvironment and soluble factors during breast malignancy. The correlated expression of cytokines, chemokines, and cell adhesion proteins in Network II implicates the coordinated action of these molecules in modulating the immune response in breast cancer tissues. These results suggest that microenvironmental cues are integrated with gene transcriptional networks to promote breast cancer development.

  7. RNA polymerase II pausing downstream of core histone genes is different from genes producing polyadenylated transcripts.

    Directory of Open Access Journals (Sweden)

    Krishanpal Anamika

    Full Text Available Recent genome-wide chromatin immunoprecipitation coupled high throughput sequencing (ChIP-seq analyses performed in various eukaryotic organisms, analysed RNA Polymerase II (Pol II pausing around the transcription start sites of genes. In this study we have further investigated genome-wide binding of Pol II downstream of the 3' end of the annotated genes (EAGs by ChIP-seq in human cells. At almost all expressed genes we observed Pol II occupancy downstream of the EAGs suggesting that Pol II pausing 3' from the transcription units is a rather common phenomenon. Downstream of EAGs Pol II transcripts can also be detected by global run-on and sequencing, suggesting the presence of functionally active Pol II. Based on Pol II occupancy downstream of EAGs we could distinguish distinct clusters of Pol II pause patterns. On core histone genes, coding for non-polyadenylated transcripts, Pol II occupancy is quickly dropping after the EAG. In contrast, on genes, whose transcripts undergo polyA tail addition [poly(A(+], Pol II occupancy downstream of the EAGs can be detected up to 4-6 kb. Inhibition of polyadenylation significantly increased Pol II occupancy downstream of EAGs at poly(A(+ genes, but not at the EAGs of core histone genes. The differential genome-wide Pol II occupancy profiles 3' of the EAGs have also been confirmed in mouse embryonic stem (mES cells, indicating that Pol II pauses genome-wide downstream of the EAGs in mammalian cells. Moreover, in mES cells the sharp drop of Pol II signal at the EAG of core histone genes seems to be independent of the phosphorylation status of the C-terminal domain of the large subunit of Pol II. Thus, our study uncovers a potential link between different mRNA 3' end processing mechanisms and consequent Pol II transcription termination processes.

  8. HTLV-I antisense transcripts initiating in the 3'LTR are alternatively spliced and polyadenylated

    Directory of Open Access Journals (Sweden)

    Marriott Susan J

    2006-03-01

    Full Text Available Abstract Background Antisense transcription in retroviruses has been suggested for both HIV-1 and HTLV-I, although the existence and coding potential of these transcripts remain controversial. Thorough characterization is required to demonstrate the existence of these transcripts and gain insight into their role in retrovirus biology. Results This report provides the first complete characterization of an antisense retroviral transcript that encodes the previously described HTLV-I HBZ protein. In this study, we show that HBZ-encoding transcripts initiate in the 3' long terminal repeat (LTR at several positions and consist of two alternatively spliced variants (SP1 and SP2. Expression of the most abundant HBZ spliced variant (SP1 could be detected in different HTLV-I-infected cell lines and importantly in cellular clones isolated from HTLV-I-infected patients. Polyadenylation of HBZ RNA occurred at a distance of 1450 nucleotides downstream of the HBZ stop codon in close proximity of a typical polyA signal. We have also determined that translation mostly initiates from the first exon located in the 3' LTR and that the HBZ isoform produced from the SP1 spliced variant demonstrated inhibition of Tax and c-Jun-dependent transcriptional activation. Conclusion These results conclusively demonstrate the existence of antisense transcription in retroviruses, which likely plays a role in HTLV-I-associated pathogenesis through HBZ protein synthesis.

  9. Co-transcription of the celC gene cluster in Clostridium thermocellum.

    Science.gov (United States)

    Newcomb, Michael; Millen, Jonathan; Chen, Chun-Yu; Wu, J H David

    2011-04-01

    Clostridium thermocellum, an anaerobic, thermophilic, and ethanogenic bacterium produces a large cellulase complex termed the cellulosome and many free glycosyl hydrolases. Most cellulase genes scatter around the genome. We mapped the transcripts of the six-gene cluster celC-glyR3-licA-orf4-manB-celT and determined their transcription initiation sites by primer extension. Northern blot showed that celC-glyR3-licA were co-transcribed into a polycistronic messenger with the transcription initiation site at -20 bp. Furthermore, RT-PCR mapping showed that manB and celT, two cellulosomal genes immediately downstream, were co-transcribed into a bicistronic messenger with the initiation site at -233 bp. In contrast, rf4 was transcribed alone with the two initiation sites at -130 and -138 bp, respectively. Finally, quantitative RT-PCR analysis showed that celC, glyR3, and licA were coordinately induced by growing on laminarin, a β-1,3 glucan. Gene expression peaked at the late exponential phase. Taking together with our previous report that GlyR3 binds to the celC promoter in the absence of laminaribiose, a β-1,3 glucose dimer, these results indicate that celC, glyR3, and licA form an operon repressible by GlyR3 and inducible by laminaribiose, signaling the availability of β-1,3 glucan. The celC operon is the first glycosyl hydrolase operon reported in this bacterium.

  10. Exercise induces a transient increase in transcription of the GLUT-4 gene in skeletal muscle.

    Science.gov (United States)

    Neufer, P D; Dohm, G L

    1993-12-01

    Endurance exercise training elicits an increase in mitochondrial density as well as GLUT-4 glucose transporter protein content in skeletal muscle. Corresponding increases in mRNA for respiratory enzymes and GLUT-4 indicate that pretranslational control mechanisms are involved in this adaptive process. To directly test whether transcription of the GLUT-4 gene is activated in response to exercise training, nuclei were isolated from red hindlimb skeletal muscle of rats after 1 wk of exercise training (8% grade, 32 m/min, 40 min, twice/day). Rats were killed either 30 min, 3 h, or 24 h after the last training session. GLUT-4 transcription, determined by nuclear run-on analysis, was unaltered after 30 min, increased by 1.8-fold after 3 h, but was no longer different from controls 24 h after exercise. A similar transient increase in GLUT-4 transcription was evident, but less pronounced (1.4-fold), in untrained rats after a single bout of exercise, suggesting that the postexercise induction in GLUT-4 gene transcription is enhanced by exercise training. GLUT-4 protein content was increased 1.7-fold after 1 wk of training in the absence of any corresponding change in GLUT-4 mRNA, providing evidence that the initial increase in GLUT-4 expression involves translational and/or posttranslational control mechanisms. These findings demonstrate that muscle GLUT-4 expression in response to exercise training is subject to both transcriptional and posttranscriptional regulation. We propose that the increase in GLUT-4 mRNA evident with extended periods of training may result from a shift to pretranslational control and is the cumulative effect of repeated postexercise transient increases in GLUT-4 gene transcription.

  11. Transcriptional networks driving enhancer function in the CFTR gene.

    Science.gov (United States)

    Kerschner, Jenny L; Harris, Ann

    2012-09-01

    A critical cis-regulatory element for the CFTR (cystic fibrosis transmembrane conductance regulator) gene is located in intron 11, 100 kb distal to the promoter, with which it interacts. This sequence contains an intestine-selective enhancer and associates with enhancer signature proteins, such as p300, in addition to tissue-specific TFs (transcription factors). In the present study we identify critical TFs that are recruited to this element and demonstrate their importance in regulating CFTR expression. In vitro DNase I footprinting and EMSAs (electrophoretic mobility-shift assays) identified four cell-type-selective regions that bound TFs in vitro. ChIP (chromatin immunoprecipitation) identified FOXA1/A2 (forkhead box A1/A2), HNF1 (hepatocyte nuclear factor 1) and CDX2 (caudal-type homeobox 2) as in vivo trans-interacting factors. Mutation of their binding sites in the intron 11 core compromised its enhancer activity when measured by reporter gene assay. Moreover, siRNA (small interfering RNA)-mediated knockdown of CDX2 caused a significant reduction in endogenous CFTR transcription in intestinal cells, suggesting that this factor is critical for the maintenance of high levels of CFTR expression in these cells. The ChIP data also demonstrate that these TFs interact with multiple cis-regulatory elements across the CFTR locus, implicating a more global role in intestinal expression of the gene.

  12. A novel intermediate in transcription initiation by human mitochondrial RNA polymerase.

    Science.gov (United States)

    Morozov, Yaroslav I; Agaronyan, Karen; Cheung, Alan C M; Anikin, Michael; Cramer, Patrick; Temiakov, Dmitry

    2014-04-01

    The mitochondrial genome is transcribed by a single-subunit T7 phage-like RNA polymerase (mtRNAP), structurally unrelated to cellular RNAPs. In higher eukaryotes, mtRNAP requires two transcription factors for efficient initiation-TFAM, a major nucleoid protein, and TFB2M, a transient component of mtRNAP catalytic site. The mechanisms behind assembly of the mitochondrial transcription machinery and its regulation are poorly understood. We isolated and identified a previously unknown human mitochondrial transcription intermediate-a pre-initiation complex that includes mtRNAP, TFAM and promoter DNA. Using protein-protein cross-linking, we demonstrate that human TFAM binds to the N-terminal domain of mtRNAP, which results in bending of the promoter DNA around mtRNAP. The subsequent recruitment of TFB2M induces promoter melting and formation of an open initiation complex. Our data indicate that the pre-initiation complex is likely to be an important target for transcription regulation and provide basis for further structural, biochemical and biophysical studies of mitochondrial transcription.

  13. Dissection of transcription factor TFIIF functional domains required for initiation and elongation.

    Science.gov (United States)

    Tan, S; Conaway, R C; Conaway, J W

    1995-06-20

    TFIIF is unique among the general transcription factors because of its ability to control the activity of RNA polymerase II at both the initiation and elongation stages of transcription. Mammalian TFIIF, a heterodimer of approximately 30-kDa (RAP30) and approximately 70-kDa (RAP74) subunits, assists TFIIB in recruiting RNA polymerase II into the preinitiation complex and activates the overall rate of RNA chain elongation by suppressing transient pausing by polymerase at many sites on DNA templates. A major objective of efforts to understand how TFIIF regulates transcription has been to establish the relationship between its initiation and elongation activities. Here we establish this relationship by demonstrating that TFIIF transcriptional activities are mediated by separable functional domains. To accomplish this, we sought and identified distinct classes of RAP30 mutations that selectively block TFIIF activity in transcription initiation and elongation. We propose that (i) TFIIF initiation activity is mediated at least in part by RAP30 C-terminal sequences that include a cryptic DNA-binding domain similar to conserved region 4 of bacterial sigma factors and (ii) TFIIF elongation activity is mediated in part by RAP30 sequences located immediately upstream of the C terminus in a region proposed to bind RNA polymerase II and by additional sequences located in the RAP30 N terminus.

  14. Genome-wide transcriptional analysis of salinity stressed japonica and indica rice genotypes during panicle initiation stage.

    Science.gov (United States)

    Walia, Harkamal; Wilson, Clyde; Zeng, Linghe; Ismail, Abdelbagi M; Condamine, Pascal; Close, Timothy J

    2007-03-01

    Rice yield is most sensitive to salinity stress imposed during the panicle initiation (PI) stage. In this study, we have focused on physiological and transcriptional responses of four rice genotypes exposed to salinity stress during PI. The genotypes selected included a pair of indicas (IR63731 and IR29) and a pair of japonica (Agami and M103) rice subspecies with contrasting salt tolerance. Physiological characterization showed that tolerant genotypes maintained a much lower shoot Na+ concentration relative to sensitive genotypes under salinity stress. Global gene expression analysis revealed a strikingly large number of genes which are induced by salinity stress in sensitive genotypes, IR29 and M103 relative to tolerant lines. We found 19 probe sets to be commonly induced in all four genotypes. We found several salinity modulated, ion homeostasis related genes from our analysis. We also studied the expression of SKC1, a cation transporter reported by others as a major source of variation in salt tolerance in rice. The transcript abundance of SKC1 did not change in response to salinity stress at PI stage in the shoot tissue of all four genotypes. However, we found the transcript abundance of SKC1 to be significantly higher in tolerant japonica Agami relative to sensitive japonica M103 under control and stressed conditions during PI stage.

  15. Characterization of transcript processing of the gene encoding precerebellin-1.

    Science.gov (United States)

    Kavety, B; Morgan, J I

    1998-12-10

    Precerebellin-1 (Cbln1) is a cerebellum-specific protein that shares significant sequence identity with the globular domains of the complement components C1qA, B and C, suggesting some common aspects of function and/or structure. As the C1q complex is composed of heterotrimers of C1qA, B and C it was hypothesized that multiple precerebellins may exist in a ternary complex. Northern blotting for cbln1 revealed multiple bands that could represent further family members or alternatively spliced variants. To discriminate these alternatives, probes derived from different regions of the cbln1 gene were used to identify and clone the transcripts detected on Northern blots. Four independent transcripts were repeatedly cloned from an adult mouse cerebellum cDNA library. Upon sequencing, all of these clones were found to be derived from the cbln1 gene and no additional precerebellin-related genes were isolated. Moreover, these clones accounted for the four cbln1-hybridizing bands (1.9, 2. 2, 3.2 and 5.5 kb) detected on Northern blots of adult cerebellum RNA. With one possible exception, these clones were all derived through alterations in the 3'-untranslated region (3'-UTR) of cbln1 that did not affect the coding sequence. This was achieved by the use of two polyadenylation sites and alternative (non-canonical) splicing in the 3'-UTR. Some additional variation in mRNA structure is provided by the use of alternative transcription start sites in cbln1. The possible significance of this level of diversity in the 3'-UTR is discussed.

  16. The molecular clock regulates circadian transcription of tissue factor gene.

    Science.gov (United States)

    Oishi, Katsutaka; Koyanagi, Satoru; Ohkura, Naoki

    2013-02-01

    Tissue factor (TF) is involved in endotoxin-induced inflammation and mortality. We found that the circadian expression of TF mRNA, which peaked at the day to night transition (activity onset), was damped in the liver of Clock mutant mice. Luciferase reporter and chromatin immunoprecipitation analyses using embryonic fibroblasts derived from wild-type or Clock mutant mice showed that CLOCK is involved in transcription of the TF gene. Furthermore, the results of real-time luciferase reporter experiments revealed that the circadian expression of TF mRNA is regulated by clock molecules through a cell-autonomous mechanism via an E-box element located in the promoter region.

  17. Precisely modulated pathogenicity island interference with late phage gene transcription.

    Science.gov (United States)

    Ram, Geeta; Chen, John; Ross, Hope F; Novick, Richard P

    2014-10-07

    Having gone to great evolutionary lengths to develop resistance to bacteriophages, bacteria have come up with resistance mechanisms directed at every aspect of the bacteriophage life cycle. Most genes involved in phage resistance are carried by plasmids and other mobile genetic elements, including bacteriophages and their relatives. A very special case of phage resistance is exhibited by the highly mobile phage satellites, staphylococcal pathogenicity islands (SaPIs), which carry and disseminate superantigen and other virulence genes. Unlike the usual phage-resistance mechanisms, the SaPI-encoded interference mechanisms are carefully crafted to ensure that a phage-infected, SaPI-containing cell will lyse, releasing the requisite crop of SaPI particles as well as a greatly diminished crop of phage particles. Previously described SaPI interference genes target phage functions that are not required for SaPI particle production and release. Here we describe a SaPI-mediated interference system that affects expression of late phage gene transcription and consequently is required for SaPI and phage. Although when cloned separately, a single SaPI gene totally blocks phage production, its activity in situ is modulated accurately by a second gene, achieving the required level of interference. The advantage for the host bacteria is that the SaPIs curb excessive phage growth while enhancing their gene transfer activity. This activity is in contrast to that of the clustered regularly interspaced short palindromic repeats (CRISPRs), which totally block phage growth at the cost of phage-mediated gene transfer. In staphylococci the SaPI strategy seems to have prevailed during evolution: The great majority of Staphylococcus aureus strains carry one or more SaPIs, whereas CRISPRs are extremely rare.

  18. Heterogeneous Nuclear Ribonucleoprotein R Cooperates with Mediator to Facilitate Transcription Reinitiation on the c-Fos Gene

    Science.gov (United States)

    Fukuda, Aya; Shimada, Miho; Nakadai, Tomoyoshi; Nishimura, Ken; Hisatake, Koji

    2013-01-01

    The c-fos gene responds to extracellular stimuli and undergoes robust but transient transcriptional activation. Here we show that heterogeneous nuclear ribonucleoprotein R (hnRNP R) facilitates transcription reinitiation of the c-fos promoter in vitro in cooperation with Mediator. Consistently, hnRNP R interacts with the Scaffold components (Mediator, TBP, and TFIIH) as well as TFIIB, which recruits RNA polymerase II (Pol II) and TFIIF to Scaffold. The cooperative action of hnRNP R and Mediator is diminished by the cyclin-dependent kinase 8 (CDK8) module, which is comprised of CDK8, Cyclin C, MED12 and MED13 of the Mediator subunits. Interestingly, we find that the length of the G-free cassettes, and thereby their transcripts, influences the hnRNP R-mediated facilitation of reinitiation. Indeed, indicative of a possible role of the transcript in facilitating transcription reinitiation, the RNA transcript produced from the G-free cassette interacts with hnRNP R through its RNA recognition motifs (RRMs) and arginine-glycine-glycine (RGG) domain. Mutational analyses of hnRNP R indicate that facilitation of initiation and reinitiation requires distinct domains of hnRNP R. Knockdown of hnRNP R in mouse cells compromised rapid induction of the c-fos gene but did not affect transcription of constitutive genes. Together, these results suggest an important role for hnRNP R in regulating robust response of the c-fos gene. PMID:23967313

  19. Heterogeneous nuclear ribonucleoprotein R cooperates with mediator to facilitate transcription reinitiation on the c-Fos gene.

    Directory of Open Access Journals (Sweden)

    Aya Fukuda

    Full Text Available The c-fos gene responds to extracellular stimuli and undergoes robust but transient transcriptional activation. Here we show that heterogeneous nuclear ribonucleoprotein R (hnRNP R facilitates transcription reinitiation of the c-fos promoter in vitro in cooperation with Mediator. Consistently, hnRNP R interacts with the Scaffold components (Mediator, TBP, and TFIIH as well as TFIIB, which recruits RNA polymerase II (Pol II and TFIIF to Scaffold. The cooperative action of hnRNP R and Mediator is diminished by the cyclin-dependent kinase 8 (CDK8 module, which is comprised of CDK8, Cyclin C, MED12 and MED13 of the Mediator subunits. Interestingly, we find that the length of the G-free cassettes, and thereby their transcripts, influences the hnRNP R-mediated facilitation of reinitiation. Indeed, indicative of a possible role of the transcript in facilitating transcription reinitiation, the RNA transcript produced from the G-free cassette interacts with hnRNP R through its RNA recognition motifs (RRMs and arginine-glycine-glycine (RGG domain. Mutational analyses of hnRNP R indicate that facilitation of initiation and reinitiation requires distinct domains of hnRNP R. Knockdown of hnRNP R in mouse cells compromised rapid induction of the c-fos gene but did not affect transcription of constitutive genes. Together, these results suggest an important role for hnRNP R in regulating robust response of the c-fos gene.

  20. A protein thermometer controls temperature-dependent transcription of flagellar motility genes in Listeria monocytogenes.

    Directory of Open Access Journals (Sweden)

    Heather D Kamp

    2011-08-01

    Full Text Available Facultative bacterial pathogens must adapt to multiple stimuli to persist in the environment or establish infection within a host. Temperature is often utilized as a signal to control expression of virulence genes necessary for infection or genes required for persistence in the environment. However, very little is known about the molecular mechanisms that allow bacteria to adapt and respond to temperature fluctuations. Listeria monocytogenes (Lm is a food-borne, facultative intracellular pathogen that uses flagellar motility to survive in the extracellular environment and to enhance initial invasion of host cells during infection. Upon entering the host, Lm represses transcription of flagellar motility genes in response to mammalian physiological temperature (37°C with a concomitant temperature-dependent up-regulation of virulence genes. We previously determined that down-regulation of flagellar motility is required for virulence and is governed by the reciprocal activities of the MogR transcriptional repressor and the bifunctional flagellar anti-repressor/glycosyltransferase, GmaR. In this study, we determined that GmaR is also a protein thermometer that controls temperature-dependent transcription of flagellar motility genes. Two-hybrid and gel mobility shift analyses indicated that the interaction between MogR and GmaR is temperature sensitive. Using circular dichroism and limited proteolysis, we determined that GmaR undergoes a temperature-dependent conformational change as temperature is elevated. Quantitative analysis of GmaR in Lm revealed that GmaR is degraded in the absence of MogR and at 37°C (when the MogR:GmaR complex is less stable. Since MogR represses transcription of all flagellar motility genes, including transcription of gmaR, changes in the stability of the MogR:GmaR anti-repression complex, due to conformational changes in GmaR, mediates repression or de-repression of flagellar motility genes in Lm. Thus, GmaR functions as

  1. The role of vaccinia termination factor and cis-acting elements in vaccinia virus early gene transcription termination.

    Science.gov (United States)

    Tate, Jessica; Gollnick, Paul

    2015-11-01

    Vaccinia virus early gene transcription termination requires the virion form of the viral RNA polymerase (vRNAP), Nucleoside Triphosphate Phosphohydrolase I (NPHI), ATP, the vaccinia termination factor (VTF), and a U5NU termination signal in the nascent transcript. VTF, also the viral mRNA capping enzyme, binds U5NU, and NPHI hydrolyzes ATP to release the transcript. NPHI can release transcripts independent of VTF and U5NU if vRNAP is not actively elongating. However, VTF and U5NU are required for transcript release from an elongating vRNAP, suggesting that the function of VTF and U5NU may be to stall the polymerase. Here we demonstrate that VTF inhibits transcription elongation by enhancing vRNAP pausing. Hence VTF provides the connection between the termination signal in the RNA transcript and viral RNA polymerase to initiate transcription termination. We also provide evidence that a second cis-acting element downstream of U5NU influences the location and efficiency of early gene transcription termination.

  2. Genes Acting on Transcriptional Control during Abiotic Stress Responses

    Directory of Open Access Journals (Sweden)

    Glacy Jaqueline da Silva

    2014-01-01

    Full Text Available Abiotic stresses are the major cause of yield loss in crops around the world. Greater genetic gains are possible by combining the classical genetic improvement with advanced molecular biology techniques. The understanding of mechanisms triggered by plants to meet conditions of stress is of fundamental importance for the elucidation of these processes. Current genetically modified crops help to mitigate the effects of these stresses, increasing genetic gains in order to supply the agricultural market and the demand for better quality food throughout the world. To obtain safe genetic modified organisms for planting and consumption, a thorough grasp of the routes and genes that act in response to these stresses is necessary. This work was developed in order to collect important information about essential TF gene families for transcriptional control under abiotic stress responses.

  3. High-density transcriptional initiation signals underline genomic islands in bacteria.

    Directory of Open Access Journals (Sweden)

    Qianli Huang

    Full Text Available Genomic islands (GIs, frequently associated with the pathogenicity of bacteria and having a substantial influence on bacterial evolution, are groups of "alien" elements which probably undergo special temporal-spatial regulation in the host genome. Are there particular hallmark transcriptional signals for these "exotic" regions? We here explore the potential transcriptional signals that underline the GIs beyond the conventional views on basic sequence composition, such as codon usage and GC property bias. It showed that there is a significant enrichment of the transcription start positions (TSPs in the GI regions compared to the whole genome of Salmonella enterica and Escherichia coli. There was up to a four-fold increase for the 70% GIs, implying high-density TSPs profile can potentially differentiate the GI regions. Based on this feature, we developed a new sliding window method GIST, Genomic-island Identification by Signals of Transcription, to identify these regions. Subsequently, we compared the known GI-associated features of the GIs detected by GIST and by the existing method Islandviewer to those of the whole genome. Our method demonstrates high sensitivity in detecting GIs harboring genes with biased GI-like function, preferred subcellular localization, skewed GC property, shorter gene length and biased "non-optimal" codon usage. The special transcriptional signals discovered here may contribute to the coordinate expression regulation of foreign genes. Finally, by using GIST, we detected many interesting GIs in the 2011 German E. coli O104:H4 outbreak strain TY-2482, including the microcin H47 system and gene cluster ycgXEFZ-ymgABC that activates the production of biofilm matrix. The aforesaid findings highlight the power of GIST to predict GIs with distinct intrinsic features to the genome. The heterogeneity of cumulative TSPs profiles may not only be a better identity for "alien" regions, but also provide hints to the special

  4. A weakened transcriptional enhancer yields variegated gene expression.

    Directory of Open Access Journals (Sweden)

    Cathy Collins

    Full Text Available Identical genes in the same cellular environment are sometimes expressed differently. In some cases, including the immunoglobulin heavy chain (IgH locus, this type of differential gene expression has been related to the absence of a transcriptional enhancer. To gain additional information on the role of the IgH enhancer, we examined expression driven by enhancers that were merely weakened, rather than fully deleted, using both mutations and insulators to impair enhancer activity. For this purpose we used a LoxP/Cre system to place a reporter gene at the same genomic site of a stable cell line. Whereas expression of the reporter gene was uniformly high in the presence of the normal, uninsulated enhancer and undetectable in its absence, weakened enhancers yielded variegated expression of the reporter gene; i.e., the average level of expression of the same gene differed in different clones, and expression varied significantly among cells within individual clones. These results indicate that the weakened enhancer allows the reporter gene to exist in at least two states. Subtle aspects of the variegation suggest that the IgH enhancer decreases the average duration (half-life of the silent state. This analysis has also tested the conventional wisdom that enhancer activity is independent of distance and orientation. Thus, our analysis of mutant (truncated forms of the IgH enhancer revealed that the 250 bp core enhancer was active in its normal position, approximately 1.4 kb 3' of the promoter, but inactive approximately 6 kb 3', indicating that the activity of the core enhancer was distance-dependent. A longer segment--the core enhancer plus approximately 1 kb of 3' flanking material, including the 3' matrix attachment region--was active, and the activity of this longer segment was orientation-dependent. Our data suggest that this 3' flank includes binding sites for at least two activators.

  5. Transcriptional regulation of bone sialoprotein gene by Porphyromonas gingivalis lipopolysaccharide.

    Science.gov (United States)

    Li, Xinyue; Kato, Naoko; Mezawa, Masaru; Li, Zhengyang; Wang, Zhitao; Yang, Li; Sasaki, Yoko; Kaneko, Takashi; Takai, Hideki; Yoshimura, Atsutoshi; Ogata, Yorimasa

    2010-07-01

    Lipopolysaccharide (LPS) is a major mediator of inflammatory response. Periodontopathic bacterium Porphyromonas gingivalis LPS has quite different character from Escherichia coli LPS. E. coli LPS is agonist for Toll-like receptor 4 (TLR4), whereas P. gingivalis LPS worked as antagonist for TLR4. Bone sialoprotein (BSP) is an early marker of osteoblast differentiation. To investigate the effects of P. gingivalis LPS on BSP transcription, we used rat osteoblast-like ROS17/2.8 cells. BSP mRNA levels were decreased by 0.1 microg/ml and increased by 0.01 microg/ml P. gingivalis LPS at 12 h. Results of luciferase assays showed that 0.1 microg/ml decreased and 0.01 microg/ml P. gingivalis LPS increased BSP transcription in -116 to +60 BSP construct. The effects of P. gingivalis LPS were abrogated by double mutations in cAMP response element (CRE) and FGF2 response element (FRE). Tyrosine kinase inhibitor herbimycin A, ERK1/2 inhibitor and antioxidant N-acetylcystein inhibited effects of P. gingivalis LPS. Protein kinase A inhibitor and PI3-kinase/Akt inhibitor only abolished the effect of 0.01 microg/ml P. gingivalis LPS. Furthermore, 0.1 microg/ml LPS decreased the CRE- and FRE-protein complexes formation, whereas 0.01 microg/ml P. gingivalis LPS increased the nuclear protein binding to CRE and FRE. ChIP assays revealed increased binding of CREB1, JunD, Fra2, Runx2, Dlx5, and Smad1 to a chromatin fragment containing the CRE and FRE by 0.01 microg/ml P. gingivalis LPS. These studies therefore indicated that 0.1 microg/ml suppressed, and 0.01 microg/ml P. gingivalis LPS increased BSP gene transcription mediated through CRE and FRE elements in the rat BSP gene promoter.

  6. Characterization of cDNA for the large subunit of the transcription initiation factor TFIIF.

    Science.gov (United States)

    Aso, T; Vasavada, H A; Kawaguchi, T; Germino, F J; Ganguly, S; Kitajima, S; Weissman, S M; Yasukochi, Y

    1992-01-30

    At least six chromatographically resolvable general transcription factors may participate in accurate initiation by RNA polymerase II in HeLa cell-derived systems. TFIIF (also termed FC, RAP30/74 and beta/gamma) can bind directly to RNA polymerase II in solution and decrease the affinity of RNA polymerase II for nonspecific DNA. From studies on the kinetics of transcription initiation, on the composition of transcription initiation complexes fractionated by acrylamide gel electrophoresis, and on template competition experiments, TFIIF is known to act at an intermediate stage in initiation complex formation. It acts after TFIID firmly associates with DNA, but coincidentally with or immediately after RNA polymerase II binding to DNA, and before the recruitment of factor TFIIE. TFIIF may or may not have DNA helicase activity. The small subunit (RAP30) of TFIIF has been cloned and shows some amino-acid sequence homology to bacterial sigma factors. We have partially sequenced the RAP74 protein from purified HeLa cells, cloned its complementary DNA and shown that its translation product can interact with RAP30 in vitro as well as in vivo. The cDNA predicts an amino-acid sequence that lacks obvious DNA or RNA helicase motifs. It has regions rich in charged amino acids, including segments containing a higher content of acidic amino acids than are found in strong transcriptional activators such as VP16.

  7. Inhibition of adenovirus replication by the E1A antisense transcript initiated from hsp70 and VA-1 promoters.

    Science.gov (United States)

    Miroshnichenko, O I; Borisenko, A S; Ponomareva, T I; Tikhonenko, T I

    1990-03-01

    The E1A region of the adenoviral genome, important for initiation of virus infection and activation of other viral genes, was chosen as a target for engineering antisense RNA (asRNA) to inhibit adenovirus 5 (Ad5) replication in COS-1 cell culture in vitro. The hsp70 promoter, taken from the appropriate heat-shock-protein gene of Drosophila melanogaster, and the VA-1 RNA promoter, derived from the Ad5 gene coding for low-molecular-mass VA-1 RNA and recognized by RNA polymerase III were used as regulatory elements of transcription. The two types of recombinant constructs contained E1A fragments of 710 bp (hsp70 constructs) or 380 or 740 bp (VA-1 RNA constructs) in reverse orientation relative to the promoter position, as well as a transcription termination signal, the SV40 ori, and the gene controlling Geneticin (antibiotic G418) resistance (G418R). After selection of transfected COS-1 cells in the presence of G418, a number of stable G418R cell lines were raised which expressed engineered asRNAs. Plating of Ad5 suspensions of known titre on monolayers of transfected COS-1 cells clearly showed strong inhibition of adenovirus replication by asRNAs: 75% with the hsp70 promoter and 90% with the VA-1 RNA promoter.

  8. Sense and antisense transcription are associated with distinct chromatin architectures across genes.

    Science.gov (United States)

    Murray, Struan C; Haenni, Simon; Howe, Françoise S; Fischl, Harry; Chocian, Karolina; Nair, Anitha; Mellor, Jane

    2015-09-18

    Genes from yeast to mammals are frequently subject to non-coding transcription of their antisense strand; however the genome-wide role for antisense transcription remains elusive. As transcription influences chromatin structure, we took a genome-wide approach to assess which chromatin features are associated with nascent antisense transcription, and contrast these with features associated with nascent sense transcription. We describe a distinct chromatin architecture at the promoter and gene body specifically associated with antisense transcription, marked by reduced H2B ubiquitination, H3K36 and H3K79 trimethylation and increased levels of H3 acetylation, chromatin remodelling enzymes, histone chaperones and histone turnover. The difference in sense transcription between genes with high or low levels of antisense transcription is slight; thus the antisense transcription-associated chromatin state is not simply analogous to a repressed state. Using mutants in which the level of antisense transcription is reduced at GAL1, or altered genome-wide, we show that non-coding transcription is associated with high H3 acetylation and H3 levels across the gene, while reducing H3K36me3. Set1 is required for these antisense transcription-associated chromatin changes in the gene body. We propose that nascent antisense and sense transcription have fundamentally distinct relationships with chromatin, and that both should be considered canonical features of eukaryotic genes.

  9. Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells.

    Science.gov (United States)

    Schoenfelder, Stefan; Sexton, Tom; Chakalova, Lyubomira; Cope, Nathan F; Horton, Alice; Andrews, Simon; Kurukuti, Sreenivasulu; Mitchell, Jennifer A; Umlauf, David; Dimitrova, Daniela S; Eskiw, Christopher H; Luo, Yanquan; Wei, Chia-Lin; Ruan, Yijun; Bieker, James J; Fraser, Peter

    2010-01-01

    The discovery of interchromosomal interactions in higher eukaryotes points to a functional interplay between genome architecture and gene expression, challenging the view of transcription as a one-dimensional process. However, the extent of interchromosomal interactions and the underlying mechanisms are unknown. Here we present the first genome-wide analysis of transcriptional interactions using the mouse globin genes in erythroid tissues. Our results show that the active globin genes associate with hundreds of other transcribed genes, revealing extensive and preferential intra- and interchromosomal transcription interactomes. We show that the transcription factor Klf1 mediates preferential co-associations of Klf1-regulated genes at a limited number of specialized transcription factories. Our results establish a new gene expression paradigm, implying that active co-regulated genes and their regulatory factors cooperate to create specialized nuclear hot spots optimized for efficient and coordinated transcriptional control.

  10. Dynamics of chromatin accessibility and gene regulation by MADS-domain transcription factorsin flower development

    NARCIS (Netherlands)

    Pajoro, A.; Madrigal, P.; Muiño, J.M.; Tomas Matus, J.; Jin, J.; Mecchia, M.A.; Debernardi, J.M.; Palatnik, J.F.; Balazadeh, S.; Arif, M.; Ó’Maoiléidigh, D.S.; Wellmer, F.; Krajewski, P.; Riechmann, J.L.; Angenent, G.C.

    2014-01-01

    Background: Development of eukaryotic organisms is controlled by transcription factors that trigger specific and global changes in gene expression programs. In plants, MADS-domain transcription factors act as master regulators of developmental switches and organ specification. However, the mechanism

  11. Foxm1 transcription factor is required for the initiation of lung tumorigenesis by oncogenic Kras(G12D.).

    Science.gov (United States)

    Wang, I-C; Ustiyan, V; Zhang, Y; Cai, Y; Kalin, T V; Kalinichenko, V V

    2014-11-13

    Lung cancer is the leading cause of deaths in cancer patients in the United States. Identification of new molecular targets is clearly needed to improve therapeutic outcomes of this devastating human disease. Activating mutations in K-Ras oncogene and increased expression of FOXM1 protein are associated with poor prognosis in patients with non-small-cell lung cancer. Transgenic expression of activated Kras(G12D) in mouse respiratory epithelium is sufficient to induce lung adenocarcinomas; however, transcriptional mechanisms regulated by K-Ras during the initiation of lung cancer remain poorly understood. Foxm1 transcription factor, a downstream target of K-Ras, stimulates cellular proliferation during embryogenesis, organ repair and tumor growth, but its role in tumor initiation is unknown. In the present study, we used transgenic mice expressing Kras(G12D) under control of Sftpc promoter to demonstrate that Foxm1 was induced in type II epithelial cells before the formation of lung tumors. Conditional deletion of Foxm1 from Kras(G12D)-expressing respiratory epithelium prevented the initiation of lung tumors in vivo. The loss of Foxm1 inhibited expression of K-Ras target genes critical for the nuclear factor-κB (NF-κB) and c-Jun N-terminal kinase (JNK) pathways, including Ikbkb, Nfkb1, Nfkb2, Rela, Jnk1, N-Myc, Pttg1 and Cdkn2a. Transgenic overexpression of activated FOXM1 mutant was sufficient to induce expression of these genes in alveolar type II cells. FOXM1 directly bound to promoter regions of Ikbkb, Nfkb2, N-Myc, Pttg1 and Cdkn2a, indicating that these genes are direct FOXM1 targets. FOXM1 is required for K-Ras-mediated lung tumorigenesis by activating genes critical for the NF-κB and JNK pathways.

  12. HFR1 sequesters PIF1 to govern the transcriptional network underlying light-initiated seed germination in Arabidopsis.

    Science.gov (United States)

    Shi, Hui; Zhong, Shangwei; Mo, Xiaorong; Liu, Na; Nezames, Cynthia D; Deng, Xing Wang

    2013-10-01

    Seed germination is the first step for seed plants to initiate a new life cycle. Light plays a predominant role in promoting seed germination, where the initial phase is mediated by photoreceptor phytochrome B (phyB). Previous studies showed that phytochrome-interacting factor1 (PIF1) represses seed germination downstream of phyB. Here, we identify a positive regulator of phyB-dependent seed germination, long hypocotyl in far-red1 (HFR1). HFR1 blocks PIF1 transcriptional activity by forming a heterodimer with PIF1 that prevents PIF1 from binding to DNA. Our whole-genomic analysis shows that HFR1 and PIF1 oppositely mediate the light-regulated transcriptome in imbibed seeds. Through the HFR1-PIF1 module, light regulates expression of numerous genes involved in cell wall loosening, cell division, and hormone pathways to initiate seed germination. The functionally antagonistic HFR1-PIF1 pair constructs a fail-safe mechanism for fine-tuning seed germination during low-level illumination, ensuring a rapid response to favorable environmental changes. This study identifies the HFR1-PIF1 pair as a central module directing the whole genomic transcriptional network to rapidly initiate light-induced seed germination.

