WorldWideScience

Sample records for gene order phylogeny

  1. Gene order phylogeny and the evolution of methanogens.

    Directory of Open Access Journals (Sweden)

    Haiwei Luo

    Full Text Available Methanogens are a phylogenetically diverse group belonging to Euryarchaeota. Previously, phylogenetic approaches using large datasets revealed that methanogens can be grouped into two classes, "Class I" and "Class II". However, some deep relationships were not resolved. For instance, the monophyly of "Class I" methanogens, which consist of Methanopyrales, Methanobacteriales and Methanococcales, is disputable due to weak statistical support. In this study, we use MSOAR to identify common orthologous genes from eight methanogen species and a Thermococcale species (outgroup, and apply GRAPPA and FastME to compute distance-based gene order phylogeny. The gene order phylogeny supports two classes of methanogens, but it differs from the original classification of methanogens by placing Methanopyrales and Methanobacteriales together with Methanosarcinales in Class II rather than with Methanococcales. This study suggests a new classification scheme for methanogens. In addition, it indicates that gene order phylogeny can complement traditional sequence-based methods in addressing taxonomic questions for deep relationships.

  2. Molecular phylogeny of the order Euryalida (Echinodermata: Ophiuroidea), based on mitochondrial and nuclear ribosomal genes.

    Science.gov (United States)

    Okanishi, Masanori; O'Hara, Timothy D; Fujita, Toshihiko

    2011-11-01

    The existing taxonomy of Euryalida, one of the two orders of the Ophiuroidea (Echinodermata), is uncertain and characterized by controversial delimitation of taxonomic ranks from genus to family-level. Their phylogeny was not studied in detail until now. We investigated a dataset of sequence from a mitochondrial gene (16S rRNA) and two nucleic genes (18S rRNA and 28S rRNA) for 49 euryalid ophiuroids and four outgroup species from the order Ophiurida. The monophyly of the order Euryalida was supported as was the monophyly of Asteronychidae, Gorgonocephalidae and an Asteroschematidae+Euryalidae clade. However, the group currently known as the Asteroschematidae was paraphyletic with respect to the Euryalidae. The Asteroschematidae+Euryalidae clade, which we recognise as an enlarged Euryalidae, contains three natural groups: the Asteroschematinae (Asteroschema and Ophiocreas), a new subfamily Astrocharinae (Astrocharis) and the Euryalinae with remaining genera. These subfamilies can be distinguished by internal ossicle morphology. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Phylogeny and mitochondrial gene order variation in Lophotrochozoa in the light of new mitogenomic data from Nemertea

    Directory of Open Access Journals (Sweden)

    von Döhren Jörn

    2009-08-01

    Full Text Available Abstract Background The new animal phylogeny established several taxa which were not identified by morphological analyses, most prominently the Ecdysozoa (arthropods, roundworms, priapulids and others and Lophotrochozoa (molluscs, annelids, brachiopods and others. Lophotrochozoan interrelationships are under discussion, e.g. regarding the position of Nemertea (ribbon worms, which were discussed to be sister group to e.g. Mollusca, Brachiozoa or Platyhelminthes. Mitochondrial genomes contributed well with sequence data and gene order characters to the deep metazoan phylogeny debate. Results In this study we present the first complete mitochondrial genome record for a member of the Nemertea, Lineus viridis. Except two trnP and trnT, all genes are located on the same strand. While gene order is most similar to that of the brachiopod Terebratulina retusa, sequence based analyses of mitochondrial genes place nemerteans close to molluscs, phoronids and entoprocts without clear preference for one of these taxa as sister group. Conclusion Almost all recent analyses with large datasets show good support for a taxon comprising Annelida, Mollusca, Brachiopoda, Phoronida and Nemertea. But the relationships among these taxa vary between different studies. The analysis of gene order differences gives evidence for a multiple independent occurrence of a large inversion in the mitochondrial genome of Lophotrochozoa and a re-inversion of the same part in gastropods. We hypothesize that some regions of the genome have a higher chance for intramolecular recombination than others and gene order data have to be analysed carefully to detect convergent rearrangement events.

  4. Molecular phylogeny based on increased number of species and genes revealed more robust family-level systematics of the order Euryalida (Echinodermata: Ophiuroidea).

    Science.gov (United States)

    Okanishi, Masanori; Fujita, Toshihiko

    2013-12-01

    Previous molecular analysis of the order Euryalida (Echinodermata: Ophiuroidea), has identified three monophyletic families, the Euryalidae, Asteronychidae and Gorgonocephalidae. However, family-level relationships have remained unresolved due to inadequate taxon sampling and insufficient molecular markers. Here, we present a family-level revision of the Euryalida based on sequences from mitochondrial genes (16S rRNA and COI) and a nuclear gene (18S rRNA) from 83 euryalid ophiuroids. The monophyly of the three families, Euryalidae, Asteronychidae and Gorgonocephalidae is confirmed. The Euryalidae and Asteronychidae+Gorgonocephalidae are assigned to superfamilies, the Euryalidea and the Gorgonocephalidea, respectively. Three subclades within the family Gorgonocephalidae are identified and assigned to three subfamilies; Astrotominae includes Astrocrius, Astrohamma and Astrotoma, Astrothamninae (subfamily nov.) includes Astrothamnus and Astrothrombus with Gorgonocephalinae including the remaining genera. Morphological characters are consistent with the newly recognised superfamilies and subfamilies. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Plankton composition, biomass, phylogeny and toxin genes in Lake ...

    African Journals Online (AJOL)

    Plankton composition, biomass, phylogeny and toxin genes in Lake Big Momela, Tanzania. ... cyanobacteria during the whole year. In general, our data illustrate the presence of rich planktonic communities, including some unique and potentially endemic cyanobacteria. Keywords: cyanotoxin, limnology, plankton diversity, ...

  6. A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis

    Directory of Open Access Journals (Sweden)

    Stajich Jason E

    2006-11-01

    Full Text Available Abstract Background To date, most fungal phylogenies have been derived from single gene comparisons, or from concatenated alignments of a small number of genes. The increase in fungal genome sequencing presents an opportunity to reconstruct evolutionary events using entire genomes. As a tool for future comparative, phylogenomic and phylogenetic studies, we used both supertrees and concatenated alignments to infer relationships between 42 species of fungi for which complete genome sequences are available. Results A dataset of 345,829 genes was extracted from 42 publicly available fungal genomes. Supertree methods were employed to derive phylogenies from 4,805 single gene families. We found that the average consensus supertree method may suffer from long-branch attraction artifacts, while matrix representation with parsimony (MRP appears to be immune from these. A genome phylogeny was also reconstructed from a concatenated alignment of 153 universally distributed orthologs. Our MRP supertree and concatenated phylogeny are highly congruent. Within the Ascomycota, the sub-phyla Pezizomycotina and Saccharomycotina were resolved. Both phylogenies infer that the Leotiomycetes are the closest sister group to the Sordariomycetes. There is some ambiguity regarding the placement of Stagonospora nodurum, the sole member of the class Dothideomycetes present in the dataset. Within the Saccharomycotina, a monophyletic clade containing organisms that translate CTG as serine instead of leucine is evident. There is also strong support for two groups within the CTG clade, one containing the fully sexual species Candida lusitaniae, Candida guilliermondii and Debaryomyces hansenii, and the second group containing Candida albicans, Candida dubliniensis, Candida tropicalis, Candida parapsilosis and Lodderomyces elongisporus. The second major clade within the Saccharomycotina contains species whose genomes have undergone a whole genome duplication (WGD, and their close

  7. Timing and order of transmission events is not directly reflected in a pathogen phylogeny.

    Science.gov (United States)

    Romero-Severson, Ethan; Skar, Helena; Bulla, Ingo; Albert, Jan; Leitner, Thomas

    2014-09-01

    Pathogen phylogenies are often used to infer spread among hosts. There is, however, not an exact match between the pathogen phylogeny and the host transmission history. Here, we examine in detail the limitations of this relationship. First, all splits in a pathogen phylogeny of more than 1 host occur within hosts, not at the moment of transmission, predating the transmission events as described by the pretransmission interval. Second, the order in which nodes in a phylogeny occur may be reflective of the within-host dynamics rather than epidemiologic relationships. To investigate these phenomena, motivated by within-host diversity patterns, we developed a two-phase coalescent model that includes a transmission bottleneck followed by linear outgrowth to a maximum population size followed by either stabilization or decline of the population. The model predicts that the pretransmission interval shrinks compared with predictions based on constant population size or a simple transmission bottleneck. Because lineages coalesce faster in a small population, the probability of a pathogen phylogeny to resemble the transmission history depends on when after infection a donor transmits to a new host. We also show that the probability of inferring the incorrect order of multiple transmissions from the same host is high. Finally, we compare time of HIV-1 infection informed by genetic distances in phylogenies to independent biomarker data, and show that, indeed, the pretransmission interval biases phylogeny-based estimates of when transmissions occurred. We describe situations where caution is needed not to misinterpret which parts of a phylogeny that may indicate outbreaks and tight transmission clusters. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution 2014. This work is written by US Government employees and is in the public domain in the US.

  8. A six nuclear gene phylogeny of Citrus (Rutaceae taking into account hybridization and lineage sorting.

    Directory of Open Access Journals (Sweden)

    Chandrika Ramadugu

    Full Text Available BACKGROUND: Genus Citrus (Rutaceae comprises many important cultivated species that generally hybridize easily. Phylogenetic study of a group showing extensive hybridization is challenging. Since the genus Citrus has diverged recently (4-12 Ma, incomplete lineage sorting of ancestral polymorphisms is also likely to cause discrepancies among genes in phylogenetic inferences. Incongruence of gene trees is observed and it is essential to unravel the processes that cause inconsistencies in order to understand the phylogenetic relationships among the species. METHODOLOGY AND PRINCIPAL FINDINGS: (1 We generated phylogenetic trees using haplotype sequences of six low copy nuclear genes. (2 Published simple sequence repeat data were re-analyzed to study population structure and the results were compared with the phylogenetic trees constructed using sequence data and coalescence simulations. (3 To distinguish between hybridization and incomplete lineage sorting, we developed and utilized a coalescence simulation approach. In other studies, species trees have been inferred despite the possibility of hybridization having occurred and used to generate null distributions of the effect of lineage sorting alone (by coalescent simulation. Since this is problematic, we instead generate these distributions directly from observed gene trees. Of the six trees generated, we used the most resolved three to detect hybrids. We found that 11 of 33 samples appear to be affected by historical hybridization. Analysis of the remaining three genes supported the conclusions from the hybrid detection test. CONCLUSIONS: We have identified or confirmed probable hybrid origins for several Citrus cultivars using three different approaches-gene phylogenies, population structure analysis and coalescence simulation. Hybridization and incomplete lineage sorting were identified primarily based on differences among gene phylogenies with reference to null expectations via coalescence

  9. When naked became armored: an eight-gene phylogeny reveals monophyletic origin of theca in dinoflagellates.

    Directory of Open Access Journals (Sweden)

    Russell J S Orr

    Full Text Available The dinoflagellates are a diverse lineage of microbial eukaryotes. Dinoflagellate monophyly and their position within the group Alveolata are well established. However, phylogenetic relationships between dinoflagellate orders remain unresolved. To date, only a limited number of dinoflagellate studies have used a broad taxon sample with more than two concatenated markers. This lack of resolution makes it difficult to determine the evolution of major phenotypic characters such as morphological features or toxin production e.g. saxitoxin. Here we present an improved dinoflagellate phylogeny, based on eight genes, with the broadest taxon sampling to date. Fifty-five sequences for eight phylogenetic markers from nuclear and mitochondrial regions were amplified from 13 species, four orders, and concatenated phylogenetic inferences were conducted with orthologous sequences. Phylogenetic resolution is increased with addition of support for the deepest branches, though can be improved yet further. We show for the first time that the characteristic dinoflagellate thecal plates, cellulosic material that is present within the sub-cuticular alveoli, appears to have had a single origin. In addition, the monophyly of most dinoflagellate orders is confirmed: the Dinophysiales, the Gonyaulacales, the Prorocentrales, the Suessiales, and the Syndiniales. Our improved phylogeny, along with results of PCR to detect the sxtA gene in various lineages, allows us to suggest that this gene was probably acquired separately in Gymnodinium and the common ancestor of Alexandrium and Pyrodinium and subsequently lost in some descendent species of Alexandrium.

  10. When Naked Became Armored: An Eight-Gene Phylogeny Reveals Monophyletic Origin of Theca in Dinoflagellates

    Science.gov (United States)

    Orr, Russell J. S.; Murray, Shauna A.; Stüken, Anke; Rhodes, Lesley; Jakobsen, Kjetill S.

    2012-01-01

    The dinoflagellates are a diverse lineage of microbial eukaryotes. Dinoflagellate monophyly and their position within the group Alveolata are well established. However, phylogenetic relationships between dinoflagellate orders remain unresolved. To date, only a limited number of dinoflagellate studies have used a broad taxon sample with more than two concatenated markers. This lack of resolution makes it difficult to determine the evolution of major phenotypic characters such as morphological features or toxin production e.g. saxitoxin. Here we present an improved dinoflagellate phylogeny, based on eight genes, with the broadest taxon sampling to date. Fifty-five sequences for eight phylogenetic markers from nuclear and mitochondrial regions were amplified from 13 species, four orders, and concatenated phylogenetic inferences were conducted with orthologous sequences. Phylogenetic resolution is increased with addition of support for the deepest branches, though can be improved yet further. We show for the first time that the characteristic dinoflagellate thecal plates, cellulosic material that is present within the sub-cuticular alveoli, appears to have had a single origin. In addition, the monophyly of most dinoflagellate orders is confirmed: the Dinophysiales, the Gonyaulacales, the Prorocentrales, the Suessiales, and the Syndiniales. Our improved phylogeny, along with results of PCR to detect the sxtA gene in various lineages, allows us to suggest that this gene was probably acquired separately in Gymnodinium and the common ancestor of Alexandrium and Pyrodinium and subsequently lost in some descendent species of Alexandrium. PMID:23185516

  11. Do orthologous gene phylogenies really support tree-thinking?

    Directory of Open Access Journals (Sweden)

    Leigh J

    2005-05-01

    Full Text Available Abstract Background Since Darwin's Origin of Species, reconstructing the Tree of Life has been a goal of evolutionists, and tree-thinking has become a major concept of evolutionary biology. Practically, building the Tree of Life has proven to be tedious. Too few morphological characters are useful for conducting conclusive phylogenetic analyses at the highest taxonomic level. Consequently, molecular sequences (genes, proteins, and genomes likely constitute the only useful characters for constructing a phylogeny of all life. For this reason, tree-makers expect a lot from gene comparisons. The simultaneous study of the largest number of molecular markers possible is sometimes considered to be one of the best solutions in reconstructing the genealogy of organisms. This conclusion is a direct consequence of tree-thinking: if gene inheritance conforms to a tree-like model of evolution, sampling more of these molecules will provide enough phylogenetic signal to build the Tree of Life. The selection of congruent markers is thus a fundamental step in simultaneous analysis of many genes. Results Heat map analyses were used to investigate the congruence of orthologues in four datasets (archaeal, bacterial, eukaryotic and alpha-proteobacterial. We conclude that we simply cannot determine if a large portion of the genes have a common history. In addition, none of these datasets can be considered free of lateral gene transfer. Conclusion Our phylogenetic analyses do not support tree-thinking. These results have important conceptual and practical implications. We argue that representations other than a tree should be investigated in this case because a non-critical concatenation of markers could be highly misleading.

  12. Molecular Phylogeny and Revision of Copepod Orders (Crustacea: Copepoda).

    Science.gov (United States)

    Khodami, Sahar; McArthur, J Vaun; Blanco-Bercial, Leocadio; Martinez Arbizu, Pedro

    2017-08-22

    For the first time, the phylogenetic relationships between representatives of all 10 copepod orders have been investigated using 28S and 18S rRNA, Histone H3 protein and COI mtDNA. The monophyly of Copepoda (including Platycopioida Fosshagen, 1985) is demonstrated for the first time using molecular data. Maxillopoda is rejected, as it is a polyphyletic group. The monophyly of the major subgroups of Copepoda, including Progymnoplea Lang, 1948 (=Platycopioida); Neocopepoda Huys and Boxshall, 1991; Gymnoplea Giesbrecht, 1892 (=Calanoida Sars, 1903); and Podoplea Giesbrecht, 1892, are supported in this study. Seven copepod orders are monophyletic, including Platycopioida, Calanoida, Misophrioida Gurney, 1933; Monstrilloida Sars, 1901; Siphonostomatoida Burmeister, 1834; Gelyelloida Huys, 1988; and Mormonilloida Boxshall, 1979. Misophrioida (=Propodoplea Lang, 1948) is the most basal Podoplean order. The order Cyclopoida Burmeister, 1835, is paraphyletic and now encompasses Poecilostomatoida Thorell, 1859, as a sister to the family Schminkepinellidae Martinez Arbizu, 2006. Within Harpacticoida Sars, 1903, both sections, Polyarthra Lang, 1948, and Oligoarthra Lang, 1948, are monophyletic, but not sister groups. The order Canuelloida is proposed while maintaining the order Harpacticoida s. str. (Oligoarthra). Cyclopoida, Harpacticoida and Cyclopinidae are redefined, while Canuelloida ordo. nov., Smirnovipinidae fam. nov. and Cyclopicinidae fam. nov are proposed as new taxa.

  13. Pseudoplusia includens single nucleopolyhedrovirus: genetic diversity, phylogeny and hypervariability of the pif-2 gene.

    Science.gov (United States)

    Craveiro, Saluana R; Melo, Fernando L; Ribeiro, Zilda Maria A; Ribeiro, Bergmann M; Báo, Sônia Nair; Inglis, Peter W; Castro, Maria Elita B

    2013-11-01

    The soybean looper (Pseudoplusia includens Walker, 1857) has become a major pest of soybean crops in Brazil. In order to determine the genetic diversity and phylogeny of variants of Pseudoplusia includens single nucleopolyhedrovirus (PsinSNPV-IA to -IG), partial sequences of the genes lef-8, lef-9, pif-2, phr and polh were obtained following degenerate PCR and phylogenetic trees constructed using maximum parsimony and Bayesian methods. The aligned sequences showed polymorphisms among the isolates, where the pif-2 gene was by far the most variable and is predicted to be under positive selection. Furthermore, some of the pif-2 DNA sequence mutations are predicted to result in significant amino acid substitutions, possibly leading to changes in oral infectivity of this baculovirus. Cladistic analysis revealed two closely related monophyletic groups, one containing PsinNPV isolates IB, IC and ID and another containing isolates IA, IE, IF and IG. The phylogeny of PsinSNPV in relation to 56 other baculoviruses was also determined from the concatenated partial LEF-8, LEF-9, PIF-2 and POLH/GRAN deduced amino acid sequences, using maximum-parsimony and Bayesian methods. This analysis clearly places PsinSNPV with the Group II Alphabaculovirus, where PsinSNPV is most closely related to Chrysodeixis chalcites NPV and Trichoplusia ni SNPV. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Phylogeny of Anophelinae using mitochondrial protein coding genes

    Science.gov (United States)

    de Oliveira, Tatiane Marques Porangaba; Bergo, Eduardo S.; Conn, Jan E.; Sant’Ana, Denise Cristina; Nagaki, Sandra Sayuri; Nihei, Silvio; Lamas, Carlos Einicker; González, Christian; Moreira, Caio Cesar; Sallum, Maria Anice Mureb

    2017-01-01

    Malaria is a vector-borne disease that is a great burden on the poorest and most marginalized communities of the tropical and subtropical world. Approximately 41 species of Anopheline mosquitoes can effectively spread species of Plasmodium parasites that cause human malaria. Proposing a natural classification for the subfamily Anophelinae has been a continuous effort, addressed using both morphology and DNA sequence data. The monophyly of the genus Anopheles, and phylogenetic placement of the genus Bironella, subgenera Kerteszia, Lophopodomyia and Stethomyia within the subfamily Anophelinae, remain in question. To understand the classification of Anophelinae, we inferred the phylogeny of all three genera (Anopheles, Bironella, Chagasia) and major subgenera by analysing the amino acid sequences of the 13 protein coding genes of 150 newly sequenced mitochondrial genomes of Anophelinae and 18 newly sequenced Culex species as outgroup taxa, supplemented with 23 mitogenomes from GenBank. Our analyses generally place genus Bironella within the genus Anopheles, which implies that the latter as it is currently defined is not monophyletic. With some inconsistencies, Bironella was placed within the major clade that includes Anopheles, Cellia, Kerteszia, Lophopodomyia, Nyssorhynchus and Stethomyia, which were found to be monophyletic groups within Anophelinae. Our findings provided robust evidence for elevating the monophyletic groupings Kerteszia, Lophopodomyia, Nyssorhynchus and Stethomyia to genus level; genus Anopheles to include subgenera Anopheles, Baimaia, Cellia and Christya; Anopheles parvus to be placed into a new genus; Nyssorhynchus to be elevated to genus level; the genus Nyssorhynchus to include subgenera Myzorhynchella and Nyssorhynchus; Anopheles atacamensis and Anopheles pictipennis to be transferred from subgenus Nyssorhynchus to subgenus Myzorhynchella; and subgenus Nyssorhynchus to encompass the remaining species of Argyritarsis and Albimanus Sections

  15. High or low correlation between co-occuring gene clusters and 16S rRNA gene phylogeny.

    Science.gov (United States)

    Rudi, Knut; Sekelja, Monika

    2013-02-01

    Ribosomal RNA (rRNA) genes are universal for all living organisms. Yet, the correspondence between genome composition and rRNA phylogeny remains poorly known. The aim of this study was to use the information from genome sequence databases to address the correlation between rRNA gene phylogeny and total gene composition in bacteria. This was done by analysing 327 genomes with TIGRFAM functional gene annotations. Our approach consisted of two steps. First, we searched for discriminatory clusters of co-occurring genes. Using a multivariate statistical approach, we identified 11 such clusters which contain genes that were co-occurring only in a subset of genomes and contributed to explain the gene content differences between genome subsets. Second, we mapped the discovered clusters to 16S rRNA-based phylogeny and calculated the correlation between co-occuring genes and phylogeny. Six of the 11 clusters exhibited significant correlation with 16S rRNA gene phylogeny. The most distinct phylogenetic finding was a high correlation between iron-sulfur oxidoreductases in combination with carbon nitrogen ligases and Chlorobium. The other correlations identified covered relatively large phylogroups: Actinobacteria were positively associated with kinases, while Gammaproteobacteria were positively associated with methylases and acyltransferases. The suggested functional differences between higher phylogroups, however, need experimental verification. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  16. Complex evolution in Arundinarieae (Poaceae: Bambusoideae): incongruence between plastid and nuclear GBSSI gene phylogenies.

    Science.gov (United States)

    Zhang, Yu-Xiao; Zeng, Chun-Xia; Li, De-Zhu

    2012-06-01

    The monophyly of tribe Arundinarieae (the temperate woody bamboos) has been unequivocally recovered in previous molecular phylogenetic studies. In a recent phylogenetic study, 10 major lineages in Arundinarieae were resolved based on eight non-coding plastid regions, which conflicted significantly with morphological classifications both at the subtribal and generic levels. Nevertheless, relationships among and within the 10 lineages remain unclear. In order to further unravel the evolutionary history of Arundinarieae, we used the nuclear GBSSI gene sequences along with those of eight plastid regions for phylogenetic reconstruction, with an emphasis on Chinese species. The results of the plastid analyses agreed with previous studies, whereas 13 primary clades revealed in the GBSSI phylogeny were better resolved at the generic level than the plastid phylogeny. Our analyses also revealed many inconsistencies between the plastid DNA and the nuclear GBSSI trees. These results implied that the nuclear genome and the plastid genome had different evolutionary trajectories. The patterns of incongruence suggested that lack of informative characters, incomplete lineage sorting, and/or hybridization (introgression) could be the causes. Seven putative hybrid species were hypothesized, four of which are discussed in detail on the basis of topological incongruence, chromosome numbers, morphology, and distribution patterns, and those taxa probably resulted from homoploid hybrid speciation. Overall, our study indicates that the tribe Arundinarieae has undergone a complex evolution. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Three-dimensional reconstruction and the phylogeny of extinct chelicerate orders

    Directory of Open Access Journals (Sweden)

    Russell J. Garwood

    2014-11-01

    Full Text Available Arachnids are an important group of arthropods. They are: diverse and abundant; a major constituent of many terrestrial ecosystems; and possess a deep and extensive fossil record. In recent years a number of exceptionally preserved arachnid fossils have been investigated using tomography and associated techniques, providing valuable insights into their morphology. Here we use X-ray microtomography to reconstruct members of two extinct arachnid orders. In the Haptopoda, we demonstrate the presence of ‘clasp-knife’ chelicerae, and our novel redescription of a member of the Phalangiotarbida highlights leg details, but fails to resolve chelicerae in the group due to their small size. As a result of these reconstructions, tomographic studies of three-dimensionally preserved fossils now exist for three of the four extinct orders, and for fossil representatives of several extant ones. Such studies constitute a valuable source of high fidelity data for constructing phylogenies. To illustrate this, here we present a cladistic analysis of the chelicerates to accompany these reconstructions. This is based on a previously published matrix, expanded to include fossil taxa and relevant characters, and allows us to: cladistically place the extinct arachnid orders; explicitly test some earlier hypotheses from the literature; and demonstrate that the addition of fossils to phylogenetic analyses can have broad implications. Phylogenies based on chelicerate morphology—in contrast to molecular studies—have achieved elements of consensus in recent years. Our work suggests that these results are not robust to the addition of novel characters or fossil taxa. Hypotheses surrounding chelicerate phylogeny remain in a state of flux.

  18. Three-dimensional reconstruction and the phylogeny of extinct chelicerate orders

    Science.gov (United States)

    Dunlop, Jason

    2014-01-01

    Arachnids are an important group of arthropods. They are: diverse and abundant; a major constituent of many terrestrial ecosystems; and possess a deep and extensive fossil record. In recent years a number of exceptionally preserved arachnid fossils have been investigated using tomography and associated techniques, providing valuable insights into their morphology. Here we use X-ray microtomography to reconstruct members of two extinct arachnid orders. In the Haptopoda, we demonstrate the presence of ‘clasp-knife’ chelicerae, and our novel redescription of a member of the Phalangiotarbida highlights leg details, but fails to resolve chelicerae in the group due to their small size. As a result of these reconstructions, tomographic studies of three-dimensionally preserved fossils now exist for three of the four extinct orders, and for fossil representatives of several extant ones. Such studies constitute a valuable source of high fidelity data for constructing phylogenies. To illustrate this, here we present a cladistic analysis of the chelicerates to accompany these reconstructions. This is based on a previously published matrix, expanded to include fossil taxa and relevant characters, and allows us to: cladistically place the extinct arachnid orders; explicitly test some earlier hypotheses from the literature; and demonstrate that the addition of fossils to phylogenetic analyses can have broad implications. Phylogenies based on chelicerate morphology—in contrast to molecular studies—have achieved elements of consensus in recent years. Our work suggests that these results are not robust to the addition of novel characters or fossil taxa. Hypotheses surrounding chelicerate phylogeny remain in a state of flux. PMID:25405073

  19. Molecular phylogeny of the Oriental butterfly genus Arhopala (Lycaenidae, Theclinae) inferred from mitochondrial and nuclear genes

    NARCIS (Netherlands)

    Megens, H.J.W.C.; Nes, Van W.J.; Moorsel, van C.H.M.; Pierce, N.E.; Jong, de R.

    2004-01-01

    We present a phylogeny for a selection of species of the butterfly genus Arhopala Boisduval, 1832 based on molecular characters. We sequenced 1778 bases of the mitochondrial genes Cytochrome Oxidase 1 and 2 including tRNALeu, and a 393-bp fragment of the nuclear wingless gene for a total of 42

  20. A novel phylogeny and morphological reconstruction of the PIN genes and first phylogeny of the ACC-oxidases (ACOs

    Directory of Open Access Journals (Sweden)

    Ronald Matthew Clouse

    2014-06-01

    Full Text Available The PIN and ACO gene families present interesting questions about the evolution of plant physiology, including testing hypotheses about the ecological drivers of their diversification and whether unrelated genes have been recruited for similar functions. The PIN-formed proteins contribute to the polar transport of auxin, a hormone which regulates plant growth and development. PIN loci are categorized into groups according to their protein length and structure, as well as subcellular localization. An interesting question with PIN genes is the nature of the ancestral form and location. ACOs are members of a superfamily of oxygenases and oxidases that catalyze the last step of ethylene synthesis, which regulates many aspects of the plant life cycle. We used publicly available PIN and ACO sequences to conduct phylogenetic analyses. Third codon positions of these genes in monocots have a high GC content, which could be historical but is more likely due to a mutational bias. Thus we developed methods to extract phylogenetic information from nucleotide sequences while avoiding this convergent feature. One method consisted in using only A-T transformations, and another used only the first and second codon positions for serine, which can only take A or T and G or C, respectively. We also conducted tree-searches for both gene families using unaligned amino acid sequences and dynamic homology. PIN genes appear to have diversified earlier than ACOs, with monocot and dicot copies more mixed in the phylogeny. However, gymnosperm PINs appear to be derived and not closely related to those from primitive plants. We find strong support for a long PIN gene ancestor with short forms subsequently evolving one or more times. ACO genes appear to have diversified mostly since the dicot-monocot split, as most genes cluster into a small number of monocot and dicot clades when the tree is rooted by genes from mosses. Gymnosperm ACOs were recovered as closely related and

  1. Resurrecting a subgenus to genus: molecular phylogeny of Euphyllia and Fimbriaphyllia (order Scleractinia; family Euphyllidae; clade V

    Directory of Open Access Journals (Sweden)

    Katrina S. Luzon

    2017-12-01

    Full Text Available Background The corallum is crucial in building coral reefs and in diagnosing systematic relationships in the order Scleractinia. However, molecular phylogenetic analyses revealed a paraphyly in a majority of traditional families and genera among Scleractinia showing that other biological attributes of the coral, such as polyp morphology and reproductive traits, are underutilized. Among scleractinian genera, the Euphyllia, with nine nominal species in the Indo-Pacific region, is one of the groups that await phylogenetic resolution. Multiple genetic markers were used to construct the phylogeny of six Euphyllia species, namely E. ancora, E. divisa, E. glabrescens, E. paraancora, E. paradivisa, and E. yaeyamaensis. The phylogeny guided the inferences on the contributions of the colony structure, polyp morphology, and life history traits to the systematics of the largest genus in Euphyllidae (clade V and, by extension, to the rest of clade V. Results Analyses of cytochrome oxidase 1 (cox1, cytochrome b (cytb, and β-tubulin genes of 36 colonies representing Euphyllia and a confamilial species, Galaxea fascicularis, reveal two distinct groups in the Euphyllia that originated from different ancestors. Euphyllia glabrescens formed a separate group. Euphyllia ancora, E. divisa, E. paraancora, E. paradivisa, and E. yaeyamaensis clustered together and diverged from the same ancestor as G. fascicularis. The 3′-end of the cox1 gene of Euphyllia was able to distinguish morphospecies. Discussion Species of Euphyllia were traditionally classified into two subgenera, Euphyllia and Fimbriaphyllia, which represented a dichotomy on colony structure. The paraphyletic groups retained the original members of the subgenera providing a strong basis for recognizing Fimbriaphyllia as a genus. However, colony structure was found to be a convergent trait between Euphyllia and Fimbriaphyllia, while polyp shape and length, sexuality, and reproductive mode defined the

  2. Phylogeny, gene structures, and expression patterns of the ERF gene family in soybean (Glycine max L.)

    Science.gov (United States)

    Zhang, Gaiyun; Chen, Ming; Chen, Xueping; Xu, Zhaoshi; Guan, Shan; Li, Lian-Cheng; Li, Aili; Guo, Jiaming; Mao, Long; Ma, Youzhi

    2008-01-01

    Members of the ERF transcription factor family play important roles in regulating gene expression in response to biotic and abiotic stresses. In soybean (Glycine max L.), however, only a few ERF genes have been studied so far. In this study, 98 unigenes that contained a complete AP2/ERF domain were identified from 63 676 unique sequences in the DFCI Soybean Gene Index database. The phylogeny, gene structures, and putative conserved motifs in soybean ERF proteins were analysed, and compared with those of Arabidopsis and rice. The members of the soybean ERF family were divided into 12 subgroups, similar to the case for Arabidopsis. AP2/ERF domains were conserved among soybean, Arabidopsis, and rice. Outside the AP2/ERF domain, many soybean-specific conserved motifs were detected. Expression analysis showed that nine unigenes belonging to six ERF family subgroups were induced by both biotic/abiotic stresses and hormone treatment, suggesting that they were involved in cross-talk between biotic and abiotic stress-responsive signalling pathways. Overexpression of two full-length genes from two different subgroups enhanced the tolerances to drought, salt stresses, and/or pathogen infection of the tobacco plants. These results will be useful for elucidating ERF gene-associated stress response signalling pathways in soybean. PMID:18832187

  3. Rodent phylogeny revised: analysis of six nuclear genes from all major rodent clades

    Directory of Open Access Journals (Sweden)

    Pupko Tal

    2009-04-01

    Full Text Available Abstract Background Rodentia is the most diverse order of placental mammals, with extant rodent species representing about half of all placental diversity. In spite of many morphological and molecular studies, the family-level relationships among rodents and the location of the rodent root are still debated. Although various datasets have already been analyzed to solve rodent phylogeny at the family level, these are difficult to combine because they involve different taxa and genes. Results We present here the largest protein-coding dataset used to study rodent relationships. It comprises six nuclear genes, 41 rodent species, and eight outgroups. Our phylogenetic reconstructions strongly support the division of Rodentia into three clades: (1 a "squirrel-related clade", (2 a "mouse-related clade", and (3 Ctenohystrica. Almost all evolutionary relationships within these clades are also highly supported. The primary remaining uncertainty is the position of the root. The application of various models and techniques aimed to remove non-phylogenetic signal was unable to solve the basal rodent trifurcation. Conclusion Sequencing and analyzing a large sequence dataset enabled us to resolve most of the evolutionary relationships among Rodentia. Our findings suggest that the uncertainty regarding the position of the rodent root reflects the rapid rodent radiation that occurred in the Paleocene rather than the presence of conflicting phylogenetic and non-phylogenetic signals in the dataset.

  4. Resolution of deep eudicot phylogeny and their temporal diversification using nuclear genes from transcriptomic and genomic datasets.

    Science.gov (United States)

    Zeng, Liping; Zhang, Ning; Zhang, Qiang; Endress, Peter K; Huang, Jie; Ma, Hong

    2017-05-01

    Explosive diversification is widespread in eukaryotes, making it difficult to resolve phylogenetic relationships. Eudicots contain c. 75% of extant flowering plants, are important for human livelihood and terrestrial ecosystems, and have probably experienced explosive diversifications. The eudicot phylogenetic relationships, especially among those of the Pentapetalae, remain unresolved. Here, we present a highly supported eudicot phylogeny and diversification rate shifts using 31 newly generated transcriptomes and 88 other datasets covering 70% of eudicot orders. A highly supported eudicot phylogeny divided Pentapetalae into two groups: one with rosids, Saxifragales, Vitales and Santalales; the other containing asterids, Caryophyllales and Dilleniaceae, with uncertainty for Berberidopsidales. Molecular clock analysis estimated that crown eudicots originated c. 146 Ma, considerably earlier than earliest tricolpate pollen fossils and most other molecular clock estimates, and Pentapetalae sequentially diverged into eight major lineages within c. 15 Myr. Two identified increases of diversification rate are located in the stems leading to Pentapetalae and asterids, and lagged behind the gamma hexaploidization. The nuclear genes from newly generated transcriptomes revealed a well-resolved eudicot phylogeny, sequential separation of major core eudicot lineages and temporal mode of diversifications, providing new insights into the evolutionary trend of morphologies and contributions to the diversification of eudicots. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  5. From gene trees to organismal phylogeny in prokaryotes: the case of the gamma-Proteobacteria.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Lerat

    2003-10-01

    Full Text Available The rapid increase in published genomic sequences for bacteria presents the first opportunity to reconstruct evolutionary events on the scale of entire genomes. However, extensive lateral gene transfer (LGT may thwart this goal by preventing the establishment of organismal relationships based on individual gene phylogenies. The group for which cases of LGT are most frequently documented and for which the greatest density of complete genome sequences is available is the gamma-Proteobacteria, an ecologically diverse and ancient group including free-living species as well as pathogens and intracellular symbionts of plants and animals. We propose an approach to multigene phylogeny using complete genomes and apply it to the case of the gamma-Proteobacteria. We first applied stringent criteria to identify a set of likely gene orthologs and then tested the compatibilities of the resulting protein alignments with several phylogenetic hypotheses. Our results demonstrate phylogenetic concordance among virtually all (203 of 205 of the selected gene families, with each of the exceptions consistent with a single LGT event. The concatenated sequences of the concordant families yield a fully resolved phylogeny. This topology also received strong support in analyses aimed at excluding effects of heterogeneity in nucleotide base composition across lineages. Our analysis indicates that single-copy orthologous genes are resistant to horizontal transfer, even in ancient bacterial groups subject to high rates of LGT. This gene set can be identified and used to yield robust hypotheses for organismal phylogenies, thus establishing a foundation for reconstructing the evolutionary transitions, such as gene transfer, that underlie diversity in genome content and organization.

