WorldWideScience

Sample records for gene therapy applications

  1. Gene Therapy and its applications in Dentistry

    Directory of Open Access Journals (Sweden)

    Sharma Lakhanpal Manisha

    2006-01-01

    Full Text Available This era of advanced technology is marked by progress in identifying and understanding the molecular and cellular cause of a disease. With the conventional methods of treatment failing to render satisfactory results, gene therapy is not only being used for the cure of inherited diseases but also the acquired ones. The broad spectrum of gene therapy includes its application in the treatment of oral cancer and precancerous conditions and lesions, treatment of salivary gland diseases, bone repair, autoimmune diseases, DNA vaccination, etc. The aim of this article is to throw light on the history, methodology, applications and future of gene therapy as it would change the nature and face of dentistry in the coming years.

  2. Applications of lipid nanoparticles in gene therapy.

    Science.gov (United States)

    Del Pozo-Rodríguez, Ana; Solinís, María Ángeles; Rodríguez-Gascón, Alicia

    2016-12-01

    Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) have been recognized, among the large number of non-viral vectors for gene transfection, as an effective and safety alternative to potentially treat both genetic and not genetic diseases. A key feature is the possibility to be designed to overcome the numerous challenges for successful gene delivery. Lipid nanoparticles (LNs) are able to overcome the main biological barriers for cell transfection, including degradation by nucleases, cell internalization intracellular trafficking, and selectively targeting to a specific cell type. Additionally, they present important advantages: from a safety point of view LNs are prepared with well tolerated components, and from a technological point of view, they can be easily produced at large-scale, can be subjected to sterilization and lyophilization, and have shown good storage stability. This review focuses on the potential of SLNs and NLCs for gene therapy, including the main advances in their application for the treatment of ocular diseases, infectious diseases, lysosomal storage disorders and cancer, and current research for their future clinical application. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Clinical applications of retinal gene therapy.

    Science.gov (United States)

    Lipinski, Daniel M; Thake, Miriam; MacLaren, Robert E

    2013-01-01

    Many currently incurable forms of blindness affecting the retina have a genetic etiology and several others, such as those resulting from retinal vascular disturbances, respond to repeated, potentially indefinite administration of molecular based treatments. The recent clinical advances in retinal gene therapy have shown that viral vectors can deliver genes safely to the retina and the promising initial results from a number of clinical trials suggest that certain diseases may potentially be treatable. Gene therapy provides a means of expressing proteins within directly transduced cells with far greater efficacy than might be achieved by traditional systemic pharmacological approaches. Recent developments have demonstrated how vector gene expression may be regulated and further improvements to vector design have limited side effects and improved safety profiles. These recent steps have been most significant in bringing gene therapy into the mainstream of ophthalmology. Nevertheless translating retinal gene therapy from animal research into clinical trials is still a lengthy process, including complexities in human retinal diseases that have been difficult to model in the laboratory. The focus of this review is to summarize the genetic background of the most common retinal diseases, highlight current concepts of gene delivery technology, and relate those technologies to pre-clinical and clinical gene therapy studies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Applications of the Preclinical Molecular Imaging in Biomedicine: Gene Therapy

    International Nuclear Information System (INIS)

    Collantes, M.; Peñuelas, I.

    2014-01-01

    Gene therapy constitutes a promising option for efficient and targeted treatment of several inherited disorders. Imaging techniques using ionizing radiation as PET or SPECT are used for non-invasive monitoring of the distribution and kinetics of vector-mediated gene expression. In this review the main reporter gene/reporter probe strategies are summarized, as well as the contribution of preclinical models to the development of this new imaging modality previously to its application in clinical arena. [es

  5. Gene therapy imaging in patients for oncological applications

    International Nuclear Information System (INIS)

    Penuelas, Ivan; Haberkorn, Uwe; Yaghoubi, Shahriar; Gambhir, Sanjiv S.

    2005-01-01

    Thus far, traditional methods for evaluating gene transfer and expression have been shown to be of limited value in the clinical arena. Consequently there is a real need to develop new methods that could be repeatedly and safely performed in patients for such purposes. Molecular imaging techniques for gene expression monitoring have been developed and successfully used in animal models, but their sensitivity and reproducibility need to be tested and validated in human studies. In this review, we present the current status of gene therapy-based anticancer strategies and show how molecular imaging, and more specifically radionuclide-based approaches, can be used in gene therapy procedures for oncological applications in humans. The basis of gene expression imaging is described and specific uses of these non-invasive procedures for gene therapy monitoring illustrated. Molecular imaging of transgene expression in humans and evaluation of response to gene-based therapeutic procedures are considered. The advantages of molecular imaging for whole-body monitoring of transgene expression as a way to permit measurement of important parameters in both target and non-target organs are also analyzed. The relevance of this technology for evaluation of the necessary vector dose and how it can be used to improve vector design are also examined. Finally, the advantages of designing a gene therapy-based clinical trial with imaging fully integrated from the very beginning are discussed and future perspectives for the development of these applications outlined. (orig.)

  6. Genetic correction using engineered nucleases for gene therapy applications.

    Science.gov (United States)

    Li, Hongmei Lisa; Nakano, Takao; Hotta, Akitsu

    2014-01-01

    Genetic mutations in humans are associated with congenital disorders and phenotypic traits. Gene therapy holds the promise to cure such genetic disorders, although it has suffered from several technical limitations for decades. Recent progress in gene editing technology using tailor-made nucleases, such as meganucleases (MNs), zinc finger nucleases (ZFNs), TAL effector nucleases (TALENs) and, more recently, CRISPR/Cas9, has significantly broadened our ability to precisely modify target sites in the human genome. In this review, we summarize recent progress in gene correction approaches of the human genome, with a particular emphasis on the clinical applications of gene therapy. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  7. Viral gene therapy strategies: from basic science to clinical application.

    Science.gov (United States)

    Young, Lawrence S; Searle, Peter F; Onion, David; Mautner, Vivien

    2006-01-01

    A major impediment to the successful application of gene therapy for the treatment of a range of diseases is not a paucity of therapeutic genes, but the lack of an efficient non-toxic gene delivery system. Having evolved to deliver their genes to target cells, viruses are currently the most effective means of gene delivery and can be manipulated to express therapeutic genes or to replicate specifically in certain cells. Gene therapy is being developed for a range of diseases including inherited monogenic disorders and cardiovascular disease, but it is in the treatment of cancer that this approach has been most evident, resulting in the recent licensing of a gene therapy for the routine treatment of head and neck cancer in China. A variety of virus vectors have been employed to deliver genes to cells to provide either transient (eg adenovirus, vaccinia virus) or permanent (eg retrovirus, adeno-associated virus) transgene expression and each approach has its own advantages and disadvantages. Paramount is the safety of these virus vectors and a greater understanding of the virus-host interaction is key to optimizing the use of these vectors for routine clinical use. Recent developments in the modification of the virus coat allow more targeted approaches and herald the advent of systemic delivery of therapeutic viruses. In the context of cancer, the ability of attenuated viruses to replicate specifically in tumour cells has already yielded some impressive results in clinical trials and bodes well for the future of this approach, particularly when combined with more traditional anti-cancer therapies. Copyright 2006 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  8. Gene Therapy

    Science.gov (United States)

    Gene therapy Overview Gene therapy involves altering the genes inside your body's cells in an effort to treat or stop disease. Genes contain your ... that don't work properly can cause disease. Gene therapy replaces a faulty gene or adds a new ...

  9. Genes and Gene Therapy

    Science.gov (United States)

    ... correctly, a child can have a genetic disorder. Gene therapy is an experimental technique that uses genes to ... or prevent disease. The most common form of gene therapy involves inserting a normal gene to replace an ...

  10. Contemporary Animal Models For Human Gene Therapy Applications.

    Science.gov (United States)

    Gopinath, Chitra; Nathar, Trupti Job; Ghosh, Arkasubhra; Hickstein, Dennis Durand; Nelson, Everette Jacob Remington

    2015-01-01

    Over the past three decades, gene therapy has been making considerable progress as an alternative strategy in the treatment of many diseases. Since 2009, several studies have been reported in humans on the successful treatment of various diseases. Animal models mimicking human disease conditions are very essential at the preclinical stage before embarking on a clinical trial. In gene therapy, for instance, they are useful in the assessment of variables related to the use of viral vectors such as safety, efficacy, dosage and localization of transgene expression. However, choosing a suitable disease-specific model is of paramount importance for successful clinical translation. This review focuses on the animal models that are most commonly used in gene therapy studies, such as murine, canine, non-human primates, rabbits, porcine, and a more recently developed humanized mice. Though small and large animals both have their own pros and cons as disease-specific models, the choice is made largely based on the type and length of study performed. While small animals with a shorter life span could be well-suited for degenerative/aging studies, large animals with longer life span could suit longitudinal studies and also help with dosage adjustments to maximize therapeutic benefit. Recently, humanized mice or mouse-human chimaeras have gained interest in the study of human tissues or cells, thereby providing a more reliable understanding of therapeutic interventions. Thus, animal models are of great importance with regard to testing new vector technologies in vivo for assessing safety and efficacy prior to a gene therapy clinical trial.

  11. Tumor targeted gene therapy

    International Nuclear Information System (INIS)

    Kang, Joo Hyun

    2006-01-01

    Knowledge of molecular mechanisms governing malignant transformation brings new opportunities for therapeutic intervention against cancer using novel approaches. One of them is gene therapy based on the transfer of genetic material to an organism with the aim of correcting a disease. The application of gene therapy to the cancer treatment had led to the development of new experimental approaches such as suicidal gene therapy, inhibition of oncogenes and restoration of tumor-suppressor genes. Suicidal gene therapy is based on the expression in tumor cells of a gene encoding an enzyme that converts a prodrug into a toxic product. Representative suicidal genes are Herpes simplex virus type 1 thymidine kinase (HSV1-tk) and cytosine deaminase (CD). Especially, physicians and scientists of nuclear medicine field take an interest in suicidal gene therapy because they can monitor the location and magnitude, and duration of expression of HSV1-tk and CD by PET scanner

  12. Computational design and application of endogenous promoters for transcriptionally targeted gene therapy for rheumatoid arthritis.

    NARCIS (Netherlands)

    Geurts, J.; Joosten, L.A.B.; Takahashi, N.; Arntz, O.J.; Gluck, A.; Bennink, M.B.; Berg, W.B. van den; Loo, F.A.J. van de

    2009-01-01

    The promoter regions of genes that are differentially regulated in the synovial membrane during the course of rheumatoid arthritis (RA) represent attractive candidates for application in transcriptionally targeted gene therapy. In this study, we applied an unbiased computational approach to define

  13. The Application of Nanoparticles in Gene Therapy and Magnetic Resonance Imaging

    Science.gov (United States)

    HERRANZ, FERNANDO; ALMARZA, ELENA; RODRÍGUEZ, IGNACIO; SALINAS, BEATRIZ; ROSELL, YAMILKA; DESCO, MANUEL; BULTE, JEFF W.; RUIZ-CABELLO, JESÚS

    2012-01-01

    The combination of nanoparticles, gene therapy, and medical imaging has given rise to a new field known as gene theranostics, in which a nanobioconjugate is used to diagnose and treat the disease. The process generally involves binding between a vector carrying the genetic information and a nanoparticle, which provides the signal for imaging. The synthesis of this probe generates a synergic effect, enhancing the efficiency of gene transduction and imaging contrast. We discuss the latest approaches in the synthesis of nanoparticles for magnetic resonance imaging, gene therapy strategies, and their conjugation and in vivo application. PMID:21484943

  14. Clinical application of cell, gene and tissue therapies in Spain.

    Science.gov (United States)

    Gálvez-Martín, P; Ruiz, A; Clares, B

    2017-10-12

    Scientific and technical advances in the areas of biomedicine and regenerative medicine have enabled the development of new treatments known as "advanced therapies", which encompass cell therapy, genetics and tissue engineering. The biologic products that can be manufactured from these elements are classified from the standpoint of the Spanish Agency of Medication and Health Products in advanced drug therapies, blood products and transplants. This review seeks to provide scientific and administrative information for clinicians on the use of these biologic resources. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Medicina Interna (SEMI). All rights reserved.

  15. Gene therapy and radionuclides targeting therapy in mammary carcinoma

    International Nuclear Information System (INIS)

    Song Jinhua

    2003-01-01

    Breast carcinoma's gene therapy is a hotspot in study of the tumor's therapy in the recent years. Currently the major therapy methods that in the experimentative and primary clinical application phases include immunological gene therapy, multidrug resistance gene therapy, antisense oligonucleotide therapy and suicide gene therapy. The gene targeting brachytherapy, which is combined with gene therapy and radiotherapy has enhanced the killer effects of the suicide gene and nuclide in tumor cells. That has break a new path in tumor's gene therapy. The further study in this field will step up it's space to the clinical application

  16. The ethics of gene therapy.

    Science.gov (United States)

    Chan, Sarah; Harris, John

    2006-10-01

    Recent developments have progressed in areas of science that pertain to gene therapy and its ethical implications. This review discusses the current state of therapeutic gene technologies, including stem cell therapies and genetic modification, and identifies ethical issues of concern in relation to the science of gene therapy and its application, including the ethics of embryonic stem cell research and therapeutic cloning, the risks associated with gene therapy, and the ethics of clinical research in developing new therapeutic technologies. Additionally, ethical issues relating to genetic modification itself are considered: the significance of the human genome, the distinction between therapy and enhancement, and concerns regarding gene therapy as a eugenic practice.

  17. Ubiquitous Chromatin-opening Elements (UCOEs): Applications in biomanufacturing and gene therapy.

    Science.gov (United States)

    Neville, Jonathan J; Orlando, Joe; Mann, Kimberly; McCloskey, Bethany; Antoniou, Michael N

    2017-09-01

    Ubiquitous Chromatin-opening Elements (UCOEs) are defined by their ability to consistently confer stable, site of integration-independent transgene expression that is proportional to copy number, including from within regions of heterochromatin such as centromeres. UCOEs structurally consist of methylation-free CpG islands encompassing single or dual divergently-transcribed housekeeping gene promoters. Since their discovery in 1999, UCOEs and their sub-fragments have found applications in areas of biotechnology requiring stable, reproducible, and high levels of gene expression. This review recounts the discovery of UCOEs and examines their current and future applications in protein therapeutic biomanufacturing and gene therapy. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Radiotechnologies and gene therapy

    International Nuclear Information System (INIS)

    Xia Jinsong

    2001-01-01

    Gene therapy is an exciting frontier in medicine today. Radiologist will make an uniquely contribution to these exciting new technologies at every level by choosing sites for targeting therapy, perfecting and establishing routes of delivery, developing imaging strategies to monitor therapy and assess gene expression, developing radiotherapeutic used of gene therapy

  19. Gene therapy and reproductive medicine.

    Science.gov (United States)

    Stribley, John M; Rehman, Khurram S; Niu, Hairong; Christman, Gregory M

    2002-04-01

    To review the literature on the principles of gene therapy and its potential application in reproductive medicine. Literature review. Gene therapy involves transfer of genetic material to target cells using a delivery system, or vector. Attention has primarily focused on viral vectors. Significant problems remain to be overcome including low efficacy of gene transfer, the transient expression of some vectors, safety issues with modified adenoviruses and retroviruses, and ethical concerns. If these issues can be resolved, gene therapy will be applicable to an increasing spectrum of single and multiple gene disorders, as the Human Genome Project data are analyzed, and the genetic component of human disease becomes better understood. Gynecologic gene therapy has advanced to human clinical trials for ovarian carcinoma, and shows potential for the treatment of uterine leiomyomata. Obstetric applications of gene therapy, including fetal gene therapy, remain more distant goals. Concerns about the safety of human gene therapy research are being actively addressed, and remarkable progress in improving DNA transfer has been made. The first treatment success for a genetic disease (severe combined immunodeficiency disease) has been achieved, and ongoing research efforts will eventually yield clinical applications in many spheres of reproductive medicine.

  20. Properties and uses of embryonic stem cells: prospects for application to human biology and gene therapy.

    Science.gov (United States)

    Rathjen, P D; Lake, J; Whyatt, L M; Bettess, M D; Rathjen, J

    1998-01-01

    Embryonic stem cells are pluripotent cells derived from the early mouse embryo that can be propagated stably in the undifferentiated state in vitro. They retain the ability to differentiate into all cell types found in an embryonic and adult mouse in vivo, and can be induced to differentiate into many cell types in vitro. Exploitation of ES cell technology for the creation of mice bearing predetermined genetic alterations has received widespread attention because of the sophistication that it brings to the study of gene function in mammals. Analysis of cell differentiation in vitro has also been of value, leading to the identification of novel bioactive factors and the elucidation of cell specification mechanisms. In this paper, we summarise the features of pluripotent cell lines and their applications, foreshadowing the impact that these systems may have on human biology. While the isolation of definitive human pluripotent cell lines has not yet been achieved, potential applications for these cells in the study of human biology, particularly cell specification, can be envisaged. Of particular interest is the possibility that human embryonic stem cells with properties similar to mouse embryonic stem cells might provide a generic system for gene therapy.

  1. History of gene therapy.

    Science.gov (United States)

    Wirth, Thomas; Parker, Nigel; Ylä-Herttuala, Seppo

    2013-08-10

    Two decades after the initial gene therapy trials and more than 1700 approved clinical trials worldwide we not only have gained much new information and knowledge regarding gene therapy in general, but also learned to understand the concern that has persisted in society. Despite the setbacks gene therapy has faced, success stories have increasingly emerged. Examples for these are the positive recommendation for a gene therapy product (Glybera) by the EMA for approval in the European Union and the positive trials for the treatment of ADA deficiency, SCID-X1 and adrenoleukodystrophy. Nevertheless, our knowledge continues to grow and during the course of time more safety data has become available that helps us to develop better gene therapy approaches. Also, with the increased understanding of molecular medicine, we have been able to develop more specific and efficient gene transfer vectors which are now producing clinical results. In this review, we will take a historical view and highlight some of the milestones that had an important impact on the development of gene therapy. We will also discuss briefly the safety and ethical aspects of gene therapy and address some concerns that have been connected with gene therapy as an important therapeutic modality. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Gene Therapy for Cartilage Repair

    Science.gov (United States)

    Madry, Henning; Orth, Patrick; Cucchiarini, Magali

    2011-01-01

    The concept of using gene transfer strategies for cartilage repair originates from the idea of transferring genes encoding therapeutic factors into the repair tissue, resulting in a temporarily and spatially defined delivery of therapeutic molecules to sites of cartilage damage. This review focuses on the potential benefits of using gene therapy approaches for the repair of articular cartilage and meniscal fibrocartilage, including articular cartilage defects resulting from acute trauma, osteochondritis dissecans, osteonecrosis, and osteoarthritis. Possible applications for meniscal repair comprise meniscal lesions, meniscal sutures, and meniscal transplantation. Recent studies in both small and large animal models have demonstrated the applicability of gene-based approaches for cartilage repair. Chondrogenic pathways were stimulated in the repair tissue and in osteoarthritic cartilage using genes for polypeptide growth factors and transcription factors. Although encouraging data have been generated, a successful translation of gene therapy for cartilage repair will require an ongoing combined effort of orthopedic surgeons and of basic scientists. PMID:26069580

  3. Gene Therapy in Cardiac Arrhythmias

    OpenAIRE

    Praveen, S.V; Francis, Johnson; Venugopal, K

    2006-01-01

    Gene therapy has progressed from a dream to a bedside reality in quite a few human diseases. From its first application in adenosine deaminase deficiency, through the years, its application has evolved to vascular angiogenesis and cardiac arrhythmias. Gene based biological pacemakers using viral vectors or mesenchymal cells tested in animal models hold much promise. Induction of pacemaker activity within the left bundle branch can provide stable heart rates. Genetic modification of the AV...

  4. Gene therapy: An overview

    Directory of Open Access Journals (Sweden)

    Sudip Indu

    2013-01-01

    Full Text Available Gene therapy "the use of genes as medicine" involves the transfer of a therapeutic or working copy of a gene into specific cells of an individual in order to repair a faulty gene copy. The technique may be used to replace a faulty gene, or to introduce a new gene whose function is to cure or to favorably modify the clinical course of a condition. The objective of gene therapy is to introduce new genetic material into target cells while causing no damage to the surrounding healthy cells and tissues, hence the treatment related morbidity is decreased. The delivery system includes a vector that delivers a therapeutic gene into the patient′s target cell. Functional proteins are created from the therapeutic gene causing the cell to return to a normal stage. The vectors used in gene therapy can be viral and non-viral. Gene therapy, an emerging field of biomedicine, is still at infancy and much research remains to be done before this approach to the treatment of condition will realize its full potential.

  5. Gene Therapy Approaches to Hemoglobinopathies.

    Science.gov (United States)

    Ferrari, Giuliana; Cavazzana, Marina; Mavilio, Fulvio

    2017-10-01

    Gene therapy for hemoglobinopathies is currently based on transplantation of autologous hematopoietic stem cells genetically modified with a lentiviral vector expressing a globin gene under the control of globin transcriptional regulatory elements. Preclinical and early clinical studies showed the safety and potential efficacy of this therapeutic approach as well as the hurdles still limiting its general application. In addition, for both beta-thalassemia and sickle cell disease, an altered bone marrow microenvironment reduces the efficiency of stem cell harvesting as well as engraftment. These hurdles need be addressed for gene therapy for hemoglobinopathies to become a clinical reality. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Adenovirus-mediated gene delivery: Potential applications for gene and cell-based therapies in the new era of personalized medicine

    Directory of Open Access Journals (Sweden)

    Cody S. Lee

    2017-06-01

    Full Text Available With rapid advances in understanding molecular pathogenesis of human diseases in the era of genome sciences and systems biology, it is anticipated that increasing numbers of therapeutic genes or targets will become available for targeted therapies. Despite numerous setbacks, efficacious gene and/or cell-based therapies still hold the great promise to revolutionize the clinical management of human diseases. It is wildly recognized that poor gene delivery is the limiting factor for most in vivo gene therapies. There has been a long-lasting interest in using viral vectors, especially adenoviral vectors, to deliver therapeutic genes for the past two decades. Among all currently available viral vectors, adenovirus is the most efficient gene delivery system in a broad range of cell and tissue types. The applications of adenoviral vectors in gene delivery have greatly increased in number and efficiency since their initial development. In fact, among over 2000 gene therapy clinical trials approved worldwide since 1989, a significant portion of the trials have utilized adenoviral vectors. This review aims to provide a comprehensive overview on the characteristics of adenoviral vectors, including adenoviral biology, approaches to engineering adenoviral vectors, and their applications in clinical and preclinical studies with an emphasis in the areas of cancer treatment, vaccination and regenerative medicine. Current challenges and future directions regarding the use of adenoviral vectors are also discussed. It is expected that the continued improvements in adenoviral vectors should provide great opportunities for cell and gene therapies to live up to its enormous potential in personalized medicine.

  7. AAV-mediated gene therapy for liver diseases : the prime candidate for clinical application?

    NARCIS (Netherlands)

    van der Laan, Luc J. W.; Wang, Yigang; Tilanus, Hugo W.; Janssen, Harry L. A.; Pan, Qiuwei

    Areas covered: This review provides a summary of current literature on AAV-mediated gene therapies for both inherited and acquired liver diseases and outlines different strategies to overcome current clinical limitations. The unique properties of AAV over other viral vectors are highlighted as well

  8. [Gene therapy in cardiology].

    Science.gov (United States)

    Jay, David

    2002-01-01

    The modification of genetic material of living cells for therapeutic purposes have been regarded by many as an unrealized promise. However, recent successful achievements in the field have contributed to vanish this perception and have reopened the possibility to use gene therapy as a medical intervention in humans. In the case of cardiovascular diseases, and despite its high prevalence, the number of approved human gene therapy protocols has remained low. This may be due, at least in part, to the availability of effective alternative therapies for some of the most common vasculopathies. However, recent advances in the understanding of the genetic and molecular bases of the cardiovascular system have opened the possibility to introduce gene therapy in the management of a great variety of cardiovascular disorders. The purpose of this communication is to briefly summarize the progress in this area.

  9. Gene therapy in oral cancer: a review.

    Science.gov (United States)

    Kumar, M Sathish; Masthan, K M K; Babu, N Aravindha; Dash, Kailash Chandra

    2013-06-01

    Gene therapy is the use of DNA as an agent to treat disease. Gene therapy aims at the insertion of a functional gene into the cells of a patient for the correction of an inborn error of metabolism, to alter or repair an acquired genetic abnormality, and to provide new function to the cell. Many experiments have been done with respect to its application in various diseases.Today, most of the gene therapy studies are aimed at cancer and hereditary diseases which are linked to genetic defects. Cancer usually occurs due to the production of multiple mutations in a single cell which cause it to proliferate out of control. Several methods such as surgery, radiation therapy and chemotherapy have been used widely to treat cancers. But, the cancer patients who are not helped by these therapies can be treated by gene therapy. The purpose of this article is to review the use and purpose of gene therapy in oral cancer.

  10. Gene transfer therapy in vascular diseases.

    Science.gov (United States)

    McKay, M J; Gaballa, M A

    2001-01-01

    Somatic gene therapy of vascular diseases is a promising new field in modern medicine. Recent advancements in gene transfer technology have greatly evolved our understanding of the pathophysiologic role of candidate disease genes. With this knowledge, the expression of selective gene products provides the means to test the therapeutic use of gene therapy in a multitude of medical conditions. In addition, with the completion of genome sequencing programs, gene transfer can be used also to study the biologic function of novel genes in vivo. Novel genes are delivered to targeted tissue via several different vehicles. These vectors include adenoviruses, retroviruses, plasmids, plasmid/liposomes, and oligonucleotides. However, each one of these vectors has inherent limitations. Further investigations into developing delivery systems that not only allow for efficient, targeted gene transfer, but also are stable and nonimmunogenic, will optimize the clinical application of gene therapy in vascular diseases. This review further discusses the available mode of gene delivery and examines six major areas in vascular gene therapy, namely prevention of restenosis, thrombosis, hypertension, atherosclerosis, peripheral vascular disease in congestive heart failure, and ischemia. Although we highlight some of the recent advances in the use of gene therapy in treating vascular disease discovered primarily during the past two years, many excellent studies published during that period are not included in this review due to space limitations. The following is a selective review of practical uses of gene transfer therapy in vascular diseases. This review primarily covers work performed in the last 2 years. For earlier work, the reader may refer to several excellent review articles. For instance, Belalcazer et al. (6) reviewed general aspects of somatic gene therapy and the different vehicles used for the delivery of therapeutic genes. Gene therapy in restenosis and stimulation of

  11. Gene Therapy in Cardiac Arrhythmias

    Directory of Open Access Journals (Sweden)

    Praveen S.V

    2006-04-01

    Full Text Available Gene therapy has progressed from a dream to a bedside reality in quite a few human diseases. From its first application in adenosine deaminase deficiency, through the years, its application has evolved to vascular angiogenesis and cardiac arrhythmias. Gene based biological pacemakers using viral vectors or mesenchymal cells tested in animal models hold much promise. Induction of pacemaker activity within the left bundle branch can provide stable heart rates. Genetic modification of the AV node mimicking beta blockade can be therapeutic in the management of atrial fibrillation. G protein overexpression to modify the AV node also is experimental. Modification and expression of potassium channel genes altering the delayed rectifier potassium currents may permit better management of congenital long QT syndromes. Arrhythmias in a failing heart are due to abnormal calcium cycling. Potential targets for genetic modulation include the sarcoplasmic reticulum calcium pump, calsequestrin and sodium calcium exchanger.Lastly the ethical concerns need to be addressed.

  12. Engineering membrane proteins for nuclear medicine. Applications for gene therapy and cell tracking

    International Nuclear Information System (INIS)

    Bogdanov Jr, A.A.; Simonova, M.; Weissleder, R.

    2000-01-01

    Nuclear imaging techniques such as PET and SPECT imaging are expected to play major roles in evaluating the efficacy of in vivo gene therapy. In particular, the quantification of vector delivery and imaging the efficacy of gene expression are of key interests in testing new treatment paradigms and in designing novel vectors. In this review article it has been illustrated how nuclear imaging can be used to image novel cell-surface expressed fusion proteins and how this strategy can be used to probe for phenotypic changes in genetically manipulated cells. Since the described approach uses new fusion proteins, typically not present on eukaryotic cells, such as artificial receptors can be designed to bind radioisotopes currently in clinical use. The described fusion proteins consists of 1) a binding domain such as a peptide based chelator that binds 99mT c oxotechnetate and 2) a membrane anchoring domain. A variety of fusion proteins have been tested so far and the most promising one to date consists of a metallothionein (MT)-derived C-terminal peptide fused a type II membrane protein markers containing the N-terminal membrane anchoring domain of neutral endopeptidase (PEP). Cell-surface expression of MT in transfected cells has been demonstrated using monoclonal antibodies in vitro. Both in vitro and in vivo transchelation experiments have confirmed expression of 99mT c-binding sites in eukaryotic cells. It was expected the described approach to evolve into a useful strategy to tag transfected cells with 99mT c and thus assessing efficiency of gene delivery and expression

  13. Gene expression and gene therapy imaging

    International Nuclear Information System (INIS)

    Rome, Claire; Couillaud, Franck; Moonen, Chrit T.W.

    2007-01-01

    The fast growing field of molecular imaging has achieved major advances in imaging gene expression, an important element of gene therapy. Gene expression imaging is based on specific probes or contrast agents that allow either direct or indirect spatio-temporal evaluation of gene expression. Direct evaluation is possible with, for example, contrast agents that bind directly to a specific target (e.g., receptor). Indirect evaluation may be achieved by using specific substrate probes for a target enzyme. The use of marker genes, also called reporter genes, is an essential element of MI approaches for gene expression in gene therapy. The marker gene may not have a therapeutic role itself, but by coupling the marker gene to a therapeutic gene, expression of the marker gene reports on the expression of the therapeutic gene. Nuclear medicine and optical approaches are highly sensitive (detection of probes in the picomolar range), whereas MRI and ultrasound imaging are less sensitive and require amplification techniques and/or accumulation of contrast agents in enlarged contrast particles. Recently developed MI techniques are particularly relevant for gene therapy. Amongst these are the possibility to track gene therapy vectors such as stem cells, and the techniques that allow spatiotemporal control of gene expression by non-invasive heating (with MRI guided focused ultrasound) and the use of temperature sensitive promoters. (orig.)

  14. Gene therapy in keratoconus

    Directory of Open Access Journals (Sweden)

    Mahgol Farjadnia

    2015-01-01

    Full Text Available Keratoconus (KC is the most common ectasia of the cornea and is a common reason for corneal transplant. Therapeutic strategies that can arrest the progression of this disease and modify the underlying pathogenesis are getting more and more popularity among scientists. Cumulating data represent strong evidence of a genetic role in the pathogenesis of KC. Different loci have been identified, and certain mutations have also been mapped for this disease. Moreover, Biophysical properties of the cornea create an appropriate candidate of this tissue for gene therapy. Immune privilege, transparency and ex vivo stability are among these properties. Recent advantage in vectors, besides the ability to modulate the corneal milieu for accepting the target gene for a longer period and fruitful translation, make a big hope for stupendous results reasonable.

  15. Vectors for inhaled gene therapy in lung cancer. Application for nano oncology and safety of bio nanotechnology.

    Science.gov (United States)

    Zarogouldis, Paul; Karamanos, Nikos K; Porpodis, Konstantinos; Domvri, Kalliopi; Huang, Haidong; Hohenforst-Schimdt, Wolfgang; Goldberg, Eugene P; Zarogoulidis, Konstantinos

    2012-01-01

    Novel aerosol therapeutic modalities have been investigated for lung cancer. Inhaled gene therapy has presented safety and effectiveness previously in cystic fibrosis. However, safety concerns have been raised regarding the safety of non-viral vectors for inhaled gene therapy in lung cancer, and therefore small steps have been made towards this multifunctional treatment modality. During the last decade, numerous new nanocomplexes have been created and investigated as a safe gene delivery nano-vehicle. These formulations are multifunctional; they can be used as either local therapy or carrier for an effective inhaled gene therapy for lung cancer. Herein, we present current and future perspectives of nanocomplexes for inhaled gene therapy treatment in lung cancer.

  16. Human Gene Therapy: Genes without Frontiers?

    Science.gov (United States)

    Simon, Eric J.

    2002-01-01

    Describes the latest advancements and setbacks in human gene therapy to provide reference material for biology teachers to use in their science classes. Focuses on basic concepts such as recombinant DNA technology, and provides examples of human gene therapy such as severe combined immunodeficiency syndrome, familial hypercholesterolemia, and…

  17. Imaging reporter gene for monitoring gene therapy

    International Nuclear Information System (INIS)

    Beco, V. de; Baillet, G.; Tamgac, F.; Tofighi, M.; Weinmann, P.; Vergote, J.; Moretti, J.L.; Tamgac, G.

    2002-01-01

    Scintigraphic images can be obtained to document gene function at cellular level. This approach is presented here and the use of a reporter gene to monitor gene therapy is described. Two main ways are presented: either the use of a reporter gene coding for an enzyme the action of which will be monitored by radiolabeled pro-drug, or a cellular receptor gene, the action of which is documented by a radio labeled cognate receptor ligand. (author)

  18. Imaging gene expression in gene therapy

    International Nuclear Information System (INIS)

    Wiebe, Leonard I.

    1997-01-01

    Full text. Gene therapy can be used to introduce new genes, or to supplement the function of indigenous genes. At the present time, however, there is non-invasive test to demonstrate efficacy of the gene transfer and expression processes. It has been postulated that scintigraphic imaging can offer unique information on both the site at which the transferred gene is expressed, and the degree of expression, both of which are critical issue for safety and clinical efficacy. Many current studies are based on 'suicide gene therapy' of cancer. Cells modified to express these genes commit metabolic suicide in the presence of an enzyme encoded by the transferred gene and a specifically-convertible pro drug. Pro drug metabolism can lead to selective metabolic trapping, required for scintigraphy. Herpes simplex virus type-1 thymidine kinase (H S V-1 t k + ) has been use for 'suicide' in vivo tumor gene therapy. It has been proposed that radiolabelled nucleosides can be used as radiopharmaceuticals to detect H S V-1 t k + gene expression where the H S V-1 t k + gene serves a reporter or therapeutic function. Animal gene therapy models have been studied using purine-([ 18 F]F H P G; [ 18 F]-A C V), and pyrimidine- ([ 123 / 131 I]I V R F U; [ 124 / 131I ]) antiviral nucleosides. Principles of gene therapy and gene therapy imaging will be reviewed and experimental data for [ 123 / 131I ]I V R F U imaging with the H S V-1 t k + reporter gene will be presented

  19. Application of HSVtk suicide gene to X-SCID gene therapy: Ganciclovir treatment offsets gene corrected X-SCID B cells

    International Nuclear Information System (INIS)

    Uchiyama, Toru; Kumaki, Satoru; Ishikawa, Yoshinori; Onodera, Masafumi; Sato, Miki; Du, Wei; Sasahara, Yoji; Tanaka, Nobuyuki; Sugamura, Kazuo; Tsuchiya, Shigeru

    2006-01-01

    Recently, a serious adverse effect of uncontrolled clonal T cell proliferation due to insertional mutagenesis of retroviral vector was reported in X-SCID gene therapy clinical trial. To offset the side effect, we have incorporated a suicide gene into therapeutic retroviral vector for selective elimination of transduced cells. In this study, B-cell lines from two X-SCID patients were transduced with bicistronic retroviral vector carrying human γc chain cDNA and Herpes simplex virus thymidine kinase gene. After confirmation of functional reconstitution of the γc chain, the cells were treated with ganciclovir (GCV). The γc chain positive cells were eliminated under low concentration without cytotoxicity on untransduced cells and have not reappeared at least for 5 months. Furthermore, the γc chain transduced cells were still sensitive to GCV after five months. These results demonstrated the efficacy of the suicide gene therapy although further in vivo studies are required to assess feasibility of this approach in clinical trial

  20. Gene therapy for hemophilia

    Science.gov (United States)

    Rogers, Geoffrey L.; Herzog, Roland W.

    2015-01-01

    Hemophilia is an X-linked inherited bleeding disorder consisting of two classifications, hemophilia A and hemophilia B, depending on the underlying mutation. Although the disease is currently treatable with intravenous delivery of replacement recombinant clotting factor, this approach represents a significant cost both monetarily and in terms of quality of life. Gene therapy is an attractive alternative approach to the treatment of hemophilia that would ideally provide life-long correction of clotting activity with a single injection. In this review, we will discuss the multitude of approaches that have been explored for the treatment of both hemophilia A and B, including both in vivo and ex vivo approaches with viral and nonviral delivery vectors. PMID:25553466

  1. Biodegradable nanoparticles for gene therapy technology

    International Nuclear Information System (INIS)

    Hosseinkhani, Hossein; He, Wen-Jie; Chiang, Chiao-Hsi; Hong, Po-Da; Yu, Dah-Shyong; Domb, Abraham J.; Ou, Keng-Liang

    2013-01-01

    Rapid propagations in materials technology together with biology have initiated great hopes in the possibility of treating many diseases by gene therapy technology. Viral and non-viral gene carriers are currently applied for gene delivery. Non-viral technology is safe and effective for the delivery of genetic materials to cells and tissues. Non-viral systems are based on plasmid expression containing a gene encoding a therapeutic protein and synthetic biodegradable nanoparticles as a safe carrier of gene. Biodegradable nanoparticles have shown great interest in drug and gene delivery systems as they are easy to be synthesized and have no side effect in cells and tissues. This review provides a critical view of applications of biodegradable nanoparticles on gene therapy technology to enhance the localization of in vitro and in vivo and improve the function of administered genes

  2. Gene therapy of thyroid carcinoma

    International Nuclear Information System (INIS)

    Zheng Wei; Tan Jian

    2007-01-01

    Normally, differentiated thyroid carcinoma(DTC) is a disease of good prognosis, but about 30% of the tumors are dedifferentiate, which are inaccessible to standard therapeutic procedures such as 'operation, 131 I therapy and thyroid hormone'. Both internal and abroad experts are researching a new therapy of dedifferentiated thyroid carcinoma--gene therapy. Many of them utilize methods of it, but follow different strategies: (1) transduction of the thyroid sodium/iodide transporter gene to make tissues that do not accumulate iodide treatable by 131 I therapy; (2) strengthening of the anti-tumor immune response; (3) suicide gene therapy; (4) depression the generation of tumor cells; (5) gene therapy of anti- vascularization. (authors)

  3. The bystander effect of cancer gene therapy

    International Nuclear Information System (INIS)

    Lumniczky, K.; Safrany, G.

    2008-01-01

    Cancer gene therapy is a new, promising therapeutic agent. In the clinic, it should be used in combination with existing modalities, such as tumour irradiation. First, we summarise the most important fields of cancer gene therapy: gene directed enzyme pro-drug therapy; the activation of an anti-tumour immune attack; restoration of the wild type p53 status; the application of new, replication competent and oncolytic viral vectors; tumour specific, as well as radiation- and hypoxia-induced gene expression. Special emphasizes are put on the combined effect of these modalities with local tumour irradiation. Using the available vector systems, only a small portion of the cancer cells will contain the therapeutic genes under therapeutic situations. Bystander cell killing might contribute to the success of various gene therapy protocols. We summarise the evidences that lethal bystander effects may occur during cancer gene therapy. Bystander effects are especially important in the gene directed enzyme pro-drug therapy. There, bystander cell killing might have different routes: cell communication through gap junction intercellular contacts; release of toxic metabolites into the neighbourhood or to larger distances; phagocytosis of apoptotic bodies; and the activation of the immune system. Bystander cell killing can be enhanced by the introduction of gap junction proteins into the cells, by further activating the immune system with immune-stimulatory molecules, or by introducing genes into the cells that help the transfer of cytotoxic genes and / or metabolites into the bystander cells. In conclusion, there should be additional improvements in cancer gene therapy for the more efficient clinical application. (orig.)

  4. Gene Therapy for Fracture Repair

    Science.gov (United States)

    2007-05-01

    the periosteal tissues of healing fractures in small animals , and allow more accurate evaluation of the effects of the fracture therapy (Rundle et...X-ray fluoroscopy (Figure 7). Individual animals receiving the MLV-BMP-2/4 gene therapy by either the percutaneous injection or the intramedullary... animal subjects to understand gene expression in the healing response to bone injury and identify novel genes that might accelerate or delay the

  5. American Society of Gene & Cell Therapy

    Science.gov (United States)

    ... Chicago Learn More Close The American Society of Gene & Cell Therapy ASGCT is the primary membership organization for scientists, ... Therapeutics Official Journal of the American Society of Gene & Cell Therapy Molecular Therapy is the leading journal for gene ...

  6. Gene Therapy and Children (For Parents)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Gene Therapy and Children KidsHealth / For Parents / Gene Therapy and ... caused by a "bad" gene. Two Types of Gene Therapy The two forms of gene therapy are: Somatic ...

  7. Gene Therapy for Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Rachel Denyer

    2012-01-01

    Full Text Available Current pharmacological and surgical treatments for Parkinson's disease offer symptomatic improvements to those suffering from this incurable degenerative neurological disorder, but none of these has convincingly shown effects on disease progression. Novel approaches based on gene therapy have several potential advantages over conventional treatment modalities. These could be used to provide more consistent dopamine supplementation, potentially providing superior symptomatic relief with fewer side effects. More radically, gene therapy could be used to correct the imbalances in basal ganglia circuitry associated with the symptoms of Parkinson's disease, or to preserve or restore dopaminergic neurons lost during the disease process itself. The latter neuroprotective approach is the most exciting, as it could theoretically be disease modifying rather than simply symptom alleviating. Gene therapy agents using these approaches are currently making the transition from the laboratory to the bedside. This paper summarises the theoretical approaches to gene therapy for Parkinson's disease and the findings of clinical trials in this rapidly changing field.

  8. Role of PET in gene therapy

    International Nuclear Information System (INIS)

    Lee, Kyung Han

    2002-01-01

    In addition to the well-established use of positron emission tomography (PET) in clinical oncology, novel roles for PET are rapidly emerging in the field of gene therapy. Methods for controlled gene delivery to living bodies, made available through advances in molecular biology, are currently being employed in animals for reasearch purposes and in humans to treat diseases such as cancer. Although gene therapy is still in its early developmental stage, it is perceived that many serious illnesses could be treated successfully by the use of therapeutic gene delivery. A major challenge for the widespread use of human gene therapy is to achieve a controlled and effective delivery of foreign genes to target cells and subsequently, adequate levels of expression. As such, the availability of noninvasive imaging methods to accurately assess the location, duration, and level of transgene expression is critical for optimizing gene therapy strategies. Current endeavors to achieve this goal include methods that utilize magnetic resonance imaging, optical imaging, and nuclear imaging techniques. As for PET, reporter systems that utilize gene encoding enzymes that accumulate postion labeled substrates and those transcribing surface receptors that bind specific positron labeled ligands have been successfully developed. More recent advances in this area include improved reporter gene constructs and radiotracers, introduction of potential strategies to monitor endogenous gene expression, and human pilot studies evaluating the distribution and safety of reporter PET tracers. The remarkably rapid progress occuring in gene imaging technology indicates its importance and wide range of application. As such, gene imaging is likely to become a major and exciting new area for future application of PET technology

  9. Gene therapy for Duchenne muscular dystrophy.

    Science.gov (United States)

    Verhaart, Ingrid E C; Aartsma-Rus, Annemieke

    2012-10-01

    Duchenne muscular dystrophy is a severe neuromuscular disorder for which there is currently no cure. Years of research have come to fruition during the past 18 months with publications on clinical trials for several gene therapy approaches for Duchenne muscular dystrophy. This review covers the present status of these approaches. The exon skipping approach is most advanced in the process of clinical application. Encouraging results have been obtained in two systemic clinical trials and further optimization has increased delivery to the heart in animal models. Limitations of the approach are the mutation-specificity and the anticipated requirement for lifelong treatment. Gene therapy by means of gene transfer holds the promise of more long-lasting effects. Results of a first, early-stage gene therapy trial, using viral vectors to deliver a minidystrophin gene, were reported. Animal studies suggest that it may be possible to overcome the main challenges currently facing gene therapy (immunogenicity of the vector and systemic body-wide delivery). Significant steps have been made in the development of gene therapy approaches for Duchenne muscular dystrophy. These approaches aim to slow down disease progression, requiring robust outcome measures to assess efficacy.

  10. Gene therapy for carcinoma of the breast: Genetic toxins

    International Nuclear Information System (INIS)

    Vassaux, Georges; Lemoine, Nick R

    2000-01-01

    Gene therapy was initially envisaged as a potential treatment for genetically inherited, monogenic disorders. The applications of gene therapy have now become wider, however, and include cardiovascular diseases, vaccination and cancers in which conventional therapies have failed. With regard to oncology, various gene therapy approaches have been developed. Among them, the use of genetic toxins to kill cancer cells selectively is emerging. Two different types of genetic toxins have been developed so far: the metabolic toxins and the dominant-negative class of toxins. This review describes these two different approaches, and discusses their potential applications in cancer gene therapy

  11. Gene therapy and radiotherapy in malignant tumor

    International Nuclear Information System (INIS)

    Zhang Yaowen; Cao Yongzhen; Li Jin; Wang Qin

    2008-01-01

    Tumor treatment is one of the most important fields in medical research. Nowadays, a novel method which is combined gene therapy with radiotherapy plays an important role in the field of cancer research, and mainly includes immune gene therapy combined with radiotherapy, suicide gene therapy or tumor suppressor gene therapy combined with radiotherapy, antiangiogenesis gene therapy combined with radiotherapy and protective gene therapy combined with radiotherapy based on the technical features. This review summarized the current status of combined therapies of gene therapy and radiotherapy and possible mechanism. (authors)

  12. Preparation by alkaline treatment and detailed characterisation of empty hepatitis B virus core particles for vaccine and gene therapy applications

    Science.gov (United States)

    Strods, Arnis; Ose, Velta; Bogans, Janis; Cielens, Indulis; Kalnins, Gints; Radovica, Ilze; Kazaks, Andris; Pumpens, Paul; Renhofa, Regina

    2015-06-01

    Hepatitis B virus (HBV) core (HBc) virus-like particles (VLPs) are one of the most powerful protein engineering tools utilised to expose immunological epitopes and/or cell-targeting signals and for the packaging of genetic material and immune stimulatory sequences. Although HBc VLPs and their numerous derivatives are produced in highly efficient bacterial and yeast expression systems, the existing purification and packaging protocols are not sufficiently optimised and standardised. Here, a simple alkaline treatment method was employed for the complete removal of internal RNA from bacteria- and yeast-produced HBc VLPs and for the conversion of these VLPs into empty particles, without any damage to the VLP structure. The empty HBc VLPs were able to effectively package the added DNA and RNA sequences. Furthermore, the alkaline hydrolysis technology appeared efficient for the purification and packaging of four different HBc variants carrying lysine residues on the HBc VLP spikes. Utilising the introduced lysine residues and the intrinsic aspartic and glutamic acid residues exposed on the tips of the HBc spikes for chemical coupling of the chosen peptide and/or nucleic acid sequences ensured a standard and easy protocol for the further development of versatile HBc VLP-based vaccine and gene therapy applications.

  13. [Gene therapy--hopes and fears].

    Science.gov (United States)

    Pietrzyk, J J

    1998-01-01

    Gene therapy assumes the correction of a genetic defect by the delivery of a correct DNA sequence to the target cells. Depending on the target cells two types gene therapy have been defined: somatic and germinal. By July 1998, 351 protocols of somatic therapy were approved by the Recombinant DNA Advisory Committee. The majority of protocols focus on cancer therapy and monogenic diseases. By now, still there is more unfulfilled expectation than clinically sound achievements, since no effective prevention or successful treatment for genetic diseases or cancer have been developed. Germline genetic modification is considered as the treatment of choice for such a diseases like retinoblastoma. Tay-Sachs, Lesch-Nyhan and metachromatic leuko-dystrophy. This approach which is still illegal or prohibited by rules in many European countries, is gathering more and more advocates. Once we learn how to control gene expression the perspectives for clinical application of gene therapy might be enormous. The safety of genetic modification of gametes or embryonal stem cells remains to be properly addressed and successfully solved. The ethical issues of germinal gene therapy are still the subject of controversial opinions among the scientists, lawyers and philosophers.

  14. Reporter gene imaging: potential impact on therapy

    International Nuclear Information System (INIS)

    Serganova, Inna; Blasberg, Ronald

    2005-01-01

    Positron emission tomography (PET)-based molecular-genetic imaging in living organisms has enjoyed exceptional growth over the past 5 years; this is particularly striking since it has been identified as a new discipline only within the past decade. Positron emission tomography is one of three imaging technologies (nuclear, magnetic resonance and optical) that has begun to incorporate methods that are established in molecular and cell biology research. The convergence of these disciplines and the wider application of multi-modality imaging are at the heart of this success story. Most current molecular-genetic imaging strategies are 'indirect,' coupling a 'reporter gene' with a complimentary 'reporter probe.' Reporter gene constructs can be driven by constitutive promoter elements and used to monitor gene therapy vectors and the efficacy of trans gene targeting and transduction, as well as to monitor adoptive cell-based therapies. Inducible promoters can be used as 'sensors' to regulate the magnitude of reporter gene expression and can be used to provide information about endogenous cell processes. Reporter systems can also be constructed to monitor mRNA stabilization and specific protein-protein interactions. Promoters can be cell specific and restrict transgene expression to certain tissue and organs. The translation of reporter gene imaging to specific clinical applications is discussed. Several examples that have potential for patient imaging studies in the near future include monitoring adenoviral-based gene therapy, oncolytic herpes virus therapy, adoptive cell-based therapies and Salmonella-based tumor-targeted cancer therapy and imaging. The primary translational applications of noninvasive in vivo reporter gene imaging are likely to be (a) quantitative monitoring of the gene therapy vector and the efficacy of transduction in clinical protocols, by imaging the location, extent and duration of transgene expression; (b) monitoring cell trafficking, targeting

  15. Imaging after vascular gene therapy

    International Nuclear Information System (INIS)

    Manninen, Hannu I.; Yang, Xiaoming

    2005-01-01

    Targets for cardiovascular gene therapy currently include limiting restenosis after balloon angioplasty and stent placement, inhibiting vein bypass graft intimal hyperplasia/stenosis, therapeutic angiogenesis for cardiac and lower-limb ischemia, and prevention of thrombus formation. While catheter angiography is still standard method to follow-up vascular gene transfer, other modern imaging techniques, especially intravascular ultrasound (IVUS), magnetic resonance (MR), and positron emission tomography (PET) imaging provide complementary information about the therapeutic effect of vascular gene transfer in humans. Although molecular imaging of therapeutic gene expression in the vasculatures is still in its technical development phase, it has already offered basic medical science an extremely useful in vivo evaluation tool for non- or minimally invasive imaging of vascular gene therapy

  16. Switching on the lights for gene therapy.

    Directory of Open Access Journals (Sweden)

    Alexandra Winkeler

    Full Text Available Strategies for non-invasive and quantitative imaging of gene expression in vivo have been developed over the past decade. Non-invasive assessment of the dynamics of gene regulation is of interest for the detection of endogenous disease-specific biological alterations (e.g., signal transduction and for monitoring the induction and regulation of therapeutic genes (e.g., gene therapy. To demonstrate that non-invasive imaging of regulated expression of any type of gene after in vivo transduction by versatile vectors is feasible, we generated regulatable herpes simplex virus type 1 (HSV-1 amplicon vectors carrying hormone (mifepristone or antibiotic (tetracycline regulated promoters driving the proportional co-expression of two marker genes. Regulated gene expression was monitored by fluorescence microscopy in culture and by positron emission tomography (PET or bioluminescence (BLI in vivo. The induction levels evaluated in glioma models varied depending on the dose of inductor. With fluorescence microscopy and BLI being the tools for assessing gene expression in culture and animal models, and with PET being the technology for possible application in humans, the generated vectors may serve to non-invasively monitor the dynamics of any gene of interest which is proportionally co-expressed with the respective imaging marker gene in research applications aiming towards translation into clinical application.

  17. Evolving Gene Therapy in Primary Immunodeficiency.

    Science.gov (United States)

    Thrasher, Adrian J; Williams, David A

    2017-05-03

    Prior to the first successful bone marrow transplant in 1968, patients born with severe combined immunodeficiency (SCID) invariably died. Today, with a widening availability of newborn screening, major improvements in the application of allogeneic procedures, and the emergence of successful hematopoietic stem and progenitor cell (HSC/P) gene therapy, the majority of these children can be identified and cured. Here, we trace key steps in the development of clinical gene therapy for SCID and other primary immunodeficiencies (PIDs), and review the prospects for adoption of new targets and technologies. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  18. Therapeutic genes for anti-HIV/AIDS gene therapy.

    Science.gov (United States)

    Bovolenta, Chiara; Porcellini, Simona; Alberici, Luca

    2013-01-01

    The multiple therapeutic approaches developed so far to cope HIV-1 infection, such as anti-retroviral drugs, germicides and several attempts of therapeutic vaccination have provided significant amelioration in terms of life-quality and survival rate of AIDS patients. Nevertheless, no approach has demonstrated efficacy in eradicating this lethal, if untreated, infection. The curative power of gene therapy has been proven for the treatment of monogenic immunodeficiensies, where permanent gene modification of host cells is sufficient to correct the defect for life-time. No doubt, a similar concept is not applicable for gene therapy of infectious immunodeficiensies as AIDS, where there is not a single gene to be corrected; rather engineered cells must gain immunotherapeutic or antiviral features to grant either short- or long-term efficacy mostly by acquisition of antiviral genes or payloads. Anti-HIV/AIDS gene therapy is one of the most promising strategy, although challenging, to eradicate HIV-1 infection. In fact, genetic modification of hematopoietic stem cells with one or multiple therapeutic genes is expected to originate blood cell progenies resistant to viral infection and thereby able to prevail on infected unprotected cells. Ultimately, protected cells will re-establish a functional immune system able to control HIV-1 replication. More than hundred gene therapy clinical trials against AIDS employing different viral vectors and transgenes have been approved or are currently ongoing worldwide. This review will overview anti-HIV-1 infection gene therapy field evaluating strength and weakness of the transgenes and payloads used in the past and of those potentially exploitable in the future.

  19. Gene Therapy for Childhood Neurofibromatosis

    Science.gov (United States)

    2014-05-01

    Neurofibromatosis PRINCIPAL INVESTIGATOR: Segal, David J. CONTRACTING ORGANIZATION: University of California, Davis Davis, California...May 2014 4. TITLE AND SUBTITLE Gene Therapy for Childhood Neurofibromatosis 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-13-1-0101 5c...project was to develop an innovative therapy for neurofibromatosis . Neurofibromatosis type 1 (NF1) is one of the most common genetic disorders (1

  20. Gene therapy for inherited immunodeficiency.

    Science.gov (United States)

    Touzot, Fabien; Hacein-Bey-Abina, Salima; Fischer, Alain; Cavazzana, Marina

    2014-06-01

    During the last decade, gene therapy has emerged as a convincing therapy for primary immunodeficiencies (PIDs). Ex vivo gene transfer into autologous hematopoietic stem cells (HSCs) via viral vectors permits sustained correction of T cell immunodeficiency in two forms of severe combined immunodeficiency: X-linked SCID (SCID-X1) (γ chain [γc] deficiency) and adenosine deaminase deficiency. However, this success has been balanced by the occurrence of genotoxicity generated by the integration of first-generation retroviral vectors. Recently, the development of safer self-inactivating vectors has led to the initiation of new studies with the hope of equivalent efficacy and a better safety profile. This review article focuses on the updated results of gene therapy trials for PIDs - from early studies to ongoing clinical trials. We detail the major advances made in gene transfer and repair technologies, and discuss the many ways to extend our present experience. With optimization in terms of safety and efficacy, gene therapy by lentiviral transduction could become a compelling alternative to allogeneic HSC transplantation, and thus may take center stage in the management of PIDs in coming years.

  1. Gene therapy of inherited immunodeficiencies.

    Science.gov (United States)

    Santilli, Giorgia; Thornhill, Susannah I; Kinnon, Christine; Thrasher, Adrian J

    2008-04-01

    Primary immunodeficiencies (PID) are a group of inherited diseases that affect the development or activity of the immune system. In severe cases allogeneic haematopoietic stem cell transplantation has proved to be a successful curative modality but it is limited by toxicity and reduced efficacy in mismatched donor settings. Gene therapy for PID has been developed as an alternative strategy and has entered the clinical arena. In this review we discuss the outcomes of recent gene therapy trials and some of the problems that remain to be tackled. Results from clinical trials for X-linked severe combined immunodeficiency (SCID-X1), adenosine deaminase deficient SCID (ADA-SCID), and X-linked chronic granulomatous disease (X-CGD) are discussed. In addition, other conditions are highlighted such as the Wiskott Aldrich Syndrome (WAS) for which gene therapy has shown considerable promise in preclinical studies, and are currently being translated into novel clinical approaches. Whilst these encouraging results demonstrate that gene therapy can be used successfully to treat monogenic PID, the occurrence of vector-related side effects has highlighted the need for accurate assessment of the associated risks and a requirement for improvements in vector design.

  2. Ethics of Gene Therapy Debated.

    Science.gov (United States)

    Borman, Stu

    1991-01-01

    Presented are the highlights of a press conference featuring biomedical ethicist LeRoy Walters of Georgetown University and attorney Andrew Kimbrell of the Foundation on Economic Trends. The opposing points of view of these two speakers serve to outline the pros and cons of the gene therapy issue. (CW)

  3. Gene therapy for lung cancer.

    Science.gov (United States)

    Toloza, Eric M; Morse, Michael A; Lyerly, H Kim

    2006-09-01

    Lung cancer patients suffer a 15% overall survival despite advances in chemotherapy, radiation therapy, and surgery. This unacceptably low survival rate is due to the usual finding of advanced disease at diagnosis. However, multimodality strategies using conventional therapies only minimally improve survival rates even in early stages of lung cancer. Attempts to improve survival in advanced disease using various combinations of platinum-based chemotherapy have demonstrated that no regimen is superior, suggesting a therapeutic plateau and the need for novel, more specific, and less toxic therapeutic strategies. Over the past three decades, the genetic etiology of cancer has been gradually delineated, albeit not yet completely. Understanding the molecular events that occur during the multistep process of bronchogenic carcinogenesis may make these tasks more surmountable. During these same three decades, techniques have been developed which allow transfer of functional genes into mammalian cells. For example, blockade of activated tumor-promoting oncogenes or replacement of inactivated tumor-suppressing or apoptosis-promoting genes can be achieved by gene therapy. This article will discuss the therapeutic implications of these molecular changes associated with bronchogenic carcinomas and will then review the status of gene therapies for treatment of lung cancer. (c) 2006 Wiley-Liss, Inc.

  4. Gene therapy for cystic fibrosis.

    Science.gov (United States)

    Mueller, Christian; Flotte, Terence R

    2008-12-01

    Cystic Fibrosis (CF) is an autosomal recessive disorder due to mutations in the CF transmembrane conductance regulator (CFTR) gene that lead to defective ion transport in the conducting pulmonary airways and exocrine glands. Through a process that is not fully understood, CFTR defects predispose affected patients to chronic endobronchial infections with organisms such as Pseudomonas aeruginosa and Staphylococcus aureus. Following the discovery of the CFTR gene in 1989, CF became one of the primary targets for gene therapy research. Early enthusiasm surrounded the new field of gene therapy during most of the 1990s and it led academics and clinicians on a big effort to apply gene therapy for cystic fibrosis. Clinical studies have been pursued using recombinant adenovirus, recombinant adeno-associated virus, cationic liposomes, and cationic polymer vectors. Although to this date no dramatic therapeutic benefits have been observed, a lot of information has been gained from the pre-clinical and clinical studies that were performed. This learning curve has led to the optimization of vector technology and an appreciation of immune and mechanical barriers that have to be overcome for successful delivery.

  5. Regulatory and Scientific Advancements in Gene Therapy: State-of-the-Art of Clinical Applications and of the Supporting European Regulatory Framework.

    Science.gov (United States)

    Carvalho, Marta; Sepodes, Bruno; Martins, Ana Paula

    2017-01-01

    Advanced therapy medicinal products (ATMPs) have a massive potential to address existing unmet medical needs. Specifically, gene therapy medicinal products (GTMPs) may potentially provide cure for several genetic diseases. In Europe, the ATMP regulation was fully implemented in 2009 and, at this point, the Committee for Advanced Therapies was created as a dedicated group of specialists to evaluate medicinal products requiring specific expertise in this area. To date, there are three authorized GTMPs, and the first one was approved in 2012. Broad research has been conducted in this field over the last few decades and different clinical applications are being investigated worldwide, using different strategies that range from direct gene replacement or addition to more complex pathways such as specific gene editing or RNA targeting. Important safety risks, limited efficacy, manufacturing hurdles, or ethical conflicts may represent challenges in the success of a candidate GTMP. During the development process, it is fundamental to take such aspects into account and establish overcoming strategies. This article reviews the current European legal framework of ATMPs, provides an overview of the clinical applications for approved and investigational GTMPs, and discusses critical challenges in the development of GTMPs.

  6. Regulatory and Scientific Advancements in Gene Therapy: State-of-the-Art of Clinical Applications and of the Supporting European Regulatory Framework

    Directory of Open Access Journals (Sweden)

    Marta Carvalho

    2017-10-01

    Full Text Available Advanced therapy medicinal products (ATMPs have a massive potential to address existing unmet medical needs. Specifically, gene therapy medicinal products (GTMPs may potentially provide cure for several genetic diseases. In Europe, the ATMP regulation was fully implemented in 2009 and, at this point, the Committee for Advanced Therapies was created as a dedicated group of specialists to evaluate medicinal products requiring specific expertise in this area. To date, there are three authorized GTMPs, and the first one was approved in 2012. Broad research has been conducted in this field over the last few decades and different clinical applications are being investigated worldwide, using different strategies that range from direct gene replacement or addition to more complex pathways such as specific gene editing or RNA targeting. Important safety risks, limited efficacy, manufacturing hurdles, or ethical conflicts may represent challenges in the success of a candidate GTMP. During the development process, it is fundamental to take such aspects into account and establish overcoming strategies. This article reviews the current European legal framework of ATMPs, provides an overview of the clinical applications for approved and investigational GTMPs, and discusses critical challenges in the development of GTMPs.

  7. Utilization of APPswe/PS1dE9 Transgenic Mice in Research of Alzheimer's Disease: Focus on Gene Therapy and Cell-Based Therapy Applications

    Directory of Open Access Journals (Sweden)

    Tarja Malm

    2011-01-01

    Full Text Available One of the most extensively used transgenic mouse model of Alzheimer’s disease (AD is APPswe/PS1dE9 mice, which over express the Swedish mutation of APP together with PS1 deleted in exon 9. These mice show increase in parenchymal Aβ load with Aβ plaques starting from the age of four months, glial activation, and deficits in cognitive functions at the age of 6 months demonstrated by radial arm water maze and 12-13 months seen with Morris Water Maze test. As gene transfer technology allows the delivery of DNA into target cells to achieve the expression of a protective or therapeutic protein, and stem cell transplantation may create an environment supporting neuronal functions and clearing Aβ plaques, these therapeutic approaches alone or in combination represent potential therapeutic strategies that need to be tested in relevant animal models before testing in clinics. Here we review the current utilization of APPswe/PS1dE9 mice in testing gene transfer and cell transplantation aimed at improving the protection of the neurons against Aβ toxicity and also reducing the brain levels of Aβ. Both gene therapy and cell based therapy may be feasible therapeutic approaches for human AD.

  8. Gene therapy: theoretical and bioethical concepts.

    Science.gov (United States)

    Smith, Kevin R

    2003-01-01

    Gene therapy holds great promise. Somatic gene therapy has the potential to treat a wide range of disorders, including inherited conditions, cancers, and infectious diseases. Early progress has already been made in the treatment of a range of disorders. Ethical issues surrounding somatic gene therapy are primarily those concerned with safety. Germline gene therapy is theoretically possible but raises serious ethical concerns concerning future generations.

  9. Newer Gene Editing Technologies toward HIV Gene Therapy

    Directory of Open Access Journals (Sweden)

    Premlata Shankar

    2013-11-01

    Full Text Available Despite the great success of highly active antiretroviral therapy (HAART in ameliorating the course of HIV infection, alternative therapeutic approaches are being pursued because of practical problems associated with life-long therapy. The eradication of HIV in the so-called “Berlin patient” who received a bone marrow transplant from a CCR5-negative donor has rekindled interest in genome engineering strategies to achieve the same effect. Precise gene editing within the cells is now a realistic possibility with recent advances in understanding the DNA repair mechanisms, DNA interaction with transcription factors and bacterial defense mechanisms. Within the past few years, four novel technologies have emerged that can be engineered for recognition of specific DNA target sequences to enable site-specific gene editing: Homing Endonuclease, ZFN, TALEN, and CRISPR/Cas9 system. The most recent CRISPR/Cas9 system uses a short stretch of complementary RNA bound to Cas9 nuclease to recognize and cleave target DNA, as opposed to the previous technologies that use DNA binding motifs of either zinc finger proteins or transcription activator-like effector molecules fused to an endonuclease to mediate sequence-specific DNA cleavage. Unlike RNA interference, which requires the continued presence of effector moieties to maintain gene silencing, the newer technologies allow permanent disruption of the targeted gene after a single treatment. Here, we review the applications, limitations and future prospects of novel gene-editing strategies for use as HIV therapy.