  13. WRKY Transcription Factors Involved in Activation of SA Biosynthesis Genes

    Directory of Open Access Journals (Sweden)

    Bol John F

    2011-05-01

    Full Text Available Abstract Background Increased defense against a variety of pathogens in plants is achieved through activation of a mechanism known as systemic acquired resistance (SAR. The broad-spectrum resistance brought about by SAR is mediated through salicylic acid (SA. An important step in SA biosynthesis in Arabidopsis is the conversion of chorismate to isochorismate through the action of isochorismate synthase, encoded by the ICS1 gene. Also AVRPPHB SUSCEPTIBLE 3 (PBS3 plays an important role in SA metabolism, as pbs3 mutants accumulate drastically reduced levels of SA-glucoside, a putative storage form of SA. Bioinformatics analysis previously performed by us identified WRKY28 and WRKY46 as possible regulators of ICS1 and PBS3. Results Expression studies with ICS1 promoter::β-glucuronidase (GUS genes in Arabidopsis thaliana protoplasts cotransfected with 35S::WRKY28 showed that over expression of WRKY28 resulted in a strong increase in GUS expression. Moreover, qRT-PCR analyses indicated that the endogenous ICS1 and PBS3 genes were highly expressed in protoplasts overexpressing WRKY28 or WRKY46, respectively. Electrophoretic mobility shift assays indentified potential WRKY28 binding sites in the ICS1 promoter, positioned -445 and -460 base pairs upstream of the transcription start site. Mutation of these sites in protoplast transactivation assays showed that these binding sites are functionally important for activation of the ICS1 promoter. Chromatin immunoprecipitation assays with haemagglutinin-epitope-tagged WRKY28 showed that the region of the ICS1 promoter containing the binding sites at -445 and -460 was highly enriched in the immunoprecipitated DNA. Conclusions The results obtained here confirm results from our multiple microarray co-expression analyses indicating that WRKY28 and WRKY46 are transcriptional activators of ICS1 and PBS3, respectively, and support this in silico screening as a powerful tool for identifying new components of stress

  14. Regulation of tissue-specific expression of alternative peripheral myelin protein-22 (PMP22) gene transcripts by two promoters

    Energy Technology Data Exchange (ETDEWEB)

    Patel, P.I.; Schoener-Scott, R.; Lupski, J.R. [Baylor College of Medicine, Houston, TX (United States)] [and others

    1994-09-01

    Mutations affecting the peripheral myelin protein-22 (PMP22) gene have been shown to be associated with inherited peripheral neuropathies. We have cloned and characterized the human PMP22 gene which spans approximately 40 kilobases and contains four coding exons. Towards developing gene therapy regimens for the associated peripheral neuropathies, we have initiated detailed analysis of the 5{prime} flanking region of the PMP22 gene and identified two alternatively transcribed, but untranslated exons. Mapping of separate PMP22 mRNA transcription initiation sites to each of these exons indicates that PMP22 expression is regulated by two alternatively used promoters. Both putative promoter sequences demonstrated the ability to drive expression of reporter genes in transfection experiments. Furthermore, the structure of the 5{prime} portion of the PMP22 gene appears to be identical in rat and human, supporting the biological significance of the observed arrangement of regulatory regions. The relative expression of the alternative PMP22 transcripts is tissue-specific and high levels of the exon 1A-containing transcript are tightly coupled to myelin formation. In contrast, exon 1B-containing transcripts are predominant in non-neural tissues and in growth-arrested primary fibroblasts. The observed regulation of the PMP22 by a complex molecular mechanism is consistent with the proposed dual role of PMP22 in neural and non-neural tissue.

  15. Kinetics of transcription of infectious laryngotracheitis virus genes.

    Science.gov (United States)

    Mahmoudian, Alireza; Markham, Philip F; Noormohammadi, Amir H; Browning, Glenn F

    2012-03-01

    The kinetics of expression of only a few genes of infectious laryngotracheitis virus (ILTV) have been determined, using northern blot analysis. We used quantitative reverse transcriptase PCR to examine the kinetics of expression of 74 ILTV genes in LMH cells. ICP4 was the only gene fully expressed in the presence of cycloheximide, and thus classified as immediate-early. The genes most highly expressed early in infection, and thus classified as early, included UL1 (gL), UL2, UL3, UL4, UL5, UL6, UL7, UL8, UL13, UL14, UL19, UL20, UL23 (TK), UL25, UL28, UL29, UL31, UL33, UL34, UL38, UL39, UL40, UL42, UL43, UL44 (gC), UL47, UL48 (α-TIF), UL49, UL54 (ICP27), US3 and US10. ORF A, ORF B, ORF C, ORF E, sORF 4/3, UL[-1], UL0, UL3.5, UL9, UL10 (gM), UL11, UL15a, UL15b, UL18, UL22 (gH), UL24, UL26, UL30, UL32, UL36, UL45, UL49.5 (gN), UL52, US2, US4 (gG), US5 (gJ) and US9 were most highly expressed late in infection and were thus considered late genes. Several genes, including ORF D, UL12, UL17, UL21, UL27 (gB), UL35, UL37, UL41, UL46, UL50, UL51, UL53 (gK), US8 (gE), US6 (gD) and US7 (gI), had features of both early and late genes and were classified as early/late. Our findings suggest transcription from most of ILTV genes is leaky or subject to more complex patterns of regulation than those classically described for herpesviruses. This is the first study examining global expression of ILTV genes and the data provide a basis for future investigations of the pathogenesis of infection with ILTV.

  16. Maize germinal cell initials accommodate hypoxia and precociously express meiotic genes.

    Science.gov (United States)

    Kelliher, Timothy; Walbot, Virginia

    2014-02-01

    In flowering plants, anthers are the site of de novo germinal cell specification, male meiosis, and pollen development. Atypically, anthers lack a meristem. Instead, both germinal and somatic cell types differentiate from floral stem cells packed into anther lobes. To better understand anther cell fate specification and to provide a resource for the reproductive biology community, we isolated cohorts of germinal and somatic initials from maize anthers within 36 h of fate acquisition, identifying 815 specific and 1714 significantly enriched germinal transcripts, plus 2439 specific and 2112 significantly enriched somatic transcripts. To clarify transcripts involved in cell differentiation, we contrasted these profiles to anther primordia prior to fate specification and to msca1 anthers arrested in the first step of fate specification and hence lacking normal cell types. The refined cell-specific profiles demonstrated that both germinal and somatic cell populations differentiate quickly and express unique transcription factor sets; a subset of transcript localizations was validated by in situ hybridization. Surprisingly, germinal initials starting 5 days of mitotic divisions were enriched significantly in >100 transcripts classified in meiotic processes that included recombination and synapsis, along with gene sets involved in RNA metabolism, redox homeostasis, and cytoplasmic ATP generation. Enrichment of meiotic-specific genes in germinal initials challenges current dogma that the mitotic to meiotic transition occurs later in development during pre-meiotic S phase. Expression of cytoplasmic energy generation genes suggests that male germinal cells accommodate hypoxia by diverting carbon away from mitochondrial respiration into alternative pathways that avoid producing reactive oxygen species (ROS).

  17. X-ray Crystal Structures Elucidate the Nucleotidyl Transfer Reaction of Transcript Initiation Using Two Nucleotides

    Energy Technology Data Exchange (ETDEWEB)

    M Gleghorn; E Davydova; R Basu; L Rothman-Denes; K Murakami

    2011-12-31

    We have determined the X-ray crystal structures of the pre- and postcatalytic forms of the initiation complex of bacteriophage N4 RNA polymerase that provide the complete set of atomic images depicting the process of transcript initiation by a single-subunit RNA polymerase. As observed during T7 RNA polymerase transcript elongation, substrate loading for the initiation process also drives a conformational change of the O helix, but only the correct base pairing between the +2 substrate and DNA base is able to complete the O-helix conformational transition. Substrate binding also facilitates catalytic metal binding that leads to alignment of the reactive groups of substrates for the nucleotidyl transfer reaction. Although all nucleic acid polymerases use two divalent metals for catalysis, they differ in the requirements and the timing of binding of each metal. In the case of bacteriophage RNA polymerase, we propose that catalytic metal binding is the last step before the nucleotidyl transfer reaction.

  18. Transcription of ncDNA: Many roads lead to local gene regulation

    OpenAIRE

    Hainer, Sarah J; Martens, Joseph A

    2011-01-01

    Transcription of ncDNA occurs throughout eukaryotic genomes, generating a wide array of ncRNAs. One large class of ncRNAs includes those transcribed over the promoter regions of nearby protein coding genes. Recent studies, primarily focusing on individual genes have uncovered multiple mechanisms by which promoter-associated transcriptional activity locally alters gene expression.

  19. GA binding protein augments autophagy via transcriptional activation of BECN1-PIK3C3 complex genes.

    Science.gov (United States)

    Zhu, Wan; Swaminathan, Gayathri; Plowey, Edward D

    2014-09-01

    Macroautophagy is a vesicular catabolic trafficking pathway that is thought to protect cells from diverse stressors and to promote longevity. Recent studies have revealed that transcription factors play important roles in the regulation of autophagy. In this study, we have identified GA binding protein (GABP) as a transcriptional regulator of the combinatorial expression of BECN1-PIK3C3 complex genes involved in autophagosome initiation. We performed bioinformatics analyses that demonstrated highly conserved putative GABP sites in genes that encode BECN1/Beclin 1, several BECN1 interacting proteins, and downstream autophagy proteins including the ATG12-ATG5-ATG16L1 complex. We demonstrate that GABP binds to the promoter regions of BECN1-PIK3C3 complex genes and activates their transcriptional activities. Knockdown of GABP reduced BECN1-PIK3C3 complex transcripts, BECN1-PIK3C3 complex protein levels and autophagy in cultured cells. Conversely, overexpression of GABP increased autophagy. Nutrient starvation increased GABP-dependent transcriptional activity of BECN1-PIK3C3 complex gene promoters and increased the recruitment of GABP to the BECN1 promoter. Our data reveal a novel function of GABP in the regulation of autophagy via transcriptional activation of the BECN1-PIK3C3 complex.

  20. Transcription factors and target genes of pre-TCR signaling.

    Science.gov (United States)

    López-Rodríguez, Cristina; Aramburu, Jose; Berga-Bolaños, Rosa

    2015-06-01

    Almost 30 years ago pioneering work by the laboratories of Harald von Boehmer and Susumo Tonegawa provided the first indications that developing thymocytes could assemble a functional TCRβ chain-containing receptor complex, the pre-TCR, before TCRα expression. The discovery and study of the pre-TCR complex revealed paradigms of signaling pathways in control of cell survival and proliferation, and culminated in the recognition of the multifunctional nature of this receptor. As a receptor integrated in a dynamic developmental process, the pre-TCR must be viewed not only in the light of the biological outcomes it promotes, but also in context with those molecular processes that drive its expression in thymocytes. This review article focuses on transcription factors and target genes activated by the pre-TCR to drive its different outcomes.

  1. Pairwise comparisons of ten porcine tissues identify differential transcriptional regulation at the gene, isoform, promoter and transcription start site level

    Energy Technology Data Exchange (ETDEWEB)

    Farajzadeh, Leila; Hornshøj, Henrik; Momeni, Jamal; Thomsen, Bo; Larsen, Knud; Hedegaard, Jakob; Bendixen, Christian; Madsen, Lone Bruhn, E-mail: LoneB.Madsen@agrsci.dk

    2013-08-23

    Highlights: •Transcriptome sequencing yielded 223 mill porcine RNA-seq reads, and 59,000 transcribed locations. •Establishment of unique transcription profiles for ten porcine tissues including four brain tissues. •Comparison of transcription profiles at gene, isoform, promoter and transcription start site level. •Highlights a high level of regulation of neuro-related genes at both gene, isoform, and TSS level. •Our results emphasize the pig as a valuable animal model with respect to human biological issues. -- Abstract: The transcriptome is the absolute set of transcripts in a tissue or cell at the time of sampling. In this study RNA-Seq is employed to enable the differential analysis of the transcriptome profile for ten porcine tissues in order to evaluate differences between the tissues at the gene and isoform expression level, together with an analysis of variation in transcription start sites, promoter usage, and splicing. Totally, 223 million RNA fragments were sequenced leading to the identification of 59,930 transcribed gene locations and 290,936 transcript variants using Cufflinks with similarity to approximately 13,899 annotated human genes. Pairwise analysis of tissues for differential expression at the gene level showed that the smallest differences were between tissues originating from the porcine brain. Interestingly, the relative level of differential expression at the isoform level did generally not vary between tissue contrasts. Furthermore, analysis of differential promoter usage between tissues, revealed a proportionally higher variation between cerebellum (CBE) versus frontal cortex and cerebellum versus hypothalamus (HYP) than in the remaining comparisons. In addition, the comparison of differential transcription start sites showed that the number of these sites is generally increased in comparisons including hypothalamus in contrast to other pairwise assessments. A comprehensive analysis of one of the tissue contrasts, i

  2. Transcriptional profiling of the murine cutaneous response during initial and subsequent infestations with Ixodes scapularis nymphs

    Directory of Open Access Journals (Sweden)

    Heinze Dar M

    2012-02-01

    Full Text Available Abstract Background Ixodes scapularis ticks are hematophagous arthropods capable of transmitting many infectious agents to humans. The process of blood feeding is an extended and continuous interplay between tick and host responses. While this process has been studied extensively in vitro, no global understanding of the host response to ticks has emerged. Methods To address this issue, we used PCR-arrays to measure skin-specific expression of 233 discrete genes at 8 time points during primary and secondary infestations of mice with pathogen-free I. scapularis nymphs. Selected results were then validated at the mRNA and protein levels by additional real-time PCR and bioplex assay. Results Primary infestation was characterized by the late induction of an innate immune response. Lectin pattern recognition receptors, cytokines, and chemokines were upregulated consistent with increased neutrophil and macrophage migration. Gene ontology and pathway analyses of downregulated genes suggested inhibition of gene transcription and Th17 immunity. During the secondary infestation, additional genes were modulated suggesting a broader involvement of immune cells including CD8 and CD4 positive T lymphocytes. The cytokine response showed a mixed Th1/Th2 profile with a potential for T regulatory cell activity. Key gene ontology clusters observed during the secondary infestation were cell migration and activation. Matrix metalloproteinases were upregulated, apoptosis-related genes were differentially modulated, and immunoreceptor signaling molecules were upregulated. In contrast, transcripts related to mitogenic, WNT, Hedgehog, and stress pathways were downregulated. Conclusions Our results support a model of tick feeding where lectin pattern recognition receptors orchestrate an innate inflammatory response during primary infestation that primes a mixed Th1/Th2 response upon secondary exposure. Tick feeding inhibits gene transcription and Th17 immunity. Salivary

  3. Building gene expression signatures indicative of transcription factor activation to predict AOP modulation

    Science.gov (United States)

    Building gene expression signatures indicative of transcription factor activation to predict AOP modulation Adverse outcome pathways (AOPs) are a framework for predicting quantitative relationships between molecular initiatin...

  4. The Drosophila Translational Control Element (TCE) is required for high-level transcription of many genes that are specifically expressed in testes.

    Science.gov (United States)

    Katzenberger, Rebeccah J; Rach, Elizabeth A; Anderson, Ashley K; Ohler, Uwe; Wassarman, David A

    2012-01-01

    To investigate the importance of core promoter elements for tissue-specific transcription of RNA polymerase II genes, we examined testis-specific transcription in Drosophila melanogaster. Bioinformatic analyses of core promoter sequences from 190 genes that are specifically expressed in testes identified a 10 bp A/T-rich motif that is identical to the translational control element (TCE). The TCE functions in the 5' untranslated region of Mst(3)CGP mRNAs to repress translation, and it also functions in a heterologous gene to regulate transcription. We found that among genes with focused initiation patterns, the TCE is significantly enriched in core promoters of genes that are specifically expressed in testes but not in core promoters of genes that are specifically expressed in other tissues. The TCE is variably located in core promoters and is conserved in melanogaster subgroup species, but conservation dramatically drops in more distant species. In transgenic flies, short (300-400 bp) genomic regions containing a TCE directed testis-specific transcription of a reporter gene. Mutation of the TCE significantly reduced but did not abolish reporter gene transcription indicating that the TCE is important but not essential for transcription activation. Finally, mutation of testis-specific TFIID (tTFIID) subunits significantly reduced the transcription of a subset of endogenous TCE-containing but not TCE-lacking genes, suggesting that tTFIID activity is limited to TCE-containing genes but that tTFIID is not an obligatory regulator of TCE-containing genes. Thus, the TCE is a core promoter element in a subset of genes that are specifically expressed in testes. Furthermore, the TCE regulates transcription in the context of short genomic regions, from variable locations in the core promoter, and both dependently and independently of tTFIID. These findings set the stage for determining the mechanism by which the TCE regulates testis-specific transcription and understanding the

  5. Expression profiling identifies genes expressed early during lint fibre initiation in cotton.

    Science.gov (United States)

    Wu, Yingru; Machado, Adriane C; White, Rosemary G; Llewellyn, Danny J; Dennis, Elizabeth S

    2006-01-01

    Cotton fibres are a subset of single epidermal cells that elongate from the seed coat to produce the long cellulose strands or lint used for spinning into yarn. To identify genes that might regulate lint fibre initiation, expression profiles of 0 days post-anthesis (dpa) whole ovules from six reduced fibre or fibreless mutants were compared with wild-type linted cotton using cDNA microarrays. Numerous clones were differentially expressed, but when only those genes that are normally expressed in the ovule outer integument (where fibres develop) were considered, just 13 different cDNA clones were down-regulated in some or all of the mutants. These included: a Myb transcription factor (GhMyb25) similar to the Antirrhinum Myb AmMIXTA, a putative homeodomain protein (related to Arabidopsis ATML1), a cyclin D gene, some previously identified fibre-expressed structural and metabolic genes, such as lipid transfer protein, alpha-expansin and sucrose synthase, as well as some unknown genes. Laser capture microdissection and reverse transcription-PCR were used to show that both the GhMyb25 and the homeodomain gene were predominantly ovule specific and were up-regulated on the day of anthesis in fibre initials relative to adjacent non-fibre ovule epidermal cells. Their spatial and temporal expression pattern therefore coincided with the time and location of fibre initiation. Constitutive overexpression of GhMyb25 in transgenic tobacco resulted in an increase in branched long-stalked leaf trichomes. The involvement of cell cycle genes prompted DNA content measurements that indicated that fibre initials, like leaf trichomes, undergo DNA endoreduplication. Cotton fibre initiation therefore has some parallels with leaf trichome development, although the detailed molecular mechanisms are clearly different.

  6. Structure and function of the mycobacterial transcription initiation complex with the essential regulator RbpA

    Energy Technology Data Exchange (ETDEWEB)

    Hubin, Elizabeth A.; Fay, Allison; Xu, Catherine; Bean, James M.; Saecker, Ruth M.; Glickman, Michael S.; Darst, Seth A.; Campbell, Elizabeth A. (Rockefeller); (SKI)

    2017-01-09

    RbpA and CarD are essential transcription regulators in mycobacteria. Mechanistic analyses of promoter open complex (RPo) formation establish that RbpA and CarD cooperatively stimulate formation of an intermediate (RP2) leading to RPo; formation of RP2 is likely a bottleneck step at the majority of mycobacterial promoters. Once RPo forms, CarD also disfavors its isomerization back to RP2. We determined a 2.76 Å-resolution crystal structure of a mycobacterial transcription initiation complex (TIC) with RbpA as well as a CarD/RbpA/TIC model. Both CarD and RbpA bind near the upstream edge of the -10 element where they likely facilitate DNA bending and impede transcription bubble collapse. In vivo studies demonstrate the essential role of RbpA, show the effects of RbpA truncations on transcription and cell physiology, and indicate additional functions for RbpA not evident in vitro. This work provides a framework to understand the control of mycobacterial transcription by RbpA and CarD.

  7. The genomic structure of the chicken ICSBP gene and its transcriptional regulation by chicken interferon.

    Science.gov (United States)

    Dosch, E; Zöller, B; Redmann-Müller, I; Nanda, I; Schmid, M; Viciano-Gofferge, A; Jungwirth, C

    1998-04-14

    The chicken interferon consensus sequence binding protein (ChICSBP) gene spans over 9 kb of DNA and consists, as its murine homolog, of nine exons. The first untranslated exon was identified by 5'-RACE technology. The second exon contains the translation initiation codon. Canonical consensus splice sites are found on every exon/intron junction. The introns are generally smaller than their mammalian counterparts. The ChICSBP and ChIRF-1 genes have been mapped by fluorescence in situ hybridization to different microchromosomes. The transcription start site has been mapped by primer extension. Inspection of the DNA sequence of a genomic clone containing the first exon and the region 1700-bp upstream revealed several potential cisregulatory elements of transcription. The ChICSBP mRNA is induced by recombinant ChIFN type I and ChIFN-gamma. A palindromic IFN regulatory element (pIRE) with high sequence homology to gamma activation site (GAS) sequences was functionally required in transient transfection assays for the induction of transcription by ChIFN-gamma.

  8. A role for the H4 subunit of vaccinia RNA polymerase in transcription initiation at a viral early promoter.

    Science.gov (United States)

    Deng, L; Shuman, S

    1994-05-13

    The vaccinia virus H4 gene encodes an essential subunit of the DNA-dependent RNA polymerase holoenzyme encapsidated within virus particles (Ahn, B., and Moss, B. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 3536-3540; Kane, E. M., and Shuman, S. (1992) J. Virol. 66, 5752-5762). The role of this protein in transcription of viral early genes was revealed by the effects of affinity-purified anti-H4 antibody on discrete phases of the early transcription reaction in vitro. Anti-H4 specifically prevented the synthesis of a 21-nucleotide nascent RNA chain but had no impact on elongation of the 21-mer RNA by preassembled ternary complexes. Inhibition of initiation but not elongation was also observed with affinity-purified anti-D6 antibody directed against the 70-kDa subunit of the vaccinia early transcription initiation factor (ETF). Native gel mobility-shift assays showed that anti-H4 prevented the NTP-dependent recruitment of RNA polymerase to the preinitiation complex of ETF bound at the early promoter. Two species of ternary complexes could be resolved by native gel electrophoresis. Addition of anti-H4 to preformed complexes elicited a supershift of both ternary species but not of the preinitiation complex. Supeshift by anti-D6 revealed that the more rapidly migrating species of ternary complex did not contain immunoreactive ETF. Loss of ETF from the ternary complex was time-dependent. Thus, whereas the H4 protein was a stable constituent of the elongation complex, ETF was dissociable. We suggest that H4 functions as a molecular bridge to ETF and thereby allows specific recognition of early promoters by the core RNA polymerase. H4 is unlike bacterial sigma factor in that it remains bound to polymerase after the elongation complex is established.

  9. Grr1p is required for transcriptional induction of amino acid permease genes and proper transcriptional regulation of genes in carbon metabolism of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Eckert-Boulet, Nadine; Regenberg, Birgitte; Nielsen, Jens

    2005-01-01

    and a grr1 Delta strain and adding citrulline in the exponential phase. Whole-genome transcription analyses were performed on samples from each cultivation, both immediately before and 30 min after citrulline addition. Transcriptional induction of the AAP genes AGP1, BAP2, BAP3, DIP5, GNP1 and TAT1 is fully...

  10. Telomeric Retrotransposon HeT-A Contains a Bidirectional Promoter that Initiates Divergent Transcription of piRNA Precursors in Drosophila Germline.

    Science.gov (United States)

    Radion, Elizaveta; Ryazansky, Sergei; Akulenko, Natalia; Rozovsky, Yakov; Kwon, Dmitry; Morgunova, Valeriya; Olovnikov, Ivan; Kalmykova, Alla

    2016-12-07

    PIWI-interacting RNAs (piRNAs) provide the silencing of transposable elements in the germline. Drosophila telomeres are maintained by transpositions of specialized telomeric retroelements. piRNAs generated from sense and antisense transcripts of telomeric elements provide telomere length control in the germline. Previously, we have found that antisense transcription of the major telomeric retroelement HeT-A is initiated upstream of the HeT-A sense transcription start site. Here, we performed a deletion analysis of the HeT-A promoter and show that common regulatory elements are shared by sense and antisense promoters of HeT-A. Therefore, the HeT-A promoter is a bidirectional promoter capable of processive sense and antisense transcription. Ovarian small RNA data show that a solo HeT-A promoter within an euchromatic transgene initiates the divergent transcription of transgenic reporter genes and subsequent processing of these transcripts into piRNAs. These events lead to the formation of a divergent unistrand piRNA cluster at solo HeT-A promoters, in contrast to endogenous telomeres that represent strong dual-strand piRNA clusters. Solo HeT-A promoters are not immunoprecipitated with heterochromatin protein 1 (HP1) homolog Rhino, a marker of the dual-strand piRNA clusters, but are associated with HP1 itself, which provides piRNA-mediated transcriptional repression of the reporter genes. Unlike endogenous dual-strand piRNA clusters, the solo HeT-A promoter does not produce overlapping transcripts. In a telomeric context, however, bidirectional promoters of tandem HeT-A repeats provide a read-through transcription of both genomic strands, followed by Rhi binding. These data indicate that Drosophila telomeres share properties of unistrand and dual-strand piRNA clusters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Accurate Gene Expression-Based Biodosimetry Using a Minimal Set of Human Gene Transcripts

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, James D., E-mail: jtucker@biology.biosci.wayne.edu [Department of Biological Sciences, Wayne State University, Detroit, Michigan (United States); Joiner, Michael C. [Department of Radiation Oncology, Wayne State University, Detroit, Michigan (United States); Thomas, Robert A.; Grever, William E.; Bakhmutsky, Marina V. [Department of Biological Sciences, Wayne State University, Detroit, Michigan (United States); Chinkhota, Chantelle N.; Smolinski, Joseph M. [Department of Electrical and Computer Engineering, Wayne State University, Detroit, Michigan (United States); Divine, George W. [Department of Public Health Sciences, Henry Ford Hospital, Detroit, Michigan (United States); Auner, Gregory W. [Department of Electrical and Computer Engineering, Wayne State University, Detroit, Michigan (United States)

    2014-03-15

    Purpose: Rapid and reliable methods for conducting biological dosimetry are a necessity in the event of a large-scale nuclear event. Conventional biodosimetry methods lack the speed, portability, ease of use, and low cost required for triaging numerous victims. Here we address this need by showing that polymerase chain reaction (PCR) on a small number of gene transcripts can provide accurate and rapid dosimetry. The low cost and relative ease of PCR compared with existing dosimetry methods suggest that this approach may be useful in mass-casualty triage situations. Methods and Materials: Human peripheral blood from 60 adult donors was acutely exposed to cobalt-60 gamma rays at doses of 0 (control) to 10 Gy. mRNA expression levels of 121 selected genes were obtained 0.5, 1, and 2 days after exposure by reverse-transcriptase real-time PCR. Optimal dosimetry at each time point was obtained by stepwise regression of dose received against individual gene transcript expression levels. Results: Only 3 to 4 different gene transcripts, ASTN2, CDKN1A, GDF15, and ATM, are needed to explain ≥0.87 of the variance (R{sup 2}). Receiver-operator characteristics, a measure of sensitivity and specificity, of 0.98 for these statistical models were achieved at each time point. Conclusions: The actual and predicted radiation doses agree very closely up to 6 Gy. Dosimetry at 8 and 10 Gy shows some effect of saturation, thereby slightly diminishing the ability to quantify higher exposures. Analyses of these gene transcripts may be advantageous for use in a field-portable device designed to assess exposures in mass casualty situations or in clinical radiation emergencies.

  12. Identification of transcriptional activators for thienamycin and cephamycin C biosynthetic genes within the thienamycin gene cluster from Streptomyces cattleya.

    Science.gov (United States)

    Rodríguez, Miriam; Núñez, Luz Elena; Braña, Alfredo F; Méndez, Carmen; Salas, José A; Blanco, Gloria

    2008-08-01

    Two regulatory genes, thnI and thnU, were identified in the thienamycin (thn) gene cluster from Streptomyces cattleya. ThnI resembles LysR-type transcriptional activators and ThnU belongs to the SARP family of transcriptional activators. Their functional role was established after independent inactivation by gene replacement together with transcriptional analysis involving reverse transcription polymerase chain reaction (RT-PCR). Deletion of thnI abolished thienamycin production showing its involvement in thienamycin biosynthesis. Gene expression analysis applied to the thn gene cluster demonstrated that ThnI is a transcriptional activator essential for thienamycin biosynthesis that regulates the expression of nine genes involved in thienamycin assembly and export (thnH, thnJ, thnK, thnL, thnM, thnN, thnO, thnP and thnQ). Unexpectedly, the thnU disrupted mutant was not affected in thienamycin production but turned out to be essential for cephamycin C biosynthesis. Transcript analysis applied to early and late structural genes for cephamycin C biosynthesis (pcbAB and cmcI), revealed that ThnU is the transcriptional activator of these cephamycin C genes although they are not physically linked to the thn cluster. In addition, it was shown that deletion of thnI has an upregulatory effect on pcbAB and cmcI transcription consistent with a significant increase in cephamycin C biosynthesis in this mutant.

  13. Induction of AhR-mediated gene transcription by coffee.

    Science.gov (United States)

    Ishikawa, Toshio; Takahashi, Satoshi; Morita, Koji; Okinaga, Hiroko; Teramoto, Tamio

    2014-01-01

    Aryl hydrocarbon receptor (AhR) is classically known to be activated by xenobiotics such as dioxins and polycyclic aromatic hydrocarbons (PAHs). Although it has been reported that PAHs are contained in roasted coffee beans, in general coffee beverages are not considered to be AhR activators. We tested whether exposure to coffee would activate AhR in cultured cells. HepG2 cells stably expressing an AhR-responsive reporter gene were treated with coffee samples. Also, expression of CYP1A1, an endogenous AhR-responsive gene, was quantitated by RT-PCR and Western blotting in HepG2, Caco-2, and MCF-7 cells, after treatment with coffee. In order to obtain sensitive and reproducible results, all the experiments were performed with the cells placed in either phosphate-buffered saline (PBS) or pure serum, instead of routinely-used culture medium, whose intrinsic AhR-stimulating activity turned out to be so strong as to interfere with the analyses. All the coffee samples tested robustly stimulated AhR-mediated transcription in the reporter gene assays. Of note, to what extent coffee and other AhR agonists activated AhR was different, depending on whether the experiments were done in PBS or serum. CYP1A1 mRNA was induced by coffee, in HepG2, Caco-2, and MCF-7 cells placed in either PBS or serum. CYP1A1 protein expression, which was not detected in these cells incubated in PBS, was also increased by coffee in cells placed in serum. By using culture medium-free experimental settings, we have shown that coffee is a strong AhR activator. Our observation may help elucidate as-yet-unrecognized effects of coffee on human health.

  14. Induction of AhR-mediated gene transcription by coffee.

    Directory of Open Access Journals (Sweden)

    Toshio Ishikawa

    Full Text Available Aryl hydrocarbon receptor (AhR is classically known to be activated by xenobiotics such as dioxins and polycyclic aromatic hydrocarbons (PAHs. Although it has been reported that PAHs are contained in roasted coffee beans, in general coffee beverages are not considered to be AhR activators. We tested whether exposure to coffee would activate AhR in cultured cells.HepG2 cells stably expressing an AhR-responsive reporter gene were treated with coffee samples. Also, expression of CYP1A1, an endogenous AhR-responsive gene, was quantitated by RT-PCR and Western blotting in HepG2, Caco-2, and MCF-7 cells, after treatment with coffee. In order to obtain sensitive and reproducible results, all the experiments were performed with the cells placed in either phosphate-buffered saline (PBS or pure serum, instead of routinely-used culture medium, whose intrinsic AhR-stimulating activity turned out to be so strong as to interfere with the analyses.All the coffee samples tested robustly stimulated AhR-mediated transcription in the reporter gene assays. Of note, to what extent coffee and other AhR agonists activated AhR was different, depending on whether the experiments were done in PBS or serum. CYP1A1 mRNA was induced by coffee, in HepG2, Caco-2, and MCF-7 cells placed in either PBS or serum. CYP1A1 protein expression, which was not detected in these cells incubated in PBS, was also increased by coffee in cells placed in serum.By using culture medium-free experimental settings, we have shown that coffee is a strong AhR activator. Our observation may help elucidate as-yet-unrecognized effects of coffee on human health.

  15. Mechanisms of transcriptional activation of the stimulator of interferon genes by transcription factors CREB and c-Myc.

    Science.gov (United States)

    Wang, Yan-Yan; Jin, Rui; Zhou, Guo-Ping; Xu, Hua-Guo

    2016-12-20

    Stimulator of interferon genes (STING) plays an important role in host defense, autoimmune disease, osteoclast differentiation and anti-tumor response. Although many downstream targets have been studied in depth, the regulation of STING gene expression remains largely unknown. Here we demonstrate that transcription factors CREB and c-Myc maintain the transcriptional activity of STING. By 5'-rapid amplification of cDNA ends analysis, we identified the transcriptional start site (TSS) of STING. We illustrated that the region -124/+1 relative to TSS was sufficient for full promoter activity by a series of 5' deletion promoter constructs. Transcriptional activity of the STING minimal promoter was dependent on CREB and c-Myc binding motifs and was abolished after mutation of these two DNA elements. Chromatin immunoprecipitation assays demonstrated that transcription factors CREB and c-Myc bind to STING promoter in vivo. Overexpression of CREB and c-Myc increased the STING promoter activity. Meanwhile, knocking-down of CREB and c-Myc by a small interfering RNA (siRNA) strategy markedly reduced endogenous STING expression. In summary, these results demonstrated that transcription factors CREB and c-Myc are involved in the regulation of STING transcription.

  16. To Your Health: NLM update transcript - First gene therapy cancer treatment

    Science.gov (United States)

    ... Your Health: NLM update Transcript First gene therapy cancer treatment : 09/11/2017 To use the sharing features ... up on weekly topics. The first gene therapy treatment for cancer recently was approved by the U.S. Food and ...

  17. Understanding the Role of Housekeeping and Stress-Related Genes in Transcription-Regulatory Networks

    Science.gov (United States)

    Heath, Allison; Kavraki, Lydia; Balázsi, Gábor

    2008-03-01

    Despite the increasing number of completely sequenced genomes, much remains to be learned about how living cells process environmental information and respond to changes in their surroundings. Accumulating evidence indicates that eukaryotic and prokaryotic genes can be classified in two distinct categories that we will call class I and class II. Class I genes are housekeeping genes, often characterized by stable, noise resistant expression levels. In contrast, class II genes are stress-related genes and often have noisy, unstable expression levels. In this work we analyze the large scale transcription-regulatory networks (TRN) of E. coli and S. cerevisiae and preliminary data on H. sapien. We find that stable, housekeeping genes (class I) are preferentially utilized as transcriptional inputs while stress related, unstable genes (class II) are utilized as transcriptional integrators. This might be the result of convergent evolution that placed the appropriate genes in the appropriate locations within transcriptional networks according to some fundamental principles that govern cellular information processing.

  18. Differential control of Notch1 gene transcription by Klf4 and Sp3 transcription factors in normal versus cancer-derived keratinocytes.

    Directory of Open Access Journals (Sweden)

    Chiara Lambertini

    Full Text Available In specific cell types like keratinocytes, Notch signaling plays an important pro-differentiation and tumor suppressing function, with down-modulation of the Notch1 gene being associated with cancer development. Besides being controlled by p53, little else is known on regulation of Notch1 gene expression in this context. We report here that transcription of this gene is driven by a TATA-less "sharp peak" promoter and that the minimal functional region of this promoter, which extends from the -342 bp position to the initiation codon, is differentially active in normal versus cancer cells. This GC rich region lacks p53 binding sites, but binds Klf4 and Sp3. This finding is likely to be of biological significance, as Klf4 and, to a lesser extent, Sp3 are up-regulated in a number of cancer cells where Notch1 expression is down-modulated, and Klf4 over-expression in normal cells is sufficient to down-modulate Notch1 gene transcription. The combined knock-down of Klf4 and Sp3 was necessary for the reverse effect of increasing Notch1 transcription, consistent with the two factors exerting an overlapping repressor function through their binding to the Notch1 promoter.

  19. Understanding Transcription Factor Regulation by Integrating Gene Expression and DNase I Hypersensitive Sites

    Directory of Open Access Journals (Sweden)

    Guohua Wang

    2015-01-01

    Full Text Available Transcription factors are proteins that bind to DNA sequences to regulate gene transcription. The transcription factor binding sites are short DNA sequences (5–20 bp long specifically bound by one or more transcription factors. The identification of transcription factor binding sites and prediction of their function continue to be challenging problems in computational biology. In this study, by integrating the DNase I hypersensitive sites with known position weight matrices in the TRANSFAC database, the transcription factor binding sites in gene regulatory region are identified. Based on the global gene expression patterns in cervical cancer HeLaS3 cell and HelaS3-ifnα4h cell (interferon treatment on HeLaS3 cell for 4 hours, we present a model-based computational approach to predict a set of transcription factors that potentially cause such differential gene expression. Significantly, 6 out 10 predicted functional factors, including IRF, IRF-2, IRF-9, IRF-1 and IRF-3, ICSBP, belong to interferon regulatory factor family and upregulate the gene expression levels responding to the interferon treatment. Another factor, ISGF-3, is also a transcriptional activator induced by interferon alpha. Using the different transcription factor binding sites selected criteria, the prediction result of our model is consistent. Our model demonstrated the potential to computationally identify the functional transcription factors in gene regulation.

  20. A NF-κB-dependent dual promoter-enhancer initiates the lipopolysaccharide-mediated transcriptional activation of the chicken lysozyme in macrophages.

    Directory of Open Access Journals (Sweden)

    James Witham

    Full Text Available The transcriptional activation of the chicken lysozyme gene (cLys by lipopolysaccharide (LPS in macrophages is dependent on transcription of a LPS-Inducible Non-Coding RNA (LINoCR triggering eviction of the CCCTC-binding factor (CTCF from a negative regulatory element upstream of the lysozyme transcription start site. LINoCR is transcribed from a promoter originally characterized as a hormone response enhancer in the oviduct. Herein, we report the characterization of this cis-regulatory element (CRE. In activated macrophages, a 60 bp region bound by NF-κB, AP1 and C/EBPβ controls this CRE, which is strictly dependent on NF-κB binding for its activity in luciferase assays. Moreover, the serine/threonine kinase IKKα, known to be recruited by NF-κB to NF-κB-dependent genes is found at the CRE and within the transcribing regions of both cLys and LINoCR. Such repartition suggests a simultaneous promoter and enhancer activity of this CRE, initiating cLys transcriptional activation and driving CTCF eviction. This recruitment was transient despite persistence of both cLys transcription and NF-κB binding to the CRE. Finally, comparing cLys with other LPS-inducible genes indicates that IKKα detection within transcribing regions can be correlated with the presence of the elongating form of RNA polymerase II or concentrated in the 3' end of the gene.

