WorldWideScience

Sample records for gene regulatory regions

  1. Single nucleotide polymorphism in transcriptional regulatory regions and expression of environmentally responsive genes

    International Nuclear Information System (INIS)

    Wang, Xuting; Tomso, Daniel J.; Liu Xuemei; Bell, Douglas A.

    2005-01-01

    Single nucleotide polymorphisms (SNPs) in the human genome are DNA sequence variations that can alter an individual's response to environmental exposure. SNPs in gene coding regions can lead to changes in the biological properties of the encoded protein. In contrast, SNPs in non-coding gene regulatory regions may affect gene expression levels in an allele-specific manner, and these functional polymorphisms represent an important but relatively unexplored class of genetic variation. The main challenge in analyzing these SNPs is a lack of robust computational and experimental methods. Here, we first outline mechanisms by which genetic variation can impact gene regulation, and review recent findings in this area; then, we describe a methodology for bioinformatic discovery and functional analysis of regulatory SNPs in cis-regulatory regions using the assembled human genome sequence and databases on sequence polymorphism and gene expression. Our method integrates SNP and gene databases and uses a set of computer programs that allow us to: (1) select SNPs, from among the >9 million human SNPs in the NCBI dbSNP database, that are similar to cis-regulatory element (RE) consensus sequences; (2) map the selected dbSNP entries to the human genome assembly in order to identify polymorphic REs near gene start sites; (3) prioritize the candidate polymorphic RE containing genes by searching the existing genotype and gene expression data sets. The applicability of this system has been demonstrated through studies on p53 responsive elements and is being extended to additional pathways and environmentally responsive genes

  2. Allelic polymorphisms in the transcriptional regulatory region of apolipoprotein E gene.

    Science.gov (United States)

    Artiga, M J; Bullido, M J; Sastre, I; Recuero, M; García, M A; Aldudo, J; Vázquez, J; Valdivieso, F

    1998-01-09

    In this work, we explored the existence of genetic variants within the apolipoprotein E gene transcriptional regulatory region, using a denaturing gradient gel electrophoresis screening of a region comprising nucleotides -1017 to +406. Upon a population study, three new polymorphic sites (-491, -427 and -219) and two mutations were found. Functional effects of the polymorphisms, assayed by transient transfection and electrophoretic mobility shift assays in a human hepatoma cell line, showed that polymorphisms at sites -491 and -219 of the APOE promoter produce variations in the transcriptional activity of the gene, most probably through differential binding of nuclear proteins.

  3. DMRT gene cluster analysis in the platypus: new insights into genomic organization and regulatory regions.

    Science.gov (United States)

    El-Mogharbel, Nisrine; Wakefield, Matthew; Deakin, Janine E; Tsend-Ayush, Enkhjargal; Grützner, Frank; Alsop, Amber; Ezaz, Tariq; Marshall Graves, Jennifer A

    2007-01-01

    We isolated and characterized a cluster of platypus DMRT genes and compared their arrangement, location, and sequence across vertebrates. The DMRT gene cluster on human 9p24.3 harbors, in order, DMRT1, DMRT3, and DMRT2, which share a DM domain. DMRT1 is highly conserved and involved in sexual development in vertebrates, and deletions in this region cause sex reversal in humans. Sequence comparisons of DMRT genes between species have been valuable in identifying exons, control regions, and conserved nongenic regions (CNGs). The addition of platypus sequences is expected to be particularly valuable, since monotremes fill a gap in the vertebrate genome coverage. We therefore isolated and fully sequenced platypus BAC clones containing DMRT3 and DMRT2 as well as DMRT1 and then generated multispecies alignments and ran prediction programs followed by experimental verification to annotate this gene cluster. We found that the three genes have 58-66% identity to their human orthologues, lie in the same order as in other vertebrates, and colocate on 1 of the 10 platypus sex chromosomes, X5. We also predict that optimal annotation of the newly sequenced platypus genome will be challenging. The analysis of platypus sequence revealed differences in structure and sequence of the DMRT gene cluster. Multispecies comparison was particularly effective for detecting CNGs, revealing several novel potential regulatory regions within DMRT3 and DMRT2 as well as DMRT1. RT-PCR indicated that platypus DMRT1 and DMRT3 are expressed specifically in the adult testis (and not ovary), but DMRT2 has a wider expression profile, as it does for other mammals. The platypus DMRT1 expression pattern, and its location on an X chromosome, suggests an involvement in monotreme sexual development.

  4. DNA Methylation of Regulatory Regions of Imprinted Genes at Birth and Its Relation to Infant Temperament

    Directory of Open Access Journals (Sweden)

    Bernard F. Fuemmeler

    2016-01-01

    Full Text Available BACKGROUND DNA methylation of the differentially methylated regions (DMRs of imprinted genes is relevant to neurodevelopment. METHODS DNA methylation status of the DMRs of nine imprinted genes in umbilical cord blood leukocytes was analyzed in relation to infant behaviors and temperament (n = 158. RESULTS MEG3 DMR levels were positively associated with internalizing ( β = 0.15, P = 0.044 and surgency ( β = 0.19, P = 0.018 behaviors, after adjusting for birth weight, gender, gestational age at birth, maternal age at delivery, race/ethnicity, education level, smoking status, parity, and a history of anxiety or depression. Higher methylation levels at the intergenic MEG3-IG methylation regions were associated with surgency ( β = 0.28, P = 0.0003 and PEG3 was positively related to externalizing ( β = 0.20, P = 0.01 and negative affectivity ( β = 0.18, P = 0.02. CONCLUSION While the small sample size limits inference, these pilot data support gene-specific associations between epigenetic differences in regulatory regions of imprinted domains at birth and later infant temperament.

  5. Identifying Regulatory Patterns at the 3'end Regions of Over-expressed and Under-expressed Genes

    KAUST Repository

    Othoum, Ghofran K

    2013-05-01

    Promoters, neighboring regulatory regions and those extending further upstream of the 5’end of genes, are considered one of the main components affecting the expression status of genes in a specific phenotype. More recently research by Chen et al. (2006, 2012) and Mapendano et al. (2010) demonstrated that the 3’end regulatory regions of genes also influence gene expression. However, the association between the regulatory regions surrounding 3’end of genes and their over- or under-expression status in a particular phenotype has not been systematically studied. The aim of this study is to ascertain if regulatory regions surrounding the 3’end of genes contain sufficient regulatory information to correlate genes with their expression status in a particular phenotype. Over- and under-expressed ovarian cancer (OC) genes were used as a model. Exploratory analysis of the 3’end regions were performed by transforming the annotated regions using principal component analysis (PCA), followed by clustering the transformed data thereby achieving a clear separation of genes with different expression status. Additionally, several classification algorithms such as Naïve Bayes, Random Forest and Support Vector Machine (SVM) were tested with different parameter settings to analyze the discriminatory capacity of the 3’end regions of genes related to their gene expression status. The best performance was achieved using the SVM classification model with 10-fold cross-validation that yielded an accuracy of 98.4%, sensitivity of 99.5% and specificity of 92.5%. For gene expression status for newly available instances, based on information derived from the 3’end regions, an SVM predictive model was developed with 10-fold cross-validation that yielded an accuracy of 67.0%, sensitivity of 73.2% and specificity of 61.0%. Moreover, building an SVM with polynomial kernel model to PCA transformed data yielded an accuracy of 83.1%, sensitivity of 92.5% and specificity of 74.8% using

  6. The nomenclature of MHC class I gene regulatory regions - the case of two different downstream regulatory elements

    Czech Academy of Sciences Publication Activity Database

    Hatina, J.; Jansa, Petr; Forejt, Jiří

    2001-01-01

    Roč. 37, 12-13 (2001), s. 799-800 ISSN 0161-5890 Institutional research plan: CEZ:AV0Z5052915 Keywords : MHC I gene regulatory elements Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.973, year: 2001

  7. Total Binding Affinity Profiles of Regulatory Regions Predict Transcription Factor Binding and Gene Expression in Human Cells.

    Directory of Open Access Journals (Sweden)

    Elena Grassi

    Full Text Available Transcription factors regulate gene expression by binding regulatory DNA. Understanding the rules governing such binding is an essential step in describing the network of regulatory interactions, and its pathological alterations. We show that describing regulatory regions in terms of their profile of total binding affinities for transcription factors leads to increased predictive power compared to methods based on the identification of discrete binding sites. This applies both to the prediction of transcription factor binding as revealed by ChIP-seq experiments and to the prediction of gene expression through RNA-seq. Further significant improvements in predictive power are obtained when regulatory regions are defined based on chromatin states inferred from histone modification data.

  8. Spatially differentiated expression of quadruplicated green-sensitive RH2 opsin genes in zebrafish is determined by proximal regulatory regions and gene order to the locus control region.

    Science.gov (United States)

    Tsujimura, Taro; Masuda, Ryoko; Ashino, Ryuichi; Kawamura, Shoji

    2015-11-04

    Fish are remarkably diverse in repertoires of visual opsins by gene duplications. Differentiation of their spatiotemporal expression patterns and absorption spectra enables fine-tuning of feature detection in spectrally distinct regions of the visual field during ontogeny. Zebrafish have quadruplicated green-sensitive (RH2) opsin genes in tandem (RH2-1, -2, -3, -4), which are expressed in the short member of the double cones (SDC). The shortest wavelength RH2 subtype (RH2-1) is expressed in the central to dorsal area of the adult retina. The second shortest wave subtype (RH2-2) is expressed overlapping with RH2-1 but extending outside of it. The second longest wave subtype (RH2-3) is expressed surrounding the RH2-2 area, and the longest wave subtype (RH2-4) is expressed outside of the RH2-3 area broadly occupying the ventral area. Expression of the four RH2 genes in SDC requires a single enhancer (RH2-LCR), but the mechanism of their spatial differentiation remains elusive. Functional comparison of the RH2-LCR with its counterpart in medaka revealed that the regulatory role of the RH2-LCR in SDC-specific expression is evolutionarily conserved. By combining the RH2-LCR and the proximal upstream region of each RH2 gene with fluorescent protein reporters, we show that the RH2-LCR and the RH2-3 proximal regulatory region confer no spatial selectivity of expression in the retina. But those of RH2-1, -2 and -4 are capable of inducing spatial differentiation of expression. Furthermore, by analyzing transgenic fish with a series of arrays consisting of the RH2-LCR and multiple upstream regions of the RH2 genes in different orders, we show that a gene expression pattern related to an upstream region is greatly influenced by another flanking upstream region in a relative position-dependent manner. The zebrafish RH2 genes except RH2-3 acquired differential cis-elements in the proximal upstream regions to specify the differential expression patterns. The input from these

  9. Regulatory region with putA gene of proline dehydrogenase that links to the lum and the lux operons in Photobacterium leiognathi.

    Science.gov (United States)

    Lin, J W; Yu, K Y; Chen, H Y; Weng, S F

    1996-02-27

    Nucleotide sequence of regulatory region (R & R) with putA gene (EMBL Accession No. U39227) from Photobacterium leiognathi PL741 has been determined, and the putA gene encoded amino acid sequence of proline dehydrogenase is deduced. Alignment and comparison of proline dehydrogenase of P. leiognathi with the proline dehydrogenase domain in the PutA protein of Escherichia coli and Salmonella typhimurium show that they are homologous. Nucleotide sequence reveals that regulatory region with the putA gene is linked to the lum and lux operons in genome; the gene order is putA--R & R(I) (R & R: regulatory region; ter:transcriptional terminator), whereas the R & R is the regulatory region for the lum and the lux operons, ter is the transcriptional terminator for the lum operon, and R & R(I) apparently is the regulatory region for the putA and related genes. Nucleotide sequence analysis illustrates the specific inverted repeat (SIR), cAMP-CRP consensus sequence, canonical -10/-35 promoter, putative operator and Shine-Dalgarno (SD) sequence on the regulatory region R & R(I) for the putA and related genes; it suggests that the putA and related genes are simply linked to the lum and the lux operons in genome, the regulatory region R & R(I) is independent for the putA and related genes.

  10. Characterization of the bovine pregnancy-associated glycoprotein gene family – analysis of gene sequences, regulatory regions within the promoter and expression of selected genes

    Directory of Open Access Journals (Sweden)

    Walker Angela M

    2009-04-01

    Full Text Available Abstract Background The Pregnancy-associated glycoproteins (PAGs belong to a large family of aspartic peptidases expressed exclusively in the placenta of species in the Artiodactyla order. In cattle, the PAG gene family is comprised of at least 22 transcribed genes, as well as some variants. Phylogenetic analyses have shown that the PAG family segregates into 'ancient' and 'modern' groupings. Along with sequence differences between family members, there are clear distinctions in their spatio-temporal distribution and in their relative level of expression. In this report, 1 we performed an in silico analysis of the bovine genome to further characterize the PAG gene family, 2 we scrutinized proximal promoter sequences of the PAG genes to evaluate the evolution pressures operating on them and to identify putative regulatory regions, 3 we determined relative transcript abundance of selected PAGs during pregnancy and, 4 we performed preliminary characterization of the putative regulatory elements for one of the candidate PAGs, bovine (bo PAG-2. Results From our analysis of the bovine genome, we identified 18 distinct PAG genes and 14 pseudogenes. We observed that the first 500 base pairs upstream of the translational start site contained multiple regions that are conserved among all boPAGs. However, a preponderance of conserved regions, that harbor recognition sites for putative transcriptional factors (TFs, were found to be unique to the modern boPAG grouping, but not the ancient boPAGs. We gathered evidence by means of Q-PCR and screening of EST databases to show that boPAG-2 is the most abundant of all boPAG transcripts. Finally, we provided preliminary evidence for the role of ETS- and DDVL-related TFs in the regulation of the boPAG-2 gene. Conclusion PAGs represent a relatively large gene family in the bovine genome. The proximal promoter regions of these genes display differences in putative TF binding sites, likely contributing to observed

  11. Identification of putative regulatory motifs in the upstream regions of co-expressed functional groups of genes in Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Joshi NV

    2009-01-01

    Full Text Available Abstract Background Regulation of gene expression in Plasmodium falciparum (Pf remains poorly understood. While over half the genes are estimated to be regulated at the transcriptional level, few regulatory motifs and transcription regulators have been found. Results The study seeks to identify putative regulatory motifs in the upstream regions of 13 functional groups of genes expressed in the intraerythrocytic developmental cycle of Pf. Three motif-discovery programs were used for the purpose, and motifs were searched for only on the gene coding strand. Four motifs – the 'G-rich', the 'C-rich', the 'TGTG' and the 'CACA' motifs – were identified, and zero to all four of these occur in the 13 sets of upstream regions. The 'CACA motif' was absent in functional groups expressed during the ring to early trophozoite transition. For functional groups expressed in each transition, the motifs tended to be similar. Upstream motifs in some functional groups showed 'positional conservation' by occurring at similar positions relative to the translational start site (TLS; this increases their significance as regulatory motifs. In the ribonucleotide synthesis, mitochondrial, proteasome and organellar translation machinery genes, G-rich, C-rich, CACA and TGTG motifs, respectively, occur with striking positional conservation. In the organellar translation machinery group, G-rich motifs occur close to the TLS. The same motifs were sometimes identified for multiple functional groups; differences in location and abundance of the motifs appear to ensure different modes of action. Conclusion The identification of positionally conserved over-represented upstream motifs throws light on putative regulatory elements for transcription in Pf.

  12. Effects of 5′ Regulatory-Region Polymorphisms on Paraoxonase-Gene (PON1) Expression

    Science.gov (United States)

    Brophy, Victoria H.; Jampsa, Rachel L.; Clendenning, James B.; McKinstry, Laura A.; Jarvik, Gail P.; Furlong, Clement E.

    2001-01-01

    Human HDL-associated paraoxonase (PON1) hydrolyzes a number of toxic organophosphorous compounds and reduces oxidation of LDLs and HDLs. These properties of PON1 account for its ability to protect against pesticide poisonings and atherosclerosis. PON1 also hydrolyzes a number of lactone and cyclic-carbonate drugs. Among individuals in a population, PON1 levels vary widely. We previously identified three polymorphisms in the PON1 regulatory region that affect expression levels in cultured human hepatocytes. In this study, we determined the genotypes of three regulatory-region polymorphisms for 376 white individuals and examined their effect on plasma-PON1 levels, determined by rates of phenylacetate hydrolysis. The −108 polymorphism had a significant effect on PON1-activity level, whereas the −162 polymorphism had a lesser effect. The −909 polymorphism, which is in linkage disequilibrium with the other sites, appears to have little or no independent effect on PON1-activity level in vivo. Other studies have found that the L55M polymorphism in the PON1-coding region is associated with differences in both PON1-mRNA and PON1-activity levels. The results presented here indicate that the L55M effect of lowered activity is not due to the amino acid change but is, rather, largely due to linkage disequilibrium with the −108 regulatory-region polymorphism. The codon 55 polymorphism marginally appeared to account for 15.3% of the variance in PON1 activity, but this dropped to 5% after adjustments for the effects of the −108 and Q192R polymorphisms were made. The −108C/T polymorphism accounted for 22.8% of the observed variability in PON1-expression levels, which was much greater than that attributable to the other PON1 polymorphisms. We also identified four sequence differences in the 3′ UTR of the PON1 mRNA. PMID:11335891

  13. Common and rare variants in the exons and regulatory regions of osteoporosis-related genes improve osteoporotic fracture risk prediction.

    Science.gov (United States)

    Lee, Seung Hun; Kang, Moo Il; Ahn, Seong Hee; Lim, Kyeong-Hye; Lee, Gun Eui; Shin, Eun-Soon; Lee, Jong-Eun; Kim, Beom-Jun; Cho, Eun-Hee; Kim, Sang-Wook; Kim, Tae-Ho; Kim, Hyun-Ju; Yoon, Kun-Ho; Lee, Won Chul; Kim, Ghi Su; Koh, Jung-Min; Kim, Shin-Yoon

    2014-11-01

    Osteoporotic fracture risk is highly heritable, but genome-wide association studies have explained only a small proportion of the heritability to date. Genetic data may improve prediction of fracture risk in osteopenic subjects and assist early intervention and management. To detect common and rare variants in coding and regulatory regions related to osteoporosis-related traits, and to investigate whether genetic profiling improves the prediction of fracture risk. This cross-sectional study was conducted in three clinical units in Korea. Postmenopausal women with extreme phenotypes (n = 982) were used for the discovery set, and 3895 participants were used for the replication set. We performed targeted resequencing of 198 genes. Genetic risk scores from common variants (GRS-C) and from common and rare variants (GRS-T) were calculated. Nineteen common variants in 17 genes (of the discovered 34 functional variants in 26 genes) and 31 rare variants in five genes (of the discovered 87 functional variants in 15 genes) were associated with one or more osteoporosis-related traits. Accuracy of fracture risk classification was improved in the osteopenic patients by adding GRS-C to fracture risk assessment models (6.8%; P risk in an osteopenic individual.

  14. Identifying polymorphisms in the Rattus norvegicus D3 dopamine receptor gene and regulatory region

    NARCIS (Netherlands)

    Smits, B.M.; D'Souza, U.M.; Berezikov, E.; Cuppen, E.; Sluyter, F.

    2004-01-01

    The D(3) dopamine receptor has been implicated in several neuropsychiatric disorders, including schizophrenia, Parkinson's disease and addiction. Sequence variation in the D(3) gene can lead to subtle alteration in receptor structure or gene expression and thus to a different phenotype. In this

  15. A 5'-regulatory region and two coding region polymorphisms modulate promoter activity and gene expression of the growth suppressor gene ZBED6 in cattle.

    Directory of Open Access Journals (Sweden)

    Yong-Zhen Huang

    Full Text Available Zinc finger, BED-type containing 6 (ZBED6 is an important transcription factor in placental mammals, affecting development, cell proliferation and growth. Polymorphisms in its promoter and coding regions are likely to impact ZBED6 transcription and growth traits. In this study, rapid amplification of 5' cDNA ends (5'-RACE analysis revealed two transcription start sites (TSS for the bovine ZBED6 starting within exon 1 of the ZC3H11A gene (TSS-1 and upstream of the translation start codon of the ZBED6 gene (TSS-2. There was one SNP in the promoter and two missense mutations in the coding region of the bovine ZBED6 by sequencing of the pooled DNA samples (Pool-Seq, n = 100. The promoter and coding region are the key regions for gene function; polymorphisms in these regions can alter gene expression. Quantitative real-time PCR (qPCR analysis showed that ZBED6 has a broad tissue distribution in cattle and is highly expressed in skeletal muscle. Eleven promoter-detection vectors were constructed, which enabled the cloning of putative promoter sequences and analysis of ZBED6 transcriptional activity by luciferase reporter gene assays. The core region of the basal promoter of bovine ZBED6 is located within region -866 to -556. The activity of WT-826G-pGL3 in driving reporter gene transcription is significantly higher than that of the M-826A-pGL3 construct (P < 0.01. Analysis of gene expression patterns in homozygous full-sibling Chinese Qinchuan cattle showed that the mutant-type Hap-AGG exhibited a lower mRNA level than the wild-type Hap-GCA (P < 0.05 in longissimus dorsi muscle (LDM. Moreover, ZBED6 mRNA expression was low in C2C12 cells overexpressing the mutant-type ZBED6 (pcDNA3.1(+-Hap-GG (P < 0.01. Our results suggest that the polymorphisms in the promoter and coding regions may modulate the promoter activity and gene expression of bovine ZBED6 in the skeletal muscles of these cattle breeds.

  16. Hydroxymethylation at Gene Regulatory Regions Directs Stem/Early Progenitor Cell Commitment during Erythropoiesis

    Directory of Open Access Journals (Sweden)

    Jozef Madzo

    2014-01-01

    Full Text Available Hematopoietic stem cell differentiation involves the silencing of self-renewal genes and induction of a specific transcriptional program. Identification of multiple covalent cytosine modifications raises the question of how these derivatized bases influence stem cell commitment. Using a replicative primary human hematopoietic stem/progenitor cell differentiation system, we demonstrate dynamic changes of 5-hydroxymethylcytosine (5-hmC during stem cell commitment and differentiation to the erythroid lineage. Genomic loci that maintain or gain 5-hmC density throughout erythroid differentiation contain binding sites for erythroid transcription factors and several factors not previously recognized as erythroid-specific factors. The functional importance of 5-hmC was demonstrated by impaired erythroid differentiation, with augmentation of myeloid potential, and disrupted 5-hmC patterning in leukemia patient-derived CD34+ stem/early progenitor cells with TET methylcytosine dioxygenase 2 (TET2 mutations. Thus, chemical conjugation and affinity purification of 5-hmC-enriched sequences followed by sequencing serve as resources for deciphering functional implications for gene expression during stem cell commitment and differentiation along a particular lineage.

  17. Identification of Egg White Proteins and Divergence in the Regulatory Region of the Ovalbumin Gene in Avians.

    Science.gov (United States)

    Ren, Jindong; Hu, Jianhong; Chen, Li; Liu, Yali; Xu, Xiaoqin; He, Jun; Shen, Jianliang; Lu, Lizhi

    2017-01-01

    Egg white proteins play an important role in avian reproductive systems and are an ideal resource for bioreactor construction. In this study, 1D electrophoresis and MALDI-TOF-MS were performed to analyze egg white proteins in four species. In total, 18, 11, 28, and 13 proteins were identified in the egg whites of the chicken, duck, goose, and pigeon, respectively. Egg white proteins in chickens have been studied previously; therefore, we focused on the proteins in goose and duck egg whites. Based on the amino acid sequence analysis and a comparison of the unique peptides, high similarity was observed between the goose and duck egg whites. Diversity in the regulatory region of the ovalbumin gene explained the higher ovalbumin expression in the duck and goose than in the chicken. These data clarify the evolutionary processes underlying to the unique peptides contributing to the differential expression of ovalbumin in avians. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Biolistic transformation of Schistosoma mansoni: Studies with modified reporter-gene constructs containing regulatory regions of protease genes

    Czech Academy of Sciences Publication Activity Database

    Dvořák, Jan; Beckmann, S.; Lim, K.-C.; Engel, J. C.; Grevelding, C. G.; McKerrow, J. H.; Caffrey, C. R.

    2010-01-01

    Roč. 170, č. 1 (2010), s. 37-40 ISSN 0166-6851 Institutional research plan: CEZ:AV0Z60220518 Keywords : Schistosoma * Protease * Transgene * Gene promoter * Biolistics * Electroporation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.875, year: 2010

  19. Regulatory elements in the promoter region of the rat gene encoding the acyl-CoA-binding protein

    DEFF Research Database (Denmark)

    Elholm, M; Bjerking, G; Knudsen, J

    1996-01-01

    Acyl-CoA-binding protein (ACBP) is an ubiquitously expressed 10-kDa protein which is present in high amounts in cells involved in solute transport or secretion. Rat ACBP is encoded by a gene containing the typical hallmarks of a housekeeping gene. Analysis of the promoter region of the rat ACBP g...

  20. Profiling of Accessible Chromatin Regions across Multiple Plant Species and Cell Types Reveals Common Gene Regulatory Principles and New Control Modules.

    Science.gov (United States)

    Maher, Kelsey A; Bajic, Marko; Kajala, Kaisa; Reynoso, Mauricio; Pauluzzi, Germain; West, Donnelly A; Zumstein, Kristina; Woodhouse, Margaret; Bubb, Kerry; Dorrity, Michael W; Queitsch, Christine; Bailey-Serres, Julia; Sinha, Neelima; Brady, Siobhan M; Deal, Roger B

    2018-01-01

    The transcriptional regulatory structure of plant genomes remains poorly defined relative to animals. It is unclear how many cis -regulatory elements exist, where these elements lie relative to promoters, and how these features are conserved across plant species. We employed the assay for transposase-accessible chromatin (ATAC-seq) in four plant species ( Arabidopsis thaliana , Medicago truncatula , Solanum lycopersicum , and Oryza sativa ) to delineate open chromatin regions and transcription factor (TF) binding sites across each genome. Despite 10-fold variation in intergenic space among species, the majority of open chromatin regions lie within 3 kb upstream of a transcription start site in all species. We find a common set of four TFs that appear to regulate conserved gene sets in the root tips of all four species, suggesting that TF-gene networks are generally conserved. Comparative ATAC-seq profiling of Arabidopsis root hair and non-hair cell types revealed extensive similarity as well as many cell-type-specific differences. Analyzing TF binding sites in differentially accessible regions identified a MYB-driven regulatory module unique to the hair cell, which appears to control both cell fate regulators and abiotic stress responses. Our analyses revealed common regulatory principles among species and shed light on the mechanisms producing cell-type-specific transcriptomes during development. © 2018 American Society of Plant Biologists. All rights reserved.

  1. Regulatory region of the vitellogenin receptor gene sufficient for high-level, germ line cell-specific ovarian expression in transgenic Aedes aegypti mosquitoes.

    Science.gov (United States)

    Cho, Kook-Ho; Cheon, Hyang-Mi; Kokoza, Vladimir; Raikhel, Alexander S

    2006-04-01

    Vitellogenin receptor (VgR) is responsible for the receptor-mediated endocytosis of vitellogenin (Vg) in the egg formation of an oviparous animal, including insects. Little is known about regulation of VgR gene expression. We analyzed the upstream region of the VgR gene from Aedes aegypti (AaVgR) to identify regulatory elements responsible for its expression in germ cell-specific ovarian expression. Experiments with genetic transformation using the transgene containing the 1.5-Kb upstream portion of the AaVgR gene fused with DsRed and the piggyBac vector showed that this regulatory region is sufficient for correct female and ovary-specific expression of the transgene. This 1.5-Kb upstream region contained binding sites for the ecdysone regulatory hierarchy early gene products E74 and BR-C, as well as transcription factors determining correct tissue- and stage-specific expression of GATA and HNF3/fkh. In situ hybridization demonstrated that in the ovaries of transgenic females DsRed mRNA was present in ovarian germ cells and nurse cells of mature ovarian follicles, together with VgR mRNA. In contrast, DsRed mRNA was absent in the oocyte that had a high level of endogenous VgR mRNA. Although the 1.5-Kb upstream region was sufficient to drive a high-level germ line cell-specific expression of the reporter, additional signals were required for translocation of exogenous mRNA from nurse cells into the oocyte.

  2. Variations at regulatory regions of the milk protein genes are associated with milk traits and coagulation properties in the Sarda sheep.

    Science.gov (United States)

    Noce, A; Pazzola, M; Dettori, M L; Amills, M; Castelló, A; Cecchinato, A; Bittante, G; Vacca, G M

    2016-12-01

    Regulatory variation at the ovine casein genes could have important effects on the composition and coagulation properties of milk. Herewith, we have partially resequenced the promoters and the 3'-UTR of the four casein genes in 25 Sarda sheep. Alignment of these sequences allowed us to identify a total of 29 SNPs. This level of polymorphism (one SNP every 250 bp) is remarkably high if compared with SNP densities estimated in human genic regions (approximately one SNP per bp). The 29 SNPs identified in our resequencing experiment, plus three previously reported SNPs mapping to the lactalbumin, alpha (LALBA) and β-lactoglobulin (BLG, also known as progestagen-associated endometrial protein, PAEP) genes, were genotyped with a multiplex TaqMan Open Array Real-Time PCR assay in 760 Sarda sheep with records for milk composition and coagulation properties. Association analysis revealed the existence of significant associations of CSN1S2 and CSN3 genotypes with milk protein and casein contents. Moreover, genotypes at CSN1S1 were significantly associated with rennet coagulation time, curd firming time and curd firmness, whereas CSN2 was associated with curd firming time. These results suggest that SNPs mapping to the promoters and 3'-UTRs of ovine casein genes may exert regulatory effects on gene expression and that they could be used for improving sheep milk quality and technological traits at the population level through marker assisted selection. © 2016 Stichting International Foundation for Animal Genetics.

  3. Identification, occurrence, and validation of DRE and ABRE Cis-regulatory motifs in the promoter regions of genes of Arabidopsis thaliana.

    Science.gov (United States)

    Mishra, Sonal; Shukla, Aparna; Upadhyay, Swati; Sanchita; Sharma, Pooja; Singh, Seema; Phukan, Ujjal J; Meena, Abha; Khan, Feroz; Tripathi, Vineeta; Shukla, Rakesh Kumar; Shrama, Ashok

    2014-04-01

    Plants posses a complex co-regulatory network which helps them to elicit a response under diverse adverse conditions. We used an in silico approach to identify the genes with both DRE and ABRE motifs in their promoter regions in Arabidopsis thaliana. Our results showed that Arabidopsis contains a set of 2,052 genes with ABRE and DRE motifs in their promoter regions. Approximately 72% or more of the total predicted 2,052 genes had a gap distance of less than 400 bp between DRE and ABRE motifs. For positional orientation of the DRE and ABRE motifs, we found that the DR form (one in direct and the other one in reverse orientation) was more prevalent than other forms. These predicted 2,052 genes include 155 transcription factors. Using microarray data from The Arabidopsis Information Resource (TAIR) database, we present 44 transcription factors out of 155 which are upregulated by more than twofold in response to osmotic stress and ABA treatment. Fifty-one transcripts from the one predicted above were validated using semiquantitative expression analysis to support the microarray data in TAIR. Taken together, we report a set of genes containing both DRE and ABRE motifs in their promoter regions in A. thaliana, which can be useful to understand the role of ABA under osmotic stress condition. © 2013 Institute of Botany, Chinese Academy of Sciences.

  4. A functional SNP in the regulatory region of the decay-accelerating factor gene associates with extraocular muscle pareses in myasthenia gravis

    KAUST Repository

    Heckmann, J M

    2009-08-13

    Complement activation in myasthenia gravis (MG) may damage muscle endplate and complement regulatory proteins such as decay-accelerating factor (DAF) or CD55 may be protective. We hypothesize that the increased prevalence of severe extraocular muscle (EOM) dysfunction among African MG subjects reported earlier may result from altered DAF expression. To test this hypothesis, we screened the DAF gene sequences relevant to the classical complement pathway and found an association between myasthenics with EOM paresis and the DAF regulatory region c.-198CG SNP (odds ratio8.6; P0.0003). This single nucleotide polymorphism (SNP) results in a twofold activation of a DAF 5?-flanking region luciferase reporter transfected into three different cell lines. Direct matching of the surrounding SNP sequence within the DAF regulatory region with the known transcription factor-binding sites suggests a loss of an Sp1-binding site. This was supported by the observation that the c.-198CG SNP did not show the normal lipopolysaccharide-induced DAF transcriptional upregulation in lymphoblasts from four patients. Our findings suggest that at critical periods during autoimmune MG, this SNP may result in inadequate DAF upregulation with consequent complement-mediated EOM damage. Susceptible individuals may benefit from anti-complement therapy in addition to immunosuppression. © 2010 Macmillan Publishers Limited. All rights reserved.

  5. Genetic characterization of the oxytocin-neurophysin I gene (OXT) and its regulatory regions analysis in domestic Old and New World camelids.

    Science.gov (United States)

    Pauciullo, Alfredo; Ogah, Danlami Moses; Iannaccone, Marco; Erhardt, Georg; Di Stasio, Liliana; Cosenza, Gianfranco

    2018-01-01

    Oxytocin is a neurohypophysial peptide linked to a wide range of biological functions, including milk ejection, temperament and reproduction. Aims of the present study were a) the characterization of the OXT (Oxytocin-neurophysin I) gene and its regulatory regions in Old and New world camelids; b) the investigation of the genetic diversity and the discovery of markers potentially affecting the gene regulation. On average, the gene extends over 814 bp, ranging between 825 bp in dromedary, 811 bp in Bactrian and 810 bp in llama and alpaca. Such difference in size is due to a duplication event of 21 bp in dromedary. The main regulatory elements, including the composite hormone response elements (CHREs), were identified in the promoter, whereas the presence of mature microRNAs binding sequences in the 3'UTR improves the knowledge on the factors putatively involved in the OXT gene regulation, although their specific biological effect needs to be still elucidated. The sequencing of genomic DNA allowed the identification of 17 intraspecific polymorphisms and 69 nucleotide differences among the four species. One of these (MF464535:g.622C>G) is responsible, in alpaca, for the loss of a consensus sequence for the transcription factor SP1. Furthermore, the same SNP falls within a CpG island and it creates a new methylation site, thus opening future possibilities of investigation to verify the influence of the novel allelic variant in the OXT gene regulation. A PCR-RFLP method was setup for the genotyping and the frequency of the allele C was 0.93 in a population of 71 alpacas. The obtained data clarify the structure of OXT gene in domestic camelids and add knowledge to the genetic variability of a genomic region, which has received little investigation so far. These findings open the opportunity for new investigations, including association studies with productive and reproductive traits.

  6. Polymorphism in the regulatory region located more than 1.1 kilobases 5' to the start site of transcription, the promoter region, and exon 1 of the HLA-G gene

    DEFF Research Database (Denmark)

    Hviid, Thomas Vauvert F.; Sørensen, Steen; Morling, Niels

    1999-01-01

    The non-classic Human Leucocyte Antigen class Ib molecule, HLA-G, is expressed on the invasive, extra-villous cytotrophoblast in human placenta. HLA-G protects against natural killer (NK)-cell-mediated lysis and may modulate the secretion of cytokines. Aberrant expression of HLA-G has been reported...... in certain disorders of pregnancy. We have studied the DNA sequences of the putative regulatory region located more than 1.1 kilobases 5' from the start site of transcription (a 244 bp HindIII/EcoRI fragment) of the HLA-G gene and of the promoter region to detect any possible polymorphism. We detected one...... into two groups based on the detected polymorphism. The nucleotide substitutions may have implications for the binding of nuclear factors to the regulatory regions. To our knowledge this is the first study of any polymorphism in the 5'-flanking sequences to the HLA-G gene. Further studies are needed...

  7. Acetylcholinesterase (AChE) gene modification in transgenic animals: functional consequences of selected exon and regulatory region deletion.

    Science.gov (United States)

    Camp, Shelley; Zhang, Limin; Marquez, Michael; de la Torre, Brian; Long, Jeffery M; Bucht, Goran; Taylor, Palmer

    2005-12-15

    AChE is an alternatively spliced gene. Exons 2, 3 and 4 are invariantly spliced, and this sequence is responsible for catalytic function. The 3' alternatively spliced exons, 5 and 6, are responsible for AChE disposition in tissue [J. Massoulie, The origin of the molecular diversity and functional anchoring of cholinesterases. Neurosignals 11 (3) (2002) 130-143; Y. Li, S. Camp, P. Taylor, Tissue-specific expression and alternative mRNA processing of the mammalian acetylcholinesterase gene. J. Biol. Chem. 268 (8) (1993) 5790-5797]. The splice to exon 5 produces the GPI anchored form of AChE found in the hematopoietic system, whereas the splice to exon 6 produces a sequence that binds to the structural subunits PRiMA and ColQ, producing AChE expression in brain and muscle. A third alternative RNA species is present that is not spliced at the 3' end; the intron 3' of exon 4 is used as coding sequence and produces the read-through, unanchored form of AChE. In order to further understand the role of alternative splicing in the expression of the AChE gene, we have used homologous recombination in stem cells to produce gene specific deletions in mice. Alternatively and together exon 5 and exon 6 were deleted. A cassette containing the neomycin gene flanked by loxP sites was used to replace the exon(s) of interest. Tissue analysis of mice with exon 5 deleted and the neomycin cassette retained showed very low levels of AChE expression, far less than would have been anticipated. Only the read-through species of the enzyme was produced; clearly the inclusion of the selection cassette disrupted splicing of exon 4 to exon 6. The selection cassette was then deleted in exon 5, exon 6 and exons 5 + 6 deleted mice by breeding to Ella-cre transgenic mice. AChE expression in serum, brain and muscle has been analyzed. Another AChE gene targeted mouse strain involving a region in the first intron, found to be critical for AChE expression in muscle cells [S. Camp, L. Zhang, M. Marquez, B

  8. Identification of a new cis-regulatory element of the terminal deoxynucleotidyl transferase gene in the 5' region of the murine locus.

    Science.gov (United States)

    Cherrier, Marie; D'Andon, Martine Fanton; Rougeon, François; Doyen, Noëlle

    2008-02-01

    Terminal deoxynucleotidyl transferase (TdT) expression is controlled at the transcriptional level, however, the TdT core promoter combining D, D', an initiator (Inr) and downstream basal elements (DBE) does not recapitulate the whole complex regulation of TdT expression. We hypothesized that important cis-regulatory elements of the gene are located outside of the TdT promoter. In an attempt to identify these elements, we performed DNase I hypersensitivity assays over 24kb including a 10kb region located upstream of the transcription start site (+1) and a 14kb region spanning exons and introns I to VI. Hypersensitive sites (HS) HS1 and HS2 were localized 8.5 and 8kb upstream of the transcription start site, respectively, and were exclusively detected in TdT+ cell types. HS3, HS4 and HS5 were mapped at positions -7, -3.4 and -3kb, respectively, and detected in both TdT negative and positive cells. HS6, HS7 and HS8 were detected immediately upstream of the TdT promoter. HS10 and HS11 were localized in the first and third intron of the gene. Luciferase reporter assays revealed that HS1, HS2 and HS3 synergize with the TdT promoter to activate transcription in a TdT+ pre-T cell line but not in a TdT+ pro-B cell line. In summary novel cis-regulatory elements have been identified in the 5' region of the TdT locus that synergize with the promoter to activate gene expression and our results suggest these elements may be more active in T cells.

  9. The human β-globin gene contains multiple regulatory regions: identification of one promoter and two downstream enhancers.

    NARCIS (Netherlands)

    M. Antoniou (Michael); E. de Boer (Ernie); G. Habets; F.G. Grosveld (Frank)

    1988-01-01

    textabstractWe have introduced into murine erythroleukaemia (MEL) cells several series of deletion mutants of hybrid genes between the human beta-globin gene and the murine H-2Kb gene. S1 nuclease and transcriptional run-off analysis showed that the human beta-globin gene contains at least three

  10. Federal Energy Regulatory Commission (FERC) Regions

    Data.gov (United States)

    Department of Homeland Security — Federal Energy Regulatory Commission (FERC) Regions. FERC is an independent agency that regulates the interstate transmission of electricity, natural gas, and oil....

  11. Polymorphism in the 5' upstream regulatory and 3' untranslated regions of the HLA-G gene in relation to soluble HLA-G and IL-10 expression

    DEFF Research Database (Denmark)

    Hviid, Thomas Vauvert F; Rizzo, Roberta; Melchiorri, Loredana

    2006-01-01

    -G mRNA isoform expression patterns have been associated with HLA-G polymorphism, especially with a 14-bp insertion deletion polymorphism in the 3' untranslated region (3'UTR) of the HLA-G gene. A significantly high level of interleukin-10 (IL-10) secretion is observed in homozygous +14/+14-bp HLA......-G peripheral blood mononuclear cells after lipopolysaccharide (LPS) stimulation. This study finds that polymorphism in the 5' upstream regulatory region (5'URR) of the HLA-G gene may also be implicated in differences in IL-10 secretion. However, this may also be due to linkage disequilibrium with the 14-bp...... polymorphism. A single-nucleotide polymorphism located -477 bp from the start site of exon 1 had a significant association with IL-10 concentrations but not after correction (p=0.011; pc=0.154). This polymorphism is located next to a heat shock element. Eighteen 5'-URR/3'-UTR HLA-G haplotypes were defined; one...

  12. Specific interactions between transcription factors and the promoter-regulatory region of the human cytomegalovirus major immediate-early gene

    International Nuclear Information System (INIS)

    Ghazal, P.; Lubon, H.; Hennighausen, L.

    1988-01-01

    Repeat sequence motifs as well as unique sequences between nucleotides -150 and -22 of the human cytomegalovirus immediate-early 1 gene interact in vitro with nuclear proteins. The authors show that a transcriptional element between nucleotides -91 and -65 stimulated promoter activity in vivo and in vitro by binding specific cellular transcription factors. Finally, a common sequence motif, (T)TGG/AC, present in 15 of the determined binding sites suggests a particular class of nuclear factors associated with the immediate-early 1 gene

  13. Sex combs reduced (Scr) regulatory region of Drosophila revisited.

    Science.gov (United States)

    Calvo-Martín, Juan M; Papaceit, Montserrat; Segarra, Carmen

    2017-08-01

    The Hox gene Sex combs reduced (Scr) is responsible for the differentiation of the labial and prothoracic segments in Drosophila. Scr is expressed in several specific tissues throughout embryonic development, following a complex path that must be coordinated by an equally complex regulatory region. Although some cis-regulatory modules (CRMs) have been identified in the Scr regulatory region (~75 kb), there has been no detailed and systematic study of the distinct regulatory elements present within this region. In this study, the Scr regulatory region was revisited with the aim of filling this gap. We focused on the identification of Initiator elements (IEs) that bind segmentation factors, Polycomb response elements (PREs) that are recognized by the Polycomb and Trithorax complexes, as well as insulators and tethering elements. To this end, we summarized all currently available information, mainly obtained from high throughput ChIP data projects. In addition, a bioinformatic analysis based on the evolutionary conservation of regulatory sequences using the software MOTEVO was performed to identify IE and PRE candidates in the Scr region. The results obtained by this combined strategy are largely consistent with the CRMs previously identified in the Scr region and help to: (i) delimit them more accurately, (ii) subdivide two of them into different independent elements, (iii) identify a new CRM, (iv) identify the composition of their binding sites and (v) better define some of their characteristics. These positive results indicate that an approach that integrates functional and bioinformatic data might be useful to characterize other regulatory regions.

  14. Association of a variant in the regulatory region of NADPH oxidase 4 gene and metabolic syndrome in patients with chronic hepatitis C.

    Science.gov (United States)

    Siqueira, Erika Rabelo Forte de; Pereira, Luciano Beltrao; Stefano, Jose Tadeu; Patente, Thiago; Cavaleiro, Ana Mercedes; Silva Vasconcelos, Luydson Richardson; Carmo, Rodrigo Feliciano; Moreira Beltrao Pereira, Leila Maria; Carrilho, Flair Jose; Corrêa-Giannella, Maria Lucia; Oliveira, Claudia P

    2015-03-28

    Given the important contribution of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase system to the generation of reactive oxygen species induced by hepatitis C virus (HCV), we investigated two single nucleotide polymorphisms (SNPs) in the putative regulatory region of the genes encoding NADPH oxidase 4 catalytic subunit (NOX4) and its regulatory subunit p22phox (CYBA) and their relation with metabolic and histological variables in patients with HCV. One hundred seventy eight naïve HCV patients (49.3% male; 65% HCV genotype 1) with positive HCV RNA were genotyped using specific primers and fluorescent-labeled probes for SNPs rs3017887 in NOX4 and -675 T → A in CYBA. No association was found between the genotype frequencies of NOX4 and CYBA SNPs and inflammation scores or fibrosis stages in the overall population. The presence of the CA + AA genotypes of the NOX4 SNP was nominally associated with a lower alanine aminotransferase (ALT) concentration in the male population (CA + AA = 72.23 ± 6.34 U/L versus CC = 100.22 ± 9.85; mean ± SEM; P = 0.05). The TT genotype of the CYBA SNP was also nominally associated with a lower ALT concentration in the male population (TT = 84.01 ± 6.77 U/L versus TA + AA = 109.67 ± 18.37 U/L; mean ± SEM; P = 0.047). The minor A-allele of the NOX4 SNP was inversely associated with the frequency of metabolic syndrome (MS) in the male population (odds ratio (OR): 0.15; 95% confidence interval (CI): 0.03 to 0.79; P = 0.025). The results suggest that the evaluated NOX4 and CYBA SNPs are not direct genetic determinants of fibrosis in HCV patients, but nevertheless NOX4 rs3017887 SNP could indirectly influence fibrosis susceptibility due to its inverse association with MS in male patients.

  15. Sex-specific associations of variants in regulatory regions of NADPH oxidase-2 (CYBB) and glutathione peroxidase 4 (GPX4) genes with kidney disease in type 1 diabetes.

    Science.gov (United States)

    Monteiro, M B; Patente, T A; Mohammedi, K; Queiroz, M S; Azevedo, M J; Canani, L H; Parisi, M C; Marre, M; Velho, G; Corrêa-Giannella, M L

    2013-10-01

    Oxidative stress is involved in the pathophysiology of diabetic nephropathy. The superoxide-generating nicotinamide adenine dinucleotide phosphate-oxidase 2 (NOX2, encoded by the CYBB gene) and the antioxidant enzyme glutathione peroxidase 4 (GPX4) play opposing roles in the balance of cellular redox status. In the present study, we investigated associations of single nucleotide polymorphisms (SNPs) in the regulatory regions of CYBB and GPX4 with kidney disease in patients with type 1 diabetes. Two functional SNPs, rs6610650 (CYBB promoter region, chromosome X) and rs713041 (GPX4 3'untranslated region, chromosome 19), were genotyped in 451 patients with type 1 diabetes from a Brazilian cohort (diabetic nephropathy: 44.6%) and in 945 French/Belgian patients with type 1 diabetes from Genesis and GENEDIAB cohorts (diabetic nephropathy: 62.3%). The minor A-allele of CYBB rs6610650 was associated with lower estimated glomerular filtration rate (eGFR) in Brazilian women, and with the prevalence of established/advanced nephropathy in French/Belgian women (odds ratio 1.75, 95% CI 1.11-2.78, p = 0.016). The minor T-allele of GPX4 rs713041 was inversely associated with the prevalence of established/advanced nephropathy in Brazilian men (odds ratio 0.30, 95% CI 0.13-0.68, p = 0.004), and associated with higher eGFR in French/Belgian men. In conclusion, these heterogeneous results suggest that neither CYBB nor GPX4 are major genetic determinants of diabetic nephropathy, but nevertheless, they could modulate in a gender-specific manner the risk for renal disease in patients with type 1 diabetes.

  16. Polymorphism in the upstream regulatory region of DQA1 genes and DRB1, QAP, DQA1, and DQB1 haplotypes in the German population.

    Science.gov (United States)

    Haas, J P; Kimura, A; Andreas, A; Hochberger, M; Keller, E; Brünnler, G; Bettinotti, M P; Nevinny-Stickel, C; Hildebrandt, B; Sierp, G

    1994-01-01

    Polymorphism in the URR of the MHC class II DQA1 gene defines ten different alleles named QAP. Oligotyping for the alleles of DRB1, QAP, DQA1, and DQB1 have been performed in 210 unrelated healthy controls from Germany. Moreover, 83 HTCs from the Tenth IHWS have been tested. Four point loci haplotypes (DRB1, QAP, DQA1, and DQB1) have been analyzed in the unrelated healthy population sample. Computer analysis of the linkage disequilibria leads to the conclusion that QAP alleles are in strong linkage disequilibrium with alleles either the DQA1 or the DRB1 locus. One typical ("common") haplotype was found to be associated with each DRB1 allele in the majority (86%) of the tested persons. Apart from that, 25 other less frequent ("unusual") haplotypes, with an overall frequency of 14% have been defined. Some of these "unusual" MHC class II haplotypes were found to differ only in the regulatory alleles of DQA1 (QAP alleles) while they are identical for the alleles coding for structural elements (DRB1, DQA1, and DQB1). Most of the "unusual" haplotypes were found to carry HLA-DQ6. Assuming that "unusual" (= rare) haplotypes have arisen from "common" (= frequent) haplotypes by point mutation and recombination, we propose the existence of three recombination sites in the MHC DR-DQ region: one between DRB1 and QAP, the second between QAP and DQA1, and the third between DQA1 and DQB1.

  17. A study of bacterial gene regulatory mechanisms

    DEFF Research Database (Denmark)

    Hansen, Sabine

    the different regulatory mechanisms affect system dynamics. We have designed a synthetic gene regulatory network (GRN) in bacterial cells that enables us to study the dynamics of GRNs. The results presented in this PhD thesis show that model equations based on the established mechanisms of action of each...... of a particular type of regulatory mechanism. The synthetic system presented in this thesis is, to our knowledge, the first of its kind to allow a direct comparison of the dynamic behaviors of gene regulatory networks that employ different mechanisms of regulation. In addition to studying the dynamic behavior...... switch off the expression of unfavorable proteins. This dynamic regulation requires a coordinated effort by a network of regulatory factors. The regulatory mechanisms employed by bacterial cell to regulate their protein expression have been extensively studied. However, little is known about how...

  18. Evolving chromosomes and gene regulatory networks

    Indian Academy of Sciences (India)

    Aswin

    Gene expression level unilateral. Other genes epistatic. Collateral damage. Page 25. ok.. is there a phenotype? $ % #. Page 26. Can the regulatory network of. E. coli lacking the xenogene silencing system evolve towards greater fitness? Page 27. Many mutations emerge in a dynamic genome. Inactivation of the global ...

  19. Cloning of the pig aminopeptidase N gene. Identification of possible regulatory elements and the exon distribution in relation to the membrane-spanning region

    DEFF Research Database (Denmark)

    Sjöström, H; Norén, O; Olsen, Jørgen

    1989-01-01

    . By sequence comparisons we have found three domains showing similarity to promoter regions of the genes encoding human alpha 1-antitrypsin and human intestinal alkaline phosphatase. The gene sequence includes the first three exons and two introns. It shows that a single exon encodes the cytoplasmic tail...

  20. Evolutionary conservation of regulatory elements in vertebrate HOX gene clusters

    Energy Technology Data Exchange (ETDEWEB)

    Santini, Simona; Boore, Jeffrey L.; Meyer, Axel

    2003-12-31

    Due to their high degree of conservation, comparisons of DNA sequences among evolutionarily distantly-related genomes permit to identify functional regions in noncoding DNA. Hox genes are optimal candidate sequences for comparative genome analyses, because they are extremely conserved in vertebrates and occur in clusters. We aligned (Pipmaker) the nucleotide sequences of HoxA clusters of tilapia, pufferfish, striped bass, zebrafish, horn shark, human and mouse (over 500 million years of evolutionary distance). We identified several highly conserved intergenic sequences, likely to be important in gene regulation. Only a few of these putative regulatory elements have been previously described as being involved in the regulation of Hox genes, while several others are new elements that might have regulatory functions. The majority of these newly identified putative regulatory elements contain short fragments that are almost completely conserved and are identical to known binding sites for regulatory proteins (Transfac). The conserved intergenic regions located between the most rostrally expressed genes in the developing embryo are longer and better retained through evolution. We document that presumed regulatory sequences are retained differentially in either A or A clusters resulting from a genome duplication in the fish lineage. This observation supports both the hypothesis that the conserved elements are involved in gene regulation and the Duplication-Deletion-Complementation model.

  1. Deconstructing the pluripotency gene regulatory network

    KAUST Repository

    Li, Mo

    2018-04-04

    Pluripotent stem cells can be isolated from embryos or derived by reprogramming. Pluripotency is stabilized by an interconnected network of pluripotency genes that cooperatively regulate gene expression. Here we describe the molecular principles of pluripotency gene function and highlight post-transcriptional controls, particularly those induced by RNA-binding proteins and alternative splicing, as an important regulatory layer of pluripotency. We also discuss heterogeneity in pluripotency regulation, alternative pluripotency states and future directions of pluripotent stem cell research.

  2. ChIP-seq analysis of genomic binding regions of five major transcription factors highlights a central role for ZIC2 in the mouse epiblast stem cell gene regulatory network

    Science.gov (United States)

    Matsuda, Kazunari; Oki, Shinya; Iida, Hideaki; Andrabi, Munazah; Yamaguchi, Katsushi

    2017-01-01

    To obtain insight into the transcription factor (TF)-dependent regulation of epiblast stem cells (EpiSCs), we performed ChIP-seq analysis of the genomic binding regions of five major TFs. Analysis of in vivo biotinylated ZIC2, OTX2, SOX2, POU5F1 and POU3F1 binding in EpiSCs identified several new features. (1) Megabase-scale genomic domains rich in ZIC2 peaks and genes alternate with those rich in POU3F1 but sparse in genes, reflecting the clustering of regulatory regions that act at short and long-range, which involve binding of ZIC2 and POU3F1, respectively. (2) The enhancers bound by ZIC2 and OTX2 prominently regulate TF genes in EpiSCs. (3) The binding sites for SOX2 and POU5F1 in mouse embryonic stem cells (ESCs) and EpiSCs are divergent, reflecting the shift in the major acting TFs from SOX2/POU5F1 in ESCs to OTX2/ZIC2 in EpiSCs. (4) This shift in the major acting TFs appears to be primed by binding of ZIC2 in ESCs at relevant genomic positions that later function as enhancers following the disengagement of SOX2/POU5F1 from major regulatory functions and subsequent binding by OTX2. These new insights into EpiSC gene regulatory networks gained from this study are highly relevant to early stage embryogenesis. PMID:28455373

  3. Current approaches to gene regulatory network modelling

    Directory of Open Access Journals (Sweden)

    Brazma Alvis

    2007-09-01

    Full Text Available Abstract Many different approaches have been developed to model and simulate gene regulatory networks. We proposed the following categories for gene regulatory network models: network parts lists, network topology models, network control logic models, and dynamic models. Here we will describe some examples for each of these categories. We will study the topology of gene regulatory networks in yeast in more detail, comparing a direct network derived from transcription factor binding data and an indirect network derived from genome-wide expression data in mutants. Regarding the network dynamics we briefly describe discrete and continuous approaches to network modelling, then describe a hybrid model called Finite State Linear Model and demonstrate that some simple network dynamics can be simulated in this model.

  4. 78 FR 36011 - Region VII Regulatory Fairness Board; Federal Regulatory Enforcement Fairness Hearing

    Science.gov (United States)

    2013-06-14

    ... SMALL BUSINESS ADMINISTRATION Region VII Regulatory Fairness Board; Federal Regulatory Enforcement... Regional (Region VII) Small Business Regulatory Fairness Board. SUMMARY: The (SBA) Office of the National... the Region VII Regulatory Fairness Board must contact Jeanna Trenkamp by June 17, 2013 in writing, by...

  5. Evolution of evolvability in gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Anton Crombach

    Full Text Available Gene regulatory networks are perhaps the most important organizational level in the cell where signals from the cell state and the outside environment are integrated in terms of activation and inhibition of genes. For the last decade, the study of such networks has been fueled by large-scale experiments and renewed attention from the theoretical field. Different models have been proposed to, for instance, investigate expression dynamics, explain the network topology we observe in bacteria and yeast, and for the analysis of evolvability and robustness of such networks. Yet how these gene regulatory networks evolve and become evolvable remains an open question. An individual-oriented evolutionary model is used to shed light on this matter. Each individual has a genome from which its gene regulatory network is derived. Mutations, such as gene duplications and deletions, alter the genome, while the resulting network determines the gene expression pattern and hence fitness. With this protocol we let a population of individuals evolve under Darwinian selection in an environment that changes through time. Our work demonstrates that long-term evolution of complex gene regulatory networks in a changing environment can lead to a striking increase in the efficiency of generating beneficial mutations. We show that the population evolves towards genotype-phenotype mappings that allow for an orchestrated network-wide change in the gene expression pattern, requiring only a few specific gene indels. The genes involved are hubs of the networks, or directly influencing the hubs. Moreover, throughout the evolutionary trajectory the networks maintain their mutational robustness. In other words, evolution in an alternating environment leads to a network that is sensitive to a small class of beneficial mutations, while the majority of mutations remain neutral: an example of evolution of evolvability.

  6. Robustness Analysis of Gene Regulatory Networks

    Science.gov (United States)

    Kadelka, Claus T.

    Cells generally manage to maintain stable phenotypes in the face of widely varying environmental conditions. This fact is particularly surprising since the key step of gene expression is fundamentally a stochastic process. Many hypotheses have been suggested to explain this robustness. First, the special topology of gene regulatory networks (GRNs) seems to be an important factor as they possess feedforward loops and certain other topological features much more frequently than expected. Second, genes often regulate each other in a canalizing fashion: there exists a dominance order amidst the regulators of a gene, which in silico leads to very robust phenotypes. Lastly, an entirely novel gene regulatory mechanism, discovered and studied during the last two decades, which is believed to play an important role in cancer, is shedding some light on how canalization may in fact take place as part of a cell's gene regulatory program. Short segments of single-stranded RNA, so-called microRNAs, which are embedded in several different types of feedforward loops, help smooth out noise and generate canalizing effects in gene regulation by overriding the effect of certain genes on others. Boolean networks and their multi-state extensions have been successfully used to model GRNs for many years. In this dissertation, GRNs are represented in the time- and state-discrete framework of Stochastic Discrete Dynamical Systems (SDDS), which captures the cell-inherent stochasticity. Each gene has finitely many different concentration levels and its concentration at the next time step is determined by a gene-specific update rule that depends on the current concentration of the gene's regulators. The update rules in published gene regulatory networks are often nested canalizing functions. In Chapter 2, this class of functions is introduced, generalized and analyzed with respect to its potential to confer robustness. Chapter 3 describes a simulation study, which supports the hypothesis that

  7. A novel polymorphic repeat in the upstream regulatory region of the estrogen-induced gene EIG121 is not associated with the risk of developing breast or endometrial cancer.

    Science.gov (United States)

    Bolton, Katherine A; Holliday, Elizabeth G; Attia, John; Bowden, Nikola A; Avery-Kiejda, Kelly A; Scott, Rodney J

    2016-05-26

    The estrogen-induced gene 121 (EIG121) has been associated with breast and endometrial cancers, but its mechanism of action remains unknown. In a genome-wide search for tandem repeats, we found that EIG121 contains a short tandem repeat (STR) in its upstream regulatory region which has the potential to alter gene expression. The presence of this STR has not previously been analysed in relation to breast or endometrial cancer risk. In this study, the lengths of this STR were determined by PCR, fragment analysis and sequencing using DNA from 223 breast cancer patients, 204 endometrial cancer patients and 220 healthy controls to determine if they were associated with the risk of developing breast or endometrial cancer. We found this repeat to be highly variable with the number of copies of the AG motif ranging from 27 to 72 and having a bimodal distribution. No statistically significant association was identified between the length of this STR and the risk of developing breast or endometrial cancer or age at diagnosis. The STR in the upstream regulatory region of EIG121 is highly polymorphic, but is not associated with the risk of developing breast or endometrial cancer in the cohorts analysed here. While this polymorphic STR in the regulatory region of EIG121 appears to have no impact on the risk of developing breast or endometrial cancer, its association with disease recurrence or overall survival remains to be determined.

  8. Selective constraints in experimentally defined primate regulatory regions.

    Directory of Open Access Journals (Sweden)

    Daniel J Gaffney

    2008-08-01

    Full Text Available Changes in gene regulation may be important in evolution. However, the evolutionary properties of regulatory mutations are currently poorly understood. This is partly the result of an incomplete annotation of functional regulatory DNA in many species. For example, transcription factor binding sites (TFBSs, a major component of eukaryotic regulatory architecture, are typically short, degenerate, and therefore difficult to differentiate from randomly occurring, nonfunctional sequences. Furthermore, although sites such as TFBSs can be computationally predicted using evolutionary conservation as a criterion, estimates of the true level of selective constraint (defined as the fraction of strongly deleterious mutations occurring at a locus in regulatory regions will, by definition, be upwardly biased in datasets that are a priori evolutionarily conserved. Here we investigate the fitness effects of regulatory mutations using two complementary datasets of human TFBSs that are likely to be relatively free of ascertainment bias with respect to evolutionary conservation but, importantly, are supported by experimental data. The first is a collection of almost >2,100 human TFBSs drawn from the literature in the TRANSFAC database, and the second is derived from several recent high-throughput chromatin immunoprecipitation coupled with genomic microarray (ChIP-chip analyses. We also define a set of putative cis-regulatory modules (pCRMs by spatially clustering multiple TFBSs that regulate the same gene. We find that a relatively high proportion ( approximately 37% of mutations at TFBSs are strongly deleterious, similar to that at a 2-fold degenerate protein-coding site. However, constraint is significantly reduced in human and chimpanzee pCRMS and ChIP-chip sequences, relative to macaques. We estimate that the fraction of regulatory mutations that have been driven to fixation by positive selection in humans is not significantly different from zero. We also find

  9. Identification of key player genes in gene regulatory networks.

    Science.gov (United States)

    Nazarieh, Maryam; Wiese, Andreas; Will, Thorsten; Hamed, Mohamed; Helms, Volkhard

    2016-09-06

    Identifying the gene regulatory networks governing the workings and identity of cells is one of the main challenges in understanding processes such as cellular differentiation, reprogramming or cancerogenesis. One particular challenge is to identify the main drivers and master regulatory genes that control such cell fate transitions. In this work, we reformulate this problem as the optimization problems of computing a Minimum Dominating Set and a Minimum Connected Dominating Set for directed graphs. Both MDS and MCDS are applied to the well-studied gene regulatory networks of the model organisms E. coli and S. cerevisiae and to a pluripotency network for mouse embryonic stem cells. The results show that MCDS can capture most of the known key player genes identified so far in the model organisms. Moreover, this method suggests an additional small set of transcription factors as novel key players for governing the cell-specific gene regulatory network which can also be investigated with regard to diseases. To this aim, we investigated the ability of MCDS to define key drivers in breast cancer. The method identified many known drug targets as members of the MDS and MCDS. This paper proposes a new method to identify key player genes in gene regulatory networks. The Java implementation of the heuristic algorithm explained in this paper is available as a Cytoscape plugin at http://apps.cytoscape.org/apps/mcds . The SageMath programs for solving integer linear programming formulations used in the paper are available at https://github.com/maryamNazarieh/KeyRegulatoryGenes and as supplementary material.

  10. Mutational robustness of gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Aalt D J van Dijk

    Full Text Available Mutational robustness of gene regulatory networks refers to their ability to generate constant biological output upon mutations that change network structure. Such networks contain regulatory interactions (transcription factor-target gene interactions but often also protein-protein interactions between transcription factors. Using computational modeling, we study factors that influence robustness and we infer several network properties governing it. These include the type of mutation, i.e. whether a regulatory interaction or a protein-protein interaction is mutated, and in the case of mutation of a regulatory interaction, the sign of the interaction (activating vs. repressive. In addition, we analyze the effect of combinations of mutations and we compare networks containing monomeric with those containing dimeric transcription factors. Our results are consistent with available data on biological networks, for example based on evolutionary conservation of network features. As a novel and remarkable property, we predict that networks are more robust against mutations in monomer than in dimer transcription factors, a prediction for which analysis of conservation of DNA binding residues in monomeric vs. dimeric transcription factors provides indirect evidence.

  11. Cytotoxicity of replication-competent adenoviruses powered by an exogenous regulatory region is not linearly correlated with the viral infectivity/gene expression or with the E1A-activating ability but is associated with the p53 genotypes.

    Science.gov (United States)

    Yamauchi, Suguru; Zhong, Boya; Kawamura, Kiyoko; Yang, Shan; Kubo, Shuji; Shingyoji, Masato; Sekine, Ikuo; Tada, Yuji; Tatsumi, Koichiro; Shimada, Hideaki; Hiroshima, Kenzo; Tagawa, Masatoshi

    2017-09-05

    Replication-competent adenoviruses (Ad) produced cytotoxic effects on infected tumors and have been examined for the clinical applicability. A biomarkers to predict the cytotoxicity is valuable in a clinical setting. We constructed type 5 Ad (Ad5) of which the expression of E1A gene was activated by a 5' regulatory sequences of survivin, midkine or cyclooxygenase-2, which were highly expressed in human tumors. We also produced the same replication-competent Ad of which the fiber-knob region was replaced by that of Ad35 (AdF35). The cytotoxicity was examined by a colorimetric assay with human tumor cell lines, 4 kinds of pancreatic, 9 esophageal carcinoma and 5 mesothelioma. Ad infectivity and Ad-mediated gene expression were examined with replication-incompetent Ad5 and AdF35 which expressed the green fluorescence protein gene. Expression of cellular receptors for Ad5 and AdF35 was also examined with flow cytometry. A transcriptional activity of the regulatory sequences was investigated with a luciferase assay in the tumor cells. We then investigated a possible correlation between Ad-mediated cytotoxicity and the infectivity/gene expression, the transcriptional activity or the p53 genotype. We found that the cytotoxicity was greater with AdF35 than with Ad5 vectors, but was not correlated with the Ad infectivity/gene expression irrespective of the fiber-knob region or the E1A-activating transcriptional activity. In contrast, replication-competent Ad produced greater cytotoxicity in p53 mutated than in wild-type esophageal carcinoma cells, suggesting a possible association between the cytotoxicity and the p53 genotype. Sensitivity to Ad-mediated cytotoxic activity was linked with the p53 genotype but was not lineally correlated with the infectivity/gene expression or the E1A expression.

  12. Automated Identification of Core Regulatory Genes in Human Gene Regulatory Networks.

    Directory of Open Access Journals (Sweden)

    Vipin Narang

    Full Text Available Human gene regulatory networks (GRN can be difficult to interpret due to a tangle of edges interconnecting thousands of genes. We constructed a general human GRN from extensive transcription factor and microRNA target data obtained from public databases. In a subnetwork of this GRN that is active during estrogen stimulation of MCF-7 breast cancer cells, we benchmarked automated algorithms for identifying core regulatory genes (transcription factors and microRNAs. Among these algorithms, we identified K-core decomposition, pagerank and betweenness centrality algorithms as the most effective for discovering core regulatory genes in the network evaluated based on previously known roles of these genes in MCF-7 biology as well as in their ability to explain the up or down expression status of up to 70% of the remaining genes. Finally, we validated the use of K-core algorithm for organizing the GRN in an easier to interpret layered hierarchy where more influential regulatory genes percolate towards the inner layers. The integrated human gene and miRNA network and software used in this study are provided as supplementary materials (S1 Data accompanying this manuscript.

  13. Gene regulatory mechanisms in infected fish

    DEFF Research Database (Denmark)

    Schyth, Brian Dall; Hajiabadi, Seyed Amir Hossein Jalali; Kristensen, Lasse Bøgelund Juel

    2011-01-01

    This talk will highlight the regulatory mechanisms of gene expression especially the programmed form of mRNA decay which is known as RNA interference (RNAi) and how this and other mechanisms contribute to the regulation of genes involved in immunity. In the RNAi mechanism small double stranded RNA...... with viral hemorrhagic septicemia virus (VHSV), and a genomic upstream sequence which we believe contains their promoter. Particular transcription factor binding motifs inside this potential promoter area point to its use in dsRNA induced antiviral defence. Other sites point to a role in leukocyte...... molecules produced by the eukaryotic cell is used to program the RNA Induced Silencing Complex (RISC) for cleavage of specific mRNA transcripts and/or translational repression in the cytoplasm or even chromatin methylation in the nucleus. All processes leading to silencing of the target gene. MicroRNAs (or...

  14. Fan-out in gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Sauro Herbert M

    2010-12-01

    Full Text Available Abstract Background In synthetic biology, gene regulatory circuits are often constructed by combining smaller circuit components. Connections between components are achieved by transcription factors acting on promoters. If the individual components behave as true modules and certain module interface conditions are satisfied, the function of the composite circuits can in principle be predicted. Results In this paper, we investigate one of the interface conditions: fan-out. We quantify the fan-out, a concept widely used in electrical engineering, to indicate the maximum number of the downstream inputs that an upstream output transcription factor can regulate. The fan-out is shown to be closely related to retroactivity studied by Del Vecchio, et al. An efficient operational method for measuring the fan-out is proposed and shown to be applied to various types of module interfaces. The fan-out is also shown to be enhanced by self-inhibitory regulation on the output. The potential role of an inhibitory regulation is discussed. Conclusions The proposed estimation method for fan-out not only provides an experimentally efficient way for quantifying the level of modularity in gene regulatory circuits but also helps characterize and design module interfaces, enabling the modular construction of gene circuits.

  15. Simple mathematical models of gene regulatory dynamics

    CERN Document Server

    Mackey, Michael C; Tyran-Kamińska, Marta; Zeron, Eduardo S

    2016-01-01

    This is a short and self-contained introduction to the field of mathematical modeling of gene-networks in bacteria. As an entry point to the field, we focus on the analysis of simple gene-network dynamics. The notes commence with an introduction to the deterministic modeling of gene-networks, with extensive reference to applicable results coming from dynamical systems theory. The second part of the notes treats extensively several approaches to the study of gene-network dynamics in the presence of noise—either arising from low numbers of molecules involved, or due to noise external to the regulatory process. The third and final part of the notes gives a detailed treatment of three well studied and concrete examples of gene-network dynamics by considering the lactose operon, the tryptophan operon, and the lysis-lysogeny switch. The notes contain an index for easy location of particular topics as well as an extensive bibliography of the current literature. The target audience of these notes are mainly graduat...

  16. Systematic screening for mutations in the 5{prime}-regulatory region of the human dopamine D{sub 1} receptor (DRD1) gene in patients with schizophrenia and bipolar affective disorder

    Energy Technology Data Exchange (ETDEWEB)

    Cichon, S.; Noethen, M.M.; Stoeber, G. [Univ. of Bonn (Germany)] [and others

    1996-07-26

    A possible dysregulation of dopaminergic neurotransmission has been implicated in a variety of neuropsychiatric diseases. In the present study we systematically searched for the presence of mutations in the 5{prime}-flanking region of the dopamine D{sub 1} receptor (DRD1) gene. This region has previously been shown to contain a functional promoter. We investigated 119 unrelated individuals (including 36 schizophrenic patients, 38 bipolar affective patients, and 45 healthy controls) using single-strand conformation analysis (SSCA). Eleven overlapping PCR fragments covered 2,189 bp of DNA sequence. We identified six single base substitutions: -2218T/C, -2102C/A, -2030T/C, -1992G/A, -1251G/C, and -800T/C. None of the mutations was found to be located in regions which have important influence on the level of transcriptional activity. Allele frequencies were similar in patients and controls, indicating that genetic variation in the 5{prime}-regulatory region of the DRD1 gene is unlikely to play a frequent, major role in the genetic predisposition to either schizophrenia or bipolar affective disorder. 31 refs., 3 tabs.