  10. Endocrine aspects of cancer gene therapy.

    Science.gov (United States)

    Barzon, Luisa; Boscaro, Marco; Palù, Giorgio

    2004-02-01

    The field of cancer gene therapy is in continuous expansion, and technology is quickly moving ahead as far as gene targeting and regulation of gene expression are concerned. This review focuses on the endocrine aspects of gene therapy, including the possibility to exploit hormone and hormone receptor functions for regulating therapeutic gene expression, the use of endocrine-specific genes as new therapeutic tools, the effects of viral vector delivery and transgene expression on the endocrine system, and the endocrine response to viral vector delivery. Present ethical concerns of gene therapy and the risk of germ cell transduction are also discussed, along with potential lines of innovation to improve cell and gene targeting.

  11. Application of Adoptive T-Cell Therapy Using Tumor Antigen-Specific T-Cell Receptor Gene Transfer for the Treatment of Human Leukemia

    Directory of Open Access Journals (Sweden)

    Toshiki Ochi

    2010-01-01

    Full Text Available The last decade has seen great strides in the field of cancer immunotherapy, especially the treatment of melanoma. Beginning with the identification of cancer antigens, followed by the clinical application of anti-cancer peptide vaccination, it has now been proven that adoptive T-cell therapy (ACT using cancer antigen-specific T cells is the most effective option. Despite the apparent clinical efficacy of ACT, the timely preparation of a sufficient number of cancer antigen-specific T cells for each patient has been recognized as its biggest limitation. Currently, therefore, attention is being focused on ACT with engineered T cells produced using cancer antigen-specific T-cell receptor (TCR gene transfer. With regard to human leukemia, ACT using engineered T cells bearing the leukemia antigen-specific TCR gene still remains in its infancy. However, several reports have provided preclinical data on TCR gene transfer using Wilms' tumor gene product 1 (WT1, and also preclinical and clinical data on TCR gene transfer involving minor histocompatibility antigen, both of which have been suggested to provide additional clinical benefit. In this review, we examine the current status of anti-leukemia ACT with engineered T cells carrying the leukemia antigen-specific TCR gene, and discuss the existing barriers to progress in this area.

  12. Terapia gênica Gene therapy

    Directory of Open Access Journals (Sweden)

    Nance Beyer Nardi

    2002-01-01

    Full Text Available Terapia gênica é um procedimento médico que envolve a modificação genética de células como forma de tratar doenças. Os genes influenciam praticamente todas as doenças humanas, seja pela codificação de proteínas anormais diretamente responsáveis pela doença, seja por determinar suscetibilidade a agentes ambientais que a induzem. A terapia gênica é ainda experimental, e está sendo estudada em protocolos clínicos para diferentes tipos de doenças. O desenvolvimento de métodos seguros e eficientes de transferência gênica para células humanas é um dos pontos mais importantes na terapia gênica. Apesar do grande esforço dirigido na última década para o aperfeiçoamento dos protocolos de terapia gênica humana, e dos avanços importantes na pesquisa básica, as aplicações terapêuticas da tecnologia de transferência gênica continuam ainda em grande parte teóricas. O potencial da terapia gênica é muito grande, devendo ainda causar grande impacto em todos os aspectos da medicina.Gene therapy is a medical intervention that involves modifying the genetic material of living cells to fight disease. Genes influence virtually every human disease, either by encoding for abnormal proteins, which are directly responsible for the disease, or by causing a susceptibility to environmental agents which induce it. Gene therapy is still experimental, and is being studied in clinical trials for many different types of diseases. The development of safe and effective methods of implanting normal genes into the human cell is one of the most important technical issues in gene therapy. Although much effort has been directed in the last decade toward improvement of protocols in human gene therapy, and in spite of many considerable achievements in basic research, the therapeutic applications of gene transfer technology still remain mostly theoretical. The potential for gene therapy is huge and likely to impact on all aspects of medicine.

  13. Radionuclide reporter gene imaging for cardiac gene therapy

    International Nuclear Information System (INIS)

    Inubushi, Masayuki; Tamaki, Nagara

    2007-01-01

    In the field of cardiac gene therapy, angiogenic gene therapy has been most extensively investigated. The first clinical trial of cardiac angiogenic gene therapy was reported in 1998, and at the peak, more than 20 clinical trial protocols were under evaluation. However, most trials have ceased owing to the lack of decisive proof of therapeutic effects and the potential risks of viral vectors. In order to further advance cardiac angiogenic gene therapy, remaining open issues need to be resolved: there needs to be improvement of gene transfer methods, regulation of gene expression, development of much safer vectors and optimisation of therapeutic genes. For these purposes, imaging of gene expression in living organisms is of great importance. In radionuclide reporter gene imaging, ''reporter genes'' transferred into cell nuclei encode for a protein that retains a complementary ''reporter probe'' of a positron or single-photon emitter; thus expression of the reporter genes can be imaged with positron emission tomography or single-photon emission computed tomography. Accordingly, in the setting of gene therapy, the location, magnitude and duration of the therapeutic gene co-expression with the reporter genes can be monitored non-invasively. In the near future, gene therapy may evolve into combination therapy with stem/progenitor cell transplantation, so-called cell-based gene therapy or gene-modified cell therapy. Radionuclide reporter gene imaging is now expected to contribute in providing evidence on the usefulness of this novel therapeutic approach, as well as in investigating the molecular mechanisms underlying neovascularisation and safety issues relevant to further progress in conventional gene therapy. (orig.)

  14. Gene Therapy Targeting HIV Entry

    Directory of Open Access Journals (Sweden)

    Chuka Didigu

    2014-03-01

    Full Text Available Despite the unquestionable success of antiretroviral therapy (ART in the treatment of HIV infection, the cost, need for daily adherence, and HIV-associated morbidities that persist despite ART all underscore the need to develop a cure for HIV. The cure achieved following an allogeneic hematopoietic stem cell transplant (HSCT using HIV-resistant cells, and more recently, the report of short-term but sustained, ART-free control of HIV replication following allogeneic HSCT, using HIV susceptible cells, have served to both reignite interest in HIV cure research, and suggest potential mechanisms for a cure. In this review, we highlight some of the obstacles facing HIV cure research today, and explore the roles of gene therapy targeting HIV entry, and allogeneic stem cell transplantation in the development of strategies to cure HIV infection.

  15. Gene therapy for prostate cancer.

    LENUS (Irish Health Repository)

    Tangney, Mark

    2012-01-31

    Cancer remains a leading cause of morbidity and mortality. Despite advances in understanding, detection, and treatment, it accounts for almost one-fourth of all deaths per year in Western countries. Prostate cancer is currently the most commonly diagnosed noncutaneous cancer in men in Europe and the United States, accounting for 15% of all cancers in men. As life expectancy of individuals increases, it is expected that there will also be an increase in the incidence and mortality of prostate cancer. Prostate cancer may be inoperable at initial presentation, unresponsive to chemotherapy and radiotherapy, or recur following appropriate treatment. At the time of presentation, patients may already have metastases in their tissues. Preventing tumor recurrence requires systemic therapy; however, current modalities are limited by toxicity or lack of efficacy. For patients with such metastatic cancers, the development of alternative therapies is essential. Gene therapy is a realistic prospect for the treatment of prostate and other cancers, and involves the delivery of genetic information to the patient to facilitate the production of therapeutic proteins. Therapeutics can act directly (eg, by inducing tumor cells to produce cytotoxic agents) or indirectly by upregulating the immune system to efficiently target tumor cells or by destroying the tumor\\'s vasculature. However, technological difficulties must be addressed before an efficient and safe gene medicine is achieved (primarily by developing a means of delivering genes to the target cells or tissue safely and efficiently). A wealth of research has been carried out over the past 20 years, involving various strategies for the treatment of prostate cancer at preclinical and clinical trial levels. The therapeutic efficacy observed with many of these approaches in patients indicates that these treatment modalities will serve as an important component of urological malignancy treatment in the clinic, either in isolation or

  16. Curing genetic disease with gene therapy.

    Science.gov (United States)

    Williams, David A

    2014-01-01

    Development of viral vectors that allow high efficiency gene transfer into mammalian cells in the early 1980s foresaw the treatment of severe monogenic diseases in humans. The application of gene transfer using viral vectors has been successful in diseases of the blood and immune systems, albeit with several curative studies also showing serious adverse events (SAEs). In children with X-linked severe combined immunodeficiency (SCID-X1), chronic granulomatous disease, and Wiskott-Aldrich syndrome, these SAEs were caused by inappropriate activation of oncogenes. Subsequent studies have defined the vector sequences responsible for these transforming events. Members of the Transatlantic Gene Therapy Consortium [TAGTC] have collaboratively developed new vectors that have proven safer in preclinical studies and used these vectors in new clinical trials in SCID-X1. These trials have shown evidence of early efficacy and preliminary integration analysis data from the SCID-X1 trial suggest an improved safety profile.

  17. Gene therapy in India: A focus

    Indian Academy of Sciences (India)

    /fulltext/jbsc/039/03/0537-0541. Keywords. Genetic diseases; gene therapy; viral vectors. Abstract. Gene therapy refers to the treatment of genetic diseases using normal copies of the defective genes. It has the potential to cure any genetic ...

  18. Gene therapy in cystic fibrosis.

    Science.gov (United States)

    Flotte, T R; Laube, B L

    2001-09-01

    less efficient than viral vectors but do not stimulate inflammatory and immunologic responses. Another challenge to the development of clinically feasible gene therapy is delivery mode. Early pulmonary delivery systems relied on the direct instillation of aerosolized vectors, which can result in the induction of adverse reactions because vector is delivered into the lung parenchyma. More recent studies have examined the potential for using spray technologies to target aerosolized AAV vectors to the larger central airways, thereby avoiding alveolar exposure and adverse effects. Comparisons of lung deposition with nebulized delivery of aerosol and spray delivery indicate that spraying results in a more localized deposition pattern (predominantly in the proximal airways) and significantly higher deposition fractions than nebulization. These findings could lead to more efficient and targeted lung delivery of aerosolized gene vectors in the future.

  19. Targeting Herpetic Keratitis by Gene Therapy

    Directory of Open Access Journals (Sweden)

    Hossein Mostafa Elbadawy

    2012-01-01

    Full Text Available Ocular gene therapy is rapidly becoming a reality. By November 2012, approximately 28 clinical trials were approved to assess novel gene therapy agents. Viral infections such as herpetic keratitis caused by herpes simplex virus 1 (HSV-1 can cause serious complications that may lead to blindness. Recurrence of the disease is likely and cornea transplantation, therefore, might not be the ideal therapeutic solution. This paper will focus on the current situation of ocular gene therapy research against herpetic keratitis, including the use of viral and nonviral vectors, routes of delivery of therapeutic genes, new techniques, and key research strategies. Whereas the correction of inherited diseases was the initial goal of the field of gene therapy, here we discuss transgene expression, gene replacement, silencing, or clipping. Gene therapy of herpetic keratitis previously reported in the literature is screened emphasizing candidate gene therapy targets. Commonly adopted strategies are discussed to assess the relative advantages of the protective therapy using antiviral drugs and the common gene therapy against long-term HSV-1 ocular infections signs, inflammation and neovascularization. Successful gene therapy can provide innovative physiological and pharmaceutical solutions against herpetic keratitis.

  20. Gene therapy for the inner ear: challenges and promises.

    Science.gov (United States)

    Ryan, Allen F; Dazert, Stefan

    2009-01-01

    Since the recognition of genes as the discrete units of heritability, and of DNA as their molecular substrate, the utilization of genes for therapeutic purposes has been recognized as a potential means of correcting genetic disorders. The tools of molecular biology, which allow the manipulation of DNA sequence, provided the means to put this concept into practice. However, progress in the implementation of these ideas has been slow. Here we review the history of the idea of gene therapy and the complexity of genetic disorders. We also discuss the requirements for sequence-based therapy to be accomplished for different types of inherited diseases, as well as the methods available for gene manipulation. The challenges that have limited the applications of gene therapy are reviewed, as are ethical concerns. Finally, we discuss the promise of gene therapy to address inherited and acquired disorders of the inner ear. Copyright (c) 2009 S. Karger AG, Basel.

  1. Gene Therapy for Post-Traumatic Osteoarthritis

    Science.gov (United States)

    2015-10-01

    Osteoarthritis (OA) Gene Therapy Equine Adeno-Associated Virus (AAV) Interleukin-1 Receptor Antagonist (IL-1Ra) Post-traumatic OA (PTOA) Self...AD______________ AWARD NUMBER: W81XWH-14-1-0498 TITLE: Gene Therapy for Post-Traumatic Osteoarthritis PRINCIPAL INVESTIGATOR: Steven C...COVERED 30Sept 2014 - 29 Sept 2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Gene Therapy for Posttraumatic Osteoarthritis 5b. GRANT NUMBER

  2. Vectors and strategies for nonviral cancer gene therapy.

    Science.gov (United States)

    Pahle, Jessica; Walther, Wolfgang

    2016-01-01

    This review presents recent developments in the use of nonviral vectors and transfer technologies in cancer gene therapy. Tremendous progress has been made in developing cancer gene therapy in ways that could be applicable to treatments. Numerous efforts are focused on methods of attacking known and novel targets more efficiently and specifically. In parallel to progress in nonviral vector design and delivery technologies, important achievements have been accomplished for suicide, gene replacement, gene suppression and immunostimulatory therapies. New nonviral cancer gene therapies have been developed based on emerging RNAi (si/shRNA-, miRNA) or ODN. This review provides an overview of recent gene therapeutic strategies in which nonviral vectors have been used experimentally and in clinical trials. Furthermore, we present current developments in nonviral vector systems in association with important chemical and physical gene delivery technologies and their potential for the future. Nonviral gene therapy has maintained its position as an approach for treating cancer. This is reflected by the fact that more than 17% of all gene therapy trials employ nonviral approaches. Thus, nonviral vectors have emerged as a clinical alternative to viral vectors for the appropriate expression and delivery of therapeutic genes.

  3. Progress in Gene Therapy for Prostate Cancer

    International Nuclear Information System (INIS)

    Ahmed, Kamran A.; Davis, Brian J.; Wilson, Torrence M.; Wiseman, Gregory A.; Federspiel, Mark J.; Morris, John C.

    2012-01-01

    Gene therapy has held promise to correct various disease processes. Prostate cancer represents the second leading cause of cancer death in American men. A number of clinical trials involving gene therapy for the treatment of prostate cancer have been reported. The ability to efficiently transduce tumors with effective levels of therapeutic genes has been identified as a fundamental barrier to effective cancer gene therapy. The approach utilizing gene therapy in prostate cancer patients at our institution attempts to address this deficiency. The sodium-iodide symporter (NIS) is responsible for the ability of the thyroid gland to transport and concentrate iodide. The characteristics of the NIS gene suggest that it could represent an ideal therapeutic gene for cancer therapy. Published results from Mayo Clinic researchers have indicated several important successes with the use of the NIS gene and prostate gene therapy. Studies have demonstrated that transfer of the human NIS gene into prostate cancer using adenovirus vectors in vitro and in vivo results in efficient uptake of radioactive iodine and significant tumor growth delay with prolongation of survival. Preclinical successes have culminated in the opening of a phase I trial for patients with advanced prostate disease which is currently accruing patients. Further study will reveal the clinical promise of NIS gene therapy in the treatment of prostate as well as other malignancies.

  4. Gene therapy prospects--intranasal delivery of therapeutic genes.

    Science.gov (United States)

    Podolska, Karolina; Stachurska, Anna; Hajdukiewicz, Karolina; Małecki, Maciej

    2012-01-01

    Gene therapy is recognized to be a novel method for the treatment of various disorders. Gene therapy strategies involve gene manipulation on broad biological processes responsible for the spreading of diseases. Cancer, monogenic diseases, vascular and infectious diseases are the main targets of gene therapy. In order to obtain valuable experimental and clinical results, sufficient gene transfer methods are required. Therapeutic genes can be administered into target tissues via gene carriers commonly defined as vectors. The retroviral, adenoviral and adeno-associated virus based vectors are most frequently used in the clinic. So far, gene preparations may be administered directly into target organs or by intravenous, intramuscular, intratumor or intranasal injections. It is common knowledge that the number of gene therapy clinical trials has rapidly increased. However, some limitations such as transfection efficiency and stable and long-term gene expression are still not resolved. Consequently, great effort is focused on the evaluation of new strategies of gene delivery. There are many expectations associated with intranasal delivery of gene preparations for the treatment of diseases. Intranasal delivery of therapeutic genes is regarded as one of the most promising forms of pulmonary gene therapy research. Gene therapy based on inhalation of gene preparations offers an alternative way for the treatment of patients suffering from such lung diseases as cystic fibrosis, alpha-1-antitrypsin defect, or cancer. Experimental and first clinical trials based on plasmid vectors or recombinant viruses have revealed that gene preparations can effectively deliver therapeutic or marker genes to the cells of the respiratory tract. The noninvasive intranasal delivery of gene preparations or conventional drugs seems to be very encouraging, although basic scientific research still has to continue.

  5. Gene therapy in dentistry: tool of genetic engineering. Revisited.

    Science.gov (United States)

    Gupta, Khushboo; Singh, Saurabh; Garg, Kavita Nitish

    2015-03-01

    Advances in biotechnology have brought gene therapy to the forefront of medical research. The concept of transferring genes to tissues for clinical applications has been discussed nearly half a century, but the ability to manipulate genetic material via recombinant DNA technology has brought this goal to reality. The feasibility of gene transfer was first demonstrated using tumour viruses. This led to development of viral and nonviral methods for the genetic modification of somatic cells. Applications of gene therapy to dental and oral problems illustrate the potential impact of this technology on dentistry. Preclinical trial results regarding the same have been very promising. In this review we will discuss methods, vectors involved, clinical implication in dentistry and scientific issues associated with gene therapy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Applications of the Preclinical Molecular Imaging in Biomedicine: Gene Therapy; Aplicaciones de la Imagen Molecular Preclínica en Biomedicina: Terapia Génica

    Energy Technology Data Exchange (ETDEWEB)

    Collantes, M.; Peñuelas, I.

    2014-07-01

    Gene therapy constitutes a promising option for efficient and targeted treatment of several inherited disorders. Imaging techniques using ionizing radiation as PET or SPECT are used for non-invasive monitoring of the distribution and kinetics of vector-mediated gene expression. In this review the main reporter gene/reporter probe strategies are summarized, as well as the contribution of preclinical models to the development of this new imaging modality previously to its application in clinical arena. [Spanish] La terapia génica constituye una nueva y prometedora opción para un tratamiento eficiente y dirigido de numerosas enfermedades hereditarias. Las técnicas de imagen que utilizan radiaciones ionizantes como PET o SPECT son utilizadas para la monitorización no invasiva de la distribución y la cinética de la expresión génica mediada por distintos vectores. En este resumen se explican brevemente los principales sistemas gen reportero/sonda reportera que permiten la visualización in vivo de la expresión génica, así como la aportación de los modelos preclínicos al desarrollo de esta nueva estrategia de imagen previamente a su aplicación en el ámbito clínico.

  7. 12-Crown-4-based amphipathic lipid and corresponding metal cation complexes for gene therapy applications: FT-IR characterization and surface charge determination

    Science.gov (United States)

    Bruni, P.; Fino, V.; Pisani, M.; Tosi, G.; Stipa, P.; Ferraris, P.; Francescangeli, O.

    2009-02-01

    The new lipid 1,2- O-dioleyl-3- O-{2-[(12-crown-4)-methoxy]-ethyl}- sn-glycerol, 12C4L, has been synthesized. This molecule can coordinate different cations that should make the corresponding liposome a good candidate as vector of genetic material for possible applications in gene therapy. An important feature of the molecule is the possibility to modulate the net surface charge of their complexes with metal cations, which is important to provide efficient DNA transfections. The molecule and its complexes with some metal cations (Mg 2+, Ca 2+, Mn 2+) have been characterized by FT-IR spectroscopy and band attributions confirmed by Density Functional Theory calculations. The net surface charge has been determined by Z potential determinations.

  8. Targeted Gene Therapy for Breast Cancer

    Science.gov (United States)

    1999-08-01

    or immunotoxin therapy, natural vector-host tropisms must be altered. Recent improvements in monoclonal antibody (mAb) engineering have expanded the...endocytosis. To achieve targeted gene therapy or immunotoxin therapy, natural vector-host tropisms must be altered. Recent improvements in monoclonal...trafficking of monoclonal antibody- antigen to an endolysosomal pathway is important. After altering targeting specificities, prokaryotic and plant

  9. Molecular targeting of gene therapy and radiotherapy

    International Nuclear Information System (INIS)

    Weichselbaum, R.R.; Kufe, D.W.; Advani, S.J.; Roizman, B.

    2001-01-01

    The full promise of gene therapy has been limited by the lack of specificity of vectors for tumor tissue as well as the lack of antitumor efficacy of transgenes encoded by gene delivery systems. In this paper we review our studies investigating two modifications of gene therapy combined with radiotherapy. The first investigations described include studies of radiation inducible gene therapy. In this paradigm, radio-inducible DNA sequences from the CarG elements of the Egr-1 promoter are cloned upstream of a cDNA encoding TNFa. The therapeutic gene (TNFa) is induced by radiation within the tumor microenvironment. In the second paradigm, genetically engineered herpes simplex virus (HSV-1) is induced by ionizing radiation to proliferate within the tumor volume. These modifications of radiotherapy and gene therapy may enhance the efficacy of both treatments

  10. Prevailing public perceptions of the ethics of gene therapy.

    Science.gov (United States)

    Robillard, Julie M; Roskams-Edris, Dylan; Kuzeljevic, Boris; Illes, Judy

    2014-08-01

    Gene therapy research is advancing rapidly, and hopes of treating a large number of brain disorders exist alongside ethical concerns. Most surveys of public attitudes toward these ethical issues are already dated and the content of these surveys has been researcher-driven. To examine current public perceptions, we developed an online instrument that is responsive and relevant to the latest research about ethics, gene therapy, and the brain. The 16-question survey was launched with the platform Amazon Mechanical Turk and was made available to residents of Canada and the United States. The survey was divided into six themes: (1) demographic information, (2) general opinions about gene therapy, (3) medical applications of gene therapy, (4) identity and moral/belief systems, (5) enhancement, and (6) risks. We received and analyzed responses from a total of 467 participants. Our results show that a majority of respondents (>90%) accept gene therapy as a treatment for severe illnesses such as Alzheimer disease, but this receptivity decreases for conditions perceived as less severe such as attention deficit hyperactivity disorder (79%), and for nontherapeutic applications (47%). The greatest area of concern for the application of gene therapy to brain conditions is the fear of not receiving sufficient information before undergoing the treatment. The main ethical concerns with enhancement were the potential for disparities in resource allocation, access to the procedure, and discrimination. When comparing these data with those from the 1990s, our findings suggest that the acceptability of gene therapy is increasing and that this trend is occurring despite lingering concerns over ethical issues. Providing the public and patients with up-to-date information and opportunities to engage in the discourse about areas of research in gene therapy is a priority.

  11. Gene therapy, early promises, subsequent problems, and recent breakthroughs.

    Science.gov (United States)

    Razi Soofiyani, Saeideh; Baradaran, Behzad; Lotfipour, Farzaneh; Kazemi, Tohid; Mohammadnejad, Leila

    2013-01-01

    Gene therapy is one of the most attractive fields in medicine. The concept of gene delivery to tissues for clinical applications has been discussed around half a century, but scientist's ability to manipulate genetic material via recombinant DNA technology made this purpose to reality. Various approaches, such as viral and non-viral vectors and physical methods, have been developed to make gene delivery safer and more efficient. While gene therapy initially conceived as a way to treat life-threatening disorders (inborn errors, cancers) refractory to conventional treatment, to date gene therapy is considered for many non-life-threatening conditions including those adversely influence on a patient's quality of life. Gene therapy has made significant progress, including tangible success, although much slower than was initially predicted. Although, gene therapies still at a fairly primitive stage, it is firmly science based. There is justifiable hope that with enhanced pathobiological understanding and biotechnological improvements, gene therapy will be a standard part of clinical practice within 20 years.

  12. Gene Therapy, Early Promises, Subsequent Problems, and Recent Breakthroughs

    Directory of Open Access Journals (Sweden)

    Saeideh Razi Soofiyani

    2013-08-01

    Full Text Available Gene therapy is one of the most attractive fields in medicine. The concept of gene delivery to tissues for clinical applications has been discussed around half a century, but scientist’s ability to manipulate genetic material via recombinant DNA technology made this purpose to reality. Various approaches, such as viral and non-viral vectors and physical methods, have been developed to make gene delivery safer and more efficient. While gene therapy initially conceived as a way to treat life-threatening disorders (inborn errors, cancers refractory to conventional treatment, to date gene therapy is considered for many non–life-threatening conditions including those adversely influence on a patient’s quality of life. Gene therapy has made significant progress, including tangible success, although much slower than was initially predicted. Although, gene therapies still at a fairly primitive stage, it is firmly science based. There is justifiable hope that with enhanced pathobiological understanding and biotechnological improvements, gene therapy will be a standard part of clinical practice within 20 years.

  13. Gene therapy for sickle cell disease.

    Science.gov (United States)

    Olowoyeye, Abiola; Okwundu, Charles I

    2016-11-14

    Sickle cell disease encompasses a group of genetic disorders characterized by the presence of at least one hemoglobin S (Hb S) allele, and a second abnormal allele that could allow abnormal hemoglobin polymerisation leading to a symptomatic disorder.Autosomal recessive disorders (such as sickle cell disease) are good candidates for gene therapy because a normal phenotype can be restored in diseased cells with only a single normal copy of the mutant gene. This is an update of a previously published Cochrane Review. The objectives of this review are:to determine whether gene therapy can improve survival and prevent symptoms and complications associated with sickle cell disease;to examine the risks of gene therapy against the potential long-term gain for people with sickle cell disease. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Haemoglobinopathies Trials Register, which comprises of references identified from comprehensive electronic database searches and searching relevant journals and abstract books of conference proceedings.Date of the most recent search of the Group's Haemoglobinopathies Trials Register: 15 August 2016. All randomised or quasi-randomised clinical trials (including any relevant phase 1, 2 or 3 trials) of gene therapy for all individuals with sickle cell disease, regardless of age or setting. No trials of gene therapy for sickle cell disease were found. No trials of gene therapy for sickle cell disease were reported. No randomised or quasi-randomised clinical trials of gene therapy for sickle cell disease were reported. Thus, no objective conclusions or recommendations in practice can be made on gene therapy for sickle cell disease. This systematic review has identified the need for well-designed, randomised controlled trials to assess the benefits and risks of gene therapy for sickle cell disease.

  14. Stable replication of the EBNA1/OriP-mediated baculovirus vector and its application to anti-HCV gene therapy

    Directory of Open Access Journals (Sweden)

    Chang Myint OO

    2009-10-01

    Full Text Available Abstract Background Hepatitis C virus (HCV is one of the main causes of liver-related morbidity and mortality. Although combined interferon-α-ribavirin therapy is effective for about 50% of the patients with HCV, better therapies are needed and preventative vaccines have yet to be developed. Short-hairpin RNAs (shRNAs inhibit gene expression by RNA interference. The application of transient shRNA expression is limited, however, due to the inability of the shRNA to replicate in mammalian cells and its inefficient transduction. The duration of transgene (shRNA expression in mammalian cells can be significantly extended using baculovirus-based shRNA-expressing vectors that contain the latent viral protein Epstein-Barr nuclear antigen 1 (EBNA1 and the origin of latent viral DNA replication (OriP sequences. These recombinant vectors contain compatible promoters and are highly effective for infecting primary hepatocyte and hepatoma cell lines, making them very useful tools for studies of hepatitis B and hepatitis C viruses. Here, we report the use of these baculovirus-based vector-derived shRNAs to inhibit core-protein expression in full-length hepatitis C virus (HCV replicon cells. Results We constructed a long-term transgene shRNA expression vector that contains the EBV EBNA1 and OriP sequences. We also designed baculovirus vector-mediated shRNAs against the highly conserved core-protein region of HCV. HCV core protein expression was inhibited by the EBNA1/OriP baculovirus vector for at least 14 days, which was considerably longer than the 3 days of inhibition produced by the wild-type baculovirus vector. Conclusion These findings indicate that we successfully constructed a long-term transgene (shRNA expression vector (Ac-EP-shRNA452 using the EBNA1/OriP system, which was propagated in Escherichia coli and converted into mammalian cells. The potential anti-HCV activity of the long-term transgene (shRNA expression vector was evaluated with the view

  15. Potential Therapeutic Modalities in Cancer Gene Therapy

    Directory of Open Access Journals (Sweden)

    Prithvi Sinha

    2017-04-01

    Full Text Available In spite of huge concerted efforts, the treatment of cancer, a disease frequently associated with genetic alterations caused due to hereditary or environmental factors, remains a challenge. The last few years have witnessed emergence of several innovative and effective modalities for the treatment of solid tumours and hematological malignancies. Gene therapy has shown enormous potential for cancer treatment, especially for metastatic cancers which unlike localized solid tumours, may not be amenable to surgery or other treatment options. Gene therapy aims to introduce a correct copy of the malfunctioning gene in the tumour environment by using viral or non-viral methods to impede or inhibit its growth. This review provides an overview of three main approaches for cancer gene therapy namely immunotherapy, oncolytic therapy and gene transfer therapy. Immunotherapy augments the host immune system in order to destroy cancer cells while oncolytic therapy uses genetically engineered viruses such as to effectively kill cancer cells. Clinical studies so far have shown that cells can be engineered to express gene products that can specifically target cancer cells and prevents their growth and metastasis. Though gene therapy for cancer is yet to see extensive clinical use, it is likely that in combination with other treatment modalities, it will help in controlling and possibly curing cancer in the near future.

  16. Glucagon-Like Peptide-1 Gene Therapy

    Directory of Open Access Journals (Sweden)

    Anne M. Rowzee

    2011-01-01

    Full Text Available Glucagon-like peptide 1 (GLP-1 is a small peptide component of the prohormone, proglucagon, that is produced in the gut. Exendin-4, a GLP-1 receptor agonist originally isolated from the saliva of H. suspectum or Gila monster, is a peptide that shares sequence and functional homology with GLP-1. Both peptides have been demonstrated to stimulate insulin secretion, inhibit glucagon secretion, promote satiety and slow gastric emptying. As such, GLP-1 and Exendin-4 have become attractive pharmaceutical targets as an adjunctive therapy for individuals with type II diabetes mellitus, with several products currently available clinically. Herein we summarize the cell biology leading to GLP-1 production and secretion from intestinal L-cells and the endocrine functions of this peptide and Exendin-4 in humans. Additionally, gene therapeutic applications of GLP-1 and Exendin-4 are discussed with a focus on recent work using the salivary gland as a gene therapy target organ for the treatment of diabetes mellitus.

  17. Gene therapy for cartilage and bone tissue engineering

    CERN Document Server

    Hu, Yu-Chen

    2014-01-01

    "Gene Therapy for Cartilage and Bone Tissue Engineering" outlines the tissue engineering and possible applications of gene therapy in the field of biomedical engineering as well as basic principles of gene therapy, vectors and gene delivery, specifically for cartilage and bone engineering. It is intended for tissue engineers, cell therapists, regenerative medicine scientists and engineers, gene therapist and virologists. Dr. Yu-Chen Hu is a Distinguished Professor at the Department of Chemical Engineering, National Tsing Hua University and has received the Outstanding Research Award (National Science Council), Asia Research Award (Society of Chemical Engineers, Japan) and Professor Tsai-Teh Lai Award (Taiwan Institute of Chemical Engineers). He is also a fellow of the American Institute for Medical and Biological Engineering (AIMBE) and a member of the Tissue Engineering International & Regenerative Medicine Society (TERMIS)-Asia Pacific Council.

  18. Bone Marrow Gene Therapy for HIV/AIDS

    Directory of Open Access Journals (Sweden)

    Elena Herrera-Carrillo

    2015-07-01

    Full Text Available Bone marrow gene therapy remains an attractive option for treating chronic immunological diseases, including acquired immunodeficiency syndrome (AIDS caused by human immunodeficiency virus (HIV. This technology combines the differentiation and expansion capacity of hematopoietic stem cells (HSCs with long-term expression of therapeutic transgenes using integrating vectors. In this review we summarize the potential of bone marrow gene therapy for the treatment of HIV/AIDS. A broad range of antiviral strategies are discussed, with a particular focus on RNA-based therapies. The idea is to develop a durable gene therapy that lasts the life span of the infected individual, thus contrasting with daily drug regimens to suppress the virus. Different approaches have been proposed to target either the virus or cellular genes encoding co-factors that support virus replication. Some of these therapies have been tested in clinical trials, providing proof of principle that gene therapy is a safe option for treating HIV/AIDS. In this review several topics are discussed, ranging from the selection of the antiviral molecule and the viral target to the optimal vector system for gene delivery and the setup of appropriate preclinical test systems. The molecular mechanisms used to formulate a cure for HIV infection are described, including the latest antiviral strategies and their therapeutic applications. Finally, a potent combination of anti-HIV genes based on our own research program is described.

  19. Cancer suicide gene therapy: a patent review.

    Science.gov (United States)

    Navarro, Saúl Abenhamar; Carrillo, Esmeralda; Griñán-Lisón, Carmen; Martín, Ana; Perán, Macarena; Marchal, Juan Antonio; Boulaiz, Houria

    2016-09-01

    Cancer is considered the second leading cause of death worldwide despite the progress made in early detection and advances in classical therapies. Advancing in the fight against cancer requires the development of novel strategies, and the suicide gene transfer to tumor cells is providing new possibilities for cancer therapy. In this manuscript, authors present an overview of suicide gene systems and the latest innovations done to enhance cancer suicide gene therapy strategies by i) improving vectors for targeted gene delivery using tissue specific promoter and receptors; ii) modification of the tropism; and iii) combining suicide genes and/or classical therapies for cancer. Finally, the authors highlight the main challenges to be addressed in the future. Even if many efforts are needed for suicide gene therapy to be a real alternative for cancer treatment, we believe that the significant progress made in the knowledge of cancer biology and characterization of cancer stem cells accompanied by the development of novel targeted vectors will enhance the effectiveness of this type of therapeutic strategy. Moreover, combined with current treatments, suicide gene therapy will improve the clinical outcome of patients with cancer in the future.

  20. Genetically engineering adenoviral vectors for gene therapy.

    Science.gov (United States)

    Coughlan, Lynda

    2014-01-01

    Adenoviral (Ad) vectors are commonly used for various gene therapy applications. Significant advances in the genetic engineering of Ad vectors in recent years has highlighted their potential for the treatment of metastatic disease. There are several methods to genetically modify the Ad genome to incorporate retargeting peptides which will redirect the natural tropism of the viruses, including homologous recombination in bacteria or yeast. However, homologous recombination in yeast is highly efficient and can be achieved without the need for extensive cloning strategies. In addition, the method does not rely on the presence of unique restriction sites within the Ad genome and the reagents required for this method are widely available and inexpensive. Large plasmids containing the entire adenoviral genome (~36 kbp) can be modified within Saccharomyces cerevisiae yeast and genomes easily rescued in Escherichia coli hosts for analysis or amplification. A method for two-step homologous recombination in yeast is described in this chapter.

  1. Gene Therapy: Potential, Pros, Cons and Ethics

    OpenAIRE

    Ananth Nanjunda Rao

    2002-01-01

    Genetic technology poses risks along with its rewards, just as any technology has in the past. To stop its development and forfeit the benefits gene therapy could offer would be a far greater mistake than forging ahead could ever be. People must always try to be responsible with their new technology, but gene therapy has the potential to be the future of medicine and its possibilities must be explored.

  2. Gene Therapy: Potential, Pros, Cons and Ethics

    Directory of Open Access Journals (Sweden)

    Ananth Nanjunda Rao

    2002-07-01

    Full Text Available Genetic technology poses risks along with its rewards, just as any technology has in the past. To stop its development and forfeit the benefits gene therapy could offer would be a far greater mistake than forging ahead could ever be. People must always try to be responsible with their new technology, but gene therapy has the potential to be the future of medicine and its possibilities must be explored.

  3. Strategies in Gene Therapy for Glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Kwiatkowska, Aneta; Nandhu, Mohan S.; Behera, Prajna; Chiocca, E. Antonio; Viapiano, Mariano S., E-mail: mviapiano@partners.org [Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 (United States)

    2013-10-22

    Glioblastoma (GBM) is the most aggressive form of brain cancer, with a dismal prognosis and extremely low percentage of survivors. Novel therapies are in dire need to improve the clinical management of these tumors and extend patient survival. Genetic therapies for GBM have been postulated and attempted for the past twenty years, with variable degrees of success in pre-clinical models and clinical trials. Here we review the most common approaches to treat GBM by gene therapy, including strategies to deliver tumor-suppressor genes, suicide genes, immunomodulatory cytokines to improve immune response, and conditionally-replicating oncolytic viruses. The review focuses on the strategies used for gene delivery, including the most common and widely used vehicles (i.e., replicating and non-replicating viruses) as well as novel therapeutic approaches such as stem cell-mediated therapy and nanotechnologies used for gene delivery. We present an overview of these strategies, their targets, different advantages, and challenges for success. Finally, we discuss the potential of gene therapy-based strategies to effectively attack such a complex genetic target as GBM, alone or in combination with conventional therapy.

  4. Strategies in Gene Therapy for Glioblastoma

    International Nuclear Information System (INIS)

    Kwiatkowska, Aneta; Nandhu, Mohan S.; Behera, Prajna; Chiocca, E. Antonio; Viapiano, Mariano S.

    2013-01-01

    Glioblastoma (GBM) is the most aggressive form of brain cancer, with a dismal prognosis and extremely low percentage of survivors. Novel therapies are in dire need to improve the clinical management of these tumors and extend patient survival. Genetic therapies for GBM have been postulated and attempted for the past twenty years, with variable degrees of success in pre-clinical models and clinical trials. Here we review the most common approaches to treat GBM by gene therapy, including strategies to deliver tumor-suppressor genes, suicide genes, immunomodulatory cytokines to improve immune response, and conditionally-replicating oncolytic viruses. The review focuses on the strategies used for gene delivery, including the most common and widely used vehicles (i.e., replicating and non-replicating viruses) as well as novel therapeutic approaches such as stem cell-mediated therapy and nanotechnologies used for gene delivery. We present an overview of these strategies, their targets, different advantages, and challenges for success. Finally, we discuss the potential of gene therapy-based strategies to effectively attack such a complex genetic target as GBM, alone or in combination with conventional therapy

  5. Targeted cancer gene therapy : the flexibility of adenoviral gene therapy vectors

    NARCIS (Netherlands)

    Rots, MG; Curiel, DT; Gerritsen, WR; Haisma, HJ

    2003-01-01

    Recombinant adenoviral vectors are promising reagents for therapeutic interventions in humans, including gene therapy for biologically complex diseases like cancer and cardiovascular diseases. In this regard, the major advantage of adenoviral vectors is their superior in vivo gene transfer

  6. Stem cell and gene therapies for diabetes mellitus.

    Science.gov (United States)

    Calne, Roy Y; Gan, Shu Uin; Lee, Kok Onn

    2010-03-01

    In this Perspectives article, we comment on the progress in experimental stem cell and gene therapies that might one day become a clinical reality for the treatment of patients with diabetes mellitus. Research on the ability of human embryonic stem cells to differentiate into islet cells has defined the developmental stages and transcription factors involved in this process. However, the clinical applications of human embryonic stem cells are limited by ethical concerns, as well as the potential for teratoma formation. As a consequence, alternative forms of stem cell therapies, such as induced pluripotent stem cells and bone marrow-derived mesenchymal stem cells, have become an area of intense study. Finally, gene therapy shows some promise for the generation of insulin-producing cells. Here, we discuss two of the most frequently used approaches: in vitro gene delivery into cells which are then transplanted into the recipient and direct delivery of genes in vivo.

  7. Gene therapy for meningioma: improved gene delivery with targeted adenoviruses

    NARCIS (Netherlands)

    Dirven, Clemens M. F.; Grill, Jacques; Lamfers, Martine L. M.; van der Valk, Paul; Leonhart, Angelique M.; van Beusechem, Victor W.; Haisma, Hidde J.; Pinedo, Herbert M.; Curiel, David T.; Vandertop, W. Peter; Gerritsen, Winald R.

    2002-01-01

    OBJECT: Due to their surgical inaccessibility or aggressive behavior, some meningiomas cannot be cured with current treatment strategies. Gene therapy is an emerging strategy for the treatment of brain tumors, which the authors investigated to determine whether adenoviruses could be used for gene

  8. Gene therapy for meningioma : improved gene delivery with targeted adenoviruses

    NARCIS (Netherlands)

    Dirven, CMF; Grill, J; Lamfers, MLM; Van der Valk, P; Leonhart, AM; Van Beusechem, VW; Haisma, HJ; Pinedo, HM; Curiel, DT; Vandertop, WP; Gerritsen, WR

    Object. Due to their surgical inaccessibility or aggressive behavior, some meningiomas cannot be cured with current treatment strategies. Gene therapy is an emerging strategy for the treatment of brain tumors, which the authors investigated to determine whether adenoviruses could be used for gene

  9. Human gene therapy and imaging: cardiology

    International Nuclear Information System (INIS)

    Wu, Joseph C.; Yla-Herttuala, Seppo

    2005-01-01

    This review discusses the basics of cardiovascular gene therapy, the results of recent human clinical trials, and the rapid progress in imaging techniques in cardiology. Improved understanding of the molecular and genetic basis of coronary heart disease has made gene therapy a potential new alternative for the treatment of cardiovascular diseases. Experimental studies have established the proof-of-principle that gene transfer to the cardiovascular system can achieve therapeutic effects. First human clinical trials provided initial evidence of feasibility and safety of cardiovascular gene therapy. However, phase II/III clinical trials have so far been rather disappointing and one of the major problems in cardiovascular gene therapy has been the inability to verify gene expression in the target tissue. New imaging techniques could significantly contribute to the development of better gene therapeutic approaches. Although the exact choice of imaging modality will depend on the biological question asked, further improvement in image resolution and detection sensitivity will be needed for all modalities as we move from imaging of organs and tissues to imaging of cells and genes. (orig.)

  10. Gene therapy of cancer and development of therapeutic target gene

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Min; Kwon, Hee Chung

    1998-04-01

    We applied HSV-tk/GCV strategy to orthotopic rat hepatoma model and showed anticancer effects of hepatoma. The increased expression of Lac Z gene after adenovirus-mediated gene delivery throughout hepatic artery was thought that is increased the possibility of gene therapy for curing hepatoma. With the construction of kGLP-laboratory, it is possible to produce a good quantity and quality of adenovirus in lage-scale production and purification of adenovirus vector. Also, the analysis of hepatoma related genes by PCR-LOH could be used for the diagnosis of patients and the development of therapeutic gene.

  11. Gene therapy of cancer and development of therapeutic target gene

    International Nuclear Information System (INIS)

    Kim, Chang Min; Kwon, Hee Chung

    1998-04-01

    We applied HSV-tk/GCV strategy to orthotopic rat hepatoma model and showed anticancer effects of hepatoma. The increased expression of Lac Z gene after adenovirus-mediated gene delivery throughout hepatic artery was thought that is increased the possibility of gene therapy for curing hepatoma. With the construction of kGLP-laboratory, it is possible to produce a good quantity and quality of adenovirus in lage-scale production and purification of adenovirus vector. Also, the analysis of hepatoma related genes by PCR-LOH could be used for the diagnosis of patients and the development of therapeutic gene

  12. Gene transfer technology and genetic radioisotope targeting therapy

    International Nuclear Information System (INIS)

    Wang Jiaqiong; Wang Zizheng

    2004-01-01

    With deeper cognition about mechanisms of disease at the cellular and molecular level, gene therapy has become one of the most important research fields in medical molecular biology at present. Gene transfer technology plays an important role during the course of gene therapy, and further improvement should be made about vectors carrying target gene sequences. Also, gene survey is needed during gene therapy, and gene imaging is the most effective method. The combination of gene therapy and targeted radiotherapy, that is, 'Genetic Radioisotope Targeting Therapy', will be a novel approach to tumor gene therapy

  13. Why commercialization of gene therapy stalled; examining the life cycles of gene therapy technologies.

    Science.gov (United States)

    Ledley, F D; McNamee, L M; Uzdil, V; Morgan, I W

    2014-02-01

    This report examines the commercialization of gene therapy in the context of innovation theories that posit a relationship between the maturation of a technology through its life cycle and prospects for successful product development. We show that the field of gene therapy has matured steadily since the 1980s, with the congruent accumulation of >35 000 papers, >16 000 US patents, >1800 clinical trials and >$4.3 billion in capital investment in gene therapy companies. Gene therapy technologies comprise a series of dissimilar approaches for gene delivery, each of which has introduced a distinct product architecture. Using bibliometric methods, we quantify the maturation of each technology through a characteristic life cycle S-curve, from a Nascent stage, through a Growing stage of exponential advance, toward an Established stage and projected limit. Capital investment in gene therapy is shown to have occurred predominantly in Nascent stage technologies and to be negatively correlated with maturity. Gene therapy technologies are now achieving the level of maturity that innovation research and biotechnology experience suggest may be requisite for efficient product development. Asynchrony between the maturation of gene therapy technologies and capital investment in development-focused business models may have stalled the commercialization of gene therapy.

  14. Radiopharmaceuticals to monitor the expression of transferred genes in gene transfer therapy

    International Nuclear Information System (INIS)

    Wiebe, L. I.

    1997-01-01

    The development and application of radiopharmaceuticals has, in many instances, been based on the pharmacological properties of therapeutic agents. The molecular biology-biotechnology revolution has had an important impact on treatment of diseases, in part through the reduced toxicity of 'biologicals', in part because of their specificity for interaction at unique molecular sites and in part because of their selective delivery to the target site. Immunotherapeutic approaches include the use of monoclonal antibodies (MABs), MAB-fragments and chemotactic peptides. Such agents currently form the basis of both diagnostic and immunotherapeutic radiopharmaceuticals. More recently, gene transfer techniques have been advanced to the point that a new molecular approach, gene therapy, has become a reality. Gene therapy offers an opportunity to attack disease at its most fundamental level. The therapeutic mechanism is based on the expression of a specific gene or genes, the product of which will invoke immunological, receptor-based or enzyme-based therapeutic modalities. Several approaches to gene therapy of cancer have been envisioned, the most clinically-advanced concepts involving the introduction of genes that will encode for molecular targets nor normally found in healthy mammalian cells. A number of gene therapy clinical trials are based on the introduction of the Herpes simplex virus type-1 (HSV-1) gene that encodes for viral thymidine kinase (tk+). Once HSV-1 tk+ is expressed in the target (cancer) cell, therapy can be effected by the administration of a highly molecularly-targeted and systemically non-toxic antiviral drug such as ganciclovir. The development of radiodiagnostic imaging in gene therapy will be reviewed, using HSV-1 tk+ and radioiodinated IVFRU as a basis for development of the theme. Molecular targets that could be exploited in gene therapy, other than tk+, will be identified

  15. Radiopharmaceuticals to monitor the expression of transferred genes in gene transfer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, L. I. [University of Alberta, Edmonton (Canada). Noujaim Institute for Pharmaceutical Oncology Research

    1997-10-01

    The development and application of radiopharmaceuticals has, in many instances, been based on the pharmacological properties of therapeutic agents. The molecular biology-biotechnology revolution has had an important impact on treatment of diseases, in part through the reduced toxicity of `biologicals`, in part because of their specificity for interaction at unique molecular sites and in part because of their selective delivery to the target site. Immunotherapeutic approaches include the use of monoclonal antibodies (MABs), MAB-fragments and chemotactic peptides. Such agents currently form the basis of both diagnostic and immunotherapeutic radiopharmaceuticals. More recently, gene transfer techniques have been advanced to the point that a new molecular approach, gene therapy, has become a reality. Gene therapy offers an opportunity to attack disease at its most fundamental level. The therapeutic mechanism is based on the expression of a specific gene or genes, the product of which will invoke immunological, receptor-based or enzyme-based therapeutic modalities. Several approaches to gene therapy of cancer have been envisioned, the most clinically-advanced concepts involving the introduction of genes that will encode for molecular targets nor normally found in healthy mammalian cells. A number of gene therapy clinical trials are based on the introduction of the Herpes simplex virus type-1 (HSV-1) gene that encodes for viral thymidine kinase (tk+). Once HSV-1 tk+ is expressed in the target (cancer) cell, therapy can be effected by the administration of a highly molecularly-targeted and systemically non-toxic antiviral drug such as ganciclovir. The development of radiodiagnostic imaging in gene therapy will be reviewed, using HSV-1 tk+ and radioiodinated IVFRU as a basis for development of the theme. Molecular targets that could be exploited in gene therapy, other than tk+, will be identified

  16. New tools in regenerative medicine: gene therapy.

    Science.gov (United States)

    Muñoz Ruiz, Miguel; Regueiro, José R

    2012-01-01

    Gene therapy aims to transfer genetic material into cells to provide them with new functions. A gene transfer agent has to be safe, capable of expressing the desired gene for a sustained period of time in a sufficiently large population of cells to produce a biological effect. Identifying a gene transfer tool that meets all of these criteria has proven to be a difficult objective. Viral and nonviral vectors, in vivo, ex vivo and in situ strategies co-exist at present, although ex vivo lenti-or retroviral vectors are presently the most popular.Natural stem cells (from embryonic, hematopoietic, mesenchymal, or adult tissues) or induced progenitor stem (iPS) cells can be modified by gene therapy for use in regenerative medicine. Among them, hematopoietic stem cells have shown clear clinical benefit, but iPS cells hold humongous potential with no ethical concerns.

  17. Ethical issues of perinatal human gene therapy.

    Science.gov (United States)

    Fletcher, J C; Richter, G

    1996-01-01

    This paper examines some key ethical issues raised by trials of human gene therapy in the perinatal period--i.e., in infants, young children, and the human fetus. It describes five resources in ethics for researchers' considerations prior to such trials: (1) the history of ethical debate about gene therapy, (2) a literature on the relevance of major ethical principles for clinical research, (3) a body of widely accepted norms and practices, (4) knowledge of paradigm cases, and (5) researchers' own professional integrity. The paper also examines ethical concerns that must be met prior to any trial: benefits to and safety of subjects, informed assent of children and informed parental permission, informed consent of pregnant women in fetal gene therapy, protection of privacy, and concerns about fairness in the selection of subjects. The paper criticizes the position that cases of fetal gene therapy should be restricted only to those where the pregnant woman has explicitly refused abortion. Additional topics include concerns about genetic enhancement and germ-line gene therapy.

  18. Gene therapy, fundamental rights, and the mandates of public health.

    Science.gov (United States)

    Lynch, John

    2004-01-01

    Recent and near-future developments in the field of molecular biology will make possible the treatment of genetic disease on an unprecedented scale. The potential applications of these developments implicate important public policy considerations. Among the questions that may arise is the constitutionality of a state-mandated program of gene therapy for the purpose of eradicating certain genetic diseases. Though controversial, precedents of public health jurisprudence suggest that such a program could survive constitutional scrutiny. This article provides an overview of gene therapy in the context of fundamental rights and the mandates of public health.

  19. On the scientific and ethical issues of fetal somatic gene therapy.

    Science.gov (United States)

    Coutelle, C; Rodeck, C

    2002-06-01

    Fetal somatic gene therapy is often seen as an ethically particularly controversial field of gene therapy. This review outlines the hypothesis and scientific background of in utero gene therapy and addresses some of the frequently raised questions and concerns in relation to this still experimental, potentially preventive gene therapy approach. We discuss here the choice of vectors, of animal models and routes of administration to the fetus. We address the relation of fetal gene therapy to abortion, to post-implantation selection and postnatal gene therapy and the concerns of inadvertent germ-line modification. Our views on the specific risks of prenatal gene therapy and on the particular prerequisites that have to be met before human application can be considered are presented.

  20. Translational approach for gene therapy in epilepsy

    DEFF Research Database (Denmark)

    Ledri, Litsa Nikitidou; Melin, Esbjörn; Christiansen, Søren H.

    2016-01-01

    Although novel treatment strategies based on the gene therapy approach for epilepsy has been encouraging, there is still a gap in demonstrating a proof-of-concept in a clinically relevant animal model and study design. In the present study, a conceptually novel framework reflecting a plausible...... clinical trial for gene therapy of temporal lobe epilepsy was explored: We investigated (i) whether the post intrahippocampal kainate-induced status epilepticus (SE) model of chronic epilepsy in rats could be clinically relevant; and (ii) whether a translationally designed neuropeptide Y (NPY)/Y2 receptor......-based gene therapy approach targeting only the seizure-generating focus unilaterally can decrease seizure frequency in this chronic model of epilepsy.Our data suggest that the intrahippocampal kainate model resembles the disease development of human chronic mesial temporal lobe epilepsy (mTLE): (i...

  1. Specifically targeted gene therapy for small-cell lung cancer

    DEFF Research Database (Denmark)

    Christensen, C.L.; Zandi, R.; Gjetting, T.

    2009-01-01

    Small-cell lung cancer (SCLC) is a highly malignant disease with poor prognosis. Hence, there is great demand for new therapies that can replace or supplement the current available treatment regimes. Gene therapy constitutes a promising strategy and relies on the principle of introducing exogenous....... This review describes and discusses the current status of the application of gene therapy in relation to SCLC Udgivelsesdato: 2009/4...... DNA into malignant cells causing them to die. Since SCLC is a highly disseminated malignancy, the gene therapeutic agent must be administered systemically, obligating a high level of targeting of tumor tissue and the use of delivery vehicles designed for systemic circulation of the therapeutic DNA...

  2. An efficient deletion mutant packaging system for defective herpes simplex virus vectors: Potential applications to human gene therapy and neuronal physiology

    International Nuclear Information System (INIS)

    Geller, A.I.; Keyomarsi, K.; Bryan, J.; Pardee, A.B.

    1990-01-01

    The authors have previously described a defective herpes simplex virus (HSV-1) vector system that permits that introduction of virtually any gene into nonmitotic cells. pHSVlac, the prototype vector, stably expresses Escherichia coli β-galactosidase from a constitutive promoter in many human cell lines, in cultured rat neurons from throughout the nervous system, and in cells in the adult rat brain. HSV-1 vectors expressing other genes may prove useful for studying neuronal physiology or performing human gene therapy for neurological diseases, such as Parkinson disease or brain tumors. A HSV-1 temperature-sensitive (ts) mutant, ts K, has been used as helper virus; ts mutants revert to wild type. In contrast, HSV-1 deletion mutants essentially cannot revert to wild type; therefore, use of a deletion mutant as helper virus might permit human gene therapy with HSV-1 vectors. They now report an efficient packaging system for HSV-1 VECTORS USING A DELETION MUTANT, d30EBA, as helper virus; virus is grown on the complementing cell line M64A. pHSVlac virus prepared using the deletion mutant packaging system stably expresses β-galactosidase in cultured rat sympathetic neurons and glia. Both D30EBA and ts K contain a mutation in the IE3 gene of HSV-1 strain 17 and have the same phenotype; therefore, changing the helper virus from ts K to D30EBA does not alter the host range or other properties of the HSV-1 vector system

  3. Modifier genes: Moving from pathogenesis to therapy.

    Science.gov (United States)

    McCabe, Edward R B

    2017-09-01

    This commentary will focus on how we can use our knowledge about the complexity of human disease and its pathogenesis to identify novel approaches to therapy. We know that even for single gene Mendelian disorders, patients with identical mutations often have different presentations and outcomes. This lack of genotype-phenotype correlation led us and others to examine the roles of modifier genes in the context of biological networks. These investigations have utilized vertebrate and invertebrate model organisms. Since one of the goals of research on modifier genes and networks is to identify novel therapeutic targets, the challenges to patient access and compliance because of the high costs of medications for rare genetic diseases must be recognized. A recent article explored protective modifiers, including plastin 3 (PLS3) and coronin 1C (CORO1C), in spinal muscular atrophy (SMA). SMA is an autosomal recessive deficit of survival motor neuron protein (SMN) caused by mutations in SMN1. However, the severity of SMA is determined primarily by the number of SMN2 copies, and this results in significant phenotypic variability. PLS3 was upregulated in siblings who were asymptomatic compared with those who had SMA2 or SMA3, but identical homozygous SMN1 deletions and equal numbers of SMN2 copies. CORO1C was identified by interrogation of the PLS3 interactome. Overexpression of these proteins rescued endocytosis in SMA models. In addition, antisense RNA for upregulation of SMN2 protein expression is being developed as another way of modifying the SMA phenotype. These investigations suggest the practical application of protective modifiers to rescue SMA phenotypes. Other examples of the potential therapeutic value of novel protective modifiers will be discussed, including in Duchenne muscular dystrophy and glycerol kinase deficiency. This work shows that while we live in an exciting era of genomic sequencing, a functional understanding of biology, the impact of its

  4. Gene Therapy Approaches to Immunodeficiency.

    Science.gov (United States)

    Ghosh, Sujal; Gaspar, H Bobby

    2017-10-01

    Transfer of gene-corrected autologous hematopoietic stem cells in patients with primary immunodeficiencies has emerged as a new therapeutic approach. Patients with various conditions lacking a suitable donor have been treated with retroviral vectors and a gene-addition strategy. Initial promising results were shadowed by the occurrence of malignancies in some of these patients. Current trials, developed in the last decade, use safer viral vectors to overcome the risk of genotoxicity and have led to improved clinical outcomes. This review reflects the progresses made in specific disorders, including adenosine deaminase deficiency, X-linked severe combined immunodeficiency, chronic granulomatous disease, and Wiskott-Aldrich syndrome. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Development of Viral Vectors for Gene Therapy for Chronic Pain

    Directory of Open Access Journals (Sweden)

    Yu Huang

    2011-01-01

    Full Text Available Chronic pain is a major health concern that affects millions of people. There are no adequate long-term therapies for chronic pain sufferers, leading to significant cost for both society and the individual. The most commonly used therapy for chronic pain is the application of opioid analgesics and nonsteroidal anti-inflammatory drugs, but these drugs can lead to addiction and may cause side effects. Further studies of the mechanisms of chronic pain have opened the way for development of new treatment strategies, one of which is gene therapy. The key to gene therapy is selecting safe and highly efficient gene delivery systems that can deliver therapeutic genes to overexpress or suppress relevant targets in specific cell types. Here we review several promising viral vectors that could be applied in gene transfer for the treatment of chronic pain and further discuss the possible mechanisms of genes of interest that could be delivered with viral vectors for the treatment of chronic pain.

  6. Degradable Polyethylenimine-Based Gene Carriers for Cancer Therapy.

    Science.gov (United States)

    Jiang, Hu-Lin; Islam, Mohammad Ariful; Xing, Lei; Firdous, Jannatul; Cao, Wuji; He, Yu-Jing; Zhu, Yong; Cho, Ki-Hyun; Li, Hui-Shan; Cho, Chong-Su

    2017-04-01

    Gene therapy using recombinant DNA or gene silencing using siRNA have become a prominent area of research in cancer therapy. However, their use in clinical applications is limited due to overall safety concerns and suboptimal efficacy. Although non-viral vectors such as polycationic polymers do not offer the same level of transfection efficiency as their viral counterparts, they still demonstrate immense potential as alternatives to viral vectors, given their versatility, low immunogenicity, ease of large-scale production, and ability to accelerate gene transfer with well-designed delivery platforms. Among these polymers, polyethylenimine (PEI) is considered a state-of-the-art gene carrier, owing to its ability to improve gene transfer capacity and intracellular delivery. Nonetheless, PEI suffers from the critical shortcoming of non-degradability that can lead to severe cytotoxic effects, despite the fact that the level of this toxicity decreases with molecular weight (MW). As a result, a considerable amount of effort has been devoted to designing low-MW PEI derivatives with degradable linkages. This review will categorize the recent advances in these degradable PEI derivatives based on their degradable chemistries, including ester, disulfide, imine, carbamate, amide, and ketal linkages, and summarize their application in gene therapies against various major cancer malignancies.

  7. Gene therapy of cancer by vaccines carrying inserted immunostimulatory genes

    Czech Academy of Sciences Publication Activity Database

    Bubeník, Jan

    2007-01-01

    Roč. 53, č. 3 (2007), s. 71-73 ISSN 0015-5500 Grant - others:EU-FP6 NoE Clinigene(XE) 018933; Liga proti rakovině, Praha(CZ) XX Institutional research plan: CEZ:AV0Z50520514 Keywords : gene therapy * immunostimulatory genes * vaccine Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.596, year: 2007

  8. [APPLICATION OF NEGATIVE PRESSURE THERAPY].

    Science.gov (United States)

    Laginja, S; Marinović, M

    2016-01-01

    Negative pressure therapy is gradually taking an increasingly important role in the treatment of chronic wound healing because of its simple application in hospital or outpatient setting and good comfort with no pain for the patient. Chronic wound healing is accelerated in comparison with other conservative treatments. The level of negative pressure is between 40 and 125 mm Hg below ambient. Direct and indirect effect of the negative pressure therapy helps in wound healing and provides good preparation for definitive surgical management of wounds.

  9. Gene therapy in India: A focus

    Indian Academy of Sciences (India)

    2014-05-01

    May 1, 2014 ... cine launched into the market and Retronectin (TaKaRa. Clontech, Otsu, Japan), which has dramatically ... delivery systems to efficiently target the hepatocytes. Sarkar's group specifically focussed on .... targeted gene therapy for cancer, particularly the anti-apoptotic. Bcl-2 family members towards an ...

  10. Engineering liposomal nanoparticles for targeted gene therapy.

    Science.gov (United States)

    Zylberberg, C; Gaskill, K; Pasley, S; Matosevic, S

    2017-08-01

    Recent mechanistic studies have attempted to deepen our understanding of the process by which liposome-mediated delivery of genetic material occurs. Understanding the interactions between lipid nanoparticles and cells is still largely elusive. Liposome-mediated delivery of genetic material faces systemic obstacles alongside entry into the cell, endosomal escape, lysosomal degradation and nuclear uptake. Rational design approaches for targeted delivery have been developed to reduce off-target effects and enhance transfection. These strategies, which have included the modification of lipid nanoparticles with target-specific ligands to enhance intracellular uptake, have shown significant promise at the proof-of-concept stage. Control of physical and chemical specifications of liposome composition, which includes lipid-to-DNA charge, size, presence of ester bonds, chain length and nature of ligand complexation, is integral to the performance of targeted liposomes as genetic delivery agents. Clinical advances are expected to rely on such systems in the therapeutic application of liposome nanoparticle-based gene therapy. Here, we discuss the latest breakthroughs in the development of targeted liposome-based agents for the delivery of genetic material, paying particular attention to new ligand and cationic lipid design as well as recent in vivo advances.

  11. The Pathway From Genes to Gene Therapy in Glaucoma: A Review of Possibilities for Using Genes as Glaucoma Drugs.

    Science.gov (United States)

    Borrás, Teresa

    2017-01-01

    Treatment of diseases with gene therapy is advancing rapidly. The use of gene therapy has expanded from the original concept of re-placing the mutated gene causing the disease to the use of genes to con-trol nonphysiological levels of expression or to modify pathways known to affect the disease. Genes offer numerous advantages over conventional drugs. They have longer duration of action and are more specific. Genes can be delivered to the target site by naked DNA, cells, nonviral, and viral vectors. The enormous progress of the past decade in molecular bi-ology and delivery systems has provided ways for targeting genes to the intended cell/tissue and safe, long-term vectors. The eye is an ideal organ for gene therapy. It is easily accessible and it is an immune-privileged site. Currently, there are clinical trials for diseases affecting practically every tissue of the eye, including those to restore vision in patients with Leber congenital amaurosis. However, the number of eye trials compared with those for systemic diseases is quite low (1.8%). Nevertheless, judg-ing by the vast amount of ongoing preclinical studies, it is expected that such number will increase considerably in the near future. One area of great need for eye gene therapy is glaucoma, where a long-term gene drug would eliminate daily applications and compliance issues. Here, we review the current state of gene therapy for glaucoma and the possibilities for treating the trabecular meshwork to lower intraocular pressure and the retinal ganglion cells to protect them from neurodegeneration. Copyright© 2017 Asia-Pacific Academy of Ophthalmology.

  12. Gene therapy for alpha-1 antitrypsin deficiency.

    Science.gov (United States)

    Flotte, Terence R; Mueller, Christian

    2011-04-15

    Alpha-1 antitrypsin (AAT) deficiency is a common single-gene disorder among Northern Europeans and North Americans. The carrier frequency for the common missense mutation (Z-AAT) ranges from 4% in the US to nearly 25% in the Republic of Ireland. Severe AAT deficiency (plasma levels below 11 μm) is most commonly associated with an adult-onset lung disease, with pan-acinar emphysema and airway inflammation, which is thought to be primarily owing to the loss of function of AAT in neutralizing neutrophil elastase and other pro-inflammatory enzymes. In 5-10% of patients, severe liver disease may develop. This may occur at any time from infancy to adulthood, and is thought to be owing to toxicity from the Z-AAT mutant protein that folds poorly and forms insoluble polymers within the hepatocyte, which is the primary site for AAT production. Thus, gene therapy for AAT lung disease is conceived of as augmentation of serum levels (a prolonged form of protein replacement, which is currently in use), while gene therapy for liver disease presents the problem of also having to downregulate the production of Z-AAT protein. Over the years, numerous strategies have been employed for the gene therapy of both AAT-deficient lung disease and liver disease. These will be reviewed with an emphasis on modalities that have reached clinical trials recently.