  6. Combined analysis of fourteen nuclear genes refines the Ursidae phylogeny.

    Science.gov (United States)

    Pagès, Marie; Calvignac, Sébastien; Klein, Catherine; Paris, Mathilde; Hughes, Sandrine; Hänni, Catherine

    2008-04-01

    Despite numerous studies, questions remain about the evolutionary history of Ursidae and additional independent genetic markers were needed to elucidate these ambiguities. For this purpose, we sequenced ten nuclear genes for all the eight extant bear species. By combining these new sequences with those of four other recently published nuclear markers, we provide new insights into the phylogenetic relationships of the Ursidae family members. The hypothesis that the giant panda was the first species to diverge among ursids is definitively confirmed and the precise branching order within the Ursus genus is clarified for the first time. Moreover, our analyses indicate that the American and the Asiatic black bears do not cluster as sister taxa, as had been previously hypothesised. Sun and sloth bears clearly appear as the most basal ursine species but uncertainties about their exact relationships remain. Since our larger dataset did not enable us to clarify this last question, identifying rare genomic changes in bear genomes could be a promising solution for further studies.

  7. A molecular phylogeny of the marine red algae (Rhodophyta) based on the nuclear small-subunit rRNA gene.

    Science.gov (United States)

    Ragan, M A; Bird, C J; Rice, E L; Gutell, R R; Murphy, C A; Singh, R K

    1994-01-01

    A phylogeny of marine Rhodophyta has been inferred by a number of methods from nucleotide sequences of nuclear genes encoding small subunit rRNA from 39 species in 15 orders. Sequence divergences are relatively large, especially among bangiophytes and even among congeners in this group. Subclass Bangiophycidae appears polyphyletic, encompassing at least three lineages, with Porphyridiales distributed between two of these. Subclass Florideophycidae is monophyletic, with Hildenbrandiales, Corallinales, Ahnfeltiales, and a close association of Nemaliales, Acrochaetiales, and Palmariales forming the four deepest branches. Cermiales may represent a convergence of vegetative and reproductive morphologies, as family Ceramiaceae is at best weakly related to the rest of the order, and one of its members appears to be allied to Gelidiales. Except for Gigartinales, for which more data are required, the other florideophyte orders appear distinct and taxonomically justified. A good correlation was observed with taxonomy based on pit-plug ultrastructure. Tests under maximum-likelihood and parsimony of alternative phylogenies based on structure and chemistry refuted suggestions that Acrochaetiales is the most primitive florideophyte order and that Gelidiales and Hildenbrandiales are sister groups. PMID:8041780

  8. Antifungal Susceptibility and Phylogeny of Opportunistic Members of the Order Mucorales

    NARCIS (Netherlands)

    Vitale, R.G.; de Hoog, G.S.; Schwarz, P.; Dannaoui, E.; Deng, S.; Machouart, M.; Voigt, K.; de Sande, W.W.J.v.; Dolatabadi, S.; Meis, J.F.; Walther, G.

    2012-01-01

    The in vitro susceptibilities of 66 molecularly identified strains of the Mucorales to eight antifungals (amphotericin B, terbinafine, itraconazole, posaconazole, voriconazole, caspofungin, micafungin, and 5-fluorocytosine) were tested. Molecular phylogeny was reconstructed based on the nuclear

  9. Antifungal susceptibility and phylogeny of opportunistic members of the order Mucorales

    NARCIS (Netherlands)

    R.G. Vitale (Roxana); G.S. de Hoog; P. Schwarz (Peter); E. Dannaoui (Eric); S. Deng (Shuwen); M. Machouart (Marie); K. Voigt (Kerstin); W.W.J. van de Sande (Wendy); S. Dolatabadi (Somayeh); J.F. Meis; G. Walther

    2012-01-01

    textabstractThe in vitro susceptibilities of 66 molecularly identified strains of the Mucorales to eight antifungals (amphotericin B, terbinafine, itraconazole, posaconazole, voriconazole, caspofungin, micafungin, and 5-fluorocytosine) were tested. Molecular phylogeny was reconstructed based on the

  10. Antifungal susceptibility and phylogeny of opportunistic members of the order mucorales.

    NARCIS (Netherlands)

    Vitale, R.G.; Hoog, G.S. de; Schwarz, P.; Dannaoui, E.; Deng, S.; Machouart, M.; Voigt, K.; Sande, W.W. van de; Dolatabadi, S.; Meis, J.F.G.M.; Walther, G.

    2012-01-01

    The in vitro susceptibilities of 66 molecularly identified strains of the Mucorales to eight antifungals (amphotericin B, terbinafine, itraconazole, posaconazole, voriconazole, caspofungin, micafungin, and 5-fluorocytosine) were tested. Molecular phylogeny was reconstructed based on the nuclear

  11. Estimating variation within the genes and inferring the phylogeny of 186 sequenced diverse Escherichia coli genomes

    DEFF Research Database (Denmark)

    Kaas, Rolf Sommer; Rundsten, Carsten Friis; Ussery, David

    2012-01-01

    for creating better phylogenies, for determination of molecular clocks and for improved typing techniques. Results We find 3,051 gene clusters/families present in at least 95% of the genomes and 1,702 gene clusters present in 100% of the genomes. The former 'soft core' of about 3,000 gene families is perhaps...... more biologically relevant, especially considering that many of these genome sequences are draft quality. The E. coli pan-genome for this set of isolates contains 16,373 gene clusters. A core-gene tree, based on alignment and a pan-genome tree based on gene presence/absence, maps the relatedness...... of the 186 sequenced E. coli genomes. The core-gene tree displays high confidence and divides the E. coli strains into the observed MLST type clades and also separates defined phylotypes. Conclusion The results of comparing a large and diverse E. coli dataset support the theory that reliable and good...

  12. Applying unmixing to gene expression data for tumor phylogeny inference

    Directory of Open Access Journals (Sweden)

    Shackney Stanley E

    2010-01-01

    methods provide a way to make use of both intra-tumor heterogeneity and large probe sets for tumor phylogeny inference, establishing a new avenue towards the construction of detailed, accurate portraits of common tumor sub-types and the mechanisms by which they develop. These reconstructions are likely to have future value in discovering and diagnosing novel cancer sub-types and in identifying targets for therapeutic development.

  13. Gene structure, phylogeny and expression profile of the sucrose ...

    Indian Academy of Sciences (India)

    2015-09-16

    Bruni et al. 2000). Sucrose is the pri- marymolecule of fat biosynthesis and seed development; and sucrose concentration is limiting ...... 1998 Intron loss and gain during evolution of the catalase gene family in angiosperms.

  14. Gene structure, phylogeny and expression profile of the sucrose ...

    Indian Academy of Sciences (India)

    The Sus genes exhibited distinct but partially redundant expression profiles in cacao, with TcSus1, TcSus5 and TcSus6, being the predominant genes in the bark with phloem, TcSus2 predominantly expressing in the seed during the stereotype stage. TcSus3 and TcSus4 were significantly detected more in the pod husk and ...

  15. Phylogeny of haemosporidian blood parasites revealed by a multi-gene approach.

    Science.gov (United States)

    Borner, Janus; Pick, Christian; Thiede, Jenny; Kolawole, Olatunji Matthew; Kingsley, Manchang Tanyi; Schulze, Jana; Cottontail, Veronika M; Wellinghausen, Nele; Schmidt-Chanasit, Jonas; Bruchhaus, Iris; Burmester, Thorsten

    2016-01-01

    The apicomplexan order Haemosporida is a clade of unicellular blood parasites that infect a variety of reptilian, avian and mammalian hosts. Among them are the agents of human malaria, parasites of the genus Plasmodium, which pose a major threat to human health. Illuminating the evolutionary history of Haemosporida may help us in understanding their enormous biological diversity, as well as tracing the multiple host switches and associated acquisitions of novel life-history traits. However, the deep-level phylogenetic relationships among major haemosporidian clades have remained enigmatic because the datasets employed in phylogenetic analyses were severely limited in either gene coverage or taxon sampling. Using a PCR-based approach that employs a novel set of primers, we sequenced fragments of 21 nuclear genes from seven haemosporidian parasites of the genera Leucocytozoon, Haemoproteus, Parahaemoproteus, Polychromophilus and Plasmodium. After addition of genomic data from 25 apicomplexan species, the unreduced alignment comprised 20,580 bp from 32 species. Phylogenetic analyses were performed based on nucleotide, codon and amino acid data employing Bayesian inference, maximum likelihood and maximum parsimony. All analyses resulted in highly congruent topologies. We found consistent support for a basal position of Leucocytozoon within Haemosporida. In contrast to all previous studies, we recovered a sister group relationship between the genera Polychromophilus and Plasmodium. Within Plasmodium, the sauropsid and mammal-infecting lineages were recovered as sister clades. Support for these relationships was high in nearly all trees, revealing a novel phylogeny of Haemosporida, which is robust to the choice of the outgroup and the method of tree inference. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Inferring kangaroo phylogeny from incongruent nuclear and mitochondrial genes.

    Directory of Open Access Journals (Sweden)

    Matthew J Phillips

    Full Text Available The marsupial genus Macropus includes three subgenera, the familiar large grazing kangaroos and wallaroos of M. (Macropus and M. (Osphranter, as well as the smaller mixed grazing/browsing wallabies of M. (Notamacropus. A recent study of five concatenated nuclear genes recommended subsuming the predominantly browsing Wallabia bicolor (swamp wallaby into Macropus. To further examine this proposal we sequenced partial mitochondrial genomes for kangaroos and wallabies. These sequences strongly favour the morphological placement of W. bicolor as sister to Macropus, although place M. irma (black-gloved wallaby within M. (Osphranter rather than as expected, with M. (Notamacropus. Species tree estimation from separately analysed mitochondrial and nuclear genes favours retaining Macropus and Wallabia as separate genera. A simulation study finds that incomplete lineage sorting among nuclear genes is a plausible explanation for incongruence with the mitochondrial placement of W. bicolor, while mitochondrial introgression from a wallaroo into M. irma is the deepest such event identified in marsupials. Similar such coalescent simulations for interpreting gene tree conflicts will increase in both relevance and statistical power as species-level phylogenetics enters the genomic age. Ecological considerations in turn, hint at a role for selection in accelerating the fixation of introgressed or incompletely sorted loci. More generally the inclusion of the mitochondrial sequences substantially enhanced phylogenetic resolution. However, we caution that the evolutionary dynamics that enhance mitochondria as speciation indicators in the presence of incomplete lineage sorting may also render them especially susceptible to introgression.

  17. Inferring Kangaroo Phylogeny from Incongruent Nuclear and Mitochondrial Genes

    Science.gov (United States)

    Phillips, Matthew J.; Haouchar, Dalal; Pratt, Renae C.; Gibb, Gillian C.; Bunce, Michael

    2013-01-01

    The marsupial genus Macropus includes three subgenera, the familiar large grazing kangaroos and wallaroos of M. (Macropus) and M. (Osphranter), as well as the smaller mixed grazing/browsing wallabies of M. (Notamacropus). A recent study of five concatenated nuclear genes recommended subsuming the predominantly browsing Wallabia bicolor (swamp wallaby) into Macropus. To further examine this proposal we sequenced partial mitochondrial genomes for kangaroos and wallabies. These sequences strongly favour the morphological placement of W. bicolor as sister to Macropus, although place M. irma (black-gloved wallaby) within M. (Osphranter) rather than as expected, with M. (Notamacropus). Species tree estimation from separately analysed mitochondrial and nuclear genes favours retaining Macropus and Wallabia as separate genera. A simulation study finds that incomplete lineage sorting among nuclear genes is a plausible explanation for incongruence with the mitochondrial placement of W. bicolor, while mitochondrial introgression from a wallaroo into M. irma is the deepest such event identified in marsupials. Similar such coalescent simulations for interpreting gene tree conflicts will increase in both relevance and statistical power as species-level phylogenetics enters the genomic age. Ecological considerations in turn, hint at a role for selection in accelerating the fixation of introgressed or incompletely sorted loci. More generally the inclusion of the mitochondrial sequences substantially enhanced phylogenetic resolution. However, we caution that the evolutionary dynamics that enhance mitochondria as speciation indicators in the presence of incomplete lineage sorting may also render them especially susceptible to introgression. PMID:23451266

  18. Evolution of genes and genomes on the Drosophila phylogeny.

    Science.gov (United States)

    Clark, Andrew G; Eisen, Michael B; Smith, Douglas R; Bergman, Casey M; Oliver, Brian; Markow, Therese A; Kaufman, Thomas C; Kellis, Manolis; Gelbart, William; Iyer, Venky N; Pollard, Daniel A; Sackton, Timothy B; Larracuente, Amanda M; Singh, Nadia D; Abad, Jose P; Abt, Dawn N; Adryan, Boris; Aguade, Montserrat; Akashi, Hiroshi; Anderson, Wyatt W; Aquadro, Charles F; Ardell, David H; Arguello, Roman; Artieri, Carlo G; Barbash, Daniel A; Barker, Daniel; Barsanti, Paolo; Batterham, Phil; Batzoglou, Serafim; Begun, Dave; Bhutkar, Arjun; Blanco, Enrico; Bosak, Stephanie A; Bradley, Robert K; Brand, Adrianne D; Brent, Michael R; Brooks, Angela N; Brown, Randall H; Butlin, Roger K; Caggese, Corrado; Calvi, Brian R; Bernardo de Carvalho, A; Caspi, Anat; Castrezana, Sergio; Celniker, Susan E; Chang, Jean L; Chapple, Charles; Chatterji, Sourav; Chinwalla, Asif; Civetta, Alberto; Clifton, Sandra W; Comeron, Josep M; Costello, James C; Coyne, Jerry A; Daub, Jennifer; David, Robert G; Delcher, Arthur L; Delehaunty, Kim; Do, Chuong B; Ebling, Heather; Edwards, Kevin; Eickbush, Thomas; Evans, Jay D; Filipski, Alan; Findeiss, Sven; Freyhult, Eva; Fulton, Lucinda; Fulton, Robert; Garcia, Ana C L; Gardiner, Anastasia; Garfield, David A; Garvin, Barry E; Gibson, Greg; Gilbert, Don; Gnerre, Sante; Godfrey, Jennifer; Good, Robert; Gotea, Valer; Gravely, Brenton; Greenberg, Anthony J; Griffiths-Jones, Sam; Gross, Samuel; Guigo, Roderic; Gustafson, Erik A; Haerty, Wilfried; Hahn, Matthew W; Halligan, Daniel L; Halpern, Aaron L; Halter, Gillian M; Han, Mira V; Heger, Andreas; Hillier, LaDeana; Hinrichs, Angie S; Holmes, Ian; Hoskins, Roger A; Hubisz, Melissa J; Hultmark, Dan; Huntley, Melanie A; Jaffe, David B; Jagadeeshan, Santosh; Jeck, William R; Johnson, Justin; Jones, Corbin D; Jordan, William C; Karpen, Gary H; Kataoka, Eiko; Keightley, Peter D; Kheradpour, Pouya; Kirkness, Ewen F; Koerich, Leonardo B; Kristiansen, Karsten; Kudrna, Dave; Kulathinal, Rob J; Kumar, Sudhir; Kwok, Roberta; Lander, Eric; Langley, Charles H; Lapoint, Richard; Lazzaro, Brian P; Lee, So-Jeong; Levesque, Lisa; Li, Ruiqiang; Lin, Chiao-Feng; Lin, Michael F; Lindblad-Toh, Kerstin; Llopart, Ana; Long, Manyuan; Low, Lloyd; Lozovsky, Elena; Lu, Jian; Luo, Meizhong; Machado, Carlos A; Makalowski, Wojciech; Marzo, Mar; Matsuda, Muneo; Matzkin, Luciano; McAllister, Bryant; McBride, Carolyn S; McKernan, Brendan; McKernan, Kevin; Mendez-Lago, Maria; Minx, Patrick; Mollenhauer, Michael U; Montooth, Kristi; Mount, Stephen M; Mu, Xu; Myers, Eugene; Negre, Barbara; Newfeld, Stuart; Nielsen, Rasmus; Noor, Mohamed A F; O'Grady, Patrick; Pachter, Lior; Papaceit, Montserrat; Parisi, Matthew J; Parisi, Michael; Parts, Leopold; Pedersen, Jakob S; Pesole, Graziano; Phillippy, Adam M; Ponting, Chris P; Pop, Mihai; Porcelli, Damiano; Powell, Jeffrey R; Prohaska, Sonja; Pruitt, Kim; Puig, Marta; Quesneville, Hadi; Ram, Kristipati Ravi; Rand, David; Rasmussen, Matthew D; Reed, Laura K; Reenan, Robert; Reily, Amy; Remington, Karin A; Rieger, Tania T; Ritchie, Michael G; Robin, Charles; Rogers, Yu-Hui; Rohde, Claudia; Rozas, Julio; Rubenfield, Marc J; Ruiz, Alfredo; Russo, Susan; Salzberg, Steven L; Sanchez-Gracia, Alejandro; Saranga, David J; Sato, Hajime; Schaeffer, Stephen W; Schatz, Michael C; Schlenke, Todd; Schwartz, Russell; Segarra, Carmen; Singh, Rama S; Sirot, Laura; Sirota, Marina; Sisneros, Nicholas B; Smith, Chris D; Smith, Temple F; Spieth, John; Stage, Deborah E; Stark, Alexander; Stephan, Wolfgang; Strausberg, Robert L; Strempel, Sebastian; Sturgill, David; Sutton, Granger; Sutton, Granger G; Tao, Wei; Teichmann, Sarah; Tobari, Yoshiko N; Tomimura, Yoshihiko; Tsolas, Jason M; Valente, Vera L S; Venter, Eli; Venter, J Craig; Vicario, Saverio; Vieira, Filipe G; Vilella, Albert J; Villasante, Alfredo; Walenz, Brian; Wang, Jun; Wasserman, Marvin; Watts, Thomas; Wilson, Derek; Wilson, Richard K; Wing, Rod A; Wolfner, Mariana F; Wong, Alex; Wong, Gane Ka-Shu; Wu, Chung-I; Wu, Gabriel; Yamamoto, Daisuke; Yang, Hsiao-Pei; Yang, Shiaw-Pyng; Yorke, James A; Yoshida, Kiyohito; Zdobnov, Evgeny; Zhang, Peili; Zhang, Yu; Zimin, Aleksey V; Baldwin, Jennifer; Abdouelleil, Amr; Abdulkadir, Jamal; Abebe, Adal; Abera, Brikti; Abreu, Justin; Acer, St Christophe; Aftuck, Lynne; Alexander, Allen; An, Peter; Anderson, Erica; Anderson, Scott; Arachi, Harindra; Azer, Marc; Bachantsang, Pasang; Barry, Andrew; Bayul, Tashi; Berlin, Aaron; Bessette, Daniel; Bloom, Toby; Blye, Jason; Boguslavskiy, Leonid; Bonnet, Claude; Boukhgalter, Boris; Bourzgui, Imane; Brown, Adam; Cahill, Patrick; Channer, Sheridon; Cheshatsang, Yama; Chuda, Lisa; Citroen, Mieke; Collymore, Alville; Cooke, Patrick; Costello, Maura; D'Aco, Katie; Daza, Riza; De Haan, Georgius; DeGray, Stuart; DeMaso, Christina; Dhargay, Norbu; Dooley, Kimberly; Dooley, Erin; Doricent, Missole; Dorje, Passang; Dorjee, Kunsang; Dupes, Alan; Elong, Richard; Falk, Jill; Farina, Abderrahim; Faro, Susan; Ferguson, Diallo; Fisher, Sheila; Foley, Chelsea D; Franke, Alicia; Friedrich, Dennis; Gadbois, Loryn; Gearin, Gary; Gearin, Christina R; Giannoukos, Georgia; Goode, Tina; Graham, Joseph; Grandbois, Edward; Grewal, Sharleen; Gyaltsen, Kunsang; Hafez, Nabil; Hagos, Birhane; Hall, Jennifer; Henson, Charlotte; Hollinger, Andrew; Honan, Tracey; Huard, Monika D; Hughes, Leanne; Hurhula, Brian; Husby, M Erii; Kamat, Asha; Kanga, Ben; Kashin, Seva; Khazanovich, Dmitry; Kisner, Peter; Lance, Krista; Lara, Marcia; Lee, William; Lennon, Niall; Letendre, Frances; LeVine, Rosie; Lipovsky, Alex; Liu, Xiaohong; Liu, Jinlei; Liu, Shangtao; Lokyitsang, Tashi; Lokyitsang, Yeshi; Lubonja, Rakela; Lui, Annie; MacDonald, Pen; Magnisalis, Vasilia; Maru, Kebede; Matthews, Charles; McCusker, William; McDonough, Susan; Mehta, Teena; Meldrim, James; Meneus, Louis; Mihai, Oana; Mihalev, Atanas; Mihova, Tanya; Mittelman, Rachel; Mlenga, Valentine; Montmayeur, Anna; Mulrain, Leonidas; Navidi, Adam; Naylor, Jerome; Negash, Tamrat; Nguyen, Thu; Nguyen, Nga; Nicol, Robert; Norbu, Choe; Norbu, Nyima; Novod, Nathaniel; O'Neill, Barry; Osman, Sahal; Markiewicz, Eva; Oyono, Otero L; Patti, Christopher; Phunkhang, Pema; Pierre, Fritz; Priest, Margaret; Raghuraman, Sujaa; Rege, Filip; Reyes, Rebecca; Rise, Cecil; Rogov, Peter; Ross, Keenan; Ryan, Elizabeth; Settipalli, Sampath; Shea, Terry; Sherpa, Ngawang; Shi, Lu; Shih, Diana; Sparrow, Todd; Spaulding, Jessica; Stalker, John; Stange-Thomann, Nicole; Stavropoulos, Sharon; Stone, Catherine; Strader, Christopher; Tesfaye, Senait; Thomson, Talene; Thoulutsang, Yama; Thoulutsang, Dawa; Topham, Kerri; Topping, Ira; Tsamla, Tsamla; Vassiliev, Helen; Vo, Andy; Wangchuk, Tsering; Wangdi, Tsering; Weiand, Michael; Wilkinson, Jane; Wilson, Adam; Yadav, Shailendra; Young, Geneva; Yu, Qing; Zembek, Lisa; Zhong, Danni; Zimmer, Andrew; Zwirko, Zac; Jaffe, David B; Alvarez, Pablo; Brockman, Will; Butler, Jonathan; Chin, CheeWhye; Gnerre, Sante; Grabherr, Manfred; Kleber, Michael; Mauceli, Evan; MacCallum, Iain

    2007-11-08

    Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species.

  19. A salmonid EST genomic study: genes, duplications, phylogeny and microarrays

    Directory of Open Access Journals (Sweden)

    Brahmbhatt Sonal

    2008-11-01

    Full Text Available Abstract Background Salmonids are of interest because of their relatively recent genome duplication, and their extensive use in wild fisheries and aquaculture. A comprehensive gene list and a comparison of genes in some of the different species provide valuable genomic information for one of the most widely studied groups of fish. Results 298,304 expressed sequence tags (ESTs from Atlantic salmon (69% of the total, 11,664 chinook, 10,813 sockeye, 10,051 brook trout, 10,975 grayling, 8,630 lake whitefish, and 3,624 northern pike ESTs were obtained in this study and have been deposited into the public databases. Contigs were built and putative full-length Atlantic salmon clones have been identified. A database containing ESTs, assemblies, consensus sequences, open reading frames, gene predictions and putative annotation is available. The overall similarity between Atlantic salmon ESTs and those of rainbow trout, chinook, sockeye, brook trout, grayling, lake whitefish, northern pike and rainbow smelt is 93.4, 94.2, 94.6, 94.4, 92.5, 91.7, 89.6, and 86.2% respectively. An analysis of 78 transcript sets show Salmo as a sister group to Oncorhynchus and Salvelinus within Salmoninae, and Thymallinae as a sister group to Salmoninae and Coregoninae within Salmonidae. Extensive gene duplication is consistent with a genome duplication in the common ancestor of salmonids. Using all of the available EST data, a new expanded salmonid cDNA microarray of 32,000 features was created. Cross-species hybridizations to this cDNA microarray indicate that this resource will be useful for studies of all 68 salmonid species. Conclusion An extensive collection and analysis of salmonid RNA putative transcripts indicate that Pacific salmon, Atlantic salmon and charr are 94–96% similar while the more distant whitefish, grayling, pike and smelt are 93, 92, 89 and 86% similar to salmon. The salmonid transcriptome reveals a complex history of gene duplication that is

  20. Phylogeny and divergence times of gymnosperms inferred from single-copy nuclear genes.

    Science.gov (United States)

    Lu, Ying; Ran, Jin-Hua; Guo, Dong-Mei; Yang, Zu-Yu; Wang, Xiao-Quan

    2014-01-01

    Phylogenetic reconstruction is fundamental to study evolutionary biology and historical biogeography. However, there was not a molecular phylogeny of gymnosperms represented by extensive sampling at the genus level, and most published phylogenies of this group were constructed based on cytoplasmic DNA markers and/or the multi-copy nuclear ribosomal DNA. In this study, we use LFY and NLY, two single-copy nuclear genes that originated from an ancient gene duplication in the ancestor of seed plants, to reconstruct the phylogeny and estimate divergence times of gymnosperms based on a complete sampling of extant genera. The results indicate that the combined LFY and NLY coding sequences can resolve interfamilial relationships of gymnosperms and intergeneric relationships of most families. Moreover, the addition of intron sequences can improve the resolution in Podocarpaceae but not in cycads, although divergence times of the cycad genera are similar to or longer than those of the Podocarpaceae genera. Our study strongly supports cycads as the basal-most lineage of gymnosperms rather than sister to Ginkgoaceae, and a sister relationship between Podocarpaceae and Araucariaceae and between Cephalotaxaceae-Taxaceae and Cupressaceae. In addition, intergeneric relationships of some families that were controversial, and the relationships between Taxaceae and Cephalotaxaceae and between conifers and Gnetales are discussed based on the nuclear gene evidence. The molecular dating analysis suggests that drastic extinctions occurred in the early evolution of gymnosperms, and extant coniferous genera in the Northern Hemisphere are older than those in the Southern Hemisphere on average. This study provides an evolutionary framework for future studies on gymnosperms.

  1. Molecular phylogeny of four homeobox genes from the purple sea star Pisaster ochraceus.

    Science.gov (United States)

    Matassi, Giorgio; Imai, Janice Hitomi; Di Gregorio, Anna

    2015-11-01

    Homeobox genes cloned from the purple sea star Pisaster ochraceus (Phylum Echinodermata/Class Asteroidea) were used along with related sequences available from members of other representative animal phyla to generate molecular phylogenies for Distal-less/Dlx, Hox5, Hox7, and Hox9/10 homeobox genes. Phylogenetic relationships were inferred based on the predicted 60 amino acid homeodomain, using amino acid (AA) and nucleotide (NT) models as well as the recently developed codon substitution models of sequence evolution. The resulting phylogenetic trees were mostly congruent with the consensus species-tree, grouping these newly identified genes with those isolated from other Asteroidea. This analysis also allowed a preliminary comparison of the performance of codon models with that of NT and AA evolutionary models in the inference of homeobox phylogeny. We found that, overall, the NT models displayed low reliability in recovering major clades at the Superphylum/Phylum level, and that codon models were slightly more dependable than AA models. Remarkably, in the majority of cases, codon substitution models seemed to outperform both AA and NT models at both the Class level and homeobox paralogy-group level of classification.

  2. Operon Gene Order Is Optimized for Ordered Protein Complex Assembly

    Science.gov (United States)

    Wells, Jonathan N.; Bergendahl, L. Therese; Marsh, Joseph A.

    2016-01-01

    Summary The assembly of heteromeric protein complexes is an inherently stochastic process in which multiple genes are expressed separately into proteins, which must then somehow find each other within the cell. Here, we considered one of the ways by which prokaryotic organisms have attempted to maximize the efficiency of protein complex assembly: the organization of subunit-encoding genes into operons. Using structure-based assembly predictions, we show that operon gene order has been optimized to match the order in which protein subunits assemble. Exceptions to this are almost entirely highly expressed proteins for which assembly is less stochastic and for which precisely ordered translation offers less benefit. Overall, these results show that ordered protein complex assembly pathways are of significant biological importance and represent a major evolutionary constraint on operon gene organization. PMID:26804901

  3. Insight into the evolution of magnetotaxis in Magnetospirillum spp., based on mam gene phylogeny.

    Science.gov (United States)

    Lefèvre, Christopher T; Schmidt, Marian L; Viloria, Nathan; Trubitsyn, Denis; Schüler, Dirk; Bazylinski, Dennis A

    2012-10-01

    Vibrioid- to helical-shaped magnetotactic bacteria phylogenetically related to the genus Magnetospirillum were isolated in axenic cultures from a number of freshwater and brackish environments located in the southwestern United States. Based on 16S rRNA gene sequences, most of the new isolates represent new Magnetospirillum species or new strains of known Magnetospirillum species, while one isolate appears to represent a new genus basal to Magnetospirillum. Partial sequences of conserved mam genes, genes reported to be involved in the magnetosome and magnetosome chain formation, and form II of the ribulose-1,5-bisphosphate carboxylase/oxygenase gene (cbbM) were determined in the new isolates and compared. The cbbM gene was chosen for comparison because it is not involved in magnetosome synthesis; it is highly conserved and is present in all but possibly one of the genomes of the magnetospirilla and the new isolates. Phylogenies based on 16S rRNA, cbbM, and mam gene sequences were reasonably congruent, indicating that the genes involved in magnetotaxis were acquired by a common ancestor of the Magnetospirillum clade. However, in one case, magnetosome genes might have been acquired through horizontal gene transfer. Our results also extend the known diversity of the Magnetospirillum group and show that they are widespread in freshwater environments.

  4. Study of three interesting Amanita species from Thailand: Morphology, multiple-gene phylogeny and toxin analysis.

    Directory of Open Access Journals (Sweden)

    Benjarong Thongbai

    Full Text Available Amanita ballerina and A. brunneitoxicaria spp. nov. are introduced from Thailand. Amanita fuligineoides is also reported for the first time from Thailand, increasing the known distribution of this taxon. Together, those findings support our view that many taxa are yet to be discovered in the region. While both morphological characters and a multiple-gene phylogeny clearly place A. brunneitoxicaria and A. fuligineoides in sect. Phalloideae (Fr. Quél., the placement of A. ballerina is problematic. On the one hand, the morphology of A. ballerina shows clear affinities with stirps Limbatula of sect. Lepidella. On the other hand, in a multiple-gene phylogeny including taxa of all sections in subg. Lepidella, A. ballerina and two other species, including A. zangii, form a well-supported clade sister to the Phalloideae sensu Bas 1969, which include the lethal "death caps" and "destroying angels". Together, the A. ballerina-A. zangii clade and the Phalloideae sensu Bas 1969 also form a well-supported clade. We therefore screened for two of the most notorious toxins by HPLC-MS analysis of methanolic extracts from the basidiomata. Interestingly, neither α-amanitin nor phalloidin was found in A. ballerina, whereas Amanita fuligineoides was confirmed to contain both α-amanitin and phalloidin, and A. brunneitoxicaria contained only α-amanitin. Together with unique morphological characteristics, the position in the phylogeny indicates that A. ballerina is either an important link in the evolution of the deadly Amanita sect. Phalloideae species, or a member of a new section also including A. zangii.

  5. The IQD gene family in soybean: structure, phylogeny, evolution and expression.

    Directory of Open Access Journals (Sweden)

    Lin Feng

    Full Text Available Members of the plant-specific IQ67-domain (IQD protein family are involved in plant development and the basal defense response. Although systematic characterization of this family has been carried out in Arabidopsis, tomato (Solanum lycopersicum, Brachypodium distachyon and rice (Oryza sativa, systematic analysis and expression profiling of this gene family in soybean (Glycine max have not previously been reported. In this study, we identified and structurally characterized IQD genes in the soybean genome. A complete set of 67 soybean IQD genes (GmIQD1-67 was identified using Blast search tools, and the genes were clustered into four subfamilies (IQD I-IV based on phylogeny. These soybean IQD genes are distributed unevenly across all 20 chromosomes, with 30 segmental duplication events, suggesting that segmental duplication has played a major role in the expansion of the soybean IQD gene family. Analysis of the Ka/Ks ratios showed that the duplicated genes of the GmIQD family primarily underwent purifying selection. Microsynteny was detected in most pairs: genes in clade 1-3 might be present in genome regions that were inverted, expanded or contracted after the divergence; most gene pairs in clade 4 showed high conservation with little rearrangement among these gene-residing regions. Of the soybean IQD genes examined, six were most highly expressed in young leaves, six in flowers, one in roots and two in nodules. Our qRT-PCR analysis of 24 soybean IQD III genes confirmed that these genes are regulated by MeJA stress. Our findings present a comprehensive overview of the soybean IQD gene family and provide insights into the evolution of this family. In addition, this work lays a solid foundation for further experiments aimed at determining the biological functions of soybean IQD genes in growth and development.

  6. Phylogeny of the cycads based on multiple single-copy nuclear genes: congruence of concatenated parsimony, likelihood and species tree inference methods.

    Science.gov (United States)

    Salas-Leiva, Dayana E; Meerow, Alan W; Calonje, Michael; Griffith, M Patrick; Francisco-Ortega, Javier; Nakamura, Kyoko; Stevenson, Dennis W; Lewis, Carl E; Namoff, Sandra

    2013-11-01

    Despite a recent new classification, a stable phylogeny for the cycads has been elusive, particularly regarding resolution of Bowenia, Stangeria and Dioon. In this study, five single-copy nuclear genes (SCNGs) are applied to the phylogeny of the order Cycadales. The specific aim is to evaluate several gene tree-species tree reconciliation approaches for developing an accurate phylogeny of the order, to contrast them with concatenated parsimony analysis and to resolve the erstwhile problematic phylogenetic position of these three genera. DNA sequences of five SCNGs were obtained for 20 cycad species representing all ten genera of Cycadales. These were analysed with parsimony, maximum likelihood (ML) and three Bayesian methods of gene tree-species tree reconciliation, using Cycas as the outgroup. A calibrated date estimation was developed with Bayesian methods, and biogeographic analysis was also conducted. Concatenated parsimony, ML and three species tree inference methods resolve exactly the same tree topology with high support at most nodes. Dioon and Bowenia are the first and second branches of Cycadales after Cycas, respectively, followed by an encephalartoid clade (Macrozamia-Lepidozamia-Encephalartos), which is sister to a zamioid clade, of which Ceratozamia is the first branch, and in which Stangeria is sister to Microcycas and Zamia. A single, well-supported phylogenetic hypothesis of the generic relationships of the Cycadales is presented. However, massive extinction events inferred from the fossil record that eliminated broader ancestral distributions within Zamiaceae compromise accurate optimization of ancestral biogeographical areas for that hypothesis. While major lineages of Cycadales are ancient, crown ages of all modern genera are no older than 12 million years, supporting a recent hypothesis of mostly Miocene radiations. This phylogeny can contribute to an accurate infrafamilial classification of Zamiaceae.

  7. Resolution of deep angiosperm phylogeny using conserved nuclear genes and estimates of early divergence times.

    Science.gov (United States)

    Zeng, Liping; Zhang, Qiang; Sun, Renran; Kong, Hongzhi; Zhang, Ning; Ma, Hong

    2014-09-24

    Angiosperms are the most successful plants and support human livelihood and ecosystems. Angiosperm phylogeny is the foundation of studies of gene function and phenotypic evolution, divergence time estimation and biogeography. The relationship of the five divergent groups of the Mesangiospermae (~99.95% of extant angiosperms) remains uncertain, with multiple hypotheses reported in the literature. Here transcriptome data sets are obtained from 26 species lacking sequenced genomes, representing each of the five groups: eudicots, monocots, magnoliids, Chloranthaceae and Ceratophyllaceae. Phylogenetic analyses using 59 carefully selected low-copy nuclear genes resulted in highly supported relationships: sisterhood of eudicots and a clade containing Chloranthaceae and Ceratophyllaceae, with magnoliids being the next sister group, followed by monocots. Our topology allows a re-examination of the evolutionary patterns of 110 morphological characters. The molecular clock estimates of Mesangiospermae diversification during the late to middle Jurassic correspond well to the origins of some insects, which may have been a factor facilitating early angiosperm radiation.

  8. Gene structure, phylogeny and expression profile of the sucrose synthase gene family in cacao (Theobroma cacao L.).

    Science.gov (United States)

    Li, Fupeng; Hao, Chaoyun; Yan, Lin; Wu, Baoduo; Qin, Xiaowei; Lai, Jianxiong; Song, Yinghui

    2015-09-01

    In higher plants, sucrose synthase (Sus, EC 2.4.1.13) is widely considered as a key enzyme involved in sucrose metabolism. Although, several paralogous genes encoding different isozymes of Sus have been identified and characterized in multiple plant genomes, to date detailed information about the Sus genes is lacking for cacao. This study reports the identification of six novel Sus genes from economically important cacao tree. Analyses of the gene structure and phylogeny of the Sus genes demonstrated evolutionary conservation in the Sus family across cacao and other plant species. The expression of cacao Sus genes was investigated via real-time PCR in various tissues, different developmental phases of leaf, flower bud and pod. The Sus genes exhibited distinct but partially redundant expression profiles in cacao, with TcSus1, TcSus5 and TcSus6, being the predominant genes in the bark with phloem, TcSus2 predominantly expressing in the seed during the stereotype stage. TcSus3 and TcSus4 were significantly detected more in the pod husk and seed coat along the pod development, and showed development dependent expression profiles in the cacao pod. These results provide new insights into the evolution, and basic information that will assist in elucidating the functions of cacao Sus gene family.