  17. Semi-supervised prediction of gene regulatory networks using ...

    Indian Academy of Sciences (India)

    2015-09-28

    Sep 28, 2015 ... [Patel N and Wang JTL 2015 Semi-supervised prediction of gene regulatory networks using machine learning algorithms. J. Biosci. 40 731–740]. DOI 10.1007/s12038-015-9558-9. 1. Introduction. 1.1 Background. Using gene expression data to infer gene regulatory net- works (GRNs) is a key approach to ...

  18. The AP-1 binding sites located in the pol gene intragenic regulatory region of HIV-1 are important for viral replication.

    Directory of Open Access Journals (Sweden)

    Laurence Colin

    Full Text Available Our laboratory has previously identified an important intragenic region in the human immunodeficiency virus type 1 (HIV-1 genome, whose complete functional unit is composed of the 5103 fragment, the DNaseI-hypersensitive site HS7 and the 5105 fragment. These fragments (5103 and 5105 both exhibit a phorbol 12-myristate 13-acetate (PMA-inducible enhancer activity on the herpes simplex virus thymidine kinase promoter. Here, we characterized the three previously identified AP-1 binding sites of fragment 5103 by showing the PMA-inducible in vitro binding and in vivo recruitment of c-Fos, JunB and JunD to this fragment located at the end of the pol gene. Functional analyses demonstrated that the intragenic AP-1 binding sites are fully responsible for the PMA-dependent enhancer activity of fragment 5103. Moreover, infection of T-lymphoid Jurkat and promonocytic U937 cells with wild-type and mutant viruses demonstrated that mutations of the intragenic AP-1 sites individually or in combination altered HIV-1 replication. Importantly, mutations of the three intragenic AP-1 sites led to a decreased in vivo recruitment of RNA polymerase II to the viral promoter, strongly supporting that the deleterious effect of these mutations on viral replication occurs, at least partly, at the transcriptional level. Single-round infections of monocyte-derived macrophages confirmed the importance of intragenic AP-1 sites for HIV-1 infectivity.

  19. The AP-1 Binding Sites Located in the pol Gene Intragenic Regulatory Region of HIV-1 Are Important for Viral Replication

    Science.gov (United States)

    Colin, Laurence; Vandenhoudt, Nathalie; de Walque, Stéphane; Van Driessche, Benoît; Bergamaschi, Anna; Martinelli, Valérie; Cherrier, Thomas; Vanhulle, Caroline; Guiguen, Allan; David, Annie; Burny, Arsène; Herbein, Georges; Pancino, Gianfranco

    2011-01-01

    Our laboratory has previously identified an important intragenic region in the human immunodeficiency virus type 1 (HIV-1) genome, whose complete functional unit is composed of the 5103 fragment, the DNaseI-hypersensitive site HS7 and the 5105 fragment. These fragments (5103 and 5105) both exhibit a phorbol 12-myristate 13-acetate (PMA)-inducible enhancer activity on the herpes simplex virus thymidine kinase promoter. Here, we characterized the three previously identified AP-1 binding sites of fragment 5103 by showing the PMA-inducible in vitro binding and in vivo recruitment of c-Fos, JunB and JunD to this fragment located at the end of the pol gene. Functional analyses demonstrated that the intragenic AP-1 binding sites are fully responsible for the PMA-dependent enhancer activity of fragment 5103. Moreover, infection of T-lymphoid Jurkat and promonocytic U937 cells with wild-type and mutant viruses demonstrated that mutations of the intragenic AP-1 sites individually or in combination altered HIV-1 replication. Importantly, mutations of the three intragenic AP-1 sites led to a decreased in vivo recruitment of RNA polymerase II to the viral promoter, strongly supporting that the deleterious effect of these mutations on viral replication occurs, at least partly, at the transcriptional level. Single-round infections of monocyte-derived macrophages confirmed the importance of intragenic AP-1 sites for HIV-1 infectivity. PMID:21526160

  20. Creating and validating cis-regulatory maps of tissue-specific gene expression regulation

    Science.gov (United States)

    O'Connor, Timothy R.; Bailey, Timothy L.

    2014-01-01

    Predicting which genomic regions control the transcription of a given gene is a challenge. We present a novel computational approach for creating and validating maps that associate genomic regions (cis-regulatory modules–CRMs) with genes. The method infers regulatory relationships that explain gene expression observed in a test tissue using widely available genomic data for ‘other’ tissues. To predict the regulatory targets of a CRM, we use cross-tissue correlation between histone modifications present at the CRM and expression at genes within 1 Mbp of it. To validate cis-regulatory maps, we show that they yield more accurate models of gene expression than carefully constructed control maps. These gene expression models predict observed gene expression from transcription factor binding in the CRMs linked to that gene. We show that our maps are able to identify long-range regulatory interactions and improve substantially over maps linking genes and CRMs based on either the control maps or a ‘nearest neighbor’ heuristic. Our results also show that it is essential to include CRMs predicted in multiple tissues during map-building, that H3K27ac is the most informative histone modification, and that CAGE is the most informative measure of gene expression for creating cis-regulatory maps. PMID:25200088

  1. Gene regulatory networks governing lung specification.

    Science.gov (United States)

    Rankin, Scott A; Zorn, Aaron M

    2014-08-01

    The epithelial lining of the respiratory system originates from a small group of progenitor cells in the ventral foregut endoderm of the early embryo. Research in the last decade has revealed a number of paracrine signaling pathways that are critical for the development of these respiratory progenitors. In the post-genomic era the challenge now is to figure out at the genome wide level how these different signaling pathways and their downstream transcription factors interact in a complex "gene regulatory network" (GRN) to orchestrate early lung development. In this prospective, we review our growing understanding of the GRN governing lung specification. We discuss key gaps in our knowledge and describe emerging opportunities that will soon provide an unprecedented understanding of lung development and accelerate our ability to apply this knowledge to regenerative medicine. © 2014 Wiley Periodicals, Inc.

  2. 76 FR 9630 - Federal Regulatory Enforcement Fairness Hearing; National Ombudsman and Region VI Regional Small...

    Science.gov (United States)

    2011-02-18

    ... and Region VI Regional Small Business Regulatory Fairness Board AGENCY: U.S. Small Business Administration (SBA). ACTION: Notice of open hearing of the Regional (Region VI) Small Business Regulatory... 2, notice is hereby given that the U.S. Small Business Administration (SBA) Region VI Regional Small...

  3. A Regulatory Network Analysis of Orphan Genes in Arabidopsis Thaliana

    Science.gov (United States)

    Singh, Pramesh; Chen, Tianlong; Arendsee, Zebulun; Wurtele, Eve S.; Bassler, Kevin E.

    Orphan genes, which are genes unique to each particular species, have recently drawn significant attention for their potential usefulness for organismal robustness. Their origin and regulatory interaction patterns remain largely undiscovered. Recently, methods that use the context likelihood of relatedness to infer a network followed by modularity maximizing community detection algorithms on the inferred network to find the functional structure of regulatory networks were shown to be effective. We apply improved versions of these methods to gene expression data from Arabidopsis thaliana, identify groups (clusters) of interacting genes with related patterns of expression and analyze the structure within those groups. Focusing on clusters that contain orphan genes, we compare the identified clusters to gene ontology (GO) terms, regulons, and pathway designations and analyze their hierarchical structure. We predict new regulatory interactions and unravel the structure of the regulatory interaction patterns of orphan genes. Work supported by the NSF through Grants DMR-1507371 and IOS-1546858.

  4. Evolution of Cis-Regulatory Elements and Regulatory Networks in Duplicated Genes of Arabidopsis.

    Science.gov (United States)

    Arsovski, Andrej A; Pradinuk, Julian; Guo, Xu Qiu; Wang, Sishuo; Adams, Keith L

    2015-12-01

    Plant genomes contain large numbers of duplicated genes that contribute to the evolution of new functions. Following duplication, genes can exhibit divergence in their coding sequence and their expression patterns. Changes in the cis-regulatory element landscape can result in changes in gene expression patterns. High-throughput methods developed recently can identify potential cis-regulatory elements on a genome-wide scale. Here, we use a recent comprehensive data set of DNase I sequencing-identified cis-regulatory binding sites (footprints) at single-base-pair resolution to compare binding sites and network connectivity in duplicated gene pairs in Arabidopsis (Arabidopsis thaliana). We found that duplicated gene pairs vary greatly in their cis-regulatory element architecture, resulting in changes in regulatory network connectivity. Whole-genome duplicates (WGDs) have approximately twice as many footprints in their promoters left by potential regulatory proteins than do tandem duplicates (TDs). The WGDs have a greater average number of footprint differences between paralogs than TDs. The footprints, in turn, result in more regulatory network connections between WGDs and other genes, forming denser, more complex regulatory networks than shown by TDs. When comparing regulatory connections between duplicates, WGDs had more pairs in which the two genes are either partially or fully diverged in their network connections, but fewer genes with no network connections than the TDs. There is evidence of younger TDs and WGDs having fewer unique connections compared with older duplicates. This study provides insights into cis-regulatory element evolution and network divergence in duplicated genes. © 2015 American Society of Plant Biologists. All Rights Reserved.

  5. Transcription factor trapping by RNA in gene regulatory elements.

    Science.gov (United States)

    Sigova, Alla A; Abraham, Brian J; Ji, Xiong; Molinie, Benoit; Hannett, Nancy M; Guo, Yang Eric; Jangi, Mohini; Giallourakis, Cosmas C; Sharp, Phillip A; Young, Richard A

    2015-11-20

    Transcription factors (TFs) bind specific sequences in promoter-proximal and -distal DNA elements to regulate gene transcription. RNA is transcribed from both of these DNA elements, and some DNA binding TFs bind RNA. Hence, RNA transcribed from regulatory elements may contribute to stable TF occupancy at these sites. We show that the ubiquitously expressed TF Yin-Yang 1 (YY1) binds to both gene regulatory elements and their associated RNA species across the entire genome. Reduced transcription of regulatory elements diminishes YY1 occupancy, whereas artificial tethering of RNA enhances YY1 occupancy at these elements. We propose that RNA makes a modest but important contribution to the maintenance of certain TFs at gene regulatory elements and suggest that transcription of regulatory elements produces a positive-feedback loop that contributes to the stability of gene expression programs. Copyright © 2015, American Association for the Advancement of Science.

  6. Robustness and Accuracy in Sea Urchin Developmental Gene Regulatory Networks.

    Science.gov (United States)

    Ben-Tabou de-Leon, Smadar

    2016-01-01

    Developmental gene regulatory networks robustly control the timely activation of regulatory and differentiation genes. The structure of these networks underlies their capacity to buffer intrinsic and extrinsic noise and maintain embryonic morphology. Here I illustrate how the use of specific architectures by the sea urchin developmental regulatory networks enables the robust control of cell fate decisions. The Wnt-βcatenin signaling pathway patterns the primary embryonic axis while the BMP signaling pathway patterns the secondary embryonic axis in the sea urchin embryo and across bilateria. Interestingly, in the sea urchin in both cases, the signaling pathway that defines the axis controls directly the expression of a set of downstream regulatory genes. I propose that this direct activation of a set of regulatory genes enables a uniform regulatory response and a clear cut cell fate decision in the endoderm and in the dorsal ectoderm. The specification of the mesodermal pigment cell lineage is activated by Delta signaling that initiates a triple positive feedback loop that locks down the pigment specification state. I propose that the use of compound positive feedback circuitry provides the endodermal cells enough time to turn off mesodermal genes and ensures correct mesoderm vs. endoderm fate decision. Thus, I argue that understanding the control properties of repeatedly used regulatory architectures illuminates their role in embryogenesis and provides possible explanations to their resistance to evolutionary change.

  7. Robustness and accuracy in sea urchin developmental gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Smadar eBen-Tabou De-Leon

    2016-02-01

    Full Text Available Developmental gene regulatory networks robustly control the timely activation of regulatory and differentiation genes. The structure of these networks underlies their capacity to buffer intrinsic and extrinsic noise and maintain embryonic morphology. Here I illustrate how the use of specific architectures by the sea urchin developmental regulatory networks enables the robust control of cell fate decisions. The Wnt-βcatenin signaling pathway patterns the primary embryonic axis while the BMP signaling pathway patterns the secondary embryonic axis in the sea urchin embryo and across bilateria. Interestingly, in the sea urchin in both cases, the signaling pathway that defines the axis controls directly the expression of a set of downstream regulatory genes. I propose that this direct activation of a set of regulatory genes enables a uniform regulatory response and a clear cut cell fate decision in the endoderm and in the dorsal ectoderm. The specification of the mesodermal pigment cell lineage is activated by Delta signaling that initiates a triple positive feedback loop that locks down the pigment specification state. I propose that the use of compound positive feedback circuitry provides the endodermal cells enough time to turn off mesodermal genes and ensures correct mesoderm vs. endoderm fate decision. Thus, I argue that understanding the control properties of repeatedly used regulatory architectures illuminates their role in embryogenesis and provides possible explanations to their resistance to evolutionary change.

  8. Two regional regulatory meetings on distributed resources. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-02-01

    An overview and discussion of Eastern Regional and Western Regional State Utility Regulators Workshops on Distributed Resources (DR) is given. The purpose of the workshops was for state regulators to learn about DR and the regulatory issues surrounding their greater use. The following issues were addressed: introduction to DR technologies and their potential benefits, interconnection and market barriers, regulatory incentives, rate design issues, and environmental issues.

  9. A cis-regulatory signature for chordate anterior neuroectodermal genes.

    Directory of Open Access Journals (Sweden)

    Maximilian Haeussler

    2010-04-01

    Full Text Available One of the striking findings of comparative developmental genetics was that expression patterns of core transcription factors are extraordinarily conserved in bilaterians. However, it remains unclear whether cis-regulatory elements of their target genes also exhibit common signatures associated with conserved embryonic fields. To address this question, we focused on genes that are active in the anterior neuroectoderm and non-neural ectoderm of the ascidian Ciona intestinalis. Following the dissection of a prototypic anterior placodal enhancer, we searched all genomic conserved non-coding elements for duplicated motifs around genes showing anterior neuroectodermal expression. Strikingly, we identified an over-represented pentamer motif corresponding to the binding site of the homeodomain protein OTX, which plays a pivotal role in the anterior development of all bilaterian species. Using an in vivo reporter gene assay, we observed that 10 of 23 candidate cis-regulatory elements containing duplicated OTX motifs are active in the anterior neuroectoderm, thus showing that this cis-regulatory signature is predictive of neuroectodermal enhancers. These results show that a common cis-regulatory signature corresponding to K50-Paired homeodomain transcription factors is found in non-coding sequences flanking anterior neuroectodermal genes in chordate embryos. Thus, field-specific selector genes impose architectural constraints in the form of combinations of short tags on their target enhancers. This could account for the strong evolutionary conservation of the regulatory elements controlling field-specific selector genes responsible for body plan formation.

  10. Mechanosensitive promoter region in the human HB-GAM gene

    DEFF Research Database (Denmark)

    Liedert, Astrid; Kassem, Moustapha; Claes, Lutz

    2009-01-01

    expression through specific transcription factor binding sites in the promoter region of mechanosensitive genes. In the present study, we demonstrate that the expression of HB-GAM, which is known to have stimulating effects on osteogenic differentiation, is rapidly induced by mechanical loading in hMSC-TERT4...... cells. Analysis of the human HB-GAM gene upstream regulatory region with luciferase reporter gene assays revealed that the upregulation of HB-GAM expression occurred at the transcriptional level and was mainly dependent on the HB-GAM promoter region most upstream containing three potential AP-1 binding...

  11. Interactive visualization of gene regulatory networks with associated gene expression time series data

    NARCIS (Netherlands)

    Westenberg, Michel A.; Hijum, Sacha A.F.T. van; Lulko, Andrzej T.; Kuipers, Oscar P.; Roerdink, Jos B.T.M.; Linsen, L; Hagen, H; Hamann, B

    2008-01-01

    We present GENeVis, an application to visualize gene expression time series data in a gene regulatory network context. This is a network of regulator proteins that regulate the expression of their respective target genes. The networks are represented as graphs, in which the nodes represent genes,

  12. Semi-supervised prediction of gene regulatory networks using ...

    Indian Academy of Sciences (India)

    Use of computational methods to predict gene regulatory networks (GRNs) from gene expression data is a challenging task. Many studies have been conducted using unsupervised methods to fulfill the task; however, such methods usually yield low prediction accuracies due to the lack of training data. In this article, we ...

  13. Analysis of regulatory networks constructed based on gene ...

    Indian Academy of Sciences (India)

    For pituitary adenoma-specific coexpressed genes, we integrated transcription factor (TF) and microRNA (miRNA) regulation to construct a complex regulatory network from the transcriptional and posttranscriptional perspectives. Network module analysis identified the synergistic regulation of genes by miRNAs and TFs in ...

  14. Semi-supervised prediction of gene regulatory networks using ...

    Indian Academy of Sciences (India)

    2015-09-28

    Sep 28, 2015 ... Use of computational methods to predict gene regulatory networks (GRNs) from gene expression data is a challenging task. Many studies have been conducted using unsupervised methods to fulfill the task; however, such methods usually yield low prediction accuracies due to the lack of training data.

  15. Analysis of the sfaX(II) locus in the Escherichia coli meningitis isolate IHE3034 reveals two novel regulatory genes within the promoter-distal region of the main S fimbrial operon.

    Science.gov (United States)

    Sjöström, Annika E; Sondén, Berit; Müller, Claudia; Rydström, Anna; Dobrindt, Ulrich; Wai, Sun Nyunt; Uhlin, Bernt Eric

    2009-03-01

    We describe the expression and regulation of the gene sfaX(II) located near the Sfa(II) fimbrial determinant in the newborn meningitis Escherichia coli (NMEC) isolate IHE3034. sfaX(II) belongs to a gene family, the 17-kDa genes, typically located downstream (300-3000bp) of different fimbrial operons found in E. coli isolates of uropathogenic and newborn meningitis origin. Using transcriptional sfaX(II) reporter gene fusions we found that different environmental conditions commonly affecting expression of fimbrial genes also affected sfaX(II) expression. Analysis of the sfaX(II) transcripts showed that the gene is part of the main fimbrial operon as it is transcribed together with the rest of the fimbrial genes. In addition, the sfaX(II) gene can be expressed from a more proximal promoter and is found to be subject to strong down-regulation by the nucleoid protein H-NS. Studies with an sfaX(II) mutant derivative of IHE3034 did not reveal effects on Sfa(II) fimbrial biogenesis as monitored by e.g. immunofluorescence microscopy. Nevertheless, a mutation in sfaX(II) resulted in altered expression of other surface components. Moreover, we define a new gene, sfaY(II), coding for a putative phosphodiesterase that is located in between the sfaX(II) gene and the fimbrial biogenesis genes. Our studies by ectopic expression of sfaY(II) in Vibrio cholerae showed that the gene product caused reduced biofilm formation and it is proposed that sfaY(II) can influence cyclic-di-GMP turnover in the bacteria. Our findings demonstrate that the operons typical for S-fimbriae of extraintestinal pathogenic E. coli include previously unrecognized novel regulatory genes.

  16. Learning gene regulatory networks from only positive and unlabeled data

    Directory of Open Access Journals (Sweden)

    Elkan Charles

    2010-05-01

    Full Text Available Abstract Background Recently, supervised learning methods have been exploited to reconstruct gene regulatory networks from gene expression data. The reconstruction of a network is modeled as a binary classification problem for each pair of genes. A statistical classifier is trained to recognize the relationships between the activation profiles of gene pairs. This approach has been proven to outperform previous unsupervised methods. However, the supervised approach raises open questions. In particular, although known regulatory connections can safely be assumed to be positive training examples, obtaining negative examples is not straightforward, because definite knowledge is typically not available that a given pair of genes do not interact. Results A recent advance in research on data mining is a method capable of learning a classifier from only positive and unlabeled examples, that does not need labeled negative examples. Applied to the reconstruction of gene regulatory networks, we show that this method significantly outperforms the current state of the art of machine learning methods. We assess the new method using both simulated and experimental data, and obtain major performance improvement. Conclusions Compared to unsupervised methods for gene network inference, supervised methods are potentially more accurate, but for training they need a complete set of known regulatory connections. A supervised method that can be trained using only positive and unlabeled data, as presented in this paper, is especially beneficial for the task of inferring gene regulatory networks, because only an incomplete set of known regulatory connections is available in public databases such as RegulonDB, TRRD, KEGG, Transfac, and IPA.

  17. US Nuclear Regulatory Commission region IV

    International Nuclear Information System (INIS)

    Vanderburch, C.

    1996-01-01

    The NRC has established a policy to provide for the timely through and systematic inspection of significant operational events at nuclear power plants. This includes the use of an Augmented Inspection Team to determine the causes, conditions, and circumstances relevant to an event and to communicate its findings and conclusions to NRC management. In accordance with NRC Inspection Manual Chapter 0325. The Region IV Regional Administrator dispatched an Augmented Inspection Team to the Wolf Creek Nuclear Generating Station to review the circumstances surrounding a manual reactor trip on January 30, 1996, with the failure of five control rods to fully insert into the core, a failure of the turbine-driven auxiliary feedwater pump, and the subsequent loss of one train of the essential service water system

  18. Echinoderm systems for gene regulatory studies in evolution and development.

    Science.gov (United States)

    Arnone, Maria Ina; Andrikou, Carmen; Annunziata, Rossella

    2016-08-01

    One of the main challenges in Evolutionary Developmental Biology is to understand to which extent developmental changes are driven by regulatory alterations in the genomic sequence. In the recent years, the focus of comparative developmental studies has moved towards a systems biology approach providing a better understanding of the evolution of gene interactions that form the so called Gene Regulatory Networks (GRN). Echinoderms provide a powerful system to reveal regulatory mechanisms and within the past decade, due to the latest technological innovations, a great number of studies have provided valuable information for comparative GRN analyses. In this review we describe recent advances in evolution of GRNs arising from echinoderm systems, focusing on the properties of conserved regulatory kernels, circuit co-option events and GRN topological rearrangements. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Genome-wide identification of regulatory elements and reconstruction of gene regulatory networks of the green alga Chlamydomonas reinhardtii under carbon deprivation.

    Science.gov (United States)

    Winck, Flavia Vischi; Vischi Winck, Flavia; Arvidsson, Samuel; Riaño-Pachón, Diego Mauricio; Hempel, Sabrina; Koseska, Aneta; Nikoloski, Zoran; Urbina Gomez, David Alejandro; Rupprecht, Jens; Mueller-Roeber, Bernd

    2013-01-01

    The unicellular green alga Chlamydomonas reinhardtii is a long-established model organism for studies on photosynthesis and carbon metabolism-related physiology. Under conditions of air-level carbon dioxide concentration [CO2], a carbon concentrating mechanism (CCM) is induced to facilitate cellular carbon uptake. CCM increases the availability of carbon dioxide at the site of cellular carbon fixation. To improve our understanding of the transcriptional control of the CCM, we employed FAIRE-seq (formaldehyde-assisted Isolation of Regulatory Elements, followed by deep sequencing) to determine nucleosome-depleted chromatin regions of algal cells subjected to carbon deprivation. Our FAIRE data recapitulated the positions of known regulatory elements in the promoter of the periplasmic carbonic anhydrase (Cah1) gene, which is upregulated during CCM induction, and revealed new candidate regulatory elements at a genome-wide scale. In addition, time series expression patterns of 130 transcription factor (TF) and transcription regulator (TR) genes were obtained for cells cultured under photoautotrophic condition and subjected to a shift from high to low [CO2]. Groups of co-expressed genes were identified and a putative directed gene-regulatory network underlying the CCM was reconstructed from the gene expression data using the recently developed IOTA (inner composition alignment) method. Among the candidate regulatory genes, two members of the MYB-related TF family, Lcr1 (Low-CO 2 response regulator 1) and Lcr2 (Low-CO2 response regulator 2), may play an important role in down-regulating the expression of a particular set of TF and TR genes in response to low [CO2]. The results obtained provide new insights into the transcriptional control of the CCM and revealed more than 60 new candidate regulatory genes. Deep sequencing of nucleosome-depleted genomic regions indicated the presence of new, previously unknown regulatory elements in the C. reinhardtii genome. Our work can

  20. Regulatory elements of Caenorhabditis elegans ribosomal protein genes

    Directory of Open Access Journals (Sweden)

    Sleumer Monica C

    2012-08-01

    Full Text Available Abstract Background Ribosomal protein genes (RPGs are essential, tightly regulated, and highly expressed during embryonic development and cell growth. Even though their protein sequences are strongly conserved, their mechanism of regulation is not conserved across yeast, Drosophila, and vertebrates. A recent investigation of genomic sequences conserved across both nematode species and associated with different gene groups indicated the existence of several elements in the upstream regions of C. elegans RPGs, providing a new insight regarding the regulation of these genes in C. elegans. Results In this study, we performed an in-depth examination of C. elegans RPG regulation and found nine highly conserved motifs in the upstream regions of C. elegans RPGs using the motif discovery algorithm DME. Four motifs were partially similar to transcription factor binding sites from C. elegans, Drosophila, yeast, and human. One pair of these motifs was found to co-occur in the upstream regions of 250 transcripts including 22 RPGs. The distance between the two motifs displayed a complex frequency pattern that was related to their relative orientation. We tested the impact of three of these motifs on the expression of rpl-2 using a series of reporter gene constructs and showed that all three motifs are necessary to maintain the high natural expression level of this gene. One of the motifs was similar to the binding site of an orthologue of POP-1, and we showed that RNAi knockdown of pop-1 impacts the expression of rpl-2. We further determined the transcription start site of rpl-2 by 5’ RACE and found that the motifs lie 40–90 bases upstream of the start site. We also found evidence that a noncoding RNA, contained within the outron of rpl-2, is co-transcribed with rpl-2 and cleaved during trans-splicing. Conclusions Our results indicate that C. elegans RPGs are regulated by a complex novel series of regulatory elements that is evolutionarily distinct from

  1. Regulatory links between imprinted genes: evolutionary predictions and consequences.

    Science.gov (United States)

    Patten, Manus M; Cowley, Michael; Oakey, Rebecca J; Feil, Robert

    2016-02-10

    Genomic imprinting is essential for development and growth and plays diverse roles in physiology and behaviour. Imprinted genes have traditionally been studied in isolation or in clusters with respect to cis-acting modes of gene regulation, both from a mechanistic and evolutionary point of view. Recent studies in mammals, however, reveal that imprinted genes are often co-regulated and are part of a gene network involved in the control of cellular proliferation and differentiation. Moreover, a subset of imprinted genes acts in trans on the expression of other imprinted genes. Numerous studies have modulated levels of imprinted gene expression to explore phenotypic and gene regulatory consequences. Increasingly, the applied genome-wide approaches highlight how perturbation of one imprinted gene may affect other maternally or paternally expressed genes. Here, we discuss these novel findings and consider evolutionary theories that offer a rationale for such intricate interactions among imprinted genes. An evolutionary view of these trans-regulatory effects provides a novel interpretation of the logic of gene networks within species and has implications for the origin of reproductive isolation between species. © 2016 The Authors.

  2. The inferred cardiogenic gene regulatory network in the mammalian heart.

    Science.gov (United States)

    Bazil, Jason N; Stamm, Karl D; Li, Xing; Thiagarajan, Raghuram; Nelson, Timothy J; Tomita-Mitchell, Aoy; Beard, Daniel A

    2014-01-01

    Cardiac development is a complex, multiscale process encompassing cell fate adoption, differentiation and morphogenesis. To elucidate pathways underlying this process, a recently developed algorithm to reverse engineer gene regulatory networks was applied to time-course microarray data obtained from the developing mouse heart. Approximately 200 genes of interest were input into the algorithm to generate putative network topologies that are capable of explaining the experimental data via model simulation. To cull specious network interactions, thousands of putative networks are merged and filtered to generate scale-free, hierarchical networks that are statistically significant and biologically relevant. The networks are validated with known gene interactions and used to predict regulatory pathways important for the developing mammalian heart. Area under the precision-recall curve and receiver operator characteristic curve are 9% and 58%, respectively. Of the top 10 ranked predicted interactions, 4 have already been validated. The algorithm is further tested using a network enriched with known interactions and another depleted of them. The inferred networks contained more interactions for the enriched network versus the depleted network. In all test cases, maximum performance of the algorithm was achieved when the purely data-driven method of network inference was combined with a data-independent, functional-based association method. Lastly, the network generated from the list of approximately 200 genes of interest was expanded using gene-profile uniqueness metrics to include approximately 900 additional known mouse genes and to form the most likely cardiogenic gene regulatory network. The resultant network supports known regulatory interactions and contains several novel cardiogenic regulatory interactions. The method outlined herein provides an informative approach to network inference and leads to clear testable hypotheses related to gene regulation.

  3. Gene Regulatory Evolution During Speciation in a Songbird

    Directory of Open Access Journals (Sweden)

    John H. Davidson

    2016-05-01

    Full Text Available Over the last decade, tremendous progress has been made toward a comparative understanding of gene regulatory evolution. However, we know little about how gene regulation evolves in birds, and how divergent genomes interact in their hybrids. Because of the unique features of birds – female heterogamety, a highly conserved karyotype, and the slow evolution of reproductive incompatibilities – an understanding of regulatory evolution in birds is critical to a comprehensive understanding of regulatory evolution and its implications for speciation. Using a novel complement of analyses of replicated RNA-seq libraries, we demonstrate abundant divergence in brain gene expression between zebra finch (Taeniopygia guttata subspecies. By comparing parental populations and their F1 hybrids, we also show that gene misexpression is relatively rare among brain-expressed transcripts in male birds. If this pattern is consistent across tissues and sexes, it may partially explain the slow buildup of postzygotic reproductive isolation observed in birds relative to other taxa. Although we expected that the action of genetic drift on the island-dwelling zebra finch subspecies would be manifested in a higher rate of trans regulatory divergence, we found that most divergence was in cis regulation, following a pattern commonly observed in other taxa. Thus, our study highlights both unique and shared features of avian regulatory evolution.

  4. Regulatory sequence of cupin family gene

    Science.gov (United States)

    Hood, Elizabeth; Teoh, Thomas

    2017-07-25

    This invention is in the field of plant biology and agriculture and relates to novel seed specific promoter regions. The present invention further provide methods of producing proteins and other products of interest and methods of controlling expression of nucleic acid sequences of interest using the seed specific promoter regions.

  5. A guide to approaching regulatory considerations for lentiviral-mediated gene therapies.

    Science.gov (United States)

    White, Michael; Whittaker, Roger; Stoll, Elizabeth Ann

    2017-06-12

    Lentiviral vectors are increasingly the gene transfer tool of choice for gene or cell therapies, with multiple clinical investigations showing promise for this viral vector in terms of both safety and efficacy. The third-generation vector system is well-characterized, effectively delivers genetic material and maintains long-term stable expression in target cells, delivers larger amounts of genetic material than other methods, is non-pathogenic and does not cause an inflammatory response in the recipient. This report aims to help academic scientists and regulatory managers negotiate the governance framework to achieve successful translation of a lentiviral vector-based gene therapy. The focus is on European regulations, and how they are administered in the United Kingdom, although many of the principles will be similar for other regions including the United States. The report justifies the rationale for using third-generation lentiviral vectors to achieve gene delivery for in vivo and ex vivo applications; briefly summarises the extant regulatory guidance for gene therapies, categorised as advanced therapeutic medicinal products (ATMPs); provides guidance on specific regulatory issues regarding gene therapies; presents an overview of the key stakeholders to be approached when pursuing clinical trials authorization for an ATMP; and includes a brief catalogue of the documentation required to submit an application for regulatory approval of a new gene therapy.

  6. Transcriptional Regulatory Network Analysis of MYB Transcription Factor Family Genes in Rice.

    Science.gov (United States)

    Smita, Shuchi; Katiyar, Amit; Chinnusamy, Viswanathan; Pandey, Dev M; Bansal, Kailash C

    2015-01-01

    MYB transcription factor (TF) is one of the largest TF families and regulates defense responses to various stresses, hormone signaling as well as many metabolic and developmental processes in plants. Understanding these regulatory hierarchies of gene expression networks in response to developmental and environmental cues is a major challenge due to the complex interactions between the genetic elements. Correlation analyses are useful to unravel co-regulated gene pairs governing biological process as well as identification of new candidate hub genes in response to these complex processes. High throughput expression profiling data are highly useful for construction of co-expression networks. In the present study, we utilized transcriptome data for comprehensive regulatory network studies of MYB TFs by "top-down" and "guide-gene" approaches. More than 50% of OsMYBs were strongly correlated under 50 experimental conditions with 51 hub genes via "top-down" approach. Further, clusters were identified using Markov Clustering (MCL). To maximize the clustering performance, parameter evaluation of the MCL inflation score (I) was performed in terms of enriched GO categories by measuring F-score. Comparison of co-expressed cluster and clads analyzed from phylogenetic analysis signifies their evolutionarily conserved co-regulatory role. We utilized compendium of known interaction and biological role with Gene Ontology enrichment analysis to hypothesize function of coexpressed OsMYBs. In the other part, the transcriptional regulatory network analysis by "guide-gene" approach revealed 40 putative targets of 26 OsMYB TF hubs with high correlation value utilizing 815 microarray data. The putative targets with MYB-binding cis-elements enrichment in their promoter region, functional co-occurrence as well as nuclear localization supports our finding. Specially, enrichment of MYB binding regions involved in drought-inducibility implying their regulatory role in drought response in rice

  7. Transcriptional Regulatory Network Analysis of MYB Transcription Factor Family Genes in Rice

    Directory of Open Access Journals (Sweden)

    Shuchi eSmita

    2015-12-01

    Full Text Available MYB transcription factor (TF is one of the largest TF families and regulates defense responses to various stresses, hormone signaling as well as many metabolic and developmental processes in plants. Understanding these regulatory hierarchies of gene expression networks in response to developmental and environmental cues is a major challenge due to the complex interactions between the genetic elements. Correlation analyses are useful to unravel co-regulated gene pairs governing biological process as well as identification of new candidate hub genes in response to these complex processes. High throughput expression profiling data are highly useful for construction of co-expression networks. In the present study, we utilized transcriptome data for comprehensive regulatory network studies of MYB TFs by top down and guide gene approaches. More than 50% of OsMYBs were strongly correlated under fifty experimental conditions with 51 hub genes via top down approach. Further, clusters were identified using Markov Clustering (MCL. To maximize the clustering performance, parameter evaluation of the MCL inflation score (I was performed in terms of enriched GO categories by measuring F-score. Comparison of co-expressed cluster and clads analyzed from phylogenetic analysis signifies their evolutionarily conserved co-regulatory role. We utilized compendium of known interaction and biological role with Gene Ontology enrichment analysis to hypothesize function of coexpressed OsMYBs. In the other part, the transcriptional regulatory network analysis by guide gene approach revealed 40 putative targets of 26 OsMYB TF hubs with high correlation value utilizing 815 microarray data. The putative targets with MYB-binding cis-elements enrichment in their promoter region, functional co-occurrence as well as nuclear localization supports our finding. Specially, enrichment of MYB binding regions involved in drought-inducibility implying their regulatory role in drought

  8. Unraveling condition specific gene transcriptional regulatory networks in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Kluger Yuval

    2006-03-01

    Full Text Available Abstract Background Gene expression and transcription factor (TF binding data have been used to reveal gene transcriptional regulatory networks. Existing knowledge of gene regulation can be presented using gene connectivity networks. However, these composite connectivity networks do not specify the range of biological conditions of the activity of each link in the network. Results We present a novel method that utilizes the expression and binding patterns of the neighboring nodes of each link in existing experimentally-based, literature-derived gene transcriptional regulatory networks and extend them in silico using TF-gene binding motifs and a compendium of large expression data from Saccharomyces cerevisiae. Using this method, we predict several hundreds of new transcriptional regulatory TF-gene links, along with experimental conditions in which known and predicted links become active. This approach unravels new links in the yeast gene transcriptional regulatory network by utilizing the known transcriptional regulatory interactions, and is particularly useful for breaking down the composite transcriptional regulatory network to condition specific networks. Conclusion Our methods can facilitate future binding experiments, as they can considerably help focus on the TFs that must be surveyed to understand gene regulation. (Supplemental material and the latest version of the MATLAB implementation of the United Signature Algorithm is available online at 1 or [see Additional files 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] Additional File 1 overview of supplemental data Click here for file Additional File 2 experimental conditions for each link in figure 5. These are the experimental conditions in which the links are likely to be active. Click here for file Additional File 3 experimental conditions for each link in figure 7. These are the experimental conditions in which the links are likely to be active. Click here for file Additional File 4 Alon

  9. Regulatory Regionalism and Education: The European Union in Central Asia

    Science.gov (United States)

    Jones, Peter

    2010-01-01

    This paper investigates the purchase which Jayasuriya's regulatory regionalism approach offers for an analysis of the European Union's engagement in Central Asia. The European Union has a clearly articulated strategy through which to pursue what it sees as its interests in Central Asia and the development of a range of EU-Central Asia education…

  10. A gene regulatory network armature for T-lymphocyte specification

    Energy Technology Data Exchange (ETDEWEB)

    Fung, Elizabeth-sharon [Los Alamos National Laboratory

    2008-01-01

    Choice of a T-lymphoid fate by hematopoietic progenitor cells depends on sustained Notch-Delta signaling combined with tightly-regulated activities of multiple transcription factors. To dissect the regulatory network connections that mediate this process, we have used high-resolution analysis of regulatory gene expression trajectories from the beginning to the end of specification; tests of the short-term Notchdependence of these gene expression changes; and perturbation analyses of the effects of overexpression of two essential transcription factors, namely PU.l and GATA-3. Quantitative expression measurements of >50 transcription factor and marker genes have been used to derive the principal components of regulatory change through which T-cell precursors progress from primitive multipotency to T-lineage commitment. Distinct parts of the path reveal separate contributions of Notch signaling, GATA-3 activity, and downregulation of PU.l. Using BioTapestry, the results have been assembled into a draft gene regulatory network for the specification of T-cell precursors and the choice of T as opposed to myeloid dendritic or mast-cell fates. This network also accommodates effects of E proteins and mutual repression circuits of Gfil against Egr-2 and of TCF-l against PU.l as proposed elsewhere, but requires additional functions that remain unidentified. Distinctive features of this network structure include the intense dose-dependence of GATA-3 effects; the gene-specific modulation of PU.l activity based on Notch activity; the lack of direct opposition between PU.l and GATA-3; and the need for a distinct, late-acting repressive function or functions to extinguish stem and progenitor-derived regulatory gene expression.

  11. SELANSI: a toolbox for simulation of stochastic gene regulatory networks.

    Science.gov (United States)

    Pájaro, Manuel; Otero-Muras, Irene; Vázquez, Carlos; Alonso, Antonio A

    2018-03-01

    Gene regulation is inherently stochastic. In many applications concerning Systems and Synthetic Biology such as the reverse engineering and the de novo design of genetic circuits, stochastic effects (yet potentially crucial) are often neglected due to the high computational cost of stochastic simulations. With advances in these fields there is an increasing need of tools providing accurate approximations of the stochastic dynamics of gene regulatory networks (GRNs) with reduced computational effort. This work presents SELANSI (SEmi-LAgrangian SImulation of GRNs), a software toolbox for the simulation of stochastic multidimensional gene regulatory networks. SELANSI exploits intrinsic structural properties of gene regulatory networks to accurately approximate the corresponding Chemical Master Equation with a partial integral differential equation that is solved by a semi-lagrangian method with high efficiency. Networks under consideration might involve multiple genes with self and cross regulations, in which genes can be regulated by different transcription factors. Moreover, the validity of the method is not restricted to a particular type of kinetics. The tool offers total flexibility regarding network topology, kinetics and parameterization, as well as simulation options. SELANSI runs under the MATLAB environment, and is available under GPLv3 license at https://sites.google.com/view/selansi. antonio@iim.csic.es. © The Author(s) 2017. Published by Oxford University Press.

  12. Genetic polymorphism in FOXP3 gene: imbalance in regulatory T ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 92; Issue 1. Genetic polymorphism in FOXP3 gene: imbalance in regulatory T-cell role and development of human diseases. Julie Massayo Maeda Oda Bruna Karina Banin Hirata Roberta Losi Guembarovski Maria Angelica Ehara Watanabe. Review Article Volume 92 Issue 1 ...

  13. Global Regulatory Differences for Gene- and Cell-Based Therapies

    DEFF Research Database (Denmark)

    Coppens, Delphi G M; De Bruin, Marie L; Leufkens, Hubert G M

    2017-01-01

    Gene- and cell-based therapies (GCTs) offer potential new treatment options for unmet medical needs. However, the use of conventional regulatory requirements for medicinal products to approve GCTs may impede patient access and therapeutic innovation. Furthermore, requirements differ between juris...

  14. CAGE-defined promoter regions of the genes implicated in Rett Syndrome

    DEFF Research Database (Denmark)

    Vitezic, Morana; Bertin, Nicolas; Andersson, Robin

    2014-01-01

    with respect to expression levels and regulatory regions. Here we analyzed data from hundreds of mouse and human samples included in the FANTOM5 project, to identify transcript initiation sites, expression levels, expression correlations and regulatory regions of the three genes RESULTS: Our investigations...

  15. Interrogating the topological robustness of gene regulatory circuits by randomization.

    Directory of Open Access Journals (Sweden)

    Bin Huang

    2017-03-01

    Full Text Available One of the most important roles of cells is performing their cellular tasks properly for survival. Cells usually achieve robust functionality, for example, cell-fate decision-making and signal transduction, through multiple layers of regulation involving many genes. Despite the combinatorial complexity of gene regulation, its quantitative behavior has been typically studied on the basis of experimentally verified core gene regulatory circuitry, composed of a small set of important elements. It is still unclear how such a core circuit operates in the presence of many other regulatory molecules and in a crowded and noisy cellular environment. Here we report a new computational method, named random circuit perturbation (RACIPE, for interrogating the robust dynamical behavior of a gene regulatory circuit even without accurate measurements of circuit kinetic parameters. RACIPE generates an ensemble of random kinetic models corresponding to a fixed circuit topology, and utilizes statistical tools to identify generic properties of the circuit. By applying RACIPE to simple toggle-switch-like motifs, we observed that the stable states of all models converge to experimentally observed gene state clusters even when the parameters are strongly perturbed. RACIPE was further applied to a proposed 22-gene network of the Epithelial-to-Mesenchymal Transition (EMT, from which we identified four experimentally observed gene states, including the states that are associated with two different types of hybrid Epithelial/Mesenchymal phenotypes. Our results suggest that dynamics of a gene circuit is mainly determined by its topology, not by detailed circuit parameters. Our work provides a theoretical foundation for circuit-based systems biology modeling. We anticipate RACIPE to be a powerful tool to predict and decode circuit design principles in an unbiased manner, and to quantitatively evaluate the robustness and heterogeneity of gene expression.

  16. Gene Regulatory Network Reconstruction Using Conditional Mutual Information

    Directory of Open Access Journals (Sweden)

    Xiaodong Wang

    2008-06-01

    Full Text Available The inference of gene regulatory network from expression data is an important area of research that provides insight to the inner workings of a biological system. The relevance-network-based approaches provide a simple and easily-scalable solution to the understanding of interaction between genes. Up until now, most works based on relevance network focus on the discovery of direct regulation using correlation coefficient or mutual information. However, some of the more complicated interactions such as interactive regulation and coregulation are not easily detected. In this work, we propose a relevance network model for gene regulatory network inference which employs both mutual information and conditional mutual information to determine the interactions between genes. For this purpose, we propose a conditional mutual information estimator based on adaptive partitioning which allows us to condition on both discrete and continuous random variables. We provide experimental results that demonstrate that the proposed regulatory network inference algorithm can provide better performance when the target network contains coregulated and interactively regulated genes.

  17. Heart morphogenesis gene regulatory networks revealed by temporal expression analysis.

    Science.gov (United States)

    Hill, Jonathon T; Demarest, Bradley; Gorsi, Bushra; Smith, Megan; Yost, H Joseph

    2017-10-01

    During embryogenesis the heart forms as a linear tube that then undergoes multiple simultaneous morphogenetic events to obtain its mature shape. To understand the gene regulatory networks (GRNs) driving this phase of heart development, during which many congenital heart disease malformations likely arise, we conducted an RNA-seq timecourse in zebrafish from 30 hpf to 72 hpf and identified 5861 genes with altered expression. We clustered the genes by temporal expression pattern, identified transcription factor binding motifs enriched in each cluster, and generated a model GRN for the major gene batteries in heart morphogenesis. This approach predicted hundreds of regulatory interactions and found batteries enriched in specific cell and tissue types, indicating that the approach can be used to narrow the search for novel genetic markers and regulatory interactions. Subsequent analyses confirmed the GRN using two mutants, Tbx5 and nkx2-5 , and identified sets of duplicated zebrafish genes that do not show temporal subfunctionalization. This dataset provides an essential resource for future studies on the genetic/epigenetic pathways implicated in congenital heart defects and the mechanisms of cardiac transcriptional regulation. © 2017. Published by The Company of Biologists Ltd.

  18. Portrait of Candida Species Biofilm Regulatory Network Genes.

    Science.gov (United States)

    Araújo, Daniela; Henriques, Mariana; Silva, Sónia

    2017-01-01

    Most cases of candidiasis have been attributed to Candida albicans, but Candida glabrata, Candida parapsilosis and Candida tropicalis, designated as non-C. albicans Candida (NCAC), have been identified as frequent human pathogens. Moreover, Candida biofilms are an escalating clinical problem associated with significant rates of mortality. Biofilms have distinct developmental phases, including adhesion/colonisation, maturation and dispersal, controlled by complex regulatory networks. This review discusses recent advances regarding Candida species biofilm regulatory network genes, which are key components for candidiasis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Non-coding sequence retrieval system for comparative genomic analysis of gene regulatory elements

    Directory of Open Access Journals (Sweden)

    Temple Matthew H

    2007-03-01

    Full Text Available Abstract Background Completion of the human genome sequence along with other species allows for greater understanding of the biochemical mechanisms and processes that govern healthy as well as diseased states. The large size of the genome sequences has made them difficult to study using traditional methods. There are many studies focusing on the protein coding sequences, however, not much is known about the function of non-coding regions of the genome. It has been demonstrated that parts of the non-coding region play a critical role as gene regulatory elements. Enhancers that regulate transcription processes have been found in intergenic regions. Furthermore, it is observed that regulatory elements found in non-coding regions are highly conserved across different species. However, the analysis of these regulatory elements is not as straightforward as it may first seem. The development of a centralized resource that allows for the quick and easy retrieval of non-coding sequences from multiple species and is capable of handing multi-gene queries is critical for the analysis of non-coding sequences. Here we describe the development of a web-based non-coding sequence retrieval system. Results This paper presents a Non-Coding Sequences Retrieval System (NCSRS. The NCSRS is a web-based bioinformatics tool that performs fast and convenient retrieval of non-coding and coding sequences from multiple species related to a specific gene or set of genes. This tool has compiled resources from multiple sources into one easy to use and convenient web based interface. With no software installation necessary, the user needs only internet access to use this tool. Conclusion The unique features of this tool will be very helpful for those studying gene regulatory elements that exist in non-coding regions. The web based application can be accessed on the internet at: http://cell.rutgers.edu/ncsrs/.

  20. Singular Perturbation Analysis and Gene Regulatory Networks with Delay

    Science.gov (United States)

    Shlykova, Irina; Ponosov, Arcady

    2009-09-01

    There are different ways of how to model gene regulatory networks. Differential equations allow for a detailed description of the network's dynamics and provide an explicit model of the gene concentration changes over time. Production and relative degradation rate functions used in such models depend on the vector of steeply sloped threshold functions which characterize the activity of genes. The most popular example of the threshold functions comes from the Boolean network approach, where the threshold functions are given by step functions. The system of differential equations becomes then piecewise linear. The dynamics of this system can be described very easily between the thresholds, but not in the switching domains. For instance this approach fails to analyze stationary points of the system and to define continuous solutions in the switching domains. These problems were studied in [2], [3], but the proposed model did not take into account a time delay in cellular systems. However, analysis of real gene expression data shows a considerable number of time-delayed interactions suggesting that time delay is essential in gene regulation. Therefore, delays may have a great effect on the dynamics of the system presenting one of the critical factors that should be considered in reconstruction of gene regulatory networks. The goal of this work is to apply the singular perturbation analysis to certain systems with delay and to obtain an analog of Tikhonov's theorem, which provides sufficient conditions for constracting the limit system in the delay case.

  1. Identification of conserved potentially regulatory sequences of the SRY gene from 10 different species of mammals.

    Science.gov (United States)

    Margarit, E; Guillén, A; Rebordosa, C; Vidal-Taboada, J; Sánchez, M; Ballesta, F; Oliva, R

    1998-04-17

    We have sequenced the 5' region of the SRY gene from human, chimpanzee, sheep, and mouse and from four additional mammalian species, not previously characterized (gorilla, gazelle, rat, and guinea pig). In order to identify conserved DNA elements potentially involved in the regulation of the SRY gene, the newly determined sequences were analyzed and compared to all mammalian SRY promoter sequences available at present. Ten highly conserved potential regulatory elements have been identified in all 10 species (AP1, Barbie, GATA, Gfi1, cMyb, vMyb, NF1, Oct1, Sp1, and SRY). The known function of several of these regulatory elements fits well with the known expression of the SRY gene. However, except for the highly conserved coding HMG motif, only a short region close to the initiation of transcription in the human SRY is conserved in the exact position along the gene in all the species analyzed. This lack of sequence identity at the orthologous positions is consistent with the suggested rapid evolution of the SRY gene. This relative lack of homology contrasts with a high sequence identity of the putative regulatory sequences found within each taxonomic group of species (primates, bovids, and rodents), which supports a common mechanism of SRY expression and possibly also a similar function.

  2. Design of experiment for nonlinear dynamic gene regulatory network identification.

    Science.gov (United States)

    Lu, Tao

    2017-04-04

    The gene regulatory network (GRN) is critical for understanding the regulatory interaction between genes. Time-course microarray experiments provide ample information for constructing GRN. The designs for microarray experiments serve different purposes. However, the experiment design specifically for GRN identification is still sparse. In this article, we use a simulation-based approach to deal with design problems in the framework of nonparametric differential equations. We investigate a number of feasible designs. In particular, we evaluate whether earlier samplings can result in more useful information for GRN identification. We also evaluate the effectiveness of two strategies: more frequent samplings per replicate with fewer replicates versus fewer samplings per replicate with more replicates while keeping the total number of samplings constant. The results of our investigation provide quantitative guidance for designing and selecting microarray experiments for the purpose of GRN identification.

  3. Establishing neural crest identity: a gene regulatory recipe

    Science.gov (United States)

    Simões-Costa, Marcos; Bronner, Marianne E.

    2015-01-01

    The neural crest is a stem/progenitor cell population that contributes to a wide variety of derivatives, including sensory and autonomic ganglia, cartilage and bone of the face and pigment cells of the skin. Unique to vertebrate embryos, it has served as an excellent model system for the study of cell behavior and identity owing to its multipotency, motility and ability to form a broad array of cell types. Neural crest development is thought to be controlled by a suite of transcriptional and epigenetic inputs arranged hierarchically in a gene regulatory network. Here, we examine neural crest development from a gene regulatory perspective and discuss how the underlying genetic circuitry results in the features that define this unique cell population. PMID:25564621

  4. Fanconi anemia core complex gene promoters harbor conserved transcription regulatory elements.

    Directory of Open Access Journals (Sweden)

    Daniel Meier

    Full Text Available The Fanconi anemia (FA gene family is a recent addition to the complex network of proteins that respond to and repair certain types of DNA damage in the human genome. Since little is known about the regulation of this novel group of genes at the DNA level, we characterized the promoters of the eight genes (FANCA, B, C, E, F, G, L and M that compose the FA core complex. The promoters of these genes show the characteristic attributes of housekeeping genes, such as a high GC content and CpG islands, a lack of TATA boxes and a low conservation. The promoters functioned in a monodirectional way and were, in their most active regions, comparable in strength to the SV40 promoter in our reporter plasmids. They were also marked by a distinctive transcriptional start site (TSS. In the 5' region of each promoter, we identified a region that was able to negatively regulate the promoter activity in HeLa and HEK 293 cells in isolation. The central and 3' regions of the promoter sequences harbor binding sites for several common and rare transcription factors, including STAT, SMAD, E2F, AP1 and YY1, which indicates that there may be cross-connections to several established regulatory pathways. Electrophoretic mobility shift assays and siRNA experiments confirmed the shared regulatory responses between the prominent members of the TGF-β and JAK/STAT pathways and members of the FA core complex. Although the promoters are not well conserved, they share region and sequence specific regulatory motifs and transcription factor binding sites (TBFs, and we identified a bi-partite nature to these promoters. These results support a hypothesis based on the co-evolution of the FA core complex genes that was expanded to include their promoters.

  5. Comparison of evolutionary algorithms in gene regulatory network model inference.

    LENUS (Irish Health Repository)

    2010-01-01

    ABSTRACT: BACKGROUND: The evolution of high throughput technologies that measure gene expression levels has created a data base for inferring GRNs (a process also known as reverse engineering of GRNs). However, the nature of these data has made this process very difficult. At the moment, several methods of discovering qualitative causal relationships between genes with high accuracy from microarray data exist, but large scale quantitative analysis on real biological datasets cannot be performed, to date, as existing approaches are not suitable for real microarray data which are noisy and insufficient. RESULTS: This paper performs an analysis of several existing evolutionary algorithms for quantitative gene regulatory network modelling. The aim is to present the techniques used and offer a comprehensive comparison of approaches, under a common framework. Algorithms are applied to both synthetic and real gene expression data from DNA microarrays, and ability to reproduce biological behaviour, scalability and robustness to noise are assessed and compared. CONCLUSIONS: Presented is a comparison framework for assessment of evolutionary algorithms, used to infer gene regulatory networks. Promising methods are identified and a platform for development of appropriate model formalisms is established.

  6. Regulatory elements controlling pituitary-specific expression of the human prolactin gene.

    Science.gov (United States)

    Peers, B; Voz, M L; Monget, P; Mathy-Hartert, M; Berwaer, M; Belayew, A; Martial, J A

    1990-09-01

    We have performed transfection and DNase I footprinting experiments to investigate pituitary-specific expression of the human prolactin (hPRL) gene. When fused to the chloramphenicol acetyltransferase (CAT) reporter gene, 5,000 base pairs of the 5'-flanking sequences of the hPRL gene were able to drive high cat gene expression in prolactin-expressing GH3B6 cells specifically. Deletion analysis indicated that this pituitary-specific expression was controlled by three main positive regulatory regions. The first was located just upstream from the TATA box between coordinates -40 and -250 (proximal region). We have previously shown that three motifs of this region bind the pituitary-specific Pit-1 factor. The second positive region was located in the vicinity of coordinates -1300 to -1750 (distal region). DNase I footprinting assays revealed that eight DNA motifs of this distal region bound protein Pit-1 and that two other motifs were recognized by ubiquitous factors, one of which seems to belong to the AP-1 (jun) family. The third positive region was located further upstream, between -3500 and -5000 (superdistal region). This region appears to enhance transcription only in the presence of the distal region.

  7. Identification and Characterization of 5′ Untranslated Regions (5′UTRs in Zymomonas mobilis as Regulatory Biological Parts

    Directory of Open Access Journals (Sweden)

    Seung Hee Cho

    2017-12-01

    Full Text Available Regulatory RNA regions within a transcript, particularly in the 5′ untranslated region (5′UTR, have been shown in a variety of organisms to control the expression levels of these mRNAs in response to various metabolites or environmental conditions. Considering the unique tolerance of Zymomonas mobilis to ethanol and the growing interest in engineering microbial strains with enhanced tolerance to industrial inhibitors, we searched natural cis-regulatory regions in this microorganism using transcriptomic data and bioinformatics analysis. Potential regulatory 5′UTRs were identified and filtered based on length, gene function, relative gene counts, and conservation in other organisms. An in vivo fluorescence-based screening system was developed to confirm the responsiveness of 36 5′UTR candidates to ethanol, acetate, and xylose stresses. UTR_ZMO0347 (5′UTR of gene ZMO0347 encoding the RNA binding protein Hfq was found to down-regulate downstream gene expression under ethanol stress. Genomic deletion of UTR_ZMO0347 led to a general decrease of hfq expression at the transcript level and increased sensitivity for observed changes in Hfq expression at the protein level. The role of UTR_ZMO0347 and other 5′UTRs gives us insight into the regulatory network of Z. mobilis in response to stress and unlocks new strategies for engineering robust industrial strains as well as for harvesting novel responsive regulatory biological parts for controllable gene expression platforms in this organism.

  8. Using GeneReg to construct time delay gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Qian Ziliang

    2010-05-01

    Full Text Available Abstract Background Understanding gene expression and regulation is essential for understanding biological mechanisms. Because gene expression profiling has been widely used in basic biological research, especially in transcription regulation studies, we have developed GeneReg, an easy-to-use R package, to construct gene regulatory networks from time course gene expression profiling data; More importantly, this package can provide information about time delays between expression change in a regulator and that of its target genes. Findings The R package GeneReg is based on time delay linear regression, which can generate a model of the expression levels of regulators at a given time point against the expression levels of their target genes at a later time point. There are two parameters in the model, time delay and regulation coefficient. Time delay is the time lag during which expression change of the regulator is transmitted to change in target gene expression. Regulation coefficient expresses the regulation effect: a positive regulation coefficient indicates activation and negative indicates repression. GeneReg was implemented on a real Saccharomyces cerevisiae cell cycle dataset; more than thirty percent of the modeled regulations, based entirely on gene expression files, were found to be consistent with previous discoveries from known databases. Conclusions GeneReg is an easy-to-use, simple, fast R package for gene regulatory network construction from short time course gene expression data. It may be applied to study time-related biological processes such as cell cycle, cell differentiation, or causal inference.

  9. A Catalog of Regulatory Sequences for Trait Gene for the Genome Editing of Wheat.

    Science.gov (United States)

    Makai, Szabolcs; Tamás, László; Juhász, Angéla

    2016-01-01

    Wheat has been cultivated for 10000 years and ever since the origin of hexaploid wheat it has been exempt from natural selection. Instead, it was under the constant selective pressure of human agriculture from harvest to sowing during every year, producing a vast array of varieties. Wheat has been adopted globally, accumulating variation for genes involved in yield traits, environmental adaptation and resistance. However, one small but important part of the wheat genome has hardly changed: the regulatory regions of both the x- and y-type high molecular weight glutenin subunit (HMW-GS) genes, which are alone responsible for approximately 12% of the grain protein content. The phylogeny of the HMW-GS regulatory regions of the Triticeae demonstrates that a genetic bottleneck may have led to its decreased diversity during domestication and the subsequent cultivation. It has also highlighted the fact that the wild relatives of wheat may offer an unexploited genetic resource for the regulatory region of these genes. Significant research efforts have been made in the public sector and by international agencies, using wild crosses to exploit the available genetic variation, and as a result synthetic hexaploids are now being utilized by a number of breeding companies. However, a newly emerging tool of genome editing provides significantly improved efficiency in exploiting the natural variation in HMW-GS genes and incorporating this into elite cultivars and breeding lines. Recent advancement in the understanding of the regulation of these genes underlines the needs for an overview of the regulatory elements for genome editing purposes.

  10. A catalogue of regulatory sequences for trait gene for the genome editing of wheat

    Directory of Open Access Journals (Sweden)

    Szabolcs Makai

    2016-10-01

    Full Text Available Wheat has been cultivated for 10000 years and ever since the origin of hexaploid wheat it has been exempt from natural selection. Instead, it was under the constant selective pressure of human agriculture from harvest to sowing during every year, producing a vast array of varieties. Wheat has been adopted globally, accumulating variation for genes involved in yield traits, environmental adaptation and resistance. However, one small but important part of the wheat genome has hardly changed: the regulatory regions of both the x- and y-type high molecular weight glutenin subunit (HMW-GS genes, which are alone responsible for approximately 12% of the grain protein content. The phylogeny of the HMW-GS regulatory regions of the Triticeae demonstrates that a genetic bottleneck may have led to its decreased diversity during domestication and the subsequent cultivation. It has also highlighted the fact that the wild relatives of wheat may offer an unexploited genetic resource for the regulatory region of these genes. Significant research efforts have been made in the public sector and by international agencies, using wild crosses to exploit the available genetic variation, and as a result synthetic hexaploids are now being utilized by a number of breeding companies. However, a newly emerging tool of genome editing provides significantly improved efficiency in exploiting the natural variation in HMW-GS genes and incorporating this into elite cultivars and breeding lines. Recent advancement in the understanding of the regulation of these genes underlines the needs for an overview of the regulatory elements for genome editing purposes.

  11. Human polyomavirus JCV late leader peptide region contains important regulatory elements

    International Nuclear Information System (INIS)

    Akan, Ilhan; Sariyer, Ilker Kudret; Biffi, Renato; Palermo, Victoria; Woolridge, Stefanie; White, Martyn K.; Amini, Shohreh; Khalili, Kamel; Safak, Mahmut

    2006-01-01

    Transcription is a complex process that relies on the cooperative interaction between sequence-specific factors and the basal transcription machinery. The strength of a promoter depends on upstream or downstream cis-acting DNA elements, which bind transcription factors. In this study, we investigated whether DNA elements located downstream of the JCV late promoter, encompassing the late leader peptide region, which encodes agnoprotein, play regulatory roles in the JCV lytic cycle. For this purpose, the entire coding region of the leader peptide was deleted and the functional consequences of this deletion were analyzed. We found that viral gene expression and replication were drastically reduced. Gene expression also decreased from a leader peptide point mutant but to a lesser extent. This suggested that the leader peptide region of JCV might contain critical cis-acting DNA elements to which transcription factors bind and regulate viral gene expression and replication. We analyzed the entire coding region of the late leader peptide by a footprinting assay and identified three major regions (region I, II and III) that were protected by nuclear proteins. Further investigation of the first two protected regions by band shift assays revealed a new band that appeared in new infection cycles, suggesting that viral infection induces new factors that interact with the late leader peptide region of JCV. Analysis of the effect of the leader peptide region on the promoter activity of JCV by transfection assays demonstrated that this region has a positive and negative effect on the large T antigen (LT-Ag)-mediated activation of the viral early and late promoters, respectively. Furthermore, a partial deletion analysis of the leader peptide region encompassing the protected regions I and II demonstrated a significant down-regulation of viral gene expression and replication. More importantly, these results were similar to that obtained from a complete deletion of the late leader

  12. The capacity for multistability in small gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Grotewold Erich

    2009-09-01

    Full Text Available Abstract Background Recent years have seen a dramatic increase in the use of mathematical modeling to gain insight into gene regulatory network behavior across many different organisms. In particular, there has been considerable interest in using mathematical tools to understand how multistable regulatory networks may contribute to developmental processes such as cell fate determination. Indeed, such a network may subserve the formation of unicellular leaf hairs (trichomes in the model plant Arabidopsis thaliana. Results In order to investigate the capacity of small gene regulatory networks to generate multiple equilibria, we present a chemical reaction network (CRN-based modeling formalism and describe a number of methods for CRN analysis in a parameter-free context. These methods are compared and applied to a full set of one-component subnetworks, as well as a large random sample from 40,680 similarly constructed two-component subnetworks. We find that positive feedback and cooperativity mediated by transcription factor (TF dimerization is a requirement for one-component subnetwork bistability. For subnetworks with two components, the presence of these processes increases the probability that a randomly sampled subnetwork will exhibit multiple equilibria, although we find several examples of bistable two-component subnetworks that do not involve cooperative TF-promoter binding. In the specific case of epidermal differentiation in Arabidopsis, dimerization of the GL3-GL1 complex and cooperative sequential binding of GL3-GL1 to the CPC promoter are each independently sufficient for bistability. Conclusion Computational methods utilizing CRN-specific theorems to rule out bistability in small gene regulatory networks are far superior to techniques generally applicable to deterministic ODE systems. Using these methods to conduct an unbiased survey of parameter-free deterministic models of small networks, and the Arabidopsis epidermal cell

  13. Fused Regression for Multi-source Gene Regulatory Network Inference.

    Directory of Open Access Journals (Sweden)

    Kari Y Lam

    2016-12-01

    Full Text Available Understanding gene regulatory networks is critical to understanding cellular differentiation and response to external stimuli. Methods for global network inference have been developed and applied to a variety of species. Most approaches consider the problem of network inference independently in each species, despite evidence that gene regulation can be conserved even in distantly related species. Further, network inference is often confined to single data-types (single platforms and single cell types. We introduce a method for multi-source network inference that allows simultaneous estimation of gene regulatory networks in multiple species or biological processes through the introduction of priors based on known gene relationships such as orthology incorporated using fused regression. This approach improves network inference performance even when orthology mapping and conservation are incomplete. We refine this method by presenting an algorithm that extracts the true conserved subnetwork from a larger set of potentially conserved interactions and demonstrate the utility of our method in cross species network inference. Last, we demonstrate our method's utility in learning from data collected on different experimental platforms.

  14. Identification of a cis-regulatory element by transient analysis of co-ordinately regulated genes

    Directory of Open Access Journals (Sweden)

    Allan Andrew C

    2008-07-01

    Full Text Available Abstract Background Transcription factors (TFs co-ordinately regulate target genes that are dispersed throughout the genome. This co-ordinate regulation is achieved, in part, through the interaction of transcription factors with conserved cis-regulatory motifs that are in close proximity to the target genes. While much is known about the families of transcription factors that regulate gene expression in plants, there are few well characterised cis-regulatory motifs. In Arabidopsis, over-expression of the MYB transcription factor PAP1 (PRODUCTION OF ANTHOCYANIN PIGMENT 1 leads to transgenic plants with elevated anthocyanin levels due to the co-ordinated up-regulation of genes in the anthocyanin biosynthetic pathway. In addition to the anthocyanin biosynthetic genes, there are a number of un-associated genes that also change in expression level. This may be a direct or indirect consequence of the over-expression of PAP1. Results Oligo array analysis of PAP1 over-expression Arabidopsis plants identified genes co-ordinately up-regulated in response to the elevated expression of this transcription factor. Transient assays on the promoter regions of 33 of these up-regulated genes identified eight promoter fragments that were transactivated by PAP1. Bioinformatic analysis on these promoters revealed a common cis-regulatory motif that we showed is required for PAP1 dependent transactivation. Conclusion Co-ordinated gene regulation by individual transcription factors is a complex collection of both direct and indirect effects. Transient transactivation assays provide a rapid method to identify direct target genes from indirect target genes. Bioinformatic analysis of the promoters of these direct target genes is able to locate motifs that are common to this sub-set of promoters, which is impossible to identify with the larger set of direct and indirect target genes. While this type of analysis does not prove a direct interaction between protein and DNA

  15. Overexpression of maize anthocyanin regulatory gene Lc affects rice fertility.

    Science.gov (United States)

    Li, Yuan; Zhang, Tao; Shen, Zhong-Wei; Xu, Yu; Li, Jian-Yue

    2013-01-01

    Seventeen independent transgenic rice plants with the maize anthocyanin regulatory gene Lc under control of the CaMV 35S promoter were obtained and verified by molecular identification. Ten plants showed red spikelets during early development of florets, and the degenerate florets were still red after heading. Additionally, these plants exhibited intense pigmentation on the surface of the anther and the bottom of the ovary. They were unable to properly bloom and were completely sterile. Following pollination with normal pollen, these plants yielded red caryopses but did not mature normally. QRT-PCR analysis indicated that mRNA accumulation of the CHS-like gene encoding a chalcone synthase-related protein was increased significantly in the sterile plant. This is the first report to suggest that upregulation of the CHS gene expression may result in rice sterility and affect the normal development of rice seeds.

  16. Fine mapping of gene regions regulating neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Maria Swanberg

    Full Text Available BACKGROUND: Damage to nerve cells and axons leading to neurodegeneration is a characteristic feature of many neurological diseases. The degree of genetic influence on susceptibility to axotomy-induced neuronal death has so far been unknown. We have examined two gene regions, Vra1 and Vra2, previously linked to nerve cell loss after ventral root avulsion in a rat F2 intercross between the DA and PVG inbred rat strains. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we use two generations (G8 and G10 cohorts of an advanced intercross line between DA and PVG(av1 to reproduce linkage to Vra1 and to fine-map this region. By isolating the effect from Vra1 in congenic strains, we demonstrate that Vra1 significantly regulates the loss of motoneurons after avulsion. The regulatory effect mediated by Vra1 thus resides in a congenic fragment of 9 megabases. Furthermore, we have used the advanced intercross lines to give more support to Vra2, originally detected as a suggestive QTL. CONCLUSIONS/SIGNIFICANCE: The results demonstrated here show that naturally occurring allelic variations affect susceptibility to axotomy-induced nerve cell death. Vra1 and Vra2 represent the first quantitative trait loci regulating this phenotype that are characterized and fine mapped in an advanced intercross line. In addition, congenic strains provide experimental evidence for the Vra1 effect on the extent of injury-induced neurodegeneration. Identification of the underlying genetic variations will increase our understanding of the regulation and mechanisms of neurodegeneration.

  17. Inducible nitric oxide synthase (iNOS) regulatory region variation in non-human primates.

    Science.gov (United States)

    Roodgar, Morteza; Ross, Cody T; Kenyon, Nicholas J; Marcelino, Gretchen; Smith, David Glenn

    2015-04-01

    Inducible nitric oxide synthase (iNOS) is an enzyme that plays a key role in intracellular immune response against respiratory infections. Since various species of nonhuman primates exhibit different levels of susceptibility to infectious respiratory diseases, and since variation in regulatory regions of genes is thought to play a key role in expression levels of genes, two candidate regulatory regions of iNOS were mapped, sequenced, and compared across five species of nonhuman primates: African green monkeys (Chlorocebus sabaeus), pig-tailed macaques (Macaca nemestrina), cynomolgus macaques (Macaca fascicularis), Indian rhesus macaques (Macaca mulatta), and Chinese rhesus macaques (M. mulatta). In addition, we conducted an in silico analysis of the transcription factor binding sites associated with genetic variation in these two candidate regulatory regions across species. We found that only one of the two candidate regions showed strong evidence of involvement in iNOS regulation. Specifically, we found evidence of 13 conserved binding site candidates linked to iNOS regulation: AP-1, C/EBPB, CREB, GATA-1, GATA-3, NF-AT, NF-AT5, NF-κB, KLF4, Oct-1, PEA3, SMAD3, and TCF11. Additionally, we found evidence of interspecies variation in binding sites for several regulatory elements linked to iNOS (GATA-3, GATA-4, KLF6, SRF, STAT-1, STAT-3, OLF-1 and HIF-1) across species, especially in African green monkeys relative to other species. Given the key role of iNOS in respiratory immune response, the findings of this study might help guide the direction of future studies aimed to uncover the molecular mechanisms underlying the increased susceptibility of African green monkeys to several viral and bacterial respiratory infections. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. The gene regulatory network for breast cancer: Integrated regulatory landscape of cancer hallmarks

    Directory of Open Access Journals (Sweden)

    Frank eEmmert-Streib

    2014-02-01

    Full Text Available In this study, we infer the breast cancer gene regulatory network from gene expression data. This network is obtained from the application of the BC3Net inference algorithm to a large-scale gene expression data set consisting of $351$ patient samples. In order to elucidate the functional relevance of the inferred network, we are performing a Gene Ontology (GO analysis for its structural components. Our analysis reveals that most significant GO-terms we find for the breast cancer network represent functional modules of biological processes that are described by known cancer hallmarks, including translation, immune response, cell cycle, organelle fission, mitosis, cell adhesion, RNA processing, RNA splicing and response to wounding. Furthermore, by using a curated list of census cancer genes, we find an enrichment in these functional modules. Finally, we study cooperative effects of chromosomes based on information of interacting genes in the beast cancer network. We find that chromosome $21$ is most coactive with other chromosomes. To our knowledge this is the first study investigating the genome-scale breast cancer network.