  13. Gene Tests May Improve Therapy for Endometrial Cancer

    Science.gov (United States)

    ... Special Issues Subscribe June 2013 Print this issue Gene Tests May Improve Therapy for Endometrial Cancer Send us your comments By analyzing genes in hundreds of endometrial tumors, scientists identified details ... therapies for some patients. Endometrial cancer affects the lining ...

  14. Manipulation of biliary lipids by gene therapy: potential consequences for patients with progressive familial intrahepatic cholestasis

    NARCIS (Netherlands)

    Oude Elferink, Ronald P. J.

    2005-01-01

    Gene therapy constitutes a great promise for the treatment of inherited diseases as well as cancer. Although the principle is extremely elegant, reality proves that several important problems remain to be solved before gene therapy becomes a standard application for these conditions. Meanwhile, and

  15. Baculovirus vectors in experimental gene- and vaccine therapy

    Directory of Open Access Journals (Sweden)

    Strokovskaya L. I.

    2011-04-01

    Full Text Available The article provides a brief overview of the literature on target design, exploration properties and effectiveness of the application of recombinant baculoviruses in model systems in vivo. The results of experiments with wild and recombinant baculoviruses are analysed in regard to the priority areas of biomedicine such as tissue regeneration, gene therapy of cancer, development of vaccines against infectious diseases and malignancies

  16. Recent advances in gene therapy of endometriosis.

    Science.gov (United States)

    Shubina, Anastasia N; Egorova, Anna A; Baranov, Vladislav S; Kiselev, Anton V

    2013-12-01

    Endometriosis is a gynecological disease that affects up to 10%-15% of all reproductive-age women worldwide. It is characterized by the presence of endometrial tissues outside the uterine cavity. Endometriosis is a complex disease; its pathogenesis includes altered steroid metabolism and immune system abnormalities such as inflammation, increased angiogenic activity in the peritoneal fluid and impaired recognition of ectopic endometrial cells. The development of endometriosis also depends on genetic, anatomical and environmental factors. Numerous surgical and medical approaches to treat endometriosis have been developed to date. However, complete resolution of the problem has not been achieved so far. Gene therapy holds exciting promise for the treatment of numerous disorders and current studies have indicated it can also be applied to endometriosis. The focus of this review is to summarize the pathogenetic background of the disease and to highlight current gene therapy approaches for this common gynecological disorder.

  17. Suicide genes or p53 gene and p53 target genes as targets for cancer gene therapy by ionizing radiation

    International Nuclear Information System (INIS)

    Liu Bing; Chinese Academy of Sciences, Beijing; Zhang Hong

    2005-01-01

    Radiotherapy has some disadvantages due to the severe side-effect on the normal tissues at a curative dose of ionizing radiation (IR). Similarly, as a new developing approach, gene therapy also has some disadvantages, such as lack of specificity for tumors, limited expression of therapeutic gene, potential biological risk. To certain extent, above problems would be solved by the suicide genes or p53 gene and its target genes therapies targeted by ionizing radiation. This strategy not only makes up the disadvantage from radiotherapy or gene therapy alone, but also promotes success rate on the base of lower dose. By present, there have been several vectors measuring up to be reaching clinical trials. This review focused on the development of the cancer gene therapy through suicide genes or p53 and its target genes mediated by IR. (authors)

  18. Targeted Gene Therapy of Cancer: Second Amendment toward Holistic Therapy.

    Science.gov (United States)

    Barar, Jaleh; Omidi, Yadollah

    2013-01-01

    It seems solid tumors are developing smart organs with specialized cells creating specified bio-territory, the so called "tumor microenvironment (TME)", in which there is reciprocal crosstalk among cancer cells, immune system cells and stromal cells. TME as an intricate milieu also consists of cancer stem cells (CSCs) that can resist against chemotherapies. In solid tumors, metabolism and vascularization appears to be aberrant and tumor interstitial fluid (TIF) functions as physiologic barrier. Thus, chemotherapy, immunotherapy and gene therapy often fail to provide cogent clinical outcomes. It looms that it is the time to accept the fact that initiation of cancer could be generation of another form of life that involves a cluster of thousands of genes, while we have failed to observe all aspects of it. Hence, the current treatment modalities need to be re-visited to cover all key aspects of disease using combination therapy based on the condition of patients. Perhaps personalized cluster of genes need to be simultaneously targeted.

  19. Targeted Gene Therapy of Cancer: Second Amendment toward Holistic Therapy

    Directory of Open Access Journals (Sweden)

    Jaleh Barar

    2013-02-01

    Full Text Available It seems solid tumors are developing smart organs with specialized cells creating specified bio-territory, the so called “tumor microenvironment (TME”, in which there is reciprocal crosstalk among cancer cells, immune system cells and stromal cells. TME as an intricate milieu also consists of cancer stem cells (CSCs that can resist against chemotherapies. In solid tumors, metabolism and vascularization appears to be aberrant and tumor interstitial fluid (TIF functions as physiologic barrier. Thus, chemotherapy, immunotherapy and gene therapy often fail to provide cogent clinical outcomes. It looms that it is the time to accept the fact that initiation of cancer could be generation of another form of life that involves a cluster of thousands of genes, while we have failed to observe all aspects of it. Hence, the current treatment modalities need to be re-visited to cover all key aspects of disease using combination therapy based on the condition of patients. Perhaps personalized cluster of genes need to be simultaneously targeted.

  20. The hopes and fears of in utero gene therapy for genetic disease--a review.

    Science.gov (United States)

    Coutelle, C; Themis, M; Waddington, S; Gregory, L; Nivsarkar, M; Buckley, S; Cook, T; Rodeck, C; Peebles, D; David, A

    2003-10-01

    Somatic gene delivery in utero is a novel approach to gene therapy for genetic disease. It is based on the concept that application of gene therapy vectors to the fetus in utero may prevent the development of early disease related tissue damage, may allow targeting of otherwise inaccessible organs, tissues and still expanding stem cell populations and may also provide postnatal tolerance against the therapeutic transgenic protein. This review outlines the hypothesis and scientific background of in utero gene therapy and addresses some of the frequently expressed concerns raised by this still experimental, potentially preventive gene therapy approach. We describe and discuss the choice of vectors, of animal models and routes of administration to the fetus. We address potential risk factors of prenatal gene therapy such as vector toxicity, inadvertent germ line modification, developmental aberration and oncogenesis as well as specific risks of this procedure for the fetus and mother and discuss their ethical implications.

  1. Gene therapy for primary adaptive immune deficiencies.

    Science.gov (United States)

    Fischer, Alain; Hacein-Bey-Abina, Salima; Cavazzana-Calvo, Marina

    2011-06-01

    Gene therapy has become an option for the treatment of 2 forms of severe combined immunodeficiency (SCID): X-linked SCID and adenosine deaminase deficiency. The results of clinical trials initiated more than 10 years ago testify to sustained and reproducible correction of the underlying T-cell immunodeficiency. Successful treatment is based on the selective advantage conferred on T-cell precursors through their expression of the therapeutic transgene. However, "first-generation" retroviral vectors also caused leukemia in some patients with X-linked SCID because of the constructs' tendency to insert into active genes (eg, proto-oncogenes) in progenitor cells and transactivate an oncogene through a viral element in the long terminal repeat. These elements have been deleted from the vectors now in use. Together with the use of lentiviral vectors (which are more potent for transducing stem cells), these advances should provide a basis for the safe and effective extension of gene therapy's indications in the field of primary immunodeficiencies. Nevertheless, this extension will have to be proved by examining the results of the ongoing clinical trials. Copyright © 2011 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  2. Application of shRNA-containing herpes simplex virus type 1 (HSV-1)-based gene therapy for HSV-2-induced genital herpes.

    Science.gov (United States)

    Liu, Zhihong; Xiang, Yang; Wei, Zhun; Yu, Bo; Shao, Yong; Zhang, Jie; Yang, Hong; Li, Manmei; Guan, Ming; Wan, Jun; Zhang, Wei

    2013-11-01

    HSV-1-based vectors have been widely used to achieve targeted delivery of genes into the nervous system. In the current study, we aim to use shRNA-containing HSV-1-based gene delivery system for the therapy of HSV-2 infection. Guinea pigs were infected intravaginally with HSV-2 and scored daily for 100 days for the severity of vaginal disease. HSV-2 shRNA-containing HSV-1 was applied intravaginally daily between 8 and 14 days after HSV-2 challenge. Delivery of HSV-2 shRNA-containing HSV-1 had no effect on the onset of disease and acute virus shedding in animals, but resulted in a significant reduction in both the cumulative recurrent lesion days and the number of days with recurrent disease. Around half of the animals in the HSV-2 shRNA group did not develop recurrent disease 100 days post HSV-2 infection. In conclusion, HSV-2 shRNA-containing HSV-1 particles are effective in reducing the recurrence of genital herpes caused by HSV-2. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Molecular MR imaging of cancer gene therapy. Ferritin transgene reporter takes the stage

    International Nuclear Information System (INIS)

    Hasegawa, Sumitaka; Furukawa, Takako; Saga, Tsuneo

    2010-01-01

    Molecular imaging using magnetic resonance (MR) imaging has been actively investigated and made rapid progress in the past decade. Applied to cancer gene therapy, the technique's high spatial resolution allows evaluation of gene delivery into target tissues. Because noninvasive monitoring of the duration, location, and magnitude of transgene expression in tumor tissues or cells provides useful information for assessing therapeutic efficacy and optimizing protocols, molecular imaging is expected to become a critical step in the success of cancer gene therapy in the near future. We present a brief overview of the current status of molecular MR imaging, especially in vivo reporter gene imaging using ferritin and other reporters, discuss its application to cancer gene therapy, and present our research of MR imaging detection of electroporation-mediated cancer gene therapy using the ferritin reporter gene. (author)

  4. Multibeam radiation therapy treatment application

    International Nuclear Information System (INIS)

    Manens, J.P.; Le Gall, G.; Chenal, C.; Ben Hassel, M.; Fresne, F.; Barillot, C.; Gibaud, B.; Lemoine, D.; Bouliou, A.; Scarabin, J.M.

    1991-01-01

    A software package has been developed for multibeam radiation therapy treatment application. We present in this study a computer-assisted dosimetric planning procedure which includes: i), an analytical stage for setting up the large volume via 2D and 3D displays; ii), a planning stage for issue of a treatment strategy including dosimetric simulations; and iii), a treatment stage to drive the target volume to the radiation unit isocenter. The combined use of stereotactic methods and multimodality imagery ensures spatial coherence and makes target definition and cognition of structure environment more accurate. The dosimetric planning suited to the spatial reference (the stereotactic frame) guarantees optimal distribution of the dose, computed by the original 3D volumetric algorithm. A computer-driven chair-framework cluster was designed to position the target volume at the radiation unit isocenter [fr

  5. Progress in nonviral gene therapy for breast cancer and what comes next?

    Science.gov (United States)

    Bottai, Giulia; Truffi, Marta; Corsi, Fabio; Santarpia, Libero

    2017-05-01

    The possibility of correcting defective genes and modulating gene expression through gene therapy has emerged as a promising treatment strategy for breast cancer. Furthermore, the relevance of tumor immune microenvironment in supporting the oncogenic process has paved the way for novel immunomodulatory applications of gene therapy. Areas covered: In this review, the authors describe the most relevant delivery systems, focusing on nonviral vectors, along with the description of the major approaches used to modify target cells, including gene transfer, RNA interference (RNAi), and epigenetic regulation. Furthermore, they highlight innovative therapeutic strategies and the application of gene therapy in clinical trials for breast cancer. Expert opinion: Gene therapy has the potential to impact breast cancer research. Further efforts are required to increase the clinical application of RNAi-based therapeutics, especially in combination with conventional treatments. Innovative strategies, including genome editing and stem cell-based systems, may contribute to translate gene therapy into clinical practice. Immune-based approaches have emerged as an attractive therapeutic opportunity for selected breast cancer patients. However, several challenges need to be addressed before considering gene therapy as an actual option for the treatment of breast cancer.

  6. Molecular Imaging of Biological Gene Delivery Vehicles for Targeted Cancer Therapy: Beyond Viral Vectors

    Energy Technology Data Exchange (ETDEWEB)

    Min, Jung Joon; Nguyen, Vu H. [Chonnam National University Medical School, Gwangju (Korea, Republic of); Gambhir, Sanjiv S. [Stanford University, California(United States)

    2010-04-15

    Cancer persists as one of the most devastating diseases in the world. Problems including metastasis and tumor resistance to chemotherapy and radiotherapy have seriously limited the therapeutic effects of present clinical treatments. To overcome these limitations, cancer gene therapy has been developed over the last two decades for a broad spectrum of applications, from gene replacement and knockdown to vaccination, each with different requirements for gene delivery. So far, a number of genes and delivery vectors have been investigated, and significant progress has been made with several gene therapy modalities in clinical trials. Viral vectors and synthetic liposomes have emerged as the vehicles of choice for many applications. However, both have limitations and risks that restrict gene therapy applications, including the complexity of production, limited packaging capacity, and unfavorable immunological features. While continuing to improve these vectors, it is important to investigate other options, particularly nonarrival biological agents such as bacteria, bacteriophages, and bacteria-like particles. Recently, many molecular imaging techniques for safe, repeated, and high-resolution in vivo imaging of gene expression have been employed to assess vector-mediated gene expression in living subjects. In this review, molecular imaging techniques for monitoring biological gene delivery vehicles are described, and the specific use of these methods at different steps is illustrated. Linking molecular imaging to gene therapy will eventually help to develop novel gene delivery vehicles for preclinical study and support the development of future human applications.

  7. Engineered CRISPR Systems for Next Generation Gene Therapies.

    Science.gov (United States)

    Pineda, Michael; Moghadam, Farzaneh; Ebrahimkhani, Mo R; Kiani, Samira

    2017-09-15

    An ideal in vivo gene therapy platform provides safe, reprogrammable, and precise strategies which modulate cell and tissue gene regulatory networks with a high temporal and spatial resolution. Clustered regularly interspaced short palindromic repeats (CRISPR), a bacterial adoptive immune system, and its CRISPR-associated protein 9 (Cas9), have gained attention for the ability to target and modify DNA sequences on demand with unprecedented flexibility and precision. The precision and programmability of Cas9 is derived from its complexation with a guide-RNA (gRNA) that is complementary to a desired genomic sequence. CRISPR systems open-up widespread applications including genetic disease modeling, functional screens, and synthetic gene regulation. The plausibility of in vivo genetic engineering using CRISPR has garnered significant traction as a next generation in vivo therapeutic. However, there are hurdles that need to be addressed before CRISPR-based strategies are fully implemented. Some key issues center on the controllability of the CRISPR platform, including minimizing genomic-off target effects and maximizing in vivo gene editing efficiency, in vivo cellular delivery, and spatial-temporal regulation. The modifiable components of CRISPR systems: Cas9 protein, gRNA, delivery platform, and the form of CRISPR system delivered (DNA, RNA, or ribonucleoprotein) have recently been engineered independently to design a better genome engineering toolbox. This review focuses on evaluating CRISPR potential as a next generation in vivo gene therapy platform and discusses bioengineering advancements that can address challenges associated with clinical translation of this emerging technology.

  8. [Genetic basis of head and neck cancers and gene therapy].

    Science.gov (United States)

    Özel, Halil Erdem; Özkırış, Mahmut; Gencer, Zeliha Kapusuz; Saydam, Levent

    2013-01-01

    Surgery and combinations of traditional treatments are not successful enough particularly for advanced stage head and neck cancer. The major disadvantages of chemotherapy and radiation therapy are the lack of specificity for the target tissue and toxicity to the patient. As a result, gene therapy may offer a more specific approach. The aim of gene therapy is to present therapeutic genes into cancer cells which selectively eliminate malignant cells with no systemic toxicity to the patient. This article reviews the genetic basis of head and neck cancers and important concepts in cancer gene therapy: (i) inhibition of oncogenes; (ii) tumor suppressor gene replacement; (iii) regulation of immune response against malignant cells; (iv) genetic prodrug activation; and (v) antiangiogenic gene therapy. Currently, gene therapy is not sufficient to replace the traditional treatments of head and neck cancers, however there is no doubt that it will have an important role in the near future.

  9. Nanoparticle-mediated delivery of suicide genes in cancer therapy.

    Science.gov (United States)

    Vago, Riccardo; Collico, Veronica; Zuppone, Stefania; Prosperi, Davide; Colombo, Miriam

    2016-09-01

    Conventional chemotherapeutics have been employed in cancer treatment for decades due to their efficacy in killing the malignant cells, but the other side of the coin showed off-target effects, onset of drug resistance and recurrences. To overcome these limitations, different approaches have been investigated and suicide gene therapy has emerged as a promising alternative. This approach consists in the introduction of genetic materials into cancerous cells or the surrounding tissue to cause cell death or retard the growth of the tumor mass. Despite promising results obtained both in vitro and in vivo, this innovative approach has been limited, for long time, to the treatment of localized tumors, due to the suboptimal efficiency in introducing suicide genes into cancer cells. Nanoparticles represent a valuable non-viral delivery system to protect drugs in the bloodstream, to improve biodistribution, and to limit side effects by achieving target selectivity through surface ligands. In this scenario, the real potential of suicide genes can be translated into clinically viable treatments for patients. In the present review, we summarize the recent advances of inorganic nanoparticles as non-viral vectors in terms of therapeutic efficacy, targeting capacity and safety issues. We describe the main suicide genes currently used in therapy, with particular emphasis on toxin-encoding genes of bacterial and plant origin. In addition, we discuss the relevance of molecular targeting and tumor-restricted expression to improve treatment specificity to cancer tissue. Finally, we analyze the main clinical applications, limitations and future perspectives of suicide gene therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Pharmacological Interventions for Improving Adenovirus Usage in Gene Therapy

    NARCIS (Netherlands)

    Haisma, Hidde J.; Bellu, Anna Rita

    2011-01-01

    Gene therapy may be an innovative and promising new treatment strategy for cancer but is limited due to a low efficiency and specificity of gene delivery to the target cells. Adenovirus is the preferred gene therapy vector for systemic delivery because of its unparalleled in vivo transduction

  11. Plant thymidine kinase 1: a novel efficient suicide gene for malignant glioma therapy

    DEFF Research Database (Denmark)

    Khan, Z.; Knecht, Wolfgang; Willer, Mette

    2010-01-01

    The prognosis for malignant gliomas remains poor, and new treatments are urgently needed. Targeted suicide gene therapy exploits the enzymatic conversion of a prodrug, such as a nucleoside analog, into a cytotoxic compound. Although this therapeutic strategy has been considered a promising regimen...... suicide gene therapy system in combination with stem cell mediated gene delivery promises new treatment of malignant gliomas....... for central nervous system (CNS) tumors, several obstacles have been encountered such as inefficient gene transfer to the tumor cells, limited prodrug penetration into the CNS, and inefficient enzymatic activity of the suicide gene. We report here the cloning and successful application of a novel thymidine...

  12. Nonviral Delivery Systems For Cancer Gene Therapy: Strategies And Challenges.

    Science.gov (United States)

    Shim, Gayong; Kim, Dongyoon; Le, Quoc-Viet; Park, Gyu Thae; Kwon, Taekhyun; Oh, Yu-Kyoung

    2018-01-19

    Gene therapy has been receiving widespread attention due to its unique advantage in regulating the expression of specific target genes. In the field of cancer gene therapy, modulation of gene expression has been shown to decrease oncogenic factors in cancer cells or increase immune responses against cancer. Due to the macromolecular size and highly negative physicochemical features of plasmid DNA, efficient delivery systems are an essential ingredient for successful gene therapy. To date, a variety of nanostructures and materials have been studied as nonviral gene delivery systems. In this review, we will cover nonviral delivery strategies for cancer gene therapy, with a focus on target cancer genes and delivery materials. Moreover, we will address current challenges and perspectives for nonviral delivery-based cancer gene therapeutics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Gene replacement therapy for genetic hepatocellular jaundice.

    Science.gov (United States)

    van Dijk, Remco; Beuers, Ulrich; Bosma, Piter J

    2015-06-01

    Jaundice results from the systemic accumulation of bilirubin, the final product of the catabolism of haem. Inherited liver disorders of bilirubin metabolism and transport can result in reduced hepatic uptake, conjugation or biliary secretion of bilirubin. In patients with Rotor syndrome, bilirubin (re)uptake is impaired due to the deficiency of two basolateral/sinusoidal hepatocellular membrane proteins, organic anion-transporting polypeptide 1B1 (OATP1B1) and OATP1B3. Dubin-Johnson syndrome is caused by a defect in the ATP-dependent canalicular transporter, multidrug resistance-associated protein 2 (MRP2), which mediates the export of conjugated bilirubin into bile. Both disorders are benign and not progressive and are characterised by elevated serum levels of mainly conjugated bilirubin. Uridine diphospho-glucuronosyl transferase 1A1 (UGT1A1) is responsible for the glucuronidation of bilirubin; deficiency of this enzyme results in unconjugated hyperbilirubinaemia. Gilbert syndrome is the mild and benign form of inherited unconjugated hyperbilirubinaemia and is mostly caused by reduced promoter activity of the UGT1A1 gene. Crigler-Najjar syndrome is the severe inherited form of unconjugated hyperbilirubinaemia due to mutations in the UGT1A1 gene, which can cause kernicterus early in life and can be even lethal when left untreated. Due to major disadvantages of the current standard treatments for Crigler-Najjar syndrome, phototherapy and liver transplantation, new effective therapeutic strategies are under development. Here, we review the clinical features, pathophysiology and genetic background of these inherited disorders of bilirubin metabolism and transport. We also discuss the upcoming treatment option of viral gene therapy for genetic disorders such as Crigler-Najjar syndrome and the possible immunological consequences of this therapy.

  14. Negative Pressure Wound Therapy in Maxillofacial Applications

    Directory of Open Access Journals (Sweden)

    Adam J. Mellott

    2016-09-01

    Full Text Available Negative pressure wound therapy has greatly advanced the field of wound healing for nearly two decades, by providing a robust surgical adjunct technique for accelerating wound closure in acute and chronic wounds. However, the application of negative pressure wound therapy in maxillofacial applications has been relatively under utilized as a result of the physical articulations and contours of the head and neck that make it challenging to obtain an airtight seal for different negative pressure wound therapy systems. Adapting negative pressure wound therapies for maxillofacial applications could yield significant enhancement of wound closure in maxillofacial applications. The current review summarizes the basic science underlying negative pressure wound therapy, as well as specific maxillofacial procedures that could benefit from negative pressure wound therapy.

  15. Advances in study of reporter gene imaging for monitoring gene therapy

    International Nuclear Information System (INIS)

    Mu Chuanjie; Zhou Jiwen

    2003-01-01

    To evaluate the efficiency of gene therapy, it is requisite to monitor localization and expression of the therapeutic gene in vivo. Monitoring expression of reporter gene using radionuclide reporter gene technique is the best method. Adenoviral vectors expressing reporter gene are constructed using gene fusion, bicistronic, double promoter or bidirectional transcriptional recombination techniques, and transferred into target cells and tissues, then injected radiolabeled reporter probes which couple to the reporter genes. The reporter genes can be imaged invasively, repeatedly, quantitatively with γ-camera, PET and SPECT. Recently, several reporter gene and reporter probe systems have been used in studies of gene therapy. The part of them has been used for clinic trials

  16. Image Guidance and Assessment of Radiation Induced Gene Therapy

    National Research Council Canada - National Science Library

    Pelizzari, Charles

    2004-01-01

    Image guidance and assessment techniques are being developed for combined radiation/gene therapy, which utilizes a radiation-inducible gene promoter to cause expression of tumor necrosis factor alpha...

  17. Nanoparticles for cancer gene therapy: Recent advances, challenges, and strategies.

    Science.gov (United States)

    Wang, Kui; Kievit, Forrest M; Zhang, Miqin

    2016-12-01

    Compared to conventional treatments, gene therapy offers a variety of advantages for cancer treatment including high potency and specificity, low off-target toxicity, and delivery of multiple genes that concurrently target cancer tumorigenesis, recurrence, and drug resistance. In the past decades, gene therapy has undergone remarkable progress, and is now poised to become a first line therapy for cancer. Among various gene delivery systems, nanoparticles have attracted much attention because of their desirable characteristics including low toxicity profiles, well-controlled and high gene delivery efficiency, and multi-functionalities. This review provides an overview on gene therapeutics and gene delivery technologies, and highlight recent advances, challenges and insights into the design and the utility of nanoparticles in gene therapy for cancer treatment. Copyright © 2016. Published by Elsevier Ltd.

  18. Drug-Gene Interactions between Genetic Polymorphisms and Antihypertensive Therapy

    NARCIS (Netherlands)

    Schelleman, Hedi; Stricker, Bruno H Ch; De Boer, Anthonius; Kroon, Abraham A; Verschuren, Monique W M; Van Duijn, Cornelia M; Psaty, Bruce M; Klungel, Olaf H

    2004-01-01

    Genetic factors may influence the response to antihypertensive medication. A number of studies have investigated genetic polymorphisms as determinants of cardiovascular response to antihypertensive drug therapy. In most candidate gene studies, no such drug-gene interactions were found. However,

  19. Improved animal models for testing gene therapy for atherosclerosis.

    Science.gov (United States)

    Du, Liang; Zhang, Jingwan; De Meyer, Guido R Y; Flynn, Rowan; Dichek, David A

    2014-04-01

    Gene therapy delivered to the blood vessel wall could augment current therapies for atherosclerosis, including systemic drug therapy and stenting. However, identification of clinically useful vectors and effective therapeutic transgenes remains at the preclinical stage. Identification of effective vectors and transgenes would be accelerated by availability of animal models that allow practical and expeditious testing of vessel-wall-directed gene therapy. Such models would include humanlike lesions that develop rapidly in vessels that are amenable to efficient gene delivery. Moreover, because human atherosclerosis develops in normal vessels, gene therapy that prevents atherosclerosis is most logically tested in relatively normal arteries. Similarly, gene therapy that causes atherosclerosis regression requires gene delivery to an existing lesion. Here we report development of three new rabbit models for testing vessel-wall-directed gene therapy that either prevents or reverses atherosclerosis. Carotid artery intimal lesions in these new models develop within 2-7 months after initiation of a high-fat diet and are 20-80 times larger than lesions in a model we described previously. Individual models allow generation of lesions that are relatively rich in either macrophages or smooth muscle cells, permitting testing of gene therapy strategies targeted at either cell type. Two of the models include gene delivery to essentially normal arteries and will be useful for identifying strategies that prevent lesion development. The third model generates lesions rapidly in vector-naïve animals and can be used for testing gene therapy that promotes lesion regression. These models are optimized for testing helper-dependent adenovirus (HDAd)-mediated gene therapy; however, they could be easily adapted for testing of other vectors or of different types of molecular therapies, delivered directly to the blood vessel wall. Our data also supports the promise of HDAd to deliver long

  20. Inducement of radionuclides targeting therapy by gene transfection

    International Nuclear Information System (INIS)

    Luo Quanyong

    2001-01-01

    The author presents an overview of gene transfection methods to genetically induce tumor cells to express enhanced levels of cell surface antigens and receptors to intake radiolabeled antibody and peptide targeting and thus increase their therapeutic effect in radiotherapy. The current research include inducement of radioimmunotherapy through CEA gene transfection, inducement of iodine-131 therapy by sodium iodide symporter gene transfection and inducement of MIBG therapy by noradrenaline transporter gene transfection. These studies raise the prospect that gene-therapy techniques could be used to enable the treatment of a wide range of tumors with radiopharmaceuticals of established clinical acceptability

  1. [Inhibition of human laryngeal carcinoma growth by gene therapy and epigenetic therapy].

    Science.gov (United States)

    Lian, Meng; Jiang, Ling-yan; Wang, Hong; Fan, Er-zhong; Wang, Qi; Fang, Ju-gao

    2012-09-01

    To observe the effects of gene therapy and epigenetic therapy on the tumor growth of laryngeal carcinoma and the underlying mechanisms. The animal model of human laryngeal carcinoma was established by the subcutaneous inoculation of Hep-2 cells at the right armpit of BALB/c nu/nu mice. The tumor-bearing mice were randomized into 4 groups, p53 therapy group(rAd-p53), epigenetic therapy group(5-aza-dC), combination therapy group (rAd-p53+5-aza-dC) and control group. The gene and protein expressions of molecular markers p53 and E-cadherin were detected by FQ-PCR and immunohistochemistry. By the day 20 of the treatments, the mean tumor volumes were(106.09 ± 24.40)mm(3) in p53 therapy group, (166.55 ± 40.11) mm(3) in epigenetic therapy group, (126.11 ± 22.49) mm(3) in combination therapy group,and (252.83 ± 54.09) mm(3) in control group. Both gene therapy (F = 37.30, P epigenetic therapy (F = 4.79, P epigenetic therapy group, 494.76 ± 102.88 in combination therapy group,and 162.60 ± 40.38 in control group respectively, indicating the enhancements of E-cadherin protein expression by gene therapy (F = 45.24, P epigenetic therapy(F = 5.73, P epigenetic therapy. The expression levels of p53 gene were 4.43 ± 0.12 in p53 therapy group, 1.06 ± 0.11 in epigenetic therapy group, 3.51 ± 0.10 in combination therapy group,and 1.09 ± 0.11 in control group, respectively, showing an interaction effect between gene therapy and epigenetic therapy (F = 298.11, P epigenetic therapy group, 2.99 ± 0.12 in combination therapy group, and 1.00 ± 0.11 in control group, respectively. The expression of E-cadherin gene was enhanced by gene therapy (F = 329.12, P epigenetic therapy(F = 88.57, P epigenetic therapy and the combination therapy. The gene therapy was significantly better than the epigenetic therapy or the combination therapy. There might be antagonistic effect between p53 and 5-aza-dC.

  2. Gene and cell therapy for children--new medicines, new challenges?

    Science.gov (United States)

    Buckland, Karen F; Bobby Gaspar, H

    2014-06-01

    The range of possible gene and cell therapy applications is expanding at an extremely rapid rate and advanced therapy medicinal products (ATMPs) are currently the hottest topic in novel medicines, particularly for inherited diseases. Paediatric patients stand to gain enormously from these novel therapies as it now seems plausible to develop a gene or cell therapy for a vast number of inherited diseases. There are a wide variety of potential gene and cell therapies in various stages of development. Patients who received first gene therapy treatments for primary immune deficiencies (PIDs) are reaching 10 and 15 years post-treatment, with robust and sustained immune recovery. Cell therapy clinical trials are underway for a variety of tissues including corneal, retinal and muscle repair and islet cell transplantation. Various cell therapy approaches are also being trialled to enhance the safety of bone marrow transplants, which should improve survival rates in childhood cancers and PIDs. Progress in genetic engineering of lymphocyte populations to target and kill cancerous cells is also described. If successful these ATMPs may enhance or replace the existing chemo-ablative therapy for several paediatric cancers. Emerging applications of gene therapy now include skin and neurological disorders such as epidermolysis bullosa, epilepsy and leukodystrophy. Gene therapy trials for haemophilia, muscular dystrophy and a range of metabolic disorders are underway. There is a vast array of potential advanced therapy medicinal products (ATMPs), and these are likely to be more cost effective than existing medicines. However, the first clinical trials have not been without setbacks and some of the key adverse events are discussed. Furthermore, the arrival of this novel class of therapies brings many new challenges for the healthcare industry. We present a summary of the key non-clinical factors required for successful delivery of these potential treatments. Technological advances

  3. Gene and cell therapy for children — New medicines, new challenges?☆

    Science.gov (United States)

    Buckland, Karen F.; Bobby Gaspar, H.

    2014-01-01

    The range of possible gene and cell therapy applications is expanding at an extremely rapid rate and advanced therapy medicinal products (ATMPs) are currently the hottest topic in novel medicines, particularly for inherited diseases. Paediatric patients stand to gain enormously from these novel therapies as it now seems plausible to develop a gene or cell therapy for a vast number of inherited diseases. There are a wide variety of potential gene and cell therapies in various stages of development. Patients who received first gene therapy treatments for primary immune deficiencies (PIDs) are reaching 10 and 15 years post-treatment, with robust and sustained immune recovery. Cell therapy clinical trials are underway for a variety of tissues including corneal, retinal and muscle repair and islet cell transplantation. Various cell therapy approaches are also being trialled to enhance the safety of bone marrow transplants, which should improve survival rates in childhood cancers and PIDs. Progress in genetic engineering of lymphocyte populations to target and kill cancerous cells is also described. If successful these ATMPs may enhance or replace the existing chemo-ablative therapy for several paediatric cancers. Emerging applications of gene therapy now include skin and neurological disorders such as epidermolysis bullosa, epilepsy and leukodystrophy. Gene therapy trials for haemophilia, muscular dystrophy and a range of metabolic disorders are underway. There is a vast array of potential advanced therapy medicinal products (ATMPs), and these are likely to be more cost effective than existing medicines. However, the first clinical trials have not been without setbacks and some of the key adverse events are discussed. Furthermore, the arrival of this novel class of therapies brings many new challenges for the healthcare industry. We present a summary of the key non-clinical factors required for successful delivery of these potential treatments. Technological advances

  4. Gene replacement therapy for retinal CNG channelopathies.

    Science.gov (United States)

    Schön, Christian; Biel, Martin; Michalakis, Stylianos

    2013-10-01

    Visual phototransduction relies on the function of cyclic nucleotide-gated channels in the rod and cone photoreceptor outer segment plasma membranes. The role of these ion channels is to translate light-triggered changes in the second messenger cyclic guanosine 3'-5'-monophosphate levels into an electrical signal that is further processed within the retinal network and then sent to higher visual centers. Rod and cone photoreceptors express distinct CNG channels. The rod photoreceptor CNG channel is composed of one CNGB1 and three CNGA1 subunits, whereas the cone channel is formed by one CNGB3 and three CNGA3 subunits. Mutations in any of these channel subunits result in severe and currently untreatable retinal degenerative diseases like retinitis pigmentosa or achromatopsia. In this review, we provide an overview of the human diseases and relevant animal models of CNG channelopathies. Furthermore, we summarize recent results from preclinical gene therapy studies using adeno-associated viral vectors and discuss the efficacy and translational potential of these gene therapeutic approaches.

  5. Immunological Monitoring to Rationally Guide AAV Gene Therapy

    Directory of Open Access Journals (Sweden)

    Cedrik Michael Britten

    2013-09-01

    Full Text Available Recent successes with adeno-associated virus (AAV-based gene therapies fuel the hope for new treatments for hereditary diseases. Pre-existing as well as therapy-induced immune responses against both AAV and the encoded transgenes have been described and may impact on safety and efficacy of gene-therapy approaches. Consequently, monitoring of vector- and transgene-specific immunity is mandated and may rationally guide clinical development. Next to the humoral immune response, the cellular response is central in our understanding of the host reaction in gene therapy. But in contrast to the monitoring of antibodies, which has matured over many decades, sensitive and robust monitoring of T cells is a relatively new development. To make cellular immune assessments fit for purpose, investigators need to know, control and report the critical assay variables that influence the results. In addition, the quality of immune assays needs to be continuously adjusted to allow for exploratory hypothesis generation in early stages and confirmatory hypothesis validation in later stages of clinical development. The concept of immune assay harmonization which includes use of field-wide benchmarks, harmonization guidelines, and external quality control can support the context-specific evolution of immune assays. Multi-center studies pose particular challenges to sample logistics and quality control of sample specimens. Cooperative groups need to define if immune assessments should be performed in one central facility, in peripheral labs or including a combination of both. Finally, engineered reference samples that contain a defined number of antigen-specific T cells may become broadly applicable tools to control assay performance over time or across institutions.

  6. Progress toward Gene Therapy for Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Chamberlain, Joel R; Chamberlain, Jeffrey S

    2017-05-03

    Duchenne muscular dystrophy (DMD) has been a major target for gene therapy development for nearly 30 years. DMD is among the most common genetic diseases, and isolation of the defective gene (DMD, or dystrophin) was a landmark discovery, as it was the first time a human disease gene had been cloned without knowledge of the protein product. Despite tremendous obstacles, including the enormous size of the gene and the large volume of muscle tissue in the human body, efforts to devise a treatment based on gene replacement have advanced steadily through the combined efforts of dozens of labs and patient advocacy groups. Progress in the development of DMD gene therapy has been well documented in Molecular Therapy over the past 20 years and will be reviewed here to highlight prospects for success in the imminent human clinical trials planned by several groups. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  7. Gene Therapy Approaches For The Treatment Of Retinal Disorders

    Science.gov (United States)

    Petit, Lolita; Punzo, Claudio

    2016-01-01

    There is an impelling need to develop effective therapeutic strategies for patients with retinal disorders. Gleaning from the large quantity of information gathered over the past two decades on the mechanisms governing degeneration of the retina, it is now possible to devise innovative therapies based on retinal gene transfer. Different gene-based approaches are under active investigation. They include strategies to correct the specific genetic defect in inherited retinal diseases, strategies to delay the onset of blindness independently of the disease-causing mutations and strategies to reactivate residual cells at late stages of the diseases. In this review, we discuss the status of application of these technologies, outlining the future therapeutic potential for many forms of retinal blinding diseases. PMID:27875674

  8. Prospects for Gene Therapy in the Fragile X Syndrome

    Science.gov (United States)

    Rattazzi, Mario C.; LaFauci, Giuseppe; Brown, W. Ted

    2004-01-01

    Gene therapy is unarguably the definitive way to treat, and possibly cure, genetic diseases. A straightforward concept in theory, in practice it has proven difficult to realize, even when directed to easily accessed somatic cell systems. Gene therapy for diseases in which the central nervous system (CNS) is the target organ presents even greater…

  9. Human gene therapy and imaging in neurological diseases

    Science.gov (United States)

    Jacobs, Andreas H.; Winkler, Alexandra; Castro, Maria G.; Lowenstein, Pedro

    2010-01-01

    Molecular imaging aims to assess non-invasively disease-specific biological and molecular processes in animal models and humans in vivo. Apart from precise anatomical localisation and quantification, the most intriguing advantage of such imaging is the opportunity it provides to investigate the time course (dynamics) of disease-specific molecular events in the intact organism. Further, molecular imaging can be used to address basic scientific questions, e.g. transcriptional regulation, signal transduction or protein/protein interaction, and will be essential in developing treatment strategies based on gene therapy. Most importantly, molecular imaging is a key technology in translational research, helping to develop experimental protocols which may later be applied to human patients. Over the past 20 years, imaging based on positron emission tomography (PET) and magnetic resonance imaging (MRI) has been employed for the assessment and “phenotyping” of various neurological diseases, including cerebral ischaemia, neurodegeneration and brain gliomas. While in the past neuro-anatomical studies had to be performed post mortem, molecular imaging has ushered in the era of in vivo functional neuro-anatomy by allowing neuroscience to image structure, function, metabolism and molecular processes of the central nervous system in vivo in both health and disease. Recently, PET and MRI have been successfully utilised together in the non-invasive assessment of gene transfer and gene therapy in humans. To assess the efficiency of gene transfer, the same markers are being used in animals and humans, and have been applied for phenotyping human disease. Here, we review the imaging hallmarks of focal and disseminated neurological diseases, such as cerebral ischaemia, neurodegeneration and glioblastoma multiforme, as well as the attempts to translate gene therapy’s experimental knowledge into clinical applications and the way in which this process is being promoted through the use

  10. Taking stock of gene therapy for cystic fibrosis

    Directory of Open Access Journals (Sweden)

    Alton Eric WFW

    2000-09-01

    Full Text Available Abstract The identification of the cystic fibrosis (CF gene opened the way for gene therapy. In the ten years since then, proof of principle in vitro and then in animal models in vivo has been followed by numerous clinical studies using both viral and non-viral vectors to transfer normal copies of the gene to the lungs and noses of CF patients. A wealth of data have emerged from these studies, reflecting enormous progress and also helping to focus and define key difficulties that remain unresolved. Gene therapy for CF remains the most promising possibility for curative rather than symptomatic therapy.

  11. Transcriptionally targeted gene therapy to detect and treat cancer

    OpenAIRE

    Wu, Lily; Johnson, Mai; Sato, Makoto

    2003-01-01

    The greatest challenge in cancer treatment is to achieve the highest levels of specificity and efficacy. Cancer gene therapy could be designed specifically to express therapeutic genes to induce cancer cell destruction. Cancer-specific promoters are useful tools to accomplish targeted expression; however, high levels of gene expression are needed to achieve therapeutic efficacy. Incorporating an imaging reporter gene in tandem with the therapeutic gene will allow tangible proof of principle t...

  12. Genome Editing Gene Therapy for Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Hotta, Akitsu

    2015-09-22

    Duchenne muscular dystrophy (DMD) is a severe genetic disorder caused by loss of function of the dystrophin gene on the X chromosome. Gene augmentation of dystrophin is challenging due to the large size of the dystrophin cDNA. Emerging genome editing technologies, such as TALEN and CRISPR-Cas9 systems, open a new erain the restoration of functional dystrophin and are a hallmark of bona fide gene therapy. In this review, we summarize current genome editing approaches, properties of target cell types for ex vivo gene therapy, and perspectives of in vivo gene therapy including genome editing in human zygotes. Although technical challenges, such as efficacy, accuracy, and delivery of the genome editing components, remain to be further improved, yet genome editing technologies offer a new avenue for the gene therapy of DMD.

  13. Potential of the FES-hERL PET reporter gene system - Basic evaluation for gene therapy monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, Takako [Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193 (Japan)]. E-mail: takakof@fmsrsa.fukui-med.ac.jp; Lohith, Talakad G. [Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193 (Japan); Takamatsu, Shinji [Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193 (Japan); Mori, Tetsuya [Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193 (Japan); Tanaka, Takeshi [Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193 (Japan); Department of Otorhinolaryngology, University of Fukui, Fukui 910-1193 (Japan); Fujibayashi, Yasuhisa [Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193 (Japan)

    2006-01-15

    Purpose: In vivo reporter genes can be powerful tools in supporting and ensuring the success of gene therapy. A careful and rational design of a reporter system is essential to realize a noninvasive in vivo reporter gene imaging system applicable for humans. We designed a new in vivo reporter gene imaging system that uses F-18-labeled estradiol (FES) and human estrogen receptor ligand (hERL) binding domain, taking advantage that FES is a radiopharmaceutical already being used for human studies with access to a wide range of tissues, including the brain, and that hERL lacking DNA binding domain can no longer work as a transcription factor, and carried out basic studies to evaluate its potential for gene therapy monitoring. Methods: We constructed a plasmid (pTIER) to coexpress a model therapeutic gene and the reporter gene hERL and transfected Cos7 cells and examined their uptake of [{sup 3}H]estradiol and FES in culture media. The uptake of FES by mouse calf muscle electroporated with pTIER was also tested. Results: The cells transfected with pTIER took up the radioligands efficiently and specifically in culture media. Also, the mouse calf muscle electroporated with pTIER accumulated a higher amount of FES than did the control. Conclusion: The data indicate that our new reporter gene system seems promising for in vivo imaging of gene expression and gene therapy monitoring.

  14. Bacterial Toxins for Oncoleaking Suicidal Cancer Gene Therapy.

    Science.gov (United States)

    Pahle, Jessica; Walther, Wolfgang

    For suicide gene therapy, initially prodrug-converting enzymes (gene-directed enzyme-producing therapy, GDEPT) were employed to intracellularly metabolize non-toxic prodrugs into toxic compounds, leading to the effective suicidal killing of the transfected tumor cells. In this regard, the suicide gene therapy has demonstrated its potential for efficient tumor eradication. Numerous suicide genes of viral or bacterial origin were isolated, characterized, and extensively tested in vitro and in vivo, demonstrating their therapeutic potential even in clinical trials to treat cancers of different entities. Apart from this, growing efforts are made to generate more targeted and more effective suicide gene systems for cancer gene therapy. In this regard, bacterial toxins are an alternative to the classical GDEPT strategy, which add to the broad spectrum of different suicide approaches. In this context, lytic bacterial toxins, such as streptolysin O (SLO) or the claudin-targeted Clostridium perfringens enterotoxin (CPE) represent attractive new types of suicide oncoleaking genes. They permit as pore-forming proteins rapid and also selective toxicity toward a broad range of cancers. In this chapter, we describe the generation and use of SLO as well as of CPE-based gene therapies for the effective tumor cell eradication as promising, novel suicide gene approach particularly for treatment of therapy refractory tumors.

  15. Identification of Hematopoietic Stem Cell Engraftment Genes in Gene Therapy Studies.

    Science.gov (United States)

    Powers, John M; Trobridge, Grant D

    2013-09-01

    Hematopoietic stem cell (HSC) therapy using replication-incompetent retroviral vectors is a promising approach to provide life-long correction for genetic defects. HSC gene therapy clinical studies have resulted in functional cures for several diseases, but in some studies clonal expansion or leukemia has occurred. This is due to the dyregulation of endogenous host gene expression from vector provirus insertional mutagenesis. Insertional mutagenesis screens using replicating retroviruses have been used extensively to identify genes that influence oncogenesis. However, retroviral mutagenesis screens can also be used to determine the role of genes in biological processes such as stem cell engraftment. The aim of this review is to describe the potential for vector insertion site data from gene therapy studies to provide novel insights into mechanisms of HSC engraftment. In HSC gene therapy studies dysregulation of host genes by replication-incompetent vector proviruses may lead to enrichment of repopulating clones with vector integrants near genes that influence engraftment. Thus, data from HSC gene therapy studies can be used to identify novel candidate engraftment genes. As HSC gene therapy use continues to expand, the vector insertion site data collected will be of great interest to help identify novel engraftment genes and may ultimately lead to new therapies to improve engraftment.

  16. Myostatin: genetic variants, therapy and gene doping

    Directory of Open Access Journals (Sweden)

    André Katayama Yamada

    2012-09-01

    Full Text Available Since its discovery, myostatin (MSTN has been at the forefront of muscle therapy research because intrinsic mutations or inhibition of this protein, by either pharmacological or genetic means, result in muscle hypertrophy and hyperplasia. In addition to muscle growth, MSTN inhibition potentially disturbs connective tissue, leads to strength modulation, facilitates myoblast transplantation, promotes tissue regeneration, induces adipose tissue thermogenesis and increases muscle oxidative phenotype. It is also known that current advances in gene therapy have an impact on sports because of the illicit use of such methods. However, the adverse effects of these methods, their impact on athletic performance in humans and the means of detecting gene doping are as yet unknown. The aim of the present review is to discuss biosynthesis, genetic variants, pharmacological/genetic manipulation, doping and athletic performance in relation to the MSTN pathway. As will be concluded from the manuscript, MSTN emerges as a promising molecule for combating muscle wasting diseases and for triggering wide-ranging discussion in view of its possible use in gene doping.Desde sua descoberta, a miostatina (MSTN entrou na linha de frente em pesquisas relacionadas às terapias musculares porque mutações intrínsecas ou inibição desta proteína tanto por abordagens farmacológicas como genéticas resultam em hipertrofia muscular e hiperplasia. Além do aumento da massa muscular, a inibição de MSTN potencialmente prejudica o tecido conectivo, modula a força muscular, facilita o transplante de mioblastos, promove regeneração tecidual, induz termogênese no tecido adiposo e aumenta a oxidação na musculatura esquelética. É também sabido que os atuais avanços em terapia gênica têm uma relação com o esporte devido ao uso ilícito de tal método. Os efeitos adversos de tal abordagem, seus efeitos no desempenho de atletas e métodos para detectar doping genético s

  17. Engineered nonviral nanocarriers for intracellular gene delivery applications

    International Nuclear Information System (INIS)

    Ojea-Jiménez, Isaac; Puntes, Victor F; Tort, Olivia; Lorenzo, Julia

    2012-01-01

    The efficient delivery of nucleic acids into mammalian cells is a central aspect of cell biology and of medical applications, including cancer therapy and tissue engineering. Non-viral chemical methods have been received with great interest for transfecting cells. However, further development of nanocarriers that are biocompatible, efficient and suitable for clinical applications is still required. In this paper, the different material platforms for gene delivery are comparatively addressed, and the mechanisms of interaction with biological systems are discussed carefully. (paper)

  18. Applications of Machine Learning for Radiation Therapy.

    Science.gov (United States)

    Arimura, Hidetaka; Nakamoto, Takahiro

    2016-01-01

    Radiation therapy has been highly advanced as image guided radiation therapy (IGRT) by making advantage of image engineering technologies. Recently, novel frameworks based on image engineering technologies as well as machine learning technologies have been studied for sophisticating the radiation therapy. In this review paper, the author introduces several researches of applications of machine learning for radiation therapy. For examples, a method to determine the threshold values for standardized uptake value (SUV) for estimation of gross tumor volume (GTV) in positron emission tomography (PET) images, an approach to estimate the multileaf collimator (MLC) position errors between treatment plans and radiation delivery time, and prediction frameworks for esophageal stenosis and radiation pneumonitis risk after radiation therapy are described. Finally, the author introduces seven issues that one should consider when applying machine learning models to radiation therapy.

  19. Communicating the promise for ocular gene therapies: challenges and recommendations.

    Science.gov (United States)

    Benjaminy, Shelly; Kowal, Stephanie P; MacDonald, Ian M; Bubela, Tania

    2015-09-01

    To identify challenges and pose solutions for communications about ocular gene therapy between patients and clinicians as clinical research progresses. Literature review with recommendations. Literature review of science communication best practices to inform recommendations for patient-clinician discussions about ocular gene therapy. Clinicians need to employ communications about ocular gene therapy that are both attentive to patient priorities and concerns and responsive to other sources of information, including overly positive news media and the Internet. Coverage often conflates research with therapy-clinical trials are experimental and are not risk free. If proven safe and efficacious, gene therapy may present a treatment but not a cure for patients who have already experienced vision loss. Clinicians can assist patients by providing realistic estimates for lengthy clinical development timelines and positioning current research within models of clinical translation. This enables patients to weigh future therapeutic options when making current disease management decisions. Ocular gene therapy clinical trials are raising hopes for treating a myriad of hereditary retinopathies, but most such therapies are many years in the future. Clinicians should be prepared to counter overly positive messaging, found in news media and on the Internet, with optimism tempered by evidence to support the ethical translation of gene therapy and other novel biotherapeutics. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  20. A Double Selection Approach to Achieve Specific Expression of Toxin Genes for Ovarian Cancer Gene Therapy

    National Research Council Canada - National Science Library

    Curiel, David T; Siegal, Gene; Wang, Minghui

    2005-01-01

    ... embodies the requisite properties of efficacy and specificity required for ovarian cancer gene therapy. This approach is based on targeting the delivered anti-cancer gene to tumor via two complimentary approaches...

  1. A Double Selection Approach to Achieve Specific Expression of Toxin Genes for Ovarian Cancer Gene Therapy

    National Research Council Canada - National Science Library

    Curiel, David T; Siegal, Gene; Wang, Minghui

    2006-01-01

    ... embodies the requisite properties of efficacy and specificity required for ovarian cancer gene therapy. This approach is based on targeting the delivered anti-cancer gene to tumor via two complimentary approaches...

  2. Duchenne Muscular Dystrophy Gene Therapy in the Canine Model

    Science.gov (United States)

    2015-01-01

    Abstract Duchenne muscular dystrophy (DMD) is an X-linked lethal muscle disease caused by dystrophin deficiency. Gene therapy has significantly improved the outcome of dystrophin-deficient mice. Yet, clinical translation has not resulted in the expected benefits in human patients. This translational gap is largely because of the insufficient modeling of DMD in mice. Specifically, mice lacking dystrophin show minimum dystrophic symptoms, and they do not respond to the gene therapy vector in the same way as human patients do. Further, the size of a mouse is hundredfolds smaller than a boy, making it impossible to scale-up gene therapy in a mouse model. None of these limitations exist in the canine DMD (cDMD) model. For this reason, cDMD dogs have been considered a highly valuable platform to test experimental DMD gene therapy. Over the last three decades, a variety of gene therapy approaches have been evaluated in cDMD dogs using a number of nonviral and viral vectors. These studies have provided critical insight for the development of an effective gene therapy protocol in human patients. This review discusses the history, current status, and future directions of the DMD gene therapy in the canine model. PMID:25710459

  3. Duchenne muscular dystrophy gene therapy in the canine model.

    Science.gov (United States)

    Duan, Dongsheng

    2015-03-01

    Duchenne muscular dystrophy (DMD) is an X-linked lethal muscle disease caused by dystrophin deficiency. Gene therapy has significantly improved the outcome of dystrophin-deficient mice. Yet, clinical translation has not resulted in the expected benefits in human patients. This translational gap is largely because of the insufficient modeling of DMD in mice. Specifically, mice lacking dystrophin show minimum dystrophic symptoms, and they do not respond to the gene therapy vector in the same way as human patients do. Further, the size of a mouse is hundredfolds smaller than a boy, making it impossible to scale-up gene therapy in a mouse model. None of these limitations exist in the canine DMD (cDMD) model. For this reason, cDMD dogs have been considered a highly valuable platform to test experimental DMD gene therapy. Over the last three decades, a variety of gene therapy approaches have been evaluated in cDMD dogs using a number of nonviral and viral vectors. These studies have provided critical insight for the development of an effective gene therapy protocol in human patients. This review discusses the history, current status, and future directions of the DMD gene therapy in the canine model.

  4. Bacteria as vectors for gene therapy of cancer.

    LENUS (Irish Health Repository)

    Baban, Chwanrow K

    2012-01-31

    Anti-cancer therapy faces major challenges, particularly in terms of specificity of treatment. The ideal therapy would eradicate tumor cells selectively with minimum side effects on normal tissue. Gene or cell therapies have emerged as realistic prospects for the treatment of cancer, and involve the delivery of genetic information to a tumor to facilitate the production of therapeutic proteins. However, there is still much to be done before an efficient and safe gene medicine is achieved, primarily developing the means of targeting genes to tumors safely and efficiently. An emerging family of vectors involves bacteria of various genera. It has been shown that bacteria are naturally capable of homing to tumors when systemically administered resulting in high levels of replication locally. Furthermore, invasive species can deliver heterologous genes intra-cellularly for tumor cell expression. Here, we review the use of bacteria as vehicles for gene therapy of cancer, detailing the mechanisms of action and successes at preclinical and clinical levels.

  5. A guide to approaching regulatory considerations for lentiviral-mediated gene therapies.

    Science.gov (United States)

    White, Michael; Whittaker, Roger; Stoll, Elizabeth Ann

    2017-06-12

    Lentiviral vectors are increasingly the gene transfer tool of choice for gene or cell therapies, with multiple clinical investigations showing promise for this viral vector in terms of both safety and efficacy. The third-generation vector system is well-characterized, effectively delivers genetic material and maintains long-term stable expression in target cells, delivers larger amounts of genetic material than other methods, is non-pathogenic and does not cause an inflammatory response in the recipient. This report aims to help academic scientists and regulatory managers negotiate the governance framework to achieve successful translation of a lentiviral vector-based gene therapy. The focus is on European regulations, and how they are administered in the United Kingdom, although many of the principles will be similar for other regions including the United States. The report justifies the rationale for using third-generation lentiviral vectors to achieve gene delivery for in vivo and ex vivo applications; briefly summarises the extant regulatory guidance for gene therapies, categorised as advanced therapeutic medicinal products (ATMPs); provides guidance on specific regulatory issues regarding gene therapies; presents an overview of the key stakeholders to be approached when pursuing clinical trials authorization for an ATMP; and includes a brief catalogue of the documentation required to submit an application for regulatory approval of a new gene therapy.

  6. 77 FR 71194 - Draft Guidance for Industry: Preclinical Assessment of Investigational Cellular and Gene Therapy...

    Science.gov (United States)

    2012-11-29

    ...] Draft Guidance for Industry: Preclinical Assessment of Investigational Cellular and Gene Therapy... Industry: Preclinical Assessment of Investigational Cellular and Gene Therapy Products,'' dated November... Evaluation (CBER), Office of Cellular, Tissue, and Gene Therapies (OCTGT). The product areas covered by this...

  7. Carbon nanotubes as vectors for gene therapy: past achievements, present challenges and future goals.

    Science.gov (United States)

    Bates, Katie; Kostarelos, Kostas

    2013-12-01

    Promising therapeutic and prophylactic effects have been achieved following advances in the gene therapy research arena, giving birth to the new generation of disease-modifying therapeutics. The greatest challenge that gene therapy vectors still face is the ability to deliver sufficient genetic payloads in order to enable efficient gene transfer into target cells. A wide variety of viral and non-viral gene therapy vectors have been developed and explored over the past 10years, including carbon nanotubes. In this review we will address the application of carbon nanotubes as non-viral vectors in gene therapy with the aim to give a perspective on the past achievements, present challenges and future goals. A series of important topics concerning carbon nanotubes as gene therapy vectors will be addressed, including the benefits that carbon nanotubes offer over other non-viral delivery systems. Furthermore, a perspective is given on what the ideal genetic cargo to deliver using carbon nanotubes is and finally the geno-pharmacological impact of carbon nanotube-mediated gene therapy is discussed. © 2013.

  8. Design of radiopharmaceuticals for monitoring gene transfer therapy

    International Nuclear Information System (INIS)

    Lambrecht, R.M.; Staehler, P.; Kley, J.; Spiegel, M.; Gross, C.; Graepler, F.T.C.; Gregor, M.; Lauer, U.; Oberdorfer, F.

    1998-01-01

    The development of radiopharmaceuticals for monitoring gene transfer therapy with emission tomography is expected to lead to improved management of cancer by the year 2010. There are now only a few examples and approaches to the design of radiopharmaceuticals for gene transfer therapy. This paper introduces a novel concept for the monitoring of gene therapy. We present the optimisation of the labelling of recombinant human β-NGF ligands for in vitro studies prior to using 123 I for SPET and 124 I for PET studies. (author)

  9. Communicating in context: a priority for gene therapy researchers.

    Science.gov (United States)

    Robillard, Julie M

    2015-03-01

    History shows that public opinion of emerging biotechnologies has the potential to impact the research process through mechanisms such as funding and advocacy. It is critical, therefore, to consider public attitudes towards modern biotechnology such as gene therapy and more specifically towards the ethics of gene therapy, alongside advances in basic and clinical research. Research conducted through social media recently assessed how online users view the ethics of gene therapy and showed that while acceptability is high, significant ethical concerns remain. To address these concerns, the development of effective and evidence-based communication strategies that engage a wide range of stakeholders should be a priority for researchers.

  10. Gene Therapy for Pancreatic Cancer: Specificity, Issues and Hopes.

    Science.gov (United States)

    Rouanet, Marie; Lebrin, Marine; Gross, Fabian; Bournet, Barbara; Cordelier, Pierre; Buscail, Louis

    2017-06-08

    A recent death projection has placed pancreatic ductal adenocarcinoma as the second cause of death by cancer in 2030. The prognosis for pancreatic cancer is very poor and there is a great need for new treatments that can change this poor outcome. Developments of therapeutic innovations in combination with conventional chemotherapy are needed urgently. Among innovative treatments the gene therapy offers a promising avenue. The present review gives an overview of the general strategy of gene therapy as well as the limitations and stakes of the different experimental in vivo models, expression vectors (synthetic and viral), molecular tools (interference RNA, genome editing) and therapeutic genes (tumor suppressor genes, antiangiogenic and pro-apoptotic genes, suicide genes). The latest developments in pancreatic carcinoma gene therapy are described including gene-based tumor cell sensitization to chemotherapy, vaccination and adoptive immunotherapy (chimeric antigen receptor T-cells strategy). Nowadays, there is a specific development of oncolytic virus therapies including oncolytic adenoviruses, herpes virus, parvovirus or reovirus. A summary of all published and on-going phase-1 trials is given. Most of them associate gene therapy and chemotherapy or radiochemotherapy. The first results are encouraging for most of the trials but remain to be confirmed in phase 2 trials.

  11. Gene Therapy for Pancreatic Cancer: Specificity, Issues and Hopes

    Directory of Open Access Journals (Sweden)

    Marie Rouanet

    2017-06-01

    Full Text Available A recent death projection has placed pancreatic ductal adenocarcinoma as the second cause of death by cancer in 2030. The prognosis for pancreatic cancer is very poor and there is a great need for new treatments that can change this poor outcome. Developments of therapeutic innovations in combination with conventional chemotherapy are needed urgently. Among innovative treatments the gene therapy offers a promising avenue. The present review gives an overview of the general strategy of gene therapy as well as the limitations and stakes of the different experimental in vivo models, expression vectors (synthetic and viral, molecular tools (interference RNA, genome editing and therapeutic genes (tumor suppressor genes, antiangiogenic and pro-apoptotic genes, suicide genes. The latest developments in pancreatic carcinoma gene therapy are described including gene-based tumor cell sensitization to chemotherapy, vaccination and adoptive immunotherapy (chimeric antigen receptor T-cells strategy. Nowadays, there is a specific development of oncolytic virus therapies including oncolytic adenoviruses, herpes virus, parvovirus or reovirus. A summary of all published and on-going phase-1 trials is given. Most of them associate gene therapy and chemotherapy or radiochemotherapy. The first results are encouraging for most of the trials but remain to be confirmed in phase 2 trials.

  12. Combining Oncolytic Virotherapy with p53 Tumor Suppressor Gene Therapy

    Directory of Open Access Journals (Sweden)

    Christian Bressy

    2017-06-01

    Full Text Available Oncolytic virus (OV therapy utilizes replication-competent viruses to kill cancer cells, leaving non-malignant cells unharmed. With the first U.S. Food and Drug Administration-approved OV, dozens of clinical trials ongoing, and an abundance of translational research in the field, OV therapy is poised to be one of the leading treatments for cancer. A number of recombinant OVs expressing a transgene for p53 (TP53 or another p53 family member (TP63 or TP73 were engineered with the goal of generating more potent OVs that function synergistically with host immunity and/or other therapies to reduce or eliminate tumor burden. Such transgenes have proven effective at improving OV therapies, and basic research has shown mechanisms of p53-mediated enhancement of OV therapy, provided optimized p53 transgenes, explored drug-OV combinational treatments, and challenged canonical roles for p53 in virus-host interactions and tumor suppression. This review summarizes studies combining p53 gene therapy with replication-competent OV therapy, reviews preclinical and clinical studies with replication-deficient gene therapy vectors expressing p53 transgene, examines how wild-type p53 and p53 modifications affect OV replication and anti-tumor effects of OV therapy, and explores future directions for rational design of OV therapy combined with p53 gene therapy.

  13. Genome-editing Technologies for Gene and Cell Therapy

    OpenAIRE

    Maeder, Morgan L; Gersbach, Charles A

    2016-01-01

    Gene therapy has historically been defined as the addition of new genes to human cells. However, the recent advent of genome-editing technologies has enabled a new paradigm in which the sequence of the human genome can be precisely manipulated to achieve a therapeutic effect. This includes the correction of mutations that cause disease, the addition of therapeutic genes to specific sites in the genome, and the removal of deleterious genes or genome sequences. This review presents the mechanis...

  14. The use of genes for performance enhancement: doping or therapy?

    Directory of Open Access Journals (Sweden)

    R.S. Oliveira

    2011-12-01

    Full Text Available Recent biotechnological advances have permitted the manipulation of genetic sequences to treat several diseases in a process called gene therapy. However, the advance of gene therapy has opened the door to the possibility of using genetic manipulation (GM to enhance athletic performance. In such ‘gene doping’, exogenous genetic sequences are inserted into a specific tissue, altering cellular gene activity or leading to the expression of a protein product. The exogenous genes most likely to be utilized for gene doping include erythropoietin (EPO, vascular endothelial growth factor (VEGF, insulin-like growth factor type 1 (IGF-1, myostatin antagonists, and endorphin. However, many other genes could also be used, such as those involved in glucose metabolic pathways. Because gene doping would be very difficult to detect, it is inherently very attractive for those involved in sports who are prepared to cheat. Moreover, the field of gene therapy is constantly and rapidly progressing, and this is likely to generate many new possibilities for gene doping. Thus, as part of the general fight against all forms of doping, it will be necessary to develop and continually improve means of detecting exogenous gene sequences (or their products in athletes. Nevertheless, some bioethicists have argued for a liberal approach to gene doping.