  9. Phylogeny and biogeography of hawkmoths (Lepidoptera: Sphingidae: evidence from five nuclear genes.

    Directory of Open Access Journals (Sweden)

    Akito Y Kawahara

    2009-05-01

    Full Text Available The 1400 species of hawkmoths (Lepidoptera: Sphingidae comprise one of most conspicuous and well-studied groups of insects, and provide model systems for diverse biological disciplines. However, a robust phylogenetic framework for the family is currently lacking. Morphology is unable to confidently determine relationships among most groups. As a major step toward understanding relationships of this model group, we have undertaken the first large-scale molecular phylogenetic analysis of hawkmoths representing all subfamilies, tribes and subtribes.The data set consisted of 131 sphingid species and 6793 bp of sequence from five protein-coding nuclear genes. Maximum likelihood and parsimony analyses provided strong support for more than two-thirds of all nodes, including strong signal for or against nearly all of the fifteen current subfamily, tribal and sub-tribal groupings. Monophyly was strongly supported for some of these, including Macroglossinae, Sphinginae, Acherontiini, Ambulycini, Philampelini, Choerocampina, and Hemarina. Other groupings proved para- or polyphyletic, and will need significant redefinition; these include Smerinthinae, Smerinthini, Sphingini, Sphingulini, Dilophonotini, Dilophonotina, Macroglossini, and Macroglossina. The basal divergence, strongly supported, is between Macroglossinae and Smerinthinae+Sphinginae. All genes contribute significantly to the signal from the combined data set, and there is little conflict between genes. Ancestral state reconstruction reveals multiple separate origins of New World and Old World radiations.Our study provides the first comprehensive phylogeny of one of the most conspicuous and well-studied insects. The molecular phylogeny challenges current concepts of Sphingidae based on morphology, and provides a foundation for a new classification. While there are multiple independent origins of New World and Old World radiations, we conclude that broad-scale geographic distribution in hawkmoths

  10. [Molecular phylogeny of Turbellaria, based on data from comparing the nucleotide sequences of 18S ribosomal RNA genes].

    Science.gov (United States)

    Kuznedelov, K D; Timoshkin, O A

    1995-01-01

    Polymerase chain reaction and direct sequencing of the 5'-end region of the 18S ribosomal RNA gene were used to infer phylogenetic relationship among turbellarian flatworms from Lake Baikal. Representatives of 5 orders (Tricladida--10 spp., Lecithoepitheliata--5 spp., Prolecithophora--3 spp., Proseriata and Kalyptorhynchia one for each) were studied; nucleotide sequence of more than 340 nucleotides was determined for each species. Consensus sequence for each order having more than one representative species was determined. Distance matrix and maximum parsimony approaches were applied to infer phylogenies. Bootstrap procedure was used to estimate confidence limits, at the 100% level by bootstrapping, the group of three orders: Kalyptorhynchia, Proseriata and Lecithoepitheliata was found to be monophyletic. However, subsets inside the group had no significant support to be preferred or rejected. Our data do not support traditional systematics which joins two suborders Tricladida and Proseriata into the single order Seriata, and also do not support comparative anatomical data which show close relationship of Lecithoepitheliata and lower Prolecithophora.

  11. The phytochelatin synthase gene in date palm (Phoenix dactylifera L.): Phylogeny, evolution and expression.

    Science.gov (United States)

    Zayneb, Chaâbene; Imen, Rekik Hakim; Walid, Kriaa; Grubb, C Douglas; Bassem, Khemakhem; Franck, Vandenbulcke; Hafedh, Mejdoub; Amine, Elleuch

    2017-06-01

    We studied date palm phytochelatin synthase type I (PdPCS1), which catalyzes the cytosolic synthesis of phytochelatins (PCs), a heavy metal binding protein, in plant cells. The gene encoding PdPCS1 (Pdpcs) consists of 8 exons and 7 introns and encodes a protein of 528 amino acids. PCs gene history was studied using Notung phylogeny. During evolution, gene loss from several lineages was predicted including Proteobacteria, Bilateria and Brassicaceae. In addition, eleven gene duplication events appeared toward interior nodes of the reconciled tree and four gene duplication events appeared toward the external nodes. These latter sequences belong to species with a second copy of PCs suggesting that this gene evolved through subfunctionalization. Pdpcs1 gene expression was measured in seedling hypocotyls exposed to Cd, Cu and Cr using quantitative real-time polymerase chain reaction (qPCR). A Pdpcs1 overexpression was evidenced in P. dactylifera seedlings exposed to metals suggesting that 1-the Pdpcs1 gene is functional, 2-there is an implication of the enzyme in metal detoxification mechanisms. Additionally, the structure of PdPCS1 was predicted using its homologue from Nostoc (cyanobacterium, NsPCS) as a template in Discovery studio and PyMol software. These analyses allowed us to identify the phytochelatin synthase type I enzyme in date palm (PdPCS1) via recognition of key consensus amino acids involved in the catalytic mechanism, and to propose a hypothetical binding and catalytic site for an additional substrate binding cavity. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Phylogeny of ruminants secretory ribonuclease gene sequences of pronghorn (Antilocapra americana).

    Science.gov (United States)

    Beintema, Jaap J; Breukelman, Heleen J; Dubois, Jean-Yves F; Warmels, Hayo W

    2003-01-01

    Phylogenetic analyses based on primary structures of mammalian ribonucleases, indicated that three homologous enzymes (pancreatic, seminal and brain ribonucleases) present in the bovine species are the results of gene duplication events, which occurred in the ancestor of the ruminants after divergence from other artiodactyls. In this paper sequences are presented of genes encoding pancreatic and brain-type ribonuclease genes of pronghorn (Antilocapra americana). The seminal-type ribonuclease gene could not be detected in this species, neither by PCR amplification nor by Southern blot analyses, indicating that it may be deleted completely in this species. Previously we demonstrated of a study of amino acid sequences of pancreatic ribonucleases of a large number of ruminants the monophyly of bovids and cervids, and that pronghorn groups with giraffe. Here we present phylogenetic analyses of nucleotide sequences of ribonucleases and other molecules from ruminant species and compare these with published data. Chevrotain (Tragulus) always groups with the other ruminants as separate taxon from the pecora or true ruminants. Within the pecora the relationships between Bovidae, Cervidae, Giraffidae, and pronghorn (Antilocapra) cannot be decided with certainty, although in the majority of analyses Antilocapra diverges first, separately or joined with giraffe. Broad taxon sampling and investigation of specific sequence features may be as important for reliable conclusions in phylogeny as the lengths of analyzed sequences.

  13. Phylogeny, historical biogeography, and taxonomic ranking of Parnassiinae (Lepidoptera, Papilionidae) based on morphology and seven genes.

    Science.gov (United States)

    Nazari, Vazrick; Zakharov, Evgueni V; Sperling, Felix A H

    2007-01-01

    We tested the taxonomic utility of morphology and seven mitochondrial or nuclear genes in a phylogenetic reconstruction of swallowtail butterflies in the subfamily Parnassiinae. Our data included 236 morphological characters and DNA sequences for seven genes that are commonly used to infer lepidopteran relationships (COI+COII, ND5, ND1, 16S, EF-1alpha, and wg; total 5775 bp). Nuclear genes performed best for inferring phylogenies, particularly at higher taxonomic levels, while there was substantial variation in performance among mitochondrial genes. Multiple analyses of molecular data (MP, ML and Bayesian) consistently produced a tree topology different from that obtained by morphology alone. Based on molecular evidence, sister-group relationships were confirmed between the genera Hypermnestra and Parnassius, as well as between Archon and Luehdorfia, while the monophyly of the subfamily was weakly supported. We recognize three tribes within Parnassiinae, with Archon and Luehdorfia forming the tribe Luehdorfiini Tutt, 1896 [stat. rev.]. Three fossil taxa were incorporated into a molecular clock analysis with biogeographic time constraints. Based on dispersal-vicariance (DIVA) analysis, the most recent common ancestor of Parnassiinae occurred in the Iranian Plateau and Central Asia to China. Early diversification of Parnassiinae took place at the same time that India collided into Eurasia, 65-42 million years ago.

  14. A gene phylogeny of the red algae (Rhodophyta) based on plastid rbcL.

    Science.gov (United States)

    Freshwater, D W; Fredericq, S; Butler, B S; Hommersand, M H; Chase, M W

    1994-01-01

    A phylogeny for the Rhodophyta has been inferred by parsimony analysis of plastid rbcL sequences representing 81 species, 68 genera, 38 families, and 17 orders of red algae; rbcL encodes the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Levels of sequence divergence among species, genera, and families are high in red algae, typically much greater than those reported for flowering plants. The Rhodophyta traditionally consists of one class, Rhodophyceae, and two subclasses, Bangiophycidae and Florideophycidae. The Bangiophycidae with three orders (Porphyridiales, Compsopogonales, and Bangiales) appears to be polyphyletic, and the Florideophycidae with 17 orders is monophyletic in this study. The current classification of the Florideophycidae based on ultrastructure of pit connections is supported. With the exception of the Rhodogorgonales, which appears to be misplaced, orders with one or two pit-plug cap layers (Hildenbrandiales, Corallinales, Acrochaetiales, Palmanales, Batrachospermales, and Nemaliales) terminate long branches of basal position within Florideophycidae in the most parsimonious rbcL tree. Orders that lack typical cap layers but possess a cap membrane are resolved as a monophyletic clade sister to the Ahnfeltiales. The large order Gigartinales, which is distributed among five rbcL clades, is polyphyletic. Families that possess typical carrageenan in their cell walls are resolved as a terminal clade containing two family complexes centered around the Solieriaceae and Gigartinaceae. PMID:8041781

  15. Beyond classification: gene-family phylogenies from shotgun metagenomic reads enable accurate community analysis.

    Science.gov (United States)

    Riesenfeld, Samantha J; Pollard, Katherine S

    2013-06-22

    Sequence-based phylogenetic trees are a well-established tool for characterizing diversity of both macroorganisms and microorganisms. Phylogenetic methods have recently been applied to shotgun metagenomic data from microbial communities, particularly with the aim of classifying reads. But the accuracy of gene-family phylogenies that characterize evolutionary relationships among short, non-overlapping sequencing reads has not been thoroughly evaluated. To quantify errors in metagenomic read trees, we developed MetaPASSAGE, a software pipeline to generate in silico bacterial communities, simulate a sample of shotgun reads from a gene family represented in the community, orient or translate reads, and produce a profile-based alignment of the reads from which a gene-family phylogenetic tree can be built. We applied MetaPASSAGE to a variety of RNA and protein-coding gene families, built trees using a range of different phylogenetic methods, and compared the resulting trees using topological and branch-length error metrics. We identified read length as one of the major sources of error. Because phylogenetic methods use a reference database of full-length sequences from the gene family to guide construction of alignments and trees, we found that error can also be substantially reduced through increasing the size and diversity of the reference database. Finally, UniFrac analysis, which compares metagenomic samples based on a summary statistic computed over all branches in a read tree, is very robust to the level of error we observe. Bacterial community diversity can be quantified using phylogenetic approaches applied to shotgun metagenomic data. As sequencing reads get longer and more genomes across the bacterial tree of life are sequenced, the accuracy of this approach will continue to improve, opening the door to more applications.

  16. Inferring Phylogenetic Networks from Gene Order Data

    Directory of Open Access Journals (Sweden)

    Alexey Anatolievich Morozov

    2013-01-01

    Full Text Available Existing algorithms allow us to infer phylogenetic networks from sequences (DNA, protein or binary, sets of trees, and distance matrices, but there are no methods to build them using the gene order data as an input. Here we describe several methods to build split networks from the gene order data, perform simulation studies, and use our methods for analyzing and interpreting different real gene order datasets. All proposed methods are based on intermediate data, which can be generated from genome structures under study and used as an input for network construction algorithms. Three intermediates are used: set of jackknife trees, distance matrix, and binary encoding. According to simulations and case studies, the best intermediates are jackknife trees and distance matrix (when used with Neighbor-Net algorithm. Binary encoding can also be useful, but only when the methods mentioned above cannot be used.

  17. Phylogeny of the order Phyllachorales (Ascomycota, Sordariomycetes): among and within order relationships based on five molecular loci

    NARCIS (Netherlands)

    Mardones, M.; Trampe-Jaschik, T.; Oster, S.; Elliott, M.; Urbina, H.; Schmitt, I.; Piepenbring, M.

    2017-01-01

    The order Phyllachorales (Pezizomycotina, Ascomycota) is a group of biotrophic, obligate plant parasitic fungi with a tropical distribution and high host specificity. Traditionally two families are recognised within this order: Phyllachoraceae and Phaeochoraceae, based mostly on morphological and

  18. S1 gene-based phylogeny of infectious bronchitis virus: An attempt to harmonize virus classification.

    Science.gov (United States)

    Valastro, Viviana; Holmes, Edward C; Britton, Paul; Fusaro, Alice; Jackwood, Mark W; Cattoli, Giovanni; Monne, Isabella

    2016-04-01

    Infectious bronchitis virus (IBV) is the causative agent of a highly contagious disease that results in severe economic losses to the global poultry industry. The virus exists in a wide variety of genetically distinct viral types, and both phylogenetic analysis and measures of pairwise similarity among nucleotide or amino acid sequences have been used to classify IBV strains. However, there is currently no consensus on the method by which IBV sequences should be compared, and heterogeneous genetic group designations that are inconsistent with phylogenetic history have been adopted, leading to the confusing coexistence of multiple genotyping schemes. Herein, we propose a simple and repeatable phylogeny-based classification system combined with an unambiguous and rationale lineage nomenclature for the assignment of IBV strains. By using complete nucleotide sequences of the S1 gene we determined the phylogenetic structure of IBV, which in turn allowed us to define 6 genotypes that together comprise 32 distinct viral lineages and a number of inter-lineage recombinants. Because of extensive rate variation among IBVs, we suggest that the inference of phylogenetic relationships alone represents a more appropriate criterion for sequence classification than pairwise sequence comparisons. The adoption of an internationally accepted viral nomenclature is crucial for future studies of IBV epidemiology and evolution, and the classification scheme presented here can be updated and revised novel S1 sequences should become available. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Efficiencies of different genes and different tree-building methods in recovering a known vertebrate phylogeny.

    Science.gov (United States)

    Russo, C A; Takezaki, N; Nei, M

    1996-03-01

    The relative efficiencies of different protein-coding genes of the mitochondrial genome and different tree-building methods in recovering a known vertebrate phylogeny (two whale species, cow, rat, mouse, opossum, chicken, frog, and three bony fish species) was evaluated. The tree-building methods examined were the neighbor joining (NJ), minimum evolution (ME), maximum parsimony (MP), and maximum likelihood (ML), and both nucleotide sequences and deduced amino acid sequences were analyzed. Generally speaking, amino acid sequences were better than nucleotide sequences in obtaining the true tree (topology) or trees close to the true tree. However, when only first and second codon positions data were used, nucleotide sequences produced reasonably good trees. Among the 13 genes examined, Nd5 produced the true tree in all tree-building methods or algorithms for both amino acid and nucleotide sequence data. Genes Cytb and Nd4 also produced the correct tree in most tree-building algorithms when amino acid sequence data were used. By contrast, Co2, Nd1, and Nd41 showed a poor performance. In general, large genes produced better results, and when the entire set of genes was used, all tree-building methods generated the true tree. In each tree-building method, several distance measures or algorithms were used, but all these distance measures or algorithms produced essentially the same results. The ME method, in which many different topologies are examined, was no better than the NJ method, which generates a single final tree. Similarly, an ML method, in which many topologies are examined, was no better than the ML star decomposition algorithm that generates a single final tree. In ML the best substitution model chosen by using the Akaike information criterion produced no better results than simpler substitution models. These results question the utility of the currently used optimization principles in phylogenetic construction. Relatively simple methods such as the NJ and ML

  20. Phylogeny Reconstruction with Alignment-Free Method That Corrects for Horizontal Gene Transfer.

    Directory of Open Access Journals (Sweden)

    Raquel Bromberg

    2016-06-01

    Full Text Available Advances in sequencing have generated a large number of complete genomes. Traditionally, phylogenetic analysis relies on alignments of orthologs, but defining orthologs and separating them from paralogs is a complex task that may not always be suited to the large datasets of the future. An alternative to traditional, alignment-based approaches are whole-genome, alignment-free methods. These methods are scalable and require minimal manual intervention. We developed SlopeTree, a new alignment-free method that estimates evolutionary distances by measuring the decay of exact substring matches as a function of match length. SlopeTree corrects for horizontal gene transfer, for composition variation and low complexity sequences, and for branch-length nonlinearity caused by multiple mutations at the same site. We tested SlopeTree on 495 bacteria, 73 archaea, and 72 strains of Escherichia coli and Shigella. We compared our trees to the NCBI taxonomy, to trees based on concatenated alignments, and to trees produced by other alignment-free methods. The results were consistent with current knowledge about prokaryotic evolution. We assessed differences in tree topology over different methods and settings and found that the majority of bacteria and archaea have a core set of proteins that evolves by descent. In trees built from complete genomes rather than sets of core genes, we observed some grouping by phenotype rather than phylogeny, for instance with a cluster of sulfur-reducing thermophilic bacteria coming together irrespective of their phyla. The source-code for SlopeTree is available at: http://prodata.swmed.edu/download/pub/slopetree_v1/slopetree.tar.gz.

  1. Phylogeny Reconstruction with Alignment-Free Method That Corrects for Horizontal Gene Transfer

    Science.gov (United States)

    Grishin, Nick V.; Otwinowski, Zbyszek

    2016-01-01

    Advances in sequencing have generated a large number of complete genomes. Traditionally, phylogenetic analysis relies on alignments of orthologs, but defining orthologs and separating them from paralogs is a complex task that may not always be suited to the large datasets of the future. An alternative to traditional, alignment-based approaches are whole-genome, alignment-free methods. These methods are scalable and require minimal manual intervention. We developed SlopeTree, a new alignment-free method that estimates evolutionary distances by measuring the decay of exact substring matches as a function of match length. SlopeTree corrects for horizontal gene transfer, for composition variation and low complexity sequences, and for branch-length nonlinearity caused by multiple mutations at the same site. We tested SlopeTree on 495 bacteria, 73 archaea, and 72 strains of Escherichia coli and Shigella. We compared our trees to the NCBI taxonomy, to trees based on concatenated alignments, and to trees produced by other alignment-free methods. The results were consistent with current knowledge about prokaryotic evolution. We assessed differences in tree topology over different methods and settings and found that the majority of bacteria and archaea have a core set of proteins that evolves by descent. In trees built from complete genomes rather than sets of core genes, we observed some grouping by phenotype rather than phylogeny, for instance with a cluster of sulfur-reducing thermophilic bacteria coming together irrespective of their phyla. The source-code for SlopeTree is available at: http://prodata.swmed.edu/download/pub/slopetree_v1/slopetree.tar.gz. PMID:27336403

  2. A molecular phylogeny of the Cephinae (Hymenoptera, Cephidae based on mtDNA COI gene: a test of traditional classification

    Directory of Open Access Journals (Sweden)

    Mahir Budak

    2011-09-01

    Full Text Available Cephinae is traditionally divided into three tribes and about 24 genera based on morphology and host utilization. There has been no study testing the monophyly of taxa under a strict phylogenetic criterion. A molecular phylogeny of Cephinae based on a total of 68 sequences of mtDNA COI gene, representing seven genera of Cephinae, is reconstructed to test the traditional limits and relationships of taxa. Monophyly of the traditional tribes is not supported. Monophyly of the genera are largely supported except for Pachycephus. A few host shift events are suggested based on phylogenetic relationships among taxa. These results indicate that a more robust phylogeny is required for a more plausible conclusion. We also report two species of Cephus for the first time from Turkey.

  3. Anchored enrichment dataset for true flies (order Diptera) reveals insights into the phylogeny of flower flies (family Syrphidae).

    Science.gov (United States)

    Young, Andrew Donovan; Lemmon, Alan R; Skevington, Jeffrey H; Mengual, Ximo; Ståhls, Gunilla; Reemer, Menno; Jordaens, Kurt; Kelso, Scott; Lemmon, Emily Moriarty; Hauser, Martin; De Meyer, Marc; Misof, Bernhard; Wiegmann, Brian M

    2016-06-29

    Anchored hybrid enrichment is a form of next-generation sequencing that uses oligonucleotide probes to target conserved regions of the genome flanked by less conserved regions in order to acquire data useful for phylogenetic inference from a broad range of taxa. Once a probe kit is developed, anchored hybrid enrichment is superior to traditional PCR-based Sanger sequencing in terms of both the amount of genomic data that can be recovered and effective cost. Due to their incredibly diverse nature, importance as pollinators, and historical instability with regard to subfamilial and tribal classification, Syrphidae (flower flies or hoverflies) are an ideal candidate for anchored hybrid enrichment-based phylogenetics, especially since recent molecular phylogenies of the syrphids using only a few markers have resulted in highly unresolved topologies. Over 6200 syrphids are currently known and uncovering their phylogeny will help us to understand how these species have diversified, providing insight into an array of ecological processes, from the development of adult mimicry, the origin of adult migration, to pollination patterns and the evolution of larval resource utilization. We present the first use of anchored hybrid enrichment in insect phylogenetics on a dataset containing 30 flower fly species from across all four subfamilies and 11 tribes out of 15. To produce a phylogenetic hypothesis, 559 loci were sampled to produce a final dataset containing 217,702 sites. We recovered a well resolved topology with bootstrap support values that were almost universally >95 %. The subfamily Eristalinae is recovered as paraphyletic, with the strongest support for this hypothesis to date. The ant predators in the Microdontinae are sister to all other syrphids. Syrphinae and Pipizinae are monophyletic and sister to each other. Larval predation on soft-bodied hemipterans evolved only once in this family. Anchored hybrid enrichment was successful in producing a robustly supported

  4. Phylogeny of Celastraceae tribe Euonymeae inferred from morphological characters and nuclear and plastid genes.

    Science.gov (United States)

    Simmons, Mark P; McKenna, Miles J; Bacon, Christine D; Yakobson, Kendra; Cappa, Jennifer J; Archer, Robert H; Ford, Andrew J

    2012-01-01

    The phylogeny of Celastraceae tribe Euonymeae (≈ 230 species in eight genera in both the Old and New Worlds) was inferred using morphological characters together with plastid (matK, trnL-F) and nuclear (ITS and 26S rDNA) genes. Tribe Euonymeae has been defined as those genera of Celastraceae with generally opposite leaves, isomerous carpels, loculicidally dehiscent capsules, and arillate seeds (except Microtropis). Euonymus is the most diverse (129 species) and widely cultivated genus in the tribe. We infer that tribe Euonymeae consists of at least six separate lineages within Celastraceae and that a revised natural classification of the family is needed. Microtropis and Quetzalia are inferred to be distinct sister groups that together are sister to Zinowiewia. The endangered Monimopetalum chinense is an isolated and early derived lineage of Celastraceae that represents an important component of phylogenetic diversity within the family. Hedraianthera is sister to Brassiantha, and we describe a second species (Brassiantha hedraiantheroides A.J. Ford) that represents the first reported occurrence of this genus in Australia. Euonymus globularis, from eastern Australia, is sister to Menepetalum, which is endemic to New Caledonia, and we erect a new genus (Dinghoua R.H. Archer) for it. The Madagascan species of Euonymus are sister to Pleurostylia and recognized as a distinct genus (Astrocassine ined.). Glyptopetalum, Torralbasia, and Xylonymus are all closely related to Euonymus sensu stricto and are questionably distinct from it. Current intrageneric classifications of Euonymus are not completely natural and require revision. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Functional evolution of ADAMTS genes: Evidence from analyses of phylogeny and gene organization

    Directory of Open Access Journals (Sweden)

    Van Meir Erwin G

    2005-02-01

    Full Text Available Abstract Background The ADAMTS (A Disintegrin-like and Metalloprotease with Thrombospondin motifs proteins are a family of metalloproteases with sequence similarity to the ADAM proteases, that contain the thrombospondin type 1 sequence repeat motifs (TSRs common to extracellular matrix proteins. ADAMTS proteins have recently gained attention with the discovery of their role in a variety of diseases, including tissue and blood disorders, cancer, osteoarthritis, Alzheimer's and the genetic syndromes Weill-Marchesani syndrome (ADAMTS10, thrombotic thrombocytopenic purpura (ADAMTS13, and Ehlers-Danlos syndrome type VIIC (ADAMTS2 in humans and belted white-spotting mutation in mice (ADAMTS20. Results Phylogenetic analysis and comparison of the exon/intron organization of vertebrate (Homo, Mus, Fugu, chordate (Ciona and invertebrate (Drosophila and Caenorhabditis ADAMTS homologs has elucidated the evolutionary relationships of this important gene family, which comprises 19 members in humans. Conclusions The evolutionary history of ADAMTS genes in vertebrate genomes has been marked by rampant gene duplication, including a retrotransposition that gave rise to a distinct ADAMTS subfamily (ADAMTS1, -4, -5, -8, -15 that may have distinct aggrecanase and angiogenesis functions.

  6. Phylogeny of Mycobacterium tuberculosis Beijing strains constructed from polymorphisms in genes involved in DNA replication, recombination and repair.

    Science.gov (United States)

    Mestre, Olga; Luo, Tao; Dos Vultos, Tiago; Kremer, Kristin; Murray, Alan; Namouchi, Amine; Jackson, Céline; Rauzier, Jean; Bifani, Pablo; Warren, Rob; Rasolofo, Voahangy; Mei, Jian; Gao, Qian; Gicquel, Brigitte

    2011-01-20

    The Beijing family is a successful group of M. tuberculosis strains, often associated with drug resistance and widely distributed throughout the world. Polymorphic genetic markers have been used to type particular M. tuberculosis strains. We recently identified a group of polymorphic DNA repair replication and recombination (3R) genes. It was shown that evolution of M. tuberculosis complex strains can be studied using 3R SNPs and a high-resolution tool for strain discrimination was developed. Here we investigated the genetic diversity and propose a phylogeny for Beijing strains by analyzing polymorphisms in 3R genes. A group of 3R genes was sequenced in a collection of Beijing strains from different geographic origins. Sequence analysis and comparison with the ones of non-Beijing strains identified several SNPs. These SNPs were used to type a larger collection of Beijing strains and allowed identification of 26 different sequence types for which a phylogeny was constructed. Phylogenetic relationships established by sequence types were in agreement with evolutionary pathways suggested by other genetic markers, such as Large Sequence Polymorphisms (LSPs). A recent Beijing genotype (Bmyc10), which included 60% of strains from distinct parts of the world, appeared to be predominant. We found SNPs in 3R genes associated with the Beijing family, which enabled discrimination of different groups and the proposal of a phylogeny. The Beijing family can be divided into different groups characterized by particular genetic polymorphisms that may reflect pathogenic features. These SNPs are new, potential genetic markers that may contribute to better understand the success of the Beijing family.

  7. Phylogeny of Mycobacterium tuberculosis Beijing strains constructed from polymorphisms in genes involved in DNA replication, recombination and repair.

    Directory of Open Access Journals (Sweden)

    Olga Mestre

    2011-01-01

    Full Text Available The Beijing family is a successful group of M. tuberculosis strains, often associated with drug resistance and widely distributed throughout the world. Polymorphic genetic markers have been used to type particular M. tuberculosis strains. We recently identified a group of polymorphic DNA repair replication and recombination (3R genes. It was shown that evolution of M. tuberculosis complex strains can be studied using 3R SNPs and a high-resolution tool for strain discrimination was developed. Here we investigated the genetic diversity and propose a phylogeny for Beijing strains by analyzing polymorphisms in 3R genes.A group of 3R genes was sequenced in a collection of Beijing strains from different geographic origins. Sequence analysis and comparison with the ones of non-Beijing strains identified several SNPs. These SNPs were used to type a larger collection of Beijing strains and allowed identification of 26 different sequence types for which a phylogeny was constructed. Phylogenetic relationships established by sequence types were in agreement with evolutionary pathways suggested by other genetic markers, such as Large Sequence Polymorphisms (LSPs. A recent Beijing genotype (Bmyc10, which included 60% of strains from distinct parts of the world, appeared to be predominant.We found SNPs in 3R genes associated with the Beijing family, which enabled discrimination of different groups and the proposal of a phylogeny. The Beijing family can be divided into different groups characterized by particular genetic polymorphisms that may reflect pathogenic features. These SNPs are new, potential genetic markers that may contribute to better understand the success of the Beijing family.

  8. DeCoSTAR: Reconstructing the Ancestral Organization of Genes or Genomes Using Reconciled Phylogenies

    Science.gov (United States)

    Anselmetti, Yoann; Patterson, Murray; Ponty, Yann; B�rard, S�verine; Chauve, Cedric; Scornavacca, Celine; Daubin, Vincent; Tannier, Eric

    2017-01-01

    DeCoSTAR is a software that aims at reconstructing the organization of ancestral genes or genomes in the form of sets of neighborhood relations (adjacencies) between pairs of ancestral genes or gene domains. It can also improve the assembly of fragmented genomes by proposing evolutionary-induced adjacencies between scaffolding fragments. Ancestral genes or domains are deduced from reconciled phylogenetic trees under an evolutionary model that considers gains, losses, speciations, duplications, and transfers as possible events for gene evolution. Reconciliations are either given as input or computed with the ecceTERA package, into which DeCoSTAR is integrated. DeCoSTAR computes adjacency evolutionary scenarios using a scoring scheme based on a weighted sum of adjacency gains and breakages. Solutions, both optimal and near-optimal, are sampled according to the Boltzmann–Gibbs distribution centered around parsimonious solutions, and statistical supports on ancestral and extant adjacencies are provided. DeCoSTAR supports the features of previously contributed tools that reconstruct ancestral adjacencies, namely DeCo, DeCoLT, ART-DeCo, and DeClone. In a few minutes, DeCoSTAR can reconstruct the evolutionary history of domains inside genes, of gene fusion and fission events, or of gene order along chromosomes, for large data sets including dozens of whole genomes from all kingdoms of life. We illustrate the potential of DeCoSTAR with several applications: ancestral reconstruction of gene orders for Anopheles mosquito genomes, multidomain proteins in Drosophila, and gene fusion and fission detection in Actinobacteria. Availability: http://pbil.univ-lyon1.fr/software/DeCoSTAR (Last accessed April 24, 2017). PMID:28402423

  9. BPhyOG: An interactive server for genome-wide inference of bacterial phylogenies based on overlapping genes

    Directory of Open Access Journals (Sweden)

    Lin Kui

    2007-07-01

    Full Text Available Abstract Background Overlapping genes (OGs in bacterial genomes are pairs of adjacent genes of which the coding sequences overlap partly or entirely. With the rapid accumulation of sequence data, many OGs in bacterial genomes have now been identified. Indeed, these might prove a consistent feature across all microbial genomes. Our previous work suggests that OGs can be considered as robust markers at the whole genome level for the construction of phylogenies. An online, interactive web server for inferring phylogenies is needed for biologists to analyze phylogenetic relationships among a set of bacterial genomes of interest. Description BPhyOG is an online interactive server for reconstructing the phylogenies of completely sequenced bacterial genomes on the basis of their shared overlapping genes. It provides two tree-reconstruction methods: Neighbor Joining (NJ and Unweighted Pair-Group Method using Arithmetic averages (UPGMA. Users can apply the desired method to generate phylogenetic trees, which are based on an evolutionary distance matrix for the selected genomes. The distance between two genomes is defined by the normalized number of their shared OG pairs. BPhyOG also allows users to browse the OGs that were used to infer the phylogenetic relationships. It provides detailed annotation for each OG pair and the features of the component genes through hyperlinks. Users can also retrieve each of the homologous OG pairs that have been determined among 177 genomes. It is a useful tool for analyzing the tree of life and overlapping genes from a genomic standpoint. Conclusion BPhyOG is a useful interactive web server for genome-wide inference of any potential evolutionary relationship among the genomes selected by users. It currently includes 177 completely sequenced bacterial genomes containing 79,855 OG pairs, the annotation and homologous OG pairs of which are integrated comprehensively. The reliability of phylogenies complemented by

  10. Phylogeny and molecular evolution of the Acc1 gene within the StH genome species in Triticeae (Poaceae).

    Science.gov (United States)

    Fan, Xing; Sha, Li-Na; Wang, Xiao-Li; Zhang, Hai-Qin; Kang, Hou-Yang; Wang, Yi; Zhou, Yong-Hong

    2013-10-15

    To estimate the phylogeny and molecular evolution of a single-copy gene encoding plastid acetyl-CoA carboxylase (Acc1) within the StH genome species, two Acc1 homoeologous sequences were isolated from nearly all the sampled StH genome species and were analyzed with those from 35 diploid taxa representing 19 basic genomes in Triticeae. Sequence diversity patterns and genealogical analysis suggested that (1) the StH genome species from the same areas or neighboring geographic regions are closely related to each other; (2) the Acc1 gene sequences of the StH genome species from North America and Eurasia are evolutionarily distinct; (3) Dasypyrum has contributed to the nuclear genome of Elymus repens and Elymus mutabilis; (4) the StH genome polyploids have higher levels of sequence diversity in the H genome homoeolog than the St genome homoeolog; and (5) the Acc1 sequence may evolve faster in the polyploid species than in the diploids. Our result provides some insight on evolutionary dynamics of duplicate Acc1 gene, the polyploidy speciation and phylogeny of the StH genome species. © 2013 Elsevier B.V. All rights reserved.

  11. Some Histories of Molecular Evolution: Amniote Phylogeny, Vertebrate Eye Lens Evolution, and the Prion Gene

    NARCIS (Netherlands)

    Rheede, T. van

    2004-01-01

    In this thesis, the principles of molecular evolution and phylogeny are introduced in Chapter 1, while the subsequent chapters deal with the three topics mentioned in the title. Part I: Birds, reptiles and mammals are Amniota, organisms that have an amnion during their embryonal development. Even

  12. A multi gene sequence-based phylogeny of the Musaceae (banana) family

    Czech Academy of Sciences Publication Activity Database

    Christelová, Pavla; Valárik, Miroslav; Hřibová, Eva; De Langhe, E.; Doležel, Jaroslav

    2011-01-01

    Roč. 11, č. 103 (2011), s. 1-13 ISSN 1471-2148 R&D Projects: GA AV ČR IAA600380703 Institutional research plan: CEZ:AV0Z50380511 Keywords : MOLECULAR PHYLOGENY * FLOWERING PLANTS * RIBOSOMAL DNA Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.521, year: 2011

  13. Preliminary study on mitochondrial 16S rRNA gene sequences and phylogeny of flatfishes (Pleuronectiformes)

    Science.gov (United States)

    You, Feng; Liu, Jing; Zhang, Peijun; Xiang, Jianhai

    2005-09-01

    A 605 bp section of mitochondrial 16S rRNA gene from Paralichthys olivaceus, Pseudorhombus cinnamomeus, Psetta maxima and Kareius bicoloratus, which represent 3 families of Order Pleuronectiformes was amplified by PCR and sequenced to show the molecular systematics of Pleuronectiformes for comparison with related gene sequences of other 6 flatfish downloaded from GenBank. Phylogenetic analysis based on genetic distance from related gene sequences of 10 flatfish showed that this method was ideal to explore the relationship between species, genera and families. Phylogenetic trees set-up is based on neighbor-joining, maximum parsimony and maximum likelihood methods that accords to the general rule of Pleuronectiformes evolution. But they also resulted in some confusion. Unlike data from morphological characters, P. olivaceus clustered with K. bicoloratus, but P. cinnamomeus did not cluster with P. olivaceus, which is worth further studying.

  14. Phylogeny of Ten Kenyan Plectranthus Species in the Coleus Clade Inferred from Leaf Micromorphology, Rbcl and MatK Genes

    Directory of Open Access Journals (Sweden)

    Fredrick M. Musila

    2017-01-01

    Full Text Available Plectranthus species are difficult to taxonomically delimit due to lack of clear-cut morphological synapomorphies. This study is aimed at bringing insights into classification of ten Plectranthus species in the Coleus clade by using leaf micromorphology and molecular data. Stomatal counts and observation of microtome leaf sections generated leaf micromorphology data, while molecular data was obtained from sequencing MatK and Rbcl genes from each species. Phylogeny based on the MatK and Rbcl gene sequences clustered four species P. caninus, P. otostegioides, P. barbatus, and P. lanuginosus together (Clusters A and D, respectively, while P. pseudomarrubioides, P. ornatus, and P. aegyptiacus were grouped together into Clusters B and E, respectively, and P. montanus and P. amboinicus were grouped together (Cluster C. A dendrogram was generated through a cluster analysis of the leaf micromorphological characters grouped together, P. caninus, P. ornatus, P. otostegioides, P. montanus, and P. pseudomarrubioides (Cluster F. The dendrogram also grouped together P. aegyptiacus, P. amboinicus, P. edulis, P. barbatus, and P. lanuginosus (Cluster G. The present study has grouped the ten studied Plectranthus species using molecular and leaf micromorphology characters into phylogenies, which are supported by previous studies, and proved that these characters can aid in plant identification and phylogenetic studies.

  15. Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. II. Analysis and discussion

    Science.gov (United States)

    LIVEZEY, BRADLEY C; ZUSI, RICHARD L

    2007-01-01

    In recent years, avian systematics has been characterized by a diminished reliance on morphological cladistics of modern taxa, intensive palaeornithogical research stimulated by new discoveries and an inundation by analyses based on DNA sequences. Unfortunately, in contrast to significant insights into basal origins, the broad picture of neornithine phylogeny remains largely unresolved. Morphological studies have emphasized characters of use in palaeontological contexts. Molecular studies, following disillusionment with the pioneering, but non-cladistic, work of Sibley and Ahlquist, have differed markedly from each other and from morphological works in both methods and findings. Consequently, at the turn of the millennium, points of robust agreement among schools concerning higher-order neornithine phylogeny have been limited to the two basalmost and several mid-level, primary groups. This paper describes a phylogenetic (cladistic) analysis of 150 taxa of Neornithes, including exemplars from all non-passeriform families, and subordinal representatives of Passeriformes. Thirty-five outgroup taxa encompassing Crocodylia, predominately theropod Dinosauria, and selected Mesozoic birds were used to root the trees. Based on study of specimens and the literature, 2954 morphological characters were defined; these characters have been described in a companion work, approximately one-third of which were multistate (i.e. comprised at least three states), and states within more than one-half of these multistate characters were ordered for analysis. Complete heuristic searches using 10 000 random-addition replicates recovered a total solution set of 97 well-resolved, most-parsimonious trees (MPTs). The set of MPTs was confirmed by an expanded heuristic search based on 10 000 random-addition replicates and a full ratchet-augmented exploration to ascertain global optima. A strict consensus tree of MPTs included only six trichotomies, i.e. nodes differing topologically among MPTs

  16. Molecular phylogeny of selected species of the order Dinophysiales (Dinophyceae) - testing the hypothesis of a Dinophysioid radiation

    DEFF Research Database (Denmark)

    Jensen, Maria Hastrup; Daugbjerg, Niels

    2009-01-01

    additional information on morphology and ecology to these evolutionary lineages. We have for the first time combined morphological information with molecular phylogenies to test the dinophysioid radiation hypothesis in a modern context. Nuclear-encoded LSU rDNA sequences including domains D1-D6 from 27....... The phylogenetic trees furthermore revealed convergent evolution of several morphological characters in the dinophysioids. According to the molecular data, the dinophysioids appeared to have evolved quite differently from the radiation schemes previously hypothesized. Four dinophysioid species had identical LSU r...