  19. Transcriptional regulatory networks underlying gene expression changes in Huntington's disease.

    Science.gov (United States)

    Ament, Seth A; Pearl, Jocelynn R; Cantle, Jeffrey P; Bragg, Robert M; Skene, Peter J; Coffey, Sydney R; Bergey, Dani E; Wheeler, Vanessa C; MacDonald, Marcy E; Baliga, Nitin S; Rosinski, Jim; Hood, Leroy E; Carroll, Jeffrey B; Price, Nathan D

    2018-03-26

    Transcriptional changes occur presymptomatically and throughout Huntington's disease (HD), motivating the study of transcriptional regulatory networks (TRNs) in HD We reconstructed a genome-scale model for the target genes of 718 transcription factors (TFs) in the mouse striatum by integrating a model of genomic binding sites with transcriptome profiling of striatal tissue from HD mouse models. We identified 48 differentially expressed TF-target gene modules associated with age- and CAG repeat length-dependent gene expression changes in Htt CAG knock-in mouse striatum and replicated many of these associations in independent transcriptomic and proteomic datasets. Thirteen of 48 of these predicted TF-target gene modules were also differentially expressed in striatal tissue from human disease. We experimentally validated a specific model prediction that SMAD3 regulates HD-related gene expression changes using chromatin immunoprecipitation and deep sequencing (ChIP-seq) of mouse striatum. We found CAG repeat length-dependent changes in the genomic occupancy of SMAD3 and confirmed our model's prediction that many SMAD3 target genes are downregulated early in HD. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  20. Inferring Gene Regulatory Networks Using Conditional Regulation Pattern to Guide Candidate Genes.

    Directory of Open Access Journals (Sweden)

    Fei Xiao

    Full Text Available Combining path consistency (PC algorithms with conditional mutual information (CMI are widely used in reconstruction of gene regulatory networks. CMI has many advantages over Pearson correlation coefficient in measuring non-linear dependence to infer gene regulatory networks. It can also discriminate the direct regulations from indirect ones. However, it is still a challenge to select the conditional genes in an optimal way, which affects the performance and computation complexity of the PC algorithm. In this study, we develop a novel conditional mutual information-based algorithm, namely RPNI (Regulation Pattern based Network Inference, to infer gene regulatory networks. For conditional gene selection, we define the co-regulation pattern, indirect-regulation pattern and mixture-regulation pattern as three candidate patterns to guide the selection of candidate genes. To demonstrate the potential of our algorithm, we apply it to gene expression data from DREAM challenge. Experimental results show that RPNI outperforms existing conditional mutual information-based methods in both accuracy and time complexity for different sizes of gene samples. Furthermore, the robustness of our algorithm is demonstrated by noisy interference analysis using different types of noise.

  1. Ground rules of the pluripotency gene regulatory network.

    KAUST Repository

    Li, Mo

    2017-01-03

    Pluripotency is a state that exists transiently in the early embryo and, remarkably, can be recapitulated in vitro by deriving embryonic stem cells or by reprogramming somatic cells to become induced pluripotent stem cells. The state of pluripotency, which is stabilized by an interconnected network of pluripotency-associated genes, integrates external signals and exerts control over the decision between self-renewal and differentiation at the transcriptional, post-transcriptional and epigenetic levels. Recent evidence of alternative pluripotency states indicates the regulatory flexibility of this network. Insights into the underlying principles of the pluripotency network may provide unprecedented opportunities for studying development and for regenerative medicine.

  2. Food irradiation: regulatory aspects in the Asia and Pacific region

    International Nuclear Information System (INIS)

    Luckman, G.J.

    2002-01-01

    Irradiation treatment of food is becoming an increasingly accepted processing option for countries in the Asia Pacific region wishing to meet growing sanitary and phytosanitary requirements in international trade. There remain however, large differences between the regulatory requirements in the countries in this region. This paper gives an outline on existing food irradiation regulations in the separate countries of the Asia Pacific region. New developments such as the recent decision by the Australia New Zealand Food Authority to start assessing applications for food irradiation treatment are discussed. Australia's intention to regulate the export of food treated by irradiation will also be outlined. Details of the decision to harmonise food irradiation regulations by 13 countries in the Asia Pacific region based on conformance with Codex requirements is outlined. The likelihood of other Asia Pacific countries enacting similar harmonisation of their regulations will be examined. Future development such as certification of irradiation as a sanitary treatment for food are discussed. The expected result of these initiatives is a likely increase in irradiated foods traded within the Asia Pacific region

  3. Learning gene regulatory networks from gene expression data using weighted consensus

    KAUST Repository

    Fujii, Chisato

    2016-08-25

    An accurate determination of the network structure of gene regulatory systems from high-throughput gene expression data is an essential yet challenging step in studying how the expression of endogenous genes is controlled through a complex interaction of gene products and DNA. While numerous methods have been proposed to infer the structure of gene regulatory networks, none of them seem to work consistently over different data sets with high accuracy. A recent study to compare gene network inference methods showed that an average-ranking-based consensus method consistently performs well under various settings. Here, we propose a linear programming-based consensus method for the inference of gene regulatory networks. Unlike the average-ranking-based one, which treats the contribution of each individual method equally, our new consensus method assigns a weight to each method based on its credibility. As a case study, we applied the proposed consensus method on synthetic and real microarray data sets, and compared its performance to that of the average-ranking-based consensus and individual inference methods. Our results show that our weighted consensus method achieves superior performance over the unweighted one, suggesting that assigning weights to different individual methods rather than giving them equal weights improves the accuracy. © 2016 Elsevier B.V.

  4. Reverse Engineering of Gene Regulatory Networks: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Hendrik Hache

    2009-01-01

    Full Text Available Reverse engineering of gene regulatory networks has been an intensively studied topic in bioinformatics since it constitutes an intermediate step from explorative to causative gene expression analysis. Many methods have been proposed through recent years leading to a wide range of mathematical approaches. In practice, different mathematical approaches will generate different resulting network structures, thus, it is very important for users to assess the performance of these algorithms. We have conducted a comparative study with six different reverse engineering methods, including relevance networks, neural networks, and Bayesian networks. Our approach consists of the generation of defined benchmark data, the analysis of these data with the different methods, and the assessment of algorithmic performances by statistical analyses. Performance was judged by network size and noise levels. The results of the comparative study highlight the neural network approach as best performing method among those under study.

  5. Neurogenic gene regulatory pathways in the sea urchin embryo.

    Science.gov (United States)

    Wei, Zheng; Angerer, Lynne M; Angerer, Robert C

    2016-01-15

    During embryogenesis the sea urchin early pluteus larva differentiates 40-50 neurons marked by expression of the pan-neural marker synaptotagmin B (SynB) that are distributed along the ciliary band, in the apical plate and pharyngeal endoderm, and 4-6 serotonergic neurons that are confined to the apical plate. Development of all neurons has been shown to depend on the function of Six3. Using a combination of molecular screens and tests of gene function by morpholino-mediated knockdown, we identified SoxC and Brn1/2/4, which function sequentially in the neurogenic regulatory pathway and are also required for the differentiation of all neurons. Misexpression of Brn1/2/4 at low dose caused an increase in the number of serotonin-expressing cells and at higher dose converted most of the embryo to a neurogenic epithelial sphere expressing the Hnf6 ciliary band marker. A third factor, Z167, was shown to work downstream of the Six3 and SoxC core factors and to define a branch specific for the differentiation of serotonergic neurons. These results provide a framework for building a gene regulatory network for neurogenesis in the sea urchin embryo. © 2016. Published by The Company of Biologists Ltd.

  6. Learning Gene Regulatory Networks Computationally from Gene Expression Data Using Weighted Consensus

    KAUST Repository

    Fujii, Chisato

    2015-04-16

    Gene regulatory networks analyze the relationships between genes allowing us to un- derstand the gene regulatory interactions in systems biology. Gene expression data from the microarray experiments is used to obtain the gene regulatory networks. How- ever, the microarray data is discrete, noisy and non-linear which makes learning the networks a challenging problem and existing gene network inference methods do not give consistent results. Current state-of-the-art study uses the average-ranking-based consensus method to combine and average the ranked predictions from individual methods. However each individual method has an equal contribution to the consen- sus prediction. We have developed a linear programming-based consensus approach which uses learned weights from linear programming among individual methods such that the methods have di↵erent weights depending on their performance. Our result reveals that assigning di↵erent weights to individual methods rather than giving them equal weights improves the performance of the consensus. The linear programming- based consensus method is evaluated and it had the best performance on in silico and Saccharomyces cerevisiae networks, and the second best on the Escherichia coli network outperformed by Inferelator Pipeline method which gives inconsistent results across a wide range of microarray data sets.

  7. WeederH: an algorithm for finding conserved regulatory motifs and regions in homologous sequences

    Directory of Open Access Journals (Sweden)

    Pesole Graziano

    2007-02-01

    Full Text Available Abstract Background This work addresses the problem of detecting conserved transcription factor binding sites and in general regulatory regions through the analysis of sequences from homologous genes, an approach that is becoming more and more widely used given the ever increasing amount of genomic data available. Results We present an algorithm that identifies conserved transcription factor binding sites in a given sequence by comparing it to one or more homologs, adapting a framework we previously introduced for the discovery of sites in sequences from co-regulated genes. Differently from the most commonly used methods, the approach we present does not need or compute an alignment of the sequences investigated, nor resorts to descriptors of the binding specificity of known transcription factors. The main novel idea we introduce is a relative measure of conservation, assuming that true functional elements should present a higher level of conservation with respect to the rest of the sequence surrounding them. We present tests where we applied the algorithm to the identification of conserved annotated sites in homologous promoters, as well as in distal regions like enhancers. Conclusion Results of the tests show how the algorithm can provide fast and reliable predictions of conserved transcription factor binding sites regulating the transcription of a gene, with better performances than other available methods for the same task. We also show examples on how the algorithm can be successfully employed when promoter annotations of the genes investigated are missing, or when regulatory sites and regions are located far away from the genes.

  8. Inferring Drosophila gap gene regulatory network: Pattern analysis of simulated gene expression profiles and stability analysis

    NARCIS (Netherlands)

    Fomekong-Nanfack, Y.; Postma, M.; Kaandorp, J.A.

    2009-01-01

    Background: Inference of gene regulatory networks (GRNs) requires accurate data, a method to simulate the expression patterns and an efficient optimization algorithm to estimate the unknown parameters. Using this approach it is possible to obtain alternative circuits without making any a priori

  9. Transcriptional regulatory elements in the noncoding region of human papillomavirus type 6

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Tzyy-Choou.

    1989-01-01

    The structure and function of the transcriptional regulatory region of human papillomavirus type 6 (HPV-6) has been investigated. To investigate tissue specific gene expression, a sensitive method to detect and localize HPV-6 viral DNA, mRNA and protein in plastic-embedded tissue sections of genital and respiratory tract papillomata by using in situ hybridization and immunoperoxidase assays has been developed. This method, using ultrathin sections and strand-specific {sup 3}H labeled riboprobes, offers the advantages of superior morphological preservation and detection of viral genomes at low copy number with good resolution, and the modified immunocytochemistry provides better sensitivity. The results suggest that genital tract epithelium is more permissive for HPV-6 replication than respiratory tract epithelium. To study the tissue tropism of HPV-6 at the level of regulation of viral gene expression, the polymerase chain reaction was used to isolate the noncoding region (NCR) of HPV-6 in independent isolates. Nucleotide sequence analysis of molecularly cloned DNA identified base substitutions, deletions/insertions and tandem duplications. Transcriptional regulatory elements in the NCR were assayed in recombinant plasmids containing the bacterial gene for chloramphenicol acetyl transferase.

  10. Putative cis-regulatory elements in genes highly expressed in rice sperm cells

    Directory of Open Access Journals (Sweden)

    Singh Mohan B

    2011-09-01

    Full Text Available Abstract Background The male germ line in flowering plants is initiated within developing pollen grains via asymmetric division. The smaller cell then becomes totally encased within a much larger vegetative cell, forming a unique "cell within a cell structure". The generative cell subsequently divides to give rise to two non-motile diminutive sperm cells, which take part in double fertilization and lead to the seed set. Sperm cells are difficult to investigate because of their presence within the confines of the larger vegetative cell. However, recently developed techniques for the isolation of rice sperm cells and the fully annotated rice genome sequence have allowed for the characterization of the transcriptional repertoire of sperm cells. Microarray gene expression data has identified a subset of rice genes that show unique or highly preferential expression in sperm cells. This information has led to the identification of cis-regulatory elements (CREs, which are conserved in sperm-expressed genes and are putatively associated with the control of cell-specific expression. Findings We aimed to identify the CREs associated with rice sperm cell-specific gene expression data using in silico prediction tools. We analyzed 1-kb upstream regions of the top 40 sperm cell co-expressed genes for over-represented conserved and novel motifs. Analysis of upstream regions with the SIGNALSCAN program with the PLACE database, MEME and the Mclip tool helped to find combinatorial sets of known transcriptional factor-binding sites along with two novel motifs putatively associated with the co-expression of sperm cell-specific genes. Conclusions Our data shows the occurrence of novel motifs, which are putative CREs and are likely targets of transcriptional factors regulating sperm cell gene expression. These motifs can be used to design the experimental verification of regulatory elements and the identification of transcriptional factors that regulate sperm cell

  11. Indeterminacy of reverse engineering of Gene Regulatory Networks: the curse of gene elasticity.

    Directory of Open Access Journals (Sweden)

    Arun Krishnan

    2007-06-01

    Full Text Available Gene Regulatory Networks (GRNs have become a major focus of interest in recent years. A number of reverse engineering approaches have been developed to help uncover the regulatory networks giving rise to the observed gene expression profiles. However, this is an overspecified problem due to the fact that more than one genotype (network wiring can give rise to the same phenotype. We refer to this phenomenon as "gene elasticity." In this work, we study the effect of this particular problem on the pure, data-driven inference of gene regulatory networks.We simulated a four-gene network in order to produce "data" (protein levels that we use in lieu of real experimental data. We then optimized the network connections between the four genes with a view to obtain the original network that gave rise to the data. We did this for two different cases: one in which only the network connections were optimized and the other in which both the network connections as well as the kinetic parameters (given as reaction probabilities in our case were estimated. We observed that multiple genotypes gave rise to very similar protein levels. Statistical experimentation indicates that it is impossible to differentiate between the different networks on the basis of both equilibrium as well as dynamic data.We show explicitly that reverse engineering of GRNs from pure expression data is an indeterminate problem. Our results suggest the unsuitability of an inferential, purely data-driven approach for the reverse engineering transcriptional networks in the case of gene regulatory networks displaying a certain level of complexity.

  12. CpG traffic lights are markers of regulatory regions in humans

    KAUST Repository

    Khamis, Abdullah M.

    2016-12-29

    DNA methylation is involved in regulation of gene expression. Although modern methods profile DNA methylation at single CpG sites, methylation levels are usually averaged over genomic regions in the downstream analyses. In this study we demonstrate that single CpG methylation can serve as a more accurate predictor of gene expression compared to average promoter / gene body methylation. CpG positions with significant correlation between methylation and expression of a gene nearby (named CpG traffic lights) are evolutionary conserved and enriched for exact TSS positions and active enhancers. Among all promoter types, CpG traffic lights are especially enriched in poised promoters. Genes that harbor CpG traffic lights are associated with development and signal transduction. Methylation levels of individual CpG traffic lights vary between cell types dramatically with the increased frequency of intermediate methylation levels, indicating cell population heterogeneity in CpG methylation levels. Being in line with the concept of the inherited stochastic epigenetic variation, methylation of such CpG positions might contribute to transcriptional regulation. Alternatively, one can hypothesize that traffic lights are markers of absent gene expression resulting from inactivation of their regulatory elements. The CpG traffic lights provide a promising insight into mechanisms of enhancer activity and gene regulation linking methylation of single CpG to expression.

  13. Comparative analysis of the ATRX promoter and 5' regulatory region reveals conserved regulatory elements which are linked to roles in neurodevelopment, alpha-globin regulation and testicular function

    Directory of Open Access Journals (Sweden)

    Argentaro Anthony

    2011-06-01

    Full Text Available Abstract Background ATRX is a tightly-regulated multifunctional protein with crucial roles in mammalian development. Mutations in the ATRX gene cause ATR-X syndrome, an X-linked recessive developmental disorder resulting in severe mental retardation and mild alpha-thalassemia with facial, skeletal and genital abnormalities. Although ubiquitously expressed the clinical features of the syndrome indicate that ATRX is not likely to be a global regulator of gene expression but involved in regulating specific target genes. The regulation of ATRX expression is not well understood and this is reflected by the current lack of identified upstream regulators. The availability of genomic data from a range of species and the very highly conserved 5' regulatory regions of the ATRX gene has allowed us to investigate putative transcription factor binding sites (TFBSs in evolutionarily conserved regions of the mammalian ATRX promoter. Results We identified 12 highly conserved TFBSs of key gene regulators involved in biologically relevant processes such as neural and testis development and alpha-globin regulation. Conclusions Our results reveal potentially important regulatory elements in the ATRX gene which may lead to the identification of upstream regulators of ATRX and aid in the understanding of the molecular mechanisms that underlie ATR-X syndrome.

  14. Gene Regulatory Network Analysis Reveals Differences in Site-specific Cell Fate Determination in Mammalian Brain

    Directory of Open Access Journals (Sweden)

    Gokhan eErtaylan

    2014-12-01

    Full Text Available Neurogenesis - the generation of new neurons - is an ongoing process that persists in the adult mammalian brain of several species, including humans. In this work we analyze two discrete brain regions: the subventricular zone (SVZ lining the walls of the lateral ventricles; and the subgranular zone (SGZ of the dentate gyrus of the hippocampus in mice and shed light on the SVZ and SGZ specific neurogenesis. We propose a computational model that relies on the construction and analysis of region specific gene regulatory networks from the publicly available data on these two regions. Using this model a number of putative factors involved in neuronal stem cell (NSC identity and maintenance were identified. We also demonstrate potential gender and niche-derived differences based on cell surface and nuclear receptors via Ar, Hif1a and Nr3c1.We have also conducted cell fate determinant analysis for SVZ NSC populations to Olfactory Bulb interneurons and SGZ NSC populations to the granule cells of the Granular Cell Layer. We report thirty-one candidate cell fate determinant gene pairs, ready to be validated. We focus on Ar - Pax6 in SVZ and Sox2 - Ncor1 in SGZ. Both pairs are expressed and localized in the suggested anatomical structures as shown by in situ hybridization and found to physically interact.Finally, we conclude that there are fundamental differences between SGZ and SVZ neurogenesis. We argue that these regulatory mechanisms are linked to the observed differential neurogenic potential of these regions. The presence of nuclear and cell surface receptors in the region specific regulatory circuits indicate the significance of niche derived extracellular factors, hormones and region specific factors such as the oxygen sensitivity, dictating SGZ and SVZ specific neurogenesis.

  15. Gene Therapy With Regulatory T Cells: A Beneficial Alliance

    Directory of Open Access Journals (Sweden)

    Moanaro Biswas

    2018-03-01

    Full Text Available Gene therapy aims to replace a defective or a deficient protein at therapeutic or curative levels. Improved vector designs have enhanced safety, efficacy, and delivery, with potential for lasting treatment. However, innate and adaptive immune responses to the viral vector and transgene product remain obstacles to the establishment of therapeutic efficacy. It is widely accepted that endogenous regulatory T cells (Tregs are critical for tolerance induction to the transgene product and in some cases the viral vector. There are two basic strategies to harness the suppressive ability of Tregs: in vivo induction of adaptive Tregs specific to the introduced gene product and concurrent administration of autologous, ex vivo expanded Tregs. The latter may be polyclonal or engineered to direct specificity to the therapeutic antigen. Recent clinical trials have advanced adoptive immunotherapy with Tregs for the treatment of autoimmune disease and in patients receiving cell transplants. Here, we highlight the potential benefit of combining gene therapy with Treg adoptive transfer to achieve a sustained transgene expression. Furthermore, techniques to engineer antigen-specific Treg cell populations, either through reprogramming conventional CD4+ T cells or transferring T cell receptors with known specificity into polyclonal Tregs, are promising in preclinical studies. Thus, based upon these observations and the successful use of chimeric (IgG-based antigen receptors (CARs in antigen-specific effector T cells, different types of CAR-Tregs could be added to the repertoire of inhibitory modalities to suppress immune responses to therapeutic cargos of gene therapy vectors. The diverse approaches to harness the ability of Tregs to suppress unwanted immune responses to gene therapy and their perspectives are reviewed in this article.

  16. The role of CTCF binding sites in the 3’ immunoglobulin heavy chain regulatory region

    Directory of Open Access Journals (Sweden)

    Barbara K Birshtein

    2012-11-01

    Full Text Available The immunoglobulin heavy chain locus undergoes a series of DNA rearrangements and modifications to achieve the construction and expression of individual antibody heavy chain genes in B cells. These events affect variable regions, through VDJ joining and subsequent somatic hypermutation, and constant regions through class switch recombination. Levels of IgH expression are also regulated during B cell development, resulting in high levels of secreted antibodies from fully-differentiated plasma cells. Regulation of these events has been attributed primarily to two cis-elements that work from long distances on their target sequences, i.e., an ~1 kb intronic enhancer, Eμ, located between the V region segments and the most 5′ constant region gene, Cμ; and an ~40 kb 3′ regulatory region (3′ RR that is located downstream of the most 3′ CH gene, Cα. The 3′ RR is a candidate for an end of B cell-specific regulation of the Igh locus. The 3′ RR contains several B cell-specific enhancers associated with DNase I hypersensitive sites (hs1-4, which are essential for class switch recombination and for high levels of IgH expression in plasma cells. Downstream of this enhancer-containing region is a region of high-density CTCF binding sites, which extends through hs5, 6, and 7 and further downstream. CTCF, with its enhancer-blocking activities, has been associated with all mammalian insulators and implicated in multiple chromosomal interactions. Here we address the 3′ RR CTCF-binding region as a potential insulator of the Igh locus, an independent regulatory element and a predicted modulator of the activity of 3’ RR enhancers. Using chromosome conformation capture technology, chromatin immunoprecipitation and genetic approaches, we have found that the 3’ RR with its CTCF binding region interacts with target sequences in the VH, Eμ and CH regions through DNA looping as regulated by protein binding. This region impacts on B cell-specific Igh

  17. Gene-Regulatory Activity of α-Tocopherol

    Directory of Open Access Journals (Sweden)

    John K. Lodge

    2010-03-01

    Full Text Available Vitamin E is an essential vitamin and a lipid soluble antioxidant, at least, under in vitro conditions. The antioxidant properties of vitamin E are exerted through its phenolic hydroxyl group, which donates hydrogen to peroxyl radicals, resulting in the formation of stable lipid species. Beside an antioxidant role, important cell signalling properties of vitamin E have been described. By using gene chip technology we have identified α-tocopherol sensitive molecular targets in vivo including christmas factor (involved in the blood coagulation and 5α-steroid reductase type 1 (catalyzes the conversion of testosterone to 5α-dihydrotestosterone being upregulated and γ-glutamyl-cysteinyl synthetase (the rate limiting enzyme in GSH synthesis being downregulated due to a-tocopherol deficiency. α-Tocopherol regulates signal transduction cascades not only at the mRNA but also at the miRNA level since miRNA 122a (involved in lipid metabolism and miRNA 125b (involved in inflammation are downregulated by α-tocopherol. Genetic polymorphisms may determine the biological and gene-regulatory activity of a-tocopherol. In this context we have recently shown that genes encoding for proteins involved in peripheral α-tocopherol transport and degradation are significantly affected by the apoE genotype.

  18. Data Integration for Microarrays: Enhanced Inference for Gene Regulatory Networks

    Directory of Open Access Journals (Sweden)

    Alina Sîrbu

    2015-05-01

    Full Text Available Microarray technologies have been the basis of numerous important findings regarding gene expression in the few last decades. Studies have generated large amounts of data describing various processes, which, due to the existence of public databases, are widely available for further analysis. Given their lower cost and higher maturity compared to newer sequencing technologies, these data continue to be produced, even though data quality has been the subject of some debate. However, given the large volume of data generated, integration can help overcome some issues related, e.g., to noise or reduced time resolution, while providing additional insight on features not directly addressed by sequencing methods. Here, we present an integration test case based on public Drosophila melanogaster datasets (gene expression, binding site affinities, known interactions. Using an evolutionary computation framework, we show how integration can enhance the ability to recover transcriptional gene regulatory networks from these data, as well as indicating which data types are more important for quantitative and qualitative network inference. Our results show a clear improvement in performance when multiple datasets are integrated, indicating that microarray data will remain a valuable and viable resource for some time to come.

  19. Complex Dynamic Behavior in Simple Gene Regulatory Networks

    Science.gov (United States)

    Santillán Zerón, Moisés

    2007-02-01

    Knowing the complete genome of a given species is just a piece of the puzzle. To fully unveil the systems behavior of an organism, an organ, or even a single cell, we need to understand the underlying gene regulatory dynamics. Given the complexity of the whole system, the ultimate goal is unattainable for the moment. But perhaps, by analyzing the most simple genetic systems, we may be able to develop the mathematical techniques and procedures required to tackle more complex genetic networks in the near future. In the present work, the techniques for developing mathematical models of simple bacterial gene networks, like the tryptophan and lactose operons are introduced. Despite all of the underlying assumptions, such models can provide valuable information regarding gene regulation dynamics. Here, we pay special attention to robustness as an emergent property. These notes are organized as follows. In the first section, the long historical relation between mathematics, physics, and biology is briefly reviewed. Recently, the multidisciplinary work in biology has received great attention in the form of systems biology. The main concepts of this novel science are discussed in the second section. A very slim introduction to the essential concepts of molecular biology is given in the third section. In the fourth section, a brief introduction to chemical kinetics is presented. Finally, in the fifth section, a mathematical model for the lactose operon is developed and analyzed..

  20. Effect of Regulatory Element DNA Methylation on Tissue-Type Plasminogen Activator Gene Expression.

    Directory of Open Access Journals (Sweden)

    Sylvie Dunoyer-Geindre

    Full Text Available Expression of the tissue-type plasminogen activator gene (t-PA; gene name PLAT is regulated, in part, by epigenetic mechanisms. We investigated the relationship between PLAT methylation and PLAT expression in five primary human cell types and six transformed cell lines. CpG methylation was analyzed in the proximal PLAT gene promoter and near the multihormone responsive enhancer (MHRE -7.3 kilobase pairs upstream of the PLAT transcriptional start site (TSS, -7.3 kb. In Bowes melanoma cells, the PLAT promoter and the MHRE were fully unmethylated and t-PA secretion was extremely high. In other cell types the region from -647 to -366 was fully methylated, whereas an unmethylated stretch of DNA from -121 to +94 was required but not sufficient for detectable t-PA mRNA and t-PA secretion. DNA methylation near the MHRE was not correlated with t-PA secretion. Specific methylation of the PLAT promoter region -151 to +151, inserted into a firefly luciferase reporter gene, abolished reporter gene activity. The region -121 to + 94 contains two well-described regulatory elements, a PMA-responsive element (CRE near -106 and a GC-rich region containing an Sp1 binding site near +59. Methylation of double-stranded DNA oligonucleotides containing the CRE or the GC-rich region had little or no effect on transcription factor binding. Methylated CpGs may attract co-repressor complexes that contain histone deacetylases (HDAC. However, reporter gene activity of methylated plasmids was not restored by the HDAC inhibitor trichostatin. In conclusion, efficient PLAT gene expression requires a short stretch of unmethylated CpG sites in the proximal promoter.

  1. Analysis of deterministic cyclic gene regulatory network models with delays

    CERN Document Server

    Ahsen, Mehmet Eren; Niculescu, Silviu-Iulian

    2015-01-01

    This brief examines a deterministic, ODE-based model for gene regulatory networks (GRN) that incorporates nonlinearities and time-delayed feedback. An introductory chapter provides some insights into molecular biology and GRNs. The mathematical tools necessary for studying the GRN model are then reviewed, in particular Hill functions and Schwarzian derivatives. One chapter is devoted to the analysis of GRNs under negative feedback with time delays and a special case of a homogenous GRN is considered. Asymptotic stability analysis of GRNs under positive feedback is then considered in a separate chapter, in which conditions leading to bi-stability are derived. Graduate and advanced undergraduate students and researchers in control engineering, applied mathematics, systems biology and synthetic biology will find this brief to be a clear and concise introduction to the modeling and analysis of GRNs.

  2. Genome-wide analysis of regions similar to promoters of histone genes

    KAUST Repository

    Chowdhary, Rajesh

    2010-05-28

    Background: The purpose of this study is to: i) develop a computational model of promoters of human histone-encoding genes (shortly histone genes), an important class of genes that participate in various critical cellular processes, ii) use the model so developed to identify regions across the human genome that have similar structure as promoters of histone genes; such regions could represent potential genomic regulatory regions, e.g. promoters, of genes that may be coregulated with histone genes, and iii/ identify in this way genes that have high likelihood of being coregulated with the histone genes.Results: We successfully developed a histone promoter model using a comprehensive collection of histone genes. Based on leave-one-out cross-validation test, the model produced good prediction accuracy (94.1% sensitivity, 92.6% specificity, and 92.8% positive predictive value). We used this model to predict across the genome a number of genes that shared similar promoter structures with the histone gene promoters. We thus hypothesize that these predicted genes could be coregulated with histone genes. This hypothesis matches well with the available gene expression, gene ontology, and pathways data. Jointly with promoters of the above-mentioned genes, we found a large number of intergenic regions with similar structure as histone promoters.Conclusions: This study represents one of the most comprehensive computational analyses conducted thus far on a genome-wide scale of promoters of human histone genes. Our analysis suggests a number of other human genes that share a high similarity of promoter structure with the histone genes and thus are highly likely to be coregulated, and consequently coexpressed, with the histone genes. We also found that there are a large number of intergenic regions across the genome with their structures similar to promoters of histone genes. These regions may be promoters of yet unidentified genes, or may represent remote control regions that

  3. Understanding Epistatic Interactions between Genes Targeted by Non-coding Regulatory Elements in Complex Diseases

    Directory of Open Access Journals (Sweden)

    Min Kyung Sung

    2014-12-01

    Full Text Available Genome-wide association studies have proven the highly polygenic architecture of complex diseases or traits; therefore, single-locus-based methods are usually unable to detect all involved loci, especially when individual loci exert small effects. Moreover, the majority of associated single-nucleotide polymorphisms resides in non-coding regions, making it difficult to understand their phenotypic contribution. In this work, we studied epistatic interactions associated with three common diseases using Korea Association Resource (KARE data: type 2 diabetes mellitus (DM, hypertension (HT, and coronary artery disease (CAD. We showed that epistatic single-nucleotide polymorphisms (SNPs were enriched in enhancers, as well as in DNase I footprints (the Encyclopedia of DNA Elements [ENCODE] Project Consortium 2012, which suggested that the disruption of the regulatory regions where transcription factors bind may be involved in the disease mechanism. Accordingly, to identify the genes affected by the SNPs, we employed whole-genome multiple-cell-type enhancer data which discovered using DNase I profiles and Cap Analysis Gene Expression (CAGE. Assigned genes were significantly enriched in known disease associated gene sets, which were explored based on the literature, suggesting that this approach is useful for detecting relevant affected genes. In our knowledge-based epistatic network, the three diseases share many associated genes and are also closely related with each other through many epistatic interactions. These findings elucidate the genetic basis of the close relationship between DM, HT, and CAD.

  4. The impact of gene expression variation on the robustness and evolvability of a developmental gene regulatory network.

    Directory of Open Access Journals (Sweden)

    David A Garfield

    2013-10-01

    Full Text Available Regulatory interactions buffer development against genetic and environmental perturbations, but adaptation requires phenotypes to change. We investigated the relationship between robustness and evolvability within the gene regulatory network underlying development of the larval skeleton in the sea urchin Strongylocentrotus purpuratus. We find extensive variation in gene expression in this network throughout development in a natural population, some of which has a heritable genetic basis. Switch-like regulatory interactions predominate during early development, buffer expression variation, and may promote the accumulation of cryptic genetic variation affecting early stages. Regulatory interactions during later development are typically more sensitive (linear, allowing variation in expression to affect downstream target genes. Variation in skeletal morphology is associated primarily with expression variation of a few, primarily structural, genes at terminal positions within the network. These results indicate that the position and properties of gene interactions within a network can have important evolutionary consequences independent of their immediate regulatory role.

  5. Mitotic binding of Esrrb marks key regulatory regions of the pluripotency network.

    Science.gov (United States)

    Festuccia, Nicola; Dubois, Agnès; Vandormael-Pournin, Sandrine; Gallego Tejeda, Elena; Mouren, Adrien; Bessonnard, Sylvain; Mueller, Florian; Proux, Caroline; Cohen-Tannoudji, Michel; Navarro, Pablo

    2016-11-01

    Pluripotent mouse embryonic stem cells maintain their identity throughout virtually infinite cell divisions. This phenomenon, referred to as self-renewal, depends on a network of sequence-specific transcription factors (TFs) and requires daughter cells to accurately reproduce the gene expression pattern of the mother. However, dramatic chromosomal changes take place in mitosis, generally leading to the eviction of TFs from chromatin. Here, we report that Esrrb, a major pluripotency TF, remains bound to key regulatory regions during mitosis. We show that mitotic Esrrb binding is highly dynamic, driven by specific recognition of its DNA-binding motif and is associated with early transcriptional activation of target genes after completion of mitosis. These results indicate that Esrrb may act as a mitotic bookmarking factor, opening another perspective to molecularly understand the role of sequence-specific TFs in the epigenetic control of self-renewal, pluripotency and genome reprogramming.

  6. Inferring Drosophila gap gene regulatory network: A parameter sensitivity and perturbation analysis

    NARCIS (Netherlands)

    Fomekong-Nanfack, Y.; Postma, M.; Kaandorp, J.A.

    2009-01-01

    Background: Inverse modelling of gene regulatory networks (GRNs) capable of simulating continuous spatio-temporal biological processes requires accurate data and a good description of the system. If quantitative relations between genes cannot be extracted from direct measurements, an efficient

  7. Transcription-factor-dependent enhancer transcription defines a gene regulatory network for cardiac rhythm.

    Science.gov (United States)

    Yang, Xinan H; Nadadur, Rangarajan D; Hilvering, Catharina Re; Bianchi, Valerio; Werner, Michael; Mazurek, Stefan R; Gadek, Margaret; Shen, Kaitlyn M; Goldman, Joseph Aaron; Tyan, Leonid; Bekeny, Jenna; Hall, Johnathon M; Lee, Nutishia; Perez-Cervantes, Carlos; Burnicka-Turek, Ozanna; Poss, Kenneth D; Weber, Christopher R; de Laat, Wouter; Ruthenburg, Alexander J; Moskowitz, Ivan P

    2017-12-27

    The noncoding genome is pervasively transcribed. Noncoding RNAs (ncRNAs) generated from enhancers have been proposed as a general facet of enhancer function and some have been shown to be required for enhancer activity. Here we examine the transcription-factor-(TF)-dependence of ncRNA expression to define enhancers and enhancer-associated ncRNAs that are involved in a TF-dependent regulatory network. TBX5, a cardiac TF, regulates a network of cardiac channel genes to maintain cardiac rhythm. We deep sequenced wildtype and Tbx5 -mutant mouse atria, identifying ~2600 novel Tbx5 -dependent ncRNAs. Tbx5-dependent ncRNAs were enriched for tissue-specific marks of active enhancers genome-wide. Tbx5-dependent ncRNAs emanated from regions that are enriched for TBX5-binding and that demonstrated Tbx5-dependent enhancer activity. Tbx5 -dependent ncRNA transcription provided a quantitative metric of Tbx5 -dependent enhancer activity, correlating with target gene expression. We identified RACER , a novel Tbx5 -dependent long noncoding RNA (lncRNA) required for the expression of the calcium-handling gene Ryr2 . We illustrate that TF-dependent enhancer transcription can illuminate components of TF-dependent gene regulatory networks.

  8. rSNPBase 3.0: an updated database of SNP-related regulatory elements, element-gene pairs and SNP-based gene regulatory networks.

    Science.gov (United States)

    Guo, Liyuan; Wang, Jing

    2018-01-04

    Here, we present the updated rSNPBase 3.0 database (http://rsnp3.psych.ac.cn), which provides human SNP-related regulatory elements, element-gene pairs and SNP-based regulatory networks. This database is the updated version of the SNP regulatory annotation database rSNPBase and rVarBase. In comparison to the last two versions, there are both structural and data adjustments in rSNPBase 3.0: (i) The most significant new feature is the expansion of analysis scope from SNP-related regulatory elements to include regulatory element-target gene pairs (E-G pairs), therefore it can provide SNP-based gene regulatory networks. (ii) Web function was modified according to data content and a new network search module is provided in the rSNPBase 3.0 in addition to the previous regulatory SNP (rSNP) search module. The two search modules support data query for detailed information (related-elements, element-gene pairs, and other extended annotations) on specific SNPs and SNP-related graphic networks constructed by interacting transcription factors (TFs), miRNAs and genes. (3) The type of regulatory elements was modified and enriched. To our best knowledge, the updated rSNPBase 3.0 is the first data tool supports SNP functional analysis from a regulatory network prospective, it will provide both a comprehensive understanding and concrete guidance for SNP-related regulatory studies. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Ancestral regulatory circuits governing ectoderm patterning downstream of Nodal and BMP2/4 revealed by gene regulatory network analysis in an echinoderm.

    Directory of Open Access Journals (Sweden)

    Alexandra Saudemont

    2010-12-01

    Full Text Available Echinoderms, which are phylogenetically related to vertebrates and produce large numbers of transparent embryos that can be experimentally manipulated, offer many advantages for the analysis of the gene regulatory networks (GRN regulating germ layer formation. During development of the sea urchin embryo, the ectoderm is the source of signals that pattern all three germ layers along the dorsal-ventral axis. How this signaling center controls patterning and morphogenesis of the embryo is not understood. Here, we report a large-scale analysis of the GRN deployed in response to the activity of this signaling center in the embryos of the Mediterranean sea urchin Paracentrotus lividus, in which studies with high spatial resolution are possible. By using a combination of in situ hybridization screening, overexpression of mRNA, recombinant ligand treatments, and morpholino-based loss-of-function studies, we identified a cohort of transcription factors and signaling molecules expressed in the ventral ectoderm, dorsal ectoderm, and interposed neurogenic ("ciliary band" region in response to the known key signaling molecules Nodal and BMP2/4 and defined the epistatic relationships between the most important genes. The resultant GRN showed a number of striking features. First, Nodal was found to be essential for the expression of all ventral and dorsal marker genes, and BMP2/4 for all dorsal genes. Second, goosecoid was identified as a central player in a regulatory sub-circuit controlling mouth formation, while tbx2/3 emerged as a critical factor for differentiation of the dorsal ectoderm. Finally, and unexpectedly, a neurogenic ectoderm regulatory circuit characterized by expression of "ciliary band" genes was triggered in the absence of TGF beta signaling. We propose a novel model for ectoderm regionalization, in which neural ectoderm is the default fate in the absence of TGF beta signaling, and suggest that the stomodeal and neural subcircuits that we

  10. Divergence in cis-regulatory sequences surrounding the opsin gene arrays of African cichlid fishes

    Directory of Open Access Journals (Sweden)

    Streelman J Todd

    2011-05-01

    Full Text Available Abstract Background Divergence within cis-regulatory sequences may contribute to the adaptive evolution of gene expression, but functional alleles in these regions are difficult to identify without abundant genomic resources. Among African cichlid fishes, the differential expression of seven opsin genes has produced adaptive differences in visual sensitivity. Quantitative genetic analysis suggests that cis-regulatory alleles near the SWS2-LWS opsins may contribute to this variation. Here, we sequence BACs containing the opsin genes of two cichlids, Oreochromis niloticus and Metriaclima zebra. We use phylogenetic footprinting and shadowing to examine divergence in conserved non-coding elements, promoter sequences, and 3'-UTRs surrounding each opsin in search of candidate cis-regulatory sequences that influence cichlid opsin expression. Results We identified 20 conserved non-coding elements surrounding the opsins of cichlids and other teleosts, including one known enhancer and a retinal microRNA. Most conserved elements contained computationally-predicted binding sites that correspond to transcription factors that function in vertebrate opsin expression; O. niloticus and M. zebra were significantly divergent in two of these. Similarly, we found a large number of relevant transcription factor binding sites within each opsin's proximal promoter, and identified five opsins that were considerably divergent in both expression and the number of transcription factor binding sites shared between O. niloticus and M. zebra. We also found several microRNA target sites within the 3'-UTR of each opsin, including two 3'-UTRs that differ significantly between O. niloticus and M. zebra. Finally, we examined interspecific divergence among 18 phenotypically diverse cichlids from Lake Malawi for one conserved non-coding element, two 3'-UTRs, and five opsin proximal promoters. We found that all regions were highly conserved with some evidence of CRX transcription

  11. An algebra-based method for inferring gene regulatory networks.

    Science.gov (United States)

    Vera-Licona, Paola; Jarrah, Abdul; Garcia-Puente, Luis David; McGee, John; Laubenbacher, Reinhard

    2014-03-26

    The inference of gene regulatory networks (GRNs) from experimental observations is at the heart of systems biology. This includes the inference of both the network topology and its dynamics. While there are many algorithms available to infer the network topology from experimental data, less emphasis has been placed on methods that infer network dynamics. Furthermore, since the network inference problem is typically underdetermined, it is essential to have the option of incorporating into the inference process, prior knowledge about the network, along with an effective description of the search space of dynamic models. Finally, it is also important to have an understanding of how a given inference method is affected by experimental and other noise in the data used. This paper contains a novel inference algorithm using the algebraic framework of Boolean polynomial dynamical systems (BPDS), meeting all these requirements. The algorithm takes as input time series data, including those from network perturbations, such as knock-out mutant strains and RNAi experiments. It allows for the incorporation of prior biological knowledge while being robust to significant levels of noise in the data used for inference. It uses an evolutionary algorithm for local optimization with an encoding of the mathematical models as BPDS. The BPDS framework allows an effective representation of the search space for algebraic dynamic models that improves computational performance. The algorithm is validated with both simulated and experimental microarray expression profile data. Robustness to noise is tested using a published mathematical model of the segment polarity gene network in Drosophila melanogaster. Benchmarking of the algorithm is done by comparison with a spectrum of state-of-the-art network inference methods on data from the synthetic IRMA network to demonstrate that our method has good precision and recall for the network reconstruction task, while also predicting several of the

  12. Finding gene regulatory network candidates using the gene expression knowledge base.

    Science.gov (United States)

    Venkatesan, Aravind; Tripathi, Sushil; Sanz de Galdeano, Alejandro; Blondé, Ward; Lægreid, Astrid; Mironov, Vladimir; Kuiper, Martin

    2014-12-10

    Network-based approaches for the analysis of large-scale genomics data have become well established. Biological networks provide a knowledge scaffold against which the patterns and dynamics of 'omics' data can be interpreted. The background information required for the construction of such networks is often dispersed across a multitude of knowledge bases in a variety of formats. The seamless integration of this information is one of the main challenges in bioinformatics. The Semantic Web offers powerful technologies for the assembly of integrated knowledge bases that are computationally comprehensible, thereby providing a potentially powerful resource for constructing biological networks and network-based analysis. We have developed the Gene eXpression Knowledge Base (GeXKB), a semantic web technology based resource that contains integrated knowledge about gene expression regulation. To affirm the utility of GeXKB we demonstrate how this resource can be exploited for the identification of candidate regulatory network proteins. We present four use cases that were designed from a biological perspective in order to find candidate members relevant for the gastrin hormone signaling network model. We show how a combination of specific query definitions and additional selection criteria derived from gene expression data and prior knowledge concerning candidate proteins can be used to retrieve a set of proteins that constitute valid candidates for regulatory network extensions. Semantic web technologies provide the means for processing and integrating various heterogeneous information sources. The GeXKB offers biologists such an integrated knowledge resource, allowing them to address complex biological questions pertaining to gene expression. This work illustrates how GeXKB can be used in combination with gene expression results and literature information to identify new potential candidates that may be considered for extending a gene regulatory network.

  13. Conserved regulatory motifs in osteogenic gene promoters integrate cooperative effects of canonical Wnt and BMP pathways.

    Science.gov (United States)

    Rodríguez-Carballo, Edgardo; Ulsamer, Arnau; Susperregui, Antonio R G; Manzanares-Céspedes, Cristina; Sánchez-García, Eva; Bartrons, Ramon; Rosa, José Luis; Ventura, Francesc

    2011-04-01

    Osteoblast differentiation depends on the coordinated network of evolutionary conserved transcription factors during bone formation and homeostasis. Evidence indicates that bone morphogenetic protein (BMP) and Wnt proteins regulate several steps of skeletal development. Here, we provide a molecular description of the cooperative effects of BMP and Wnt canonical pathway on the expression of the early osteogenic genes Dlx5, Msx2, and Runx2 in C2C12 cells, primary cultures of bone marrow-mesenchymal stem cells, and organotypic calvarial cultures. Coordinated regulation of these genes leads to the cooperative activation of their downstream osteogenic target gene osterix. Induction of these genes is mediated through enhancer regions with an evolutionary conserved structure encompassing both Smad and TCF/LEF1 DNA-binding sites. Formation of a cooperative complex is mediated through DNA binding of Smads and TCF4/β-catenin to their cognate sequences, as well as protein-protein interactions between them. The formation of these cooperative transcriptional complexes results in a more efficient recruitment of coactivators such as p300. We propose that evolutionary conserved regulatory regions in specific osteogenic master genes are key integrative modules during osteogenesis. Copyright © 2011 American Society for Bone and Mineral Research.

  14. Assignment of human protein phosphatase 2A regulatory subunit genes B56{alpha}, B56{beta}, B56{gamma}, B56{delta}, and B56{epsilon} (PPP2R5A-PPP2R5E), highly expressed in muscle and brain, to chromosome regions 1q41, 11q12, 3p21, 6p21.1, and 7p11.1 {r_arrow} p12

    Energy Technology Data Exchange (ETDEWEB)

    McCright, B.; Virshup, D.M.; Brothman, A.R. [Univ. of Utah School of Medicine, Salt Lake City, UT (United States)

    1996-08-15

    The activity of the major intracellular protein phosphatase, protein phosphatase 2A WPM, is determined by the nature of the associated regulatory subunit. A new family of human PP2A regulatory subunits has recently been identified. Three of these subunits, B56{beta}, B56{delta}, and B56{epsilon}, are most highly expressed in brain, while the B56{alpha} and B56{gamma} isoforms are highly expressed in cardiac and skeletal muscle. Genes PPP2R5A-PPP2R5E encoding the phosphatase regulatory proteins B56{alpha}, B56{beta}, B56{gamma}, B56{delta}, and B56{epsilon} have now been mapped by fluorescence in situ hybridization to chromosome regions 1q41, 11q12, 3p21, 6p21.1, and 7p11.2-p12, respectively. 16 refs., 1 fig.

  15. Isoeugenol monooxygenase and its putative regulatory gene are located in the eugenol metabolic gene cluster in Pseudomonas nitroreducens Jin1.

    Science.gov (United States)

    Ryu, Ji-Young; Seo, Jiyoung; Unno, Tatsuya; Ahn, Joong-Hoon; Yan, Tao; Sadowsky, Michael J; Hur, Hor-Gil

    2010-03-01

    The plant-derived phenylpropanoids eugenol and isoeugenol have been proposed as useful precursors for the production of natural vanillin. Genes involved in the metabolism of eugenol and isoeugenol were clustered in region of about a 30 kb of Pseudomonas nitroreducens Jin1. Two of the 23 ORFs in this region, ORFs 26 (iemR) and 27 (iem), were predicted to be involved in the conversion of isoeugenol to vanillin. The deduced amino acid sequence of isoeugenol monooxygenase (Iem) of strain Jin1 had 81.4% identity to isoeugenol monooxygenase from Pseudomonas putida IE27, which also transforms isoeugenol to vanillin. Iem was expressed in E. coli BL21(DE3) and was found to lead to isoeugenol to vanillin transformation. Deletion and cloning analyses indicated that the gene iemR, located upstream of iem, is required for expression of iem in the presence of isoeugenol, suggesting it to be the iem regulatory gene. Reverse transcription, real-time PCR analyses indicated that the genes involved in the metabolism of eugenol and isoeugenol were differently induced by isoeugenol, eugenol, and vanillin.

  16. Evaluation of combinatorial cis-regulatory elements for stable gene expression in chicken cells

    Directory of Open Access Journals (Sweden)

    Seo Hee W

    2010-09-01

    Full Text Available Abstract Background Recent successes in biotechnological application of birds are based on their unique physiological traits such as unlimited manipulability onto developing embryos and simple protein constituents of the eggs. However it is not likely that target protein is produced as kinetically expected because various factors affect target gene expression. Although there have been various attempts to minimize the silencing of transgenes, a generalized study that uses multiple cis-acting elements in chicken has not been made. The aim of the present study was to analyze whether various cis-acting elements can help to sustain transgene expression in chicken fibroblasts. Results We investigated the optimal transcriptional regulatory elements for enhancing stable transgene expression in chicken cells. We generated eight constructs that encode enhanced green fluorescent protein (eGFP driven by either CMV or CAG promoters (including the control, containing three types of key regulatory elements: a chicken lysozyme matrix attachment region (cMAR, 5'-DNase I-hypersensitive sites 4 (cHS4, and the woodchuck hepatitis virus posttranscriptional regulatory element (WPRE. Then we transformed immortalized chicken embryonic fibroblasts with these constructs by electroporation, and after cells were expanded under G418 selection, analyzed mRNA levels and mean fluorescence intensity (MFI by quantitative real-time PCR and flow cytometry, respectively. We found that the copy number of each construct significantly decreased as the size of the construct increased (R2 = 0.701. A significant model effect was found in the expression level among various constructs in both mRNA and protein (P cis-acting elements decreased the level of gene silencing as well as the coefficient of variance of eGFP-expressing cells (P Conclusions Our current data show that an optimal combination of cis-acting elements and promoters/enhancers for sustaining gene expression in chicken cells

  17. DNA Methylation Analysis of HTR2A Regulatory Region in Leukocytes of Autistic Subjects.

    Science.gov (United States)

    Hranilovic, Dubravka; Blazevic, Sofia; Stefulj, Jasminka; Zill, Peter

    2016-02-01

    Disturbed brain and peripheral serotonin homeostasis is often found in subjects with autism spectrum disorder (ASD). The role of the serotonin receptor 2A (HTR2A) in the regulation of central and peripheral serotonin homeostasis, as well as its altered expression in autistic subjects, have implicated the HTR2A gene as a major candidate for the serotonin disturbance seen in autism. Several studies, yielding so far inconclusive results, have attempted to associate autism with a functional SNP -1438 G/A (rs6311) in the HTR2A promoter region, while possible contribution of epigenetic mechanisms, such as DNA methylation, to HTR2A dysregulation in autism has not yet been investigated. In this study, we compared the mean DNA methylation within the regulatory region of the HTR2A gene between autistic and control subjects. DNA methylation was analysed in peripheral blood leukocytes using bisulfite conversion and sequencing of the HTR2A region containing rs6311 polymorphism. Autistic subjects of rs6311 AG genotype displayed higher mean methylation levels within the analysed region than the corresponding controls (P epigenetic mechanisms might contribute to HTR2A dysregulation observed in individuals with ASD. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  18. Identifying key genes in glaucoma based on a benchmarked dataset and the gene regulatory network.

    Science.gov (United States)

    Chen, Xi; Wang, Qiao-Ling; Zhang, Meng-Hui

    2017-10-01

    The current study aimed to identify key genes in glaucoma based on a benchmarked dataset and gene regulatory network (GRN). Local and global noise was added to the gene expression dataset to produce a benchmarked dataset. Differentially-expressed genes (DEGs) between patients with glaucoma and normal controls were identified utilizing the Linear Models for Microarray Data (Limma) package based on benchmarked dataset. A total of 5 GRN inference methods, including Zscore, GeneNet, context likelihood of relatedness (CLR) algorithm, Partial Correlation coefficient with Information Theory (PCIT) and GEne Network Inference with Ensemble of Trees (Genie3) were evaluated using receiver operating characteristic (ROC) and precision and recall (PR) curves. The interference method with the best performance was selected to construct the GRN. Subsequently, topological centrality (degree, closeness and betweenness) was conducted to identify key genes in the GRN of glaucoma. Finally, the key genes were validated by performing reverse transcription-quantitative polymerase chain reaction (RT-qPCR). A total of 176 DEGs were detected from the benchmarked dataset. The ROC and PR curves of the 5 methods were analyzed and it was determined that Genie3 had a clear advantage over the other methods; thus, Genie3 was used to construct the GRN. Following topological centrality analysis, 14 key genes for glaucoma were identified, including IL6 , EPHA2 and GSTT1 and 5 of these 14 key genes were validated by RT-qPCR. Therefore, the current study identified 14 key genes in glaucoma, which may be potential biomarkers to use in the diagnosis of glaucoma and aid in identifying the molecular mechanism of this disease.

  19. Discovery of transcription factors and regulatory regions driving in vivo tumor development by ATAC-seq and FAIRE-seq open chromatin profiling.

    Directory of Open Access Journals (Sweden)

    Kristofer Davie

    2015-02-01

    Full Text Available Genomic enhancers regulate spatio-temporal gene expression by recruiting specific combinations of transcription factors (TFs. When TFs are bound to active regulatory regions, they displace canonical nucleosomes, making these regions biochemically detectable as nucleosome-depleted regions or accessible/open chromatin. Here we ask whether open chromatin profiling can be used to identify the entire repertoire of active promoters and enhancers underlying tissue-specific gene expression during normal development and oncogenesis in vivo. To this end, we first compare two different approaches to detect open chromatin in vivo using the Drosophila eye primordium as a model system: FAIRE-seq, based on physical separation of open versus closed chromatin; and ATAC-seq, based on preferential integration of a transposon into open chromatin. We find that both methods reproducibly capture the tissue-specific chromatin activity of regulatory regions, including promoters, enhancers, and insulators. Using both techniques, we screened for regulatory regions that become ectopically active during Ras-dependent oncogenesis, and identified 3778 regions that become (over-activated during tumor development. Next, we applied motif discovery to search for candidate transcription factors that could bind these regions and identified AP-1 and Stat92E as key regulators. We validated the importance of Stat92E in the development of the tumors by introducing a loss of function Stat92E mutant, which was sufficient to rescue the tumor phenotype. Additionally we tested if the predicted Stat92E responsive regulatory regions are genuine, using ectopic induction of JAK/STAT signaling in developing eye discs, and observed that similar chromatin changes indeed occurred. Finally, we determine that these are functionally significant regulatory changes, as nearby target genes are up- or down-regulated. In conclusion, we show that FAIRE-seq and ATAC-seq based open chromatin profiling

  20. Establishment of the methods for searching eukaryotic gene cis-regulatory modules.

    Science.gov (United States)

    Zhong, Dong; Zhang, Zhen-shu; Liu, Yu-hu; Zheng, Guo-qing; Liu, Xiao-yi; Lu, Yang; Zhao, Gui-jun; Xu, An-long

    2004-02-01

    On the basis of the knowledge of eukaryotic gene regulation, we modified the method in three aspects: (1) Searching the cis-regulatory modules (CRM) according Fasta or Blast sequence with multiple sequence and low E value, followed by mutual scoring of these sequence with Smith-Waterman algorithms and finally by clustering analysis; (2) Searching the transcription factor-binding site using International Union of Pure and Applied Chemistry, Position-Weight Matrix(PWM) and Dyed method; (3) Designing and implementation of data analysis based on the software in Windows 2000 and UNIX using object-oriented technology. The results of analysis of the major histocompatibility complex gene family show that this procedure may accurately locate the regions that contain some of the CRMs.

  1. Putative cis-regulatory elements associated with heat shock genes activated during excystation of Cryptosporidium parvum.

    Directory of Open Access Journals (Sweden)

    Benjamin Cohn

    Full Text Available BACKGROUND: Cryptosporidiosis is a ubiquitous infectious disease, caused by the protozoan parasites Cryptosporidium hominis and C. parvum, leading to acute, persistent and chronic diarrhea worldwide. Although the complications of this disease can be serious, even fatal, in immunocompromised patients of any age, they have also been found to lead to long term effects, including growth inhibition and impaired cognitive development, in infected immunocompetent children. The Cryptosporidium life cycle alternates between a dormant stage, the oocyst, and a highly replicative phase that includes both asexual vegetative stages as well as sexual stages, implying fine genetic regulatory mechanisms. The parasite is extremely difficult to study because it cannot be cultured in vitro and animal models are equally challenging. The recent publication of the genome sequence of C. hominis and C. parvum has, however, significantly advanced our understanding of the biology and pathogenesis of this parasite. METHODOLOGY/PRINCIPAL FINDINGS: Herein, our goal was to identify cis-regulatory elements associated with heat shock response in Cryptosporidium using a combination of in silico and real time RT-PCR strategies. Analysis with Gibbs-Sampling algorithms of upstream non-translated regions of twelve genes annotated as heat shock proteins in the Cryptosporidium genome identified a highly conserved over-represented sequence motif in eleven of them. RT-PCR analyses, described herein and also by others, show that these eleven genes bearing the putative element are induced concurrent with excystation of parasite oocysts via heat shock. CONCLUSIONS/SIGNIFICANCE: Our analyses suggest that occurrences of a motif identified in the upstream regions of the Cryptosporidium heat shock genes represent parts of the transcriptional apparatus and function as stress response elements that activate expression of these genes during excystation, and possibly at other stages in the life

  2. Regulatory RNAs in Bacillus subtilis: a Gram-Positive Perspective on Bacterial RNA-Mediated Regulation of Gene Expression

    Science.gov (United States)

    Mars, Ruben A. T.; Nicolas, Pierre; Denham, Emma L.

    2016-01-01

    SUMMARY Bacteria can employ widely diverse RNA molecules to regulate their gene expression. Such molecules include trans-acting small regulatory RNAs, antisense RNAs, and a variety of transcriptional attenuation mechanisms in the 5′ untranslated region. Thus far, most regulatory RNA research has focused on Gram-negative bacteria, such as Escherichia coli and Salmonella. Hence, there is uncertainty about whether the resulting insights can be extrapolated directly to other bacteria, such as the Gram-positive soil bacterium Bacillus subtilis. A recent study identified 1,583 putative regulatory RNAs in B. subtilis, whose expression was assessed across 104 conditions. Here, we review the current understanding of RNA-based regulation in B. subtilis, and we categorize the newly identified putative regulatory RNAs on the basis of their conservation in other bacilli and the stability of their predicted secondary structures. Our present evaluation of the publicly available data indicates that RNA-mediated gene regulation in B. subtilis mostly involves elements at the 5′ ends of mRNA molecules. These can include 5′ secondary structure elements and metabolite-, tRNA-, or protein-binding sites. Importantly, sense-independent segments are identified as the most conserved and structured potential regulatory RNAs in B. subtilis. Altogether, the present survey provides many leads for the identification of new regulatory RNA functions in B. subtilis. PMID:27784798

  3. Epigenetic regulation of individual modules of the immunoglobulin heavy chain locus 3’ regulatory region (3’ RR

    Directory of Open Access Journals (Sweden)

    Barbara K Birshtein

    2014-04-01

    Full Text Available The Igh locus undergoes an amazing array of DNA rearrangements and modifications during B cell development. During early stages, the variable region gene is constructed from constituent variable (V, diversity (D and joining (J segments (VDJ joining. B cells that successfully express an antibody can be activated, leading to somatic hypermutation (SHM focused on the variable region, and class switch recombination (CSR, which substitutes downstream constant region genes for the originally used Cμ constant region gene. Many investigators, ourselves included, have sought to understand how these processes specifically target the Igh locus and avoid other loci and potential deleterious consequences of malignant transformation. Our laboratory has concentrated on a complex regulatory region (RR that is located downstream of Cα, the most 3’ of the Igh constant region genes. The ~40 kb 3’ RR, which is predicted to serve as a downstream major regulator of the Igh locus, contains two distinct segments: an ~28 kb region of four enhancers and an adjacent ~12 kb region containing multiple CTCF and Pax5 binding sites. Analysis of targeted mutations in mice by a number of investigators has concluded that the entire 3’ RR enhancer region is essential for SHM and CSR (but not for VDJ joining and for high levels of expression of multiple isotypes. The CTCF/Pax5 binding region is a candidate for influencing VDJ joining early in B cell development and serving as a potential insulator of the Igh locus. Components of the 3’ RR are subject to a variety of epigenetic changes during B cell development, i.e., DNAse I hypersensitivity, histone modifications and DNA methylation, in association with transcription factor binding. We propose that these changes provide a foundation by which regulatory elements in modules of the 3’ RR function by interacting with each other and with target sequences of the Igh locus.

  4. Screening of the transcriptional regulatory regions of vascular endothelial growth factor receptor 2 (VEGFR2 in amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Hartley Judith

    2007-04-01

    Full Text Available Abstract Background Vascular endothelial growth factor (VEGF has neurotrophic activity which is mediated by its main agonist receptor, VEGFR2. Dysregulation of VEGF causes motor neurone degeneration in a mouse model of amyotrophic lateral sclerosis (ALS, and expression of VEGFR2 is reduced in motor neurones and spinal cord of patients with ALS. Methods We have screened the promoter region and 4 exonic regions of functional significance of the VEGFR2 gene in a UK population of patients with ALS, for mutations and polymorphisms that may affect expression or function of this VEGF receptor. Results No mutations were identified in the VEGFR2 gene. We found no association between polymorphisms in the regulatory regions of the VEGFR2 gene and ALS. Conclusion Mechanisms other than genetic variation may downregulate expression or function of the VEGFR2 receptor in patients with ALS.

  5. DMPD: Type I interferon [corrected] gene induction by the interferon regulatory factorfamily of transcription factors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16979567 Type I interferon [corrected] gene induction by the interferon regulatory factorfamily...ng) (.svg) (.html) (.csml) Show Type I interferon [corrected] gene induction by the interferon regulatory factorfamily...orrected] gene induction by the interferon regulatory factorfamily of transcription factors. Authors Honda K

  6. A polymorphism in the regulatory region of APOE associated with risk for Alzheimer's dementia.

    Science.gov (United States)

    Bullido, M J; Artiga, M J; Recuero, M; Sastre, I; García, M A; Aldudo, J; Lendon, C; Han, S W; Morris, J C; Frank, A; Vázquez, J; Goate, A; Valdivieso, F

    1998-01-01

    The epsilon4 allele of the apolipoprotein E gene (APOE) has been associated with an increased risk of developing Alzheimer's disease (AD; refs 1,2). However, it is apparent that the APOEepsilon4 allele alone is neither necessary nor sufficient to cause the disease. We have recently found three new polymorphisms within the APOE transcriptional regulatory region (M.J.A. et al., manuscript submitted) and now establish an association between one of these polymorphisms (-491A/T) and dementia as observed in Alzheimer's disease, in two independent clinical populations. The results suggest that homozygosity of a common variant (-491A) is associated with increased risk for AD, and that this association is independent of APOEepsilon4 status. In vitro studies suggest that the -491A/T polymorphism may increase risk for AD by altering the level of ApoE protein expression.

  7. Altered hydroxymethylation is seen at regulatory regions in pancreatic cancer and regulates oncogenic pathways.

    Science.gov (United States)

    Bhattacharyya, Sanchari; Pradhan, Kith; Campbell, Nathaniel; Mazdo, Jozef; Vasantkumar, Aparna; Maqbool, Shahina; Bhagat, Tushar D; Gupta, Sonal; Suzuki, Masako; Yu, Yiting; Greally, John M; Steidl, Ulrich; Bradner, James; Dawlaty, Meelad; Godley, Lucy; Maitra, Anirban; Verma, Amit

    2017-11-01

    Transcriptional deregulation of oncogenic pathways is a hallmark of cancer and can be due to epigenetic alterations. 5-Hydroxymethylcytosine (5-hmC) is an epigenetic modification that has not been studied in pancreatic cancer. Genome-wide analysis of 5-hmC-enriched loci with hmC-seal was conducted in a cohort of low-passage pancreatic cancer cell lines, primary patient-derived xenografts, and pancreatic controls and revealed strikingly altered patterns in neoplastic tissues. Differentially hydroxymethylated regions preferentially affected known regulatory regions of the genome, specifically overlapping with known H3K4me1 enhancers. Furthermore, base pair resolution analysis of cytosine methylation and hydroxymethylation with oxidative bisulfite sequencing was conducted and correlated with chromatin accessibility by ATAC-seq and gene expression by RNA-seq in pancreatic cancer and control samples. 5-hmC was specifically enriched at open regions of chromatin, and gain of 5-hmC was correlated with up-regulation of the cognate transcripts, including many oncogenic pathways implicated in pancreatic neoplasia, such as MYC , KRAS , VEGFA , and BRD4 Specifically, BRD4 was overexpressed and acquired 5-hmC at enhancer regions in the majority of neoplastic samples. Functionally, acquisition of 5-hmC at BRD4 promoter was associated with increase in transcript expression in reporter assays and primary samples. Furthermore, blockade of BRD4 inhibited pancreatic cancer growth in vivo. In summary, redistribution of 5-hmC and preferential enrichment at oncogenic enhancers is a novel regulatory mechanism in human pancreatic cancer. © 2017 Bhattacharyya et al.; Published by Cold Spring Harbor Laboratory Press.

  8. Constructing gene regulatory networks for long term photosynthetic light acclimation in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Chen Bor-Sen

    2011-08-01

    Full Text Available Abstract Background Photosynthetic light acclimation is an important process that allows plants to optimize the efficiency of photosynthesis, which is the core technology for green energy. However, currently little is known about the molecular mechanisms behind the regulation of the photosynthetic light acclimation response. In this study, a systematic method is proposed to investigate this mechanism by constructing gene regulatory networks from microarray data of Arabidopsis thaliana. Methods The potential TF-gene regulatory pairs of photosynthetic light acclimation have been obtained by data mining of literature and databases. Following the identification of these potential TF-gene pairs, they have been refined using Pearson's correlation, allowing the construction of a rough gene regulatory network. This rough gene regulatory network is then pruned using time series microarray data of Arabidopsis thaliana via the maximum likelihood system identification method and Akaike's system order detection method to approach the real gene regulatory network of photosynthetic light acclimation. Results By comparing the gene regulatory networks under the PSI-to-PSII light shift and the PSII-to-PSI light shift, it is possible to identify important transcription factors for the different light shift conditions. Furthermore, the robustness of the gene network, in particular the hubs and weak linkage points, are also discussed under the different light conditions to gain further insight into the mechanisms of photosynthesis. Conclusions This study investigates the molecular mechanisms of photosynthetic light acclimation for Arabidopsis thaliana from the physiological level. This has been achieved through the construction of gene regulatory networks from the limited data sources and literature via an efficient computation method. If more experimental data for whole-genome ChIP-chip data and microarray data with multiple sampling points becomes available in the

  9. The IAEA Regional Training Course on Regulatory Control of Radiation Sources

    International Nuclear Information System (INIS)

    2000-01-01

    Materials of the IAEA Regional Training Course contains 8 presented lectures. Authors deals with regulatory control of radiation sources. The next materials of the IAEA were presented: Organization and implementation of a national regulatory infrastructure governing protection against ionizing radiation and the safety of radiation sources. (IAEA-TECDOC-1067); Safety assessment plants for authorization and inspection of radiation sources (IAEA-TECDOC-1113); Regulatory authority information system RAIS, Version 2.0, Instruction manual

  10. Potential novel mechanism for Axenfeld-Rieger syndrome: deletion of a distant region containing regulatory elements of PITX2.

    Science.gov (United States)

    Volkmann, Bethany A; Zinkevich, Natalya S; Mustonen, Aki; Schilter, Kala F; Bosenko, Dmitry V; Reis, Linda M; Broeckel, Ulrich; Link, Brian A; Semina, Elena V

    2011-03-01

    Mutations in PITX2 are associated with Axenfeld-Rieger syndrome (ARS), which involves ocular, dental, and umbilical abnormalities. Identification of cis-regulatory elements of PITX2 is important to better understand the mechanisms of disease. Conserved noncoding elements surrounding PITX2/pitx2 were identified and examined through transgenic analysis in zebrafish; expression pattern was studied by in situ hybridization. Patient samples were screened for deletion/duplication of the PITX2 upstream region using arrays and probes. Zebrafish pitx2 demonstrates conserved expression during ocular and craniofacial development. Thirteen conserved noncoding sequences positioned within a gene desert as far as 1.1 Mb upstream of the human PITX2 gene were identified; 11 have enhancer activities consistent with pitx2 expression. Ten elements mediated expression in the developing brain, four regions were active during eye formation, and two sequences were associated with craniofacial expression. One region, CE4, located approximately 111 kb upstream of PITX2, directed a complex pattern including expression in the developing eye and craniofacial region, the classic sites affected in ARS. Screening of ARS patients identified an approximately 7600-kb deletion that began 106 to 108 kb upstream of the PITX2 gene, leaving PITX2 intact while removing regulatory elements CE4 to CE13. These data suggest the presence of a complex distant regulatory matrix within the gene desert located upstream of PITX2 with an essential role in its activity and provides a possible mechanism for the previous reports of ARS in patients with balanced translocations involving the 4q25 region upstream of PITX2 and the current patient with an upstream deletion.

  11. Isolation and characterization of strong gene regulatory sequences from apple, Malus x domestica

    NARCIS (Netherlands)

    Schaart, J.G.; Tinnenbroek, I.E.M.; Krens, F.A.