  15. Cancer gene therapy targeting angiogenesis: An updated Review

    Science.gov (United States)

    Liu, Ching-Chiu; Shen, Zan; Kung, Hsiang-Fu; Lin, Marie CM

    2006-01-01

    Since the relationship between angiogenesis and tumor growth was established by Folkman in 1971, scientists have made efforts exploring the possibilities in treating cancer by targeting angiogenesis. Inhibition of angiogenesis growth factors and administration of angiogenesis inhibitors are the basics of anti-angiogenesis therapy. Transfer of anti-angiogenesis genes has received attention recently not only because of the advancement of recombinant vectors, but also because of the localized and sustained expression of therapeutic gene product inside the tumor after gene transfer. This review provides the up-to-date information about the strategies and the vectors studied in the field of anti-angiogenesis cancer gene therapy. PMID:17109514

  16. Prospects for Foamy Viral Vector Anti-HIV Gene Therapy

    Directory of Open Access Journals (Sweden)

    Arun K. Nalla

    2016-03-01

    Full Text Available Stem cell gene therapy approaches for Human Immunodeficiency Virus (HIV infection have been explored in clinical trials and several anti-HIV genes delivered by retroviral vectors were shown to block HIV replication. However, gammaretroviral and lentiviral based retroviral vectors have limitations for delivery of anti-HIV genes into hematopoietic stem cells (HSC. Foamy virus vectors have several advantages including efficient delivery of transgenes into HSC in large animal models, and a potentially safer integration profile. This review focuses on novel anti-HIV transgenes and the potential of foamy virus vectors for HSC gene therapy of HIV.

  17. Cystic Fibrosis Gene Therapy in the UK and Elsewhere

    Science.gov (United States)

    Pytel, Kamila M.; Alton, Eric W.F.W.

    2015-01-01

    Abstract The cystic fibrosis transmembrane conductance regulator (CFTR) gene was identified in 1989. This opened the door for the development of cystic fibrosis (CF) gene therapy, which has been actively pursued for the last 20 years. Although 26 clinical trials involving approximately 450 patients have been carried out, the vast majority of these trials were short and included small numbers of patients; they were not designed to assess clinical benefit, but to establish safety and proof-of-concept for gene transfer using molecular end points such as the detection of recombinant mRNA or correction of the ion transport defect. The only currently published trial designed and powered to assess clinical efficacy (defined as improvement in lung function) administered AAV2-CFTR to the lungs of patients with CF. The U.K. Cystic Fibrosis Gene Therapy Consortium completed, in the autumn of 2014, the first nonviral gene therapy trial designed to answer whether repeated nonviral gene transfer (12 doses over 12 months) can lead to clinical benefit. The demonstration that the molecular defect in CFTR can be corrected with small-molecule drugs, and the success of gene therapy in other monogenic diseases, is boosting interest in CF gene therapy. Developments are discussed here. PMID:25838137

  18. Nanodrug applications in photodynamic therapy.

    LENUS (Irish Health Repository)

    Paszko, Edyta

    2011-03-01

    Photodynamic therapy (PDT) has developed over last century and is now becoming a more widely used medical tool having gained regulatory approval for the treatment of various diseases such as cancer and macular degeneration. It is a two-step technique in which the delivery of a photosensitizing drug is followed by the irradiation of light. Activated photosensitizers transfer energy to molecular oxygen which results in the generation of reactive oxygen species which in turn cause cells apoptosis or necrosis. Although this modality has significantly improved the quality of life and survival time for many cancer patients it still offers significant potential for further improvement. In addition to the development of new PDT drugs, the use of nanosized carriers for photosensitizers is a promising approach which might improve the efficiency of photodynamic activity and which can overcome many side effects associated with classic photodynamic therapy. This review aims at highlighting the different types of nanomedical approaches currently used in PDT and outlines future trends and limitations of nanodelivery of photosensitizers.

  19. Mesenchymal stromal cells retrovirally transduced with prodrug-converting genes are suitable vehicles for cancer gene therapy.

    Science.gov (United States)

    Ďuriniková, E; Kučerová, L; Matúšková, M

    2014-01-01

    Mesenchymal stem/stromal cells (MSC) possess a set of several fairly unique properties which make them ideally suitable both for cellular therapies and regenerative medicine. These include: relative ease of isolation, the ability to differentiate along mesenchymal and non-mesenchymal lineages in vitro and the ability to be extensively expanded in culture without a loss of differentiative capacity. MSC are not only hypoimmunogenic, but they mediate immunosuppression upon transplantation, and possess pronounced anti-inflammatory properties. They are able to home to damaged tissues, tumors, and metastases following systemic administration. The ability of homing holds big promise for tumor-targeted delivery of therapeutic agents. Viruses are naturally evolved vehicles efficiently transferring their genes into host cells. This ability made them suitable for engineering vector systems for the delivery of genes of interest. MSC can be retrovirally transduced with genes encoding prodrug-converting genes (suicide genes), which are not toxic per se, but catalyze the formation of highly toxic metabolites following the application of a nontoxic prodrug. The homing ability of MSC holds advantages compared to virus vehicles which display many shortcomings in effective delivery of the therapeutic agents. Gene therapies mediated by viruses are limited by their restricted ability to track cancer cells infiltrating into the surrounding tissue, and by their low migratory capacity towards tumor. Thus combination of cellular therapy and gene delivery is an attractive option - it protects the vector from immune surveillance, and supports targeted delivery of a therapeutic gene/protein to the tumor site.

  20. Gene therapy for CNS diseases – Krabbe disease

    Directory of Open Access Journals (Sweden)

    Mohammad A. Rafi

    2016-06-01

    Full Text Available This is a brief report of the 19th Annual Meeting of the American Society of Gene and Cell Therapy that took place from May 4th through May 7th, 2016 in Washington, DC, USA. While the meeting provided many symposiums, lectures, and scientific sessions this report mainly focuses on one of the sessions on the "Gene Therapy for central nervous system (CNS Diseases" and specifically on the "Gene Therapy for the globoid cell leukodystrophy or Krabbe disease. Two presentations focused on this subject utilizing two animal models of this disease: mice and dog models. Different serotypes of adeno-associate viral vectors (AAV alone or in combination with bone marrow transplantations were used in these research projects. The Meeting of the ASGCT reflected continuous growth in the fields of gene and cell therapy and brighter forecast for efficient treatment options for variety of human diseases.

  1. Targeting a Novel Vector for Breast Cancer Gene Therapy

    National Research Council Canada - National Science Library

    Bzik, David

    2002-01-01

    .... The primary purpose and scope of this IDEA award project is to experimentally examine approaches to safely target the Toxoplasma gondii parasite gene therapy vector to breast cancer tissue using...

  2. Molecular Genetic and Gene Therapy Studies of the Musculoskeletal System

    National Research Council Canada - National Science Library

    Baylink, David

    2004-01-01

    The primary goal of the proposed work is to apply several state of the art molecular genetic and gene therapy technologies to address fundamental questions in bone biology with a particular emphasis on attempting: l...

  3. Fetal gene therapy: recent advances and current challenges.

    Science.gov (United States)

    Mattar, Citra N; Choolani, Mahesh; Biswas, Arijit; Waddington, Simon N; Chan, Jerry K Y

    2011-10-01

    Fetal gene therapy (FGT) can potentially be applied to perinatally lethal monogenic diseases for rescuing clinically severe phenotypes, increasing the probability of intact neurological and other key functions at birth, or inducing immune tolerance to a transgenic protein to facilitate readministration of the vector/protein postnatally. As the field is still at an experimental stage, there are several important considerations regarding the practicality and the ethics of FGT. Here, through a review of FGT studies, the authors discuss the role and applications of FGT, the progress made with animal models that simulate human development, possible adverse effects in the recipient fetus and the mother and factors that affect clinical translation. Although there are valid safety and ethical concerns, the authors argue that there may soon be enough convincing evidence from non-human primate models to take the next step towards clinical trials in the near future. © 2011 Informa UK, Ltd.

  4. Nanotechnology application for pain therapy.

    Science.gov (United States)

    Moradkhani, Mahmoud Reza; Karimi, Arash; Negahdari, Babak

    2018-03-01

    Prolonged delivery of analgesic drugs at target sites remains a critical issue for efficient pain management. The use of nano-carriers has been reported to facilitate applicable delivery of these agents to target sites with a reduced level of systemic toxicity. Different analgesics have been loaded onto various nano carriers, including those that are natural, synthetic and copolymer, for various medical applications. In this review, we will discuss the concept of nano-formulated carriers for analgesic drugs and their impacts on the field of pain management.

  5. Gene-Specific Demethylation as Targeted Therapy in MDS

    Science.gov (United States)

    2017-07-01

    AWARD NUMBER: W81XWH-15-1-0161 TITLE: Gene-Specific Demethylation as Targeted Therapy in MDS PRINCIPAL INVESTIGATOR: Daniel G. Tenen, M.D...15JUN2016-14JUN2017 4. TITLE AND SUBTITLE Gene-Specific Demethylation as Targeted Therapy in MDS 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM... magnetic beads capture all newly synthesized transcripts. To compare the transcriptional profiles under these conditions with our previous results, we

  6. [Operative applications of occupational therapy].

    Science.gov (United States)

    Saade, A

    2010-01-01

    Occupational therapy is the branch of rehabilitation whose main aim is to achieve maximum possible autonomy of the disabled person and the most complete integration into society, family and work. In subjects with motor disabilities following an occupational injury, the re-education programme includes a series of interventions aimed at progressive recovery of the ability to carry out work tasks compatible with the residual motor capacity of the worker. This article presents some examples related to the different stages making up the specific re-education programme: from the initial stages (with more purely kinesiotherapeutic techniques) directed at recovering movements and muscle strength, to the intermediate and final stages (more typically ergotherapeutic) directed first at the recovery of basic functions (clasping, pulling, pushing, lifting, lowering, carrying, etc.) and then, finally, retraining of work movements, with the introduction of compensatory methods and/or use of auxiliaries, when necessary.

  7. Gene therapy in the management of oral cancer: review of the literature.

    Science.gov (United States)

    Ayllón Barbellido, Sonia; Campo Trapero, Julián; Cano Sánchez, Jorge; Perea García, Miguel A; Escudero Castaño, Nayra; Bascones Martínez, Antonio

    2008-01-01

    Gene therapy essentially consists of introducing specific genetic material into target cells without producing toxic effects on surrounding tissue. Advances over recent decades in the surgical, radiotherapeutic and chemotherapeutic treatment of oral cancer patients have not produced a significant improvement in patient survival. Increasing interest is being shown in developing novel therapies to reverse oral epithelial dysplastic lesions. This review provides an update on transfer techniques, therapeutic strategies, and the clinical applications and limitations of gene therapy in the management of oral cancer and precancer. We highlight the combination of gene therapy with chemotherapy (e.g., 5-Fluoracil) and immunotherapy, given the promising results obtained in the use of adenovirus to act at altered gene level (e.g., p53). Other techniques such as suicide gene therapy, use of oncolytic viruses or the use of antisense RNA have shown positive although very preliminary results. Therefore, further research into these promising gene therapy techniques is required to assess their true efficacy and safety in the management of these lesions.

  8. Prospects for the Use of Artificial Chromosomes and Minichromosome-Like Episomes in Gene Therapy

    Directory of Open Access Journals (Sweden)

    Sara Pérez-Luz

    2010-01-01

    Full Text Available Artificial chromosomes and minichromosome-like episomes are large DNA molecules capable of containing whole genomic loci, and be maintained as nonintegrating, replicating molecules in proliferating human somatic cells. Authentic human artificial chromosomes are very difficult to engineer because of the difficulties associated with centromere structure, so they are not widely used for gene-therapy applications. However, OriP/EBNA1-based episomes, which they lack true centromeres, can be maintained stably in dividing cells as they bind to mitotic chromosomes and segregate into daughter cells. These episomes are more easily engineered than true human artificial chromosomes and can carry entire genes along with all their regulatory sequences. Thus, these constructs may facilitate the long-term persistence and physiological regulation of the expression of therapeutic genes, which is crucial for some gene therapy applications. In particular, they are promising vectors for gene therapy in inherited diseases that are caused by recessive mutations, for example haemophilia A and Friedreich's ataxia. Interestingly, the episome carrying the frataxin gene (deficient in Friedreich's ataxia has been demonstrated to rescue the susceptibility to oxidative stress which is typical of fibroblasts from Friedreich's ataxia patients. This provides evidence of their potential to treat genetic diseases linked to recessive mutations through gene therapy.

  9. Specifically targeted gene therapy for small-cell lung cancer

    DEFF Research Database (Denmark)

    Christensen, C.L.; Zandi, R.; Gjetting, T.

    2009-01-01

    Small-cell lung cancer (SCLC) is a highly malignant disease with poor prognosis. Hence, there is great demand for new therapies that can replace or supplement the current available treatment regimes. Gene therapy constitutes a promising strategy and relies on the principle of introducing exogenous...

  10. Evolving Industry Partnerships and Investments in Cell and Gene Therapies.

    Science.gov (United States)

    Smith, Devyn M; Culme-Seymour, Emily J; Mason, Chris

    2018-04-12

    Cell and gene therapies hold the promise of providing significant and durable health gains to patients in many disease states and have recently elicited significant investor and partner interest. We cover the current state of industry partnerships and investments, highlight what makes a partnership advantageous, and discuss implications for stem cell therapies. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Theory and in vivo application of electroporative gene delivery.

    Science.gov (United States)

    Somiari, S; Glasspool-Malone, J; Drabick, J J; Gilbert, R A; Heller, R; Jaroszeski, M J; Malone, R W

    2000-09-01

    Efficient and safe methods for delivering exogenous genetic material into tissues must be developed before the clinical potential of gene therapy will be realized. Recently, in vivo electroporation has emerged as a leading technology for developing nonviral gene therapies and nucleic acid vaccines (NAV). Electroporation (EP) involves the application of pulsed electric fields to cells to enhance cell permeability, resulting in exogenous polynucleotide transit across the cytoplasmic membrane. Similar pulsed electrical field treatments are employed in a wide range of biotechnological processes including in vitro EP, hybridoma production, development of transgenic animals, and clinical electrochemotherapy. Electroporative gene delivery studies benefit from well-developed literature that may be used to guide experimental design and interpretation. Both theory and experimental analysis predict that the critical parameters governing EP efficacy include cell size and field strength, duration, frequency, and total number of applied pulses. These parameters must be optimized for each tissue in order to maximize gene delivery while minimizing irreversible cell damage. By providing an overview of the theory and practice of electroporative gene transfer, this review intends to aid researchers that wish to employ the method for preclinical and translational gene therapy, NAV, and functional genomic research.

  12. Nanoparticles for siRNA-Based Gene Silencing in Tumor Therapy.

    Science.gov (United States)

    Babu, Anish; Muralidharan, Ranganayaki; Amreddy, Narsireddy; Mehta, Meghna; Munshi, Anupama; Ramesh, Rajagopal

    2016-12-01

    Gene silencing through RNA interference (RNAi) has emerged as a potential strategy in manipulating cancer causing genes by complementary base-pairing mechanism. Small interfering RNA (siRNA) is an important RNAi tool that has found significant application in cancer therapy. However due to lack of stability, poor cellular uptake and high probability of loss-of-function due to degradation, siRNA therapeutic strategies seek safe and efficient delivery vehicles for in vivo applications. The current review discusses various nanoparticle systems currently used for siRNA delivery for cancer therapy, with emphasis on liposome based gene delivery systems. The discussion also includes various methods availed to improve nanoparticle based-siRNA delivery with target specificity and superior efficiency. Further this review describes challenges and perspectives on the development of safe and efficient nanoparticle based-siRNA-delivery systems for cancer therapy.

  13. Recent Advancements in Gene Therapy for Hereditary Retinal Dystrophies

    Directory of Open Access Journals (Sweden)

    Ayşe Öner

    2017-12-01

    Full Text Available Hereditary retinal dystrophies (HRDs are degenerative diseases of the retina which have marked clinical and genetic heterogeneity. Common presentations among these disorders include night or colour blindness, tunnel vision, and subsequent progression to complete blindness. The known causative disease genes have a variety of developmental and functional roles, with mutations in more than 120 genes shown to be responsible for the phenotypes. In addition, mutations within the same gene have been shown to cause different disease phenotypes, even amongst affected individuals within the same family, highlighting further levels of complexity. The known disease genes encode proteins involved in retinal cellular structures, phototransduction, the visual cycle, and photoreceptor structure or gene regulation. Significant advancements have been made in understanding the genetic pathogenesis of ocular diseases, and gene replacement and gene silencing have been proposed as potentially efficacious therapies. Because of its favorable anatomical and immunological characteristics, the eye has been at the forefront of translational gene therapy. Recent improvements have been made in the safety and specificity of vector-based ocular gene transfer methods. Dozens of promising proofs of concept have been obtained in animal models of HRDs and some of them have been relayed to the clinic. The results from the first clinical trials for a congenital form of blindness have generated great interest and have demonstrated the safety and efficacy of intraocular administrations of viral vectors in humans. This review summarizes the clinical development of retinal gene therapy.

  14. Duchenne muscular dystrophy gene therapy: Lost in translation?

    Directory of Open Access Journals (Sweden)

    Dongsheng Duan

    2011-03-01

    Full Text Available Dongsheng DuanDepartment of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USAAbstract: A milestone of molecular medicine is the identification of dystrophin gene mutation as the cause of Duchenne muscular dystrophy (DMD. Over the last 2 decades, major advances in dystrophin biology and gene delivery technology have created an opportunity to treat DMD with gene therapy. Remarkable success has been achieved in treating dystrophic mice. Several gene therapy strategies, including plasmid transfer, exon skipping, and adeno-associated virus-mediated microdystrophin therapy, have entered clinical trials. However, therapeutic benefit has not been realized in DMD patients. Bridging the gap between mice and humans is no doubt the most pressing issue facing DMD gene therapy now. In contrast to mice, dystrophin-deficient dogs are genetically and phenotypically similar to human patients. Preliminary gene therapy studies in the canine model may offer critical insights that cannot be obtained from murine studies. It is clear that the canine DMD model may represent an important link between mice and humans. Unfortunately, our current knowledge of dystrophic dogs is limited, and the full picture of disease progression remains to be clearly defined. We also lack rigorous outcome measures (such as in situ force measurement to monitor therapeutic efficacy in dystrophic dogs. Undoubtedly, maintaining a dystrophic dog colony is technically demanding, and the cost of dog studies cannot be underestimated. A carefully coordinated effort from the entire DMD community is needed to make the best use of the precious dog resource. Successful DMD gene therapy may depend on valid translational studies in dystrophin-deficient dogs.Keywords: Duchenne muscular dystrophy, gene therapy, dystrophin, adeno-associated virus, exon-skipping, canine model

  15. Gene therapy for the treatment of cystic fibrosis

    Directory of Open Access Journals (Sweden)

    Burney TJ

    2012-05-01

    Full Text Available Tabinda J Burney1,2, Jane C Davies1,2,31Department of Gene therapy, Imperial College London, 2UK CF Gene Therapy Consortium London, 3Department of Paediatric Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UKAbstract: Gene therapy is being developed as a novel treatment for cystic fibrosis (CF, a condition that has hitherto been widely-researched yet for which no treatment exists that halts the progression of lung disease. Gene therapy involves the transfer of correct copies of cystic fibrosis transmembrane conductance regulator (CFTR DNA to the epithelial cells in the airways. The cloning of the CFTR gene in 1989 led to proof-of-principle studies of CFTR gene transfer in vitro and in animal models. The earliest clinical trials in CF patients were conducted in 1993 and used viral and non-viral gene transfer agents in both the nasal and bronchial airway epithelium. To date, studies have focused largely on molecular or bioelectric (chloride secretion outcome measures, many demonstrating evidence of CFTR expression, but few have attempted to achieve clinical efficacy. As CF is a lifelong disease, turnover of the airway epithelium necessitates repeat administration. To date, this has been difficult to achieve with viral gene transfer agents due to host recognition leading to loss of expression. The UK Cystic Fibrosis Gene Therapy Consortium (Imperial College London, University of Edinburgh and University of Oxford is currently working on a large and ambitious program to establish the clinical benefits of CF gene therapy. Wave 1, which has reached the clinic, uses a non-viral vector. A single-dose safety trial is nearing completion and a multi-dose clinical trial is shortly due to start; this will be powered for clinically-relevant changes. Wave 2, more futuristically, will look at the potential of lentiviruses, which have long-lasting expression. This review will summarize the current status of translational

  16. Nitric Oxide Gene Therapy for Prostate Cancer

    National Research Council Canada - National Science Library

    Armour, Elwood

    1999-01-01

    .... One approach to therapy is over-production of inducible nitric oxide synthase (iNOS) within the tumor by injecting replication defective adenovirus containing the DNA sequences for iNOS into prostate tumors...

  17. Human gene therapy: novel approaches to improve the current gene delivery systems.

    Science.gov (United States)

    Cucchiarini, Magali

    2016-06-01

    Even though gene therapy made its way through the clinics to treat a number of human pathologies since the early years of experimental research and despite the recent approval of the first gene-based product (Glybera) in Europe, the safe and effective use of gene transfer vectors remains a challenge in human gene therapy due to the existence of barriers in the host organism. While work is under active investigation to improve the gene transfer systems themselves, the use of controlled release approaches may offer alternative, convenient tools of vector delivery to achieve a performant gene transfer in vivo while overcoming the various physiological barriers that preclude its wide use in patients. This article provides an overview of the most significant contributions showing how the principles of controlled release strategies may be adapted for human gene therapy.

  18. Mesenchymal Stem Cell-Based Tumor-Targeted Gene Therapy in Gastrointestinal Cancer

    OpenAIRE

    Bao, Qi; Zhao, Yue; Niess, Hanno; Conrad, Claudius; Schwarz, Bettina; Jauch, Karl-Walter; Huss, Ralf; Nelson, Peter J.; Bruns, Christiane J.

    2012-01-01

    Mesenchymal stem (or stromal) cells (MSCs) are nonhematopoietic progenitor cells that can be obtained from bone marrow aspirates or adipose tissue, expanded and genetically modified in vitro, and then used for cancer therapeutic strategies in vivo. Here, we review available data regarding the application of MSC-based tumor-targeted therapy in gastrointestinal cancer, provide an overview of the general history of MSC-based gene therapy in cancer research, and discuss potential problems associa...

  19. Dawn of ocular gene therapy: implications for molecular diagnosis in retinal disease

    Science.gov (United States)

    Jacques, ZANEVELD; Feng, WANG; Xia, WANG; Rui, CHEN

    2013-01-01

    Personalized medicine aims to utilize genomic information about patients to tailor treatment. Gene replacement therapy for rare genetic disorders is perhaps the most extreme form of personalized medicine, in that the patients’ genome wholly determines their treatment regimen. Gene therapy for retinal disorders is poised to become a clinical reality. The eye is an optimal site for gene therapy due to the relative ease of precise vector delivery, immune system isolation, and availability for monitoring of any potential damage or side effects. Due to these advantages, clinical trials for gene therapy of retinal diseases are currently underway. A necessary precursor to such gene therapies is accurate molecular diagnosis of the mutation(s) underlying disease. In this review, we discuss the application of Next Generation Sequencing (NGS) to obtain such a diagnosis and identify disease causing genes, using retinal disorders as a case study. After reviewing ocular gene therapy, we discuss the application of NGS to the identification of novel Mendelian disease genes. We then compare current, array based mutation detection methods against next NGS-based methods in three retinal diseases: Leber’s Congenital Amaurosis, Retinitis Pigmentosa, and Stargardt’s disease. We conclude that next-generation sequencing based diagnosis offers several advantages over array based methods, including a higher rate of successful diagnosis and the ability to more deeply and efficiently assay a broad spectrum of mutations. However, the relative difficulty of interpreting sequence results and the development of standardized, reliable bioinformatic tools remain outstanding concerns. In this review, recent advances NGS based molecular diagnoses are discussed, as well as their implications for the development of personalized medicine. PMID:23393028

  20. Gene therapy: Regulations, ethics and its practicalities in liver disease

    OpenAIRE

    Jin, Xi; Yang, Yi-Da; Li, You-Ming

    2008-01-01

    Gene therapy is a new and promising approach which opens a new door to the treatment of human diseases. By direct transfer of genetic materials to the target cells, it could exert functions on the level of genes and molecules. It is hoped to be widely used in the treatment of liver disease, especially hepatic tumors by using different vectors encoding the aim gene for anti-tumor activity by activating primary and adaptive immunity, inhibiting oncogene and angiogenesis. Despite the huge curati...

  1. Genome Editing Gene Therapy for Duchenne Muscular Dystrophy

    OpenAIRE

    Hotta, Akitsu

    2015-01-01

    Duchenne muscular dystrophy (DMD) is a severe genetic disorder caused by loss of function of the dystrophin gene on the X chromosome. Gene augmentation of dystrophin is challenging due to the large size of the dystrophin cDNA. Emerging genome editing technologies, such as TALEN and CRISPR-Cas9 systems, open a new erain the restoration of functional dystrophin and are a hallmark of bona fide gene therapy. In this review, we summarize current genome editing approaches, properties of target cell...

  2. Gene Therapy for the Inner Ear: Challenges and Promises

    OpenAIRE

    Ryan, Allen F.; Dazert, Stefan

    2009-01-01

    Since the recognition of genes as the discrete units of heritability, and of DNA as their molecular substrate, the utilization of genes for therapeutic purposes has been recognized as a potential means of correcting genetic disorders. The tools of molecular biology, which allow the manipulation of DNA sequence, provided the means to put this concept into practice. However, progress in the implementation of these ideas has been slow. Here we review the history of the idea of gene therapy and t...

  3. [The cell micro-encapsulation techniques and its advancement in the field of gene therapy].

    Science.gov (United States)

    Li, Xiaoling; Cai, Shaohui

    2006-12-01

    It is no doubt that the gene therapy using recombinant engineering cells provides a novel approach to many refractory diseases. However, the transplant rejection from the host's immune system against heterogeneous cells has been the main handicap of its clinical application. The modern cell micro-encapsulation technique with good immune isolation makes it possible to overcome this problem and has shown potential application foreground in clinical therapies for a lot of diseases such as Parkinson's disease and Hemophiliac disease. This article reviews mainly the relative materials and techniques in processing micro-encapsulation, the host cells used to construct the recombinant genetic engineering cells and application of cell micro-encapsulation technique in the field of gene therapy.

  4. Immunostimulatory Gene Therapy Using Oncolytic Viruses as Vehicles

    Directory of Open Access Journals (Sweden)

    Angelica Loskog

    2015-11-01

    Full Text Available Immunostimulatory gene therapy has been developed during the past twenty years. The aim of immunostimulatory gene therapy is to tilt the suppressive tumor microenvironment to promote anti-tumor immunity. Hence, like a Trojan horse, the gene vehicle can carry warriors and weapons into enemy territory to combat the tumor from within. The most promising immune stimulators are those activating and sustaining Th1 responses, but even if potent effects were seen in preclinical models, many clinical trials failed to show objective responses in cancer patients. However, with new tools to control ongoing immunosuppression in cancer patients, immunostimulatory gene therapy is now emerging as an interesting option. In parallel, oncolytic viruses have been shown to be safe in patients. To prolong immune stimulation and to increase efficacy, these two fields are now merging and oncolytic viruses are armed with immunostimulatory transgenes. These novel agents are racing towards approval as established cancer immunotherapeutics.

  5. Immunostimulatory Gene Therapy Using Oncolytic Viruses as Vehicles.

    Science.gov (United States)

    Loskog, Angelica

    2015-11-06

    Immunostimulatory gene therapy has been developed during the past twenty years. The aim of immunostimulatory gene therapy is to tilt the suppressive tumor microenvironment to promote anti-tumor immunity. Hence, like a Trojan horse, the gene vehicle can carry warriors and weapons into enemy territory to combat the tumor from within. The most promising immune stimulators are those activating and sustaining Th1 responses, but even if potent effects were seen in preclinical models, many clinical trials failed to show objective responses in cancer patients. However, with new tools to control ongoing immunosuppression in cancer patients, immunostimulatory gene therapy is now emerging as an interesting option. In parallel, oncolytic viruses have been shown to be safe in patients. To prolong immune stimulation and to increase efficacy, these two fields are now merging and oncolytic viruses are armed with immunostimulatory transgenes. These novel agents are racing towards approval as established cancer immunotherapeutics.

  6. Pancreatic Cancer Gene Therapy: From Molecular Targets to Delivery Systems

    Energy Technology Data Exchange (ETDEWEB)

    Fillat, Cristina, E-mail: cristina.fillat@crg.es; Jose, Anabel; Ros, Xavier Bofill-De; Mato-Berciano, Ana; Maliandi, Maria Victoria; Sobrevals, Luciano [Programa Gens i Malaltia, Centre de Regulació Genòmica-CRG, UPF, Parc de Recerca Biomedica de Barcelona-PRBB and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona (Spain)

    2011-01-18

    The continuous identification of molecular changes deregulating critical pathways in pancreatic tumor cells provides us with a large number of novel candidates to engineer gene-targeted approaches for pancreatic cancer treatment. Targets—both protein coding and non-coding—are being exploited in gene therapy to influence the deregulated pathways to facilitate cytotoxicity, enhance the immune response or sensitize to current treatments. Delivery vehicles based on viral or non-viral systems as well as cellular vectors with tumor homing characteristics are a critical part of the design of gene therapy strategies. The different behavior of tumoral versus non-tumoral cells inspires vector engineering with the generation of tumor selective products that can prevent potential toxic-associated effects. In the current review, a detailed analysis of the different targets, the delivery vectors, the preclinical approaches and a descriptive update on the conducted clinical trials are presented. Moreover, future possibilities in pancreatic cancer treatment by gene therapy strategies are discussed.

  7. HIV-1 CCR5 gene therapy will fail unless it is combined with a suicide gene.

    Science.gov (United States)

    Pandit, Aridaman; de Boer, Rob J

    2015-12-17

    Highly active antiretroviral therapy (ART) has successfully turned Human immunodeficiency virus type 1 (HIV-1) from a deadly pathogen into a manageable chronic infection. ART is a lifelong therapy which is both expensive and toxic, and HIV can become resistant to it. An alternative to lifelong ART is gene therapy that targets the CCR5 co-receptor and creates a population of genetically modified host cells that are less susceptible to viral infection. With generic mathematical models we show that gene therapy that only targets the CCR5 co-receptor fails to suppress HIV-1 (which is in agreement with current data). We predict that the same gene therapy can be markedly improved if it is combined with a suicide gene that is only expressed upon HIV-1 infection.

  8. Recent trends in the gene therapy of β-thalassemia

    Science.gov (United States)

    Finotti, Alessia; Breda, Laura; Lederer, Carsten W; Bianchi, Nicoletta; Zuccato, Cristina; Kleanthous, Marina; Rivella, Stefano; Gambari, Roberto

    2015-01-01

    The β-thalassemias are a group of hereditary hematological diseases caused by over 300 mutations of the adult β-globin gene. Together with sickle cell anemia, thalassemia syndromes are among the most impactful diseases in developing countries, in which the lack of genetic counseling and prenatal diagnosis have contributed to the maintenance of a very high frequency of these genetic diseases in the population. Gene therapy for β-thalassemia has recently seen steadily accelerating progress and has reached a crossroads in its development. Presently, data from past and ongoing clinical trials guide the design of further clinical and preclinical studies based on gene augmentation, while fundamental insights into globin switching and new technology developments have inspired the investigation of novel gene-therapy approaches. Moreover, human erythropoietic stem cells from β-thalassemia patients have been the cellular targets of choice to date whereas future gene-therapy studies might increasingly draw on induced pluripotent stem cells. Herein, we summarize the most significant developments in β-thalassemia gene therapy over the last decade, with a strong emphasis on the most recent findings, for β-thalassemia model systems; for β-, γ-, and anti-sickling β-globin gene addition and combinatorial approaches including the latest results of clinical trials; and for novel approaches, such as transgene-mediated activation of γ-globin and genome editing using designer nucleases. PMID:25737641

  9. Intracellular delivery of potential therapeutic genes: prospects in cancer gene therapy.

    Science.gov (United States)

    Bakhtiar, Athirah; Sayyad, Mustak; Rosli, Rozita; Maruyama, Atsushi; Chowdhury, Ezharul H

    2014-01-01

    Conventional therapies for malignant cancer such as chemotherapy and radiotherapy are associated with poor survival rates owing to the development of cellular resistance to cancer drugs and the lack of targetability, resulting in unwanted adverse effects on healthy cells and necessitating the lowering of therapeutic dose with consequential lower efficacy of the treatment. Gene therapy employing different types of viral and non-viral carriers to transport gene(s) of interest and facilitating production of the desirable therapeutic protein(s) has tremendous prospects in cancer treatments due to the high-level of specificity in therapeutic action of the expressed protein(s) with diminished off-target effects, although cancer cell-specific delivery of transgene(s) still poses some challenges to be addressed. Depending on the potential therapeutic target genes, cancer gene therapy could be categorized into tumor suppressor gene replacement therapy, immune gene therapy and enzyme- or prodrug-based therapy. This review would shed light on the current progress of delivery of potentially therapeutic genes into various cancer cells in vitro and animal models utilizing a variety of viral and non-viral vectors.

  10. Prospects and implications of using chromatin insulators in gene therapy and transgenesis.

    Science.gov (United States)

    Recillas-Targa, Félix; Valadez-Graham, Viviana; Farrell, Catherine M

    2004-07-01

    Gene therapy has emerged from the idea of inserting a wild-type copy of a gene in order to restore the proper expression and function of a damaged gene. Initial efforts have focused on finding the proper vector and delivery method to introduce a corrected gene to the affected tissue or cell type. Even though these first attempts are clearly promising, several problems remain unsolved. A major problem is the influence of chromatin structure on transgene expression. To overcome chromatin-dependent repressive transgenic states, researchers have begun to use chromatin regulatory elements to drive transgene expression. Insulators or chromatin boundaries are able to protect a transgene against chromatin position effects at their genomic integration sites, and they are able to maintain transgene expression for long periods of time. Therefore, these elements may be very useful tools in gene therapy applications for ensuring high-level and stable expression of transgenes. Copyright 2004 Wiley Periodicals, Inc.

  11. Role of gene therapy in tissue engineering procedures in rheumatology: the use of animal models.

    NARCIS (Netherlands)

    Kraan, P.M. van der; Loo, F.A.J. van de; Berg, W.B. van den

    2004-01-01

    Tissue engineering is not only the application of cells and scaffolds to generate a new tissue but should also bring into play biological principles to guide cellular behavior. A way to modify cellular behavior is genetic modification of the cells used for tissue engineering (gene therapy). In the

  12. Gene delivery to the lungs: pulmonary gene therapy for cystic fibrosis.

    Science.gov (United States)

    Villate-Beitia, Ilia; Zarate, Jon; Puras, Gustavo; Pedraz, José Luis

    2017-07-01

    Cystic fibrosis (CF) is a monogenic autosomal recessive disorder where the defective gene, the cystic fibrosis transmembrane conductance regulator (CFTR), is well identified. Moreover, the respiratory tract can be targeted through noninvasive aerosolized formulations for inhalation. Therefore, gene therapy is considered a plausible strategy to address this disease. Conventional gene therapy strategies rely on the addition of a correct copy of the CFTR gene into affected cells in order to restore the channel activity. In recent years, genome correction strategies have emerged, such as zinc-finger nucleases, transcription activator-like effector nucleases and clustered regularly interspaced short palindromic repeats associated to Cas9 nucleases. These gene editing tools aim to repair the mutated gene at its original genomic locus with high specificity. Besides, the success of gene therapy critically depends on the nucleic acids carriers. To date, several clinical studies have been carried out to add corrected copies of the CFTR gene into target cells using viral and non-viral vectors, some of them with encouraging results. Regarding genome editing systems, preliminary in vitro studies have been performed in order to repair the CFTR gene. In this review, after briefly introducing the basis of CF, we discuss the up-to-date gene therapy strategies to address the disease. The review focuses on the main factors to take into consideration when developing gene delivery strategies, such as the design of vectors and plasmid DNA, in vitro/in vivo tests, translation to human use, administration methods, manufacturing conditions and regulatory issues.

  13. Current Experimental Studies of Gene Therapy in Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Jing-ya Lin

    2017-05-01

    Full Text Available Parkinson's disease (PD was characterized by late-onset, progressive dopamine neuron loss and movement disorders. The progresses of PD affected the neural function and integrity. To date, most researches had largely addressed the dopamine replacement therapies, but the appearance of L-dopa-induced dyskinesia hampered the use of the drug. And the mechanism of PD is so complicated that it's hard to solve the problem by just add drugs. Researchers began to focus on the genetic underpinnings of Parkinson's disease, searching for new method that may affect the neurodegeneration processes in it. In this paper, we reviewed current delivery methods used in gene therapies for PD, we also summarized the primary target of the gene therapy in the treatment of PD, such like neurotrophic factor (for regeneration, the synthesis of neurotransmitter (for prolong the duration of L-dopa, and the potential proteins that might be a target to modulate via gene therapy. Finally, we discussed RNA interference therapies used in Parkinson's disease, it might act as a new class of drug. We mainly focus on the efficiency and tooling features of different gene therapies in the treatment of PD.

  14. Sjogren Syndrome-Gene Therapy and its Prospective

    Directory of Open Access Journals (Sweden)

    R Rahpeyma

    2003-02-01

    Full Text Available Sjogren syndrome is one of the autoimmune diseases which is characterized by lymphocytic infiltration to exocrine glands and causes keratoconjunctivitis sicca and xerostomia. Today, a large population, with a majority of women over 40, suffer from this disease and have several complications regarding oral health and reduced life quality such as severe dental caries, painful eyes, olfactory and gustatory deficiency, speech, mastication and swallowing discomforts. Unfortunately, these patients do not respond to the conventional therapies. Nowadays in medical world, which its target is basic therapy and not symptomatic one, several gene therapy approaches, have gained importance in treatment of this apparently incurable diseases. Due to the facts that this disease is the second prevelant autoimmune disease, after rheumatoid arthritis, and the conventional therapies of the disease are all relative and symptomatic, researchers have insisted on the basic and causative therapy through gene transfer more than before. In the Present article, through reviewing 58 references containing recent scientific and investigatory findings it has been tried, to consider the pathogenesis and conventional therapies of this syndrome. Another purpose of this study was to investigate several and potentially very effective gene transfer systems and different theraputic genes (mainly membrane water channels, ione transporter molecules, transcription factors, antifungal proteins and free radical scavengers.

  15. Gene engineering biological therapy for juvenile arthritis

    Directory of Open Access Journals (Sweden)

    Kh Mikhel's

    2011-01-01

    However, GEBA therapy cannot completely cure the disease as before despite the progress achieved. GEBAs have potentially a number of serious side effects, among which there are severe infections and there is a risk of developing malignancies and autoimmune processes. Their administration requires careful monitoring to reveal the early development of serious adverse reactions, thus preventing a poor outcome.

  16. Applications of ozone therapy in dentistry

    Directory of Open Access Journals (Sweden)

    Shiva Gupta

    2016-01-01

    Full Text Available Ozone is an allotropic form of oxygen, which is effectively used in the treatment of different diseases for more than 100 years. In the present era of increasing antibiotic resistance, ozone therapy is an alternative medical treatment that rationales to increase the amount of oxygen to the body through institution of ozone into the body. Owing to its beneficial biological properties including antimicrobial and immune-stimulating effects, ozone therapy has opened new vistas in treatment modalities of dental pathologies for patients of all ages. The objective of this article is to review the literature available on applications of ozone in dentistry.

  17. Utilizing social media to study information-seeking and ethical issues in gene therapy.

    Science.gov (United States)

    Robillard, Julie M; Whiteley, Louise; Johnson, Thomas Wade; Lim, Jonathan; Wasserman, Wyeth W; Illes, Judy

    2013-03-04

    The field of gene therapy is rapidly evolving, and while hopes of treating disorders of the central nervous system and ethical concerns have been articulated within the academic community, little is known about views and opinions of different stakeholder groups. To address this gap, we utilized social media to investigate the kind of information public users are seeking about gene therapy and the hopes, concerns, and attitudes they express. We conducted a content analysis of questions containing the keywords "gene therapy" from the Q&A site "Yahoo! Answers" for the 5-year period between 2006 and 2010. From the pool of questions retrieved (N=903), we identified those containing at least one theme related to ethics, environment, economics, law, or society (n=173) and then characterized the content of relevant answers (n=399) through emergent coding. The results show that users seek a wide range of information regarding gene therapy, with requests for scientific information and ethical issues at the forefront of enquiry. The question sample reveals high expectations for gene therapy that range from cures for genetic and nongenetic diseases to pre- and postnatal enhancement of physiological attributes. Ethics questions are commonly expressed as fears about the impact of gene therapy on self and society. The answer sample echoes these concerns but further suggests that the acceptability of gene therapy varies depending on the specific application. Overall, the findings highlight the powerful role of social media as a rich resource for research into attitudes toward biomedicine and as a platform for knowledge exchange and public engagement for topics relating to health and disease.

  18. Gene Therapy for Chronic HBV-Can We Eliminate cccDNA?

    Science.gov (United States)

    Bloom, Kristie; Maepa, Mohube Betty; Ely, Abdullah; Arbuthnot, Patrick

    2018-04-12

    Chronic infection with the hepatitis B virus (HBV) is a global health concern and accounts for approximately 1 million deaths annually. Amongst other limitations of current anti-HBV treatment, failure to eliminate the viral covalently closed circular DNA (cccDNA) and emergence of resistance remain the most worrisome. Viral rebound from latent episomal cccDNA reservoirs occurs following cessation of therapy, patient non-compliance, or the development of escape mutants. Simultaneous viral co-infections, such as by HIV-1, further complicate therapeutic interventions. These challenges have prompted development of novel targeted hepatitis B therapies. Given the ease with which highly specific and potent nucleic acid therapeutics can be rationally designed, gene therapy has generated interest for antiviral application. Gene therapy strategies developed for HBV include gene silencing by harnessing RNA interference, transcriptional inhibition through epigenetic modification of target DNA, genome editing by designer nucleases, and immune modulation with cytokines. DNA-binding domains and effectors based on the zinc finger (ZF), transcription activator-like effector (TALE), and clustered regularly interspaced short palindromic repeat (CRISPR) systems are remarkably well suited to targeting episomal cccDNA. This review discusses recent developments and challenges facing the field of anti-HBV gene therapy, its potential curative significance and the progress towards clinical application.

  19. Clinical adenoviral gene therapy for prostate cancer

    Czech Academy of Sciences Publication Activity Database

    Schenk, E.; Essand, M.; Bangma, Ch. H.; Barber, Ch.; Behr, J.-P.; Briggs, S.; Carlisle, R.; Cheng, W.-S.; Danielsson, A.; Dautzenberg, I. J. C.; Dzojic, H.; Erbacher, P.; Fisher, K.; Frazier, A.; Georgopoulos, L. J.; Hoeben, R.; Kochanek, S.; Koppers-Lalic, D.; Kraaij, R.; Kreppel, F.; Lindholm, L.; Magnusson, M.; Maitland, N.; Neuberg, P.; Nilsson, B.; Ogris, M.; Remy, J.-S.; Scaife, M.; Schooten, E.; Seymour, L.; Totterman, T.; Uil, T. G.; Ulbrich, Karel; Veldhoven-Zweistra, J. L. M.; de Vrij, J.; van Weerden, W.; Wagner, E.; Willemsen, R.

    2010-01-01

    Roč. 21, č. 7 (2010), s. 807-813 ISSN 1043-0342 EU Projects: European Commission(XE) 512087 - GIANT Keywords : adenovirus * gene delivery * prostate cancer Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.829, year: 2010

  20. Retroviral integration profiles: their determinants and implications for gene therapy

    Directory of Open Access Journals (Sweden)

    Kwang-il Lim

    2012-04-01

    Full Text Available Retroviruses have often been used for gene therapy because oftheir capacity for the long-term expression of transgenes via stableintegration into the host genome. However, retroviral integrationcan also result in the transformation of normal cells into cancercells, as demonstrated by the incidence of leukemia in a recentretroviral gene therapy trial in Europe. This unfortunate outcomehas led to the rapid initiation of studies examining variousbiological and pathological aspects of retroviral integration. Thisreview summarizes recent findings from these studies, includingthe global integration patterns of various types of retroviruses,viral and cellular determinants of integration, implications ofintegration for gene therapy and retrovirus-mediated infectiousdiseases, and strategies to shift integration to safe host genomicloci. A more comprehensive and mechanistic understanding ofretroviral integration processes will eventually make it possible togenerate safer retroviral vector platforms in the near future. [BMBreports 2012; 45(4: 207-212

  1. State-of-the-art 2003 on PKU gene therapy

    Science.gov (United States)

    Ding, Zhaobing; Harding, Cary O.; Thöny, Beat

    2009-01-01

    Phenylketonuria (or PKU) is a well-known and widespread genetic disease for which many countries perform newborn screening, and life-long dietary restriction is still the ultimate and effective therapy. However, the diet is complicated, unpalatable, and expensive. The long-term effects of diet discontinuation in adults, except for the serious adverse effects of maternal hyperphenylalaninemia upon the developing fetus, have not been systematically studied, but congnitive decline and neurologic abnormalities have been anecdotally reported. Thus, alternative approaches for PKU therapy, including gene therapy, must be further explored. Here we summarize past present nonviral and viral gene transfer approaches, both in vitro studies and preclinical animal trials, to delivering the PAH gene into liver or other organs as potential alternatives to life-long phenylalanine-restricted dietary theraphy. PMID:14728985

  2. Adeno-associated virus for cystic fibrosis gene therapy

    Directory of Open Access Journals (Sweden)

    S.V. Martini

    2011-11-01

    Full Text Available Gene therapy is an alternative treatment for genetic lung disease, especially monogenic disorders such as cystic fibrosis. Cystic fibrosis is a severe autosomal recessive disease affecting one in 2500 live births in the white population, caused by mutation of the cystic fibrosis transmembrane conductance regulator (CFTR. The disease is classically characterized by pancreatic enzyme insufficiency, an increased concentration of chloride in sweat, and varying severity of chronic obstructive lung disease. Currently, the greatest challenge for gene therapy is finding an ideal vector to deliver the transgene (CFTR to the affected organ (lung. Adeno-associated virus is the most promising viral vector system for the treatment of respiratory disease because it has natural tropism for airway epithelial cells and does not cause any human disease. This review focuses on the basic properties of adeno-associated virus and its use as a vector for cystic fibrosis gene therapy.

  3. Trojan horse at cellular level for tumor gene therapies.

    Science.gov (United States)

    Collet, Guillaume; Grillon, Catherine; Nadim, Mahdi; Kieda, Claudine

    2013-08-10

    Among innovative strategies developed for cancer treatments, gene therapies stand of great interest despite their well-known limitations in targeting, delivery, toxicity or stability. The success of any given gene-therapy is highly dependent on the carrier efficiency. New approaches are often revisiting the mythic trojan horse concept to carry therapeutic nucleic acid, i.e. DNAs, RNAs or small interfering RNAs, to pathologic tumor site. Recent investigations are focusing on engineering carrying modalities to overtake the above limitations bringing new promise to cancer patients. This review describes recent advances and perspectives for gene therapies devoted to tumor treatment, taking advantage of available knowledge in biotechnology and medicine. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Gene Therapy to Cure HIV: Where to from Here?

    Science.gov (United States)

    Johnston, Rowena

    2016-12-01

    A variety of approaches are being tested to cure HIV, but with the exception of the Berlin patient case, none has been successful. The Berlin patient, positive for both HIV and acute myeloid leukemia (AML), received two stem cell transplants from a donor homozygous for the CCR5delta32 mutation. In the 8 years since his second transplant, he has remained free of both HIV and AML. This case provides strong proof-of-principle that a cure for HIV is possible and might be achieved through gene therapy. Several technological barriers must be resolved and are discussed here, including the safe delivery of the intervention throughout the body of the infected person, increased efficiency of gene editing, and avoidance of resistance to the therapy. Delivery of a gene therapy intervention to HIV-infected people around the world will also be a considerable challenge.

  5. Mesenchymal Stem Cell-Based Tumor-Targeted Gene Therapy in Gastrointestinal Cancer

    Science.gov (United States)

    Bao, Qi; Zhao, Yue; Niess, Hanno; Conrad, Claudius; Schwarz, Bettina; Jauch, Karl-Walter; Huss, Ralf; Nelson, Peter J.

    2012-01-01

    Mesenchymal stem (or stromal) cells (MSCs) are nonhematopoietic progenitor cells that can be obtained from bone marrow aspirates or adipose tissue, expanded and genetically modified in vitro, and then used for cancer therapeutic strategies in vivo. Here, we review available data regarding the application of MSC-based tumor-targeted therapy in gastrointestinal cancer, provide an overview of the general history of MSC-based gene therapy in cancer research, and discuss potential problems associated with the utility of MSC-based therapy such as biosafety, immunoprivilege, transfection methods, and distribution in the host. PMID:22530882

  6. Macrophage mediated PCI enhanced gene-directed enzyme prodrug therapy

    Science.gov (United States)

    Christie, Catherine E.; Zamora, Genesis; Kwon, Young J.; Berg, Kristian; Madsen, Steen J.; Hirschberg, Henry

    2015-03-01

    Photochemical internalization (PCI) is a photodynamic therapy-based approach for improving the delivery of macromolecules and genes into the cell cytosol. Prodrug activating gene therapy (suicide gene therapy) employing the transduction of the E. coli cytosine deaminase (CD) gene into tumor cells, is a promising method. Expression of this gene within the target cell produces an enzyme that converts the nontoxic prodrug, 5-FC, to the toxic metabolite, 5-fluorouracil (5-FU). 5-FC may be particularly suitable for brain tumors, because it can readily cross the bloodbrain barrier (BBB). In addition the bystander effect, where activated drug is exported from the transfected cancer cells into the tumor microenvironment, plays an important role by inhibiting growth of adjacent tumor cells. Tumor-associated macrophages (TAMs) are frequently found in and around glioblastomas. Monocytes or macrophages (Ma) loaded with drugs, nanoparticles or photosensitizers could therefore be used to target tumors by local synthesis of chemo attractive factors. The basic concept is to combine PCI, to enhance the ex vivo transfection of a suicide gene into Ma, employing specially designed core/shell NP as gene carrier.

  7. OFFICIAL MEDICATIONS FOR ANTI-TUMOR GENE THERAPY

    Directory of Open Access Journals (Sweden)

    E. R. Nemtsova

    2016-01-01

    Full Text Available This is a review of modern literature data of official medications for anti-tumor gene therapy as well as of medications that finished clinical trials.The article discusses the concept of gene therapy, the statistical analysis results of initiated clinical trials of gene products, the most actively developing directions of anticancer gene therapy, and the characteristics of anti-tumor gene medications.Various delivery systems for gene material are being examined, including viruses that are defective in  replication (Gendicine™ and Advexin and oncolytic (tumor specific conditionally replicating viruses (Oncorine™, ONYX-015, Imlygic®.By now three preparations for intra-tumor injection have been introduced into oncology clinical practice: two of them – Gendicine™ and Oncorine™ have been registered in China, and one of them – Imlygic® has been registered in the USA. Gendicine™ and Oncorine™ are based on the wild type p53 gene and are designed for treatment of patients with head and neck malignancies. Replicating adenovirus is the delivery system in Gendicine™, whereas oncolytic adenovirus is the vector for gene material in Oncorine™. Imlygic® is based on the  recombinant replicating HSV1 virus with an introduced GM–CSF gene and is designed for treatment of  melanoma patients. These medications are well tolerated and do not cause any serious adverse events. Gendicine™ and Oncorine™ are not effective in monotherapy but demonstrate pronounced synergism with chemoand radiation therapy. Imlygic® has just started the post marketing trials.

  8. A novel suicide gene therapy using iNOS

    International Nuclear Information System (INIS)

    Worthington, J.; Robson, T.; Barrett, E.; Adams, C.; Hirst, D.G.

    2003-01-01

    The role of NO in tumours is extremely complex; depending on the concentration it has major effects on vascular tone, endothelial proliferation, cell viability and radiosensitivity. As such, it is not surprising that its manipulation has been identified by many investigators as an exciting target for cancer therapy. The use of a gene therapy strategy utilising the iNOS gene to produce NO offers the potential for targeting NO production specifically within the tumour volume, combined with high NO-generating capacity. We have shown that iNOS gene therapy driven by a strong constitutive promoter (CMV) results in significant growth delay of the murine RIF-1 tumour in vivo. Due to the potent nature of NO any gene therapy strategy will require at lest one level of specificity. We have used the X-ray inducible WAF1/iNOS construct to confine NO generation to within the radiation field i.e. the tumour. A single injection of the X-ray inducible WAF1/iNOS construct followed, 16 h later, by an induction dose of 4 Gy X-rays resulted in significant enhancement of the cell killing effect of subsequent therapeutic doses of X-rays in the same tumour model. The effect was equivalent to a sensitiser enhancement ratio of ∼2.0, half the radiation dose being required to produce the biological effect when iNOS gene therapy was combined with radiation. Intra-tumoural injection of the WAF1/iNOS construct followed by 4 Gy X-rays also resulted in significant radiosensitisation in the HT29 xenograft model. We have so far demonstrated the cytotoxic and radiosensitising potential of iNOS gene therapy, however there are further benefits to the use of NO as an anti-cancer agent. These include anti-angiogenic effects and inhibition of tumour metastasis. Further studies will enable the design of a clinically appropriate protocol to be established

  9. Approach of combined cancer gene therapy and radiation: response of promoters to ionizing radiation

    International Nuclear Information System (INIS)

    Anstett, A.

    2005-09-01

    Gene therapy is an emerging cancer treatment modality. We are interested in developing a radiation-inducible gene therapy system to sensitize the tumor vasculature to the effects of ionizing radiation (IR) treatment. An expression system based on irradiation-inducible promoters will drive the expression of anti-tumor genes in the tumor vasculature. Solid tumors are dependent on angio genesis, a process in which new blood vessels are formed from the pre-existing vasculature. Vascular endothelial cells are un transformed and genetically stable, thus avoiding the problem of resistance to the treatments. Vascular endothelial cells may therefore represent a suitable target for this therapeutic gene therapy strategy.The identification of IR-inducible promoters native to endothelial cells was performed by gene expression profiling using cDNA micro array technology. We describe the genes modified by clinically relevant doses of IR. The extension to high doses aimed at studying the effects of total radiation delivery to the tumor. The radio-inductiveness of the genes selected for promoter study was confirmed by RT-PCR. Analysis of the activity of promoters in response to IR was also assessed in a reporter plasmid. We found that authentic promoters cloned onto a plasmid are not suitable for cancer gene therapy due to their low induction after IR. In contrast, synthetic promoters containing repeated sequence-specific binding sites for IR-activated transcription factors such as NF-κB are potential candidates for gene therapy. The activity of five tandemly repeated TGGGGACTTTCCGC elements for NF-κB binding in a luciferase reporter was increased in a dose-dependent manner. Interestingly, the response to fractionated low doses was improved in comparison to the total single dose. Thus, we put present evidence that a synthetic promoter for NF-κB specific binding may have application in the radio-therapeutic treatment of cancer. (author)

  10. Building for Biology: A Gene Therapy Trial Infrastructure

    Directory of Open Access Journals (Sweden)

    Samuel Taylor-Alexander

    2017-06-01

    Full Text Available In this article, we examine the construction of the infrastructure for a Phase II gene therapy trial for Cystic Fibrosis (CF. Tracing the development of the material technologies and physical spaces used in the trial, we show how the trial infrastructure took form at the uncertain intersection of scientific norms, built environments, regulatory negotiations, patienthood, and the biologies of both disease and therapy. We define infrastructures as material and immaterial (including symbols and affect composites that serve a selective distributive purpose and facilitate projects of making and doing. There is a politics to this distributive action, which is itself twofold, because whilst infrastructures enable and delimit the movement of matter, they also mediate the very activity for which they provide the grounds. An infrastructural focus allows us to show how purposeful connections are made in a context of epistemic and regulatory uncertainty. The gene therapy researchers were working in a context of multiple uncertainties, regarding not only how to do gene therapy, but also how to anticipate and enact ambiguous regulatory requirements in a context of limited resources (technical, spatial, and financial. At the same time, the trial infrastructure had to accommodate Cystic Fibrosis biology by bridging the gap between pathology and therapy. The consortium’s approach to treating CF required that they address concerns about contamination and safety while finding a way of getting a modified gene product into the lungs of the trial participants.

  11. Fight fire with fire: Gene therapy strategies to cure HIV.

    Science.gov (United States)

    Huyghe, Jon; Magdalena, Sips; Vandekerckhove, Linos

    2017-08-01

    Human Immunodeficiency Virus (HIV) to date remains one of the most notorious viruses mankind has ever faced. Despite enormous investments in HIV research for more than 30 years an effective cure for HIV has been elusive. Areas covered: Combination antiretroviral therapy (cART) suppresses active viral replication, but is not able to eliminate the virus completely due to stable integration of HIV inside the host genome of infected cells and the establishment of a latent reservoir, that is insensitive to cART. Nevertheless, this latent HIV reservoir is fully capable to refuel viral replication when treatment is stopped, creating a major obstacle towards a cure for HIV. Several gene therapy approaches ranging from the generation of HIV resistant CD4 + T cells to the eradication of HIV infected cells by immune cell engineering are currently under pre-clinical and clinical investigation and may present a promising road to a cure. In this review, we focus on the status and the prospects of gene therapy strategies to cure/eradicate HIV. Expert commentary: Recent advances in gene therapy for oncology and infectious diseases indicate that gene therapy may be a feasible and very potent cure strategy, and therefore a potential game changer in the search for an effective HIV cure.

  12. Innovation status of gene therapy for breast cancer.

    Science.gov (United States)

    Anaya-Ruiz, Maricruz; Perez-Santos, Martin

    2015-01-01

    To analyze multi-source data including publications and patents, and try to draw the whole landscape of the research and development community in the field of gene therapy for breast cancer. Publications and patents were collected from the Web of science and databases of the five major patent offices of the world, respectively. Bibliometric methodologies and technology are used to investigate publications/patents, their contents and relationships. A total of 2,043 items published and 947 patents from 1994 to 2013 including "gene therapy for breast cancer" were retrieved. The top five countries in global publication share were USA, China, Germany, Japan and England. On the other hand, USA, Australia, England, South Korea and Japan were the main producers of patents. The universities and enterprises of USA had the highest amount of publication and patents. Adenovirus- and retrovirus-based gene therapies and small interfering RNA (siRNA) interference therapies were the main topics both in publications and patents. The above results show that global research in the field of gene therapy for breast cancer is increasing and the main participants in this field are USA and Canada in North America, China, Japan and South Korea in Asia, and England, Germany, and Italy in Europe. Also, this article demonstrates the usefulness of bibliometrics to address key evaluation questions and define future areas of research.

  13. Gene Therapy in Thalassemia and Hemoglobinopathies

    OpenAIRE

    Breda, Laura; Gambari, Roberto; Rivella, Stefano

    2009-01-01

    Sickle cell disease (SCD) and ß-thalassemia represent the most common hemoglobinopathies caused, respectively, by the alteration of structural features or deficient production of the ß-chain of the Hb molecule. Other hemoglobinopathies are characterized by different mutations in the α- or ß-globin genes and are associated with anemia and might require periodic or chronic blood transfusions. Therefore, ß-thalassemia, SCD and other hemoglobinopathies are excellent candidates for genetic approac...

  14. Gene therapy and angiogenesis in patients with coronary artery disease

    DEFF Research Database (Denmark)

    Kastrup, Jens

    2010-01-01

    -blind placebo-controlled trials could not confirm the initial high efficacy of either the growth factor protein or the gene therapy approaches observed in earlier small trials. The clinical studies so far have all been without any gene-related serious adverse events. Future trials will focus on whether...... an improvement in clinical results can be obtained with a cocktail of growth factors or by a combination of gene and stem cell therapy in patients with severe coronary artery disease, which cannot be treated effectively with current treatment strategies....... of VEGF and FGF in patients with coronary artery disease. The initial small and unblinded studies with either recombinant growth factor proteins or genes encoding growth factors were encouraging, demonstrating both clinical improvement and evidence of angiogenesis. However, subsequent larger double...

  15. Gene transfer strategies for improving radiolabeled peptide imaging and therapy

    International Nuclear Information System (INIS)

    Rogers, B.E.; Buchsbaum, D.J.; Zinn, K.R.

    2000-01-01

    Utilization of molecular biology techniques offers attractive options in nuclear medicine for improving cancer imaging and therapy with radiolabeled peptides. Two of these options include utilization of phage-panning to identify novel tumor specific peptides or single chain antibodies and gene transfer techniques to increase the antibodies and gene transfer techniques to increase the number of antigen/receptor sites expressed on malignant cells. The group has focused on the latter approach for improving radiolabeled peptide imaging and therapy. The most widely used gene transfer vectors in clinical gene therapy trials include retrovirus, cationic lipids and adenovirus. It has been utilized adenovirus vectors for gene transfer because of their ability to accomplish efficient in vivo gene transfer. Adenovirus vectors encoding the genes for a variety of antigens/receptors (carcinoembryonic antigen, gastrin-releasing peptide receptor, somatostatin receptor subtype 2 (SSTr2) have all shown that their expression is increased on cancer cells both in vitro and in vivo following adenovirus infection. Of particular interest has been the adenovirus encoding for SSTr2 (AdCMVSSTr2). Various radioisotopes have been attached to somatostatin analogues for imaging and therapy of SSTr2-positive tumors both clinically and in animal models. The use of these analogues in combination with AdCMVSSTr2 is a promising approach for improving the detection sensitivity and therapeutic efficacy of these radiolabeled peptides against solid tumors. In addition, it has been proposed the use of SSTr2 as a marker for imaging the expression of another cancer therapeutic transgene (e.g. cytosine deaminase, thymidine kinase) encoded within the same vector. This would allow for non-invasive monitoring of gene delivery to tumor sites

  16. In Vivo Gene Therapy of Hemophilia B: Sustained Partial Correction in Factor IX-Deficient Dogs

    Science.gov (United States)

    Kay, Mark A.; Rothenberg, Steven; Landen, Charles N.; Bellinger, Dwight A.; Leland, Frances; Toman, Carol; Finegold, Milton; Thompson, Arthur R.; Read, M. S.; Brinkhous, Kenneth M.; Woo, Savio L. C.

    1993-10-01

    The liver represents a model organ for gene therapy. A method has been developed for hepatic gene transfer in vivo by the direct infusion of recombinant retroviral vectors into the portal vasculature, which results in the persistent expression of exogenous genes. To determine if these technologies are applicable for the treatment of hemophilia B patients, preclinical efficacy studies were done in a hemophilia B dog model. When the canine factor IX complementary DNA was transduced directly into the hepatocytes of affected dogs in vivo, the animals constitutively expressed low levels of canine factor IX for more than 5 months. Persistent expression of the clotting. factor resulted in reductions of whole blood clotting and partial thromboplastin times of the treated animals. Thus, long-term treatment of hemophilia B patients may be feasible by direct hepatic gene therapy in vivo.

  17. Genome-editing Technologies for Gene and Cell Therapy.

    Science.gov (United States)

    Maeder, Morgan L; Gersbach, Charles A

    2016-03-01

    Gene therapy has historically been defined as the addition of new genes to human cells. However, the recent advent of genome-editing technologies has enabled a new paradigm in which the sequence of the human genome can be precisely manipulated to achieve a therapeutic effect. This includes the correction of mutations that cause disease, the addition of therapeutic genes to specific sites in the genome, and the removal of deleterious genes or genome sequences. This review presents the mechanisms of different genome-editing strategies and describes each of the common nuclease-based platforms, including zinc finger nucleases, transcription activator-like effector nucleases (TALENs), meganucleases, and the CRISPR/Cas9 system. We then summarize the progress made in applying genome editing to various areas of gene and cell therapy, including antiviral strategies, immunotherapies, and the treatment of monogenic hereditary disorders. The current challenges and future prospects for genome editing as a transformative technology for gene and cell therapy are also discussed.

  18. Stem cells’ guided gene therapy of cancer: New frontier in personalized and targeted therapy

    Directory of Open Access Journals (Sweden)

    Mavroudi M

    2014-01-01

    Full Text Available Diagnosis and therapy of cancer remain to be the greatest challenges for all physicians working in clinical oncology and molecular medicine. The grim statistics speak for themselves with reports of 1,638,910 men and women diagnosed with cancer and nearly 577,190 patients passed away due to cancer in the USA in 2012. For practicing clinicians, who treat patients suffering from advanced cancers with contemporary systemic therapies, the main challenge is to attain therapeutic efficacy, while minimizing side effects. Unfortunately, all contemporary systemic therapies cause side effects. In treated patients, these side effects may range from nausea to damaged tissues. In cancer survivors, the iatrogenic outcomes of systemic therapies may include genomic mutations and their consequences. Therefore, there is an urgent need for personalized and targeted therapies. Recently, we reviewed the current status of suicide gene therapy for cancer. Herein, we discuss the novel strategy: genetically engineered stem guided gene therapy. Stem cells have the unique potential for self-renewal and differentiation. This potential is the primary reason for introducing them into medicine to regenerate injured or degenerated organs, as well as to rejuvenate aging tissues. Recent advances in genetic engineering and stem cell research have created the foundations for genetic engineering of stem cells as the vectors for delivery of therapeutic transgenes. Specifically in oncology, the stem cells are genetically engineered to deliver the cell suicide inducing genes selectively to the cancer cells. Expression of the transgenes kills the cancer cells, while leaving healthy cells unaffected. Herein, we present various strategies to bioengineer suicide inducing genes and stem cell vectors. Moreover, we review results of the main preclinical studies and clinical trials. However, the main risk for therapeutic use of stem cells is their cancerous transformation. Therefore, we

  19. Long-term outcomes of gene therapy for the treatment of Leber's hereditary optic neuropathy

    Directory of Open Access Journals (Sweden)

    Shuo Yang

    2016-08-01

    stable in the contralateral eye after intravitreal injections. No serious safety problem was observed in the 3-year follow-up of the 9 participants enrolled in this virus-based gene therapy. Meanwhile, our results support the use of intravitreal rAAV2-ND4 as an aggressive maneuver in our clinical trial. Further study in additional patients and in these 9 subjects is needed to better understand the effects of rAAV2-ND4 gene therapy on LHON and to increase the applications of this technique.