  17. Single-copy nuclear genes resolve the phylogeny of the holometabolous insects

    Directory of Open Access Journals (Sweden)

    Bertone Matthew A

    2009-06-01

    Full Text Available Abstract Background Evolutionary relationships among the 11 extant orders of insects that undergo complete metamorphosis, called Holometabola, remain either unresolved or contentious, but are extremely important as a context for accurate comparative biology of insect model organisms. The most phylogenetically enigmatic holometabolan insects are Strepsiptera or twisted wing parasites, whose evolutionary relationship to any other insect order is unconfirmed. They have been controversially proposed as the closest relatives of the flies, based on rDNA, and a possible homeotic transformation in the common ancestor of both groups that would make the reduced forewings of Strepsiptera homologous to the reduced hindwings of Diptera. Here we present evidence from nucleotide sequences of six single-copy nuclear protein coding genes used to reconstruct phylogenetic relationships and estimate evolutionary divergence times for all holometabolan orders. Results Our results strongly support Hymenoptera as the earliest branching holometabolan lineage, the monophyly of the extant orders, including the fleas, and traditionally recognized groupings of Neuropteroidea and Mecopterida. Most significantly, we find strong support for a close relationship between Coleoptera (beetles and Strepsiptera, a previously proposed, but analytically controversial relationship. Exploratory analyses reveal that this relationship cannot be explained by long-branch attraction or other systematic biases. Bayesian divergence times analysis, with reference to specific fossil constraints, places the origin of Holometabola in the Carboniferous (355 Ma, a date significantly older than previous paleontological and morphological phylogenetic reconstructions. The origin and diversification of most extant insect orders began in the Triassic, but flourished in the Jurassic, with multiple adaptive radiations producing the astounding diversity of insect species for which these groups are so well

  18. The evolution of copulatory organs, internal fertilization, placentae and viviparity in killifishes (Cyprinodontiformes) inferred from a DNA phylogeny of the tyrosine kinase gene X-src.

    Science.gov (United States)

    Meyer, A; Lydeard, C

    1993-11-22

    Cyprinodontiforms are a diverse group of approximately 900 pantropical and temperate fishes, mostly found in freshwater. Whereas the vast majority of fishes lay eggs (i.e. are oviparous), this group is unusual in that four groups of cyprinodont fishes give birth to living young (i.e. are viviparous). A molecular phylogenetic hypothesis was based on partial DNA sequences of the tyrosine kinase gene X-src. The study included the major lineages of fishes of the suborder Cyprinodontoidei, order Cyprinodontiformes. Our phylogeny agrees with some but not all of the conclusions of a previous morphological cladistic analysis (Parenti (Bull. Am. Mus. nat. Hist. 168, 335 (1981)). The differences are: (i) the Profundulidae are the sister group to the Goodeidae, not the sister group to all other cyprinodontoids; (ii) Fundulidae are the sister group to the Profundulidae and Goodeidae; (iii) Cubanichthys and the Cyprinodontinae might not be sister taxa; (iv) Cubanichthys, and not the Profundulidae, might be the most basal member of the cyprinodontoids; and (v) the Anablepinae and Poeciliinae might be sister groups. The molecular phylogeny was used to reconstruct the evolution of major life-history traits such as internal fertilization, copulatory organs, livebearing and placentas. Internal fertilization, modifications of the male's anal fin to form a copulatory organ, and viviparity probably evolved independently three times in cyprinodontiform fishes: in the subfamilies Goodeinae, Anablepinae and Poeciliinae (sensu Parenti 1981). The evolution of bundled sperm, spermatozeugmata, is probably not a prerequisite for internal fertilization because at least one species with internal fertilization has free spermatozoa. Livebearing (viviparity), which takes the form of ovoviviparity (where embryos are nourished by their yolk sac only), evolved only in the subfamily Poeciliinae. Advanced forms of viviparity, in which the mother provides additional nourishment to the embryos through

  19. New insights into mitogenomic phylogeny and copy number in eight indigenous sheep populations based on the ATP synthase and cytochrome c oxidase genes.

    Science.gov (United States)

    Xiao, P; Niu, L L; Zhao, Q J; Chen, X Y; Wang, L J; Li, L; Zhang, H P; Guo, J Z; Xu, H Y; Zhong, T

    2017-11-16

    The origins and phylogeny of different sheep breeds has been widely studied using polymorphisms within the mitochondrial hypervariable region. However, little is known about the mitochondrial DNA (mtDNA) content and phylogeny based on mtDNA protein-coding genes. In this study, we assessed the phylogeny and copy number of the mtDNA in eight indigenous (population size, n=184) and three introduced (n=66) sheep breeds in China based on five mitochondrial coding genes (COX1, COX2, ATP8, ATP6 and COX3). The mean haplotype and nucleotide diversities were 0.944 and 0.00322, respectively. We identified a correlation between the lineages distribution and the genetic distance, whereby Valley-type Tibetan sheep had a closer genetic relationship with introduced breeds (Dorper, Poll Dorset and Suffolk) than with other indigenous breeds. Similarly, the Median-joining profile of haplotypes revealed the distribution of clusters according to genetic differences. Moreover, copy number analysis based on the five mitochondrial coding genes was affected by the genetic distance combining with genetic phylogeny; we also identified obvious non-synonymous mutations in ATP6 between the different levels of copy number expressions. These results imply that differences in mitogenomic compositions resulting from geographical separation lead to differences in mitochondrial function.

  20. Gene ordering in partitive clustering using microarray expressions

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    the new hybrid approach, finds comparable or sometimes superior biological gene order in less computation time than those obtained by optimal leaf ordering in hierarchical clustering solution. Ray S S, Bandyopadhyay S and Pal S K 2007 Gene ordering in partitive clustering using microarray expressions; J. Biosci.

  1. New Insights into the Phylogeny and Gene Context Analysis of Binder of Sperm Proteins (BSPs.

    Directory of Open Access Journals (Sweden)

    Edith Serrano

    Full Text Available Seminal plasma (SP proteins support the survival of spermatozoa acting not only at the plasma membrane but also by inhibition of capacitation, resulting in higher fertilizing ability. Among SP proteins, BSP (binder of sperm proteins are the most studied, since they may be useful for the improvement of semen diluents, storage and subsequent fertilization results. However, an updated and detailed phylogenetic analysis of the BSP protein superfamily has not been carried out with all the sequences described in the main databases. The update view shows for the first time an equally distributed number of sequences between the three families: BSP, and their homologs 1 (BSPH1 and 2 (BSPH2. The BSP family is divided in four subfamilies, BSP1 subfamily being the predominant, followed by subfamilies BSP3, BSP5 and BSP2. BSPH proteins were found among placental mammals (Eutheria belonging to the orders Proboscidea, Primates, Lagomorpha, Rodentia, Chiroptera, Perissodactyla and Cetartiodactyla. However, BSPH2 proteins were also found in the Scandentia order and Metatheria clade. This phylogenetic analysis, when combined with a gene context analysis, showed a completely new evolutionary scenario for the BSP superfamily of proteins with three defined different gene patterns, one for BSPs, one for BSPH1/BSPH2/ELSPBP1 and another one for BSPH1/BSPH2 without ELSPBP1. In addition, the study has permitted to define concise conserved blocks for each family (BSP, BSPH1 and BSPH2, which could be used for a more reliable assignment for the incoming sequences, for data curation of current databases, and for cloning new BSPs, as the one described in this paper, ram seminal vesicle 20 kDa protein (RSVP20, Ovis aries BSP5b.

  2. Molecular phylogeny of two unusual brown algae, Phaeostrophion irregulare and Platysiphon glacialis, proposal of the Stschapoviales ord. nov. and Platysiphonaceae fam. nov., and a re-examination of divergence times for brown algal orders.

    Science.gov (United States)

    Kawai, Hiroshi; Hanyuda, Takeaki; Draisma, Stefano G A; Wilce, Robert T; Andersen, Robert A

    2015-10-01

    The molecular phylogeny of brown algae was examined using concatenated DNA sequences of seven chloroplast and mitochondrial genes (atpB, psaA, psaB, psbA, psbC, rbcL, and cox1). The study was carried out mostly from unialgal cultures; we included Phaeostrophion irregulare and Platysiphon glacialis because their ordinal taxonomic positions were unclear. Overall, the molecular phylogeny agreed with previously published studies, however, Platysiphon clustered with Halosiphon and Stschapovia and was paraphyletic with the Tilopteridales. Platysiphon resembled Stschapovia in showing remarkable morphological changes between young and mature thalli. Platysiphon, Halosiphon and Stschapovia also shared parenchymatous, terete, erect thalli with assimilatory filaments in whorls or on the distal end. Based on these results, we proposed a new order Stschapoviales and a new family Platysiphonaceae. We proposed to include Phaeostrophion in the Sphacelariales, and we emended the order to include this foliose member. Finally, using basal taxa not included in earlier studies, the origin and divergence times for brown algae were re-investigated. Results showed that the Phaeophyceae branched from Schizocladiophyceae ~260 Ma during the Permian Period. The early diverging brown algae had isomorphic life histories, whereas the derived taxa with heteromorphic life histories evolved 155-110 Ma when they branched from the basal taxa. Based on these results, we propose that the development of heteromorphic life histories and their success in the temperate and cold-water regions was induced by the development of the remarkable seasonality caused by the breakup of Pangaea. Most brown algal orders had diverged by roughly 60 Ma, around the last mass extinction event during the Cretaceous Period, and therefore a drastic climate change might have triggered the divergence of brown algae. © 2015 The Authors. Journal of Phycology published by Wiley Periodicals, Inc. on behalf of Phycological

  3. Phylogeny and classification of the Litostomatea (Protista, Ciliophora), with emphasis on free-living taxa and the 18S rRNA gene.

    Science.gov (United States)

    Vd'ačný, Peter; Bourland, William A; Orsi, William; Epstein, Slava S; Foissner, Wilhelm

    2011-05-01

    The class Litostomatea is a highly diverse ciliate taxon comprising hundreds of species ranging from aerobic, free-living predators to anaerobic endocommensals. This is traditionally reflected by classifying the Litostomatea into the subclasses Haptoria and Trichostomatia. The morphological classifications of the Haptoria conflict with the molecular phylogenies, which indicate polyphyly and numerous homoplasies. Thus, we analyzed the genealogy of 53 in-group species with morphological and molecular methods, including 12 new sequences from free-living taxa. The phylogenetic analyses and some strong morphological traits show: (i) body polarization and simplification of the oral apparatus as main evolutionary trends in the Litostomatea and (ii) three distinct lineages (subclasses): the Rhynchostomatia comprising Tracheliida and Dileptida; the Haptoria comprising Lacrymariida, Haptorida, Didiniida, Pleurostomatida and Spathidiida; and the Trichostomatia. The curious Homalozoon cannot be assigned to any of the haptorian orders, but is basal to a clade containing the Didiniida and Pleurostomatida. The internal relationships of the Spathidiida remain obscure because many of them and some "traditional" haptorids form separate branches within the basal polytomy of the order, indicating one or several radiations and convergent evolution. Due to the high divergence in the 18S rRNA gene, the chaeneids and cyclotrichiids are classified incertae sedis. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Pathogenicity gene variations within the order Entomophthorales

    DEFF Research Database (Denmark)

    Grell, Morten Nedergaard; Jensen, Annette Bruun; Lange, Lene

    . In the hemolymph, they proliferate as hyphal bodies or cell wall-less protoplasts for easy nutrient uptake and host immune response avoidance. Entomophthoralean fungi often manipulate their host to seek an elevated position shortly before host death in order to optimize disease transmission. After host death...

  5. Gene ordering in partitive clustering using microarray expressions

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    fibroblast data and showed that our approach improves the result quality of partitive clustering solution, by identifying subclusters within big clusters, grouping functionally correlated genes within clusters, minimization of summation of gene expression distances, and the maximization of biological gene ordering using MIPS ...

  6. A novel mitochondrial gene order in shorebirds (Scolopacidae, Charadriiformes)

    NARCIS (Netherlands)

    Verkuil, Yvonne I.; Piersma, Theunis; Baker, Allan J.

    2010-01-01

    Although the mitochondrial genome in birds has highly conserved features, with protein genes similar to mammals and amphibians, several variations in gene order around the hypervariable control region have been found. Here we report a novel gene arrangement around the control region in shorebirds

  7. Applications of Multiple Nuclear Genes to the Molecular Phylogeny, Population Genetics and Hybrid Identification in the Mangrove Genus Rhizophora.

    Directory of Open Access Journals (Sweden)

    Yongmei Chen

    Full Text Available The genus Rhizophora is one of the most important components of mangrove forests. It is an ideal system for studying biogeography, molecular evolution, population genetics, hybridization and conservation genetics of mangroves. However, there are no sufficient molecular markers to address these topics. Here, we developed 77 pairs of nuclear gene primers, which showed successful PCR amplifications across all five Rhizophora species and sequencing in R. apiculata. Here, we present three tentative applications using a subset of the developed nuclear genes to (I reconstruct the phylogeny, (II examine the genetic structure and (III identify natural hybridization in Rhizophora. Phylogenetic analyses support the hypothesis that Rhizophora had disappeared in the Atlantic-East Pacific (AEP region and was re-colonized from the IWP region approximately 12.7 Mya. Population genetics analyses in four natural populations of R. apiculata in Hainan, China, revealed extremely low genetic diversity, strong population differentiation and extensive admixture, suggesting that the Pleistocene glaciations, particularly the last glacial maximum, greatly influenced the population dynamics of R. apiculata in Hainan. We also verified the hybrid status of a morphologically intermediate individual between R. apiculata and R. stylosa in Hainan. Based on the sequences of five nuclear genes and one chloroplast intergenic spacer, this individual is likely to be an F1 hybrid, with R. stylosa as its maternal parent. The nuclear gene markers developed in this study should be of great value for characterizing the hybridization and introgression patterns in other cases of this genus and testing the role of natural selection using population genomics approaches.

  8. OrthoParaMap: Distinguishing orthologs from paralogs by integrating comparative genome data and gene phylogenies

    Directory of Open Access Journals (Sweden)

    Young Nevin D

    2003-09-01

    Full Text Available Abstract Background In eukaryotic genomes, most genes are members of gene families. When comparing genes from two species, therefore, most genes in one species will be homologous to multiple genes in the second. This often makes it difficult to distinguish orthologs (separated through speciation from paralogs (separated by other types of gene duplication. Combining phylogenetic relationships and genomic position in both genomes helps to distinguish between these scenarios. This kind of comparison can also help to describe how gene families have evolved within a single genome that has undergone polyploidy or other large-scale duplications, as in the case of Arabidopsis thaliana – and probably most plant genomes. Results We describe a suite of programs called OrthoParaMap (OPM that makes genomic comparisons, identifies syntenic regions, determines whether sets of genes in a gene family are related through speciation or internal chromosomal duplications, maps this information onto phylogenetic trees, and infers internal nodes within the phylogenetic tree that may represent local – as opposed to speciation or segmental – duplication. We describe the application of the software using three examples: the melanoma-associated antigen (MAGE gene family on the X chromosomes of mouse and human; the 20S proteasome subunit gene family in Arabidopsis, and the major latex protein gene family in Arabidopsis. Conclusion OPM combines comparative genomic positional information and phylogenetic reconstructions to identify which gene duplications are likely to have arisen through internal genomic duplications (such as polyploidy, through speciation, or through local duplications (such as unequal crossing-over. The software is freely available at http://www.tc.umn.edu/~cann0010/.

  9. Effect of gene order in DNA constructs on gene expression upon integration into plant genome.

    Science.gov (United States)

    Aydın Akbudak, M; Srivastava, Vibha

    2017-06-01

    Several plant biotechnology applications are based on the expression of multiple genes located on a single transformation vector. The principles of stable expression of foreign genes in plant cells include integration of full-length gene fragments consisting of promoter and transcription terminator sequences, and avoiding converging orientation of the gene transcriptional direction. Therefore, investigators usually generate constructs in which genes are assembled in the same orientation. However, no specific information is available on the effect of the order in which genes should be assembled in the construct to support optimum expression of each gene upon integration in the genome. While many factors, including genomic position and the integration structure, could affect gene expression, the investigators judiciously design DNA constructs to avoid glitches. However, the gene order in a multigene assembly remains an open question. This study addressed the effect of gene order in the DNA construct on gene expression in rice using a simple design of two genes placed in two possible orders with respect to the genomic context. Transgenic rice lines containing green fluorescent protein (GFP) and β-glucuronidase (GUS) genes in two distinct orders were developed by Cre-lox-mediated site-specific integration. Gene expression analysis of transgenic lines showed that both genes were expressed at similar levels in either orientation, and different transgenic lines expressed each gene within 1-2× range. Thus, no significant effect of the gene order on gene expression was found in the transformed rice lines containing precise site-specific integrations and stable gene expression in plant cells could be obtained with altered gene orders. Therefore, gene orientation and integration structures are more important factors governing gene expression than gene orders in the genomic context.

  10. Phylogeny reconstruction in the Caesalpinieae grade (Leguminosae) based on duplicated copies of the sucrose synthase gene and plastid markers.

    Science.gov (United States)

    Manzanilla, Vincent; Bruneau, Anne

    2012-10-01

    The Caesalpinieae grade (Leguminosae) forms a morphologically and ecologically diverse group of mostly tropical tree species with a complex evolutionary history. This grade comprises several distinct lineages, but the exact delimitation of the group relative to subfamily Mimosoideae and other members of subfamily Caesalpinioideae, as well as phylogenetic relationships among the lineages are uncertain. With the aim of better resolving phylogenetic relationships within the Caesalpinieae grade, we investigated the utility of several nuclear markers developed from genomic studies in the Papilionoideae. We cloned and sequenced the low copy nuclear gene sucrose synthase (SUSY) and combined the data with plastid trnL and matK sequences. SUSY has two paralogs in the Caesalpinieae grade and in the Mimosoideae, but occurs as a single copy in all other legumes tested. Bayesian and maximum likelihood phylogenetic analyses suggest the two nuclear markers are congruent with plastid DNA data. The Caesalpinieae grade is divided into four well-supported clades (Cassia, Caesalpinia, Tachigali and Peltophorum clades), a poorly supported clade of Dimorphandra Group genera, and two paraphyletic groups, one with other Dimorphandra Group genera and the other comprising genera previously recognized as the Umtiza clade. A selection analysis of the paralogs, using selection models from PAML, suggests that SUSY genes are subjected to a purifying selection. One of the SUSY paralogs, under slightly stronger positive selection, may be undergoing subfunctionalization. The low copy SUSY gene is useful for phylogeny reconstruction in the Caesalpinieae despite the presence of duplicate copies. This study confirms that the Caesalpinieae grade is an artificial group, and highlights the need for further analyses of lineages at the base of the Mimosoideae. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Species delimitation in Trametes: a comparison of ITS, RPB1, RPB2 and TEF1 gene phylogenies.

    Science.gov (United States)

    Carlson, Alexis; Justo, Alfredo; Hibbett, David S

    2014-01-01

    Trametes is a cosmopolitan genus of white rot polypores, including the "turkey tail" fungus, T. versicolor. Although Trametes is one of the most familiar genera of polypores, its species-level taxonomy is unsettled. The ITS region is the most commonly used molecular marker for species delimitation in fungi, but it has been shown to have a low molecular variation in Trametes resulting in poorly resolved phylogenies and unclear species boundaries, especially in the T. versicolor species complex (T. versicolor sensu stricto, T. ochracea, T. pubescens, T. ectypa). Here we evaluate the performance of three protein-coding genes (TEF1, RPB1, RPB2) for species delimitation and phylogenetic reconstruction in Trametes. We obtained 59 TEF1, 34 RPB1 and 55 RPB2 sequences from 69 individuals, focusing on the T. versicolor complex and performed phylogenetic analyses with maximum likelihood and parsimony methods. All three protein-coding genes outperformed ITS for separating species in the T. versicolor complex. The multigene phylogenetic analysis shows the highest amount of resolution and supported nodes separating T. ectypa, T. ochracea, T. pubescens and T. versicolor with strong support. In addition three slineages are resolved in the species complex of T. elegans. The T. elegans complex includes three species: T. elegans (based on material from Puerto Rico, Belize, the Philippines), T. aesculi (from North America) and T. repanda (from Papua New Guinea, the Philippines, Venezuela). The utility of gene markers varies, with TEF1 having the highest PCR and sequencing success rate and RPB1 offering the best backbone resolution for the genus. © 2014 by The Mycological Society of America.

  12. Analyses of the sucrose synthase gene family in cotton: structure, phylogeny and expression patterns

    Directory of Open Access Journals (Sweden)

    Chen Aiqun

    2012-06-01

    Full Text Available Abstract Background In plants, sucrose synthase (Sus is widely considered as a key enzyme involved in sucrose metabolism. Several paralogous genes encoding different isozymes of Sus have been identified and characterized in multiple plant genomes, while limited information of Sus genes is available to date for cotton. Results Here, we report the molecular cloning, structural organization, phylogenetic evolution and expression profiles of seven Sus genes (GaSus1 to 7 identified from diploid fiber cotton (Gossypium arboreum. Comparisons between cDNA and genomic sequences revealed that the cotton GaSus genes were interrupted by multiple introns. Comparative screening of introns in homologous genes demonstrated that the number and position of Sus introns are highly conserved among Sus genes in cotton and other more distantly related plant species. Phylogenetic analysis showed that GaSus1, GaSus2, GaSus3, GaSus4 and GaSus5 could be clustered together into a dicot Sus group, while GaSus6 and GaSus7 were separated evenly into other two groups, with members from both dicot and monocot species. Expression profiles analyses of the seven Sus genes indicated that except GaSus2, of which the transcripts was undetectable in all tissues examined, and GaSus7, which was only expressed in stem and petal, the other five paralogues were differentially expressed in a wide ranges of tissues, and showed development-dependent expression profiles in cotton fiber cells. Conclusions This is a comprehensive study of the Sus gene family in cotton plant. The results presented in this work provide new insights into the evolutionary conservation and sub-functional divergence of the cotton Sus gene family in response to cotton fiber growth and development.

  13. Stress Responses of Small Heat Shock Protein Genes in Lepidoptera Point to Limited Conservation of Function across Phylogeny.

    Science.gov (United States)

    Zhang, Bo; Zheng, Jincheng; Peng, Yu; Liu, Xiaoxia; Hoffmann, Ary A; Ma, Chun-Sen

    2015-01-01

    The small heat shock protein (sHsp) family is thought to play an important role in protein refolding and signal transduction, and thereby protect organisms from stress. However little is known about sHsp function and conservation across phylogenies. In the current study, we provide a comprehensive assessment of small Hsp genes and their stress responses in the oriental fruit moth (OFM), Grapholita molesta. Fourteen small heat shock proteins of OFM clustered with related Hsps in other Lepidoptera despite a high level of variability among them, and in contrast to the highly conserved Hsp11.1. The only known lepidopteran sHsp ortholog (Hsp21.3) was consistently unaffected under thermal stress in Lepidoptera where it has been characterized. However the phylogenetic position of the sHsps within the Lepidoptera was not associated with conservation of induction patterns under thermal extremes or diapause. These findings suggest that the sHsps have evolved rapidly to develop new functions within the Lepidoptera.

  14. Stress Responses of Small Heat Shock Protein Genes in Lepidoptera Point to Limited Conservation of Function across Phylogeny.

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    Full Text Available The small heat shock protein (sHsp family is thought to play an important role in protein refolding and signal transduction, and thereby protect organisms from stress. However little is known about sHsp function and conservation across phylogenies. In the current study, we provide a comprehensive assessment of small Hsp genes and their stress responses in the oriental fruit moth (OFM, Grapholita molesta. Fourteen small heat shock proteins of OFM clustered with related Hsps in other Lepidoptera despite a high level of variability among them, and in contrast to the highly conserved Hsp11.1. The only known lepidopteran sHsp ortholog (Hsp21.3 was consistently unaffected under thermal stress in Lepidoptera where it has been characterized. However the phylogenetic position of the sHsps within the Lepidoptera was not associated with conservation of induction patterns under thermal extremes or diapause. These findings suggest that the sHsps have evolved rapidly to develop new functions within the Lepidoptera.

  15. Phylogeny of ruminants secretory ribonuclease gene sequences of pronghorn (Antilocapra americana)

    NARCIS (Netherlands)

    Beintema, J.J; Breukelman, H.J; Dubois, J.Y; Warmels, H.W.

    Phylogenetic analyses based on primary structures of mammalian ribonucleases, indicated that three homologous enzymes (pancreatic, seminal and brain ribonucleases) present in the bovine species are the results of gene duplication events, which occurred in the ancestor of the ruminants after

  16. Molecular phylogeny, population genetics, and evolution of heterocystous cyanobacteria using nifH gene sequences

    Czech Academy of Sciences Publication Activity Database

    Singh, P.; Singh, S. S.; Elster, Josef; Mishra, A. K.

    2013-01-01

    Roč. 250, č. 3 (2013), s. 751-764 ISSN 0033-183X Institutional support: RVO:67985939 Keywords : evolution * heterocystous cyanobacteria * nifH gene Subject RIV: EH - Ecology, Behaviour Impact factor: 3.171, year: 2013

  17. Inferring phylogenies with incomplete data sets: a 5-gene, 567-taxon analysis of angiosperms

    Directory of Open Access Journals (Sweden)

    Hilu Khidir W

    2009-03-01

    Full Text Available Abstract Background Phylogenetic analyses of angiosperm relationships have used only a small percentage of available sequence data, but phylogenetic data matrices often can be augmented with existing data, especially if one allows missing characters. We explore the effects on phylogenetic analyses of adding 378 matK sequences and 240 26S rDNA sequences to the complete 3-gene, 567-taxon angiosperm phylogenetic matrix of Soltis et al. Results We performed maximum likelihood bootstrap analyses of the complete, 3-gene 567-taxon data matrix and the incomplete, 5-gene 567-taxon data matrix. Although the 5-gene matrix has more missing data (27.5% than the 3-gene data matrix (2.9%, the 5-gene analysis resulted in higher levels of bootstrap support. Within the 567-taxon tree, the increase in support is most evident for relationships among the 170 taxa for which both matK and 26S rDNA sequences were added, and there is little gain in support for relationships among the 119 taxa having neither matK nor 26S rDNA sequences. The 5-gene analysis also places the enigmatic Hydrostachys in Lamiales (BS = 97% rather than in Cornales (BS = 100% in 3-gene analysis. The placement of Hydrostachys in Lamiales is unprecedented in molecular analyses, but it is consistent with embryological and morphological data. Conclusion Adding available, and often incomplete, sets of sequences to existing data sets can be a fast and inexpensive way to increase support for phylogenetic relationships and produce novel and credible new phylogenetic hypotheses.

  18. Adaptive evolution in the Arabidopsis MADS-box gene family inferred from its complete resolved phylogeny

    Science.gov (United States)

    Martínez-Castilla, León Patricio; Alvarez-Buylla, Elena R.

    2003-01-01

    Gene duplication is a substrate of evolution. However, the relative importance of positive selection versus relaxation of constraints in the functional divergence of gene copies is still under debate. Plant MADS-box genes encode transcriptional regulators key in various aspects of development and have undergone extensive duplications to form a large family. We recovered 104 MADS sequences from the Arabidopsis genome. Bayesian phylogenetic trees recover type II lineage as a monophyletic group and resolve a branching sequence of monophyletic groups within this lineage. The type I lineage is comprised of several divergent groups. However, contrasting gene structure and patterns of chromosomal distribution between type I and II sequences suggest that they had different evolutionary histories and support the placement of the root of the gene family between these two groups. Site-specific and site-branch analyses of positive Darwinian selection (PDS) suggest that different selection regimes could have affected the evolution of these lineages. We found evidence for PDS along the branch leading to flowering time genes that have a direct impact on plant fitness. Sites with high probabilities of having been under PDS were found in the MADS and K domains, suggesting that these played important roles in the acquisition of novel functions during MADS-box diversification. Detected sites are targets for further experimental analyses. We argue that adaptive changes in MADS-domain protein sequences have been important for their functional divergence, suggesting that changes within coding regions of transcriptional regulators have influenced phenotypic evolution of plants. PMID:14597714

  19. Arabidopsis thaliana ICE2 gene: phylogeny, structural evolution and functional diversification from ICE1.

    Science.gov (United States)

    Kurbidaeva, Amina; Ezhova, Tatiana; Novokreshchenova, Maria

    2014-12-01

    The ability to tolerate environmental stresses is crucial for all living organisms, and gene duplication is one of the sources for evolutionary novelties. Arabidopsis thaliana INDUCER OF CBF EXPRESSION1 and 2 (ICE1 and ICE2) encode MYC-type bHLH (basic helix-loop-helix) transcription factors. They confer cold stress tolerance by induction of the CBF/DREB1 regulon and regulate stomata formation. Although ICE2 is closely related to ICE1, its origin and role in cold response remains uncertain. Here, we used a bioinformatics/phylogenetic approach to uncover the ICE2 evolutionary history, structural evolution and functional divergence from the putative ancestral gene. Sequence diversification from ICE1 included the gain of cis-acting elements in ICE2 promoter sequence that may provide meristem-specific and defense-related gene expression. By analyzing transgenic Arabidopsis lines with ICE2 over-expression we showed that it contributes to stomata formation, flowering time regulation and cold response. Constitutive ICE2 expression led to induced meristem freezing tolerance, resulting from activation of CBF1 and CBF3 genes and ABA biosynthesis by NCED3 induction. We presume that ICE2 gene has originated from a duplication event about 17.9MYA followed by sub- and neofunctionalization of the ancestral ICE1 gene. Moreover, we predict its role in pathogen resistance and flowering time regulation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. The phylogeny of Arthrotardigrada

    DEFF Research Database (Denmark)

    Hansen, Jesper Guldberg

    2011-01-01

    The order Arthrotardigrada, or water bears, constitutes a small group of 160 species of marine, microscopical invertebrates, within the phylum Tardigrada. Although the position of tardigrades in the Animal Kingdom has received much attention focusing on the metazoan phylogeny, the phylogenetic...

  1. Phylogeny of species and cytotypes of mole rats (Spalacidae) in Turkey inferred from mitochondrial cytochrome b gene sequencees

    Czech Academy of Sciences Publication Activity Database

    Kandemir, I.; Sozen, M.; Matur, F.; Kankilic, T.; Martínková, Natália; Colak, F.; Ozkurt, S. O.; Colak, E.

    2012-01-01

    Roč. 61, č. 1 (2012), s. 25-33 ISSN 0139-7893 Institutional support: RVO:68081766 Keywords : Nannospalax * molecular phylogeny * chromosomal form * Anatolia * Thrace Subject RIV: EG - Zoology Impact factor: 0.494, year: 2012

  2. Phylogeny of the Genus Chrysanthemum L.: Evidence from Single-Copy Nuclear Gene and Chloroplast DNA Sequences

    Science.gov (United States)

    Liu, Ping-Li; Wan, Qian; Guo, Yan-Ping; Yang, Ji; Rao, Guang-Yuan

    2012-01-01

    Chrysanthemum L. (Asteraceae-Anthemideae) is a genus with rapid speciation. It comprises about 40 species, most of which are distributed in East Asia. Many of these are narrowly distributed and habitat-specific. Considerable variations in morphology and ploidy are found in this genus. Some species have been the subjects of many studies, but the relationships between Chrysanthemum and its allies and the phylogeny of this genus remain poorly understood. In the present study, 32 species/varieties from Chrysanthemum and 11 from the allied genera were analyzed using DNA sequences of the single-copy nuclear CDS gene and seven cpDNA loci (psbA-trnH, trnC-ycf6, ycf6-psbM, trnY-rpoB, rpS4-trnT, trnL-F, and rpL16). The cpDNA and nuclear CDS gene trees both suggest that 1) Chrysanthemum is not a monophyletic taxon, and the affinity between Chrysanthemum and Ajania is so close that these two genera should be incorporated taxonomically; 2) Phaeostigma is more closely related to the Chrysanthemum+Ajania than other generic allies. According to pollen morphology and to the present cpDNA and CDS data, Ajania purpurea is a member of Phaeostigma. Species differentiation in Chrysanthemum appears to be correlated with geographic and environmental conditions. The Chinese Chrysanthemum species can be divided into two groups, the C. zawadskii group and the C. indicum group. The former is distributed in northern China and the latter in southern China. Many polyploid species, such as C. argyrophyllum, may have originated from allopolyploidization involving divergent progenitors. Considering all the evidence from present and previous studies, we conclude that geographic and ecological factors as well as hybridization and polyploidy play important roles in the divergence and speciation of the genus Chrysanthemum. PMID:23133665

  3. Single-copy nuclear genes resolve the phylogeny of the holometabolous insects

    OpenAIRE

    Wiegmann, Brian M; Trautwein, Michelle D; Kim, Jung-Wook; Cassel, Brian K; Bertone, Matthew A; Winterton, Shaun L; Yeates, David K

    2009-01-01

    Abstract Background Evolutionary relationships among the 11 extant orders of insects that undergo complete metamorphosis, called Holometabola, remain either unresolved or contentious, but are extremely important as a context for accurate comparative biology of insect model organisms. The most phylogenetically enigmatic holometabolan insects are Strepsiptera or twisted wing parasites, whose evolutionary relationship to any other insect order is unconfirmed. They have been controversially propo...

  4. A Plastid Gene Phylogeny of the Yam Genus, Dioscorea: Roots, Fruits and Madagascar

    NARCIS (Netherlands)

    Wilkin, P.; Schols, P.; Chase, M.; Chayamarit, K.; Furness, C.; Huysmans, S.; Rakotonasolo, F.; Smets, E.; Thapyai, C.

    2005-01-01

    Following recent phylogenetic studies of the families and genera of Dioscoreales, the identification of monophyletic infrageneric taxa in the pantropical genus Dioscorea is a priority. A phylogenetic analysis based on sequence data from the plastid genes rbcL and matK is presented, using 67 species

  5. Phylogeny and identification of Pantoea species and typing of Pantoea agglomerans strains by multilocus gene sequencing.

    Science.gov (United States)

    Delétoile, Alexis; Decré, Dominique; Courant, Stéphanie; Passet, Virginie; Audo, Jennifer; Grimont, Patrick; Arlet, Guillaume; Brisse, Sylvain

    2009-02-01

    Pantoea agglomerans and other Pantoea species cause infections in humans and are also pathogenic to plants, but the diversity of Pantoea strains and their possible association with hosts and disease remain poorly known, and identification of Pantoea species is difficult. We characterized 36 Pantoea strains, including 28 strains of diverse origins initially identified as P. agglomerans, by multilocus gene sequencing based on six protein-coding genes, by biochemical tests, and by antimicrobial susceptibility testing. Phylogenetic analysis and comparison with other species of Enterobacteriaceae revealed that the genus Pantoea is highly diverse. Most strains initially identified as P. agglomerans by use of API 20E strips belonged to a compact sequence cluster together with the type strain, but other strains belonged to diverse phylogenetic branches corresponding to other species of Pantoea or Enterobacteriaceae and to probable novel species. Biochemical characteristics such as fosfomycin resistance and utilization of d-tartrate could differentiate P. agglomerans from other Pantoea species. All 20 strains of P. agglomerans could be distinguished by multilocus sequence typing, revealing the very high discrimination power of this method for strain typing and population structure in this species, which is subdivided into two phylogenetic groups. PCR detection of the repA gene, associated with pathogenicity in plants, was positive in all clinical strains of P. agglomerans, suggesting that clinical and plant-associated strains do not form distinct populations. We provide a multilocus gene sequencing method that is a powerful tool for Pantoea species delineation and identification and for strain tracking.

  6. Species limits and relationships within Otidea inferred from multiple gene phylogenies

    NARCIS (Netherlands)

    Hansen, K.; Olariaga, I.

    2015-01-01

    The genus Otidea is one of the more conspicuous members of the Pyronemataceae, with high species diversity in hemiboreal and boreal forests. The genus is morphologically coherent and in previous higher-level multi-gene analyses it formed a highly supported monophyletic group. Species delimitation

  7. Primate phylogeny, evolutionary rate variations, and divergence times: A contribution from the nuclear Gene IRBP

    NARCIS (Netherlands)

    Poux, C.M.; Douzery, E.J.P.