    2011-01-01

    For the strong expression of genes in plant tissue, the availability of specific gene regulatory sequences is desired. We cloned promoter and terminator sequences of an apple (Malus x domestica) ribulose biphosphate carboxylase small subunit gene (MdRbcS), which is known for its high expression and

  12. The peripheral sensory nervous system in the vertebrate head: a gene regulatory perspective.

    Science.gov (United States)

    Grocott, Timothy; Tambalo, Monica; Streit, Andrea

    2012-10-01

    In the vertebrate head, crucial parts of the sense organs and sensory ganglia develop from special regions, the cranial placodes. Despite their cellular and functional diversity, they arise from a common field of multipotent progenitors and acquire distinct identity later under the influence of local signalling. Here we present the gene regulatory network that summarises our current understanding of how sensory cells are specified, how they become different from other ectodermal derivatives and how they begin to diversify to generate placodes with different identities. This analysis reveals how sequential activation of sets of transcription factors subdivides the ectoderm over time into smaller domains of progenitors for the central nervous system, neural crest, epidermis and sensory placodes. Within this hierarchy the timing of signalling and developmental history of each cell population is of critical importance to determine the ultimate outcome. A reoccurring theme is that local signals set up broad gene expression domains, which are further refined by mutual repression between different transcription factors. The Six and Eya network lies at the heart of sensory progenitor specification. In a positive feedback loop these factors perpetuate their own expression thus stabilising pre-placodal fate, while simultaneously repressing neural and neural crest specific factors. Downstream of the Six and Eya cassette, Pax genes in combination with other factors begin to impart regional identity to placode progenitors. While our review highlights the wealth of information available, it also points to the lack information on the cis-regulatory mechanisms that control placode specification and of how the repeated use of signalling input is integrated. Copyright © 2012. Published by Elsevier Inc.

  13. Regional and International Networking to Support the Energy Regulatory Commission of Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Lavansiri, Direk; Bull, Trevor

    2010-09-15

    The Energy Regulatory Commission of Thailand is a new regulatory agency. The structure of the energy sector; the tradition of administration; and, the lack of access to experienced personnel in Thailand all pose particular challenges. The Commission is meeting these challenges through regional and international networking to assist in developing policies and procedures that allow it to meet international benchmarks.

  14. Inferring nonlinear gene regulatory networks from gene expression data based on distance correlation.

    Directory of Open Access Journals (Sweden)

    Xiaobo Guo

    Full Text Available Nonlinear dependence is general in regulation mechanism of gene regulatory networks (GRNs. It is vital to properly measure or test nonlinear dependence from real data for reconstructing GRNs and understanding the complex regulatory mechanisms within the cellular system. A recently developed measurement called the distance correlation (DC has been shown powerful and computationally effective in nonlinear dependence for many situations. In this work, we incorporate the DC into inferring GRNs from the gene expression data without any underling distribution assumptions. We propose three DC-based GRNs inference algorithms: CLR-DC, MRNET-DC and REL-DC, and then compare them with the mutual information (MI-based algorithms by analyzing two simulated data: benchmark GRNs from the DREAM challenge and GRNs generated by SynTReN network generator, and an experimentally determined SOS DNA repair network in Escherichia coli. According to both the receiver operator characteristic (ROC curve and the precision-recall (PR curve, our proposed algorithms significantly outperform the MI-based algorithms in GRNs inference.

  15. A provisional regulatory gene network for specification of endomesoderm in the sea urchin embryo

    Science.gov (United States)

    Davidson, Eric H.; Rast, Jonathan P.; Oliveri, Paola; Ransick, Andrew; Calestani, Cristina; Yuh, Chiou-Hwa; Minokawa, Takuya; Amore, Gabriele; Hinman, Veronica; Arenas-Mena, Cesar; hide

    2002-01-01

    We present the current form of a provisional DNA sequence-based regulatory gene network that explains in outline how endomesodermal specification in the sea urchin embryo is controlled. The model of the network is in a continuous process of revision and growth as new genes are added and new experimental results become available; see http://www.its.caltech.edu/mirsky/endomeso.htm (End-mes Gene Network Update) for the latest version. The network contains over 40 genes at present, many newly uncovered in the course of this work, and most encoding DNA-binding transcriptional regulatory factors. The architecture of the network was approached initially by construction of a logic model that integrated the extensive experimental evidence now available on endomesoderm specification. The internal linkages between genes in the network have been determined functionally, by measurement of the effects of regulatory perturbations on the expression of all relevant genes in the network. Five kinds of perturbation have been applied: (1) use of morpholino antisense oligonucleotides targeted to many of the key regulatory genes in the network; (2) transformation of other regulatory factors into dominant repressors by construction of Engrailed repressor domain fusions; (3) ectopic expression of given regulatory factors, from genetic expression constructs and from injected mRNAs; (4) blockade of the beta-catenin/Tcf pathway by introduction of mRNA encoding the intracellular domain of cadherin; and (5) blockade of the Notch signaling pathway by introduction of mRNA encoding the extracellular domain of the Notch receptor. The network model predicts the cis-regulatory inputs that link each gene into the network. Therefore, its architecture is testable by cis-regulatory analysis. Strongylocentrotus purpuratus and Lytechinus variegatus genomic BAC recombinants that include a large number of the genes in the network have been sequenced and annotated. Tests of the cis-regulatory predictions of

  16. Differential roles of two SARP-encoding regulatory genes during tylosin biosynthesis.

    Science.gov (United States)

    Bate, Neil; Stratigopoulos, George; Cundliffe, Eric

    2002-01-01

    The tylosin biosynthetic gene cluster of Streptomyces fradiae is remarkable in harbouring at least five regulatory genes, two of which (tylS and tylT) encode proteins of the Streptomyces antibiotic regulatory protein (SARP) family. The aim of the present work was to assess the respective contributions of TylS and TylT to tylosin production. A combination of targeted gene disruption, fermentation studies and gene expression analysis via reverse transcriptase-polymerase chain reaction (RT-PCR) suggests that tylS is essential for tylosin production and controls the expression of tylR (previously shown to be a global activator of the biosynthetic pathway) plus at least one other gene involved in polyketide metabolism or regulation thereof. This is the first demonstration of a SARP acting to control another regulatory gene during antibiotic biosynthesis. In contrast, tylT is not essential for tylosin production.

  17. MicroRNAs and gene regulatory networks: managing the impact of noise in biological systems.

    Science.gov (United States)

    Herranz, Héctor; Cohen, Stephen M

    2010-07-01

    Biological systems are continuously challenged by an environment that is variable. Yet, a key feature of developmental and physiological processes is their remarkable stability. This review considers how microRNAs contribute to gene regulatory networks that confer robustness.

  18. A saturation screen for cis-acting regulatory DNA in the Hox genes of Ciona intestinalis

    Energy Technology Data Exchange (ETDEWEB)

    Keys, David N.; Lee, Byung-in; Di Gregorio, Anna; Harafuji, Naoe; Detter, Chris; Wang, Mei; Kahsai, Orsalem; Ahn, Sylvia; Arellano, Andre; Zhang, Quin; Trong, Stephan; Doyle, Sharon A.; Satoh, Noriyuki; Satou, Yutaka; Saiga, Hidetoshi; Christian, Allen; Rokhsar, Dan; Hawkins, Trevor L.; Levine, Mike; Richardson, Paul

    2005-01-05

    A screen for the systematic identification of cis-regulatory elements within large (>100 kb) genomic domains containing Hox genes was performed by using the basal chordate Ciona intestinalis. Randomly generated DNA fragments from bacterial artificial chromosomes containing two clusters of Hox genes were inserted into a vector upstream of a minimal promoter and lacZ reporter gene. A total of 222 resultant fusion genes were separately electroporated into fertilized eggs, and their regulatory activities were monitored in larvae. In sum, 21 separable cis-regulatory elements were found. These include eight Hox linked domains that drive expression in nested anterior-posterior domains of ectodermally derived tissues. In addition to vertebrate-like CNS regulation, the discovery of cis-regulatory domains that drive epidermal transcription suggests that C. intestinalis has arthropod-like Hox patterning in the epidermis.

  19. Codon usage of HIV regulatory genes is not determined by nucleotide composition.

    Science.gov (United States)

    Phakaratsakul, Supinya; Sirihongthong, Thanyaporn; Boonarkart, Chompunuch; Suptawiwat, Ornpreya; Auewarakul, Prasert

    2018-02-01

    Codon usage bias can be a result of either mutational bias or selection for translational efficiency and/or accuracy. Previous data has suggested that nucleotide composition constraint was the main determinant of HIV codon usage, and that nucleotide composition and codon usage were different between the regulatory genes, tat and rev, and other viral genes. It is not clear whether translational selection contributed to the codon usage difference and how nucleotide composition and translational selection interact to determine HIV codon usage. In this study, a model of codon bias due to GC composition with modification for the A-rich third codon position was used to calculate predicted HIV codon frequencies based on its nucleotide composition. The predicted codon usage of each gene was compared with the actual codon frequency. The predicted codon usage based on GC composition matched well with the actual codon frequencies for the structural genes (gag, pol and env). However, the codon usage of the regulatory genes (tat and rev) could not be predicted. Codon usage of the regulatory genes was also relatively unbiased showing the highest effective number of codons (ENC). Moreover, the codon adaptation index (CAI) of the regulatory genes showed better adaptation to human codons when compared to other HIV genes. Therefore, the early expressed genes responsible for regulation of the replication cycle, tat and rev, were more similar to humans in terms of codon usage and GC content than other HIV genes. This may help these genes to be expressed efficiently during the early stages of infection.

  20. MutaNET: a tool for automated analysis of genomic mutations in gene regulatory networks.

    Science.gov (United States)

    Hollander, Markus; Hamed, Mohamed; Helms, Volkhard; Neininger, Kerstin

    2018-03-01

    Mutations in genomic key elements can influence gene expression and function in various ways, and hence greatly contribute to the phenotype. We developed MutaNET to score the impact of individual mutations on gene regulation and function of a given genome. MutaNET performs statistical analyses of mutations in different genomic regions. The tool also incorporates the mutations in a provided gene regulatory network to estimate their global impact. The integration of a next-generation sequencing pipeline enables calling mutations prior to the analyses. As application example, we used MutaNET to analyze the impact of mutations in antibiotic resistance (AR) genes and their potential effect on AR of bacterial strains. MutaNET is freely available at https://sourceforge.net/projects/mutanet/. It is implemented in Python and supported on Mac OS X, Linux and MS Windows. Step-by-step instructions are available at http://service.bioinformatik.uni-saarland.de/mutanet/. volkhard.helms@bioinformatik.uni-saarland.de. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  1. Cloning and characterization of nif structural and regulatory genes in the purple sulfur bacterium, Halorhodospira halophila.

    Science.gov (United States)

    Tsuihiji, Hisayoshi; Yamazaki, Yoichi; Kamikubo, Hironari; Imamoto, Yasushi; Kataoka, Mikio

    2006-03-01

    Halorhodospira halophila is a halophilic photosynthetic bacterium classified as a purple sulfur bacterium. We found that H. halophila generates hydrogen gas during photoautotrophic growth as a byproduct of a nitrogenase reaction. In order to consider the applied possibilities of this photobiological hydrogen generation, we cloned and characterized the structural and regulatory genes encoding the nitrogenase, nifH, nifD and nifA, from H. halophila. This is the first description of the nif genes for a purple sulfur bacterium. The amino-acid sequences of NifH and NifD indicated that these proteins are an Fe protein and a part of a MoFe protein, respectively. The important residues are conserved completely. The sequence upstream from the nifH region and sequence similarities of nifH and nifD with those of the other organisms suggest that the regulatory system might be a NifL-NifA system; however, H. halophila lacks nifL. The amino-acid sequence of H. halophila NifA is closer to that of the NifA of the NifL-NifA system than to that of NifA without NifL. H. halophila NifA does not conserve either the residue that interacts with NifL or the important residues involved in NifL-independent regulation. These results suggest the existence of yet another regulatory system, and that the development of functional systems and their molecular counterparts are not necessarily correlated throughout evolution. All of these Nif proteins of H. halophila possess an excess of acidic residues, which acts as a salt-resistant mechanism.

  2. Genetic polymorphism in FOXP3 gene: imbalance in regulatory T ...

    Indian Academy of Sciences (India)

    2013-04-02

    Jonuleit and Schmitt 2003). Regulatory T ... immunological unresponsiveness to self-Ags and in sup- pressing excessive immune responses ... FOXP3 for prognosis or drug monitoring. The expression of. FOXP3 in tumour cells ...

  3. The gene expression data of Mycobacterium tuberculosis based on Affymetrix gene chips provide insight into regulatory and hypothetical genes

    Directory of Open Access Journals (Sweden)

    Fu-Liu Casey S

    2007-05-01

    Full Text Available Abstract Background Tuberculosis remains a leading infectious disease with global public health threat. Its control and management have been complicated by multi-drug resistance and latent infection, which prompts scientists to find new and more effective drugs. With the completion of the genome sequence of the etiologic bacterium, Mycobacterium tuberculosis, it is now feasible to search for new drug targets by sieving through a large number of gene products and conduct genome-scale experiments based on microarray technology. However, the full potential of genome-wide microarray analysis in configuring interrelationships among all genes in M. tuberculosis has yet to be realized. To date, it is only possible to assign a function to 52% of proteins predicted in the genome. Results We conducted a functional-genomics study using the high-resolution Affymetrix oligonucleotide GeneChip. Approximately one-half of the genes were found to be always expressed, including more than 100 predicted conserved hypotheticals, in the genome of M. tuberculosis during the log phase of in vitro growth. The gene expression profiles were analyzed and visualized through cluster analysis to epitomize the full details of genomic behavior. Broad patterns derived from genome-wide expression experiments in this study have provided insight into the interrelationships among genes in the basic cellular processes of M. tuberculosis. Conclusion Our results have confirmed several known gene clusters in energy production, information pathways, and lipid metabolism, and also hinted at potential roles of hypothetical and regulatory proteins.

  4. Genome wide analysis reveals Zic3 interaction with distal regulatory elements of stage specific developmental genes in zebrafish.

    Directory of Open Access Journals (Sweden)

    Cecilia L Winata

    2013-10-01

    Full Text Available Zic3 regulates early embryonic patterning in vertebrates. Loss of Zic3 function is known to disrupt gastrulation, left-right patterning, and neurogenesis. However, molecular events downstream of this transcription factor are poorly characterized. Here we use the zebrafish as a model to study the developmental role of Zic3 in vivo, by applying a combination of two powerful genomics approaches--ChIP-seq and microarray. Besides confirming direct regulation of previously implicated Zic3 targets of the Nodal and canonical Wnt pathways, analysis of gastrula stage embryos uncovered a number of novel candidate target genes, among which were members of the non-canonical Wnt pathway and the neural pre-pattern genes. A similar analysis in zic3-expressing cells obtained by FACS at segmentation stage revealed a dramatic shift in Zic3 binding site locations and identified an entirely distinct set of target genes associated with later developmental functions such as neural development. We demonstrate cis-regulation of several of these target genes by Zic3 using in vivo enhancer assay. Analysis of Zic3 binding sites revealed a distribution biased towards distal intergenic regions, indicative of a long distance regulatory mechanism; some of these binding sites are highly conserved during evolution and act as functional enhancers. This demonstrated that Zic3 regulation of developmental genes is achieved predominantly through long distance regulatory mechanism and revealed that developmental transitions could be accompanied by dramatic changes in regulatory landscape.

  5. A novel parametric approach to mine gene regulatory relationship from microarray datasets

    Directory of Open Access Journals (Sweden)

    Zhu Yunping

    2010-12-01

    Full Text Available Abstract Background Microarray has been widely used to measure the gene expression level on the genome scale in the current decade. Many algorithms have been developed to reconstruct gene regulatory networks based on microarray data. Unfortunately, most of these models and algorithms focus on global properties of the expression of genes in regulatory networks. And few of them are able to offer intuitive parameters. We wonder whether some simple but basic characteristics of microarray datasets can be found to identify the potential gene regulatory relationship. Results Based on expression correlation, expression level variation and vectors derived from microarray expression levels, we first introduced several novel parameters to measure the characters of regulating gene pairs. Subsequently, we used the naïve Bayesian network to integrate these features as well as the functional co-annotation between transcription factors and their target genes. Then, based on the character of time-delay from the expression profile, we were able to predict the existence and direction of the regulatory relationship respectively. Conclusions Several novel parameters have been proposed and integrated to identify the regulatory relationship. This new model is proved to be of higher efficacy than that of individual features. It is believed that our parametric approach can serve as a fast approach for regulatory relationship mining.

  6. Integration of steady-state and temporal gene expression data for the inference of gene regulatory networks.

    Science.gov (United States)

    Wang, Yi Kan; Hurley, Daniel G; Schnell, Santiago; Print, Cristin G; Crampin, Edmund J

    2013-01-01

    We develop a new regression algorithm, cMIKANA, for inference of gene regulatory networks from combinations of steady-state and time-series gene expression data. Using simulated gene expression datasets to assess the accuracy of reconstructing gene regulatory networks, we show that steady-state and time-series data sets can successfully be combined to identify gene regulatory interactions using the new algorithm. Inferring gene networks from combined data sets was found to be advantageous when using noisy measurements collected with either lower sampling rates or a limited number of experimental replicates. We illustrate our method by applying it to a microarray gene expression dataset from human umbilical vein endothelial cells (HUVECs) which combines time series data from treatment with growth factor TNF and steady state data from siRNA knockdown treatments. Our results suggest that the combination of steady-state and time-series datasets may provide better prediction of RNA-to-RNA interactions, and may also reveal biological features that cannot be identified from dynamic or steady state information alone. Finally, we consider the experimental design of genomics experiments for gene regulatory network inference and show that network inference can be improved by incorporating steady-state measurements with time-series data.

  7. Disabled-2 is a FOXP3 target gene required for regulatory T cell function

    OpenAIRE

    Jain, N; Nguyen, H; Friedline, RH; Malhotra, N; Brehm, M; Koyonagi, M; Bix, M; Cooper, JA; Chambers, CA; Kang, J

    2009-01-01

    FOXP3 expressing regulatory T cells are vital for maintaining peripheral T cell tolerance and homeostasis. The mechanisms by which FOXP3 target genes orchestrate context-dependent Treg cell function are largely unknown. Here we show that in mouse peripheral lymphocytes, the Drosophila Disabled-2 (Dab2) homolog, a gene that is involved in enhancing TGFβ responses, is exclusively expressed in FOXP3+ regulatory T cells. Dab2 is a direct target of FOXP3 and regulatory T cells lacking DAB2 are fun...

  8. Reconstructing gene-regulatory networks from time series, knock-out data, and prior knowledge

    Directory of Open Access Journals (Sweden)

    Timmer Jens

    2007-02-01

    Full Text Available Abstract Background Cellular processes are controlled by gene-regulatory networks. Several computational methods are currently used to learn the structure of gene-regulatory networks from data. This study focusses on time series gene expression and gene knock-out data in order to identify the underlying network structure. We compare the performance of different network reconstruction methods using synthetic data generated from an ensemble of reference networks. Data requirements as well as optimal experiments for the reconstruction of gene-regulatory networks are investigated. Additionally, the impact of prior knowledge on network reconstruction as well as the effect of unobserved cellular processes is studied. Results We identify linear Gaussian dynamic Bayesian networks and variable selection based on F-statistics as suitable methods for the reconstruction of gene-regulatory networks from time series data. Commonly used discrete dynamic Bayesian networks perform inferior and this result can be attributed to the inevitable information loss by discretization of expression data. It is shown that short time series generated under transcription factor knock-out are optimal experiments in order to reveal the structure of gene regulatory networks. Relative to the level of observational noise, we give estimates for the required amount of gene expression data in order to accurately reconstruct gene-regulatory networks. The benefit of using of prior knowledge within a Bayesian learning framework is found to be limited to conditions of small gene expression data size. Unobserved processes, like protein-protein interactions, induce dependencies between gene expression levels similar to direct transcriptional regulation. We show that these dependencies cannot be distinguished from transcription factor mediated gene regulation on the basis of gene expression data alone. Conclusion Currently available data size and data quality make the reconstruction of

  9. Identification of genes involved in regulatory mechanism of pigments in broiler chickens.

    Science.gov (United States)

    Tarique, T M; Yang, S; Mohsina, Z; Qiu, J; Yan, Z; Chen, G; Chen, A

    2014-09-05

    Chicken is an important model organism that unites the evolutionary gap between mammals and other vertebrates and provide major source of protein from meat and eggs for all over the world population. However, specific genes underlying the regulatory mechanism of broiler pigmentation have not yet been determined. In order to better understand the genes involved in the mechanism of pigmentation in the muscle tissues of broilers, the Affymetrix microarray hybridization experiment platform was used to identify gene expression profiles at 7 weeks of age. Broilers fed canthaxanthin, natural lutein, and orangeII pigments (100 mg/kg) were used to explore gene expression profiles). Our data showed that the 7th week of age was a very important phase with regard to gene expression profiles. We identified a number of differentially expressed genes; in canthaxanthin, natural lutein, and orangeII, there were 54 (32 upregulated and 22 downregulated), 23 (15 upregulated and 8 downregulated), and 7 (5 upregulated and 2 downregulated) known genes, respectively. Our data indicate that the numbers of differentially expressed genes were more upregulated than downregulated, and several genes showed conserved signaling to previously known functions. Thus, functional characterization of differentially expressed genes revealed several categories that are involved in important biological processes, including pigmentation, growth, molecular mechanisms, fat metabolism, cell proliferation, immune response, lipid metabolism, and protein synthesis and degradation. The results of the present study demonstrate that the genes associated with canthaxanthin, natural lutein, and orangeII are key regulatory genes that control the regulatory mechanisms of pigmentation.

  10. Distinct and competitive regulatory patterns of tumor suppressor genes and oncogenes in ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Min Zhao

    Full Text Available So far, investigators have found numerous tumor suppressor genes (TSGs and oncogenes (OCGs that control cell proliferation and apoptosis during cancer development. Furthermore, TSGs and OCGs may act as modulators of transcription factors (TFs to influence gene regulation. A comprehensive investigation of TSGs, OCGs, TFs, and their joint target genes at the network level may provide a deeper understanding of the post-translational modulation of TSGs and OCGs to TF gene regulation.In this study, we developed a novel computational framework for identifying target genes of TSGs and OCGs using TFs as bridges through the integration of protein-protein interactions and gene expression data. We applied this pipeline to ovarian cancer and constructed a three-layer regulatory network. In the network, the top layer was comprised of modulators (TSGs and OCGs, the middle layer included TFs, and the bottom layer contained target genes. Based on regulatory relationships in the network, we compiled TSG and OCG profiles and performed clustering analyses. Interestingly, we found TSGs and OCGs formed two distinct branches. The genes in the TSG branch were significantly enriched in DNA damage and repair, regulating macromolecule metabolism, cell cycle and apoptosis, while the genes in the OCG branch were significantly enriched in the ErbB signaling pathway. Remarkably, their specific targets showed a reversed functional enrichment in terms of apoptosis and the ErbB signaling pathway: the target genes regulated by OCGs only were enriched in anti-apoptosis and the target genes regulated by TSGs only were enriched in the ErbB signaling pathway.This study provides the first comprehensive investigation of the interplay of TSGs and OCGs in a regulatory network modulated by TFs. Our application in ovarian cancer revealed distinct regulatory patterns of TSGs and OCGs, suggesting a competitive regulatory mechanism acting upon apoptosis and the ErbB signaling pathway through

  11. Comparison of Current Regulatory Status for Gene-Based Vaccines in the U.S., Europe and Japan

    Directory of Open Access Journals (Sweden)

    Yoshikazu Nakayama

    2015-03-01

    Full Text Available Gene-based vaccines as typified by plasmid DNA vaccines and recombinant viral-vectored vaccines are expected as promising solutions against infectious diseases for which no effective prophylactic vaccines exist such as HIV, dengue virus, Ebola virus and malaria, and for which more improved vaccines are needed such as tuberculosis and influenza virus. Although many preclinical and clinical trials have been conducted to date, no DNA vaccines or recombinant viral-vectored vaccines expressing heterologous antigens for human use have yet been licensed in the U.S., Europe or Japan. In this research, we describe the current regulatory context for gene-based prophylactic vaccines against infectious disease in the U.S., Europe, and Japan. We identify the important considerations, in particular, on the preclinical assessments that would allow these vaccines to proceed to clinical trials, and the differences on the regulatory pathway for the marketing authorization in each region.

  12. Rapid male-specific regulatory divergence and down regulation of spermatogenesis genes in Drosophila species hybrids.

    Directory of Open Access Journals (Sweden)

    Jennifer Ferguson

    Full Text Available In most crosses between closely related species of Drosophila, the male hybrids are sterile and show postmeiotic abnormalities. A series of gene expression studies using genomic approaches have found significant down regulation of postmeiotic spermatogenesis genes in sterile male hybrids. These results have led some to suggest a direct relationship between down regulation in gene expression and hybrid sterility. An alternative explanation to a cause-and-effect relationship between misregulation of gene expression and male sterility is rapid divergence of male sex regulatory elements leading to incompatible interactions in an interspecies hybrid genome. To test the effect of regulatory divergence in spermatogenesis gene expression, we isolated 35 fertile D. simulans strains with D. mauritiana introgressions in either the X, second or third chromosome. We analyzed gene expression in these fertile hybrid strains for a subset of spermatogenesis genes previously reported as significantly under expressed in sterile hybrids relative to D. simulans. We found that fertile autosomal introgressions can cause levels of gene down regulation similar to that of sterile hybrids. We also found that X chromosome heterospecific introgressions cause significantly less gene down regulation than autosomal introgressions. Our results provide evidence that rapid male sex gene regulatory divergence can explain misexpression of spermatogenesis genes in hybrids.

  13. CoryneRegNet 4.0 – A reference database for corynebacterial gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Baumbach Jan

    2007-11-01

    Full Text Available Abstract Background Detailed information on DNA-binding transcription factors (the key players in the regulation of gene expression and on transcriptional regulatory interactions of microorganisms deduced from literature-derived knowledge, computer predictions and global DNA microarray hybridization experiments, has opened the way for the genome-wide analysis of transcriptional regulatory networks. The large-scale reconstruction of these networks allows the in silico analysis of cell behavior in response to changing environmental conditions. We previously published CoryneRegNet, an ontology-based data warehouse of corynebacterial transcription factors and regulatory networks. Initially, it was designed to provide methods for the analysis and visualization of the gene regulatory network of Corynebacterium glutamicum. Results Now we introduce CoryneRegNet release 4.0, which integrates data on the gene regulatory networks of 4 corynebacteria, 2 mycobacteria and the model organism Escherichia coli K12. As the previous versions, CoryneRegNet provides a web-based user interface to access the database content, to allow various queries, and to support the reconstruction, analysis and visualization of regulatory networks at different hierarchical levels. In this article, we present the further improved database content of CoryneRegNet along with novel analysis features. The network visualization feature GraphVis now allows the inter-species comparisons of reconstructed gene regulatory networks and the projection of gene expression levels onto that networks. Therefore, we added stimulon data directly into the database, but also provide Web Service access to the DNA microarray analysis platform EMMA. Additionally, CoryneRegNet now provides a SOAP based Web Service server, which can easily be consumed by other bioinformatics software systems. Stimulons (imported from the database, or uploaded by the user can be analyzed in the context of known

  14. A Gene Regulatory Program for Meiotic Prophase in the Fetal Ovary

    NARCIS (Netherlands)

    Soh, Y Q Shirleen; Junker, Jan Philipp; Gill, Mark E; Mueller, Jacob L; van Oudenaarden, Alexander; Page, David C

    The chromosomal program of meiotic prophase, comprising events such as laying down of meiotic cohesins, synapsis between homologs, and homologous recombination, must be preceded and enabled by the regulated induction of meiotic prophase genes. This gene regulatory program is poorly understood,

  15. Cis-regulatory control of the nuclear receptor Coup-TF gene in the sea urchin Paracentrotus lividus embryo.

    Directory of Open Access Journals (Sweden)

    Lamprini G Kalampoki

    Full Text Available Coup-TF, an orphan member of the nuclear receptor super family, has a fundamental role in the development of metazoan embryos. The study of the gene's regulatory circuit in the sea urchin embryo will facilitate the placement of this transcription factor in the well-studied embryonic Gene Regulatory Network (GRN. The Paracentrotus lividus Coup-TF gene (PlCoup-TF is expressed throughout embryonic development preferentially in the oral ectoderm of the gastrula and the ciliary band of the pluteus stage. Two overlapping λ genomic clones, containing three exons and upstream sequences of PlCoup-TF, were isolated from a genomic library. The transcription initiation site was determined and 5' deletions and individual segments of a 1930 bp upstream region were placed ahead of a GFP reporter cassette and injected into fertilized P.lividus eggs. Module a (-532 to -232, was necessary and sufficient to confer ciliary band expression to the reporter. Comparison of P.lividus and Strongylocentrotus purpuratus upstream Coup-TF sequences, revealed considerable conservation, but none within module a. 5' and internal deletions into module a, defined a smaller region that confers ciliary band specific expression. Putative regulatory cis-acting elements (RE1, RE2 and RE3 within module a, were specifically bound by proteins in sea urchin embryonic nuclear extracts. Site-specific mutagenesis of these elements resulted in loss of reporter activity (RE1 or ectopic expression (RE2, RE3. It is proposed that sea urchin transcription factors, which bind these three regulatory sites, are necessary for spatial and quantitative regulation of the PlCoup-TF gene at pluteus stage sea urchin embryos. These findings lead to the future identification of these factors and to the hierarchical positioning of PlCoup-TF within the embryonic GRN.

  16. On the Interplay between Entropy and Robustness of Gene Regulatory Networks

    Directory of Open Access Journals (Sweden)

    Bor-Sen Chen

    2010-05-01

    Full Text Available The interplay between entropy and robustness of gene network is a core mechanism of systems biology. The entropy is a measure of randomness or disorder of a physical system due to random parameter fluctuation and environmental noises in gene regulatory networks. The robustness of a gene regulatory network, which can be measured as the ability to tolerate the random parameter fluctuation and to attenuate the effect of environmental noise, will be discussed from the robust H∞ stabilization and filtering perspective. In this review, we will also discuss their balancing roles in evolution and potential applications in systems and synthetic biology.

  17. Morphological evolution through multiple cis-regulatory mutations at a single gene.

    Science.gov (United States)

    McGregor, Alistair P; Orgogozo, Virginie; Delon, Isabelle; Zanet, Jennifer; Srinivasan, Dayalan G; Payre, François; Stern, David L

    2007-08-02

    One central, and yet unsolved, question in evolutionary biology is the relationship between the genetic variants segregating within species and the causes of morphological differences between species. The classic neo-darwinian view postulates that species differences result from the accumulation of small-effect changes at multiple loci. However, many examples support the possible role of larger abrupt changes in the expression of developmental genes in morphological evolution. Although this evidence might be considered a challenge to a neo-darwinian micromutationist view of evolution, there are currently few examples of the actual genes causing morphological differences between species. Here we examine the genetic basis of a trichome pattern difference between Drosophila species, previously shown to result from the evolution of a single gene, shavenbaby (svb), probably through cis-regulatory changes. We first identified three distinct svb enhancers from D. melanogaster driving reporter gene expression in partly overlapping patterns that together recapitulate endogenous svb expression. All three homologous enhancers from D. sechellia drive expression in modified patterns, in a direction consistent with the evolved svb expression pattern. To test the influence of these enhancers on the actual phenotypic difference, we conducted interspecific genetic mapping at a resolution sufficient to recover multiple intragenic recombinants. This functional analysis revealed that independent genetic regions upstream of svb that overlap the three identified enhancers are collectively required to generate the D. sechellia trichome pattern. Our results demonstrate that the accumulation of multiple small-effect changes at a single locus underlies the evolution of a morphological difference between species. These data support the view that alleles of large effect that distinguish species may sometimes reflect the accumulation of multiple mutations of small effect at select genes.

  18. Tetrahelical structural family adopted by AGCGA-rich regulatory DNA regions

    Science.gov (United States)

    Kocman, Vojč; Plavec, Janez

    2017-05-01

    Here we describe AGCGA-quadruplexes, an unexpected addition to the well-known tetrahelical families, G-quadruplexes and i-motifs, that have been a focus of intense research due to their potential biological impact in G- and C-rich DNA regions, respectively. High-resolution structures determined by solution-state nuclear magnetic resonance (NMR) spectroscopy demonstrate that AGCGA-quadruplexes comprise four 5'-AGCGA-3' tracts and are stabilized by G-A and G-C base pairs forming GAGA- and GCGC-quartets, respectively. Residues in the core of the structure are connected with edge-type loops. Sequences of alternating 5'-AGCGA-3' and 5'-GGG-3' repeats could be expected to form G-quadruplexes, but are shown herein to form AGCGA-quadruplexes instead. Unique structural features of AGCGA-quadruplexes together with lower sensitivity to cation and pH variation imply their potential biological relevance in regulatory regions of genes responsible for basic cellular processes that are related to neurological disorders, cancer and abnormalities in bone and cartilage development.

  19. Genes involved in complex adaptive processes tend to have highly conserved upstream regions in mammalian genomes

    Directory of Open Access Journals (Sweden)

    Kohane Isaac

    2005-11-01

    Full Text Available Abstract Background Recent advances in genome sequencing suggest a remarkable conservation in gene content of mammalian organisms. The similarity in gene repertoire present in different organisms has increased interest in studying regulatory mechanisms of gene expression aimed at elucidating the differences in phenotypes. In particular, a proximal promoter region contains a large number of regulatory elements that control the expression of its downstream gene. Although many studies have focused on identification of these elements, a broader picture on the complexity of transcriptional regulation of different biological processes has not been addressed in mammals. The regulatory complexity may strongly correlate with gene function, as different evolutionary forces must act on the regulatory systems under different biological conditions. We investigate this hypothesis by comparing the conservation of promoters upstream of genes classified in different functional categories. Results By conducting a rank correlation analysis between functional annotation and upstream sequence alignment scores obtained by human-mouse and human-dog comparison, we found a significantly greater conservation of the upstream sequence of genes involved in development, cell communication, neural functions and signaling processes than those involved in more basic processes shared with unicellular organisms such as metabolism and ribosomal function. This observation persists after controlling for G+C content. Considering conservation as a functional signature, we hypothesize a higher density of cis-regulatory elements upstream of genes participating in complex and adaptive processes. Conclusion We identified a class of functions that are associated with either high or low promoter conservation in mammals. We detected a significant tendency that points to complex and adaptive processes were associated with higher promoter conservation, despite the fact that they have emerged

  20. Medusa structure of the gene regulatory network: dominance of transcription factors in cancer subtype classification.

    Science.gov (United States)

    Guo, Yuchun; Feng, Ying; Trivedi, Niraj S; Huang, Sui

    2011-05-01

    Gene expression profiles consisting of ten thousands of transcripts are used for clustering of tissue, such as tumors, into subtypes, often without considering the underlying reason that the distinct patterns of expression arise because of constraints in the realization of gene expression profiles imposed by the gene regulatory network. The topology of this network has been suggested to consist of a regulatory core of genes represented most prominently by transcription factors (TFs) and microRNAs, that influence the expression of other genes, and of a periphery of 'enslaved' effector genes that are regulated but not regulating. This 'medusa' architecture implies that the core genes are much stronger determinants of the realized gene expression profiles. To test this hypothesis, we examined the clustering of gene expression profiles into known tumor types to quantitatively demonstrate that TFs, and even more pronounced, microRNAs, are much stronger discriminators of tumor type specific gene expression patterns than a same number of randomly selected or metabolic genes. These findings lend support to the hypothesis of a medusa architecture and of the canalizing nature of regulation by microRNAs. They also reveal the degree of freedom for the expression of peripheral genes that are less stringently associated with a tissue type specific global gene expression profile.

  1. Mapping Gene Regulatory Networks in Drosophila Eye Development by Large-Scale Transcriptome Perturbations and Motif Inference

    Directory of Open Access Journals (Sweden)

    Delphine Potier

    2014-12-01

    Full Text Available Genome control is operated by transcription factors (TFs controlling their target genes by binding to promoters and enhancers. Conceptually, the interactions between TFs, their binding sites, and their functional targets are represented by gene regulatory networks (GRNs. Deciphering in vivo GRNs underlying organ development in an unbiased genome-wide setting involves identifying both functional TF-gene interactions and physical TF-DNA interactions. To reverse engineer the GRNs of eye development in Drosophila, we performed RNA-seq across 72 genetic perturbations and sorted cell types and inferred a coexpression network. Next, we derived direct TF-DNA interactions using computational motif inference, ultimately connecting 241 TFs to 5,632 direct target genes through 24,926 enhancers. Using this network, we found network motifs, cis-regulatory codes, and regulators of eye development. We validate the predicted target regions of Grainyhead by ChIP-seq and identify this factor as a general cofactor in the eye network, being bound to thousands of nucleosome-free regions.

  2. Regulatory Considerations for Gene Therapy Products in the US, EU, and Japan.

    Science.gov (United States)

    Halioua-Haubold, Celine-Lea; Peyer, James G; Smith, James A; Arshad, Zeeshaan; Scholz, Matthew; Brindley, David A; MacLaren, Robert E

    2017-12-01

    Developers of gene therapy products (GTPs) must adhere to additional regulation beyond that of traditional small-molecule therapeutics, due to the unique mechanism-of-action of GTPs and the subsequent novel risks arisen. We have provided herein a summary of the regulatory structure under which GTPs fall in the United States, the European Union, and Japan, and a comprehensive overview of the regulatory guidance applicable to the developer of GTP. Understanding the regulatory requirements for seeking GTP market approval in these major jurisdictions is crucial for an effective and expedient path to market. The novel challenges facing GTP developers is highlighted by a case study of alipogene tiparvovec (Glybera).

  3. Large-scale gene expression study in the ophiuroid Amphiura filiformis provides insights into evolution of gene regulatory networks

    Directory of Open Access Journals (Sweden)

    David Viktor Dylus

    2016-01-01

    Full Text Available Abstract Background The evolutionary mechanisms involved in shaping complex gene regulatory networks (GRN that encode for morphologically similar structures in distantly related animals remain elusive. In this context, echinoderm larval skeletons found in brittle stars and sea urchins provide an ideal system. Here, we characterize for the first time the development of the larval skeleton in the ophiuroid Amphiura filiformis and compare it systematically with its counterpart in sea urchin. Results We show that ophiuroids and euechinoids, that split at least 480 Million years ago (Mya, have remarkable similarities in tempo and mode of skeletal development. Despite morphological and ontological similarities, our high-resolution study of the dynamics of genetic regulatory states in A. filiformis highlights numerous differences in the architecture of their underlying GRNs. Importantly, the A.filiformis pplx, the closest gene to the sea urchin double negative gate (DNG repressor pmar1, fails to drive the skeletogenic program in sea urchin, showing important evolutionary differences in protein function. hesC, the second repressor of the DNG, is co-expressed with most of the genes that are repressed in sea urchin, indicating the absence of direct repression of tbr, ets1/2, and delta in A. filiformis. Furthermore, the absence of expression in later stages of brittle star skeleton development of key regulatory genes, such as foxb and dri, shows significantly different regulatory states. Conclusion Our data fill up an important gap in the picture of larval mesoderm in echinoderms and allows us to explore the evolutionary implications relative to the recently established phylogeny of echinoderm classes. In light of recent studies on other echinoderms, our data highlight a high evolutionary plasticity of the same nodes throughout evolution of echinoderm skeletogenesis. Finally, gene duplication, protein function diversification, and cis-regulatory element

  4. Sterol regulatory element-binding proteins are regulators of the rat thyroid peroxidase gene in thyroid cells.

    Directory of Open Access Journals (Sweden)

    Christine Rauer

    Full Text Available Sterol regulatory element-binding proteins (SREBPs-1c and -2, which were initially discovered as master transcriptional regulators of lipid biosynthesis and uptake, were recently identified as novel transcriptional regulators of the sodium-iodide symporter gene in the thyroid, which is essential for thyroid hormone synthesis. Based on this observation that SREBPs play a role for thyroid hormone synthesis, we hypothesized that another gene involved in thyroid hormone synthesis, the thyroid peroxidase (TPO gene, is also a target of SREBP-1c and -2. Thyroid epithelial cells treated with 25-hydroxycholesterol, which is known to inhibit SREBP activation, had about 50% decreased mRNA levels of TPO. Similarly, the mRNA level of TPO was reduced by about 50% in response to siRNA mediated knockdown of both, SREBP-1 and SREBP-2. Reporter gene assays revealed that overexpression of active SREBP-1c and -2 causes a strong transcriptional activation of the rat TPO gene, which was localized to an approximately 80 bp region in the intron 1 of the rat TPO gene. In vitro- and in vivo-binding of both, SREBP-1c and SREBP-2, to this region in the rat TPO gene could be demonstrated using gel-shift assays and chromatin immunoprecipitation. Mutation analysis of the 80 bp region of rat TPO intron 1 revealed two isolated and two overlapping SREBP-binding elements from which one, the overlapping SRE+609/InvSRE+614, was shown to be functional in reporter gene assays. In connection with recent findings that the rat NIS gene is also a SREBP target gene in the thyroid, the present findings suggest that SREBPs may be possible novel targets for pharmacological modulation of thyroid hormone synthesis.

  5. A flood-based information flow analysis and network minimization method for gene regulatory networks.

    Science.gov (United States)

    Pavlogiannis, Andreas; Mozhayskiy, Vadim; Tagkopoulos, Ilias

    2013-04-24

    Biological networks tend to have high interconnectivity, complex topologies and multiple types of interactions. This renders difficult the identification of sub-networks that are involved in condition- specific responses. In addition, we generally lack scalable methods that can reveal the information flow in gene regulatory and biochemical pathways. Doing so will help us to identify key participants and paths under specific environmental and cellular context. This paper introduces the theory of network flooding, which aims to address the problem of network minimization and regulatory information flow in gene regulatory networks. Given a regulatory biological network, a set of source (input) nodes and optionally a set of sink (output) nodes, our task is to find (a) the minimal sub-network that encodes the regulatory program involving all input and output nodes and (b) the information flow from the source to the sink nodes of the network. Here, we describe a novel, scalable, network traversal algorithm and we assess its potential to achieve significant network size reduction in both synthetic and E. coli networks. Scalability and sensitivity analysis show that the proposed method scales well with the size of the network, and is robust to noise and missing data. The method of network flooding proves to be a useful, practical approach towards information flow analysis in gene regulatory networks. Further extension of the proposed theory has the potential to lead in a unifying framework for the simultaneous network minimization and information flow analysis across various "omics" levels.

  6. Identifying noncoding risk variants using disease-relevant gene regulatory networks.

    Science.gov (United States)

    Gao, Long; Uzun, Yasin; Gao, Peng; He, Bing; Ma, Xiaoke; Wang, Jiahui; Han, Shizhong; Tan, Kai

    2018-02-16

    Identifying noncoding risk variants remains a challenging task. Because noncoding variants exert their effects in the context of a gene regulatory network (GRN), we hypothesize that explicit use of disease-relevant GRNs can significantly improve the inference accuracy of noncoding risk variants. We describe Annotation of Regulatory Variants using Integrated Networks (ARVIN), a general computational framework for predicting causal noncoding variants. It employs a set of novel regulatory network-based features, combined with sequence-based features to infer noncoding risk variants. Using known causal variants in gene promoters and enhancers in a number of diseases, we show ARVIN outperforms state-of-the-art methods that use sequence-based features alone. Additional experimental validation using reporter assay further demonstrates the accuracy of ARVIN. Application of ARVIN to seven autoimmune diseases provides a holistic view of the gene subnetwork perturbed by the combinatorial action of the entire set of risk noncoding mutations.

  7. Influence of the experimental design of gene expression studies on the inference of gene regulatory networks: environmental factors

    Directory of Open Access Journals (Sweden)

    Frank Emmert-Streib

    2013-02-01

    Full Text Available The inference of gene regulatory networks gained within recent years a considerable interest in the biology and biomedical community. The purpose of this paper is to investigate the influence that environmental conditions can exhibit on the inference performance of network inference algorithms. Specifically, we study five network inference methods, Aracne, BC3NET, CLR, C3NET and MRNET, and compare the results for three different conditions: (I observational gene expression data: normal environmental condition, (II interventional gene expression data: growth in rich media, (III interventional gene expression data: normal environmental condition interrupted by a positive spike-in stimulation. Overall, we find that different statistical inference methods lead to comparable, but condition-specific results. Further, our results suggest that non-steady-state data enhance the inferability of regulatory networks.

  8. Prioritization of gene regulatory interactions from large-scale modules in yeast

    Directory of Open Access Journals (Sweden)

    Bringas Ricardo

    2008-01-01

    Full Text Available Abstract Background The identification of groups of co-regulated genes and their transcription factors, called transcriptional modules, has been a focus of many studies about biological systems. While methods have been developed to derive numerous modules from genome-wide data, individual links between regulatory proteins and target genes still need experimental verification. In this work, we aim to prioritize regulator-target links within transcriptional modules based on three types of large-scale data sources. Results Starting with putative transcriptional modules from ChIP-chip data, we first derive modules in which target genes show both expression and function coherence. The most reliable regulatory links between transcription factors and target genes are established by identifying intersection of target genes in coherent modules for each enriched functional category. Using a combination of genome-wide yeast data in normal growth conditions and two different reference datasets, we show that our method predicts regulatory interactions with significantly higher predictive power than ChIP-chip binding data alone. A comparison with results from other studies highlights that our approach provides a reliable and complementary set of regulatory interactions. Based on our results, we can also identify functionally interacting target genes, for instance, a group of co-regulated proteins related to cell wall synthesis. Furthermore, we report novel conserved binding sites of a glycoprotein-encoding gene, CIS3, regulated by Swi6-Swi4 and Ndd1-Fkh2-Mcm1 complexes. Conclusion We provide a simple method to prioritize individual TF-gene interactions from large-scale transcriptional modules. In comparison with other published works, we predict a complementary set of regulatory interactions which yields a similar or higher prediction accuracy at the expense of sensitivity. Therefore, our method can serve as an alternative approach to prioritization for

  9. Regulatory elements of the floral homeotic gene AGAMOUS identified by phylogenetic footprinting and shadowing.

    Energy Technology Data Exchange (ETDEWEB)

    Hong, R. L., Hamaguchi, L., Busch, M. A., and Weigel, D.

    2003-06-01

    OAK-B135 In Arabidopsis thaliana, cis-regulatory sequences of the floral homeotic gene AGAMOUS (AG) are located in the second intron. This 3 kb intron contains binding sites for two direct activators of AG, LEAFY (LFY) and WUSCHEL (WUS), along with other putative regulatory elements. We have used phylogenetic footprinting and the related technique of phylogenetic shadowing to identify putative cis-regulatory elements in this intron. Among 29 Brassicaceae, several other motifs, but not the LFY and WUS binding sites previously identified, are largely invariant. Using reporter gene analyses, we tested six of these motifs and found that they are all functionally important for activity of AG regulatory sequences in A. thaliana. Although there is little obvious sequence similarity outside the Brassicaceae, the intron from cucumber AG has at least partial activity in A. thaliana. Our studies underscore the value of the comparative approach as a tool that complements gene-by-gene promoter dissection, but also highlight that sequence-based studies alone are insufficient for a complete identification of cis-regulatory sites.

  10. A regulatory gene (ECO-orf4) required for ECO-0501 biosynthesis in Amycolatopsis orientalis.

    Science.gov (United States)

    Shen, Yang; Huang, He; Zhu, Li; Luo, Minyu; Chen, Daijie

    2014-02-01

    ECO-0501 is a novel linear polyene antibiotic, which was discovered from Amycolatopsis orientalis. Recent study of ECO-0501 biosynthesis pathway revealed the presence of regulatory gene: ECO-orf4. The A. orientalis ECO-orf4 gene from the ECO-0501 biosynthesis cluster was analyzed, and its deduced protein (ECO-orf4) was found to have amino acid sequence homology with large ATP-binding regulators of the LuxR (LAL) family regulators. Database comparison revealed two hypothetical domains, a LuxR-type helix-turn-helix (HTH) DNA binding motif near the C-terminal and an N-terminal nucleotide triphosphate (NTP) binding motif included. Deletion of the corresponding gene (ECO-orf4) resulted in complete loss of ECO-0501 production. Complementation by one copy of intact ECO-orf4 restored the polyene biosynthesis demonstrating that ECO-orf4 is required for ECO-0501 biosynthesis. The results of overexpression ECO-orf4 on ECO-0501 production indicated that it is a positive regulatory gene. Gene expression analysis by reverse transcription PCR of the ECO-0501 gene cluster showed that the transcription of ECO-orf4 correlates with that of genes involved in polyketide biosynthesis. These results demonstrated that ECO-orf4 is a pathway-specific positive regulatory gene that is essential for ECO-0501 biosynthesis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Using BAC transgenesis in zebrafish to identify regulatory sequences of the amyloid precursor protein gene in humans

    Directory of Open Access Journals (Sweden)

    Shakes Leighcraft A

    2012-09-01

    Full Text Available Abstract Background Non-coding DNA in and around the human Amyloid Precursor Protein (APP gene that is central to Alzheimer’s disease (AD shares little sequence similarity with that of appb in zebrafish. Identifying DNA domains regulating expression of the gene in such situations becomes a challenge. Taking advantage of the zebrafish system that allows rapid functional analyses of gene regulatory sequences, we previously showed that two discontinuous DNA domains in zebrafish appb are important for expression of the gene in neurons: an enhancer in intron 1 and sequences 28–31 kb upstream of the gene. Here we identify the putative transcription factor binding sites responsible for this distal cis-acting regulation, and use that information to identify a regulatory region of the human APP gene. Results Functional analyses of intron 1 enhancer mutations in enhancer-trap BACs expressed as transgenes in zebrafish identified putative binding sites of two known transcription factor proteins, E4BP4/ NFIL3 and Forkhead, to be required for expression of appb. A cluster of three E4BP4 sites at −31 kb is also shown to be essential for neuron-specific expression, suggesting that the dependence of expression on upstream sequences is mediated by these E4BP4 sites. E4BP4/ NFIL3 and XFD1 sites in the intron enhancer and E4BP4/ NFIL3 sites at −31 kb specifically and efficiently bind the corresponding zebrafish proteins in vitro. These sites are statistically over-represented in both the zebrafish appb and the human APP genes, although their locations are different. Remarkably, a cluster of four E4BP4 sites in intron 4 of human APP exists in actively transcribing chromatin in a human neuroblastoma cell-line, SHSY5Y, expressing APP as shown using chromatin immunoprecipitation (ChIP experiments. Thus although the two genes share little sequence conservation, they appear to share the same regulatory logic and are regulated by a similar set of transcription

  12. Using BAC transgenesis in zebrafish to identify regulatory sequences of the amyloid precursor protein gene in humans.

    Science.gov (United States)

    Shakes, Leighcraft A; Du, Hansen; Wolf, Hope M; Hatcher, Charles; Norford, Derek C; Precht, Patricia; Sen, Ranjan; Chatterjee, Pradeep K

    2012-09-04

    Non-coding DNA in and around the human Amyloid Precursor Protein (APP) gene that is central to Alzheimer's disease (AD) shares little sequence similarity with that of appb in zebrafish. Identifying DNA domains regulating expression of the gene in such situations becomes a challenge. Taking advantage of the zebrafish system that allows rapid functional analyses of gene regulatory sequences, we previously showed that two discontinuous DNA domains in zebrafish appb are important for expression of the gene in neurons: an enhancer in intron 1 and sequences 28-31 kb upstream of the gene. Here we identify the putative transcription factor binding sites responsible for this distal cis-acting regulation, and use that information to identify a regulatory region of the human APP gene. Functional analyses of intron 1 enhancer mutations in enhancer-trap BACs expressed as transgenes in zebrafish identified putative binding sites of two known transcription factor proteins, E4BP4/ NFIL3 and Forkhead, to be required for expression of appb. A cluster of three E4BP4 sites at -31 kb is also shown to be essential for neuron-specific expression, suggesting that the dependence of expression on upstream sequences is mediated by these E4BP4 sites. E4BP4/ NFIL3 and XFD1 sites in the intron enhancer and E4BP4/ NFIL3 sites at -31 kb specifically and efficiently bind the corresponding zebrafish proteins in vitro. These sites are statistically over-represented in both the zebrafish appb and the human APP genes, although their locations are different. Remarkably, a cluster of four E4BP4 sites in intron 4 of human APP exists in actively transcribing chromatin in a human neuroblastoma cell-line, SHSY5Y, expressing APP as shown using chromatin immunoprecipitation (ChIP) experiments. Thus although the two genes share little sequence conservation, they appear to share the same regulatory logic and are regulated by a similar set of transcription factors. The results suggest that the clock

  13. Inferring a transcriptional regulatory network of the cytokinesis-related genes by network component analysis

    Directory of Open Access Journals (Sweden)

    Kao Cheng-Yan

    2009-11-01

    Full Text Available Abstract Background Network Component Analysis (NCA is a network structure-driven framework for deducing regulatory signal dynamics. In contrast to principal component analysis, which can be employed to select the high-variance genes, NCA makes use of the connectivity structure from transcriptional regulatory networks to infer dynamics of transcription factor activities. Using the budding yeast Saccharomyces cerevisiae as a model system, we aim to deduce regulatory actions of cytokinesis-related genes, using precise spatial proximity (midbody and/or temporal synchronicity (cytokinesis to avoid full-scale computation from genome-wide databases. Results NCA was applied to infer regulatory actions of transcription factor activity from microarray data and partial transcription factor-gene connectivity information for cytokinesis-related genes, which were a subset of genome-wide datasets. No literature has so far discussed the inferred results through NCA are independent of the scale of the gene expression dataset. To avoid full-scale computation from genome-wide databases, four cytokinesis-related gene cases were selected for NCA by running computational analysis over the transcription factor database to confirm the approach being scale-free. The inferred dynamics of transcription factor activity through NCA were independent of the scale of the data matrix selected from the four cytokinesis-related gene sets. Moreover, the inferred regulatory actions were nearly identical to published observations for the selected cytokinesis-related genes in the budding yeast; namely, Mcm1, Ndd1, and Fkh2, which form a transcription factor complex to control expression of the CLB2 cluster (i.e. BUD4, CHS2, IQG1, and CDC5. Conclusion In this study, using S. cerevisiae as a model system, NCA was successfully applied to infer similar regulatory actions of transcription factor activities from two various microarray databases and several partial transcription factor-gene

  14. Inferring a transcriptional regulatory network of the cytokinesis-related genes by network component analysis.

    Science.gov (United States)

    Chen, Shun-Fu; Juang, Yue-Li; Chou, Wei-Kang; Lai, Jin-Mei; Huang, Chi-Ying F; Kao, Cheng-Yan; Wang, Feng-Sheng

    2009-11-27

    Network Component Analysis (NCA) is a network structure-driven framework for deducing regulatory signal dynamics. In contrast to principal component analysis, which can be employed to select the high-variance genes, NCA makes use of the connectivity structure from transcriptional regulatory networks to infer dynamics of transcription factor activities. Using the budding yeast Saccharomyces cerevisiae as a model system, we aim to deduce regulatory actions of cytokinesis-related genes, using precise spatial proximity (midbody) and/or temporal synchronicity (cytokinesis) to avoid full-scale computation from genome-wide databases. NCA was applied to infer regulatory actions of transcription factor activity from microarray data and partial transcription factor-gene connectivity information for cytokinesis-related genes, which were a subset of genome-wide datasets. No literature has so far discussed the inferred results through NCA are independent of the scale of the gene expression dataset. To avoid full-scale computation from genome-wide databases, four cytokinesis-related gene cases were selected for NCA by running computational analysis over the transcription factor database to confirm the approach being scale-free. The inferred dynamics of transcription factor activity through NCA were independent of the scale of the data matrix selected from the four cytokinesis-related gene sets. Moreover, the inferred regulatory actions were nearly identical to published observations for the selected cytokinesis-related genes in the budding yeast; namely, Mcm1, Ndd1, and Fkh2, which form a transcription factor complex to control expression of the CLB2 cluster (i.e. BUD4, CHS2, IQG1, and CDC5). In this study, using S. cerevisiae as a model system, NCA was successfully applied to infer similar regulatory actions of transcription factor activities from two various microarray databases and several partial transcription factor-gene connectivity datasets for selected cytokinesis

  15. Fractal gene regulatory networks for robust locomotion control of modular robots

    DEFF Research Database (Denmark)

    Zahadat, Payam; Christensen, David Johan; Schultz, Ulrik Pagh

    2010-01-01

    Designing controllers for modular robots is difficult due to the distributed and dynamic nature of the robots. In this paper fractal gene regulatory networks are evolved to control modular robots in a distributed way. Experiments with different morphologies of modular robot are performed and the ......Designing controllers for modular robots is difficult due to the distributed and dynamic nature of the robots. In this paper fractal gene regulatory networks are evolved to control modular robots in a distributed way. Experiments with different morphologies of modular robot are performed...

  16. Sensor-coupled fractal gene regulatory networks for locomotion control of a modular snake robot

    DEFF Research Database (Denmark)

    Zahadat, Payam; Christensen, David Johan; Katebi, Serajeddin

    2013-01-01

    In this paper we study fractal gene regulatory network (FGRN) controllers based on sensory information. The FGRN controllers are evolved to control a snake robot consisting of seven simulated ATRON modules. Each module contains three tilt sensors which represent the direction of gravity in the co......In this paper we study fractal gene regulatory network (FGRN) controllers based on sensory information. The FGRN controllers are evolved to control a snake robot consisting of seven simulated ATRON modules. Each module contains three tilt sensors which represent the direction of gravity...

  17. Molecular characterization of a maize regulatory gene. Progress report, July 1989--March 1990

    Energy Technology Data Exchange (ETDEWEB)

    Wessler, S.

    1990-12-31

    This progress report contains information concerning the characterization of the Maize regulatory gene. The findings of this research program have immediate significance. Firstly, it provides support for the notion that R proteins, produced by the regulatory gene, are functionally equivalent. Secondly, the success of these experiments provides a simple transient assay for either natural or constructed R protein mutations. The relative ease of this assay coupled with overnight results are important prerequisites to the proposed experiments involving a structure-function analysis of the R protein.

  18. Evolution of Leukotoxin Regulatory regions in Genus Mannheimia by Interspecies Comparisons

    DEFF Research Database (Denmark)

    Larsen, Jesper; Pedersen, Anders Gorm; de Lichtenberg, Ulrik

    to -376 contains at least one positive regulatory element, suggesting early divergence within the promoter family and the emergence of a lineage with increased promoter strength. Tandem duplication of the pattern ACAAAAAACA has occurred in the ancestral Mhae1 promoter after the Mhae1 and Mhae2 ancestors......Comparisons of evolutionary divergent promoter sequences have revealed that gross rearrangements of pre-existing blocks into new combinations play a central role during the evolution of regulatory regions. The noncoding region upstream of the leukotoxin operon was analyzed in six Mannheimia strains...

  19. Harnessing diversity towards the reconstructing of large scale gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Takeshi Hase

    Full Text Available Elucidating gene regulatory network (GRN from large scale experimental data remains a central challenge in systems biology. Recently, numerous techniques, particularly consensus driven approaches combining different algorithms, have become a potentially promising strategy to infer accurate GRNs. Here, we develop a novel consensus inference algorithm, TopkNet that can integrate multiple algorithms to infer GRNs. Comprehensive performance benchmarking on a cloud computing framework demonstrated that (i a simple strategy to combine many algorithms does not always lead to performance improvement compared to the cost of consensus and (ii TopkNet integrating only high-performance algorithms provide significant performance improvement compared to the best individual algorithms and community prediction. These results suggest that a priori determination of high-performance algorithms is a key to reconstruct an unknown regulatory network. Similarity among gene-expression datasets can be useful to determine potential optimal algorithms for reconstruction of unknown regulatory networks, i.e., if expression-data associated with known regulatory network is similar to that with unknown regulatory network, optimal algorithms determined for the known regulatory network can be repurposed to infer the unknown regulatory network. Based on this observation, we developed a quantitative measure of similarity among gene-expression datasets and demonstrated that, if similarity between the two expression datasets is high, TopkNet integrating algorithms that are optimal for known dataset perform well on the unknown dataset. The consensus framework, TopkNet, together with the similarity measure proposed in this study provides a powerful strategy towards harnessing the wisdom of the crowds in reconstruction of unknown regulatory networks.

  20. Structures and Boolean Dynamics in Gene Regulatory Networks

    Science.gov (United States)

    Szedlak, Anthony

    This dissertation discusses the topological and dynamical properties of GRNs in cancer, and is divided into four main chapters. First, the basic tools of modern complex network theory are introduced. These traditional tools as well as those developed by myself (set efficiency, interset efficiency, and nested communities) are crucial for understanding the intricate topological properties of GRNs, and later chapters recall these concepts. Second, the biology of gene regulation is discussed, and a method for disease-specific GRN reconstruction developed by our collaboration is presented. This complements the traditional exhaustive experimental approach of building GRNs edge-by-edge by quickly inferring the existence of as of yet undiscovered edges using correlations across sets of gene expression data. This method also provides insight into the distribution of common mutations across GRNs. Third, I demonstrate that the structures present in these reconstructed networks are strongly related to the evolutionary histories of their constituent genes. Investigation of how the forces of evolution shaped the topology of GRNs in multicellular organisms by growing outward from a core of ancient, conserved genes can shed light upon the ''reverse evolution'' of normal cells into unicellular-like cancer states. Next, I simulate the dynamics of the GRNs of cancer cells using the Hopfield model, an infinite range spin-glass model designed with the ability to encode Boolean data as attractor states. This attractor-driven approach facilitates the integration of gene expression data into predictive mathematical models. Perturbations representing therapeutic interventions are applied to sets of genes, and the resulting deviations from their attractor states are recorded, suggesting new potential drug targets for experimentation. Finally, I extend the Hopfield model to modular networks, cyclic attractors, and complex attractors, and apply these concepts to simulations of the cell cycle

  1. Transgenes of the Mouse Immunoglobulin Heavy Chain Locus, Lacking Distal Elements in the 3′ Regulatory Region, Are Impaired for Class Switch Recombination

    Science.gov (United States)

    Dunnick, Wesley A.; Shi, Jian; Fontaine, Clinton; Collins, John T.

    2013-01-01

    The immunoglobulin heavy (H) chain class switch is mediated by a deletional recombination event between µ and γ, α, or ε constant region genes. This recombination event is upregulated during immune responses by a regulatory region that lies 3′ of the constant region genes. We study switch recombination using a transgene of the entire murine H chain constant region locus. We isolated two lines of mice in which the H chain transgenes were truncated at their 3′ ends. The truncation in both transgenic lines results in deletion of the 3′-most enhancer (HS4) and a region with insulator-like structure and activities. Even though both truncated transgenes express the µ H chain gene well, they undergo very low or undetectable switch recombination to transgenic γ and α constant region genes. For both transgenic lines, germline transcription of some H chain constant regions genes is severely impaired. However, the germline transcription of the γ1 and γ2a genes is at wild type levels for the transgenic line with the larger truncation, but at reduced levels for the transgenic line with the smaller truncation. The dramatic reduction in class switch recombination for all H chain genes and the varied reduction in germline transcription for some H chain genes could be caused by (i) insertion site effects or (ii) deletion of enhancer elements for class switch recombination and transcription, or (iii) a combination of both effects. PMID:23409061

  2. Transgenes of the mouse immunoglobulin heavy chain locus, lacking distal elements in the 3' regulatory region, are impaired for class switch recombination.

    Science.gov (United States)

    Dunnick, Wesley A; Shi, Jian; Fontaine, Clinton; Collins, John T

    2013-01-01

    The immunoglobulin heavy (H) chain class switch is mediated by a deletional recombination event between µ and γ, α, or ε constant region genes. This recombination event is upregulated during immune responses by a regulatory region that lies 3' of the constant region genes. We study switch recombination using a transgene of the entire murine H chain constant region locus. We isolated two lines of mice in which the H chain transgenes were truncated at their 3' ends. The truncation in both transgenic lines results in deletion of the 3'-most enhancer (HS4) and a region with insulator-like structure and activities. Even though both truncated transgenes express the µ H chain gene well, they undergo very low or undetectable switch recombination to transgenic γ and α constant region genes. For both transgenic lines, germline transcription of some H chain constant regions genes is severely impaired. However, the germline transcription of the γ1 and γ2a genes is at wild type levels for the transgenic line with the larger truncation, but at reduced levels for the transgenic line with the smaller truncation. The dramatic reduction in class switch recombination for all H chain genes and the varied reduction in germline transcription for some H chain genes could be caused by (i) insertion site effects or (ii) deletion of enhancer elements for class switch recombination and transcription, or (iii) a combination of both effects.

  3. Gene study within the 5' flanking regions of growth hormone gene of ...

    African Journals Online (AJOL)

    Growth hormone (GH) is a main regulatory protein secreted by pituitary gland and placenta, involved in most anabolic processes in mammals. Expression of more than one gene for GH has been reported, indicating polymorphism at gene and protein level; apart from this, silent mutations has also been reported, relating to ...

  4. Epigenomic annotation of gene regulatory alterations during evolution of the primate brain.

    Science.gov (United States)

    Vermunt, Marit W; Tan, Sander C; Castelijns, Bas; Geeven, Geert; Reinink, Peter; de Bruijn, Ewart; Kondova, Ivanela; Persengiev, Stephan; Bontrop, Ronald; Cuppen, Edwin; de Laat, Wouter; Creyghton, Menno P

    2016-03-01

    Although genome sequencing has identified numerous noncoding alterations between primate species, which of those are regulatory and potentially relevant to the evolution of the human brain is unclear. Here we annotated cis-regulatory elements (CREs) in the human, rhesus macaque and chimpanzee genomes using chromatin immunoprecipitation followed by sequencing (ChIP-seq) in different anatomical regions of the adult brain. We found high similarity in the genomic positioning of rhesus macaque and human CREs, suggesting that the majority of these elements were already present in a common ancestor 25 million years ago. Most of the observed regulatory changes between humans and rhesus macaques occurred before the ancestral separation of humans and chimpanzees, leaving a modest set of regulatory elements with predicted human specificity. Our data refine previous predictions and hypotheses on the consequences of genomic changes between primate species and allow the identification of regulatory alterations relevant to the evolution of the brain.

  5. BTNET : boosted tree based gene regulatory network inference algorithm using time-course measurement data.

    Science.gov (United States)

    Park, Sungjoon; Kim, Jung Min; Shin, Wonho; Han, Sung Won; Jeon, Minji; Jang, Hyun Jin; Jang, Ik-Soon; Kang, Jaewoo

    2018-03-19

    Identifying gene regulatory networks is an important task for understanding biological systems. Time-course measurement data became a valuable resource for inferring gene regulatory networks. Various methods have been presented for reconstructing the networks from time-course measurement data. However, existing methods have been validated on only a limited number of benchmark datasets, and rarely verified on real biological systems. We first integrated benchmark time-course gene expression datasets from previous studies and reassessed the baseline methods. We observed that GENIE3-time, a tree-based ensemble method, achieved the best performance among the baselines. In this study, we introduce BTNET, a boosted tree based gene regulatory network inference algorithm which improves the state-of-the-art. We quantitatively validated BTNET on the integrated benchmark dataset. The AUROC and AUPR scores of BTNET were higher than those of the baselines. We also qualitatively validated the results of BTNET through an experiment on neuroblastoma cells treated with an antidepressant. The inferred regulatory network from BTNET showed that brachyury, a transcription factor, was regulated by fluoxetine, an antidepressant, which was verified by the expression of its downstream genes. We present BTENT that infers a GRN from time-course measurement data using boosting algorithms. Our model achieved the highest AUROC and AUPR scores on the integrated benchmark dataset. We further validated BTNET qualitatively through a wet-lab experiment and showed that BTNET can produce biologically meaningful results.

  6. Developmental gene regulatory network architecture across 500 million years of echinoderm evolution

    Science.gov (United States)

    Hinman, Veronica F.; Nguyen, Albert T.; Cameron, R. Andrew; Davidson, Eric H.

    2003-01-01

    Evolutionary change in morphological features must depend on architectural reorganization of developmental gene regulatory networks (GRNs), just as true conservation of morphological features must imply retention of ancestral developmental GRN features. Key elements of the provisional GRN for embryonic endomesoderm development in the sea urchin are here compared with those operating in embryos of a distantly related echinoderm, a starfish. These animals diverged from their common ancestor 520-480 million years ago. Their endomesodermal fate maps are similar, except that sea urchins generate a skeletogenic cell lineage that produces a prominent skeleton lacking entirely in starfish larvae. A relevant set of regulatory genes was isolated from the starfish Asterina miniata, their expression patterns determined, and effects on the other genes of perturbing the expression of each were demonstrated. A three-gene feedback loop that is a fundamental feature of the sea urchin GRN for endoderm specification is found in almost identical form in the starfish: a detailed element of GRN architecture has been retained since the Cambrian Period in both echinoderm lineages. The significance of this retention is highlighted by the observation of numerous specific differences in the GRN connections as well. A regulatory gene used to drive skeletogenesis in the sea urchin is used entirely differently in the starfish, where it responds to endomesodermal inputs that do not affect it in the sea urchin embryo. Evolutionary changes in the GRNs since divergence are limited sharply to certain cis-regulatory elements, whereas others have persisted unaltered.

  7. Experimentally based sea urchin gene regulatory network and the causal explanation of developmental phenomenology.

    Science.gov (United States)

    Ben-Tabou de-Leon, Smadar; Davidson, Eric H

    2009-01-01

    Gene regulatory networks for development underlie cell fate specification and differentiation. Network topology, logic and dynamics can be obtained by thorough experimental analysis. Our understanding of the gene regulatory network controlling endomesoderm specification in the sea urchin embryo has attained an advanced level such that it explains developmental phenomenology. Here we review how the network explains the mechanisms utilized in development to control the formation of dynamic expression patterns of transcription factors and signaling molecules. The network represents the genomic program controlling timely activation of specification and differentiation genes in the correct embryonic lineages. It can also be used to study evolution of body plans. We demonstrate how comparing the sea urchin gene regulatory network to that of the sea star and to that of later developmental stages in the sea urchin, reveals mechanisms underlying the origin of evolutionary novelty. The experimentally based gene regulatory network for endomesoderm specification in the sea urchin embryo provides unique insights into the system level properties of cell fate specification and its evolution.

  8. Proteogenomics analysis reveals specific genomic orientations of distal regulatory regions composed by non-canonical histone variants.