  20. Derivation of a triple mosaic adenovirus for cancer gene therapy.

    Directory of Open Access Journals (Sweden)

    Yizhe Tang

    2009-12-01

    Full Text Available A safe and efficacious cancer medicine is necessary due to the increasing population of cancer patients whose particular diseases cannot be cured by the currently available treatment. Adenoviral (Ad vectors represent a promising therapeutic medicine for human cancer therapy. However, several improvements are needed in order for Ad vectors to be effective cancer therapeutics, which include, but are not limited to, improvement of cellular uptake, enhanced cancer cell killing activity, and the capability of vector visualization and tracking once injected into the patients. To this end, we attempted to develop an Ad as a multifunctional platform incorporating targeting, imaging, and therapeutic motifs. In this study, we explored the utility of this proposed platform by generating an Ad vector containing the poly-lysine (pK, the herpes simplex virus type 1 (HSV-1 thymidine kinase (TK, and the monomeric red fluorescent protein (mRFP1 as targeting, tumor cell killing, and imaging motifs, respectively. Our study herein demonstrates the generation of the triple mosaic Ad vector with pK, HSV-1 TK, and mRFP1 at the carboxyl termini of Ad minor capsid protein IX (pIX. In addition, the functionalities of pK, HSV-1 TK, and mRFP1 proteins on the Ad vector were retained as confirmed by corresponding functional assays, indicating the potential multifunctional application of this new Ad vector for cancer gene therapy. The validation of the triple mosaic Ad vectors also argues for the ability of pIX modification as a base for the development of multifunctional Ad vectors.

  1. Recent trends in the gene therapy of β-thalassemia

    Directory of Open Access Journals (Sweden)

    Finotti A

    2015-02-01

    Full Text Available Alessia Finotti,1–3 Laura Breda,4 Carsten W Lederer,6,7 Nicoletta Bianchi,1–3 Cristina Zuccato,1–3 Marina Kleanthous,6,7 Stefano Rivella,4,5 Roberto Gambari1–3 1Laboratory for the Development of Gene and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Centre of Ferrara University, Ferrara, Italy; 2Associazione Veneta per la Lotta alla Talassemia, Rovigo, Italy; 3Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, Ferrara, Italy; 4Department of Pediatrics, Division of Haematology/Oncology, Weill Cornell Medical College, New York, NY, USA; 5Department of Cell and Development Biology, Weill Cornell Medical College, New York, NY, USA; 6Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus; 7Cyprus School of Molecular Medicine, Nicosia, Cyprus Abstract: The β-thalassemias are a group of hereditary hematological diseases caused by over 300 mutations of the adult β-globin gene. Together with sickle cell anemia, thalassemia syndromes are among the most impactful diseases in developing countries, in which the lack of genetic counseling and prenatal diagnosis have contributed to the maintenance of a very high frequency of these genetic diseases in the population. Gene therapy for β-thalassemia has recently seen steadily accelerating progress and has reached a crossroads in its development. Presently, data from past and ongoing clinical trials guide the design of further clinical and preclinical studies based on gene augmentation, while fundamental insights into globin switching and new technology developments have inspired the investigation of novel gene-therapy approaches. Moreover, human erythropoietic stem cells from β-thalassemia patients have been the cellular targets of choice to date whereas future gene-therapy studies might increasingly draw on induced pluripotent stem cells. Herein, we summarize the most

  2. Revealing targeted therapy for human cancer by gene module maps

    NARCIS (Netherlands)

    Wong, David J.; Nuyten, Dimitry S. A.; Regev, Aviv; Lin, Meihong; Adler, Adam S.; Segal, Eran; van de Vijver, Marc J.; Chang, Howard Y.

    2008-01-01

    A major goal of cancer research is to match specific therapies to molecular targets in cancer. Genome-scale expression profiling has identified new subtypes of cancer based on consistent patterns of variation in gene expression, leading to improved prognostic predictions. However, how these new

  3. Global Regulatory Differences for Gene- and Cell-Based Therapies

    DEFF Research Database (Denmark)

    Coppens, Delphi G M; De Bruin, Marie L; Leufkens, Hubert G M

    2017-01-01

    Gene- and cell-based therapies (GCTs) offer potential new treatment options for unmet medical needs. However, the use of conventional regulatory requirements for medicinal products to approve GCTs may impede patient access and therapeutic innovation. Furthermore, requirements differ between juris...

  4. Gene therapy rescues cone function in congenital achromatopsia.

    Science.gov (United States)

    Komáromy, András M; Alexander, John J; Rowlan, Jessica S; Garcia, Monique M; Chiodo, Vince A; Kaya, Asli; Tanaka, Jacqueline C; Acland, Gregory M; Hauswirth, William W; Aguirre, Gustavo D

    2010-07-01

    The successful restoration of visual function with recombinant adeno-associated virus (rAAV)-mediated gene replacement therapy in animals and humans with an inherited disease of the retinal pigment epithelium has ushered in a new era of retinal therapeutics. For many retinal disorders, however, targeting of therapeutic vectors to mutant rods and/or cones will be required. In this study, the primary cone photoreceptor disorder achromatopsia served as the ideal translational model to develop gene therapy directed to cone photoreceptors. We demonstrate that rAAV-mediated gene replacement therapy with different forms of the human red cone opsin promoter led to the restoration of cone function and day vision in two canine models of CNGB3 achromatopsia, a neuronal channelopathy that is the most common form of achromatopsia in man. The robustness and stability of the observed treatment effect was mutation independent, but promoter and age dependent. Subretinal administration of rAAV5-hCNGB3 with a long version of the red cone opsin promoter in younger animals led to a stable therapeutic effect for at least 33 months. Our results hold promise for future clinical trials of cone-directed gene therapy in achromatopsia and other cone-specific disorders.

  5. Adenoviral gene therapy for pancreatic cancer: Where do we stand?

    NARCIS (Netherlands)

    Kuhlmann, Koert F. D.; Gouma, Dirk J.; Wesseling, John G.

    2008-01-01

    Background: The prognosis of patients with pancreatic cancer is poor. This is mainly caused by the late diagnosis, the aggressive biology and the lack of effective treatment modalities. Adenoviral gene therapy has the potential to selectively treat both primary tumor and (micro) metastatic tissue.

  6. Towards a durable RNAi gene therapy for HIV-AIDS

    NARCIS (Netherlands)

    Berkhout, Ben; ter Brake, Olivier

    2009-01-01

    Background: RNA interference (RNAi) can be employed as a potent antiviral mechanism Objective: To discuss RNAi approaches to target pathogenic human viruses causing acute or chronic infections, in particular RNAi gene therapy against HIV-1. Methods: A review of relevant literature.

  7. Gene Therapy for the Treatment of Primary Immune Deficiencies.

    Science.gov (United States)

    Kuo, Caroline Y; Kohn, Donald B

    2016-05-01

    The use of gene therapy in the treatment of primary immune deficiencies (PID) has advanced significantly in the last decade. Clinical trials for X-linked severe combined immunodeficiency, adenosine deaminase deficiency (ADA), chronic granulomatous disease, and Wiskott-Aldrich syndrome have demonstrated that gene transfer into hematopoietic stem cells and autologous transplant can result in clinical improvement and is curative for many patients. Unfortunately, early clinical trials were complicated by vector-related insertional mutagenic events for several diseases with the exception of ADA-deficiency SCID. These results prompted the current wave of clinical trials for primary immunodeficiency using alternative retro- or lenti-viral vector constructs that are self-inactivating, and they have shown clinical efficacy without leukemic events thus far. The field of gene therapy continues to progress, with improvements in viral vector profiles, stem cell culturing techniques, and site-specific genome editing platforms. The future of gene therapy is promising, and we are quickly moving towards a time when it will be a standard cellular therapy for many forms of PID.

  8. Gene therapy in nonhuman primate models of human autoimmune disease

    NARCIS (Netherlands)

    t'Hart, B. A.; Vervoordeldonk, M.; Heeney, J. L.; Tak, P. P.

    2003-01-01

    Before autoimmune diseases in humans can be treated with gene therapy, the safety and efficacy of the used vectors must be tested in valid experimental models. Monkeys, such as the rhesus macaque or the common marmoset, provide such models. This publication reviews the state of the art in monkey

  9. Gene therapy and transplantation in CNS repair : the visual system

    NARCIS (Netherlands)

    Harvey, Alan R; Hu, Ying; Leaver, Simone G; Mellough, Carla B; Park, Kevin; Verhaagen, J.; Plant, Giles W; Cui, Qi

    Normal visual function in humans is compromised by a range of inherited and acquired degenerative conditions, many of which affect photoreceptors and/or retinal pigment epithelium. As a consequence the majority of experimental gene- and cell-based therapies are aimed at rescuing or replacing these

  10. The feasibility of incorporating Vpx into lentiviral gene therapy vectors

    Directory of Open Access Journals (Sweden)

    Samantha A McAllery

    2016-01-01

    Full Text Available While current antiretroviral therapy has significantly improved, challenges still remain in life-long targeting of HIV-1 reservoirs. Lentiviral gene therapy has the potential to deliver protective genes into the HIV-1 reservoir. However, inefficient reverse transcription (RT occurs in HIV-1 reservoirs during lentiviral gene delivery. The viral protein Vpx is capable of increasing lentiviral RT by antagonizing the restriction factor SAMHD1. Incorporating Vpx into lentiviral vectors could substantially increase gene delivery into the HIV-1 reservoir. The feasibility of this Vpx approach was tested in resting cell models utilizing macrophages and dendritic cells. Our results showed Vpx exposure led to increased permissiveness of cells over a period that exceeded 2 weeks. Consequently, significant lower potency of HIV-1 antiretrovirals inhibiting RT and integration was observed. When Vpx was incorporated with anti-HIV-1 genes inhibiting either pre-RT or post-RT stages of the viral life-cycle, transduction levels significantly increased. However, a stronger antiviral effect was only observed with constructs that inhibit pre-RT stages of the viral life cycle. In conclusion this study demonstrates a way to overcome the major delivery obstacle of gene delivery into HIV-1 reservoir cell types. Importantly, incorporating Vpx with pre-RT anti-HIV-1 genes, demonstrated the greatest protection against HIV-1 infection.

  11. Improving the Safety of Cell Therapy Products by Suicide Gene Transfer

    Directory of Open Access Journals (Sweden)

    Antonio eDi Stasi

    2014-11-01

    Full Text Available Adoptive T-cell therapy can involve donor lymphocyte infusion (DLI after allogeneic hematopoietic stem cell transplantation, the administration of tumor infiltrating lymphocyte (TILs expanded ex-vivo, or more recently the use of T cell receptor (TCR or chimeric antigen receptor (CAR redirected T cells. However cellular therapies can pose significant risks, including graft-versus-host-disease and other on and off-target effects, and therefore strategies need to be implemented to permanently reverse any sign of toxicity. A suicide gene is a genetically encoded molecule that allows selective destruction of adoptively transferred cells. Suicide gene addition to cellular therapeutic products can lead to selective ablation of gene-modified cells, preventing collateral damage to contiguous cells and/or tissues. The ‘ideal’ suicide gene would ensure the safety of gene modified cellular applications by granting irreversible elimination of ‘all’ and ‘only’ the cells responsible for the unwanted toxicity. This review presents the suicide gene safety systems reported to date, with a focus on the state-of-the-art and potential applications regarding two of the most extensively validated suicide genes, including the clinical setting: herpes-simplex-thymidine-kinase (HSV-TK and inducible-caspase-9 (iCasp9.

  12. Improving the safety of cell therapy products by suicide gene transfer.

    Science.gov (United States)

    Jones, Benjamin S; Lamb, Lawrence S; Goldman, Frederick; Di Stasi, Antonio

    2014-01-01

    Adoptive T-cell therapy can involve donor lymphocyte infusion after allogeneic hematopoietic stem cell transplantation, the administration of tumor infiltrating lymphocyte expanded ex-vivo, or more recently the use of T cell receptor or chimeric antigen receptor redirected T cells. However, cellular therapies can pose significant risks, including graft-vs.-host-disease and other on and off-target effects, and therefore strategies need to be implemented to permanently reverse any sign of toxicity. A suicide gene is a genetically encoded molecule that allows selective destruction of adoptively transferred cells. Suicide gene addition to cellular therapeutic products can lead to selective ablation of gene-modified cells, preventing collateral damage to contiguous cells and/or tissues. The "ideal" suicide gene would ensure the safety of gene modified cellular applications by granting irreversible elimination of "all" and "only" the cells responsible for the unwanted toxicity. This review presents the suicide gene safety systems reported to date, with a focus on the state-of-the-art and potential applications regarding two of the most extensively validated suicide genes, including the clinical setting: herpes-simplex-thymidine-kinase and inducible-caspase-9.

  13. The clinical applicability of music therapy research

    DEFF Research Database (Denmark)

    Wigram, Anthony Lewis

    practitioners in all three areas (and beyond) can demonstrate, through previous and current research, that the music therapy service and interventions they provide are relevant and effective (Ansdell, Pavicevic & Proctor, 2004; Gold, Voracek and Wigram, 2004; Vink, 2003; Wigram 2002). Documentation of research......Research serves the functions of informing the clinical field, guiding future research, establishing new knowledge and theory, and meeting criteria for evidence based practice. Given the demands of health, education and social services today and there is an increasing expectation that clinical...... in lengthy and complex theses is seldom accessible to the practitioner working ‘at the coal-face’; and sometimes lacks clear direction on how the results are applicable in everyday therapy. For results to be implemented in clinical practice and disseminated to colleagues in related fields as well as senior...

  14. Targeted alpha therapy: Applications and current status

    Energy Technology Data Exchange (ETDEWEB)

    Bruchertseifer, Frank, E-mail: frank.bruchertseifer@ec.europa.eu [European Commission, Joint Research Centre, Karlsruhe (Germany)

    2017-07-01

    Full text: The field of targeted alpha therapy has been developed rapidly in the last decade. Besides {sup 223}Ra, {sup 211}At and {sup 212}Pb/{sup 212}Bi the alpha emitters {sup 225}Ac and {sup 213}Bi are promising therapeutic radionuclides for application in targeted alpha therapy of cancer and infectious diseases. The presentation will give a short overview about the current clinical treatments with alpha emitting radionuclides and will place an emphasis on the most promising clinical testing of peptides and antibodies labelled with {sup 225}Ac and {sup 213}Bi for treatment of metastatic castration-resistant prostate cancer patients with glioma and glioblastoma multiform, PSMA-positive tumor phenotype and bladder carcinoma in situ. (author)

  15. Stem cell-based gene therapy activated using magnetic hyperthermia to enhance the treatment of cancer.

    Science.gov (United States)

    Yin, Perry T; Shah, Shreyas; Pasquale, Nicholas J; Garbuzenko, Olga B; Minko, Tamara; Lee, Ki-Bum

    2016-03-01

    Stem cell-based gene therapies, wherein stem cells are genetically engineered to express therapeutic molecules, have shown tremendous potential for cancer applications owing to their innate ability to home to tumors. However, traditional stem cell-based gene therapies are hampered by our current inability to control when the therapeutic genes are actually turned on, thereby resulting in detrimental side effects. Here, we report the novel application of magnetic core-shell nanoparticles for the dual purpose of delivering and activating a heat-inducible gene vector that encodes TNF-related apoptosis-inducing ligand (TRAIL) in adipose-derived mesenchymal stem cells (AD-MSCs). By combining the tumor tropism of the AD-MSCs with the spatiotemporal MCNP-based delivery and activation of TRAIL expression, this platform provides an attractive means with which to enhance our control over the activation of stem cell-based gene therapies. In particular, we found that these engineered AD-MSCs retained their innate ability to proliferate, differentiate, and, most importantly, home to tumors, making them ideal cellular carriers. Moreover, exposure of the engineered AD-MSCS to mild magnetic hyperthermia resulted in the selective expression of TRAIL from the engineered AD-MSCs and, as a result, induced significant ovarian cancer cell death in vitro and in vivo. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Application of art therapy practice in educational and psychological counseling

    OpenAIRE

    Mazehóová, Yvona

    2008-01-01

    The dissertation thesis deals with art therapy applied in educational and psychological counseling. Theoretical part of the thesis defines the term "art therapy", theoretical and historical fundaments of the art therapy and touches upon possible applications in treatment. The art therapy process is described from the projective art therapy point of view; specificities of this particular approach in work with children are explained. The developmental view on the art therapy is esp. accented (a...

  17. Refined human artificial chromosome vectors for gene therapy and animal transgenesis.

    Science.gov (United States)

    Kazuki, Y; Hoshiya, H; Takiguchi, M; Abe, S; Iida, Y; Osaki, M; Katoh, M; Hiratsuka, M; Shirayoshi, Y; Hiramatsu, K; Ueno, E; Kajitani, N; Yoshino, T; Kazuki, K; Ishihara, C; Takehara, S; Tsuji, S; Ejima, F; Toyoda, A; Sakaki, Y; Larionov, V; Kouprina, N; Oshimura, M

    2011-04-01

    Human artificial chromosomes (HACs) have several advantages as gene therapy vectors, including stable episomal maintenance, and the ability to carry large gene inserts. We previously developed HAC vectors from the normal human chromosomes using a chromosome engineering technique. However, endogenous genes were remained in these HACs, limiting their therapeutic applications. In this study, we refined a HAC vector without endogenous genes from human chromosome 21 in homologous recombination-proficient chicken DT40 cells. The HAC was physically characterized using a transformation-associated recombination (TAR) cloning strategy followed by sequencing of TAR-bacterial artificial chromosome clones. No endogenous genes were remained in the HAC. We demonstrated that any desired gene can be cloned into the HAC using the Cre-loxP system in Chinese hamster ovary cells, or a homologous recombination system in DT40 cells. The HAC can be efficiently transferred to other type of cells including mouse ES cells via microcell-mediated chromosome transfer. The transferred HAC was stably maintained in vitro and in vivo. Furthermore, tumor cells containing a HAC carrying the suicide gene, herpes simplex virus thymidine kinase (HSV-TK), were selectively killed by ganciclovir in vitro and in vivo. Thus, this novel HAC vector may be useful not only for gene and cell therapy, but also for animal transgenesis.

  18. Current potential of radionuclide applications in therapy

    International Nuclear Information System (INIS)

    Navratil, L.

    1987-01-01

    A review is presented of the proceedings of the 4th Boettstein Collegium held in June, 1986 in Wuerenlingen (CH), debating new possibilities in applying radionuclides in the therapy of malignant diseases. The new possibilities are open with the development of new biological carriers with high detection capacities, especially monoclonal antibodies. Therapeutical applications are characterized of some radionuclides, mainly 131 I and 123 I, and beta and alpha radionuclides are listed promising for therapeutical uses. Therapeutical prospects are also outlined for immunotherapy. (L.O.). 1 ref

  19. Terapia gênica para osteoporose Gene therapy for osteoporosis

    Directory of Open Access Journals (Sweden)

    Rafael Pacheco da Costa

    2011-01-01

    Full Text Available A osteoporose é considerada um dos problemas de saúde mais comuns e sérios da população idosa mundial. É uma doença crônica e progressiva, caracterizada pela diminuição da massa óssea e deterioração da microarquitetura do tecido ósseo. A terapia gênica representa uma nova abordagem para o tratamento da osteoporose e tem como princípio devolver a função comprometida pelo metabolismo. Esta revisão visa focar os trabalhos relevantes desenvolvidos nos últimos anos, disponibilizados nas bases de dados médicas, e que utilizaram a terapia gênica para o tratamento da osteoporose em modelos animais, bem como, as perspectivas futuras desta terapia. A maioria dos estudos utiliza os genes BMPs, PTH e OPG na tentativa de restabelecer a massa óssea. Apesar da carência de novas moléculas, todos os genes empregados nos estudos se mostraram eficientes no tratamento da doença. Os benefícios que a terapia gênica proporcionará aos pacientes no futuro devem contribuir substancialmente para o aumento na qualidade de vida dos idosos. Em breve, protocolos clínicos envolvendo humanos irão beneficiar os indivíduos com osteoporose.Osteoporosis is considered one of the most common and serious problems affecting the elderly population worldwide. It is a chronic and progressive disease, characterized by decreased bone mass and degeneration of the microarchitecture of the bone tissue. Gene therapy represents a new approach in osteoporosis treatment, and its main function is to restore the compromised function in the metabolism. This review aims to elucidate the main studies on gene therapy in recent years, in the medical databases, that use gene therapy for the treatment of osteoporosis in animal models, as well as the future prospects of this therapy. The majority of the studies use the BMP, PTH and OPG genes, in an attempt to reestablish bone mass. Despite the lack of new molecules, all genes employed in these studies have proven to be

  20. Opportunity of interventional radiology: advantages and application of interventional technique in biological target therapy

    International Nuclear Information System (INIS)

    Teng Gaojun; Lu Qin

    2007-01-01

    Interventional techniques not only provide opportunity of treatment for many diseases, but also alter the traditional therapeutic pattern. With the new century of wide application of biological therapies, interventional technique also shows extensive roles. The current biological therapy, including gene therapy, cell transplantation therapy, immunobiologic molecule therapy containing cell factors, tumor antibody or vaccine, recombined proteins, radioactive-particles and targeting materials therapy, can be locally administrated by interventional techniques. The combination of targeting biological therapies and high-targeted interventional technique holds advantages of minimal invasion, accurate delivery, vigorous local effect, and less systemic adverse reactions. Authors believe that the biological therapy may arise a great opportunity for interventional radiology, therefore interventional colleagues should grasp firmly and promptly for the development and extension in this field. (authors)

  1. Current status of gene therapy for α-1 antitrypsin deficiency.

    Science.gov (United States)

    Loring, Heather S; Flotte, Terence R

    2015-03-01

    As a common monogenic disease, α-1 antitrypsin (AAT) deficiency has undergone thorough investigation for the development of gene therapy. The most common pathology associated with AAT deficiency occurs in the lung, where the loss of function due to impaired secretion of mutant AAT prevents the inhibition of neutrophil elastase and leads to loss of elastin content from the alveolar interstitium. Current treatment in the USA consists of recurrent intravenous protein replacement therapy to augment serum AAT levels. In an attempt to replace recurring treatments with a single dose of gene therapy, recombinant adenovirus, plasmid, and recombinant adeno-associated virus (rAAV) vectors have been investigated as vectors for transgene delivery. Large strides in gene therapy for AAT deficiency lung disease have led to the development of rAAV1-AAT capable of producing sustained serum AAT levels in clinical trials after intramuscular administration in humans at 3% of the target level. Further increases in levels are anticipated as limb perfusion targets greater muscle mass. The future roles of intrapleural and airway delivery, miRNA-expressing vectors, iPS cell platforms, and genome editing are anticipated.

  2. IL-12 based gene therapy in veterinary medicine.

    Science.gov (United States)

    Pavlin, Darja; Cemazar, Maja; Sersa, Gregor; Tozon, Natasa

    2012-11-21

    The use of large animals as an experimental model for novel treatment techniques has many advantages over the use of laboratory animals, so veterinary medicine is becoming an increasingly important translational bridge between preclinical studies and human medicine. The results of preclinical studies show that gene therapy with therapeutic gene encoding interleukin-12 (IL-12) displays pronounced antitumor effects in various tumor models. A number of different studies employing this therapeutic plasmid, delivered by either viral or non-viral methods, have also been undertaken in veterinary oncology. In cats, adenoviral delivery into soft tissue sarcomas has been employed. In horses, naked plasmid DNA has been delivered by direct intratumoral injection into nodules of metastatic melanoma. In dogs, various types of tumors have been treated with either local or systemic IL-12 electrogene therapy. The results of these studies show that IL-12 based gene therapy elicits a good antitumor effect on spontaneously occurring tumors in large animals, while being safe and well tolerated by the animals. Hopefully, such results will lead to further investigation of this therapy in veterinary medicine and successful translation into human clinical trials.

  3. [Progress in research on pathogenic genes and gene therapy for inherited retinal diseases].

    Science.gov (United States)

    Zhu, Ling; Cao, Cong; Sun, Jiji; Gao, Tao; Liang, Xiaoyang; Nie, Zhipeng; Ji, Yanchun; Jiang, Pingping; Guan, Minxin

    2017-02-10

    Inherited retinal diseases (IRDs), including retinitis pigmentosa, Usher syndrome, Cone-Rod degenerations, inherited macular dystrophy, Leber's congenital amaurosis, Leber's hereditary optic neuropathy are the most common and severe types of hereditary ocular diseases. So far more than 200 pathogenic genes have been identified. With the growing knowledge of the genetics and mechanisms of IRDs, a number of gene therapeutic strategies have been developed in the laboratory or even entered clinical trials. Here the progress of IRD research on the pathogenic genes and therapeutic strategies, particularly gene therapy, are reviewed.

  4. Gene therapy for PIDs: progress, pitfalls and prospects.

    Science.gov (United States)

    Mukherjee, Sayandip; Thrasher, Adrian J

    2013-08-10

    Substantial progress has been made in the past decade in treating several primary immunodeficiency disorders (PIDs) with gene therapy. Current approaches are based on ex-vivo transfer of therapeutic transgene via viral vectors to patient-derived autologous hematopoietic stem cells (HSCs) followed by transplantation back to the patient with or without conditioning. The overall outcome from all the clinical trials targeting different PIDs has been extremely encouraging but not without caveats. Malignant outcomes from insertional mutagenesis have featured prominently in the adverse events associated with these trials and have warranted intense pre-clinical investigation into defining the tendencies of different viral vectors for genomic integration. Coupled with issues pertaining to transgene expression, the therapeutic landscape has undergone a paradigm shift in determining safety, stability and efficacy of gene therapy approaches. In this review, we aim to summarize the progress made in the gene therapy trials targeting ADA-SCID, SCID-X1, CGD and WAS, review the pitfalls, and outline the recent advancements which are expected to further enhance favourable risk benefit ratios for gene therapeutic approaches in the future. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Pancreatic Cancer Gene Therapy: From Molecular Targets to Delivery Systems

    Directory of Open Access Journals (Sweden)

    Maria Victoria Maliandi

    2011-01-01

    Full Text Available The continuous identification of molecular changes deregulating critical pathways in pancreatic tumor cells provides us with a large number of novel candidates to engineer gene-targeted approaches for pancreatic cancer treatment. Targets—both protein coding and non-coding—are being exploited in gene therapy to influence the deregulated pathways to facilitate cytotoxicity, enhance the immune response or sensitize to current treatments. Delivery vehicles based on viral or non-viral systems as well as cellular vectors with tumor homing characteristics are a critical part of the design of gene therapy strategies. The different behavior of tumoral versus non-tumoral cells inspires vector engineering with the generation of tumor selective products that can prevent potential toxic-associated effects. In the current review, a detailed analysis of the different targets, the delivery vectors, the preclinical approaches and a descriptive update on the conducted clinical trials are presented. Moreover, future possibilities in pancreatic cancer treatment by gene therapy strategies are discussed.

  6. [Gene therapy and cell transplantation for Parkinson's disease].

    Science.gov (United States)

    Muramatsu, Shin-ichi

    2005-11-01

    Increasing enthusiasm in the field of stem cell research is raising the hope of novel cell replacement therapies for Parkinson's disease (PD), but it also raises both scientific and ethical concerns. In most cases, dopaminergic cells are transplanted ectopically into the striatum instead of the substantia nigra. If the main mechanism underlying any observed functional recovery with these cell replacement therapies is restoration of dopaminergic neurotransmission, then viral vector-mediated gene delivery of dopamine-synthesizing enzymes is a more straight forward approach. The development of a recombinant adeno-associated viral (AAV) vector is making gene therapy for PD a feasible therapeutic option in the clinical arena. Efficient and long-term expression of genes for dopamine-synthesizing enzymes in the striatum restored local dopamine production and allowed behavioral recovery in animal models of PD. A clinical trial to evaluate the safety and efficacy of AAV vector-mediated gene transfer of aromatic L-amino acid decarboxylase, an enzyme that converts L-dopa to dopamine, is underway. With this strategy patients would still need to take L-dopa to control their PD symptoms, however, dopamine production could be regulated by altering the dose of L-dopa. Another AAV vector-based clinical trial is also ongoing in which the subthalamic nucleus is transduced to produce inhibitory transmitters.

  7. Gene Therapy With Regulatory T Cells: A Beneficial Alliance

    Directory of Open Access Journals (Sweden)

    Moanaro Biswas

    2018-03-01

    Full Text Available Gene therapy aims to replace a defective or a deficient protein at therapeutic or curative levels. Improved vector designs have enhanced safety, efficacy, and delivery, with potential for lasting treatment. However, innate and adaptive immune responses to the viral vector and transgene product remain obstacles to the establishment of therapeutic efficacy. It is widely accepted that endogenous regulatory T cells (Tregs are critical for tolerance induction to the transgene product and in some cases the viral vector. There are two basic strategies to harness the suppressive ability of Tregs: in vivo induction of adaptive Tregs specific to the introduced gene product and concurrent administration of autologous, ex vivo expanded Tregs. The latter may be polyclonal or engineered to direct specificity to the therapeutic antigen. Recent clinical trials have advanced adoptive immunotherapy with Tregs for the treatment of autoimmune disease and in patients receiving cell transplants. Here, we highlight the potential benefit of combining gene therapy with Treg adoptive transfer to achieve a sustained transgene expression. Furthermore, techniques to engineer antigen-specific Treg cell populations, either through reprogramming conventional CD4+ T cells or transferring T cell receptors with known specificity into polyclonal Tregs, are promising in preclinical studies. Thus, based upon these observations and the successful use of chimeric (IgG-based antigen receptors (CARs in antigen-specific effector T cells, different types of CAR-Tregs could be added to the repertoire of inhibitory modalities to suppress immune responses to therapeutic cargos of gene therapy vectors. The diverse approaches to harness the ability of Tregs to suppress unwanted immune responses to gene therapy and their perspectives are reviewed in this article.

  8. Bystander or No Bystander for Gene Directed Enzyme Prodrug Therapy

    Directory of Open Access Journals (Sweden)

    Adam V. Patterson

    2009-11-01

    Full Text Available Gene directed enzyme prodrug therapy (GDEPT of cancer aims to improve the selectivity of chemotherapy by gene transfer, thus enabling target cells to convert nontoxic prodrugs to cytotoxic drugs. A zone of cell kill around gene-modified cells due to transfer of toxic metabolites, known as the bystander effect, leads to tumour regression. Here we discuss the implications of either striving for a strong bystander effect to overcome poor gene transfer, or avoiding the bystander effect to reduce potential systemic effects, with the aid of three successful GDEPT systems. This review concentrates on bystander effects and drug development with regard to these enzyme prodrug combinations, namely herpes simplex virus thymidine kinase (HSV-TK with ganciclovir (GCV, cytosine deaminase (CD from bacteria or yeast with 5-fluorocytodine (5-FC, and bacterial nitroreductase (NfsB with 5-(azaridin-1-yl-2,4-dinitrobenzamide (CB1954, and their respective derivatives.

  9. DNA origami applications in cancer therapy.

    Science.gov (United States)

    Udomprasert, Anuttara; Kangsamaksin, Thaned

    2017-08-01

    Due to the complexity and heterogeneity of cancer, the development of cancer diagnosis and therapy is still progressing, and a complete understanding of cancer biology remains elusive. Recently, cancer nanomedicine has gained much interest as a promising diagnostic and therapeutic strategy, as a wide range of nanomaterials possess unique physical properties that can render drug delivery systems safer and more effective. Also, targeted drug delivery and precision medicine have now become a new paradigm in cancer therapy. With nanocarriers, chemotherapeutic drugs could be directly delivered into target cancer cells, resulting in enhanced efficiency with fewer side-effects. DNA, a biomolecule with molecular self-assembly properties, has emerged as a versatile nanomaterial to construct multifunctional platforms; DNA nanostructures can be modified with functional groups to improve their utilities as biosensors or drug carriers. Such applications have become possible with the advent of the scaffolded DNA origami method. This breakthrough technique in structural DNA nanotechnology provides an easier and faster way to construct DNA nanostructures with various shapes. Several experiments proved that DNA origami nanostructures possess abilities to enhance efficacies of chemotherapy, reduce adverse side-effects, and even circumvent drug resistance. Here, we highlight the principles of the DNA origami technique and its applications in cancer therapeutics and discuss current challenges and opportunities to improve cancer detection and targeted drug delivery. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  10. Cardiac gene therapy: therapeutic potential and current progress.

    Science.gov (United States)

    Kizana, E; Alexander, I E

    2003-10-01

    Cardiovascular disease remains a major cause of morbidity and mortality in modern societies. While contemporary treatment modalities are making steady inroads to reduce this disease burden there remains a pressing need to vigorously explore novel therapeutic strategies. Rapid advances in our understanding of molecular pathology and the evolution of increasingly efficient gene transfer technology offer the imminent prospect of gene-based approaches to, at least, a subset of cardiovascular pathophysiologies. Initially envisaged as a treatment strategy for inherited monogenic disorders, it is now apparent that gene therapy has broader potential that encompasses acquired polygenic diseases, including many that affect the cardiovascular system. Extensive in vitro and animal studies are providing an increasingly sound scientific basis for cautious human evaluation. This review focuses on gene therapy of diseases primarily afflicting the heart, and provides an overview of gene and vector delivery systems with particular emphasis on systems suited to individual cardiac conditions. The pathophysiology underlying these conditions and molecular targets for therapeutic intervention are also reviewed.

  11. Status and advances of p53-gene therapy and radiotherapy in malignant tumor

    International Nuclear Information System (INIS)

    Duan Xin; Chinese Academy of Sciences, Beijing; Zhang Hong

    2006-01-01

    Cancer treatment is one of the most important fields in medical research. All strategies such as radio-therapy, chemotherapy, surgery, and gene-based therapy have their own advantages and disadvantages. Nowadays, a novel method which combined p53-gene therapy with radiotherapy plays an important role in the field of cancer research. This review summarized the current state of combined therapies of p53-gene therapy and radiotherapy, possible mechanism and recent progress. (authors)

  12. Immuno-Oncology-The Translational Runway for Gene Therapy: Gene Therapeutics to Address Multiple Immune Targets.

    Science.gov (United States)

    Weß, Ludger; Schnieders, Frank

    2017-12-01

    Cancer therapy is once again experiencing a paradigm shift. This shift is based on extensive clinical experience demonstrating that cancer cannot be successfully fought by addressing only single targets or pathways. Even the combination of several neo-antigens in cancer vaccines is not sufficient for successful, lasting tumor eradication. The focus has therefore shifted to the immune system's role in cancer and the striking abilities of cancer cells to manipulate and/or deactivate the immune system. Researchers and pharma companies have started to target the processes and cells known to support immune surveillance and the elimination of tumor cells. Immune processes, however, require novel concepts beyond the traditional "single-target-single drug" paradigm and need parallel targeting of diverse cells and mechanisms. This review gives a perspective on the role of gene therapy technologies in the evolving immuno-oncology space and identifies gene therapy as a major driver in the development and regulation of effective cancer immunotherapy. Present challenges and breakthroughs ranging from chimeric antigen receptor T-cell therapy, gene-modified oncolytic viruses, combination cancer vaccines, to RNA therapeutics are spotlighted. Gene therapy is recognized as the most prominent technology enabling effective immuno-oncology strategies.

  13. Gene expression profiles in cervical cancer with radiation therapy alone and chemo-radiation therapy

    International Nuclear Information System (INIS)

    Lee, Kyu Chan; Kim, Joo Young; Hwang, You Jin; Kim, Meyoung Kon; Choi, Myung Sun; Kim, Chul Young

    2003-01-01

    To analyze the gene expression profiles of uterine cervical cancer, and its variation after radiation therapy, with or without concurrent chemotherapy, using a cDNA microarray. Sixteen patients, 8 with squamous cell carcinomas of the uterine cervix, who were treated with radiation alone, and the other 8 treated with concurrent chemo-radiation, were included in the study. Before the starting of the treatment, tumor biopsies were carried out, and the second time biopsies were performed after a radiation dose of 16.2-27 Gy. Three normal cervix tissues were used as a control group. The microarray experiments were performed with 5 groups of the total RNAs extracted individually and then admixed as control, pre-radiation therapy alone, during-radiation therapy alone, pre-chemoradiation therapy, and during chemoradiation therapy. The 33P-labeled cDNAs were synthesized from the total RNAs of each group, by reverse transcription, and then they were hybridized to the cDNA microarray membrane. The gene expression of each microarrays was captured by the intensity of each spot produced by the radioactive isotopes. The pixels per spot were counted with an Arrayguage, and were exported to Microsoft Excel. The data were normalized by the Z transformation, and the comparisons were performed on the Z-ratio values calculated. The expressions of 15 genes, including integrin linked kinase (ILK), CDC28 protein kinase 2, Spry 2, and ERK 3, were increased with the Z-ratio values of over 2.0 for the cervix cancer tissues compared to those for the normal controls. Those genes were involved in cell growth and proliferation, cell cycle control, or signal transduction. The expressions of the other 6 genes, including G protein coupled receptor kinase 6, were decreased with the Z-ratio values of below -2.0. After the radiation therapy, most of the genes, with a previously increase expressions, represented the decreased expression profiles, and the genes, with the Z-ratio values of over 2.0, were

  14. 78 FR 79699 - Cellular, Tissue, and Gene Therapies Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-12-31

    ...] Cellular, Tissue, and Gene Therapies Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Cellular, Tissue, and Gene Therapies Advisory Committee. General Function of the Committee: To provide... updates on guidance documents issued from the Office of Cellular, Tissue, and Gene Therapies, Center for...

  15. 75 FR 65640 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-10-26

    ...] Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting AGENCY: Food and Drug... closed to the public. Name of Committee: Cellular, Tissue and Gene Therapies Advisory Committee. General... Branch, Office of Cellular, Tissue and Gene Therapies, Center for Biologics Evaluation and Research, FDA...

  16. 75 FR 66381 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-10-28

    ...] Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Cellular, Tissue and Gene Therapies Advisory Committee. General Function of the Committee: To provide... Competent Retrovirus (RCR)/Lentivirus (RCL) in Retroviral and Lentiviral Vector Based Gene Therapy Products...

  17. 78 FR 70307 - Guidance for Industry: Preclinical Assessment of Investigational Cellular and Gene Therapy...

    Science.gov (United States)

    2013-11-25

    ...] Guidance for Industry: Preclinical Assessment of Investigational Cellular and Gene Therapy Products... Assessment of Investigational Cellular and Gene Therapy Products'' dated November 2013. The guidance document... products reviewed by the Office of Cellular, Tissue and Gene Therapies (OCTGT). The product areas covered...

  18. 76 FR 81513 - Cellular, Tissue, and Gene Therapies Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-12-28

    ...] Cellular, Tissue, and Gene Therapies Advisory Committee; Notice of Meeting AGENCY: Food and Drug... meeting will be closed to the public. Name of Committee: Cellular, Tissue, and Gene Therapies Advisory... programs in the Cellular and Tissue Branch, Office of Cellular, Tissue and Gene Therapies, Center for...

  19. 75 FR 54351 - Cell and Gene Therapy Clinical Trials in Pediatric Populations; Public Workshop

    Science.gov (United States)

    2010-09-07

    ...] Cell and Gene Therapy Clinical Trials in Pediatric Populations; Public Workshop AGENCY: Food and Drug... Biologics Evaluation and Research (CBER) is announcing a public workshop entitled ``Cell and Gene Therapy... Institutional Review Boards (IRBs), gene and cellular therapy clinical researchers, and other stakeholders...

  20. 76 FR 9028 - Guidance for Industry: Potency Tests for Cellular and Gene Therapy Products; Availability

    Science.gov (United States)

    2011-02-16

    ...] Guidance for Industry: Potency Tests for Cellular and Gene Therapy Products; Availability AGENCY: Food and... Therapy Products'' dated January 2011. The guidance document provides manufacturers of cellular and gene... for Industry: Potency Tests for Cellular and Gene Therapy Products'' dated January 2011. The guidance...

  1. 77 FR 63840 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-10-17

    ...] Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting AGENCY: Food and Drug... meeting will be closed to the public. Name of Committee: Cellular, Tissue and Gene Therapies Advisory... Cellular, Tissue and Gene Therapies, Center for Biologics Evaluation and Research, and the Laboratory of...

  2. 77 FR 65693 - Cellular, Tissue and Gene Therapies Advisory Committee; Amendment of Notice

    Science.gov (United States)

    2012-10-30

    ...] Cellular, Tissue and Gene Therapies Advisory Committee; Amendment of Notice AGENCY: Food and Drug... notice of a meeting of the Cellular, Tissue and Gene Therapies Advisory Committee. This meeting was... announced that a meeting of the Cellular, Tissue and Gene Therapies Advisory Committee would be held on...

  3. 78 FR 44133 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-07-23

    ...] Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Cellular, Tissue and Gene Therapies Advisory Committee. General Function of the Committee: To provide... documents issued from the Office of Cellular, Tissue and Gene Therapies, Center for Biologics Evaluation and...

  4. Gene-based therapy for alpha-1 antitrypsin deficiency.

    Science.gov (United States)

    Mueller, Christian; Flotte, Terence R

    2013-03-01

    Alpha-1 antitrypsin Deficiency (AATD) has been an attractive target for the development of gene therapy because it is a common single gene disorder, for which there would appear to be significant benefit to be gained for lung disease patients by augmentation of plasma levels of wild-type (M) alpha-1 antitrypsin (AAT). While a significant proportion of patients also have liver disease, which is unlikely to be benefitted by augmentation, the potential to treat or prevent lung disease by replacement of plasma levels to at least 11 microMolar (571 mcg/ml) is the basis upon which several protein replacement therapies have been licensed for human use. Further enhancing the likelihood of success of gene therapy is the fact that the AAT coding sequence is relatively short and the protein appears to function primarily in the plasma and extracellular space. This means that AAT production from any cell or tissue capable of secreting it could be useful therapeutically for augmentation. Based on these considerations, attempts have been made to develop AAT therapies using nonviral gene transfer, gammaretrovirus, recombinant adenovirus (rAd), and recombinant adeno-associated virus (rAAV) vectors. These have resulted in three phase I clinical trials (one of cationic liposome, one of rAAV2, and one of rAAV1) and one phase II clinical trial (with rAAV1). The results of the latter trial, while promising, demonstrated levels were only 3 to 5% of the target range. This indicates the need to further increase the dose of the vector and/or to increase the levels to within the therapeutic range.

  5. T Cell Gene Therapy to Eradicate Disseminated Breast Cancers

    Science.gov (United States)

    2012-05-01

    completely enclosed systems, which reduces the opportunity for microbial contamination, and they may be placed flat on the incubator floor or hung on a...Characterization of receptor for dengue virus-induced macrophage cytotoxin. Council of Scientific and Industrial Research, India. • Determine the cell death...vector-mediated gene transfer of pigment epithelial derived growth factor (PEDF). Molecular Therapy, 13(S1): S313 – S314, 2006. • Fujimura, S

  6. Anti-EGFR immunonanoparticles containing IL12 and salmosin genes for targeted cancer gene therapy.

    Science.gov (United States)

    Kim, Jung Seok; Kang, Seong Jae; Jeong, Hwa Yeon; Kim, Min Woo; Park, Sang Il; Lee, Yeon Kyung; Kim, Hong Sung; Kim, Keun Sik; Park, Yong Serk

    2016-09-01

    Tumor-directed gene delivery is of major interest in the field of cancer gene therapy. Varied functionalizations of non-viral vectors have been suggested to enhance tumor targetability. In the present study, we prepared two different types of anti-EGF receptor (EGFR) immunonanoparticles containing pDNA, neutrally charged liposomes and cationic lipoplexes, for tumor-directed transfection of cancer therapeutic genes. Even though both anti-EGFR immunonanoparticles had a high binding affinity to the EGFR-positive cancer cells, the anti-EGFR immunolipoplex formulation exhibited approximately 100-fold higher transfection to the target cells than anti-EGFR immunoliposomes. The lipoplex formulation also showed a higher transfection to SK-OV-3 tumor xenografts in mice. Thus, IL12 and/or salmosin genes were loaded in the anti-EGFR immunolipoplexes and intravenously administered to mice carrying SK-OV-3 tumors. Co-transfection of IL12 and salmosin genes using anti-EGFR immunolipoplexes significantly reduced tumor growth and pulmonary metastasis. Furthermore, combinatorial treatment with doxorubicin synergistically inhibited tumor growth. These results suggest that anti-EGFR immunolipoplexes containing pDNA encoding therapeutic genes could be utilized as a gene-transfer modality for cancer gene therapy.

  7. Gene therapy to target ER stress in brain diseases.

    Science.gov (United States)

    Valenzuela, Vicente; Martínez, Gabriela; Duran-Aniotz, Claudia; Hetz, Claudio

    2016-10-01

    Gene therapy based on the use of Adeno-associated viruses (AAVs) is emerging as a safe and stable strategy to target molecular pathways involved in a variety of brain diseases. Endoplasmic reticulum (ER) stress is proposed as a transversal feature of most animal models and clinical samples from patients affected with neurodegenerative diseases. Manipulation of the unfolded protein response (UPR), a major homeostatic reaction under ER stress conditions, had proved beneficial in diverse models of neurodegeneration. Although increasing number of drugs are available to target ER stress, the use of small molecules to treat chronic brain diseases is challenging because of poor blood brain barrier permeability and undesirable side effects due to the role of the UPR in the physiology of peripheral organs. Gene therapy is currently considered a possible future alternative to circumvent these problems by the delivery of therapeutic agents to selective regions and cell types of the nervous system. Here we discuss current efforts to design gene therapy strategies to alleviate ER stress on a disease context. This article is part of a Special Issue entitled SI:ER stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Emerging cellular and gene therapies for congenital anemias.

    Science.gov (United States)

    Ludwig, Leif S; Khajuria, Rajiv K; Sankaran, Vijay G

    2016-12-01

    Congenital anemias comprise a group of blood disorders characterized by a reduction in the number of peripherally circulating erythrocytes. Various genetic etiologies have been identified that affect diverse aspects of erythroid physiology and broadly fall into two main categories: impaired production or increased destruction of mature erythrocytes. Current therapies are largely focused on symptomatic treatment and are often based on transfusion of donor-derived erythrocytes and management of complications. Hematopoietic stem cell transplantation represents the only curative option currently available for the majority of congenital anemias. Recent advances in gene therapy and genome editing hold promise for the development of additional curative strategies for these blood disorders. The relative ease of access to the hematopoietic stem cell compartment, as well as the possibility of genetic manipulation ex vivo and subsequent transplantation in an autologous manner, make blood disorders among the most amenable to cellular therapies. Here we review cell-based and gene therapy approaches, and discuss the limitations and prospects of emerging avenues, including genome editing tools and the use of pluripotent stem cells, for the treatment of congenital forms of anemia. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Targeting Gene-Viro-Therapy with AFP driving Apoptin gene shows potent antitumor effect in hepatocarcinoma

    Directory of Open Access Journals (Sweden)

    Zhang Kang-Jian

    2012-02-01

    Full Text Available Abstract Background Gene therapy and viral therapy are used for cancer therapy for many years, but the results are less than satisfactory. Our aim was to construct a new recombinant adenovirus which is more efficient to kill hepatocarcinoma cells but more safe to normal cells. Methods By using the Cancer Targeting Gene-Viro-Therapy strategy, Apoptin, a promising cancer therapeutic gene was inserted into the double-regulated oncolytic adenovirus AD55 in which E1A gene was driven by alpha fetoprotein promoter along with a 55 kDa deletion in E1B gene to form AD55-Apoptin. The anti-tumor effects and safety were examined by western blotting, virus yield assay, real time polymerase chain reaction, 3-(4,5-dimethylthiazol-2-yl-2, 5-diphenyltetrazolium bromide assay, Hoechst33342 staining, Fluorescence-activated cell sorting, xenograft tumor model, Immunohistochemical assay, liver function analysis and Terminal deoxynucleotidyl transferase mediated dUTP Nick End Labeling assay. Results The recombinant virus AD55-Apoptin has more significant antitumor effect for hepatocelluar carcinoma cell lines (in vitro than that of AD55 and even ONYX-015 but no or little impair on normal cell lines. Furthermore, it also shows an obvious in vivo antitumor effect on the Huh-7 liver carcinoma xenograft in nude mice with bigger beginning tumor volume till about 425 mm3 but has no any damage on the function of liver. The induction of apoptosis is involved in AD55-Apoptin induced antitumor effects. Conclusion The AD55-Apoptin can be a potential anti-hepatoma agent with remarkable antitumor efficacy as well as higher safety in cancer targeting gene-viro-therapy system.

  10. Molecular Imaging of Gene Expression and Efficacy following Adenoviral-Mediated Brain Tumor Gene Therapy

    Directory of Open Access Journals (Sweden)

    Alnawaz Rehemtulla

    2002-01-01

    Full Text Available Cancer gene therapy is an active area of research relying upon the transfer and subsequent expression of a therapeutic transgene into tumor cells in order to provide for therapeutic selectivity. Noninvasive assessment of therapeutic response and correlation of the location, magnitude, and duration of transgene expression in vivo would be particularly useful in the development of cancer gene therapy protocols by facilitating optimization of gene transfer protocols, vector development, and prodrug dosing schedules. In this study, we developed an adenoviral vector containing both the therapeutic transgene yeast cytosine deaminase (yCD along with an optical reporter gene (luciferase. Following intratumoral injection of the vector into orthotopic 9L gliomas, anatomical and diffusion-weighted MR images were obtained over time in order to provide for quantitative assessment of overall therapeutic efficacy and spatial heterogeneity of cell kill, respectively. In addition, bioluminescence images were acquired to assess the duration and magnitude of gene expression. MR images revealed significant reduction in tumor growth rates associated with yCD/5-fluorocytosine (5FC gene therapy. Significant increases in mean tumor diffusion values were also observed during treatment with 5FC. Moreover, spatial heterogeneity in tumor diffusion changes were also observed revealing that diffusion magnetic resonance imaging could detect regional therapeutic effects due to the nonuniform delivery and/or expression of the therapeutic yCD transgene within the tumor mass. In addition, in vivo bioluminescence imaging detected luciferase gene expression, which was found to decrease over time during administration of the prodrug providing a noninvasive surrogate marker for monitoring gene expression. These results demonstrate the efficacy of the yCD/5FC strategy for the treatment of brain tumors and reveal the feasibility of using multimodality molecular and functional imaging

  11. Neutron capture therapy. Principles and applications

    International Nuclear Information System (INIS)

    Sauerwein, Wolfgang A.G.; Moss, Raymond; Wittig, Andrea; Nakagawa, Yoshinobu

    2012-01-01

    State of the art report on neutron capture therapy. Summarizes the progress made in recent decades. Multidisciplinary approach. Written by the most experienced specialists Neutron capture therapy (NCT) is based on the ability of the non-radioactive isotope boron-10 to capture thermal neutrons with very high probability and immediately to release heavy particles with a path length of one cell diameter. This in principle allows for tumor cell-selective high-LET particle radiotherapy. NCT is exciting scientifically but challenging clinically, and a key factor in success is close collaboration among very different disciplines. This book provides a comprehensive summary of the progress made in NCT in recent years. Individual sections cover all important aspects, including neutron sources, boron chemistry, drugs for NCT, dosimetry, and radiation biology. The use of NCT in a variety of malignancies and also some non-malignant diseases is extensively discussed. NCT is clearly shown to be a promising modality at the threshold of wider clinical application. All of the chapters are written by experienced specialists in language that will be readily understood by all participating disciplines.

  12. Osteoarthritis, Application of Physical Therapy Proceduers

    Directory of Open Access Journals (Sweden)

    Dijana Avdić

    2008-08-01

    Full Text Available Osteoarthritis (OA is a group of overlapping disorders, which may have different aetiology but similar biological, morphologic and clinical outcome. In osteoarthritis, process will not encompass the joint cartilage only, but the entire joint, including sub-hondral bone, ligaments, capsule, and sinovial membrane and surrounding muscles. Osteoarthritis is a multi-factor disorder of sinovial joints, which occurs as result of mechanical and biological factors, which destabilise normal hondrocyte function, partitioning of cartilage, extra-cellular matrix and sub-hondral bone. The earliest changes, which are restricted to the joint cartilage surface only, do not cause any subjective feeling. The pain in arthrosis occurs (or re-occurs a bit later, Diagnosis will be determined based on clinical exam as well as signs and symptoms present. Symptomatic and functional treatment of osteoarthritis as one of rheumatic disorders must be taken throughout years, sometimes throughout a lifetime. It encompasses application of many medications and physical therapy procedures.

  13. Ovarian Cancer Therapy by VSVMP Gene Mediated by a Paclitaxel-Enhanced Nanoparticle.

    Science.gov (United States)

    Long, Jianlin; Yang, Yuping; Kang, Tianyi; Zhao, Wei; Cheng, Hao; Wu, Yujiao; Du, Ting; Liu, Beibei; Li, Yang; Luo, Feng; Gou, Maling

    2017-11-15

    Nanoparticles have great promise for gene delivery. However, the transfection efficiency of nanoparticle-based gene delivery systems is always unsatisfied to meet the requirement of effective gene therapy. Herein, we used low-dosage paclitaxel to enhance a nanoscaled gene delivery system that was self-assembled from N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammoniummethyl sulfate and monomethoxy poly(ethylene glycol)-poly(d,l-lactide) (DPP), creating a paclitaxel-encapsulated DPP (P-DPP) nanoparticle. The encapsulated low-dosage paclitaxel significantly improved the gene delivery efficiency of the DPP nanoparticles against multiple cancer cells, in some of which the transfection efficiency is as high as 92%. By the P-DPP nanoparticle, vesicular stomatitis virus matrix protein (VSVMP) that could induce cell apoptosis was delivered to treat ovarian cancer. The encapsulation of paclitaxel in DPP nanoparticles increased the expression of VSVMP, enhancing VSVMP to induce antiproliferation and apoptosis in SKOV3 ovarian cancer cells. Intraperitoneal administration of P-DPP-delivered VSVMP effectively inhibited the intraperitoneal metastasis of SKOV3 ovarian cancer, which was more efficient than DPP-delivered VSVMP. Moreover, it was found that the tumor cell apoptosis induction, tumor cell proliferation inhibition, and tumor angiogenesis suppression were involved in the anticancer mechanism of this nanocomplex. Our data suggest that the encapsulation of low-dosage paclitaxel can enhance the gene delivery efficiency of the DPP nanoparticles against multiple cancer cells and exert a synergistic anticancer effect with VSVMP gene in ovarian cancer treatment. The VSVMP gene therapy delivered by the paclitaxel-enhanced nanoparticle has potential application in ovarian cancer therapy.

  14. Towards prostate cancer gene therapy: Development of a chlorotoxin-targeted nanovector for toxic (melittin) gene delivery.

    Science.gov (United States)

    Tarokh, Zahra; Naderi-Manesh, Hossein; Nazari, Mahboobeh

    2017-03-01

    Prostate cancer is the second leading cause of death due to cancer in men. Owing to shortcomings in the current treatments, other therapies are being considered. Toxic gene delivery is one of the most effective methods for cancer therapy. Cationic polymers are able to form stable nanoparticles via interaction with nucleic acids electrostatically. Branched polyethylenimine that contains amine groups has notable buffering capacity and the ability to escape from endosome through the proton sponge effect. However, the cytotoxicity of this polymer is high, and modification is one of the applicable strategies to overcome this problem. In this study, PEI was targeted with chlorotoxin (CTX) via N-succinimidyl 3-(2-pyridyldithio) propionate (SPDP) cross-linker. CTX can bind specifically to matrix metalloproteinase-2 that is overexpressed in certain cancers. Melittin as the major component of bee venom has been reported to have anti-cancer activity. This was thus selected to deliver to PC3 cell line. Flow cytometry analysis revealed that transfection efficiency of targeted nanoparticles is significantly higher compared to non-targeted nanoparticles. Targeted nanoparticles carrying the melittin gene also decreased cell viability of PC3 cells significantly while no toxic effects were observed on NIH3T3 cell line. Therefore, CTX-targeted nanoparticles carrying the melittin gene could serve as an appropriate gene delivery system for prostate and other MMP-2 positive cancer cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Potential mechanisms for cell-based gene therapy to treat HIV/AIDS.

    Science.gov (United States)

    Herrera-Carrillo, Elena; Berkhout, Ben

    2015-02-01

    An estimated 35 million people are infected with HIV worldwide. Anti-retroviral therapy (ART) has reduced the morbidity and mortality of HIV-infected patients but efficacy requires strict adherence and the treatment is not curative. Most importantly, the emergence of drug-resistant virus strains and drug toxicity can restrict the long-term therapeutic efficacy in some patients. Therefore, novel treatment strategies that permanently control or eliminate the virus and restore the damaged immune system are required. Gene therapy against HIV infection has been the topic of intense investigations for the last two decades because it can theoretically provide such a durable anti-HIV control. In this review we discuss two major gene therapy strategies to combat HIV. One approach aims to kill HIV-infected cells and the other is based on the protection of cells from HIV infection. We discuss the underlying molecular mechanisms for candidate approaches to permanently block HIV infection, including the latest strategies and future therapeutic applications. Hematopoietic stem cell-based gene therapy for HIV/AIDS may eventually become an alternative for standard ART and should ideally provide a functional cure in which the virus is durably controlled without medication. Recent results from preclinical research and early-stage clinical trials support the feasibility and safety of this novel strategy.

  16. Implications of silver nanoparticle induced cell apoptosis for in vitro gene therapy

    International Nuclear Information System (INIS)

    Gopinath, P; Ghosh, Siddhartha Sankar; Gogoi, Sonit Kumar; Chattopadhyay, Arun

    2008-01-01

    The impact of manufactured nanomaterials on human health and the environment is a major concern for commercial use of nanotechnology based products. A judicious choice of selective usage, lower nanomaterial concentration and use in combination with conventional therapeutic materials may provide the best solution. For example, silver nanoparticles (Ag NPs) are known to be bactericidal and also cytotoxic to mammalian cells. Herein, we investigate the molecular mechanism of Ag NP mediated cytotoxicity in both cancer and non-cancer cells and find that optimum particle concentration leads to programmed cell death in vitro. Also, the benefit of the cytotoxic effects of Ag NPs was tested for therapeutic use in conjunction with conventional gene therapy. The synergistic effect of Ag NPs on the uracil phosphoribosyltransferase expression system sensitized the cells more towards treatment with the drug 5-fluorouracil. Induction of the apoptotic pathway makes Ag NPs a representative of a new chemosensitization strategy for future application in gene therapy

  17. Advances of gene therapy for primary immunodeficiencies [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Fabio Candotti

    2016-03-01

    Full Text Available In the recent past, the gene therapy field has witnessed a remarkable series of successes, many of which have involved primary immunodeficiency diseases, such as X-linked severe combined immunodeficiency, adenosine deaminase deficiency, chronic granulomatous disease, and Wiskott-Aldrich syndrome. While such progress has widened the choice of therapeutic options in some specific cases of primary immunodeficiency, much remains to be done to extend the geographical availability of such an advanced approach and to increase the number of diseases that can be targeted. At the same time, emerging technologies are stimulating intensive investigations that may lead to the application of precise genetic editing as the next form of gene therapy for these and other human genetic diseases.

  18. From mutation identification to therapy: discovery and origins of the first approved gene therapy in the Western world

    NARCIS (Netherlands)

    Kastelein, John J. P.; Ross, Colin J. D.; Hayden, Michael R.

    2013-01-01

    On November 2, 2012, Glybera® (alipogene tipovarvec) was the first human gene therapy to receive long awaited market approval in the Western world. This important milestone is expected to open the door to additional gene therapies for the treatment of many diseases in the future. The development of

  19. Personalized Medicine: Cell and Gene Therapy Based on Patient-Specific iPSC-Derived Retinal Pigment Epithelium Cells.

    Science.gov (United States)

    Li, Yao; Chan, Lawrence; Nguyen, Huy V; Tsang, Stephen H

    2016-01-01

    Interest in generating human induced pluripotent stem (iPS) cells for stem cell modeling of diseases has overtaken that of patient-specific human embryonic stem cells due to the ethical, technical, and political concerns associated with the latter. In ophthalmology, researchers are currently using iPS cells to explore various applications, including: (1) modeling of retinal diseases using patient-specific iPS cells; (2) autologous transplantation of differentiated retinal cells that undergo gene correction at the iPS cell stage via gene editing tools (e.g., CRISPR/Cas9, TALENs and ZFNs); and (3) autologous transplantation of patient-specific iPS-derived retinal cells treated with gene therapy. In this review, we will discuss the uses of patient-specific iPS cells for differentiating into retinal pigment epithelium (RPE) cells, uncovering disease pathophysiology, and developing new treatments such as gene therapy and cell replacement therapy via autologous transplantation.

  20. Gene therapy for carcinoma of the breast: Genetic ablation strategies

    International Nuclear Information System (INIS)

    Curiel, David T

    2000-01-01

    The gene therapy strategy of mutation compensation is designed to rectify the molecular lesions that are etiologic for neoplastic transformation. For dominant oncogenes, such approaches involve the functional knockout of the dysregulated cellular control pathways provoked by the overexpressed oncoprotein. On this basis, molecular interventions may be targeted to the transcriptional level of expression, via antisense or ribozymes, or post-transcriptionally, via intracellular single chain antibodies (intrabodies). For carcinoma of the breast, these approaches have been applied in the context of the disease linked oncogenes erbB-2 and cyclin D 1 , as well as the estrogen receptor. Neoplastic revision accomplished in modal systems has rationalized human trials on this basis

  1. Tissue-Engineered Skeletal Muscle Organoids for Reversible Gene Therapy

    Science.gov (United States)

    Vandenburgh, Herman; DelTatto, Michael; Shansky, Janet; Lemaire, Julie; Chang, Albert; Payumo, Francis; Lee, Peter; Goodyear, Amy; Raven, Latasha

    1996-01-01

    Genetically modified murine skeletal myoblasts were tissue engineered in vitro into organ-like structures (organoids) containing only postmitotic myofibers secreting pharmacological levels of recombinant human growth hormone (rhGH). Subcutaneous organoid Implantation under tension led to the rapid and stable appearance of physiological sera levels of rhGH for up to 12 weeks, whereas surgical removal led to its rapid disappearance. Reversible delivery of bioactive compounds from postimtotic cells in tissue engineered organs has several advantages over other forms of muscle gene therapy.

  2. Gene therapy and angiogenesis in patients with coronary artery disease

    DEFF Research Database (Denmark)

    Kastrup, Jens

    2010-01-01

    Not all patients with severe coronary artery disease can be treated satisfactorily with current recommended medications and revascularization techniques. Various vascular growth factors have the potential to induce angiogenesis in ischemic tissue. Clinical trials have only evaluated the effect...... of VEGF and FGF in patients with coronary artery disease. The initial small and unblinded studies with either recombinant growth factor proteins or genes encoding growth factors were encouraging, demonstrating both clinical improvement and evidence of angiogenesis. However, subsequent larger double...... an improvement in clinical results can be obtained with a cocktail of growth factors or by a combination of gene and stem cell therapy in patients with severe coronary artery disease, which cannot be treated effectively with current treatment strategies....

  3. Beta-Adrenergic gene therapy for cardiovascular disease

    Directory of Open Access Journals (Sweden)

    Koch Walter J

    2000-10-01

    Full Text Available Abstract Gene therapy using in vivo recombinant adenovirus-mediated gene transfer is an effective technique that offers great potential to improve existing drug treatments for the complex cardiovascular diseases of heart failure and vascular smooth muscle intimal hyperplasia. Cardiac-specific adenovirus-mediated transfer of the carboxyl-terminus of the β-adrenergic receptor kinase (βARKct, acting as a Gβγ-β-adrenergic receptor kinase (βARK1 inhibitor, improves basal and agonist-induced cardiac performance in both normal and failing rabbit hearts. In addition, βARKct adenovirus infection of vascular smooth muscle is capable of significantly diminishing neointimal proliferation after angioplasty. Therefore, further investigation is warranted to determine whether inhibition of βARK1 activity and sequestration of Gβγ via an adenovirus that encodes the βARKct transgene might be a useful clinical tool for the treatment of cardiovascular pathologies.