    2004-01-01

    The first third (ca. 1200 bp) of exon 1 of the nuclear gene encoding the interstitial retinoid-binding protein (IRBP) has been sequenced for 12 representative primates belonging to Lemuriformes, Lorisiformes, Tarsiiformes, Platyrrhini, and Catarrhini, and combined with available data (13 other

  8. Phylogenetic utility of ribosomal genes for reconstructing the phylogeny of five Chinese satyrine tribes (Lepidoptera, Nymphalidae

    Directory of Open Access Journals (Sweden)

    Mingsheng Yang

    2015-03-01

    Full Text Available Satyrinae is one of twelve subfamilies of the butterfly family Nymphalidae, which currently includes nine tribes. However, phylogenetic relationships among them remain largely unresolved, though different researches have been conducted based on both morphological and molecular data. However, ribosomal genes have never been used in tribe level phylogenetic analyses of Satyrinae. In this study we investigate for the first time the phylogenetic relationships among the tribes Elymniini, Amathusiini, Zetherini and Melanitini which are indicated to be a monophyletic group, and the Satyrini, using two ribosomal genes (28s rDNA and 16s rDNA and four protein-coding genes (EF-1α, COI, COII and Cytb. We mainly aim to assess the phylogenetic informativeness of the ribosomal genes as well as clarify the relationships among different tribes. Our results show the two ribosomal genes generally have the same high phylogenetic informativeness compared with EF-1α; and we infer the 28s rDNA would show better informativeness if the 28s rDNA sequence data for each sampling taxon are obtained in this study. The placement of the monotypic genus Callarge Leech in Zetherini is confirmed for the first time based on molecular evidence. In addition, our maximum likelihood (ML and Bayesian inference (BI trees consistently show that the involved Satyrinae including the Amathusiini is monophyletic with high support values. Although the relationships among the five tribes are identical among ML and BI analyses and are mostly strongly-supported in BI analysis, those in ML analysis are lowly- or moderately- supported. Therefore, the relationships among the related five tribes recovered herein need further verification based on more sampling taxa.

  9. Phylogeny and comparative substitution rates of frogs inferred from sequences of three nuclear genes.

    Science.gov (United States)

    Hoegg, Simone; Vences, Miguel; Brinkmann, Henner; Meyer, Axel

    2004-07-01

    Phylogenetic relationships among major clades of anuran amphibians were studied using partial sequences of three nuclear protein coding genes, Rag-1, Rag-2, and rhodopsin in 26 frog species from 18 families. The concatenated nuclear data set comprised 2,616 nucleotides and was complemented by sequences of the mitochondrial 12S and 16S rRNA genes for analyses of evolutionary rates. Separate and combined analyses of the nuclear markers supported the monophyly of modern frogs (Neobatrachia), whereas they did not provide support for the monophyly of archaic frog lineages (Archaeobatrachia), contrary to previous studies based on mitochondrial data. The Neobatrachia contain two well supported clades that correspond to the subfamilies Ranoidea (Hyperoliidae, Mantellidae, Microhylidae, Ranidae, and Rhacophoridae) and Hyloidea (Bufonidae, Hylidae, Leptodactylidae, and Pseudidae). Two other families (Heleophrynidae and Sooglossidae) occupied basal positions and probably represent ancient relicts within the Neobatrachia, which had been less clearly indicated by previous mitochondrial analyses. Branch lengths of archaeobatrachians were consistently shorter in all separate analyses, and nonparametric rate smoothing indicated accelerated substitution rates in neobatrachians. However, relative rate tests confirmed this tendency only for mitochondrial genes. In contrast, nuclear gene sequences from our study and from an additional GenBank survey showed no clear phylogenetic trends in terms of differences in rates of molecular evolution. Maximum likelihood trees based on Rag-1 and using only one neobatrachian and one archaeobatrachian sequence, respectively, even had longer archaeobatrachian branches averaged over all pairwise comparisons. More data are necessary to understand the significance of a possibly general assignation of short branches to basal and species-poor taxa by tree-reconstruction algorithms.

  10. Delineation of the species Haemophilus influenzae by phenotype, multilocus sequence phylogeny, and detection of marker genes

    DEFF Research Database (Denmark)

    Nørskov-Lauritsen, Niels; Overballe, MD; Kilian, Mogens

    2009-01-01

    protein, fuculokinase, and Cu,Zn-superoxide dismutase, whereas immunoglobulin A1 protease activity or the presence of the iga gene was of limited discriminatory value. The existence of porphyrin-synthesizing strains ("H. intermedius") closely related to H. influenzae was confirmed. Several chromosomally...... branching cluster, intermingled with strains of "H. intermedius" and cryptic genospecies biotype IV. Although H. influenzae is phenotypically more homogenous than some other Haemophilus species, the genetic diversity and multicluster structure of strains traditionally associated with H. influenzae make...

  11. Gene ordering in partitive clustering using microarray expressions

    Indian Academy of Sciences (India)

    2007-06-28

    Jun 28, 2007 ... Two existing algorithms for optimally ordering cities in travelling salesman problem (TSP), namely, FRAG_GALK and Concorde, are hybridized individually with self organizing MAP to show the importance of gene ordering in partitive clustering framework. We validated our hybrid approach using yeast and ...

  12. Relaxin gene family in teleosts: phylogeny, syntenic mapping, selective constraint, andexpression analysis

    Directory of Open Access Journals (Sweden)

    Glen Peter

    2009-12-01

    Full Text Available Abstract Background In recent years, the relaxin family of signaling molecules has been shown to play diverse roles in mammalian physiology, but little is known about its diversity or physiology in teleosts, an infraclass of the bony fishes comprising ~ 50% of all extant vertebrates. In this paper, 32 relaxin family sequences were obtained by searching genomic and cDNA databases from eight teleost species; phylogenetic, molecular evolutionary, and syntenic data analyses were conducted to understand the relationship and differential patterns of evolution of relaxin family genes in teleosts compared with mammals. Additionally, real-time quantitative PCR was used to confirm and assess the tissues of expression of five relaxin family genes in Danio rerio and in situ hybridization used to assess the site-specific expression of the insulin 3-like gene in D. rerio testis. Results Up to six relaxin family genes were identified in each teleost species. Comparative syntenic mapping revealed that fish possess two paralogous copies of human RLN3, which we call rln3a and rln3b, an orthologue of human RLN2, rln, two paralogous copies of human INSL5, insl5a and insl5b, and an orthologue of human INSL3, insl3. Molecular evolutionary analyses indicated that: rln3a, rln3b and rln are under strong evolutionary constraint, that insl3 has been subject to moderate rates of sequence evolution with two amino acids in insl3/INSL3 showing evidence of positively selection, and that insl5b exhibits a higher rate of sequence evolution than its paralogue insl5a suggesting that it may have been neo-functionalized after the teleost whole genome duplication. Quantitative PCR analyses in D. rerio indicated that rln3a and rln3b are expressed in brain, insl3 is highly expressed in gonads, and that there was low expression of both insl5 genes in adult zebrafish. Finally, in situ hybridization of insl3 in D. rerio testes showed highly specific hybridization to interstitial Leydig

  13. [Approach to Spodoptera (Lepidoptera: Noctuidae) phylogeny based on the sequence of the cytocrhome oxydase I (COI) mitochondrial gene].

    Science.gov (United States)

    Saldamando, Clara Inés; Marquez, Edna Judith

    2012-09-01

    The genus Spodoptera includes 30 species of moths considered important pests worldwide, with a great representation in the Western Hemisphere. In general, Noctuidae species have morphological similarities that have caused some difficulties for assertive species identification by conventional methods. The purpose of this work was to generate an approach to the genus phylogeny from several species of the genus Spodoptera and the species Bombyx mori as an out group, with the use of molecular tools. For this, a total of 102 S. frugiperda larvae were obtained at random in corn, cotton, rice, grass and sorghum, during late 2006 and early 2009, from Colombia. We took ADN samples from the larval posterior part and we analyzed a fragment of 451 base pairs of the mitochondrial gene cytochrome oxydase I (COI), to produce a maximum likelihood (ML) tree by using 62 sequences (29 Colombian haplotypes were used). Our results showed a great genetic differentiation (K2 distances) amongst S. frugiperda haplotypes from Colombia and the United States, condition supported by the estimators obtained for haplotype diversity and polymorphism. The obtained ML tree clustered most of the species with bootstrapping values from 73-99% in the interior branches; with low values also observed in some of the branches. In addition, this tree clustered two species of the Eastern hemisphere (S littoralis and S. litura) and eight species of the Western hemisphere (S. androgea, S. dolichos, S. eridania, S. exigua, S. frugiperda, S. latifascia, S. ornithogalli and S. pulchella). In Colombia, S. frugiperda, S. ornithogalli and S. albula represent a group of species referred as "the Spodoptera complex" of cotton crops, and our work demonstrated that sequencing a fragment of the COI gene, allows researchers to differentiate the first two species, and thus it can be used as an alternative method to taxonomic keys based on morphology. Finally, the ML tree did not cluster S. frugiperda with S. ornithogalli

  14. Analysis of genetic variation and phylogeny of the predatory bug, Pilophorus typicus, in Japan using mitochondrial gene sequences.

    Science.gov (United States)

    Ito, Katsura; Nishikawa, Hiroshi; Shimada, Takuji; Ogawa, Kohei; Minamiya, Yukio; Tomoda, Masafumi; Nakahira, Kengo; Kodama, Rika; Fukuda, Tatsuya; Arakawa, Ryo

    2011-01-01

    Pilophorus typicus (Distant) (Heteroptera: Miridae) is a predatory bug occurring in East, Southeast, and South Asia. Because the active stages of P. typicus prey on various agricultural pest insects and mites, this species is a candidate insect as an indigenous natural enemy for use in biological control programs. However, the mass releasing of introduced natural enemies into agricultural fields may incur the risk of affecting the genetic integrity of species through hybridization with a local population. To clarify the genetic characteristics of the Japanese populations of P. typicus two portions of the mitochondrial DNA, the cytochrome oxidase subunit I (COI) (534 bp) and the cytochrome B (cytB) (217 bp) genes, were sequenced for 64 individuals collected from 55 localities in a wide range of Japan. Totals of 18 and 10 haplotypes were identified for the COI and cytB sequences, respectively (25 haplotypes over regions). Phylogenetic analysis using the maximum likelihood method revealed the existence of two genetically distinct groups in P. typicus in Japan. These groups were distributed in different geographic ranges: one occurred mainly from the Pacific coastal areas of the Kii Peninsula, the Shikoku Island, and the Ryukyu Islands; whereas the other occurred from the northern Kyushu district to the Kanto and Hokuriku districts of mainland Japan. However, both haplotypes were found in a single locality of the southern coast of the Shikoku Island. COI phylogeny incorporating other Pilophorus species revealed that these groups were only recently differentiated. Therefore, use of a certain population of P. typicus across its distribution range should be done with caution because genetic hybridization may occur.

  15. Molecular phylogeny of some avian species using Cytochrome b gene sequence analysis

    Science.gov (United States)

    Awad, A; Khalil, S. R; Abd-Elhakim, Y. M

    2015-01-01

    Veritable identification and differentiation of avian species is a vital step in conservative, taxonomic, forensic, legal and other ornithological interventions. Therefore, this study involved the application of molecular approach to identify some avian species i.e. Chicken (Gallus gallus), Muskovy duck (Cairina moschata), Japanese quail (Coturnix japonica), Laughing dove (Streptopelia senegalensis), and Rock pigeon (Columba livia). Genomic DNA was extracted from blood samples and partial sequence of the mitochondrial cytochrome b gene (358 bp) was amplified and sequenced using universal primers. Sequences alignment and phylogenetic analyses were performed by CLC main workbench program. The obtained five sequences were deposited in GenBank and compared with those previously registered in GenBank. The similarity percentage was 88.60% between Gallus gallus and Coturnix japonica and 80.46% between Gallus gallus and Columba livia. The percentage of identity between the studied species and GenBank species ranged from 77.20% (Columba oenas and Anas platyrhynchos) to 100% (Gallus gallus and Gallus sonneratii, Coturnix coturnix and Coturnix japonica, Meleagris gallopavo and Columba livia). Amplification of the partial sequence of mitochondrial cytochrome b gene proved to be practical for identification of an avian species unambiguously. PMID:27175180

  16. MultiLoc2: integrating phylogeny and Gene Ontology terms improves subcellular protein localization prediction

    Directory of Open Access Journals (Sweden)

    Kohlbacher Oliver

    2009-09-01

    Full Text Available Abstract Background Knowledge of subcellular localization of proteins is crucial to proteomics, drug target discovery and systems biology since localization and biological function are highly correlated. In recent years, numerous computational prediction methods have been developed. Nevertheless, there is still a need for prediction methods that show more robustness and higher accuracy. Results We extended our previous MultiLoc predictor by incorporating phylogenetic profiles and Gene Ontology terms. Two different datasets were used for training the system, resulting in two versions of this high-accuracy prediction method. One version is specialized for globular proteins and predicts up to five localizations, whereas a second version covers all eleven main eukaryotic subcellular localizations. In a benchmark study with five localizations, MultiLoc2 performs considerably better than other methods for animal and plant proteins and comparably for fungal proteins. Furthermore, MultiLoc2 performs clearly better when using a second dataset that extends the benchmark study to all eleven main eukaryotic subcellular localizations. Conclusion MultiLoc2 is an extensive high-performance subcellular protein localization prediction system. By incorporating phylogenetic profiles and Gene Ontology terms MultiLoc2 yields higher accuracies compared to its previous version. Moreover, it outperforms other prediction systems in two benchmarks studies. MultiLoc2 is available as user-friendly and free web-service, available at: http://www-bs.informatik.uni-tuebingen.de/Services/MultiLoc2.

  17. Aspergillus is monophyletic: Evidence from multiple gene phylogenies and extrolites profiles

    DEFF Research Database (Denmark)

    Kocsubé, S.; Perrone, G.; Magistà, D.

    2016-01-01

    in Aspergillus were presented: one attributes the name “Aspergillus” to clades comprising seven different teleomorphic names, by supporting the monophyly of this genus; the other proposes that Aspergillus is a non-monophyletic genus, by preserving the Aspergillus name only to species belonging to subgenus...... Circumdati and maintaining the sexual names in the other clades. The aim of our study was to test the monophyly of Aspergilli by two independent phylogenetic analyses using a multilocus phylogenetic approach. One test was run on the publicly available coding regions of six genes (RPB1, RPB2, Tsr1, Cct8, Ben...... the monophyly of the genus Aspergillus. The stability test also confirmed the robustness of the results obtained. In conclusion, statistical analyses have rejected the hypothesis that the Aspergilli are non-monophyletic, and provided robust arguments that the genus is monophyletic and clearly separated from...

  18. Phylogenies of symbiotic genes of Bradyrhizobium symbionts of legumes of economic and environmental importance in Brazil support the definition of the new symbiovars pachyrhizi and sojae.

    Science.gov (United States)

    Delamuta, Jakeline Renata Marçon; Menna, Pâmela; Ribeiro, Renan Augusto; Hungria, Mariangela

    2017-07-01

    Bradyrhizobium comprises most tropical symbiotic nitrogen-fixing strains, but the correlation between symbiotic and core genes with host specificity is still unclear. In this study, the phylogenies of the nodY/K and nifH genes of 45 Bradyrhizobium strains isolated from legumes of economic and environmental importance in Brazil (Arachis hypogaea, Acacia auriculiformis, Glycine max, Lespedeza striata, Lupinus albus, Stylosanthes sp. and Vigna unguiculata) were compared to 16S rRNA gene phylogeny and genetic diversity by rep-PCR. In the 16S rRNA tree, strains were distributed into two superclades-B. japonicum and B. elkanii-with several strains being very similar within each clade. The rep-PCR analysis also revealed high intra-species diversity. Clustering of strains in the nodY/K and nifH trees was identical: 39 strains isolated from soybean grouped with Bradyrhizobium type species symbionts of soybean, whereas five others occupied isolated positions. Only one strain isolated from Stylosanthes sp. showed similar nodY/K and nifH sequences to soybean strains, and it also nodulated soybean. Twenty-one representative strains of the 16S rRNA phylogram were selected and taxonomically classified using a concatenated glnII-recA phylogeny; nodC sequences were also compared and revealed the same clusters as observed in the nodY/K and nifH phylograms. The analyses of symbiotic genes indicated that a large group of strains from the B. elkanii superclade comprised the novel symbiovar sojae, whereas for another group, including B. pachyrhizi, the symbiovar pachyrhizi could be proposed. Other potential new symbiovars were also detected. The co-evolution hypotheses is discussed and it is suggested that nodY/K analysis would be useful for investigating the symbiotic diversity of the genus Bradyrhizobium. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. A plastid gene phylogeny of the non-photosynthetic parasitic Orobanche (Orobanchaceae) and related genera.

    Science.gov (United States)

    Park, Jeong-Mi; Manen, Jean-François; Colwell, Alison E; Schneeweiss, Gerald M

    2008-07-01

    The phylogenetic relationships of the non-photosynthetic Orobanche sensu lato (Orobanchaceae), which includes some of the economically most important parasitic weeds, remain insufficiently understood and controversial. This concerns both the phylogenetic relationships within the genus, in particular its monophyly or lack thereof, and the relationships to other holoparasitic genera such as Cistanche or Conopholis. Here we present the first comprehensive phylogenetic study of this group based on a region from the plastid genome (rps2 gene). Although substitution rates appear to be elevated compared to the photosynthetic members of Orobanchaceae, relationships among the major lineages Cistanche, Conopholis plus Epifagus, Boschniakia rossica (Cham. & Schltdl.) B. Fedtsch., B. himalaica Hook. f. & Thomson, B. hookeri Walp. plus B. strobilacea A. Gray, and Orobanche s. l. remain unresolved. Resolution within Orobanche, however, is much better. In agreement with morphological, cytological and other molecular phylogenetic evidence, five lineages, corresponding to the four traditionally recognised sections (Gymnocaulis, Myzorrhiza, Orobanche, Trionychon) and O. latisquama Reut. ex Boiss. (of sect. Orobanche), can be distinguished. A combined analysis of plastid rps2 and nuclear ITS sequences of the holoparasitic genera results in more resolved and better supported trees, although the relationships among Orobanche s. l., Cistanche, and the clade including the remaining genera is unresolved. Therefore, rps2 is a marker from the plastid genome that is well-suited to be used in combination with other already established nuclear markers for resolving generic relationships of Orobanche and related genera.

  20. Phylogeny and evolution of Digitulati ground beetles (Coleoptera, Carabidae) inferred from mitochondrial ND5 gene sequences.

    Science.gov (United States)

    Su, Zhi-Hui; Imura, Yûki; Okamoto, Munehiro; Kim, Choong-Gon; Zhou, Hong-Zhang; Paik, Jong-Cheol; Osawa, Syozo

    2004-01-01

    Genealogical trees have been constructed using mitochondrial ND5 gene sequences of 87 specimens consisting of 32 species which have been believed to belong to the division Digitulati (one of the lineages of the subtribe Carabina) of the world. There have been recognized six lineages, which are well separated from each other. Each lineage contains the following genus: (1) the lineage A: Ohomopterus from Japan; (2) the lineage B: Isiocarabus from eastern Eurasian Continent; (3) the lineage C: Carabus from China which are further subdivided into three sublineages; (4) the lineage D: Carabus from USA; (5) the lineage E: Carabus from the Eurasian Continent, Japan and North America; and (6) the lineage F: Eucarabus from the Eurasian Continent. Additionally, the genus Acrocarabus which had been treated as a constituent of the division Archicarabomorphi has been recognized to be the 7th lineage of the division Digitulati from the ND5 genealogical analysis as well as morphology. These lineages are assumed to have radiated within a short period and are largely linked to their geographic distribution.

  1. Phylogeny of the Celastraceae inferred from phytochrome B gene sequence and morphology.

    Science.gov (United States)

    Simmons, M P; Clevinger, C C; Savolainen, V; Archer, R H; Mathews, S; Doyle, J J

    2001-02-01

    Phylogenetic relationships within Celastraceae were inferred using a simultaneous analysis of 61 morphological characters and 1123 base pairs of phytochrome B exon 1 from the nuclear genome. No gaps were inferred, and the gene tree topology suggests that the primers were specific to a single locus that did not duplicate among the lineages sampled. This region of phytochrome B was most useful for examining relationships among closely related genera. Fifty-one species from 38 genera of Celastraceae were sampled. The Celastraceae sensu lato (including Hippocrateaceae) were resolved as a monophyletic group. Loesener's subfamilies and tribes of Celastraceae were not supported. The Hippocrateaceae were resolved as a monophyletic group nested within a paraphyletic Celastraceae sensu stricto. Goupia was resolved as more closely related to Euphorbiaceae, Corynocarpaceae, and Linaceae than to Celastraceae. Plagiopteron (Flacourtiaceae) was resolved as the sister group of Hippocrateoideae. Brexia (Brexiaceae) was resolved as closely related to Elaeodendron and Pleurostylia. Canotia was resolved as the sister group of Acanthothamnus within Celastraceae. Perrottetia and Mortonia were resolved as the sister group of the rest of the Celastraceae. Siphonodon was resolved as a derived member of Celastraceae. Maytenus was resolved as three disparate groups, suggesting that this large genus needs to be recircumscribed.

  2. Scaffold filling, contig fusion and comparative gene order inference

    Directory of Open Access Journals (Sweden)

    Rounsley Steve

    2010-06-01

    Full Text Available Abstract Background There has been a trend in increasing the phylogenetic scope of genome sequencing without finishing the sequence of the genome. Increasing numbers of genomes are being published in scaffold or contig form. Rearrangement algorithms, however, including gene order-based phylogenetic tools, require whole genome data on gene order or syntenic block order. How then can we use rearrangement algorithms to compare genomes available in scaffold form only? Can the comparative evidence predict the location of unsequenced genes? Results Our method involves optimally filling in genes missing from the scaffolds, while incorporating the augmented scaffolds directly into the rearrangement algorithms as if they were chromosomes. This is accomplished by an exact, polynomial-time algorithm. We then correct for the number of extra fusion/fission operations required to make scaffolds comparable to full assemblies. We model the relationship between the ratio of missing genes actually absent from the genome versus merely unsequenced ones, on one hand, and the increase of genomic distance after scaffold filling, on the other. We estimate the parameters of this model through simulations and by comparing the angiosperm genomes Ricinus communis and Vitis vinifera. Conclusions The algorithm solves the comparison of genomes with 18,300 genes, including 4500 missing from one genome, in less than a minute on a MacBook, putting virtually all genomes within range of the method.

  3. Scaffold filling, contig fusion and comparative gene order inference.

    Science.gov (United States)

    Muñoz, Adriana; Zheng, Chunfang; Zhu, Qian; Albert, Victor A; Rounsley, Steve; Sankoff, David

    2010-06-04

    There has been a trend in increasing the phylogenetic scope of genome sequencing without finishing the sequence of the genome. Increasing numbers of genomes are being published in scaffold or contig form. Rearrangement algorithms, however, including gene order-based phylogenetic tools, require whole genome data on gene order or syntenic block order. How then can we use rearrangement algorithms to compare genomes available in scaffold form only? Can the comparative evidence predict the location of unsequenced genes? Our method involves optimally filling in genes missing from the scaffolds, while incorporating the augmented scaffolds directly into the rearrangement algorithms as if they were chromosomes. This is accomplished by an exact, polynomial-time algorithm. We then correct for the number of extra fusion/fission operations required to make scaffolds comparable to full assemblies. We model the relationship between the ratio of missing genes actually absent from the genome versus merely unsequenced ones, on one hand, and the increase of genomic distance after scaffold filling, on the other. We estimate the parameters of this model through simulations and by comparing the angiosperm genomes Ricinus communis and Vitis vinifera. The algorithm solves the comparison of genomes with 18,300 genes, including 4500 missing from one genome, in less than a minute on a MacBook, putting virtually all genomes within range of the method.

  4. Three gene phylogeny of the Thoreales (Rhodophyta) reveals high species diversity.

    Science.gov (United States)

    Johnston, Emily T; Dixon, Kyatt R; West, John A; Buhari, Nurliah; Vis, Morgan L

    2018-04-01

    The freshwater red algal order Thoreales has triphasic life history composed of a diminutive diploid "Chantransia" stage, a distinctive macroscopic gametophyte with multi-axial growth and carposporophytes that develop on the gametophyte thallus. This order is comprised of two genera, Thorea and Nemalionopsis. Thorea has been widely reported with numerous species, whereas Nemalionopsis has been more rarely observed with only a few species described. DNA sequences from three loci (rbcL, cox1, and LSU) were used to examine the phylogenetic affinity of specimens collected from geographically distant locations including North America, South America, Europe, Pacific Islands, Southeast Asia, China, and India. Sixteen species of Thorea and two species of Nemalionopsis were recognized. Morphological observations confirmed the distinctness of the two genera and also provided some characters to distinguish species. However, many of the collections were in "Chantransia" stage rather than gametophyte stage, meaning that key diagnostic morphological characters were unavailable. Three new species are proposed primarily based on the DNA sequence data generated in this study, Thorea kokosinga-pueschelii, T. mauitukitukii, and T. quisqueyana. In addition to these newly described species, one DNA sequence from GenBank was not closely associated with other Thorea clades and may represent further diversity in the genus. Two species in Nemalionopsis are recognized, N. shawii and N. parkeri nom. et stat. nov. Thorea harbors more diversity than had been recognized by morphological data alone. Distribution data indicated that Nemalionopsis is common in the Pacific region, whereas Thorea is more globally distributed. Most species of Thorea have a regional distribution, but Thorea hispida appears to be cosmopolitan. © 2018 Phycological Society of America.

  5. Molecular evolution of the insect Halloween family of cytochrome P450s: phylogeny, gene organization and functional conservation.

    Science.gov (United States)

    Rewitz, Kim F; O'Connor, Michael B; Gilbert, Lawrence I

    2007-08-01

    The insect molting hormone, 20-hydroxyecdysone (20E), is a major modulator of the developmental processes resulting in molting and metamorphosis. During evolution selective forces have preserved the Halloween genes encoding cytochrome P450 (P450) enzymes that mediate the biosynthesis of 20E. In the present study, we examine the phylogenetic relationships of these P450 genes in holometabolous insects belonging to the orders Hymenoptera, Coleoptera, Lepidoptera and Diptera. The analyzed insect genomes each contains single orthologs of Phantom (CYP306A1), Disembodied (CYP302A1), Shadow (CYP315A1) and Shade (CYP314A1), the terminal hydroxylases. In Drosophila melanogaster, the Halloween gene spook (Cyp307a1) is required for the biosynthesis of 20E, although a function has not yet been identified. Unlike the other Halloween genes, the ancestor of this gene evolved into three paralogs, all in the CYP307 family, through gene duplication. The genomic stability of these paralogs varies among species. Intron-exon structures indicate that D. melanogaster Cyp307a1 is a mRNA-derived paralog of spookier (Cyp307a2), which is the ancestral gene and the closest ortholog of the coleopteran, lepidopteran and mosquito CYP307A subfamily genes. Evolutionary links between the insect Halloween genes and vertebrate steroidogenic P450s suggest that they originated from common ancestors, perhaps destined for steroidogenesis, before the deuterostome-arthropod split. Conservation of putative substrate recognition sites of orthologous Halloween genes indicates selective constraint on these residues to prevent functional divergence. The results suggest that duplications of ancestral P450 genes that acquired novel functions may have been an important mechanism for evolving the ecdysteroidogenic pathway.

  6. Aspergillus is monophyletic: Evidence from multiple gene phylogenies and extrolites profiles

    Directory of Open Access Journals (Sweden)

    S. Kocsubé

    2016-09-01

    Full Text Available Aspergillus is one of the economically most important fungal genera. Recently, the ICN adopted the single name nomenclature which has forced mycologists to choose one name for fungi (e.g. Aspergillus, Fusarium, Penicillium, etc.. Previously two proposals for the single name nomenclature in Aspergillus were presented: one attributes the name “Aspergillus” to clades comprising seven different teleomorphic names, by supporting the monophyly of this genus; the other proposes that Aspergillus is a non-monophyletic genus, by preserving the Aspergillus name only to species belonging to subgenus Circumdati and maintaining the sexual names in the other clades. The aim of our study was to test the monophyly of Aspergilli by two independent phylogenetic analyses using a multilocus phylogenetic approach. One test was run on the publicly available coding regions of six genes (RPB1, RPB2, Tsr1, Cct8, BenA, CaM, using 96 species of Penicillium, Aspergillus and related taxa. Bayesian (MrBayes and Ultrafast Maximum Likelihood (IQ-Tree and Rapid Maximum Likelihood (RaxML analyses gave the same conclusion highly supporting the monophyly of Aspergillus. The other analyses were also performed by using publicly available data of the coding sequences of nine loci (18S rRNA, 5,8S rRNA, 28S rRNA (D1-D2, RPB1, RPB2, CaM, BenA, Tsr1, Cct8 of 204 different species. Both Bayesian (MrBayes and Maximum Likelihood (RAxML trees obtained by this second round of independent analyses strongly supported the monophyly of the genus Aspergillus. The stability test also confirmed the robustness of the results obtained. In conclusion, statistical analyses have rejected the hypothesis that the Aspergilli are non-monophyletic, and provided robust arguments that the genus is monophyletic and clearly separated from the monophyletic genus Penicillium. There is no phylogenetic evidence to split Aspergillus into several genera and the name Aspergillus can be used for all the species

  7. New higher taxa in the lichen family Graphidaceae (lichenized Ascomycota: Ostropales) based on a three-gene skeleton phylogeny

    Science.gov (United States)

    H. Thorsten Lumbsch; Ekaphan Kraichak; Sittiporn Parnmen; Eimy Rivas Plata; Andre Aptroot; Marcela E.S. Caceres; Damien Ertz; Shirley Cunha Feuerstein; Joel A. Mercado-Diaz; Bettina Staiger; Dries Van den Broeck; Robert. Lücking

    2014-01-01

    We provide an updated skeleton phylogeny of the lichenized family Graphidaceae (excluding subfamily Gomphilloideae), based on three loci (mtSSU, nuLSU, RPB2), to elucidate the position of four new genera, Aggregatorygma, Borinquenotrema, Corticorygma, and Paratopeliopsis, as well as the placement of the enigmatic species Diorygma erythrellum, Fissurina monilifera, and...

  8. Phylogeny and Zoogeography of Six Squirrel Species of the Genus Sciurus (Mammalia, Rodentia), Inferred from Cytochrome b Gene Sequences(Phylogeny)

    OpenAIRE

    Tatsuo, Oshida; Ryuichi, Masuda; Chromosome Research Unit, Faculty of Science, Hokkaido University; Chromosome Research Unit, Faculty of Science, Hokkaido University

    2000-01-01

    To investigate the phylogenetic relationships between the New World Sciurus and the Old World Sciurus and their biogeographic history, the partial mitochondrial cytochrome b gene sequences (1,040 base pairs) were analyzed on six Sciurus species : S. aberti, S. carolinensis, S. lis, S. niger, S. stramineus, and S. vulgaris. Phylogenetic trees (maximum parsimony, neighbor-joining, and maximum likelihood methods) commonly showed two groups with high bootstrap values (73-100%) : one consisting of...

  9. Complete mitochondrial genome of Clistocoeloma sinensis (Brachyura: Grapsoidea): Gene rearrangements and higher-level phylogeny of the Brachyura.

    Science.gov (United States)

    Xin, Zhao-Zhe; Liu, Yu; Zhang, Dai-Zhen; Chai, Xin-Yue; Wang, Zheng-Fei; Zhang, Hua-Bin; Zhou, Chun-Lin; Tang, Bo-Ping; Liu, Qiu-Ning

    2017-06-23

    Deciphering the animal mitochondrial genome (mitogenome) is very important to understand their molecular evolution and phylogenetic relationships. In this study, the complete mitogenome of Clistocoeloma sinensis was determined. The mitogenome of C. sinensis was 15,706 bp long, and its A+T content was 75.7%. The A+T skew of the mitogenome of C. sinensis was slightly negative (-0.020). All the transfer RNA genes had the typical cloverleaf structure, except for the trnS1 gene, which lacked a dihydroxyuridine arm. The two ribosomal RNA genes had 80.2% A+T content. The A+T-rich region spanned 684 bp. The gene order within the complete mitogenome of C. sinensis was identical to the pancrustacean ground pattern except for the translocation of trnH. Additionally, the gene order of trnI-trnQ-trnM in the pancrustacean ground pattern becomes trnQ-trnI-trnM in C. sinensis. Our phylogenetic analysis showed that C. sinensis and Sesarmops sinensis cluster together with high nodal support values, indicating that C. sinensis and S. sinensis have a sister group relationship. The results support that C. sinensis belongs to Grapsoidea, Sesarmidae. Our findings also indicate that Varunidae and Sesarmidae species share close relationships. Thus, mitogenomes are likely to be valuable tools for systematics in other groups of Crustacea.

  10. Phylogeny and expression profiling of CAD and CAD-like genes in hybrid Populus (P. deltoides × P. nigra: evidence from herbivore damage for subfunctionalization and functional divergence

    Directory of Open Access Journals (Sweden)

    Frost Christopher J

    2010-05-01

    Full Text Available Abstract Background Cinnamyl Alcohol Dehydrogenase (CAD proteins function in lignin biosynthesis and play a critical role in wood development and plant defense against stresses. Previous phylogenetic studies did not include genes from seedless plants and did not reflect the deep evolutionary history of this gene family. We reanalyzed the phylogeny of CAD and CAD-like genes using a representative dataset including lycophyte and bryophyte sequences. Many CAD/CAD-like genes do not seem to be associated with wood development under normal growth conditions. To gain insight into the functional evolution of CAD/CAD-like genes, we analyzed their expression in Populus plant tissues in response to feeding damage by gypsy moth larvae (Lymantria dispar L.. Expression of CAD/CAD-like genes in Populus tissues (xylem, leaves, and barks was analyzed in herbivore-treated and non-treated plants by real time quantitative RT-PCR. Results CAD family genes were distributed in three classes based on sequence conservation. All the three classes are represented by seedless as well as seed plants, including the class of bona fide lignin pathway genes. The expression of some CAD/CAD-like genes that are not associated with xylem development were induced following herbivore damage in leaves, while other genes were induced in only bark or xylem tissues. Five of the CAD/CAD-like genes, however, showed a shift in expression from one tissue to another between non-treated and herbivore-treated plants. Systemic expression of the CAD/CAD-like genes was generally suppressed. Conclusions Our results indicated a correlation between the evolution of the CAD gene family and lignin and that the three classes of genes may have evolved in the ancestor of land plants. Our results also suggest that the CAD/CAD-like genes have evolved a diversity of expression profiles and potentially different functions, but that they are nonetheless co-regulated under stress conditions.

  11. Functional annotation, genome organization and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly, FLcDNA cloning, and enzyme assays.

    Science.gov (United States)

    Martin, Diane M; Aubourg, Sébastien; Schouwey, Marina B; Daviet, Laurent; Schalk, Michel; Toub, Omid; Lund, Steven T; Bohlmann, Jörg

    2010-10-21

    Terpenoids are among the most important constituents of grape flavour and wine bouquet, and serve as useful metabolite markers in viticulture and enology. Based on the initial 8-fold sequencing of a nearly homozygous Pinot noir inbred line, 89 putative terpenoid synthase genes (VvTPS) were predicted by in silico analysis of the grapevine (Vitis vinifera) genome assembly 1. The finding of this very large VvTPS family, combined with the importance of terpenoid metabolism for the organoleptic properties of grapevine berries and finished wines, prompted a detailed examination of this gene family at the genomic level as well as an investigation into VvTPS biochemical functions. We present findings from the analysis of the up-dated 12-fold sequencing and assembly of the grapevine genome that place the number of predicted VvTPS genes at 69 putatively functional VvTPS, 20 partial VvTPS, and 63 VvTPS probable pseudogenes. Gene discovery and annotation included information about gene architecture and chromosomal location. A dense cluster of 45 VvTPS is localized on chromosome 18. Extensive FLcDNA cloning, gene synthesis, and protein expression enabled functional characterization of 39 VvTPS; this is the largest number of functionally characterized TPS for any species reported to date. Of these enzymes, 23 have unique functions and/or phylogenetic locations within the plant TPS gene family. Phylogenetic analyses of the TPS gene family showed that while most VvTPS form species-specific gene clusters, there are several examples of gene orthology with TPS of other plant species, representing perhaps more ancient VvTPS, which have maintained functions independent of speciation. The highly expanded VvTPS gene family underpins the prominence of terpenoid metabolism in grapevine. We provide a detailed experimental functional annotation of 39 members of this important gene family in grapevine and comprehensive information about gene structure and phylogeny for the entire currently

  12. Mammals from ‘down under’: a multi-gene species-level phylogeny of marsupial mammals (Mammalia, Metatheria)

    Science.gov (United States)

    Kilpatrick, C. William; Agnarsson, Ingi

    2015-01-01

    Marsupials or metatherians are a group of mammals that are distinct in giving birth to young at early stages of development and in having a prolonged investment in lactation. The group consists of nearly 350 extant species, including kangaroos, koala, possums, and their relatives. Marsupials are an old lineage thought to have diverged from early therian mammals some 160 million years ago in the Jurassic, and have a remarkable evolutionary and biogeographical history, with extant species restricted to the Americas, mostly South America, and to Australasia. Although the group has been the subject of decades of phylogenetic research, the marsupial tree of life remains controversial, with most studies focusing on only a fraction of the species diversity within the infraclass. Here we present the first Methaterian species-level phylogeny to include 80% of the extant marsupial species and five nuclear and five mitochondrial markers obtained from Genbank and a recently published retroposon matrix. Our primary goal is to provide a summary phylogeny that will serve as a tool for comparative research. We evaluate the extent to which the phylogeny recovers current phylogenetic knowledge based on the recovery of “benchmark clades” from prior studies—unambiguously supported key clades and undisputed traditional taxonomic groups. The Bayesian phylogenetic analyses recovered nearly all benchmark clades but failed to find support for the suborder Phalagiformes. The most significant difference with previous published topologies is the support for Australidelphia as a group containing Microbiotheriidae, nested within American marsupials. However, a likelihood ratio test shows that alternative topologies with monophyletic Australidelphia and Ameridelphia are not significantly different than the preferred tree. Although further data are needed to solidify understanding of Methateria phylogeny, the new phylogenetic hypothesis provided here offers a well resolved and detailed tool

  13. Mammals from ‘down under’: a multi-gene species-level phylogeny of marsupial mammals (Mammalia, Metatheria

    Directory of Open Access Journals (Sweden)

    Laura J. May-Collado

    2015-02-01

    Full Text Available Marsupials or metatherians are a group of mammals that are distinct in giving birth to young at early stages of development and in having a prolonged investment in lactation. The group consists of nearly 350 extant species, including kangaroos, koala, possums, and their relatives. Marsupials are an old lineage thought to have diverged from early therian mammals some 160 million years ago in the Jurassic, and have a remarkable evolutionary and biogeographical history, with extant species restricted to the Americas, mostly South America, and to Australasia. Although the group has been the subject of decades of phylogenetic research, the marsupial tree of life remains controversial, with most studies focusing on only a fraction of the species diversity within the infraclass. Here we present the first Methaterian species-level phylogeny to include 80% of the extant marsupial species and five nuclear and five mitochondrial markers obtained from Genbank and a recently published retroposon matrix. Our primary goal is to provide a summary phylogeny that will serve as a tool for comparative research. We evaluate the extent to which the phylogeny recovers current phylogenetic knowledge based on the recovery of “benchmark clades” from prior studies—unambiguously supported key clades and undisputed traditional taxonomic groups. The Bayesian phylogenetic analyses recovered nearly all benchmark clades but failed to find support for the suborder Phalagiformes. The most significant difference with previous published topologies is the support for Australidelphia as a group containing Microbiotheriidae, nested within American marsupials. However, a likelihood ratio test shows that alternative topologies with monophyletic Australidelphia and Ameridelphia are not significantly different than the preferred tree. Although further data are needed to solidify understanding of Methateria phylogeny, the new phylogenetic hypothesis provided here offers a well

  14. The first multi-gene phylogeny of the Macrostomorpha sheds light on the evolution of sexual and asexual reproduction in basal Platyhelminthes.