    Science.gov (United States)

    Won, Kyoung-Jae; Choi, Inchan; LeRoy, Gary; Zee, Barry M; Sidoli, Simone; Gonzales-Cope, Michelle; Garcia, Benjamin A

    2015-01-01

    Histone variants play further important roles in DNA packaging and controlling gene expression. However, our understanding about their composition and their functions is limited. Integrating proteomic and genomic approaches, we performed a comprehensive analysis of the epigenetic landscapes containing the four histone variants H3.1, H3.3, H2A.Z, and macroH2A. These histones were FLAG-tagged in HeLa cells and purified using chromatin immunoprecipitation (ChIP). By adopting ChIP followed by mass spectrometry (ChIP-MS), we quantified histone post-translational modifications (PTMs) and histone variant nucleosomal ratios in highly purified mononucleosomes. Subsequent ChIP followed by next-generation sequencing (ChIP-seq) was used to map the genome-wide localization of the analyzed histone variants and define their chromatin domains. Finally, we included in our study large datasets contained in the ENCODE database. We newly identified a group of regulatory regions enriched in H3.1 and the histone variant associated with repressive marks macroH2A. Systematic analysis identified both symmetric and asymmetric patterns of histone variant occupancies at intergenic regulatory regions. Strikingly, these directional patterns were associated with RNA polymerase II (PolII). These asymmetric patterns correlated with the enhancer activities measured using global run-on sequencing (GRO-seq) data. Our studies show that H2A.Z and H3.3 delineate the orientation of transcription at enhancers as observed at promoters. We also showed that enhancers with skewed histone variant patterns well facilitate enhancer activity. Collectively, our study indicates that histone variants are deposited at regulatory regions to assist gene regulation.

  9. Molecular evolution constraints in the floral organ specification gene regulatory network module across 18 angiosperm genomes.

    Science.gov (United States)

    Davila-Velderrain, Jose; Servin-Marquez, Andres; Alvarez-Buylla, Elena R

    2014-03-01

    The gene regulatory network of floral organ cell fate specification of Arabidopsis thaliana is a robust developmental regulatory module. Although such finding was proposed to explain the overall conservation of floral organ types and organization among angiosperms, it has not been confirmed that the network components are conserved at the molecular level among flowering plants. Using the genomic data that have accumulated, we address the conservation of the genes involved in this network and the forces that have shaped its evolution during the divergence of angiosperms. We recovered the network gene homologs for 18 species of flowering plants spanning nine families. We found that all the genes are highly conserved with no evidence of positive selection. We studied the sequence conservation features of the genes in the context of their known biological function and the strength of the purifying selection acting upon them in relation to their placement within the network. Our results suggest an association between protein length and sequence conservation, evolutionary rates, and functional category. On the other hand, we found no significant correlation between the strength of purifying selection and gene placement. Our results confirm that the studied robust developmental regulatory module has been subjected to strong functional constraints. However, unlike previous studies, our results do not support the notion that network topology plays a major role in constraining evolutionary rates. We speculate that the dynamical functional role of genes within the network and not just its connectivity could play an important role in constraining evolution.

  10. Toxoplasma gondii gene expression is under the control of regulatory pathways acting through chromatin structure

    Directory of Open Access Journals (Sweden)

    Bougdour A.

    2008-09-01

    Full Text Available The activity state of a gene is determined by a complex regulatory network of co-acting factors affecting the structure of the chromatin into which the gene is embedded. While significant changes of the transcriptome occur during cell differentiation in apicomplexan parasites, basic mechanisms controlling gene expression are still unknown. Recent studies support and expand the concept of the chromatin environment being key factor for the control of transcriptional activity in these lower eukaryotes organisms. Here, we review recent advances in the field of epigenetic gene regulation in Toxoplasma gondii, the model apicomplexan.

  11. Sharing regulatory data as tools for strengthening health systems in the Region of the Americas

    Directory of Open Access Journals (Sweden)

    Varley Dias Sousa

    Full Text Available ABSTRACT Regulatory transparency is an imperative characteristic of a reliable National Regulatory Authority. In the region of the Americas, the process of building an open government is still fragile and fragmented across various Health Regulatory Agencies (HRAs and Regional Reference Authorities (RRAs. This study assessed the transparency status of RRAs, focusing on various medicine life-cycle documents (the Medicine Dossier, Clinical Trial Report, and Inspection Report as tools for strengthening health systems. Based on a narrative (nonsystematic review of RRA regulatory transparency, transparency status was classified as one of two types: public disclosure of information (intra-agency data and data- and work-sharing (inter-agency data. The risks/benefits of public disclosure of medicine-related information were assessed, taking into account 1 the involvement and roles of multiple stakeholders (health care professionals, regulators, industry, community, and academics and 2 the protection of commercial and personal confidential data. Inter-agency data- and work-sharing was evaluated in the context of harmonization and cooperation projects that focus on regulatory convergence. Technical and practical steps for establishing an openness directive for the pharmaceutical regulatory environment are proposed to improve and strengthen health systems in the Americas. Addressing these challenges requires leadership from entities such as the Pan American Health Organization to steer and support collaborative regional alliances that advance the development and establishment of a trustworthy regulatory environment and a sustainable public health system in the Americas, using international successful initiatives as reference and taking into account the domestic characteristics and experiences of each individual country.

  12. Sharing regulatory data as tools for strengthening health systems in the Region of the Americas.

    Science.gov (United States)

    Sousa, Varley Dias; Ramalho, Pedro I; Silveira, Dâmaris

    2016-05-01

    Regulatory transparency is an imperative characteristic of a reliable National Regulatory Authority. In the region of the Americas, the process of building an open government is still fragile and fragmented across various Health Regulatory Agencies (HRAs) and Regional Reference Authorities (RRAs). This study assessed the transparency status of RRAs, focusing on various medicine life-cycle documents (the Medicine Dossier, Clinical Trial Report, and Inspection Report) as tools for strengthening health systems. Based on a narrative (nonsystematic) review of RRA regulatory transparency, transparency status was classified as one of two types: public disclosure of information (intra-agency data) and data- and work-sharing (inter-agency data). The risks/benefits of public disclosure of medicine-related information were assessed, taking into account 1) the involvement and roles of multiple stakeholders (health care professionals, regulators, industry, community, and academics) and 2) the protection of commercial and personal confidential data. Inter-agency data- and work-sharing was evaluated in the context of harmonization and cooperation projects that focus on regulatory convergence. Technical and practical steps for establishing an openness directive for the pharmaceutical regulatory environment are proposed to improve and strengthen health systems in the Americas. Addressing these challenges requires leadership from entities such as the Pan American Health Organization to steer and support collaborative regional alliances that advance the development and establishment of a trustworthy regulatory environment and a sustainable public health system in the Americas, using international successful initiatives as reference and taking into account the domestic characteristics and experiences of each individual country.

  13. Genome-wide prediction of transcriptional regulatory elements of human promoters using gene expression and promoter analysis data

    Directory of Open Access Journals (Sweden)

    Kim Seon-Young

    2006-07-01

    Full Text Available Abstract Background A complete understanding of the regulatory mechanisms of gene expression is the next important issue of genomics. Many bioinformaticians have developed methods and algorithms for predicting transcriptional regulatory mechanisms from sequence, gene expression, and binding data. However, most of these studies involved the use of yeast which has much simpler regulatory networks than human and has many genome wide binding data and gene expression data under diverse conditions. Studies of genome wide transcriptional networks of human genomes currently lag behind those of yeast. Results We report herein a new method that combines gene expression data analysis with promoter analysis to infer transcriptional regulatory elements of human genes. The Z scores from the application of gene set analysis with gene sets of transcription factor binding sites (TFBSs were successfully used to represent the activity of TFBSs in a given microarray data set. A significant correlation between the Z scores of gene sets of TFBSs and individual genes across multiple conditions permitted successful identification of many known human transcriptional regulatory elements of genes as well as the prediction of numerous putative TFBSs of many genes which will constitute a good starting point for further experiments. Using Z scores of gene sets of TFBSs produced better predictions than the use of mRNA levels of a transcription factor itself, suggesting that the Z scores of gene sets of TFBSs better represent diverse mechanisms for changing the activity of transcription factors in the cell. In addition, cis-regulatory modules, combinations of co-acting TFBSs, were readily identified by our analysis. Conclusion By a strategic combination of gene set level analysis of gene expression data sets and promoter analysis, we were able to identify and predict many transcriptional regulatory elements of human genes. We conclude that this approach will aid in decoding

  14. Human and mouse switch-like genes share common transcriptional regulatory mechanisms for bimodality

    Directory of Open Access Journals (Sweden)

    Tozeren Aydin

    2008-12-01

    Full Text Available Abstract Background Gene expression is controlled over a wide range at the transcript level through complex interplay between DNA and regulatory proteins, resulting in profiles of gene expression that can be represented as normal, graded, and bimodal (switch-like distributions. We have previously performed genome-scale identification and annotation of genes with switch-like expression at the transcript level in mouse, using large microarray datasets for healthy tissue, in order to study the cellular pathways and regulatory mechanisms involving this class of genes. We showed that a large population of bimodal mouse genes encoding for cell membrane and extracellular matrix proteins is involved in communication pathways. This study expands on previous results by annotating human bimodal genes, investigating their correspondence to bimodality in mouse orthologs and exploring possible regulatory mechanisms that contribute to bimodality in gene expression in human and mouse. Results Fourteen percent of the human genes on the HGU133A array (1847 out of 13076 were identified as bimodal or switch-like. More than 40% were found to have bimodal mouse orthologs. KEGG pathways enriched for bimodal genes included ECM-receptor interaction, focal adhesion, and tight junction, showing strong similarity to the results obtained in mouse. Tissue-specific modes of expression of bimodal genes among brain, heart, and skeletal muscle were common between human and mouse. Promoter analysis revealed a higher than average number of transcription start sites per gene within the set of bimodal genes. Moreover, the bimodal gene set had differentially methylated histones compared to the set of the remaining genes in the genome. Conclusion The fact that bimodal genes were enriched within the cell membrane and extracellular environment make these genes as candidates for biomarkers for tissue specificity. The commonality of the important roles bimodal genes play in tissue

  15. Identifying time-delayed gene regulatory networks via an evolvable hierarchical recurrent neural network.

    Science.gov (United States)

    Kordmahalleh, Mina Moradi; Sefidmazgi, Mohammad Gorji; Harrison, Scott H; Homaifar, Abdollah

    2017-01-01

    The modeling of genetic interactions within a cell is crucial for a basic understanding of physiology and for applied areas such as drug design. Interactions in gene regulatory networks (GRNs) include effects of transcription factors, repressors, small metabolites, and microRNA species. In addition, the effects of regulatory interactions are not always simultaneous, but can occur after a finite time delay, or as a combined outcome of simultaneous and time delayed interactions. Powerful biotechnologies have been rapidly and successfully measuring levels of genetic expression to illuminate different states of biological systems. This has led to an ensuing challenge to improve the identification of specific regulatory mechanisms through regulatory network reconstructions. Solutions to this challenge will ultimately help to spur forward efforts based on the usage of regulatory network reconstructions in systems biology applications. We have developed a hierarchical recurrent neural network (HRNN) that identifies time-delayed gene interactions using time-course data. A customized genetic algorithm (GA) was used to optimize hierarchical connectivity of regulatory genes and a target gene. The proposed design provides a non-fully connected network with the flexibility of using recurrent connections inside the network. These features and the non-linearity of the HRNN facilitate the process of identifying temporal patterns of a GRN. Our HRNN method was implemented with the Python language. It was first evaluated on simulated data representing linear and nonlinear time-delayed gene-gene interaction models across a range of network sizes and variances of noise. We then further demonstrated the capability of our method in reconstructing GRNs of the Saccharomyces cerevisiae synthetic network for in vivo benchmarking of reverse-engineering and modeling approaches (IRMA). We compared the performance of our method to TD-ARACNE, HCC-CLINDE, TSNI and ebdbNet across different network

  16. A Gene Regulatory Program for Meiotic Prophase in the Fetal Ovary.

    Directory of Open Access Journals (Sweden)

    Y Q Shirleen Soh

    2015-09-01

    Full Text Available The chromosomal program of meiotic prophase, comprising events such as laying down of meiotic cohesins, synapsis between homologs, and homologous recombination, must be preceded and enabled by the regulated induction of meiotic prophase genes. This gene regulatory program is poorly understood, particularly in organisms with a segregated germline. We characterized the gene regulatory program of meiotic prophase as it occurs in the mouse fetal ovary. By profiling gene expression in the mouse fetal ovary in mutants with whole tissue and single-cell techniques, we identified 104 genes expressed specifically in pre-meiotic to pachytene germ cells. We characterized the regulation of these genes by 1 retinoic acid (RA, which induces meiosis, 2 Dazl, which is required for germ cell competence to respond to RA, and 3 Stra8, a downstream target of RA required for the chromosomal program of meiotic prophase. Initial induction of practically all identified meiotic prophase genes requires Dazl. In the presence of Dazl, RA induces at least two pathways: one Stra8-independent, and one Stra8-dependent. Genes vary in their induction by Stra8, spanning fully Stra8-independent, partially Stra8-independent, and fully Stra8-dependent. Thus, Stra8 regulates the entirety of the chromosomal program but plays a more nuanced role in governing the gene expression program. We propose that Stra8-independent gene expression enables the stockpiling of selected meiotic structural proteins prior to the commencement of the chromosomal program. Unexpectedly, we discovered that Stra8 is required for prompt down-regulation of itself and Rec8. Germ cells that have expressed and down-regulated Stra8 are refractory to further Stra8 expression. Negative feedback of Stra8, and subsequent resistance to further Stra8 expression, may ensure a single, restricted pulse of Stra8 expression. Collectively, our findings reveal a gene regulatory logic by which germ cells prepare for the

  17. Design of Knowledge Bases for Plant Gene Regulatory Networks.

    Science.gov (United States)

    Mukundi, Eric; Gomez-Cano, Fabio; Ouma, Wilberforce Zachary; Grotewold, Erich

    2017-01-01

    Developing a knowledge base that contains all the information necessary for the researcher studying gene regulation in a particular organism can be accomplished in four stages. This begins with defining the data scope. We describe here the necessary information and resources, and outline the methods for obtaining data. The second stage consists of designing the schema, which involves defining the entire arrangement of the database in a systematic plan. The third stage is the implementation, defined by actualization of the database by using software according to a predefined schema. The final stage is development, where the database is made available to users in a web-accessible system. The result is a knowledgebase that integrates all the information pertaining to gene regulation, and which is easily expandable and transferable.

  18. Targeted resequencing of regulatory regions at schizophrenia risk loci: Role of rare functional variants at chromatin repressive states.

    Science.gov (United States)

    González-Peñas, Javier; Amigo, Jorge; Santomé, Luis; Sobrino, Beatriz; Brenlla, Julio; Agra, Santiago; Paz, Eduardo; Páramo, Mario; Carracedo, Ángel; Arrojo, Manuel; Costas, Javier

    2016-07-01

    There is mounting evidence that regulatory variation plays an important role in genetic risk for schizophrenia. Here, we specifically search for regulatory variants at risk by sequencing promoter regions of twenty-three genes implied in schizophrenia by copy number variant or genome-wide association studies. After strict quality control, a total of 55,206bp per sample were analyzed in 526 schizophrenia cases and 516 controls from Galicia, NW Spain, using the Applied Biosystems SOLiD System. Variants were filtered based on frequency from public databases, chromatin states from the RoadMap Epigenomics Consortium at tissues relevant for schizophrenia, such as fetal brain, mid-frontal lobe, and angular gyrus, and prediction of functionality from RegulomeDB. The proportion of rare variants at polycomb repressive chromatin state at relevant tissues was higher in cases than in controls. The proportion of rare variants with predicted regulatory role was significantly higher in cases than in controls (P=0.0028, OR=1.93, 95% C.I.=1.23-3.04). Combination of information from both sources led to the identification of an excess of carriers of rare variants with predicted regulatory role located at polycomb repressive chromatin state at relevant tissues in cases versus controls (P=0.0016, OR=19.34, 95% C.I.=2.45-2495.26). The variants are located at two genes affected by the 17q12 copy number variant, LHX1 and HNF1B. These data strongly suggest that a specific epigenetic mechanism, chromatin remodeling by histone modification during early development, may be impaired in a subset of schizophrenia patients, in agreement with previous data. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Modularity of gene-regulatory networks revealed in sea-star development.

    Science.gov (United States)

    McDougall, Carmel; Degnan, Bernard M

    2011-01-31

    Evidence that conserved developmental gene-regulatory networks can change as a unit during deutersostome evolution emerges from a study published in BMC Biology. This shows that genes consistently expressed in anterior brain patterning in hemichordates and chordates are expressed in a similar spatial pattern in another deuterostome, an asteroid echinoderm (sea star), but in a completely different developmental context (the animal-vegetal axis). This observation has implications for hypotheses on the type of development present in the deuterostome common ancestor.

  20. A Network of Multiple Regulatory Layers Shapes Gene Expression in Fission Yeast

    OpenAIRE

    Lackner, Daniel H.; Beilharz, Traude H.; Marguerat, Samuel; Mata, Juan; Watt, Stephen; Schubert, Falk; Preiss, Thomas; B?hler, J?rg

    2007-01-01

    Summary Gene expression is controlled at multiple layers, and cells may integrate different regulatory steps for coherent production of proper protein levels. We applied various microarray-based approaches to determine key gene-expression intermediates in exponentially growing fission yeast, providing genome-wide data for translational profiles, mRNA steady-state levels, polyadenylation profiles, start-codon sequence context, mRNA half-lives, and RNA polymerase II occupancy. We uncovered wide...

  1. Inference of Gene Regulatory Networks Using Bayesian Nonparametric Regression and Topology Information

    OpenAIRE

    Fan, Yue; Wang, Xiao; Peng, Qinke

    2017-01-01

    Gene regulatory networks (GRNs) play an important role in cellular systems and are important for understanding biological processes. Many algorithms have been developed to infer the GRNs. However, most algorithms only pay attention to the gene expression data but do not consider the topology information in their inference process, while incorporating this information can partially compensate for the lack of reliable expression data. Here we develop a Bayesian group lasso with spike and slab p...

  2. Screening of MITF and SOX10 regulatory regions in Waardenburg syndrome type 2.

    Directory of Open Access Journals (Sweden)

    Viviane Baral

    Full Text Available Waardenburg syndrome (WS is a rare auditory-pigmentary disorder that exhibits varying combinations of sensorineural hearing loss and pigmentation defects. Four subtypes are clinically defined based on the presence or absence of additional symptoms. WS type 2 (WS2 can result from mutations within the MITF or SOX10 genes; however, 70% of WS2 cases remain unexplained at the molecular level, suggesting that other genes might be involved and/or that mutations within the known genes escaped previous screenings. The recent identification of a deletion encompassing three of the SOX10 regulatory elements in a patient presenting with another WS subtype, WS4, defined by its association with Hirschsprung disease, led us to search for deletions and point mutations within the MITF and SOX10 regulatory elements in 28 yet unexplained WS2 cases. Two nucleotide variations were identified: one in close proximity to the MITF distal enhancer (MDE and one within the U1 SOX10 enhancer. Functional analyses argued against a pathogenic effect of these variations, suggesting that mutations within regulatory elements of WS genes are not a major cause of this neurocristopathy.

  3. Screening of MITF and SOX10 Regulatory Regions in Waardenburg Syndrome Type 2

    Science.gov (United States)

    Baral, Viviane; Chaoui, Asma; Watanabe, Yuli; Goossens, Michel; Attie-Bitach, Tania; Marlin, Sandrine; Pingault, Veronique; Bondurand, Nadege

    2012-01-01

    Waardenburg syndrome (WS) is a rare auditory-pigmentary disorder that exhibits varying combinations of sensorineural hearing loss and pigmentation defects. Four subtypes are clinically defined based on the presence or absence of additional symptoms. WS type 2 (WS2) can result from mutations within the MITF or SOX10 genes; however, 70% of WS2 cases remain unexplained at the molecular level, suggesting that other genes might be involved and/or that mutations within the known genes escaped previous screenings. The recent identification of a deletion encompassing three of the SOX10 regulatory elements in a patient presenting with another WS subtype, WS4, defined by its association with Hirschsprung disease, led us to search for deletions and point mutations within the MITF and SOX10 regulatory elements in 28 yet unexplained WS2 cases. Two nucleotide variations were identified: one in close proximity to the MITF distal enhancer (MDE) and one within the U1 SOX10 enhancer. Functional analyses argued against a pathogenic effect of these variations, suggesting that mutations within regulatory elements of WS genes are not a major cause of this neurocristopathy. PMID:22848661

  4. Cutting edge: Dab2 is a FOXP3 target gene required for regulatory T cell function.

    Science.gov (United States)

    Jain, Nitya; Nguyen, Hai; Friedline, Randall H; Malhotra, Nidhi; Brehm, Michael; Koyanagi, Madoka; Bix, Mark; Cooper, Jonathan A; Chambers, Cynthia A; Kang, Joonsoo

    2009-10-01

    FOXP3-expressing regulatory T (Treg) cells are vital for maintaining peripheral T cell tolerance and homeostasis. The mechanisms by which FOXP3 target genes orchestrate context-dependent Treg cell function are largely unknown. In this study we show that in mouse peripheral lymphocytes the Drosophila Disabled-2 (Dab2) homolog, a gene that is involved in enhancing TGFbeta responses, is exclusively expressed in FOXP3+ regulatory T cells. Dab2 is a direct target of FOXP3, and regulatory T cells lacking DAB2 are functionally impaired in vitro and in vivo. However, not all aspects of Treg cell function are perturbed, and DAB2 appears to be dispensable for Treg cell function in maintaining naive T cell homeostasis.

  5. Disabled-2 is a FOXP3 target gene required for regulatory T cell function

    Science.gov (United States)

    Jain, N; Nguyen, H; Friedline, RH; Malhotra, N; Brehm, M; Koyonagi, M; Bix, M; Cooper, JA; Chambers, CA; Kang, J

    2010-01-01

    FOXP3 expressing regulatory T cells are vital for maintaining peripheral T cell tolerance and homeostasis. The mechanisms by which FOXP3 target genes orchestrate context-dependent Treg cell function are largely unknown. Here we show that in mouse peripheral lymphocytes, the Drosophila Disabled-2 (Dab2) homolog, a gene that is involved in enhancing TGFβ responses, is exclusively expressed in FOXP3+ regulatory T cells. Dab2 is a direct target of FOXP3 and regulatory T cells lacking DAB2 are functionally impaired in vitro and in vivo. However, not all aspects of Treg cell function are perturbed and DAB2 appears dispensable for Treg cell function in maintaining naïve T cell homeostasis. PMID:19767570

  6. Multiple post-transcriptional regulatory mechanisms in ferritin gene expression

    International Nuclear Information System (INIS)

    Mattia, E.; Den Blaauwen, J.; Van Renswoude, J.; Ashwell, G.

    1989-01-01

    The authors have investigated the mechanisms involved in the regulation of ferritin biosynthesis in K562 human erythroleukemia cells during prolonged exposure to iron. They show that, upon addition of hemin (an efficient iron donor) to the cell culture, the rate of ferritin biosynthesis reaches a maximum after a few hours and then decreases. During a 24-hr incubation with the iron donor the concentrations of total ferritin heavy (H) and light (L) subunit mRNAs rise 2- to 5-fold and 2- to 3-fold, respectively, over the control values, while the amount of the protein increases 10- to 30-fold. The hemin-induced increment in ferritin subunit mRNA is not prevented by deferoxamine, suggesting that it is not directly mediated by chelatable iron. In vitro nuclear transcription analyses performed on nuclei isolated from control cells and cells grown in the presence of hemin indicate that the rates of synthesis of H- and L-subunit mRNAs remain constant. They conclude that iron-induced ferritin biosynthesis is governed by multiple post-transcriptional regulatory mechanisms. They propose that exposure of cells to iron leads to stabilization of ferritin mRNAs, in addition to activation and translation of stored H-and L-subunit mRNAs

  7. Distance Education Regulatory Frameworks: Readiness for Openness in Southwest Pacific/South East Asia Region Nations

    Science.gov (United States)

    Tynan, Belinda; James, Rosalind

    2013-01-01

    This paper reports in brief the pilot study, Distance Education Regulatory Frameworks, undertaken by the International Council for Open and Distance Education (ICDE) in 2010-2012 and the implications for openness for higher education in Southwest Pacific/South East Asia region nations. The project developed a methodological approach to…

  8. Fractal gene regulatory networks for robust locomotion control of modular robots

    DEFF Research Database (Denmark)

    Zahadat, Payam; Christensen, David Johan; Schultz, Ulrik Pagh

    2010-01-01

    Designing controllers for modular robots is difficult due to the distributed and dynamic nature of the robots. In this paper fractal gene regulatory networks are evolved to control modular robots in a distributed way. Experiments with different morphologies of modular robot are performed and the ...

  9. Mapping of PARK2 and PACRG overlapping regulatory region reveals LD structure and functional variants in association with leprosy in unrelated indian population groups.

    Science.gov (United States)

    Chopra, Rupali; Ali, Shafat; Srivastava, Amit K; Aggarwal, Shweta; Kumar, Bhupender; Manvati, Siddharth; Kalaiarasan, Ponnusamy; Jena, Mamta; Garg, Vijay K; Bhattacharya, Sambit N; Bamezai, Rameshwar N K

    2013-01-01

    Leprosy is a chronic infectious disease caused by Mycobacterium Leprae, where the host genetic background plays an important role toward the disease pathogenesis. Various studies have identified a number of human genes in association with leprosy or its clinical forms. However, non-replication of results has hinted at the heterogeneity among associations between different population groups, which could be due to differently evolved LD structures and differential frequencies of SNPs within the studied regions of the genome. A need for systematic and saturated mapping of the associated regions with the disease is warranted to unravel the observed heterogeneity in different populations. Mapping of the PARK2 and PACRG gene regulatory region with 96 SNPs, with a resolution of 1 SNP per 1 Kb for PARK2 gene regulatory region in a North Indian population, showed an involvement of 11 SNPs in determining the susceptibility towards leprosy. The association was replicated in a geographically distinct and unrelated population from Orissa in eastern India. In vitro reporter assays revealed that the two significantly associated SNPs, located 63.8 kb upstream of PARK2 gene and represented in a single BIN of 8 SNPs, influenced the gene expression. A comparison of BINs between Indian and Vietnamese populations revealed differences in the BIN structures, explaining the heterogeneity and also the reason for non-replication of the associated genomic region in different populations.

  10. Cooperative adaptive responses in gene regulatory networks with many degrees of freedom.

    Science.gov (United States)

    Inoue, Masayo; Kaneko, Kunihiko

    2013-04-01

    Cells generally adapt to environmental changes by first exhibiting an immediate response and then gradually returning to their original state to achieve homeostasis. Although simple network motifs consisting of a few genes have been shown to exhibit such adaptive dynamics, they do not reflect the complexity of real cells, where the expression of a large number of genes activates or represses other genes, permitting adaptive behaviors. Here, we investigated the responses of gene regulatory networks containing many genes that have undergone numerical evolution to achieve high fitness due to the adaptive response of only a single target gene; this single target gene responds to changes in external inputs and later returns to basal levels. Despite setting a single target, most genes showed adaptive responses after evolution. Such adaptive dynamics were not due to common motifs within a few genes; even without such motifs, almost all genes showed adaptation, albeit sometimes partial adaptation, in the sense that expression levels did not always return to original levels. The genes split into two groups: genes in the first group exhibited an initial increase in expression and then returned to basal levels, while genes in the second group exhibited the opposite changes in expression. From this model, genes in the first group received positive input from other genes within the first group, but negative input from genes in the second group, and vice versa. Thus, the adaptation dynamics of genes from both groups were consolidated. This cooperative adaptive behavior was commonly observed if the number of genes involved was larger than the order of ten. These results have implications in the collective responses of gene expression networks in microarray measurements of yeast Saccharomyces cerevisiae and the significance to the biological homeostasis of systems with many components.

  11. Cloning and characterization of the 5'-flanking region of the Ehox gene

    International Nuclear Information System (INIS)

    Lee, Woon Kyu; Kim, Yong-Man; Malik, Nasir; Ma Chang; Westphal, Heiner

    2006-01-01

    The paired-like homeobox-containing gene Ehox plays a role in embryonic stem cell differentiation and is highly expressed in the developing placenta and thymus. To understand the mechanisms of regulation of Ehox gene expression, the 5'-flanking region of the Ehox gene was isolated from a mouse BAC library. 5'-RACE analysis revealed a single transcriptional start site 130 nucleotides upstream of the translation initiation codon. Transient transfection with a luciferase reporter gene under the control of serially deleted 5'-flanking sequences revealed that the nt -84 to -68 region contained a positive cis-acting element for efficient expression of the Ehox gene. Mutational analysis of this region and oligonucleotide competition in the electrophoretic mobility shift assay revealed the presence of a CCAAT box, which is a target for transcription nuclear factor Y (NFY). NFY is essential for positive gene regulation. No tissue-specific enhancer was identified in the 1.9-kb 5'-flanking region of the Ehox gene. Ehox is expressed during the early stages of embryo development, specifically in Brain at 9.5 dpc, as well as during the late stages of embryo development. These results suggest that NFY is an essential regulatory factor for Ehox transcriptional activity, which is important for the post-implantation stage of the developing embryo

  12. In vivo SPECT reporter gene imaging of regulatory T cells.

    Directory of Open Access Journals (Sweden)

    Ehsan Sharif-Paghaleh

    Full Text Available Regulatory T cells (Tregs were identified several years ago and are key in controlling autoimmune diseases and limiting immune responses to foreign antigens, including alloantigens. In vivo imaging techniques including intravital microscopy as well as whole body imaging using bioluminescence probes have contributed to the understanding of in vivo Treg function, their mechanisms of action and target cells. Imaging of the human sodium/iodide symporter via Single Photon Emission Computed Tomography (SPECT has been used to image various cell types in vivo. It has several advantages over the aforementioned imaging techniques including high sensitivity, it allows non-invasive whole body studies of viable cell migration and localisation of cells over time and lastly it may offer the possibility to be translated to the clinic. This study addresses whether SPECT/CT imaging can be used to visualise the migratory pattern of Tregs in vivo. Treg lines derived from CD4(+CD25(+FoxP3(+ cells were retrovirally transduced with a construct encoding for the human Sodium Iodide Symporter (NIS and the fluorescent protein mCherry and stimulated with autologous DCs. NIS expressing self-specific Tregs were specifically radiolabelled in vitro with Technetium-99m pertechnetate ((99mTcO(4(- and exposure of these cells to radioactivity did not affect cell viability, phenotype or function. In addition adoptively transferred Treg-NIS cells were imaged in vivo in C57BL/6 (BL/6 mice by SPECT/CT using (99mTcO(4(-. After 24 hours NIS expressing Tregs were observed in the spleen and their localisation was further confirmed by organ biodistribution studies and flow cytometry analysis. The data presented here suggests that SPECT/CT imaging can be utilised in preclinical imaging studies of adoptively transferred Tregs without affecting Treg function and viability thereby allowing longitudinal studies within disease models.

  13. Comparison of Five Major Trichome Regulatory Genes in Brassica villosa with Orthologues within the Brassicaceae

    Science.gov (United States)

    Nayidu, Naghabushana K.; Kagale, Sateesh; Taheri, Ali; Withana-Gamage, Thushan S.; Parkin, Isobel A. P.; Sharpe, Andrew G.; Gruber, Margaret Y.

    2014-01-01

    Coding sequences for major trichome regulatory genes, including the positive regulators GLABRA 1(GL1), GLABRA 2 (GL2), ENHANCER OF GLABRA 3 (EGL3), and TRANSPARENT TESTA GLABRA 1 (TTG1) and the negative regulator TRIPTYCHON (TRY), were cloned from wild Brassica villosa, which is characterized by dense trichome coverage over most of the plant. Transcript (FPKM) levels from RNA sequencing indicated much higher expression of the GL2 and TTG1 regulatory genes in B. villosa leaves compared with expression levels of GL1 and EGL3 genes in either B. villosa or the reference genome species, glabrous B. oleracea; however, cotyledon TTG1 expression was high in both species. RNA sequencing and Q-PCR also revealed an unusual expression pattern for the negative regulators TRY and CPC, which were much more highly expressed in trichome-rich B. villosa leaves than in glabrous B. oleracea leaves and in glabrous cotyledons from both species. The B. villosa TRY expression pattern also contrasted with TRY expression patterns in two diploid Brassica species, and with the Arabidopsis model for expression of negative regulators of trichome development. Further unique sequence polymorphisms, protein characteristics, and gene evolution studies highlighted specific amino acids in GL1 and GL2 coding sequences that distinguished glabrous species from hairy species and several variants that were specific for each B. villosa gene. Positive selection was observed for GL1 between hairy and non-hairy plants, and as expected the origin of the four expressed positive trichome regulatory genes in B. villosa was predicted to be from B. oleracea. In particular the unpredicted expression patterns for TRY and CPC in B. villosa suggest additional characterization is needed to determine the function of the expanded families of trichome regulatory genes in more complex polyploid species within the Brassicaceae. PMID:24755905

  14. An approach for reduction of false predictions in reverse engineering of gene regulatory networks.

    Science.gov (United States)

    Khan, Abhinandan; Saha, Goutam; Pal, Rajat Kumar

    2018-05-14

    A gene regulatory network discloses the regulatory interactions amongst genes, at a particular condition of the human body. The accurate reconstruction of such networks from time-series genetic expression data using computational tools offers a stiff challenge for contemporary computer scientists. This is crucial to facilitate the understanding of the proper functioning of a living organism. Unfortunately, the computational methods produce many false predictions along with the correct predictions, which is unwanted. Investigations in the domain focus on the identification of as many correct regulations as possible in the reverse engineering of gene regulatory networks to make it more reliable and biologically relevant. One way to achieve this is to reduce the number of incorrect predictions in the reconstructed networks. In the present investigation, we have proposed a novel scheme to decrease the number of false predictions by suitably combining several metaheuristic techniques. We have implemented the same using a dataset ensemble approach (i.e. combining multiple datasets) also. We have employed the proposed methodology on real-world experimental datasets of the SOS DNA Repair network of Escherichia coli and the IMRA network of Saccharomyces cerevisiae. Subsequently, we have experimented upon somewhat larger, in silico networks, namely, DREAM3 and DREAM4 Challenge networks, and 15-gene and 20-gene networks extracted from the GeneNetWeaver database. To study the effect of multiple datasets on the quality of the inferred networks, we have used four datasets in each experiment. The obtained results are encouraging enough as the proposed methodology can reduce the number of false predictions significantly, without using any supplementary prior biological information for larger gene regulatory networks. It is also observed that if a small amount of prior biological information is incorporated here, the results improve further w.r.t. the prediction of true positives

  15. iRegulon: from a gene list to a gene regulatory network using large motif and track collections.

    Directory of Open Access Journals (Sweden)

    Rekin's Janky

    2014-07-01

    Full Text Available Identifying master regulators of biological processes and mapping their downstream gene networks are key challenges in systems biology. We developed a computational method, called iRegulon, to reverse-engineer the transcriptional regulatory network underlying a co-expressed gene set using cis-regulatory sequence analysis. iRegulon implements a genome-wide ranking-and-recovery approach to detect enriched transcription factor motifs and their optimal sets of direct targets. We increase the accuracy of network inference by using very large motif collections of up to ten thousand position weight matrices collected from various species, and linking these to candidate human TFs via a motif2TF procedure. We validate iRegulon on gene sets derived from ENCODE ChIP-seq data with increasing levels of noise, and we compare iRegulon with existing motif discovery methods. Next, we use iRegulon on more challenging types of gene lists, including microRNA target sets, protein-protein interaction networks, and genetic perturbation data. In particular, we over-activate p53 in breast cancer cells, followed by RNA-seq and ChIP-seq, and could identify an extensive up-regulated network controlled directly by p53. Similarly we map a repressive network with no indication of direct p53 regulation but rather an indirect effect via E2F and NFY. Finally, we generalize our computational framework to include regulatory tracks such as ChIP-seq data and show how motif and track discovery can be combined to map functional regulatory interactions among co-expressed genes. iRegulon is available as a Cytoscape plugin from http://iregulon.aertslab.org.

  16. Human interleukin 2 receptor β-chain gene: Chromosomal localization and identification of 5' regulatory sequences

    International Nuclear Information System (INIS)

    Gnarra, J.R.; Otani, Hiroki; Wang, M.G.; McBride, O.W.; Sharon, M.; Leonard, W.J.

    1990-01-01

    Interleukin 2 (IL-2) binds to and stimulates activated T cells through high-affinity IL-2 receptors (IL-2Rs). Such receptors represent a complex consisting of at least two proteins, the 55-kDa IL-2Rα chain and the 70-kDa IL-2Rβ chain. The low-affinity, IL-2Rα chain cannot by itself transduce a mitogenic signal, whereas IL-2 stimulates resting lymphocytes through the intermediate-affinity, IL-2Rβ receptor. The authors report here identification of the genomic locus for IL-2Rβ. The exons are contained on four EcoRI fragments of 1.1, 9.2, 7.2, and 13.7 kilobases. The 1.1-kilobase EcoRI fragment lies at the 5'-most end of the genomic locus and contains promoter sequences. The promoter contains no TATA box-like elements but does contain the d(GT) n class of middle repetitive elements, which may play an interesting regulatory role. The IL-2Rβ gene is localized to chromosome 22q11.2-q12, a region that is the locus for several lymphoid neoplasias

  17. Noise effect on persistence of memory in a positive-feedback gene regulatory circuit.

    Science.gov (United States)

    Tang, Jun; Yang, Xianqing; Ma, Jun; Jia, Ya

    2009-07-01

    Feedback circuits are important building blocks of gene regulatory network. Recent studies with simplified models found the advantage of coupled fast and slow feedback loops in creating bistable switch, and interlinked dual-time feedback loops can enhance robustness to stochasticity and persistence of memory. Based on the same feedback structure and mathematical model, the effect of noise on persistence of memory is investigated. It is found that (1) an intermediate amount of single-parameter noise plays a constructive role in persisting memory through noise-induced changing from monostable to bistable region, while larger single-parameter noise destroys the memory ability of the system through noise-induced transition between two stable states. (2) Different from the single-parameter noise, arbitrary amount of the internal noise destroys the memory ability of the system. (3) For the same feedback structure with less nonlinear feedback which is not enough to render the system bistability, the single-parameter noise can play similar constructive role through rendering the system bistability.

  18. Similarity in gene-regulatory networks suggests that cancer cells share characteristics of embryonic neural cells.

    Science.gov (United States)

    Zhang, Zan; Lei, Anhua; Xu, Liyang; Chen, Lu; Chen, Yonglong; Zhang, Xuena; Gao, Yan; Yang, Xiaoli; Zhang, Min; Cao, Ying

    2017-08-04

    Cancer cells are immature cells resulting from cellular reprogramming by gene misregulation, and redifferentiation is expected to reduce malignancy. It is unclear, however, whether cancer cells can undergo terminal differentiation. Here, we show that inhibition of the epigenetic modification enzyme enhancer of zeste homolog 2 (EZH2), histone deacetylases 1 and 3 (HDAC1 and -3), lysine demethylase 1A (LSD1), or DNA methyltransferase 1 (DNMT1), which all promote cancer development and progression, leads to postmitotic neuron-like differentiation with loss of malignant features in distinct solid cancer cell lines. The regulatory effect of these enzymes in neuronal differentiation resided in their intrinsic activity in embryonic neural precursor/progenitor cells. We further found that a major part of pan-cancer-promoting genes and the signal transducers of the pan-cancer-promoting signaling pathways, including the epithelial-to-mesenchymal transition (EMT) mesenchymal marker genes, display neural specific expression during embryonic neurulation. In contrast, many tumor suppressor genes, including the EMT epithelial marker gene that encodes cadherin 1 ( CDH1 ), exhibited non-neural or no expression. This correlation indicated that cancer cells and embryonic neural cells share a regulatory network, mediating both tumorigenesis and neural development. This observed similarity in regulatory mechanisms suggests that cancer cells might share characteristics of embryonic neural cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Global transcriptional regulatory network for Escherichia coli robustly connects gene expression to transcription factor activities

    DEFF Research Database (Denmark)

    Fang, Xin; Sastry, Anand; Mih, Nathan

    2017-01-01

    gene expression using this TRN; and (iii) how robust is our understanding of the TRN? First, we reconstructed a high-confidence TRN (hiTRN) consisting of 147 transcription factors (TFs) regulating 1,538 transcription units (TUs) encoding 1,764 genes. The 3,797 high-confidence regulatory interactions...... algorithms to predict the expression of 1,364 TUs given TF activities using 441 samples. The algorithms accurately predicted condition-specific expression for 86% (1,174 of 1,364) of the TUs, while 193 TUs (14%) were predicted better than random TRNs. Third, we identified 10 regulatory modules whose...... definitions were robust against changes to the TRN or expression compendium. Using surrogate variable analysis, we also identified three unmodeled factors that systematically influenced gene expression. Our computational workflow comprehensively characterizes the predictive capabilities and systems...

  20. The upstream regulatory sequence of the light harvesting complex Lhcf2 gene of the marine diatom Phaeodactylum tricornutum enhances transcription in an orientation- and distance-independent fashion.

    Science.gov (United States)

    Russo, Monia Teresa; Annunziata, Rossella; Sanges, Remo; Ferrante, Maria Immacolata; Falciatore, Angela

    2015-12-01

    Diatoms are a key phytoplankton group in the contemporary ocean, showing extraordinary adaptation capacities to rapidly changing environments. The recent availability of whole genome sequences from representative species has revealed distinct features in their genomes, like novel combinations of genes encoding distinct metabolisms and a significant number of diatom-specific genes. However, the regulatory mechanisms driving diatom gene expression are still largely uncharacterized. Considering the wide variety of fields of study orbiting diatoms, ranging from ecology, evolutionary biology to biotechnology, it is thus essential to increase our understanding of fundamental gene regulatory processes such as transcriptional regulation. To this aim, we explored the functional properties of the 5'-flanking region of the Phaeodatylum tricornutum Lhcf2 gene, encoding a member of the Light Harvesting Complex superfamily and we showed that this region enhances transcription of a GUS reporter gene in an orientation- and distance-independent fashion. This represents the first example of a cis-regulatory sequence with enhancer-like features discovered in diatoms and it is instrumental for the generation of novel genetic tools and diatom exploitation in different areas of study. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Inferring Regulatory Networks by Combining Perturbation Screens and Steady State Gene Expression Profiles

    Science.gov (United States)

    Michailidis, George

    2014-01-01

    Reconstructing transcriptional regulatory networks is an important task in functional genomics. Data obtained from experiments that perturb genes by knockouts or RNA interference contain useful information for addressing this reconstruction problem. However, such data can be limited in size and/or are expensive to acquire. On the other hand, observational data of the organism in steady state (e.g., wild-type) are more readily available, but their informational content is inadequate for the task at hand. We develop a computational approach to appropriately utilize both data sources for estimating a regulatory network. The proposed approach is based on a three-step algorithm to estimate the underlying directed but cyclic network, that uses as input both perturbation screens and steady state gene expression data. In the first step, the algorithm determines causal orderings of the genes that are consistent with the perturbation data, by combining an exhaustive search method with a fast heuristic that in turn couples a Monte Carlo technique with a fast search algorithm. In the second step, for each obtained causal ordering, a regulatory network is estimated using a penalized likelihood based method, while in the third step a consensus network is constructed from the highest scored ones. Extensive computational experiments show that the algorithm performs well in reconstructing the underlying network and clearly outperforms competing approaches that rely only on a single data source. Further, it is established that the algorithm produces a consistent estimate of the regulatory network. PMID:24586224

  2. Mutual information and the fidelity of response of gene regulatory models

    Science.gov (United States)

    Tabbaa, Omar P.; Jayaprakash, C.

    2014-08-01

    We investigate cellular response to extracellular signals by using information theory techniques motivated by recent experiments. We present results for the steady state of the following gene regulatory models found in both prokaryotic and eukaryotic cells: a linear transcription-translation model and a positive or negative auto-regulatory model. We calculate both the information capacity and the mutual information exactly for simple models and approximately for the full model. We find that (1) small changes in mutual information can lead to potentially important changes in cellular response and (2) there are diminishing returns in the fidelity of response as the mutual information increases. We calculate the information capacity using Gillespie simulations of a model for the TNF-α-NF-κ B network and find good agreement with the measured value for an experimental realization of this network. Our results provide a quantitative understanding of the differences in cellular response when comparing experimentally measured mutual information values of different gene regulatory models. Our calculations demonstrate that Gillespie simulations can be used to compute the mutual information of more complex gene regulatory models, providing a potentially useful tool in synthetic biology.

  3. Construction of an integrated gene regulatory network link to stress-related immune system in cattle.

    Science.gov (United States)

    Behdani, Elham; Bakhtiarizadeh, Mohammad Reza

    2017-10-01

    The immune system is an important biological system that is negatively impacted by stress. This study constructed an integrated regulatory network to enhance our understanding of the regulatory gene network used in the stress-related immune system. Module inference was used to construct modules of co-expressed genes with bovine leukocyte RNA-Seq data. Transcription factors (TFs) were then assigned to these modules using Lemon-Tree algorithms. In addition, the TFs assigned to each module were confirmed using the promoter analysis and protein-protein interactions data. Therefore, our integrated method identified three TFs which include one TF that is previously known to be involved in immune response (MYBL2) and two TFs (E2F8 and FOXS1) that had not been recognized previously and were identified for the first time in this study as novel regulatory candidates in immune response. This study provides valuable insights on the regulatory programs of genes involved in the stress-related immune system.

  4. An integer optimization algorithm for robust identification of non-linear gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Chemmangattuvalappil Nishanth

    2012-09-01

    Full Text Available Abstract Background Reverse engineering gene networks and identifying regulatory interactions are integral to understanding cellular decision making processes. Advancement in high throughput experimental techniques has initiated innovative data driven analysis of gene regulatory networks. However, inherent noise associated with biological systems requires numerous experimental replicates for reliable conclusions. Furthermore, evidence of robust algorithms directly exploiting basic biological traits are few. Such algorithms are expected to be efficient in their performance and robust in their prediction. Results We have developed a network identification algorithm to accurately infer both the topology and strength of regulatory interactions from time series gene expression data in the presence of significant experimental noise and non-linear behavior. In this novel formulism, we have addressed data variability in biological systems by integrating network identification with the bootstrap resampling technique, hence predicting robust interactions from limited experimental replicates subjected to noise. Furthermore, we have incorporated non-linearity in gene dynamics using the S-system formulation. The basic network identification formulation exploits the trait of sparsity of biological interactions. Towards that, the identification algorithm is formulated as an integer-programming problem by introducing binary variables for each network component. The objective function is targeted to minimize the network connections subjected to the constraint of maximal agreement between the experimental and predicted gene dynamics. The developed algorithm is validated using both in silico and experimental data-sets. These studies show that the algorithm can accurately predict the topology and connection strength of the in silico networks, as quantified by high precision and recall, and small discrepancy between the actual and predicted kinetic parameters

  5. Integrating quantitative knowledge into a qualitative gene regulatory network.

    Directory of Open Access Journals (Sweden)

    Jérémie Bourdon

    2011-09-01

    Full Text Available Despite recent improvements in molecular techniques, biological knowledge remains incomplete. Any theorizing about living systems is therefore necessarily based on the use of heterogeneous and partial information. Much current research has focused successfully on the qualitative behaviors of macromolecular networks. Nonetheless, it is not capable of taking into account available quantitative information such as time-series protein concentration variations. The present work proposes a probabilistic modeling framework that integrates both kinds of information. Average case analysis methods are used in combination with Markov chains to link qualitative information about transcriptional regulations to quantitative information about protein concentrations. The approach is illustrated by modeling the carbon starvation response in Escherichia coli. It accurately predicts the quantitative time-series evolution of several protein concentrations using only knowledge of discrete gene interactions and a small number of quantitative observations on a single protein concentration. From this, the modeling technique also derives a ranking of interactions with respect to their importance during the experiment considered. Such a classification is confirmed by the literature. Therefore, our method is principally novel in that it allows (i a hybrid model that integrates both qualitative discrete model and quantities to be built, even using a small amount of quantitative information, (ii new quantitative predictions to be derived, (iii the robustness and relevance of interactions with respect to phenotypic criteria to be precisely quantified, and (iv the key features of the model to be extracted that can be used as a guidance to design future experiments.

  6. Vimentin-ERK Signaling Uncouples Slug Gene Regulatory Function.

    Science.gov (United States)

    Virtakoivu, Reetta; Mai, Anja; Mattila, Elina; De Franceschi, Nicola; Imanishi, Susumu Y; Corthals, Garry; Kaukonen, Riina; Saari, Markku; Cheng, Fang; Torvaldson, Elin; Kosma, Veli-Matti; Mannermaa, Arto; Muharram, Ghaffar; Gilles, Christine; Eriksson, John; Soini, Ylermi; Lorens, James B; Ivaska, Johanna

    2015-06-01

    Epithelial-mesenchymal transition (EMT) in cells is a developmental process adopted during tumorigenesis that promotes metastatic capacity. In this study, we advance understanding of EMT control in cancer cells with the description of a novel vimentin-ERK axis that regulates the transcriptional activity of Slug (SNAI2). Vimentin, ERK, and Slug exhibited overlapping subcellular localization in clinical specimens of triple-negative breast carcinoma. RNAi-mediated ablation of these gene products inhibited cancer cell migration and cell invasion through a laminin-rich matrix. Biochemical analyses demonstrated direct interaction of vimentin and ERK, which promoted ERK activation and enhanced vimentin transcription. Consistent with its role as an intermediate filament, vimentin acted as a scaffold to recruit Slug to ERK and promote Slug phosphorylation at serine-87. Site-directed mutagenesis established a requirement for ERK-mediated Slug phosphorylation in EMT initiation. Together, these findings identified a pivotal step in controlling the ability of Slug to organize hallmarks of EMT. ©2015 American Association for Cancer Research.

  7. Conserved gene regulatory module specifies lateral neural borders across bilaterians.

    Science.gov (United States)

    Li, Yongbin; Zhao, Di; Horie, Takeo; Chen, Geng; Bao, Hongcun; Chen, Siyu; Liu, Weihong; Horie, Ryoko; Liang, Tao; Dong, Biyu; Feng, Qianqian; Tao, Qinghua; Liu, Xiao

    2017-08-01

    The lateral neural plate border (NPB), the neural part of the vertebrate neural border, is composed of central nervous system (CNS) progenitors and peripheral nervous system (PNS) progenitors. In invertebrates, PNS progenitors are also juxtaposed to the lateral boundary of the CNS. Whether there are conserved molecular mechanisms determining vertebrate and invertebrate lateral neural borders remains unclear. Using single-cell-resolution gene-expression profiling and genetic analysis, we present evidence that orthologs of the NPB specification module specify the invertebrate lateral neural border, which is composed of CNS and PNS progenitors. First, like in vertebrates, the conserved neuroectoderm lateral border specifier Msx/vab-15 specifies lateral neuroblasts in Caenorhabditis elegans Second, orthologs of the vertebrate NPB specification module ( Msx/vab-15 , Pax3/7/pax-3 , and Zic/ref-2 ) are significantly enriched in worm lateral neuroblasts. In addition, like in other bilaterians, the expression domain of Msx/vab-15 is more lateral than those of Pax3/7/pax-3 and Zic/ref- 2 in C. elegans Third, we show that Msx/vab-15 regulates the development of mechanosensory neurons derived from lateral neural progenitors in multiple invertebrate species, including C. elegans , Drosophila melanogaster , and Ciona intestinalis We also identify a novel lateral neural border specifier, ZNF703/tlp-1 , which functions synergistically with Msx/vab- 15 in both C. elegans and Xenopus laevis These data suggest a common origin of the molecular mechanism specifying lateral neural borders across bilaterians.

  8. Evidence for widespread degradation of gene control regions in hominid genomes.

    Directory of Open Access Journals (Sweden)

    Peter D Keightley

    2005-02-01

    Full Text Available Although sequences containing regulatory elements located close to protein-coding genes are often only weakly conserved during evolution, comparisons of rodent genomes have implied that these sequences are subject to some selective constraints. Evolutionary conservation is particularly apparent upstream of coding sequences and in first introns, regions that are enriched for regulatory elements. By comparing the human and chimpanzee genomes, we show here that there is almost no evidence for conservation in these regions in hominids. Furthermore, we show that gene expression is diverging more rapidly in hominids than in murids per unit of neutral sequence divergence. By combining data on polymorphism levels in human noncoding DNA and the corresponding human-chimpanzee divergence, we show that the proportion of adaptive substitutions in these regions in hominids is very low. It therefore seems likely that the lack of conservation and increased rate of gene expression divergence are caused by a reduction in the effectiveness of natural selection against deleterious mutations because of the low effective population sizes of hominids. This has resulted in the accumulation of a large number of deleterious mutations in sequences containing gene control elements and hence a widespread degradation of the genome during the evolution of humans and chimpanzees.

  9. [Cloning and function identification of gene 'admA' and up-stream regulatory sequence related to antagonistic activity of Enterobacter cloacae B8].

    Science.gov (United States)

    Zhu, Jun-Li; Li, De-Bao; Yu, Xu-Ping

    2012-04-01

    To reveal the antagonistic mechanism of B8 strain to Xanthomonas oryzae pv. oryzae, transposon tagging method and chromosome walking were deployed to clone antagonistic related fragments around Tn5 insertion site in the mutant strain B8B. The function of up-stream regulatory sequence of gene 'admA' involved in the antagonistic activity was further identified by gene knocking out technique. An antagonistic related left fragment of Tn5 insertion site, 2 608 bp in length, was obtained by tagging with Kan resistance gene of Tn5. A 2 354 bp right fragment of Tn5 insertion site was amplified with 2 rounds of chromosome walking. The length of the B contig around the Tn5 insertion site was 4 611 bp, containing 7 open reading frames (ORFs). Bioinformatic analysis revealed that these ORFs corresponded to the partial coding regions of glyceraldehyde-3-phosphate dehydrogenase, two LysR family transcriptional regulators, hypothetical protein VSWAT3-20465 of Vibrionales and admA, admB, and partial sequence of admC gene of Pantoea agglomerans biosynthetic gene cluster, respectively. Tn5 was inserted in the up-stream of 200 bp or 894 bp of the sequence corresponding to anrP ORF or admA gene on B8B, respectively. The B-1 and B-2 mutants that lost antagonistic activity were selected by homeologuous recombination technology in association with knocking out plasmid pMB-BG. These results suggested that the transcription and expression of anrP gene might be disrupted as a result of the knocking out of up-stream regulatory sequence by Tn5 in B8B strain, further causing biosythesis regulation of the antagonistic related gene cluster. Thus, the antagonistic related genes in B8 strain is a gene family similar as andrimid biosynthetic gene cluster, and the upstream regulatory region appears to be critical for the antibiotics biosynthesis.

  10. Introducing Sectoral Models into Regional Management: An Assessment of Regulatory Impacts on the Economy

    Directory of Open Access Journals (Sweden)

    Voloshenko K.Yu.

    2017-12-01

    Full Text Available Regardless of the geography of regions, management at the regional level, both in Russia and the Baltic Sea countries, faces many challenges. Hence, it is necessary to search for new effective economic management tools, since traditional approaches and modeling practices at the regional level are not suitable for either analysing various types of impact on regional economy (production, market (product, sector, region, or assessment of their consequences and identification of the necessary measures in any given economic conditions. The authors construct sectoral models to assess regulatory impacts on regional economic performance. Assessments of regulatory impacts on product value chains, economic sectors, and regions as a whole show good repeatability, which makes it possible to provide a rationale for economic decision-making. The authors propose new sectoral models using the Kaliningrad region as an example. The models are used in a comprehensive analysis of conditions for a GRP growth resulting from an increase in sectoral contributions. To this end, the study uses the well-known approaches of simulation modelling, as well as qualitative and quantitative methods in combination with economic-mathematical optimisation models. The article presents a pilot model of regulatory impacts for selected sectors of the Kaliningrad economy. The developed and tested models suggest that a rationale for economic decision-making and consequent actions should be based on the assessment of the impact of different groups of external, internal, and independent factors on value chains, based on the criterion of optimal factor income. In conclusion, the authors offer recommendations for using the proposed models in business, public administration and regional economic modeling.

  11. Whorl-specific expression of the SUPERMAN gene of Arabidopsis is mediated by cis elements in the transcribed region.

    Science.gov (United States)

    Ito, Toshiro; Sakai, Hajime; Meyerowitz, Elliot M

    2003-09-02

    The SUPERMAN (SUP) gene of Arabidopsis is involved in controlling cell proliferation in stamen and carpel primordia and in ovules during flower development. The SUP gene encodes a transcription factor with a C2H2-type zinc finger motif, a serine/proline-rich domain, a basic domain, and a leucine-zipper-like domain and is expressed in a very limited region in stamen primordia and in the developing ovary during flower development. The SUP gene is susceptible to methylation, resulting in epigenetic gene silencing. To understand how the SUP gene is expressed spatially and temporally in its restricted domain, and why methylation of the transcribed region affects early-stage SUP expression, we have identified the SUP cis regulatory elements by characterizing SUP gene fusions. These studies show that the SUP gene has discrete upstream promoter elements required for expression in stamen primordia in early stages and in the ovary in later stages. The promoter activity for stamen primordia is modulated by several positive and negative elements located in the transcribed and translated regions. Several regulatory elements in the transcribed region correlate with the areas of the gene that are heavily methylated in epigenetic alleles; these data provide a possible explanation of how methylation of the transcribed region represses transcription.

  12. Identification of C4 photosynthesis metabolism and regulatory-associated genes in Eleocharis vivipara by SSH.

    Science.gov (United States)

    Chen, Taiyu; Ye, Rongjian; Fan, Xiaolei; Li, Xianghua; Lin, Yongjun

    2011-09-01

    This is the first effort to investigate the candidate genes involved in kranz developmental regulation and C(4) metabolic fluxes in Eleocharis vivipara, which is a leafless freshwater amphibious plant and possesses a distinct culms anatomy structure and photosynthetic pattern in contrasting environments. A terrestrial specific SSH library was constructed to investigate the genes involved in kranz anatomy developmental regulation and C(4) metabolic fluxes. A total of 73 ESTs and 56 unigenes in 384 clones were identified by array hybridization and sequencing. In total, 50 unigenes had homologous genes in the databases of rice and Arabidopsis. The real-time quantitative PCR results showed that most of the genes were accumulated in terrestrial culms and ABA-induced culms. The C(4) marker genes were stably accumulated during the culms development process in terrestrial culms. With respect to C(3) culms, C(4) photosynthesis metabolism consumed much more transporters and translocators related to ion metabolism, organic acids and carbohydrate metabolism, phosphate metabolism, amino acids metabolism, and lipids metabolism. Additionally, ten regulatory genes including five transcription factors, four receptor-like proteins, and one BURP protein were identified. These regulatory genes, which co-accumulated with the culms developmental stages, may play important roles in culms structure developmental regulation, bundle sheath chloroplast maturation, and environmental response. These results shed new light on the C(4) metabolic fluxes, environmental response, and anatomy structure developmental regulation in E. vivipara.

  13. Mapping of cis-regulatory sites in the promoter of testis-specific stellate genes of Drosophila melanogaster.

    Science.gov (United States)

    Olenkina, O M; Egorova, K S; Aravin, A A; Naumova, N M; Gvozdev, V A; Olenina, L V

    2012-11-01

    Tandem Stellate genes organized into two clusters in heterochromatin and euchromatin of the X-chromosome are part of the Ste-Su(Ste) genetic system required for maintenance of male fertility and reproduction of Drosophila melanogaster. Stellate genes encode a regulatory subunit of protein kinase CK2 and are the main targets of germline-specific piRNA-silencing; their derepression leads to appearance of protein crystals in spermatocytes, meiotic disturbances, and male sterility. A short promoter region of 134 bp appears to be sufficient for testis-specific transcription of Stellate, and it contains three closely located cis-regulatory elements called E-boxes. By using reporter analysis, we confirmed a strong functionality of the E-boxes in the Stellate promoter for in vivo transcription. Using selective mutagenesis, we have shown that the presence of the central E-box 2 is preferable to maintain a high-level testis-specific transcription of the reporter gene under the Stellate promoter. The Stellate promoter provides transcription even in heterochromatin, and corresponding mRNAs are translated with the generation of full-size protein products in case of disturbances in the piRNA-silencing process. We have also shown for the first time that the activity of the Stellate promoter is determined by chromatin context of the X-chromosome in male germinal cells, and it increases at about twofold when relocating in autosomes.

  14. Conservation and diversification of an ancestral chordate gene regulatory network for dorsoventral patterning.

    Directory of Open Access Journals (Sweden)

    Iryna Kozmikova

    Full Text Available Formation of a dorsoventral axis is a key event in the early development of most animal embryos. It is well established that bone morphogenetic proteins (Bmps and Wnts are key mediators of dorsoventral patterning in vertebrates. In the cephalochordate amphioxus, genes encoding Bmps and transcription factors downstream of Bmp signaling such as Vent are expressed in patterns reminiscent of those of their vertebrate orthologues. However, the key question is whether the conservation of expression patterns of network constituents implies conservation of functional network interactions, and if so, how an increased functional complexity can evolve. Using heterologous systems, namely by reporter gene assays in mammalian cell lines and by transgenesis in medaka fish, we have compared the gene regulatory network implicated in dorsoventral patterning of the basal chordate amphioxus and vertebrates. We found that Bmp but not canonical Wnt signaling regulates promoters of genes encoding homeodomain proteins AmphiVent1 and AmphiVent2. Furthermore, AmphiVent1 and AmphiVent2 promoters appear to be correctly regulated in the context of a vertebrate embryo. Finally, we show that AmphiVent1 is able to directly repress promoters of AmphiGoosecoid and AmphiChordin genes. Repression of genes encoding dorsal-specific signaling molecule Chordin and transcription factor Goosecoid by Xenopus and zebrafish Vent genes represents a key regulatory interaction during vertebrate axis formation. Our data indicate high evolutionary conservation of a core Bmp-triggered gene regulatory network for dorsoventral patterning in chordates and suggest that co-option of the canonical Wnt signaling pathway for dorsoventral patterning in vertebrates represents one of the innovations through which an increased morphological complexity of vertebrate embryo is achieved.

  15. Genetic variation of the RASGRF1 regulatory region affects human hippocampus-dependent memory

    Science.gov (United States)

    Barman, Adriana; Assmann, Anne; Richter, Sylvia; Soch, Joram; Schütze, Hartmut; Wüstenberg, Torsten; Deibele, Anna; Klein, Marieke; Richter, Anni; Behnisch, Gusalija; Düzel, Emrah; Zenker, Martin; Seidenbecher, Constanze I.; Schott, Björn H.

    2014-01-01

    The guanine nucleotide exchange factor RASGRF1 is an important regulator of intracellular signaling and neural plasticity in the brain. RASGRF1-deficient mice exhibit a complex phenotype with learning deficits and ocular abnormalities. Also in humans, a genome-wide association study has identified the single nucleotide polymorphism (SNP) rs8027411 in the putative transcription regulatory region of RASGRF1 as a risk variant of myopia. Here we aimed to assess whether, in line with the RASGRF1 knockout mouse phenotype, rs8027411 might also be associated with human memory function. We performed computer-based neuropsychological learning experiments in two independent cohorts of young, healthy participants. Tests included the Verbal Learning and Memory Test (VLMT) and the logical memory section of the Wechsler Memory Scale (WMS). Two sub-cohorts additionally participated in functional magnetic resonance imaging (fMRI) studies of hippocampus function. 119 participants performed a novelty encoding task that had previously been shown to engage the hippocampus, and 63 subjects participated in a reward-related memory encoding study. RASGRF1 rs8027411 genotype was indeed associated with memory performance in an allele dosage-dependent manner, with carriers of the T allele (i.e., the myopia risk allele) showing better memory performance in the early encoding phase of the VLMT and in the recall phase of the WMS logical memory section. In fMRI, T allele carriers exhibited increased hippocampal activation during presentation of novel images and during encoding of pictures associated with monetary reward. Taken together, our results provide evidence for a role of the RASGRF1 gene locus in hippocampus-dependent memory and, along with the previous association with myopia, point toward pleitropic effects of RASGRF1 genetic variations on complex neural function in humans. PMID:24808846

  16. Balancing selection on a regulatory region exhibiting ancient variation that predates human-neandertal divergence.

    Directory of Open Access Journals (Sweden)

    Omer Gokcumen

    2013-04-01

    Full Text Available Ancient population structure shaping contemporary genetic variation has been recently appreciated and has important implications regarding our understanding of the structure of modern human genomes. We identified a ∼36-kb DNA segment in the human genome that displays an ancient substructure. The variation at this locus exists primarily as two highly divergent haplogroups. One of these haplogroups (the NE1 haplogroup aligns with the Neandertal haplotype and contains a 4.6-kb deletion polymorphism in perfect linkage disequilibrium with 12 single nucleotide polymorphisms (SNPs across diverse populations. The other haplogroup, which does not contain the 4.6-kb deletion, aligns with the chimpanzee haplotype and is likely ancestral. Africans have higher overall pairwise differences with the Neandertal haplotype than Eurasians do for this NE1 locus (p<10⁻¹⁵. Moreover, the nucleotide diversity at this locus is higher in Eurasians than in Africans. These results mimic signatures of recent Neandertal admixture contributing to this locus. However, an in-depth assessment of the variation in this region across multiple populations reveals that African NE1 haplotypes, albeit rare, harbor more sequence variation than NE1 haplotypes found in Europeans, indicating an ancient African origin of this haplogroup and refuting recent Neandertal admixture. Population genetic analyses of the SNPs within each of these haplogroups, along with genome-wide comparisons revealed significant FST (p = 0.00003 and positive Tajima's D (p = 0.00285 statistics, pointing to non-neutral evolution of this locus. The NE1 locus harbors no protein-coding genes, but contains transcribed sequences as well as sequences with putative regulatory function based on bioinformatic predictions and in vitro experiments. We postulate that the variation observed at this locus predates Human-Neandertal divergence and is evolving under balancing selection, especially among European

  17. Two negative cis-regulatory regions involved in fruit-specific promoter activity from watermelon (Citrullus vulgaris S.).

    Science.gov (United States)

    Yin, Tao; Wu, Hanying; Zhang, Shanglong; Lu, Hongyu; Zhang, Lingxiao; Xu, Yong; Chen, Daming; Liu, Jingmei

    2009-01-01

    A 1.8 kb 5'-flanking region of the large subunit of ADP-glucose pyrophosphorylase, isolated from watermelon (Citrullus vulgaris S.), has fruit-specific promoter activity in transgenic tomato plants. Two negative regulatory regions, from -986 to -959 and from -472 to -424, were identified in this promoter region by fine deletion analyses. Removal of both regions led to constitutive expression in epidermal cells. Gain-of-function experiments showed that these two regions were sufficient to inhibit RFP (red fluorescent protein) expression in transformed epidermal cells when fused to the cauliflower mosaic virus (CaMV) 35S minimal promoter. Gel mobility shift experiments demonstrated the presence of leaf nuclear factors that interact with these two elements. A TCCAAAA motif was identified in these two regions, as well as one in the reverse orientation, which was confirmed to be a novel specific cis-element. A quantitative beta-glucuronidase (GUS) activity assay of stable transgenic tomato plants showed that the activities of chimeric promoters harbouring only one of the two cis-elements, or both, were approximately 10-fold higher in fruits than in leaves. These data confirm that the TCCAAAA motif functions as a fruit-specific element by inhibiting gene expression in leaves.

  18. Genetic variants in promoters and coding regions of the muscle glycogen synthase and the insulin-responsive GLUT4 genes in NIDDM

    DEFF Research Database (Denmark)

    Bjørbaek, C; Echwald, Søren Morgenthaler; Hubricht, P

    1994-01-01

    regions and regions of importance for translation, as well as coding sequences of the two genes, were studied using single-strand conformation polymorphism (SSCP) analysis and DNA sequencing. The genetic analyses were performed in subgroups of 52 Caucasian NIDDM patients and 25 age-matched healthy......To examine the hypothesis that variants in the regulatory or coding regions of the glycogen synthase (GS) and insulin-responsive glucose transporter (GLUT4) genes contribute to insulin-resistant glucose processing of muscle from non-insulin-dependent diabetes mellitus (NIDDM) patients, promoter......'-untranslated region, and the coding region of the GLUT4 gene showed four polymorphisms, all single nucleotide substitutions, positioned at -581, 1, 30, and 582. None of the three changes in the regulatory region of the gene had any major influence on expression of the GLUT4 gene in muscle. The variant at 582...

  19. Partitioning of genetic variation between regulatory and coding gene segments: the predominance of software variation in genes encoding introvert proteins.

    Science.gov (United States)

    Mitchison, A

    1997-01-01

    In considering genetic variation in eukaryotes, a fundamental distinction can be made between variation in regulatory (software) and coding (hardware) gene segments. For quantitative traits the bulk of variation, particularly that near the population mean, appears to reside in regulatory segments. The main exceptions to this rule concern proteins which handle extrinsic substances, here termed extrovert proteins. The immune system includes an unusually large proportion of this exceptional category, but even so its chief source of variation may well be polymorphism in regulatory gene segments. The main evidence for this view emerges from genome scanning for quantitative trait loci (QTL), which in the case of the immune system points to a major contribution of pro-inflammatory cytokine genes. Further support comes from sequencing of major histocompatibility complex (Mhc) class II promoters, where a high level of polymorphism has been detected. These Mhc promoters appear to act, in part at least, by gating the back-signal from T cells into antigen-presenting cells. Both these forms of polymorphism are likely to be sustained by the need for flexibility in the immune response. Future work on promoter polymorphism is likely to benefit from the input from genome informatics.

  20. Statistical tests for natural selection on regulatory regions based on the strength of transcription factor binding sites

    Directory of Open Access Journals (Sweden)

    Moses Alan M

    2009-12-01

    Full Text Available Abstract Background Although cis-regulatory changes play an important role in evolution, it remains difficult to establish the contribution of natural selection to regulatory differences between species. For protein coding regions, powerful tests of natural selection have been developed based on comparisons of synonymous and non-synonymous substitutions, and analogous tests for regulatory regions would be of great utility. Results Here, tests for natural selection on regulatory regions are proposed based on nucleotide substitutions that occur in characterized transcription factor binding sites (an important type functional element within regulatory regions. In the absence of selection, these substitutions will tend to reduce the strength of existing binding sites. On the other hand, purifying selection will act to preserve the binding sites in regulatory regions, while positive selection can act to create or destroy binding sites, as well as change their strength. Using standard models of binding site strength and molecular evolution in the absence of selection, this intuition can be used to develop statistical tests for natural selection. Application of these tests to two well-characterized regulatory regions in Drosophila provides evidence for purifying selection. Conclusion This demonstrates that it is possible to develop tests for selection on regulatory regions based on the specific functional constrains on these sequences.