  1. A NF-κB-dependent dual promoter-enhancer initiates the lipopolysaccharide-mediated transcriptional activation of the chicken lysozyme in macrophages.

    Science.gov (United States)

    Witham, James; Ouboussad, Lylia; Lefevre, Pascal F

    2013-01-01

    The transcriptional activation of the chicken lysozyme gene (cLys) by lipopolysaccharide (LPS) in macrophages is dependent on transcription of a LPS-Inducible Non-Coding RNA (LINoCR) triggering eviction of the CCCTC-binding factor (CTCF) from a negative regulatory element upstream of the lysozyme transcription start site. LINoCR is transcribed from a promoter originally characterized as a hormone response enhancer in the oviduct. Herein, we report the characterization of this cis-regulatory element (CRE). In activated macrophages, a 60 bp region bound by NF-κB, AP1 and C/EBPβ controls this CRE, which is strictly dependent on NF-κB binding for its activity in luciferase assays. Moreover, the serine/threonine kinase IKKα, known to be recruited by NF-κB to NF-κB-dependent genes is found at the CRE and within the transcribing regions of both cLys and LINoCR. Such repartition suggests a simultaneous promoter and enhancer activity of this CRE, initiating cLys transcriptional activation and driving CTCF eviction. This recruitment was transient despite persistence of both cLys transcription and NF-κB binding to the CRE. Finally, comparing cLys with other LPS-inducible genes indicates that IKKα detection within transcribing regions can be correlated with the presence of the elongating form of RNA polymerase II or concentrated in the 3' end of the gene.

  2. Insight into transcription factor gene duplication from Caenorhabditis elegans Promoterome-driven expression patterns

    Directory of Open Access Journals (Sweden)

    Vidal Marc

    2007-01-01

    Full Text Available Abstract Background The C. elegans Promoterome is a powerful resource for revealing the regulatory mechanisms by which transcription is controlled pan-genomically. Transcription factors will form the core of any systems biology model of genome control and therefore the promoter activity of Promoterome inserts for C. elegans transcription factor genes was examined, in vivo, with a reporter gene approach. Results Transgenic C. elegans strains were generated for 366 transcription factor promoter/gfp reporter gene fusions. GFP distributions were determined, and then summarized with reference to developmental stage and cell type. Reliability of these data was demonstrated by comparison to previously described gene product distributions. A detailed consideration of the results for one C. elegans transcription factor gene family, the Six family, comprising ceh-32, ceh-33, ceh-34 and unc-39 illustrates the value of these analyses. The high proportion of Promoterome reporter fusions that drove GFP expression, compared to previous studies, led to the hypothesis that transcription factor genes might be involved in local gene duplication events less frequently than other genes. Comparison of transcription factor genes of C. elegans and Caenorhabditis briggsae was therefore carried out and revealed very few examples of functional gene duplication since the divergence of these species for most, but not all, transcription factor gene families. Conclusion Examining reporter expression patterns for hundreds of promoters informs, and thereby improves, interpretation of this data type. Genes encoding transcription factors involved in intrinsic developmental control processes appear acutely sensitive to changes in gene dosage through local gene duplication, on an evolutionary time scale.

  3. Analysis of convergent gene transcripts in the obligate intracellular bacterium Rickettsia prowazekii.

    Directory of Open Access Journals (Sweden)

    Andrew Woodard

    Full Text Available Termination of transcription is an important component of bacterial gene expression. However, little is known concerning this process in the obligate intracellular pathogen and model for reductive evolution, Rickettsia prowazekii. To assess transcriptional termination in this bacterium, transcripts of convergent gene pairs, some containing predicted intrinsic terminators, were analyzed. These analyses revealed that, rather than terminating at a specific site within the intervening region between the convergent genes, most of the transcripts demonstrated either a lack of termination within this region, which generated antisense RNA, or a putative non-site-specific termination that occurred throughout the intervening sequence. Transcripts terminating at predicted intrinsic terminators, as well as at a putative Rho-dependant terminator, were also examined and found to vary based on the rickettsial host environment. These results suggest that transcriptional termination, or lack thereof, plays a role in rickettsial gene regulation.

  4. Isolation and characterization of StERF transcription factor genes from potato (Solanum tuberosum L.).

    Science.gov (United States)

    Wang, Zemin; Zhang, Ning; Zhou, Xiangyan; Fan, Qiang; Si, Huaijun; Wang, Di

    2015-04-01

    Ethylene response factor (ERF) is a major subfamily of the AP2/ERF family and plays significant roles in the regulation of abiotic- and biotic-stress responses. ERF proteins can interact with the GCC-box cis-element and then initiate a transcriptional cascade activating downstream ethylene response and enhancing plant stress tolerance. In this research, we cloned five StERF genes from potato (Solanum tuberosum L.). The expressional analysis of StERF genes revealed that they showed tissue- or organ-specific expression patterns and the expression levels in leaf, stem, root, flower, and tuber were different. The assays of quantitative real-time polymerase chain reaction (qRT-PCR) and the reverse transcription-PCR (RT-PCR) showed that the expression of five StERF genes was regulated by ethephon, methyl jasmonate (MeJA), salt and drought stress. The result from the yeast one-hybrid experiment showed that five StERFs had trans-activation activity and could specifically bind to the GCC-box cis-elements. The StERFs responded to abiotic factors and hormones suggested that they possibly had diverse roles in stress and hormone regulation of potato. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  5. Substrate availability and transcriptional regulation of metabolic genes in human skeletal muscle during recovery from exercise

    DEFF Research Database (Denmark)

    Pilegaard, Henriette; Osada, Takuya; Andersen, Lisbeth Tingsted

    2005-01-01

    In skeletal muscle of humans, transcription of several metabolic genes is transiently induced during recovery from exercise when no food is consumed. To determine the potential influence of substrate availability on the transcriptional regulation of metabolic genes during recovery from exercise, ...

  6. Signal transducer and activator of transcription 6 gene G2964A polymorphism and inflammatory bowel disease.

    NARCIS (Netherlands)

    Xia, B; Crusius, J.B.A.; Wu, J; Zwiers, A.; Bodegraven, van A.A.; Pena, A.S.

    2003-01-01

    Signal transducer and activator of transcription 6 (STAT6) is a key transcription factor involved in interleukin 4 (IL-4) and IL-13-mediated Th2 response. The STAT6 gene is located on chromosome 12q13.3-14.1 (IBD2 region) and is therefore a positional and functional candidate gene for study in infla

  7. Step out of the groove : Epigenetic gene control systems and engineered transcription factors

    NARCIS (Netherlands)

    Verschure, Pernette J.; Visser, Astrid E.; Rots, Marianne G.; Hall, JC; Dunlap, JC; Friedmann, T; VanHeyningen,

    2006-01-01

    At the linear DNA level, gene activity is believed to be driven by binding of transcription factors, which subsequently recruit the RNA polymerase to the gene promoter region. However, it has become clear that transcriptional activation involves large complexes of many different proteins, which not

  8. Step out of the groove : epigenetic gene control systems and engineered transcription factors

    NARCIS (Netherlands)

    Verschure, P.J.; Visser, A.E.; Rots, M.G.

    2006-01-01

    At the linear DNA level, gene activity is believed to be driven by binding of transcription factors, which subsequently recruit the RNA polymerase to the gene promoter region. However, it has become clear that transcriptional activation involves large complexes of many different proteins, which not

  9. Step out of the groove : Epigenetic gene control systems and engineered transcription factors

    NARCIS (Netherlands)

    Verschure, Pernette J.; Visser, Astrid E.; Rots, Marianne G.; Hall, JC; Dunlap, JC; Friedmann, T; VanHeyningen,

    2006-01-01

    At the linear DNA level, gene activity is believed to be driven by binding of transcription factors, which subsequently recruit the RNA polymerase to the gene promoter region. However, it has become clear that transcriptional activation involves large complexes of many different proteins, which not

  10. Tumoral Environment Triggers Transcript Anomalies in Established Tumors: Induction of Altered Gene Expression and of Aberrant, Truncated and B2 Repeat-Containing Gene Transcripts

    Directory of Open Access Journals (Sweden)

    Pieter Rottiers

    1999-12-01

    Full Text Available In addition to eugenetic changes, cancerous cells exhibit extensive modifications in the expression levels of a variety of genes. The phenotypic switch observed after inoculation of T lymphoma cells into syngenic mice illustrates the active participation of tumoral environment in the induction of an aberrant gene expression pattern. To further substantiate this contribution, we performed polymerase chain reaction (PCR-based subtraction suppression hybridization (SSH to identify genes that are differentially expressed in tumor-derived EL4/13.3 cells compared to the same cells isolated from cultures. Besides a number of unknown genes, the subtracted library contained several known genes that have been reported to be expressed at increased levels in tumors and/or to contribute to carcinogenesis. Apart from clones representing translated transcripts, the subtracted library also contained a high number of clones representing B2 repeat elements, viz. short interspersed repetitive elements that are transcribed by RNA polymerase III. Northern blotting confirmed the induction of B2 transcripts in tumor tissue and also revealed induction of chimeric, B2 repeat-containing mRNA. The appearance of chimeric transcripts was accompanied by aberrant, shorter-than-full-length transcripts, specifically from upregulated genes. Accordingly, in addition to altered gene expression, tumoral environmental triggers constitute a potent mechanism to create an epigenetic diversity in cancers by inducing extensive transcript anomalies.

  11. Identification of transcription-factor genes expressed in the Arabidopsis female gametophyte

    Directory of Open Access Journals (Sweden)

    Kang Il-Ho

    2010-06-01

    Full Text Available Abstract Background In flowering plants, the female gametophyte is typically a seven-celled structure with four cell types: the egg cell, the central cell, the synergid cells, and the antipodal cells. These cells perform essential functions required for double fertilization and early seed development. Differentiation of these distinct cell types likely involves coordinated changes in gene expression regulated by transcription factors. Therefore, understanding female gametophyte cell differentiation and function will require dissection of the gene regulatory networks operating in each of the cell types. These efforts have been hampered because few transcription factor genes expressed in the female gametophyte have been identified. To identify such genes, we undertook a large-scale differential expression screen followed by promoter-fusion analysis to detect transcription-factor genes transcribed in the Arabidopsis female gametophyte. Results Using quantitative reverse-transcriptase PCR, we analyzed 1,482 Arabidopsis transcription-factor genes and identified 26 genes exhibiting reduced mRNA levels in determinate infertile 1 mutant ovaries, which lack female gametophytes, relative to ovaries containing female gametophytes. Spatial patterns of gene transcription within the mature female gametophyte were identified for 17 transcription-factor genes using promoter-fusion analysis. Of these, ten genes were predominantly expressed in a single cell type of the female gametophyte including the egg cell, central cell and the antipodal cells whereas the remaining seven genes were expressed in two or more cell types. After fertilization, 12 genes were transcriptionally active in the developing embryo and/or endosperm. Conclusions We have shown that our quantitative reverse-transcriptase PCR differential-expression screen is sufficiently sensitive to detect transcription-factor genes transcribed in the female gametophyte. Most of the genes identified in this

  12. Gene length as a biological timer to establish temporal transcriptional regulation.

    Science.gov (United States)

    Kirkconnell, Killeen S; Magnuson, Brian; Paulsen, Michelle T; Lu, Brian; Bedi, Karan; Ljungman, Mats

    2017-02-01

    Transcriptional timing is inherently influenced by gene length, thus providing a mechanism for temporal regulation of gene expression. While gene size has been shown to be important for the expression timing of specific genes during early development, whether it plays a role in the timing of other global gene expression programs has not been extensively explored. Here, we investigate the role of gene length during the early transcriptional response of human fibroblasts to serum stimulation. Using the nascent sequencing techniques Bru-seq and BruUV-seq, we identified immediate genome-wide transcriptional changes following serum stimulation that were linked to rapid activation of enhancer elements. We identified 873 significantly induced and 209 significantly repressed genes. Variations in gene size allowed for a large group of genes to be simultaneously activated but produce full-length RNAs at different times. The median length of the group of serum-induced genes was significantly larger than the median length of all expressed genes, housekeeping genes, and serum-repressed genes. These gene length relationships were also observed in corresponding mouse orthologs, suggesting that relative gene size is evolutionarily conserved. The sizes of transcription factor and microRNA genes immediately induced after serum stimulation varied dramatically, setting up a cascade mechanism for temporal expression arising from a single activation event. The retention and expansion of large intronic sequences during evolution have likely played important roles in fine-tuning the temporal expression of target genes in various cellular response programs.

  13. Correlation of methane production and functional gene transcriptional activity in a peat soil.

    Science.gov (United States)

    Freitag, Thomas E; Prosser, James I

    2009-11-01

    The transcription dynamics of subunit A of the key gene in methanogenesis (methyl coenzyme M reductase; mcrA) was studied to evaluate the relationship between process rate (methanogenesis) and gene transcription dynamics in a peat soil ecosystem. Soil methanogen process rates were determined during incubation of peat slurries at temperatures from 4 to 37 degrees C, and real-time quantitative PCR was applied to quantify the abundances of mcrA genes and transcripts; corresponding transcriptional dynamics were calculated from mcrA transcript/gene ratios. Internal standards suggested unbiased recovery of mRNA abundances in comparison to DNA levels. In comparison to those in pure-culture studies, mcrA transcript/gene ratios indicated underestimation by 1 order of magnitude, possibly due to high proportions of inactive or dead methanogens. Methane production rates were temperature dependent, with maxima at 25 degrees C, but changes in abundance and transcription of the mcrA gene showed no correlation with temperature. However, mcrA transcript/gene ratios correlated weakly (regression coefficient = 0.76) with rates of methanogenesis. Methanogen process rates increased over 3 orders of magnitude, while the corresponding maximum transcript/gene ratio increase was only 18-fold. mcrA transcript dynamics suggested steady-state expression in peat soil after incubation for 24 and 48 h, similar to that in stationary-phase cultures. mcrA transcript/gene ratios are therefore potential in situ indicators of methanogen process rate changes in complex soil systems.

  14. Low-temperature affected LC-PUFA conversion and associated gene transcript level in Nannochloropsis oculata CS-179

    Science.gov (United States)

    Ma, Xiaolei; Zhang, Lin; Zhu, Baohua; Pan, Kehou; Li, Si; Yang, Guanpin

    2011-09-01

    Nannochloropsis oculata CS-179, a marine eukaryotic unicellular microalga, is rich in long-chain polyunsaturated fatty acids (LC-PUFAs). Culture temperature affected cell growth and the composition of LC-PUFAs. At an initial cell density of 1.5 × 106 cell mL-1, the highest growth was observed at 25°C and the cell density reached 3 × 107 cell mL-1 at the beginning of logarithmic phase. The content of LC-PUFAs varied with culture temperature. The highest content of LC-PUFAs (43.96%) and EPA (36.6%) was gained at 20°C. Real-time PCR showed that the abundance of Δ6-desaturase gene transcripts was significantly different among 5 culture temperatures and the highest transcript level (15°C) of Nanoc-D6D took off at cycle 21.45. The gene transcript of C20-elongase gene was higher at lower temperatures (10, 15, and 20°C), and the highest transcript level (20°C) of Nanoc-E took off at cycle 21.18. The highest conversion rate (39.3%) of Δ6-desaturase was also gained at 20°C. But the conversion rate of Nanoc-E was not detected. The higher content of LC-PUFAs was a result of higher gene transcript level and higher enzyme activity. Compared with C20-elongase gene, Δ6-desaturase gene transcript and enzyme activity varied significantly with temperature. It will be useful to study the mechanism of how the content of LC-PUFAs is affected by temperature.

  15. Human genes with a greater number of transcript variants tend to show biological features of housekeeping and essential genes

    DEFF Research Database (Denmark)

    Ryu, Jae Yong; Kim, Hyun Uk; Lee, Sang Yup

    2015-01-01

    64 vertebrate species as orthologs, subjected to regulations by transcription factors and microRNAs, and showed hub node-like properties in the human protein-protein interaction network. These findings were also confirmed by metabolic simulations of 60 cancer metabolic models. All these results......Alternative splicing is a process observed in gene expression that results in a multi-exon gene to produce multiple mRNA variants which might have different functions and activities. Although physiologically important, many aspects of genes with different number of transcript variants (or splice...... variants) still remain to be characterized. In this study, we provide bioinformatic evidence that genes with a greater number of transcript variants are more likely to play functionally important roles in cells, compared with those having fewer transcript variants. Among 21 983 human genes, 3728 genes were...

  16. [Association of schizophrenia with variations in genes encoding transcription factors].

    Science.gov (United States)

    Boyajyan, A S; Atshemyan, S A; Zakharyan, R V

    2015-01-01

    Alterations in neuronal plasticity and immune system play a key role in pathogenesis of schizophrenia. Identification of genetic factors contributing to these alterations will significantly encourage elucidation of molecular etiopathomechanisms of this disorder. Transcription factors c-Fos, c-Jun, and Ier5 are the important regulators of neuronal plasticity and immune response. In the present work we investigated a potential association of schizophrenia with a number of single nucleotide polymorphisms of c-Fos-,c-Jun and Ier5 encoding genes (FOS, JUN, and IER5 respectively). Genotyping of DNA samples of patients with schizophrenia and healthy individuals was performed using polymerase chain reaction with allele specific primers. The results obtained demonstrated association between schizophrenia and FOS rs1063169, FOS rs7101, JUN rs11688, and IER5 rs6425663 polymorphisms. Namely, it was found that the inheritance of FOS rs1063169*T, JUN rs11688*A, and IER5 rs6425663*T minor variants decreases risk for development of schizophrenia whereas the inheritance of FOS rs7101*T minor variant, especially its homozygous form, increases risk for development of this disorder.

  17. Widespread transcriptional autosomal dosage compensation in Drosophila correlates with gene expression level.

    Science.gov (United States)

    McAnally, Ashley A; Yampolsky, Lev Y

    2009-12-23

    Little is known about dosage compensation in autosomal genes. Transcription-level compensation of deletions and other loss-of-function mutations may be a mechanism of dominance of wild-type alleles, a ubiquitous phenomenon whose nature has been a subject of a long debate. We measured gene expression in two isogenic Drosophila lines heterozygous for long deletions and compared our results with previously published gene expression data in a line heterozygous for a long duplication. We find that a majority of genes are at least partially compensated at transcription, both for (1/2)-fold dosage (in heterozygotes for deletions) and for 1.5-fold dosage (in heterozygotes for a duplication). The degree of compensation does not vary among functional classes of genes. Compensation for deletions is stronger for highly expressed genes. In contrast, the degree of compensation for duplications is stronger for weakly expressed genes. Thus, partial transcriptional compensation appears to be based on regulatory mechanisms that insure high transcription levels of some genes and low transcription levels of other genes, instead of precise maintenance of a particular homeostatic expression level. Given the ubiquity of transcriptional compensation, dominance of wild-type alleles may be at least partially caused by of the regulation at transcription level.

  18. Analysis of carotenogenic genes promoters and WRKY transcription factors in response to salt stress in Dunaliella bardawil

    Science.gov (United States)

    Liang, Ming-Hua; Jiang, Jian-Guo

    2017-01-01

    The unicellular alga Dunaliella bardawil is a highly salt-tolerant organism, capable of accumulating glycerol, glycine betaine and β-carotene under salt stress, and has been considered as an excellent model organism to investigate the molecular mechanisms of salt stress responses. In this study, several carotenogenic genes (DbCRTISO, DbZISO, DbLycE and DbChyB), DbBADH genes involved in glycine betaine synthesis and genes encoding probable WRKY transcription factors from D. bardawil were isolated, and promoters of DbCRTISO and DbChyB were cloned. The promoters of DbPSY, DbLycB, DbGGPS, DbCRTISO and DbChyB contained the salt-regulated element (SRE), GT1GMSCAM4, while the DbGGPS promoter has another SRE, DRECRTCOREAT. All promoters of the carotenogenic genes had light-regulated elements and W-box cis-acting elements. Most WRKY transcription factors can bind to the W-box, and play roles in abiotic stress. qRT-PCR analysis showed that salt stress up-regulated both carotenogenic genes and WRKY transcription factors. In contrast, the transcription levels of DbBADH showed minor changes. In D. bardawil, it appears that carotenoid over-accumulation allows for the long-term adaptation to salt stress, while the rapid modulation of glycine betaine biosynthesis provides an initial response. PMID:28128303

  19. GCN-2 dependent inhibition of protein synthesis activates osmosensitive gene transcription via WNK and Ste20 kinase signaling.

    Science.gov (United States)

    Lee, Elaine Choung-Hee; Strange, Kevin

    2012-12-15

    Increased gpdh-1 transcription is required for accumulation of the organic osmolyte glycerol and survival of Caenorhabditis elegans during hypertonic stress. Our previous work has shown that regulators of gpdh-1 (rgpd) gene knockdown constitutively activates gpdh-1 expression. Fifty-five rgpd genes play essential roles in translation suggesting that inhibition of protein synthesis is an important signal for regulating osmoprotective gene transcription. We demonstrate here that translation is reduced dramatically by hypertonic stress or knockdown of rgpd genes encoding aminoacyl-tRNA synthetases and eukaryotic translation initiation factors (eIFs). Toxin-induced inhibition of translation also activates gpdh-1 expression. Hypertonicity-induced translation inhibition is mediated by general control nonderepressible (GCN)-2 kinase signaling and eIF-2α phosphoryation. Loss of gcn-1 or gcn-2 function prevents eIF-2α phosphorylation, completely blocks reductions in translation, and inhibits gpdh-1 transcription. gpdh-1 expression is regulated by the highly conserved with-no-lysine kinase (WNK) and Ste20 kinases WNK-1 and GCK-3, which function in the GCN-2 signaling pathway downstream from eIF-2α phosphorylation. Our previous work has shown that hypertonic stress causes rapid and dramatic protein damage in C. elegans and that inhibition of translation reduces this damage. The current studies demonstrate that reduced translation also serves as an essential signal for activation of WNK-1/GCK-3 kinase signaling and subsequent transcription of gpdh-1 and possibly other osmoprotective genes.

  20. Ectopic expression of MYB46 identifies transcriptional regulatory genes involved in secondary wall biosynthesis in Arabidopsis.

    Science.gov (United States)

    Ko, Jae-Heung; Kim, Won-Chan; Han, Kyung-Hwan

    2009-11-01

    MYB46 functions as a transcriptional switch that turns on the genes necessary for secondary wall biosynthesis. Elucidating the transcriptional regulatory network immediately downstream of MYB46 is crucial to our understanding of the molecular and biochemical processes involved in the biosynthesis and deposition of secondary walls in plants. To gain insights into MYB46-mediated transcriptional regulation, we first established an inducible secondary wall thickening system in Arabidopsis by expressing MYB46 under the control of dexamethasone-inducible promoter. Then, we used an ATH1 GeneChip microarray and Illumina digital gene expression system to obtain a series of transcriptome profiles with regard to the induction of secondary wall development. These analyses allowed us to identify a group of transcription factors whose expression coincided with or preceded the induction of secondary wall biosynthetic genes. A transient transcriptional activation assay was used to confirm the hierarchical relationships among the transcription factors in the network. The in vivo assay showed that MYB46 transcriptionally activates downstream target transcription factors, three of which (AtC3H14, MYB52 and MYB63) were shown to be able to activate secondary wall biosynthesis genes. AtC3H14 activated the transcription of all of the secondary wall biosynthesis genes tested, suggesting that AtC3H14 may be another master regulator of secondary wall biosynthesis. The transcription factors identified here may include direct activators of secondary wall biosynthesis genes. The present study discovered novel hierarchical relationships among the transcription factors involved in the transcriptional regulation of secondary wall biosynthesis, and generated several testable hypotheses.

  1. Insulators target active genes to transcription factories and polycomb-repressed genes to polycomb bodies.

    Directory of Open Access Journals (Sweden)

    Hua-Bing Li

    2013-04-01

    Full Text Available Polycomb bodies are foci of Polycomb proteins in which different Polycomb target genes are thought to co-localize in the nucleus, looping out from their chromosomal context. We have shown previously that insulators, not Polycomb response elements (PREs, mediate associations among Polycomb Group (PcG targets to form Polycomb bodies. Here we use live imaging and 3C interactions to show that transgenes containing PREs and endogenous PcG-regulated genes are targeted by insulator proteins to different nuclear structures depending on their state of activity. When two genes are repressed, they co-localize in Polycomb bodies. When both are active, they are targeted to transcription factories in a fashion dependent on Trithorax and enhancer specificity as well as the insulator protein CTCF. In the absence of CTCF, assembly of Polycomb bodies is essentially reduced to those representing genomic clusters of Polycomb target genes. The critical role of Trithorax suggests that stable association with a specialized transcription factory underlies the cellular memory of the active state.

  2. Profiling of sperm gene transcripts in crossbred (Bos taurus x Bos indicus) bulls.

    Science.gov (United States)

    H M, Yathish; Kumar, Subodh; Dubey, Prem P; Modi, Rajendra P; Chaudhary, Rajni; A, Siva Kumar; Ghosh, Subrata K; Sarkar, Mihir; B, Sivamani

    2017-02-01

    Crossbred cattle in some sectors of the world have a significant role in enhancing milk production thereby enhancing the per capita milk availability as a human food source. However, there are certain constraints associated with crossbred animals, such as disease susceptibility, increased reproductive problems, repeat breeding and poor seminal quality. The semen of crossbred bulls has a poor freezing capacity, increased cryo-damage, poor mass cell motility, greater percentages of dead/abnormal sperm and poor initial and post-freeze cell motility. The rejection rate of crossbred bulls for cryostorage of semen has been reported to be as great as 50% as a result of unacceptable semen quality. The identification of superior bulls using molecular technologies is needed which necessitates identification of the genes having a role in sperm function. The present study was, therefore, conducted to gain information on identification and expression of genes having a role in sperm motility in crossbred bulls. The gene transcripts in bulls with sperm of superior and inferior quality were profiled in Vrindavani crossbred cattle by microarray analyses and the results were verified by real time-quantitative PCR. Microarray analyses revealed 19,454 genes which were differentially expressed. At a two-fold cut off, 305 genes were differentially (Pbulls with superior motility.

  3. Three promoters regulate the transcriptional activity of the human holocarboxylase synthetase gene.

    Science.gov (United States)

    Xia, Mengna; Malkaram, Sridhar A; Zempleni, Janos

    2013-11-01

    Holocarboxylase synthetase (HLCS) is the only protein biotin ligase in the human proteome. HLCS-dependent biotinylation of carboxylases plays crucial roles in macronutrient metabolism. HLCS appears to be an essential part of multiprotein complexes in the chromatin that cause gene repression and contribute toward genome stability. Consistent with these essential functions, HLCS knockdown causes strong phenotypes including shortened life span and low stress resistance in Drosophila melanogaster, and de-repression of long-terminal repeats in humans, other mammalian cell lines and Drosophila. Despite previous observations that the expression of HLCS depends on biotin status in rats and in human cell lines, little is known about the regulation of HLCS expression. The goal of this study was to identify promoters that regulate the expression of the human HLCS gene. Initially, the human HLCS locus was interrogated in silico using predictors of promoters including sequences of HLCS mRNA and expressed sequence tags, CpG islands, histone marks denoting transcriptionally poised chromatin, transcription factor binding sites and DNaseI hypersensitive regions. Our predictions revealed three putative HLCS promoters, denoted P1, P2 and P3. Promoters lacked a TATA box, which is typical for housekeeping genes. When the three promoters were cloned into a luciferase reporter plasmid, reporter gene activity was at least three times background noise in human breast, colon and kidney cell lines; activities consistently followed the pattern P1>P3>P2. Promoter activity depended on the concentration of biotin in culture media, but the effect was moderate. We conclude that we have identified promoters in the human HLCS gene.

  4. Exogenous reference gene normalization for real-time reverse transcription-polymerase chain reaction analysis under dynamic endogenous transcription

    Institute of Scientific and Technical Information of China (English)

    Stephen Johnston; Zachary Gallaher; Krzysztof Czaja

    2012-01-01

    Quantitative real-time reverse transcription-polymerase chain reaction (qPCR) is widely used to investigate transcriptional changes following experimental manipulations to the nervous system. Despite the widespread utilization of qPCR, the interpretation of results is marred by the lack of a suitable reference gene due to the dynamic nature of endogenous transcription. To address this inherent deficiency, we investigated the use of an exogenous spike-in mRNA, luciferase, as an internal reference gene for the 2-ΔΔCt normalization method. To induce dynamic transcription, we systemically administered capsaicin, a neurotoxin selective for C-type sensory neurons expressing the TRPV-1 receptor, to adult male Sprague-Dawley rats. We later isolated nodose ganglia for qPCR analysis with the reference being either exogenous luciferase mRNA or the commonly used endogenous reference β-III tubulin. The exogenous luciferase mRNA reference clearly demonstrated the dynamic expression of the endogenous reference. Furthermore, variability of the endogenous reference would lead to misinterpretation of other genes of interest. In conclusion, traditional reference genes are often unstable under physiologically normal situations, and certainly unstable following the damage to the nervous system. The use of exogenous spike-in reference provides a consistent and easily implemented alternative for the analysis of qPCR data.

  5. Pairwise comparisons of ten porcine tissues identify differential transcriptional regulation at the gene, isoform, promoter and transcription start site level

    DEFF Research Database (Denmark)

    Farajzadeh, Leila; Hornshøj, Henrik; Momeni, Jamal

    2013-01-01

    The transcriptome is the absolute set of transcripts in a tissue or cell at the time of sampling. In this study RNA-Seq is employed to enable the differential analysis of the transcriptome profile for ten porcine tissues in order to evaluate differences between the tissues at the gene and isoform...

  6. Cytoplasmic male sterility of tuber mustard is associated with the alternative spliced mitochondrial T gene transcripts

    Institute of Scientific and Technical Information of China (English)

    PEI Yanxi; CHEN Zhujun; CAO Jiashu; CHEN Xuejun; LIU Xiaohui

    2004-01-01

    Two transcripts of T gene, T1170 and T1243, were obtained from the mitochondrial cDNA of tuber mustard CMS line. T1243 was a transcript with an intron unspliced, which has the basic characteristics of type Ⅱ intron. The expressions of the two transcripts were analyzed by reverse transcription PCR (RT-PCR). The results showed that, at seedling stage, the expression of T gene was mainly in the form of T1170 but decreased with the development gradually, while the expression abundance of another transcript, T1243, increased gradually. The T1243 was prevalent at the profuse flowering stage. The expression pattern was confirmed by Northern blot analysis. These results suggested that the alternative spliced mitochondrial T gene transcripts were related to CMS of tuber mustard.

  7. Inhibition of human insulin gene transcription and MafA transcriptional activity by the dual leucine zipper kinase.

    Science.gov (United States)

    Stahnke, Marie-Jeannette; Dickel, Corinna; Schröder, Sabine; Kaiser, Diana; Blume, Roland; Stein, Roland; Pouponnot, Celio; Oetjen, Elke

    2014-09-01

    Insulin biosynthesis is an essential β-cell function and inappropriate insulin secretion and biosynthesis contribute to the pathogenesis of diabetes mellitus type 2. Previous studies showed that the dual leucine zipper kinase (DLK) induces β-cell apoptosis. Since β-cell dysfunction precedes β-cell loss, in the present study the effect of DLK on insulin gene transcription was investigated in the HIT-T15 β-cell line. Downregulation of endogenous DLK increased whereas overexpression of DLK decreased human insulin gene transcription. 5'- and 3'-deletion human insulin promoter analyses resulted in the identification of a DLK responsive element that mapped to the DNA binding-site for the β-cell specific transcription factor MafA. Overexpression of DLK wild-type but not its kinase-dead mutant inhibited MafA transcriptional activity conferred by its transactivation domain. Furthermore, in the non-β-cell line JEG DLK inhibited MafA overexpression-induced human insulin promoter activity. Overexpression of MafA and DLK or its kinase-dead mutant into JEG cells revealed that DLK but not its mutant reduced MafA protein content. Inhibition of the down-stream DLK kinase c-Jun N-terminal kinase (JNK) by SP600125 attenuated DLK-induced MafA loss. Furthermore, mutation of the serine 65 to alanine, shown to confer MafA protein stability, increased MafA-dependent insulin gene transcription and prevented DLK-induced MafA loss in JEG cells. These data suggest that DLK by activating JNK triggers the phosphorylation and degradation of MafA thereby attenuating insulin gene transcription. Given the importance of MafA for β-cell function, the inhibition of DLK might preserve β-cell function and ultimately retard the development of diabetes mellitus type 2.

  8. Localizing potentially active post-transcriptional regulations in the Ewing's sarcoma gene regulatory network

    Directory of Open Access Journals (Sweden)

    Delyon Bernard

    2010-11-01

    Full Text Available Abstract Background A wide range of techniques is now available for analyzing regulatory networks. Nonetheless, most of these techniques fail to interpret large-scale transcriptional data at the post-translational level. Results We address the question of using large-scale transcriptomic observation of a system perturbation to analyze a regulatory network which contained several types of interactions - transcriptional and post-translational. Our method consisted of post-processing the outputs of an open-source tool named BioQuali - an automatic constraint-based analysis mimicking biologist's local reasoning on a large scale. The post-processing relied on differences in the behavior of the transcriptional and post-translational levels in the network. As a case study, we analyzed a network representation of the genes and proteins controlled by an oncogene in the context of Ewing's sarcoma. The analysis allowed us to pinpoint active interactions specific to this cancer. We also identified the parts of the network which were incomplete and should be submitted for further investigation. Conclusions The proposed approach is effective for the qualitative analysis of cancer networks. It allows the integrative use of experimental data of various types in order to identify the specific information that should be considered a priority in the initial - and possibly very large - experimental dataset. Iteratively, new dataset can be introduced into the analysis to improve the network representation and make it more specific.

  9. DNA methylation profiling of transcription factor genes in normal lymphocyte development and lymphomas.

    Science.gov (United States)

    Ivascu, Claudia; Wasserkort, Reinhold; Lesche, Ralf; Dong, Jun; Stein, Harald; Thiel, Andreas; Eckhardt, Florian

    2007-01-01

    Transcription factors play a crucial role during hematopoiesis by orchestrating lineage commitment and determining cellular fate. Although tight regulation of transcription factor expression appears to be essential, little is known about the epigenetic mechanisms involved in transcription factor gene regulation. We have analyzed DNA methylation profiles of 13 key transcription factor genes in primary cells of the hematopoietic cascade, lymphoma cell lines and lymph node biopsies of diffuse large B-cell- and T-cell-non-Hodgkin lymphoma patients. Several of the transcription factor genes (SPI1, GATA3, TCF-7, Etv5, c-maf and TBX21) are differentially methylated in specific cell lineages and stages of the hematopoietic cascade. For some genes, such as SPI1, Etv5 and Eomes, we found an inverse correlation between the methylation of the 5' untranslated region and expression of the associated gene suggesting that these genes are regulated by DNA methylation. Differential methylation is not limited to cells of the healthy hematopoietic cascade, as we observed aberrant methylation of c-maf, TCF7, Eomes and SPI1 in diffuse large B-cell lymphomas. Our results suggest that epigenetic remodelling of transcription factor genes is a frequent mechanism during hematopoietic development. Aberrant methylation of transcription factor genes is frequently observed in diffuse large B-cell lymphomas and might have a functional role during tumorigenesis.

  10. Is transcription the dominant force during dynamic changes in gene expression?

    Science.gov (United States)

    Turner, Martin

    2011-01-01

    Dynamic changes in gene expression punctuate lymphocyte development and are a characteristic of lymphocyte activation. A prevailing view has been that these changes are driven by DNA transcription factors, which are the dominant force in gene expression. Accumulating evidence is challenging this DNA centric view and has highlighted the prevalence and dynamic nature of RNA handling mechanisms. Alternative splicing and differential polyadenylation appear to be more widespread than first thought. Changes in mRNA decay rates also affect the abundance of transcripts and this mechanism may contribute significantly to gene expression. Additional RNA handling mechanisms that control the intracellular localization of mRNA and association with translating ribosomes are also important. Thus, gene expression is regulated through the coordination of transcriptional and post-transcriptional mechanisms. Developing a more "RNA centric" view of gene expression will allow a more systematic understanding of how gene expression and cell function are integrated.

  11. Transcriptional regulation of cardiac genes balance pro- and anti-hypertrophic mechanisms in hypertrophic cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Nina Gennebäck

    2012-06-01

    Full Text Available Hypertrophic cardiomyopathy (HCM is characterized by unexplained left ventricular hypertrophy. HCM is often hereditary, but our knowledge of the mechanisms leading from mutation to phenotype is incomplete. The transcriptional expression patterns in the myocar - dium of HCM patients may contribute to understanding the mechanisms that drive and stabilize the hypertrophy. Cardiac myectomies/biopsies from 8 patients with hypertrophic obstructive cardiomyopathy (HOCM and 5 controls were studied with whole genome Illumina microarray gene expression (detecting 18 189 mRNA. When comparing HOCM myocardium to controls, there was significant transcriptional down-regulation of the MYH6, EGR1, APOB and FOS genes, and significant transcriptional up-regulation of the ACE2, JAK2, NPPA (ANP, APOA1 and HDAC5 genes. The transcriptional regulation revealed both pro- and anti-hypertrophic mechanisms. The pro-hypertrophic response was explained by the transcriptional down-regulation of MYH6, indicating that the switch to the fetal gene program is maintained, and the transcriptional up-regulation of JAK2 in the JAK-STAT pathway. The anti-hypertrophic response was seen as a transcriptional down-regulation of the immediate early genes (IEGs, FOS and EGR1, and a transcriptional up-regulation of ACE2 and HDAC5. This can be interpreted as a transcriptional endogenous protection system in the heart of the HOCM patients, neither growing nor suppressing the already hypertrophic myocardium.