    Science.gov (United States)

    Janssen, Toon; Vizoso, Dita B; Schulte, Gregor; Littlewood, D Timothy J; Waeschenbach, Andrea; Schärer, Lukas

    2015-11-01

    The Macrostomorpha-an early branching and species-rich clade of free-living flatworms-is attracting interest because it contains Macrostomum lignano, a versatile model organism increasingly used in evolutionary, developmental, and molecular biology. We elucidate the macrostomorphan molecular phylogeny inferred from both nuclear (18S and 28S rDNA) and mitochondrial (16S rDNA and COI) marker genes from 40 representatives. Although our phylogeny does not recover the Macrostomorpha as a statistically supported monophyletic grouping, it (i) confirms many taxa previously proposed based on morphological evidence, (ii) permits the first placement of many families and genera, and (iii) reveals a number of unexpected placements. Specifically, Myozona and Bradynectes are outside the three classic families (Macrostomidae, Microstomidae and Dolichomacrostomidae) and the asexually fissioning Myomacrostomum belongs to a new subfamily, the Myozonariinae nov. subfam. (Dolichomacrostomidae), rather than diverging early. While this represents the first evidence for asexuality among the Dolichomacrostomidae, we show that fissioning also occurs in another Myozonariinae, Myozonaria fissipara nov. sp. Together with the placement of the (also fissioning) Microstomidae, namely as the sister taxon of Dolichomacrostomidae, this suggests that fissioning is not basal within the Macrostomorpha, but rather restricted to the new taxon Dolichomicrostomida (Dolichomacrostomidae+Microstomidae). Furthermore, our phylogeny allows new insights into the evolution of the reproductive system, as ancestral state reconstructions reveal convergent evolution of gonads, and male and female genitalia. Finally, the convergent evolution of sperm storage organs in the female genitalia appears to be linked to the widespread occurrence of hypodermic insemination among the Macrostomorpha. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. A case study for effects of operational taxonomic units from intracellular endoparasites and ciliates on the eukaryotic phylogeny: phylogenetic position of the haptophyta in analyses of multiple slowly evolving genes.

    Directory of Open Access Journals (Sweden)

    Hisayoshi Nozaki

    Full Text Available Recent multigene phylogenetic analyses have contributed much to our understanding of eukaryotic phylogeny. However, the phylogenetic positions of various lineages within the eukaryotes have remained unresolved or in conflict between different phylogenetic studies. These phylogenetic ambiguities might have resulted from mixtures or integration from various factors including limited taxon sampling, missing data in the alignment, saturations of rapidly evolving genes, mixed analyses of short- and long-branched operational taxonomic units (OTUs, intracellular endoparasite and ciliate OTUs with unusual substitution etc. In order to evaluate the effects from intracellular endoparasite and ciliate OTUs co-analyzed on the eukaryotic phylogeny and simplify the results, we here used two different sets of data matrices of multiple slowly evolving genes with small amounts of missing data and examined the phylogenetic position of the secondary photosynthetic chromalveolates Haptophyta, one of the most abundant groups of oceanic phytoplankton and significant primary producers. In both sets, a robust sister relationship between Haptophyta and SAR (stramenopiles, alveolates, rhizarians, or SA [stramenopiles and alveolates] was resolved when intracellular endoparasite/ciliate OTUs were excluded, but not in their presence. Based on comparisons of character optimizations on a fixed tree (with a clade composed of haptophytes and SAR or SA, disruption of the monophyly between haptophytes and SAR (or SA in the presence of intracellular endoparasite/ciliate OTUs can be considered to be a result of multiple evolutionary reversals of character positions that supported the synapomorphy of the haptophyte and SAR (or SA clade in the absence of intracellular endoparasite/ciliate OTUs.

  16. MADS-box gene evolution - structure and transcription patterns

    DEFF Research Database (Denmark)

    Johansen, Bo; Pedersen, Louise Buchholt; Skipper, Martin

    2002-01-01

    Mads-box genes, ABC model, Evolution, Phylogeny, Transcription patterns, Gene structure, Conserved motifs......Mads-box genes, ABC model, Evolution, Phylogeny, Transcription patterns, Gene structure, Conserved motifs...

  17. Phylogeny and diversification of B-function MADS-box genes in angiosperms: evolutionary and functional implications of a 260-million-year-old duplication.

    Science.gov (United States)

    Kim, Sangtae; Yoo, Mi-Jeong; Albert, Victor A; Farris, James S; Soltis, Pamela S; Soltis, Douglas E

    2004-12-01

    B-function MADS-box genes play crucial roles in floral development in model angiosperms. We reconstructed the structural and functional implications of B-function gene phylogeny in the earliest extant flowering plants based on analyses that include 25 new AP3 and PI sequences representing critical lineages of the basalmost angiosperms: Amborella, Nuphar (Nymphaeaceae), and Illicium (Austrobaileyales). The ancestral size of exon 5 in PI-homologues is 42 bp, typical of exon 5 in other plant MADS-box genes. This 42-bp length is found in PI-homologues from Amborella and Nymphaeaceae, successive sisters to all other angiosperms. Following these basalmost branches, a deletion occurred in exon 5, yielding a length of 30 bp, a condition that unites all other angiosperms. Several shared amino acid strings, including a prominent "DEAER" motif, are present in the AP3- and PI-homologues of Amborella. These may be ancestral motifs that were present before the duplication that yielded the AP3 and PI lineages and subsequently were modified after the divergence of Amborella. Other structural features were identified, including a motif that unites the previously described TM6 clade and a deletion in AP3-homologues that unites all Magnoliales. Phylogenetic analyses of AP3- and PI-homologues yielded gene trees that generally track organismal phylogeny as inferred by multigene data sets. With both AP3 and PI amino acid sequences, Amborella and Nymphaeaceae are sister to all other angiosperms. Using nonparametric rate smoothing (NPRS), we estimated that the duplication that produced the AP3 and PI lineages occurred approximately 260 mya (231-290). This places the duplication after the split between extant gymnosperms and angiosperms, but well before the oldest angiosperm fossils. A striking similarity in the multimer-signalling C domains of the Amborella proteins suggests the potential for the formation of unique transcription-factor complexes. The earliest angiosperms may have been

  18. Extensive paraphylies within sharks of the order Carcharhiniformes inferred from nuclear and mitochondrial genes.

    Science.gov (United States)

    Iglésias, Samuel P; Lecointre, Guillaume; Sellos, Daniel Y

    2005-03-01

    Using nuclear coding and mitochondrial ribosomal genes we try to clarify relationships within Carcharhiniformes with special focus on the two most problematic groups: scyliorhinids and triakids. The mitochondrial aligned sequences are 1542 bp long, and include principally portion of 16S rRNA gene. They are obtained for two outgroup species and 43 Carcharhiniformes species, covering 5 of the 8 families and 15 of the 48 genera of the order. The nuclear RAG1 sequences are 1454 bp long, and are obtained for 17 species representative of the diversity of all species sampled. We used Maximum Parsimony and Maximum Likelihood criteria for tree reconstruction. Paraphylies within the family Scyliorhinidae was proposed for the first time by Maisey [Zool. J. Linn. Soc. 82, 33, 1984] in a morphological cladistic analysis. This result has never been proposed again until recently from molecular phylogenies [Mol. Phylogenet. Evol. 31, 214, 2004]. Here, independent and simultaneous analyses of nuclear and mitochondrial data are congruent in supporting the paraphyly of scyliorhinids. Two groups of scyliorhinids are obtained, thoroughly in line with discrimination proposed by previous authors, based on presence/absence of supraorbital crests on the chondrocranium. The first group (Scyliorhinus+Cephaloscyllium) is basal within carcharhiniforms and the second group (Apristurus+Asymbolus+Cephalurus+Galeus+Parmaturus) is sister group of all the other families investigated (Carcharhinidae, Proscyllidae, Pseudotriakidae, and Triakidae). The paraphyly of triakids appeared probable but more investigations are needed. In conclusion several independent morphological and molecular phylogenetic studies support paraphyly within scyliorhinids. So we propose a new classification for the group, with the redefinition of the family Scyliorhinidae sensu stricto and the resurrection of the family Pentanchidae with a new definition.

  19. Phylogeny, evolution and host-parasite relationships of the order Proteocephalidea (Eucestoda) as revealed by combined analysis and secondary structure characters

    Czech Academy of Sciences Publication Activity Database

    Hypša, Václav; Škeříková, Andrea; Scholz, Tomáš

    2005-01-01

    Roč. 130, č. 3 (2005), s. 359-371 ISSN 0031-1820 R&D Projects: GA AV ČR KSK6005114 Institutional research plan: CEZ:AV0Z60220518 Keywords : phylogeny * co-evolution * Proteocephalidea Subject RIV: EG - Zoology Impact factor: 1.703, year: 2005

  20. Phylogeny of nodulation genes and symbiotic diversity of Acacia senegal (L.) Willd. and A. seyal (Del.) Mesorhizobium strains from different regions of Senegal.

    Science.gov (United States)

    Bakhoum, Niokhor; Galiana, Antoine; Le Roux, Christine; Kane, Aboubacry; Duponnois, Robin; Ndoye, Fatou; Fall, Dioumacor; Noba, Kandioura; Sylla, Samba Ndao; Diouf, Diégane

    2015-04-01

    Acacia senegal and Acacia seyal are small, deciduous legume trees, most highly valued for nitrogen fixation and for the production of gum arabic, a commodity of international trade since ancient times. Symbiotic nitrogen fixation by legumes represents the main natural input of atmospheric N2 into ecosystems which may ultimately benefit all organisms. We analyzed the nod and nif symbiotic genes and symbiotic properties of root-nodulating bacteria isolated from A. senegal and A. seyal in Senegal. The symbiotic genes of rhizobial strains from the two Acacia species were closed to those of Mesorhizobium plurifarium and grouped separately in the phylogenetic trees. Phylogeny of rhizobial nitrogen fixation gene nifH was similar to those of nodulation genes (nodA and nodC). All A. senegal rhizobial strains showed identical nodA, nodC, and nifH gene sequences. By contrast, A. seyal rhizobial strains exhibited different symbiotic gene sequences. Efficiency tests demonstrated that inoculation of both Acacia species significantly affected nodulation, total dry weight, acetylene reduction activity (ARA), and specific acetylene reduction activity (SARA) of plants. However, these cross-inoculation tests did not show any specificity of Mesorhizobium strains toward a given Acacia host species in terms of infectivity and efficiency as stated by principal component analysis (PCA). This study demonstrates that large-scale inoculation of A. senegal and A. seyal in the framework of reafforestation programs requires a preliminary step of rhizobial strain selection for both Acacia species.

  1. Mitochondrial gene order evolution in Mollusca: Inference of the ancestral state from the mtDNA of Chaetopleura apiculata (Polyplacophora, Chaetopleuridae).

    Science.gov (United States)

    Guerra, Davide; Bouvet, Karim; Breton, Sophie

    2018-03-01

    The mitochondrial genome architecture of polyplacophorans has been usually regarded as being very ancient in comparison to all mollusks. However, even if some complete chiton mtDNAs have been recently sequenced, thorough studies of their evolution are lacking. To further expand the set of complete chiton mtDNAs and perform such analysis, we sequenced the mitochondrial genome of the Eastern beaded chiton Chaetopleura apiculata (Chaetopleuridae) using next-generation sequencing. With mitochondrial sequences from all available chiton mtDNAs, we also built a phylogeny on which we reconstructed the evolution of gene arrangement in this class. The arrangement of C. apiculata proved to be the most primitive known so far for polyplacophorans. Comparing this gene order to those of other molluscan classes, we found that it most probably is the original gene order of the last common ancestor to all extant Mollusca. The ancient mitochondrial genome organization of C. apiculata is an important information that may help reconstructing the phylogeny of Mollusca and their relationship with other lophotrochozoans. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. A novel phylogeny of the Gelidiales (Rhodophyta) based on five genes including the nuclear CesA, with descriptions of Orthogonacladia gen. nov. and Orthogonacladiaceae fam. nov.

    Science.gov (United States)

    Boo, Ga Hun; Le Gall, Line; Miller, Kathy Ann; Freshwater, D Wilson; Wernberg, Thomas; Terada, Ryuta; Yoon, Kyung Ju; Boo, Sung Min

    2016-08-01

    Although the Gelidiales are economically important marine red algae producing agar and agarose, the phylogeny of this order remains poorly resolved. The present study provides a molecular phylogeny based on a novel marker, nuclear-encoded CesA, plus plastid-encoded psaA, psbA, rbcL, and mitochondria-encoded cox1 from subsets of 107 species from all ten genera within the Gelidiales. Analyses of individual and combined datasets support the monophyly of three currently recognized families, and reveal a new clade. On the basis of these results, the new family Orthogonacladiaceae is described to accommodate Aphanta and a new genus Orthogonacladia that includes species previously classified as Gelidium madagascariense and Pterocladia rectangularis. Acanthopeltis is merged with Gelidium, which has nomenclatural priority. Nuclear-encoded CesA was found to be useful for improving the resolution of phylogenetic relationships within the Gelidiales and is likely to be valuable for the inference of phylogenetic relationship among other red algal taxa. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Functional Annotation, Genome Organization and Phylogeny of the Grapevine (Vitis vinifera Terpene Synthase Gene Family Based on Genome Assembly, FLcDNA Cloning, and Enzyme Assays

    Directory of Open Access Journals (Sweden)

    Toub Omid

    2010-10-01

    about gene structure and phylogeny for the entire currently known VvTPS gene family.

  4. A human genome-wide library of local phylogeny predictions for whole-genome inference problems

    Directory of Open Access Journals (Sweden)

    Schwartz Russell

    2008-08-01

    Full Text Available Abstract Background Many common inference problems in computational genetics depend on inferring aspects of the evolutionary history of a data set given a set of observed modern sequences. Detailed predictions of the full phylogenies are therefore of value in improving our ability to make further inferences about population history and sources of genetic variation. Making phylogenetic predictions on the scale needed for whole-genome analysis is, however, extremely computationally demanding. Results In order to facilitate phylogeny-based predictions on a genomic scale, we develop a library of maximum parsimony phylogenies within local regions spanning all autosomal human chromosomes based on Haplotype Map variation data. We demonstrate the utility of this library for population genetic inferences by examining a tree statistic we call 'imperfection,' which measures the reuse of variant sites within a phylogeny. This statistic is significantly predictive of recombination rate, shows additional regional and population-specific conservation, and allows us to identify outlier genes likely to have experienced unusual amounts of variation in recent human history. Conclusion Recent theoretical advances in algorithms for phylogenetic tree reconstruction have made it possible to perform large-scale inferences of local maximum parsimony phylogenies from single nucleotide polymorphism (SNP data. As results from the imperfection statistic demonstrate, phylogeny predictions encode substantial information useful for detecting genomic features and population history. This data set should serve as a platform for many kinds of inferences one may wish to make about human population history and genetic variation.

  5. The constancy of gene conservation across divergent bacterial orders

    Directory of Open Access Journals (Sweden)

    Ackermann Martin

    2009-01-01

    Full Text Available Abstract Background Orthologous genes are frequently presumed to perform similar functions. However, outside of model organisms, this is rarely tested. One means of inferring changes in function is if there are changes in the level of gene conservation and selective constraint. Here we compare levels of gene conservation across three bacterial groups to test for changes in gene functionality. Findings The level of gene conservation for different orthologous genes is highly correlated across clades, even for highly divergent groups of bacteria. These correlations do not arise from broad differences in gene functionality (e.g. informational genes vs. metabolic genes, but instead seem to result from very specific differences in gene function. Furthermore, these functional differences appear to be maintained over very long periods of time. Conclusion These results suggest that even over broad time scales, most bacterial genes are under a nearly constant level of purifying selection, and that bacterial evolution is thus dominated by selective and functional stasis.

  6. Analysis of phylogeny and codon usage bias and relationship of GC content, amino acid composition with expression of the structural nif genes.

    Science.gov (United States)

    Mondal, Sunil Kanti; Kundu, Sudip; Das, Rabindranath; Roy, Sujit

    2016-08-01

    Bacteria and archaea have evolved with the ability to fix atmospheric dinitrogen in the form of ammonia, catalyzed by the nitrogenase enzyme complex which comprises three structural genes nifK, nifD and nifH. The nifK and nifD encodes for the beta and alpha subunits, respectively, of component 1, while nifH encodes for component 2 of nitrogenase. Phylogeny based on nifDHK have indicated that Cyanobacteria is closer to Proteobacteria alpha and gamma but not supported by the tree based on 16SrRNA. The evolutionary ancestor for the different trees was also different. The GC1 and GC2% analysis showed more consistency than GC3% which appeared to below for Firmicutes, Cyanobacteria and Euarchaeota while highest in Proteobacteria beta and clearly showed the proportional effect on the codon usage with a few exceptions. Few genes from Firmicutes, Euryarchaeota, Proteobacteria alpha and delta were found under mutational pressure. These nif genes with low and high GC3% from different classes of organisms showed similar expected number of codons. Distribution of the genes and codons, based on codon usage demonstrated opposite pattern for different orientation of mirror plane when compared with each other. Overall our results provide a comprehensive analysis on the evolutionary relationship of the three structural nif genes, nifK, nifD and nifH, respectively, in the context of codon usage bias, GC content relationship and amino acid composition of the encoded proteins and exploration of crucial statistical method for the analysis of positive data with non-constant variance to identify the shape factors of codon adaptation index.

  7. Molecular phylogeny of Japanese Rhinolophidae based on variations in the complete sequence of the mitochondrial cytochrome b gene.

    Science.gov (United States)

    Sakai, Takahiro; Kikkawa, Yoshiaki; Tsuchiya, Kimiyuki; Harada, Masashi; Kanoe, Masamitsu; Yoshiyuki, Mizuko; Yonekawa, Hiromichi

    2003-04-01

    Microchiroptera have diversified into many species whose size and the shapes of the complicated ear and nose have been adapted to their echolocation abilities. Their speciation processes, and intra- and interspecies relationships are still under discussion. Here we report on the geographical variation of Japanese Rhinolophus ferrumequinum and R. cornutus using the complete sequence of the mitochondrial cytochrome b gene to clarify the phylogenetic positions of the 2 species as well as that of Rhinolophidae within the Microchiroptera. We have found that sequence divergence values within each of the 2 species are unexpectedly low (0.07%-0.94%). We have also found that there is no local specificity of their mtCytb alleles. On the other hand, the divergence values for Japanese Microchiroptera (12.7%-16.6%) are much higher than those for other mammalian genera. Similarly, the values among five genera of Vespertilionidae were 20.5%-27.3%. Phylogenetic analysis shows that the 2 species of family Rhinolophidae in the suborder Microchiroptera belong to the Megachiroptera cluster in the constructed maximum parsimony tree. These results suggest that the speciation of Rhinolophidae involved its divergence as an independent lineage from other Microchiroptera, and other microbats might be paraphyletic. In addition, the tree also shows that the order Chiroptera is monophylitic, and the closest group to Chiroptera is the ungulates.

  8. Analysis of the ergosterol biosynthesis pathway cloning, molecular characterization and phylogeny of lanosterol 14α-demethylase (ERG11 gene of Moniliophthora perniciosa

    Directory of Open Access Journals (Sweden)

    Geruza de Oliveira Ceita

    2014-12-01

    Full Text Available The phytopathogenic fungus Moniliophthora perniciosa (Stahel Aime & Philips-Mora, causal agent of witches' broom disease of cocoa, causes countless damage to cocoa production in Brazil. Molecular studies have attempted to identify genes that play important roles in fungal survival and virulence. In this study, sequences deposited in the M. perniciosa Genome Sequencing Project database were analyzed to identify potential biological targets. For the first time, the ergosterol biosynthetic pathway in M. perniciosa was studied and the lanosterol 14α-demethylase gene (ERG11 that encodes the main enzyme of this pathway and is a target for fungicides was cloned, characterized molecularly and its phylogeny analyzed. ERG11 genomic DNA and cDNA were characterized and sequence analysis of the ERG11 protein identified highly conserved domains typical of this enzyme, such as SRS1, SRS4, EXXR and the heme-binding region (HBR. Comparison of the protein sequences and phylogenetic analysis revealed that the M. perniciosa enzyme was most closely related to that of Coprinopsis cinerea.

  9. Analysis of gene evolution and metabolic pathways using the Candida Gene Order Browser

    LENUS (Irish Health Repository)

    Fitzpatrick, David A

    2010-05-10

    Abstract Background Candida species are the most common cause of opportunistic fungal infection worldwide. Recent sequencing efforts have provided a wealth of Candida genomic data. We have developed the Candida Gene Order Browser (CGOB), an online tool that aids comparative syntenic analyses of Candida species. CGOB incorporates all available Candida clade genome sequences including two Candida albicans isolates (SC5314 and WO-1) and 8 closely related species (Candida dubliniensis, Candida tropicalis, Candida parapsilosis, Lodderomyces elongisporus, Debaryomyces hansenii, Pichia stipitis, Candida guilliermondii and Candida lusitaniae). Saccharomyces cerevisiae is also included as a reference genome. Results CGOB assignments of homology were manually curated based on sequence similarity and synteny. In total CGOB includes 65617 genes arranged into 13625 homology columns. We have also generated improved Candida gene sets by merging\\/removing partial genes in each genome. Interrogation of CGOB revealed that the majority of tandemly duplicated genes are under strong purifying selection in all Candida species. We identified clusters of adjacent genes involved in the same metabolic pathways (such as catabolism of biotin, galactose and N-acetyl glucosamine) and we showed that some clusters are species or lineage-specific. We also identified one example of intron gain in C. albicans. Conclusions Our analysis provides an important resource that is now available for the Candida community. CGOB is available at http:\\/\\/cgob.ucd.ie.

  10. Gene structure and evolution of transthyretin in the order Chiroptera.

    Science.gov (United States)

    Khwanmunee, Jiraporn; Leelawatwattana, Ladda; Prapunpoj, Porntip

    2016-02-01

    Bats are mammals in the order Chiroptera. Although many extensive morphologic and molecular genetics analyses have been attempted, phylogenetic relationships of bats has not been completely resolved. The paraphyly of microbats is of particular controversy that needs to be confirmed. In this study, we attempted to use the nucleotide sequence of transthyretin (TTR) intron 1 to resolve the relationship among bats. To explore its utility, the complete sequences of TTR gene and intron 1 region of bats in Vespertilionidae: genus Eptesicus (Eptesicus fuscus) and genus Myotis (Myotis brandtii, Myotis davidii, and Myotis lucifugus), and Pteropodidae (Pteropus alecto and Pteropus vampyrus) were extracted from the retrieved sequences, whereas those of Rhinoluphus affinis and Scotophilus kuhlii were amplified and sequenced. The derived overall amino sequences of bat TTRs were found to be very similar to those in other eutherians but differed from those in other classes of vertebrates. However, missing of amino acids from N-terminal or C-terminal region was observed. The phylogenetic analysis of amino acid sequences suggested bat and other eutherian TTRs lineal descent from a single most recent common ancestor which differed from those of non-placental mammals and the other classes of vertebrates. The splicing of bat TTR precursor mRNAs was similar to those of other eutherian but different from those of marsupial, bird, reptile and amphibian. Based on TTR intron 1 sequence, the inferred evolutionary relationship within Chiroptera revealed more closely relatedness of R. affinis to megabats than to microbats. Accordingly, the paraphyly of microbats was suggested.

  11. Phylogeny of the Major Head and Tail Genes of the Wide-Ranging T4-Type Bacteriophages†

    OpenAIRE

    Tétart, Françoise; Desplats, Carine; Kutateladze, Mzia; Monod, Caroline; Ackermann, Hans-Wolfgang; Krisch, H. M.

    2001-01-01

    We examined a number of bacteriophages with T4-type morphology that propagate in different genera of enterobacteria, Aeromonas, Burkholderia, and Vibrio. Most of these phages had a prolate icosahedral head, a contractile tail, and a genome size that was similar to that of T4. A few of them had more elongated heads and larger genomes. All these phages are phylogenetically related, since they each had sequences homologous to the capsid gene (gene 23), tail sheath gene (gene 18), and tail tube g...

  12. Molecular phylogeny of OVOL genes illustrates a conserved C2H2 zinc finger domain coupled by hypervariable unstructured regions.

    Directory of Open Access Journals (Sweden)

    Abhishek Kumar

    Full Text Available OVO-like proteins (OVOL are members of the zinc finger protein family and serve as transcription factors to regulate gene expression in various differentiation processes. Recent studies have shown that OVOL genes are involved in epithelial development and differentiation in a wide variety of organisms; yet there is a lack of comprehensive studies that describe OVOL proteins from an evolutionary perspective. Using comparative genomic analysis, we traced three different OVOL genes (OVOL1-3 in vertebrates. One gene, OVOL3, was duplicated during a whole-genome-duplication event in fish, but only the copy (OVOL3b was retained. From early-branching metazoa to humans, we found that a core domain, comprising a tetrad of C2H2 zinc fingers, is conserved. By domain comparison of the OVOL proteins, we found that they evolved in different metazoan lineages by attaching intrinsically-disordered (ID segments of N/C-terminal extensions of 100 to 1000 amino acids to this conserved core. These ID regions originated independently across different animal lineages giving rise to different types of OVOL genes over the course of metazoan evolution. We illustrated the molecular evolution of metazoan OVOL genes over a period of 700 million years (MY. This study both extends our current understanding of the structure/function relationship of metazoan OVOL genes, and assembles a good platform for further characterization of OVOL genes from diverged organisms.

  13. Importance of globin gene order for correct developmental expression.

    NARCIS (Netherlands)

    O. Hanscombe (Olivia); D. Whyatt (David); P.J. Fraser (Peter); N. Yannoutsos (Nikos); D.R. Greaves (David); N.O. Dillon (Niall); F.G. Grosveld (Frank)

    1991-01-01

    textabstractWe have used transgenic mice to study the influence of position of the human globin genes relative to the locus control region (LCR) on their expression pattern during development. The LCR, which is located 5' of the globin gene cluster, is normally required for the activation of all the

  14. Using a five-gene phylogeny to test morphology-based hypotheses of Smittium and allies, endosymbiotic gut fungi (Harpellales) associated with arthropods.

    Science.gov (United States)

    Wang, Yan; Tretter, Eric D; Johnson, Eric M; Kandel, Prasanna; Lichtwardt, Robert W; Novak, Stephen J; Smith, James F; White, Merlin M

    2014-10-01

    Smittium, one of the first described genera of gut fungi, is part of a larger group of endosymbiotic microorganisms (Harpellales) that live predominantly in the digestive tracts of aquatic insects. As a diverse and species-rich taxon, Smittium has helped to advance our understanding of the gut fungi, in part due to the relative success of attempts to culture species of Smittium as compared to other members of Harpellales. Approximately 40% of the 81 known species of Smittium have been cultured. This is the first Smittium multigene dataset and phylogenetic analysis, using the 18S and 28S rRNA genes, as well as RPB1, RPB2, and MCM7 translated protein sequences. Several well-supported clades were recovered within Smittium. One includes the epitype S. mucronatum (the "True Smittium" clade), and another contains many species including S. simulii and S. orthocladii (the "Parasmittium" clade). Ancestral states were reconstructed for holdfast shape, thallus branching type, as well as asexual (trichospore) and sexual (zygospore) spore morphology. Two of these characters, holdfast shape and trichospore morphology, supported the split of the two main clades revealed by the molecular phylogeny, suggesting these are natural clades and these traits may have evolutionary and perhaps ecological significance. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Phylogeny of the Celastreae (Celastraceae) and the relationships of Catha edulis (qat) inferred from morphological characters and nuclear and plastid genes.

    Science.gov (United States)

    Simmons, Mark P; Cappa, Jennifer J; Archer, Robert H; Ford, Andrew J; Eichstedt, Dedra; Clevinger, Curtis C

    2008-08-01

    The phylogeny of Celastraceae tribe Celastreae, which includes about 350 species of trees and shrubs in 15 genera, was inferred in a simultaneous analysis of morphological characters together with nuclear (ITS and 26S rDNA) and plastid (matK, trnL-F) genes. A strong correlation was found between the geography of the species sampled and their inferred relationships. Species of Maytenus and Gymnosporia from different regions were resolved as polyphyletic groups. Maytenus was resolved in three lineages (New World, African, and Austral-Pacific), while Gymnosporia was resolved in two lineages (New World and Old World). Putterlickia was resolved as nested within the Old World Gymnosporia. Catha edulis (qat, khat) was resolved as sister to the clade of Allocassine, Cassine, Lauridia, and Maurocenia. Gymnosporia cassinoides, which is reportedly chewed as a stimulant in the Canary Islands, was resolved as a derived member of Gymnosporia and is more closely related to Lydenburgia and Putterlickia than it is to Catha. Therefore, all eight of these genera are candidates for containing cathinone- and/or cathine-related alkaloids.

  16. Phylogeny and Identification of Pantoea Species and Typing of Pantoea agglomerans Strains by Multilocus Gene Sequencing ▿ †

    OpenAIRE

    Delétoile, Alexis; Decré, Dominique; Courant, Stéphanie; Passet, Virginie; Audo, Jennifer; Grimont, Patrick; Arlet, Guillaume; Brisse, Sylvain

    2008-01-01

    Pantoea agglomerans and other Pantoea species cause infections in humans and are also pathogenic to plants, but the diversity of Pantoea strains and their possible association with hosts and disease remain poorly known, and identification of Pantoea species is difficult. We characterized 36 Pantoea strains, including 28 strains of diverse origins initially identified as P. agglomerans, by multilocus gene sequencing based on six protein-coding genes, by biochemical tests, and by antimicrobial ...

  17. Phylogeny and phylogeography of functional genes shared among seven terrestrial subsurface metagenomes reveal N-cycling and microbial evolutionary relationships

    Directory of Open Access Journals (Sweden)

    Maggie CY Lau

    2014-10-01

    Full Text Available Comparative studies on community phylogenetics and phylogeography of microorganisms living in extreme environments are rare. Terrestrial subsurface habitats are valuable for studying microbial biogeographical patterns due to their isolation and the restricted dispersal mechanisms. Since the taxonomic identity of a microorganism does not always correspond well with its functional role in a particular community, the use of taxonomic assignments or patterns may give limited inference on how microbial functions are affected by historical, geographical and environmental factors. With seven metagenomic libraries generated from fracture water samples collected from five South African mines, this study was carried out to (1 screen for ubiquitous functions or pathways of biogeochemical cycling of CH4, S and N; (2 to characterize the biodiversity represented by the common functional genes; (3 to investigate the subsurface biogeography as revealed by this subset of genes; and (4 to explore the possibility of using metagenomic data for evolutionary study. The ubiquitous functional genes are NarV, NPD, PAP reductase, NifH, NifD, NifK, NifE and NifN genes. Although these 8 common functional genes were taxonomically and phylogenetically diverse and distinct from each other, the dissimilarity between samples did not correlate strongly with either geographical, environmental or residence time of the water. Por genes homologous to those of Thermodesulfovibrio yellowstonii detected in all metagenomes were deep lineages of Nitrospirae, suggesting that subsurface habitats have preserved ancestral genetic signatures that inform the study of the origin and evolution of prokaryotes.

  18. A multi-gene phylogeny of Cephalopoda supports convergent morphological evolution in association with multiple habitat shifts in the marine environment

    Directory of Open Access Journals (Sweden)

    Lindgren Annie R

    2012-07-01

    Full Text Available Abstract Background The marine environment is comprised of numerous divergent organisms living under similar selective pressures, often resulting in the evolution of convergent structures such as the fusiform body shape of pelagic squids, fishes, and some marine mammals. However, little is known about the frequency of, and circumstances leading to, convergent evolution in the open ocean. Here, we present a comparative study of the molluscan class Cephalopoda, a marine group known to occupy habitats from the intertidal to the deep sea. Several lineages bear features that may coincide with a benthic or pelagic existence, making this a valuable group for testing hypotheses of correlated evolution. To test for convergence and correlation, we generate the most taxonomically comprehensive multi-gene phylogeny of cephalopods to date. We then create a character matrix of habitat type and morphological characters, which we use to infer ancestral character states and test for correlation between habitat and morphology. Results Our study utilizes a taxonomically well-sampled phylogeny to show convergent evolution in all six morphological characters we analyzed. Three of these characters also correlate with habitat. The presence of an autogenic photophore (those relying upon autonomous enzymatic light reactions is correlated with a pelagic habitat, while the cornea and accessory nidamental gland correlate with a benthic lifestyle. Here, we present the first statistical tests for correlation between convergent traits and habitat in cephalopods to better understand the evolutionary history of characters that are adaptive in benthic or pelagic environments, respectively. Discussion Our study supports the hypothesis that habitat has influenced convergent evolution in the marine environment: benthic organisms tend to exhibit similar characteristics that confer protection from invasion by other benthic taxa, while pelagic organisms possess features that

  19. Epigenetic Regulation of Higher Order Chromatin Conformations and Gene Transcription

    OpenAIRE

    Göndör, Anita

    2007-01-01

    Epigenetic states constitute heritable features of the chromatin to regulate when, where and how genes are expressed in the developing conceptus. A special case of epigenetic regulation, genomic imprinting, is defined as parent of origin-dependent monoallelic expression. The Igf2-H19 locus is considered as paradigm of genomic imprinting with a growth-promoting gene, Igf2, expressed paternally and a growth antagonist, H19 encoding a non-coding transcript, expressed only from the maternal allel...

  20. Fast evolution of the retroprocessed mitochondrial rps3 gene in Conifer II and further evidence for the phylogeny of gymnosperms.

    Science.gov (United States)

    Ran, Jin-Hua; Gao, Hui; Wang, Xiao-Quan

    2010-01-01

    The popular view that plant mitochondrial genome evolves slowly in sequence has been recently challenged by the extraordinarily high substitution rates of mtDNA documented mainly from several angiosperm genera, but high substitution rate acceleration accompanied with great length variation has been very rarely reported in plant mitochondrial genes. Here, we studied evolution of the mitochondrial rps3 gene that encodes the ribosomal small subunit protein 3 and found a dramatically high variation in both length and sequence of an exon region of it in Conifer II. A sequence comparison between cDNA and genomic DNA showed that there are no RNA editing sites in the Conifer II rps3 gene. Southern blotting analyses of the total DNA and mtDNA, together with the real-time PCR analysis, showed that rps3 exists as a single mitochondrial locus in gymnosperms. It is very likely that the Conifer II rps3 gene has experienced retroprocessing, i.e., the re-integration of its cDNA into the mitochondrial genome, followed by an evolutionary acceleration due to the intron loss. In addition, the phylogenetic analysis of rps3 supports the sister relationship between conifers and Gnetales. In particular, the monophyly of conifer II is strongly supported by the shared loss of two rps3 introns. Our results also indicate that the mitochondrial gene tree would be affected in topology when the "edited" paralogs are analyzed together with their genomic sequences.

  1. Phylogeny and Systematics of Leptomyxid Amoebae (Amoebozoa, Tubulinea, Leptomyxida).

    Science.gov (United States)

    Smirnov, Alexey; Nassonova, Elena; Geisen, Stefan; Bonkowski, Michael; Kudryavtsev, Alexander; Berney, Cedric; Glotova, Anna; Bondarenko, Natalya; Dyková, Iva; Mrva, Martin; Fahrni, Jose; Pawlowski, Jan

    2017-04-01

    We describe four new species of Flabellula, Leptomyxa and Rhizamoeba and publish new SSU rRNA gene and actin gene sequences of leptomyxids. Using these data we provide the most comprehensive SSU phylogeny of leptomyxids to date. Based on the analyses of morphological data and results of the SSU rRNA gene phylogeny we suggest changes in the systematics of the order Leptomyxida (Amoebozoa: Lobosa: Tubulinea). We propose to merge the genera Flabellula and Paraflabellula (the genus Flabellula remains valid by priority rule). The genus Rhizamoeba is evidently polyphyletic in all phylogenetic trees; we suggest retaining the generic name Rhizamoeba for the group unifying R. saxonica, R.matisi n. sp. and R. polyura, the latter remains the type species of the genus Rhizamoeba. Based on molecular and morphological evidence we move all remaining Rhizamoeba species to the genus Leptomyxa. New family Rhizamoebidae is established here in order to avoid paraphyly of the family Leptomyxidae. With the suggested changes both molecular and morphological systems of the order Leptomyxida are now fully congruent to each other. Copyright © 2016 Elsevier GmbH. All rights reserved.