  1. Conservation and divergence of autonomous pathway genes in the flowering regulatory network of Beta vulgaris.

    Science.gov (United States)

    Abou-Elwafa, Salah F; Büttner, Bianca; Chia, Tansy; Schulze-Buxloh, Gretel; Hohmann, Uwe; Mutasa-Göttgens, Effie; Jung, Christian; Müller, Andreas E

    2011-06-01

    The transition from vegetative growth to reproductive development is a complex process that requires an integrated response to multiple environmental cues and endogenous signals. In Arabidopsis thaliana, which has a facultative requirement for vernalization and long days, the genes of the autonomous pathway function as floral promoters by repressing the central repressor and vernalization-regulatory gene FLC. Environmental regulation by seasonal changes in daylength is under control of the photoperiod pathway and its key gene CO. The root and leaf crop species Beta vulgaris in the caryophyllid clade of core eudicots, which is only very distantly related to Arabidopsis, is an obligate long-day plant and includes forms with or without vernalization requirement. FLC and CO homologues with related functions in beet have been identified, but the presence of autonomous pathway genes which function in parallel to the vernalization and photoperiod pathways has not yet been reported. Here, this begins to be addressed by the identification and genetic mapping of full-length homologues of the RNA-regulatory gene FLK and the chromatin-regulatory genes FVE, LD, and LDL1. When overexpressed in A. thaliana, BvFLK accelerates bolting in the Col-0 background and fully complements the late-bolting phenotype of an flk mutant through repression of FLC. In contrast, complementation analysis of BvFVE1 and the presence of a putative paralogue in beet suggest evolutionary divergence of FVE homologues. It is further shown that BvFVE1, unlike FVE in Arabidopsis, is under circadian clock control. Together, the data provide first evidence for evolutionary conservation of components of the autonomous pathway in B. vulgaris, while also suggesting divergence or subfunctionalization of one gene. The results are likely to be of broader relevance because B. vulgaris expands the spectrum of evolutionarily diverse species which are subject to differential developmental and/or environmental regulation

  2. A Consensus Network of Gene Regulatory Factors in the Human Frontal Lobe

    Science.gov (United States)

    Berto, Stefano; Perdomo-Sabogal, Alvaro; Gerighausen, Daniel; Qin, Jing; Nowick, Katja

    2016-01-01

    Cognitive abilities, such as memory, learning, language, problem solving, and planning, involve the frontal lobe and other brain areas. Not much is known yet about the molecular basis of cognitive abilities, but it seems clear that cognitive abilities are determined by the interplay of many genes. One approach for analyzing the genetic networks involved in cognitive functions is to study the coexpression networks of genes with known importance for proper cognitive functions, such as genes that have been associated with cognitive disorders like intellectual disability (ID) or autism spectrum disorders (ASD). Because many of these genes are gene regulatory factors (GRFs) we aimed to provide insights into the gene regulatory networks active in the human frontal lobe. Using genome wide human frontal lobe expression data from 10 independent data sets, we first derived 10 individual coexpression networks for all GRFs including their potential target genes. We observed a high level of variability among these 10 independently derived networks, pointing out that relying on results from a single study can only provide limited biological insights. To instead focus on the most confident information from these 10 networks we developed a method for integrating such independently derived networks into a consensus network. This consensus network revealed robust GRF interactions that are conserved across the frontal lobes of different healthy human individuals. Within this network, we detected a strong central module that is enriched for 166 GRFs known to be involved in brain development and/or cognitive disorders. Interestingly, several hubs of the consensus network encode for GRFs that have not yet been associated with brain functions. Their central role in the network suggests them as excellent new candidates for playing an essential role in the regulatory network of the human frontal lobe, which should be investigated in future studies. PMID:27014338

  3. A scalable algorithm for structure identification of complex gene regulatory network from temporal expression data.

    Science.gov (United States)

    Gui, Shupeng; Rice, Andrew P; Chen, Rui; Wu, Liang; Liu, Ji; Miao, Hongyu

    2017-01-31

    Gene regulatory interactions are of fundamental importance to various biological functions and processes. However, only a few previous computational studies have claimed success in revealing genome-wide regulatory landscapes from temporal gene expression data, especially for complex eukaryotes like human. Moreover, recent work suggests that these methods still suffer from the curse of dimensionality if a network size increases to 100 or higher. Here we present a novel scalable algorithm for identifying genome-wide gene regulatory network (GRN) structures, and we have verified the algorithm performances by extensive simulation studies based on the DREAM challenge benchmark data. The highlight of our method is that its superior performance does not degenerate even for a network size on the order of 10 4 , and is thus readily applicable to large-scale complex networks. Such a breakthrough is achieved by considering both prior biological knowledge and multiple topological properties (i.e., sparsity and hub gene structure) of complex networks in the regularized formulation. We also validate and illustrate the application of our algorithm in practice using the time-course gene expression data from a study on human respiratory epithelial cells in response to influenza A virus (IAV) infection, as well as the CHIP-seq data from ENCODE on transcription factor (TF) and target gene interactions. An interesting finding, owing to the proposed algorithm, is that the biggest hub structures (e.g., top ten) in the GRN all center at some transcription factors in the context of epithelial cell infection by IAV. The proposed algorithm is the first scalable method for large complex network structure identification. The GRN structure identified by our algorithm could reveal possible biological links and help researchers to choose which gene functions to investigate in a biological event. The algorithm described in this article is implemented in MATLAB Ⓡ , and the source code is freely

  4. Positional bias of general and tissue-specific regulatory motifs in mouse gene promoters

    Directory of Open Access Journals (Sweden)

    Farré Domènec

    2007-12-01

    Full Text Available Abstract Background The arrangement of regulatory motifs in gene promoters, or promoter architecture, is the result of mutation and selection processes that have operated over many millions of years. In mammals, tissue-specific transcriptional regulation is related to the presence of specific protein-interacting DNA motifs in gene promoters. However, little is known about the relative location and spacing of these motifs. To fill this gap, we have performed a systematic search for motifs that show significant bias at specific promoter locations in a large collection of housekeeping and tissue-specific genes. Results We observe that promoters driving housekeeping gene expression are enriched in particular motifs with strong positional bias, such as YY1, which are of little relevance in promoters driving tissue-specific expression. We also identify a large number of motifs that show positional bias in genes expressed in a highly tissue-specific manner. They include well-known tissue-specific motifs, such as HNF1 and HNF4 motifs in liver, kidney and small intestine, or RFX motifs in testis, as well as many potentially novel regulatory motifs. Based on this analysis, we provide predictions for 559 tissue-specific motifs in mouse gene promoters. Conclusion The study shows that motif positional bias is an important feature of mammalian proximal promoters and that it affects both general and tissue-specific motifs. Motif positional constraints define very distinct promoter architectures depending on breadth of expression and type of tissue.

  5. Reverse Engineering Sparse Gene Regulatory Networks Using Cubature Kalman Filter and Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Amina Noor

    2013-01-01

    Full Text Available This paper proposes a novel algorithm for inferring gene regulatory networks which makes use of cubature Kalman filter (CKF and Kalman filter (KF techniques in conjunction with compressed sensing methods. The gene network is described using a state-space model. A nonlinear model for the evolution of gene expression is considered, while the gene expression data is assumed to follow a linear Gaussian model. The hidden states are estimated using CKF. The system parameters are modeled as a Gauss-Markov process and are estimated using compressed sensing-based KF. These parameters provide insight into the regulatory relations among the genes. The Cramér-Rao lower bound of the parameter estimates is calculated for the system model and used as a benchmark to assess the estimation accuracy. The proposed algorithm is evaluated rigorously using synthetic data in different scenarios which include different number of genes and varying number of sample points. In addition, the algorithm is tested on the DREAM4 in silico data sets as well as the in vivo data sets from IRMA network. The proposed algorithm shows superior performance in terms of accuracy, robustness, and scalability.

  6. Lineage-specific transcription factors and the evolution of gene regulatory networks.

    Science.gov (United States)

    Nowick, Katja; Stubbs, Lisa

    2010-01-01

    Nature is replete with examples of diverse cell types, tissues and body plans, forming very different creatures from genomes with similar gene complements. However, while the genes and the structures of proteins they encode can be highly conserved, the production of those proteins in specific cell types and at specific developmental time points might differ considerably between species. A full understanding of the factors that orchestrate gene expression will be essential to fully understand evolutionary variety. Transcription factor (TF) proteins, which form gene regulatory networks (GRNs) to act in cooperative or competitive partnerships to regulate gene expression, are key components of these unique regulatory programs. Although many TFs are conserved in structure and function, certain classes of TFs display extensive levels of species diversity. In this review, we highlight families of TFs that have expanded through gene duplication events to create species-unique repertoires in different evolutionary lineages. We discuss how the hierarchical structures of GRNs allow for flexible small to large-scale phenotypic changes. We survey evidence that explains how newly evolved TFs may be integrated into an existing GRN and how molecular changes in TFs might impact the GRNs. Finally, we review examples of traits that evolved due to lineage-specific TFs and species differences in GRNs.

  7. Molecular cloning and chromosomal mapping of the mouse gene encoding cyclin-dependent kinase 5 regulatory subunit p35

    Energy Technology Data Exchange (ETDEWEB)

    Ohshima, Toshio; Kozak, C.A.; Nagle, J.W. [National Institutes of Health, Bethesda, MD (United States)] [and others

    1996-07-15

    A neural-specific activating subunit, p35, of cyclin-dependent kinase 5 (Cdk5) was recently reported to differ from other mammalian cyclins, suggesting a new type of regulatory subunit for Cdk activity. The mouse gene encoding p35, Cdk5r, was isolated from a mouse 129/SvJ genomic library, and the genomic structure of Cdk5r was characterized. The most notable features of Cdk5r are the absence of introns in the amino acid coding region and the high homology of amino acid sequence among species. The 5{prime}-flanking region of Cdk5r contained no canonical TATA or CAAT box but had several putative promoter elements, including Sp1, AP2, MRE, and NGFIA. The mouse Cdk5r transcript was detected only in the brain by Northern blot analysis. Mouse Cdk5r was mapped to a position on mouse chromosome 11. 14 refs., 2 figs.

  8. Genome-wide targeting of the epigenetic regulatory protein CTCF to gene promoters by the transcription factor TFII-I.

    Science.gov (United States)

    Peña-Hernández, Rodrigo; Marques, Maud; Hilmi, Khalid; Zhao, Teijun; Saad, Amine; Alaoui-Jamali, Moulay A; del Rincon, Sonia V; Ashworth, Todd; Roy, Ananda L; Emerson, Beverly M; Witcher, Michael

    2015-02-17

    CCCTC-binding factor (CTCF) is a key regulator of nuclear chromatin structure and gene regulation. The impact of CTCF on transcriptional output is highly varied, ranging from repression to transcriptional pausing and transactivation. The multifunctional nature of CTCF may be directed solely through remodeling chromatin architecture. However, another hypothesis is that the multifunctional nature of CTCF is mediated, in part, through differential association with protein partners having unique functions. Consistent with this hypothesis, our mass spectrometry analyses of CTCF interacting partners reveal a previously undefined association with the transcription factor general transcription factor II-I (TFII-I). Biochemical fractionation of CTCF indicates that a distinct CTCF complex incorporating TFII-I is assembled on DNA. Unexpectedly, we found that the interaction between CTCF and TFII-I is essential for directing CTCF to the promoter proximal regulatory regions of target genes across the genome, particularly at genes involved in metabolism. At genes coregulated by CTCF and TFII-I, we find knockdown of TFII-I results in diminished CTCF binding, lack of cyclin-dependent kinase 8 (CDK8) recruitment, and an attenuation of RNA polymerase II phosphorylation at serine 5. Phenotypically, knockdown of TFII-I alters the cellular response to metabolic stress. Our data indicate that TFII-I directs CTCF binding to target genes, and in turn the two proteins cooperate to recruit CDK8 and enhance transcription initiation.

  9. PlantPAN: Plant promoter analysis navigator, for identifying combinatorial cis-regulatory elements with distance constraint in plant gene groups

    Directory of Open Access Journals (Sweden)

    Huang Hsien-Da

    2008-11-01

    Full Text Available Abstract Background The elucidation of transcriptional regulation in plant genes is important area of research for plant scientists, following the mapping of various plant genomes, such as A. thaliana, O. sativa and Z. mays. A variety of bioinformatic servers or databases of plant promoters have been established, although most have been focused only on annotating transcription factor binding sites in a single gene and have neglected some important regulatory elements (tandem repeats and CpG/CpNpG islands in promoter regions. Additionally, the combinatorial interaction of transcription factors (TFs is important in regulating the gene group that is associated with the same expression pattern. Therefore, a tool for detecting the co-regulation of transcription factors in a group of gene promoters is required. Results This study develops a database-assisted system, PlantPAN (Plant Promoter Analysis Navigator, for recognizing combinatorial cis-regulatory elements with a distance constraint in sets of plant genes. The system collects the plant transcription factor binding profiles from PLACE, TRANSFAC (public release 7.0, AGRIS, and JASPER databases and allows users to input a group of gene IDs or promoter sequences, enabling the co-occurrence of combinatorial transcription factor binding sites (TFBSs within a defined distance (20 bp to 200 bp to be identified. Furthermore, the new resource enables other regulatory features in a plant promoter, such as CpG/CpNpG islands and tandem repeats, to be displayed. The regulatory elements in the conserved regions of the promoters across homologous genes are detected and presented. Conclusion In addition to providing a user-friendly input/output interface, PlantPAN has numerous advantages in the analysis of a plant promoter. Several case studies have established the effectiveness of PlantPAN. This novel analytical resource is now freely available at http://PlantPAN.mbc.nctu.edu.tw.

  10. Impacts of Climate Policy on Regional Air Quality, Health, and Air Quality Regulatory Procedures

    Science.gov (United States)

    Thompson, T. M.; Selin, N. E.

    2011-12-01

    Both the changing climate, and the policy implemented to address climate change can impact regional air quality. We evaluate the impacts of potential selected climate policies on modeled regional air quality with respect to national pollution standards, human health and the sensitivity of health uncertainty ranges. To assess changes in air quality due to climate policy, we couple output from a regional computable general equilibrium economic model (the US Regional Energy Policy [USREP] model), with a regional air quality model (the Comprehensive Air Quality Model with Extensions [CAMx]). USREP uses economic variables to determine how potential future U.S. climate policy would change emissions of regional pollutants (CO, VOC, NOx, SO2, NH3, black carbon, and organic carbon) from ten emissions-heavy sectors of the economy (electricity, coal, gas, crude oil, refined oil, energy intensive industry, other industry, service, agriculture, and transportation [light duty and heavy duty]). Changes in emissions are then modeled using CAMx to determine the impact on air quality in several cities in the Northeast US. We first calculate the impact of climate policy by using regulatory procedures used to show attainment with National Ambient Air Quality Standards (NAAQS) for ozone and particulate matter. Building on previous work, we compare those results with the calculated results and uncertainties associated with human health impacts due to climate policy. This work addresses a potential disconnect between NAAQS regulatory procedures and the cost/benefit analysis required for and by the Clean Air Act.

  11. Information theory in systems biology. Part I: Gene regulatory and metabolic networks.

    Science.gov (United States)

    Mousavian, Zaynab; Kavousi, Kaveh; Masoudi-Nejad, Ali

    2016-03-01

    "A Mathematical Theory of Communication", was published in 1948 by Claude Shannon to establish a framework that is now known as information theory. In recent decades, information theory has gained much attention in the area of systems biology. The aim of this paper is to provide a systematic review of those contributions that have applied information theory in inferring or understanding of biological systems. Based on the type of system components and the interactions between them, we classify the biological systems into 4 main classes: gene regulatory, metabolic, protein-protein interaction and signaling networks. In the first part of this review, we attempt to introduce most of the existing studies on two types of biological networks, including gene regulatory and metabolic networks, which are founded on the concepts of information theory. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Evolution of Leukotoxin Regulatory regions in Genus Mannheimia by Interspecies Comparisons

    DEFF Research Database (Denmark)

    Larsen, Jesper; Pedersen, Anders Gorm; de Lichtenberg, Ulrik

    (Mhae1, Mhae2, Mglu, Mrum, Mgra, Mvar). The region from +30 to -208 showed sequence conservation in the Mannheimia strains, suggesting that this region represents an ancestral promoter block that has been maintained vertically in genus Mannheimia. Analyses of the 5¢ flanking regions showed the existence...... of three blocks that are restricted to specific lineages, of which the ancestral block is conserved in Mrum and Mvar. The transcriptional unit artJ has been shuffled into the upstream region in the last common ancestor of Mha1, Mha2 and Mglu. The corresponding non-coding DNA region ranging from -209...... to -376 contains at least one positive regulatory element, suggesting early divergence within the promoter family and the emergence of a lineage with increased promoter strength. Tandem duplication of the pattern ACAAAAAACA has occurred in the ancestral Mhae1 promoter after the Mhae1 and Mhae2 ancestors...

  13. HLA-E regulatory and coding region variability and haplotypes in a Brazilian population sample.

    Science.gov (United States)

    Ramalho, Jaqueline; Veiga-Castelli, Luciana C; Donadi, Eduardo A; Mendes-Junior, Celso T; Castelli, Erick C

    2017-11-01

    The HLA-E gene is characterized by low but wide expression on different tissues. HLA-E is considered a conserved gene, being one of the least polymorphic class I HLA genes. The HLA-E molecule interacts with Natural Killer cell receptors and T lymphocytes receptors, and might activate or inhibit immune responses depending on the peptide associated with HLA-E and with which receptors HLA-E interacts to. Variable sites within the HLA-E regulatory and coding segments may influence the gene function by modifying its expression pattern or encoded molecule, thus, influencing its interaction with receptors and the peptide. Here we propose an approach to evaluate the gene structure, haplotype pattern and the complete HLA-E variability, including regulatory (promoter and 3'UTR) and coding segments (with introns), by using massively parallel sequencing. We investigated the variability of 420 samples from a very admixed population such as Brazilians by using this approach. Considering a segment of about 7kb, 63 variable sites were detected, arranged into 75 extended haplotypes. We detected 37 different promoter sequences (but few frequent ones), 27 different coding sequences (15 representing new HLA-E alleles) and 12 haplotypes at the 3'UTR segment, two of them presenting a summed frequency of 90%. Despite the number of coding alleles, they encode mainly two different full-length molecules, known as E*01:01 and E*01:03, which corresponds to about 90% of all. In addition, differently from what has been previously observed for other non classical HLA genes, the relationship among the HLA-E promoter, coding and 3'UTR haplotypes is not straightforward because the same promoter and 3'UTR haplotypes were many times associated with different HLA-E coding haplotypes. This data reinforces the presence of only two main full-length HLA-E molecules encoded by the many HLA-E alleles detected in our population sample. In addition, this data does indicate that the distal HLA-E promoter is by

  14. Scarless and sequential gene modification in Pseudomonas using PCR product flanked by short homology regions

    Directory of Open Access Journals (Sweden)

    Liang Rubing

    2010-08-01

    Full Text Available Abstract Background The lambda Red recombination system has been used to inactivate chromosomal genes in various bacteria and fungi. The procedure consists of electroporating a polymerase chain reaction (PCR fragment containing antibiotic cassette flanked by homology regions to the target locus into a strain that can express the lambda Red proteins (Gam, Bet, Exo. Results Here a scarless gene modification strategy based on the Red recombination system has been developed to modify Pseudomonas genome DNA via sequential deletion of multiple targets. This process was mediated by plasmid pRKaraRed encoding the Red proteins regulated by PBAD promoter, which was functional in P. aeruginosa as well as in other bacteria. First the target gene was substituted for the sacB-bla cassette flanked by short homology regions (50 bp, and then this marker gene cassette could be replaced by the PCR fragment flanking itself, generating target-deleted genome without any remnants and no change happened to the surrounding region. Twenty genes involved in the synthesis and regulation pathways of the phenazine derivate, pyocyanin, were modified, including one single-point mutation and deletion of two large operons. The recombination efficiencies ranged from 88% to 98%. Multiple-gene modification was also achieved, generating a triple-gene deletion strain PCA (PAO1, ΔphzHΔphzMΔphzS, which could produce another phenazine derivate, phenazine-1-carboxylic acid (PCA, efficiently and exclusively. Conclusions This lambda Red-based technique can be used to generate scarless and sequential gene modification mutants of P. aeruginosa efficiently, using one-step PCR product flanked by short homology regions. Single-point mutation, scarless deletion of genes can be achieved easily in less than three days. This method may give a new way to construct genetically modified P. aeruginosa strains more efficiently and advance the regulatory network study of this organism.

  15. The organization structure and regulatory elements of Chlamydomonas histone genes reveal features linking plant and animal genes.

    Science.gov (United States)

    Fabry, S; Müller, K; Lindauer, A; Park, P B; Cornelius, T; Schmitt, R

    1995-09-01

    The genome of the green alga Chlamydomonas reinhardtii contains approximately 15 gene clusters of the nucleosomal (or core) histone H2A, H2B, H3 and H4 genes and at least one histone H1 gene. Seven non-allelic histone gene loci were isolated from a genomic library, physically mapped, and the nucleotide sequences of three isotypes of each core histone gene species and one linked H1 gene determined. The core histone genes are organized in clusters of H2A-H2B and H3-H4 pairs, in which each gene pair shows outwardly divergent transcription from a short (< 300 bp) intercistronic region. These intercistronic regions contain typically conserved promoter elements, namely a TATA-box and the three motifs TGGCCAG-G(G/C)-CGAG, CGTTGACC and CGGTTG. Different from the genes of higher plants, but like those of animals and the related alga Volvox, the 3' untranslated regions contain no poly A signal, but a palindromic sequence (3' palindrome) essential for mRNA processing is present. One single H1 gene was found in close linkage to a H2A-H2B pair. The H1 upstream region contains the octameric promoter element GGTTGACC (also found upstream of the core histone genes) and two specific sequence motifs that are shared only with the Volvox H1 promoters. This suggests differential transcription of the H1 and the core histone genes. The H1 gene is interrupted by two introns. Unlike Volvox H3 genes, the three sequenced H3 isoforms are intron-free. Primer-directed PCR of genomic DNA demonstrated, however, that at least 8 of the about 15 H3 genes do contain one intron at a conserved position. In synchronized C. reinhardtii cells, H4 mRNA levels (representative of all core histone mRNAs) peak during cell division, suggesting strict replication-dependent gene control. The derived peptide sequences place C. reinhardtii core histones closer to plants than to animals, except that the H2A histones are more animal-like. The peptide sequence of histone H1 is closely related to the V. carteri VH1-II

  16. Modularity of gene-regulatory networks revealed in sea-star development

    Directory of Open Access Journals (Sweden)

    Degnan Bernard M

    2011-01-01

    Full Text Available Abstract Evidence that conserved developmental gene-regulatory networks can change as a unit during deutersostome evolution emerges from a study published in BMC Biology. This shows that genes consistently expressed in anterior brain patterning in hemichordates and chordates are expressed in a similar spatial pattern in another deuterostome, an asteroid echinoderm (sea star, but in a completely different developmental context (the animal-vegetal axis. This observation has implications for hypotheses on the type of development present in the deuterostome common ancestor. See research article: http://www.biomedcentral.com/1741-7007/8/143/abstract

  17. Q&A: How do gene regulatory networks control environmental responses in plants?

    Science.gov (United States)

    Sun, Ying; Dinneny, José R

    2018-04-11

    A gene regulatory network (GRN) describes the hierarchical relationship between transcription factors, associated proteins, and their target genes. Studying GRNs allows us to understand how a plant's genotype and environment are integrated to regulate downstream physiological responses. Current efforts in plants have focused on defining the GRNs that regulate functions such as development and stress response and have been performed primarily in genetically tractable model plant species such as Arabidopsis thaliana. Future studies will likely focus on how GRNs function in non-model plants and change over evolutionary time to allow for adaptation to extreme environments. This broader understanding will inform efforts to engineer GRNs to create tailored crop traits.

  18. Multi-target trapping in constrained environments using gene regulatory network-based pattern formation

    Directory of Open Access Journals (Sweden)

    Xingguang Peng

    2016-10-01

    Full Text Available Inspired by the morphogenesis of biological organisms, gene regulatory network-based methods have been used in complex pattern formation of swarm robotic systems. In this article, obstacle information was embedded into the gene regulatory network model to make the robots trap targets with an expected pattern while avoiding obstacles in a distributed manner. Based on the modified gene regulatory network model, an implicit function method was adopted to represent the expected pattern which is easily adjusted by adding extra feature points. Considering environmental constraints (e.g. tunnels or gaps in which robots must adjust their pattern to conduct trapping task, a pattern adaptation strategy was proposed for the pattern modeler to adaptively adjust the expected pattern. Also to trap multiple targets, a splitting pattern adaptation strategy was proposed for diffusively moving targets so that the robots can trap each target separately with split sub-patterns. The proposed model and strategies were verified through a set of simulation with complex environmental constraints and non-consensus movements of targets.

  19. Functional dissection of regulatory models using gene expression data of deletion mutants.

    Directory of Open Access Journals (Sweden)

    Jin'e Li

    Full Text Available Genome-wide gene expression profiles accumulate at an alarming rate, how to integrate these expression profiles generated by different laboratories to reverse engineer the cellular regulatory network has been a major challenge. To automatically infer gene regulatory pathways from genome-wide mRNA expression profiles before and after genetic perturbations, we introduced a new Bayesian network algorithm: Deletion Mutant Bayesian Network (DM_BN. We applied DM_BN to the expression profiles of 544 yeast single or double deletion mutants of transcription factors, chromatin remodeling machinery components, protein kinases and phosphatases in S. cerevisiae. The network inferred by this method identified causal regulatory and non-causal concurrent interactions among these regulators (genetically perturbed genes that are strongly supported by the experimental evidence, and generated many new testable hypotheses. Compared to networks reconstructed by routine similarity measures or by alternative Bayesian network algorithms, the network inferred by DM_BN excels in both precision and recall. To facilitate its application in other systems, we packaged the algorithm into a user-friendly analysis tool that can be downloaded at http://www.picb.ac.cn/hanlab/DM_BN.html.

  20. EWS and FUS bind a subset of transcribed genes encoding proteins enriched in RNA regulatory functions

    DEFF Research Database (Denmark)

    Luo, Yonglun; Friis, Jenny Blechingberg; Fernandes, Ana Miguel

    2015-01-01

    Background FUS (TLS) and EWS (EWSR1) belong to the FET-protein family of RNA and DNA binding proteins. FUS and EWS are structurally and functionally related and participate in transcriptional regulation and RNA processing. FUS and EWS are identified in translocation generated cancer fusion proteins...... and involved in the human neurological diseases amyotrophic lateral sclerosis and fronto-temporal lobar degeneration. Results To determine the gene regulatory functions of FUS and EWS at the level of chromatin, we have performed chromatin immunoprecipitation followed by next generation sequencing (Ch......IP-seq). Our results show that FUS and EWS bind to a subset of actively transcribed genes, that binding often is downstream the poly(A)-signal, and that binding overlaps with RNA polymerase II. Functional examinations of selected target genes identified that FUS and EWS can regulate gene expression...

  1. State of the Art of Fuzzy Methods for Gene Regulatory Networks Inference

    Directory of Open Access Journals (Sweden)

    Tuqyah Abdullah Al Qazlan

    2015-01-01

    Full Text Available To address one of the most challenging issues at the cellular level, this paper surveys the fuzzy methods used in gene regulatory networks (GRNs inference. GRNs represent causal relationships between genes that have a direct influence, trough protein production, on the life and the development of living organisms and provide a useful contribution to the understanding of the cellular functions as well as the mechanisms of diseases. Fuzzy systems are based on handling imprecise knowledge, such as biological information. They provide viable computational tools for inferring GRNs from gene expression data, thus contributing to the discovery of gene interactions responsible for specific diseases and/or ad hoc correcting therapies. Increasing computational power and high throughput technologies have provided powerful means to manage these challenging digital ecosystems at different levels from cell to society globally. The main aim of this paper is to report, present, and discuss the main contributions of this multidisciplinary field in a coherent and structured framework.

  2. State of the Art of Fuzzy Methods for Gene Regulatory Networks Inference

    Science.gov (United States)

    Al Qazlan, Tuqyah Abdullah; Kara-Mohamed, Chafia

    2015-01-01

    To address one of the most challenging issues at the cellular level, this paper surveys the fuzzy methods used in gene regulatory networks (GRNs) inference. GRNs represent causal relationships between genes that have a direct influence, trough protein production, on the life and the development of living organisms and provide a useful contribution to the understanding of the cellular functions as well as the mechanisms of diseases. Fuzzy systems are based on handling imprecise knowledge, such as biological information. They provide viable computational tools for inferring GRNs from gene expression data, thus contributing to the discovery of gene interactions responsible for specific diseases and/or ad hoc correcting therapies. Increasing computational power and high throughput technologies have provided powerful means to manage these challenging digital ecosystems at different levels from cell to society globally. The main aim of this paper is to report, present, and discuss the main contributions of this multidisciplinary field in a coherent and structured framework. PMID:25879048

  3. SINCERITIES: Inferring gene regulatory networks from time-stamped single cell transcriptional expression profiles.

    Science.gov (United States)

    Papili Gao, Nan; Ud-Dean, S M Minhaz; Gandrillon, Olivier; Gunawan, Rudiyanto

    2017-09-14

    Single cell transcriptional profiling opens up a new avenue in studying the functional role of cell-to-cell variability in physiological processes. The analysis of single cell expression profiles creates new challenges due to the distributive nature of the data and the stochastic dynamics of gene transcription process. The reconstruction of gene regulatory networks (GRNs) using single cell transcriptional profiles is particularly challenging, especially when directed gene-gene relationships are desired. We developed SINCERITIES (SINgle CEll Regularized Inference using TIme-stamped Expression profileS) for the inference of GRNs from single cell transcriptional profiles. We focused on time-stamped cross-sectional expression data, commonly generated from transcriptional profiling of single cells collected at multiple time points after cell stimulation. SINCERITIES recovers directed regulatory relationships among genes by employing regularized linear regression (ridge regression), using temporal changes in the distributions of gene expressions. Meanwhile, the modes of the gene regulations (activation and repression) come from partial correlation analyses between pairs of genes. We demonstrated the efficacy of SINCERITIES in inferring GRNs using in silico time-stamped single cell expression data and single cell transcriptional profiles of THP-1 monocytic human leukemia cells. The case studies showed that SINCERITIES could provide accurate GRN predictions, significantly better than other GRN inference algorithms such as TSNI, GENIE3 and JUMP3. Moreover, SINCERITIES has a low computational complexity and is amenable to problems of extremely large dimensionality. Finally, an application of SINCERITIES to single cell expression data of T2EC chicken erythrocytes pointed to BATF as a candidate novel regulator of erythroid development. The MATLAB and R version of SINCERITIES is freely available from the following websites: http://www.cabsel.ethz.ch/tools/sincerities.html and

  4. Analysis of Gene Regulatory Networks of Maize in Response to Nitrogen.

    Science.gov (United States)

    Jiang, Lu; Ball, Graham; Hodgman, Charlie; Coules, Anne; Zhao, Han; Lu, Chungui

    2018-03-08

    Nitrogen (N) fertilizer has a major influence on the yield and quality. Understanding and optimising the response of crop plants to nitrogen fertilizer usage is of central importance in enhancing food security and agricultural sustainability. In this study, the analysis of gene regulatory networks reveals multiple genes and biological processes in response to N. Two microarray studies have been used to infer components of the nitrogen-response network. Since they used different array technologies, a map linking the two probe sets to the maize B73 reference genome has been generated to allow comparison. Putative Arabidopsis homologues of maize genes were used to query the Biological General Repository for Interaction Datasets (BioGRID) network, which yielded the potential involvement of three transcription factors (TFs) (GLK5, MADS64 and bZIP108) and a Calcium-dependent protein kinase. An Artificial Neural Network was used to identify influential genes and retrieved bZIP108 and WRKY36 as significant TFs in both microarray studies, along with genes for Asparagine Synthetase, a dual-specific protein kinase and a protein phosphatase. The output from one study also suggested roles for microRNA (miRNA) 399b and Nin-like Protein 15 (NLP15). Co-expression-network analysis of TFs with closely related profiles to known Nitrate-responsive genes identified GLK5, GLK8 and NLP15 as candidate regulators of genes repressed under low Nitrogen conditions, while bZIP108 might play a role in gene activation.

  5. Transcriptional analysis of the jamaicamide gene cluster from the marine cyanobacterium Lyngbya majuscula and identification of possible regulatory proteins

    Directory of Open Access Journals (Sweden)

    Dorrestein Pieter C

    2009-12-01

    Full Text Available Abstract Background The marine cyanobacterium Lyngbya majuscula is a prolific producer of bioactive secondary metabolites. Although biosynthetic gene clusters encoding several of these compounds have been identified, little is known about how these clusters of genes are transcribed or regulated, and techniques targeting genetic manipulation in Lyngbya strains have not yet been developed. We conducted transcriptional analyses of the jamaicamide gene cluster from a Jamaican strain of Lyngbya majuscula, and isolated proteins that could be involved in jamaicamide regulation. Results An unusually long untranslated leader region of approximately 840 bp is located between the jamaicamide transcription start site (TSS and gene cluster start codon. All of the intergenic regions between the pathway ORFs were transcribed into RNA in RT-PCR experiments; however, a promoter prediction program indicated the possible presence of promoters in multiple intergenic regions. Because the functionality of these promoters could not be verified in vivo, we used a reporter gene assay in E. coli to show that several of these intergenic regions, as well as the primary promoter preceding the TSS, are capable of driving β-galactosidase production. A protein pulldown assay was also used to isolate proteins that may regulate the jamaicamide pathway. Pulldown experiments using the intergenic region upstream of jamA as a DNA probe isolated two proteins that were identified by LC-MS/MS. By BLAST analysis, one of these had close sequence identity to a regulatory protein in another cyanobacterial species. Protein comparisons suggest a possible correlation between secondary metabolism regulation and light dependent complementary chromatic adaptation. Electromobility shift assays were used to evaluate binding of the recombinant proteins to the jamaicamide promoter region. Conclusion Insights into natural product regulation in cyanobacteria are of significant value to drug discovery

  6. Regulatory polymorphisms in the bovine Ankyrin 1 gene promoter are associated with tenderness and intra-muscular fat content

    LENUS (Irish Health Repository)

    Aslan, Ozlem

    2010-12-15

    Abstract Background Recent QTL and gene expression studies have highlighted ankyrins as positional and functional candidate genes for meat quality. Our objective was to characterise the promoter region of the bovine ankyrin 1 gene and to test polymorphisms for association with sensory and technological meat quality measures. Results Seven novel promoter SNPs were identified in a 1.11 kb region of the ankyrin 1 promoter in Angus, Charolais and Limousin bulls (n = 15 per breed) as well as 141 crossbred beef animals for which meat quality data was available. Eighteen haplotypes were inferred with significant breed variation in haplotype frequencies. The five most frequent SNPs and the four most frequent haplotypes were subsequently tested for association with sensory and technological measures of meat quality in the crossbred population. SNP1, SNP3 and SNP4 (which were subsequently designated regulatory SNPs) and SNP5 were associated with traits that contribute to sensorial and technological measurements of tenderness and texture; Haplotype 1 and haplotype 4 were oppositely correlated with traits contributing to tenderness (P < 0.05). While no single SNP was associated with intramuscular fat (IMF), a clear association with increased IMF and juiciness was observed for haplotype 2. Conclusion The conclusion from this study is that alleles defining haplotypes 2 and 4 could usefully contribute to marker SNP panels used to select individuals with improved IMF\\/juiciness or tenderness in a genome-assisted selection framework.

  7. Regulatory polymorphisms in the bovine Ankyrin 1 gene promoter are associated with tenderness and intramuscular fat content.

    Science.gov (United States)

    Aslan, Ozlem; Sweeney, Torres; Mullen, Anne Maria; Hamill, Ruth M

    2010-12-15

    Recent QTL and gene expression studies have highlighted ankyrins as positional and functional candidate genes for meat quality. Our objective was to characterise the promoter region of the bovine ankyrin 1 gene and to test polymorphisms for association with sensory and technological meat quality measures. Seven novel promoter SNPs were identified in a 1.11 kb region of the ankyrin 1 promoter in Angus, Charolais and Limousin bulls (n = 15 per breed) as well as 141 crossbred beef animals for which meat quality data was available. Eighteen haplotypes were inferred with significant breed variation in haplotype frequencies. The five most frequent SNPs and the four most frequent haplotypes were subsequently tested for association with sensory and technological measures of meat quality in the crossbred population. SNP1, SNP3 and SNP4 (which were subsequently designated regulatory SNPs) and SNP5 were associated with traits that contribute to sensorial and technological measurements of tenderness and texture; Haplotype 1 and haplotype 4 were oppositely correlated with traits contributing to tenderness (P < 0.05). While no single SNP was associated with intramuscular fat (IMF), a clear association with increased IMF and juiciness was observed for haplotype 2. The conclusion from this study is that alleles defining haplotypes 2 and 4 could usefully contribute to marker SNP panels used to select individuals with improved IMF/juiciness or tenderness in a genome-assisted selection framework.

  8. Regulatory polymorphisms in the bovine Ankyrin 1 gene promoter are associated with tenderness and intramuscular fat content

    Directory of Open Access Journals (Sweden)

    Sweeney Torres

    2010-12-01

    Full Text Available Abstract Background Recent QTL and gene expression studies have highlighted ankyrins as positional and functional candidate genes for meat quality. Our objective was to characterise the promoter region of the bovine ankyrin 1 gene and to test polymorphisms for association with sensory and technological meat quality measures. Results Seven novel promoter SNPs were identified in a 1.11 kb region of the ankyrin 1 promoter in Angus, Charolais and Limousin bulls (n = 15 per breed as well as 141 crossbred beef animals for which meat quality data was available. Eighteen haplotypes were inferred with significant breed variation in haplotype frequencies. The five most frequent SNPs and the four most frequent haplotypes were subsequently tested for association with sensory and technological measures of meat quality in the crossbred population. SNP1, SNP3 and SNP4 (which were subsequently designated regulatory SNPs and SNP5 were associated with traits that contribute to sensorial and technological measurements of tenderness and texture; Haplotype 1 and haplotype 4 were oppositely correlated with traits contributing to tenderness (P Conclusion The conclusion from this study is that alleles defining haplotypes 2 and 4 could usefully contribute to marker SNP panels used to select individuals with improved IMF/juiciness or tenderness in a genome-assisted selection framework.

  9. The roles of cis- and trans-regulation in the evolution of regulatory incompatibilities and sexually dimorphic gene expression

    Science.gov (United States)

    Meiklejohn, Colin D.; Coolon, Joseph D.; Hartl, Daniel L.; Wittkopp, Patricia J.

    2014-01-01

    Evolutionary changes in gene expression underlie many aspects of phenotypic diversity within and among species. Understanding the genetic basis for evolved changes in gene expression is therefore an important component of a comprehensive understanding of the genetic basis of phenotypic evolution. Using interspecific introgression hybrids, we examined the genetic basis for divergence in genome-wide patterns of gene expression between Drosophila simulans and Drosophila mauritiana. We find that cis-regulatory and trans-regulatory divergences differ significantly in patterns of genetic architecture and evolution. The effects of cis-regulatory divergence are approximately additive in heterozygotes, quantitatively different between males and females, and well predicted by expression differences between the two parental species. In contrast, the effects of trans-regulatory divergence are associated with largely dominant introgressed alleles, have similar effects in the two sexes, and generate expression levels in hybrids outside the range of expression in both parental species. Although the effects of introgressed trans-regulatory alleles are similar in males and females, expression levels of the genes they regulate are sexually dimorphic between the parental D. simulans and D. mauritiana strains, suggesting that pure-species genotypes carry unlinked modifier alleles that increase sexual dimorphism in expression. Our results suggest that independent effects of cis-regulatory substitutions in males and females may favor their role in the evolution of sexually dimorphic phenotypes, and that trans-regulatory divergence is an important source of regulatory incompatibilities. PMID:24043293

  10. Efflux pump regulatory genes mutations in multidrug resistance Pseudomonas aeruginosa isolated from wound infections in Isfahan hospitals

    Directory of Open Access Journals (Sweden)

    Hamid Vaez

    2014-01-01

    Conclusions: P. aeruginosa isolates with mutation in efflux pump regulatory genes such as mexR and nfxB could be a main factor contributed to antibiotic resistance and must be considered in antibiotic treatment.

  11. Regulatory Autonomy and Molecular Characterization of the Drosophila Out at First Gene

    OpenAIRE

    Bergstrom, D. E.; Merli, C. A.; Cygan, J. A.; Shelby, R.; Blackman, R. K.

    1995-01-01

    Our previous work has shown that the expression of the Drosophila decapentaplegic (dpp) gene in imaginal disks is controlled by a 30 kb array of enhancers located 3' of the dpp coding region. Here, we describe the cloning and characterization of out at first (oaf), a gene located near this enhancer region. Transcription of oaf results in three classes of alternatively polyadenylated RNAs whose expression is developmentally regulated. All oaf transcripts contain two adjacent open reading frame...

  12. Directed partial correlation: inferring large-scale gene regulatory network through induced topology disruptions.

    Directory of Open Access Journals (Sweden)

    Yinyin Yuan

    Full Text Available Inferring regulatory relationships among many genes based on their temporal variation in transcript abundance has been a popular research topic. Due to the nature of microarray experiments, classical tools for time series analysis lose power since the number of variables far exceeds the number of the samples. In this paper, we describe some of the existing multivariate inference techniques that are applicable to hundreds of variables and show the potential challenges for small-sample, large-scale data. We propose a directed partial correlation (DPC method as an efficient and effective solution to regulatory network inference using these data. Specifically for genomic data, the proposed method is designed to deal with large-scale datasets. It combines the efficiency of partial correlation for setting up network topology by testing conditional independence, and the concept of Granger causality to assess topology change with induced interruptions. The idea is that when a transcription factor is induced artificially within a gene network, the disruption of the network by the induction signifies a genes role in transcriptional regulation. The benchmarking results using GeneNetWeaver, the simulator for the DREAM challenges, provide strong evidence of the outstanding performance of the proposed DPC method. When applied to real biological data, the inferred starch metabolism network in Arabidopsis reveals many biologically meaningful network modules worthy of further investigation. These results collectively suggest DPC is a versatile tool for genomics research. The R package DPC is available for download (http://code.google.com/p/dpcnet/.

  13. DNA methylation of PTEN gene promoter region is not correlated ...

    African Journals Online (AJOL)

    PTEN promoter hypermethylation has been found to be involved in many kinds of cancers. Up to date, no report about the relationships between methylation of PTEN promoter region and bladder cancer has been found. To investigate the methylation pattern of PTEN gene transcriptional regulation region (TRR), ...

  14. Association Mapping of Cell Wall Synthesis Regulatory Genes and Cell Wall Quality in Switchgrass

    Energy Technology Data Exchange (ETDEWEB)

    Bartley, Laura [Univ. of Oklahoma, Norman, OK (United States). Dept. of Microbiology and Plant Biology; Wu, Y. [Oklahoma State Univ., Stillwater, OK (United States); Zhu, L. [Oklahoma State Univ., Stillwater, OK (United States); Brummer, E. C. [Noble Foundation, Ardmore, OK (United States); Saha, M. [Noble Foundation, Ardmore, OK (United States)

    2016-05-31

    markers might be used to select switchgrass genotypes with improved composition in breeding programs for biofuel and forage production. Because the SSAC continues to be characterized by collaborators in the bioenergy community, the data generated will be used to identify additional markers in higher resolution genotyping data to approach identifying the genes and alleles that cause natural variation in switchgrass cell wall quality. For example, these markers can be surveyed in the 2100-member Oklahoma Southern and Northern Lowland switchgrass collections that this project also characterized. An orthogonal approach to biodiversity studies, using comparative functional genomics permits systematic querying of how much regulatory information is likely to be transferable from dicots to grasses and use of accumulated functional genomics resources for better-characterized grass species, such as rice, itself a biomass source in global agriculture and in certain regions. The project generated and tested a number of specific hypotheses regarding cell wall transcription factors and enzymes of grasses. To aid identification of cell wall regulators, the project assembled a novel, highdepth and -quality gene association network using a general linearized model scoring system to combine rice gene network data. Using known or putative orthologs of Arabidopsis cell wall biosynthesis genes and regulators, the project pulled from this network a cell wall sub-network that includes 96 transcription factors. Reverse genetics of a co-ortholog of the Arabidopsis MYB61 transcription factor in rice revealed that this regulatory node has evolved the ability to regulate grass-specific cell wall synthesis enzymes. A transcription factor with such activity has not been previously characterized to our knowledge, representing a major conclusion of this work. Changes in gene expression in a protoplast-based assay demonstrated positive or negative roles in cell wall regulation for eleven other

  15. An Organismal Model for Gene Regulatory Networks in the Gut-Associated Immune Response.

    Science.gov (United States)

    Buckley, Katherine M; Rast, Jonathan P

    2017-01-01

    The gut epithelium is an ancient site of complex communication between the animal immune system and the microbial world. While elements of self-non-self receptors and effector mechanisms differ greatly among animal phyla, some aspects of recognition, regulation, and response are broadly conserved. A gene regulatory network (GRN) approach provides a means to investigate the nature of this conservation and divergence even as more peripheral functional details remain incompletely understood. The sea urchin embryo is an unparalleled experimental model for detangling the GRNs that govern embryonic development. By applying this theoretical framework to the free swimming, feeding larval stage of the purple sea urchin, it is possible to delineate the conserved regulatory circuitry that regulates the gut-associated immune response. This model provides a morphologically simple system in which to efficiently unravel regulatory connections that are phylogenetically relevant to immunity in vertebrates. Here, we review the organism-wide cellular and transcriptional immune response of the sea urchin larva. A large set of transcription factors and signal systems, including epithelial expression of interleukin 17 (IL17), are important mediators in the activation of the early gut-associated response. Many of these have homologs that are active in vertebrate immunity, while others are ancient in animals but absent in vertebrates or specific to echinoderms. This larval model provides a means to experimentally characterize immune function encoded in the sea urchin genome and the regulatory interconnections that control immune response and resolution across the tissues of the organism.

  16. CRISPR-based strategies for studying regulatory elements and chromatin structure in mammalian gene control.

    Science.gov (United States)

    Lau, Cia-Hin; Suh, Yousin

    2017-12-01

    The development of high-throughput methods has enabled the genome-wide identification of putative regulatory elements in a wide variety of mammalian cells at an unprecedented resolution. Extensive genomic studies have revealed the important role of regulatory elements and genetic variation therein in disease formation and risk. In most cases, there is only correlative evidence for the roles of these elements and non-coding changes within these elements in pathogenesis. With the advent of genome- and epigenome-editing tools based on the CRISPR technology, it is now possible to test the functional relevance of the regulatory elements and alterations on a genomic scale. Here, we review the various CRISPR-based strategies that have been developed to functionally validate the candidate regulatory elements in mammals as well as the non-coding genetic variants found to be associated with human disease. We also discuss how these synthetic biology tools have helped to elucidate the role of three-dimensional nuclear architecture and higher-order chromatin organization in shaping functional genome and controlling gene expression.

  17. An Organismal Model for Gene Regulatory Networks in the Gut-Associated Immune Response

    Directory of Open Access Journals (Sweden)

    Katherine M. Buckley

    2017-10-01

    Full Text Available The gut epithelium is an ancient site of complex communication between the animal immune system and the microbial world. While elements of self-non-self receptors and effector mechanisms differ greatly among animal phyla, some aspects of recognition, regulation, and response are broadly conserved. A gene regulatory network (GRN approach provides a means to investigate the nature of this conservation and divergence even as more peripheral functional details remain incompletely understood. The sea urchin embryo is an unparalleled experimental model for detangling the GRNs that govern embryonic development. By applying this theoretical framework to the free swimming, feeding larval stage of the purple sea urchin, it is possible to delineate the conserved regulatory circuitry that regulates the gut-associated immune response. This model provides a morphologically simple system in which to efficiently unravel regulatory connections that are phylogenetically relevant to immunity in vertebrates. Here, we review the organism-wide cellular and transcriptional immune response of the sea urchin larva. A large set of transcription factors and signal systems, including epithelial expression of interleukin 17 (IL17, are important mediators in the activation of the early gut-associated response. Many of these have homologs that are active in vertebrate immunity, while others are ancient in animals but absent in vertebrates or specific to echinoderms. This larval model provides a means to experimentally characterize immune function encoded in the sea urchin genome and the regulatory interconnections that control immune response and resolution across the tissues of the organism.

  18. Gene Regulatory Scenarios of Primary 1,25-Dihydroxyvitamin D{sub 3} Target Genes in a Human Myeloid Leukemia Cell Line

    Energy Technology Data Exchange (ETDEWEB)

    Ryynänen, Jussi; Seuter, Sabine [School of Medicine, Institute of Biomedicine, University of Eastern Finland, POB 1627, Kuopio FI-70211 (Finland); Campbell, Moray J. [Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263 (United States); Carlberg, Carsten, E-mail: carsten.carlberg@uef.fi [School of Medicine, Institute of Biomedicine, University of Eastern Finland, POB 1627, Kuopio FI-70211 (Finland)

    2013-10-16

    Genome- and transcriptome-wide data has significantly increased the amount of available information about primary 1,25-dihydroxyvitamin D{sub 3} (1,25(OH){sub 2}D{sub 3}) target genes in cancer cell models, such as human THP-1 myelomonocytic leukemia cells. In this study, we investigated the genes G0S2, CDKN1A and MYC as master examples of primary vitamin D receptor (VDR) targets being involved in the control of cellular proliferation. The chromosomal domains of G0S2 and CDKN1A are 140–170 kb in size and contain one and three VDR binding sites, respectively. This is rather compact compared to the MYC locus that is 15 times larger and accommodates four VDR binding sites. All eight VDR binding sites were studied by chromatin immunoprecipitation in THP-1 cells. Interestingly, the site closest to the transcription start site of the down-regulated MYC gene showed 1,25(OH){sub 2}D{sub 3}-dependent reduction of VDR binding and is not associated with open chromatin. Four of the other seven VDR binding regions contain a typical DR3-type VDR binding sequence, three of which are also occupied with VDR in macrophage-like cells. In conclusion, the three examples suggest that each VDR target gene has an individual regulatory scenario. However, some general components of these scenarios may be useful for the development of new therapy regimens.

  19. A Systems’ Biology Approach to Study MicroRNA-Mediated Gene Regulatory Networks

    Directory of Open Access Journals (Sweden)

    Xin Lai

    2013-01-01

    Full Text Available MicroRNAs (miRNAs are potent effectors in gene regulatory networks where aberrant miRNA expression can contribute to human diseases such as cancer. For a better understanding of the regulatory role of miRNAs in coordinating gene expression, we here present a systems biology approach combining data-driven modeling and model-driven experiments. Such an approach is characterized by an iterative process, including biological data acquisition and integration, network construction, mathematical modeling and experimental validation. To demonstrate the application of this approach, we adopt it to investigate mechanisms of collective repression on p21 by multiple miRNAs. We first construct a p21 regulatory network based on data from the literature and further expand it using algorithms that predict molecular interactions. Based on the network structure, a detailed mechanistic model is established and its parameter values are determined using data. Finally, the calibrated model is used to study the effect of different miRNA expression profiles and cooperative target regulation on p21 expression levels in different biological contexts.

  20. Where we stand, where we are moving: Surveying computational techniques for identifying miRNA genes and uncovering their regulatory role

    KAUST Repository

    Kleftogiannis, Dimitrios A.

    2013-06-01

    Traditional biology was forced to restate some of its principles when the microRNA (miRNA) genes and their regulatory role were firstly discovered. Typically, miRNAs are small non-coding RNA molecules which have the ability to bind to the 3\\'untraslated region (UTR) of their mRNA target genes for cleavage or translational repression. Existing experimental techniques for their identification and the prediction of the target genes share some important limitations such as low coverage, time consuming experiments and high cost reagents. Hence, many computational methods have been proposed for these tasks to overcome these limitations. Recently, many researchers emphasized on the development of computational approaches to predict the participation of miRNA genes in regulatory networks and to analyze their transcription mechanisms. All these approaches have certain advantages and disadvantages which are going to be described in the present survey. Our work is differentiated from existing review papers by updating the methodologies list and emphasizing on the computational issues that arise from the miRNA data analysis. Furthermore, in the present survey, the various miRNA data analysis steps are treated as an integrated procedure whose aims and scope is to uncover the regulatory role and mechanisms of the miRNA genes. This integrated view of the miRNA data analysis steps may be extremely useful for all researchers even if they work on just a single step. © 2013 Elsevier Inc.

  1. Regulatory structures for gene therapy medicinal products in the European Union.

    Science.gov (United States)

    Klug, Bettina; Celis, Patrick; Carr, Melanie; Reinhardt, Jens

    2012-01-01

    Taking into account the complexity and technical specificity of advanced therapy medicinal products: (gene and cell therapy medicinal products and tissue engineered products), a dedicated European regulatory framework was needed. Regulation (EC) No. 1394/2007, the "ATMP Regulation" provides tailored regulatory principles for the evaluation and authorization of these innovative medicines. The majority of gene or cell therapy product development is carried out by academia, hospitals, and small- and medium-sized enterprises (SMEs). Thus, acknowledging the particular needs of these types of sponsors, the legislation also provides incentives for product development tailored to them. The European Medicines Agency (EMA) and, in particular, its Committee for Advanced Therapies (CAT) provide a variety of opportunities for early interaction with developers of ATMPs to enable them to have early regulatory and scientific input. An important tool to promote innovation and the development of new medicinal products by micro-, small-, and medium-sized enterprises is the EMA's SME initiative launched in December 2005 to offer financial and administrative assistance to smaller companies. The European legislation also foresees the involvement of stakeholders, such as patient organizations, in the development of new medicines. Considering that gene therapy medicinal products are developed in many cases for treatment of rare diseases often of monogenic origin, the involvement of patient organizations, which focus on rare diseases and genetic and congenital disorders, is fruitful. Two such organizations are represented in the CAT. Research networks play another important role in the development of gene therapy medicinal products. The European Commission is funding such networks through the EU Sixth Framework Program. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. The vasa regulatory region mediates germline expression and maternal transmission of proteins in the malaria mosquito Anopheles gambiae: a versatile tool for genetic control strategies

    Directory of Open Access Journals (Sweden)

    Burt Austin

    2009-07-01

    Full Text Available Abstract Background Germline specific promoters are an essential component of potential vector control strategies which function by genetic drive, however suitable promoters are not currently available for the main human malaria vector Anopheles gambiae. Results We have identified the Anopheles gambiae vasa-like gene and found its expression to be specifically localized to both the male and female gonads in adult mosquitoes. We have functionally characterised using transgenic reporter lines the regulatory regions required for driving transgene expression in a pattern mirroring that of the endogenous vasa locus. Two reporter constructs indicate the existence of distinct vasa regulatory elements within the 5' untranslated regions responsible not only for the spatial and temporal but also for the sex specific germline expression. vasa driven eGFP expression in the ovary of heterozygous mosquitoes resulted in the progressive accumulation of maternal protein and transcript in developing oocytes that were then detectable in all embryos and neonatal larvae. Conclusion We have characterized the vasa regulatory regions that are not only suited to drive transgenes in the early germline of both sexes but could also be utilized to manipulate the zygotic genome of developing embryos via maternal deposition of active molecules. We have used computational models to show that a homing endonuclease-based gene drive system can function in the presence of maternal deposition and describe a novel non-invasive control strategy based on early vasa driven homing endonuclease expression.

  3. Inference of Gene Regulatory Networks Using Bayesian Nonparametric Regression and Topology Information

    Science.gov (United States)

    2017-01-01

    Gene regulatory networks (GRNs) play an important role in cellular systems and are important for understanding biological processes. Many algorithms have been developed to infer the GRNs. However, most algorithms only pay attention to the gene expression data but do not consider the topology information in their inference process, while incorporating this information can partially compensate for the lack of reliable expression data. Here we develop a Bayesian group lasso with spike and slab priors to perform gene selection and estimation for nonparametric models. B-spline basis functions are used to capture the nonlinear relationships flexibly and penalties are used to avoid overfitting. Further, we incorporate the topology information into the Bayesian method as a prior. We present the application of our method on DREAM3 and DREAM4 datasets and two real biological datasets. The results show that our method performs better than existing methods and the topology information prior can improve the result. PMID:28133490

  4. Inference of Gene Regulatory Networks Using Bayesian Nonparametric Regression and Topology Information

    Directory of Open Access Journals (Sweden)

    Yue Fan

    2017-01-01

    Full Text Available Gene regulatory networks (GRNs play an important role in cellular systems and are important for understanding biological processes. Many algorithms have been developed to infer the GRNs. However, most algorithms only pay attention to the gene expression data but do not consider the topology information in their inference process, while incorporating this information can partially compensate for the lack of reliable expression data. Here we develop a Bayesian group lasso with spike and slab priors to perform gene selection and estimation for nonparametric models. B-spline basis functions are used to capture the nonlinear relationships flexibly and penalties are used to avoid overfitting. Further, we incorporate the topology information into the Bayesian method as a prior. We present the application of our method on DREAM3 and DREAM4 datasets and two real biological datasets. The results show that our method performs better than existing methods and the topology information prior can improve the result.

  5. A relative variation-based method to unraveling gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Yali Wang

    Full Text Available Gene regulatory network (GRN reconstruction is essential in understanding the functioning and pathology of a biological system. Extensive models and algorithms have been developed to unravel a GRN. The DREAM project aims to clarify both advantages and disadvantages of these methods from an application viewpoint. An interesting yet surprising observation is that compared with complicated methods like those based on nonlinear differential equations, etc., methods based on a simple statistics, such as the so-called Z-score, usually perform better. A fundamental problem with the Z-score, however, is that direct and indirect regulations can not be easily distinguished. To overcome this drawback, a relative expression level variation (RELV based GRN inference algorithm is suggested in this paper, which consists of three major steps. Firstly, on the basis of wild type and single gene knockout/knockdown experimental data, the magnitude of RELV of a gene is estimated. Secondly, probability for the existence of a direct regulation from a perturbed gene to a measured gene is estimated, which is further utilized to estimate whether a gene can be regulated by other genes. Finally, the normalized RELVs are modified to make genes with an estimated zero in-degree have smaller RELVs in magnitude than the other genes, which is used afterwards in queuing possibilities of the existence of direct regulations among genes and therefore leads to an estimate on the GRN topology. This method can in principle avoid the so-called cascade errors under certain situations. Computational results with the Size 100 sub-challenges of DREAM3 and DREAM4 show that, compared with the Z-score based method, prediction performances can be substantially improved, especially the AUPR specification. Moreover, it can even outperform the best team of both DREAM3 and DREAM4. Furthermore, the high precision of the obtained most reliable predictions shows that the suggested algorithm may be

  6. Regulatory elements associated with paternally-expressed genes in the imprinted murine Angelman/Prader-Willi syndrome domain.

    Directory of Open Access Journals (Sweden)

    Sara Rodriguez-Jato

    Full Text Available The Angelman/Prader-Willi syndrome (AS/PWS domain contains at least 8 imprinted genes regulated by a bipartite imprinting center (IC associated with the SNRPN gene. One component of the IC, the PWS-IC, governs the paternal epigenotype and expression of paternal genes. The mechanisms by which imprinting and expression of paternal genes within the AS/PWS domain - such as MKRN3 and NDN - are regulated by the PWS-IC are unclear. The syntenic region in the mouse is organized and imprinted similarly to the human domain with the murine PWS-IC defined by a 6 kb interval within the Snrpn locus that includes the promoter. To identify regulatory elements that may mediate PWS-IC function, we mapped the location and allele-specificity of DNase I hypersensitive (DH sites within the PWS-IC in brain cells, then identified transcription factor binding sites within a subset of these DH sites. Six major paternal-specific DH sites were detected in the Snrpn gene, five of which map within the 6 kb PWS-IC. We postulate these five DH sites represent functional components of the murine PWS-IC. Analysis of transcription factor binding within multiple DH sites detected nuclear respiratory factors (NRF's and YY1 specifically on the paternal allele. NRF's and YY1 were also detected in the paternal promoter region of the murine Mrkn3 and Ndn genes. These results suggest that NRF's and YY1 may facilitate PWS-IC function and coordinately regulate expression of paternal genes. The presence of NRF's also suggests a link between transcriptional regulation within the AS/PWS domain and regulation of respiration. 3C analyses indicated Mkrn3 lies in close proximity to the PWS-IC on the paternal chromosome, evidence that the PWS-IC functions by allele-specific interaction with its distal target genes. This could occur by allele-specific co-localization of the PWS-IC and its target genes to transcription factories containing NRF's and YY1.

  7. Positive- and negative-acting regulatory elements contribute to the tissue-specific expression of INNER NO OUTER, a YABBY-type transcription factor gene in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Simon Marissa K

    2012-11-01

    Full Text Available Abstract Background The INNER NO OUTER (INO gene, which encodes a YABBY-type transcription factor, specifies and promotes the growth of the outer integument of the ovule in Arabidopsis. INO expression is limited to the abaxial cell layer of the developing outer integument of the ovule and is regulated by multiple regions of the INO promoter, including POS9, a positive element that when present in quadruplicate can produce low-level expression in the normal INO pattern. Results Significant redundancy in activity between different regions of the INO promoter is demonstrated. For specific regulatory elements, multimerization or the addition of the cauliflower mosaic virus 35S general enhancer was able to activate expression of reporter gene constructs that were otherwise incapable of expression on their own. A new promoter element, POS6, is defined and is shown to include sufficient positive regulatory information to reproduce the endogenous pattern of expression in ovules, but other promoter regions are necessary to fully suppress expression outside of ovules. The full-length INO promoter, but not any of the INO promoter deletions tested, is able to act as an enhancer-blocking insulator to prevent the ectopic activation of expression by the 35S enhancer. Sequence conservation between the promoter regions of Arabidopsis thaliana, Brassica oleracea and Brassica rapa aligns closely with the functional definition of the POS6 and POS9 regions, and with a defined INO minimal promoter. The B. oleracea INO promoter is sufficient to promote a similar pattern and level of reporter gene expression in Arabidopsis to that observed for the Arabidopsis promoter. Conclusions At least two independent regions of the INO promoter contain sufficient regulatory information to direct the specific pattern but not the level of INO gene expression. These regulatory regions act in a partially redundant manner to promote the expression in a specific pattern in the ovule and

  8. Identification of Cis-regulatory Elements of Butyrophilin Gene of the ...

    African Journals Online (AJOL)

    DNA sequences were masked using CENSOR. The multiple sequence analysis revealed nine highly conserved regions of similarities in the 5'- flanking region of butyrophilin genes across species. Consensus putative transcription factor binding sites were identified using MatInspector and compared with SiteGA results.

  9. Using single-index ODEs to study dynamic gene regulatory network

    Science.gov (United States)

    Zhang, Qi; Yu, Yao; Zhang, Jun

    2018-01-01

    With the development of biotechnology, high-throughput studies on protein-protein, protein-gene, and gene-gene interactions become possible and attract remarkable attention. To explore the interactions in dynamic gene regulatory networks, we propose a single-index ordinary differential equation (ODE) model and develop a variable selection procedure. We employ the smoothly clipped absolute deviation penalty (SCAD) penalized function for variable selection. We analyze a yeast cell cycle gene expression data set to illustrate the usefulness of the single-index ODE model. In real data analysis, we group genes into functional modules using the smoothing spline clustering approach. We estimate state functions and their first derivatives for functional modules using penalized spline-based nonparametric mixed-effects models and the spline method. We substitute the estimates into the single-index ODE models, and then use the penalized profile least-squares procedure to identify network structures among the models. The results indicate that our model fits the data better than linear ODE models and our variable selection procedure identifies the interactions that may be missed by linear ODE models but confirmed in biological studies. In addition, Monte Carlo simulation studies are used to evaluate and compare the methods. PMID:29474376

  10. Bivalent Chromatin Marks Developmental Regulatory Genes in the Mouse Embryonic Germline In Vivo

    Directory of Open Access Journals (Sweden)

    Michael Sachs

    2013-06-01

    Full Text Available Developmental regulatory genes have both activating (H3K4me3 and repressive (H3K27me3 histone modifications in embryonic stem cells (ESCs. This bivalent configuration is thought to maintain lineage commitment programs in a poised state. However, establishing physiological relevance has been complicated by the high number of cells required for chromatin immunoprecipitation (ChIP. We developed a low-cell-number chromatin immunoprecipitation (low-cell ChIP protocol to investigate the chromatin of mouse primordial germ cells (PGCs. Genome-wide analysis of embryonic day 11.5 (E11.5 PGCs revealed H3K4me3/H3K27me3 bivalent domains highly enriched at developmental regulatory genes in a manner remarkably similar to ESCs. Developmental regulators remain bivalent and transcriptionally silent through the initiation of sexual differentiation at E13.5. We also identified >2,500 “orphan” bivalent domains that are distal to known genes and expressed in a tissue-specific manner but silent in PGCs. Our results demonstrate the existence of bivalent domains in the germline and raise the possibility that the somatic program is continuously maintained as bivalent, potentially imparting transgenerational epigenetic inheritance.

  11. Shaping skeletal growth by modular regulatory elements in the Bmp5 gene.

    Directory of Open Access Journals (Sweden)

    Catherine Guenther

    2008-12-01

    Full Text Available Cartilage and bone are formed into a remarkable range of shapes and sizes that underlie many anatomical adaptations to different lifestyles in vertebrates. Although the morphological blueprints for individual cartilage and bony structures must somehow be encoded in the genome, we currently know little about the detailed genomic mechanisms that direct precise growth patterns for particular bones. We have carried out large-scale enhancer surveys to identify the regulatory architecture controlling developmental expression of the mouse Bmp5 gene, which encodes a secreted signaling molecule required for normal morphology of specific skeletal features. Although Bmp5 is expressed in many skeletal precursors, different enhancers control expression in individual bones. Remarkably, we show here that different enhancers also exist for highly restricted spatial subdomains along the surface of individual skeletal structures, including ribs and nasal cartilages. Transgenic, null, and regulatory mutations confirm that these anatomy-specific sequences are sufficient to trigger local changes in skeletal morphology and are required for establishing normal growth rates on separate bone surfaces. Our findings suggest that individual bones are composite structures whose detailed growth patterns are built from many smaller lineage and gene expression domains. Individual enhancers in BMP genes provide a genomic mechanism for controlling precise growth domains in particular cartilages and bones, making it possible to separately regulate skeletal anatomy at highly specific locations in the body.

  12. Patterns of positive selection of the myogenic regulatory factor gene family in vertebrates.

    Science.gov (United States)

    Zhao, Xiao; Yu, Qi; Huang, Ling; Liu, Qing-Xin

    2014-01-01

    The functional divergence of transcriptional factors is critical in the evolution of transcriptional regulation. However, the mechanism of functional divergence among these factors remains unclear. Here, we performed an evolutionary analysis for positive selection in members of the myogenic regulatory factor (MRF) gene family of vertebrates. We selected 153 complete vertebrate MRF nucleotide sequences from our analyses, which revealed substantial evidence of positive selection. Here, we show that sites under positive selection were more frequently detected and identified from the genes encoding the myogenic differentiation factors (MyoG and Myf6) than the genes encoding myogenic determination factors (Myf5 and MyoD). Additionally, the functional divergence within the myogenic determination factors or differentiation factors was also under positive selection pressure. The positive selection sites were more frequently detected from MyoG and MyoD than Myf6 and Myf5, respectively. Amino acid residues under positive selection were identified mainly in their transcription activation domains and on the surface of protein three-dimensional structures. These data suggest that the functional gain and divergence of myogenic regulatory factors were driven by distinct positive selection of their transcription activation domains, whereas the function of the DNA binding domains was conserved in evolution. Our study evaluated the mechanism of functional divergence of the transcriptional regulation factors within a family, whereby the functions of their transcription activation domains diverged under positive selection during evolution.

  13. Functional characterization of genetic polymorphisms identified in the promoter region of the bovine PEPS gene.

    Science.gov (United States)

    Ju, Zhihua; Zheng, Xue; Huang, Jinming; Qi, Chao; Zhang, Yan; Li, Jianbin; Zhong, Jifeng; Wang, Changfa

    2012-06-01

    Peptidase S (PEPS) is a metallopeptidase that cleaves N-terminal residues from proteins and peptides. PEPS is used as a cell maintenance enzyme with critical roles in peptide turnover. The promoter region located upstream of the initiation site plays an important role in regulating gene expression. Polymorphism in the promoter region can alter gene expression and lead to biological changes. In the current study, polymorphisms in the promoter region of the PEPS gene were investigated. Polymerase chain reaction (PCR)-restriction fragment length polymorphism and DNA sequencing methods were used to screen sequence variations in the promoter region of DNA samples from 743 Chinese Holstein cattle. Two polymorphisms (g. -534 T>C and g. -2545 G>A) were identified and eight haplotypes were classified by haplotype analysis. The two genetic polymorphisms and haplotypes were associated with fat percentage and somatic cell score in Chinese Holstein cattle. The results of real-time PCR showed that cow kidneys exhibit the highest PEPS expression level. Moreover, bioinformatics analysis predicted that the single-nucleotide polymorphism g. -534 T>C is located in the core promoter region and in the transcription factor binding sites. The promoter activities of the polymorphism of -543 T>C were measured by luciferase assay in the human kidney epithelial cell line 293T. Transcriptional activity is significantly lower in cell lines transfected with the reporter construct containing 2.5 kb upstream fragments with -543 C than in those with wild-type -543 T. The results indicated that genetic variation at locus -543 influences PEPS promoter activity. The genetic variation in the promoter region of PEPS gene may regulate PEPS gene transcription and might have consequences at a regulatory level.

  14. Evaluation of artificial time series microarray data for dynamic gene regulatory network inference.

    Science.gov (United States)

    Xenitidis, P; Seimenis, I; Kakolyris, S; Adamopoulos, A

    2017-08-07

    High-throughput technology like microarrays is widely used in the inference of gene regulatory networks (GRNs). We focused on time series data since we are interested in the dynamics of GRNs and the identification of dynamic networks. We evaluated the amount of information that exists in artificial time series microarray data and the ability of an inference process to produce accurate models based on them. We used dynamic artificial gene regulatory networks in order to create artificial microarray data. Key features that characterize microarray data such as the time separation of directly triggered genes, the percentage of directly triggered genes and the triggering function type were altered in order to reveal the limits that are imposed by the nature of microarray data on the inference process. We examined the effect of various factors on the inference performance such as the network size, the presence of noise in microarray data, and the network sparseness. We used a system theory approach and examined the relationship between the pole placement of the inferred system and the inference performance. We examined the relationship between the inference performance in the time domain and the true system parameter identification. Simulation results indicated that time separation and the percentage of directly triggered genes are crucial factors. Also, network sparseness, the triggering function type and noise in input data affect the inference performance. When two factors were simultaneously varied, it was found that variation of one parameter significantly affects the dynamic response of the other. Crucial factors were also examined using a real GRN and acquired results confirmed simulation findings with artificial data. Different initial conditions were also used as an alternative triggering approach. Relevant results confirmed that the number of datasets constitutes the most significant parameter with regard to the inference performance. Copyright © 2017 Elsevier

  15. Bayesian Orthogonal Least Squares (BOLS algorithm for reverse engineering of gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Kim Chang

    2007-07-01

    Full Text Available Abstract Background A reverse engineering of gene regulatory network with large number of genes and limited number of experimental data points is a computationally challenging task. In particular, reverse engineering using linear systems is an underdetermined and ill conditioned problem, i.e. the amount of microarray data is limited and the solution is very sensitive to noise in the data. Therefore, the reverse engineering of gene regulatory networks with large number of genes and limited number of data points requires rigorous optimization algorithm. Results This study presents a novel algorithm for reverse engineering with linear systems. The proposed algorithm is a combination of the orthogonal least squares, second order derivative for network pruning, and Bayesian model comparison. In this study, the entire network is decomposed into a set of small networks that are defined as unit networks. The algorithm provides each unit network with P(D|Hi, which is used as confidence level. The unit network with higher P(D|Hi has a higher confidence such that the unit network is correctly elucidated. Thus, the proposed algorithm is able to locate true positive interactions using P(D|Hi, which is a unique property of the proposed algorithm. The algorithm is evaluated with synthetic and Saccharomyces cerevisiae expression data using the dynamic Bayesian network. With synthetic data, it is shown that the performance of the algorithm depends on the number of genes, noise level, and the number of data points. With Yeast expression data, it is shown that there is remarkable number of known physical or genetic events among all interactions elucidated by the proposed algorithm. The performance of the algorithm is compared with Sparse Bayesian Learning algorithm using both synthetic and Saccharomyces cerevisiae expression data sets. The comparison experiments show that the algorithm produces sparser solutions with less false positives than Sparse Bayesian

  16. Lessons from a gene regulatory network: echinoderm skeletogenesis provides insights into evolution, plasticity and morphogenesis.