  12. Identification of EhTIF-IA: The putative E. histolytica orthologue of the human ribosomal RNA transcription initiation factor-IA

    Indian Academy of Sciences (India)

    Ankita Srivastava; Alok Bhattacharya; Sudha Bhattacharya; Gagan Deep Jhingan

    2016-03-01

    Initiation of rDNA transcription requires the assembly of a specific multi-protein complex at the rDNA promoter containing the RNA Pol I with auxiliary factors. One of these factors is known as Rrn3P in yeast and Transcription Initiation Factor IA (TIF-IA) in mammals. Rrn3p/TIF-IA serves as a bridge between RNA Pol I and the pre-initiation complex at the promoter. It is phosphorylated at multiple sites and is involved in regulation of rDNA transcription in a growth-dependent manner. In the early branching parasitic protist Entamoeba histolytica, the rRNA genes are present exclusively on circular extra chromosomal plasmids. The protein factors involved in regulation of rDNA transcription in E. histolytica are not known. We have identified the E. histolytica equivalent of TIF-1A (EhTIF-IA) by homology search within the database and was further cloned and expressed. Immuno-localization studies showed that EhTIF-IA co-localized partially with fibrillarin in the peripherally localized nucleolus. EhTIF-IA was shown to interact with the RNA Pol I-specific subunit RPA12 both in vivo and in vitro. Mass spectroscopy data identified RNA Pol I-specific subunits and other nucleolar proteins to be the interacting partners of EhTIF-IA. Our study demonstrates for the first time a conserved putative RNA Pol I transcription factor TIF-IA in E. histolytica.

  13. Identification of EhTIF-IA: The putative E. histolytica orthologue of the human ribosomal RNA transcription initiation factor-IA.

    Science.gov (United States)

    Srivastava, Ankita; Bhattacharya, Alok; Bhattacharya, Sudha; Jhingan, Gagan Deep

    2016-03-01

    Initiation of rDNA transcription requires the assembly of a specific multi-protein complex at the rDNA promoter containing the RNA Pol I with auxiliary factors. One of these factors is known as Rrn3P in yeast and Transcription Initiation Factor IA (TIF-IA) in mammals. Rrn3p/TIF-IA serves as a bridge between RNA Pol I and the pre-initiation complex at the promoter. It is phosphorylated at multiple sites and is involved in regulation of rDNA transcription in a growth-dependent manner. In the early branching parasitic protist Entamoeba histolytica, the rRNA genes are present exclusively on circular extra chromosomal plasmids. The protein factors involved in regulation of rDNA transcription in E. histolytica are not known. We have identified the E. histolytica equivalent of TIF-1A (EhTIF-IA) by homology search within the database and was further cloned and expressed. Immuno-localization studies showed that EhTIF-IA co-localized partially with fibrillarin in the peripherally localized nucleolus. EhTIF-IA was shown to interact with the RNA Pol I-specific subunit RPA12 both in vivo and in vitro. Mass spectroscopy data identified RNA Pol I-specific subunits and other nucleolar proteins to be the interacting partners of EhTIF-IA. Our study demonstrates for the first time a conserved putative RNA Pol I transcription factor TIF-IA in E. histolytica.

  14. CATMA, a comprehensive genome-scale resource for silencing and transcript profiling of Arabidopsis genes

    Directory of Open Access Journals (Sweden)

    Moreau Yves

    2007-10-01

    Full Text Available Abstract Background The Complete Arabidopsis Transcript MicroArray (CATMA initiative combines the efforts of laboratories in eight European countries 1 to deliver gene-specific sequence tags (GSTs for the Arabidopsis research community. The CATMA initiative offers the power and flexibility to regularly update the GST collection according to evolving knowledge about the gene repertoire. These GST amplicons can easily be reamplified and shared, subsets can be picked at will to print dedicated arrays, and the GSTs can be cloned and used for other functional studies. This ongoing initiative has already produced approximately 24,000 GSTs that have been made publicly available for spotted microarray printing and RNA interference. Results GSTs from the CATMA version 2 repertoire (CATMAv2, created in 2002 were mapped onto the gene models from two independent Arabidopsis nuclear genome annotation efforts, TIGR5 and PSB-EuGène, to consolidate a list of genes that were targeted by previously designed CATMA tags. A total of 9,027 gene models were not tagged by any amplified CATMAv2 GST, and 2,533 amplified GSTs were no longer predicted to tag an updated gene model. To validate the efficacy of GST mapping criteria and design rules, the predicted and experimentally observed hybridization characteristics associated to GST features were correlated in transcript profiling datasets obtained with the CATMAv2 microarray, confirming the reliability of this platform. To complete the CATMA repertoire, all 9,027 gene models for which no GST had yet been designed were processed with an adjusted version of the Specific Primer and Amplicon Design Software (SPADS. A total of 5,756 novel GSTs were designed and amplified by PCR from genomic DNA. Together with the pre-existing GST collection, this new addition constitutes the CATMAv3 repertoire. It comprises 30,343 unique amplified sequences that tag 24,202 and 23,009 protein-encoding nuclear gene models in the TAIR6 and Eu

  15. Transcriptional modulation of squalene synthase genes in barley treated with PGPR

    OpenAIRE

    Yousaf, Anam; Qadir, Abdul; Anjum, Tehmina; Ahmad, Aqeel

    2015-01-01

    Phytosterol contents and food quality of plant produce is directly associated with transcription of gene squalene synthase (SS). In current study, barley plants were treated with different rhizobacterial strains under semi controlled (27 ± 3°C) greenhouse conditions in order to modulate expression of SS gene. Plant samples were analyzed through semi-quantitative PCR to evaluate effect of rhizobacterial application on transcriptional status of SS. Results revealed that among four SS genes (i.e...

  16. The H4 subunit of vaccinia virus RNA polymerase is not required for transcription initiation at a viral late promoter.

    OpenAIRE

    Wright, C F; Coroneos, A M

    1995-01-01

    Chromatography of RNA polymerase purified from vaccinia virions and from vaccinia virus-infected HeLa cells resulted in the separation of populations active for early and late transcription. An RNA polymerase population immunodepleted for the vaccinia virus H4 gene peptide could support late transcription.

  17. Fate of HIV-1 cDNA intermediates during reverse transcription is dictated by transcription initiation site of virus genomic RNA

    Science.gov (United States)

    Masuda, Takao; Sato, Yoko; Huang, Yu-Lun; Koi, Satoshi; Takahata, Tatsuro; Hasegawa, Atsuhiko; Kawai, Gota; Kannagi, Mari

    2015-01-01

    Retroviral reverse transcription is accomplished by sequential strand-transfers of partial cDNA intermediates copied from viral genomic RNA. Here, we revealed an unprecedented role of 5′-end guanosine (G) of HIV-1 genomic RNA for reverse transcription. Based on current consensus for HIV-1 transcription initiation site, HIV-1 transcripts possess a single G at 5′-ends (G1-form). However, we found that HIV-1 transcripts with additional Gs at 5′-ends (G2- and G3-forms) were abundantly expressed in infected cells by using alternative transcription initiation sites. The G2- and G3-forms were also detected in the virus particle, although the G1-form predominated. To address biological impact of the 5′-G number, we generated HIV clone DNA to express the G1-form exclusively by deleting the alternative initiation sites. Virus produced from the clone showed significantly higher strand-transfer of minus strong-stop cDNA (-sscDNA). The in vitro assay using synthetic HIV-1 RNAs revealed that the abortive forms of -sscDNA were abundantly generated from the G3-form RNA, but dramatically reduced from the G1-form. Moreover, the strand-transfer of -sscDNA from the G1-form was prominently stimulated by HIV-1 nucleocapsid. Taken together, our results demonstrated that the 5′-G number that corresponds to HIV-1 transcription initiation site was critical for successful strand-transfer of -sscDNA during reverse transcription. PMID:26631448

  18. Translation initiation factor eIF4G1 preferentially binds yeast transcript leaders containing conserved oligo-uridine motifs.

    Science.gov (United States)

    Zinshteyn, Boris; Rojas-Duran, Maria F; Gilbert, Wendy V

    2017-09-01

    Translational control of gene expression plays essential roles in cellular stress responses and organismal development by enabling rapid, selective, and localized control of protein production. Translational regulation depends on context-dependent differences in the protein output of mRNAs, but the key mRNA features that distinguish efficiently translated mRNAs are largely unknown. Here, we comprehensively determined the RNA-binding preferences of the eukaryotic initiation factor 4G (eIF4G) to assess whether this core translation initiation factor has intrinsic sequence preferences that may contribute to preferential translation of specific mRNAs. We identified a simple RNA sequence motif-oligo-uridine-that mediates high-affinity binding to eIF4G in vitro. Oligo(U) motifs occur naturally in the transcript leader (TL) of hundreds of yeast genes, and mRNAs with unstructured oligo(U) motifs were enriched in immunoprecipitations against eIF4G. Ribosome profiling following depletion of eIF4G in vivo showed preferentially reduced translation of mRNAs with long TLs, including those that contain oligo(U). Finally, TL oligo(U) elements are enriched in genes with regulatory roles and are conserved between yeast species, consistent with an important cellular function. Taken together, our results demonstrate RNA sequence preferences for a general initiation factor, which cells potentially exploit for translational control of specific mRNAs. © 2017 Zinshteyn et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  19. Determining physical constraints in transcriptional initiation complexes using DNA sequence analysis.

    Directory of Open Access Journals (Sweden)

    Ryan K Shultzaberger

    Full Text Available Eukaryotic gene expression is often under the control of cooperatively acting transcription factors whose binding is limited by structural constraints. By determining these structural constraints, we can understand the "rules" that define functional cooperativity. Conversely, by understanding the rules of binding, we can infer structural characteristics. We have developed an information theory based method for approximating the physical limitations of cooperative interactions by comparing sequence analysis to microarray expression data. When applied to the coordinated binding of the sulfur amino acid regulatory protein Met4 by Cbf1 and Met31, we were able to create a combinatorial model that can correctly identify Met4 regulated genes. Interestingly, we found that the major determinant of Met4 regulation was the sum of the strength of the Cbf1 and Met31 binding sites and that the energetic costs associated with spacing appeared to be minimal.

  20. Prodigal: prokaryotic gene recognition and translation initiation site identification

    Directory of Open Access Journals (Sweden)

    Land Miriam L

    2010-03-01

    Full Text Available Abstract Background The quality of automated gene prediction in microbial organisms has improved steadily over the past decade, but there is still room for improvement. Increasing the number of correct identifications, both of genes and of the translation initiation sites for each gene, and reducing the overall number of false positives, are all desirable goals. Results With our years of experience in manually curating genomes for the Joint Genome Institute, we developed a new gene prediction algorithm called Prodigal (PROkaryotic DYnamic programming Gene-finding ALgorithm. With Prodigal, we focused specifically on the three goals of improved gene structure prediction, improved translation initiation site recognition, and reduced false positives. We compared the results of Prodigal to existing gene-finding methods to demonstrate that it met each of these objectives. Conclusion We built a fast, lightweight, open source gene prediction program called Prodigal http://compbio.ornl.gov/prodigal/. Prodigal achieved good results compared to existing methods, and we believe it will be a valuable asset to automated microbial annotation pipelines.

  1. Modeling RNA polymerase competition: the effect of σ-subunit knockout and heat shock on gene transcription level

    Directory of Open Access Journals (Sweden)

    Seliverstov Alexandr V

    2011-01-01

    type of σ-subunit, the amount of transcription initiation aborts, etc. The model can be used to make functional predictions, e.g., heat shock response in isolated chloroplasts and changes of gene transcription levels under knockout of different σ-subunits or RNA polymerases or due to gene expression regulation. Reviewers This article was reviewed by Dr. Anthony Almudevar, Dr. Aniko Szabo, Dr. Yuri Wolf (nominated by Dr. Peter Olofsson and Prof. Marek Kimmel.

  2. Transcriptional organization of the dnaN and recF genes of Escherichia coli K-12.

    Science.gov (United States)

    Armengod, M E; García-Sogo, M; Lambíes, E

    1988-08-25

    The dnaN gene of Escherichia coli determines the beta subunit of DNA polymerase III, a multisubunit enzyme responsible for most of the replicative DNA synthesis. The dnaN gene maps between the dnaA and recF genes. We have characterized the regulatory region of the dnaN gene by screening DNA restriction fragments for promoter activity, S1 mapping of mRNAs, deletion analysis, and in vivo dnaN complementation tests. There are at least three dnaN promoters located in the second half of the dnaA coding region. The one closest to the dnaN structural gene is the weakest, but it provides sufficient dnaN expression for complementation when the gene is present on a multicopy plasmid. Deletion of sequences needed for initiation of dnaN translation or introduction of nonsense codons into dnaN causes reduction of recF expression. However, a deletion inactivating dnaN without changing the reading frame of the gene does not affect expression of the recF gene. These results indicate that the dnaN and recF genes are organized in an operon. We have previously shown the presence of termination signals within the dnaN coding region (Armengod, M.E., and Lambíes, E. (1986) Gene (Amst.) 43, 183-196). Therefore, we propose that the polarity produced by nonsense mutations in dnaN is primarily transcriptional. The uncoupling of transcription and translation of the dnaN gene (when translation is interrupted by premature nonsense codons or by other mechanisms) probably results in transcription termination at termination signals in dnaN.

  3. Fur-mediated activation of gene transcription in the human pathogen Neisseria gonorrhoeae.

    Science.gov (United States)

    Yu, Chunxiao; Genco, Caroline Attardo

    2012-04-01

    It is well established that the ferric uptake regulatory protein (Fur) functions as a transcriptional repressor in diverse microorganisms. Recent studies demonstrated that Fur also functions as a transcriptional activator. In this study we defined Fur-mediated activation of gene transcription in the sexually transmitted disease pathogen Neisseria gonorrhoeae. Analysis of 37 genes which were previously determined to be iron induced and which contained putative Fur boxes revealed that only 30 of these genes exhibited reduced transcription in a gonococcal fur mutant strain. Fur-mediated activation was established by examining binding of Fur to the putative promoter regions of 16 Fur-activated genes with variable binding affinities observed. Only ∼50% of the newly identified Fur-regulated genes bound Fur in vitro, suggesting that additional regulatory circuits exist which may function through a Fur-mediated indirect mechanism. The gonococcal Fur-activated genes displayed variable transcription patterns in a fur mutant strain, which correlated with the position of the Fur box in each (promoter) region. These results suggest that Fur-mediated direct transcriptional activation is fulfilled by multiple mechanisms involving either competing with a repressor or recruiting RNA polymerase. Collectively, our studies have established that gonococcal Fur functions as an activator of gene transcription through both direct and indirect mechanisms.

  4. Transcriptional activation of plant defense genes by fungal elicitor, wounding, and infection.

    Science.gov (United States)

    Lawton, M A; Lamb, C J

    1987-01-01

    Activation of plant defense genes was investigated by analysis of transcripts completed in vitro by isolated nuclei. Elicitor treatment of suspension-cultured bean (Phaseolus vulgaris L.) cells caused marked transient stimulation of transcription of genes encoding apoproteins of cell wall hydroxyproline-rich glycoproteins (HRGP) and the phenylpropanoid biosynthetic enzymes phenylalanine ammonia-lyase (PAL) and chalcone synthase (CHS), concomitant with the onset of rapid accumulation of the respective mRNAs and hence expression of the phytoalexin (PAL, CHS), lignin (PAL), and HRGP defense responses. While there was a lag of 2 h prior to stimulation of HRGP gene transcription, induction of the transcription of PAL and CHS genes occurred within 5 min of elicitor treatment. Induction of transcription of PAL, CHS, and HRGP genes was also observed in wounded hypocotyls and in infected hypocotyls during race-cultivar-specific interactions with the fungus Colletotrichum lindemuthianum, the causal agent of anthracnose. Transcriptional activation occurred not only in directly infected tissue but also in distant, hitherto uninfected tissue, indicating intercellular transmission of an endogenous signal for defense gene activation. It is concluded that transcriptional activation of defense genes characteristically underlies induction of the corresponding defense responses and expression of disease resistance.

  5. Excitation-transcription coupling in sympathetic neurons and the molecular mechanism of its initiation.

    Science.gov (United States)

    Ma, Huan; Groth, Rachel D; Wheeler, Damian G; Barrett, Curtis F; Tsien, Richard W

    2011-05-01

    In excitable cells, membrane depolarization and activation of voltage-gated Ca²+ (Ca(V)) channels trigger numerous cellular responses, including muscle contraction, secretion, and gene expression. Yet, while the mechanisms underlying excitation-contraction and excitation-secretion coupling have been extensively characterized, how neuronal activity is coupled to gene expression has remained more elusive. In this article, we will discuss recent progress toward understanding the relationship between patterns of channel activity driven by membrane depolarization and activation of the nuclear transcription factor CREB. We show that signaling strength is steeply dependent on membrane depolarization and is more sensitive to the open probability of Ca(V) channels than the Ca²+ entry itself. Furthermore, our data indicate that by decoding Ca(V) channel activity, CaMKII (a Ca²+/calmodulin-dependent protein kinase) links membrane excitation to activation of CREB in the nucleus. Together, these results revealed some interesting and unexpected similarities between excitation-transcription coupling and other forms of excitation-response coupling.

  6. Herpes simplex virus 1 ICP22 inhibits the transcription of viral gene promoters by binding to and blocking the recruitment of P-TEFb.

    Science.gov (United States)

    Guo, Lei; Wu, Wen-juan; Liu, Long-ding; Wang, Li-chun; Zhang, Ying; Wu, Lian-qiu; Guan, Ying; Li, Qi-han

    2012-01-01

    ICP22 is a multifunctional herpes simplex virus 1 (HSV-1) immediate early protein that functions as a general repressor of a subset of cellular and viral promoters in transient expression systems. Although the exact mechanism of repression remains unclear, this protein induces a decrease in RNA polymerase II Serine 2 (RNAPII Ser-2) phosphorylation, which is critical for transcription elongation. To characterize the mechanism of transcriptional repression by ICP22, we established an in vivo transient expression reporter system. We found that ICP22 inhibits transcription of the HSV-1 α, β and γ gene promoters. The viral tegument protein VP16, which plays vital roles in initiation of viral gene expression and viral proliferation, can overcome the inhibitory effect of ICP22 on α-gene transcription. Further immunoprecipitation studies indicated that both ICP22 and VP16 bind to positive transcription elongation factor b (P-TEFb) and form a complex with it in vivo. We extended this to show that P-TEFb regulates transcription of the viral α-gene promoters and affects transcriptional regulation of ICP22 and VP16 on the α-genes. Additionally, ChIP assays demonstrated that ICP22 blocks the recruitment of P-TEFb to the viral promoters, while VP16 reverses this blocking effect by recruiting P-TEFb to the viral α-gene promoters through recognition of the TAATGARAT motif. Taken together, our results suggest that ICP22 interacts with and blocks the recruitment of P-TEFb to viral promoter regions, which inhibits transcription of the viral gene promoters. The transactivator VP16 binds to and induces the recruitment of P-TEFb to viral α-gene promoters, which counteracts the transcriptional repression of ICP22 on α-genes by recruiting p-TEFb to the promoter region.

  7. The chicken transforming growth factor-beta 3 gene: genomic structure, transcriptional analysis, and chromosomal location.

    Science.gov (United States)

    Burt, D W; Dey, B R; Paton, I R; Morrice, D R; Law, A S

    1995-02-01

    In this paper, we report the isolation, characterization, and mapping of the chicken transforming growth factor-beta 3 (TGF-beta 3) gene. The gene contains seven exons and six introns spanning 16-kb of the chicken genome. A comparison of the 5'-flanking regions of human and chicken TGF-beta 3 genes reveals two regions of sequence conservation. The first contains ATF/CRE and TBP/TATA sequence motifs within an 87-bp region. The second is a 162-bp region with no known sequence motifs. Identification of transcription start sites using chicken RNA isolated from various embryonic and adult tissues reveals two sites of initiation, P1 and P2, which map to these two conserved regions. Comparison of 3'-flanking regions of chicken and mammalian TGF-beta 3 genes also revealed conserved sequences. The most significant homologies were found in the 3'-most end of the transcribed region. DNA sequence analysis of chicken TGF-beta 3 cDNAs isolated by 3'-RACE revealed multiple polyadenylation sites unusually distant from a poly(A) signal motif. A Msc I restriction fragment length polymorphism (RFLP) marker was used to map the TGFB3 locus to linkage group E7 on the East Lansing reference backcross. Linkage to the TH locus showed that the TGFB3 locus was physically located on chicken chromosome 5.

  8. Uncovering early response of gene regulatory networks in ES cells by systematic induction of transcription factors

    Science.gov (United States)

    Nishiyama, Akira; Xin, Li; Sharov, Alexei A.; Thomas, Marshall; Mowrer, Gregory; Meyers, Emily; Piao, Yulan; Mehta, Samir; Yee, Sarah; Nakatake, Yuhki; Stagg, Carole; Sharova, Lioudmila; Correa-Cerro, Lina S.; Bassey, Uwem; Hoang, Hien; Kim, Eugene; Tapnio, Richard; Qian, Yong; Dudekula, Dawood; Zalzman, Michal; Li, Manxiang; Falco, Geppino; Yang, Hsih-Te; Lee, Sung-Lim; Monti, Manuela; Stanghellini, Ilaria; Islam, Md. Nurul; Nagaraja, Ramaiah; Goldberg, Ilya; Wang, Weidong; Longo, Dan L.; Schlessinger, David; Ko, Minoru S. H.

    2009-01-01

    SUMMARY To examine transcription factor (TF) network(s), we created mouse ES cell lines, in each of which one of 50 TFs tagged with a FLAG moiety is inserted into a ubiquitously controllable tetracycline-repressible locus. Of the 50 TFs, Cdx2 provoked the most extensive transcriptome perturbation in ES cells, followed by Esx1, Sox9, Tcf3, Klf4, and Gata3. ChIP-Seq revealed that CDX2 binds to promoters of up-regulated target genes. By contrast, genes down-regulated by CDX2 did not show CDX2 binding, but were enriched with binding sites for POU5F1, SOX2, and NANOG. Genes with binding sites for these core TFs were also down-regulated by the induction of at least 15 other TFs, suggesting a common initial step for ES cell differentiation mediated by interference with the binding of core TFs to their target genes. These ES cell lines provide a fundamental resource to study biological networks in ES cells and mice. PMID:19796622

  9. Structural and transcriptional analysis of plant genes encoding the bifunctional lysine ketoglutarate reductase saccharopine dehydrogenase enzyme

    Directory of Open Access Journals (Sweden)

    Gu Yong Q

    2010-06-01

    Full Text Available Abstract Background Among the dietary essential amino acids, the most severely limiting in the cereals is lysine. Since cereals make up half of the human diet, lysine limitation has quality/nutritional consequences. The breakdown of lysine is controlled mainly by the catabolic bifunctional enzyme lysine ketoglutarate reductase - saccharopine dehydrogenase (LKR/SDH. The LKR/SDH gene has been reported to produce transcripts for the bifunctional enzyme and separate monofunctional transcripts. In addition to lysine metabolism, this gene has been implicated in a number of metabolic and developmental pathways, which along with its production of multiple transcript types and complex exon/intron structure suggest an important node in plant metabolism. Understanding more about the LKR/SDH gene is thus interesting both from applied standpoint and for basic plant metabolism. Results The current report describes a wheat genomic fragment containing an LKR/SDH gene and adjacent genes. The wheat LKR/SDH genomic segment was found to originate from the A-genome of wheat, and EST analysis indicates all three LKR/SDH genes in hexaploid wheat are transcriptionally active. A comparison of a set of plant LKR/SDH genes suggests regions of greater sequence conservation likely related to critical enzymatic functions and metabolic controls. Although most plants contain only a single LKR/SDH gene per genome, poplar contains at least two functional bifunctional genes in addition to a monofunctional LKR gene. Analysis of ESTs finds evidence for monofunctional LKR transcripts in switchgrass, and monofunctional SDH transcripts in wheat, Brachypodium, and poplar. Conclusions The analysis of a wheat LKR/SDH gene and comparative structural and functional analyses among available plant genes provides new information on this important gene. Both the structure of the LKR/SDH gene and the immediately adjacent genes show lineage-specific differences between monocots and dicots, and

  10. Glucagon and Insulin Cooperatively Stimulate Fibroblast Growth Factor 21 Gene Transcription by Increasing the Expression of Activating Transcription Factor 4.

    Science.gov (United States)

    Alonge, Kimberly M; Meares, Gordon P; Hillgartner, F Bradley

    2017-03-31

    Previous studies have shown that glucagon cooperatively interacts with insulin to stimulate hepatic FGF21 gene expression. Here we investigated the mechanism by which glucagon and insulin increased FGF21 gene transcription in primary hepatocyte cultures. Transfection analyses demonstrated that glucagon plus insulin induction of FGF21 transcription was conferred by two activating transcription factor 4 (ATF4) binding sites in the FGF21 gene. Glucagon plus insulin stimulated a 5-fold increase in ATF4 protein abundance, and knockdown of ATF4 expression suppressed the ability of glucagon plus insulin to increase FGF21 expression. In hepatocytes incubated in the presence of insulin, treatment with a PKA-selective agonist mimicked the ability of glucagon to stimulate ATF4 and FGF21 expression. Inhibition of PKA, PI3K, Akt, and mammalian target of rapamycin complex 1 (mTORC1) suppressed the ability of glucagon plus insulin to stimulate ATF4 and FGF21 expression. Additional analyses demonstrated that chenodeoxycholic acid (CDCA) induced a 6-fold increase in ATF4 expression and that knockdown of ATF4 expression suppressed the ability of CDCA to increase FGF21 gene expression. CDCA increased the phosphorylation of eIF2α, and inhibition of eIF2α signaling activity suppressed CDCA regulation of ATF4 and FGF21 expression. These results demonstrate that glucagon plus insulin increases FGF21 transcription by stimulating ATF4 expression and that activation of cAMP/PKA and PI3K/Akt/mTORC1 mediates the effect of glucagon plus insulin on ATF4 expression. These results also demonstrate that CDCA regulation of FGF21 transcription is mediated at least partially by an eIF2α-dependent increase in ATF4 expression. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. A structural model of the E. coli PhoB Dimer in the transcription initiation complex

    Directory of Open Access Journals (Sweden)

    Tung Chang-Shung

    2012-03-01

    Full Text Available Abstract Background There exist > 78,000 proteins and/or nucleic acids structures that were determined experimentally. Only a small portion of these structures corresponds to those of protein complexes. While homology modeling is able to exploit knowledge-based potentials of side-chain rotomers and backbone motifs to infer structures for new proteins, no such general method exists to extend our understanding of protein interaction motifs to novel protein complexes. Results We use a Motif Binding Geometries (MBG approach, to infer the structure of a protein complex from the database of complexes of homologous proteins taken from other contexts (such as the helix-turn-helix motif binding double stranded DNA, and demonstrate its utility on one of the more important regulatory complexes in biology, that of the RNA polymerase initiating transcription under conditions of phosphate starvation. The modeled PhoB/RNAP/σ-factor/DNA complex is stereo-chemically reasonable, has sufficient interfacial Solvent Excluded Surface Areas (SESAs to provide adequate binding strength, is physically meaningful for transcription regulation, and is consistent with a variety of known experimental constraints. Conclusions Based on a straightforward and easy to comprehend concept, "proteins and protein domains that fold similarly could interact similarly", a structural model of the PhoB dimer in the transcription initiation complex has been developed. This approach could be extended to enable structural modeling and prediction of other bio-molecular complexes. Just as models of individual proteins provide insight into molecular recognition, catalytic mechanism, and substrate specificity, models of protein complexes will provide understanding into the combinatorial rules of cellular regulation and signaling.

  12. Heat Shock Induction of Manganese Peroxidase Gene Transcription in Phanerochaete chrysosporium

    OpenAIRE

    Brown, Julie A.; Li, Dan; Alic, Margaret; Gold, Michael H.

    1993-01-01

    The expression of manganese peroxidase (MnP) in nitrogen-limited cultures of Phanerochaete chrysosporium is regulated by heat shock at the level of gene transcription. Nitrogen limitation and manganous ion [Mn(II)] previously have been shown to regulate mnp gene transcription. Northern (RNA) blot analysis demonstrates that 45°C heat shock results in the accumulation of mnp mRNA, even in cells grown in the absence of Mn. Heat shock induces mnp gene transcription in 4- or 5-day-old cells, and m...

  13. VEGF promotes the transcription of the human PRL-3 gene in HUVEC through transcription factor MEF2C.

    Directory of Open Access Journals (Sweden)

    Jianliang Xu

    Full Text Available Phosphatase of regenerating liver 3 (PRL-3 is known to be overexpressed in many tumors, and its transcript level is high in the vasculature and endothelial cells of malignant tumor tissue. However, the mechanism(s underlying its enhanced expression and its function in endothelial cells remain unknown. Here, we report that vascular endothelial growth factor (VEGF can induce PRL-3 transcription in human umbilical vein endothelial cells (HUVEC. An analysis of its 5'UTR revealed that PRL-3 transcription is initiated from two distinct sites, which results in the formation of the two transcripts, PRL-3-iso1 and PRL-3-iso2, but only the latter is up-regulated in HUVEC by VEGF. The PRL-3-iso2 promoter region includes two functional MEF2 (myocyte enhancer factor2 binding sites. The over-expression of the constitutively active form of MEF2C promotes the abundance of the PRL-3-iso2 transcript in a number of human cell lines. The siRNA-induced knockdown of MEF2C abolished the stimulative effect of VEGF on PRL-3 transcript in HUVEC, indicating that the VEGF-induced promotion of PRL-3 expression requires the presence of MEF2C. Finally, blocking PRL-3 activity or expression suppresses tube formation by HUVEC. We suggest that PRL-3 functions downstream of the VEGF/MEF2C pathway in endothelial cells and may play an important role in tumor angiogenesis.

  14. VEGF promotes the transcription of the human PRL-3 gene in HUVEC through transcription factor MEF2C.

    Science.gov (United States)

    Xu, Jianliang; Cao, Shaoxian; Wang, Lu; Xu, Rui; Chen, Gong; Xu, Qiang

    2011-01-01

    Phosphatase of regenerating liver 3 (PRL-3) is known to be overexpressed in many tumors, and its transcript level is high in the vasculature and endothelial cells of malignant tumor tissue. However, the mechanism(s) underlying its enhanced expression and its function in endothelial cells remain unknown. Here, we report that vascular endothelial growth factor (VEGF) can induce PRL-3 transcription in human umbilical vein endothelial cells (HUVEC). An analysis of its 5'UTR revealed that PRL-3 transcription is initiated from two distinct sites, which results in the formation of the two transcripts, PRL-3-iso1 and PRL-3-iso2, but only the latter is up-regulated in HUVEC by VEGF. The PRL-3-iso2 promoter region includes two functional MEF2 (myocyte enhancer factor2) binding sites. The over-expression of the constitutively active form of MEF2C promotes the abundance of the PRL-3-iso2 transcript in a number of human cell lines. The siRNA-induced knockdown of MEF2C abolished the stimulative effect of VEGF on PRL-3 transcript in HUVEC, indicating that the VEGF-induced promotion of PRL-3 expression requires the presence of MEF2C. Finally, blocking PRL-3 activity or expression suppresses tube formation by HUVEC. We suggest that PRL-3 functions downstream of the VEGF/MEF2C pathway in endothelial cells and may play an important role in tumor angiogenesis.

  15. Gene and translation initiation site prediction in metagenomic sequences

    Energy Technology Data Exchange (ETDEWEB)

    Hyatt, Philip Douglas [ORNL; LoCascio, Philip F [ORNL; Hauser, Loren John [ORNL; Uberbacher, Edward C [ORNL

    2012-01-01

    Gene prediction in metagenomic sequences remains a difficult problem. Current sequencing technologies do not achieve sufficient coverage to assemble the individual genomes in a typical sample; consequently, sequencing runs produce a large number of short sequences whose exact origin is unknown. Since these sequences are usually smaller than the average length of a gene, algorithms must make predictions based on very little data. We present MetaProdigal, a metagenomic version of the gene prediction program Prodigal, that can identify genes in short, anonymous coding sequences with a high degree of accuracy. The novel value of the method consists of enhanced translation initiation site identification, ability to identify sequences that use alternate genetic codes and confidence values for each gene call. We compare the results of MetaProdigal with other methods and conclude with a discussion of future improvements.

  16. The loose evolutionary relationships between transcription factors and other gene products across prokaryotes

    OpenAIRE

    del Grande, Marc; Moreno-Hagelsieb, Gabriel

    2014-01-01

    Background Tests for the evolutionary conservation of associations between genes coding for transcription factors (TFs) and other genes have been limited to a few model organisms due to the lack of experimental information of functional associations in other organisms. We aimed at surmounting this limitation by using the most co-occurring gene pairs as proxies for the most conserved functional interactions available for each gene in a genome. We then used genes predicted to code for TFs to co...

  17. Intracompartmental and intercompartmental transcriptional networks coordinate the expression of genes for organellar functions.

    Science.gov (United States)

    Leister, Dario; Wang, Xi; Haberer, Georg; Mayer, Klaus F X; Kleine, Tatjana

    2011-09-01

    Genes for mitochondrial and chloroplast proteins are distributed between the nuclear and organellar genomes. Organelle biogenesis and metabolism, therefore, require appropriate coordination of gene expression in the different compartments to ensure efficient synthesis of essential multiprotein complexes of mixed genetic origin. Whereas organelle-to-nucleus signaling influences nuclear gene expression at the transcriptional level, organellar gene expression (OGE) is thought to be primarily regulated posttranscriptionally. Here, we show that intracompartmental and intercompartmental transcriptional networks coordinate the expression of genes for organellar functions. Nearly 1,300 ATH1 microarray-based transcriptional profiles of nuclear and organellar genes for mitochondrial and chloroplast proteins in the model plant Arabidopsis (Arabidopsis thaliana) were analyzed. The activity of genes involved in organellar energy production (OEP) or OGE in each of the organelles and in the nucleus is highly coordinated. Intracompartmental networks that link the OEP and OGE gene sets serve to synchronize the expression of nucleus- and organelle-encoded proteins. At a higher regulatory level, coexpression of organellar and nuclear OEP/OGE genes typically modulates chloroplast functions but affects mitochondria only when chloroplast functions are perturbed. Under conditions that induce energy shortage, the intercompartmental coregulation of photosynthesis genes can even override intracompartmental networks. We conclude that dynamic intracompartmental and intercompartmental transcriptional networks for OEP and OGE genes adjust the activity of organelles in response to the cellular energy state and environmental stresses, and we identify candidate cis-elements involved in the transcriptional coregulation of nuclear genes. Regarding the transcriptional regulation of chloroplast genes, novel tentative target genes of σ factors are identified.

  18. A semi-supervised method for predicting transcription factor-gene interactions in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Jason Ernst

    2008-03-01

    Full Text Available While Escherichia coli has one of the most comprehensive datasets of experimentally verified transcriptional regulatory interactions of any organism, it is still far from complete. This presents a problem when trying to combine gene expression and regulatory interactions to model transcriptional regulatory networks. Using the available regulatory interactions to predict new interactions may lead to better coverage and more accurate models. Here, we develop SEREND (SEmi-supervised REgulatory Network Discoverer, a semi-supervised learning method that uses a curated database of verified transcriptional factor-gene interactions, DNA sequence binding motifs, and a compendium of gene expression data in order to make thousands of new predictions about transcription factor-gene interactions, including whether the transcription factor activates or represses the gene. Using genome-wide binding datasets for several transcription factors, we demonstrate that our semi-supervised classification strategy improves the prediction of targets for a given transcription factor. To further demonstrate the utility of our inferred interactions, we generated a new microarray gene expression dataset for the aerobic to anaerobic shift response in E. coli. We used our inferred interactions with the verified interactions to reconstruct a dynamic regulatory network for this response. The network reconstructed when using our inferred interactions was better able to correctly identify known regulators and suggested additional activators and repressors as having important roles during the aerobic-anaerobic shift interface.

  19. Analysis of Single-cell Gene Transcription by RNA Fluorescent In Situ Hybridization (FISH)

    DEFF Research Database (Denmark)

    Ronander, Elena; Bengtsson, Dominique C; Joergensen, Louise;

    2012-01-01

    and the consequence of differential binding on the clinical outcome of P. falciparum infections. Recently, the mutually exclusive transcription paradigm has been called into doubt by transcription assays based on individual P. falciparum transcript identification in single infected erythrocytic cells using RNA...... fluorescent in situ hybridization (FISH) analysis of var gene transcription by the parasite in individual nuclei of P. falciparum IE(1). Here, we present a detailed protocol for carrying out the RNA-FISH methodology for analysis of var gene transcription in single-nuclei of P. falciparum infected human...... erythrocytes. The method is based on the use of digoxigenin- and biotin- labeled antisense RNA probes using the TSA Plus Fluorescence Palette System(2) (Perkin Elmer), microscopic analyses and freshly selected P. falciparum IE. The in situ hybridization method can be used to monitor transcription...

  20. β-globin gene promoter generates 5' truncated transcripts in the embryonic foetal erythroid environment.

    NARCIS (Netherlands)

    K. Khazaie; F. Gounari; M. Antoniou (Michael); E. de Boer (Ernie); F.G. Grosveld (Frank)

    1987-01-01

    textabstractWe report here the localisation of sequences responsible for the faulty expression of human beta-globin gene in Putko and K562 cells. Complete beta-globin gene introduced into these cells produces transcripts with abnormal 5' ends, while cotransfected mouse H2 gene is expressed correctly

  1. Identification of a Novel Reference Gene for Apple Transcriptional Profiling under Postharvest Conditions

    Science.gov (United States)

    Storch, Tatiane Timm; Pegoraro, Camila; Finatto, Taciane; Quecini, Vera; Rombaldi, Cesar Valmor; Girardi, César Luis

    2015-01-01

    Reverse Transcription quantitative PCR (RT-qPCR) is one of the most important techniques for gene expression profiling due to its high sensibility and reproducibility. However, the reliability of the results is highly dependent on data normalization, performed by comparisons between the expression profiles of the genes of interest against those of constitutively expressed, reference genes. Although the technique is widely used in fruit postharvest experiments, the transcription stability of reference genes has not been thoroughly investigated under these experimental conditions. Thus, we have determined the transcriptional profile, under these conditions, of three genes commonly used as reference—ACTIN (MdACT), PROTEIN DISULPHIDE ISOMERASE (MdPDI) and UBIQUITIN-CONJUGATING ENZYME E2 (MdUBC)—along with two novel candidates—HISTONE 1 (MdH1) and NUCLEOSSOME ASSEMBLY 1 PROTEIN (MdNAP1). The expression profile of the genes was investigated throughout five experiments, with three of them encompassing the postharvest period and the other two, consisting of developmental and spatial phases. The transcriptional stability was comparatively investigated using four distinct software packages: BestKeeper, NormFinder, geNorm and DataAssist. Gene ranking results for transcriptional stability were similar for the investigated software packages, with the exception of BestKeeper. The classic reference gene MdUBC ranked among the most stably transcribed in all investigated experimental conditions. Transcript accumulation profiles for the novel reference candidate gene MdH1 were stable throughout the tested conditions, especially in experiments encompassing the postharvest period. Thus, our results present a novel reference gene for postharvest experiments in apple and reinforce the importance of checking the transcription profile of reference genes under the experimental conditions of interest. PMID:25774904

  2. The Hansenula polymorpha MOX gene presents two alternative transcription start points differentially utilized and sensitive to respiratory activity.