  4. Gene Editing and CRISPR Therapeutics: Strategies Taught by Cell and Gene Therapy.

    Science.gov (United States)

    Ramirez, Juan C

    2017-01-01

    A few years ago, we assisted in the demonstration for the first time of the revolutionary idea of a type of adaptive-immune system in the bacteria kingdom. This system, named CRISPR, and variants engineered in the lab, have been demonstrated as functional with extremely high frequency and fidelity in almost all eukaryotic cells studied to date. The capabilities of this RNA-guided nuclease have added to the interest that was announced with the advent of previous technologies for genome editing tools, such as ZFN and TALEN. The capabilities exhibited by these gene editors, opens up a novel scenario that indicates the promise of a next-generation medicine based on precision and personalized objectives, mostly due to the change in the paradigm regarding gene-surgery. This has certainly attracted, like never before, the attention of the biotech business and investor community. This chapter offers a brief overview of some of the factors that have contributed to a rapid entry into the biotech and pharmaceutical company's pipeline, focusing on how cell and gene therapies (CGT), collectively known as advanced therapies, have become the driving forces toward the therapeutic uses of gene editing technology. The sum of all those efforts for more than 30years has contributed to the new paradigm of considering genes as medicines. Copyright © 2017. Published by Elsevier Inc.

  5. 78 FR 26794 - Prospective Grant of Start-Up Exclusive Evaluation Option License Agreement: Gene Therapy and...

    Science.gov (United States)

    2013-05-08

    ...-Up Exclusive Evaluation Option License Agreement: Gene Therapy and Cell-Based Therapy for Cardiac... the field of use may be limited to ``Gene therapy and cell-based therapy for cardiac arrhythmias in... normal heart rhythm. These pacemakers include viral vectors suitable for gene therapy that incorporate Ca...

  6. Gene Directed Enzyme Prodrug Therapy Using Rabbit Cytochrome P450 4B1 in Murine Colon Adenocarcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Joo; Kang, Joo Hyun; Lee, Tae Sup; Kim, Kyeong Min; Woo, Kwang Sun; Chung, Wee Sup; Cheon, Gi Jeong; Choi, Chang Woon; Lim, Sang Moo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2007-07-01

    The conventional cancer therapy is chemotherapy, surgical resection and/or radiotherapy. Chemotherapy using cytotoxic drug has some problems with lack of tumor selectivity resulting in toxicity to normal tissues. To enhance the tumor selectivity of cytotoxic drug, the application of suicidal gene therapy technology was designed. Suicidal gene therapy is based on the expression in tumor cells of a gene encoding an enzyme that converts a non-toxic prodrug into a cytotoxic product. Representative suicidal genes are Herpes simplex virus type 1 thymidine kinase (HSV1- tk) and cytosine deaminase (cd). Recently, a new prodrug-converting enzyme based on rabbit cytochrome P450 4B1 gene (cyp4B1) has been reported for therapy of experimental brain tumor. This enzyme activates the prodrugs such as 4-ipomeanol (4-IM) and 2- aminoanthracene (2-AA) to highly reactive furane epoxide and unsaturated dialdehyde intermediate, respectively. DNA alkylation seems to be the main mechanism of cytotoxicity of these activated drugs. In this study, we isolated cyp4B1 cDNA from rabbit lung, transduced cyp4B1 expression vector into murine colon cancer cell, and then analyzed the cytotoxic properties of cyp4b1-activated 2-AA in cyp4B1 transduced cells to verify the cyp4B1 enzyme system for gene directed enzyme prodrug therapy.

  7. Gene Directed Enzyme Prodrug Therapy Using Rabbit Cytochrome P450 4B1 in Murine Colon Adenocarcinoma

    International Nuclear Information System (INIS)

    Kim, Sung Joo; Kang, Joo Hyun; Lee, Tae Sup; Kim, Kyeong Min; Woo, Kwang Sun; Chung, Wee Sup; Cheon, Gi Jeong; Choi, Chang Woon; Lim, Sang Moo

    2007-01-01

    The conventional cancer therapy is chemotherapy, surgical resection and/or radiotherapy. Chemotherapy using cytotoxic drug has some problems with lack of tumor selectivity resulting in toxicity to normal tissues. To enhance the tumor selectivity of cytotoxic drug, the application of suicidal gene therapy technology was designed. Suicidal gene therapy is based on the expression in tumor cells of a gene encoding an enzyme that converts a non-toxic prodrug into a cytotoxic product. Representative suicidal genes are Herpes simplex virus type 1 thymidine kinase (HSV1- tk) and cytosine deaminase (cd). Recently, a new prodrug-converting enzyme based on rabbit cytochrome P450 4B1 gene (cyp4B1) has been reported for therapy of experimental brain tumor. This enzyme activates the prodrugs such as 4-ipomeanol (4-IM) and 2- aminoanthracene (2-AA) to highly reactive furane epoxide and unsaturated dialdehyde intermediate, respectively. DNA alkylation seems to be the main mechanism of cytotoxicity of these activated drugs. In this study, we isolated cyp4B1 cDNA from rabbit lung, transduced cyp4B1 expression vector into murine colon cancer cell, and then analyzed the cytotoxic properties of cyp4b1-activated 2-AA in cyp4B1 transduced cells to verify the cyp4B1 enzyme system for gene directed enzyme prodrug therapy

  8. Gene therapy for bladder pain with gene gun particle encoding pro-opiomelanocortin cDNA.

    Science.gov (United States)

    Chuang, Yao-Chi; Chou, A-K; Wu, P-C; Chiang, Po-Hui; Yu, T-J; Yang, L-C; Yoshimura, Naoki; Chancellor, Michael B

    2003-11-01

    Interstitial cystitis is a bladder hypersensitivity disease associated with bladder pain that has been a major challenge to understand and treat. We hypothesized that targeted and localized expression of endogenous opioid peptide in the bladder could be useful for the treatment of bladder pain. Pro-opiomelanocortin (POMC) is one of such precursor molecules. In this study we developed a gene gun method for the transfer of POMC cDNA in vivo and investigated its therapeutic effect on acetic acid induced bladder hyperactivity in rats. Human POMC cDNA was cloned into a modified pCMV plasmid and delivered into the bladder wall of adult female rats by direct injection or the gene gun. Three days after gene therapy continuous cystometrograms were performed using urethane anesthesia by filling the bladder (0.08 ml per minute) with saline, followed by 0.3% acetic acid. Bladder immunohistochemical testing was used to detect endorphin after POMC cDNA transfer. The intercontraction interval was decreased after intravesical instillation of acetic acid (73.1% or 68.1% decrease) in 2 control groups treated with saline or the gene gun without POMC cDNA, respectively. However, rats that received POMC cDNA via the gene gun showed a significantly decreased response (intercontraction interval 35% decreased) to acetic acid instillation, whereas this antinociceptive effect was not detected in the plasmid POMC cDNA direct injection group. This effect induced by POMC gene gun treatment was reversed by intramuscular naloxone (1 mg/kg), an opioid antagonist. Increased endorphin immunoreactivity with anti-endorphin antibodies was observed in the bladder of gene gun treated animals. The POMC gene can be transferred in the bladder using the gene gun and increased bladder expression of endorphin can suppress nociceptive responses induced by bladder irritation. Thus, POMC gene gun delivery may be useful for the treatment of interstitial cystitis and other types of visceral pain.

  9. [Gene therapy of chronic infections of the urogenital system using cytotoxic peptides].

    Science.gov (United States)

    Lazarev, V N; Govorun, V M; Aleksandrova, N M; Lopukhin, Iu M

    2000-01-01

    Gene therapy of chronic infectious diseases of urogenital tract represents a new perspective field in the modern biological and medical sciences. In the review discuss one of the new directions in gene therapy of urogenital infections caused by Mycoplasma: inhibition of mycoplasmal infection after administration of recombinant plasmid vectors, expressed the genes of cytotoxic peptides.

  10. New Japanese Regulatory Frameworks for Clinical Research and Marketing Authorization of Gene Therapy and Cellular Therapy Products.

    Science.gov (United States)

    Nagai, Sumimasa; Ozawa, Keiya

    2017-01-01

    In Japan, the Pharmaceuticals and Medical Devices Law was passed in 2014. In this new law, regenerative medical products were defined, and a conditional and term-limited approval system only for regenerative medical products was instituted. Therefore, regenerative medical products can be approved based on phase I and/or II trials. Gene therapy and adoptive cellular therapy are categorized as regenerative medical products. This law is intended for registration trials for marketing authorization. The Act on the Safety of Regenerative Medicine was also implemented in 2014. This act is intended for clinical research and medical practice involving processed cells other than registration trials. Under this act, a review of plans on medical treatments or clinical studies by a certified committee and submission of the plans to the Ministry of Health, Labour and Welfare (MHLW) are mandatory. The MHLW instituted the SAKIGAKE (meaning a pioneer or forerunner in Japanese) designation system in 2015. This designation is similar to the breakthrough therapy designation in the US and PRIME in the EU. In addition, the MHLW started the "Project for Enhanced Practical Application of Innovative Drugs, Medical Devices and Regenerative Medical Products" to promote personnel exchange and cooperation in writing of guidelines on the evaluation of innovative medical products between the Pharmaceuticals and Medical Devices Agency and academia. Some new guidelines regarding gene and cellular therapy were published. In this review, we comprehensively described these complicated regulations and problems to be solved in order to facilitate global readers' understanding of Japanese regulatory frameworks. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Lipidomic Evaluation of Feline Neurologic Disease after AAV Gene Therapy

    Directory of Open Access Journals (Sweden)

    Heather L. Gray-Edwards

    2017-09-01

    Full Text Available GM1 gangliosidosis is a fatal lysosomal disorder, for which there is no effective treatment. Adeno-associated virus (AAV gene therapy in GM1 cats has resulted in a greater than 6-fold increase in lifespan, with many cats remaining alive at >5.7 years of age, with minimal clinical signs. Glycolipids are the principal storage product in GM1 gangliosidosis whose pathogenic mechanism is not completely understood. Targeted lipidomics analysis was performed to better define disease mechanisms and identify markers of disease progression for upcoming clinical trials in humans. 36 sphingolipids and subspecies associated with ganglioside biosynthesis were tested in the cerebrospinal fluid of untreated GM1 cats at a humane endpoint (∼8 months, AAV-treated GM1 cats (∼5 years old, and normal adult controls. In untreated GM1 cats, significant alterations were noted in 16 sphingolipid species, including gangliosides (GM1 and GM3, lactosylceramides, ceramides, sphingomyelins, monohexosylceramides, and sulfatides. Variable degrees of correction in many lipid metabolites reflected the efficacy of AAV gene therapy. Sphingolipid levels were highly predictive of neurologic disease progression, with 11 metabolites having a coefficient of determination (R2 > 0.75. Also, a specific detergent additive significantly increased the recovery of certain lipid species in cerebrospinal fluid samples. This report demonstrates the methodology and utility of targeted lipidomics to examine the pathophysiology of lipid storage disorders.

  12. Clinical application of interventional therapy of hyperthyroidism

    International Nuclear Information System (INIS)

    Yang Wei; Liu Qiyu; Wang Zhong; Lin Hua; Xie Budong; Zhou Xi

    2010-01-01

    Objective: To study the safety and efficiency of interventional therapy of hyperthyroidism. Methods: 70 cases of hyperthyroidism were selected and treated with embolization of the thyroid gland artery. The efficacy and complications of the therapy were observed. Results: The therapy was effect in 60 of all the 70 patients, while failed in 1 patient and relapsed in 9 cases. Specifically speaking, 2 of them hyperthyroidism crisis occurred in 2 cases, hypoparathyroidism occurred in 1 case and hypothyroidism occurred in 2 cases. Conclusion: Intervention therapy of hyperthyroidism is of advantage such as good effect, safety, microtrauma, little complication. (authors)

  13. Gene Therapy with Helper-Dependent Adenoviral Vectors: Current Advances and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Philip Ng

    2010-09-01

    Full Text Available Recombinant Adenoviral vectors represent one of the best gene transfer platforms due to their ability to efficiently transduce a wide range of quiescent and proliferating cell types from various tissues and species. The activation of an adaptive immune response against the transduced cells is one of the major drawbacks of first generation Adenovirus vectors and has been overcome by the latest generation of recombinant Adenovirus, the Helper-Dependent Adenoviral (HDAd vectors. HDAds have innovative features including the complete absence of viral coding sequences and the ability to mediate high level transgene expression with negligible chronic toxicity. This review summarizes the many aspects of HDAd biology and structure with a major focus on in vivo gene therapy application and with an emphasis on the unsolved issues that these vectors still presents toward clinical application.

  14. Cancer nanotechnology: application of nanotechnology in cancer therapy.

    Science.gov (United States)

    Misra, Ranjita; Acharya, Sarbari; Sahoo, Sanjeeb K

    2010-10-01

    The application of nanotechnology for cancer therapy has received considerable attention in recent years. Cancer nanotechnology (an interdisciplinary area of research in science, engineering and medicine) is an upcoming field with extensive applications. It provides a unique approach and comprehensive technology against cancer through early diagnosis, prediction, prevention, personalized therapy and medicine. Target-specific drug therapy and methods for early diagnosis of pathologies are the priority research areas in which nanotechnology would play a vital part. This review focuses on the approaches of cancer nanotechnology in the advancement of cancer therapy. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Myeloprotection by Cytidine Deaminase Gene Transfer in Antileukemic Therapy

    Directory of Open Access Journals (Sweden)

    Nico Lachmann

    2013-03-01

    Full Text Available Gene transfer of drug resistance (CTX-R genes can be used to protect the hematopoietic system from the toxicity of anticancer chemotherapy and this concept recently has been proven by overexpression of a mutant O6-methylguaninemethyltransferase in the hematopoietic system of glioblastoma patients treated with temozolomide. Given its protection capacity against such relevant drugs as cytosine arabinoside (ara-C, gemcitabine, decitabine, or azacytidine and the highly hematopoiesis-specific toxicity profile of several of these agents, cytidine deaminase (CDD represents another interesting candidate CTX-R gene and our group recently has established the myeloprotective capacity of CDD gene transfer in a number of murine transplant studies. Clinically, CDD overexpression appears particularly suited to optimize treatment strategies for acute leukemias and myelodysplasias given the efficacy of ara-C (and to a lesser degree decitabine and azacytidine in these disease entities. This article will review the current state of the art with regard to CDD gene transfer and point out potential scenarios for a clinical application of this strategy. In addition, risks and potential side effects associated with this approach as well as strategies to overcome these problems will be highlighted.

  16. Biotechnology and genetic engineering in the new drug development. Part II. Monoclonal antibodies, modern vaccines and gene therapy.

    Science.gov (United States)

    Stryjewska, Agnieszka; Kiepura, Katarzyna; Librowski, Tadeusz; Lochyński, Stanisław

    2013-01-01

    Monoclonal antibodies, modern vaccines and gene therapy have become a major field in modern biotechnology, especially in the area of human health and fascinating developments achieved in the past decades are impressive examples of an interdisciplinary interplay between medicine, biology and engineering. Among the classical products from cells one can find viral vaccines, monoclonal antibodies, and interferons, as well as recombinant therapeutic proteins. Gene therapy opens up challenging new areas. In this review, a definitions of these processes are given and fields of application and products, as well as the future prospects, are discussed.

  17. Testosterone Therapy: Review of Clinical Applications.

    Science.gov (United States)

    Petering, Ryan C; Brooks, Nathan A

    2017-10-01

    Testosterone therapy is increasingly common in the United States, and many of these prescriptions are written by primary care physicians. There is conflicting evidence on the benefit of male testosterone therapy for age-related declines in testosterone. Physicians should not measure testosterone levels unless a patient has signs and symptoms of hypogonadism, such as loss of body hair, sexual dysfunction, hot flashes, or gynecomastia. Depressed mood, fatigue, decreased strength, and a decreased sense of vitality are less specific to male hypogonadism. Testosterone therapy should be initiated only after two morning total serum testosterone measurements show decreased levels, and all patients should be counseled on the potential risks and benefits before starting therapy. Potential benefits of therapy include increased libido, improved sexual function, improved mood and well-being, and increased muscle mass and bone density; however, there is little or mixed evidence confirming clinically significant benefits. The U.S. Food and Drug Administration warns that testosterone therapy may increase the risk of cardiovascular complications. Other possible risks include rising prostate-specific antigen levels, worsening lower urinary tract symptoms, polycythemia, and increased risk of venous thromboembolism. Patients receiving testosterone therapy should be monitored to ensure testosterone levels rise appropriately, clinical improvement occurs, and no complications develop. Testosterone therapy may also be used to treat hypoactive sexual desire disorder in postmenopausal women and to produce physical male sex characteristics in female-to-male transgender patients.

  18. Large Animal Models for Foamy Virus Vector Gene Therapy

    Directory of Open Access Journals (Sweden)

    Peter A. Horn

    2012-12-01

    Full Text Available Foamy virus (FV vectors have shown great promise for hematopoietic stem cell (HSC gene therapy. Their ability to efficiently deliver transgenes to multi-lineage long-term repopulating cells in large animal models suggests they will be effective for several human hematopoietic diseases. Here, we review FV vector studies in large animal models, including the use of FV vectors with the mutant O6-methylguanine-DNA methyltransferase, MGMTP140K to increase the number of genetically modified cells after transplantation. In these studies, FV vectors have mediated efficient gene transfer to polyclonal repopulating cells using short ex vivo transduction protocols designed to minimize the negative effects of ex vivo culture on stem cell engraftment. In this regard, FV vectors appear superior to gammaretroviral vectors, which require longer ex vivo culture to effect efficient transduction. FV vectors have also compared favorably with lentiviral vectors when directly compared in the dog model. FV vectors have corrected leukocyte adhesion deficiency and pyruvate kinase deficiency in the dog large animal model. FV vectors also appear safer than gammaretroviral vectors based on a reduced frequency of integrants near promoters and also near proto-oncogenes in canine repopulating cells. Together, these studies suggest that FV vectors should be highly effective for several human hematopoietic diseases, including those that will require relatively high percentages of gene-modified cells to achieve clinical benefit.

  19. Tmc gene therapy restores auditory function in deaf mice.

    Science.gov (United States)

    Askew, Charles; Rochat, Cylia; Pan, Bifeng; Asai, Yukako; Ahmed, Hena; Child, Erin; Schneider, Bernard L; Aebischer, Patrick; Holt, Jeffrey R

    2015-07-08

    Genetic hearing loss accounts for up to 50% of prelingual deafness worldwide, yet there are no biologic treatments currently available. To investigate gene therapy as a potential biologic strategy for restoration of auditory function in patients with genetic hearing loss, we tested a gene augmentation approach in mouse models of genetic deafness. We focused on DFNB7/11 and DFNA36, which are autosomal recessive and dominant deafnesses, respectively, caused by mutations in transmembrane channel-like 1 (TMC1). Mice that carry targeted deletion of Tmc1 or a dominant Tmc1 point mutation, known as Beethoven, are good models for human DFNB7/11 and DFNA36. We screened several adeno-associated viral (AAV) serotypes and promoters and identified AAV2/1 and the chicken β-actin (Cba) promoter as an efficient combination for driving the expression of exogenous Tmc1 in inner hair cells in vivo. Exogenous Tmc1 or its closely related ortholog, Tmc2, were capable of restoring sensory transduction, auditory brainstem responses, and acoustic startle reflexes in otherwise deaf mice, suggesting that gene augmentation with Tmc1 or Tmc2 is well suited for further development as a strategy for restoration of auditory function in deaf patients who carry TMC1 mutations. Copyright © 2015, American Association for the Advancement of Science.

  20. IGF-I Gene Therapy in Aging Rats Modulates Hippocampal Genes Relevant to Memory Function.

    Science.gov (United States)

    Pardo, Joaquín; Abba, Martin C; Lacunza, Ezequiel; Ogundele, Olalekan M; Paiva, Isabel; Morel, Gustavo R; Outeiro, Tiago F; Goya, Rodolfo G

    2018-03-14

    In rats, learning and memory performance decline during normal aging, which makes this rodent species a suitable model to evaluate therapeutic strategies. In aging rats, insulin-like growth factor-I (IGF-I), is known to significantly improve spatial memory accuracy as compared to control counterparts. A constellation of gene expression changes underlie the hippocampal phenotype of aging but no studies on the effects of IGF-I on the hippocampal transcriptome of old rodents have been documented. Here, we assessed the effects of IGF-I gene therapy on spatial memory performance in old female rats and compared them with changes in the hippocampal transcriptome. In the Barnes maze test, experimental rats showed a significantly higher exploratory frequency of the goal hole than controls. Hippocampal RNA-sequencing showed that 219 genes are differentially expressed in 28-month-old rats intracerebroventricularly injected with an adenovector expressing rat IGF-I as compared with placebo adenovector-injected counterparts. From the differentially expressed genes, 81 were down and 138 upregulated. From those genes, a list of functionally relevant genes, concerning hippocampal IGF-I expression, synaptic plasticity as well as neuronal function was identified. Our results provide an initial glimpse at the molecular mechanisms underlying the neuroprotective actions of IGF-I in the aging brain.

  1. Application of MM wave therapy in radiology

    Energy Technology Data Exchange (ETDEWEB)

    Avakian, R.S. [Inst. of Radio Physics & Electronics, Ashtarack (Argentina); Gasparyan, L.V. [Republican Medical Centre Armenia, Yerevan (Argentina)

    1995-12-31

    The authors studied the effects of MM wave electromagnetic radiation influence on patients, affected by X-ray radiation during the reparation works after Chernobyl nuclear power plant exposure. They compared results of treatment of two groups of patients: (1) control group patients received only basis therapy; (2) testing group, 10 patients received basis therapy and MM wave influence. The authors used the wide band noise generator `Artsakh - 2` for local irradiation on the acupuncture points. Their data proved that low intensity MM waves have immunocorrective, antioxidant effects, and MM wave therapy is a perspective method for treatment of patients with radiological pathology.

  2. Hematopoietic Stem-Cell Gene Therapy for Cerebral Adrenoleukodystrophy.

    Science.gov (United States)

    Eichler, Florian; Duncan, Christine; Musolino, Patricia L; Orchard, Paul J; De Oliveira, Satiro; Thrasher, Adrian J; Armant, Myriam; Dansereau, Colleen; Lund, Troy C; Miller, Weston P; Raymond, Gerald V; Sankar, Raman; Shah, Ami J; Sevin, Caroline; Gaspar, H Bobby; Gissen, Paul; Amartino, Hernan; Bratkovic, Drago; Smith, Nicholas J C; Paker, Asif M; Shamir, Esther; O'Meara, Tara; Davidson, David; Aubourg, Patrick; Williams, David A

    2017-10-26

    In X-linked adrenoleukodystrophy, mutations in ABCD1 lead to loss of function of the ALD protein. Cerebral adrenoleukodystrophy is characterized by demyelination and neurodegeneration. Disease progression, which leads to loss of neurologic function and death, can be halted only with allogeneic hematopoietic stem-cell transplantation. We enrolled boys with cerebral adrenoleukodystrophy in a single-group, open-label, phase 2-3 safety and efficacy study. Patients were required to have early-stage disease and gadolinium enhancement on magnetic resonance imaging (MRI) at screening. The investigational therapy involved infusion of autologous CD34+ cells transduced with the elivaldogene tavalentivec (Lenti-D) lentiviral vector. In this interim analysis, patients were assessed for the occurrence of graft-versus-host disease, death, and major functional disabilities, as well as changes in neurologic function and in the extent of lesions on MRI. The primary end point was being alive and having no major functional disability at 24 months after infusion. A total of 17 boys received Lenti-D gene therapy. At the time of the interim analysis, the median follow-up was 29.4 months (range, 21.6 to 42.0). All the patients had gene-marked cells after engraftment, with no evidence of preferential integration near known oncogenes or clonal outgrowth. Measurable ALD protein was observed in all the patients. No treatment-related death or graft-versus-host disease had been reported; 15 of the 17 patients (88%) were alive and free of major functional disability, with minimal clinical symptoms. One patient, who had had rapid neurologic deterioration, had died from disease progression. Another patient, who had had evidence of disease progression on MRI, had withdrawn from the study to undergo allogeneic stem-cell transplantation and later died from transplantation-related complications. Early results of this study suggest that Lenti-D gene therapy may be a safe and effective alternative to

  3. Application Progress of CRISPR/Cas9 System for Gene Editing in Tumor Research

    Directory of Open Access Journals (Sweden)

    Chao LIU

    2015-09-01

    Full Text Available TCRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeat/CRISPR-associated nuclease 9 gene editing system is a new type of gene editing technology developed based on the immune mechanism of archaea resisting the invasion of exogenous nucleic acid. Compared with traditional gene editing system, CRISPR/Cas9 system is more efficient, easier operating, and less cytotoxic. Currently, CRISPR/Cas9 gene editing technology has been applied to many aspects of cancer research, including research on cancer genes, constructing animal tumor models, screening tumor resistance-associated and phenotypic-related genes and cancer gene therapy. In this review, the application of the CRISPR/Cas9 system in tumor research were introduced.

  4. [Gene therapy: a therapeutic option for neoplasias, infections and monogenic diseases].

    Science.gov (United States)

    Cavagnari, Brian M

    2011-08-01

    During the last two decades, the outcome of various gene therapy protocols lead to medical community disbelief. Nevertheless, successful results obtained in recent years, repositioned gene therapy as a promising option for treatment of several diseases. Facing this renaissance of the international scientific community interest on gene therapy, it seems to be necessary for the generalist physician to understand its strength and limitations. The objective of this article is to comment the way gene therapy addresses nowadays the treatment of such different pathologies as neoplasias, infections and monogenic diseases.

  5. Regulatory Considerations for Gene Therapy Products in the US, EU, and Japan.

    Science.gov (United States)

    Halioua-Haubold, Celine-Lea; Peyer, James G; Smith, James A; Arshad, Zeeshaan; Scholz, Matthew; Brindley, David A; MacLaren, Robert E

    2017-12-01

    Developers of gene therapy products (GTPs) must adhere to additional regulation beyond that of traditional small-molecule therapeutics, due to the unique mechanism-of-action of GTPs and the subsequent novel risks arisen. We have provided herein a summary of the regulatory structure under which GTPs fall in the United States, the European Union, and Japan, and a comprehensive overview of the regulatory guidance applicable to the developer of GTP. Understanding the regulatory requirements for seeking GTP market approval in these major jurisdictions is crucial for an effective and expedient path to market. The novel challenges facing GTP developers is highlighted by a case study of alipogene tiparvovec (Glybera).

  6. Efficacious and safe tissue-selective controlled gene therapy approaches for the cornea.

    Directory of Open Access Journals (Sweden)

    Rajiv R Mohan

    2011-04-01

    Full Text Available Untargeted and uncontrolled gene delivery is a major cause of gene therapy failure. This study aimed to define efficient and safe tissue-selective targeted gene therapy approaches for delivering genes into keratocytes of the cornea in vivo using a normal or diseased rabbit model. New Zealand White rabbits, adeno-associated virus serotype 5 (AAV5, and a minimally invasive hair-dryer based vector-delivery technique were used. Fifty microliters of AAV5 titer (6.5×10(12 vg/ml expressing green fluorescent protein gene (GFP was topically applied onto normal or diseased (fibrotic or neovascularized rabbit corneas for 2-minutes with a custom vector-delivery technique. Corneal fibrosis and neovascularization in rabbit eyes were induced with photorefractive keratectomy using excimer laser and VEGF (630 ng using micropocket assay, respectively. Slit-lamp biomicroscopy and immunocytochemistry were used to confirm fibrosis and neovascularization in rabbit corneas. The levels, location and duration of delivered-GFP gene expression in the rabbit stroma were measured with immunocytochemistry and/or western blotting. Slot-blot measured delivered-GFP gene copy number. Confocal microscopy performed in whole-mounts of cornea and thick corneal sections determined geometric and spatial localization of delivered-GFP in three-dimensional arrangement. AAV5 toxicity and safety were evaluated with clinical eye exam, stereomicroscopy, slit-lamp biomicroscopy, and H&E staining. A single 2-minute AAV5 topical application via custom delivery-technique efficiently and selectively transduced keratocytes in the anterior stroma of normal and diseased rabbit corneas as evident from immunocytochemistry and confocal microscopy. Transgene expression was first detected at day 3, peaked at day 7, and was maintained up to 16 weeks (longest tested time point. Clinical and slit-lamp eye examination in live rabbits and H&E staining did not reveal any significant changes between AAV5

  7. Breast Cancer Gene Therapy: Development of Novel Non-Invasive Magnetic Resonance Assay to Optimize Efficacy

    National Research Council Canada - National Science Library

    Mason, Ralph P

    2005-01-01

    Gene therapy holds great promise for treatment of breast cancer. In particular; clinical trials are underway to apply therapeutic genes related to pro-drug activation or to modulate the activity of oncogenes by blocking promoter sites...

  8. Breast Cancer Gene Therapy: Development of Novel Non-Invasive Magnetic Resonance Assay to Optimize Efficacy

    National Research Council Canada - National Science Library

    Mason, Ralph

    2004-01-01

    Gene therapy holds great promise for treatment of breast cancer. In particular, clinical trials are underway to apply therapeutic genes related to pro-drug activation or to modulate the activity of oncogenes by blocking promoter sites...

  9. Breast Cancer Gene Therapy: Development of Novel Non-Invasive Magnetic Resonance Assay to Optimize Efficacy

    National Research Council Canada - National Science Library

    Mason, Ralph P

    2007-01-01

    Gene therapy holds great promise for treatment of breast cancer. In particular clinical trials are underway to apply therapeutic genes related to pro-drug activation or to modulate the activity of oncogenes by blocking promoter sites...

  10. Breast Cancer Gene Therapy: Development of Novel Non-Invasive Magnetic Resonance Assay to Optimize Efficacy

    National Research Council Canada - National Science Library

    Mason, Ralph P

    2006-01-01

    Gene therapy holds great promise for treatment of breast cancer. In particular clinical trials are underway to apply therapeutic genes related to pro-drug activation or to modulate the activity of oncogenes by blocking promoter sites...

  11. Hirudotherapy /Leech therapy: Applications and Indications in Surgery

    Directory of Open Access Journals (Sweden)

    Swaid Abdullah

    2012-06-01

    More recently, HT has found new applications in cancer therapy, hypersensitivity conditions, like asthma, male/female sterility and diabetes. Taking into consideration all the facts, HT efforts should be made in optimizing the success of medicinal leech therapy in clinical and private practice. [Arch Clin Exp Surg 2012; 1(3.000: 172-180

  12. Rational Emotive Behavior Therapy: Origins, Constructs, and Applications.

    Science.gov (United States)

    Watson, Joshua C.

    In 1956, Dr. Albert Ellis presented his seminal work on Rational Therapy, subsequently renamed Rational Emotive Behavior Therapy (REBT) in 1993. This paper explores the origins, theoretical foundations, applications, and implications of REBT and provides a look at the empirical research available in support of the approach's efficacy. REBT is…

  13. Advances in gene therapy and early imaging monitoring for avascular necrosis of the femoral head

    International Nuclear Information System (INIS)

    Wang Peng; Lan Xiaoli; Zhang Yongxue; Qi Hongyan

    2012-01-01

    Gene therapy is a method that transfers foreign gene to target cells, so as to correct or compensate the disease which is caused by the gene defects and abnormalities. As a new technology, gene therapy has been used in many fields, such as cancer, cardiovascular and nervous system disease, and it brings some hope for patients with difficult and complicated disease. Avascular necrosis of femoral head is a refractory and common disease in clinical, but the traditional surgery therapy and conservative treatment both have many shortcomings,and the effect is unsatisfactory. As a new technology,gene therapy showed bright future in orthopedics ischemic disease, and its potential feasibility has been confirmed by many animal experiments. This article focuses on the research progress of gene therapy and early monitoring in the avascular necrosis of the femoral head. (authors)

  14. The evolution of gene therapy in X-linked severe combined immunodeficiency.

    Science.gov (United States)

    Rans, Tonya S; England, Ronald

    2009-05-01

    To review the evolution of gene therapy in infants with X-linked severe combined immunodeficiency (XL-SCID) and to evaluate the current challenges facing this evolving field. The MEDLINE, OVID, CINAHL, and HealthSTAR databases were searched to identify pertinent articles using the following keywords: gene therapy, XL-SCID, bone marrow transplant, and viral vectors. Journal articles were selected for their relevance to human gene therapy in patients with XL-SCID. Gene therapy with a retrovirus-derived vector has been used to treat 20 patients with XL-SCID internationally. Although most patients derived improvements in T- and B-cell immune numbers and function, severe adverse effects have occurred. After gene therapy, 5 of the 20 patients developed leukemia. This outcome has been associated with insertion of the corrected gene near the T-cell proto-oncogene LMO2. One of the 5 patients subsequently died. Within the past decade, effective improvements in vectorology and cell culture conditions have resulted in clinical success in some infants with SCID and have revived interest after many years of setbacks. However, clinical success and significant adverse events have been reported in patients with XL-SCID who have undergone gene therapy using a retroviral vector. As extensive research into improving safety through vector development and monitoring of gene therapy continues, further progress in gene therapy development can be anticipated.

  15. [Application of music therapy in medicine].

    Science.gov (United States)

    Zárate, P; Díaz, V

    2001-02-01

    Music therapy is a science that has been applied since many centuries ago, but it has been organized as a profession during the past century. This science studies the therapeutic effects of music in human beings. Professionals who practice this science are called "music therapists" and they must be trained not only in music theory and performance, but also in psychology, anatomy, research techniques, and other subjects. Today, we can find music therapy research in many areas such as the effects of music in children with autism, adults with psychiatric illnesses, elderly with Alzheimer and Parkinson disease, people with brain injuries, among others. Numerous studies demonstrate the functionality of music therapy in patients with neurological disorders. These studies show that music helps patients to gain control over their walking patterns after a brain injury, stimulates long and short term memory in patients with Alzheimer disease, and increase self esteem and social interaction in elders.

  16. Ion beam therapy fundamentals, technology, clinical applications

    CERN Document Server

    2012-01-01

    The book provides a detailed, up-to-date account of the basics, the technology, and the clinical use of ion beams for radiation therapy. Theoretical background, technical components, and patient treatment schemes are delineated by the leading experts that helped to develop this field from a research niche to its current highly sophisticated and powerful clinical treatment level used to the benefit of cancer patients worldwide. Rather than being a side-by-side collection of articles, this book consists of related chapters. It is a common achievement by 76 experts from around the world. Their expertise reflects the diversity of the field with radiation therapy, medical and accelerator physics, radiobiology, computer science, engineering, and health economics. The book addresses a similarly broad audience ranging from professionals that need to know more about this novel treatment modality or consider to enter the field of ion beam therapy as a researcher. However, it is also written for the interested public an...

  17. The state of gene therapy research in Africa, its significance and implications for the future.

    Science.gov (United States)

    Arbuthnot, P; Maepa, M B; Ely, A; Pepper, M S

    2017-09-01

    Gene therapy has made impressive recent progress and has potential for treating a wide range of diseases, many of which are important to Africa. However, as a result of lack of direct public funding and skilled personnel, direct research on gene therapy in Africa is currently limited and resources to support the endeavor are modest. A strength of the technology is that it is based on principles of rational design, and the tools of gene therapy are now highly versatile. For example gene silencing and gene editing may be used to disable viral genes for therapeutic purposes. Gene therapy may thus lead to cure from infections with HIV-1, hepatitis B virus and Ebola virus, which are of significant public health importance in Africa. Although enthusiasm for gene therapy is justified, significant challenges to implementing the technology remain. These include ensuring efficient delivery of therapeutic nucleic acids to target cells, limiting unintended effects, cost and complexity of treatment regimens. In addition, implementation of effective legislation that will govern gene therapy research will be a challenge. Nevertheless, it is an exciting prospect that gene therapy should soon reach the mainstream of medical management. Participation of African researchers in the exciting developments is currently limited, but their involvement is important to address health problems, develop capacity and enhance economic progress of the continent.

  18. Spermine-alt-poly(ethylene glycol) polyspermine as a safe and efficient aerosol gene carrier for lung cancer therapy.

    Science.gov (United States)

    Kim, You-Kyoung; Cho, Chong-Su; Cho, Myung-Haing; Jiang, Hu-Lin

    2014-07-01

    The clinical success of gene therapy critically depends upon the safety and efficiency of delivery system used. Although polyethylenimine (PEI) has been commonly used as an efficient cationic polymeric gene carrier due to its high transfection efficiency, its cytotoxicity and nondegradability limit the polymer's therapeutic applications in clinical trials. In this study, biocompatible polyspermine based on spermine (SPE) and poly(ethylene glycol) (PEG) diacrylate (SPE-alt-PEG) was synthesized using a Michael-type addition reaction, and its ability as an alternative gene carrier for lung cancer therapy was evaluated. SPE-alt-PEG polyspermine was complexed with plasmid DNA, and the resulting complexes were characterized by particle size and surface charge by dynamic light scattering, complex formation and DNA protection ability by gel retardation, and complex shape by energy-filtering transmission electron microscopy. The SPE-alt-PEG copolymer showed low cytotoxicity, and SPE-alt-PEG/DNA complexes showed efficacious transfection efficiency compared with 25 kDa PEI (PEI 25K). Also SPE-alt-PEG/GFP complexes were efficiently transferred into the lungs after aerosol administration without toxicity, and delivery of Pdcd4 gene as a therapeutic gene with SPE-alt-PEG polyspermine greatly reduced tumor size as well as tumor numbers in K-ras(LA1) lung cancer model mice compared relative to the effect observed for PEI 25K. These results suggest that SPE-alt-PEG has potential as a gene carrier for lung cancer gene therapy. © 2013 Wiley Periodicals, Inc.

  19. Gene therapy as a potential tool for treating neuroblastoma-a focused review.

    Science.gov (United States)

    Kumar, M D; Dravid, A; Kumar, A; Sen, D

    2016-05-01

    Neuroblastoma, a solid tumor caused by rapid division of undifferentiated neuroblasts, is the most common childhood malignancy affecting children aged genes is restored to normalcy. Gene therapy is a powerful tool with the potential to inhibit the deleterious effects of oncogenes by inserting corrected/normal genes into the genome. Both viral and non-viral vector-based gene therapies have been developed and adopted to deliver the target genes into neuroblastoma cells. These attempts have given hope to bringing in a new regime of treatment against neuroblastoma. A few gene-therapy-based treatment strategies have been tested in limited clinical trials yielding some positive results. This mini review is an attempt to provide an overview of the available options of gene therapy to treat neuroblastoma.

  20. Multicomponent nanoparticles as nonviral vectors for the treatment of Fabry disease by gene therapy

    Directory of Open Access Journals (Sweden)

    Ruiz de Garibay AP

    2012-10-01

    Full Text Available Aritz Pérez Ruiz de Garibay, Diego Delgado, Ana del Pozo-Rodríguez, María Ángeles Solinís, Alicia Rodríguez GascónPharmacokinetics, Nanotechnology and Gene Therapy Group, Pharmacy Faculty, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, SpainPurpose: Gene-mediated enzyme replacement is a reasonable and highly promising approach for the treatment of Fabry disease (FD. The objective of the present study was to demonstrate the potential applications of solid lipid nanoparticle (SLN-based nonviral vectors for the treatment of FD.Methods: SLNs containing the pR-M10-αGal A plasmid that encodes the α-Galactosidase A (α-Gal A enzyme were prepared and their in vitro transfection efficacy was studied in Hep G2 cells. We also studied the cellular uptake of the vectors and the intracellular disposition of the plasmid.Results: The enzymatic activity of the cells treated with the vectors increased significantly relative to the untreated cells, regardless of the formulation assayed. When the SLNs were prepared with protamine or dextran and protamine, the activity of the α-Gal A enzyme by the transfected Hep G2 cells increased up to 12-fold compared to that of untreated cells.Conclusion: With this work we have revealed in Hep G2 cells the ability of a multicomponent system based on SLNs to act as efficient nonviral vectors to potentially correct low α-Gal A activity levels in FD with gene therapy.Keywords: solid lipid nanoparticles, Fabry disease, nonviral vectors, gene therapy

  1. Episomal Nonviral Gene Therapy Vectors Slow Progression of Atherosclerosis in a Model of Familial Hypercholesterolemia

    Directory of Open Access Journals (Sweden)

    Alastair G Kerr

    2016-01-01

    Full Text Available Familial hypercholesterolemia (FH is a life-threatening genetic disorder characterized by elevated levels of plasma low-density lipoprotein cholesterol (LDL-cholesterol. Current attempts at gene therapy for FH have been limited by the use of strong heterologous promoters which lack genomic DNA elements essential for regulated expression. Here, we have combined a minigene vector expressing the human LDLR cDNA from a 10 kb native human LDLR locus genomic DNA promoter element, with an efficient miRNA targeting 3-hydroxy-3-methylgutaryl-coenzyme A reductase (Hmgcr, to further enhance LDLR expression. We show that the combined vector suppresses endogenous Hmgcr transcripts in vivo, leading to an increase in LDLR transgene expression. In a diet-induced Ldlr-/- mouse model of FH, we show that administration of the combined vector reduces atherogenic plasma lipids by ≃32%. Finally, we demonstrate that our episomal nonviral vectors are able to reduce atherosclerosis by ≃40% after 12 weeks in vivo. Taken together, the vector system we describe exploits the normal cellular regulation of the LDLR to provide prolonged expression of LDLR through targeted knockdown of Hmgcr. This novel gene therapy system could act alone, or in synergy with current therapies that modulate intracellular cholesterol, such as statins, greatly enhancing its therapeutic application for FH.

  2. [The application of multifactor dimensionality reduction for detecting gene-gene interactions].

    Science.gov (United States)

    Tang, Xun; Li, Na; Hu, Yong-hua

    2006-05-01

    To introduce the application of Multifactor Dimensionality Reduction (MDR) method for detecting gene-gene interactions in genetic case-control studies. A brief overview on basic steps involved in the implementation, theoretical details, available software as well as the use and features of the MDR method were discussed based on a practical research case. Advantages of MDR were compared to the conventional statistical approaches, showing that MDR method was a novel, nonparametric, genetic model-free approach that was developed specifically for detecting gene-gene interactions. Theoretical and empirical studies suggested that MDR was having reasonable power for detecting gene-gene interactions. Applications of MDR method had found the evidence of gene-gene interactions in several diseases such as sporadic breast cancer, atrial fibrillation and essential hypertension. MDR method could be used for detecting gene-gene interactions in genetic case-control studies as having great advantages versus the conventional statistical approaches.

  3. Nonviral gene transfection nanoparticles: function and applications in the brain.

    Science.gov (United States)

    Roy, Indrajit; Stachowiak, Michal K; Bergey, Earl J

    2008-06-01

    In vivo transfer and expression of foreign genes allows for the elucidation of functions of genes in living organisms and generation of disease models in animals that more closely resemble the etiology of human diseases. Gene therapy holds promise for the cure of a number of diseases at the fundamental level. Synthetic "nonviral" materials are fast gaining popularity as safe and efficient vectors for delivering genes to target organs. Not only can nanoparticles function as efficient gene carriers, they also can simultaneously carry diagnostic probes for direct "real-time" visualization of gene transfer and downstream processes. This review has focused on the central nervous system (CNS) as the target for nonviral gene transfer, with special emphasis on organically modified silica (ORMOSIL) nanoparticles developed in our laboratory. These nanoparticles have shown robust gene transfer efficiency in brain cells in vivo and allowed to investigate mechanisms that control neurogenesis as well as neurodegenerative disorders.

  4. An evolutionary-game model of tumour-cell interactions: possible relevance to gene therapy

    DEFF Research Database (Denmark)

    Bach, Lars Arve; Bentzen, Søren; Alsner, Jan

    2001-01-01

    interpretations of gene therapy. Two prototypical strategies for gene therapy are suggested, both of them leading to extinction of the malignant phenotype: one approach would be to reduce the relative proportion of the cooperating malignant cell type below a certain critical value. Another approach would...

  5. 76 FR 18768 - Cellular, Tissue, and Gene Therapies Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-04-05

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] Cellular, Tissue, and Gene Therapies Advisory Committee; Notice of Meeting AGENCY: Food and Drug... public. Name of Committee: Cellular, Tissue, and Gene Therapies Advisory Committee. General Function of...

  6. 78 FR 15726 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-03-12

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0001] Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting AGENCY: Food and Drug... public. Name of Committee: Cellular, Tissue and Gene Therapies Advisory Committee. General Function of...

  7. 77 FR 73472 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-12-10

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-N-0001] Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting AGENCY: Food and Drug... closed to the public. Name of Committee: Cellular, Tissue and Gene Therapies Advisory Committee. General...

  8. 76 FR 49774 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-08-11

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Cellular, Tissue and Gene Therapies Advisory Committee. General Function of the Committee: To provide...

  9. 76 FR 64951 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-10-19

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Cellular, Tissue and Gene Therapies Advisory Committee. General Function of the Committee: To provide...

  10. The mechanisms of inter-effect about gene therapy and radiotherapy to tumor and the prospect of therapeutic alliance

    International Nuclear Information System (INIS)

    Zhao Yanzhi; Li Jin; Wang Qin; Mu Chuanjie

    2006-01-01

    The way about therapy include radio therapy and gene therapy in the recent years there are some improve about the therapy alliance, by the mechanism of improving the efficiency of the gene transfering, the recombination and conform of the DNA and induction the expression of the gene et. The radiotherapy can enhance the effect of the gene therapy. By the mechanism of improving of radiosensitivity some, reducing the radiation damage of radiotherapy, repairing the radiation impaired gene the gene therapy can enhance the effect of the radiotherapy. (authors)

  11. Strategy Escalation: An emerging paradigm for safe clinical development of T cell gene therapies

    Directory of Open Access Journals (Sweden)

    Junghans Richard

    2010-06-01

    Full Text Available Abstract Gene therapy techniques are being applied to modify T cells with chimeric antigen receptors (CARs for therapeutic ends. The versatility of this platform has spawned multiple options for their application with new permutations in strategies continually being invented, a testimony to the creative energies of many investigators. The field is rapidly expanding with immense potential for impact against diverse cancers. But this rapid expansion, like the Big Bang, comes with a somewhat chaotic evolution of its therapeutic universe that can also be dangerous, as seen by recently publicized deaths. Time-honored methods for new drug testing embodied in Dose Escalation that were suitable for traditional inert agents are now inadequate for these novel "living drugs". In the following, I propose an approach to escalating risk for patient exposures with these new immuno-gene therapy agents, termed Strategy Escalation, that accounts for the molecular and biological features of the modified cells and the methods of their administration. This proposal is offered not as a prescriptive but as a discussion framework that investigators may wish to consider in configuring their intended clinical applications.

  12. [Application of magnetic therapy in acute paraproctitis].

    Science.gov (United States)

    Kondratenko, P G; Elin, F E; Avraimov, S L; Sobolev, D V

    2003-09-01

    There were studied the possibilities and perspectives of application of the magnetically liquefied layer as an instrument for better purulent and putrefactive wounds clearance after intervention for an acute paraproctitis. Together with clinical signs the results of bacteriological investigation were controlled as well. There was established high efficacy of the method proposed and expedience of its application.

  13. Proton imaging apparatus for proton therapy application

    International Nuclear Information System (INIS)

    Sipala, V.; Lo Presti, D.; Brianzi, M.; Civinini, C.; Bruzzi, M.; Scaringella, M.; Talamonti, C.; Bucciolini, M.; Cirrone, G.A.P.; Cuttone, G.; Randazzo, N.; Stancampiano, C.; Tesi, M.

    2011-01-01

    Radiotherapy with protons, due to the physical properties of these particles, offers several advantages for cancer therapy as compared to the traditional radiotherapy and photons. In the clinical use of proton beams, a p CT (Proton Computer Tomography) apparatus can contribute to improve the accuracy of the patient positioning and dose distribution calculation. In this paper a p CT apparatus built by the Prima (Proton Imaging) Italian Collaboration will be presented and the preliminary results will be discussed.

  14. Targeted delivery of genes to endothelial cells and cell- and gene-based therapy in pulmonary vascular diseases.

    Science.gov (United States)

    Suen, Colin M; Mei, Shirley H J; Kugathasan, Lakshmi; Stewart, Duncan J

    2013-10-01

    Pulmonary arterial hypertension (PAH) is a devastating disease that, despite significant advances in medical therapies over the last several decades, continues to have an extremely poor prognosis. Gene therapy is a method to deliver therapeutic genes to replace defective or mutant genes or supplement existing cellular processes to modify disease. Over the last few decades, several viral and nonviral methods of gene therapy have been developed for preclinical PAH studies with varying degrees of efficacy. However, these gene delivery methods face challenges of immunogenicity, low transduction rates, and nonspecific targeting which have limited their translation to clinical studies. More recently, the emergence of regenerative approaches using stem and progenitor cells such as endothelial progenitor cells (EPCs) and mesenchymal stem cells (MSCs) have offered a new approach to gene therapy. Cell-based gene therapy is an approach that augments the therapeutic potential of EPCs and MSCs and may deliver on the promise of reversal of established PAH. These new regenerative approaches have shown tremendous potential in preclinical studies; however, large, rigorously designed clinical studies will be necessary to evaluate clinical efficacy and safety. © 2013 American Physiological Society. Compr Physiol 3:1749-1779, 2013.

  15. Gene therapy for C-26 colon cancer using heparin-polyethyleneimine nanoparticle-mediated survivin T34A

    Directory of Open Access Journals (Sweden)

    Zhang L

    2011-10-01

    Full Text Available Ling Zhang1,*, Xiang Gao1,2,*, Ke Men1, BiLan Wang1, Shuang Zhang1, Jinfeng Qiu1, Meijuan Huang1, MaLing Gou1, Ning Huang2, ZhiYong Qian1, Xia Zhao1, YuQuan Wei11State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, 2Department of Pathophysiology, College of Preclinical and Forensic Medical Sciences, Sichuan University, Chengdu, People’s Republic of China*These authors contributed equally to this workBackground: Gene therapy provides a novel method for the prevention and treatment of cancer, but the clinical application of gene therapy is restricted, mainly because of the absence of an efficient and safe gene delivery system. Recently, we developed a novel nonviral gene carrier, ie, heparin-polyethyleneimine (HPEI nanoparticles for this purpose.Methods and results: HPEI nanoparticles were used to deliver plasmid-expressing mouse survivin-T34A (ms-T34A to treat C-26 carcinoma in vitro and in vivo. According to the in vitro studies, HPEI nanoparticles could efficiently transfect the pGFP report gene into C-26 cells, with a transfection efficiency of 30.5% ± 2%. Moreover, HPEI nanoparticle-mediated ms-T34A could efficiently inhibit the proliferation of C-26 cells by induction of apoptosis in vitro. Based on the in vivo studies, HPEI nanoparticles could transfect the Lac-Z report gene into C-26 cells in vivo. Intratumoral injection of HPEI nanoparticle-mediated ms-T34A significantly inhibited growth of subcutaneous C-26 carcinoma in vivo by induction of apoptosis and inhibition of angiogenesis.Conclusion: This research suggests that HPEI nanoparticle-mediated ms-T34A may have a promising role in C-26 colon carcinoma therapy.Keywords: gene therapy, mouse survivin-T34A, colon cancer, polyethyleneimine, nanoparticles, cancer therapy

  16. Anti-tumor effects of Egr-IFN γ gene therapy combined with 125I-UdR radionuclide therapy

    International Nuclear Information System (INIS)

    Zhao Jingguo; Ni Yanjun; Song Xiangfu; Li Yanyi; Yang Wei; Sun Ting; Ma Qingjie; Gao Fengtong

    2008-01-01

    Objective: To explore the anti-tumor effects of Egr-IFNγ gene therapy combined with 125 I-UdR radionuclide therapy in mice bearing H22 hepatocarcinoma and its mechanism. Methods: The recombinant plasmid pcDNAEgr-IFNγ mixed with liposome was injected into tumor. 48 h later, 370 kBq 125 I-UdR was injected into tumor. The tumor growth rates at different times were observed. After 3 d gene-radionuclide therapy, the concentration of IFNγ in cytoplasm of H22 cells and cytotoxic activities of splenic CTL of the mice in different groups were examined. Results: The tumor growth rates of pcDNAEgr-IFNγ + 125 I-UdR group were obviously lower than those of control group, 125 I-UdR group and pcDNAEgr-1 + 125 I-UdR group 6-15 d after gene-radionuclide therapy. IFNγ protein was found in cytoplasm of H22 cells in pcDNAEgr-IFNγ + 125 I-UdR group after 3 d gene-radionuclide therapy. Cytotoxic activity of splenic CTL in pcDNAEgr-IFNγ + 125 I-UdR group was significantly higher than that in the other groups (P 125 I-UdR radionuclide therapy are better than those of 125 I-UdR therapy. (authors)

  17. Viral vectors for cystic fibrosis gene therapy: What does the future hold?

    Directory of Open Access Journals (Sweden)

    Uta Griesenbach

    2010-12-01

    Full Text Available Uta Griesenbach1, Makoto Inoue2, Mamoru Hasegawa2, Eric WFW Alton11Department of Gene Therapy, Imperial College London, UK; The UK Cystic Fibrosis Gene Therapy Consortium; 2DNAVEC Corporation, Tsukuba, JapanAbstract: Gene transfer to the airway epithelium has been more difficult than originally anticipated, largely because of significant extra- and intracellular barriers in the lung. In general, viral vectors are more adapted to overcoming these barriers than nonviral gene transfer agents and are, therefore, more efficient in transferring genes into recipient cells. Viral vectors derived from adenovirus, adeno-associated virus, and Sendai virus, which all have a natural tropism for the airway epithelium, have been evaluated for cystic fibrosis (CF gene therapy. Although these vectors transduce airway epithelial cells efficiently, gene expression is transient and repeated administration is inefficient. They are, therefore, unlikely to be suitable for CF gene therapy. More recently, lentiviruses (LV have been assessed for lung gene transfer. In contrast to retroviruses, they transduce nondividing cells and randomly integrate into the genome. However, LVs do not have a natural tropism for the lung, and a significant amount of effort has been put into pseudotyping these vectors with proteins suitable for airway gene transfer. Several studies have shown that LV-mediated transduction leads to persistent gene expression (for the lifetime of the animal in the airways and, importantly, repeated administration is feasible. Thus, appropriately pseudotyped LV vectors are promising candidates for CF gene therapy. Here, we will review preclinical and clinical research related to viral CF gene therapy.Keywords: cystic fibrosis, gene therapy, adenovirus, AAV, lentivirus, Sendai virus

  18. Non-viral gene delivery strategies for cancer therapy, tissue engineering and regenerative medicine

    Science.gov (United States)

    Bhise, Nupura S.

    plasmids were associated with a single polymeric nanoparticle. To develop PBAE vectors for application in cancer drug delivery and 3-D tissue engineered cultures, the gene delivery efficacy of PBAE nanoparticles was evaluated in mammary epithelial cells used as a model for studying normal development of mammary gland as well as the events that lead to development of breast cancer. We investigated how small molecular changes to the end-capping terminal group of the polymer and changes to the polymer MW affect gene delivery in 2-D mammary cell culture compared to 3-D primary organotypic cultured mouse mammary tissue. We reported that the polymers synthesized here are more effective for gene delivery than FuGENERTM HD, one of the leading commercially available reagents for non-viral gene delivery. We also highlighted that transfection of the 3-D organotypic cultures is more difficult than transfection of 2-D cultures, but likely models some of the key challenges for in vivo gene therapy more closely than 2-D cultures. Finally, we evaluated the use of PBAE nanotechnology for genetic manipulation of stem cell fate for regenerative medicine applications. We developed a PBAE nanoparticle based non-viral protocol and compared it with an electroporation based approach to deliver episomal plasmids encoding reprogramming factors for derivation of human induced pluripotent stem cells (hiPSC). The hiPSCs generated using these approaches can be differentiated into specific cell types for in vitro disease modeling and drug screening, specifically to study retinal degeneration.

  19. Dual-therapeutic reporter genes fusion for enhanced cancer gene therapy and imaging.

    Science.gov (United States)

    Sekar, T V; Foygel, K; Willmann, J K; Paulmurugan, R

    2013-05-01

    Two of the successful gene-directed enzyme prodrug therapies include herpes simplex virus-thymidine kinase (HSV1-TK) enzyme-ganciclovir prodrug and the Escherichia coli nitroreductase (NTR) enzyme-CB1954 prodrug strategies; these enzyme-prodrug combinations produce activated cytotoxic metabolites of the prodrugs capable of tumor cell death by inhibiting DNA synthesis and killing quiescent cells, respectively. Both these strategies also affect significant bystander cell killing of neighboring tumor cells that do not express these enzymes. We have developed a dual-combination gene strategy, where we identified HSV1-TK and NTR fused in a particular orientation can effectively kill tumor cells when the tumor cells are treated with a fusion HSV1-TK-NTR gene- along with a prodrug combination of GCV and CB1954. In order to determine whether the dual-system demonstrate superior therapeutic efficacy than either HSV1-TK or NTR systems alone, we conducted both in vitro and in vivo tumor xenograft studies using triple negative SUM159 breast cancer cells, by evaluating the efficacy of cell death by apoptosis and necrosis upon treatment with the dual HSV1-TK genes-GCV-CB1954 prodrugs system, and compared the efficiency to HSV1-TK-GCV and NTR-CB1954. Our cell-based studies, tumor regression studies in xenograft mice, histological analyses of treated tumors and bystander studies indicate that the dual HSV1-TK-NTR-prodrug system is two times more efficient even with half the doses of both prodrugs than the respective single gene-prodrug system, as evidenced by enhanced apoptosis and necrosis of tumor cells in vitro in culture and xenograft of tumor tissues in animals.

  20. Gene therapy for C-26 colon cancer using heparin-polyethyleneimine nanoparticle-mediated survivin T34A

    Science.gov (United States)

    Zhang, Ling; Gao, Xiang; Men, Ke; Wang, BiLan; Zhang, Shuang; Qiu, Jinfeng; Huang, Meijuan; Gou, MaLing; Huang, Ning; Qian, ZhiYong; Zhao, Xia; Wei, YuQuan

    2011-01-01

    Background Gene therapy provides a novel method for the prevention and treatment of cancer, but the clinical application of gene therapy is restricted, mainly because of the absence of an efficient and safe gene delivery system. Recently, we developed a novel nonviral gene carrier, ie, heparin-polyethyleneimine (HPEI) nanoparticles for this purpose. Methods and results HPEI nanoparticles were used to deliver plasmid-expressing mouse survivin-T34A (ms-T34A) to treat C-26 carcinoma in vitro and in vivo. According to the in vitro studies, HPEI nanoparticles could efficiently transfect the pGFP report gene into C-26 cells, with a transfection efficiency of 30.5% ± 2%. Moreover, HPEI nanoparticle-mediated ms-T34A could efficiently inhibit the proliferation of C-26 cells by induction of apoptosis in vitro. Based on the in vivo studies, HPEI nanoparticles could transfect the Lac-Z report gene into C-26 cells in vivo. Intratumoral injection of HPEI nanoparticle-mediated ms-T34A significantly inhibited growth of subcutaneous C-26 carcinoma in vivo by induction of apoptosis and inhibition of angiogenesis. Conclusion This research suggests that HPEI nanoparticle-mediated ms-T34A may have a promising role in C-26 colon carcinoma therapy. PMID:22072877

  1. Clinical applications of continuous infusion chemotherapy ahd concomitant radiation therapy

    International Nuclear Information System (INIS)

    Rosenthal, C.J.; Rotman, M.

    1986-01-01

    This book presents information on the following topics: theoretical basis and clinical applications of 5-FU as a radiosensitizer; treatment of hepatic metastases from gastro intestingal primaries with split course radiation therapy; combined modality therapy with 5-FU, Mitomycin-C and radiation therapy for sqamous cell cancers; treatment of bladder carcinoma with concomitant infusion chemotherapy and irradiation; a treatment of invasiv bladder cancer by the XRT/5FU protocol; concomitant radiation therapy and doxorubicin by continuous infusion in advanced malignancies; cis platin by continuous infusion with concurrent radiation therapy in malignant tumors; combination of radiation with concomitant continuous adriamycin infusion in a patient with partially excised pleomorphic soft tissue sarcoma of the lower extremeity; treatment of recurrent carcinoma of the paranasal sinuses using concomitant infusion cis-platinum and radiation therapy; hepatic artery infusion for hepatic metastases in combination with hepatic resection and hepatic radiation; study of simultaneous radiation therapy, continuous infusion, 5FU and bolus mitomycin-C; cancer of the esophagus; continuous infusion VP-16, bolus cis-platinum and simultaneous radiation therapy as salvage therapy in small cell bronchogenic carcinoma; and concomitant radiation, mitomycin-C and 5-FU infusion in gastro intestinal cancer

  2. Recent progress in gene therapy for Parkinson's disease.

    Science.gov (United States)

    Nakata, Y; Yasuda, T; Mochizuki, H

    2012-12-01

    Parkinson's disease (PD) is an age-related and the second most common neurodegenerative disorder beyond Alzheimer's disease. A neuropathological hallmark of PD is a prominent loss of dopaminergic neurons in the substantia nigra projecting into the caudate and putamen. Oral administration of L-dopa and/or dopamine agonists ameliorates cardinal motor symptoms of PD. However, an intermittent and long-term treatment with L-dopa frequently induces adverse side effects such as motor fluctuations and dyskinesia. As alternative therapeutic strategies, the following four approaches are currently under evaluation for clinical gene therapy trials in PD; 1) recombinant adeno-associated virus 2 system encoding aromatic L-amino acid decarboxylase (AADC), 2) glutamic acid decarboxylase (GAD) and 3) Neurturin, and 4) equine infectious anemia virus-based lentiviral system encoding AADC, tyrosine hydroxylase (TH) and GTP cyclohydrolase I (GCH) in a single transcriptional unit. GAD and Neurturin have been assessed in double blind placebocontrolled phase II studies; GAD showed a significant improvement in motor function, and Neurturin, although it failed to show significant effects at 12 months post-treatment, exhibited promising outcomes in additional examinations at 18 months. The other two approaches also represented significant effects in phase I or I/II studies. Adverse side effects due to surgery have not been observed. Here, we review preclinical and clinical trials encouraging further investigations of curative treatment for the patients suffering from PD.

  3. Clinical application of photon activation therapy

    International Nuclear Information System (INIS)

    Gahbauer, R.; Goodman, J.H.; Clendenon, N.; Kanellitsas, C.; Fairchild, R.; Laster, B.

    1985-01-01

    Despite small improvements in median survival, high-grade astrocytoma remains a lethal disease with only anecdotal long-term survivors. The Brain Tumor Study Group Protocols have confirmed the value of radiation therapy and have further demonstrated that a dose-response relationship exists with doses of 5000, 5500, and 6000 cGy. However, 6000 cGy remains the upper limit of dose tolerated if external radiation therapy is used. Therefore the authors propose to combine the advantages of brachytherapy and sensitizers with halogenated pyrimidines (IUDR). By using stereotactically placed radiation sources with energies slightly above the K absorption edge of iodine they expect to obtain a significant further increase in therapeutic effect. This is due to enhancement of the physical dose, which is, furthermore, of higher biological effectiveness. Responsible for this effect are Auger electrons created in the process, which deposit their energy within the diameter of the nucleus. The dose delivered by Auger electrons is in many respects comparable with high-LET radiation. Since selective uptake of IUDR in brain tumor cells is assumed, the dose enhancement would localize itself into the tumor. Normal brain tolerance should be little, if at all, affected since normal brain would receive only low-LET radiation from the implanted samarium sources

  4. Activating human genes with zinc finger proteins, transcription activator-like effectors and CRISPR/Cas9 for gene therapy and regenerative medicine.

    Science.gov (United States)

    Gersbach, Charles A; Perez-Pinera, Pablo

    2014-08-01

    New technologies have recently been developed to control the expression of human genes in their native genomic context by engineering synthetic transcription factors that can be targeted to any DNA sequence. The ability to precisely regulate any gene as it occurs naturally in the genome provides a means to address a variety of diseases and disorders. This approach also circumvents some of the traditional challenges of gene therapy. In this editorial, we review the technologies that have enabled targeted human gene activation, including the engineering of transcription factors based on zinc finger proteins, transcription activator-like effectors and the CRISPR/Cas9 system. Additionally, we highlight examples in which these methods have been developed for therapeutic applications and discuss challenges and opportunities.

  5. Bee venom therapy: Potential mechanisms and therapeutic applications.

    Science.gov (United States)

    Zhang, Shuai; Liu, Yi; Ye, Yang; Wang, Xue-Rui; Lin, Li-Ting; Xiao, Ling-Yong; Zhou, Ping; Shi, Guang-Xia; Liu, Cun-Zhi

    2018-04-11

    Bee venom is a very complex mixture of natural products extracted from honey bee which contains various pharmaceutical properties such as peptides, enzymes, biologically active amines and nonpeptide components. The use of bee venom into the specific points is so called bee venom therapy, which is widely used as a complementary and alternative therapy for 3000 years. A growing number of evidence has demonstrated the anti-inflammation, the anti-apoptosis, the anti-fibrosis and the anti-arthrosclerosis effects of bee venom therapy. With these pharmaceutical characteristics, bee venom therapy has also been used as the therapeutic method in treating rheumatoid arthritis, amyotrophic lateral sclerosis, Parkinson's disease, Alzheimer's disease, liver fibrosis, atherosclerosis, pain and others. Although widely used, several cases still reported that bee venom therapy might cause some adverse effects, such as local itching or swelling. In this review, we summarize its potential mechanisms, therapeutic applications, and discuss its existing problems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Magnetic nanoparticles for application in cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Rivas, J. [Department of Applied Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Banobre-Lopez, M. [Department of Physical Chemistry, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Pineiro-Redondo, Y. [Department of Applied Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Rivas, B., E-mail: jose.rivas@usc.es [Department of Operative Dentistry and Endodontics, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Lopez-Quintela, M.A. [Department of Physical Chemistry, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain)

    2012-10-15

    Magnetic particles play nowadays an important role in different technological areas with potential applications in fields such as electronics, energy and biomedicine. In this report we will focus on the hyperthermia properties of magnetite nanoparticles and the effect of several chemical/physical parameters on their heating properties. We will discuss about the need of searching new smaller magnetic systems in order to fulfill the required physical properties which allow treating tumoral tissues more efficiently by means of magnetically induced heat. Preliminary results will be shown about the effect of a biocompatible shell of core-shell magnetite NPs on the heating properties by application of a RF magnetic field.