    Science.gov (United States)

    Ettensohn, Charles A

    2009-01-01

    Significant new insights have emerged from the analysis of a gene regulatory network (GRN) that underlies the development of the endoskeleton of the sea urchin embryo. Comparative studies have revealed ways in which this GRN has been modified (and conserved) during echinoderm evolution, and point to mechanisms associated with the evolution of a new cell lineage. The skeletogenic GRN has also recently been used to study the long-standing problem of developmental plasticity. Other recent findings have linked this transcriptional GRN to morphoregulatory proteins that control skeletal anatomy. These new studies highlight powerful new ways in which GRNs can be used to dissect development and the evolution of morphogenesis.

  17. Supervised, semi-supervised and unsupervised inference of gene regulatory networks.

    Science.gov (United States)

    Maetschke, Stefan R; Madhamshettiwar, Piyush B; Davis, Melissa J; Ragan, Mark A

    2014-03-01

    Inference of gene regulatory network from expression data is a challenging task. Many methods have been developed to this purpose but a comprehensive evaluation that covers unsupervised, semi-supervised and supervised methods, and provides guidelines for their practical application, is lacking. We performed an extensive evaluation of inference methods on simulated and experimental expression data. The results reveal low prediction accuracies for unsupervised techniques with the notable exception of the Z-SCORE method on knockout data. In all other cases, the supervised approach achieved the highest accuracies and even in a semi-supervised setting with small numbers of only positive samples, outperformed the unsupervised techniques.

  18. Identification of genes from the Treacher Collins candidate region

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, M.; Dixon, J.; Edwards, S. [Univ. of California, Irvine, CA (United States)]|[Univ. of Manchester (United Kingdom)] [and others

    1994-09-01

    Treacher Collins syndrome (TCOF1) is an autosomal dominant disorder of craniofacial development. The TCOF1 locus has previously been mapped to chromosome 5q32-33. The candidate gene region has been defined as being between two flanking markers, ribosomal protein S14 (RPS14) and Annexin 6 (ANX6), by analyzing recombination events in affected individuals. It is estimated that the distance between these flanking markers is 500 kb by three separate analysis methods: (1) radiation hybrid mapping; (2) genetic linkage; and (3) YAC contig analysis. A cosmid contig which spans the candidate gene region for TCOF1 has been constructed by screening the Los Alamos National Laboratory flow-sorted chromosome 5 cosmid library. Cosmids were obtained by using a combination of probes generated from YAC end clones, Alu-PCR fragments from YACs, and asymmetric PCR fragments from both T7 and T3 cosmid ends. Exon amplifications, the selection of genomic coding sequences based upon the presence of functional splice acceptor and donor sites, was used to identify potential exon sequences. Sequences found to be conserved between species were then used to screen cDNA libraries in order to identify candidate genes. To date, four different cDNAs have been isolated from this region and are being analyzed as potential candidate genes for TCOF1. These include the genes encoding plasma glutathione peroxidase (GPX3), heparin sulfate sulfotransferase (HSST), a gene with homology to the ETS family of proteins and one which shows no homology to any known genes. Work is also in progress to identify and characterize additional cDNAs from the candidate gene region.

  19. Analysis of Gene Regulatory Networks of Maize in Response to Nitrogen

    Directory of Open Access Journals (Sweden)

    Lu Jiang

    2018-03-01

    Full Text Available Nitrogen (N fertilizer has a major influence on the yield and quality. Understanding and optimising the response of crop plants to nitrogen fertilizer usage is of central importance in enhancing food security and agricultural sustainability. In this study, the analysis of gene regulatory networks reveals multiple genes and biological processes in response to N. Two microarray studies have been used to infer components of the nitrogen-response network. Since they used different array technologies, a map linking the two probe sets to the maize B73 reference genome has been generated to allow comparison. Putative Arabidopsis homologues of maize genes were used to query the Biological General Repository for Interaction Datasets (BioGRID network, which yielded the potential involvement of three transcription factors (TFs (GLK5, MADS64 and bZIP108 and a Calcium-dependent protein kinase. An Artificial Neural Network was used to identify influential genes and retrieved bZIP108 and WRKY36 as significant TFs in both microarray studies, along with genes for Asparagine Synthetase, a dual-specific protein kinase and a protein phosphatase. The output from one study also suggested roles for microRNA (miRNA 399b and Nin-like Protein 15 (NLP15. Co-expression-network analysis of TFs with closely related profiles to known Nitrate-responsive genes identified GLK5, GLK8 and NLP15 as candidate regulators of genes repressed under low Nitrogen conditions, while bZIP108 might play a role in gene activation.

  20. Gene expression profiling reveals large regulatory switches between succeeding stipe stages in Volvariella volvacea.

    Directory of Open Access Journals (Sweden)

    Yongxin Tao

    Full Text Available The edible mushroom Volvariella volvacea is an important crop in Southeast Asia and is predominantly harvested in the egg stage. One of the main factors that negatively affect its yield and value is the rapid transition from the egg to the elongation stage, which has a decreased commodity value and shelf life. To improve our understanding of the changes during stipe development and the transition from egg to elongation stage in particular, we analyzed gene transcription in stipe tissue of V. volvacea using 3'-tag based digital expression profiling. Stipe development turned out to be fairly complex with high numbers of expressed genes, and regulation of stage differences is mediated mainly by changes in expression levels of genes, rather than on/off modulation. Most explicit is the strong up-regulation of cell division from button to egg, and the very strong down-regulation hereof from egg to elongation, that continues in the maturation stage. Button and egg share cell division as means of growth, followed by a major developmental shift towards rapid stipe elongation based on cell extension as demonstrated by inactivation of cell division throughout elongation and maturation. Examination of regulatory genes up-regulated from egg to elongation identified three potential high upstream regulators for this switch. The new insights in stipe dynamics, together with a series of new target genes, will provide a sound base for further studies on the developmental mechanisms of mushroom stipes and the switch from egg to elongation in V. volvacea in particular.

  1. Intervention in gene regulatory networks via a stationary mean-first-passage-time control policy.

    Science.gov (United States)

    Vahedi, Golnaz; Faryabi, Babak; Chamberland, Jean-Francois; Datta, Aniruddha; Dougherty, Edward R

    2008-10-01

    A prime objective of modeling genetic regulatory networks is the identification of potential targets for therapeutic intervention. To date, optimal stochastic intervention has been studied in the context of probabilistic Boolean networks, with the control policy based on the transition probability matrix of the associated Markov chain and dynamic programming used to find optimal control policies. Dynamical programming algorithms are problematic owing to their high computational complexity. Two additional computationally burdensome issues that arise are the potential for controlling the network and identifying the best gene for intervention. This paper proposes an algorithm based on mean first-passage time that assigns a stationary control policy for each gene candidate. It serves as an approximation to an optimal control policy and, owing to its reduced computational complexity, can be used to predict the best control gene. Once the best control gene is identified, one can derive an optimal policy or simply utilize the approximate policy for this gene when the network size precludes a direct application of dynamic programming algorithms. A salient point is that the proposed algorithm can be model-free. It can be directly designed from time-course data without having to infer the transition probability matrix of the network.

  2. Expression of NAC1 up-stream regulatory region and its relationship to the lateral root initiation induced by gibberellins and auxins.

    Science.gov (United States)

    Wang, Youhua; Duan, Liusheng; Lu, Mengzhu; Li, Zhaohu; Wang, Minjie; Zhai, Zhixi

    2006-10-01

    A 1050 bp up-stream regulatory fragment of the transcription factor gene NAC1 in Arabidopsis thaliana was isolated using polymerase chain reaction (PCR) based techniques. The fragment was used to substitute the 35S promoter of the pBI121 plasmid to construct a beta-glucuronidase gene (GUS) expression system. The construct was introduced into tobacco (Nicotiana tabaccum) plants by the Agrobacterium-mediated transferring method. GUS expression pattern was studied by using the transgenic lines. The results showed that the GUS driven by the NAC1 up-stream regulatory region was specifically expressed in the root meristem region, basal areas of the lateral root primordium and the lateral roots. The GUS expression was induced by 3-indolebutyric acid (IBA) and gibberellins (GA3 and GA4+7). The results indicated that the up-stream regulatory fragment of NAC1 responded to plant hormones. The fragment might be involved in both auxins and gibberellins signaling in promoting the development of lateral roots.

  3. Global gene expression profiling in Escherichia coli K12. The effects of leucine-responsive regulatory protein.

    Science.gov (United States)

    Hung, She-pin; Baldi, Pierre; Hatfield, G Wesley

    2002-10-25

    Leucine-responsive regulatory protein (Lrp) is a global regulatory protein that affects the expression of multiple genes and operons in bacteria. Although the physiological purpose of Lrp-mediated gene regulation remains unclear, it has been suggested that it functions to coordinate cellular metabolism with the nutritional state of the environment. The results of gene expression profiles between otherwise isogenic lrp(+) and lrp(-) strains of Escherichia coli support this suggestion. The newly discovered Lrp-regulated genes reported here are involved either in small molecule or macromolecule synthesis or degradation, or in small molecule transport and environmental stress responses. Although many of these regulatory effects are direct, others are indirect consequences of Lrp-mediated changes in the expression levels of other global regulatory proteins. Because computational methods to analyze and interpret high dimensional DNA microarray data are still an early stage, much of the emphasis of this work is directed toward the development of methods to identify differentially expressed genes with a high level of confidence. In particular, we describe a Bayesian statistical framework for a posterior estimate of the standard deviation of gene measurements based on a limited number of replications. We also describe an algorithm to compute a posterior estimate of differential expression for each gene based on the experiment-wide global false positive and false negative level for a DNA microarray data set. This allows the experimenter to compute posterior probabilities of differential expression for each individual differential gene expression measurement.

  4. Heterologous expression of the pneumococcal serotype 14 polysaccharide in Lactococcus lactis requires lactococcal epsABC regulatory genes

    NARCIS (Netherlands)

    Nierop Groot, M.N.; Godefrooij, J.; Kleerebezem, M.

    2008-01-01

    The pneumococcal serotype 14 polysaccharide was produced in Lactococcus lactis by coexpressing pneumococcal polysaccharide type 14-specific genes (cpsFGHIJKL(14)) with the lactococcal regulatory and priming glucosyltransferase-encoding genes specific for B40 polysaccharide (epsABCD(B40)). The

  5. What makes the lac-pathway switch : identifying the fluctuations that trigger phenotype switching in gene regulatory systems

    NARCIS (Netherlands)

    Bhogale, Prasanna M; Sorg, Robin A; Veening, Jan-Willem; Berg, Johannes

    2014-01-01

    Multistable gene regulatory systems sustain different levels of gene expression under identical external conditions. Such multistability is used to encode phenotypic states in processes including nutrient uptake and persistence in bacteria, fate selection in viral infection, cell-cycle control and

  6. Toward understanding the evolution of vertebrate gene regulatory networks: comparative genomics and epigenomic approaches.

    Science.gov (United States)

    Martinez-Morales, Juan R

    2016-07-01

    Vertebrates, as most animal phyla, originated >500 million years ago during the Cambrian explosion, and progressively radiated into the extant classes. Inferring the evolutionary history of the group requires understanding the architecture of the developmental programs that constrain the vertebrate anatomy. Here, I review recent comparative genomic and epigenomic studies, based on ChIP-seq and chromatin accessibility, which focus on the identification of functionally equivalent cis-regulatory modules among species. This pioneer work, primarily centered in the mammalian lineage, has set the groundwork for further studies in representative vertebrate and chordate species. Mapping of active regulatory regions across lineages will shed new light on the evolutionary forces stabilizing ancestral developmental programs, as well as allowing their variation to sustain morphological adaptations on the inherited vertebrate body plan. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Developmental evolution in social insects: regulatory networks from genes to societies.

    Science.gov (United States)

    Linksvayer, Timothy A; Fewell, Jennifer H; Gadau, Jürgen; Laubichler, Manfred D

    2012-05-01

    The evolution and development of complex phenotypes in social insect colonies, such as queen-worker dimorphism or division of labor, can, in our opinion, only be fully understood within an expanded mechanistic framework of Developmental Evolution. Conversely, social insects offer a fertile research area in which fundamental questions of Developmental Evolution can be addressed empirically. We review the concept of gene regulatory networks (GRNs) that aims to fully describe the battery of interacting genomic modules that are differentially expressed during the development of individual organisms. We discuss how distinct types of network models have been used to study different levels of biological organization in social insects, from GRNs to social networks. We propose that these hierarchical networks spanning different organizational levels from genes to societies should be integrated and incorporated into full GRN models to elucidate the evolutionary and developmental mechanisms underlying social insect phenotypes. Finally, we discuss prospects and approaches to achieve such an integration. © 2012 WILEY PERIODICALS, INC.

  8. Manipulation of regulatory genes reveals complexity and fidelity in hormaomycin biosynthesis.

    Science.gov (United States)

    Cai, Xiaofeng; Teta, Roberta; Kohlhaas, Christoph; Crüsemann, Max; Ueoka, Reiko; Mangoni, Alfonso; Freeman, Michael F; Piel, Jörn

    2013-06-20

    Hormaomycin (HRM) is a structurally remarkable peptide produced by Streptomyces griseoflavus W-384 that acts as a Streptomyces signaling metabolite and exhibits potent antibiotic activity against coryneform actinomycetes. HRM biosynthetic studies have been hampered by inconsistent and low production. To enhance fermentation titers, the role of its cluster-encoded regulatory genes was investigated. Extra copies of the putative regulators hrmA and hrmB were introduced into the wild-type strain, resulting in an increase of HRM production and its analogs up to 135-fold. For the HrmB overproducer, six bioactive analogs were isolated and characterized. This study demonstrates that HrmA and HrmB are positive regulators in HRM biosynthesis. A third gene, hrmH, was identified as encoding a protein capable of shifting the metabolic profile of HRM and its derivatives. Its manipulation resulted in the generation of an additional HRM analog. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Short-Circuiting Gene Regulatory Networks: Origins of B Cell Lymphoma

    Science.gov (United States)

    Koues, Olivia I.; Oltz, Eugene M.; Payton, Jacqueline E.

    2015-01-01

    B cell lymphomas (BCL) are characterized by widespread deregulation of gene expression when compared with their normal B cell counterparts. Recent epigenomic studies defined cis-regulatory elements (REs) whose activities are altered in BCL to drive some of these pathogenic expression changes. During transformation, multiple mechanisms are employed to alter RE activities, including perturbations in the function of chromatin modifiers, which can lead to revision of the B cell epigenome. Inherited and somatic variants also alter RE function via disruption of TF binding. Aberrant expression of non-coding RNAs deregulates genes involved in B cell differentiation via direct repression and post-transcriptional targeting. These discoveries have established epigenetic etiologies for B cell transformation that are being exploited by novel therapeutic approaches. PMID:26604030

  10. Two potential hookworm DAF-16 target genes, SNR-3 and LPP-1: gene structure, expression profile, and implications of a cis-regulatory element in the regulation of gene expression.

    Science.gov (United States)

    Gao, Xin; Goggin, Kevin; Dowling, Camille; Qian, Jason; Hawdon, John M

    2015-01-08

    Hookworms infect nearly 700 million people, causing anemia and developmental stunting in heavy infections. Little is known about the genomic structure or gene regulation in hookworms, although recent publication of draft genome assemblies has allowed the first investigations of these topics to be undertaken. The transcription factor DAF-16 mediates multiple developmental pathways in the free living nematode Caenorhabditis elegans, and is involved in the recovery from the developmentally arrested L3 in hookworms. Identification of downstream targets of DAF-16 will provide a better understanding of the molecular mechanism of hookworm infection. Genomic Fragment 2.23 containing a DAF-16 binding element (DBE) was used to identify overlapping complementary expressed sequence tags (ESTs). These sequences were used to search a draft assembly of the Ancylostoma caninum genome, and identified two neighboring genes, snr-3 and lpp-1, in a tail-to-tail orientation. Expression patterns of both genes during parasitic development were determined by qRT-PCR. DAF-16 dependent cis-regulatory activity of fragment 2.23 was investigated using an in vitro reporter system. The snr-3 gene spans approximately 5.6 kb in the genome and contains 3 exons and 2 introns, and contains the DBE in its 3' untranslated region. Downstream from snr-3 in a tail-to-tail arrangement is the gene lpp-1. The lpp-1 gene spans more than 6 kb and contains 10 exons and 9 introns. The A. caninum genome contains 2 apparent splice variants, but there are 7 splice variants in the A. ceylanicum genome. While the gene order is similar, the gene structures of the hookworm genes differ from their C. elegans orthologs. Both genes show peak expression in the late L4 stage. Using a cell culture based expression system, fragment 2.23 was found to have both DAF-16-dependent promoter and enhancer activity that required an intact DBE. Two putative DAF-16 targets were identified by genome wide screening for DAF-16 binding

  11. A Gene Regulatory Network Cooperatively Controlled by Pdx1 and Sox9 Governs Lineage Allocation of Foregut Progenitor Cells

    DEFF Research Database (Denmark)

    Shih, Hung Ping; Seymour, Philip A; Patel, Nisha A

    2015-01-01

    9 as cooperative inducers of a gene regulatory network that distinguishes the pancreatic from the intestinal lineage. Genetic studies demonstrate dual and cooperative functions for Pdx1 and Sox9 in pancreatic lineage induction and repression of the intestinal lineage choice. Pdx1 and Sox9 bind...... to regulatory sequences near pancreatic and intestinal differentiation genes and jointly regulate their expression, revealing direct cooperative roles for Pdx1 and Sox9 in gene activation and repression. Our study identifies Pdx1 and Sox9 as important regulators of a transcription factor network that initiates...... pancreatic fate and sheds light on the gene regulatory circuitry that governs the development of distinct organs from multi-lineage-competent foregut progenitors....

  12. Lysozyme gene activity in chicken macrophages is controlled by positive and negative regulatory elements.

    OpenAIRE

    Steiner, C; Muller, M; Baniahmad, A; Renkawitz, R

    1987-01-01

    The chicken lysozyme gene is constitutively active in macrophages and under the control of steroid hormones in the oviduct. To investigate which DNA elements are involved in the control of its expression in macrophages we performed transient DNA transfer experiments with two different types of plasmids: 5'-deletion mutants of the upstream region of the chicken lysozyme gene and different fragments from this area in front of the thymidine kinase promoter (herpes simplex virus), each placed in ...

  13. Recurrent neural network based hybrid model for reconstructing gene regulatory network.

    Science.gov (United States)

    Raza, Khalid; Alam, Mansaf

    2016-10-01

    One of the exciting problems in systems biology research is to decipher how genome controls the development of complex biological system. The gene regulatory networks (GRNs) help in the identification of regulatory interactions between genes and offer fruitful information related to functional role of individual gene in a cellular system. Discovering GRNs lead to a wide range of applications, including identification of disease related pathways providing novel tentative drug targets, helps to predict disease response, and also assists in diagnosing various diseases including cancer. Reconstruction of GRNs from available biological data is still an open problem. This paper proposes a recurrent neural network (RNN) based model of GRN, hybridized with generalized extended Kalman filter for weight update in backpropagation through time training algorithm. The RNN is a complex neural network that gives a better settlement between biological closeness and mathematical flexibility to model GRN; and is also able to capture complex, non-linear and dynamic relationships among variables. Gene expression data are inherently noisy and Kalman filter performs well for estimation problem even in noisy data. Hence, we applied non-linear version of Kalman filter, known as generalized extended Kalman filter, for weight update during RNN training. The developed model has been tested on four benchmark networks such as DNA SOS repair network, IRMA network, and two synthetic networks from DREAM Challenge. We performed a comparison of our results with other state-of-the-art techniques which shows superiority of our proposed model. Further, 5% Gaussian noise has been induced in the dataset and result of the proposed model shows negligible effect of noise on results, demonstrating the noise tolerance capability of the model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Telecommunications Liberalisation in Africa: Proposed Regulatory Model for the SADC Region

    Directory of Open Access Journals (Sweden)

    Z. Ntozintle Jobodwana

    2009-12-01

    Full Text Available The liberalisation of the telecommunication industry in Africa, and the further development of the region’s physical infrastructure was accompanied by the further development of Africa’s information, communication and technology infrastructure. Competition within the industry stimulated heavy economic investment in other sectors of the economy. The outcome of liberalisation also included the establishment of community-based structures that continue to enable communities to manage their own development and gain access to information and communication technologies (ICTs in an unprecedented manner. The telecommunication infrastructure further stimulated the fast development of other related services, for example, e-commerce and mobile commerce (m-commerce, e-government, internet banking, mobile banking etcetera. Latest reports and statistics disclose that in Africa m-commerce is set to even overtake the development of e-commerce, through the popular use and penetration of mobile telephony whilst e-commerce development is constrained by difficulties in rolling out speedily fixed telephone lines. These new methods of communication have so intensified that there is hope that further penetration of mobile telephony would leap-frog economic growth and development in Africa, especially in rural communities. Therefore, innovations and investment in ICT’s are changing the world in a number of ways, resulting in a globally connected digital economy.  However, there are regulatory challenges that need to be addressed as a matter of urgency. Certain sections of the continent’s population, especially those in rural areas, have very limited access to ICT’s. This prevents them from exploiting opportunities offered by ICT’s. The main barriers to ICT access relate to inadequate regimes and their supporting legal frameworks, high cost of internet access, connectivity problems, the lack of technical skills to support

  15. Drought response in wheat: key genes and regulatory mechanisms controlling root system architecture and transpiration efficiency

    Science.gov (United States)

    Kulkarni, Manoj; Soolanayakanahally, Raju; Ogawa, Satoshi; Uga, Yusaku; Selvaraj, Michael G.; Kagale, Sateesh

    2017-12-01

    sequence and advent genome editing technologies, are expected to aid in deciphering of the functional roles of genes and regulatory networks underlying adaptive phenological traits, and utilizing the outcomes of such studies in developing drought tolerance cultivars.

  16. Neural model of gene regulatory network: a survey on supportive meta-heuristics.

    Science.gov (United States)

    Biswas, Surama; Acharyya, Sriyankar

    2016-06-01

    Gene regulatory network (GRN) is produced as a result of regulatory interactions between different genes through their coded proteins in cellular context. Having immense importance in disease detection and drug finding, GRN has been modelled through various mathematical and computational schemes and reported in survey articles. Neural and neuro-fuzzy models have been the focus of attraction in bioinformatics. Predominant use of meta-heuristic algorithms in training neural models has proved its excellence. Considering these facts, this paper is organized to survey neural modelling schemes of GRN and the efficacy of meta-heuristic algorithms towards parameter learning (i.e. weighting connections) within the model. This survey paper renders two different structure-related approaches to infer GRN which are global structure approach and substructure approach. It also describes two neural modelling schemes, such as artificial neural network/recurrent neural network based modelling and neuro-fuzzy modelling. The meta-heuristic algorithms applied so far to learn the structure and parameters of neutrally modelled GRN have been reviewed here.

  17. BAP1 inhibits the ER stress gene regulatory network and modulates metabolic stress response.

    Science.gov (United States)

    Dai, Fangyan; Lee, Hyemin; Zhang, Yilei; Zhuang, Li; Yao, Hui; Xi, Yuanxin; Xiao, Zhen-Dong; You, M James; Li, Wei; Su, Xiaoping; Gan, Boyi

    2017-03-21

    The endoplasmic reticulum (ER) is classically linked to metabolic homeostasis via the activation of unfolded protein response (UPR), which is instructed by multiple transcriptional regulatory cascades. BRCA1 associated protein 1 (BAP1) is a tumor suppressor with de-ubiquitinating enzyme activity and has been implicated in chromatin regulation of gene expression. Here we show that BAP1 inhibits cell death induced by unresolved metabolic stress. This prosurvival role of BAP1 depends on its de-ubiquitinating activity and correlates with its ability to dampen the metabolic stress-induced UPR transcriptional network. BAP1 inhibits glucose deprivation-induced reactive oxygen species and ATP depletion, two cellular events contributing to the ER stress-induced cell death. In line with this, Bap1 KO mice are more sensitive to tunicamycin-induced renal damage. Mechanically, we show that BAP1 represses metabolic stress-induced UPR and cell death through activating transcription factor 3 (ATF3) and C/EBP homologous protein (CHOP), and reveal that BAP1 binds to ATF3 and CHOP promoters and inhibits their transcription. Taken together, our results establish a previously unappreciated role of BAP1 in modulating the cellular adaptability to metabolic stress and uncover a pivotal function of BAP1 in the regulation of the ER stress gene-regulatory network. Our study may also provide new conceptual framework for further understanding BAP1 function in cancer.

  18. Gene regulatory network reconstruction by Bayesian integration of prior knowledge and/or different experimental conditions.

    Science.gov (United States)

    Werhli, Adriano V; Husmeier, Dirk

    2008-06-01

    There have been various attempts to improve the reconstruction of gene regulatory networks from microarray data by the systematic integration of biological prior knowledge. Our approach is based on pioneering work by Imoto et al. where the prior knowledge is expressed in terms of energy functions, from which a prior distribution over network structures is obtained in the form of a Gibbs distribution. The hyperparameters of this distribution represent the weights associated with the prior knowledge relative to the data. We have derived and tested a Markov chain Monte Carlo (MCMC) scheme for sampling networks and hyperparameters simultaneously from the posterior distribution, thereby automatically learning how to trade off information from the prior knowledge and the data. We have extended this approach to a Bayesian coupling scheme for learning gene regulatory networks from a combination of related data sets, which were obtained under different experimental conditions and are therefore potentially associated with different active subpathways. The proposed coupling scheme is a compromise between (1) learning networks from the different subsets separately, whereby no information between the different experiments is shared; and (2) learning networks from a monolithic fusion of the individual data sets, which does not provide any mechanism for uncovering differences between the network structures associated with the different experimental conditions. We have assessed the viability of all proposed methods on data related to the Raf signaling pathway, generated both synthetically and in cytometry experiments.

  19. Regulatory gene network from a genome-wide association study for sow lifetime productivity traits.

    Science.gov (United States)

    Kang, J-H; Lee, E-A; Hong, K-C; Kim, J-M

    2018-03-23

    Among swine reproductive traits, sow lifetime productivity (SLP) is considered a profitable trait in commercial pig farming. Notably, longevity and efficiency in SLP can be adopted as the key phenotype representing SLP. In this study, we conducted a co-association network analysis using results from a genome-wide association study for SLP-related traits. A total of 656 purebred Landrace female pigs were genotyped using a 60K SNP array. Significantly associated SNPs identified from the GWAS were annotated for the specific genes. Then, we constructed an association weight matrix to build a network based on the co-associations between the genes and 10 SLP traits. The entire network consisted of 495 nodes and 37 755 significant edges. We identified three key regulatory transcription factors: STAT2 (signal transducer and activator of transcription 2), MYF6 (myogenic factor 6) and TFCP2L1 (transcription factor CP2 like 1). The network revealed that the STAT2 and MYF6 regulatory modules cooperate with each other and specifically influence the longevity and efficiency of sows, whereas the TFCP2L1 family specifically affects the improvement of litter size. © 2018 Stichting International Foundation for Animal Genetics.

  20. Inferring Drosophila gap gene regulatory network: a parameter sensitivity and perturbation analysis

    Directory of Open Access Journals (Sweden)

    Kaandorp Jaap A

    2009-09-01

    Full Text Available Abstract Background Inverse modelling of gene regulatory networks (GRNs capable of simulating continuous spatio-temporal biological processes requires accurate data and a good description of the system. If quantitative relations between genes cannot be extracted from direct measurements, an efficient method to estimate the unknown parameters is mandatory. A model that has been proposed to simulate spatio-temporal gene expression patterns is the connectionist model. This method describes the quantitative dynamics of a regulatory network in space. The model parameters are estimated by means of model-fitting algorithms. The gene interactions are identified without making any prior assumptions concerning the network connectivity. As a result, the inverse modelling might lead to multiple circuits showing the same quantitative behaviour and it is not possible to identify one optimal circuit. Consequently, it is important to address the quality of the circuits in terms of model robustness. Results Here we investigate the sensitivity and robustness of circuits obtained from reverse engineering a model capable of simulating measured gene expression patterns. As a case study we use the early gap gene segmentation mechanism in Drosophila melanogaster. We consider the limitations of the connectionist model used to describe GRN Inferred from spatio-temporal gene expression. We address the problem of circuit discrimination, where the selection criterion within the optimization technique is based of the least square minimization on the error between data and simulated results. Conclusion Parameter sensitivity analysis allows one to discriminate between circuits having significant parameter and qualitative differences but exhibiting the same quantitative pattern. Furthermore, we show that using a stochastic model derived from a deterministic solution, one can introduce fluctuations within the model to analyze the circuits' robustness. Ultimately, we show that

  1. Inferring Drosophila gap gene regulatory network: a parameter sensitivity and perturbation analysis.

    Science.gov (United States)

    Fomekong-Nanfack, Yves; Postma, Marten; Kaandorp, Jaap A

    2009-09-21

    Inverse modelling of gene regulatory networks (GRNs) capable of simulating continuous spatio-temporal biological processes requires accurate data and a good description of the system. If quantitative relations between genes cannot be extracted from direct measurements, an efficient method to estimate the unknown parameters is mandatory. A model that has been proposed to simulate spatio-temporal gene expression patterns is the connectionist model. This method describes the quantitative dynamics of a regulatory network in space. The model parameters are estimated by means of model-fitting algorithms. The gene interactions are identified without making any prior assumptions concerning the network connectivity. As a result, the inverse modelling might lead to multiple circuits showing the same quantitative behaviour and it is not possible to identify one optimal circuit. Consequently, it is important to address the quality of the circuits in terms of model robustness. Here we investigate the sensitivity and robustness of circuits obtained from reverse engineering a model capable of simulating measured gene expression patterns. As a case study we use the early gap gene segmentation mechanism in Drosophila melanogaster. We consider the limitations of the connectionist model used to describe GRN Inferred from spatio-temporal gene expression. We address the problem of circuit discrimination, where the selection criterion within the optimization technique is based of the least square minimization on the error between data and simulated results. Parameter sensitivity analysis allows one to discriminate between circuits having significant parameter and qualitative differences but exhibiting the same quantitative pattern. Furthermore, we show that using a stochastic model derived from a deterministic solution, one can introduce fluctuations within the model to analyze the circuits' robustness. Ultimately, we show that there is a close relation between circuit sensitivity and

  2. Gene search in the FSHD region on 4q35

    Energy Technology Data Exchange (ETDEWEB)

    Deutekom, J.C.T. van; Romberg, S.; Geel, M. van [Univ. of Leiden/Nijmegen (Netherlands)] [and others

    1994-09-01

    In the search for the FSHD gene on 4q35, four overlapping cosmids spanning a region of 95 kb including the deletion-prone repeated units were subcloned as well as subjected to cDNA selection and exon trap strategies. A total of 300 selected clones with an average length of 500 bp were mapped back to the cosmids. None of the clones appeared to be single copy. Sequence data of most clones and the related genomic regions were compared. cDNA clones with a high homolgy (>90%) and a low repetitive hybridization pattern were further analyzed by Zoo- and Northern blotting and by sequence analysis programs like GRAIL. Excellent and good exons could be identified and some clones showed evolutionary conservation. With the best cDNA, genomic and exon trap clones, several cDNA libraries were screened. The obtained cDNAs identified different genes, none of which originated from 4q35. 3{prime} RACE experiments were performed using primers derived of predicted exons especially in a 2.2 kb EcoRI fragment about 20 kb centromeric of the repeats. So far, only non-4q35 genes could be identified. Altogether, our results support other recent studies indicating that the FSHD gene is most likely not encoded by the 3.3 kb repeated units. Moreover, the region centromeric of these repeats appeared to contain abundant repetitive sequences and homologies to several other chromosomes, complicating the identification of the FSHD gene.

  3. A Meta-Analysis of Multiple Matched Copy Number and Transcriptomics Data Sets for Inferring Gene Regulatory Relationships

    Science.gov (United States)

    Newton, Richard; Wernisch, Lorenz

    2014-01-01

    Inferring gene regulatory relationships from observational data is challenging. Manipulation and intervention is often required to unravel causal relationships unambiguously. However, gene copy number changes, as they frequently occur in cancer cells, might be considered natural manipulation experiments on gene expression. An increasing number of data sets on matched array comparative genomic hybridisation and transcriptomics experiments from a variety of cancer pathologies are becoming publicly available. Here we explore the potential of a meta-analysis of thirty such data sets. The aim of our analysis was to assess the potential of in silico inference of trans-acting gene regulatory relationships from this type of data. We found sufficient correlation signal in the data to infer gene regulatory relationships, with interesting similarities between data sets. A number of genes had highly correlated copy number and expression changes in many of the data sets and we present predicted potential trans-acted regulatory relationships for each of these genes. The study also investigates to what extent heterogeneity between cell types and between pathologies determines the number of statistically significant predictions available from a meta-analysis of experiments. PMID:25148247

  4. Vagaries of fluorochrome reporter gene expression in Foxp3+ regulatory T cells.

    Directory of Open Access Journals (Sweden)

    Sonja Schallenberg

    Full Text Available CD4(+CD25(+ regulatory T (Treg cell lineage commitment and expression of the transcription factor Foxp3 can be induced at the CD4(+CD8(+ double-positive (DP and CD4(+CD8(? single-positive stages of thymic development, as well as in postthymic CD4(+ T cells in peripheral lymphoid tissues. The availability of transgenic mice with Foxp3-dependent fluorochrome reporter gene expression has greatly facilitated studies on the intra- and extrathymic generation of murine Foxp3(+ Treg cells. Here, we performed a comparative analysis of thymic Treg cell development and peripheral compartments of mature Treg cells in various transgenic strains with gene targeted and bacterial artificial chromosome (BAC-driven Foxp3-fluorochrome expression. These studies revealed a relative deficiency of Foxp3(+ DP thymocytes selectively in mice with targeted insertion of the fluorochrome reporter gene coding sequence into the endogenous Foxp3 gene. While Foxp3 BAC-driven fluorochrome expression in ex vivo CD4(+ T cells was found to faithfully reflect Foxp3 protein expression, we provide evidence that Foxp3 BAC transgenesis can result in sizable populations of Foxp3(+ Treg cells that lack fluorochrome reporter expression. This could be attributed to both timely delayed up-regulation of BAC expression in developing Treg cells and the accumulation of peripheral Foxp3(+ Treg cells with continuous transcriptional inactivity of the Foxp3 BAC transgene.

  5. Use of H19 Gene Regulatory Sequences in DNA-Based Therapy for Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    V. Scaiewicz

    2010-01-01

    Full Text Available Pancreatic cancer is the eighth most common cause of death from cancer in the world, for which palliative treatments are not effective and frequently accompanied by severe side effects. We propose a DNA-based therapy for pancreatic cancer using a nonviral vector, expressing the diphtheria toxin A chain under the control of the H19 gene regulatory sequences. The H19 gene is an oncofetal RNA expressed during embryo development and in several types of cancer. We tested the expression of H19 gene in patients, and found that 65% of human pancreatic tumors analyzed showed moderated to strong expression of the gene. In vitro experiments showed that the vector was effective in reducing Luciferase protein activity on pancreatic carcinoma cell lines. In vivo experiment results revealed tumor growth arrest in different animal models for pancreatic cancer. Differences in tumor size between control and treated groups reached a 75% in the heterotopic model (P=.037 and 50% in the orthotopic model (P=.007. In addition, no visible metastases were found in the treated group of the orthotopic model. These results indicate that the treatment with the vector DTA-H19 might be a viable new therapeutic option for patients with unresectable pancreatic cancer.

  6. Gene Editing of Microalgae: Scientific Progress and Regulatory Challenges in Europe

    Science.gov (United States)

    Spicer, Andrew

    2018-01-01

    It is abundantly clear that the development of gene editing technologies, represents a potentially powerful force for good with regard to human and animal health and addressing the challenges we continue to face in a growing global population. This now includes the development of approaches to modify microalgal strains for potential improvements in productivity, robustness, harvestability, processability, nutritional composition, and application. The rapid emergence and ongoing developments in this area demand a timely review and revision of the current definitions and regulations around genetically modified organisms (GMOs), particularly within Europe. Current practices within the EU provide exemptions from the GMO directives for organisms, including crop plants and micro-organisms that are produced through chemical or UV/radiation mutagenesis. However, organisms generated through gene editing, including microalgae, where only genetic changes in native genes are made, remain currently under the GMO umbrella; they are, as such, excluded from practical and commercial opportunities in the EU. In this review, we will review the advances that are being made in the area of gene editing in microalgae and the impact of regulation on commercial advances in this area with consideration to the current regulatory framework as it relates to GMOs including GM microalgae in Europe. PMID:29509719

  7. DNA supercoiling is a fundamental regulatory principle in the control of bacterial gene expression.

    Science.gov (United States)

    Dorman, Charles J; Dorman, Matthew J

    2016-11-01

    Although it has become routine to consider DNA in terms of its role as a carrier of genetic information, it is also an important contributor to the control of gene expression. This regulatory principle arises from its structural properties. DNA is maintained in an underwound state in most bacterial cells and this has important implications both for DNA storage in the nucleoid and for the expression of genetic information. Underwinding of the DNA through reduction in its linking number potentially imparts energy to the duplex that is available to drive DNA transactions, such as transcription, replication and recombination. The topological state of DNA also influences its affinity for some DNA binding proteins, especially in DNA sequences that have a high A + T base content. The underwinding of DNA by the ATP-dependent topoisomerase DNA gyrase creates a continuum between metabolic flux, DNA topology and gene expression that underpins the global response of the genome to changes in the intracellular and external environments. These connections describe a fundamental and generalised mechanism affecting global gene expression that underlies the specific control of transcription operating through conventional transcription factors. This mechanism also provides a basal level of control for genes acquired by horizontal DNA transfer, assisting microbial evolution, including the evolution of pathogenic bacteria.

  8. Temporal and spatial dynamics of scaling-specific features of a gene regulatory network in Drosophila.

    Science.gov (United States)

    Wu, Honggang; Manu; Jiao, Renjie; Ma, Jun

    2015-12-08

    A widely appreciated aspect of developmental robustness is pattern formation in proportion to size. But how such scaling features emerge dynamically remains poorly understood. Here we generate a data set of the expression profiles of six gap genes in Drosophila melanogaster embryos that differ significantly in size. Expression patterns exhibit size-dependent dynamics both spatially and temporally. We uncover a dynamic emergence of under-scaling in the posterior, accompanied by reduced expression levels of gap genes near the middle of large embryos. Simulation results show that a size-dependent Bicoid gradient input can lead to reduced Krüppel expression that can have long-range and dynamic effects on gap gene expression in the posterior. Thus, for emergence of scaled patterns, the entire embryo may be viewed as a single unified dynamic system where maternally derived size-dependent information interpreted locally can be propagated in space and time as governed by the dynamics of a gene regulatory network.

  9. Gene Editing of Microalgae: Scientific Progress and Regulatory Challenges in Europe

    Directory of Open Access Journals (Sweden)

    Andrew Spicer

    2018-03-01

    Full Text Available It is abundantly clear that the development of gene editing technologies, represents a potentially powerful force for good with regard to human and animal health and addressing the challenges we continue to face in a growing global population. This now includes the development of approaches to modify microalgal strains for potential improvements in productivity, robustness, harvestability, processability, nutritional composition, and application. The rapid emergence and ongoing developments in this area demand a timely review and revision of the current definitions and regulations around genetically modified organisms (GMOs, particularly within Europe. Current practices within the EU provide exemptions from the GMO directives for organisms, including crop plants and micro-organisms that are produced through chemical or UV/radiation mutagenesis. However, organisms generated through gene editing, including microalgae, where only genetic changes in native genes are made, remain currently under the GMO umbrella; they are, as such, excluded from practical and commercial opportunities in the EU. In this review, we will review the advances that are being made in the area of gene editing in microalgae and the impact of regulation on commercial advances in this area with consideration to the current regulatory framework as it relates to GMOs including GM microalgae in Europe.

  10. Gene Editing of Microalgae: Scientific Progress and Regulatory Challenges in Europe.

    Science.gov (United States)

    Spicer, Andrew; Molnar, Attila

    2018-03-06

    It is abundantly clear that the development of gene editing technologies, represents a potentially powerful force for good with regard to human and animal health and addressing the challenges we continue to face in a growing global population. This now includes the development of approaches to modify microalgal strains for potential improvements in productivity, robustness, harvestability, processability, nutritional composition, and application. The rapid emergence and ongoing developments in this area demand a timely review and revision of the current definitions and regulations around genetically modified organisms (GMOs), particularly within Europe. Current practices within the EU provide exemptions from the GMO directives for organisms, including crop plants and micro-organisms that are produced through chemical or UV/radiation mutagenesis. However, organisms generated through gene editing, including microalgae, where only genetic changes in native genes are made, remain currently under the GMO umbrella; they are, as such, excluded from practical and commercial opportunities in the EU. In this review, we will review the advances that are being made in the area of gene editing in microalgae and the impact of regulation on commercial advances in this area with consideration to the current regulatory framework as it relates to GMOs including GM microalgae in Europe.

  11. A novel cyclin gene (CCNF) in the region of the polycystic kidney disease gene (PKD1)

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, B.; Pohlschmidt, M.; Leung, L.S. [Imperial Cancer Research Fund, London (United Kingdom)] [and others

    1994-11-01

    The major locus for autosomal dominant polycystic kidney disease (PKD1) is located in a gene-rich region on chromosome 16p13.3. Recently the identification of the gene responsible for PKD1 has been described. While searching for candidate genes in this region, the authors isolated a new member of the cyclin family. They have characterized the transcript by sequencing, determination of the exon intron boundaries, and Northern blot analysis. Cyclin F is related to A- and B-type cyclins by sequence, but its function is unknown.

  12. Gene and metabolite regulatory network analysis of early developing fruit tissues highlights new candidate genes for the control of tomato fruit composition and development.

    Science.gov (United States)

    Mounet, Fabien; Moing, Annick; Garcia, Virginie; Petit, Johann; Maucourt, Michael; Deborde, Catherine; Bernillon, Stéphane; Le Gall, Gwénaëlle; Colquhoun, Ian; Defernez, Marianne; Giraudel, Jean-Luc; Rolin, Dominique; Rothan, Christophe; Lemaire-Chamley, Martine

    2009-03-01

    Variations in early fruit development and composition may have major impacts on the taste and the overall quality of ripe tomato (Solanum lycopersicum) fruit. To get insights into the networks involved in these coordinated processes and to identify key regulatory genes, we explored the transcriptional and metabolic changes in expanding tomato fruit tissues using multivariate analysis and gene-metabolite correlation networks. To this end, we demonstrated and took advantage of the existence of clear structural and compositional differences between expanding mesocarp and locular tissue during fruit development (12-35 d postanthesis). Transcriptome and metabolome analyses were carried out with tomato microarrays and analytical methods including proton nuclear magnetic resonance and liquid chromatography-mass spectrometry, respectively. Pairwise comparisons of metabolite contents and gene expression profiles detected up to 37 direct gene-metabolite correlations involving regulatory genes (e.g. the correlations between glutamine, bZIP, and MYB transcription factors). Correlation network analyses revealed the existence of major hub genes correlated with 10 or more regulatory transcripts and embedded in a large regulatory network. This approach proved to be a valuable strategy for identifying specific subsets of genes implicated in key processes of fruit development and metabolism, which are therefore potential targets for genetic improvement of tomato fruit quality.

  13. Transcriptional regulatory network refinement and quantification through kinetic modeling, gene expression microarray data and information theory

    Science.gov (United States)

    Sayyed-Ahmad, Abdallah; Tuncay, Kagan; Ortoleva, Peter J

    2007-01-01

    Background Gene expression microarray and other multiplex data hold promise for addressing the challenges of cellular complexity, refined diagnoses and the discovery of well-targeted treatments. A new approach to the construction and quantification of transcriptional regulatory networks (TRNs) is presented that integrates gene expression microarray data and cell modeling through information theory. Given a partial TRN and time series data, a probability density is constructed that is a functional of the time course of transcription factor (TF) thermodynamic activities at the site of gene control, and is a function of mRNA degradation and transcription rate coefficients, and equilibrium constants for TF/gene binding. Results Our approach yields more physicochemical information that compliments the results of network structure delineation methods, and thereby can serve as an element of a comprehensive TRN discovery/quantification system. The most probable TF time courses and values of the aforementioned parameters are obtained by maximizing the probability obtained through entropy maximization. Observed time delays between mRNA expression and activity are accounted for implicitly since the time course of the activity of a TF is coupled by probability functional maximization, and is not assumed to be proportional to expression level of the mRNA type that translates into the TF. This allows one to investigate post-translational and TF activation mechanisms of gene regulation. Accuracy and robustness of the method are evaluated. A kinetic formulation is used to facilitate the analysis of phenomena with a strongly dynamical character while a physically-motivated regularization of the TF time course is found to overcome difficulties due to omnipresent noise and data sparsity that plague other methods of gene expression data analysis. An application to Escherichia coli is presented. Conclusion Multiplex time series data can be used for the construction of the network of

  14. Association analysis of PRNP gene region with chronic wasting disease in Rocky Mountain elk

    Directory of Open Access Journals (Sweden)

    Spraker Terry R

    2010-11-01

    Full Text Available Abstract Background Chronic wasting disease (CWD is a transmissible spongiform encephalopathy (TSE of cervids including white-tailed (Odocoileus virginianus and mule deer (Odocoileus hemionus, Rocky Mountain elk (Cervus elaphus nelsoni, and moose (Alces alces. A leucine variant at position 132 (132L in prion protein of Rocky Mountain elk confers a long incubation time with CWD, but not complete resistance. However, variants in regulatory regions outside the open reading frame of PRNP have been associated with varying degrees of susceptibility to prion disease in other species, and some variants have been observed in similar regions of Rocky Mountain elk PRNP. Thus, additional genetic variants might provide increased protection, either alone or in combination with 132L. Findings This study provided genomic sequence of all exons for PRNP of Rocky Mountain elk. Many functional sites in and around the PRNP gene region were sequenced, and this report approximately doubled (to 75 the number of known variants in this region. A haplotype-tagging approach was used to reduce the number of genetic variants required to survey this variation in the PRNP gene region of 559 Rocky Mountain elk. Eight haplotypes were observed with frequencies over 1.0%, and one haplotype was present at 71.2% frequency, reflecting limited genetic diversity in the PRNP gene region. Conclusions The presence of 132L cut odds of CWD by more than half (Odds Ratio = 0.43; P = 0.0031, which was similar to a previous report. However after accounting for 132L, no association with CWD was found for any additional variants in the PRNP region (P > 0.05.

  15. Multiple herbicide resistance in Lolium multiflorum and identification of conserved regulatory elements of herbicide resistance genes

    Directory of Open Access Journals (Sweden)

    Khalid Mahmood

    2016-08-01

    Full Text Available Herbicide resistance is a ubiquitous challenge to herbicide sustainability and a looming threat to control weeds in crops. Recently four genes were found constituently over-expressed in herbicide resistant individuals of Lolium rigidum, a close relative of L. multiflorum. These include two cytochrome P450s, one nitronate monooxygenase and one glycosyl-transferase. Higher expressions of these four herbicide metabolism related (HMR genes were also observed after herbicides exposure in the gene expression databases, indicating them a reliable marker. In order to get an overview of herbicidal resistance status of Lolium multiflorum L, 19 field populations were collected. Among these populations, four populations were found to be resistant to acetolactate synthase (ALS inhibitors while three exhibited resistance to acetyl-CoA carboxylase (ACCase inhibitors in our initial screening and dose response study. The genotyping showed the presence of mutations Trp-574-Leu and Ile-2041-Asn in ALS and ACCase, respectively and qPCR experiments revealed the enhanced expression of HMR genes in individuals of certain resistant populations. Moreover, co-expression networks and promoter analyses of HMR genes in O.sativa and A.thaliana resulted in the identification of a cis-regulatory motif and zinc finger transcription factors. The identified transcription factors were highly expressed similar to HMR genes in response to xenobiotics whereas the identified motif known to play a vital role in coping with environmental stresses and maintaining genome stability. Overall, our findings provide an important step forward towards a better understanding of metabolism-based herbicide resistance that can be utilized to devise novel strategies of weed management.

  16. Congenital lipoid adrenal hyperplasia caused by a novel splicing mutation in the gene for the steroidogenic acute regulatory protein.

    Science.gov (United States)

    González, Alexis A; Reyes, M Loreto; Carvajal, Cristian A; Tobar, Jaime A; Mosso, Lorena M; Baquedano, Paulina; Solar, Antonieta; Venegas, Alejandro; Fardella, Carlos E

    2004-02-01

    Steroidogenic acute regulatory protein (StAR) plays a crucial role in the transport of cholesterol from the cytoplasm to the inner mitochondrial membrane, facilitating its conversion to pregnenolone by cytochrome P450scc. Its essential role in steroidogenesis was demonstrated after observing that StAR gene mutations gave rise to a potentially lethal disease named congenital lipoid adrenal hyperplasia, in which virtually no steroids are produced. We report here a 2-month-old female patient, karyotype 46XY, who presented with growth failure, convulsions, dehydration, hypoglycemia, hyponatremia, hypotension, and severe hyperpigmentation suggestive of adrenal insufficiency. Serum cortisol, 17OH-progesterone, dehydroepiandrosterone sulfate, testosterone, 17OH-pregnenolone, and aldosterone levels were undetectable in the presence of high ACTH and plasma renin activity levels. Immunohistochemical analysis of testis tissues revealed the absence of StAR protein. Molecular analysis of StAR gene demonstrated a homozygous G to T mutation within the splice donor site of exon 1 (IVS1 + 1G>T). Her parents and one brother were heterozygous for this mutation. In vitro analysis of the mutation was performed in COS cells transfected with minigenes coding regions spanning exon-intron 1 to 3 carrying the mutant and the wild-type sequences. RT-PCR analyses of the mutant gene showed an abnormal mRNA transcript of 2430 bp (normal size 433 bp). Sequence analysis of the mutant mRNA demonstrated the retention of intron 1. Immunolocalization of the StAR minigene product detected the peptide in the mitochondria of COS cells transfected with the wild-type minigene but not in those transfected with the mutant minigene. We conclude that this mutation gives rise to a truncated StAR protein, which lacks an important N-terminal region and the entire lipid transfer domain.

  17. Evolutionary Analysis of the B56 Gene Family of PP2A Regulatory Subunits

    Directory of Open Access Journals (Sweden)

    Lauren M. Sommer

    2015-05-01

    Full Text Available Protein phosphatase 2A (PP2A is an abundant serine/threonine phosphatase that functions as a tumor suppressor in numerous cell-cell signaling pathways, including Wnt, myc, and ras. The B56 subunit of PP2A regulates its activity, and is encoded by five genes in humans. B56 proteins share a central core domain, but have divergent amino- and carboxy-termini, which are thought to provide isoform specificity. We performed phylogenetic analyses to better understand the evolution of the B56 gene family. We found that B56 was present as a single gene in eukaryotes prior to the divergence of animals, fungi, protists, and plants, and that B56 gene duplication prior to the divergence of protostomes and deuterostomes led to the origin of two B56 subfamilies, B56αβε and B56γδ. Further duplications led to three B56αβε genes and two B56γδ in vertebrates. Several nonvertebrate B56 gene names are based on distinct vertebrate isoform names, and would best be renamed. B56 subfamily genes lack significant divergence within primitive chordates, but each became distinct in complex vertebrates. Two vertebrate lineages have undergone B56 gene loss, Xenopus and Aves. In Xenopus, B56δ function may be compensated for by an alternatively spliced transcript, B56δ/γ, encoding a B56δ-like amino-terminal region and a B56γ core.

  18. Multiple Linear Regression for Reconstruction of Gene Regulatory Networks in Solving Cascade Error Problems.

    Science.gov (United States)

    Salleh, Faridah Hani Mohamed; Zainudin, Suhaila; Arif, Shereena M

    2017-01-01

    Gene regulatory network (GRN) reconstruction is the process of identifying regulatory gene interactions from experimental data through computational analysis. One of the main reasons for the reduced performance of previous GRN methods had been inaccurate prediction of cascade motifs. Cascade error is defined as the wrong prediction of cascade motifs, where an indirect interaction is misinterpreted as a direct interaction. Despite the active research on various GRN prediction methods, the discussion on specific methods to solve problems related to cascade errors is still lacking. In fact, the experiments conducted by the past studies were not specifically geared towards proving the ability of GRN prediction methods in avoiding the occurrences of cascade errors. Hence, this research aims to propose Multiple Linear Regression (MLR) to infer GRN from gene expression data and to avoid wrongly inferring of an indirect interaction (A → B → C) as a direct interaction (A → C). Since the number of observations of the real experiment datasets was far less than the number of predictors, some predictors were eliminated by extracting the random subnetworks from global interaction networks via an established extraction method. In addition, the experiment was extended to assess the effectiveness of MLR in dealing with cascade error by using a novel experimental procedure that had been proposed in this work. The experiment revealed that the number of cascade errors had been very minimal. Apart from that, the Belsley collinearity test proved that multicollinearity did affect the datasets used in this experiment greatly. All the tested subnetworks obtained satisfactory results, with AUROC values above 0.5.

  19. Multiple Linear Regression for Reconstruction of Gene Regulatory Networks in Solving Cascade Error Problems

    Directory of Open Access Journals (Sweden)

    Faridah Hani Mohamed Salleh

    2017-01-01

    Full Text Available Gene regulatory network (GRN reconstruction is the process of identifying regulatory gene interactions from experimental data through computational analysis. One of the main reasons for the reduced performance of previous GRN methods had been inaccurate prediction of cascade motifs. Cascade error is defined as the wrong prediction of cascade motifs, where an indirect interaction is misinterpreted as a direct interaction. Despite the active research on various GRN prediction methods, the discussion on specific methods to solve problems related to cascade errors is still lacking. In fact, the experiments conducted by the past studies were not specifically geared towards proving the ability of GRN prediction methods in avoiding the occurrences of cascade errors. Hence, this research aims to propose Multiple Linear Regression (MLR to infer GRN from gene expression data and to avoid wrongly inferring of an indirect interaction (A → B → C as a direct interaction (A → C. Since the number of observations of the real experiment datasets was far less than the number of predictors, some predictors were eliminated by extracting the random subnetworks from global interaction networks via an established extraction method. In addition, the experiment was extended to assess the effectiveness of MLR in dealing with cascade error by using a novel experimental procedure that had been proposed in this work. The experiment revealed that the number of cascade errors had been very minimal. Apart from that, the Belsley collinearity test proved that multicollinearity did affect the datasets used in this experiment greatly. All the tested subnetworks obtained satisfactory results, with AUROC values above 0.5.

  20. Stochastic Boolean networks: An efficient approach to modeling gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Liang Jinghang

    2012-08-01

    Full Text Available Abstract Background Various computational models have been of interest due to their use in the modelling of gene regulatory networks (GRNs. As a logical model, probabilistic Boolean networks (PBNs consider molecular and genetic noise, so the study of PBNs provides significant insights into the understanding of the dynamics of GRNs. This will ultimately lead to advances in developing therapeutic methods that intervene in the process of disease development and progression. The applications of PBNs, however, are hindered by the complexities involved in the computation of the state transition matrix and the steady-state distribution of a PBN. For a PBN with n genes and N Boolean networks, the complexity to compute the state transition matrix is O(nN22n or O(nN2n for a sparse matrix. Results This paper presents a novel implementation of PBNs based on the notions of stochastic logic and stochastic computation. This stochastic implementation of a PBN is referred to as a stochastic Boolean network (SBN. An SBN provides an accurate and efficient simulation of a PBN without and with random gene perturbation. The state transition matrix is computed in an SBN with a complexity of O(nL2n, where L is a factor related to the stochastic sequence length. Since the minimum sequence length required for obtaining an evaluation accuracy approximately increases in a polynomial order with the number of genes, n, and the number of Boolean networks, N, usually increases exponentially with n, L is typically smaller than N, especially in a network with a large number of genes. Hence, the computational efficiency of an SBN is primarily limited by the number of genes, but not directly by the total possible number of Boolean networks. Furthermore, a time-frame expanded SBN enables an efficient analysis of the steady-state distribution of a PBN. These findings are supported by the simulation results of a simplified p53 network, several randomly generated networks and a

  1. Functional dissection of the promoter of the pollen-specific gene NTP303 reveals a novel pollen-specific, and conserved cis-regulatory element.

    Science.gov (United States)

    Weterings, K; Schrauwen, J; Wullems, G; Twell, D

    1995-07-01

    Regulatory elements within the promoter of the pollen-specific NTP303 gene from tobacco were analysed by transient and stable expression analyses. Analysis of precisely targeted mutations showed that the NTP303 promoter is not regulated by any of the previously described pollen-specific cis-regulatory elements. However, two adjacent regions from -103 to -86 bp and from -86 to -59 bp were shown to contain sequences which positively regulated the NTP303 promoter. Both of these regions were capable of driving pollen-specific expression from a heterologous promoter, independent of orientation and in an additive manner. The boundaries of the minimal, functional NTP303 promoter were determined to lie within the region -86 to -51 bp. The sequence AAATGA localized from -94 to -89 bp was identified as a novel cis-acting element, of which the TGA triplet was shown to comprise an active part. This element was shown to be completely conserved in the similarly regulated promoter of the Bp 10 gene from Brassica napus encoding a homologue of the NTP303 gene.

  2. Comparative genomics reveals a functional thyroid-specific element in the far upstream region of the PAX8 gene

    Directory of Open Access Journals (Sweden)

    De Felice Mario

    2010-05-01

    Full Text Available Abstract Background The molecular mechanisms leading to a fully differentiated thyrocite are still object of intense study even if it is well known that thyroglobulin, thyroperoxidase, NIS and TSHr are the marker genes of thyroid differentiation. It is also well known that Pax8, TTF-1, Foxe1 and Hhex are the thyroid-enriched transcription factors responsible for the expression of the above genes, thus are responsible for the differentiated thyroid phenotype. In particular, the role of Pax8 in the fully developed thyroid gland was studied in depth and it was established that it plays a key role in thyroid development and differentiation. However, to date the bases for the thyroid-enriched expression of this transcription factor have not been unraveled yet. Here, we report the identification and characterization of a functional thyroid-specific enhancer element located far upstream of the Pax8 gene. Results We hypothesized that regulatory cis-acting elements are conserved among mammalian genes. Comparison of a genomic region extending for about 100 kb at the 5'-flanking region of the mouse and human Pax8 gene revealed several conserved regions that were tested for enhancer activity in thyroid and non-thyroid cells. Using this approach we identified one putative thyroid-specific regulatory element located 84.6 kb upstream of the Pax8 transcription start site. The in silico data were verified by promoter-reporter assays in thyroid and non-thyroid cells. Interestingly, the identified far upstream element manifested a very high transcriptional activity in the thyroid cell line PC Cl3, but showed no activity in HeLa cells. In addition, the data here reported indicate that the thyroid-enriched transcription factor TTF-1 is able to bind in vitro and in vivo the Pax8 far upstream element, and is capable to activate transcription from it. Conclusions Results of this study reveal the presence of a thyroid-specific regulatory element in the 5' upstream

  3. Evolutionary re-wiring of p63 and the epigenomic regulatory landscape in keratinocytes and its potential implications on species-specific gene expression and phenotypes

    Science.gov (United States)

    Sethi, Isha; Gluck, Christian; Zhou, Huiqing

    2017-01-01

    Abstract Although epidermal keratinocyte development and differentiation proceeds in similar fashion between humans and mice, evolutionary pressures have also wrought significant species-specific physiological differences. These differences between species could arise in part, by the rewiring of regulatory network due to changes in the global targets of lineage-specific transcriptional master regulators such as p63. Here we have performed a systematic and comparative analysis of the p63 target gene network within the integrated framework of the transcriptomic and epigenomic landscape of mouse and human keratinocytes. We determined that there exists a core set of ∼1600 genomic regions distributed among enhancers and super-enhancers, which are conserved and occupied by p63 in keratinocytes from both species. Notably, these DNA segments are typified by consensus p63 binding motifs under purifying selection and are associated with genes involved in key keratinocyte and skin-centric biological processes. However, the majority of the p63-bound mouse target regions consist of either murine-specific DNA elements that are not alignable to the human genome or exhibit no p63 binding in the orthologous syntenic regions, typifying an occupancy lost subset. Our results suggest that these evolutionarily divergent regions have undergone significant turnover of p63 binding sites and are associated with an underlying inactive and inaccessible chromatin state, indicative of their selective functional activity in the transcriptional regulatory network in mouse but not human. Furthermore, we demonstrate that this selective targeting of genes by p63 correlates with subtle, but measurable transcriptional differences in mouse and human keratinocytes that converges on major metabolic processes, which often exhibit species-specific trends. Collectively our study offers possible molecular explanation for the observable phenotypic differences between the mouse and human skin and broadly

  4. Cloning and functional analysis of 5'-upstream region of the Pokemon gene.

    Science.gov (United States)

    Yang, Yutao; Zhou, Xiaowei; Zhu, Xudong; Zhang, Chuanfu; Yang, Zhixin; Xu, Long; Huang, Peitang

    2008-04-01

    Pokemon, the POK erythroid myeloid ontogenic factor, not only regulates the expression of many genes, but also plays an important role in cell tumorigenesis. To investigate the molecular mechanism regulating expression of the Pokemon gene in humans, its 5'-upstream region was cloned and analyzed. Transient analysis revealed that the Pokemon promoter is constitutive. Deletion analysis and a DNA decoy assay indicated that the NEG-U and NEG-D elements were involved in negative regulation of the Pokemon promoter, whereas the POS-D element was mainly responsible for its strong activity. Electrophoretic mobility shift assays suggested that the NEG-U, NEG-D and POS-D elements were specifically bound by the nuclear extract from A549 cells in vitro. Mutation analysis demonstrated that cooperation of the NEG-U and NEG-D elements led to negative regulation of the Pokemon promoter. Moreover, the NEG-U and NEG-D elements needed to be an appropriate distance apart in the Pokemon promoter in order to cooperate. Taken together, our results elucidate the mechanism underlying the regulation of Pokemon gene transcription, and also define a novel regulatory sequence that may be used to decrease expression of the Pokemon gene in cancer gene therapy.

  5. Polimorfismos reguladores y su participación en la patogenia de enfermedades complejas en la era posgenómica Polymorphisms in gene regulatory regions and their role in the physiopathology of complex disease in the post-genomic era

    Directory of Open Access Journals (Sweden)

    Jesús Hernández-Romano

    2009-01-01

    Full Text Available El estudio de la participación de la variación genética en la predisposición a las enfermedades complejas ha cobrado nuevas dimensiones en la era genómica. Los polimorfismos de un solo nucleótido (SNP son el tipo de variación más común entre individuos y su vinculación con enfermedades es motivo de investigación intensa. En fecha reciente, el estudio de los SNP que afectan la expresión genética (rSNP ha suscitado mayor interés, ya que las diferencias de la expresión genética entre un sujeto y otro pueden modificar el fenotipo. El descubrimiento y caracterización funcional de los rSNP y el estudio de su frecuencia alélica representan un nuevo campo en la búsqueda de determinantes genéticos de enfermedades multifactoriales.The genomic era is imparting a new impulse to the study of the role of genetic variation in susceptibility to disease. The most common type of genetic variation between individuals is single nucleotide polymorphisms (SNP. The association of SNPs with susceptibility to disease is the current focus of intense research. Recently, the study of SNPs that alter the regulatory mechanisms of gene expression (rSNP has emerged as a promising field for understanding disease, since this type of variation can have a profound effect on human traits related to susceptibility to disease. The finding and functional characterization of biologically significant rSNPs is advancing our knowledge of genetic determinants for multifactorial disease.

  6. Extensive evolutionary changes in regulatory element activity during human origins are associated with altered gene expression and positive selection.

    Directory of Open Access Journals (Sweden)

    Yoichiro Shibata

    2012-06-01

    Full Text Available Understanding the molecular basis for phenotypic differences between humans and other primates remains an outstanding challenge. Mutations in non-coding regulatory DNA that alter gene expression have been hypothesized as a key driver of these phenotypic differences. This has been supported by differential gene expression analyses in general, but not by the identification of specific regulatory elements responsible for changes in transcription and phenotype. To identify the genetic source of regulatory differences, we mapped DNaseI hypersensitive (DHS sites, which mark all types of active gene regulatory elements, genome-wide in the same cell type isolated from human, chimpanzee, and macaque. Most DHS sites were conserved among all three species, as expected based on their central role in regulating transcription. However, we found evidence that several hundred DHS sites were gained or lost on the lineages leading to modern human and chimpanzee. Species-specific DHS site gains are enriched near differentially expressed genes, are positively correlated with increased transcription, show evidence of branch-specific positive selection, and overlap with active chromatin marks. Species-specific sequence differences in transcription factor motifs found within these DHS sites are linked with species-specific changes in chromatin accessibility. Together, these indicate that the regulatory elements identified here are genetic contributors to transcriptional and phenotypic differences among primate species.

  7. Identification of Cell Wall Synthesis Regulatory Genes Controlling Biomass Characteristics and Yield in Rice (Oryza Sativa)

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Zhaohua PEng [Mississippi State University; Ronald, Palmela [UC-Davis; Wang, Guo-Liang [The Ohio State University

    2013-04-26

    This project aims to identify the regulatory genes of rice cell wall synthesis pathways using a cell wall removal and regeneration system. We completed the gene expression profiling studies following the time course from cell wall removal to cell wall regeneration in rice suspension cells. We also completed, total proteome, nuclear subproteome and histone modification studies following the course from cell wall removal and cell wall regeneration process. A large number of differentially expressed regulatory genes and proteins were identified. Meanwhile, we generated RNAi and over-expression transgenic rice for 45 genes with at least 10 independent transgenic lines for each gene. In addition, we ordered T-DNA and transposon insertion mutants for 60 genes from Korea, Japan, and France and characterized the mutants. Overall, we have mutants and transgenic lines for over 90 genes, exceeded our proposed goal of generating mutants for 50 genes. Interesting Discoveries a) Cell wall re-synthesis in protoplasts may involve a novel cell wall synthesis mechanism. The synthesis of the primary cell wall is initiated in late cytokinesis with further modification during cell expansion. Phragmoplast plays an essential role in cell wall synthesis. It services as a scaffold for building the cell plate and formation of a new cell wall. Only one phragmoplast and one new cell wall is produced for each dividing cell. When the cell wall was removed enzymatically, we found that cell wall re-synthesis started from multiple locations simultaneously, suggesting that a novel mechanism is involved in cell wall re-synthesis. This observation raised many interesting questions, such as how the starting sites of cell wall synthesis are determined, whether phragmoplast and cell plate like structures are involved in cell wall re-synthesis, and more importantly whether the same set of enzymes and apparatus are used in cell wall re-synthesis as during cytokinesis. Given that many known cell wall

  8. A computational framework for gene regulatory network inference that combines multiple methods and datasets.

    Science.gov (United States)

    Gupta, Rita; Stincone, Anna; Antczak, Philipp; Durant, Sarah; Bicknell, Roy; Bikfalvi, Andreas; Falciani, Francesco

    2011-04-13

    Reverse engineering in systems biology entails inference of gene regulatory networks from observational data. This data typically include gene expression measurements of wild type and mutant cells in response to a given stimulus. It has been shown that when more than one type of experiment is used in the network inference process the accuracy is higher. Therefore the development of generally applicable and effective methodologies that embed multiple sources of information in a single computational framework is a worthwhile objective. This paper presents a new method for network inference, which uses multi-objective optimisation (MOO) to integrate multiple inference methods and experiments. We illustrate the potential of the methodology by combining ODE and correlation-based network inference procedures as well as time course and gene inactivation experiments. Here we show that our methodology is effective for a wide spectrum of data sets and method integration strategies. The approach we present in this paper is flexible and can be used in any scenario that benefits from integration of multiple sources of information and modelling procedures in the inference process. Moreover, the application of this method to two case studies representative of bacteria and vertebrate systems has shown potential in identifying key regulators of important biological processes.

  9. A Bayesian Framework That Integrates Heterogeneous Data for Inferring Gene Regulatory Networks

    Energy Technology Data Exchange (ETDEWEB)

    Santra, Tapesh, E-mail: tapesh.santra@ucd.ie [Systems Biology Ireland, University College Dublin, Dublin (Ireland)

    2014-05-20

    Reconstruction of gene regulatory networks (GRNs) from experimental data is a fundamental challenge in systems biology. A number of computational approaches have been developed to infer GRNs from mRNA expression profiles. However, expression profiles alone are proving to be insufficient for inferring GRN topologies with reasonable accuracy. Recently, it has been shown that integration of external data sources (such as gene and protein sequence information, gene ontology data, protein–protein interactions) with mRNA expression profiles may increase the reliability of the inference process. Here, I propose a new approach that incorporates transcription factor binding sites (TFBS) and physical protein interactions (PPI) among transcription factors (TFs) in a Bayesian variable selection (BVS) algorithm which can infer GRNs from mRNA expression profiles subjected to genetic perturbations. Using real experimental data, I show that the integration of TFBS and PPI data with mRNA expression profiles leads to significantly more accurate networks than those inferred from expression profiles alone. Additionally, the performance of the proposed algorithm is compared with a series of least absolute shrinkage and selection operator (LASSO) regression-based network inference methods that can also incorporate prior knowledge in the inference framework. The results of this comparison suggest that BVS can outperform LASSO regression-based method in some circumstances.

  10. A Bayesian Framework that integrates heterogeneous data for inferring gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Tapesh eSantra

    2014-05-01

    Full Text Available Reconstruction of gene regulatory networks (GRNs from experimental data is a fundamental challenge in systems biology. A number of computational approaches have been developed to infer GRNs from mRNA expression profiles. However, expression profiles alone are proving to be insufficient for inferring GRN topologies with reasonable accuracy. Recently, it has been shown that integration of external data sources (such as gene and protein sequence information, gene ontology data, protein protein interactions with mRNA expression profiles may increase the reliability of the inference process. Here, I propose a new approach that incorporates transcription factor binding sites (TFBS and physical protein interactions (PPI among transcription factors (TFs in a Bayesian Variable Selection (BVS algorithm which can infer GRNs from mRNA expression profiles subjected to genetic perturbations. Using real experimental data, I show that the integration of TFBS and PPI data with mRNA expression profiles leads to significantly more accurate networks than those inferred from expression profiles alone. Additionally, the performance of the proposed algorithm is compared with a series of LASSO regression based network inference methods that can also incorporate prior knowledge in the inference framework. The results of this comparison suggest that BVS can outperform LASSO regression based method in some circumstances.