    Science.gov (United States)

    Genu, Victor; Gödecke, Stefanie; Hollenberg, Cornelis P; Pereira, Gonçalo G

    2003-06-01

    The peroxisomal methanol metabolism of Hansenula polymorpha depends on a group of genes that are coordinately regulated. Methanol oxidase (Mox) plays a key role in this pathway and its synthesis has been shown to be regulated at the transcriptional level. MOX expression is strongly repressed on glucose and activated on glycerol or methanol. In this study we have identified two MOX transcripts that are differentially expressed along MOX derepression. The first one, named l-MOX (for longer MOX), starts at position -425, is only weakly and transiently transcribed and is not translated into the Mox protein. The other is the true MOX mRNA, which initiates around position -25. Using a strain bearing multiple copies of MOX(Q1N) and a reporter gene fused to the MOX promoter, regulation of the two transcripts was investigated. Initiation of the true MOX correlates with repression of l-MOX and conditions that are repressive for MOX transcription, such as the inhibition of mitochondrial activity, lead to higher levels of l-MOX expression. This effect was first observed in a mox mutant (Q1N-M8) unable to grow on nonfermentable carbon sources. No function was detected for l-MOX, but its regulation follows a pattern similar to that of catalase, which is essential for methanol metabolism. This suggests that, l-MOX, although precisely regulated, seems to be a remnant of the evolution of the methanol metabolism network.

  3. Identity between rat htf and human xbp-1 genes: determination of gene structure, target sequence, and transcription promotion function for HTF.

    Science.gov (United States)

    Kokura, K; Kishimoto, T; Tamura, T

    2000-01-11

    Hepatocarcinogenesis-related transcription factor (HTF) was originally isolated from rats in which the expression was enhanced in hepatocellular carcinomas. Rat HTF (rHTF) is structurally similar to human X-box-binding protein-1 (hXBP-1), and both factors are unique in respective genomes. A previous study showed that hXBP-1 mRNA is detectable ubiquitously but is enriched in the human liver as rHTF. In this study, we demonstrated the analogous exon-intron organization and significant sequence homology for rhtf and hxbp-1 genes. Alignment of amino acid sequences of rHTF and hXBP-1 revealed that all the characteristic motifs in rHTF were conserved in hXBP-1. Moreover, Southern blotting patterns provided with the rHTF and hXBP-1 probes were basically the same. These two genes were thus thought to belong to the same evolutional lineage. We determined the consensus binding sequence (CRCGTCA) for rHTF by CASTing, and it was found to be nearly the same as that for hXBP-1. Transactivation ability of rHTF was also demonstrated. The rhtf gene generates two types of mRNAs (2.0 kb and 2.5 kb), both of which encode identical rHTF protein. These transcripts had distinct transcription initiation sites. The 2.0 kb promoter, that was revealed by the transient luciferase assay, contained GC-box and CAAT-box. Sequences around the transcription initiation site for the 2.0 kb transcript were similar in rhtf and hxbp-1 genes. Our observations suggest that HTF is a rat homolog of hXBP-1.

  4. Identifying Stress Transcription Factors Using Gene Expression and TF-Gene Association Data.

    Science.gov (United States)

    Wu, Wei-Sheng; Chen, Bor-Sen

    2009-11-24

    Unicellular organisms such as yeasts have evolved to survive environmental stresses by rapidly reorganizing the genomic expression program to meet the challenges of harsh environments. The complex adaptation mechanisms to stress remain to be elucidated. In this study, we developed Stress Transcription Factor Identification Algorithm (STFIA), which integrates gene expression and TF-gene association data to identify the stress transcription factors (TFs) of six kinds of stresses. We identified some general stress TFs that are in response to various stresses, and some specific stress TFs that are in response to one specific stress. The biological significance of our findings is validated by the literature. We found that a small number of TFs may be sufficient to control a wide variety of expression patterns in yeast under different stresses. Two implications can be inferred from this observation. First, the adaptation mechanisms to different stresses may have a bow-tie structure. Second, there may exist extensive regulatory cross-talk among different stress responses. In conclusion, this study proposes a network of the regulators of stress responses and their mechanism of action.

  5. Polyuridylylation and processing of transcripts from multiple gene minicircles in chloroplasts of the dinoflagellate Amphidinium carterae

    KAUST Repository

    Barbrook, Adrian C.

    2012-05-05

    Although transcription and transcript processing in the chloroplasts of plants have been extensively characterised, the RNA metabolism of other chloroplast lineages across the eukaryotes remains poorly understood. In this paper, we use RT-PCR to study transcription and transcript processing in the chloroplasts of Amphidinium carterae, a model peridinin-containing dinoflagellate. These organisms have a highly unusual chloroplast genome, with genes located on multiple small \\'minicircle\\' elements, and a number of idiosyncratic features of RNA metabolism including transcription via a rolling circle mechanism, and 3′ terminal polyuridylylation of transcripts. We demonstrate that transcription occurs in A. carterae via a rolling circle mechanism, as previously shown in the dinoflagellate Heterocapsa, and present evidence for the production of both polycistronic and monocistronic transcripts from A. carterae minicircles, including several regions containing ORFs previously not known to be expressed. We demonstrate the presence of both polyuridylylated and non-polyuridylylated transcripts in A. carterae, and show that polycistronic transcripts can be terminally polyuridylylated. We present a model for RNA metabolism in dinoflagellate chloroplasts where long polycistronic precursors are processed to form mature transcripts. Terminal polyuridylylation may mark transcripts with the correct 3′ end. © 2012 Springer Science+Business Media B.V.

  6. Viral promoters can initiate expression of toxin genes introduced into Escherichia coli.

    Science.gov (United States)

    Lewin, Astrid; Mayer, Martin; Chusainow, Janet; Jacob, Daniela; Appel, Bernd

    2005-06-20

    The expression of recombinant proteins in eukaryotic cells requires the fusion of the coding region to a promoter functional in the eukaryotic cell line. Viral promoters are very often used for this purpose. The preceding cloning procedures are usually performed in Escherichia coli and it is therefore of interest if the foreign promoter results in an expression of the gene in bacteria. In the case molecules toxic for humans are to be expressed, this knowledge is indispensable for the specification of safety measures. We selected five frequently used viral promoters and quantified their activity in E. coli with a reporter system. Only the promoter from the thymidine kinase gene from HSV1 showed no activity, while the polyhedrin promoter from baculovirus, the early immediate CMV promoter, the early SV40 promoter and the 5' LTR promoter from HIV-1 directed gene expression in E. coli. The determination of transcription start sites in the immediate early CMV promoter and the polyhedrin promoter confirmed the existence of bacterial -10 and -35 consensus sequences. The importance of this heterologous gene expression for safety considerations was further supported by analysing fusions between the aforementioned promoters and a promoter-less cytotoxin gene. According to our results a high percentage of viral promoters have the ability of initiating gene expression in E. coli. The degree of such heterologous gene expression can be sufficient for the expression of toxin genes and must therefore be considered when defining safety measures for the handling of corresponding genetically modified organisms.

  7. ERK-dependent phosphorylation of the transcription initiation factor TIF-IA is required for RNA polymerase I transcription and cell growth

    DEFF Research Database (Denmark)

    Zhao, Jian; Yuan, Xuejun; Frödin, Morten;

    2003-01-01

    Phosphorylation of transcription factors by mitogen-activated protein kinase (MAPK) cascades links cell signaling with the control of gene expression. Here we show that growth factors induce rRNA synthesis by activating MAPK-dependent signaling cascades that target the RNA polymerase I-specific t...

  8. TF Target Mapper: a BLAST search tool for the identification of Transcription Factor target genes

    NARCIS (Netherlands)

    Horsman, S.; Moorhouse, M.J.; Jager, V.C.L. de; Spek, P. van der; Grosveld, F.; Strouboulis, J.; Katsantoni, E.Z.

    2006-01-01

    BACKGROUND: In the current era of high throughput genomics a major challenge is the genome-wide identification of target genes for specific transcription factors. Chromatin immunoprecipitation (ChIP) allows the isolation of in vivo binding sites of transcription factors and provides a powerful tool

  9. Postmeiotic transcription of X and Y chromosomal genes during spermatogenesis in the mouse.

    NARCIS (Netherlands)

    P.J.M. Hendriksen (Peter); J.W. Hoogerbrugge (Jos); M.H.M. Koken (Marcel); J.H.J. Hoeijmakers (Jan); B.A. Oostra (Ben); T. van der Lende; J.A. Grootegoed (Anton); A.P.N. Themmen (Axel)

    1995-01-01

    textabstractDuring the meiotic prophase of spermatogenesis, the X and Y chromosomes form the heterochromatic sex body, showing little transcriptional activity. It has been suggested that transcription of the Xist gene is involved in this inactivation. After completion of the meiotic divisions, at

  10. An antisense transcript in the human cytomegalovirus UL87 gene region

    Directory of Open Access Journals (Sweden)

    Ma Yanping

    2011-11-01

    Full Text Available Abstract Background Rapid advances in research on antisense transcripts are gradually changing our comprehension of genomic and gene expression aspects of the Herpesviridae. One such herpesvirus is the human cytomegalovirus (HCMV. Although transcription of the HCMV UL87 gene has not been specifically investigated, cDNA clones of UL87 antisense transcripts were found in HCMV cDNA libraries previously. In this study, the transcription of the UL87 antisense strand was investigated in three clinically isolated HCMV strains. Results First, an 800 nucleotides transcript having an antisense orientation to the UL87 gene was found in a late HCMV cDNA library. Then, the UL87 antisense transcript was confirmed by Rapid amplification of cDNA ends (RACE and Northern blot in three HCMV clinical strains. Two ORFs were predicted in the antisense transcript. The putative protein of ORF 1 showed a high degree of conservation among HCMV and other CMV strains. Conclusion An 800nt antisense transcript in the UL87 gene region exists in HCMV clinical strains.

  11. Regulation of endogenous human gene expression by ligand-inducible TALE transcription factors.

    Science.gov (United States)

    Mercer, Andrew C; Gaj, Thomas; Sirk, Shannon J; Lamb, Brian M; Barbas, Carlos F

    2014-10-17

    The construction of increasingly sophisticated synthetic biological circuits is dependent on the development of extensible tools capable of providing specific control of gene expression in eukaryotic cells. Here, we describe a new class of synthetic transcription factors that activate gene expression in response to extracellular chemical stimuli. These inducible activators consist of customizable transcription activator-like effector (TALE) proteins combined with steroid hormone receptor ligand-binding domains. We demonstrate that these ligand-responsive TALE transcription factors allow for tunable and conditional control of gene activation and can be used to regulate the expression of endogenous genes in human cells. Since TALEs can be designed to recognize any contiguous DNA sequence, the conditional gene regulatory system described herein will enable the design of advanced synthetic gene networks.

  12. Post-transcriptional regulation of ribosomal protein genes during serum starvation in Entamoeba histolytica.

    Science.gov (United States)

    Ahamad, Jamaluddin; Ojha, Sandeep; Srivastava, Ankita; Bhattacharya, Alok; Bhattacharya, Sudha

    2015-06-01

    Ribosome synthesis involves all three RNA polymerases which are co-ordinately regulated to produce equimolar amounts of rRNAs and ribosomal proteins (RPs). Unlike model organisms where transcription of rRNA and RP genes slows down during stress, in E. histolytica rDNA transcription continues but pre-rRNA processing slows down and unprocessed pre-rRNA accumulates during serum starvation. To investigate the regulation of RP genes under stress we measured transcription of six selected RP genes from the small- and large-ribosomal subunits (RPS6, RPS3, RPS19, RPL5, RPL26, RPL30) representing the early-, mid-, and late-stages of ribosomal assembly. Transcripts of these genes persisted in growth-stressed cells. Expression of luciferase reporter under the control of two RP genes (RPS19 and RPL30) was studied during serum starvation and upon serum replenishment. Although luciferase transcript levels remained unchanged during starvation, luciferase activity steadily declined to 7.8% and 15% of control cells, respectively. After serum replenishment the activity increased to normal levels, suggesting post-transcriptional regulation of these genes. Mutations in the sequence -2 to -9 upstream of AUG in the RPL30 gene resulted in the phenotype expected of post-transcriptional regulation. Transcription of luciferase reporter was unaffected in this mutant, and luciferase activity did not decline during serum starvation, showing that this sequence is required to repress translation of RPL30 mRNA, and mutations in this region relieve repression. Our data show that during serum starvation E. histolytica blocks ribosome biogenesis post-transcriptionally by inhibiting pre-rRNA processing on the one hand, and the translation of RP mRNAs on the other.

  13. Increased Transcript Complexity in Genes Associated with Chronic Obstructive Pulmonary Disease

    Science.gov (United States)

    Lackey, Lela; McArthur, Evonne; Laederach, Alain

    2015-01-01

    Genome-wide association studies aim to correlate genotype with phenotype. Many common diseases including Type II diabetes, Alzheimer’s, Parkinson’s and Chronic Obstructive Pulmonary Disease (COPD) are complex genetic traits with hundreds of different loci that are associated with varied disease risk. Identifying common features in the genes associated with each disease remains a challenge. Furthermore, the role of post-transcriptional regulation, and in particular alternative splicing, is still poorly understood in most multigenic diseases. We therefore compiled comprehensive lists of genes associated with Type II diabetes, Alzheimer’s, Parkinson’s and COPD in an attempt to identify common features of their corresponding mRNA transcripts within each gene set. The SERPINA1 gene is a well-recognized genetic risk factor of COPD and it produces 11 transcript variants, which is exceptional for a human gene. This led us to hypothesize that other genes associated with COPD, and complex disorders in general, are highly transcriptionally diverse. We found that COPD-associated genes have a statistically significant enrichment in transcript complexity stemming from a disproportionately high level of alternative splicing, however, Type II Diabetes, Alzheimer’s and Parkinson’s disease genes were not significantly enriched. We also identified a subset of transcriptionally complex COPD-associated genes (~40%) that are differentially expressed between mild, moderate and severe COPD. Although the genes associated with other lung diseases are not extensively documented, we found preliminary data that idiopathic pulmonary disease genes, but not cystic fibrosis modulators, are also more transcriptionally complex. Interestingly, complex COPD transcripts are more often the product of alternative acceptor site usage. To verify the biological importance of these alternative transcripts, we used RNA-sequencing analyses to determine that COPD-associated genes are frequently

  14. Bordetella pertussis fim3 gene regulation by BvgA: phosphorylation controls the formation of inactive vs. active transcription complexes.

    Science.gov (United States)

    Boulanger, Alice; Moon, Kyung; Decker, Kimberly B; Chen, Qing; Knipling, Leslie; Stibitz, Scott; Hinton, Deborah M

    2015-02-10

    Two-component systems [sensor kinase/response regulator (RR)] are major tools used by microorganisms to adapt to environmental conditions. RR phosphorylation is typically required for gene activation, but few studies have addressed how and if phosphorylation affects specific steps during transcription initiation. We characterized transcription complexes made with RNA polymerase and the Bordetella pertussis RR, BvgA, in its nonphosphorylated or phosphorylated (BvgA∼P) state at P(fim3), the promoter for the virulence gene fim3 (fimbrial subunit), using gel retardation, potassium permanganate and DNase I footprinting, cleavage reactions with protein conjugated with iron bromoacetamidobenzyl-EDTA, and in vitro transcription. Previous work has shown that the level of nonphosphorylated BvgA remains high in vivo under conditions in which BvgA is phosphorylated. Our results here indicate that surprisingly both BvgA and BvgA∼P form open and initiating complexes with RNA polymerase at P(fim3). However, phosphorylation of BvgA is needed to generate the correct conformation that can transition to competent elongation. Footprints obtained with the complexes made with nonphosphorylated BvgA are atypical; while the initiating complex with BvgA synthesizes short RNA, it does not generate full-length transcripts. Extended incubation of the BvgA/RNA polymerase initiated complex in the presence of heparin generates a stable, but defective species that depends on the initial transcribed sequence of fim3. We suggest that the presence of nonphosphorylated BvgA down-regulates P(fim3) activity when phosphorylated BvgA is present and may allow the bacterium to quickly adapt to the loss of inducing conditions by rapidly eliminating P(fim3) activation once the signal for BvgA phosphorylation is removed.

  15. The transcription factor SOX17 is involved in the transcriptional control of the uteroglobin gene in rabbit endometrium.

    Science.gov (United States)

    Garcia, Carlos; Calvo, Enrique; Nieto, Antonio

    2007-10-15

    The transcription of the uteroglobin gene (ug) is induced by progesterone in the rabbit endometrium, primarily through the binding of the progesterone receptor to the distal region of the ug promoter. However, other transcription factors participate in the progesterone action. The proximal ug promoter contains several putative consensus sequences for the binding of various progesterone-dependent endometrial nuclear factors (Perez Martinez et al. [1996] Arch Biochem Biophys 333: 12-18), suggesting that several transcription factors might be implicated in the hormonal induction of ug. We report here that one of these progesterone-dependent factors specifically binds to the sequence CACAATG (-183/-177) of the rabbit ug promoter. This sequence (hereafter called element G') is very similar to the consensus sequence for binding of the SOX family of transcription factors. Mutation of the element G' reduced transcription from the ug promoter in transient expression experiments. The endometrial factor was purified and analyzed by nano-liquid chromatography and ion trap coupled mass spectrometry yielding two partial amino acid sequences corresponding to a region of SOX17 that is highly conserved inter-species. This identification was confirmed by immunological techniques using a specific anti-SOX17 antibody. In agreement with the above findings, overexpression of SOX17 in transfected endometrial cells increased transcription from the ug promoter. SOX17 gradually accumulated in the nucleus in vivo concomitant with the induction of ug expression by progesterone in the endometrium. Thus, these findings implicate, for the first time, SOX17 in the transcriptional control of rabbit ug.

  16. The transcription factor ultraspiracle influences honey bee social behavior and behavior-related gene expression.

    Directory of Open Access Journals (Sweden)

    Seth A Ament

    Full Text Available Behavior is among the most dynamic animal phenotypes, modulated by a variety of internal and external stimuli. Behavioral differences are associated with large-scale changes in gene expression, but little is known about how these changes are regulated. Here we show how a transcription factor (TF, ultraspiracle (usp; the insect homolog of the Retinoid X Receptor, working in complex transcriptional networks, can regulate behavioral plasticity and associated changes in gene expression. We first show that RNAi knockdown of USP in honey bee abdominal fat bodies delayed the transition from working in the hive (primarily "nursing" brood to foraging outside. We then demonstrate through transcriptomics experiments that USP induced many maturation-related transcriptional changes in the fat bodies by mediating transcriptional responses to juvenile hormone. These maturation-related transcriptional responses to USP occurred without changes in USP's genomic binding sites, as revealed by ChIP-chip. Instead, behaviorally related gene expression is likely determined by combinatorial interactions between USP and other TFs whose cis-regulatory motifs were enriched at USP's binding sites. Many modules of JH- and maturation-related genes were co-regulated in both the fat body and brain, predicting that usp and cofactors influence shared transcriptional networks in both of these maturation-related tissues. Our findings demonstrate how "single gene effects" on behavioral plasticity can involve complex transcriptional networks, in both brain and peripheral tissues.

  17. Transcriptional Regulation of Fucosyltransferase 1 Gene Expression in Colon Cancer Cells

    Directory of Open Access Journals (Sweden)

    Fumiko Taniuchi

    2013-01-01

    Full Text Available The α1,2-fucosyltransferase I (FUT1 enzyme is important for the biosynthesis of H antigens, Lewis B, and Lewis Y. In this study, we clarified the transcriptional regulation of FUT1 in the DLD-1 colon cancer cell line, which has high expression of Lewis B and Lewis Y antigens, expresses the FUT1 gene, and shows α1,2-fucosyltransferase (FUT activity. 5′-rapid amplification of cDNA ends revealed a FUT1 transcriptional start site −10 nucleotides upstream of the site registered at NM_000148 in the DataBase of Human Transcription Start Sites (DBTSS. Using the dual luciferase assay, FUT1 gene expression was shown to be regulated at the region −91 to −81 nt to the transcriptional start site, which contains the Elk-1 binding site. Site-directed mutagenesis of this region revealed the Elk-1 binding site to be essential for FUT1 transcription. Furthermore, transfection of the dominant negative Elk-1 gene, and the chromatin immunoprecipitation (CHIp assay, supported Elk-1-dependent transcriptional regulation of FUT1 gene expression in DLD-1 cells. These results suggest that a defined region in the 5′-flanking region of FUT1 is critical for FUT1 transcription and that constitutive gene expression of FUT1 is regulated by Elk-1 in DLD-1 cells.

  18. Transcriptional and post-transcriptional regulation of SPAST, the gene most frequently mutated in hereditary spastic paraplegia.

    Directory of Open Access Journals (Sweden)

    Brian J Henson

    Full Text Available Hereditary spastic paraplegias (HSPs comprise a group of neurodegenerative disorders that are characterized by progressive spasticity of the lower extremities, due to axonal degeneration in the corticospinal motor tracts. HSPs are genetically heterogeneous and show autosomal dominant inheritance in ∼70-80% of cases, with additional cases being recessive or X-linked. The most common type of HSP is SPG4 with mutations in the SPAST gene, encoding spastin, which occurs in 40% of dominantly inherited cases and in ∼10% of sporadic cases. Both loss-of-function and dominant-negative mutation mechanisms have been described for SPG4, suggesting that precise or stoichiometric levels of spastin are necessary for biological function. Therefore, we hypothesized that regulatory mechanisms controlling expression of SPAST are important determinants of spastin biology, and if altered, could contribute to the development and progression of the disease. To examine the transcriptional and post-transcriptional regulation of SPAST, we used molecular phylogenetic methods to identify conserved sequences for putative transcription factor binding sites and miRNA targeting motifs in the SPAST promoter and 3'-UTR, respectively. By a variety of molecular methods, we demonstrate that SPAST transcription is positively regulated by NRF1 and SOX11. Furthermore, we show that miR-96 and miR-182 negatively regulate SPAST by effects on mRNA stability and protein level. These transcriptional and miRNA regulatory mechanisms provide new functional targets for mutation screening and therapeutic targeting in HSP.

  19. Transcription of the AML1/ETO chimera is guided by the P2 promoter of the AML1 gene in the Kasumi-1 cell line.

    Science.gov (United States)

    Markova, Elena N; Kantidze, Omar L; Razin, Sergey V

    2012-12-01

    Chromosomal translocation t (8;21)(q22;22) is one of the most frequent cytogenetic abnormalities found in acute myeloid leukaemia (AML). It generates the AML1/ETO fusion gene, which itself supports human haematopoietic stem cell self-renewal. However, the mechanism guiding transcription of this chimeric gene remains unclear. In our work, we attempted to shed light on this essential issue. We investigated the promoter from which transcription of the AML1/ETO gene is initiated and defined the three-dimensional structure of the whole rearranged locus. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Transcriptional Modulation of Squalene Synthase Genes in Barley Treated with PGPR

    OpenAIRE

    Anam eYousaf; Abdul eQadir; Tehmina eAnjum; Aqeel eAhmad

    2015-01-01

    Phytosterol contents and food quality of plant produce is directly associated with transcription of gene Squalene Synthase (SS). In current study, barley plants were treated with different rhizobacterial strains under semi controlled (27±3°C) greenhouse conditions in order to modulate expression of SS gene. Plant samples were analysed through semi-quantitative PCR to evaluate effect of rhizobacterial application on transcriptional status of squalene synthase. Results revealed that among four ...

  1. Brd4 Marks Select Genes on Mitotic Chromatin and Directs Postmitotic Transcription

    OpenAIRE

    Dey, Anup; Nishiyama, Akira; Karpova, Tatiana; McNally, James; Ozato, Keiko

    2009-01-01

    On entry into mitosis, many transcription factors dissociate from chromatin, resulting in global transcriptional shutdown. During mitosis, some genes are marked to ensure the inheritance of their expression in the next generation of cells. The nature of mitotic gene marking, however, has been obscure. Brd4 is a double bromodomain protein that localizes to chromosomes during mitosis and is implicated in holding mitotic memory. In interphase, Brd4 interacts with P-TEFb and functions as a global...

  2. Molecular Modification of a HSV-1 Protein and Its Associated Gene Transcriptional Regulation

    Institute of Scientific and Technical Information of China (English)

    Yan-chun CHE; Li JIANG; Qi-han LI

    2008-01-01

    The molecular modifications of Herpes Simplex Virus Type Ⅰ (HSV-1) proteins represented by acetylation and phosphorylation are essential to its biological functions.The cellular chromatin-remodeling/assembly is involved in HSV-1 associated gene transcriptional regulation in human cells harboring HSV-1 lytic or latent infections.Further investigation on these biological events would provide a better understanding of the mechanisms of HSV- 1 viral gene transcriptional regulation.

  3. Transcription initiation factor IID-interactive histone chaperone CIA-II implicated in mammalian spermatogenesis.

    Science.gov (United States)

    Umehara, Takashi; Horikoshi, Masami

    2003-09-12

    Histones are thought to have specific roles in mammalian spermatogenesis, because several subtypes of histones emerge that are post-translationally modified during spermatogenesis. Though regular assembly of nucleosome is guaranteed by histone chaperones, their involvement in spermatogenesis is yet to be characterized. Here we identified a histone chaperone-related factor, which we designated as CCG1-interacting factor A-II (CIA-II), through interaction with bromodomains of TAFII250/CCG1, which is the largest subunit of human transcription initiation factor IID (TFIID). We found that human CIA-II (hCIA-II) localizes in HeLa nuclei and is highly expressed in testis and other proliferating cell-containing tissues. Expression of mouse CIA-II (mCIA-II) does not occur in the germ cell-lacking testes of adult WBB6F1-W/Wv mutant mice, indicating its expression in testis to be specific to germ cells. Fractionation of testicular germ cells revealed that mCIA-II transcripts accumulate in pachytene spermatocytes but not in spermatids. In addition, the mCIA-II transcripts in testis were present as early as 4 days after birth and decreased at 56 days after birth. These findings indicate that mCIA-II expression in testis is restricted to premeiotic to meiotic stages during spermatogenesis. Also, we found that hCIA-II interacts with histone H3 in vivo and with histones H3/H4 in vitro and that it facilitates supercoiling of circular DNA when it is incubated with core histones and topoisomerase I in vitro. These data suggest that CIA-II is a histone chaperone and is implicated in the regulation of mammalian spermatogenesis.

  4. Phage vectors that allow monitoring of transcription of secondary metabolism genes in Streptomyces.

    Science.gov (United States)

    Bruton, C J; Guthrie, E P; Chater, K F

    1991-07-01

    We describe a bacteriophage phi C31-based system that permits the transcriptional fusion of the convenient reporter gene xylE to chromosomally located promoters in Streptomyces hosts. Applicability of the system to genes for secondary metabolism is demonstrated in an experiment showing that transcription of genes for actinorhodin production in Streptomyces coelicolor A3(2) depends on a transfer RNA gene (bldA) for the rare UUA codon. Two other phi C31::xylE vectors are described that allow detection of promoter activity away from their natural location, either at single copy in a prophage or during lytic infections in plaques.

  5. Novel fusion genes and chimeric transcripts in ependymal tumors

    DEFF Research Database (Denmark)

    Olsen, Thale Kristin; Panagopoulos, Ioannis; Gorunova, Ludmila

    2016-01-01

    We have previously identified two ALK rearrangements in a subset of ependymal tumors using a combination of cytogenetic data and RNA sequencing. The aim of this study was to perform an unbiased search for fusion transcripts in our entire series of ependymal tumors. Fusion analysis was performed...... using the FusionCatcher algorithm on 12 RNA-sequenced ependymal tumors. Candidate transcripts were prioritized based on the software's filtering and manual visualization using the BLAST (Basic Local Alignment Search Tool) and BLAT (BLAST-like alignment tool) tools. Genomic and reverse transcriptase PCR...... with subsequent Sanger sequencing was used to validate the potential fusions. Fluorescent in situ hybridization (FISH) using locus-specific probes was also performed. A total of 841 candidate chimeric transcripts were identified in the 12 tumors, with an average of 49 unique candidate fusions per tumor. After...

  6. MADS-box gene evolution-structure and transcription patterns

    DEFF Research Database (Denmark)

    Johansen, Bo; Pedersen, Louise B; Skipper, Martin;

    2002-01-01

    This study presents a phylogenetic analysis of 198 MADS-box genes based on 420 parsimony-informative characters. The analysis includes only MIKC genes; therefore several genes from gymnosperms and pteridophytes are excluded. The strict consensus tree identifies all major monophyletic groups known...... three classes of MADS-box genes to be transcribed in the stamens and carpels. Thus the analysis does not support the ABC model as formulated at present....

  7. Validation of Reference Genes for Transcriptional Analyses in Pleurotus ostreatus by Using Reverse Transcription-Quantitative PCR.

    Science.gov (United States)

    Castanera, Raúl; López-Varas, Leticia; Pisabarro, Antonio G; Ramírez, Lucía

    2015-06-15

    Recently, the lignin-degrading basidiomycete Pleurotus ostreatus has become a widely used model organism for fungal genomic and transcriptomic analyses. The increasing interest in this species has led to an increasing number of studies analyzing the transcriptional regulation of multigene families that encode extracellular enzymes. Reverse transcription (RT) followed by real-time PCR is the most suitable technique for analyzing the expression of gene sets under multiple culture conditions. In this work, we tested the suitability of 13 candidate genes for their use as reference genes in P. ostreatus time course cultures for enzyme production. We applied three different statistical algorithms and obtained a combination of stable reference genes for optimal normalization of RT-quantitative PCR assays. This reference index can be used for future transcriptomic analyses and validation of transcriptome sequencing or microarray data. Moreover, we analyzed the expression patterns of a laccase and a manganese peroxidase (lacc10 and mnp3, respectively) in lignocellulose and glucose-based media using submerged, semisolid, and solid-state fermentation. By testing different normalization strategies, we demonstrate that the use of nonvalidated reference genes as internal controls leads to biased results and misinterpretations of the biological responses underlying expression changes. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Structural insights into the mycobacteria transcription initiation complex from analysis of X-ray crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Hubin, Elizabeth A.; Lilic, Mirjana; Darst, Seth A.; Campbell, Elizabeth A.

    2017-07-13

    The mycobacteria RNA polymerase (RNAP) is a target for antimicrobials against tuberculosis, motivating structure/function studies. Here we report a 3.2 Å-resolution crystal structure of a Mycobacterium smegmatis (Msm) open promoter complex (RPo), along with structural analysis of the Msm RPo and a previously reported 2.76 Å-resolution crystal structure of an Msm transcription initiation complex with a promoter DNA fragment. We observe the interaction of the Msm RNAP α-subunit C-terminal domain (αCTD) with DNA, and we provide evidence that the αCTD may play a role in Mtb transcription regulation. Our results reveal the structure of an Actinobacteria-unique insert of the RNAP β' subunit. Finally, our analysis reveals the disposition of the N-terminal segment of Msm σA, which may comprise an intrinsically disordered protein domain unique to mycobacteria. The clade-specific features of the mycobacteria RNAP provide clues to the profound instability of mycobacteria RPo compared with E. coli.

  9. Aptamers to the sigma factor mimic promoter recognition and inhibit transcription initiation by bacterial RNA polymerase.

    Science.gov (United States)

    Miropolskaya, Nataliya; Kulbachinskiy, Andrey

    2016-01-08

    Promoter recognition by bacterial RNA polymerase (RNAP) is a multi-step process involving multiple protein-DNA interactions and several structural and kinetic intermediates which remain only partially characterized. We used single-stranded DNA aptamers containing specific promoter motifs to probe the interactions of the Thermus aquaticus RNAP σ(A) subunit with the -10 promoter element in the absence of other parts of the promoter complex. The aptamer binding decreased intrinsic fluorescence of the σ subunit, likely as a result of interactions between the -10 element and conserved tryptophan residues of the σ DNA-binding region 2. By monitoring these changes, we demonstrated that DNA binding proceeds through a single rate-limiting step resulting in formation of very stable complexes. Deletion of the N-terminal domain of the σ(A) subunit increased the rate of aptamer binding while replacement of this domain with an unrelated N-terminal region 1.1 from the Escherichia coli σ(70) subunit restored the original kinetics of σ-aptamer interactions. The results demonstrate that the key step in promoter recognition can be modelled in a simple σ-aptamer system and reveal that highly divergent N-terminal domains similarly modulate the DNA-binding properties of the σ subunit. The aptamers efficiently suppressed promoter-dependent transcription initiation by the holoenzyme of RNA polymerase, suggesting that they may be used for development of novel transcription inhibitors.

  10. Role of Ser7 phosphorylation of the CTD during transcription of snRNA genes

    Science.gov (United States)

    Egloff, Sylvain

    2012-01-01

    The largest subunit of RNA polymerase (pol) II, Rpb1, contains an unusual carboxyl-terminal domain (CTD) composed of consecutive repeats of the sequence Tyr-Ser-Pro-Thr-Ser-Pro-Ser (Y1S2P3T4S5P6S7). During transcription, Ser2, Ser5 and Ser7 are subjected to dynamic phosphorylation and dephosphorylation by CTD kinases and phosphatases, creating a characteristic CTD phosphorylation pattern along genes. This CTD “code” allows the coupling of transcription with co-transcriptional RNA processing, through the timely recruitment of the appropriate factors at the right point of the transcription cycle. In mammals, phosphorylation of Ser7 (Ser7P) is detected on all pol II-transcribed genes, but is only essential for expression of a sub-class of genes encoding small nuclear (sn)RNAs. The molecular mechanisms by which Ser7P influences expression of these particular genes are becoming clearer. Here, I discuss our recent findings clarifying how Ser7P facilitates transcription of these genes and 3′end processing of the transcripts, through recruitment of the RPAP2 phosphatase and the snRNA gene-specific Integrator complex. PMID:22858677

  11. The 5th Symposium on Post-Transcriptional Regulation of Plant Gene Expression (PTRoPGE)

    Energy Technology Data Exchange (ETDEWEB)

    Karen S. Browning; Marie Petrocek; Bonnie Bartel

    2006-06-01

    The 5th Symposium on Post-Transcriptional Regulation of Plant Gene Expression (PTRoPGE) will be held June 8-12, 2005 at the University of Texas at Austin. Exciting new and ongoing discoveries show significant regulation of gene expression occurs after transcription. These post-transcriptional control events in plants range from subtle regulation of transcribed genes and phosphorylation, to the processes of gene regulation through small RNAs. This meeting will focus on the regulatory role of RNA, from transcription, through translation and finally degradation. The cross-disciplinary design of this meeting is necessary to encourage interactions between researchers that have a common interest in post-transcriptional gene expression in plants. By bringing together a diverse group of plant molecular biologist and biochemists at all careers stages from across the world, this meeting will bring about more rapid progress in understanding how plant genomes work and how genes are finely regulated by post-transcriptional processes to ultimately regulate cells.

  12. Assessment of Anaerobic Toluene Biodegradation Activity by bssA Transcript/Gene Ratios

    Science.gov (United States)

    Brow, Christina N.; O'Brien Johnson, Reid; Johnson, Richard L.

    2013-01-01

    Benzylsuccinate synthase (bssA) genes associated with toluene degradation were profiled across a groundwater contaminant plume under nitrate-reducing conditions and were detected in significant numbers throughout the plume. However, differences between groundwater and core sediment samples suggested that microbial transport, rather than local activity, was the underlying cause of the high copy numbers within the downgradient plume. Both gene transcript and reactant concentrations were consistent with this hypothesis. Expression of bssA genes from denitrifying toluene degraders was induced by toluene but only in the presence of nitrate, and transcript abundance dropped rapidly following the removal of either toluene or nitrate. The drop in bssA transcripts following the removal of toluene could be described by an exponential decay function with a half-life on the order of 1 h. Interestingly, bssA transcripts never disappeared completely but were always detected at some level if either inducer was present. Therefore, the detection of transcripts alone may not be sufficient evidence for contaminant degradation. To avoid mistakenly associating basal-level gene expression with actively degrading microbial populations, an integrated approach using the ratio of functional gene transcripts to gene copies is recommended. This approach minimizes the impact of microbial transport on activity assessment and allows reliable assessments of microbial activity to be obtained from water samples. PMID:23811506

  13. ATRX promotes gene expression by facilitating transcriptional elongation through guanine-rich coding regions.

    Science.gov (United States)

    Levy, Michael A; Kernohan, Kristin D; Jiang, Yan; Bérubé, Nathalie G

    2015-04-01

    ATRX is a chromatin remodeling protein involved in deposition of the histone variant H3.3 at telomeres and pericentromeric heterochromatin. It also influences the expression level of specific genes; however, deposition of H3.3 at transcribed genes is currently thought to occur independently of ATRX. We focused on a set of genes, including the autism susceptibility gene Neuroligin 4 (Nlgn4), that exhibit decreased expression in ATRX-null cells to investigate the mechanisms used by ATRX to promote gene transcription. Overall TERRA levels, as well as DNA methylation and histone modifications at ATRX target genes are not altered and thus cannot explain transcriptional dysregulation. We found that ATRX does not associate with the promoter of these genes, but rather binds within regions of the gene body corresponding to high H3.3 occupancy. These intragenic regions consist of guanine-rich DNA sequences predicted to form non-B DNA structures called G-quadruplexes during transcriptional elongation. We demonstrate that ATRX deficiency corresponds to reduced H3.3 incorporation and stalling of RNA polymerase II at these G-rich intragenic sites. These findings suggest that ATRX promotes the incorporation of histone H3.3 at particular transcribed genes and facilitates transcriptional elongation through G-rich sequences. The inability to transcribe genes such as Nlgn4 could cause deficits in neuronal connectivity and cognition associated with ATRX mutations in humans.