  2. Phylogeny of Indonesian Nostoc (Cyanobac teria Isolated from Paddy Fields as Inferred from Partial Se quence of 16S rRNA Gene

    Directory of Open Access Journals (Sweden)

    Dian Hendrayanti

    2012-12-01

    Full Text Available In order to collect Indonesian Nostoc, isolation of soil microflora from several paddy fields in West Java, Bali, andSouth Celebes was carried out. Fast-growing isolates of Nostoc were selected to describe and perform molecular identification using partial sequences of 16S rRNA. The results showed that partial sequences of 16S rRNA could not resolve the phylogeny of the isolates. However, it supported the morphological studies that recognize isolates as different species of Nostoc. Potential use of Nostoc as a nitrogen source for paddy growth was carried out using six strains as single inoculums. A total biomass of 2 g (fresh weight for each strain was inoculated, respectively, into the pot planted with three paddy plants. This experiment was conducted in the green house for 115 days. Statistical analyses (ANOVA; α = 0.05 showed that of six strains tested in this study, only strain GIA13a had influence on the augmentation of root length and the total number of filled grains.

  3. Phylogeny of the New World diploid cottons (Gossypium L., Malvaceae) based on sequences of three low-copy nuclear genes.

    Science.gov (United States)

    I. Alvarez; R. Cronn; J.F. Wendel

    2005-01-01

    American diploid cottons (Gossypium L., subgenus Houzingenia Fryxell) form a monophyletic group of 13 species distributed mainly in western Mexico, extending into Arizona, Baja California, and with one disjunct species each in the Galapagos Islands and Peru. Prior phylogenetic analyses based on an alcohol dehydrogenase gene (...

  4. Advances toward DNA-based identification and phylogeny of North American Armillaria species using elongation factor-1 alpha gene

    Science.gov (United States)

    Amy L. Ross-Davis; John W. Hanna; Mee-Sook Kim; Ned B. Klopfenstein

    2012-01-01

    The translation elongation factor-1 alpha gene was used to examine the phylogenetic relationships among 30 previously characterized isolates representing ten North American Armillaria species: A. solidipes (=A. ostoyae), A. gemina, A. calvescens, A. sinapina, A. mellea, A. gallica, A. nabsnona, North American biological species X, A. cepistipes, and A. tabescens. The...

  5. Phylogeny and Identification of Pantoea Species and Typing of Pantoea agglomerans Strains by Multilocus Gene Sequencing ▿ †

    Science.gov (United States)

    Delétoile, Alexis; Decré, Dominique; Courant, Stéphanie; Passet, Virginie; Audo, Jennifer; Grimont, Patrick; Arlet, Guillaume; Brisse, Sylvain

    2009-01-01

    Pantoea agglomerans and other Pantoea species cause infections in humans and are also pathogenic to plants, but the diversity of Pantoea strains and their possible association with hosts and disease remain poorly known, and identification of Pantoea species is difficult. We characterized 36 Pantoea strains, including 28 strains of diverse origins initially identified as P. agglomerans, by multilocus gene sequencing based on six protein-coding genes, by biochemical tests, and by antimicrobial susceptibility testing. Phylogenetic analysis and comparison with other species of Enterobacteriaceae revealed that the genus Pantoea is highly diverse. Most strains initially identified as P. agglomerans by use of API 20E strips belonged to a compact sequence cluster together with the type strain, but other strains belonged to diverse phylogenetic branches corresponding to other species of Pantoea or Enterobacteriaceae and to probable novel species. Biochemical characteristics such as fosfomycin resistance and utilization of d-tartrate could differentiate P. agglomerans from other Pantoea species. All 20 strains of P. agglomerans could be distinguished by multilocus sequence typing, revealing the very high discrimination power of this method for strain typing and population structure in this species, which is subdivided into two phylogenetic groups. PCR detection of the repA gene, associated with pathogenicity in plants, was positive in all clinical strains of P. agglomerans, suggesting that clinical and plant-associated strains do not form distinct populations. We provide a multilocus gene sequencing method that is a powerful tool for Pantoea species delineation and identification and for strain tracking. PMID:19052179

  6. Empirical phylogenies and species abundance distributions are consistent with pre-equilibrium dynamics of neutral community models with gene flow

    KAUST Repository

    Bonnet-Lebrun, Anne-Sophie

    2017-03-17

    Community characteristics reflect past ecological and evolutionary dynamics. Here, we investigate whether it is possible to obtain realistically shaped modelled communities - i.e., with phylogenetic trees and species abundance distributions shaped similarly to typical empirical bird and mammal communities - from neutral community models. To test the effect of gene flow, we contrasted two spatially explicit individual-based neutral models: one with protracted speciation, delayed by gene flow, and one with point mutation speciation, unaffected by gene flow. The former produced more realistic communities (shape of phylogenetic tree and species-abundance distribution), consistent with gene flow being a key process in macro-evolutionary dynamics. Earlier models struggled to capture the empirically observed branching tempo in phylogenetic trees, as measured by the gamma statistic. We show that the low gamma values typical of empirical trees can be obtained in models with protracted speciation, in pre-equilibrium communities developing from an initially abundant and widespread species. This was even more so in communities sampled incompletely, particularly if the unknown species are the youngest. Overall, our results demonstrate that the characteristics of empirical communities that we have studied can, to a large extent, be explained through a purely neutral model under pre-equilibrium conditions. This article is protected by copyright. All rights reserved.

  7. Phylogeny of filamentous ascomycetes

    Science.gov (United States)

    Lumbsch, H. T.

    Phylogenetic studies of higher ascomycetes are enhanced by the introduction of molecular markers. Most studies employed sequences of the SSU rRNA gene, but recently data from additional genes (RPB2, LSU rRNA) have become available. Several groups defined by their ascoma-type, such as Pyrenomycetes, are supported while others, like the Discomycetes, appear to be paraphyletic. The Pezizales with operculate asci are basal to other eu-ascomycetes, while other Discomycetes appear to be derived eu-ascomycetes. The re-evaluation of classical characters using molecular data is discussed using three examples. Ascus types are often regarded as being of major importance in ascomycete systematics, but prototunicate asci were found to be of poor taxonomic value, since ascomycetes with prototunicate asci are polyphyletic. The independence of the Agyriales, assumed from their morphological characters, is supported by sequence data but the relationship to supposed sister groups remains dubious. The phylogeny of ascolocularous fungi and their circumscription requires further study. While a circumscription based on bitunicate asci can be rejected, it remains unclear whether fungi with ascolocularous ascoma development represent a monophyletic entity.

  8. Phylogeny and classification of poison frogs (Amphibia: dendrobatidae), based on mitochondrial 16S and 12S ribosomal RNA gene sequences.

    Science.gov (United States)

    Vences, M; Kosuch, J; Lötters, S; Widmer, A; Jungfer, K H; Köhler, J; Veith, M

    2000-04-01

    An analysis of partial sequences of the 16S ribosomal rRNA gene (582 bp) of 20 poison frog species (Dendrobatidae) confirmed their phylogenetic relationships to bufonid and leptodactylid frogs. Representatives of the ranoid families and subfamilies Raninae, Mantellinae, Petropedetinae, Cacosterninae, Arthroleptidae, Astylosternidae, and Microhylidae did not cluster as sister group of the Dendrobatidae. Similar results were obtained in an analysis using a partial sequence of the 12S gene (350 bp) in a reduced set of taxa and in a combined analysis. Within the Dendrobatidae, our data supported monophyly of the genus Phyllobates but indicated paraphyly of Epipedobates and Colostethus. Minyobates clustered within Dendrobates, contradicting its previously assumed phylogenetic position. Phobobates species clustered as a monophyletic unit within Epipedobates. Allobates was positioned in a group containing two Colostethus species, indicating that lack of amplexus, presence of skin alkaloids, and aposematic coloration evolved independently in Allobates and the remaining aposematic dendrobatids. Copyright 2000 Academic Press.

  9. Higher level phylogeny and the first divergence time estimation of Heteroptera (Insecta: Hemiptera based on multiple genes.

    Directory of Open Access Journals (Sweden)

    Min Li

    Full Text Available Heteroptera, or true bugs, are the largest, morphologically diverse and economically important group of insects with incomplete metamorphosis. However, the phylogenetic relationships within Heteroptera are still in dispute and most of the previous studies were based on morphological characters or with single gene (partial or whole 18S rDNA. Besides, so far, divergence time estimates for Heteroptera totally rely on the fossil record, while no studies have been performed on molecular divergence rates. Here, for the first time, we used maximum parsimony (MP, maximum likelihood (ML and Bayesian inference (BI with multiple genes (18S rDNA, 28S rDNA, 16S rDNA and COI to estimate phylogenetic relationships among the infraorders, and meanwhile, the Penalized Likelihood (r8s and Bayesian (BEAST molecular dating methods were employed to estimate divergence time of higher taxa of this suborder. Major results of the present study included: Nepomorpha was placed as the most basal clade in all six trees (MP trees, ML trees and Bayesian trees of nuclear gene data and four-gene combined data, respectively with full support values. The sister-group relationship of Cimicomorpha and Pentatomomorpha was also strongly supported. Nepomorpha originated in early Triassic and the other six infraorders originated in a very short period of time in middle Triassic. Cimicomorpha and Pentatomomorpha underwent a radiation at family level in Cretaceous, paralleling the proliferation of the flowering plants. Our results indicated that the higher-group radiations within hemimetabolous Heteroptera were simultaneously with those of holometabolous Coleoptera and Diptera which took place in the Triassic. While the aquatic habitat was colonized by Nepomorpha already in the Triassic, the Gerromorpha independently adapted to the semi-aquatic habitat in the Early Jurassic.

  10. Higher level phylogeny and the first divergence time estimation of Heteroptera (Insecta: Hemiptera) based on multiple genes.

    Science.gov (United States)

    Li, Min; Tian, Ying; Zhao, Ying; Bu, Wenjun

    2012-01-01

    Heteroptera, or true bugs, are the largest, morphologically diverse and economically important group of insects with incomplete metamorphosis. However, the phylogenetic relationships within Heteroptera are still in dispute and most of the previous studies were based on morphological characters or with single gene (partial or whole 18S rDNA). Besides, so far, divergence time estimates for Heteroptera totally rely on the fossil record, while no studies have been performed on molecular divergence rates. Here, for the first time, we used maximum parsimony (MP), maximum likelihood (ML) and Bayesian inference (BI) with multiple genes (18S rDNA, 28S rDNA, 16S rDNA and COI) to estimate phylogenetic relationships among the infraorders, and meanwhile, the Penalized Likelihood (r8s) and Bayesian (BEAST) molecular dating methods were employed to estimate divergence time of higher taxa of this suborder. Major results of the present study included: Nepomorpha was placed as the most basal clade in all six trees (MP trees, ML trees and Bayesian trees of nuclear gene data and four-gene combined data, respectively) with full support values. The sister-group relationship of Cimicomorpha and Pentatomomorpha was also strongly supported. Nepomorpha originated in early Triassic and the other six infraorders originated in a very short period of time in middle Triassic. Cimicomorpha and Pentatomomorpha underwent a radiation at family level in Cretaceous, paralleling the proliferation of the flowering plants. Our results indicated that the higher-group radiations within hemimetabolous Heteroptera were simultaneously with those of holometabolous Coleoptera and Diptera which took place in the Triassic. While the aquatic habitat was colonized by Nepomorpha already in the Triassic, the Gerromorpha independently adapted to the semi-aquatic habitat in the Early Jurassic.

  11. Phylogeny and divergence of basal angiosperms inferred from APETALA3- and PISTILLATA-like MADS-box genes.

    Science.gov (United States)

    Aoki, Seishiro; Uehara, Koichi; Imafuku, Masao; Hasebe, Mitsuyasu; Ito, Motomi

    2004-06-01

    The B-class MADS-box genes composed of APETALA3 ( AP3) and PISTILLATA ( PI) lineages play an important role in petal and stamen identity in previously studied flowering plants. We investigated the diversification of the AP3-like and PI-like MADS-box genes of eight species in five basal angiosperm families: Amborella trichopoda (Amborellaceae); Brasenia schreberi and Cabomba caroliniana (Cabombaceae); Euryale ferox, Nuphar japonicum, and Nymphaea tetragona (Nymphaeaceae); Illicium anisatum (Illiciaceae); and Kadsura japonica (Schisandraceae). Sequence analysis showed that a four amino acid deletion in the K domain, which was found in all previously reported angiosperm PI genes, exists in a PI homologue of Schisandraceae, but not in six PI homologues of the Amborellaceae, Cabombaceae, and Nymphaeaceae, suggesting that the Amborellaceae, Cabombaceae, and Nymphaeaceae are basalmost lineages in angiosperms. The results of molecular phylogenetic analyses were not inconsistent with this hypothesis. The AP3 and PI homologues from Amborella share a sequence of five amino acids in the 5' region of exon 7. Using the linearized tree and likelihood methods, the divergence time between the AP3 and PI lineages was estimated as somewhere between immediately after to several tens of millions of years after the split between angiosperms and extant gymnosperms. Estimates of the age of the most recent common ancestor of all extant angiosperms range from approximately 140-210 Ma, depending on the trees used and assumptions made.

  12. Phylogeny and expression pattern of starch branching enzyme family genes in cassava (Manihot esculenta Crantz) under diverse environments.

    Science.gov (United States)

    Pei, Jinli; Wang, Huijun; Xia, Zhiqiang; Liu, Chen; Chen, Xin; Ma, Pingan; Lu, Cheng; Wang, Wenquan

    2015-08-01

    Starch branching enzyme (SBE) is one of the key enzymes involved in starch biosynthetic metabolism. In this study, six SBE family genes were identified from the cassava genome. Phylogenetic analysis divided the MeSBE family genes into dicot family A, B, C, and the new group. Tissue-specific analysis showed that MeSBE2.2 was strongly expressed in leaves, stems cortex, and root stele, and MeSBE3 had high expression levels in stem cortex and root stele of plants in the rapid growth stage under field condition, whereas the expression levels of MeSBE2.1, MeSBE4, and MeSBE5 were low except for in stems cortex. The transcriptional activity of MeSBE2.2 and MeSBE3 was higher compared with other members and gradually increased in the storage roots during root growth process, while the other MeSBE members normally remained low expression levels. Expression of MeSBE2.2 could be induced by salt, drought, exogenous abscisic acid, jasmonic acid, and salicylic acid signals, while MeSBE3 had positive response to drought, salt, exogenous abscisic acid, and salicylic acid in leaves but not in storage root, indicating that they might be more important in starch biosynthesis pathway under diverse environments.

  13. Molecular phylogeny of Toxoplasmatinae: comparison between inferences based on mitochondrial and apicoplast genetic sequences

    Directory of Open Access Journals (Sweden)

    Michelle Klein Sercundes

    2016-03-01

    Full Text Available Abstract Phylogenies within Toxoplasmatinae have been widely investigated with different molecular markers. Here, we studied molecular phylogenies of the Toxoplasmatinae subfamily based on apicoplast and mitochondrial genes. Partial sequences of apicoplast genes coding for caseinolytic protease (clpC and beta subunit of RNA polymerase (rpoB, and mitochondrial gene coding for cytochrome B (cytB were analyzed. Laboratory-adapted strains of the closely related parasites Sarcocystis falcatula and Sarcocystis neurona were investigated, along with Neospora caninum, Neospora hughesi, Toxoplasma gondii (strains RH, CTG and PTG, Besnoitia akodoni, Hammondia hammondiand two genetically divergent lineages of Hammondia heydorni. The molecular analysis based on organellar genes did not clearly differentiate between N. caninum and N. hughesi, but the two lineages of H. heydorni were confirmed. Slight differences between the strains of S. falcatula and S. neurona were encountered in all markers. In conclusion, congruent phylogenies were inferred from the three different genes and they might be used for screening undescribed sarcocystid parasites in order to ascertain their phylogenetic relationships with organisms of the family Sarcocystidae. The evolutionary studies based on organelar genes confirm that the genusHammondia is paraphyletic. The primers used for amplification of clpC and rpoB were able to amplify genetic sequences of organisms of the genus Sarcocystisand organisms of the subfamily Toxoplasmatinae as well.

  14. Phylogeny and zoogeography of six squirrel species of the genus sciurus (mammalia, rodentia), inferred from cytochrome B gene sequences.

    Science.gov (United States)

    Oshida, T; Masuda, R

    2000-04-01

    To investigate the phylogenetic relationships between the New World Sciurus and the Old World Sciurus and their biogeographic history, the partial mitochondrial cytochrome b gene sequences (1,040 base pairs) were analyzed on six Sciurus species: S. aberti, S. carolinensis, S. lis, S. niger, S. stramineus, and S. vulgaris. Phylogenetic trees (maximum parsimony, neighbor-joining, and maximum likelihood methods) commonly showed two groups with high bootstrap values (73-100%): one consisting of the New World Sciurus and the other consisting of the Old World Sciurus. Genetic distances among the New World Sciurus species were remarkably larger than that between two Sciurus species of the Old World, suggesting the earlier radiation of the New World Sciurus than the Old World Sciurus.

  15. Distribution and phylogeny of Brachyspira spp. in human intestinal spirochetosis revealed by FISH and 16S rRNA-gene analysis.

    Science.gov (United States)

    Rojas, Pablo; Petrich, Annett; Schulze, Julia; Wiessner, Alexandra; Loddenkemper, Christoph; Epple, Hans-Jörg; Sterlacci, William; Vieth, Michael; Kikhney, Judith; Moter, Annette

    2017-10-01

    During six years as German National Consultant Laboratory for Spirochetes we investigated 149 intestinal biopsies from 91 patients, which were histopathologically diagnosed with human intestinal spirochetosis (HIS), using fluorescence in situ hybridization (FISH) combined with 16S rRNA gene PCR and sequencing. Aim of this study was to complement histopathological findings with FISH and PCR for definite diagnosis and species identification of the causative pathogens. HIS is characterized by colonization of the colonic mucosa of the human distal intestinal tract by Brachyspira spp. Microbiological diagnosis of HIS is not performed, because of the fastidious nature and slow growth of Brachyspira spp. in culture. In clinical practice, diagnosis of HIS relies solely on histopathology without differentiation of the spirochetes. We used a previously described FISH probe to detect and identify Brachyspira spp. in histological gut biopsies. FISH allowed rapid visualization and identification of Brachyspira spp. in 77 patients. In most cases, the bright FISH signal already allowed rapid localization of Brachyspira spp. at 400× magnification. By sequencing, 53 cases could be assigned to the B. aalborgi lineage including "B. ibaraki" and "B. hominis", and 23 cases to B. pilosicoli. One case showed mixed colonization. The cases reported here reaffirm all major HIS Brachyspira spp. clusters already described. However, the phylogenetic diversity seems to be even greater than previously reported. In 14 cases, we could not confirm HIS by either FISH or PCR, but found colonization of the epithelium by rods and cocci, indicating misdiagnosis by histopathology. FISH in combination with molecular identification by 16S rRNA gene sequencing has proved to be a valuable addition to histopathology. It provides definite diagnosis of HIS and allows insights into phylogeny and distribution of Brachyspira spp. HIS should be considered as a differential diagnosis in diarrhea of unknown

  16. Molecular phylogeny of the genus Saguinus (Platyrrhini, Primates based on the ND1 mitochondrial gene and implications for conservation

    Directory of Open Access Journals (Sweden)

    Claudia Helena Tagliaro

    2005-03-01

    Full Text Available The systematics of the subfamily Callitrichinae (Platyrrhini, Primates, a group of small monkeys from South America and Panama, remains an area of considerable discussion despite many investigations, there being continuing controversy over subgeneric taxonomic classifications based on morphological characters. The purpose of our research was to help elucidate the phylogenetic relationships within the monkey genus Saguinus (Callitrichinae using a molecular approach to discover whether or not the two different sections containing hairy-faced and bare-faced species are monophyletic, whether Saguinus midas midas and Saguinus bicolor are more closely related than are S. midas midas and Saguinus midas niger, and if Saguinus fuscicollis melanoleucus and Saguinus fuscicollis weddelli really are different species. We sequenced the 957 bp ND1 mitochondrial gene of 21 Saguinus monkeys (belonging to six species and nine morphotypes and one Cebus monkey (the outgroup and constructed phylogenetic trees using maximum parsimony, neighbor joining, and maximum likelihood methods. The phylogenetic trees obtained divided the genus Saguinus into two groups, one containing the small-bodied species S. fuscicollis and the other, the large-bodied species S. mystax, S. leucopus, S. oedipus, S. midas, S. bicolor. The most derived taxa, S. midas and S. bicolor, grouped together, while S. fuscicollis melanoleucus and S. f. weddelli showed divergence values that did not support the division of these morphotypes into subspecies. On the other hand, S. midas individuals showed divergence compatible with the existence of three subspecies, two of them with the same morphotype as the subspecies S. midas niger. The results of our study suggest that there is at least one Saguinus subspecies that has not yet been described and that the conservation status of Saguinus species and subspecies should be carefully revised using modern molecular approaches.

  17. Unusual Gene Order and Organization of the Sea Urchin HoxCluster

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, Paul M.; Lucas, Susan; Cameron, R. Andrew; Rowen,Lee; Nesbitt, Ryan; Bloom, Scott; Rast, Jonathan P.; Berney, Kevin; Arenas-Mena, Cesar; Martinez, Pedro; Davidson, Eric H.; Peterson, KevinJ.; Hood, Leroy

    2005-05-10

    The highly consistent gene order and axial colinear expression patterns found in vertebrate hox gene clusters are less well conserved across the rest of bilaterians. We report the first deuterostome instance of an intact hox cluster with a unique gene order where the paralog groups are not expressed in a sequential manner. The finished sequence from BAC clones from the genome of the sea urchin, Strongylocentrotus purpuratus, reveals a gene order wherein the anterior genes (Hox1, Hox2 and Hox3) lie nearest the posterior genes in the cluster such that the most 3' gene is Hox5. (The gene order is : 5'-Hox1,2, 3, 11/13c, 11/13b, '11/13a, 9/10, 8, 7, 6, 5 - 3)'. The finished sequence result is corroborated by restriction mapping evidence and BAC-end scaffold analyses. Comparisons with a putative ancestral deuterostome Hox gene cluster suggest that the rearrangements leading to the sea urchin gene order were many and complex.

  18. The phylogeny of marine and freshwater species of the genus Chloromyxum Mingazzini, 1890 (Myxosporea: Bivalvulida) based on small subunit ribosomal RNA gene sequences

    Czech Academy of Sciences Publication Activity Database

    Fiala, Ivan; Dyková, Iva

    2004-01-01

    Roč. 51, 2/3 (2004), s. 211-214 ISSN 0015-5683 R&D Projects: GA ČR GD524/03/H133 Institutional research plan: CEZ:AV0Z6022909 Keywords : Myxosporea * Chloromyxum * phylogeny Subject RIV: EA - Cell Biology Impact factor: 0.837, year: 2004

  19. Phylogeny of Rhus gall aphids (Hemiptera:Pemphigidae) based on combined molecular analysis of nuclear EF1α and mitochondrial COII genes

    Science.gov (United States)

    Zi-xiang Yang; Xiao-ming Chen; Nathan P. Havill; Ying Feng; Hang. Chen

    2010-01-01

    Rhus gall aphids (Fordinae : Melaphidini) have a disjunct distribution in East Asia and North America and have specific host plant relationships. Some of them are of economic importance and all species form sealed galls which show great variation in shape, size, structure, and galling-site. We present a phylogeny incorporating ten species and four...

  20. Computational fitness landscape for all gene-order permutations of an RNA virus.

    Directory of Open Access Journals (Sweden)

    Kwang-il Lim

    2009-02-01

    Full Text Available How does the growth of a virus depend on the linear arrangement of genes in its genome? Answering this question may enhance our basic understanding of virus evolution and advance applications of viruses as live attenuated vaccines, gene-therapy vectors, or anti-tumor therapeutics. We used a mathematical model for vesicular stomatitis virus (VSV, a prototype RNA virus that encodes five genes (N-P-M-G-L, to simulate the intracellular growth of all 120 possible gene-order variants. Simulated yields of virus infection varied by 6,000-fold and were found to be most sensitive to gene-order permutations that increased levels of the L gene transcript or reduced levels of the N gene transcript, the lowest and highest expressed genes of the wild-type virus, respectively. Effects of gene order on virus growth also depended upon the host-cell environment, reflecting different resources for protein synthesis and different cell susceptibilities to infection. Moreover, by computationally deleting intergenic attenuations, which define a key mechanism of transcriptional regulation in VSV, the variation in growth associated with the 120 gene-order variants was drastically narrowed from 6,000- to 20-fold, and many variants produced higher progeny yields than wild-type. These results suggest that regulation by intergenic attenuation preceded or co-evolved with the fixation of the wild type gene order in the evolution of VSV. In summary, our models have begun to reveal how gene functions, gene regulation, and genomic organization of viruses interact with their host environments to define processes of viral growth and evolution.

  1. [Molecular cloning of the DNA sequence of activin beta A subunit gene mature peptides from panda and related species and its application in the research of phylogeny and taxonomy].

    Science.gov (United States)

    Wang, Xiao-Jing; Wang, Xiao-Xing; Wang, Ya-Jun; Wang, Xi-Zhong; He, Guang-Xin; Chen, Hong-Wei; Fei, Li-Song

    2002-09-01

    Activin, which is included in the transforming growth factor-beta (TGF beta) superfamily of proteins and receptors, is known to have broad-ranging effects in the creatures. The mature peptide of beta A subunit of this gene, one of the most highly conserved sequence, can elevate the basal secretion of follicle-stimulating hormone (FSH) in the pituitary and FSH is pivotal to organism's reproduction. Reproduction block is one of the main reasons which cause giant panda to extinct. The sequence of Activin beta A subunit gene mature peptides has been successfully amplified from giant panda, red panda and malayan sun bear's genomic DNA by using polymerase chain reaction (PCR) with a pair of degenerate primers. The PCR products were cloned into the vector pBlueScript+ of Esherichia coli. Sequence analysis of Activin beta A subunit gene mature peptides shows that the length of this gene segment is the same (359 bp) and there is no intron in all three species. The sequence encodes a peptide of 119 amino acid residues. The homology comparison demonstrates 93.9% DNA homology and 99% homology in amino acid among these three species. Both GenBank blast search result and restriction enzyme map reveal that the sequences of Activin beta A subunit gene mature peptides of different species are highly conserved during the evolution process. Phylogeny analysis is performed with PHYLIP software package. A consistent phylogeny tree has been drawn with three different methods. The software analysis outcome accords with the academic view that giant panda has a closer relationship to the malayan sun bear than the red panda. Giant panda should be grouped into the bear family (Uersidae) with the malayan sun bear. As to the red panda, it would be better that this animal be grouped into the unique family (red panda family) because of great difference between the red panda and the bears (Uersidae).

  2. Parallel and convergent evolution of the dim-light vision gene RH1 in bats (Order: Chiroptera).

    Science.gov (United States)

    Shen, Yong-Yi; Liu, Jie; Irwin, David M; Zhang, Ya-Ping

    2010-01-21

    Rhodopsin, encoded by the gene Rhodopsin (RH1), is extremely sensitive to light, and is responsible for dim-light vision. Bats are nocturnal mammals that inhabit poor light environments. Megabats (Old-World fruit bats) generally have well-developed eyes, while microbats (insectivorous bats) have developed echolocation and in general their eyes were degraded, however, dramatic differences in the eyes, and their reliance on vision, exist in this group. In this study, we examined the rod opsin gene (RH1), and compared its evolution to that of two cone opsin genes (SWS1 and M/LWS). While phylogenetic reconstruction with the cone opsin genes SWS1 and M/LWS generated a species tree in accord with expectations, the RH1 gene tree united Pteropodidae (Old-World fruit bats) and Yangochiroptera, with very high bootstrap values, suggesting the possibility of convergent evolution. The hypothesis of convergent evolution was further supported when nonsynonymous sites or amino acid sequences were used to construct phylogenies. Reconstructed RH1 sequences at internal nodes of the bat species phylogeny showed that: (1) Old-World fruit bats share an amino acid change (S270G) with the tomb bat; (2) Miniopterus share two amino acid changes (V104I, M183L) with Rhinolophoidea; (3) the amino acid replacement I123V occurred independently on four branches, and the replacements L99M, L266V and I286V occurred each on two branches. The multiple parallel amino acid replacements that occurred in the evolution of bat RH1 suggest the possibility of multiple convergences of their ecological specialization (i.e., various photic environments) during adaptation for the nocturnal lifestyle, and suggest that further attention is needed on the study of the ecology and behavior of bats.

  3. Parallel and Convergent Evolution of the Dim-Light Vision Gene RH1 in Bats (Order: Chiroptera)

    Science.gov (United States)

    Shen, Yong-Yi; Liu, Jie; Irwin, David M.; Zhang, Ya-Ping

    2010-01-01

    Rhodopsin, encoded by the gene Rhodopsin (RH1), is extremely sensitive to light, and is responsible for dim-light vision. Bats are nocturnal mammals that inhabit poor light environments. Megabats (Old-World fruit bats) generally have well-developed eyes, while microbats (insectivorous bats) have developed echolocation and in general their eyes were degraded, however, dramatic differences in the eyes, and their reliance on vision, exist in this group. In this study, we examined the rod opsin gene (RH1), and compared its evolution to that of two cone opsin genes (SWS1 and M/LWS). While phylogenetic reconstruction with the cone opsin genes SWS1 and M/LWS generated a species tree in accord with expectations, the RH1 gene tree united Pteropodidae (Old-World fruit bats) and Yangochiroptera, with very high bootstrap values, suggesting the possibility of convergent evolution. The hypothesis of convergent evolution was further supported when nonsynonymous sites or amino acid sequences were used to construct phylogenies. Reconstructed RH1 sequences at internal nodes of the bat species phylogeny showed that: (1) Old-World fruit bats share an amino acid change (S270G) with the tomb bat; (2) Miniopterus share two amino acid changes (V104I, M183L) with Rhinolophoidea; (3) the amino acid replacement I123V occurred independently on four branches, and the replacements L99M, L266V and I286V occurred each on two branches. The multiple parallel amino acid replacements that occurred in the evolution of bat RH1 suggest the possibility of multiple convergences of their ecological specialization (i.e., various photic environments) during adaptation for the nocturnal lifestyle, and suggest that further attention is needed on the study of the ecology and behavior of bats. PMID:20098620

  4. Fossils and decapod phylogeny

    NARCIS (Netherlands)

    Schram, Frederick R.; Dixon, Christopher

    2003-01-01

    An expanded series of morphological characters developed for a cladistic analysis of extant decapods has yielded a new hypothesis for the phylogeny of the group. Application of this database to selected fossil genera produces some interesting results and demonstrates the feasibility of treating

  5. Effects of sample size on differential gene expression, rank order and prediction accuracy of a gene signature.

    Directory of Open Access Journals (Sweden)

    Cynthia Stretch

    Full Text Available Top differentially expressed gene lists are often inconsistent between studies and it has been suggested that small sample sizes contribute to lack of reproducibility and poor prediction accuracy in discriminative models. We considered sex differences (69♂, 65 ♀ in 134 human skeletal muscle biopsies using DNA microarray. The full dataset and subsamples (n = 10 (5 ♂, 5 ♀ to n = 120 (60 ♂, 60 ♀ thereof were used to assess the effect of sample size on the differential expression of single genes, gene rank order and prediction accuracy. Using our full dataset (n = 134, we identified 717 differentially expressed transcripts (p<0.0001 and we were able predict sex with ~90% accuracy, both within our dataset and on external datasets. Both p-values and rank order of top differentially expressed genes became more variable using smaller subsamples. For example, at n = 10 (5 ♂, 5 ♀, no gene was considered differentially expressed at p<0.0001 and prediction accuracy was ~50% (no better than chance. We found that sample size clearly affects microarray analysis results; small sample sizes result in unstable gene lists and poor prediction accuracy. We anticipate this will apply to other phenotypes, in addition to sex.

  6. Internal phylogeny of the Chilopoda (Myriapoda, Arthropoda) using complete 18S rDNA and partial 28S rDNA sequences.

    OpenAIRE

    Giribet, G; Carranza, S; Riutort, M; Baguñà, J; Ribera, C

    1999-01-01

    The internal phylogeny of the 'myriapod' class Chilopoda is evaluated for 12 species belonging to the five extant centipede orders, using 18S rDNA complete gene sequence and 28S rDNA partial gene sequence data. Equally and differentially weighted parsimony, neighbour-joining and maximum-likelihood were used for phylogenetic reconstruction, and bootstrapping and branch support analyses were performed to evaluate tree topology stability. The results show that the Chilopoda constitute a monophyl...

  7. Systematic investigations of gene effects on both topologies and supports: An Echinococcus illustration.

    Science.gov (United States)

    Guyeux, Christophe; Chrétien, Stéphane; Côté, Nathalie M-L; Bahi, Jacques M

    2017-10-01

    In this paper, we propose a high performance computing toolbox implementing efficient statistical methods for the study of phylogenies. This toolbox, which implements logit models and LASSO-type penalties, gives a way to better understand, measure, and compare the impact of each gene on a global phylogeny. As an application, we study the Echinococcus phylogeny, which is often considered as a particularly difficult example. Mitochondrial and nuclear genomes (19 coding sequences) of nine Echinococcus species are considered in order to investigate the molecular phylogeny of this genus. First, we check that the 19 gene trees lead to 19 totally different unsupported topologies (a topology is the sister relationship when both branch lengths and supports are ignored in a phylogenetic tree), while using the 19 genes as a whole are not sufficient for estimating the phylogeny. In order to circumvent this issue and understand the impact of the genes, we computed 43,796 trees using combinations ranging from 13 to 19 genes. By doing so, 15 topologies are obtained. Four particular topologies, appearing more robust and frequent, are then selected for more precise investigation. Refining further our statistical analysis, a particularly robust topology is extracted. We also carefully demonstrate the influence of nuclear genes on the likelihood of the phylogeny.

  8. Phylogeny reconstruction and hybrid analysis of populus (Salicaceae) based on nucleotide sequences of multiple single-copy nuclear genes and plastid fragments.

    Science.gov (United States)

    Wang, Zhaoshan; Du, Shuhui; Dayanandan, Selvadurai; Wang, Dongsheng; Zeng, Yanfei; Zhang, Jianguo

    2014-01-01

    Populus (Salicaceae) is one of the most economically and ecologically important genera of forest trees. The complex reticulate evolution and lack of highly variable orthologous single-copy DNA markers have posed difficulties in resolving the phylogeny of this genus. Based on a large data set of nuclear and plastid DNA sequences, we reconstructed robust phylogeny of Populus using parsimony, maximum likelihood and Bayesian inference methods. The resulting phylogenetic trees showed better resolution at both inter- and intra-sectional level than previous studies. The results revealed that (1) the plastid-based phylogenetic tree resulted in two main clades, suggesting an early divergence of the maternal progenitors of Populus; (2) three advanced sections (Populus, Aigeiros and Tacamahaca) are of hybrid origin; (3) species of the section Tacamahaca could be divided into two major groups based on plastid and nuclear DNA data, suggesting a polyphyletic nature of the section; and (4) many species proved to be of hybrid origin based on the incongruence between plastid and nuclear DNA trees. Reticulate evolution may have played a significant role in the evolution history of Populus by facilitating rapid adaptive radiations into different environments.

  9. Phylogeny reconstruction and hybrid analysis of populus (Salicaceae based on nucleotide sequences of multiple single-copy nuclear genes and plastid fragments.

    Directory of Open Access Journals (Sweden)

    Zhaoshan Wang

    Full Text Available Populus (Salicaceae is one of the most economically and ecologically important genera of forest trees. The complex reticulate evolution and lack of highly variable orthologous single-copy DNA markers have posed difficulties in resolving the phylogeny of this genus. Based on a large data set of nuclear and plastid DNA sequences, we reconstructed robust phylogeny of Populus using parsimony, maximum likelihood and Bayesian inference methods. The resulting phylogenetic trees showed better resolution at both inter- and intra-sectional level than previous studies. The results revealed that (1 the plastid-based phylogenetic tree resulted in two main clades, suggesting an early divergence of the maternal progenitors of Populus; (2 three advanced sections (Populus, Aigeiros and Tacamahaca are of hybrid origin; (3 species of the section Tacamahaca could be divided into two major groups based on plastid and nuclear DNA data, suggesting a polyphyletic nature of the section; and (4 many species proved to be of hybrid origin based on the incongruence between plastid and nuclear DNA trees. Reticulate evolution may have played a significant role in the evolution history of Populus by facilitating rapid adaptive radiations into different environments.