  11. Evolution of gene regulatory networks by fluctuating selection and intrinsic constraints.

    Directory of Open Access Journals (Sweden)

    Masaki E Tsuda

    Full Text Available Various characteristics of complex gene regulatory networks (GRNs have been discovered during the last decade, e.g., redundancy, exponential indegree distributions, scale-free outdegree distributions, mutational robustness, and evolvability. Although progress has been made in this field, it is not well understood whether these characteristics are the direct products of selection or those of other evolutionary forces such as mutational biases and biophysical constraints. To elucidate the causal factors that promoted the evolution of complex GRNs, we examined the effect of fluctuating environmental selection and some intrinsic constraining factors on GRN evolution by using an individual-based model. We found that the evolution of complex GRNs is remarkably promoted by fixation of beneficial gene duplications under unpredictably fluctuating environmental conditions and that some internal factors inherent in organisms, such as mutational bias, gene expression costs, and constraints on expression dynamics, are also important for the evolution of GRNs. The results indicate that various biological properties observed in GRNs could evolve as a result of not only adaptation to unpredictable environmental changes but also non-adaptive processes owing to the properties of the organisms themselves. Our study emphasizes that evolutionary models considering such intrinsic constraining factors should be used as null models to analyze the effect of selection on GRN evolution.

  12. Semi-supervised prediction of gene regulatory networks using machine learning algorithms.

    Science.gov (United States)

    Patel, Nihir; Wang, Jason T L

    2015-10-01

    Use of computational methods to predict gene regulatory networks (GRNs) from gene expression data is a challenging task. Many studies have been conducted using unsupervised methods to fulfill the task; however, such methods usually yield low prediction accuracies due to the lack of training data. In this article, we propose semi-supervised methods for GRN prediction by utilizing two machine learning algorithms, namely, support vector machines (SVM) and random forests (RF). The semi-supervised methods make use of unlabelled data for training. We investigated inductive and transductive learning approaches, both of which adopt an iterative procedure to obtain reliable negative training data from the unlabelled data. We then applied our semi-supervised methods to gene expression data of Escherichia coli and Saccharomyces cerevisiae, and evaluated the performance of our methods using the expression data. Our analysis indicated that the transductive learning approach outperformed the inductive learning approach for both organisms. However, there was no conclusive difference identified in the performance of SVM and RF. Experimental results also showed that the proposed semi-supervised methods performed better than existing supervised methods for both organisms.

  13. Recurrent neural network-based modeling of gene regulatory network using elephant swarm water search algorithm.

    Science.gov (United States)

    Mandal, Sudip; Saha, Goutam; Pal, Rajat Kumar

    2017-08-01

    Correct inference of genetic regulations inside a cell from the biological database like time series microarray data is one of the greatest challenges in post genomic era for biologists and researchers. Recurrent Neural Network (RNN) is one of the most popular and simple approach to model the dynamics as well as to infer correct dependencies among genes. Inspired by the behavior of social elephants, we propose a new metaheuristic namely Elephant Swarm Water Search Algorithm (ESWSA) to infer Gene Regulatory Network (GRN). This algorithm is mainly based on the water search strategy of intelligent and social elephants during drought, utilizing the different types of communication techniques. Initially, the algorithm is tested against benchmark small and medium scale artificial genetic networks without and with presence of different noise levels and the efficiency was observed in term of parametric error, minimum fitness value, execution time, accuracy of prediction of true regulation, etc. Next, the proposed algorithm is tested against the real time gene expression data of Escherichia Coli SOS Network and results were also compared with others state of the art optimization methods. The experimental results suggest that ESWSA is very efficient for GRN inference problem and performs better than other methods in many ways.

  14. A hybrid framework for reverse engineering of robust Gene Regulatory Networks.

    Science.gov (United States)

    Jafari, Mina; Ghavami, Behnam; Sattari, Vahid

    2017-06-01

    The inference of Gene Regulatory Networks (GRNs) using gene expression data in order to detect the basic cellular processes is a key issue in biological systems. Inferring GRN correctly requires inferring predictor set accurately. In this paper, a fast and accurate predictor set inference framework which linearly combines some inference methods is proposed. The purpose of the combination of various methods is to increase the accuracy of inferred GRN. The proposed framework offers a linear weighted combination of Pearson Correlation Coefficient (PCC) and two different feature selection approaches, namely: Information Gain (IG) and ReliefF. In order to set the appropriate weights, Genetic Algorithm (GA) is used. Similarity measure is considered as fitness function to guide GA. At the end, based on the obtained weights, the best predictor set of GRN using three aforementioned inference methods is selected and the network topology is formed. Due to the huge volume of gene expression data, GRN inference algorithms should infer GRN at a reasonable runtime. Hence, a novel criterion is provided to evaluate GRNs based on runtime and accuracy. The simulation results using biological data indicate that the proposed framework is fast and more reliable compared to other recent methods [1-7]. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. HAND2 Target Gene Regulatory Networks Control Atrioventricular Canal and Cardiac Valve Development.

    Science.gov (United States)

    Laurent, Frédéric; Girdziusaite, Ausra; Gamart, Julie; Barozzi, Iros; Osterwalder, Marco; Akiyama, Jennifer A; Lincoln, Joy; Lopez-Rios, Javier; Visel, Axel; Zuniga, Aimée; Zeller, Rolf

    2017-05-23

    The HAND2 transcriptional regulator controls cardiac development, and we uncover additional essential functions in the endothelial to mesenchymal transition (EMT) underlying cardiac cushion development in the atrioventricular canal (AVC). In Hand2-deficient mouse embryos, the EMT underlying AVC cardiac cushion formation is disrupted, and we combined ChIP-seq of embryonic hearts with transcriptome analysis of wild-type and mutants AVCs to identify the functionally relevant HAND2 target genes. The HAND2 target gene regulatory network (GRN) includes most genes with known functions in EMT processes and AVC cardiac cushion formation. One of these is Snai1, an EMT master regulator whose expression is lost from Hand2-deficient AVCs. Re-expression of Snai1 in mutant AVC explants partially restores this EMT and mesenchymal cell migration. Furthermore, the HAND2-interacting enhancers in the Snai1 genomic landscape are active in embryonic hearts and other Snai1-expressing tissues. These results show that HAND2 directly regulates the molecular cascades initiating AVC cardiac valve development. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. Sub-circuits of a gene regulatory network control a developmental epithelial-mesenchymal transition.

    Science.gov (United States)

    Saunders, Lindsay R; McClay, David R

    2014-04-01

    Epithelial-mesenchymal transition (EMT) is a fundamental cell state change that transforms epithelial to mesenchymal cells during embryonic development, adult tissue repair and cancer metastasis. EMT includes a complex series of intermediate cell state changes including remodeling of the basement membrane, apical constriction, epithelial de-adhesion, directed motility, loss of apical-basal polarity, and acquisition of mesenchymal adhesion and polarity. Transcriptional regulatory state changes must ultimately coordinate the timing and execution of these cell biological processes. A well-characterized gene regulatory network (GRN) in the sea urchin embryo was used to identify the transcription factors that control five distinct cell changes during EMT. Single transcription factors were perturbed and the consequences followed with in vivo time-lapse imaging or immunostaining assays. The data show that five different sub-circuits of the GRN control five distinct cell biological activities, each part of the complex EMT process. Thirteen transcription factors (TFs) expressed specifically in pre-EMT cells were required for EMT. Three TFs highest in the GRN specified and activated EMT (alx1, ets1, tbr) and the 10 TFs downstream of those (tel, erg, hex, tgif, snail, twist, foxn2/3, dri, foxb, foxo) were also required for EMT. No single TF functioned in all five sub-circuits, indicating that there is no EMT master regulator. Instead, the resulting sub-circuit topologies suggest EMT requires multiple simultaneous regulatory mechanisms: forward cascades, parallel inputs and positive-feedback lock downs. The interconnected and overlapping nature of the sub-circuits provides one explanation for the seamless orchestration by the embryo of cell state changes leading to successful EMT.

  17. A regulatory network modeled from wild-type gene expression data guides functional predictions in Caenorhabditis elegans development

    Directory of Open Access Journals (Sweden)

    Stigler Brandilyn

    2012-06-01

    Full Text Available Abstract Background Complex gene regulatory networks underlie many cellular and developmental processes. While a variety of experimental approaches can be used to discover how genes interact, few biological systems have been systematically evaluated to the extent required for an experimental definition of the underlying network. Therefore, the development of computational methods that can use limited experimental data to define and model a gene regulatory network would provide a useful tool to evaluate many important but incompletely understood biological processes. Such methods can assist in extracting all relevant information from data that are available, identify unexpected regulatory relationships and prioritize future experiments. Results To facilitate the analysis of gene regulatory networks, we have developed a computational modeling pipeline method that complements traditional evaluation of experimental data. For a proof-of-concept example, we have focused on the gene regulatory network in the nematode C. elegans that mediates the developmental choice between mesodermal (muscle and ectodermal (skin cell fates in the embryonic C lineage. We have used gene expression data to build two models: a knowledge-driven model based on gene expression changes following gene perturbation experiments, and a data-driven mathematical model derived from time-course gene expression data recovered from wild-type animals. We show that both models can identify a rich set of network gene interactions. Importantly, the mathematical model built only from wild-type data can predict interactions demonstrated by the perturbation experiments better than chance, and better than an existing knowledge-driven model built from the same data set. The mathematical model also provides new biological insight, including a dissection of zygotic from maternal functions of a key transcriptional regulator, PAL-1, and identification of non-redundant activities of the T-box genes

  18. Identification of novel regulatory genes in development of the avian reproductive tracts.

    Directory of Open Access Journals (Sweden)

    Whasun Lim

    Full Text Available The chicken reproductive system is unique in maintaining its functions including production of eggs or sperm, fertilization of the egg by sperm maintained in sperm nests, production of hormones regulating its growth, development and function, and reproduction. Development of the reproductive organs is a highly regulated process that results in differentiation and proliferation of germ cells in response to predominant regulatory factors such as hormones and transcription factors. However, only a few genes are known to determine morphogenesis of the chicken reproductive tract and their mechanisms are unknown. Therefore, in the present study, we investigated the expression patterns of four genes including SNCA, TOM1L1, TTR and ZEB1 in the gonads at embryonic days 14 and 18, and in immature (12-week-old and mature (50-week-old chickens, as well as the reproductive tract including ovary, oviduct and testes of the respective sexes by qRT-PCR, in situ hybridization and immunofluorescence analyses. The expression of SNCA, TOM1L1 and ZEB1 genes was higher in immature and mature female reproductive tracts than expression of TTR. In addition, different temporal and spatial patterns of expression of the four genes were observed during maturation of testis in chickens. Specifically, SNCA, TOM1L1 and TTR were highly expressed in testes of 12-week-old chickens. Moreover, several chicken specific microRNAs (miRs were demonstrated to affect expression of target gene mRNAs by directly binding to the 3'-UTR of their target genes through actions at the post-transcriptional level as follows: miR-153 and miR-1643 for SNCA; miR-1680* for TTR; and miR-200b and miR-1786 for ZEB1. These results suggest that four-selected genes play an important role in development of the male and female reproductive tract in chickens and expression of most candidate genes is regulated at the post-transcriptional level through specific microRNAs.

  19. Role of transcription regulatory sequence in regulation of gene expression and replication of porcine reproductive and respiratory syndrome virus.

    Science.gov (United States)

    Wang, Chengbao; Meng, Han; Gao, Yujin; Gao, Hui; Guo, Kangkang; Almazan, Fernando; Sola, Isabel; Enjuanes, Luis; Zhang, Yanming; Abrahamyan, Levon

    2017-08-10

    In order to gain insight into the role of the transcription regulatory sequences (TRSs) in the regulation of gene expression and replication of porcine reproductive and respiratory syndrome virus (PRRSV), the enhanced green fluorescent protein (EGFP) gene, under the control of the different structural gene TRSs, was inserted between the N gene and 3'-UTR of the PRRSV genome and EGFP expression was analyzed for each TRS. TRSs of all the studied structural genes of PRRSV positively modulated EGFP expression at different levels. Among the TRSs analyzed, those of GP2, GP5, M, and N genes highly enhanced EGFP expression without altering replication of PRRSV. These data indicated that structural gene TRSs could be an extremely useful tool for foreign gene expression using PRRSV as a vector.

  20. Localizing potentially active post-transcriptional regulations in the Ewing's sarcoma gene regulatory network

    Directory of Open Access Journals (Sweden)

    Delyon Bernard

    2010-11-01

    Full Text Available Abstract Background A wide range of techniques is now available for analyzing regulatory networks. Nonetheless, most of these techniques fail to interpret large-scale transcriptional data at the post-translational level. Results We address the question of using large-scale transcriptomic observation of a system perturbation to analyze a regulatory network which contained several types of interactions - transcriptional and post-translational. Our method consisted of post-processing the outputs of an open-source tool named BioQuali - an automatic constraint-based analysis mimicking biologist's local reasoning on a large scale. The post-processing relied on differences in the behavior of the transcriptional and post-translational levels in the network. As a case study, we analyzed a network representation of the genes and proteins controlled by an oncogene in the context of Ewing's sarcoma. The analysis allowed us to pinpoint active interactions specific to this cancer. We also identified the parts of the network which were incomplete and should be submitted for further investigation. Conclusions The proposed approach is effective for the qualitative analysis of cancer networks. It allows the integrative use of experimental data of various types in order to identify the specific information that should be considered a priority in the initial - and possibly very large - experimental dataset. Iteratively, new dataset can be introduced into the analysis to improve the network representation and make it more specific.

  1. Mustn1: A Developmentally Regulated Pan-Musculoskeletal Cell Marker and Regulatory Gene

    Directory of Open Access Journals (Sweden)

    Michael Hadjiargyrou

    2018-01-01

    Full Text Available The Mustn1 gene encodes a small nuclear protein (~9.6 kDa that does not belong to any known family. Its genomic organization consists of three exons interspersed by two introns and it is highly homologous across vertebrate species. Promoter analyses revealed that its expression is regulated by the AP family of transcription factors, especially c-Fos, Fra-2 and JunD. Mustn1 is predominantly expressed in the major tissues of the musculoskeletal system: bone, cartilage, skeletal muscle and tendon. Its expression has been associated with normal embryonic development, postnatal growth, exercise, and regeneration of bone and skeletal muscle. Moreover, its expression has also been detected in various musculoskeletal pathologies, including arthritis, Duchenne muscular dystrophy, other skeletal muscle myopathies, clubfoot and diabetes associated muscle pathology. In vitro and in vivo functional perturbation revealed that Mustn1 is a key regulatory molecule in myogenic and chondrogenic lineages. This comprehensive review summarizes our current knowledge of Mustn1 and proposes that it is a new developmentally regulated pan-musculoskeletal marker as well as a key regulatory protein for cell differentiation and tissue growth.

  2. Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network

    DEFF Research Database (Denmark)

    Østergaard, Simon; Olsson, Lisbeth; Johnston, M.

    2000-01-01

    in the pathway, and ultimately, increasing metabolic flux through the pathway of interest, By manipulating the GAL gene regulatory network of Saccharomyces cerevisiae, which is a tightly regulated system, we produced prototroph mutant strains, which increased the flux through the galactose utilization pathway...... by eliminating three known negative regulators of the GAL system: Gale, Gal80, and Mig1. This led to a 41% increase in flux through the galactose utilization pathway compared with the wild-type strain. This is of significant interest within the field of biotechnology since galactose is present in many industrial...... media. The improved galactose consumption of the gal mutants did not favor biomass formation, but rather caused excessive respiro-fermentative metabolism, with the ethanol production rate increasing linearly with glycolytic flux....

  3. Morphogenesis in sea urchin embryos: linking cellular events to gene regulatory network states

    Science.gov (United States)

    Lyons, Deidre; Kaltenbach, Stacy; McClay, David R.

    2013-01-01

    Gastrulation in the sea urchin begins with ingression of the primary mesenchyme cells (PMCs) at the vegetal pole of the embryo. After entering the blastocoel the PMCs migrate, form a syncitium, and synthesize the skeleton of the embryo. Several hours after the PMCs ingress the vegetal plate buckles to initiate invagination of the archenteron. That morphogenetic process occurs in several steps. The non-skeletogenic cells produce the initial inbending of the vegetal plate. Endoderm cells then rearrange and extend the length of the gut across the blastocoel to a target near the animal pole. Finally, cells that will form part of the midgut and hindgut are added to complete gastrulation. Later, the stomodeum invaginates from the oral ectoderm and fuses with the foregut to complete the archenteron. In advance of, and during these morphogenetic events an increasingly complex gene regulatory network controls the specification and the cell biological events that conduct the gastrulation movements. PMID:23801438

  4. Model checking optimal finite-horizon control for probabilistic gene regulatory networks.

    Science.gov (United States)

    Wei, Ou; Guo, Zonghao; Niu, Yun; Liao, Wenyuan

    2017-12-14

    Probabilistic Boolean networks (PBNs) have been proposed for analyzing external control in gene regulatory networks with incorporation of uncertainty. A context-sensitive PBN with perturbation (CS-PBNp), extending a PBN with context-sensitivity to reflect the inherent biological stability and random perturbations to express the impact of external stimuli, is considered to be more suitable for modeling small biological systems intervened by conditions from the outside. In this paper, we apply probabilistic model checking, a formal verification technique, to optimal control for a CS-PBNp that minimizes the expected cost over a finite control horizon. We first describe a procedure of modeling a CS-PBNp using the language provided by a widely used probabilistic model checker PRISM. We then analyze the reward-based temporal properties and the computation in probabilistic model checking; based on the analysis, we provide a method to formulate the optimal control problem as minimum reachability reward properties. Furthermore, we incorporate control and state cost information into the PRISM code of a CS-PBNp such that automated model checking a minimum reachability reward property on the code gives the solution to the optimal control problem. We conduct experiments on two examples, an apoptosis network and a WNT5A network. Preliminary experiment results show the feasibility and effectiveness of our approach. The approach based on probabilistic model checking for optimal control avoids explicit computation of large-size state transition relations associated with PBNs. It enables a natural depiction of the dynamics of gene regulatory networks, and provides a canonical form to formulate optimal control problems using temporal properties that can be automated solved by leveraging the analysis power of underlying model checking engines. This work will be helpful for further utilization of the advances in formal verification techniques in system biology.

  5. Interferon regulatory factor 5 gene polymorphism in Egyptian children with systemic lupus erythematosus.

    Science.gov (United States)

    Hammad, A; Mossad, Y M; Nasef, N; Eid, R

    2017-07-01

    Background Increased expression of interferon-inducible genes is implicated in the pathogenesis of systemic lupus erythematosus (SLE). Interferon regulatory factor 5 (IRF5) is one of the transcription factors regulating interferon and was proved to be implicated in the pathogenesis of SLE in different populations. Objectives The objective of this study was to investigate the correlation between polymorphisms of the IRF5 gene and SLE susceptibility in a cohort of Egyptian children and to investigate their association with clinico-pathological features, especially lupus nephritis. Subjects and methods Typing of interferon regulatory factor 5 rs10954213, rs2004640 and rs2280714 polymorphisms were done using polymerase chain reaction-restriction fragment length polymorphism for 100 children with SLE and 100 matched healthy controls. Results Children with SLE had more frequent T allele and TT genotype of rs2004640 ( P c  = 0.003 and 0.024, respectively) compared to controls. Patients with nephritis had more frequent T allele of rs2004640 compared to controls ( P c  = 0.003). However the allele and genotype frequencies of the three studied polymorphisms did not show any difference in patients with nephritis in comparison to those without nephritis. Haplotype GTA of rs10954213, rs2004640 and rs2280714, respectively, was more frequent in lupus patients in comparison to controls ( p = 0.01) while the haplotype GGG was more frequent in controls than lupus patients ( p = 0.011). Conclusion The rs2004640 T allele and TT genotype and GTA haplotype of rs rs10954213, rs2004640, and rs2280714, respectively, can be considered as risk factors for the development of SLE. The presence of the rs2004640 T allele increases the risk of nephritis development in Egyptian children with SLE.

  6. A regulatory gene network related to the porcine umami taste receptor (TAS1R1/TAS1R3).

    Science.gov (United States)

    Kim, J M; Ren, D; Reverter, A; Roura, E

    2016-02-01

    Taste perception plays an important role in the mediation of food choices in mammals. The first porcine taste receptor genes identified, sequenced and characterized, TAS1R1 and TAS1R3, were related to the dimeric receptor for umami taste. However, little is known about their regulatory network. The objective of this study was to unfold the genetic network involved in porcine umami taste perception. We performed a meta-analysis of 20 gene expression studies spanning 480 porcine microarray chips and screened 328 taste-related genes by selective mining steps among the available 12,320 genes. A porcine umami taste-specific regulatory network was constructed based on the normalized coexpression data of the 328 genes across 27 tissues. From the network, we revealed the 'taste module' and identified a coexpression cluster for the umami taste according to the first connector with the TAS1R1/TAS1R3 genes. Our findings identify several taste-related regulatory genes and extend previous genetic background of porcine umami taste. © 2015 Stichting International Foundation for Animal Genetics.

  7. The Regulatory T Cell Lineage Factor Foxp3 Regulates Gene Expression through Several Distinct Mechanisms Mostly Independent of Direct DNA Binding.

    Directory of Open Access Journals (Sweden)

    Xin Xie

    2015-06-01

    Full Text Available The lineage factor Foxp3 is essential for the development and maintenance of regulatory T cells, but little is known about the mechanisms involved. Here, we demonstrate that an N-terminal proline-rich interaction region is crucial for Foxp3's function. Subdomains within this key region link Foxp3 to several independent mechanisms of transcriptional regulation. Our study suggests that Foxp3, even in the absence of its DNA-binding forkhead domain, acts as a bridge between DNA-binding interaction partners and proteins with effector function permitting it to regulate a large number of genes. We show that, in one such mechanism, Foxp3 recruits class I histone deacetylases to the promoters of target genes, counteracting activation-induced histone acetylation and thereby suppressing their expression.

  8. Evolution of New cis-Regulatory Motifs Required for Cell-Specific Gene Expression in Caenorhabditis.

    Directory of Open Access Journals (Sweden)

    Michalis Barkoulas

    2016-09-01

    Full Text Available Patterning of C. elegans vulval cell fates relies on inductive signaling. In this induction event, a single cell, the gonadal anchor cell, secretes LIN-3/EGF and induces three out of six competent precursor cells to acquire a vulval fate. We previously showed that this developmental system is robust to a four-fold variation in lin-3/EGF genetic dose. Here using single-molecule FISH, we find that the mean level of expression of lin-3 in the anchor cell is remarkably conserved. No change in lin-3 expression level could be detected among C. elegans wild isolates and only a low level of change-less than 30%-in the Caenorhabditis genus and in Oscheius tipulae. In C. elegans, lin-3 expression in the anchor cell is known to require three transcription factor binding sites, specifically two E-boxes and a nuclear-hormone-receptor (NHR binding site. Mutation of any of these three elements in C. elegans results in a dramatic decrease in lin-3 expression. Yet only a single E-box is found in the Drosophilae supergroup of Caenorhabditis species, including C. angaria, while the NHR-binding site likely only evolved at the base of the Elegans group. We find that a transgene from C. angaria bearing a single E-box is sufficient for normal expression in C. elegans. Even a short 58 bp cis-regulatory fragment from C. angaria with this single E-box is able to replace the three transcription factor binding sites at the endogenous C. elegans lin-3 locus, resulting in the wild-type expression level. Thus, regulatory evolution occurring in cis within a 58 bp lin-3 fragment, results in a strict requirement for the NHR binding site and a second E-box in C. elegans. This single-cell, single-molecule, quantitative and functional evo-devo study demonstrates that conserved expression levels can hide extensive change in cis-regulatory site requirements and highlights the evolution of new cis-regulatory elements required for cell-specific gene expression.

  9. Enrichment of risk SNPs in regulatory regions implicate diverse tissues in Parkinson's disease etiology.

    Science.gov (United States)

    Coetzee, Simon G; Pierce, Steven; Brundin, Patrik; Brundin, Lena; Hazelett, Dennis J; Coetzee, Gerhard A

    2016-07-27

    Recent genome-wide association studies (GWAS) of Parkinson's disease (PD) revealed at least 26 risk loci, with associated single nucleotide polymorphisms (SNPs) located in non-coding DNA having unknown functions in risk. In order to explore in which cell types these SNPs (and their correlated surrogates at r(2) ≥ 0.8) could alter cellular function, we assessed their location overlap with histone modification regions that indicate transcription regulation in 77 diverse cell types. We found statistically significant enrichment of risk SNPs at 12 loci in active enhancers or promoters. We investigated 4 risk loci in depth that were most significantly enriched (-logeP > 14) and contained 8 putative enhancers in the different cell types. These enriched loci, along with eQTL associations, were unexpectedly present in non-neuronal cell types. These included lymphocytes, mesendoderm, liver- and fat-cells, indicating that cell types outside the brain are involved in the genetic predisposition to PD. Annotating regulatory risk regions within specific cell types may unravel new putative risk mechanisms and molecular pathways that contribute to PD development.

  10. Enrichment of risk SNPs in regulatory regions implicate diverse tissues in Parkinson’s disease etiology

    Science.gov (United States)

    Coetzee, Simon G.; Pierce, Steven; Brundin, Patrik; Brundin, Lena; Hazelett, Dennis J.; Coetzee, Gerhard A.

    2016-01-01

    Recent genome-wide association studies (GWAS) of Parkinson’s disease (PD) revealed at least 26 risk loci, with associated single nucleotide polymorphisms (SNPs) located in non-coding DNA having unknown functions in risk. In order to explore in which cell types these SNPs (and their correlated surrogates at r2 ≥ 0.8) could alter cellular function, we assessed their location overlap with histone modification regions that indicate transcription regulation in 77 diverse cell types. We found statistically significant enrichment of risk SNPs at 12 loci in active enhancers or promoters. We investigated 4 risk loci in depth that were most significantly enriched (−logeP > 14) and contained 8 putative enhancers in the different cell types. These enriched loci, along with eQTL associations, were unexpectedly present in non-neuronal cell types. These included lymphocytes, mesendoderm, liver- and fat-cells, indicating that cell types outside the brain are involved in the genetic predisposition to PD. Annotating regulatory risk regions within specific cell types may unravel new putative risk mechanisms and molecular pathways that contribute to PD development. PMID:27461410

  11. Drought Response in Wheat: Key Genes and Regulatory Mechanisms Controlling Root System Architecture and Transpiration Efficiency

    Directory of Open Access Journals (Sweden)

    Manoj Kulkarni

    2017-12-01

    gold-standard reference genome sequence and advent of genome editing technologies, are expected to aid in deciphering of the functional roles of genes and regulatory networks underlying adaptive phenological traits, and utilizing the outcomes of such studies in developing drought tolerant cultivars.

  12. Expression of the Pseudomonas aeruginosa toxA positive regulatory gene (regA) in Escherichia coli.

    OpenAIRE

    Hamood, A N; Iglewski, B H

    1990-01-01

    The regA gene is a positive regulatory gene that regulates toxin A production in Pseudomonas aeruginosa at the transcriptional level. The product of the regA gene was examined in Escherichia coli with the expression vector pT7-7. A 1.3-kilobase AvaI-HindIII fragment containing the regA gene was cloned into the pT7-7 vector. A recombinant plasmid (pAH1) encoded a 29-kilodalton protein. The molecular weight of this protein correlated closely with the predicted molecular weight of the RegA prote...

  13. Genetic variants in regulatory regions of microRNAs are associated with lung cancer risk.

    Science.gov (United States)

    Xie, Kaipeng; Wang, Cheng; Qin, Na; Yang, Jianshui; Zhu, Meng; Dai, Juncheng; Jin, Guangfu; Shen, Hongbing; Ma, Hongxia; Hu, Zhibin

    2016-07-26

    Genetic variants in regulatory regions of some miRNAs might be associated with lung cancer risk and survival. We performed a case-control study including 1341 non-small cell lung cancer (NSCLC) cases and 1982 controls to evaluate the associations of 7 potentially functional polymorphisms in several differently expressed miRNAs with NSCLC risk. Each SNP was also tested for the association with overall survival of 1001 NSCLC patients. We identified that rs9660710 in miR-200b/200a/429 cluster and rs763354 in miR-30a were significantly associated with NSCLC risk [odds ratio (OR) = 1.17, 95% confidence interval (CI) = 1.06-1.30, P = 0.002; OR = 0.88, 95% CI = 0.80-0.98, P = 0.017; respectively]. However, no significant association between variants and NSCLC death risk was observed in survival analysis. Functional annotation showed that both rs9660710 and rs763354 were located in regulatory elements in lung cancer cells. Compared to normal tissues, miR-200a-3p, miR-200a-5p, miR-200b-3p, miR-200b-5p and miR-429 were significantly increased in The Cancer Genome Atlas (TCGA) Lung Adenocarcinoma (LUAD) tumors, whereas miR-30a-3p and miR-30a-5p were significantly decreased in tumors (all P < 0.05). Furthermore, we observed that rs9660710 is an expression quantitative trait locus (eQTL) or methylation eQTL for miR-429 expression in TCGA normal tissues. Our results indicated that rs9660710 in miR-200b/200a/429 cluster and rs763354 in miR-30a might modify the susceptibility to NSCLC.

  14. Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa.

    Science.gov (United States)

    Ochsner, U A; Koch, A K; Fiechter, A; Reiser, J

    1994-04-01

    A mutant strain (65E12) of Pseudomonas aeruginosa that is unable to produce rhamnolipid biosurfactants and lacks rhamnosyltransferase activity was genetically complemented by using a P. aeruginosa PG201 wild-type gene library. A single complementing cosmid was isolated on the basis of surface tension measurements of subcultures of the transconjugants by using a sib selection strategy. The subcloning of the complementing cosmid clone yielded a 2-kb fragment capable of restoring rhamnolipid biosynthesis, rhamnosyltransferase activity, and utilization of hexadecane as a C source in mutant 65E12. The nucleotide sequence of the complementing 2-kb fragment was determined, and a single open reading frame (rhlR) of 723 bp specifying a putative 28-kDa protein (RhlR) was identified. Sequence homologies between the RhlR protein and some regulatory proteins such as LasR of P. aeruginosa, LuxR of Vibrio fischeri, RhiR of Rhizobium leguminosarum, and the putative activator 28-kDa UvrC of Escherichia coli suggest that the RhlR protein is a transcriptional activator. A putative target promoter which is regulated by the RhlR protein has been identified 2.5 kb upstream of the rhlR gene. Multiple plasmid-based rhlR gene copies had a stimulating effect on the growth of the P. aeruginosa wild-type strain in hexadecane-containing minimal medium, on rhamnolipid production, and on the production of pyocyanin chromophores. Disruption of the P. aeruginosa wild-type rhlR locus led to rhamnolipid-deficient mutant strains, thus confirming directly that this gene is necessary for rhamnolipid biosynthesis. Additionally, such PG201::'rhlR' mutant strains lacked elastase activity, indicating that the RhlR protein is a pleiotropic regulator.

  15. Human sterol regulatory element-binding protein 1a contributes significantly to hepatic lipogenic gene expression.

    Science.gov (United States)

    Bitter, Andreas; Nüssler, Andreas K; Thasler, Wolfgang E; Klein, Kathrin; Zanger, Ulrich M; Schwab, Matthias; Burk, Oliver

    2015-01-01

    Sterol regulatory element-binding protein (SREBP) 1, the master regulator of lipogenesis, was shown to be associated with non-alcoholic fatty liver disease, which is attributed to its major isoform SREBP1c. Based on studies in mice, the minor isoform SREBP1a is regarded as negligible for hepatic lipogenesis. This study aims to elucidate the expression and functional role of SREBP1a in human liver. mRNA expression of both isoforms was quantified in cohorts of human livers and primary human hepatocytes. Hepatocytes were treated with PF-429242 to inhibit the proteolytic activation of SREBP precursor protein. SREBP1a-specifc and pan-SREBP1 knock-down were performed by transfection of respective siRNAs. Lipogenic SREBP-target gene expression was analyzed by real-time RT-PCR. In human liver, SREBP1a accounts for up to half of the total SREBP1 pool. Treatment with PF-429242 indicated SREBP-dependent auto-regulation of SREBP1a, which however was much weaker than of SREBP1c. SREBP1a-specifc knock-down also reduced significantly the expression of SREBP1c and of SREBP-target genes. Regarding most SREBP-target genes, simultaneous knock-down of both isoforms resulted in effects of only similar extent as SREBP1a-specific knock-down. We here showed that SREBP1a is significantly contributing to the human hepatic SREBP1 pool and has a share in human hepatic lipogenic gene expression. © 2015 S. Karger AG, Basel.

  16. Intervention in gene regulatory networks via greedy control policies based on long-run behavior

    Directory of Open Access Journals (Sweden)

    Ghaffari Noushin

    2009-06-01

    Full Text Available Abstract Background A salient purpose for studying gene regulatory networks is to derive intervention strategies, the goals being to identify potential drug targets and design gene-based therapeutic intervention. Optimal stochastic control based on the transition probability matrix of the underlying Markov chain has been studied extensively for probabilistic Boolean networks. Optimization is based on minimization of a cost function and a key goal of control is to reduce the steady-state probability mass of undesirable network states. Owing to computational complexity, it is difficult to apply optimal control for large networks. Results In this paper, we propose three new greedy stationary control policies by directly investigating the effects on the network long-run behavior. Similar to the recently proposed mean-first-passage-time (MFPT control policy, these policies do not depend on minimization of a cost function and avoid the computational burden of dynamic programming. They can be used to design stationary control policies that avoid the need for a user-defined cost function because they are based directly on long-run network behavior; they can be used as an alternative to dynamic programming algorithms when the latter are computationally prohibitive; and they can be used to predict the best control gene with reduced computational complexity, even when one is employing dynamic programming to derive the final control policy. We compare the performance of these three greedy control policies and the MFPT policy using randomly generated probabilistic Boolean networks and give a preliminary example for intervening in a mammalian cell cycle network. Conclusion The newly proposed control policies have better performance in general than the MFPT policy and, as indicated by the results on the mammalian cell cycle network, they can potentially serve as future gene therapeutic intervention strategies.

  17. Human Sterol Regulatory Element-Binding Protein 1a Contributes Significantly to Hepatic Lipogenic Gene Expression

    Directory of Open Access Journals (Sweden)

    Andreas Bitter

    2015-01-01

    Full Text Available Background/Aims: Sterol regulatory element-binding protein (SREBP 1, the master regulator of lipogenesis, was shown to be associated with non-alcoholic fatty liver disease, which is attributed to its major isoform SREBP1c. Based on studies in mice, the minor isoform SREBP1a is regarded as negligible for hepatic lipogenesis. This study aims to elucidate the expression and functional role of SREBP1a in human liver. Methods: mRNA expression of both isoforms was quantified in cohorts of human livers and primary human hepatocytes. Hepatocytes were treated with PF-429242 to inhibit the proteolytic activation of SREBP precursor protein. SREBP1a-specifc and pan-SREBP1 knock-down were performed by transfection of respective siRNAs. Lipogenic SREBP-target gene expression was analyzed by real-time RT-PCR. Results: In human liver, SREBP1a accounts for up to half of the total SREBP1 pool. Treatment with PF-429242 indicated SREBP-dependent auto-regulation of SREBP1a, which however was much weaker than of SREBP1c. SREBP1a-specifc knock-down also reduced significantly the expression of SREBP1c and of SREBP-target genes. Regarding most SREBP-target genes, simultaneous knock-down of both isoforms resulted in effects of only similar extent as SREBP1a-specific knock-down. Conclusion: We here showed that SREBP1a is significantly contributing to the human hepatic SREBP1 pool and has a share in human hepatic lipogenic gene expression.

  18. Ciliary dyslexia candidate genes DYX1C1 and DCDC2 are regulated by Regulatory Factor X (RFX) transcription factors through X-box promoter motifs.

    Science.gov (United States)

    Tammimies, Kristiina; Bieder, Andrea; Lauter, Gilbert; Sugiaman-Trapman, Debora; Torchet, Rachel; Hokkanen, Marie-Estelle; Burghoorn, Jan; Castrén, Eero; Kere, Juha; Tapia-Páez, Isabel; Swoboda, Peter

    2016-10-01

    DYX1C1, DCDC2, and KIAA0319 are three of the most replicated dyslexia candidate genes (DCGs). Recently, these DCGs were implicated in functions at the cilium. Here, we investigate the regulation of these DCGs by Regulatory Factor X transcription factors (RFX TFs), a gene family known for transcriptionally regulating ciliary genes. We identify conserved X-box motifs in the promoter regions of DYX1C1, DCDC2, and KIAA0319 and demonstrate their functionality, as well as the ability to recruit RFX TFs using reporter gene and electrophoretic mobility shift assays. Furthermore, we uncover a complex regulation pattern between RFX1, RFX2, and RFX3 and their significant effect on modifying the endogenous expression of DYX1C1 and DCDC2 in a human retinal pigmented epithelial cell line immortalized with hTERT (hTERT-RPE1). In addition, induction of ciliogenesis increases the expression of RFX TFs and DCGs. At the protein level, we show that endogenous DYX1C1 localizes to the base of the cilium, whereas DCDC2 localizes along the entire axoneme of the cilium, thereby validating earlier localization studies using overexpression models. Our results corroborate the emerging role of DCGs in ciliary function and characterize functional noncoding elements, X-box promoter motifs, in DCG promoter regions, which thus can be targeted for mutation screening in dyslexia and ciliopathies associated with these genes.-Tammimies, K., Bieder, A., Lauter, G., Sugiaman-Trapman, D., Torchet, R., Hokkanen, M.-E., Burghoorn, J., Castrén, E., Kere, J., Tapia-Páez, I., Swoboda, P. Ciliary dyslexia candidate genes DYX1C1 and DCDC2 are regulated by Regulatory Factor (RF) X transcription factors through X-box promoter motifs. © The Author(s).

  19. A systems biology approach to construct the gene regulatory network of systemic inflammation via microarray and databases mining

    Directory of Open Access Journals (Sweden)

    Lan Chung-Yu

    2008-09-01

    Full Text Available Abstract Background Inflammation is a hallmark of many human diseases. Elucidating the mechanisms underlying systemic inflammation has long been an important topic in basic and clinical research. When primary pathogenetic events remains unclear due to its immense complexity, construction and analysis of the gene regulatory network of inflammation at times becomes the best way to understand the detrimental effects of disease. However, it is difficult to recognize and evaluate relevant biological processes from the huge quantities of experimental data. It is hence appealing to find an algorithm which can generate a gene regulatory network of systemic inflammation from high-throughput genomic studies of human diseases. Such network will be essential for us to extract valuable information from the complex and chaotic network under diseased conditions. Results In this study, we construct a gene regulatory network of inflammation using data extracted from the Ensembl and JASPAR databases. We also integrate and apply a number of systematic algorithms like cross correlation threshold, maximum likelihood estimation method and Akaike Information Criterion (AIC on time-lapsed microarray data to refine the genome-wide transcriptional regulatory network in response to bacterial endotoxins in the context of dynamic activated genes, which are regulated by transcription factors (TFs such as NF-κB. This systematic approach is used to investigate the stochastic interaction represented by the dynamic leukocyte gene expression profiles of human subject exposed to an inflammatory stimulus (bacterial endotoxin. Based on the kinetic parameters of the dynamic gene regulatory network, we identify important properties (such as susceptibility to infection of the immune system, which may be useful for translational research. Finally, robustness of the inflammatory gene network is also inferred by analyzing the hubs and "weak ties" structures of the gene network

  20. Conserved-peptide upstream open reading frames (CPuORFs are associated with regulatory genes in angiosperms

    Directory of Open Access Journals (Sweden)

    Richard A Jorgensen

    2012-08-01

    Full Text Available Upstream open reading frames (uORFs are common in eukaryotic transcripts, but those that encode conserved peptides (CPuORFs occur in less than 1% of transcripts. The peptides encoded by three plant CPuORF families are known to control translation of the downstream ORF in response to a small signal molecule (sucrose, polyamines and phosphocholine. In flowering plants, transcription factors are statistically over-represented among genes that possess CPuORFs, and in general it appeared that many CPuORF genes also had other regulatory functions, though the significance of this suggestion was uncertain (Hayden and Jorgensen, 2007. Five years later the literature provides much more information on the functions of many CPuORF genes. Here we reassess the functions of 27 known CPuORF gene families and find that 22 of these families play a variety of different regulatory roles, from transcriptional control to protein turnover, and from small signal molecules to signal transduction kinases. Clearly then, there is indeed a strong association of CPuORFs with regulatory genes. In addition, 16 of these families play key roles in a variety of different biological processes. Most strikingly, the core sucrose response network includes three different CPuORFs, creating the potential for sophisticated balancing of the network in response to three different molecular inputs. We propose that the function of most CPuORFs is to modulate translation of a downstream major ORF (mORF in response to a signal molecule recognized by the conserved peptide and that because the mORFs of CPuORF genes generally encode regulatory proteins, many of them centrally important in the biology of plants, CPuORFs play key roles in balancing such regulatory networks.

  1. Evolution of regulatory genes governing biodegradation in acinetobacter calcoaceticus. Final report, 15 July 1991-31 December 1994

    Energy Technology Data Exchange (ETDEWEB)

    Ornston, L.N.

    1995-02-22

    The Acinetobacter calcoaceticus pca-qui-pob supraoperonic gene cluster encodes bacterial enzymes that metabolize aromatic and hydroaromatic compounds in the environment. Our investigation is directed to understanding how mutation, gene rearrangement and selection contributed to evolution of the transcriptional controls exercised over genes in the cluster. The complete nucleotide sequence of the 18 kbp gene cluster has been determined, and genetic manipulations have been used to explore mechanisms contributing to expression of the genes. The results reveal that structural gene expression is governed by complex interactions between the products of different regulatory genes some of which share common ancestry. Additional controls appear to be exercised by compartmentation of some catabolic enzymes outside the inner cell membrane. Recombination appears to have made a major contribution to the evolution of existing control mechanisms, and their maintenance may be influence by continuing recombination. Contributions of recombination to mutation and repair are under investigation as are specific molecular mechanisms underlying transcriptional controls.

  2. Global characterization of interferon regulatory factor (IRF genes in vertebrates: Glimpse of the diversification in evolution

    Directory of Open Access Journals (Sweden)

    Xu Zhen

    2010-05-01

    Full Text Available Abstract Background Interferon regulatory factors (IRFs, which can be identified based on a unique helix-turn-helix DNA-binding domain (DBD are a large family of transcription factors involved in host immune response, haemotopoietic differentiation and immunomodulation. Despite the identification of ten IRF family members in mammals, and some recent effort to identify these members in fish, relatively little is known in the composition of these members in other classes of vertebrates, and the evolution and probably the origin of the IRF family have not been investigated in vertebrates. Results Genome data mining has been performed to identify any possible IRF family members in human, mouse, dog, chicken, anole lizard, frog, and some teleost fish, mainly zebrafish and stickleback, and also in non-vertebrate deuterostomes including the hemichordate, cephalochordate, urochordate and echinoderm. In vertebrates, all ten IRF family members, i.e. IRF-1 to IRF-10 were identified, with two genes of IRF-4 and IRF-6 identified in fish and frog, respectively, except that in zebrafish exist three IRF-4 genes. Surprisingly, an additional member in the IRF family, IRF-11 was found in teleost fish. A range of two to ten IRF-like genes were detected in the non-vertebrate deuterostomes, and they had little similarity to those IRF family members in vertebrates as revealed in genomic structure and in phylogenetic analysis. However, the ten IRF family members, IRF-1 to IRF-10 showed certain degrees of conservation in terms of genomic structure and gene synteny. In particular, IRF-1, IRF-2, IRF-6, IRF-8 are quite conserved in their genomic structure in all vertebrates, and to a less degree, some IRF family members, such as IRF-5 and IRF-9 are comparable in the structure. Synteny analysis revealed that the gene loci for the ten IRF family members in vertebrates were also quite conservative, but in zebrafish conserved genes were distributed in a much longer distance in

  3. Identification of co-expression gene networks, regulatory genes and pathways for obesity based on adipose tissue RNA Sequencing in a porcine model

    DEFF Research Database (Denmark)

    Kogelman, Lisette; Cirera Salicio, Susanna; Zhernakova, Daria V.

    2014-01-01

    interactions. Identification of co-expressed and regulatory genes in RNA extracted from relevant tissues representing lean and obese individuals provides an entry point for the identification of genes and pathways of importance to the development of obesity. The pig, an omnivorous animal, is an excellent model...... in a porcine model. Methods We selected 36 animals for RNA Sequencing from a previously created F2 pig population representing three extreme groups based on their predicted genetic risks for obesity. We applied Weighted Gene Co-expression Network Analysis (WGCNA) to detect clusters of highly co-expressed genes...... in humans and rodents, e.g. CSF1R and MARC2. Conclusions To our knowledge, this is the first study to apply systems biology approaches using porcine adipose tissue RNA-Sequencing data in a genetically characterized porcine model for obesity. We revealed complex networks, pathways, candidate and regulatory...

  4. Life without oxygen: gene regulatory responses of the crucian carp (Carassius carassius heart subjected to chronic anoxia.

    Directory of Open Access Journals (Sweden)

    Kåre-Olav Stensløkken

    Full Text Available Crucian carp are unusual among vertebrates in surviving extended periods in the complete absence of molecular oxygen. During this time cardiac output is maintained though these mechanisms are not well understood. Using a high-density cDNA microarray, we have defined the genome-wide gene expression responses of cardiac tissue after exposing the fish at two temperatures (8 and 13 °C to one and seven days of anoxia, followed by seven days after restoration to normoxia. At 8 °C, using a false discovery rate of 5%, neither anoxia nor re-oxygenation elicited appreciable changes in gene expression. By contrast, at 13 °C, 777 unique genes responded strongly. Up-regulated genes included those involved in protein turnover, the pentose phosphate pathway and cell morphogenesis while down-regulated gene categories included RNA splicing and transcription. Most genes were affected between one and seven days of anoxia, indicating gene regulation over the medium term but with few early response genes. Re-oxygenation for 7 days was sufficient to completely reverse these responses. Glycolysis displayed more complex responses with anoxia up-regulated transcripts for the key regulatory enzymes, hexokinase and phosphofructokinase, but with down-regulation of most of the non-regulatory genes. This complex pattern of responses in genomic transcription patterns indicates divergent cardiac responses to anoxia, with the transcriptionally driven reprogramming of cardiac function seen at 13 °C being largely completed at 8 °C.

  5. Regulatory autonomy and molecular characterization of the Drosophila out at first gene

    Energy Technology Data Exchange (ETDEWEB)

    Bergstrom, D.E.; Merli, C.A.; Cygan, J.A.; Shelby, R.; Blackman, R.K. [Univ. of Illinois, Urbana, IL (United States)

    1995-03-01

    Our previous work has shown that the expression of the Drosophila decapentaplegic (dpp) gene in imaginal disks is controlled by a 30 kb array of enhancers located 3{prime} of the dpp coding region. Here, we describe the cloning and characterization of out at first (oaf), a gene located near this enhancer region. Transcription of oaf results in three classes of alternatively polyadenylated RNAs whose expression is developmentally regulated. All oaf transcripts contain two adjacent open reading frames separated by a single UGA stop codon. Suppression of the UGA codon during translation, as seen previously in Drosophila, could lead to the production of different proteins from the same RNA. During oogenesis, oaf RNA is expressed in nurse cells of all ages and maternally contributed to the egg. During embryonic development, zygotic transcription of the gene occurs in small clusters of cells in most or all segments at the time of germband extension and subsequently in a segmentally repeated pattern in the developing central nervous system. The gene is also expressed in the embryonic, larval and adult gonads of both sexes. We also characterize an enhancer trap line with its transposon inserted within the oaf gene and use it to generate six recessive oaf mutations. All six cause death near the beginning of the first larval instar, with two characterized lines showing nervous system defects. Last, we discuss our data in light of the observation that the enhancers controlling dpp expression in the imaginal disks have no effect on the relatively nearby oaf gene. 67 refs., 10 figs., 1 tab.

  6. Riboswitches: discovery of drugs that target bacterial gene-regulatory RNAs

    Science.gov (United States)

    Deigan, Katherine E.; Ferré-D’Amaré, Adrian R.

    2011-01-01

    Conspectus Riboswitches, which were discovered in the first years of the XXI century, are gene-regulatory mRNA domains that respond to the intracellular concentration of a variety of metabolites and second messengers. They control essential genes in many pathogenic bacteria, and represent a new class of biomolecular target for the development of antibiotics and chemical-biological tools. Five mechanisms of gene regulation are known for riboswitches. Most bacterial riboswitches modulate transcription termination or translation initiation in response to ligand binding. All known examples of eukaryotic riboswitches and some bacterial riboswitches control gene expression by alternative splicing. The glmS riboswitch, widespread in Gram-positive bacteria, is a catalytic RNA activated by ligand binding. Its self-cleavage destabilizes the mRNA of which it is part. Finally, one example of trans-acting riboswitch is known. Three-dimensional (3D) structures have been determined of representatives of thirteen structurally distinct riboswitch classes, providing atomic-level insight into their mechanisms of ligand recognition. While cellular and viral RNAs in general have attracted interest as potential drug targets, riboswitches show special promise due to the diversity and sophistication of small molecule recognition strategies on display in their ligand binding pockets. Moreover, uniquely among known structured RNA domains, riboswitches evolved to recognize small molecule ligands. Structural and biochemical advances in the study of riboswitches provide an impetus for the development of methods for the discovery of novel riboswitch activators and inhibitors. Recent rational drug design efforts focused on select riboswitch classes have yielded a small number of candidate antibiotic compounds, including one active in a mouse model of Staphylococcus aureus infection. The development of high-throughput methods suitable for riboswitch-specific drug discovery is ongoing. A fragment

  7. Construction of Gene Regulatory Networks Using Recurrent Neural Networks and Swarm Intelligence.

    Science.gov (United States)

    Khan, Abhinandan; Mandal, Sudip; Pal, Rajat Kumar; Saha, Goutam

    2016-01-01

    We have proposed a methodology for the reverse engineering of biologically plausible gene regulatory networks from temporal genetic expression data. We have used established information and the fundamental mathematical theory for this purpose. We have employed the Recurrent Neural Network formalism to extract the underlying dynamics present in the time series expression data accurately. We have introduced a new hybrid swarm intelligence framework for the accurate training of the model parameters. The proposed methodology has been first applied to a small artificial network, and the results obtained suggest that it can produce the best results available in the contemporary literature, to the best of our knowledge. Subsequently, we have implemented our proposed framework on experimental (in vivo) datasets. Finally, we have investigated two medium sized genetic networks (in silico) extracted from GeneNetWeaver, to understand how the proposed algorithm scales up with network size. Additionally, we have implemented our proposed algorithm with half the number of time points. The results indicate that a reduction of 50% in the number of time points does not have an effect on the accuracy of the proposed methodology significantly, with a maximum of just over 15% deterioration in the worst case.

  8. PRMT1 mediated methylation of TAF15 is required for its positive gene regulatory function

    Energy Technology Data Exchange (ETDEWEB)

    Jobert, Laure; Argentini, Manuela [Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U 596, Universite Louis Pasteur de Strasbourg, BP 10142 - 67404 Illkirch Cedex, CU de Strasbourg (France); Tora, Laszlo, E-mail: laszlo@igbmc.u-strasbg.fr [Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U 596, Universite Louis Pasteur de Strasbourg, BP 10142 - 67404 Illkirch Cedex, CU de Strasbourg (France)

    2009-04-15

    TAF15 (formerly TAF{sub II}68) is a nuclear RNA-binding protein that is associated with a distinct population of TFIID and RNA polymerase II complexes. TAF15 harbours an N-terminal activation domain, an RNA recognition motif (RRM) and many Arg-Gly-Gly (RGG) repeats at its C-terminal end. The N-terminus of TAF15 serves as an essential transforming domain in the fusion oncoprotein created by chromosomal translocation in certain human chondrosarcomas. Post-transcriptional modifications (PTMs) of proteins are known to regulate their activity, however, nothing is known on how PTMs affect TAF15 function. Here we demonstrate that endogenous human TAF15 is methylated in vivo at its numerous RGG repeats. Furthermore, we identify protein arginine N-methyltransferase 1 (PRMT1) as a TAF15 interactor and the major PRMT responsible for its methylation. In addition, the RGG repeat-containing C-terminus of TAF15 is responsible for the shuttling between the nucleus and the cytoplasm and the methylation of RGG repeats affects the subcellular localization of TAF15. The methylation of TAF15 by PRMT1 is required for the ability of TAF15 to positively regulate the expression of the studied endogenous TAF15-target genes. Our findings demonstrate that arginine methylation of TAF15 by PRMT1 is a crucial event determining its proper localization and gene regulatory function.

  9. Sieve-based relation extraction of gene regulatory networks from biological literature.

    Science.gov (United States)

    Žitnik, Slavko; Žitnik, Marinka; Zupan, Blaž; Bajec, Marko

    2015-01-01

    Relation extraction is an essential procedure in literature mining. It focuses on extracting semantic relations between parts of text, called mentions. Biomedical literature includes an enormous amount of textual descriptions of biological entities, their interactions and results of related experiments. To extract them in an explicit, computer readable format, these relations were at first extracted manually from databases. Manual curation was later replaced with automatic or semi-automatic tools with natural language processing capabilities. The current challenge is the development of information extraction procedures that can directly infer more complex relational structures, such as gene regulatory networks. We develop a computational approach for extraction of gene regulatory networks from textual data. Our method is designed as a sieve-based system and uses linear-chain conditional random fields and rules for relation extraction. With this method we successfully extracted the sporulation gene regulation network in the bacterium Bacillus subtilis for the information extraction challenge at the BioNLP 2013 conference. To enable extraction of distant relations using first-order models, we transform the data into skip-mention sequences. We infer multiple models, each of which is able to extract different relationship types. Following the shared task, we conducted additional analysis using different system settings that resulted in reducing the reconstruction error of bacterial sporulation network from 0.73 to 0.68, measured as the slot error rate between the predicted and the reference network. We observe that all relation extraction sieves contribute to the predictive performance of the proposed approach. Also, features constructed by considering mention words and their prefixes and suffixes are the most important features for higher accuracy of extraction. Analysis of distances between different mention types in the text shows that our choice of transforming

  10. Modelling non-stationary gene regulatory processes with a non-homogeneous Bayesian network and the allocation sampler

    NARCIS (Netherlands)

    Grzegorczyk, Marco; Husmeier, Dirk; Edwards, Kieron D.; Ghazal, Peter; Millar, Andrew J.

    2008-01-01

    Method: The objective of the present article is to propose and evaluate a probabilistic approach based on Bayesian networks for modelling non-homogeneous and non-linear gene regulatory processes. The method is based on a mixture model, using latent variables to assign individual measurements to

  11. Arabidopsis CPR5 is a senescence-regulatory gene with pleiotropic functions as predicted by the evolutionary theory of senescence

    NARCIS (Netherlands)

    Jing, Hai-Chun; Anderson, Lisa; Sturre, Marcel J. G.; Hille, Jacques; Dijkwel, Paul P.

    2007-01-01

    Arabidopsis CPR5 is a senescence-regulatory gene with pleiotropic functions as predicted by the evolutionary theory of senescence Hai-Chun Jing1,2, Lisa Anderson3, Marcel J.G. Sturre1, Jacques Hille1 and Paul P. Dijkwel1,* 1Molecular Biology of Plants, Groningen Biomolecular Sciences and

  12. Large-Scale Evaluation of Common Variation in Regulatory T Cell–Related Genes and Ovarian Cancer Outcome

    DEFF Research Database (Denmark)

    Charbonneau, Bridget; Moysich, Kirsten B; Kalli, Kimberly R

    2014-01-01

    The presence of regulatory T cells (Treg) in solid tumors is known to play a role in patient survival in ovarian cancer and other malignancies. We assessed inherited genetic variations via 749 tag single-nucleotide polymorphisms (SNP) in 25 Treg-associated genes (CD28, CTLA4, FOXP3, IDO1, IL10, IL...

  13. Cloning and computer analysis of the promoter region of the legumin-like storage protein gene from buckwheat, Fagopyrum esculentum Moench

    Directory of Open Access Journals (Sweden)

    Milisavljević Mira

    2004-01-01

    Full Text Available Using the modified 5’-RACE approach, a fragment containing the 955 bp long 5’- regulatory region of the buckwheat storage globulin gene (FeLEG1 has been amplified from the genomic DNA of buckwheat. The entire fragment was sequenced and the sequence analyzed by computer prediction of cis-regulatory elements possibly involved in tissue specific and developmentally controlled seed storage protein gene expression. The promoter obtained might be interesting not only for fundamental research, but also as a useful tool for biotechnological application.

  14. Phenobarbital-dependent protein binding to Barbie box-like sequences in the coding region of cytochrome P450BM-3 gene from Bacillus megaterium.

    Science.gov (United States)

    Gaidamakova, E K; Alpatov, O V; Ischenko, I V; Kovalenko, S P; Lyakhovich, V V

    1996-12-12

    Phenobarbital-dependent protein binding was shown to occur to DNA fragments from the coding region of the cytochrome P450BM-3 gene from Bacillus megaterium. Incubation of the DNA fragments from the coding region of the gene with total cell extract from Bacillus megaterium revealed two DNA regions with protein-binding capacity: +237/+318 and +319/+425 considering 'O' as the start of cytochrome P450BM-3 translation. DNaseI footprint analysis of the fragment +319/+425 with the total cell extract showed that some protein(s) protected DNA stretches from the position +373 up to the position +389 on the transcribed strand and from the position +378 up to the position +398 on the non-transcribed strand. DNaseI footprint analysis of the fragment +237/+318 revealed the protection in the region +262/+277 on the non-transcribed strand. Three regions protected by cell extract protein(s) from DNaseI hydrolysis (+262/+277, +373/+389 and +378/+398) appeared to be strongly homologous to the Barbie box sequence. Barbie-box-like sequences were found in the majority of regulatory regions of phenobarbital-inducible genes whose regulatory sequences had been reported (Fulco et al., 1994). Our results suggest that a functional role of Barbie box sequence takes place not only in regulatory but also in the coding region of the gene. In line with that hypothesis we analyzed all cytochrome P450 genes in respect to the presence of Barbie box-like sequences in their coding parts. At least one cytochrome P450 gene (CYP6A1, phenobarbital-inducible gene from Musca domestica) was shown to contain Barbie box sequence in the coding part of the gene.

  15. Inherited variants in regulatory T cell genes and outcome of ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Ellen L Goode

    Full Text Available Although ovarian cancer is the most lethal of gynecologic malignancies, wide variation in outcome following conventional therapy continues to exist. The presence of tumor-infiltrating regulatory T cells (Tregs has a role in outcome of this disease, and a growing body of data supports the existence of inherited prognostic factors. However, the role of inherited variants in genes encoding Treg-related immune molecules has not been fully explored. We analyzed expression quantitative trait loci (eQTL and sequence-based tagging single nucleotide polymorphisms (tagSNPs for 54 genes associated with Tregs in 3,662 invasive ovarian cancer cases. With adjustment for known prognostic factors, suggestive results were observed among rarer histological subtypes; poorer survival was associated with minor alleles at SNPs in RGS1 (clear cell, rs10921202, p=2.7×10(-5, LRRC32 and TNFRSF18/TNFRSF4 (mucinous, rs3781699, p=4.5×10(-4, and rs3753348, p=9.0×10(-4, respectively, and CD80 (endometrioid, rs13071247, p=8.0×10(-4. Fo0r the latter, correlative data support a CD80 rs13071247 genotype association with CD80 tumor RNA expression (p=0.006. An additional eQTL SNP in CD80 was associated with shorter survival (rs7804190, p=8.1×10(-4 among all cases combined. As the products of these genes are known to affect induction, trafficking, or immunosuppressive function of Tregs, these results suggest the need for follow-up phenotypic studies.

  16. A new asynchronous parallel algorithm for inferring large-scale gene regulatory networks.

    Science.gov (United States)

    Xiao, Xiangyun; Zhang, Wei; Zou, Xiufen

    2015-01-01

    The reconstruction of gene regulatory networks (GRNs) from high-throughput experimental data has been considered one of the most important issues in systems biology research. With the development of high-throughput technology and the complexity of biological problems, we need to reconstruct GRNs that contain thousands of genes. However, when many existing algorithms are used to handle these large-scale problems, they will encounter two important issues: low accuracy and high computational cost. To overcome these difficulties, the main goal of this study is to design an effective parallel algorithm to infer large-scale GRNs based on high-performance parallel computing environments. In this study, we proposed a novel asynchronous parallel framework to improve the accuracy and lower the time complexity of large-scale GRN inference by combining splitting technology and ordinary differential equation (ODE)-based optimization. The presented algorithm uses the sparsity and modularity of GRNs to split whole large-scale GRNs into many small-scale modular subnetworks. Through the ODE-based optimization of all subnetworks in parallel and their asynchronous communications, we can easily obtain the parameters of the whole network. To test the performance of the proposed approach, we used well-known benchmark datasets from Dialogue for Reverse Engineering Assessments and Methods challenge (DREAM), experimentally determined GRN of Escherichia coli and one published dataset that contains more than 10 thousand genes to compare the proposed approach with several popular algorithms on the same high-performance computing environments in terms of both accuracy and time complexity. The numerical results demonstrate that our parallel algorithm exhibits obvious superiority in inferring large-scale GRNs.

  17. A new asynchronous parallel algorithm for inferring large-scale gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Xiangyun Xiao

    Full Text Available The reconstruction of gene regulatory networks (GRNs from high-throughput experimental data has been considered one of the most important issues in systems biology research. With the development of high-throughput technology and the complexity of biological problems, we need to reconstruct GRNs that contain thousands of genes. However, when many existing algorithms are used to handle these large-scale problems, they will encounter two important issues: low accuracy and high computational cost. To overcome these difficulties, the main goal of this study is to design an effective parallel algorithm to infer large-scale GRNs based on high-performance parallel computing environments. In this study, we proposed a novel asynchronous parallel framework to improve the accuracy and lower the time complexity of large-scale GRN inference by combining splitting technology and ordinary differential equation (ODE-based optimization. The presented algorithm uses the sparsity and modularity of GRNs to split whole large-scale GRNs into many small-scale modular subnetworks. Through the ODE-based optimization of all subnetworks in parallel and their asynchronous communications, we can easily obtain the parameters of the whole network. To test the performance of the proposed approach, we used well-known benchmark datasets from Dialogue for Reverse Engineering Assessments and Methods challenge (DREAM, experimentally determined GRN of Escherichia coli and one published dataset that contains more than 10 thousand genes to compare the proposed approach with several popular algorithms on the same high-performance computing environments in terms of both accuracy and time complexity. The numerical results demonstrate that our parallel algorithm exhibits obvious superiority in inferring large-scale GRNs.

  18. Genetic variants in promoters and coding regions of the muscle glycogen synthase and the insulin-responsive GLUT4 genes in NIDDM

    DEFF Research Database (Denmark)

    Bjørbaek, C; Echwald, Søren Morgenthaler; Hubricht, P

    1994-01-01

    To examine the hypothesis that variants in the regulatory or coding regions of the glycogen synthase (GS) and insulin-responsive glucose transporter (GLUT4) genes contribute to insulin-resistant glucose processing of muscle from non-insulin-dependent diabetes mellitus (NIDDM) patients, promoter r...... in the GLUT4 cDNA was a silent polymorphism at codon 130. Southern blotting of both gene loci did not detect any major abnormalities.(ABSTRACT TRUNCATED AT 250 WORDS)...

  19. Deciphering the importance of the palindromic architecture of the immunoglobulin heavy-chain 3' regulatory region.

    Science.gov (United States)

    Saintamand, Alexis; Vincent-Fabert, Christelle; Garot, Armand; Rouaud, Pauline; Oruc, Zeliha; Magnone, Virginie; Cogné, Michel; Denizot, Yves

    2016-02-17

    The IgH 3' regulatory region (3'RR) controls class switch recombination (CSR) and somatic hypermutation (SHM) in B cells. The mouse 3'RR contains four enhancer elements with hs1,2 flanked by inverted repeated sequences and the centre of a 25-kb palindrome bounded by two hs3 enhancer inverted copies (hs3a and hs3b). hs4 lies downstream of the palindrome. In mammals, evolution maintained this unique palindromic arrangement, suggesting that it is functionally significant. Here we report that deconstructing the palindromic IgH 3'RR strongly affects its function even when enhancers are preserved. CSR and IgH transcription appear to be poorly dependent on the 3'RR architecture and it is more or less preserved, provided 3'RR enhancers are present. By contrast, a 'palindromic effect' significantly lowers VH germline transcription, AID recruitment and SHM. In conclusion, this work indicates that the IgH 3'RR does not simply pile up enhancer units but also optimally exposes them into a functional architecture of crucial importance.

  20. Regulatory infrastructure for the control of radiation sources in the Africa region: Status, needs and programmes

    International Nuclear Information System (INIS)

    Skornik, K.

    2001-01-01

    In recent years, several African countries have taken steps towards creating or strengthening legal, administrative and technical mechanisms for the regulation and control of peaceful uses of nuclear technology, and towards improving the effectiveness and sustainability of radiation protection measures based on international standards. This stems from a growing awareness that a proper national infrastructure is a prerequisite for the implementation of safety standards to achieve and maintain the desired level of protection and safety, particularly in such sectors as public health and industry. Also, other issues of global and regional interest, such as the control of radiation sources, including the handling of hazardous waste, and response capabilities in the case of a radiological emergency, have contributed to a better perception of risks associated with deficiencies in or lack of adequate national radiation protection control mechanisms. Too often, however, this awareness has not been matched with adequate progress in the establishment of a regulatory framework for the control of radiation sources. This paper presents a summary of the current status of radiation protection infrastructure in all African Member States. On a background of still existing weaknesses and challenges, an overview of the Agency's response to assistance needs and programmes in this field is discussed. (author)

  1. A discrete transition zone organizes the topological and regulatory autonomy of the adjacent tfap2c and bmp7 genes.

    Directory of Open Access Journals (Sweden)

    Taro Tsujimura

    2015-01-01

    Full Text Available Despite the well-documented role of remote enhancers in controlling developmental gene expression, the mechanisms that allocate enhancers to genes are poorly characterized. Here, we investigate the cis-regulatory organization of the locus containing the Tfap2c and Bmp7 genes in vivo, using a series of engineered chromosomal rearrangements. While these genes lie adjacent to one another, we demonstrate that they are independently regulated by distinct sets of enhancers, which in turn define non-overlapping regulatory domains. Chromosome conformation capture experiments reveal a corresponding partition of the locus in two distinct structural entities, demarcated by a discrete transition zone. The impact of engineered chromosomal rearrangements on the topology of the locus and the resultant gene expression changes indicate that this transition zone functionally organizes the structural partition of the locus, thereby defining enhancer-target gene allocation. This partition is, however, not absolute: we show that it allows competing interactions across it that may be non-productive for the competing gene, but modulate expression of the competed one. Altogether, these data highlight the prime role of the topological organization of the genome in long-distance regulation of gene expression.

  2. DREISS: Using State-Space Models to Infer the Dynamics of Gene Expression Driven by External and Internal Regulatory Networks

    Science.gov (United States)

    Gerstein, Mark

    2016-01-01

    Gene expression is controlled by the combinatorial effects of regulatory factors from different biological subsystems such as general transcription factors (TFs), cellular growth factors and microRNAs. A subsystem’s gene expression may be controlled by its internal regulatory factors, exclusively, or by external subsystems, or by both. It is thus useful to distinguish the degree to which a subsystem is regulated internally or externally–e.g., how non-conserved, species-specific TFs affect the expression of conserved, cross-species genes during evolution. We developed a computational method (DREISS, dreiss.gerteinlab.org) for analyzing the Dynamics of gene expression driven by Regulatory networks, both External and Internal based on State Space models. Given a subsystem, the “state” and “control” in the model refer to its own (internal) and another subsystem’s (external) gene expression levels. The state at a given time is determined by the state and control at a previous time. Because typical time-series data do not have enough samples to fully estimate the model’s parameters, DREISS uses dimensionality reduction, and identifies canonical temporal expression trajectories (e.g., degradation, growth and oscillation) representing the regulatory effects emanating from various subsystems. To demonstrate capabilities of DREISS, we study the regulatory effects of evolutionarily conserved vs. divergent TFs across distant species. In particular, we applied DREISS to the time-series gene expression datasets of C. elegans and D. melanogaster during their embryonic development. We analyzed the expression dynamics of the conserved, orthologous genes (orthologs), seeing the degree to which these can be accounted for by orthologous (internal) versus species-specific (external) TFs. We found that between two species, the orthologs have matched, internally driven expression patterns but very different externally driven ones. This is particularly true for genes with

  3. DREISS: Using State-Space Models to Infer the Dynamics of Gene Expression Driven by External and Internal Regulatory Networks.

    Directory of Open Access Journals (Sweden)

    Daifeng Wang

    2016-10-01

    Full Text Available Gene expression is controlled by the combinatorial effects of regulatory factors from different biological subsystems such as general transcription factors (TFs, cellular growth factors and microRNAs. A subsystem's gene expression may be controlled by its internal regulatory factors, exclusively, or by external subsystems, or by both. It is thus useful to distinguish the degree to which a subsystem is regulated internally or externally-e.g., how non-conserved, species-specific TFs affect the expression of conserved, cross-species genes during evolution. We developed a computational method (DREISS, dreiss.gerteinlab.org for analyzing the Dynamics of gene expression driven by Regulatory networks, both External and Internal based on State Space models. Given a subsystem, the "state" and "control" in the model refer to its own (internal and another subsystem's (external gene expression levels. The state at a given time is determined by the state and control at a previous time. Because typical time-series data do not have enough samples to fully estimate the model's parameters, DREISS uses dimensionality reduction, and identifies canonical temporal expression trajectories (e.g., degradation, growth and oscillation representing the regulatory effects emanating from various subsystems. To demonstrate capabilities of DREISS, we study the regulatory effects of evolutionarily conserved vs. divergent TFs across distant species. In particular, we applied DREISS to the time-series gene expression datasets of C. elegans and D. melanogaster during their embryonic development. We analyzed the expression dynamics of the conserved, orthologous genes (orthologs, seeing the degree to which these can be accounted for by orthologous (internal versus species-specific (external TFs. We found that between two species, the orthologs have matched, internally driven expression patterns but very different externally driven ones. This is particularly true for genes with

  4. Human iPSC-Derived Cerebellar Neurons from a Patient with Ataxia-Telangiectasia Reveal Disrupted Gene Regulatory Networks

    Directory of Open Access Journals (Sweden)

    Sam P. Nayler

    2017-10-01

    Full Text Available Ataxia-telangiectasia (A-T is a rare genetic disorder caused by loss of function of the ataxia-telangiectasia-mutated kinase and is characterized by a predisposition to cancer, pulmonary disease, immune deficiency and progressive degeneration of the