  14. Towards a Quantitative Understanding of Single-Gene Transcription

    Science.gov (United States)

    O'Maoiléidigh, Dáibhid

    2008-03-01

    The transcription of the genetic information in DNA into RNA is the first step in protein synthesis. This process is highly regulated and is carried out by RNA polymerase (RNAP), a complex molecular motor. Here we discuss some of the consequences of a Brownian ratchet model of transcription, which incorporates internal structural degrees of freedom of RNAP and kinetic barriers to backtracking of RNAP resulting from steric clashes with co-transcriptionally folded RNA. This approach was previously used (a) to successfully predict sequence dependent positions of pauses during the elongation process [1,2]; (b) to study the behavior of a number of mutants of RNAP, with different elongation behaviors, believed to involve different internal motions of the enzyme [3]; and (c) to gain insight into the interpretation of single-molecule transcription elongation experiments [2]. The same model can be used to characterize the stability of the elongation complex at specific termination sequences, places along DNA where, with high probability, RNAP releases the RNA transcript and disengages from the template. Recent experimental results on termination reinforce a picture of the elongation complex as a flexible structure, not a rigid body [4]. In more general terms, some of the modeling to be presented raises fundamental issues related to ``model comparison'' and ``model selection,'' the problem of identifying and characterizing quantitative models on the basis of limited sets of experimental data [5]. [1] Tadigotla V. R., 'O Maoil'eidigh D., Sengupta A. M., Epshtein V., Ebright R. H., Nudler E., Ruckenstein A. E., Thermodynamic and Kinetic Modeling of Transcriptional Pausing. Proc Natl Acad Sci U S A,03:4439-4444 (2006). [2] D. 'O Maoil'eidigh, Ph.D. Thesis, Rutgers University, 2006 [3] Bar-Nahum, G., Epshtein, V., Ruckenstein, A. E., Rafikov, R., Mustaev, A. and Nudler E., A Ratchet Mechanism of Transcription Elongation and its Control. Cell, 120:183-193 (2005). [4] Epshtein, V

  15. Tandem transcription termination sites in the dnaN gene of Escherichia coli.

    Science.gov (United States)

    Armengod, M E; García-Sogo, M; Pérez-Roger, I; Macián, F; Navarro-Aviñó, J P

    1991-10-15

    The dnaN gene of Escherichia coli encodes the beta-subunit of DNA polymerase III and maps between the dnaA and recF genes. We demonstrated previously that dnaN and recF constitute a transcriptional unit under control of the dnaN promoters. However, the recF gene has its own promoter region located in the middle of the dnaN structural gene. In this report, we use S1 mapping of mRNAs, transcriptional and translational fusions to the galK and lacZ genes, and in vitro mutagenesis to identify and characterize three tandem transcription termination sites responsible for transcriptional polarity in the dnaN-recF operon. These sites are located in the dnaN gene, downstream from the recF promoter region. Cumulatively, they terminate about 80% of the untranslated transcripts started at the recF promoters. As expected, they do not reduce transcription coming from the dnaN promoters unless dnaN translation was prematurely disrupted by the presence of a nonsense codon. The particular arrangement of regulatory elements (promoters and terminators) in the dnaN-recF region provides an exceptional in vivo system to confirm the latent termination site model of transcriptional polarity. In addition, our results contribute to the understanding of the complex regulation of the dnaA, dnaN, and recF genes. We propose that these three genes constitute an operon and that the terminators described in this work could be used to reduce expression of the distal genes of the operon under circumstances in which the dnaN translation happens to be slowed down.

  16. Transcription factor mTEAD-2 is selectively expressed at the beginning of zygotic gene expression in the mouse.

    Science.gov (United States)

    Kaneko, K J; Cullinan, E B; Latham, K E; DePamphilis, M L

    1997-05-01

    mTEF-1 is the prototype of a family of mouse transcription factors that share the same TEA DNA binding domain (mTEAD genes) and are widely expressed in adult tissues. At least one member of this family is expressed at the beginning of mouse development, because mTEAD transcription factor activity was not detected in oocytes, but first appeared at the 2-cell stage in development, concomitant with the onset of zygotic gene expression. Since embryos survive until day 11 in the absence of mTEAD-1 (TEF-1), another family member likely accounts for this activity. Screening an EC cell cDNA library yielded mTEAD-1, 2 and 3 genes. RT-PCR detected RNA from all three of these genes in oocytes, but upon fertilization, mTEAD-1 and 3 mRNAs disappeared. mTEAD-2 mRNA, initially present at approx. 5,000 copies per egg, decreased to approx. 2,000 copies in 2-cell embryos before accumulating to approx. 100,000 copies in blastocysts, consistent with degradation of maternal mTEAD mRNAs followed by selective transcription of mTEAD-2 from the zygotic genome. In situ hybridization did not detect mTEAD RNA in oocytes, and only mTEAD-2 was detected in day-7 embryos. Northern analysis detected all three RNAs at varying levels in day-9 embryos and in various adult tissues. A fourth mTEAD gene, recently cloned from a myotube cDNA library, was not detected by RT-PCR in either oocytes or preimplantation embryos. Together, these results reveal that mTEAD-2 is selectively expressed for the first 7 days of embryonic development, and is therefore most likely responsible for the mTEAD transcription factor activity that appears upon zygotic gene activation.

  17. Kinetics of transcription initiation directed by multiple cis-regulatory elements on the glnAp2 promoter.

    Science.gov (United States)

    Wang, Yaolai; Liu, Feng; Wang, Wei

    2016-12-15

    Transcription initiation is orchestrated by dynamic molecular interactions, with kinetic steps difficult to detect. Utilizing a hybrid method, we aim to unravel essential kinetic steps of transcriptional regulation on the glnAp2 promoter, whose regulatory region includes two enhancers (sites I and II) and three low-affinity sequences (sites III-V), to which the transcriptional activator NtrC binds. By structure reconstruction, we analyze all possible organization architectures of the transcription apparatus (TA). The main regulatory mode involves two NtrC hexamers: one at enhancer II transiently associates with site V such that the other at enhancer I can rapidly approach and catalyze the σ(54)-RNA polymerase holoenzyme. We build a kinetic model characterizing essential steps of the TA operation; with the known kinetics of the holoenzyme interacting with DNA, this model enables the kinetics beyond technical detection to be determined by fitting the input-output function of the wild-type promoter. The model further quantitatively reproduces transcriptional activities of various mutated promoters. These results reveal different roles played by two enhancers and interpret why the low-affinity elements conditionally enhance or repress transcription. This work presents an integrated dynamic picture of regulated transcription initiation and suggests an evolutionarily conserved characteristic guaranteeing reliable transcriptional response to regulatory signals. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Comprehensive study in the inhibitory effect of berberine on gene transcription, including TATA box.

    Directory of Open Access Journals (Sweden)

    Yugang Wang

    Full Text Available Berberine (BBR is an established natural DNA intercalator with numerous pharmacological functions. However, currently there are neither detailed reports concerning the distribution of this alkaloid in living cells nor reports concerning the relationship between BBR's association with DNA and the function of DNA. Here we report that the distribution of BBR within the nucleus can be observed 30 minutes after drug administration, and that the content of berberine in the nucleus peaks at around 4 µmol, which is twelve hours after drug administration. The spatial conformation of DNA and chromatin was altered immediately after their association with BBR. Moreover, this association can effectively suppress the transcription of DNA in living cell systems and cell-free systems. Electrophoretic mobility shift assays (EMSA demonstrated further that BBR can inhibit the association between the TATA binding protein (TBP and the TATA box in the promoter, and this finding was also attained in living cells by chromatin immunoprecipitation (ChIP. Based on results from this study, we hypothesize that berberine can suppress the transcription of DNA in living cell systems, especially suppressing the association between TBP and the TATA box by binding with DNA and, thus, inhibiting TATA box-dependent gene expression in a non-specific way. This novel study has significantly expanded the sphere of knowledge concerning berberine's pharmacological effects, beginning at its paramount initial interaction with the TATA box.

  19. Upregulation of the mammalian X chromosome is associated with enhanced transcription initiation, MOF-mediated H4K16 acetylation, and longer RNA half-life

    Science.gov (United States)

    Deng, Xinxian; Berletch, Joel B.; Ma, Wenxiu; Nguyen, Di Kim; Noble, William S.; Shendure, Jay; Disteche, Christine M.

    2013-01-01

    SUMMARY X upregulation in mammals increases levels of expressed X-linked transcripts to compensate for autosomal bi-allelic expression. Here, we present molecular mechanisms that enhance X expression at transcriptional and posttranscriptional levels. Active mouse X-linked promoters are enriched in the initiation form of RNA polymerase II (PolII-S5p) and in specific histone marks including H4K16ac and histone variant H2AZ. The H4K16 acetyltransferase MOF, known to mediate the Drosophila X upregulation, is also enriched on the mammalian X. Depletion of MOF or MSL1 in mouse ES cells causes a specific decrease in PolII-S5p and in expression of a subset of X-linked genes. Analyses of RNA half-life datasets show increased stability of mammalian X-linked transcripts. Both ancestral X-linked genes, defined as those conserved on chicken autosomes, and newly acquired X-linked genes are upregulated by similar mechanisms but to a different extent, suggesting that subsets of genes are distinctly regulated dependent on their evolutionary history. PMID:23523075

  20. Pleiohomeotic interacts with the core transcription elongation factor Spt5 to regulate gene expression in Drosophila.

    Directory of Open Access Journals (Sweden)

    Robert Harvey

    Full Text Available The early elongation checkpoint regulated by Positive Transcription Elongation Factor b (P-TEFb is a critical control point for the expression of many genes. Spt5 interacts directly with RNA polymerase II and has an essential role in establishing this checkpoint, and also for further transcript elongation. Here we demonstrate that Drosophila Spt5 interacts both physically and genetically with the Polycomb Group (PcG protein Pleiohomeotic (Pho, and the majority of Pho binding sites overlap with Spt5 binding sites across the genome in S2 cells. Our results indicate that Pho can interact with Spt5 to regulate transcription elongation in a gene specific manner.

  1. Analysis of transcription regulatory regions of embryonic chicken pepsinogen (ECPg) gene.

    Science.gov (United States)

    Watanuki, Kumiko; Yasugi, Sadao

    2003-09-01

    Genes encoding pepsinogens, zymogens of digestive enzyme pepsins, are expressed specifically in the gland epithelial cells of the vertebrate stomach, and their expression is also developmentally regulated, therefore providing a good model for the analysis of transcriptional regulation of genes. In the development of chicken embryonic stomach, the epithelium invaginates into the mesenchyme and forms glands and gland epithelial cells then begin to express embryonic chicken pepsinogen (ECPg) gene. It has been shown that cGATA5 binds directly GATA binding sites located within 1.1-kbp upstream of ECPg gene and activates its transcription. To find more precisely the sequences necessary for ECPg gene transcription, we carried out deletion and mutation analysis with 1.1-kbp upstream region. The results suggest that binding of GATA factor to three GATA binding sites within the upstream region -656 to -419 synergistically regulates ECPg expression in the gland epithelial cells.

  2. Gene expression profiling of aging reveals activation of a p53-mediated transcriptional program

    Directory of Open Access Journals (Sweden)

    Weindruch Richard

    2007-03-01

    Full Text Available Abstract Background Aging has been associated with widespread changes at the gene expression level in multiple mammalian tissues. We have used high density oligonucleotide arrays and novel statistical methods to identify specific transcriptional classes that may uncover biological processes that play a central role in mammalian aging. Results We identified 712 transcripts that are differentially expressed in young (5 month old and old (25-month old mouse skeletal muscle. Caloric restriction (CR completely or partially reversed 87% of the changes in expression. Examination of individual genes revealed a transcriptional profile indicative of increased p53 activity in the older muscle. To determine whether the increase in p53 activity is associated with transcriptional activation of apoptotic targets, we performed RT-PCR on four well known mediators of p53-induced apoptosis: puma, noxa, tnfrsf10b and bok. Expression levels for these proapoptotic genes increased significantly with age (P +/- and GPX4+/- mice, suggesting that oxidative stress does not induce the expression of these genes. Western blot analysis confirmed that protein levels for both p21 and GADD45a, two established transcriptional targets of p53, were higher in the older muscle tissue. Conclusion These observations support a role for p53-mediated transcriptional program in mammalian aging and suggest that mechanisms other than reactive oxygen species are involved in the age-related transcriptional activation of p53 targets.

  3. Transcription Profile of Aging and Cognition-Related Genes in the Medial Prefrontal Cortex

    Science.gov (United States)

    Ianov, Lara; Rani, Asha; Beas, Blanca S.; Kumar, Ashok; Foster, Thomas C.

    2016-01-01

    Cognitive function depends on transcription; however, there is little information linking altered gene expression to impaired prefrontal cortex function during aging. Young and aged F344 rats were characterized on attentional set shift and spatial memory tasks. Transcriptional differences associated with age and cognition were examined using RNA sequencing to construct transcriptomic profiles for the medial prefrontal cortex (mPFC), white matter, and region CA1 of the hippocampus. The results indicate regional differences in vulnerability to aging. Age-related gene expression in the mPFC was similar to, though less robust than, changes in the dorsolateral PFC of aging humans suggesting that aging processes may be similar. Importantly, the pattern of transcription associated with aging did not predict cognitive decline. Rather, increased mPFC expression of genes involved in regulation of transcription, including transcription factors that regulate the strength of excitatory and inhibitory inputs, and neural activity-related immediate-early genes was observed in aged animals that exhibit delayed set shift behavior. The specificity of impairment on a mPFC-dependent task, associated with a particular mPFC transcriptional profile indicates that impaired executive function involves altered transcriptional regulation and neural activity/plasticity processes that are distinct from that described for impaired hippocampal function. PMID:27242522

  4. Extracellular Matrix-Regulated Gene Expression RequiresCooperation of SWI/SNF and Transcription Factors

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ren; Spencer, Virginia A.; Bissell, Mina J.

    2006-05-25

    Extracellular cues play crucial roles in the transcriptional regulation of tissue-specific genes, but whether and how these signals lead to chromatin remodeling is not understood and subject to debate. Using chromatin immunoprecipitation (ChIP) assays and mammary-specific genes as models, we show here that extracellular matrix (ECM) molecules and prolactin cooperate to induce histone acetylation and binding of transcription factors and the SWI/SNF complex to the {beta}- and ?-casein promoters. Introduction of a dominant negative Brg1, an ATPase subunit of SWI/SNF complex, significantly reduced both {beta}- and ?-casein expression, suggesting that SWI/SNF-dependent chromatin remodeling is required for transcription of mammary-specific genes. ChIP analyses demonstrated that the ATPase activity of SWI/SNF is necessary for recruitment of RNA transcriptional machinery, but not for binding of transcription factors or for histone acetylation. Coimmunoprecipitation analyses showed that the SWI/SNF complex is associated with STAT5, C/EBP{beta}, and glucocorticoid receptor (GR). Thus, ECM- and prolactin-regulated transcription of the mammary-specific casein genes requires the concerted action of chromatin remodeling enzymes and transcription factors.

  5. Transcription of genes involved in sulfolipid and polyacyltrehalose biosynthesis of Mycobacterium tuberculosis in experimental latent tuberculosis infection.

    Directory of Open Access Journals (Sweden)

    Jimmy E Rodríguez

    Full Text Available The Influence of trehalose-based glycolipids in the virulence of Mycobacterium tuberculosis (Mtb is recognised; however, the actual role of these cell-wall glycolipids in latent infection is unknown. As an initial approach, we determined by two-dimensional thin-layer chromatography the sulfolipid (SL and diacyltrehalose/polyacyltrehalose (DAT/PAT profile of the cell wall of hypoxic Mtb. Then, qRT-PCR was extensively conducted to determine the transcription profile of genes involved in the biosynthesis of these glycolipids in non-replicating persistent 1 (NRP1 and anaerobiosis (NRP2 models of hypoxia (Wayne model, and murine models of chronic and progressive pulmonary tuberculosis. A diminished content of SL and increased amounts of glycolipids with chromatographic profile similar to DAT were detected in Mtb grown in the NRP2 stage. A striking decrease in the transcription of mmpL8 and mmpL10 transporter genes and increased transcription of the pks (polyketidesynthase genes involved in SL and DAT biosynthesis were detected in both the NRP2 stage and the murine model of chronic infection. All genes were found to be up-regulated in the progressive disease. These results suggest that SL production is diminished during latent infection and the DAT/PAT precursors can be accumulated inside tubercle bacilli and are possibly used in reactivation processes.

  6. The loose evolutionary relationships between transcription factors and other gene products across prokaryotes.

    Science.gov (United States)

    del Grande, Marc; Moreno-Hagelsieb, Gabriel

    2014-12-17

    Tests for the evolutionary conservation of associations between genes coding for transcription factors (TFs) and other genes have been limited to a few model organisms due to the lack of experimental information of functional associations in other organisms. We aimed at surmounting this limitation by using the most co-occurring gene pairs as proxies for the most conserved functional interactions available for each gene in a genome. We then used genes predicted to code for TFs to compare their most conserved interactions against the most conserved interactions for the rest of the genes within each prokaryotic genome available. We plotted profiles of phylogenetic profiles, p-cubic, to compare the maximally scoring interactions of TFs against those of other genes. In most prokaryotes, genes coding for TFs showed lower co-occurrences when compared to other genes. We also show that genes coding for TFs tend to have lower Codon Adaptation Indexes compared to other genes. The co-occurrence tests suggest that transcriptional regulation evolves quickly in most, if not all, prokaryotes. The Codon Adaptation Index analyses suggest quick gene exchange and rewiring of transcriptional regulation across prokaryotes.

  7. Transcript RNA supports precise repair of its own DNA gene.

    Science.gov (United States)

    Keskin, Havva; Meers, Chance; Storici, Francesca

    2016-01-01

    The transfer of genetic information from RNA to DNA is considered an extraordinary process in molecular biology. Despite the fact that cells transcribe abundant amount of RNA with a wide range of functions, it has been difficult to uncover whether RNA can serve as a template for DNA repair and recombination. An increasing number of experimental evidences suggest a direct role of RNA in DNA modification. Recently, we demonstrated that endogenous transcript RNA can serve as a template to repair a DNA double-strand break (DSB), the most harmful DNA lesion, not only indirectly via formation of a DNA copy (cDNA) intermediate, but also directly in a homology driven mechanism in budding yeast. These results point out that the transfer of genetic information from RNA to DNA is more general than previously thought. We found that transcript RNA is more efficient in repairing a DSB in its own DNA (in cis) than in a homologous but ectopic locus (in trans). Here, we summarize current knowledge about the process of RNA-driven DNA repair and recombination, and provide further data in support of our model of DSB repair by transcript RNA in cis. We show that a DSB is precisely repaired predominately by transcript RNA and not by residual cDNA in conditions in which formation of cDNA by reverse transcription is inhibited. Additionally, we demonstrate that defects in ribonuclease (RNase) H stimulate precise DSB repair by homologous RNA or cDNA sequence, and not by homologous DNA sequence carried on a plasmid. These results highlight an antagonistic role of RNase H in RNA-DNA recombination. Ultimately, we discuss several questions that should be addressed to better understand mechanisms and implications of RNA-templated DNA repair and recombination.

  8. 3' Untranslated regions mediate transcriptional interference between convergent genes both locally and ectopically in Saccharomyces cerevisiae.

    Science.gov (United States)

    Wang, Luwen; Jiang, Ning; Wang, Lin; Fang, Ou; Leach, Lindsey J; Hu, Xiaohua; Luo, Zewei

    2014-01-01

    Paired sense and antisense (S/AS) genes located in cis represent a structural feature common to the genomes of both prokaryotes and eukaryotes, and produce partially complementary transcripts. We used published genome and transcriptome sequence data and found that over 20% of genes (645 pairs) in the budding yeast Saccharomyces cerevisiae genome are arranged in convergent pairs with overlapping 3'-UTRs. Using published microarray transcriptome data from the standard laboratory strain of S. cerevisiae, our analysis revealed that expression levels of convergent pairs are significantly negatively correlated across a broad range of environments. This implies an important role for convergent genes in the regulation of gene expression, which may compensate for the absence of RNA-dependent mechanisms such as micro RNAs in budding yeast. We selected four representative convergent gene pairs and used expression assays in wild type yeast and its genetically modified strains to explore the underlying patterns of gene expression. Results showed that convergent genes are reciprocally regulated in yeast populations and in single cells, whereby an increase in expression of one gene produces a decrease in the expression of the other, and vice-versa. Time course analysis of the cell cycle illustrated the functional significance of this relationship for the three pairs with relevant functional roles. Furthermore, a series of genetic modifications revealed that the 3'-UTR sequence plays an essential causal role in mediating transcriptional interference, which requires neither the sequence of the open reading frame nor the translation of fully functional proteins. More importantly, transcriptional interference persisted even when one of the convergent genes was expressed ectopically (in trans) and therefore does not depend on the cis arrangement of convergent genes; we conclude that the mechanism of transcriptional interference cannot be explained by the transcriptional collision

  9. 3' Untranslated regions mediate transcriptional interference between convergent genes both locally and ectopically in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Luwen Wang

    2014-01-01

    Full Text Available Paired sense and antisense (S/AS genes located in cis represent a structural feature common to the genomes of both prokaryotes and eukaryotes, and produce partially complementary transcripts. We used published genome and transcriptome sequence data and found that over 20% of genes (645 pairs in the budding yeast Saccharomyces cerevisiae genome are arranged in convergent pairs with overlapping 3'-UTRs. Using published microarray transcriptome data from the standard laboratory strain of S. cerevisiae, our analysis revealed that expression levels of convergent pairs are significantly negatively correlated across a broad range of environments. This implies an important role for convergent genes in the regulation of gene expression, which may compensate for the absence of RNA-dependent mechanisms such as micro RNAs in budding yeast. We selected four representative convergent gene pairs and used expression assays in wild type yeast and its genetically modified strains to explore the underlying patterns of gene expression. Results showed that convergent genes are reciprocally regulated in yeast populations and in single cells, whereby an increase in expression of one gene produces a decrease in the expression of the other, and vice-versa. Time course analysis of the cell cycle illustrated the functional significance of this relationship for the three pairs with relevant functional roles. Furthermore, a series of genetic modifications revealed that the 3'-UTR sequence plays an essential causal role in mediating transcriptional interference, which requires neither the sequence of the open reading frame nor the translation of fully functional proteins. More importantly, transcriptional interference persisted even when one of the convergent genes was expressed ectopically (in trans and therefore does not depend on the cis arrangement of convergent genes; we conclude that the mechanism of transcriptional interference cannot be explained by the

  10. Highly expressed genes are associated with inverse antisense transcription in mouse

    Indian Academy of Sciences (India)

    Andras Györffy; Pawel Surowiak; Zsolt Tulassay; Balazs Györffy

    2007-08-01

    There is a growing evidence, that antisense transcription might have a key role in a range of human diseases. Although predefined sense–antisense pairs were extensively studied, the antisense expression of the known sense genes is rarely investigated. We retrieved and correlated the expression of sense and antisense sequences of 1182 mouse transcripts to assess the prevalence and to find the characteristic pattern of antisense transcription. We contrasted three Affymetrix MGU74A version 1 mouse genome chips to six MGU74A version 2 chips. For these 1182 transcripts, the version 1 chips contain the antisense sequences of the transcripts presented on the version 2 chips. The original data was taken from the GEO database (GDS431 and GDS432). As the Affymetrix data are semiquantitative, the relative expression levels of antisense partners were analysed. We detected antisense transcription, although the average antisense expression is shifted towards smaller expression values (MGU74A version 1, 516; version 2, 1688). An inverse direct correlation between sense and antisense expression values could be observed at high expression values. At a very high relative expression—above 40,000—the Pearson correlation coefficient is getting closer to −1. Transcripts with high inverse expression ratio may be correlated to the investigated gene (major histocompatibility complex class II trans activator). The ratio of sense to antisense transcripts varied among different chromosomes; on chromosomes 14 and 1 the level of antisense expression was higher than that of sense. We conclude that antisense transcription is a common phenomenon in the mouse genome. The hypothesis of regulatory role of antisense transcripts is supported by the inverse antisense gene expression of highly expressed genes.

  11. Distinct DNA-based epigenetic switches trigger transcriptional activation of silent genes in human dermal fibroblasts.

    Science.gov (United States)

    Pandian, Ganesh N; Taniguchi, Junichi; Junetha, Syed; Sato, Shinsuke; Han, Le; Saha, Abhijit; AnandhaKumar, Chandran; Bando, Toshikazu; Nagase, Hiroki; Vaijayanthi, Thangavel; Taylor, Rhys D; Sugiyama, Hiroshi

    2014-01-24

    The influential role of the epigenome in orchestrating genome-wide transcriptional activation instigates the demand for the artificial genetic switches with distinct DNA sequence recognition. Recently, we developed a novel class of epigenetically active small molecules called SAHA-PIPs by conjugating selective DNA binding pyrrole-imidazole polyamides (PIPs) with the histone deacetylase inhibitor SAHA. Screening studies revealed that certain SAHA-PIPs trigger targeted transcriptional activation of pluripotency and germ cell genes in mouse and human fibroblasts, respectively. Through microarray studies and functional analysis, here we demonstrate for the first time the remarkable ability of thirty-two different SAHA-PIPs to trigger the transcriptional activation of exclusive clusters of genes and noncoding RNAs. QRT-PCR validated the microarray data, and some SAHA-PIPs activated therapeutically significant genes like KSR2. Based on the aforementioned results, we propose the potential use of SAHA-PIPs as reagents capable of targeted transcriptional activation.

  12. Biological data warehousing system for identifying transcriptional regulatory sites from gene expressions of microarray data.

    Science.gov (United States)

    Tsou, Ann-Ping; Sun, Yi-Ming; Liu, Chia-Lin; Huang, Hsien-Da; Horng, Jorng-Tzong; Tsai, Meng-Feng; Liu, Baw-Juine

    2006-07-01

    Identification of transcriptional regulatory sites plays an important role in the investigation of gene regulation. For this propose, we designed and implemented a data warehouse to integrate multiple heterogeneous biological data sources with data types such as text-file, XML, image, MySQL database model, and Oracle database model. The utility of the biological data warehouse in predicting transcriptional regulatory sites of coregulated genes was explored using a synexpression group derived from a microarray study. Both of the binding sites of known transcription factors and predicted over-represented (OR) oligonucleotides were demonstrated for the gene group. The potential biological roles of both known nucleotides and one OR nucleotide were demonstrated using bioassays. Therefore, the results from the wet-lab experiments reinforce the power and utility of the data warehouse as an approach to the genome-wide search for important transcription regulatory elements that are the key to many complex biological systems.

  13. Oncogene-initiated aberrant signaling engenders the metastatic phenotype: synergistic transcription factor interactions are targets for cancer therapy.

    Science.gov (United States)

    Denhardt, D T

    1996-01-01

    Certain p21GTPases (notably Ras) and some of their guanine nucleotide exchange factors (e.g., Ost, Dbl, Tiam) and downstream mediators (e.g., Raf, Myc) have the potential to promote the development of malignancies because they can enhance the transcription of genes that foster the tumorigenic and metastatic phenotype. Among these are genes that stimulate cell proliferation, confer immortality, and facilitate the invasion of normal tissues. Oncogenes upstream of Ras-cell surface receptors such as ErbB2/Neu, Met, or Trk (and their ligands), and nonreceptor cytoplasmic protein tyrosine kinases such as Src and Abl-not only can act through Ras but also contribute additional signals. This review presents a synopsis of our understanding of signaling pathways controlled by the p21GTPases, with a focus on transcription factors regulated by the pathways. Mutations in one or more of the elements in these signaling pathways are invariably found in cancer cells. Crosstalk among the pathways may explain how some forms of stress can contribute to the development of a malignancy. Abnormal signaling leads to modified cytoskeletal structures and permanently altered (i.e., self-sustaining or epigenetic) transcription of target genes. A common therne is that genes whose transcription is elevated to the greatest extent by Ras often have in their promoters juxtaposed binding sites for two different transcription factors (particularly those in the Fos/Jun, CREB/ATF, NFkB, and Ets families) each of which is activated and such that together they synergize to augment transcription substantially. Some of these transcription factors can also act as oncogenes in certain cell types when appropriately modified and expressed. This unifying theme among many different cancers suggests that strategies to restore the balance among the signaling pathways or to suppress synergistic interactions between transcription factors may prove broadly useful in reversing the malignant phenotype.

  14. Scaling of Gene Expression with Transcription-Factor Fugacity

    Science.gov (United States)

    Weinert, Franz M.; Brewster, Robert C.; Rydenfelt, Mattias; Phillips, Rob; Kegel, Willem K.

    2015-01-01

    The proteins associated with gene regulation are often shared between multiple pathways simultaneously. By way of contrast, models in regulatory biology often assume these pathways act independently. We demonstrate a framework for calculating the change in gene expression for the interacting case by decoupling repressor occupancy across the cell from the gene of interest by way of a chemical potential. The details of the interacting regulatory architecture are encompassed in an effective concentration, and thus, a single scaling function describes a collection of gene expression data from diverse regulatory situations and collapses it onto a single master curve. PMID:25554908

  15. Scaling of gene expression with transcription-factor fugacity.

    Science.gov (United States)

    Weinert, Franz M; Brewster, Robert C; Rydenfelt, Mattias; Phillips, Rob; Kegel, Willem K

    2014-12-19

    The proteins associated with gene regulation are often shared between multiple pathways simultaneously. By way of contrast, models in regulatory biology often assume these pathways act independently. We demonstrate a framework for calculating the change in gene expression for the interacting case by decoupling repressor occupancy across the cell from the gene of interest by way of a chemical potential. The details of the interacting regulatory architecture are encompassed in an effective concentration, and thus, a single scaling function describes a collection of gene expression data from diverse regulatory situations and collapses it onto a single master curve.

  16. A primer on molecular biology for imagers: II. Transcription and gene expression.

    Science.gov (United States)

    Pandit, Sunil D; Li, King C P

    2004-03-01

    The process of gene expression is complex and highly regulated to ensure that the right gene is expressed at the right place, at the right time, and in regulated amounts. The cell has multiple levels at which it controls the expression of a transcript including gene expression, alternate splicing, and stability of the transcript. Alternate splicing to generate different RNA species from a given gene and DNA rearrangements where genes are rearranged during cellular differentiation (eg, immunoglobulin genes) are additional mechanisms used to generate diversity in complex organisms. Epigenetic mechanisms such as methylation where CpG-rich islands in the promoter region depending on their methylation status can also modulate gene expression. The reader is requested to refer to the books, review articles, and web sites for additional information.

  17. Robust dynamic balance of AP-1 transcription factors in a neuronal gene regulatory network

    Directory of Open Access Journals (Sweden)

    Schwaber James S

    2010-12-01

    Full Text Available Abstract Background The octapeptide Angiotensin II is a key hormone that acts via its receptor AT1R in the brainstem to modulate the blood pressure control circuits and thus plays a central role in the cardiac and respiratory homeostasis. This modulation occurs via activation of a complex network of signaling proteins and transcription factors, leading to changes in levels of key genes and proteins. AT1R initiated activity in the nucleus tractus solitarius (NTS, which regulates blood pressure, has been the subject of extensive molecular analysis. But the adaptive network interactions in the NTS response to AT1R, plausibly related to the development of hypertension, are not understood. Results We developed and analyzed a mathematical model of AT1R-activated signaling kinases and a downstream gene regulatory network, with structural basis in our transcriptomic data analysis and literature. To our knowledge, our report presents the first computational model of this key regulatory network. Our simulations and analysis reveal a dynamic balance among distinct dimers of the AP-1 family of transcription factors. We investigated the robustness of this behavior to simultaneous perturbations in the network parameters using a novel multivariate approach that integrates global sensitivity analysis with decision-tree methods. Our analysis implicates a subset of Fos and Jun dependent mechanisms, with dynamic sensitivities shifting from Fos-regulating kinase (FRK-mediated processes to those downstream of c-Jun N-terminal kinase (JNK. Decision-tree analysis indicated that while there may be a large combinatorial functional space feasible for neuronal states and parameters, the network behavior is constrained to a small set of AP-1 response profiles. Many of the paths through the combinatorial parameter space lead to a dynamic balance of AP-1 dimer forms, yielding a robust AP-1 response counteracting the biological variability. Conclusions Based on the simulation

  18. CTCF and Rad21 act as host cell restriction factors for Kaposi's sarcoma-associated herpesvirus (KSHV lytic replication by modulating viral gene transcription.

    Directory of Open Access Journals (Sweden)

    Da-Jiang Li

    2014-01-01

    Full Text Available Kaposi's sarcoma-associated herpesvirus (KSHV is a human herpesvirus that causes Kaposi's sarcoma and is associated with the development of lymphoproliferative diseases. KSHV reactivation from latency and virion production is dependent on efficient transcription of over eighty lytic cycle genes and viral DNA replication. CTCF and cohesin, cellular proteins that cooperatively regulate gene expression and mediate long-range DNA interactions, have been shown to bind at specific sites in herpesvirus genomes. CTCF and cohesin regulate KSHV gene expression during latency and may also control lytic reactivation, although their role in lytic gene expression remains incompletely characterized. Here, we analyze the dynamic changes in CTCF and cohesin binding that occur during the process of KSHV viral reactivation and virion production by high resolution chromatin immunoprecipitation and deep sequencing (ChIP-Seq and show that both proteins dissociate from viral genomes in kinetically and spatially distinct patterns. By utilizing siRNAs to specifically deplete CTCF and Rad21, a cohesin component, we demonstrate that both proteins are potent restriction factors for KSHV replication, with cohesin knockdown leading to hundred-fold increases in viral yield. High-throughput RNA sequencing was used to characterize the transcriptional effects of CTCF and cohesin depletion, and demonstrated that both proteins have complex and global effects on KSHV lytic transcription. Specifically, both proteins act as positive factors for viral transcription initially but subsequently inhibit KSHV lytic transcription, such that their net effect is to limit KSHV RNA accumulation. Cohesin is a more potent inhibitor of KSHV transcription than CTCF but both proteins are also required for efficient transcription of a subset of KSHV genes. These data reveal novel effects of CTCF and cohesin on transcription from a relatively small genome that resemble their effects on the cellular

  19. Structure and associated DNA-helicase activity of a general transcription initiation factor that binds to RNA polymerase II.

    Science.gov (United States)

    Sopta, M; Burton, Z F; Greenblatt, J

    1989-10-05

    RAP30/74 is a heteromeric general transcription initiation factor which binds to RNA polymerase II. Here we report that preparations of RAP30/74 contain an ATP-dependent DNA helicase whose probable function is to melt the DNA at transcriptional start sites. The sequence of the RAP30 subunit of RAP30/74 indicates that RAP30 may be distantly related to bacterial sigma factors.

  20. Yeast H2A.Z, FACT complex and RSC regulate transcription of tRNA gene through differential dynamics of flanking nucleosomes.

    Science.gov (United States)

    Mahapatra, Sahasransu; Dewari, Pooran S; Bhardwaj, Anubhav; Bhargava, Purnima

    2011-05-01

    FACT complex is involved in elongation and ensures fidelity in the initiation step of transcription by RNA polymerase (pol) II. Histone variant H2A.Z is found in nucleosomes at the 5'-end of many genes. We report here H2A.Z-chaperone activity of the yeast FACT complex on the short, nucleosome-free, non-coding, pol III-transcribed yeast tRNA genes. On a prototype gene, yeast SUP4, chromatin remodeler RSC and FACT regulate its transcription through novel mechanisms, wherein the two gene-flanking nucleosomes containing H2A.Z, play different roles. Nhp6, which ensures transcription fidelity and helps load yFACT onto the gene flanking nucleosomes, has inhibitory role. RSC maintains a nucleosome abutting the gene terminator downstream, which results in reduced transcription rate in active state while H2A.Z probably helps RSC in keeping the gene nucleosome-free and serves as stress-sensor. All these factors maintain an epigenetic state which allows the gene to return quickly from repressed to active state and tones down the expression from the active SUP4 gene, required probably to maintain the balance in cellular tRNA pool.

  1. Transcriptional expression of genes involved in cell invasion and migration by normal and tumoral trophoblast cells.

    Science.gov (United States)

    Janneau, Jean-Louis; Maldonado-Estrada, Juan; Tachdjian, Gérard; Miran, Isabelle; Motté, Nelly; Saulnier, Patrick; Sabourin, Jean-Christophe; Coté, Jean-François; Simon, Bénédicte; Frydman, René; Chaouat, Gérard; Bellet, Dominique

    2002-11-01

    Once initiated, invasion of trophoblast cells must be tightly regulated, particularly in early pregnancy. The mechanisms necessary for the invasion and migration of trophoblast cells are thought to be related to those involved in the invasive and metastatic properties of cancer cells. Quantitative PCR was used to measure, in trophoblast cells, the transcriptional expression profiles of four genes, INSL4, BRMS1, KiSS-1 and KiSS-1R, reported to be implicated in tumor invasion and metastasis. Laser capture microdissection and purification of trophoblast cells demonstrate that, as already known for INSL4, BRMS1, KiSS-1 and KiSS-1R are expressed by the trophoblast subset of placental tissues. Expression profiles of these genes studied in early placentas (7-9 weeks, n=55) and term placentas (n=11) showed that expression levels of BRMS1 are higher in term than in early placentas, while expression levels of KiSS-1R are higher in early than in term placentas. Low levels of expression of BRMS1 were observed in normal pregnancies, in molar pregnancies and in choriocarcinoma cell lines BeWo, JAR and JEG3 while, in striking contrast, the expression levels of INSL4, KiSS-1 and Kiss-1R were increased in both early placentas and molar pregnancies and were reduced in choriocarcinoma cells. These transcriptional expression profiles are in favor of a predominant role of INSL4, KiSS-1 and KiSS-1R in the control of the invasive and migratory properties of trophoblast cells.