  7. Clinical applications of bovine colostrum therapy

    DEFF Research Database (Denmark)

    Rathe, Mathias; Müller, Klaus; Sangild, Per Torp

    2014-01-01

    not be confirmed by other investigators. Bovine colostrum may provide gastrointestinal and immunological benefits, but further studies are required before recommendations can be made for clinical application. Animal models may help researchers to better understand the mechanisms of bovine colostrum supplementation...

  8. [Acupoint catgut-embedding therapy: superiorities and principles of application].

    Science.gov (United States)

    Zhang, Xuan-Ping; Jia, Chun-Sheng; Wang, Jian-Ling; Shi, Jing; Zhang, Xin; Li, Xiao-Feng; Xu, Xiao-Kang; Qin, Liang; Zhang, Mei-Ling; Kang, Su-Gang; Duan, Xiao-Dong

    2012-10-01

    To analyze the superiorities of acupoint catgut-embedding therapy, discuss its law of clinical application and provide scientific decision-making for clinical treatment. Literatures on acupoint catgut-embedding therapy in the recent 40 years were selected, input, examined and verified, picked up and analyzed by establishing database with the modern computer technology. (1) One thousand and seventy-five literatures were input. It shows that the acupoint catgut-embedding therapy has an extensive application in all departments, especially in the internal department, accounting for 48.54% (50/103) of the total disease category. It has the most extensive application on treatment of epigastric pain, with the frequency of 102 times, and obesity of 74 times. The next is surgery, accounting for 14.56% (15/103). The major application is on low back pain and leg pain with the frequency of 79 times. Psoriasis, with the frequency of 30 times, holds the major application in dermatological department. And blepharoplasty, with the frequency of 30 times, gains the most application in department of ophthalmology and otorhinolaryngology. (2) In the included literatures, selection of adjacent acupoints and distal acupoints are held as the major method of acupoint selection. The adjusted lumbar puncture needle is taken as the major tool for the acupoint catgut-embedding therapy. And catguts of different sizes are adopted for the operation. (3) Analysis of the therapeutic effect shows that acupoint catgut-embedding therapy has obvious effect in all departments, especially in surgery and dermatology, with the total effective rate over 90%. Epigastric pain, obesity, epilepsy, asthma, abdominal pain, facial paralysis and constipation of the internal medicine, low back pain and leg pain of the surgical department, psoriasis of the dermatological department and blepharoplasty of the department of ophthalmology and otorhinolaryngology are considered as the dominant diseases for acupoint

  9. Neonatal tolerance induction enables accurate evaluation of gene therapy for MPS I in a canine model.

    Science.gov (United States)

    Hinderer, Christian; Bell, Peter; Louboutin, Jean-Pierre; Katz, Nathan; Zhu, Yanqing; Lin, Gloria; Choa, Ruth; Bagel, Jessica; O'Donnell, Patricia; Fitzgerald, Caitlin A; Langan, Therese; Wang, Ping; Casal, Margret L; Haskins, Mark E; Wilson, James M

    2016-09-01

    High fidelity animal models of human disease are essential for preclinical evaluation of novel gene and protein therapeutics. However, these studies can be complicated by exaggerated immune responses against the human transgene. Here we demonstrate that dogs with a genetic deficiency of the enzyme α-l-iduronidase (IDUA), a model of the lysosomal storage disease mucopolysaccharidosis type I (MPS I), can be rendered immunologically tolerant to human IDUA through neonatal exposure to the enzyme. Using MPS I dogs tolerized to human IDUA as neonates, we evaluated intrathecal delivery of an adeno-associated virus serotype 9 vector expressing human IDUA as a therapy for the central nervous system manifestations of MPS I. These studies established the efficacy of the human vector in the canine model, and allowed for estimation of the minimum effective dose, providing key information for the design of first-in-human trials. This approach can facilitate evaluation of human therapeutics in relevant animal models, and may also have clinical applications for the prevention of immune responses to gene and protein replacement therapies. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Test of critical steps towards a combined cell and gene therapy approach for the treatment of Duchenne muscular dystrophy

    DEFF Research Database (Denmark)

    Kajhøj, Tine Qvistgaard; Duch, Mogens R.; Pedersen, Finn Skou

    2015-01-01

    Background: Therapies for muscular dystrophies remain a major challenge in spite of advanced strategies using either cell or gene therapy. We here propose a combined approach of cell and gene therapy. As gene delivery vehicles with specific homing potential we have chosen mesoangioblasts which...

  11. Application and evolution of several therapy nuclides labelled antibody in tumour therapy

    International Nuclear Information System (INIS)

    He Jiaheng; Luo Shunzhong; Wang Guanquan

    2004-12-01

    Radiolabeled Monoclonal antibody had a lot of merits, such as decreasing the lesion because of the external exposure to normal tissue and the whole body, destroying cancer cells which McAb could not reach, and little ornamentation effect by Antigen. Therefor, it gradually became a kind of guiding therapy method which endowed with practical value. Up to now, the radionuclides which be used for tumour radioimmunotherapy included mostly 131 I, 90 Y, 188 Re, 186 Re, 153 Sm, 211 At, et al. The application and evolution of several therapy nuclides labelled antibody in tumour therapy are in troduced. (authors)

  12. Elimination of contaminating cap genes in AAV vector virions reduces immune responses and improves transgene expression in a canine gene therapy model.

    Science.gov (United States)

    Wang, Z; Halbert, C L; Lee, D; Butts, T; Tapscott, S J; Storb, R; Miller, A D

    2014-04-01

    Animal and human gene therapy studies utilizing AAV vectors have shown that immune responses to AAV capsid proteins can severely limit transgene expression. The main source of capsid antigen is that associated with the AAV vectors, which can be reduced by stringent vector purification. A second source of AAV capsid proteins is that expressed from cap genes aberrantly packaged into AAV virions during vector production. This antigen source can be eliminated by the use of a cap gene that is too large to be incorporated into an AAV capsid, such as a cap gene containing a large intron (captron gene). Here, we investigated the effects of elimination of cap gene transfer and of vector purification by CsCl gradient centrifugation on AAV vector immunogenicity and expression following intramuscular injection in dogs. We found that both approaches reduced vector immunogenicity and that combining the two produced the lowest immune responses and highest transgene expression. This combined approach enabled the use of a relatively mild immunosuppressive regimen to promote robust micro-dystrophin gene expression in Duchenne muscular dystrophy-affected dogs. Our study shows the importance of minimizing AAV cap gene impurities and indicates that this improvement in AAV vector production may benefit human applications.

  13. The intricacies of neurotrophic factor therapy for retinal ganglion cell rescue in glaucoma: a case for gene therapy

    Directory of Open Access Journals (Sweden)

    Marianna Foldvari

    2016-01-01

    Full Text Available Regeneration of damaged retinal ganglion cells (RGC and their axons is an important aspect of reversing vision loss in glaucoma patients. While current therapies can effectively lower intraocular pressure, they do not provide extrinsic support to RGCs to actively aid in their protection and regeneration. The unmet need could be addressed by neurotrophic factor gene therapy, where plasmid DNA, encoding neurotrophic factors, is delivered to retinal cells to maintain sufficient levels of neurotrophins in the retina. In this review, we aim to describe the intricacies in the design of the therapy including: the choice of neurotrophic factor, the site and route of administration and target cell populations for gene delivery. Furthermore, we also discuss the challenges currently being faced in RGC-related therapy development with special considerations to the existence of multiple RGC subtypes and the lack of efficient and representative in vitro models for rapid and reliable screening in the drug development process.

  14. Current status of gene therapy for breast cancer: progress and challenges

    Directory of Open Access Journals (Sweden)

    McCrudden CM

    2014-11-01

    Full Text Available Cian M McCrudden, Helen O McCarthySchool of Pharmacy, Queen’s University Belfast, Belfast, UKAbstract: Breast cancer is characterized by a series of genetic mutations and is therefore ideally placed for gene therapy intervention. The aim of gene therapy is to deliver a nucleic acid-based drug to either correct or destroy the cells harboring the genetic aberration. More recently, cancer gene therapy has evolved to also encompass delivery of RNA interference technologies, as well as cancer DNA vaccines. However, the bottleneck in creating such nucleic acid pharmaceuticals lies in the delivery. Deliverability of DNA is limited as it is prone to circulating nucleases; therefore, numerous strategies have been employed to aid with biological transport. This review will discuss some of the viral and nonviral approaches to breast cancer gene therapy, and present the findings of clinical trials of these therapies in breast cancer patients. Also detailed are some of the most recent developments in nonviral approaches to targeting in breast cancer gene therapy, including transcriptional control, and the development of recombinant, multifunctional bio-inspired systems. Lastly, DNA vaccines for breast cancer are documented, with comment on requirements for successful pharmaceutical product development.Keywords: breast cancer, gene therapy, nonviral, clinical trial

  15. Development of an ultrasound-responsive and mannose-modified gene carrier for DNA vaccine therapy.

    Science.gov (United States)

    Un, Keita; Kawakami, Shigeru; Suzuki, Ryo; Maruyama, Kazuo; Yamashita, Fumiyoshi; Hashida, Mitsuru

    2010-10-01

    Development of a gene delivery system to transfer the gene of interest selectively and efficiently into targeted cells is essential for achievement of sufficient therapeutic effects by gene therapy. Here, we succeeded in developing the gene transfection method using ultrasound (US)-responsive and mannose-modified gene carriers, named Man-PEG(2000) bubble lipoplexes. Compared with the conventional lipofection method using mannose-modified carriers, this transfection method using Man-PEG(2000) bubble lipoplexes and US exposure enabled approximately 500-800-fold higher gene expressions in the antigen presenting cells (APCs) selectively in vivo. This enhanced gene expression was contributed by the improvement of delivering efficiency of nucleic acids to the targeted organs, and by the increase of introducing efficiency of nucleic acids into the cytoplasm followed by US exposure. Moreover, high anti-tumor effects were demonstrated by applying this method to DNA vaccine therapy using ovalbumin (OVA)-expressing plasmid DNA (pDNA). This US-responsive and cell-specific gene delivery system can be widely applied to medical treatments such as vaccine therapy and anti-inflammation therapy, which its targeted cells are APCs, and our findings may help in establishing innovative methods for in-vivo gene delivery to overcome the poor introducing efficiency of carriers into cytoplasm which the major obstacle associated with gene delivery by non-viral carriers. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. Leber’s congenital amaurosis and the role of gene therapy in congenital retinal disorders

    Directory of Open Access Journals (Sweden)

    Walid Sharif

    2017-03-01

    Full Text Available Leber’s congenital amaurosis (LCA and recent gene therapy advancement for treating inherited retinopathies were extensive literature reviewed using MEDLINE, PubMed and EMBASE. Adeno-associated viral vectors were the most utilised vectors for ocular gene therapy. Cone photoreceptor cells might use an alternate pathway which was not reliant of the retinal pigment epithelium (RPE derived retinoid isomerohydrolase (RPE65 to access the 11-cis retinal dehydechromophore. Research efforts dedicated on the progression of a gene-based therapy for the treatment of LCA2. Such gene therapy approaches were extremely successful in canine, porcine and rodent LCA2 models. The recombinant AAV2.hRPE65v2 adeno-associated vector contained the RPE65 cDNA and was replication deficient. Its in vitro injection in target cells induced RPE65 protein production. The gene therapy trials that were so far conducted for inherited retinopathies have generated promising results. Phase I clinical trials to cure LCA and choroideremia demonstrated that adeno-associated viral vectors containing RPE genes and photoreceptors respectively, could be successfully administered to inherited retinopathy patients. A phase III trial is presently ongoing and if successful, it will lead the way to additional gene therapy attempts to cure monogenic, inherited retinopathies.

  17. Synchrotrons and their applications in medical imaging and therapy

    International Nuclear Information System (INIS)

    Lewis, R.

    2004-01-01

    Full text: Australasia's first synchrotron is being built on the campus of Monash University near Melbourne. Is it of any relevance to the medical imaging and radiation therapy communities? The answer is an unequivocal yes. Synchrotrons overcome many of the problems with conventional X-ray sources and as a result make it possible to demonstrate extraordinary advances in both X-ray imaging and indeed in radio-therapy. Synchrotron imaging offers us a window into what is possible and the results are spectacular. Specific examples include lung images that reveal alveolar structure and computed tomography of single cells. For therapy treatments are being pioneered that seem to be effective on high grade gliomas. An overview of the status of medical applications using synchrotrons will be given and the proposed Australian medical imaging and therapy facilities will be described and some of the proposed research highlighted. Copyright (2004) Australasian College of Physical Scientists and Engineers in Medicine

  18. Non-Invasive Gene Therapy of Experimental Parkinson's Disease

    National Research Council Canada - National Science Library

    Pardridge, William M

    2005-01-01

    ... medicine without the use of viral vectors. The brain gene targeting technology developed in this work creates an "artificial virus" which is comprised of non-immunogenic lipids and proteins, wherein the therapeutic gene is packaged...

  19. Adenovirus-p53 gene therapy in human nasopharyngeal carcinoma xenografts

    International Nuclear Information System (INIS)

    Lax, Stuart A.; Chia, Marie C.; Busson, Pierre; Klamut, Henry J.; Liu Feifei

    2001-01-01

    Background: One major challenge to human cancer gene therapy, is efficient delivery of the gene-vector complex. Methods and results: Using two distinct human nasopharyngeal carcinoma (NPC) models, we demonstrate that intra-tumoural (IT) administration of adenoviral-mediated wild-type p53 gene therapy (Ad-p53) caused no greater inhibition of tumour growth as compared to ionizing radiation (XRT) alone. Detailed histologic examination of tumour sections demonstrated that <15% of tumour cells were transduced by IT adv-β-gal. Conclusions: This report underscores the importance of developing gene transfer vectors, which can provide therapeutic levels of transgene expression efficiently in solid tumours

  20. Historical Perspective on the Current Renaissance for Hematopoietic Stem Cell Gene Therapy.

    Science.gov (United States)

    Kohn, Donald B

    2017-10-01

    Gene therapy using hematopoietic stem cells (HSC) has developed over the past 3 decades, with progressive improvements in the efficacy and safety. Autologous transplantation of HSC modified with murine gammaretroviral vectors first showed clinical benefits for patients with several primary immune deficiencies, but some of these patients suffered complications from vector-related genotoxicity. Lentiviral vectors have been used recently for gene addition to HSC and have yielded clinical benefits for primary immune deficiencies, metabolic diseases, and hemoglobinopathies, without vector-related complications. Gene editing using site-specific endonucleases is emerging as a promising technology for gene therapy and is moving into clinical trials. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Application of reality therapy on violent beliefs of Nigerian ...

    African Journals Online (AJOL)

    The application of Reality Therapy on students' violent beliefs was investigated through quasi-experimental research design with a sample of 18 students (13 boys and 5 girls) and another set of 18 students (15 boys and 3 girls) for experimental and control groups respectively. The students in experimental group were those ...

  2. Antiangiogenic Metargidin Peptide (AMEP) Gene Therapy in Disseminated Melanoma

    DEFF Research Database (Denmark)

    Spanggaard, Iben; Gehl, Julie

    2015-01-01

    Gene delivery by electroporation is an efficient method for transfecting genes into various tissues including tumors. Here we present the treatment protocol used in a phase 1 study on gene electrotransfer of plasmid DNA encoding an antiangiogenic peptide into cutaneous melanoma....

  3. Novel microwave applicators for thermal therapy, ablation, and hemostasis

    Science.gov (United States)

    Ryan, Thomas P.; Clegg, Peter

    2009-02-01

    Microwave applicators are becoming more prevalent in cancer ablation therapy due to factors of penetration, high power, and shortened treatment time. These applicators create the largest zones of necrosis of available energy sources. Progress has been made both with interstitial applicators for surgical, laparoscopic, or radiological approaches, as well as surface applicators that provide hemostasis or precoagulation prior to resection. Most commonly, the applicators operate at 915 MHz or 2450 MHz, and are well matched to tissue. Surgical applicators are as large as 5.6 mm and have the capability to operate at 100-200 W. With smaller applicators, internal cooling may be required to avoid heating sensitive skin surfaces if used percutaneously or laparoscopically. With the interstitial applicators, animal studies have shown a strong relationship between power and ablation volume, including reaching a steady-state plateau in performance based more on power level and less on time. As shown in-vivo, MW surface applicators are very efficient in surface coagulation for hemostasis or precoagulation and in the treatment of surface breaking lesions. These applicators are also capable of deep penetration as applied from the surface. Characteristic treatment times for interstitial applicators are four minutes and for surface applicators, one minute or less is sufficient. Examples will be shown of multi-organ results with surface coagulation using high-power microwaves. Finally, future trends will be discussed that include treatment planning, multiple applicators, and navigation.

  4. Biomedical Application of Electroporation: Electrochemotherapy and Electrogene Therapy in Treatment of Cutaneous and Deep Seated Tumors

    International Nuclear Information System (INIS)

    Sersa, G.; Cemazar, M.; Gadzijev, E.; Edhemovic, I.; Brecelj, E.; Snoj, M.

    2011-01-01

    Several novel tumor-targeting and drug delivery approaches in cancer treatment are currently undergoing intensive investigation in order to increase the therapeutic index - among them physical approaches such as tissue electroporation. Electroporation of tissue increases the membrane permeability of cells, specifically in the area that is exposed to the applied electric pulses. Electroporation-based cancer treatment approaches are currently undergoing intensive investigation in the field of drug (electrochemo-therapy) and gene (electrogene therapy) delivery. Electrochemotherapy, since its beginnings in the late 1980s, has evolved into a clinically verified treatment approach for cutaneous and subcutaneous tumor nodules. It is defined as a local treatment which, via cell membrane permeabilising electric pulses, potentiates the cytotoxicity of non-permeant or poorly permeant anticancer drugs with high intrinsic cytotoxicity at the site of electric pulse application. Suitable candidates for electrochemotherapy are limited to those drugs that are hydrophilic and lack transport system in the membrane. Up to date two drugs have been identified as potential candidates for electrochemotherapy: bleomycin, which cytotoxicity in vitro can be potentiated up to several-1000-fold by electroporation of cells, and cisplatin whose cytotoxicity increased by up to 80-fold due to electroporation. High antitumor effectiveness of electrochemotherapy was demonstrated on fibrosarcomas, melanoma, and carcinomas in mice, rats and rabbits; good clinical results were also obtained in veterinary medicine on cats, dogs and horses. In these studies it was demonstrated that with drug doses that have minimal or no antitumor effectiveness, high (up to 75 %) complete responses of the electrochemotherapy-treated tumors were obtained. The drug doses used were so low that they had no systemic toxicity. Also the application of electric pulses to the tumors had no antitumor effectiveness and no systemic

  5. Perspective on Adeno-Associated Virus Capsid Modification for Duchenne Muscular Dystrophy Gene Therapy.

    Science.gov (United States)

    Nance, Michael E; Duan, Dongsheng

    2015-12-01

    Duchenne muscular dystrophy (DMD) is a X-linked, progressive childhood myopathy caused by mutations in the dystrophin gene, one of the largest genes in the genome. It is characterized by skeletal and cardiac muscle degeneration and dysfunction leading to cardiac and/or respiratory failure. Adeno-associated virus (AAV) is a highly promising gene therapy vector. AAV gene therapy has resulted in unprecedented clinical success for treating several inherited diseases. However, AAV gene therapy for DMD remains a significant challenge. Hurdles for AAV-mediated DMD gene therapy include the difficulty to package the full-length dystrophin coding sequence in an AAV vector, the necessity for whole-body gene delivery, the immune response to dystrophin and AAV capsid, and the species-specific barriers to translate from animal models to human patients. Capsid engineering aims at improving viral vector properties by rational design and/or forced evolution. In this review, we discuss how to use the state-of-the-art AAV capsid engineering technologies to overcome hurdles in AAV-based DMD gene therapy.

  6. [Application of gene detection technology in food species identification].

    Science.gov (United States)

    Chen, Ying; Wu, Yajun

    2011-07-01

    It is critical to determine the biological identity of all ingredients in food to ensure its safety and quality. Modern gene detection technology makes species identification in food more accurate, sensitive and rapid. A comprehensive review on its current applications in the last decade and the future perspective in food species identification is presented, including a brief introduction of gene detection methods, and their applications in plant-originated food, animal-originated food, high value-added food and highly processed food.

  7. The application of radiobiological study by gene chip technique

    International Nuclear Information System (INIS)

    Li Yu; Li Yao

    2002-01-01

    The responses to ionizing radiation are complex and are regulated by a number of overlapping molecular pathways. One such stress-signaling pathway involves p53, which regulates the expression of over 100 genes already identified. It is also becoming increasingly apparent that the pattern of stress gene expression has some cell type specificity. It may be possible to exploit these differences in stress gene responsiveness as molecular markers through the use of a combined informatics and functional genomic approach. The techniques of micro-array analysis potentially offer the opportunity to monitor changes in gene expression across the entire set of expressed genes in a cell or organism. It again highlights the importance of a cellular context to genotoxic stress responses; it also raises the prospect of expression profiling of cell lines, tissues, and tumors. Such profiles may have a predictive value in cancer therapy regimens, or identification of exposures to environmental toxins

  8. “My whole life is ethics!” Ordinary ethics and gene therapy clinical trials

    DEFF Research Database (Denmark)

    Addison, Courtney; Lassen, Jesper

    2017-01-01

    What and where is ethics in gene therapy? Historical debates have identified a set of ethical issues with the field, and current regulatory systems presume a discrete ethics that can be achieved or protected. Resisting attempts at demarcation or resolution, we use the notions of “ordinary......” or “everyday” ethics to develop a better understanding of the complexities of experimental gene therapy for patients, families, and practitioners and create richer imaginings of ethics in the gene therapy sphere. Drawing on ethnographic research in several clinical trials, we show that patients/parents can...... acquire some control in difficult medical situations, and practitioners can attune their care to their patients’ needs. The human provenance of gene therapy practice, and the irreducible sociality of ethics, means that understanding the ethics of this medical field also requires understanding the everyday...

  9. GENE EXPRESSION DYNAMICS IN PATIENTS WITH SEVERE THERAPY-RESISTANT ASTHMA DURING TREATMENT PERIOD

    Directory of Open Access Journals (Sweden)

    Ye. S. Kulikov

    2014-01-01

    Full Text Available Introduction: The leading mechanisms and causes of severe therapy resistant asthma are poorly understood. The aim of this study was to define global patterns of gene expression in adults with severe therapy-resistant asthma in dynamic during treatment period.Methods: Performed 24-week prospective interventional study in parallel groups. Severe asthma patients was aposterior divided at therapy sensitive and resistant patients according to ATS criteria. Global transcriptome profile was characterized using the Affymetrix HuGene ST1.0 chip. Cluster analysis was performed.Results and conclusion: According to our data several mechanisms of therapy resistance may be considered: increased levels of nitric oxide and beta2-agonists nitration, dysregulation of endogenous steroids secretion and involvement in the pathogenesis of Staphylococcus aureus. Absence of suppression of gene expression KEGG-pathway “asthma" may reflect the low efficiency or long period of anti-inflammatory therapy effect realization.

  10. Synthetic Nucleic Acid Analogues in Gene Therapy: An Update for Peptide-Oligonucleotide Conjugates.

    Science.gov (United States)

    Taskova, Maria; Mantsiou, Anna; Astakhova, Kira

    2017-09-05

    The main objective of this work is to provide an update on synthetic nucleic acid analogues and nanoassemblies as tools in gene therapy. In particular, the synthesis and properties of peptide-oligonucleotide conjugates (POCs), which have high potential in research and as therapeutics, are described in detail. The exploration of POCs has already led to fruitful results in the treatment of neurological diseases, lung disorders, cancer, leukemia, viral, and bacterial infections. However, delivery and in vivo stability are the major barriers to the clinical application of POCs and other analogues that still have to be overcome. This review summarizes recent achievements in the delivery and in vivo administration of synthetic nucleic acid analogues, focusing on POCs, and compares their efficiency. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Challenges and Prospects for Helper-Dependent Adenoviral Vector-Mediated Gene Therapy

    Directory of Open Access Journals (Sweden)

    Pasquale Piccolo

    2014-04-01

    Full Text Available Helper-dependent adenoviral (HDAd vectors that are devoid of all viral coding sequences are promising non-integrating vectors for gene therapy because they efficiently transduce a variety of cell types in vivo, have a large cloning capacity, and drive long-term transgene expression without chronic toxicity. The main obstacle preventing clinical applications of HDAd vectors is the host innate inflammatory response against the vector capsid proteins that occurs shortly after intravascular vector administration and result in acute toxicity, the severity of which is dose dependent. Intense efforts have been focused on elucidating adenoviral vector–host interactions and the factors involved in the acute toxicity. This review focuses on the recent acquisition of data on such interactions and on strategies investigated to improve the therapeutic index of HDAd vectors.

  12. Current status and developments in gene therapy for thalassemia and sickle cell disease

    Directory of Open Access Journals (Sweden)

    Evangelia Yannaki

    2014-12-01

    Full Text Available β-thalassemias and sickle cell anemia (SCA are the most common monogenic diseases worldwide for which curative treatments remain a desired goal. Allogeneic hematopoietic stem cell transplantation (allo-HCT, - the only curative treatment currently available for hemoglobinopaties-, has a narrow application window whereas it incurs several immunological risks. Gene therapy (GT, that is the autologous transplantation of genetically modified hematopoietic stem cells (CD34+, represents a promising new therapeutic strategy which is anticipated to reestablish effective hemoglobin production and render patients transfusion- and drug- independent without the immunological complications that normally accompany allo-HCT. Prior to the application of GT for hemoglobinopathies in the clinic, many years of extensive preclinical research were spent for the optimization of the gene transfer tools and conditions. To date, three GT clinical trials for β-thalassemia and sickle cell disease (SCD have been conducted or are in progress and 3 cases of transfusion independence in thalassemic β0/βΕ patients have been reported. In the present review, the prerequisites for successful implementation of GT, the tough pathway of GT for hemoglobinopathies towards the clinic and the knowledge gained from the first clinical trials as well as the remaining questions and challenges, will be discussed. Overall, after decades of research including achievements but pitfalls as well, the path to GT of human patients with hemoglobinopathies is currently open and highly promising...

  13. The potential for tumor suppressor gene therapy in head and neck cancer.

    Science.gov (United States)

    Birkeland, Andrew C; Ludwig, Megan L; Spector, Matthew E; Brenner, J Chad

    2016-01-01

    Head and neck squamous cell carcinoma remains a highly morbid and fatal disease. Importantly, genomic sequencing of head and neck cancers has identified frequent mutations in tumor suppressor genes. While targeted therapeutics increasingly are being investigated in head and neck cancer, the majority of these agents are against overactive/overexpressed oncogenes. Therapy to restore lost tumor suppressor gene function remains a key and under-addressed niche in trials for head and neck cancer. Recent advances in gene editing have captured the interest of both the scientific community and the public. As our technology for gene editing and gene expression modulation improves, addressing lost tumor suppressor gene function in head and neck cancers is becoming a reality. This review will summarize new techniques, challenges to implementation, future directions, and ethical ramifications of gene therapy in head and neck cancer.

  14. Comparison of EGF with VEGF Non-Viral Gene Therapy for Cutaneous Wound Healing of Streptozotocin Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Junghae Ko

    2011-06-01

    Full Text Available BackgroundTo accelerate the healing of diabetic wounds, various kinds of growth factors have been employed. It is the short half-life of administered growth factors in hostile wound beds that have limited wide-spread clinical usage. To overcome this limitation, growth factor gene therapy could be an attractive alternative rather than direct application of factors onto the wound beds. We administered two growth factor DNAs, epidermal growth factor (EGF and vascular endothelial growth factor (VEGF into a cutaneous wound on diabetic mice. We compared the different characteristics of the healing wounds.MethodsStreptozotocin was injected intraperitoneally to induce diabetes into C57BL/6J mice. The ultrasound micro-bubble destruction method with SonoVue as a bubbling agent was used for non-viral gene delivery of EGF828 and VEGF165 DNAs. Each gene was modified for increasing efficacy as FRM-EGF828 or minicircle VEGF165. The degree of neoangiogenesis was assessed using qualitative laser Doppler flowmetry. We compared wound size and histological findings of the skin wounds in each group.ResultsIn both groups, accelerated wound closure was observed in the mice receiving gene therapy compared with non treated diabetic control mice. Blood flow detected by laser doppler flowmetry was better in the VEGF group than in the EGF group. Wound healing rates and histological findings were more accelerated in the EGF gene therapy group than the VEGF group, but were not statistically significant.ConclusionBoth non-viral EGF and VEGF gene therapy administrations could improve the speed and quality of skin wound healing. However, the detailed histological characteristics of the healing wounds were different.

  15. Differential impact of transplantation on peripheral and tissue-associated viral reservoirs: Implications for HIV gene therapy.

    Science.gov (United States)

    Peterson, Christopher W; Wang, Jianbin; Deleage, Claire; Reddy, Sowmya; Kaur, Jasbir; Polacino, Patricia; Reik, Andreas; Huang, Meei-Li; Jerome, Keith R; Hu, Shiu-Lok; Holmes, Michael C; Estes, Jacob D; Kiem, Hans-Peter

    2018-04-01

    Autologous transplantation and engraftment of HIV-resistant cells in sufficient numbers should recapitulate the functional cure of the Berlin Patient, with applicability to a greater number of infected individuals and with a superior safety profile. A robust preclinical model of suppressed HIV infection is critical in order to test such gene therapy-based cure strategies, both alone and in combination with other cure strategies. Here, we present a nonhuman primate (NHP) model of latent infection using simian/human immunodeficiency virus (SHIV) and combination antiretroviral therapy (cART) in pigtail macaques. We demonstrate that transplantation of CCR5 gene-edited hematopoietic stem/progenitor cells (HSPCs) persist in infected and suppressed animals, and that protected cells expand through virus-dependent positive selection. CCR5 gene-edited cells are readily detectable in tissues, namely those closely associated with viral reservoirs such as lymph nodes and gastrointestinal tract. Following autologous transplantation, tissue-associated SHIV DNA and RNA levels in suppressed animals are significantly reduced (p ≤ 0.05), relative to suppressed, untransplanted control animals. In contrast, the size of the peripheral reservoir, measured by QVOA, is variably impacted by transplantation. Our studies demonstrate that CCR5 gene editing is equally feasible in infected and uninfected animals, that edited cells persist, traffic to, and engraft in tissue reservoirs, and that this approach significantly reduces secondary lymphoid tissue viral reservoir size. Our robust NHP model of HIV gene therapy and viral persistence can be immediately applied to the investigation of combinatorial approaches that incorporate anti-HIV gene therapy, immune modulators, therapeutic vaccination, and latency reversing agents.

  16. The promise of gene therapy for the treatment of alpha-1 antitrypsin deficiency.

    Science.gov (United States)

    Cruz, Pedro E; Mueller, Christian; Flotte, Terence R

    2007-09-01

    In the last 13 years, three gene therapy trials for the treatment of alpha-1 antitrypsin deficiency have been conducted. The first trial delivered plasmid encoding the alpha-1 antitrypsin cDNA to the nasal epithelium using cationic liposomes. The last two trials delivered recombinant adeno-associated vectors encoding the alpha-1 antitrypsin cDNA by intramuscular injection. In this review, the progress of ongoing clinical trials and new gene therapy technologies is discussed.

  17. Gene therapy takes a cue from HAART: combinatorial antiviral therapeutics reach the clinic.

    Science.gov (United States)

    Shah, Priya S; Schaffer, David V

    2010-06-16

    For the first time, scientists have tested a combination of three RNA-based gene therapies, delivered via a lentiviral vector, to target HIV in patients. This study not only demonstrates the safety and long-term viability of this approach, but also highlights areas in which focused improvements in gene therapy strategies may provide the most impact in increasingly translating promise in the laboratory to efficacy in the clinic.

  18. Utilizing social media to study information-seeking and ethical issues in gene therapy

    DEFF Research Database (Denmark)

    Robillard, Julie M; Whiteley, Louise Emma; Johnson, Thomas Wade

    2013-01-01

    The field of gene therapy is rapidly evolving, and while hopes of treating disorders of the central nervous system and ethical concerns have been articulated within the academic community, little is known about views and opinions of different stakeholder groups.......The field of gene therapy is rapidly evolving, and while hopes of treating disorders of the central nervous system and ethical concerns have been articulated within the academic community, little is known about views and opinions of different stakeholder groups....

  19. Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement

    OpenAIRE

    Cideciyan, Artur V.; Jacobson, Samuel G.; Beltran, William A.; Sumaroka, Alexander; Swider, Malgorzata; Iwabe, Simone; Roman, Alejandro J.; Olivares, Melani B.; Schwartz, Sharon B.; Komáromy, András M.; Hauswirth, William W.; Aguirre, Gustavo D.

    2013-01-01

    The first retinal gene therapy in human blindness from RPE65 mutations has focused on safety and efficacy, as defined by improved vision. The disease component not studied, however, has been the fate of photoreceptors in this progressive retinal degeneration. We show that gene therapy improves vision for at least 3 y, but photoreceptor degeneration progresses unabated in humans. In the canine model, the same result occurs when treatment is at the disease stage equivalent to humans. The study ...

  20. Utilizing Social Media to Study Information-Seeking and Ethical Issues in Gene Therapy

    OpenAIRE

    Robillard, Julie M; Whiteley, Louise; Johnson, Thomas Wade; Lim, Jonathan; Wasserman, Wyeth W; Illes, Judy

    2013-01-01

    Background The field of gene therapy is rapidly evolving, and while hopes of treating disorders of the central nervous system and ethical concerns have been articulated within the academic community, little is known about views and opinions of different stakeholder groups. Objective To address this gap, we utilized social media to investigate the kind of information public users are seeking about gene therapy and the hopes, concerns, and attitudes they express. Methods We conducted a content ...

  1. Application of Gene Shaving and Mixture Models to Cluster Microarray Gene Expression Data

    Directory of Open Access Journals (Sweden)

    S. Wen

    2007-01-01

    Full Text Available Researchers are frequently faced with the analysis of microarray data of a relatively large number of genes using a small number of tissue samples. We examine the application of two statistical methods for clustering such microarray expression data: EMMIX-GENE and GeneClust. EMMIX-GENE is a mixture-model based clustering approach, designed primarily to cluster tissue samples on the basis of the genes. GeneClust is an implementation of the gene shaving methodology, motivated by research to identify distinct sets of genes for which variation in expression could be related to a biological property of the tissue samples. We illustrate the use of these two methods in the analysis of Affymetrix oligonucleotide arrays of well-known data sets from colon tissue samples with and without tumors, and of tumor tissue samples from patients with leukemia. Although the two approaches have been developed from different perspectives, the results demonstrate a clear correspondence between gene clusters produced by GeneClust and EMMIX-GENE for the colon tissue data. It is demonstrated, for the case of ribosomal proteins and smooth muscle genes in the colon data set, that both methods can classify genes into co-regulated families. It is further demonstrated that tissue types (tumor and normal can be separated on the basis of subtle distributed patterns of genes. Application to the leukemia tissue data produces a division of tissues corresponding closely to the external classification, acute myeloid leukemia (AML and acute lymphoblastic leukaemia (ALL, for both methods. In addition, we also identify genes specifi c for the subgroup of ALL-T cell samples. Overall, we find that the gene shaving method produces gene clusters at great speed; allows variable cluster sizes and can incorporate partial or full supervision; and finds clusters of genes in which the gene expression varies greatly over the tissue samples while maintaining a high level of coherence between the

  2. Genetic treatment of a molecular disorder: gene therapy approaches to sickle cell disease.

    Science.gov (United States)

    Hoban, Megan D; Orkin, Stuart H; Bauer, Daniel E

    2016-02-18

    Effective medical management for sickle cell disease (SCD) remains elusive. As a prevalent and severe monogenic disorder, SCD has been long considered a logical candidate for gene therapy. Significant progress has been made in moving toward this goal. These efforts have provided substantial insight into the natural regulation of the globin genes and illuminated challenges for genetic manipulation of the hematopoietic system. The initial γ-retroviral vectors, next-generation lentiviral vectors, and novel genome engineering and gene regulation approaches each share the goal of preventing erythrocyte sickling. After years of preclinical studies, several clinical trials for SCD gene therapies are now open. This review focuses on progress made toward achieving gene therapy, the current state of the field, consideration of factors that may determine clinical success, and prospects for future development. © 2016 by The American Society of Hematology.

  3. CT-guided intratumoral gene therapy in non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Kauczor, H.U.; Heussel, C.P.; Thelen, M.; Schuler, M.; Huber, C.; Weymarn, A. von; Bongartz, G.; Rochlitz, C.

    1999-01-01

    The objective of this study was to prove the principle of CT-guided gene therapy by intratumoral injection of a tumor suppressor gene as an alternative treatment approach of incurable non-small-cell lung cancer. In a prospective clinical phase I trial six patients with non-small-cell lung cancer and a mutation of the tumor suppressor gene p53 were treated by CT-guided intratumoral gene therapy. Ten milliliters of a vector solution (replication-defective adenovirus with complete wild-type p53 cDNA) were injected under CT guidance. In four cases the vector solution was completely applied to the tumor center, whereas in two cases 2 ml aliquots were injected into different tumor areas. For the procedure the scan room had been approved as a biosafety cabinet. Gene transfer was assessed by reverse transcription and polymerase chain reaction in biopsy specimens obtained under CT guidance 24-48 h after therapy. Potential therapeutic efficacy was evaluated on day 28 after treatment using spiral CT. The CT-guided gene therapy was easily performed in all six patients without intervention-related complications. Besides flu-like symptoms, no significant adverse effects of gene therapy were noted. Three of the four patients with central injection exhibited gene transfer in the posttreatment biopsy. Gene transfer could not be proven in the two patients with multiple 2 ml injections. After 28 days, four of the six patients showed stable disease at the treated tumor site, whereas other tumor manifestations progressed. Computed tomography-guided injections are an adequate and easy-to-perform procedure for intratumoral gene therapy. (orig.)

  4. Gene therapy: the first two decades and the current state-of-the-art.

    Science.gov (United States)

    Flotte, Terence R

    2007-11-01

    The concept of gene therapy was envisioned soon after the emergence of restriction endonucleases and subcloning of mammalian genes in phage and plasmids. Over the ensuing decades, vectors were developed, including nonviral methods, integrating virus vectors (gammaretrovirus and lentivirus), and non-integrating virus vectors (adenovirus, adeno-associated virus, and herpes simplex virus vectors). Preclinical data demonstrated potential efficacy in a broad range of animal models of human diseases, but clinical efficacy in humans remained elusive in most cases, even after decades of experience in over 1000 trials. Adverse effects from gene therapy have been observed in some cases, often because of viral vectors retaining some of the pathogenic potential of the viruses upon which they are based. Later generation vectors have been developed in which the safety and/or the efficiency of gene transfer has been improved. Most recently this work has involved alterations of vector envelope or capsid proteins either by insertion of ligands to target specific receptors or by directed evolution. The disease targets for gene therapy are multiple, but the most promising data have come from monogenic disorders. As the number of potential targets for gene therapy continues to increase, and a substantial number of trials continue with both the standard and the later generation vector systems, it is hoped that a therapeutic niche for gene therapy will emerge in the coming decades.

  5. Gene Therapy of T Helper Cells in HIV Infection. Mathematical Model of the Criteria for Clinical Effect

    DEFF Research Database (Denmark)

    Lund, Ole; Lund, Ole søgaard; Gram, Gregers

    1997-01-01

    The paper presents a mathematical model of the criteria for gene therapy of T helper cells to have a clinical effect on HIV infection. Our main results are that the therapy should be designed to give the transduced cells a significant but not necessarily total protection against HIV-induced cell...... deaths, and to avoid the production of viral mutants that are insensitive to gene therapy. The transduced cells will not survive if the gene therapy only blocks the spread of virus....

  6. Development of medical application methods using radiation. Radionuclide therapy

    International Nuclear Information System (INIS)

    Choi, Chang Woon; Lim, S. M.; Kim, E.H.; Woo, K. S.; Chung, W. S.; Lim, S. J.; Choi, T. H.; Hong, S. W.; Chung, H. Y.; No, W. C.; Oh, B. H.; Hong, H. J.

    1999-04-01

    In this project, we studied following subjects: 1. development of monoclonal antibodies and radiopharmaceuticals 2. clinical applications of radionuclide therapy 3. radioimmunoguided surgery 4. prevention of restenosis with intracoronary radiation. The results can be applied for the following objectives: 1) radionuclide therapy will be applied in clinical practice to treat the cancer patients or other diseases in multi-center trial. 2) The newly developed monoclonal antibodies and biomolecules can be used in biology, chemistry or other basic life science research. 3) The new methods for the analysis of therapeutic effects, such as dosimetry, and quantitative analysis methods of radioactivity, can be applied in basic research, such as radiation oncology and radiation biology

  7. Development of medical application methods using radiation. Radionuclide therapy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Woon; Lim, S. M.; Kim, E.H.; Woo, K. S.; Chung, W. S.; Lim, S. J.; Choi, T. H.; Hong, S. W.; Chung, H. Y.; No, W. C. [Korea Atomic Energy Research Institute. Korea Cancer Center Hospital, Seoul, (Korea, Republic of); Oh, B. H. [Seoul National University. Hospital, Seoul (Korea, Republic of); Hong, H. J. [Antibody Engineering Research Unit, Taejon (Korea, Republic of)

    1999-04-01

    In this project, we studied following subjects: 1. development of monoclonal antibodies and radiopharmaceuticals 2. clinical applications of radionuclide therapy 3. radioimmunoguided surgery 4. prevention of restenosis with intracoronary radiation. The results can be applied for the following objectives: (1) radionuclide therapy will be applied in clinical practice to treat the cancer patients or other diseases in multi-center trial. (2) The newly developed monoclonal antibodies and biomolecules can be used in biology, chemistry or other basic life science research. (3) The new methods for the analysis of therapeutic effects, such as dosimetry, and quantitative analysis methods of radioactivity, can be applied in basic research, such as radiation oncology and radiation biology.

  8. Gene Therapy in a Nonhuman Primate Model of Parkinson's Disease

    National Research Council Canada - National Science Library

    Kordower, Jeffrey

    1999-01-01

    .... In the first experiment, lentiviral vectors delivering the marker gene Beta galactosidase was injected into three monkeys to test the ability of this vector to demonstrate sustained expression...

  9. Gene therapy for carcinoma of the breast: Therapeutic genetic correction strategies

    International Nuclear Information System (INIS)

    Obermiller, Patrice S; Tait, David L; Holt, Jeffrey T

    2000-01-01

    Gene therapy is a therapeutic approach that is designed to correct specific molecular defects that contribute to the cause or progression of cancer. Genes that are mutated or deleted in cancers include the cancer susceptibility genes p53 and BRCA1. Because mutational inactivation of gene function is specific to tumor cells in these settings, cancer gene correction strategies may provide an opportunity for selective targeting without significant toxicity for normal nontumor cells. Both p53 and BRCA1 appear to inhibit cancer cells that lack mutations in these genes, suggesting that the so-called gene correction strategies may have broader potential than initially believed. Increasing knowledge of cancer genetics has identified these and other genes as potential targets for gene replacement therapy. Initial patient trials of p53 and BRCA1 gene therapy have provided some indications of potential efficacy, but have also identified areas of basic and clinical research that are needed before these approaches may be widely used in patient care

  10. Effects of traditional Japanese massage therapy on gene expression: preliminary study.

    Science.gov (United States)

    Donoyama, Nozomi; Ohkoshi, Norio

    2011-06-01

    Changes in gene expression after traditional Japanese massage therapy were investigated to clarify the mechanisms of the clinical effects of traditional Japanese massage therapy. This was a pilot experimental study. The study was conducted in a laboratory at Tsukuba University of Technology. The subjects were 2 healthy female volunteers (58-year-old Participant A, 55-year-old Participant B). The intervention consisted of a 40-minute full-body massage using standard traditional Japanese massage techniques through the clothing and a 40-minute rest as a control, in which participants lie on the massage table without being massaged. Before and after an intervention, blood was taken and analyzed by microarray: (1) The number of genes whose expression was more than double after the intervention than before was examined; (2) For those genes, gene ontology analysis identified statistically significant gene ontology terms. The gene expression count in the total of 41,000 genes was 1256 genes for Participant A and 1778 for Participant B after traditional Japanese massage, and was 157 and 82 after the control, respectively. The significant gene ontology terms selected by both Participants A and B after massage were "immune response" and "immune system," whereas no gene ontology terms were selected by them in the control. It is implied that traditional Japanese massage therapy may affect the immune function. Further studies with more samples are necessary.

  11. Prediction of Drug Therapy for Chronic Hepatitis C Depending on the IL28B Gene Polymorphism

    Directory of Open Access Journals (Sweden)

    Moroz L.V. Moroz L.V.

    2014-09-01

    Molecular and genetic analysis of IL28V (rs12979860 gene polymorphism, located at a distance of 3 thousand nucleotide pairs from IL28V gene, using the polymerase chain reaction allows to predict the success of combination antiviral therapy, and the presence of C/C genotype can be a predictor of sustained virological response in patients chronic hepatitis C.

  12. Influence of the bystander effect on HSV-tk/GCV gene therapy. A review

    NARCIS (Netherlands)

    van Dillen, Ingrid J; Mulder, Nanno H; Vaalburg, Willem; de Vries, Erik F J; Hospers, Geke A P

    Despite the development of new therapeutic strategies, cancer remains incurable in most patients with advanced disease. A recent potential improvement in therapeutic strategies is the concept of suicide gene therapy. After transfection with a suicide gene, cells can convert a harmless prodrug into

  13. Development of stealth transgenes for gene therapy : evaluation of cis-acting inhibitors of antigen presentation

    NARCIS (Netherlands)

    Raamsman-Ossevoort, Martine

    2006-01-01

    In gene therapy, expression of a corrected gene leads to synthesis of proteins foreign to the immune system. Cells expressing these will therefore be recognized as aberrant and destructed. We used a known immune evasion mechanism to “stealth” transgene products. We fused the coding sequence of the

  14. Diagnostic test for prenatal identification of Down's syndrome and mental retardation and gene therapy therefor

    Science.gov (United States)

    Smith, Desmond J.; Rubin, Edward M.

    2000-01-01

    A a diagnostic test useful for prenatal identification of Down syndrome and mental retardation. A method for gene therapy for correction and treatment of Down syndrome. DYRK gene involved in the ability to learn. A method for diagnosing Down's syndrome and mental retardation and an assay therefor. A pharmaceutical composition for treatment of Down's syndrome mental retardation.

  15. Sleeping Beauty transposon system for genetic etiological research and gene therapy of cancers.

    Science.gov (United States)

    Hou, Xiaomei; Du, Yan; Deng, Yang; Wu, Jianfeng; Cao, Guangwen

    2015-01-01

    Carcinogenesis is etiologically associated with somatic mutations of critical genes. Recently, a number of somatic mutations and key molecules have been found to be involved in functional networks affecting cancer progression. Suitable animal models are required to validate cancer-promoting or -inhibiting capacities of these mutants and molecules. Sleeping Beauty transposon system consists of a transposon that carries gene(s) of interest and a transposase that recognizes, excises, and reinserts genes in given location of the genome. It can create both gain-of-function and loss-of-function mutations, thus being frequently chosen to investigate the etiological mechanisms and gene therapy for cancers in animal models. In this review, we summarized current advances of Sleeping Beauty transposon system in revealing molecular mechanism of cancers and improving gene therapy. Understanding molecular mechanisms by which driver mutations contribute to carcinogenesis and metastasis may pave the way for the development of innovative prophylactic and therapeutic strategies against malignant diseases.

  16. Neonatal Gene Therapy for Hemophilia B by a Novel Adenovirus Vector Showing Reduced Leaky Expression of Viral Genes.

    Science.gov (United States)

    Iizuka, Shunsuke; Sakurai, Fuminori; Tachibana, Masashi; Ohashi, Kazuo; Mizuguchi, Hiroyuki

    2017-09-15

    Gene therapy during neonatal and infant stages is a promising approach for hemophilia B, a congenital disorder caused by deficiency of blood coagulation factor IX (FIX). An adenovirus (Ad) vector has high potential for use in neonatal or infant gene therapy for hemophilia B due to its superior transduction properties; however, leaky expression of Ad genes often reduces the transduction efficiencies by Ad protein-mediated tissue damage. Here, we used a novel Ad vector, Ad-E4-122aT, which exhibits a reduction in the leaky expression of Ad genes in liver, in gene therapy studies for neonatal hemophilia B mice. Ad-E4-122aT exhibited significantly higher transduction efficiencies than a conventional Ad vector in neonatal mice. In neonatal hemophilia B mice, a single neonatal injection of Ad-E4-122aT expressing human FIX (hFIX) (Ad-E4-122aT-AHAFIX) maintained more than 6% of the normal plasma hFIX activity levels for approximately 100 days. Sequential administration of Ad-E4-122aT-AHAFIX resulted in more than 100% of the plasma hFIX activity levels for more than 100 days and rescued the bleeding phenotypes of hemophilia B mice. In addition, immunotolerance to hFIX was induced by Ad-E4-122aT-AHAFIX administration in neonatal hemophilia B mice. These results indicated that Ad-E4-122aT is a promising gene delivery vector for neonatal or infant gene therapy for hemophilia B.

  17. Usage of U7 snRNA in gene therapy of hemoglobin C disorder ...

    African Journals Online (AJOL)

    Here, a bioinformatic analysis was performed to study the effect of co-expression between human Hb C b-globin chain gene and U7.623. The gene ontological results show that full recovery of hemoglobin function and biological process can be derived. This confirms that U7 snRNA can be a good tool for gene therapy in Hb ...

  18. Development of Lentiviral Vectors Simultaneously Expressing Multiple siRNAs Against CCR5, vif and tat/rev Genes for an HIV-1 Gene Therapy Approach.

    Science.gov (United States)

    Spanevello, Francesca; Calistri, Arianna; Del Vecchio, Claudia; Mantelli, Barbara; Frasson, Chiara; Basso, Giuseppe; Palù, Giorgio; Cavazzana, Marina; Parolin, Cristina

    2016-04-19

    Gene therapy holds considerable promise for the functional cure of HIV-1 infection and, in this context, RNA interference (RNAi)-based approaches represent powerful strategies. Stable expression of small interfering RNAs (siRNAs) targeting HIV genes or cellular cofactors has the potential to render HIV-1 susceptible cells resistant to infection. To inhibit different steps of virus life cycle, self-inactivating lentiviral vectors expressing multiple siRNAs targeting the CCR5 cellular gene as well as vif and tat/rev viral transcripts, under the control of different RNA polymerase III promoters (U6, 7SK, H1) were developed. The use of a single RNA polymerase III promoter driving the expression of a sequence giving rise to three siRNAs directed against the selected targets (e-shRNA) was also investigated. Luciferase assay and inhibition of HIV-1 replication in human Jurkat T-cell line were adopted to select the best combination of promoter/siRNA. The efficacy of selected developed combinatorial vectors in interfering with viral replication was evaluated in human primary CD4(+) T lymphocytes. We identified two effective anti-HIV combinatorial vectors that conferred protection against R5- and X4- tropic viruses. Overall, our results showed that the antiviral effect is influenced by different factors, including the promoter used to express the RNAi molecules and the selected cassette combination. These findings contribute to gain further insights in the design of RNAi-based gene therapy approaches against HIV-1 for clinical application.

  19. Dual AAV Gene Therapy for Duchenne Muscular Dystrophy with a 7-kb Mini-Dystrophin Gene in the Canine Model.

    Science.gov (United States)

    Kodippili, Kasun; Hakim, Chady H; Pan, Xiufang; Yang, Hsiao T; Yue, Yongping; Zhang, Yadong; Shin, Jin-Hong; Yang, N Nora; Duan, Dongsheng

    2018-03-01

    Dual adeno-associated virus (AAV) technology was developed in 2000 to double the packaging capacity of the AAV vector. The proof of principle has been demonstrated in various mouse models. Yet, pivotal evidence is lacking in large animal models of human diseases. Here we report expression of a 7-kb canine ΔH2-R15 mini-dystrophin gene using a pair of dual AAV vectors in the canine model of Duchenne muscular dystrophy (DMD). The ΔH2-R15 minigene is by far the most potent synthetic dystrophin gene engineered for DMD gene therapy. We packaged minigene dual vectors in Y731F tyrosine-modified AAV-9 and delivered to the extensor carpi ulnaris muscle of a 12-month-old affected dog at the dose of 2 × 10 13 viral genome particles/vector/muscle. Widespread mini-dystrophin expression was observed 2 months after gene transfer. The missing dystrophin-associated glycoprotein complex was restored. Treatment also reduced muscle degeneration and fibrosis and improved myofiber size distribution. Importantly, dual AAV therapy greatly protected the muscle from eccentric contraction-induced force loss. Our data provide the first clear evidence that dual AAV therapy can be translated to a diseased large mammal. Further development of dual AAV technology may lead to effective therapies for DMD and many other diseases in human patients.

  20. Progress with Recombinant Adeno-Associated Virus Vectors for Gene Therapy of Alpha-1 Antitrypsin Deficiency.

    Science.gov (United States)

    Gruntman, Alisha M; Flotte, Terence R

    2015-06-01

    The pathway to a clinical gene therapy product often involves many changes of course and strategy before obtaining successful results. Here we outline the methodologies, both clinical and preclinical, that went into developing a gene therapy approach to the treatment of alpha-1 antitrypsin deficiency lung disease using muscle-targeted recombinant adeno-associated virus. From initial gene construct development in mouse models through multiple rounds of safety and biodistribution studies in rodents, rabbits, and nonhuman primates to ultimate human trials, this review seeks to provide insight into what clinical translation entails and could thereby inform the process for future investigators.

  1. Halting angiogenesis by non-viral somatic gene therapy alleviates psoriasis and murine psoriasiform skin lesions

    DEFF Research Database (Denmark)

    Zibert, John Robert; Wallbrecht, Katrin; Schön, Margarete

    2011-01-01

    with epidermal expression of human TGF-ß1, we have demonstrated that antiangiogenic non-viral somatic gene therapy reduces the cutaneous microvasculature and alleviates chronic inflammatory skin disorders. Transient muscular expression of the recombinant disintegrin domain (RDD) of metargidin (also known as ADAM...... in all models. Thus, non-viral antiangiogenic gene therapy can alleviate psoriasis and may do so in other angiogenesis-related inflammatory skin disorders.......-15) by in vivo electroporation reduced cutaneous angiogenesis and vascularization in all 3 models. As demonstrated using red fluorescent protein-coupled RDD, the treatment resulted in muscular expression of the gene product and its deposition within the cutaneous hyperangiogenic connective tissue...

  2. Requirements for Clinical Trials with Gene Therapy and Transplant Products in Switzerland.

    Science.gov (United States)

    Marti, Andreas

    2015-01-01

    This chapter aims to describe and summarize the regulation of gene and cell therapy products in Switzerland and its legal basis. Product types are briefly described, as are Swiss-specific terminologies such as the term "transplant product," which means products manufactured from cells, tissues, or even whole organs. Although some parts of this chapter may show a guideline character, they are not legally binding, but represent the current thinking of Swissmedic, the Swiss Agency for Therapeutic Products. As so far the experience with marketing approval of gene therapy and cell therapy products in Switzerland is limited, this chapter focuses on the regulation of clinical trials conducted with these products. Quality, nonclinical, and clinical aspects are summarized separately for gene therapy products and transplant products.

  3. Polyethylenimine-mediated gene delivery to the lung and therapeutic applications

    Directory of Open Access Journals (Sweden)

    Sante Di Gioia

    2008-09-01

    Full Text Available Sante Di Gioia, Massimo ConeseDepartment of Biomedical Sciences, University of Foggia, Foggia, ItalyAbstract: Nonviral gene delivery is now considered a promising alternative to viral vectors. Among nonviral gene delivery agents, polyethylenimine (PEI has emerged as a potent candidate for gene delivery to the lung. PEI has some advantages over other polycations in that it combines strong DNA compaction capacity with an intrinsic endosomolytic activity. However, intracellular (mainly the nuclear membrane and extracellular obstacles still hamper its efficiency in vitro and in vivo, depending on the route of administration and the type of PEI. Nuclear delivery has been increased by adding nuclear localization signals. To overcome nonspecific interactions with biological fluids, extracellular matrix components and nontarget cells, strategies have been developed to protect polyplexes from these interactions and to increase target specificity and gene expression. When gene delivery into airway epithelial cells of the conducting airways is necessary, aerosolization of complexes seems to be better suited to guarantee higher transgene expression in the airway epithelial cells with lower toxicity than observed with either intratracheal or intravenous administration. Aerosolization, indeed, is useful to target the alveolar epithelium and pulmonary endothelium. Proof-of-principle that PEI-mediated gene delivery has therapeutic application to some genetic and acquired lung disease is presented, using as genetic material either plasmidic DNA or small-interfering RNA, although optimization of formulation and delivery protocols and limitation of toxicity need further studies.Keywords: gene transfer, gene therapy, polyethylenimine, airway epithelial cells, lung, RNA interference

  4. Ex-Vivo Gene Therapy Using Lentiviral Mediated Gene Transfer Into Umbilical Cord Blood Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Hanieh Jalali

    2016-02-01

    Full Text Available Background Introduction of therapeutic genes into the injured site of nervous system can be achieved using transplantation of cellular vehicles containing desired gene. To transfer exogenous genes into the cellular vehicles, lentiviral vectors are one of interested vectors because of advantages such high transduction efficiency of dividing and non-dividing cells. Unrestricted somatic stem cells are subclasses of umbilical cord blood derived stem cells which are appreciate candidates to use as cellular vehicles for ex vivo gene therapy of nervous system. Objectives In current study we investigated the effect of lentiviral vector transduction on the neuronal related features of unrestricted somatic stem cells to indicate the probable and unwanted changes related to transduction procedure. Materials and Methods In this experimental study, lentiviral vector containing green fluorescent protein (GFP were transduced into unrestricted somatic stem cells and its effect was investigated with using MTT assay, qPCR and immunohistochemistry techniques. For statistical comparison of real time PCR results, REST software (2009, Qiagen was used. Results Obtained results showed lentiviral vector transduction did not have cytotoxic effects on unrestricted somatic stem cells and did not change neuronal differentiation capacity of them as well the expression of some neuronal related genes and preserved them in multilineage situation. Conclusions In conclusion, we suggested that lentiviral vectors could be proper vectors to transfer therapeutic gene into unrestricted somatic stem cells to provide a cellular vehicle for ex vivo gene therapy of nervous system disorders.

  5. CRISPR-Cas9: a new and promising player in gene therapy.

    Science.gov (United States)

    Xiao-Jie, Lu; Hui-Ying, Xue; Zun-Ping, Ke; Jin-Lian, Chen; Li-Juan, Ji

    2015-05-01

    First introduced into mammalian organisms in 2013, the RNA-guided genome editing tool CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease 9) offers several advantages over conventional ones, such as simple-to-design, easy-to-use and multiplexing (capable of editing multiple genes simultaneously). Consequently, it has become a cost-effective and convenient tool for various genome editing purposes including gene therapy studies. In cell lines or animal models, CRISPR-Cas9 can be applied for therapeutic purposes in several ways. It can correct the causal mutations in monogenic disorders and thus rescue the disease phenotypes, which currently represents the most translatable field in CRISPR-Cas9-mediated gene therapy. CRISPR-Cas9 can also engineer pathogen genome such as HIV for therapeutic purposes, or induce protective or therapeutic mutations in host tissues. Moreover, CRISPR-Cas9 has shown potentials in cancer gene therapy such as deactivating oncogenic virus and inducing oncosuppressor expressions. Herein, we review the research on CRISPR-mediated gene therapy, discuss its advantages, limitations and possible solutions, and propose directions for future research, with an emphasis on the opportunities and challenges of CRISPR-Cas9 in cancer gene therapy. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  6. Adenovirus-mediated IL-12 gene therapy in combination with radiotherapy for murine liver cancer

    International Nuclear Information System (INIS)

    Wei Daoyan; Dai Bingbing; Wang Zhonghe; Chen Shishu

    2001-01-01

    Objective: To investigate the synergistic antitumor effects of adenovirus-mediated IL-12 gene therapy in combination with radiotherapy in mice bearing liver cancer. Methods: Balb/c mice bearing liver cancer received the treatment at day 1 with tumor local irradiation (TLI) of 20 Gy or mask irradiation when tumor size reached 0.6-1.0 cm. Within 1 hour after irradiation, adenovirus containing IL-12 gene or PBS was intra-tumor injected once a week. Forty-eight hours after the second injection, IFN-γ levels in sera and the supernatant of cultured spleen cells were assayed by ELISA, CTL activity of spleen cells was measured by 3 H-TdR release assay, and phenotypes of tumor-infiltrating lymphocytes were analysed by immunohistochemical staining. Results: The growth of tumors in animals treated with a combination of IL-12 gene therapy and TLI was inhibited more significantly than those with either single treatment (P + and CD8 + lymphocyte infiltration and tumor-specific cytolytic activities, and the levels of IFN-γ in sera were higher in IL-12 gene therapy and IL-12 gene therapy combined with TLI groups. Conclusion: These results suggest that IL-12 gene therapy combined with radiotherapy is more effective than both single treatment modalities and can induce specific antitumor immuno-response greatly

  7. Managing Pancreatic Adenocarcinoma: A Special Focus in MicroRNA Gene Therapy

    Directory of Open Access Journals (Sweden)

    Marta Passadouro

    2016-05-01

    Full Text Available Pancreatic cancer is an aggressive disease and the fourth most lethal cancer in developed countries. Despite all progress in medicine and in understanding the molecular mechanisms of carcinogenesis, pancreatic cancer still has a poor prognosis, the median survival after diagnosis being around 3 to 6 months and the survival rate of 5 years being less than 4%. For pancreatic ductal adenocarcinoma (PDAC, which represents more than 90% of new pancreatic cancer cases, the prognosis is worse than for the other cancers with a patient mortality of approximately 99%. Therefore, there is a pressing need for developing new and efficient therapeutic strategies for pancreatic cancer. In this regard, microRNAs not only have been seen as potential diagnostic and prognostic molecular markers but also as promising therapeutic agents. In this context, this review provides an examination of the most frequently deregulated microRNAs (miRNAs in PDAC and their putative molecular targets involved in the signaling pathways of pancreatic
carcinogenesis. Additionally, it is presented a summary of gene therapy clinical trials involving miRNAs and it is illustrated the therapeutic potential associated to these small non-coding RNAs, for PDAC treatment. The facts presented here constitute a strong evidence of the remarkable opportunity associated to the application of microRNA-based therapeutic strategies as a novel approach for cancer therapy.

  8. Retroviral-mediated gene therapy for the differentiation of primary cells into a mineralizing osteoblastic phenotype.

    Science.gov (United States)

    Phillips, Jennifer E; García, Andrés J

    2008-01-01

    Bone tissue engineering has emerged as a promising strategy for the repair of critical-sized skeletal fractures. However, the clinical application of this approach has been limited by the availability of a robust mineralizing cell source. Non-osteogenic cells, such as skin fibroblasts, are an attractive cell-source alternative because they are easy to harvest from autologous donor skin biopsies and display a high capacity for in vitro expansion. We have recently demonstrated that retroviral gene delivery of the osteoblastic transcription factor Runx2/Cbfa1 promotes osteogenic differentiation in primary dermal fibroblasts cultured in monolayer. Notably, sustained expression of Runx2 was not sufficient to promote functional osteogenesis in these cells, and co-treatment with the steroid hormone dexamethasone was required to induce deposition of biologically-equivalent matrix mineralization. On the basis of these results, we then investigated the osteogenic capacity of these genetically engineered fibroblasts when seeded on polymeric scaffolds in vitro and in vivo. These experiments demonstrated that Runx2-expressing fibroblasts seeded on collagen scaffolds produce significant levels of matrix mineralization after 28 days in vivo implantation in a subcutaneous, heterotopic site. Overall, these results offer evidence that transcription factor-based gene therapy may be a powerful strategy for the conversion of a non-osteogenic cellular phenotype into a mineralizing cell source for bone repair applications. This concept may also be applied to control functional differentiation in a broad range of cell types and tissue engineering applications. The chapter below outlines detailed methods for the isolation and ex vivo genetic modification of primary dermal fibroblasts using retroviral-mediated delivery of the Runx2 transgene in both monolayer culture and three-dimensional scaffolds.