  2. Role of Sam68 in Post-Transcriptional Gene Regulation

    Directory of Open Access Journals (Sweden)

    Flora Sánchez-Jiménez

    2013-11-01

    Full Text Available The STAR family of proteins links signaling pathways to various aspects of post-transcriptional regulation and processing of RNAs. Sam68 belongs to this class of heteronuclear ribonucleoprotein particle K (hnRNP K homology (KH single domain-containing family of RNA-binding proteins that also contains some domains predicted to bind critical components in signal transduction pathways. In response to phosphorylation and other post-transcriptional modifications, Sam68 has been shown to have the ability to link signal transduction pathways to downstream effects regulating RNA metabolism, including transcription, alternative splicing or RNA transport. In addition to its function as a docking protein in some signaling pathways, this prototypic STAR protein has been identified to have a nuclear localization and to take part in the formation of both nuclear and cytosolic multi-molecular complexes such as Sam68 nuclear bodies and stress granules. Coupling with other proteins and RNA targets, Sam68 may play a role in the regulation of differential expression and mRNA processing and translation according to internal and external signals, thus mediating important physiological functions, such as cell death, proliferation or cell differentiation.

  3. Ezh1 and Ezh2 differentially regulate PSD-95 gene transcription in developing hippocampal neurons.

    Science.gov (United States)

    Henriquez, Berta; Bustos, Fernando J; Aguilar, Rodrigo; Becerra, Alvaro; Simon, Felipe; Montecino, Martin; van Zundert, Brigitte

    2013-11-01

    Polycomb Repressive Complex 2 (PRC2) mediates transcriptional silencing by catalyzing histone H3 lysine 27 trimethylation (H3K27me3), but its role in the maturation of postmitotic mammalian neurons remains largely unknown. We report that the PRC2 paralogs Ezh1 and Ezh2 are differentially expressed during hippocampal development. We show that depletion of Ezh2 leads to increased expression of PSD-95, a critical plasticity gene, and that reduced PSD-95 gene transcription is correlated with enrichment of Ezh2 at the PSD-95 gene promoter; however, the H3K27me3 epigenetic mark is not present at the PSD-95 gene promoter, likely due to the antagonizing effects of the H3S28P and H3K27Ac marks and the activity of the H3K27 demethylases JMJD3 and UTX. In contrast, increased PSD-95 gene transcription is accompanied by the presence of Ezh1 and elongation-engaged RNA Polymerase II complexes at the PSD-95 gene promoter, while knock-down of Ezh1 reduces PSD-95 transcription. These results indicate that Ezh1 and Ezh2 have antagonistic roles in regulating PSD-95 transcription. © 2013.

  4. Transcriptional activation of the mouse obese (ob) gene by CCAAT/enhancer binding protein alpha

    DEFF Research Database (Denmark)

    Hwang, C S; Mandrup, S; MacDougald, O A

    1996-01-01

    Like other adipocyte genes that are transcriptionally activated by CCAAT/enhancer binding protein alpha (C/EBP alpha) during preadipocyte differentiation, expression of the mouse obese (ob) gene is immediately preceded by the expression of C/EBP alpha. While the 5' flanking region of the mouse ob...

  5. Shared control of gene expression in bacteria by transcription factors and global physiology of the cell.

    NARCIS (Netherlands)

    Berthoumieux, S.; Jong, H. de; Baptist, G.; Pinel, C.; Ranquet, C.; Ropers, D.; Geiselmann, J.

    2013-01-01

    Gene expression is controlled by the joint effect of (i) the global physiological state of the cell, in particular the activity of the gene expression machinery, and (ii) DNA-binding transcription factors and other specific regulators. We present a model-based approach to distinguish between these t

  6. Autogenous Regulation of Splicing of the Transcript of a Yeast Ribosomal Protein Gene

    Science.gov (United States)

    Dabeva, Mariana D.; Post-Beittenmiller, Martha A.; Warner, Jonathan R.

    1986-08-01

    The gene for a yeast ribosomal protein, RPL32, contains a single intron. The product of this gene appears to participate in feedback control of the splicing of the intron from the transcript. This autogenous regulation of splicing provides a striking analogy to the autogenous regulation of translation of ribosomal proteins in Escherichia coli.

  7. Universal features of post-transcriptional gene regulation are critical for Plasmodium zygote development.

    Directory of Open Access Journals (Sweden)

    Gunnar R Mair

    2010-02-01

    Full Text Available A universal feature of metazoan sexual development is the generation of oocyte P granules that withhold certain mRNA species from translation to provide coding potential for proteins during early post-fertilization development. Stabilisation of translationally quiescent mRNA pools in female Plasmodium gametocytes depends on the RNA helicase DOZI, but the molecular machinery involved in the silencing of transcripts in these protozoans is unknown. Using affinity purification coupled with mass-spectrometric analysis we identify a messenger ribonucleoprotein (mRNP from Plasmodium berghei gametocytes defined by DOZI and the Sm-like factor CITH (homolog of worm CAR-I and fly Trailer Hitch. This mRNP includes 16 major factors, including proteins with homologies to components of metazoan P granules and archaeal proteins. Containing translationally silent transcripts, this mRNP integrates eIF4E and poly(A-binding protein but excludes P body RNA degradation factors and translation-initiation promoting eIF4G. Gene deletion mutants of 2 core components of this mRNP (DOZI and CITH are fertilization-competent, but zygotes fail to develop into ookinetes in a female gametocyte-mutant fashion. Through RNA-immunoprecipitation and global expression profiling of CITH-KO mutants we highlight CITH as a crucial repressor of maternally supplied mRNAs. Our data define Plasmodium P granules as an ancient mRNP whose protein core has remained evolutionarily conserved from single-cell organisms to germ cells of multi-cellular animals and stores translationally silent mRNAs that are critical for early post-fertilization development during the initial stages of mosquito infection. Therefore, translational repression may offer avenues as a target for the generation of transmission blocking strategies and contribute to limiting the spread of malaria.

  8. The Drosophila Translational Control Element (TCE is required for high-level transcription of many genes that are specifically expressed in testes.

    Directory of Open Access Journals (Sweden)

    Rebeccah J Katzenberger

    Full Text Available To investigate the importance of core promoter elements for tissue-specific transcription of RNA polymerase II genes, we examined testis-specific transcription in Drosophila melanogaster. Bioinformatic analyses of core promoter sequences from 190 genes that are specifically expressed in testes identified a 10 bp A/T-rich motif that is identical to the translational control element (TCE. The TCE functions in the 5' untranslated region of Mst(3CGP mRNAs to repress translation, and it also functions in a heterologous gene to regulate transcription. We found that among genes with focused initiation patterns, the TCE is significantly enriched in core promoters of genes that are specifically expressed in testes but not in core promoters of genes that are specifically expressed in other tissues. The TCE is variably located in core promoters and is conserved in melanogaster subgroup species, but conservation dramatically drops in more distant species. In transgenic flies, short (300-400 bp genomic regions containing a TCE directed testis-specific transcription of a reporter gene. Mutation of the TCE significantly reduced but did not abolish reporter gene transcription indicating that the TCE is important but not essential for transcription activation. Finally, mutation of testis-specific TFIID (tTFIID subunits significantly reduced the transcription of a subset of endogenous TCE-containing but not TCE-lacking genes, suggesting that tTFIID activity is limited to TCE-containing genes but that tTFIID is not an obligatory regulator of TCE-containing genes. Thus, the TCE is a core promoter element in a subset of genes that are specifically expressed in testes. Furthermore, the TCE regulates transcription in the context of short genomic regions, from variable locations in the core promoter, and both dependently and independently of tTFIID. These findings set the stage for determining the mechanism by which the TCE regulates testis-specific transcription and

  9. Regulation of Nitrogenase Gene Expression by Transcript Stability in the Cyanobacterium Anabaena variabilis

    OpenAIRE

    Pratte, Brenda S.; Thiel, Teresa

    2014-01-01

    The nitrogenase gene cluster in cyanobacteria has been thought to comprise multiple operons; however, in Anabaena variabilis, the promoter for the first gene in the cluster, nifB1, appeared to be the primary promoter for the entire nif cluster. The structural genes nifHDK1 were the most abundant transcripts; however, their abundance was not controlled by an independent nifH1 promoter, but rather, by RNA processing, which produced a very stable nifH1 transcript and a moderately stable nifD1 tr...

  10. Genetic effects of an air discharge plasma on Staphylococcus aureus at the gene transcription level

    Science.gov (United States)

    Xu, Zimu; Wei, Jun; Shen, Jie; Liu, Yuan; Ma, Ronghua; Zhang, Zelong; Qian, Shulou; Ma, Jie; Lan, Yan; Zhang, Hao; Zhao, Ying; Xia, Weidong; Sun, Qiang; Cheng, Cheng; Chu, Paul K.

    2015-05-01

    The dynamics of gene expression regulation (at transcription level) in Staphylococcus aureus after different doses of atmospheric-pressure room-temperature air plasma treatments are investigated by monitoring the quantitative real-time polymerase chain reaction. The plasma treatment influences the transcription of genes which are associated with several important bio-molecular processes related to the environmental stress resistance of the bacteria, including oxidative stress response, biofilm formation, antibiotics resistance, and DNA damage protection/repair. The reactive species generated by the plasma discharge in the gas phase and/or induced in the liquid phase may account for these gene expression changes.

  11. Altered activities of transcription factors and their related gene expression in cardiac tissues of diabetic rats.

    Science.gov (United States)

    Nishio, Y; Kashiwagi, A; Taki, H; Shinozaki, K; Maeno, Y; Kojima, H; Maegawa, H; Haneda, M; Hidaka, H; Yasuda, H; Horiike, K; Kikkawa, R

    1998-08-01

    Gene regulation in the cardiovascular tissues of diabetic subjects has been reported to be altered. To examine abnormal activities in transcription factors as a possible cause of this altered gene regulation, we studied the activity of two redox-sensitive transcription factors--nuclear factor-kappaB (NF-kappaB) and activating protein-1 (AP-1)--and the change in the mRNA content of heme oxygenase-1, which is regulated by these transcription factors in the cardiac tissues of rats with streptozotocin-induced diabetes. Increased activity of NF-kappaB and AP-1 but not nuclear transcription-activating factor, as determined by an electrophoretic mobility shift assay, was found in the hearts of 4-week diabetic rats. Glycemic control by a subcutaneous injection of insulin prevented these diabetes-induced changes in transcription factor activity. In accordance with these changes, the mRNA content of heme oxygenase-1 was increased fourfold in 4-week diabetic rats and threefold in 24-week diabetic rats as compared with control rats (P oxidative stress is involved in the activation of the transcription factors NF-kappaB and AP-1 in the cardiac tissues of diabetic rats, and that these abnormal activities of transcription factors could be associated with the altered gene regulation observed in the cardiovascular tissues of diabetic rats.

  12. Cryptic Transcription and Early Termination in the Control of Gene Expression

    Directory of Open Access Journals (Sweden)

    Jessie Colin

    2011-01-01

    Full Text Available Recent studies on yeast transcriptome have revealed the presence of a large set of RNA polymerase II transcripts mapping to intergenic and antisense regions or overlapping canonical genes. Most of these ncRNAs (ncRNAs are subject to termination by the Nrd1-dependent pathway and rapid degradation by the nuclear exosome and have been dubbed cryptic unstable transcripts (CUTs. CUTs are often considered as by-products of transcriptional noise, but in an increasing number of cases they play a central role in the control of gene expression. Regulatory mechanisms involving expression of a CUT are diverse and include attenuation, transcriptional interference, and alternative transcription start site choice. This review focuses on the impact of cryptic transcription on gene expression, describes the role of the Nrd1-complex as the main actor in preventing nonfunctional and potentially harmful transcription, and details a few systems where expression of a CUT has an essential regulatory function. We also summarize the most recent studies concerning other types of ncRNAs and their possible role in regulation.

  13. Identification of Gene Transcription Start Sites and Enhancers Responding to Pulmonary Carbon Nanotube Exposure in Vivo

    DEFF Research Database (Denmark)

    Bornholdt, Jette; Saber, Anne Thoustrup; Lilje, Bait

    2017-01-01

    Increased use of nanomaterials in industry, medicine, and consumer products has raised concerns over their toxicity. To ensure safe use of nanomaterials, understanding their biological effects at the molecular level is crucial. In particular, the regulatory mechanisms responsible for the cascade...... of genes activated by nanomaterial exposure are not well-characterized. To this end, we profiled the genome-wide usage of gene transcription start sites and linked active enhancer regions in lungs of C57BL/6 mice 24 h after intratracheal instillation of a single dose of the multiwalled carbon nanotube...... (MWCNT) Mitsui-7. Our results revealed a massive gene regulatory response, where expression of key inflammatory genes (e.g., Csf3, Il24, and Fgf23) was increased >100-fold 24 h after Mitsui-7 exposure. Many of the Mitsui-7-responsive transcription start sites were alternative transcription start sites...

  14. Transcript and protein profiling identify candidate gene sets of potential adaptive significance in New Zealand Pachycladon

    Directory of Open Access Journals (Sweden)

    Schmidt Silvia

    2010-05-01

    Full Text Available Abstract Background Transcript profiling of closely related species provides a means for identifying genes potentially important in species diversification. However, the predictive value of transcript profiling for inferring downstream-physiological processes has been unclear. In the present study we use shotgun proteomics to validate inferences from microarray studies regarding physiological differences in three Pachycladon species. We compare transcript and protein profiling and evaluate their predictive value for inferring glucosinolate chemotypes characteristic of these species. Results Evidence from heterologous microarrays and shotgun proteomics revealed differential expression of genes involved in glucosinolate hydrolysis (myrosinase-associated proteins and biosynthesis (methylthioalkylmalate isomerase and dehydrogenase, the interconversion of carbon dioxide and bicarbonate (carbonic anhydrases, water use efficiency (ascorbate peroxidase, 2 cys peroxiredoxin, 20 kDa chloroplastic chaperonin, mitochondrial succinyl CoA ligase and others (glutathione-S-transferase, serine racemase, vegetative storage proteins, genes related to translation and photosynthesis. Differences in glucosinolate hydrolysis products were directly confirmed. Overall, prediction of protein abundances from transcript profiles was stronger than prediction of transcript abundance from protein profiles. Protein profiles also proved to be more accurate predictors of glucosinolate profiles than transcript profiles. The similarity of species profiles for both transcripts and proteins reflected previously inferred phylogenetic relationships while glucosinolate chemotypes did not. Conclusions We have used transcript and protein profiling to predict physiological processes that evolved differently during diversification of three Pachycladon species. This approach has also identified candidate genes potentially important in adaptation, which are now the focus of ongoing study

  15. The Adh-related gene of Drosophila melanogaster is expressed as a functional dicistronic messenger RNA: multigenic transcription in higher organisms.

    Science.gov (United States)

    Brogna, S; Ashburner, M

    1997-01-01

    Essentially all eukaryotic cellular mRNAs are monocistronic, and are usually transcribed individually. Two tandemly arranged Drosophila genes, alcohol dehydrogenase (Adh) and Adh-related (Adhr), are transcribed as a dicistronic transcript. From transcripts initiated from the Adh promoter, two classes of mRNA are accumulated, one is monocistronic and encodes Adh alone, the other is dicistronic and includes the open reading frames of both Adh and Adhr. The dicistronic transcript is found in polysomes and the Adhr protein product is detected by antibody staining. We present evidence that the accumulation of the dicistronic mRNA is controlled at the level of the 3' end processing. PMID:9155028

  16. Potential transcriptional regulatory regions exist upstream of the human ezrin gene promoter in esophageal carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Shuying Gao; Yanpeng Dai; Meijun Yin; Jing Ye; Gang Li; Jie Yu

    2011-01-01

    We previously demonstrated that the region -87/+ 134 of the human ezrin gene (VIL2) exhibited promoter activity in human esophageal carcinoma EC109 cells, and a further upstream region -1324/-890 positively regulated transcription.In this study, to identify the transcriptional regulatory regions upstream of the VIL2 promoter, we cloned VIL2 - 1541/- 706 segment containing the -1324/-890, and investigated its transcriptional regulatory properties via luciferase assays in transiently transfected cells.In EC109 cells, it was found that VIL2 -1541/-706 possessed promoter and enhancer activities.We also localized transcriptional regulatory regions by fusing 5′- or 3′-deletion segments of VIL2 -1541/-706 to a luciferase reporter.We found that there were three positive and one negative transcriptional regulatory regions ithin VIL2 -1541/-706 in EC109 cells.When these regions were separately located upstream of the luciferase gene without promoter, or located upstream of the VIL2 promoter or SV40 promoter directing the luciferase gene, only VIL2 -1297/-1186 exhibited considerable promoter and enhancer activities, which were lower than those of -1541/-706.In addition, transient expression of Sp1 increased ezrin expression and the transcriptional activation of VIL2 -1297/-1186.Other three regions,although exhibiting significantly positive or negative transcriptional regulation in deletion experiments, showed a weaker or absent regulation.These data suggested that more than one region upstream of the VIL2 promoter participated in VIL2 transcription, and the VIL2 -1297/-1186, probably as a key transcriptional regulatory region, regulated VIL2 transcription in company with other potential regulatory regions.

  17. A 5' splice site enhances the recruitment of basal transcription initiation factors in vivo

    DEFF Research Database (Denmark)

    Damgaard, Christian Kroun; Kahns, Søren; Lykke-Andersen, Søren;

    2008-01-01

    Transcription and pre-mRNA splicing are interdependent events. Although mechanisms governing the effects of transcription on splicing are becoming increasingly clear, the means by which splicing affects transcription remain elusive. Using cell lines stably expressing HIV-1 or β-globin mRNAs, harb...

  18. Identification and expression analysis of alternatively spliced new transcript isoform of Bax gene in mouse.

    Science.gov (United States)

    Husain, Mohammed Amir; Ishqi, Hassan Mubarak; Sarwar, Tarique; Rehman, Sayeed Ur; Tabish, Mohammad

    2017-07-20

    Bax, a pro-apoptotic member of Bcl-2 family regulates apoptosis through homodimerization/heterodimerization with Bcl-2. Bax-α is the only product of the Bax gene that has been extensively studied. Bax-α exists in inactive form and several conformational changes are required during apoptosis to activate it. Here, we have identified a novel transcript variant of Bax gene in mouse which contains alternatively spliced new first exon that is different from the first exon of previously reported transcript. Conceptual translation of new transcript encodes a protein (Bax-α1), having different N-terminus. The existence of the new transcript variant was confirmed by reverse transcriptase-PCR, semi-nested PCR using primers designed for the newly identified transcript variant. The identity of PCR product obtained after semi-nested PCR was confirmed by DNA sequencing. Relative expression of new transcript variant with respect to reported transcript was also studied with the help of real time PCR. The existence of new transcript variant was further supported by the presence of clusters of overlapping ESTs from the database. Bax-α1 possibly displays heterogeneous properties as predicted by post-translational modification analysis tools. The differences in post-translational modifications might play important roles in divergent function of the new isoform. The three dimensional structure was generated by homology modelling to visualize the differences at N termini of known and newly identified variant. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Transcriptional profiling of hexaploid wheat (Triticum aestivum L.) roots identifies novel, dehydration-responsive genes.

    Science.gov (United States)

    Mohammadi, Mohsen; Kav, Nat N V; Deyholos, Michael K

    2007-05-01

    We used a long-oligonucleotide microarray to identify transcripts that increased or decreased in abundance in roots of dehydration-tolerant hexaploid bread wheat, in response to withholding of water. We observed that the major classes of dehydration-responsive genes (e.g. osmoprotectants, compatible solutes, proteases, glycosyltransferases/hydrolases, signal transducers components, ion transporters) were generally similar to those observed previously in other species and osmotic stresses. More specifically, we highlighted increases in transcript expression for specific genes including those putatively related to the synthesis of asparagine, trehalose, oligopeptide transporters, metal-binding proteins, the gamma-aminobutyric acid (GABA) shunt and transcription factors. Conversely, we noted a decrease in transcript abundance for diverse classes of glutathione and sulphur-related enzymes, specific amino acids, as well as MATE-efflux carrier proteins. From these data, we identified a novel, dehydration-induced putative AP2/ERF transcription factor, which we predict to function as a transcriptional repressor. We also identified a dehydration-induced 'little protein' (LitP; predicted mass: 8 kDa) that is highly conserved across spermatophytes. Using qRT-PCR, we compared the expression patterns of selected genes between two related wheat genotypes that differed in their susceptibility to dehydration, and confirmed that these novel genes were highly inducible by water limitation in both genotypes, although the magnitude of induction differed.

  20. Identification of Novel Short C-Terminal Transcripts of Human SERPINA1 Gene

    Science.gov (United States)

    Matamala, Nerea; Aggarwal, Nupur; Iadarola, Paolo; Fumagalli, Marco; Gomez-Mariano, Gema; Lara, Beatriz; Martinez, Maria Teresa; Cuesta, Isabel; Stolk, Jan

    2017-01-01

    Human SERPINA1 gene is located on chromosome 14q31-32.3 and is organized into three (IA, IB, and IC) non-coding and four (II, III, IV, V) coding exons. This gene produces α1-antitrypsin (A1AT), a prototypical member of the serpin superfamily of proteins. We demonstrate that human peripheral blood leukocytes express not only a product corresponding to the transcript coding for the full-length A1AT protein but also two short transcripts (ST1C4 and ST1C5) of A1AT. In silico sequence analysis revealed that the last exon of the short transcripts contains an Open Reading Frame (ORF) and thus putatively can produce peptides. We found ST1C4 expression across different human tissues whereas ST1C5 was mainly restricted to leukocytes, specifically neutrophils. A high up-regulation (10-fold) of short transcripts was observed in isolated human blood neutrophils after activation with lipopolysaccharide. Parallel analyses by liquid chromatography-mass spectrometry identified peptides corresponding to C-terminal region of A1AT in supernatants of activated but not naïve neutrophils. Herein we report for the first time a tissue specific expression and regulation of short transcripts of SERPINA1 gene, and the presence of C-terminal peptides in supernatants from activated neutrophils, in vitro. This gives a novel insight into the studies on the transcription of SERPINA1 gene. PMID:28107454

  1. Comparative transcriptional analysis reveals differential gene expression between asymmetric and symmetric zygotic divisions in tobacco.

    Directory of Open Access Journals (Sweden)

    Tian-Xiang Hu

    Full Text Available Asymmetric cell divisions occur widely during many developmental processes in plants. In most angiosperms, the first zygotic cell division is asymmetric resulting in two daughter cells of unequal size and with distinct fates. However, the critical molecular mechanisms regulating this division remain unknown. Previously we showed that treatment of tobacco zygotes with beta-glucosyl Yariv (βGlcY could dramatically alter the first zygotic asymmetric division to produce symmetric two-celled proembryos. In the present study, we isolated zygotes and two-celled asymmetric proembryos in vivo by micromanipulation, and obtained symmetric, two-celled proembryos by in vitro cell cultures. Using suppression-subtractive hybridization (SSH and macroarray analysis differential gene expression between the zygote and the asymmetric and symmetric two-celled proembryos was investigated. After sequencing of the differentially expressed clones, a total of 1610 EST clones representing 685 non-redundant transcripts were obtained. Gene ontology (GO term analysis revealed that these transcripts include those involved in physiological processes such as response to stimulus, regulation of gene expression, and localization and formation of anatomical structures. A homology search against known genes from Arabidopsis indicated that some of the above transcripts are involved in asymmetric cell division and embryogenesis. Quantitative real-time PCR confirmed the up- or down-regulation of the selected candidate transcripts during zygotic division. A few of these transcripts were expressed exclusively in the zygote, or in either type of the two-celled proembryos. Expression analyses of select genes in different tissues and organs also revealed potential roles of these transcripts in fertilization, seed maturation and organ development. The putative roles of few of the identified transcripts in the regulation of zygotic division are discussed. Further functional work on these

  2. Transcription of interferon stimulated genes in response to porcine rubulavirus infection in vitro

    Directory of Open Access Journals (Sweden)

    María del Rosario Flores-Ocelotl

    2011-09-01

    Full Text Available Porcine rubulavirus (PoRV is an emerging virus causing meningo-encephalitis and reproductive failures in pigs. Little is known about the pathogenesis and immune evasion of this virus; therefore research on the mechanisms underlying tissue damage during infection is essential. To explore these mechanisms, the effect of PoRV on the transcription of interferon (IFN pathway members was analyzed in vitro by semi-quantitative RT-PCR. Ten TCID50 of PoRV stimulated transcription of IFNα, IFNβ, STAT1, STAT2, p48 and OAS genes in neuroblastoma cells, whereas infection with 100 TCID50 did not stimulate transcription levels more than non-infected cells. When the cells were primed with IFNα, infection with 1 TCDI50 of PoRV sufficed to stimulate the transcription of the same genes, but 10 and 100 TCID50 did not modify the transcription level of those genes as compared with non-infected and primed controls. MxA gene transcription was observed only when the cells were primed with IFNα and stimulated with 10 TCID50, whereas 100 TCID50 of PoRV did not modify the MxA transcription level as compared to non-infected and primed cells. Our results show that PoRV replication at low titers stimulates the expression of IFN-responsive genes in neuroblastoma cells, and suggest that replication of PoRV at higher titers inhibits the transcription of several members of the IFN pathway. These findings may contribute to the understanding of the pathogenesis of PoRV.

  3. Silencing of human T-cell leukemia virus type I gene transcription by epigenetic mechanisms

    Directory of Open Access Journals (Sweden)

    Mueller Nancy

    2005-10-01

    Full Text Available Abstract Background Human T-cell leukemia virus type I (HTLV-I causes adult T-cell leukemia (ATL after a long latent period. Among accessory genes encoded by HTLV-I, the tax gene is thought to play a central role in oncogenesis. However, Tax expression is disrupted by several mechanims including genetic changes of the tax gene, deletion/hypermethylation of 5'-LTR. To clarify the role of epigenetic changes, we analyzed DNA methylation and histone modification in the whole HTLV-I provirus genome. Results The gag, pol and env genes of HTLV-I provirus were more methylated than pX region, whereas methylation of 5'-LTR was variable and 3'-LTR was not methylated at all. In ATL cell lines, complete DNA methylation of 5'-LTR was associated with transcriptional silencing of viral genes. HTLV-I provirus was more methylated in primary ATL cells than in carrier state, indicating the association with disease progression. In seroconvertors, DNA methylation was already observed in internal sequences of provirus just after seroconversion. Taken together, it is speculated that DNA methylation first occurs in the gag, pol and env regions and then extends in the 5' and 3' directions in vivo, and when 5'-LTR becomes methylated, viral transcription is silenced. Analysis of histone modification in the HTLV-I provirus showed that the methylated provirus was associated with hypoacetylation. However, the tax gene transcript could not be detected in fresh ATL cells regardless of hyperacetylated histone H3 in 5'-LTR. The transcription rapidly recovered after in vitro culture in such ATL cells. Conclusion These results showed that epigenetic changes of provirus facilitated ATL cells to evade host immune system by suppressing viral gene transcription. In addition, this study shows the presence of another reversible mechanism that suppresses the tax gene transcription without DNA methylation and hypoacetylated histone.

  4. Global irradiation effects, stem cell genes and rare transcripts in the planarian transcriptome.

    Science.gov (United States)

    Galloni, Mireille

    2012-01-01

    Stem cells are the closest relatives of the totipotent primordial cell, which is able to spawn millions of daughter cells and hundreds of cell types in multicellular organisms. Stem cells are involved in tissue homeostasis and regeneration, and may play a major role in cancer development. Among animals, planarians host a model stem cell type, called the neoblast, which essentially confers immortality. Gaining insights into the global transcriptional landscape of these exceptional cells takes an unprecedented turn with the advent of Next Generation Sequencing methods. Two Digital Gene Expression transcriptomes of Schmidtea mediterranea planarians, with or without neoblasts lost through irradiation, were produced and analyzed. Twenty one bp NlaIII tags were mapped to transcripts in the Schmidtea and Dugesia taxids. Differential representation of tags in normal versus irradiated animals reflects differential gene expression. Canonical and non-canonical tags were included in the analysis, and comparative studies with human orthologs were conducted. Transcripts fell into 3 categories: invariant (including housekeeping genes), absent in irradiated animals (potential neoblast-specific genes, IRDOWN) and induced in irradiated animals (potential cellular stress response, IRUP). Different mRNA variants and gene family members were recovered. In the IR-DOWN class, almost all of the neoblast-specific genes previously described were found. In irradiated animals, a larger number of genes were induced rather than lost. A significant fraction of IRUP genes behaved as if transcript versions of different lengths were produced. Several novel potential neoblast-specific genes have been identified that varied in relative abundance, including highly conserved as well as novel proteins without predicted orthologs. Evidence for a large body of antisense transcripts, for example regulated antisense for the Smed-piwil1 gene, and evidence for RNA shortening in irradiated animals is presented

  5. Reverse-engineering transcriptional modules from gene expression data

    OpenAIRE

    Michoel, Tom; De Smet, Riet; Joshi, Anagha; Marchal, Kathleen; de Peer, Yves Van

    2009-01-01

    "Module networks" are a framework to learn gene regulatory networks from expression data using a probabilistic model in which coregulated genes share the same parameters and conditional distributions. We present a method to infer ensembles of such networks and an averaging procedure to extract the statistically most significant modules and their regulators. We show that the inferred probabilistic models extend beyond the data set used to learn the models.

  6. Medusa structure of the gene regulatory network: dominance of transcription factors in cancer subtype classification.

    Science.gov (United States)

    Guo, Yuchun; Feng, Ying; Trivedi, Niraj S; Huang, Sui

    2011-05-01

    Gene expression profiles consisting of ten thousands of transcripts are used for clustering of tissue, such as tumors, into subtypes, often without considering the underlying reason that the distinct patterns of expression arise because of constraints in the realization of gene expression profiles imposed by the gene regulatory network. The topology of this network has been suggested to consist of a regulatory core of genes represented most prominently by transcription factors (TFs) and microRNAs, that influence the expression of other genes, and of a periphery of 'enslaved' effector genes that are regulated but not regulating. This 'medusa' architecture implies that the core genes are much stronger determinants of the realized gene expression profiles. To test this hypothesis, we examined the clustering of gene expression profiles into known tumor types to quantitatively demonstrate that TFs, and even more pronounced, microRNAs, are much stronger discriminators of tumor type specific gene expression patterns than a same number of randomly selected or metabolic genes. These findings lend support to the hypothesis of a medusa architecture and of the canalizing nature of regulation by microRNAs. They also reveal the degree of freedom for the expression of peripheral genes that are less stringently associated with a tissue type specific global gene expression profile.

  7. [Transcriptional analysis of the Grp gene, a genomic homolog of the retrotransposon gypsy gag gene, in Drosophila melanogaster].

    Science.gov (United States)

    Nefedova, L N; Kuz'min, I V; Burmistrova, D A; Rezazadekh, S; Kim, A I

    2011-08-01

    In the present work, we studied the Grp gene (CG4680, Gag related protein) expression at the transcriptional level. It was found that at the embryonic and larval stages of D. melanogaster development the Grp expression proceeds at a low level, but it significantly increases at the adult stage. Adult individuals display a tissue-specific expression: an eleveated level of transcription is observed in the gut tissues, but not in the chitin carcass, head, and gonads. Since the gut may potentially be a primary barrier for the penetration of a viral infection, we conducted a comparative analysis of Grp gene transcription in D. melanogaster strains differing in the presence of active copies of the gypsy errantivirus and in the status of the flamenco gene controlling sensitivity to errantiviral infections. No noticeable differences in the level of Grp gene transcription were revealed. Thus, the Grp gene is not a pseudogene, but it is a functional gene of the D. melanogaster genome whose role remains to be elucidated.

  8. Synergistic enhansons located within an acute phase responsive enhancer modulate glucocorticoid induction of angiotensinogen gene transcription.

    Science.gov (United States)

    Brasier, A R; Ron, D; Tate, J E; Habener, J F

    1990-12-01

    The hepatic transcription of the angiotensinogen gene is regulated by both glucocorticoids and cytokines generated as products of the acute phase reaction. We have identified a multimodular enhancer in the 5'-flanking region of the rat angiotensinogen gene that mediates these responses and consists of an acute phase response element (APRE) flanked on both sides by adjacent glucocorticoid response element consensus motifs (GREs). Induction of transcription by the cytokine interleukin-1 (IL-1) is glucocorticoid dependent and mediated through the APRE. The APRE binds in a mutually exclusive manner a cytokine/phorbol ester-inducible protein (BPi), indistinguishable from nuclear factor kB, and a family of constitutive liver proteins (BPcs) related to the heat-stable transcription factor C/EBP. Using mutated 5'-flanking sequences of the angiotensinogen gene fused to a firefly luciferase reporter gene transfected into hepatoblastoma (HepG2) cells, we have mapped enhanson sequences required for the transcriptional response to glucocorticoids. Two functionally distinct GREs are identified by deletion and site-directed mutagenesis, both of which mediate glucocorticoid-stimulated transcription in vivo. Glucocorticoid-induced transcription mediated by the angiotensinogen gene enhancer is, furthermore, dependent on the occupancy of the APRE by either the BPi or a member of the BPc family because a mutant APRE that binds neither BPi nor BPc exhibits an attenuated glucocorticoid responsiveness. Mutant APREs that permit exclusive binding of either BPi or BPc synergistically transmit the glucocorticoid response mediated by one or the other of the adjacent GREs. Thus, the induction of angiotensinogen gene transcription involves interaction between the glucocorticoid receptor and either one of the APRE-binding proteins: either the cytokine-inducible NFkB or the constitutive family of C/EBP-like proteins, bound to adjacent enhansons in a mutually synergistic enhancer complex.

  9. Strategies for psbA gene expression in cyanobacteria, green algae and higher plants: from transcription to PSII repair.

    Science.gov (United States)

    Mulo, Paula; Sakurai, Isamu; Aro, Eva-Mari

    2012-01-01

    The Photosystem (PS) II of cyanobacteria, green algae and higher plants is prone to light-induced inactivation, the D1 protein being the primary target of such damage. As a consequence, the D1 protein, encoded by the psbA gene, is degraded and re-synthesized in a multistep process called PSII repair cycle. In cyanobacteria, a small gene family codes for the various, functionally distinct D1 isoforms. In these organisms, the regulation of the psbA gene expression occurs mainly at the level of transcription, but the expression is fine-tuned by regulation of translation elongation. In plants and green algae, the D1 protein is encoded by a single psbA gene located in the chloroplast genome. In chloroplasts of Chlamydomonas reinhardtii the psbA gene expression is strongly regulated by mRNA processing, and particularly at the level of translation initiation. In chloroplasts of higher plants, translation elongation is the prevalent mechanism for regulation of the psbA gene expression. The pre-existing pool of psbA transcripts forms translation initiation complexes in plant chloroplasts even in darkness, while the D1 synthesis can be completed only in the light. Replacement of damaged D1 protein requires also the assistance by a number of auxiliary proteins, which are encoded by the nuclear genome in green algae and higher plants. Nevertheless, many of these chaperones are conserved between prokaryotes and eukaryotes. Here, we describe the specific features and fundamental differences of the psbA gene expression and the regeneration of the PSII reaction center protein D1 in cyanobacteria, green algae and higher plants. This article is part of a Special Issue entitled Photosystem II.

  10. DNA context represents transcription regulation of the gene in mouse embryonic stem cells

    Science.gov (United States)

    Ha, Misook; Hong, Soondo

    2016-04-01

    Understanding gene regulatory information in DNA remains a significant challenge in biomedical research. This study presents a computational approach to infer gene regulatory programs from primary DNA sequences. Using DNA around transcription start sites as attributes, our model predicts gene regulation in the gene. We find that H3K27ac around TSS is an informative descriptor of the transcription program in mouse embryonic stem cells. We build a computational model inferring the cell-type-specific H3K27ac signatures in the DNA around TSS. A comparison of embryonic stem cell and liver cell-specific H3K27ac signatures in DNA shows that the H3K27ac signatures in DNA around TSS efficiently distinguish the cell-type specific H3K27ac peaks and the gene regulation. The arrangement of the H3K27ac signatures inferred from the DNA represents the transcription regulation of the gene in mESC. We show that the DNA around transcription start sites is associated with the gene regulatory program by specific interaction with H3K27ac.

  11. VIP gene transcription is regulated by far upstream enhancer and repressor elements.

    Science.gov (United States)

    Liu, D; Krajniak, K; Chun, D; Sena, M; Casillas, R; Lelièvre, V; Nguyen, T; Bravo, D; Colburn, S; Waschek, J A

    2001-06-01

    SK-N-SH human neuroblastoma subclones differ widely in basal and second messenger induction of the gene encoding the neuropeptide vasoactive intestinal peptide (VIP). These differences were recapitulated by a chimeric gene which consisted of 5.2 kb of the human VIP gene 5' flanking sequence fused to a reporter. Subsequent gene deletion experiments revealed several regulatory regions on the gene, including a 645-bp sequence located approximately 4.0 upstream from the transcription start site. Here we examined this upstream region in detail. Inhibitory sequences were found to be present on each end of the 645-bp fragment. When removed, basal transcription increased more than 50-fold. Subsequent deletion/mutation analysis showed that the 213-bp fragment contained at least two enhancer elements. One of these was localized to an AT-rich 42-bp sequence shown by others to bind Oct proteins in neuroblastoma cells, while the other corresponded to a composite AP-1/ets element. In addition to these enhancers, a 28-bp sequence on the 213-bp fragment with no apparent homology to known silencers inhibited transcription. The studies provide molecular details of a complex regulatory region on the VIP gene that is likely to be used to finely tune the level of gene transcription in vivo.

  12. Generation of gene disruptions by transcription activator-like effector nucleases (TALENs) in Xenopus tropicalis embryos

    OpenAIRE

    Lei, Yong; Guo, Xiaogang; Deng, Yi; Chen, Yonglong; Zhao, Hui

    2013-01-01

    Transcription activator-like effector nucleases (TALENs) are novel engineered DNA nucleases, and have been proven to be effective for gene specific targeting in various species. Recently we reported gene disruptions in Xenopus embryos by using TALENs. Here we summarize the protocol that is used in our studies for gene disruption. This protocol covers selection of TALEN targeting sites, TALEN assembly with a modified Golden Gate method, and injection of TALEN mRNAs into Xenopus tropicalis embr...

  13. p21 as a transcriptional co-repressor of S-phase and mitotic control genes.

    Directory of Open Access Journals (Sweden)

    Nuria Ferrándiz

    Full Text Available It has been previously described that p21 functions not only as a CDK inhibitor but also as a transcriptional co-repressor in some systems. To investigate the roles of p21 in transcriptional control, we studied the gene expression changes in two human cell systems. Using a human leukemia cell line (K562 with inducible p21 expression and human primary keratinocytes with adenoviral-mediated p21 expression, we carried out microarray-based gene expression profiling. We found that p21 rapidly and strongly repressed the mRNA levels of a number of genes involved in cell cycle and mitosis. One of the most strongly down-regulated genes was CCNE2 (cyclin E2 gene. Mutational analysis in K562 cells showed that the N-terminal region of p21 is required for repression of gene expression of CCNE2 and other genes. Chromatin immunoprecipitation assays indicated that p21 was bound to human CCNE2 and other p21-repressed genes gene in the vicinity of the transcription start site. Moreover, p21 repressed human CCNE2 promoter-luciferase constructs in K562 cells. Bioinformatic analysis revealed that the CDE motif is present in most of the promoters of the p21-regulated genes. Altogether, the results suggest that p21 exerts a repressive effect on a relevant number of genes controlling S phase and mitosis. Thus, p21 activity as inhibitor of cell cycle progression would be mediated not only by the inhibition of CDKs but also by the transcriptional down-regulation of key genes.

  14. Distinguishing the Transcription Regulation Patterns in Promoters of Human Genes with Different Function or Evolutionary Age

    KAUST Repository

    Alam, Tanvir

    2012-07-01

    Distinguishing transcription regulatory patterns of different gene groups is a common problem in various bioinformatics studies. In this work we developed a methodology to deal with such a problem based on machine learning techniques. We applied our method to two biologically important problems related to detecting a difference in transcription regulation of: a/ protein-coding and long non-coding RNAs (lncRNAs) in human, as well as b/ a difference between primate-specific and non-primate-specific long non-coding RNAs. Our method is capable to classify RNAs using various regulatory features of genes that transcribe into these RNAs, such as nucleotide frequencies, transcription factor binding sites, de novo sequence motifs, CpG islands, repetitive elements, histone modification marks, and others. Ten-fold cross-validation tests suggest that our model can distinguish protein-coding and non-coding RNAs with accuracy above 80%. Twenty-fold cross-validation tests suggest that our model can distinguish primate-specific from non-primate-specific promoters of lncRNAs with accuracy above 80%. Consequently, we can hypothesize that transcription of the groups of genes mentioned above are regulated by different mechanisms. Feature selection techniques allowed us to reduce the number of features significantly while keeping the accuracy around 80%. Consequently, we can conclude that selected features play significant role in transcription regulation of coding and non-coding genes, as well as primate-specific and non-primate-specific lncRNA genes.

  15. Gastrointestinal Fibroblasts Have Specialized, Diverse Transcriptional Phenotypes: A Comprehensive Gene Expression Analysis of Human Fibroblasts.

    Directory of Open Access Journals (Sweden)

    Youichi Higuchi

    Full Text Available Fibroblasts are the principal stromal cells that exist in whole organs and play vital roles in many biological processes. Although the functional diversity of fibroblasts has been estimated, a comprehensive analysis of fibroblasts from the whole body has not been performed and their transcriptional diversity has not been sufficiently explored. The aim of this study was to elucidate the transcriptional diversity of human fibroblasts within the whole body.Global gene expression analysis was performed on 63 human primary fibroblasts from 13 organs. Of these, 32 fibroblasts from gastrointestinal organs (gastrointestinal fibroblasts: GIFs were obtained from a pair of 2 anatomical sites: the submucosal layer (submucosal fibroblasts: SMFs and the subperitoneal layer (subperitoneal fibroblasts: SPFs. Using hierarchical clustering analysis, we elucidated identifiable subgroups of fibroblasts and analyzed the transcriptional character of each subgroup.In unsupervised clustering, 2 major clusters that separate GIFs and non-GIFs were observed. Organ- and anatomical site-dependent clusters within GIFs were also observed. The signature genes that discriminated GIFs from non-GIFs, SMFs from SPFs, and the fibroblasts of one organ from another organ consisted of genes associated with transcriptional regulation, signaling ligands, and extracellular matrix remodeling.GIFs are characteristic fibroblasts with specific gene expressions from transcriptional regulation, signaling ligands, and extracellular matrix remodeling related genes. In addition, the anatomical site- and organ-dependent diversity of GIFs was also discovered. These features of GIFs contribute to their specific physiological function and homeostatic maintenance, and create a functional diversity of the gastrointestinal tract.

  16. Constitutive Fas ligand gene transcription in Sertoli cells is regulated by Sp1.

    Science.gov (United States)

    McClure, R F; Heppelmann, C J; Paya, C V

    1999-03-19

    The transcriptional regulation of the Fas ligand (FasL) gene in Sertoli cells was investigated, as these cells are known to have constitutive expression of FasL and hence maintain an "immune privileged" environment within the testicle. Using the Sertoli cell line TM4, it was demonstrated that a gene segment of the 5'-untranslated region located between -318 and -237 relative to the translation start site is required for constitutive FasL transcription. Deletion and mutation analysis demonstrate that an Sp1 rather than an NFAT or NFKB-like DNA binding motif present within this region is necessary and sufficient for constitutive FasL gene transcription. Nuclear extracts of Sertoli cells contain Sp1 and Sp3 that specifically binds to the Sp1 motif present in the FasL gene, and overexpression of Sp1 but not Sp3 leads to a further increase of transcription from the FasL promoter-enhancer region. The data presented demonstrates that constitutive FasL gene transcription in Sertoli cells is regulated by Sp1. In addition, it is shown that basal FasL expression in Jurkat T cells is also controlled by Sp1 and this is in contrast to induced FasL expression, which is NFAT-dependent.

  17. Applications of Recombinant Dna Technology in Gastrointestinal Medicine and Hepatology: Basic Paradigms of Molecular Cell Biology. Part B: Eukaryotic Gene Transcription and Post-Transcripional Rna Processing

    Directory of Open Access Journals (Sweden)

    Gary E Wild

    2000-01-01

    Full Text Available The transcription of DNA into RNA is the primary level at which gene expression is controlled in eukaryotic cells. Eukaryotic gene transcription  involves several different RNA polymerases that interact with a host of transcription factors to initiate transcription. Genes that encode proteins are transcribed into messenger RNA (mRNA by RNA polymerase II. Ribosomal RNAs (rRNAs and transfer RNAs (tRNAs are transcribed by RNA polymerase I and III, respectively.  The production of each mRNA in human cells involves complex interactions of proteins (ie, trans-acting factors with specific sequences on the DNA (ie, cis-acting elements. Cis-acting elements are short base sequences adjacent to or within a particular gene. While the regulation of transcription is a pivotal step in the control of gene expression, a variety of molecular events, collectively known as ’RNA processing’  add an additional level of control of gene expression in eukaryotic cells.

  18. Gene cassette transcription in a large integron-associated array

    Directory of Open Access Journals (Sweden)

    Michael Carolyn A

    2010-09-01

    Full Text Available Abstract Background The integron/gene cassette system is a diverse and effective adaptive resource for prokaryotes. Short cassette arrays, with less than 10 cassettes adjacent to an integron, provide this resource through the expression of cassette-associated genes by an integron-borne promoter. However, the advantage provided by large arrays containing hundreds of cassettes is less obvious. In this work, using the 116-cassette array of Vibrio sp. DAT722 as a model, we investigated the theory that the majority of genes contained within large cassette arrays are widely expressed by intra-array promoters in addition to the integron-borne promoter. Results We demonstrated that the majority of the cassette-associated genes in the subject array were expressed. We further showed that cassette expression was conditional and that the conditionality varied across the array. We finally showed that this expression was mediated by a diversity of cassette-borne promoters within the array capable of responding to environmental stressors. Conclusions Widespread expression within large gene cassette arrays could provide an adaptive advantage to the host in proportion to the size of the array. Our findings explained the existence and maintenance of large cassette arrays within many prokaryotes. Further, we suggested that repeated rearrangement of cassettes containing genes and/or promoters within large arrays could result in the assembly of operon-like groups of co-expressed cassettes within an array. These findings add to our understanding of the adaptive repertoire of the integron/gene cassette system in prokaryotes and consequently, the evolutionary impact of this system.

  19. Gene expression of herpes simplex virus. II. Uv radiological analysis of viral transcription units

    Energy Technology Data Exchange (ETDEWEB)

    Millette, R. L.; Klaiber, R.

    1980-06-01

    The transcriptional organization of the genome of herpes simplex virus type 1 was analyzed by measuring the sensitivity of viral polypeptide synthesis to uv irradiation of the infecting virus. Herpes simplex virus type 1 was irradiated with various doses of uv light and used to infect xeroderma pigmentosum fibroblasts. Immediate early transcription units were analyzed by having cycloheximide present throughout the period of infection, removing the drug at 8 h postinfection, and pulse-labeling proteins with (355)methionine. Delayed early transcription units were analyzed in similar studies by having 9-beta-D-arabinofuranosyladenine present during the experiment to block replication of the input irradiated genome. The results indicate that none of the immediate early genes analyzed can be cotranscribed, whereas some of the delayed early genes might be cotranscribed. No evidence was found for the existence of large, multigene transcription units.

  20. Basic Mechanisms in RNA Polymerase I Transcription of the Ribosomal RNA Genes

    Science.gov (United States)

    Goodfellow, Sarah J.; Zomerdijk, Joost C. B. M.

    2013-01-01

    RNA Polymerase (Pol) I produces ribosomal (r)RNA, an essential component of the cellular protein synthetic machinery that drives cell growth, underlying many fundamental cellular processes. Extensive research into the mechanisms governing transcription by Pol I has revealed an intricate set of control mechanisms impinging upon rRNA production. Pol I-specific transcription factors guide Pol I to the rDNA promoter and contribute to multiple rounds of transcription initiation, promoter escape, elongation and termination. In addition, many accessory factors are now known to assist at each stage of this transcription cycle, some of which allow the integration of transcriptional activity with metabolic demands. The organisation and accessibility of rDNA chromatin also impinge upon Pol I output, and complex mechanisms ensure the appropriate maintenance of the epigenetic state of the nucleolar genome and its effective transcription by Pol I. The following review presents our current understanding of the components of the Pol I transcription machinery, their functions and regulation by associated factors, and the mechanisms operating to ensure the proper transcription of rDNA chromatin. The importance of such stringent control is demonstrated by the fact that deregulated Pol I transcription is a feature of cancer and other disorders characterised by abnormal translational capacity. PMID:23150253

  1. Poised transcription factories prime silent uPA gene prior to activation.

    Directory of Open Access Journals (Sweden)

    Carmelo Ferrai

    2010-01-01

    Full Text Available The position of genes in the interphase nucleus and their association with functional landmarks correlate with active and/or silent states of expression. Gene activation can induce chromatin looping from chromosome territories (CTs and is thought to require de novo association with transcription factories. We identify two types of factory: "poised transcription factories," containing RNA polymerase II phosphorylated on Ser5, but not Ser2, residues, which differ from "active factories" associated with phosphorylation on both residues. Using the urokinase-type plasminogen activator (uPA gene as a model system, we find that this inducible gene is predominantly associated with poised (S5p(+S2p(- factories prior to activation and localized at the CT interior. Shortly after induction, the uPA locus is found associated with active (S5p(+S2p(+ factories and loops out from its CT. However, the levels of gene association with poised or active transcription factories, before and after activation, are independent of locus positioning relative to its CT. RNA-FISH analyses show that, after activation, the uPA gene is transcribed with the same frequency at each CT position. Unexpectedly, prior to activation, the uPA loci internal to the CT are seldom transcriptionally active, while the smaller number of uPA loci found outside their CT are transcribed as frequently as after induction. The association of inducible genes with poised transcription factories prior to activation is likely to contribute to the rapid and robust induction of gene expression in response to external stimuli, whereas gene positioning at the CT interior may be important to reinforce silencing mechanisms prior to induction.

  2. A Caenorhabditis motif compendium for studying transcriptional gene regulation

    Science.gov (United States)

    Dieterich, Christoph; Sommer, Ralf J

    2008-01-01

    Background Controlling gene expression is fundamental to biological complexity. The nematode Caenorhabditis elegans is an important model for studying principles of gene regulation in multi-cellular organisms. A comprehensive parts list of putative regulatory motifs was yet missing for this model system. In this study, we compile a set of putative regulatory motifs by combining evidence from conservation and expression data. Description We present an unbiased comparative approach to a regulatory motif compendium for Caenorhabditis species. This involves the assembly of a new nematode genome, whole genome alignments and assessment of conserved k-mers counts. Candidate motifs are selected from a set of 9,500 randomly picked genes by three different motif discovery strategies. Motif candidates have to pass a conservation enrichment filter. Motif degeneracy and length are optimized. Retained motif descriptions are evaluated by expression data using a non-parametric test, which assesses expression changes due to the presence/absence of individual motifs. Finally, we also provide condition-specific motif ensembles by conditional tree analysis. Conclusion The nematode genomes align surprisingly well despite high neutral substitution rates. Our pipeline delivers motif sets by three alternative strategies. Each set contains less than 400 motifs, which are significantly conserved and correlated with 214 out of 270 tested gene expression conditions. This motif compendium is an entry point to comprehensive studies on nematode gene regulation. The website: http://corg.eb.tuebingen.mpg.de/CMC has extensive query capabilities, supplements this article and supports the experimental list. PMID:18215260

  3. Reliable transfer of transcriptional gene regulatory networks between taxonomically related organisms

    Directory of Open Access Journals (Sweden)

    Tauch Andreas

    2009-01-01

    Full Text Available Abstract Background Transcriptional regulation of gene activity is essential for any living organism. Transcription factors therefore recognize specific binding sites within the DNA to regulate the expression of particular target genes. The genome-scale reconstruction of the emerging regulatory networks is important for biotechnology and human medicine but cost-intensive, time-consuming, and impossible to perform for any species separately. By using bioinformatics methods one can partially transfer networks from well-studied model organisms to closely related species. However, the prediction quality is limited by the low level of evolutionary conservation of the transcription factor binding sites, even within organisms of the same genus. Results Here we present an integrated bioinformatics workflow that assures the reliability of transferred gene regulatory networks. Our approach combines three methods that can be applied on a large-scale: re-assessment of annotated binding sites, subsequent binding site prediction, and homology detection. A gene regulatory interaction is considered to be conserved if (1 the transcription factor, (2 the adjusted binding site, and (3 the target gene are conserved. The power of the approach is demonstrated by transferring gene regulations from the model organism Corynebacterium glutamicum to the human pathogens C. diphtheriae, C. jeikeium, and the biotechnologically relevant C. efficiens. For these three organisms we identified reliable transcriptional regulations for ~40% of the common transcription factors, compared to ~5% for which knowledge was available before. Conclusion Our results suggest that trustworthy genome-scale transfer of gene regulatory networks between organisms is feasible in general but still limited by the level of evolutionary conservation.

  4. Transcript Profile of Flowering Regulatory Genes in VcFT-Overexpressing Blueberry Plants.

    Directory of Open Access Journals (Sweden)

    Aaron E Walworth

    Full Text Available In order to identify genetic components in flowering pathways of highbush blueberry (Vaccinium corymbosum L., a transcriptome reference composed of 254,396 transcripts and 179,853 gene contigs was developed by assembly of 72.7 million reads using Trinity. Using this transcriptome reference and a query of flowering pathway genes of herbaceous plants, we identified potential flowering pathway genes/transcripts of blueberry. Transcriptome analysis of flowering pathway genes was then conducted on leaf tissue samples of transgenic blueberry cv. Aurora ('VcFT-Aurora', which overexpresses a blueberry FLOWERING LOCUS T-like gene (VcFT. Sixty-one blueberry transcripts of 40 genes showed high similarities to 33 known flowering-related genes of herbaceous plants, of which 17 down-regulated and 16 up-regulated genes were identified in 'VcFT-Aurora'. All down-regulated genes encoded transcription factors/enzymes upstream in the signaling pathway containing VcFT. A blueberry CONSTANS-LIKE 5-like (VcCOL5 gene was down-regulated and associated with five other differentially expressed (DE genes in the photoperiod-mediated flowering pathway. Three down-regulated genes, i.e., a MADS-AFFECTING FLOWERING 2-like gene (VcMAF2, a MADS-AFFECTING FLOWERING 5-like gene (VcMAF5, and a VERNALIZATION1-like gene (VcVRN1, may function as integrators in place of FLOWERING LOCUS C (FLC in the vernalization pathway. Because no CONSTAN1-like or FLOWERING LOCUS C-like genes were found in blueberry, VcCOL5 and VcMAF2/VcMAF5 or VRN1 might be the major integrator(s in the photoperiod- and vernalization-mediated flowering pathway, respectively. The major down-stream genes of VcFT, i.e., SUPPRESSOR of Overexpression of Constans 1-like (VcSOC1, LEAFY-like (VcLFY, APETALA1-like (VcAP1, CAULIFLOWER 1-like (VcCAL1, and FRUITFULL-like (VcFUL genes were present and showed high similarity to their orthologues in herbaceous plants. Moreover, overexpression of VcFT promoted expression of all of

  5. Transcript Profile of Flowering Regulatory Genes in VcFT-Overexpressing Blueberry Plants.

    Science.gov (United States)

    Walworth, Aaron E; Chai, Benli; Song, Guo-Qing

    2016-01-01

    In order to identify genetic components in flowering pathways of highbush blueberry (Vaccinium corymbosum L.), a transcriptome reference composed of 254,396 transcripts and 179,853 gene contigs was developed by assembly of 72.7 million reads using Trinity. Using this transcriptome reference and a query of flowering pathway genes of herbaceous plants, we identified potential flowering pathway genes/transcripts of blueberry. Transcriptome analysis of flowering pathway genes was then conducted on leaf tissue samples of transgenic blueberry cv. Aurora ('VcFT-Aurora'), which overexpresses a blueberry FLOWERING LOCUS T-like gene (VcFT). Sixty-one blueberry transcripts of 40 genes showed high similarities to 33 known flowering-related genes of herbaceous plants, of which 17 down-regulated and 16 up-regulated genes were identified in 'VcFT-Aurora'. All down-regulated genes encoded transcription factors/enzymes upstream in the signaling pathway containing VcFT. A blueberry CONSTANS-LIKE 5-like (VcCOL5) gene was down-regulated and associated with five other differentially expressed (DE) genes in the photoperiod-mediated flowering pathway. Three down-regulated genes, i.e., a MADS-AFFECTING FLOWERING 2-like gene (VcMAF2), a MADS-AFFECTING FLOWERING 5-like gene (VcMAF5), and a VERNALIZATION1-like gene (VcVRN1), may function as integrators in place of FLOWERING LOCUS C (FLC) in the vernalization pathway. Because no CONSTAN1-like or FLOWERING LOCUS C-like genes were found in blueberry, VcCOL5 and VcMAF2/VcMAF5 or VRN1 might be the major integrator(s) in the photoperiod- and vernalization-mediated flowering pathway, respectively. The major down-stream genes of VcFT, i.e., SUPPRESSOR of Overexpression of Constans 1-like (VcSOC1), LEAFY-like (VcLFY), APETALA1-like (VcAP1), CAULIFLOWER 1-like (VcCAL1), and FRUITFULL-like (VcFUL) genes were present and showed high similarity to their orthologues in herbaceous plants. Moreover, overexpression of VcFT promoted expression of all of these

  6. Structure and cell-specific expression of a cloned human retinol binding protein gene: the 5'-flanking region contains hepatoma specific transcriptional signals.

    Science.gov (United States)

    D'Onofrio, C; Colantuoni, V; Cortese, R

    1985-08-01

    Human plasma retinol binding protein (RBP) is coded by a single gene and is specifically synthesized in the liver. We have characterized a lambda clone, from a human DNA library, carrying the gene coding for plasma RBP. Southern blot analysis and DNA sequencing show that the gene is composed of six exons and five introns. Primer elongation and S1 mapping experiments allowed the definition of the initiation of transcription and the identification of the putative promoter. The 5'-flanking region of the RBP gene was fused upstream to the coding sequence of the bacterial enzyme chloramphenicol acetyl transferase (CAT): the chimeric gene was introduced, by calcium phosphate precipitation, into the human hepatoma cell line Hep G2 and into HeLa cells. Efficient expression of CAT was obtained only in Hep G2. Primer elongation analysis of the RNA extracted from transfected Hep G2 showed that initiation of transcription of the transfected chimeric gene occurs at a position identical to that of the natural gene. Transcriptional analysis of Bal31 deletions from the 3' end of the RBP 5'-flanking DNA allowed the identification of the RBP gene promoter.

  7. Actin and nuclear myosin Ⅰ are associated with RNAP Ⅱ and function in gene transcription

    Institute of Scientific and Technical Information of China (English)

    ZHU XiaoJuan; HUANG BaiQu; WANG XingZhi; HAO Shui; ZENG XianLu

    2007-01-01

    The presence of actin in the nucleus as well as its functions in various nuclear processes has been made clear in the past few years. Actin is known to be a part of chromatin-remodeling complexes BAF,which are required for maximal ATPase activity of the Brg1 component of the BAF complex. Moreover,the essential roles of acfin in transcription mediated by RNA polymerases Ⅰ, Ⅱ and Ⅲ have been demonstrated recently. On the other hand, a myosin Ⅰ isoform, which contains a unique NH2-terminal extension for nucleus localization, has been specifically localized in nucleus. As is well known, myosin Ⅰis an actin-binding protein and plays an important role in various cellular activities. Though actin and nuclear myosin Ⅰ (NM Ⅰ) have been implicated to play distinct roles in gene expression, there has been no evidence for the actin-myosin interaction that might be involved in gene transcription mediated by RNA polymerase Ⅱ (RNAP Ⅱ). Here we show evidence that both actin and NM Ⅰ are associated with RNAP Ⅱ in nucleus by using co-localization and co-IP assays, and they may act together on gene transcription.The antibodies against β-actin or NM Ⅰ can block RNA synthesis in a eukaryotic in vitro transcription system with template DNA comprising the promoter and the coding region of human autocrine motility factor receptor (hAMFR) gene; the antibodies pre-adsorbed with purified actin and NM Ⅰ have no effect in transcriptional inhibition, indicating that the inhibition of transcription by anti-actin and anti-NM Ⅰ is specific. These results suggest a direct involvement of actin-myosin complexes in regulating transcription. It also implicates that actin and NM Ⅰ may co-exist in a same complex with RNAP Ⅱ and the interaction of RNAP Ⅱ with actin and NM Ⅰ functions in the RNAP Ⅱ-mediated transcription.

  8. Computational Investigations on Polymerase Actions in Gene Transcription and Replication Combining Physical Modeling and Atomistic Simulations

    OpenAIRE

    Yu, Jin

    2015-01-01

    Polymerases are protein enzymes that move along nucleic acid chains and catalyze template-based polymerization reactions during gene transcription and replication. The polymerases also substantially improve transcription or replication fidelity through the non-equilibrium enzymatic cycles. We briefly review computational efforts that have been made toward understanding mechano-chemical coupling and fidelity control mechanisms of the polymerase elongation. The polymerases are regarded as molec...

  9. Regulation of BDNF-mediated transcription of immediate early gene Arc by intracellular calcium and calmodulin

    OpenAIRE

    Zheng, Fei; Luo, Yongneng; Wang, Hongbing

    2009-01-01

    The induction of the immediate early gene Arc is strongly implicated in synaptic plasticity. Although the role of ERK was demonstrated, the regulation of Arc expression is largely unknown. In this study, we investigated the major signaling pathways underlying brain-derived neurotrophic factor (BDNF)-mediated Arc transcription in cultured cortical neurons. The BDNF-stimulated Arc transcription was solely regulated by the Ras-Raf-MAPK signaling through ERK, but not by phosphoinositide 3-kinase ...

  10. Hormonal regulation of gluconeogenic gene transcription in the liver

    Indian Academy of Sciences (India)

    Nirmala Yabaluri; Murali D Bashyam

    2010-09-01

    Glucose homeostasis in mammals is achieved by the actions of counterregulatory hormones, namely insulin, glucagon and glucocorticoids. Glucose levels in the circulation are regulated by the liver, the metabolic centre which produces glucose when it is scarce in the blood. This process is catalysed by two rate-limiting enzymes, phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) whose gene expression is regulated by hormones. Hormone response units (HRUs) present in the two genes integrate signals from various signalling pathways triggered by hormones. How such domains are arranged in the regulatory region of these two genes, how this complex regulation is accomplished and the latest advancements in the field are discussed in this review.

  11. Novel reference genes for quantifying transcriptional responses of Escherichia coli to protein overexpression by quantitative PCR

    Directory of Open Access Journals (Sweden)

    Zou Ruiyang

    2011-04-01

    Full Text Available Abstract Background Accurate interpretation of quantitative PCR (qPCR data requires normalization using constitutively expressed reference genes. Ribosomal RNA is often used as a reference gene for transcriptional studies in E. coli. However, the choice of reliable reference genes has not been systematically validated. The objective of this study is to identify a set of reliable reference genes for transcription analysis in recombinant protein over-expression studies in E. coli. Results In this study, the meta-analysis of 240 sets of single-channel Affymetrix microarray data representing over-expressions of 63 distinct recombinant proteins in various E. coli strains identified twenty candidate reference genes that were stably expressed across all conditions. The expression of these twenty genes and two commonly used reference genes, rrsA encoding ribosomal RNA 16S and ihfB, was quantified by qPCR in E. coli cells over-expressing four genes of the 1-Deoxy-D-Xylulose 5-Phosphate pathway. From these results, two independent statistical algorithms identified three novel reference genes cysG, hcaT, and idnT but not rrsA and ihfB as highly invariant in two E. coli strains, across different growth temperatures and induction conditions. Transcriptomic data normalized by the geometric average of these three genes demonstrated that genes of the lycopene synthetic pathway maintained steady expression upon enzyme overexpression. In contrast, the use of rrsA or ihfB as reference genes led to the mis-interpretation that lycopene pathway genes were regulated during enzyme over-expression. Conclusion This study identified cysG/hcaT/idnT to be reliable novel reference genes for transcription analysis in recombinant protein producing E. coli.

  12. Quantitative profiling of housekeeping and Epstein-Barr virus gene transcription in Burkitt lymphoma cell lines using an oligonucleotide microarray

    Directory of Open Access Journals (Sweden)

    Niggli Felix K

    2006-06-01

    Full Text Available Abstract Background The Epstein-Barr virus (EBV is associated with lymphoid malignancies, including Burkitt's lymphoma (BL, and can transform human B cells in vitro. EBV-harboring cell lines are widely used to investigate lymphocyte transformation and oncogenesis. Qualitative EBV gene expression has been extensively described, but knowledge of quantitative transcription is lacking. We hypothesized that transcription levels of EBNA1, the gene essential for EBV persistence within an infected cell, are similar in BL cell lines. Results To compare quantitative gene transcription in the BL cell lines Namalwa, Raji, Akata, Jijoye, and P3HR1, we developed an oligonucleotide microarray chip, including 17 housekeeping genes, six latent EBV genes (EBNA1, EBNA2, EBNA3A, EBNA3C, LMP1, LMP2, and four lytic EBV genes (BZLF1, BXLF2, BKRF2, BZLF2, and used the cell line B95.8 as a reference for EBV gene transcription. Quantitative polymerase chain reaction assays were used to validate microarray results. We found that transcription levels of housekeeping genes differed considerably among BL cell lines. Using a selection of housekeeping genes with similar quantitative transcription in the tested cell lines to normalize EBV gene transcription data, we showed that transcription levels of EBNA1 were quite similar in very different BL cell lines, in contrast to transcription levels of other EBV genes. As demonstrated with Akata cells, the chip allowed us to accurately measure EBV gene transcription changes triggered by treatment interventions. Conclusion Our results suggest uniform EBNA1 transcription levels in BL and that microarray profiling can reveal novel insights on quantitative EBV gene transcription and its impact on lymphocyte biology.

  13. The tumor suppressor gene hypermethylated in cancer 1 is transcriptionally regulated by E2F1

    DEFF Research Database (Denmark)

    Jenal, Mathias; Trinh, Emmanuelle; Britschgi, Christian;

    2009-01-01

    The Hypermethylated in Cancer 1 (HIC1) gene encodes a zinc finger transcriptional repressor that cooperates with p53 to suppress cancer development. We and others recently showed that HIC1 is a transcriptional target of p53. To identify additional transcriptional regulators of HIC1, we screened...... to the HIC1 promoter was shown by chromatin immunoprecipitation assays in human TIG3 fibroblasts expressing tamoxifen-activated E2F1. In agreement, activation of E2F1 in TIG3-E2F1 cells markedly increased HIC1 expression. Interestingly, expression of E2F1 in the p53(-/-) hepatocellular carcinoma cell line...

  14. Transcriptional regulation of gene expression in human skeletal muscle during recovery from exercise.

    Science.gov (United States)

    Pilegaard, H; Ordway, G A; Saltin, B; Neufer, P D

    2000-10-01

    Exercise training elicits a number of adaptive changes in skeletal muscle that result in an improved metabolic efficiency. The molecular mechanisms mediating the cellular adaptations to exercise training in human skeletal muscle are unknown. To test the hypothesis that recovery from exercise is associated with transcriptional activation of specific genes, six untrained male subjects completed 60-90 min of exhaustive one-legged knee extensor exercise for five consecutive days. On day 5, nuclei were isolated from biopsies of the vastus lateralis muscle of the untrained and the trained leg before exercise and from the trained leg immediately after exercise and after 15 min, 1 h, 2 h, and 4 h of recovery. Transcriptional activity of the uncoupling protein 3 (UCP3), pyruvate dehydrogenase kinase 4 (PDK4), and heme oxygenase-1 (HO-1) genes (relative to beta-actin) increased by three- to sevenfold in response to exercise, peaking after 1-2 h of recovery. Increases in mRNA levels followed changes in transcription, peaking between 2 and 4 h after exercise. Lipoprotein lipase and carnitine pamitoyltransferase I gene transcription and mRNA levels showed similar but less dramatic induction patterns, with increases ranging from two- to threefold. In a separate study, a single 4-h bout of cycling exercise (n = 4) elicited from 5 to >20-fold increases in UCP3, PDK4, and HO-1 transcription, suggesting that activation of these genes may be related to the duration or intensity of exercise. These data demonstrate that exercise induces transient increases in transcription of metabolic genes in human skeletal muscle. Moreover, the findings suggest that the cumulative effects of transient increases in transcription during recovery from consecutive bouts of exercise may represent the underlying kinetic basis for the cellular adaptations associated with exercise training.

  15. Molecular cloning and regulation of expression of the genes for initiation factor 3 and two aminoacyl-tRNA synthetases.

    Science.gov (United States)

    Elseviers, D; Gallagher, P; Hoffman, A; Weinberg, B; Schwartz, I

    1982-10-01

    A 22-kilobase fragment of the Escherichia coli chromosome which contains the genes for translation initiation factor 3, phenylalanyl-tRNA synthetase, and threonyl-tRNA synthetase was cloned into plasmid pACYC184. The hybrid plasmid (designated pID1) complements a temperature-sensitive pheS lesion in E. coli NP37. pID1-transformed NP37 overproduce initiation factor 3 and phenylalanyl-tRNA synthetase. Gene expression from pID1 was studied in vitro in a coupled transcription-translation system and in minicells. The results suggest that the genes for initiation factor 3 and phenylalanyl- and threonyl-tRNA synthetase are regulated by different mechanisms.

  16. Transcriptional repression of the yeast CHA1 gene requires the chromatin-remodeling complex RSC

    DEFF Research Database (Denmark)

    Moreira, José Manuel Alfonso; Holmberg, S

    1999-01-01

    In eukaryotes, DNA is packaged into chromatin, a compact structure that must be disrupted when genes are transcribed by RNA polymerase II. For transcription to take place, chromatin is remodeled via nucleosome disruption or displacement, a fundamental transcriptional regulatory mechanism in eukar......In eukaryotes, DNA is packaged into chromatin, a compact structure that must be disrupted when genes are transcribed by RNA polymerase II. For transcription to take place, chromatin is remodeled via nucleosome disruption or displacement, a fundamental transcriptional regulatory mechanism...... in eukaryotic organisms. Here we show that the yeast chromatin-remodeling complex, RSC (remodels the structure of chromatin), isolated on the basis of homology to the SWI/SNF complex, is required for proper transcriptional regulation and nucleosome positioning in the highly inducible CHA1 promoter...... of the CHA1 promoter is disrupted, an architectural change normally only observed during transcriptional induction. In addition, deletion of the gene-specific activator Cha4p did not affect derepression of CHA1 in cells depleted for Swh3p. Thus, CHA1 constitutes a target for the RSC complex, and we propose...

  17. Patient mutation in AIRE disrupts P-TEFb binding and target gene transcription.

    Science.gov (United States)

    Žumer, Kristina; Plemenitaš, Ana; Saksela, Kalle; Peterlin, B Matija

    2011-10-01

    Autoimmune regulator (AIRE) is a transcription factor that induces the expression of a large subset of otherwise strictly tissue restricted antigens in medullary thymic epithelial cells, thereby enabling their presentation to developing T cells for negative selection. Mutations in AIRE lead to autoimmune-polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), a rare monogenetic disease. Although it has been reported that AIRE interacts with proteins involved in nuclear transport, DNA-damage response, chromatin remodeling, transcription and pre-mRNA-splicing, the precise mechanism of AIRE-induced tissue restricted antigen expression has remained elusive. In this study, we investigated an APECED patient mutation that causes the loss of the extreme C-terminus of AIRE and found that this mutant protein is transcriptionaly inactive. When tethered heterologously to DNA, this domain could stimulate transcription and splicing by itself. Moreover, the loss of this C-terminus disrupted interactions with the positive transcription elongation factor b (P-TEFb). Via P-TEFb, AIRE increased levels of RNA polymerase II on and enhanced pre-mRNA splicing of heterologous and endogenous target genes. Indeed, the inhibition of CDK9, the kinase subunit of P-TEFb, inhibited AIRE-induced pre-mRNA splicing of these genes. Thus, AIRE requires P-TEFb to activate transcription elongation and co-transcriptional processing of target genes.

  18. Expression pattern and transcriptional regulatory mechanism of noxa gene in grass carp (Ctenopharyngodon idella).

    Science.gov (United States)

    Pei, Yongyan; Lu, Xiaonan; He, Libo; Wang, Hao; Zhang, Aidi; Li, Yongming; Huang, Rong; Liao, Lanjie; Zhu, Zuoyan; Wang, Yaping

    2015-12-01

    Noxa, a pro-apoptotic protein, plays an important role in cell apoptosis. The researches about noxa gene were concentrated in mammalians, whereas the role and transcriptional regulatory mechanism of noxa in fish were still unclear. In this study, the expression pattern and transcriptional regulatory mechanism of noxa gene in grass carp were analyzed. Noxa was constitutively expressed in all the examined tissues but the relative expression level differed. After exposure to grass carp reovirus (GCRV), mRNA expression level of noxa was down-regulated at the early phase whereas up-regulated at the late phase of infection. Luciferase assays showed that the promoter region -867 ∼ +107 of noxa had high activity and the region -678 ∼ -603 was important in the response to GCRV infection. By deleting the predicted transcription factor binding sites, transcription factors FOXO1 and CEBPβ were found important for noxa in response to GCRV infection. Moreover, the noxa promoter was biotin-labeled and incubated with nuclear extracts from GCRV infected cells. Mass spectrometry analysis showed that transcription factors FOXO1 and CEBPβ were also enriched in the combined proteins. Therefore, the results suggested that transcription factors FOXO1 and CEBPβ may play an important role in the regulation of noxa. Our study would provide new insight into the transcriptional regulatory mechanism of noxa in teleost fish.

  19. ChrR positively regulates transcription of the Rhodobacter sphaeroides cytochrome c2 gene.

    Science.gov (United States)

    Schilke, B A; Donohue, T J

    1995-04-01

    Transcription of the Rhodobacter sphaeroides cytochrome c2 gene (cycA) is negatively regulated by both the presence of oxygen and intermediates in tetrapyrrole biosynthesis. A mutation responsible for uncoupling cycA transcription from tetrapyrrole availability was localized to a gene (chrR) that encodes a 357-amino-acid protein. Analysis of a defined chrR null mutation indicated that this protein positively regulated cycA transcription. From this and other results, it appeared that the positive action of ChrR on cycA transcription is blocked by altering the availability of either heme or some intermediate in tetrapyrrole biosynthesis. A single missense mutation which substitutes an Arg for a Cys at residue 182 of ChrR (C182R) was shown to be necessary and sufficient for the increased cycA transcription seen in the mutant strain Chr4. Thus, it appears that this C182R substitution generated an altered-function form of ChrR. In addition, by analyzing cycA transcription in delta ChrR strains, we showed that ChrR was not required for increased cycA transcription under anaerobic conditions. Instead, our results indicated that ChrR and the response regulator PrrA (J. M. Eraso and S. Kaplan, J. Bacteriol. 176:32-43, 1994) functioned independently at the upstream cycA promoter that is activated under anaerobic conditions.

  20. Integrating gene transcription-based biomarkers to understand desert tortoise and ecosystem health

    Science.gov (United States)

    Bowen, Lizabeth; Miles, A. Keith; Drake, Karla K.; Waters, Shannon C.; Esque, Todd C.; Nussear, Kenneth E.

    2015-01-01

    Tortoises are susceptible to a wide variety of environmental stressors, and the influence of human disturbances on health and survival of tortoises is difficult to detect. As an addition to current diagnostic methods for desert tortoises, we have developed the first leukocyte gene transcription biomarker panel for the desert tortoise (Gopherus agassizii), enhancing the ability to identify specific environmental conditions potentially linked to declining animal health. Blood leukocyte transcript profiles have the potential to identify physiologically stressed animals in lieu of clinical signs. For desert tortoises, the gene transcript profile included a combination of immune or detoxification response genes with the potential to be modified by biological or physical injury and consequently provide information on the type and magnitude of stressors present in the animal’s habitat. Blood from 64 wild adult tortoises at three sites in Clark County, NV, and San Bernardino, CA, and from 19 captive tortoises in Clark County, NV, was collected and evaluated for genes indicative of physiological status. Statistical analysis using a priori groupings indicated significant differences among groups for several genes, while multidimensional scaling and cluster analyses of transcriptionC T values indicated strong differentiation of a large cluster and multiple outlying individual tortoises or small clusters in multidimensional space. These analyses highlight the effectiveness of the