  9. Translational Applications of Molecular Imaging and Radionuclide Therapy

    International Nuclear Information System (INIS)

    Welch, Michael J.; Eckelman, William C.; Vera, David

    2005-01-01

    Molecular imaging is becoming a larger part of imaging research and practice. The Office of Biological and Environmental Research of the Department of Energy funds a significant number of researchers in this area. The proposal is to partially fund a workshop to inform scientists working in nuclear medicine and nuclear medicine practitioners of the recent advances of molecular imaging in nuclear medicine as well as other imaging modalities. A limited number of topics related to radionuclide therapy will also be discussed. The proposal is to request partial funds for the workshop entitled ''Translational Applications of Molecular Imaging and Radionuclide Therapy'' to be held prior to the Society of Nuclear Medicine Annual Meeting in Toronto, Canada in June 2005. The meeting will be held on June 17-18. This will allow scientists interested in all aspects of nuclear medicine imaging to attend. The chair of the organizing group is Dr. Michael J. Welch. The organizing committee consists of Dr. Welch, Dr. William C. Eckelman and Dr. David Vera. The goal is to invite speakers to discuss the most recent advances of modern molecular imaging and therapy. Speakers will present advances made in in vivo tagging imaging assays, technical aspects of small animal imaging, in vivo imaging and bench to bedside translational study; and the role of a diagnostic scan on therapy selection. This latter topic will include discussions on therapy and new approaches to dosimetry. Several of these topics are those funded by the Department of Energy Office of Biological and Environmental Research

  10. Single dose methotrexate therapy: application to interstitial ectopic pregnancy.

    Science.gov (United States)

    Borgatta, L; Burnhill, M; Stubblefield, P

    1998-03-01

    A woman with a small (6-mm gestational sac) interstitial pregnancy had complete resolution after medical therapy alone. A single cycle of methotrexate 50 mg/m2 was used as outpatient treatment without any operative procedure either for diagnosis or intervention. The guidelines that have evolved for selection of women for single dose methotrexate treatment for both intrauterine and tubal ectopic pregnancies may be applicable to interstitial ectopic pregnancy as well. A suggested framework for treatment decisions is presented.

  11. Nanoparticle-Mediated p53 Gene Therapy for Breast Cancer

    National Research Council Canada - National Science Library

    Prabha, Swayam

    2003-01-01

    The effect of different formulation parameters on nanoparticle-mediated gene transfection in vitro was studied Nanoparticles encapsulating plasmid DNA encoding fire fly luciferase were formulated using poly lactide (PLA...

  12. Gene therapy for patients with advanced solid tumors

    DEFF Research Database (Denmark)

    Spanggaard, Iben; Dahlstroem, Karin; Laessoee, Line

    2017-01-01

    BACKGROUND: Gene electrotrotransfer describes the use of electric pulses to transfer DNA to cells. Particularly skeletal muscle has potential for systemic secretion of therapeutic proteins. Gene electrotransfer to muscle using the integrin inhibitor plasmid AMEP (Antiangiogenic MEtargidin Peptide......) was investigated in a phase I dose escalation study. Primary objective was safety. MATERIAL AND METHODS: Patients with metastatic or locally advanced solid tumors, without further standard treatments available, were treated with once-only gene electrotransfer of plasmid AMEP to the femoral muscle. Safety...... not be detected, which could be due to the limit of detection. No objective responses were seen. CONCLUSIONS: Gene electrotransfer of plasmid AMEP was found to be safe and tolerable. No objective responses were observed but other DNA drugs may be tested in the future using this procedure....

  13. Alpha(1,3) Galactosyltransferase Gene Therapy for Breast Cancer

    National Research Council Canada - National Science Library

    Link, Charles

    2003-01-01

    .... In vitro transduction of MCF-7, and T47D human breast cancer cells with an HSV amplicon vector resulted in expression of the suicide gene as detected by specific binding of labeled IB-4 isolectin...

  14. Rapid and Sensitive Assessment of Globin Chains for Gene and Cell Therapy of Hemoglobinopathies

    Science.gov (United States)

    Loucari, Constantinos C.; Patsali, Petros; van Dijk, Thamar B.; Stephanou, Coralea; Papasavva, Panayiota; Zanti, Maria; Kurita, Ryo; Nakamura, Yukio; Christou, Soteroulla; Sitarou, Maria; Philipsen, Sjaak; Lederer, Carsten W.; Kleanthous, Marina

    2018-01-01

    The β-hemoglobinopathies sickle cell anemia and β-thalassemia are the focus of many gene-therapy studies. A key disease parameter is the abundance of globin chains because it indicates the level of anemia, likely toxicity of excess or aberrant globins, and therapeutic potential of induced or exogenous β-like globins. Reversed-phase high-performance liquid chromatography (HPLC) allows versatile and inexpensive globin quantification, but commonly applied protocols suffer from long run times, high sample requirements, or inability to separate murine from human β-globin chains. The latter point is problematic for in vivo studies with gene-addition vectors in murine disease models and mouse/human chimeras. This study demonstrates HPLC-based measurements of globin expression (1) after differentiation of the commonly applied human umbilical cord blood–derived erythroid progenitor-2 cell line, (2) in erythroid progeny of CD34+ cells for the analysis of clustered regularly interspaced short palindromic repeats/Cas9-mediated disruption of the globin regulator BCL11A, and (3) of transgenic mice holding the human β-globin locus. At run times of 8 min for separation of murine and human β-globin chains as well as of human γ-globin chains, and with routine measurement of globin-chain ratios for 12 nL of blood (tested for down to 0.75 nL) or of 300,000 in vitro differentiated cells, the methods presented here and any variant-specific adaptations thereof will greatly facilitate evaluation of novel therapy applications for β-hemoglobinopathies. PMID:29325430

  15. Adenovirus-Mediated Gene Therapy Against Viral Biothreat Agents

    Science.gov (United States)

    2016-04-12

    economy. Vaccine development is an important strategy to thwart the threat of these viral biothreat agents. There is an urgent need to improve...Alberta, Tl A 8K6. Canada E-mail: josh. wu@drdc-rddc.gc.ca .• 78 JoshQ.H. Wu existing vaccines against these agents and to develop new ones. Gene...of vaccines against viral biothreat agents. Genes encoding protective antigens of viral biothreat agents can be carried by these viral vectors and

  16. Gene expression profiling by DNA microarrays and its application to dental research.

    Science.gov (United States)

    Kuo, Winston Patrick; Whipple, Mark E; Sonis, Stephen T; Ohno-Machado, Lucila; Jenssen, Tor-Kristian

    2002-10-01

    DNA microarray technology has been used for genome-wide gene expression studies that incorporate molecular genetics and computer science skills on massive levels. The technology permits the simultaneous analysis of tens of thousands of genes for the purposes of gene discovery, disease diagnosis. improved drug development, and therapeutics tailored to specific disease processes. In this review, the two most common microarray technologies and their potential application to dental research will be discussed. The authors review current articles pertaining to the technologies and analysis of mRNA expression using DNA micro-arrays and its application to dental research. Since many genes contribute to normal functioning, research efforts are moving from the search for a disease specific gene to the understanding of the biochemical and molecular functioning of a variety of genes and how complicated networks of interaction can lead to a disease state, such as oral cancer. With the incorporation of DNA micro-array based research, we can look forward to more accurate diagnosis and surgical treatment/drug-delivery therapy based on an individual patient's genetic profile.

  17. Editing CCR5: a novel approach to HIV gene therapy.

    Science.gov (United States)

    Cornu, Tatjana I; Mussolino, Claudio; Bloom, Kristie; Cathomen, Toni

    2015-01-01

    Acquired immunodeficiency syndrome (AIDS) is a life-threatening disorder caused by infection of individuals with the human immunodeficiency virus (HIV). Entry of HIV-1 into target cells depends on the presence of two surface proteins on the cell membrane: CD4, which serves as the main receptor, and either CCR5 or CXCR4 as a co-receptor. A limited number of people harbor a genomic 32-bp deletion in the CCR5 gene (CCR5∆32), leading to expression of a truncated gene product that provides resistance to HIV-1 infection in individuals homozygous for this mutation. Moreover, allogeneic hematopoietic stem cell (HSC) transplantation with CCR5∆32 donor cells seems to confer HIV-1 resistance to the recipient as well. However, since Δ32 donors are scarce and allogeneic HSC transplantation is not exempt from risks, the development of gene editing tools to knockout CCR5 in the genome of autologous cells is highly warranted. Targeted gene editing can be accomplished with designer nucleases, which essentially are engineered restriction enzymes that can be designed to cleave DNA at specific sites. During repair of these breaks, the cellular repair pathway often introduces small mutations at the break site, which makes it possible to disrupt the ability of the targeted locus to express a functional protein, in this case CCR5. Here, we review the current promise and limitations of CCR5 gene editing with engineered nucleases, including factors affecting the efficiency of gene disruption and potential off-target effects.

  18. Clustering Algorithms: Their Application to Gene Expression Data.

    Science.gov (United States)

    Oyelade, Jelili; Isewon, Itunuoluwa; Oladipupo, Funke; Aromolaran, Olufemi; Uwoghiren, Efosa; Ameh, Faridah; Achas, Moses; Adebiyi, Ezekiel

    2016-01-01

    Gene expression data hide vital information required to understand the biological process that takes place in a particular organism in relation to its environment. Deciphering the hidden patterns in gene expression data proffers a prodigious preference to strengthen the understanding of functional genomics. The complexity of biological networks and the volume of genes present increase the challenges of comprehending and interpretation of the resulting mass of data, which consists of millions of measurements; these data also inhibit vagueness, imprecision, and noise. Therefore, the use of clustering techniques is a first step toward addressing these challenges, which is essential in the data mining process to reveal natural structures and identify interesting patterns in the underlying data. The clustering of gene expression data has been proven to be useful in making known the natural structure inherent in gene expression data, understanding gene functions, cellular processes, and subtypes of cells, mining useful information from noisy data, and understanding gene regulation. The other benefit of clustering gene expression data is the identification of homology, which is very important in vaccine design. This review examines the various clustering algorithms applicable to the gene expression data in order to discover and provide useful knowledge of the appropriate clustering technique that will guarantee stability and high degree of accuracy in its analysis procedure.

  19. Short-term rescue of neonatal lethality in a mouse model of propionic acidemia by gene therapy.

    Science.gov (United States)

    Hofherr, Sean E; Senac, Julien S; Chen, Christopher Y; Palmer, Donna J; Ng, Philip; Barry, Michael A

    2009-02-01

    Propionic acidemia (PA) is a metabolic disorder that causes mental retardation and that can be fatal if untreated. PA is inherited in an autosomal recessive fashion involving mutations in PCCA or PCCB encoding the alpha and beta subunits of propionyl-CoA carboxylase (PCC). Current treatment is based on dietary restriction of substrate amino acids, which attenuates symptoms. However, patients still experience episodes of hyperammonemia that can cause progressive neurologic damage. In this paper, we have tested gene therapy approaches to PA in a stringent mouse model of PCCA deficiency, in which homozygous knockout mice are born but die within 36 hr. In this work, we have delivered first-generation and helper-dependent adenovirus serotype 5 (Ad5) vectors expressing the human PCCA cDNA by intraperitoneal injection into newborn mice. Unmodified Ad5 vectors mediated extensive transduction of the peritoneum with weak liver transduction as determined by luciferase imaging and dsRed expression. In contrast, modification of Ad5 with polyethylene glycol detargeted the virus from the peritoneum and retargeted it for transduction in the liver. When vectors expressing PCCA were injected, significant increases in life span were observed for both the unmodified and polyethylene glycol (PEG)-modified Ad5 vectors. However, this rescue was transient. Similarly, adeno-associated virus serotype 8-mediated transduction also produced only transient rescue. These data show first proof of principle for gene therapy of PA and demonstrate the potential utility of PEG to modify viral tropism in an actual gene therapy application.

  20. Development of a Nanotechnology Platform for Prostate Cancer Gene Therapy

    Science.gov (United States)

    2013-07-01

    fostering new, fruitful collaborations, leap-step advances, and ground-breaking discoveries. SCIENTIFIC PROGRAM Sunday October 3 rd , 2010...Univ., Netherlands Session Five: Tackling Nanomaterial–Tissue Interfaces to Improve Therapies and Diagnostics Nanocarriers for Antioxidants ...been the complexity of the design and assembly processes, resulting in non-uniform nanocarriers with unpredictable surface properties and effi ciencies

  1. Gene therapy pf HPV-16 induced tumours in rodents

    Czech Academy of Sciences Publication Activity Database

    Vonka, V.; Sobotková, E.; Šmahel, M.; Žák, R.; Hamšíková, E.; Bubeník, Jan

    1999-01-01

    Roč. 19, - (1999), s. 2014 ISSN 0250-7005. [Symposium on Local Cytokine Therapy of Cancer: Interleukin-2, Interferon and Related Cytokines /1./. Hamburg, 29.04.1999-01.05.1999] Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.375, year: 1999

  2. Motor Neuron Gene Therapy: Lessons from Spinal Muscular Atrophy for Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Tosolini, Andrew P; Sleigh, James N

    2017-01-01

    Spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS) are severe nervous system diseases characterized by the degeneration of lower motor neurons. They share a number of additional pathological, cellular, and genetic parallels suggesting that mechanistic and clinical insights into one disorder may have value for the other. While there are currently no clinical ALS gene therapies, the splice-switching antisense oligonucleotide, nusinersen, was recently approved for SMA. This milestone was achieved through extensive pre-clinical research and patient trials, which together have spawned fundamental insights into motor neuron gene therapy. We have thus tried to distil key information garnered from SMA research, in the hope that it may stimulate a more directed approach to ALS gene therapy. Not only must the type of therapeutic (e.g., antisense oligonucleotide vs. viral vector) be sensibly selected, but considerable thought must be applied to the where , which , what , and when in order to enhance treatment benefit: to where (cell types and tissues) must the drug be delivered and how can this be best achieved? Which perturbed pathways must be corrected and can they be concurrently targeted? What dosing regime and concentration should be used? When should medication be administered? These questions are intuitive, but central to identifying and optimizing a successful gene therapy. Providing definitive solutions to these quandaries will be difficult, but clear thinking about therapeutic testing is necessary if we are to have the best chance of developing viable ALS gene therapies and improving upon early generation SMA treatments.

  3. Motor Neuron Gene Therapy: Lessons from Spinal Muscular Atrophy for Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Andrew P. Tosolini

    2017-12-01

    Full Text Available Spinal muscular atrophy (SMA and amyotrophic lateral sclerosis (ALS are severe nervous system diseases characterized by the degeneration of lower motor neurons. They share a number of additional pathological, cellular, and genetic parallels suggesting that mechanistic and clinical insights into one disorder may have value for the other. While there are currently no clinical ALS gene therapies, the splice-switching antisense oligonucleotide, nusinersen, was recently approved for SMA. This milestone was achieved through extensive pre-clinical research and patient trials, which together have spawned fundamental insights into motor neuron gene therapy. We have thus tried to distil key information garnered from SMA research, in the hope that it may stimulate a more directed approach to ALS gene therapy. Not only must the type of therapeutic (e.g., antisense oligonucleotide vs. viral vector be sensibly selected, but considerable thought must be applied to the where, which, what, and when in order to enhance treatment benefit: to where (cell types and tissues must the drug be delivered and how can this be best achieved? Which perturbed pathways must be corrected and can they be concurrently targeted? What dosing regime and concentration should be used? When should medication be administered? These questions are intuitive, but central to identifying and optimizing a successful gene therapy. Providing definitive solutions to these quandaries will be difficult, but clear thinking about therapeutic testing is necessary if we are to have the best chance of developing viable ALS gene therapies and improving upon early generation SMA treatments.

  4. Clinical development of gene therapy: results and lessons from recent successes

    Directory of Open Access Journals (Sweden)

    Sandeep RP Kumar

    2016-01-01

    Full Text Available Therapeutic gene transfer holds the promise of providing lasting therapies and even cures for diseases that were previously untreatable or for which only temporary or suboptimal treatments were available. For some time, clinical gene therapy was characterized by some impressive but rare examples of successes and also several setbacks. However, effective and long-lasting treatments are now being reported from gene therapy trials at an increasing pace. Positive outcomes have been documented for a wide range of genetic diseases (including hematological, immunological, ocular, and neurodegenerative and metabolic disorders and several types of cancer. Examples include restoration of vision in blind patients, eradication of blood cancers for which all other treatments had failed, correction of hemoglobinopathies and coagulation factor deficiencies, and restoration of the immune system in children born with primary immune deficiency. To date, about 2,000 clinical trials for various diseases have occurred or are in progress, and many more are in the pipeline. Multiple clinical studies reported successful treatments of pediatric patients. Design of gene therapy vectors and their clinical development are advancing rapidly. This article reviews some of the major successes in clinical gene therapy of recent years.

  5. Efficacy of gene therapy for X-linked severe combined immunodeficiency.

    Science.gov (United States)

    Hacein-Bey-Abina, Salima; Hauer, Julia; Lim, Annick; Picard, Capucine; Wang, Gary P; Berry, Charles C; Martinache, Chantal; Rieux-Laucat, Frédéric; Latour, Sylvain; Belohradsky, Bernd H; Leiva, Lily; Sorensen, Ricardo; Debré, Marianne; Casanova, Jean Laurent; Blanche, Stephane; Durandy, Anne; Bushman, Frederic D; Fischer, Alain; Cavazzana-Calvo, Marina

    2010-07-22

    The outcomes of gene therapy to correct congenital immunodeficiencies are unknown. We reviewed long-term outcomes after gene therapy in nine patients with X-linked severe combined immunodeficiency (SCID-X1), which is characterized by the absence of the cytokine receptor common gamma chain. The nine patients, who lacked an HLA-identical donor, underwent ex vivo retrovirus-mediated transfer of gamma chain to autologous CD34+ bone marrow cells between 1999 and 2002. We assessed clinical events and immune function on long-term follow-up. Eight patients were alive after a median follow-up period of 9 years (range, 8 to 11). Gene therapy was initially successful at correcting immune dysfunction in eight of the nine patients. However, acute leukemia developed in four patients, and one died. Transduced T cells were detected for up to 10.7 years after gene therapy. Seven patients, including the three survivors of leukemia, had sustained immune reconstitution; three patients required immunoglobulin-replacement therapy. Sustained thymopoiesis was established by the persistent presence of naive T cells, even after chemotherapy in three patients. The T-cell-receptor repertoire was diverse in all patients. Transduced B cells were not detected. Correction of the immunodeficiency improved the patients' health. After nearly 10 years of follow-up, gene therapy was shown to have corrected the immunodeficiency associated with SCID-X1. Gene therapy may be an option for patients who do not have an HLA-identical donor for hematopoietic stem-cell transplantation and for whom the risks are deemed acceptable. This treatment is associated with a risk of acute leukemia. (Funded by INSERM and others.) 2010 Massachusetts Medical Society

  6. Alpha-1 Antitrypsin Gene Therapy Ameliorates Bone Loss in Ovariectomy-Induced Osteoporosis Mouse Model.

    Science.gov (United States)

    Akbar, Mohammad Ahsanul; Cao, Jay J; Lu, Yuanqing; Nardo, David; Chen, Mong-Jen; Elshikha, Ahmed S; Ahamed, Rubina; Brantly, Mark; Holliday, L Shannon; Song, Sihong

    2016-09-01

    Osteoporosis is a major healthcare burden affecting mostly postmenopausal women characterized by compromised bone strength and increased risk of fragility fracture. Although pathogenesis of this disease is complex, elevated proinflammatory cytokine production is clearly involved in bone loss at menopause. Therefore, anti-inflammatory strategies hold a great potential for the prevention of postmenopausal osteoporosis. In this study, we investigated the effect of gene therapy of recombinant adeno-associated virus (rAAV)-mediated human alpha-1 antitrypsin (hAAT), a multifunctional protein that has anti-inflammatory property, on bone loss in an ovariectomy-induced osteoporosis mouse model. Adult ovariectomized (OVX) mice were intraperitoneally (i.p.) injected with hAAT (protein therapy), rAAV8-CB-hAAT (gene therapy), or phosphate buffer saline (PBS). Age-matched and sham-operated animals were used as controls. Eight weeks after the treatment, animals were sacrificed and bone-related biomarkers and vertebral bone structure were evaluated. Results showed that hAAT gene therapy significantly decreased serum IL-6 level and receptor activator of NF-κB (RANK) gene expression in bone. Importantly, hAAT gene therapy increased bone volume/total volume and decreased structure model index (SMI) compared to PBS injection in OVX mice. These results demonstrate that hAAT gene therapy by rAAV vector efficiently mitigates bone loss possibly through inhibition of proinflammatory cytokine IL-6 and RANK gene expression. Considering the safety profile of hAAT and rAAV vector in humans, our results provide a new alternative for the treatment of osteoporosis.

  7. The combination of suicide gene therapy and radiation enhances the killing of nasopharyngeal carcinoma xenographs

    International Nuclear Information System (INIS)

    Xia Jiahui; Xia Kun; Feng Yong

    2004-01-01

    Nasopharyngeal carcinoma (NPC) is very common in Southern China and Southeast Asian countries. To explore a novel and more effective approach to NPC therapy, a combined strategy of suicide genes and radiation was designed in this study. Five suicide gene expression cassettes, yeast cytosine deaminase (CD), yeast CD/uracil phosphoribosyl-transferase (UPRT), and yeast CDglyTK gene controlled by CMV, and Egr-1 and a synthetic CMV-enhanced Egr-1 promoter (CE) were constructed in an expression vector p11MS. The expression of suicide genes in NPC CNE-2 cells were detected by reverse transcription polymerase chain reaction (RT-PCR) and Western blot. The cytotoxicity of suicide gene therapy and radiation were analyzed by MTT assay. An animal study in which yeast CD/UPRT-expressing CNE-2 tumors in nude mice were treated with 5-fluorocytosine (5-FC) and radiation was also developed. Our results revealed that p11MSCEyCD/UPRT and p11MSCEyCDglyTK are superior over three other constructs in the killing of NPC cells in vitro. We combined suicide gene-expressing tumors, 5-FC treatment, and radiation in vivo and found that the tumors greatly regressed, some disappeared completely in 3 nude mice in the yCD/UPRT group, and a significant difference of tumor volumes was observed between this group and the other four groups (p<0.05). Our results indicated that suicide gene therapy and radiation have a synergic effect on NPC therapy, and the combined strategy of radiogene therapy is of great potential as a substitute for the traditional method, radiation alone, in NPC therapies. (author)

  8. The Application of Nanomaterials in Stem Cell Therapy for Some Neurological Diseases.

    Science.gov (United States)

    Zhang, Guilong; Khan, Ahsan Ali; Wu, Hao; Chen, Lukui; Gu, Yuchun; Gu, Ning

    2018-02-08

    Stem cell therapy provides great promising therapeutic benefits for various neurological disorders. Cell transplantation has emerged as cell replacement application for nerve damage. Recently, nanomaterials obtain wide development in various industrial and medical fields, and nanoparticles have been applied in the neurological field for tracking and treating nervous system diseases. Combining stem cells with nanotechnology has raised more and more attentions; and it has demonstrated that the combination has huge effects on clinical diagnosis and therapeutics in multiple central nervous system diseases, meanwhile, improves prognosis. The aim of this review was to give a brief overview of the application of nanomaterials in stem cell therapy for neurological diseases. Nanoparticles not only promote stem cell proliferation and differentiation in vitro or in vivo, but also play dominant roles on stem cell imaging and tracking. Furthermore, via delivering genes or drugs, nanoparticles can participate in stem cell therapeutic applications for various neurological diseases, such as ischemic stroke, spinal cord injury (SCI), multiple sclerosis (MS), Parkinson's disease (PD), Alzheimer's disease (AD) and gliomas. However, nanoparticles have potential cytotoxic effects on nerve cells, which are related to their physicochemical properties. Nano-stem cell-based therapy as a promising strategy has the ability to affect neuronal repair and regeneration in the central nervous system. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Lentiviral hematopoietic stem cell gene therapy for X-linked severe combined immunodeficiency.

    Science.gov (United States)

    De Ravin, Suk See; Wu, Xiaolin; Moir, Susan; Anaya-O'Brien, Sandra; Kwatemaa, Nana; Littel, Patricia; Theobald, Narda; Choi, Uimook; Su, Ling; Marquesen, Martha; Hilligoss, Dianne; Lee, Janet; Buckner, Clarissa M; Zarember, Kol A; O'Connor, Geraldine; McVicar, Daniel; Kuhns, Douglas; Throm, Robert E; Zhou, Sheng; Notarangelo, Luigi D; Hanson, I Celine; Cowan, Mort J; Kang, Elizabeth; Hadigan, Coleen; Meagher, Michael; Gray, John T; Sorrentino, Brian P; Malech, Harry L; Kardava, Lela

    2016-04-20

    X-linked severe combined immunodeficiency (SCID-X1) is a profound deficiency of T, B, and natural killer (NK) cell immunity caused by mutations inIL2RGencoding the common chain (γc) of several interleukin receptors. Gamma-retroviral (γRV) gene therapy of SCID-X1 infants without conditioning restores T cell immunity without B or NK cell correction, but similar treatment fails in older SCID-X1 children. We used a lentiviral gene therapy approach to treat five SCID-X1 patients with persistent immune dysfunction despite haploidentical hematopoietic stem cell (HSC) transplant in infancy. Follow-up data from two older patients demonstrate that lentiviral vector γc transduced autologous HSC gene therapy after nonmyeloablative busulfan conditioning achieves selective expansion of gene-marked T, NK, and B cells, which is associated with sustained restoration of humoral responses to immunization and clinical improvement at 2 to 3 years after treatment. Similar gene marking levels have been achieved in three younger patients, albeit with only 6 to 9 months of follow-up. Lentiviral gene therapy with reduced-intensity conditioning appears safe and can restore humoral immune function to posthaploidentical transplant older patients with SCID-X1. Copyright © 2016, American Association for the Advancement of Science.

  10. Gene therapy in large animal models of human cardiovascular genetic disease.

    Science.gov (United States)

    Sleeper, Meg M; Bish, Lawrence T; Sweeney, H Lee

    2009-01-01

    Several naturally occurring animal models for human genetic heart diseases offer an excellent opportunity to evaluate potential novel therapies, including gene therapy. Some of these diseases--especially those that result in a structural defect during development (e.g., patent ductus arteriosus, pulmonic stenosis)--would likely be difficult to treat with a therapeutic gene transfer approach. However, the ability to transduce a significant proportion of the myocardial cells should make the various forms of inherited cardiomyopathy amenable to a therapeutic gene transfer approach. Adeno-associated virus may be the ideal vector for cardiac gene therapy since its low immunogenicity allows for stable transgene expression, a crucial factor when considering treatment of a chronic disease. Cardiomyopathies are a major cause of morbidity and mortality in both children and adults, and large animal models are available for the major forms of inherited cardiomyopathy (dilated cardiomyopathy, hypertrophic cardiomyopathy, and arrhythmogenic right ventricular cardiomyopathy). One of these animal models, juvenile dilated cardiomyopathy of Portuguese water dogs, offers an effective means to assess the efficacy of therapeutic gene transfer to alter the course of cardiomyopathy and heart failure. Correction of the abnormal metabolic processes that occur with heart failure (e.g., calcium metabolism, apoptosis) could normalize diseased myocardial function. Gene therapy may offer a promising new approach for the treatment of cardiac disease in both veterinary and human clinical settings.

  11. Approach of combined cancer gene therapy and radiation: response of promoters to ionizing radiation; Approche de therapie genique anti-cancereuse combinee a l'irradiation: etude de la reponse de promoteurs aux radiations ionisantes

    Energy Technology Data Exchange (ETDEWEB)

    Anstett, A

    2005-09-15

    Gene therapy is an emerging cancer treatment modality. We are interested in developing a radiation-inducible gene therapy system to sensitize the tumor vasculature to the effects of ionizing radiation (IR) treatment. An expression system based on irradiation-inducible promoters will drive the expression of anti-tumor genes in the tumor vasculature. Solid tumors are dependent on angio genesis, a process in which new blood vessels are formed from the pre-existing vasculature. Vascular endothelial cells are un transformed and genetically stable, thus avoiding the problem of resistance to the treatments. Vascular endothelial cells may therefore represent a suitable target for this therapeutic gene therapy strategy.The identification of IR-inducible promoters native to endothelial cells was performed by gene expression profiling using cDNA micro array technology. We describe the genes modified by clinically relevant doses of IR. The extension to high doses aimed at studying the effects of total radiation delivery to the tumor. The radio-inductiveness of the genes selected for promoter study was confirmed by RT-PCR. Analysis of the activity of promoters in response to IR was also assessed in a reporter plasmid. We found that authentic promoters cloned onto a plasmid are not suitable for cancer gene therapy due to their low induction after IR. In contrast, synthetic promoters containing repeated sequence-specific binding sites for IR-activated transcription factors such as NF-{kappa}B are potential candidates for gene therapy. The activity of five tandemly repeated TGGGGACTTTCCGC elements for NF-{kappa}B binding in a luciferase reporter was increased in a dose-dependent manner. Interestingly, the response to fractionated low doses was improved in comparison to the total single dose. Thus, we put present evidence that a synthetic promoter for NF-{kappa}B specific binding may have application in the radio-therapeutic treatment of cancer. (author)

  12. Theranostic Applications of Lutetium-177 in Radionuclide Therapy.

    Science.gov (United States)

    Das, Tapas; Banerjee, Sharmila

    2016-01-01

    Lutetium-177 has been widely discussed as a radioisotope of choice for targeted radionuclide therapy. The simultaneous emission of imageable gamma photons [208 keV (11%) and 113 keV (6.4%)] along with particulate β(-) emission [β(max) = 497 keV] makes it a theranostically desirable radioisotope. In the present article, the possibility of using two 177Lu-based agents viz. 177Lu-EDTMP and 177Lu-DOTATATE for theranostic applications in metastatic bone pain palliation (MBPP) and peptide receptor radionuclide therapy (PRRT), have been explored. In the case of 177Lu-EDTMP, the whole-body images obtained are compared with those recorded using 99mTc-MDP in the same patient. On the other hand, pre-therapy images acquired with 177Lu-DOTA-TATE are compared with similar images obtained with standard agents, such as 99mTc-HYNIC-TOC (SPECT) and 68Ga-DOTA-TOC (PET) in the same patient. The advantage of the long physical half-life (T1/2) of 177Lu has been utilized in mapping the pharmacokinetics of two additional agents, 177Lu-labeled hydroxyapatite (HA) in radiation synovectomy of knee joints and 177Lu-HA for therapy of hepatocellular carcinoma. Results of these multiple studies conclusively document the potential of 177Lu as a theranostic radioisotope.

  13. Comparisons of three polyethyleneimine-derived nanoparticles as a gene therapy delivery system for renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Wei Yuquan

    2011-04-01

    Full Text Available Abstract Background Polyethyleneimine (PEI, which can interact with negatively charged DNA through electrostatic interaction to form nanocomplexes, has been widely attempted to use as a gene delivery system. However, PEI has some defects that are not fit for keeping on gene expression. Therefore, some modifications against PEI properties have been done to improve their application value in gene delivery. In this study, three modified PEI derivatives, including poly(ε-caprolactone-pluronic-poly(ε-caprolactone grafted PEI (PCFC-g-PEI, folic acid-PCFC-isophorone diidocyanate-PEI (FA-PEAs and heparin-PEI (HPEI, were evaluated in terms of their cytotoxicity and transfection efficiency in vitro and in vivo in order to ascertain their potential application in gene therapy. Methods MTT assay and a marker GFP gene, encoding green fluorescent protein, were used to evaluate cell toxicity and transfection activity of the three modified PEI in vitro. Renal cell carcinoma (RCC models were established in BALB/c nude mice inoculated with OS-RC-2 cells to detect the gene therapy effects using the three PEI-derived nanoparticles as gene delivery vehicles. The expression status of a target gene Von Hippel-Lindau (VHL in treated tumor tissues was analyzed by semiquantitative RT-PCR and immunohistochemistry. Results Each of three modified PEI-derived biomaterials had an increased transfection efficiency and a lower cytotoxicity compared with its precursor PEI with 25-kD or 2-kD molecule weight in vitro. And the mean tumor volume was obviously decreased 30% by using FA-PEAs to transfer VHL plasmids to treat mice RCC models. The VHL gene expression was greatly improved in the VHL-treated group. While there was no obvious tumor inhibition treated by PCFC-g-PEI:VHL and HPEI:VHL complexes. Conclusions The three modified PEI-derived biomaterials, including PCFC-g-PEI, FA-PEAs and HPEI, had an increased transfection efficiency in vitro and obviously lower toxicities

  14. FDA Regulation of Clinical Applications of CRISPR-CAS Gene-Editing Technology.

    Science.gov (United States)

    Grant, Evita V

    Scientists have repurposed an adaptive immune system of single cell organisms to create a new type of gene-editing tool: CRISPR (clustered regularly interspaced short palindromic repeats)-Cas technology. Scientists in China have reported its use in the genome modification of non-viable human embryos. This has ignited a spirited debate about the moral, ethical, scientific, and social implications of human germline genome engineering. There have also been calls for regulations; however, FDA has yet to formally announce its oversight of clinical applications of CRISPR-Cas systems. This paper reviews FDA regulation of previously controversial biotechnology breakthroughs, recombinant DNA and human cloning. It then shows that FDA is well positioned to regulate CRISPR-Cas clinical applications, due to its legislative mandates, its existing regulatory frameworks for gene therapies and assisted reproductive technologies, and other considerations.

  15. Mesenchymal stem cell therapy for nonmusculoskeletal diseases: emerging applications.

    Science.gov (United States)

    Kuo, Tom K; Ho, Jennifer H; Lee, Oscar K

    2009-01-01

    Mesenchymal stem cells are stem/progenitor cells originated from the mesoderm and can different into multiple cell types of the musculoskeletal system. The vast differentiation potential and the relative ease for culture expansion have established mesenchymal stem cells as the building blocks in cell therapy and tissue engineering applications for a variety of musculoskeletal diseases, including repair of fractures and bone defects, cartilage regeneration, treatment of osteonecrosis of the femoral head, and correction of genetic diseases such as osteogenesis imperfect. However, research in the past decade has revealed differentiation potentials of mesenchymal stem cells beyond lineages of the mesoderm, suggesting broader applications than originally perceived. In this article, we review the recent developments in mesenchymal stem cell research with respect to their emerging properties and applications in nonmusculoskeletal diseases.

  16. Adenovirus-derived vectors for prostate cancer gene therapy

    Czech Academy of Sciences Publication Activity Database

    de Vrij, J.; Willemsen, R. A.; Lindholm, L.; Hoeben, R. C.; Bangma, Ch. H.; Barber, Ch.; Behr, J.-P.; Briggs, S.; Carlisle, R.; Cheng, W.-S.; Dautzenberg, I. J. C.; de Ridder, C.; Dzojic, H.; Erbacher, P.; Essand, M.; Fisher, K.; Frazier, A.; Georgopoulos, L. J.; Jennings, I.; Kochanek, S.; Koppers-Lalic, D.; Kraaij, R.; Kreppel, F.; Magnusson, M.; Maitland, N.; Neuberg, P.; Nugent, R.; Ogris, M.; Remy, J.-S.; Scaife, M.; Schenk, E.; Schooten, E.; Seymour, L.; Slade, M.; Szyjanowicz, P.; Totterman, T.; Uil, T. G.; Ulbrich, Karel; van der Weel, L.; van Weerden, W.; Wagner, E.; Zuber, G.

    2010-01-01

    Roč. 21, č. 7 (2010), s. 795-805 ISSN 1043-0342 EU Projects: European Commission(XE) 512087 - GIANT Keywords : adenovirus * gene delivery * prostate cancer Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.829, year: 2010

  17. IL-10 gene therapy prevents TNBS-induced colitis

    NARCIS (Netherlands)

    Lindsay, J.; van Montfrans, C.; Brennan, F.; van Deventer, S.; Drillenburg, P.; Hodgson, H.; te Velde, Anje; Sol Rodriguez Pena, M.

    2002-01-01

    The transfer of genes encoding immunomodulatory proteins to the intestinal mucosa is a promising new approach to the treatment of Crohn's disease (CD). This study investigates the therapeutic efficacy of an adenoviral vector encoding IL-10 (AdvmuIL-10) in experimental colitis. BALB/c mice were

  18. State-of-the-art 2003 on PKU gene therapy

    OpenAIRE

    Ding, Zhaobing; Harding, Cary O.; Thöny, Beat

    2004-01-01

    Phenylketonuria (or PKU) is a well-known and widespread genetic disease for which many countries perform newborn screening, and life-long dietary restriction is still the ultimate and effective therapy. However, the diet is complicated, unpalatable, and expensive. The long-term effects of diet discontinuation in adults, except for the serious adverse effects of maternal hyperphenylalaninemia upon the developing fetus, have not been systematically studied, but congnitive decline and neurologic...

  19. Terapia génica con citocinas contra cáncer cervicouterino Gene therapy with cytokines against cervical cancer

    Directory of Open Access Journals (Sweden)

    Víctor Hugo Bermúdez-Morales

    2005-12-01

    Full Text Available La terapia génica es una excelente alternativa para el tratamiento de muchas enfermedades. La capacidad para manipular el DNA ha permitido dirigir la terapia génica para corregir la función de un gen alterado, aumentar la expresión de un gen o activar la respuesta inmune. Así, se puede proponer el uso del DNA como un medicamento capaz de controlar, corregir o curar una enfermedad. La terapia génica contra cáncer tiene un potencial enorme, y en la última década se han obtenido resultados muy alentadores del uso del DNA para controlar diversas neoplasias en modelos animales, lo cual ha permitido su aplicación en protocolos experimentales en humanos. Esta revisión concentra una reseña de los fundamentos de la terapia génica y su aplicación en cáncer cervical, desde el punto de vista de las alteraciones de la respuesta inmune enfocadas al microambiente tumoral y el uso de las citocinas como moduladores de la respuesta inmune.Gene therapy is an excellent alternative for treatment of many diseases. Capacity to manipulate the DNA has allowed direct the gene therapy to correct the function of an altered gene, to increase the expression of a gene and to favour the activation of the immune response. This way, it can intend the use of the DNA like medication able to control, to correct or to cure many diseases. Gene therapy against cancer has an enormous potential, and actually the use of the DNA has increased to control diverse cancer in animal models, with very encouraging results that have allowed its applications in experimental protocols in human. This work concentrates a review of the foundations of the gene therapy and its application on cervical cancer, from the point of view of the alterations of the immune system focused on the tumour micro-environment, and the use of the cytokines as immunomodulators.

  20. In vivo and in vitro experimental study on cervix cancer with combination of HSV-TK/GCV suicide gene therapy system and 60Co radiotherapy

    International Nuclear Information System (INIS)

    Chen Daozhen; Xue Wenqun; Zhan Huiying; Zhu Yunxia; Yang Youyi; Liu Lu; Tang Qiusha

    2006-01-01

    Objective: To evaluate the killing effect of HSV-TK/GCV suicide gene therapy system combined with 60 Co radiotherapy on human cervical cancer HeLa cell line in vivo and in vitro, and to explore radiosensitization by the HSV-TK/GCV system. Methods: The HSV-TK/GCV suicide gene therapy system and 60 Co radiotherapy were used separately or in combination for human cervical cancer HeLa cell line in vivo and in vitro to compare their effects. Colony formation test and the rate of radiosensitization effect(E/O) were employed to observed the radiosensitization by the HSV-TK/GCV system. Results: The HSV-TK/GCV suicide gene therapy system showed strong therapeutic effects on HeLa cells both in vitro and in vivo (the inhibition rates were 45.8% and 39.5%, respectively). Moreover, the combined application of gene therapy and radiotherapy exhibited stronger therapeutic effects in vitro and in vivo (the inhibition rate was 87.5% in vitro, and was 87.9% in vivo) (P 1.4), indicating the HSV-TK/GCV system could exert a sensitizing effect on 60 Co radiotherapy of the transplanted human cervical cancer cells in nude mice. Conclusion: The HSV-TK/GCV system has radiosensitizationaction. Gene therapy combined with radiotherapy may be a good supplementary method for synthetic treatment of cervical cancer. (authors)

  1. Applicator-guided intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Low, Daniel A.; Grigsby, Perry W.; Dempsey, James F.; Mutic, Sasa; Williamson, Jeffrey F.; Markman, Jerry; Chao, K.S. Clifford; Klein, Eric E.; Purdy, James A.

    2002-01-01

    Purpose: We are introducing a novel method for delivering highly conformal dose distributions to cervical cancer tumors using external beam intensity-modulated radiation therapy. The method, termed applicator-guided intensity-modulated radiation therapy (AGIMRT), will use an applicator substitute placed in the vagina and uterus to provide spatial registration and immobilization of the gynecologic organs. The main reason for the applicator substitute will be to localize the fornices, cervix, and uterus with the expectation that the other nearby organs will also be reproducibly positioned with respect to the applicator substitute. Intensity-modulated radiation therapy (IMRT) dose distributions will be used as a substitute for high-dose-rate intracavitary brachytherapy procedures. The flexibility of IMRT will enable customized dose distributions that have the potential to reduce complications and improve local control, especially for locally advanced disease. Methods and Materials: To test the advantages of IMRT over intracavitary brachytherapy, volumetric scans of three cervical cancer patients were obtained with implanted CT-compatible applicators. IMRT dose distribution simulations using tomotherapy, were compared against intracavitary brachytherapy using cesium tubes to investigate the dosimetric differences of the two modalities. Because these tumor volumes do not image well on CT, the target volumes were defined as the isodose surface containing the traditional point A, defined as 2 cm superior to the vaginal fornices and 2 cm lateral to the intrauterine canal. One patient had a uterus that wrapped superior and anterior to the bladder. For this case, the cervix and uterus were selected as the target volume. To determine the potential for using an applicator substitute to localize internal organs, the posterior bladder and anterior rectal surfaces were localized relative to the colpostats. Comparisons of the colpostat-localized surfaces were conducted for two

  2. A novel double-enhanced suicide gene therapy in a colon cancer cell line mediated by gef and apoptin.

    Science.gov (United States)

    Boulaiz, Houria; Aránega, Antonia; Cáceres, Blanca; Blanca, Cáceres; Alvarez, Pablo; Pablo, Alvarez; Serrano-Rodríguez, Fernando; Fernando, Rodríguez-Serrano; Carrillo, Esmeralda; Esmeralda, Carrillo; Melguizo, Consolación; Consolación, Melguizo; Prados, Jose; Jose, Prados

    2014-02-01

    Double-suicide gene therapy is a promising strategy for the treatment of advanced cancer. It has become an important research line in the development of gene therapy to overcome the drawbacks of single-gene therapy. The aim of this study was to investigate the usefulness of double-suicide gene therapy with the two suicide genes, gef and apoptin, in colon carcinoma. gef and apoptin genes were cloned into a doxycycline-regulated retrovirus-mediated gene expression system. Expression of both genes in the DLD-1 cell line was confirmed by reverse transcriptase polymerase chain reaction (RT-PCR). Cell viability was determined with the sulforhodamine B colorimetric assay, and the cell cycle was studied by propidium iodide (PI) staining. Annexin V-FITC and PI assays were used to evaluate apoptosis, and the results were confirmed by electron microscopy. The mitochondrial membrane potential was measured by JC-1 assay. Our results showed that the combined expression of gef and apoptin genes was strikingly more effective than the expression of either gene alone. Co-expression of gef and apoptin synergistically enhanced the decrease in cell viability, increasing necrosis and inducing apoptosis in colon cancer cells via the mitochondrial pathway, which can be deficient in advanced or metastatic colon cancer. Double-suicide gene therapy based on gef and apoptin genes may be a candidate for the development of new colon cancer strategies, and further studies are warranted to establish the usefulness of double-suicide gene therapy in vivo.

  3. Development of a Nature-Inspired Vector for Targeted Systemic Breast Cancer Gene Therapy

    Science.gov (United States)

    2008-09-01

    Pharmaceutical Sciences P.O. Box 646534, Wegner Hall 309 Pullman, WA 99164-6534 9. SPONSORING / MONITORING AGENCY NAME(S) AND...INTRODUCTION 1 Gene therapy is perceived as a ground-breaking new technology with the promise to cure 2 almost any disease , provided that we understand its...therapy of cancer, cardiovascular disease , wound 15 healing, and many other diseases . 16 17 MATERIALS AND METHODS 18 Cloning, expression, and

  4. Immunologic applications of conditional gene modification technology in the mouse.

    Science.gov (United States)

    Sharma, Suveena; Zhu, Jinfang

    2014-04-02

    Since the success of homologous recombination in altering mouse genome and the discovery of Cre-loxP system, the combination of these two breakthroughs has created important applications for studying the immune system in the mouse. Here, we briefly summarize the general principles of this technology and its applications in studying immune cell development and responses; such implications include conditional gene knockout and inducible and/or tissue-specific gene over-expression, as well as lineage fate mapping. We then discuss the pros and cons of a few commonly used Cre-expressing mouse lines for studying lymphocyte development and functions. We also raise several general issues, such as efficiency of gene deletion, leaky activity of Cre, and Cre toxicity, all of which may have profound impacts on data interpretation. Finally, we selectively list some useful links to the Web sites as valuable mouse resources. Copyright © 2014 John Wiley & Sons, Inc.

  5. Combinatorial RNA-based gene therapy for the treatment of HIV/AIDS.

    Science.gov (United States)

    Chung, Janet; DiGiusto, David L; Rossi, John J

    2013-03-01

    HIV/AIDS continues to be a worldwide health problem and viral eradication has been an elusive goal. HIV+ patients are currently treated with combination antiretroviral therapy (cART) which is not curative. For many patients, cART is inaccessible, intolerable or unaffordable. Therefore, a new class of therapeutics for HIV is required to overcome these limitations. Cell and gene therapy for HIV has been proposed as a way to provide a functional cure for HIV in the form of a virus/infection resistant immune system. In this review, the authors describe the standard therapy for HIV/AIDS, its limitations, current areas of investigation and the potential of hematopoietic stem cells modified with anti-HIV RNAs as a means to affect a functional cure for HIV. Cell and gene therapy for HIV/AIDS is a promising alternative to antiviral drug therapy and may provide a functional cure. In order to show clinical benefit, multiple mechanisms of inhibition of HIV entry and lifecycle are likely to be required. Among the most promising antiviral strategies is the use of transgenic RNA molecules that provide protection from HIV infection. When these molecules are delivered as gene-modified hematopoietic stem and progenitor cells, long-term repopulation of the patient's immune system with gene-modified progeny has been observed.

  6. p53 as the focus of gene therapy: past, present and future.

    Science.gov (United States)

    Valente, Joana Fa; Queiroz, Joao A; Sousa, Fani

    2018-01-15

    Several gene deviations can be responsible for triggering oncogenic processes. However, mutations in tumour suppressor genes are usually more associated to malignant diseases, being p53 one of the most affected and studied element. p53 is implicated in a number of known cellular functions, including DNA damage repair, cell cycle arrest in G1/S and G2/M and apoptosis, being an interesting target for cancer treatment. Considering these facts, the development of gene therapy approaches focused on p53 expression and regulation seems to be a promising strategy for cancer therapy. Several studies have shown that transfection of cancer cells with wild-type p53 expressing plasmids could directly drive cells into apoptosis and/or growth arrest, suggesting that a gene therapy approach for cancer treatment can be based on the re-establishment of the normal p53 expression levels and function. Up until now, several clinical research studies using viral and non-viral vectors delivering p53 genes, isolated or combined with other therapeutic agents, have been accomplished and there are already in the market therapies based on the use of this gene. This review summarizes the different methods used to deliver and/or target the p53 as well as the main results of therapeutic effect obtained with the different strategies applied. Finally, the ongoing approaches are described, also focusing the combinatorial therapeutics to show the increased therapeutic potential of combining gene therapy vectors with chemo or radiotherapy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Gene therapy for inherited retinal degenerations: initial successes and future challenges

    Science.gov (United States)

    Gupta, Priya R.; Huckfeldt, Rachel M.

    2017-10-01

    Inherited retinal degenerations are a clinically and genetically heterogeneous group of conditions that have historically shared an untreatable course. In recent years, however, a wide range of therapeutic strategies have demonstrated efficacy in preclinical studies and entered clinical trials with a common goal of improving visual function for patients affected with these conditions. Gene therapy offers a particularly elegant and precise opportunity to target the causative genetic mutations underlying these monogenic diseases. The present review will provide an overview of gene therapy with particular emphasis on key clinical results to date and challenges for the future.

  8. HIV-1 CCR5 gene therapy will fail unless it is combined with a suicide gene

    NARCIS (Netherlands)

    Pandit, Aridaman; de Boer, Rob J

    2015-01-01

    Highly active antiretroviral therapy (ART) has successfully turned Human immunodeficiency virus type 1 (HIV-1) from a deadly pathogen into a manageable chronic infection. ART is a lifelong therapy which is both expensive and toxic, and HIV can become resistant to it. An alternative to lifelong ART

  9. Genome-wide target profiling of piggyBac and Tol2 in HEK 293: pros and cons for gene discovery and gene therapy

    Science.gov (United States)

    2011-01-01

    Background DNA transposons have emerged as indispensible tools for manipulating vertebrate genomes with applications ranging from insertional mutagenesis and transgenesis to gene therapy. To fully explore the potential of two highly active DNA transposons, piggyBac and Tol2, as mammalian genetic tools, we have conducted a side-by-side comparison of the two transposon systems in the same setting to evaluate their advantages and disadvantages for use in gene therapy and gene discovery. Results We have observed that (1) the Tol2 transposase (but not piggyBac) is highly sensitive to molecular engineering; (2) the piggyBac donor with only the 40 bp 3'-and 67 bp 5'-terminal repeat domain is sufficient for effective transposition; and (3) a small amount of piggyBac transposases results in robust transposition suggesting the piggyBac transpospase is highly active. Performing genome-wide target profiling on data sets obtained by retrieving chromosomal targeting sequences from individual clones, we have identified several piggyBac and Tol2 hotspots and observed that (4) piggyBac and Tol2 display a clear difference in targeting preferences in the human genome. Finally, we have observed that (5) only sites with a particular sequence context can be targeted by either piggyBac or Tol2. Conclusions The non-overlapping targeting preference of piggyBac and Tol2 makes them complementary research tools for manipulating mammalian genomes. PiggyBac is the most promising transposon-based vector system for achieving site-specific targeting of therapeutic genes due to the flexibility of its transposase for being molecularly engineered. Insights from this study will provide a basis for engineering piggyBac transposases to achieve site-specific therapeutic gene targeting. PMID:21447194

  10. Genome-wide target profiling of piggyBac and Tol2 in HEK 293: pros and cons for gene discovery and gene therapy

    Directory of Open Access Journals (Sweden)

    Yu Robert K

    2011-03-01

    Full Text Available Abstract Background DNA transposons have emerged as indispensible tools for manipulating vertebrate genomes with applications ranging from insertional mutagenesis and transgenesis to gene therapy. To fully explore the potential of two highly active DNA transposons, piggyBac and Tol2, as mammalian genetic tools, we have conducted a side-by-side comparison of the two transposon systems in the same setting to evaluate their advantages and disadvantages for use in gene therapy and gene discovery. Results We have observed that (1 the Tol2 transposase (but not piggyBac is highly sensitive to molecular engineering; (2 the piggyBac donor with only the 40 bp 3'-and 67 bp 5'-terminal repeat domain is sufficient for effective transposition; and (3 a small amount of piggyBac transposases results in robust transposition suggesting the piggyBac transpospase is highly active. Performing genome-wide target profiling on data sets obtained by retrieving chromosomal targeting sequences from individual clones, we have identified several piggyBac and Tol2 hotspots and observed that (4 piggyBac and Tol2 display a clear difference in targeting preferences in the human genome. Finally, we have observed that (5 only sites with a particular sequence context can be targeted by either piggyBac or Tol2. Conclusions The non-overlapping targeting preference of piggyBac and Tol2 makes them complementary research tools for manipulating mammalian genomes. PiggyBac is the most promising transposon-based vector system for achieving site-specific targeting of therapeutic genes due to the flexibility of its transposase for being molecularly engineered. Insights from this study will provide a basis for engineering piggyBac transposases to achieve site-specific therapeutic gene targeting.

  11. Genome-wide target profiling of piggyBac and Tol2 in HEK 293: pros and cons for gene discovery and gene therapy.

    Science.gov (United States)

    Meir, Yaa-Jyuhn J; Weirauch, Matthew T; Yang, Herng-Shing; Chung, Pei-Cheng; Yu, Robert K; Wu, Sareina C-Y

    2011-03-30

    DNA transposons have emerged as indispensible tools for manipulating vertebrate genomes with applications ranging from insertional mutagenesis and transgenesis to gene therapy. To fully explore the potential of two highly active DNA transposons, piggyBac and Tol2, as mammalian genetic tools, we have conducted a side-by-side comparison of the two transposon systems in the same setting to evaluate their advantages and disadvantages for use in gene therapy and gene discovery. We have observed that (1) the Tol2 transposase (but not piggyBac) is highly sensitive to molecular engineering; (2) the piggyBac donor with only the 40 bp 3'-and 67 bp 5'-terminal repeat domain is sufficient for effective transposition; and (3) a small amount of piggyBac transposases results in robust transposition suggesting the piggyBac transpospase is highly active. Performing genome-wide target profiling on data sets obtained by retrieving chromosomal targeting sequences from individual clones, we have identified several piggyBac and Tol2 hotspots and observed that (4) piggyBac and Tol2 display a clear difference in targeting preferences in the human genome. Finally, we have observed that (5) only sites with a particular sequence context can be targeted by either piggyBac or Tol2. The non-overlapping targeting preference of piggyBac and Tol2 makes them complementary research tools for manipulating mammalian genomes. PiggyBac is the most promising transposon-based vector system for achieving site-specific targeting of therapeutic genes due to the flexibility of its transposase for being molecularly engineered. Insights from this study will provide a basis for engineering piggyBac transposases to achieve site-specific therapeutic gene targeting.

  12. Obesity and its therapy: from genes to community action.

    Science.gov (United States)

    Skelton, Joseph A; DeMattia, Laure; Miller, Lawrence; Olivier, Michael

    2006-08-01

    Like many diseases, the causes of obesity are complex, and their investigation requires novel approaches. Given the many contributors to our weight status, as well as the dynamic nature, genomic tools must be applied in an ecological model. Evaluating disparate factors can be difficult, such as feeding behavior, nutritional genomics, and gene-environment interaction. Many of these behaviors are being evaluated in animal models and hold great promise for targeted interventions in the future.

  13. Neurogenetics and gene therapy for reward deficiency syndrome: are we going to the Promised Land?

    Science.gov (United States)

    Blum, Kenneth; Thanos, Peter K; Badgaiyan, Rajendra D; Febo, Marcelo; Oscar-Berman, Marlene; Fratantonio, James; Demotrovics, Zsolt; Gold, Mark S

    2015-07-01

    Addiction is a substantial health issue with limited treatment options approved by the FDA and as such currently available. The advent of neuroimaging techniques that link neurochemical and neurogenetic mechanisms to the reward circuitry brain function provides a framework for potential genomic-based therapies. Through candidate and genome-wide association studies approaches, many gene polymorphisms and clusters have been implicated in drug, food and behavioral dependence linked by the common rubric reward deficiency syndrome (RDS). The results of selective studies that include the role of epigenetics, noncoding micro RNAs in RDS behaviors especially drug abuse involving alcohol, opioids, cocaine, nicotine, pain and feeding are reviewed in this article. New targets for addiction treatment and relapse prevention, treatment alternatives such as gene therapy in animal models, and pharmacogenomics and nutrigenomics methods to manipulate transcription and gene expression are explored. The recognition of the clinical benefit of early genetic testing to determine addiction risk stratification and dopaminergic agonistic, rather than antagonistic therapies are potentially the genomic-based wave of the future. In addition, further development, especially in gene transfer work and viral vector identification, could make gene therapy for RDS a possibility in the future.

  14. Development of gene therapy: potential in severe combined immunodeficiency due to adenosine deaminase deficiency

    Directory of Open Access Journals (Sweden)

    Claudia A Montiel-Equihua

    2009-12-01

    Full Text Available Claudia A Montiel-Equihua, Adrian J Thrasher, H Bobby GasparCentre for Immunodeficiency, Molecular Immunology Unit, UCL Institute of Child Health, London, UKAbstract: The history of stem cell gene therapy is strongly linked to the development of gene therapy for severe combined immunodeficiencies (SCID and especially adenosine deaminase (ADA-deficient SCID. Here we discuss the developments achieved in over two decades of clinical and laboratory research that led to the establishment of a protocol for the autologous transplant of retroviral vector-mediated gene-modified hematopoietic stem cells, which has proved to be both successful and, to date, safe. Patients in trials in three different countries have shown long-term immunological and metabolic correction. Nevertheless, improvements to the safety profile of viral vectors are underway and will undoubtedly reinforce the position of stem cell gene therapy as a treatment option for ADA-SCID.Keywords: adenosine deaminase, severe combined immunodeficiency, gene therapy, hematopoietic stem cell, retrovirus, clinical trial

  15. Application of Ferriferous Oxide Modified by Chitosan in Gene Delivery

    Directory of Open Access Journals (Sweden)

    Yu Kuang

    2012-01-01

    Full Text Available New approaches to improve the traditional gene carriers are still required. Here we explore Fe3O4 modified with degradable polymers that enhances gene delivery and target delivery using permanent magnetic field. Two magnetic Fe3O4 nanoparticles coated with chitosan (CTS and polyethylene glycol (PEG were synthesized by means of controlled chemical coprecipitation. Plasmid pEGFP was encapsulated as a reported gene. The ferriferous oxide complexes were approximately spherical; surface charge of CTS-Fe3O4 and PEG-Fe3O4 was about 20 mv and 0 mv, respectively. The controlled release of DNA from the CTS-Fe3O4 nanoparticles was observed. Concurrently, a desired Fe3O4 concentration of less than 2 mM was verified as safe by means of a cytotoxicity test in vitro. Presence of the permanent magnetic field significantly increased the transfection efficiency. Furthermore, the passive target property and safety of magnetic nanoparticles were also demonstrated in an in vivo test. The novel gene delivery system was proved to be an effective tool required for future target expression and gene therapy in vivo.

  16. Suicidal gene therapy with rabbit cytochrome P450 4B1/4-ipomeanol, 2-aminoanthracene system in glioma cell

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Su Jin; Kang, Joo Hyun; Kim, Kwang Il; Lee, Tae Sup; Lee, Yong Jin; Woo, Kwang Sun; Chung, Wee Sup; Cheon, Gi Jeong; Choi, Chang Woon; Lim, Sang Moo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2010-10-15

    Suicidal gene therapy is based on the transduction of tumor cells with 'suicide' genes encoding for prodrugactivating enzymes that render target cells susceptible to prodrug treatment. Suicidal gene therapy results in the death of tumor with the expression of gene encoding enzyme that converts non-toxic prodrug into cytotoxic product. Cytochrome P450 4B1 (CYP4B1) activates 4- ipomeanol (4-ipo) and 2-aminoanthracene (2-AA) to cytotoxic furane epoxide and unsaturated dialdehyde intermediate. In this study, therapeutic effects of suicidal gene therapy with rabbit CYP4B1/4-ipo or CYP4B1/2-AA system

  17. Suicidal gene therapy with rabbit cytochrome P450 4B1/4-ipomeanol, 2-aminoanthracene system in glioma cell

    International Nuclear Information System (INIS)

    Jang, Su Jin; Kang, Joo Hyun; Kim, Kwang Il; Lee, Tae Sup; Lee, Yong Jin; Woo, Kwang Sun; Chung, Wee Sup; Cheon, Gi Jeong; Choi, Chang Woon; Lim, Sang Moo

    2010-01-01

    Suicidal gene therapy is based on the transduction of tumor cells with 'suicide' genes encoding for prodrugactivating enzymes that render target cells susceptible to prodrug treatment. Suicidal gene therapy results in the death of tumor with the expression of gene encoding enzyme that converts non-toxic prodrug into cytotoxic product. Cytochrome P450 4B1 (CYP4B1) activates 4- ipomeanol (4-ipo) and 2-aminoanthracene (2-AA) to cytotoxic furane epoxide and unsaturated dialdehyde intermediate. In this study, therapeutic effects of suicidal gene therapy with rabbit CYP4B1/4-ipo or CYP4B1/2-AA system

  18. WT1-specific T cell receptor gene therapy: improving TCR function in transduced T cells.

    Science.gov (United States)

    Stauss, Hans J; Thomas, Sharyn; Cesco-Gaspere, Michela; Hart, Daniel P; Xue, Shao-An; Holler, Angelika; King, Judy; Wright, Graham; Perro, Mario; Pospori, Constantina; Morris, Emma

    2008-01-01

    Adoptive transfer of antigen-specific T lymphocytes is an attractive form of immunotherapy for haematological malignancies and cancer. The difficulty of isolating antigen-specific T lymphocytes for individual patients limits the more widespread use of adoptive T cell therapy. The demonstration that cloned T cell receptor (TCR) genes can be used to produce T lymphocyte populations of desired specificity offers new opportunities for antigen-specific T cell therapy. The first trial in humans demonstrated that TCR gene-modified T cells persisted for an extended time period and reduced tumor burden in some patients. The WT1 protein is an attractive target for immunotherapy of leukemia and solid cancer since elevated expression has been demonstrated in AML, CML, MDS and in breast, colon and ovarian cancer. In the past, we have isolated high avidity CTL specific for a WT1-derived peptide presented by HLA-A2 and cloned the TCR alpha and beta genes of a WT1-specific CTL line. The genes were inserted into retroviral vectors for transduction of human peripheral blood T lymphocytes of leukemia patients and normal donors. The treatment of leukemia-bearing NOD/SCID mice with T cells transduced with the WT1-specific TCR eliminated leukemia cells in the bone marrow of most mice, while treatment with T cells transduced with a TCR of irrelevant specificity did not diminish the leukemia burden. In order to improve the safety and efficacy of TCR gene therapy, we have developed lentiviral TCR gene transfer. In addition, we employed strategies to enhance TCR expression while avoiding TCR mis-pairing. It may be possible to generate dominant TCR constructs that can suppress the expression of the endogenous TCR on the surface of transduced T cells. The development of new TCR gene constructs holds great promise for the safe and effective delivery of TCR gene therapy for the treatment of malignancies.

  19. Gene therapy model of X-linked severe combined immunodeficiency using a modified foamy virus vector.

    Science.gov (United States)

    Horino, Satoshi; Uchiyama, Toru; So, Takanori; Nagashima, Hiroyuki; Sun, Shu-Lan; Sato, Miki; Asao, Atsuko; Haji, Yoichi; Sasahara, Yoji; Candotti, Fabio; Tsuchiya, Shigeru; Kure, Shigeo; Sugamura, Kazuo; Ishii, Naoto

    2013-01-01

    X-linked severe combined immunodeficiency (SCID-X1) is an inherited genetic immunodeficiency associated with mutations in the common cytokine receptor γ chain (γc) gene, and characterized by a complete defect of T and natural killer (NK) cells. Gene therapy for SCID-X1 using conventional retroviral (RV) vectors carrying the γc gene results in the successful reconstitution of T cell immunity. However, the high incidence of vector-mediated T cell leukemia, caused by vector insertion near or within cancer-related genes has been a serious problem. In this study, we established a gene therapy model of mouse SCID-X1 using a modified foamy virus (FV) vector expressing human γc. Analysis of vector integration in a human T cell line demonstrated that the FV vector integration sites were significantly less likely to be located within or near transcriptional start sites than RV vector integration sites. To evaluate the therapeutic efficacy, bone marrow cells from γc-knockout (γc-KO) mice were infected with the FV vector and transplanted into γc-KO mice. Transplantation of the FV-treated cells resulted in the successful reconstitution of functionally active T and B cells. These data suggest that FV vectors can be effective and may be safer than conventional RV vectors for gene therapy for SCID-X1.

  20. Gene therapy model of X-linked severe combined immunodeficiency using a modified foamy virus vector.

    Directory of Open Access Journals (Sweden)

    Satoshi Horino

    Full Text Available X-linked severe combined immunodeficiency (SCID-X1 is an inherited genetic immunodeficiency associated with mutations in the common cytokine receptor γ chain (γc gene, and characterized by a complete defect of T and natural killer (NK cells. Gene therapy for SCID-X1 using conventional retroviral (RV vectors carrying the γc gene results in the successful reconstitution of T cell immunity. However, the high incidence of vector-mediated T cell leukemia, caused by vector insertion near or within cancer-related genes has been a serious problem. In this study, we established a gene therapy model of mouse SCID-X1 using a modified foamy virus (FV vector expressing human γc. Analysis of vector integration in a human T cell line demonstrated that the FV vector integration sites were significantly less likely to be located within or near transcriptional start sites than RV vector integration sites. To evaluate the therapeutic efficacy, bone marrow cells from γc-knockout (γc-KO mice were infected with the FV vector and transplanted into γc-KO mice. Transplantation of the FV-treated cells resulted in the successful reconstitution of functionally active T and B cells. These data suggest that FV vectors can be effective and may be safer than conventional RV vectors for gene therapy for SCID-X1.