  10. Intranuclear and higher-order chromatin organization of the major histone gene cluster in breast cancer.

    Science.gov (United States)

    Fritz, Andrew J; Ghule, Prachi N; Boyd, Joseph R; Tye, Coralee E; Page, Natalie A; Hong, Deli; Shirley, David J; Weinheimer, Adam S; Barutcu, Ahmet R; Gerrard, Diana L; Frietze, Seth; van Wijnen, Andre J; Zaidi, Sayyed K; Imbalzano, Anthony N; Lian, Jane B; Stein, Janet L; Stein, Gary S

    2018-02-01

    Alterations in nuclear morphology are common in cancer progression. However, the degree to which gross morphological abnormalities translate into compromised higher-order chromatin organization is poorly understood. To explore the functional links between gene expression and chromatin structure in breast cancer, we performed RNA-seq gene expression analysis on the basal breast cancer progression model based on human MCF10A cells. Positional gene enrichment identified the major histone gene cluster at chromosome 6p22 as one of the most significantly upregulated (and not amplified) clusters of genes from the normal-like MCF10A to premalignant MCF10AT1 and metastatic MCF10CA1a cells. This cluster is subdivided into three sub-clusters of histone genes that are organized into hierarchical topologically associating domains (TADs). Interestingly, the sub-clusters of histone genes are located at TAD boundaries and interact more frequently with each other than the regions in-between them, suggesting that the histone sub-clusters form an active chromatin hub. The anchor sites of loops within this hub are occupied by CTCF, a known chromatin organizer. These histone genes are transcribed and processed at a specific sub-nuclear microenvironment termed the major histone locus body (HLB). While the overall chromatin structure of the major HLB is maintained across breast cancer progression, we detected alterations in its structure that may relate to gene expression. Importantly, breast tumor specimens also exhibit a coordinate pattern of upregulation across the major histone gene cluster. Our results provide a novel insight into the connection between the higher-order chromatin organization of the major HLB and its regulation during breast cancer progression. © 2017 Wiley Periodicals, Inc.

  11. An efficiency analysis of high-order combinations of gene-gene interactions using multifactor-dimensionality reduction.

    Science.gov (United States)

    Yang, Cheng-Hong; Lin, Yu-Da; Yang, Cheng-San; Chuang, Li-Yeh

    2015-07-01

    Multifactor dimensionality reduction (MDR) is widely used to analyze interactions of genes to determine the complex relationship between diseases and polymorphisms in humans. However, the astronomical number of high-order combinations makes MDR a highly time-consuming process which can be difficult to implement for multiple tests to identify more complex interactions between genes. This study proposes a new framework, named fast MDR (FMDR), which is a greedy search strategy based on the joint effect property. Six models with different minor allele frequencies (MAFs) and different sample sizes were used to generate the six simulation data sets. A real data set was obtained from the mitochondrial D-loop of chronic dialysis patients. Comparison of results from the simulation data and real data sets showed that FMDR identified significant gene-gene interaction with less computational complexity than the MDR in high-order interaction analysis. FMDR improves the MDR difficulties associated with the computational loading of high-order SNPs and can be used to evaluate the relative effects of each individual SNP on disease susceptibility. FMDR is freely available at http://bioinfo.kmu.edu.tw/FMDR.rar .

  12. Constructing computer virus phylogenies

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, L.A. [Warwick Univ., Coventry (United Kingdom) Dept. of Computer Science; Goldberg, P.W. [Aston Univ., Birmingham (United Kingdom) Dept. of Applied Mathematics; Phillips, C.A. [Sandia National Labs., Albuquerque, NM (United States); Sorkin, G.B. [International Business Machines Corp., Yorktown Heights, NY (United States). Thomas J. Watson Research Center

    1996-03-01

    There has been much recent algorithmic work on the problem of reconstructing the evolutionary history of biological species. Computer virus specialists are interested in finding the evolutionary history of computer viruses--a virus is often written using code fragments from one or more other viruses, which are its immediate ancestors. A phylogeny for a collection of computer viruses is a directed acyclic graph whose nodes are the viruses and whose edges map ancestors to descendants and satisfy the property that each code fragment is ``invented`` only once. To provide a simple explanation for the data, we consider the problem of constructing such a phylogeny with a minimal number of edges. In general, this optimization problem cannot be solved in quasi-polynomial time unless NQP=QP; we present positive and negative results for associated approximated problems. When tree solutions exist, they can be constructed and randomly sampled in polynomial time.

  13. Mapping Mutations on Phylogenies

    DEFF Research Database (Denmark)

    Nielsen, Rasmus

    2005-01-01

    This chapter provides a short review of recent methodologies developed for mapping mutations on phylogenies. Mapping of mutations, or character changes in general, using the maximum parsimony principle has been one of the most powerful tools in phylogenetics, and it has been used in a variety...... uncertainty in the mapping. Recently developed probabilistic methods can incorporate statistical uncertainty in the character mappings. In these methods, focus is on a probability distribution of mutational mappings instead of a single estimate of the mutational mapping....

  14. Phylogeny and Systematics of Leptomyxid Amoebae (Amoebozoa, Tubulinea, Leptomyxida)

    NARCIS (Netherlands)

    Smirnov, Alexey; Nassonova, Elena; Geisen, Stefan; Bonkowski, Michael; Kudryavtsev, Alexander; Berney, Cedric; Glotova, Anna; Bondarenko, Natalya; Dyková, Iva; Mrva, Martin; Fahrni, Jose; Pawlowski, Jan

    2017-01-01

    We describe four new species of Flabellula, Leptomyxa and Rhizamoeba and publish new SSU rRNA gene and actin gene sequences of leptomyxids. Using these data we provide the most comprehensive SSU phylogeny of leptomyxids to date. Based on the analyses of morphological data and results of the SSU rRNA

  15. Tumor Classification Using High-Order Gene Expression Profiles Based on Multilinear ICA

    Directory of Open Access Journals (Sweden)

    Ming-gang Du

    2009-01-01

    Full Text Available Motivation. Independent Components Analysis (ICA maximizes the statistical independence of the representational components of a training gene expression profiles (GEP ensemble, but it cannot distinguish relations between the different factors, or different modes, and it is not available to high-order GEP Data Mining. In order to generalize ICA, we introduce Multilinear-ICA and apply it to tumor classification using high order GEP. Firstly, we introduce the basis conceptions and operations of tensor and recommend Support Vector Machine (SVM classifier and Multilinear-ICA. Secondly, the higher score genes of original high order GEP are selected by using t-statistics and tabulate tensors. Thirdly, the tensors are performed by Multilinear-ICA. Finally, the SVM is used to classify the tumor subtypes. Results. To show the validity of the proposed method, we apply it to tumor classification using high order GEP. Though we only use three datasets, the experimental results show that the method is effective and feasible. Through this survey, we hope to gain some insight into the problem of high order GEP tumor classification, in aid of further developing more effective tumor classification algorithms.

  16. Genome rearrangements and phylogeny reconstruction in Yersinia pestis.

    Science.gov (United States)

    Bochkareva, Olga O; Dranenko, Natalia O; Ocheredko, Elena S; Kanevsky, German M; Lozinsky, Yaroslav N; Khalaycheva, Vera A; Artamonova, Irena I; Gelfand, Mikhail S

    2018-01-01

    Genome rearrangements have played an important role in the evolution of Yersinia pestis from its progenitor Yersinia pseudotuberculosis . Traditional phylogenetic trees for Y. pestis based on sequence comparison have short internal branches and low bootstrap supports as only a small number of nucleotide substitutions have occurred. On the other hand, even a small number of genome rearrangements may resolve topological ambiguities in a phylogenetic tree. We reconstructed phylogenetic trees based on genome rearrangements using several popular approaches such as Maximum likelihood for Gene Order and the Bayesian model of genome rearrangements by inversions. We also reconciled phylogenetic trees for each of the three CRISPR loci to obtain an integrated scenario of the CRISPR cassette evolution. Analysis of contradictions between the obtained evolutionary trees yielded numerous parallel inversions and gain/loss events. Our data indicate that an integrated analysis of sequence-based and inversion-based trees enhances the resolution of phylogenetic reconstruction. In contrast, reconstructions of strain relationships based on solely CRISPR loci may not be reliable, as the history is obscured by large deletions, obliterating the order of spacer gains. Similarly, numerous parallel gene losses preclude reconstruction of phylogeny based on gene content.

  17. Molecular phylogeny of the neritidae (Gastropoda: Neritimorpha) based on the mitochondrial genes cytochrome oxidase I (COI) and 16S rRNA

    International Nuclear Information System (INIS)

    Quintero Galvis, Julian Fernando; Castro, Lyda Raquel

    2013-01-01

    The family Neritidae has representatives in tropical and subtropical regions that occur in a variety of environments, and its known fossil record dates back to the late Cretaceous. However there have been few studies of molecular phylogeny in this family. We performed a phylogenetic reconstruction of the family Neritidae using the COI (722 bp) and the 16S rRNA (559 bp) regions of the mitochondrial genome. Neighbor-joining, maximum parsimony and Bayesian inference were performed. The best phylogenetic reconstruction was obtained using the COI region, and we consider it an appropriate marker for phylogenetic studies within the group. Consensus analysis (COI +16S rRNA) generally obtained the same tree topologies and confirmed that the genus Nerita is monophyletic. The consensus analysis using parsimony recovered a monophyletic group consisting of the genera Neritina, Septaria, Theodoxus, Puperita, and Clithon, while in the Bayesian analyses Theodoxus is separated from the other genera. The phylogenetic status of the species from the genus Nerita from the Colombian Caribbean generated in this study was consistent with that reported for the genus in previous studies. In the resulting consensus tree obtained using maximum parsimony, we included information on habitat type for each species, to map the evolution by habitat. Species of the family Neritidae possibly have their origin in marine environments, which is consistent with conclusions from previous reports based on anatomical studies.

  18. Correction: Dermatan sulfate in tunicate phylogeny: Order-specific sulfation pattern and the effect of [→4IdoA(2-Sulfateβ-1→3GalNAc(4-Sulfateβ-1→] motifs in dermatan sulfate on heparin cofactor II activity

    Directory of Open Access Journals (Sweden)

    Sugahara Kazuyuki

    2011-07-01

    Full Text Available Abstract After the publication of the work entitled "Dermatan sulfate in tunicate phylogeny: Order-specific sulfation pattern and the effect of [→4IdoA(2-Sulfateβ-1→3GalNAc(4-Sulfateβ-1→] motifs in dermatan sulfate on heparin cofactor II activity", by Kozlowski et al., BMC Biochemistry 2011, 12:29, we found that the legends to Figures 2 to 5 contain serious mistakes that compromise the comprehension of the work. This correction article contains the correct text of the legends to Figures 2 to 5.

  19. Shark tales: a molecular species-level phylogeny of sharks (Selachimorpha, Chondrichthyes).

    Science.gov (United States)

    Vélez-Zuazo, Ximena; Agnarsson, Ingi

    2011-02-01

    Sharks are a diverse and ecologically important group, including some of the ocean's largest predatory animals. Sharks are also commercially important, with many species suffering overexploitation and facing extinction. However, despite a long evolutionary history, commercial, and conservation importance, phylogenetic relationships within the sharks are poorly understood. To date, most studies have either focused on smaller clades within sharks, or sampled taxa sparsely across the group. A more detailed species-level phylogeny will offer further insights into shark taxonomy, provide a tool for comparative analyses, as well as facilitating phylogenetic estimates of conservation priorities. We used four mitochondrial and one nuclear gene to investigate the phylogenetic relationships of 229 species (all eight Orders and 31 families) of sharks, more than quadrupling the number of taxon sampled in any prior study. The resulting Bayesian phylogenetic hypothesis agrees with prior studies on the major relationships of the sharks phylogeny; however, on those relationships that have proven more controversial, it differs in several aspects from the most recent molecular studies. The phylogeny supports the division of sharks into two major groups, the Galeomorphii and Squalimorphii, rejecting the hypnosqualean hypothesis that places batoids within sharks. Within the squalimorphs the orders Hexanchiformes, Squatiniformes, Squaliformes, and Pristiophoriformes are broadly monophyletic, with minor exceptions apparently due to missing data. Similarly, within Galeomorphs, the orders Heterodontiformes, Lamniformes, Carcharhiniformes, and Orectolobiformes are broadly monophyletic, with a couple of species 'misplaced'. In contrast, many of the currently recognized shark families are not monophyletic according to our results. Our phylogeny offers some of the first clarification of the relationships among families of the order Squaliformes, a group that has thus far received relatively

  20. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Baumgarten Andrew

    2004-06-01

    Full Text Available Abstract Background Most genes in Arabidopsis thaliana are members of gene families. How do the members of gene families arise, and how are gene family copy numbers maintained? Some gene families may evolve primarily through tandem duplication and high rates of birth and death in clusters, and others through infrequent polyploidy or large-scale segmental duplications and subsequent losses. Results Our approach to understanding the mechanisms of gene family evolution was to construct phylogenies for 50 large gene families in Arabidopsis thaliana, identify large internal segmental duplications in Arabidopsis, map gene duplications onto the segmental duplications, and use this information to identify which nodes in each phylogeny arose due to segmental or tandem duplication. Examples of six gene families exemplifying characteristic modes are described. Distributions of gene family sizes and patterns of duplication by genomic distance are also described in order to characterize patterns of local duplication and copy number for large gene families. Both gene family size and duplication by distance closely follow power-law distributions. Conclusions Combining information about genomic segmental duplications, gene family phylogenies, and gene positions provides a method to evaluate contributions of tandem duplication and segmental genome duplication in the generation and maintenance of gene families. These differences appear to correspond meaningfully to differences in functional roles of the members of the gene families.

  1. Gene order data from a model amphibian (Ambystoma: new perspectives on vertebrate genome structure and evolution

    Directory of Open Access Journals (Sweden)

    Voss S Randal

    2006-08-01

    Full Text Available Abstract Background Because amphibians arise from a branch of the vertebrate evolutionary tree that is juxtaposed between fishes and amniotes, they provide important comparative perspective for reconstructing character changes that have occurred during vertebrate evolution. Here, we report the first comparative study of vertebrate genome structure that includes a representative amphibian. We used 491 transcribed sequences from a salamander (Ambystoma genetic map and whole genome assemblies for human, mouse, rat, dog, chicken, zebrafish, and the freshwater pufferfish Tetraodon nigroviridis to compare gene orders and rearrangement rates. Results Ambystoma has experienced a rate of genome rearrangement that is substantially lower than mammalian species but similar to that of chicken and fish. Overall, we found greater conservation of genome structure between Ambystoma and tetrapod vertebrates, nevertheless, 57% of Ambystoma-fish orthologs are found in conserved syntenies of four or more genes. Comparisons between Ambystoma and amniotes reveal extensive conservation of segmental homology for 57% of the presumptive Ambystoma-amniote orthologs. Conclusion Our analyses suggest relatively constant interchromosomal rearrangement rates from the euteleost ancestor to the origin of mammals and illustrate the utility of amphibian mapping data in establishing ancestral amniote and tetrapod gene orders. Comparisons between Ambystoma and amniotes reveal some of the key events that have structured the human genome since diversification of the ancestral amniote lineage.

  2. Phylogeny of C4-photosynthesis enzymes based on algal transcriptomic and genomic data supports an archaeal/proteobacterial origin and multiple duplication for most C4-related genes.

    Directory of Open Access Journals (Sweden)

    Shan Chi

    Full Text Available Both Calvin-Benson-Bassham (C3 and Hatch-Slack (C4 cycles are most important autotrophic CO2 fixation pathways on today's Earth. C3 cycle is believed to be originated from cyanobacterial endosymbiosis. However, studies on evolution of different biochemical variants of C4 photosynthesis are limited to tracheophytes and origins of C4-cycle genes are not clear till now. Our comprehensive analyses on bioinformatics and phylogenetics of novel transcriptomic sequencing data of 21 rhodophytes and 19 Phaeophyceae marine species and public genomic data of more algae, tracheophytes, cyanobacteria, proteobacteria and archaea revealed the origin and evolution of C4 cycle-related genes. Almost all of C4-related genes were annotated in extensive algal lineages with proteobacterial or archaeal origins, except for phosphoenolpyruvate carboxykinase (PCK and aspartate aminotransferase (AST with both cyanobacterial and archaeal/proteobacterial origin. Notably, cyanobacteria may not possess complete C4 pathway because of the flawed annotation of pyruvate orthophosphate dikinase (PPDK genes in public data. Most C4 cycle-related genes endured duplication and gave rise to functional differentiation and adaptation in different algal lineages. C4-related genes of NAD-ME (NAD-malic enzyme and PCK subtypes exist in most algae and may be primitive ones, while NADP-ME (NADP-malic enzyme subtype genes might evolve from NAD-ME subtype by gene duplication in chlorophytes and tracheophytes.

  3. A Comprehensive Analysis of the Phylogeny, Genomic Organization and Expression of Immunoglobulin Light Chain Genes in Alligator sinensis, an Endangered Reptile Species

    Science.gov (United States)

    Lu, Yan; Zhang, Chenglin; Wu, Xiaobing; Han, Haitang; Zhao, Yaofeng; Ren, Liming

    2016-01-01

    Crocodilians are evolutionarily distinct reptiles that are distantly related to lizards and are thought to be the closest relatives of birds. Compared with birds and mammals, few studies have investigated the Ig light chain of crocodilians. Here, employing an Alligator sinensis genomic bacterial artificial chromosome (BAC) library and available genome data, we characterized the genomic organization of the Alligator sinensis IgL gene loci. The Alligator sinensis has two IgL isotypes, λ and κ, the same as Anolis carolinensis. The Igλ locus contains 6 Cλ genes, each preceded by a Jλ gene, and 86 potentially functional Vλ genes upstream of (Jλ-Cλ)n. The Igκ locus contains a single Cκ gene, 6 Jκs and 62 functional Vκs. All VL genes are classified into a total of 31 families: 19 Vλ families and 12 Vκ families. Based on an analysis of the chromosomal location of the light chain genes among mammals, birds, lizards and frogs, the data further confirm that there are two IgL isotypes in the Alligator sinensis: Igλ and Igκ. By analyzing the cloned Igλ/κ cDNA, we identified a biased usage pattern of V families in the expressed Vλ and Vκ. An analysis of the junctions of the recombined VJ revealed the presence of N and P nucleotides in both expressed λ and κ sequences. Phylogenetic analysis of the V genes revealed V families shared by mammals, birds, reptiles and Xenopus, suggesting that these conserved V families are orthologous and have been retained during the evolution of IgL. Our data suggest that the Alligator sinensis IgL gene repertoire is highly diverse and complex and provide insight into immunoglobulin gene evolution in vertebrates. PMID:26901135

  4. Phylogeny of nodulation and nitrogen-fixation genes in Bradyrhizobium: supporting evidence for the theory of monophyletic origin, and spread and maintenance by both horizontal and vertical transfer.

    Science.gov (United States)

    Menna, Pâmela; Hungria, Mariangela

    2011-12-01

    Bacteria belonging to the genus Bradyrhizobium are capable of establishing symbiotic relationships with a broad range of plants belonging to the three subfamilies of the family Leguminosae (=Fabaceae), with the formation of specialized structures on the roots called nodules, where fixation of atmospheric nitrogen takes place. Symbiosis is under the control of finely tuned expression of common and host-specific nodulation genes and also of genes related to the assembly and activity of the nitrogenase, which, in Bradyrhizobium strains investigated so far, are clustered in a symbiotic island. Information about the diversity of these genes is essential to improve our current poor understanding of their origin, spread and maintenance and, in this study, we provide information on 40 Bradyrhizobium strains, mostly of tropical origin. For the nodulation trait, common (nodA), Bradyrhizobium-specific (nodY/K) and host-specific (nodZ) nodulation genes were studied, whereas for fixation ability, the diversity of nifH was investigated. In general, clustering of strains in all nod and nifH trees was similar and the Bradyrhizobium group could be clearly separated from other rhizobial genera. However, the congruence of nod and nif genes with ribosomal and housekeeping genes was low. nodA and nodY/K were not detected in three strains by amplification or hybridization with probes using Bradyrhizobium japonicum and Bradyrhizobium elkanii type strains, indicating the high diversity of these genes or that strains other than photosynthetic Bradyrhizobium must have alternative mechanisms to initiate the process of nodulation. For a large group of strains, the high diversity of nod genes (with an emphasis on nodZ), the low relationship between nod genes and the host legume, and some evidence of horizontal gene transfer might indicate strategies to increase host range. On the other hand, in a group of five symbionts of Acacia mearnsii, the high congruence between nod and ribosomal

  5. Molecular phylogeny, morphology, pigment chemistry and ecology in Hygrophoraceae (Agaricales)

    Science.gov (United States)

    D. Jean Lodge; Mahajabeen Padamsee; P. Brandon Matheny; M. Catherine Aime; Sharon A. Cantrell; David Boertmann; Alexander Kovalenko; Alfredo Vizzini; Bryn T.M. Dentinger; Paul M. Kirk; A. Martin Ainsworth; Jean-Marc Moncalvo; Rytas Vilgalys; Ellen Larsson; Robert Lucking; Gareth W. Griffith; Matthew E. Smith; Lorilei L. Norvell; Dennis E. Desjardin; Scott A. Redhead; Clark L. Ovrebo; Edgar B. Lickey; Enrico Ercole; Karen W. Hughes; Regis Courtecuisse; Anthony Young; Manfred Binder; Andrew M. Minnis; Daniel L. Lindner; Beatriz Ortiz-Santana; John Haight; Thomas Laessoe; Timothy J. Baroni; Jozsef Geml; Tsutomu Hattori

    2013-01-01

    Molecular phylogenies using 1–4 gene regions and information on ecology, morphology and pigment chemistry were used in a partial revision of the agaric family Hygrophoraceae. The phylogenetically supported genera we recognize here in the Hygrophoraceae based on these and previous analyses are: Acantholichen, Ampulloclitocybe, Arrhenia, Cantharellula, Cantharocybe,...

  6. Non-canonical structure, function and phylogeny of the Bsister MADS-box gene OsMADS30 of rice (Oryza sativa).

    Science.gov (United States)

    Schilling, Susanne; Gramzow, Lydia; Lobbes, Dajana; Kirbis, Alexander; Weilandt, Lisa; Hoffmeier, Andrea; Junker, Astrid; Weigelt-Fischer, Kathleen; Klukas, Christian; Wu, Feng; Meng, Zheng; Altmann, Thomas; Theißen, Günter

    2015-12-01

    Bsister MADS-box genes play key roles in female reproductive organ and seed development throughout seed plants. This view is supported by their high conservation in terms of sequence, expression and function. In grasses, there are three subclades of Bsister genes: the OsMADS29-, the OsMADS30- and the OsMADS31-like genes. Here, we report on the evolution of the OsMADS30-like genes. Our analyses indicate that these genes evolved under relaxed purifying selection and are rather weakly expressed. OsMADS30, the representative of the OsMADS30-like genes from rice (Oryza sativa), shows strong sequence deviations in its 3' region when compared to orthologues from other grass species. We show that this is due to a 2.4-kbp insertion, possibly of a hitherto unknown helitron, which confers a heterologous C-terminal domain to OsMADS30. This putative helitron is not present in the OsMADS30 orthologues from closely related wild rice species, pointing to a relatively recent insertion event. Unlike other Bsister mutants O. sativa plants carrying a T-DNA insertion in the OsMADS30 gene do not show aberrant seed phenotypes, indicating that OsMADS30 likely does not have a canonical 'Bsister function'. However, imaging-based phenotyping of the T-DNA carrying plants revealed alterations in shoot size and architecture. We hypothesize that sequence deviations that accumulated during a period of relaxed selection in the gene lineage that led to OsMADS30 and the alteration of the C-terminal domain might have been a precondition for a potential neo-functionalization of OsMADS30 in O. sativa. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  7. The shape of mammalian phylogeny

    DEFF Research Database (Denmark)

    Purvis, Andy; Fritz, Susanne A; Rodríguez, Jesús

    2011-01-01

    Mammalian phylogeny is far too asymmetric for all contemporaneous lineages to have had equal chances of diversifying. We consider this asymmetry or imbalance from four perspectives. First, we infer a minimal set of 'regime changes'-points at which net diversification rate has changed-identifying 15...... six simple macroevolutionary models, showing that those where speciation slows down as geographical or niche space is filled, produce more realistic phylogenies than do models involving key innovations. Lastly, an analysis of the spatial scaling of imbalance shows that the phylogeny of species within...... an assemblage, ecoregion or larger area always tends to be more unbalanced than expected from the phylogeny of species at the next more inclusive spatial scale. We conclude with a verbal model of mammalian macroevolution, which emphasizes the importance to diversification of accessing new regions...

  8. Morphological characters are compatible with mitogenomic data in resolving the phylogeny of nymphalid butterflies (lepidoptera: papilionoidea: nymphalidae).

    Science.gov (United States)

    Shi, Qing-Hui; Sun, Xiao-Yan; Wang, Yun-Liang; Hao, Jia-Sheng; Yang, Qun

    2015-01-01

    Nymphalidae is the largest family of butterflies with their phylogenetic relationships not adequately approached to date. The mitochondrial genomes (mitogenomes) of 11 new nymphalid species were reported and a comparative mitogenomic analysis was conducted together with other 22 available nymphalid mitogenomes. A phylogenetic analysis of the 33 species from all 13 currently recognized nymphalid subfamilies was done based on the mitogenomic data set with three Lycaenidae species as the outgroups. The mitogenome comparison showed that the eleven new mitogenomes were similar with those of other butterflies in gene content and order. The reconstructed phylogenetic trees reveal that the nymphalids are made up of five major clades (the nymphaline, heliconiine, satyrine, danaine and libytheine clades), with sister relationship between subfamilies Cyrestinae and Biblidinae, and most likely between subfamilies Morphinae and Satyrinae. This whole mitogenome-based phylogeny is generally congruent with those of former studies based on nuclear-gene and mitogenomic analyses, but differs considerably from the result of morphological cladistic analysis, such as the basal position of Libytheinae in morpho-phylogeny is not confirmed in molecular studies. However, we found that the mitogenomic phylogeny established herein is compatible with selected morphological characters (including developmental and adult morpho-characters).

  9. Phylogeny of Gobioidei and the origin of European gobies

    Directory of Open Access Journals (Sweden)

    Ainhoa Agorreta

    2015-11-01

    Full Text Available The percomorph order Gobioidei comprises over 2200 species worldwide distributed that occupy most freshwater, brackish and marine environments, and show a spectacular variety in morphology, ecology, and behaviour. However, phylogenetic relationships among many gobioid groups still remain poorly understood. Such is the case of Gobiidae, a rapidly radiating lineage that encompass an unusually high diversity of species (nearly 2000, including the largely endemic European species whose origin and ancestry remain uncertain. The resolution and accuracy of previous molecular phylogenetic studies has been limited due to the use of only a few (generally mitochondrial molecular markers and/or the absence of representatives of several key lineages. Our study (built on Agorreta et al. 2013 is the first to include multiple nuclear and mitochondrial genes for nearly 300 terminal taxa representing the vast diversity of gobioid lineages. We have used this information to reconstruct a robust phylogeny of Gobioidei, and we are now investigating the historical biogeography and diversification times of European gobies with a time-calibrated molecular phylogeny. Robustness of the inferred phylogenetic trees is significantly higher than that of previous studies, hence providing the most compelling molecular phylogenetic hypotheses for Gobioidei thus far. The family Eleotrididae branches off the gobioid tree after the Rhyacichthyidae + Odontobutidae clade followed by the Butidae as the sister-group of the Gobiidae. Several monophyletic groups are identified within the two major Gobiidae subclades, the gobionelline-like and the gobiine-like gobiids. The European gobies cluster in three distinct lineages (Pomatoschistus-, Aphia-, and Gobius-lineages, each with different affinities with gobiids from the Indo-Pacific and perhaps the New World. Our ongoing more-detailed study on European gobies will reveal whether their origin is related to vicariant events linked to the

  10. Phylogeny-function analysis of (meta)genomic libraries: screening for expression of ribosomal RNA genes by large-insert library fluorescent in situ hybridization (LIL-FISH)

    NARCIS (Netherlands)

    Leveau, J.H.J.; Gerards, S.; De Boer, W.; Van Veen, J.A.

    2004-01-01

    We assessed the utility of fluorescent in situ hybridization (FISH) in the screening of clone libraries of (meta)genomic or environmental DNA for the presence and expression of bacterial ribosomal RNA (rRNA) genes. To establish proof-of-principle, we constructed a fosmid-based library in Escherichia

  11. Intra- and inter-isolate variation of ribosomal and protein-coding genes in Pleurotus: implications for molecular identification and phylogeny on fungal groups.

    Science.gov (United States)

    He, Xiao-Lan; Li, Qian; Peng, Wei-Hong; Zhou, Jie; Cao, Xue-Lian; Wang, Di; Huang, Zhong-Qian; Tan, Wei; Li, Yu; Gan, Bing-Cheng

    2017-06-26

    The internal transcribed spacer (ITS), RNA polymerase II second largest subunit (RPB2), and elongation factor 1-alpha (EF1α) are often used in fungal taxonomy and phylogenetic analysis. As we know, an ideal molecular marker used in molecular identification and phylogenetic studies is homogeneous within species, and interspecific variation exceeds intraspecific variation. However, during our process of performing ITS, RPB2, and EF1α sequencing on the Pleurotus spp., we found that intra-isolate sequence polymorphism might be present in these genes because direct sequencing of PCR products failed in some isolates. Therefore, we detected intra- and inter-isolate variation of the three genes in Pleurotus by polymerase chain reaction amplification and cloning in this study. Results showed that intra-isolate variation of ITS was not uncommon but the polymorphic level in each isolate was relatively low in Pleurotus; intra-isolate variations of EF1α and RPB2 sequences were present in an unexpectedly high amount. The polymorphism level differed significantly between ITS, RPB2, and EF1α in the same individual, and the intra-isolate heterogeneity level of each gene varied between isolates within the same species. Intra-isolate and intraspecific variation of ITS in the tested isolates was less than interspecific variation, and intra-isolate and intraspecific variation of RPB2 was probably equal with interspecific divergence. Meanwhile, intra-isolate and intraspecific variation of EF1α could exceed interspecific divergence. These findings suggested that RPB2 and EF1α are not desirable barcoding candidates for Pleurotus. We also discussed the reason why rDNA and protein-coding genes showed variants within a single isolate in Pleurotus, but must be addressed in further research. Our study demonstrated that intra-isolate variation of ribosomal and protein-coding genes are likely widespread in fungi. This has implications for studies on fungal evolution, taxonomy

  12. Mega-phylogeny approach for comparative biology: an alternative to supertree and supermatrix approaches

    Directory of Open Access Journals (Sweden)

    Beaulieu Jeremy M

    2009-02-01

    required many more genes. These demonstrations underscore the importance of using large phylogenies to uncover important evolutionary patterns and we present a fast and simple method for constructing these phylogenies.

  13. Mega-phylogeny approach for comparative biology: an alternative to supertree and supermatrix approaches.

    Science.gov (United States)

    Smith, Stephen A; Beaulieu, Jeremy M; Donoghue, Michael J

    2009-02-11

    Biology has increasingly recognized the necessity to build and utilize larger phylogenies to address broad evolutionary questions. Large phylogenies have facilitated the discovery of differential rates of molecular evolution between trees and herbs. They have helped us understand the diversification patterns of mammals as well as the patterns of seed evolution. In addition to these broad evolutionary questions there is increasing awareness of the importance of large phylogenies for addressing conservation issues such as biodiversity hotspots and response to global change. Two major classes of methods have been employed to accomplish the large tree-building task: supertrees and supermatrices. Although these methods are continually being developed, they have yet to be made fully accessible to comparative biologists making extremely large trees rare. Here we describe and demonstrate a modified supermatrix method termed mega-phylogeny that uses databased sequences as well as taxonomic hierarchies to make extremely large trees with denser matrices than supermatrices. The two major challenges facing large-scale supermatrix phylogenetics are assembling large data matrices from databases and reconstructing trees from those datasets. The mega-phylogeny approach addresses the former as the latter is accomplished by employing recently developed methods that have greatly reduced the run time of large phylogeny construction. We present an algorithm that requires relatively little human intervention. The implemented algorithm is demonstrated with a dataset and phylogeny for Asterales (within Campanulidae) containing 4954 species and 12,033 sites and an rbcL matrix for green plants (Viridiplantae) with 13,533 species and 1,401 sites. By examining much larger phylogenies, patterns emerge that were otherwise unseen. The phylogeny of Viridiplantae successfully reconstructs major relationships of vascular plants that previously required many more genes. These demonstrations

  14. TIR-NBS-LRR genes are rare in monocots: evidence from diverse monocot orders

    Science.gov (United States)

    Tarr, D Ellen K; Alexander, Helen M

    2009-01-01

    Background Plant resistance (R) gene products recognize pathogen effector molecules. Many R genes code for proteins containing nucleotide binding site (NBS) and C-terminal leucine-rich repeat (LRR) domains. NBS-LRR proteins can be divided into two groups, TIR-NBS-LRR and non-TIR-NBS-LRR, based on the structure of the N-terminal domain. Although both classes are clearly present in gymnosperms and eudicots, only non-TIR sequences have been found consistently in monocots. Since most studies in monocots have been limited to agriculturally important grasses, it is difficult to draw conclusions. The purpose of our study was to look for evidence of these sequences in additional monocot orders. Findings Using degenerate PCR, we amplified NBS sequences from four monocot species (C. blanda, D. marginata, S. trifasciata, and Spathiphyllum sp.), a gymnosperm (C. revoluta) and a eudicot (C. canephora). We successfully amplified TIR-NBS-LRR sequences from dicot and gymnosperm DNA, but not from monocot DNA. Using databases, we obtained NBS sequences from additional monocots, magnoliids and basal angiosperms. TIR-type sequences were not present in monocot or magnoliid sequences, but were present in the basal angiosperms. Phylogenetic analysis supported a single TIR clade and multiple non-TIR clades. Conclusion We were unable to find monocot TIR-NBS-LRR sequences by PCR amplification or database searches. In contrast to previous studies, our results represent five monocot orders (Poales, Zingiberales, Arecales, Asparagales, and Alismatales). Our results establish the presence of TIR-NBS-LRR sequences in basal angiosperms and suggest that although these sequences were present in early land plants, they have been reduced significantly in monocots and magnoliids. PMID:19785756

  15. TIR-NBS-LRR genes are rare in monocots: evidence from diverse monocot orders

    Directory of Open Access Journals (Sweden)

    Tarr D Ellen K

    2009-09-01

    Full Text Available Abstract Background Plant resistance (R gene products recognize pathogen effector molecules. Many R genes code for proteins containing nucleotide binding site (NBS and C-terminal leucine-rich repeat (LRR domains. NBS-LRR proteins can be divided into two groups, TIR-NBS-LRR and non-TIR-NBS-LRR, based on the structure of the N-terminal domain. Although both classes are clearly present in gymnosperms and eudicots, only non-TIR sequences have been found consistently in monocots. Since most studies in monocots have been limited to agriculturally important grasses, it is difficult to draw conclusions. The purpose of our study was to look for evidence of these sequences in additional monocot orders. Findings Using degenerate PCR, we amplified NBS sequences from four monocot species (C. blanda, D. marginata, S. trifasciata, and Spathiphyllum sp., a gymnosperm (C. revoluta and a eudicot (C. canephora. We successfully amplified TIR-NBS-LRR sequences from dicot and gymnosperm DNA, but not from monocot DNA. Using databases, we obtained NBS sequences from additional monocots, magnoliids and basal angiosperms. TIR-type sequences were not present in monocot or magnoliid sequences, but were present in the basal angiosperms. Phylogenetic analysis supported a single TIR clade and multiple non-TIR clades. Conclusion We were unable to find monocot TIR-NBS-LRR sequences by PCR amplification or database searches. In contrast to previous studies, our results represent five monocot orders (Poales, Zingiberales, Arecales, Asparagales, and Alismatales. Our results establish the presence of TIR-NBS-LRR sequences in basal angiosperms and suggest that although these sequences were present in early land plants, they have been reduced significantly in monocots and magnoliids.

  16. Data partitions, Bayesian analysis and phylogeny of the zygomycetous fungal family Mortierellaceae, inferred from nuclear ribosomal DNA sequences.

    Directory of Open Access Journals (Sweden)

    Tamás Petkovits

    Full Text Available Although the fungal order Mortierellales constitutes one of the largest classical groups of Zygomycota, its phylogeny is poorly understood and no modern taxonomic revision is currently available. In the present study, 90 type and reference strains were used to infer a comprehensive phylogeny of Mortierellales from the sequence data of the complete ITS region and the LSU and SSU genes with a special attention to the monophyly of the genus Mortierella. Out of 15 alternative partitioning strategies compared on the basis of Bayes factors, the one with the highest number of partitions was found optimal (with mixture models yielding the best likelihood and tree length values, implying a higher complexity of evolutionary patterns in the ribosomal genes than generally recognized. Modeling the ITS1, 5.8S, and ITS2, loci separately improved model fit significantly as compared to treating all as one and the same partition. Further, within-partition mixture models suggests that not only the SSU, LSU and ITS regions evolve under qualitatively and/or quantitatively different constraints, but that significant heterogeneity can be found within these loci also. The phylogenetic analysis indicated that the genus Mortierella is paraphyletic with respect to the genera Dissophora, Gamsiella and Lobosporangium and the resulting phylogeny contradict previous, morphology-based sectional classification of Mortierella. Based on tree structure and phenotypic traits, we recognize 12 major clades, for which we attempt to summarize phenotypic similarities. M. longicollis is closely related to the outgroup taxon Rhizopus oryzae, suggesting that it belongs to the Mucorales. Our results demonstrate that traits used in previous classifications of the Mortierellales are highly homoplastic and that the Mortierellales is in a need of a reclassification, where new, phylogenetically informative phenotypic traits should be identified, with molecular phylogenies playing a decisive role.

  17. Mitochondrial genome sequence and gene order of Sipunculus nudus give additional support for an inclusion of Sipuncula into Annelida

    Directory of Open Access Journals (Sweden)

    Bartolomaeus Thomas

    2009-01-01

    Full Text Available Abstract Background Mitochondrial genomes are a valuable source of data for analysing phylogenetic relationships. Besides sequence information, mitochondrial gene order may add phylogenetically useful information, too. Sipuncula are unsegmented marine worms, traditionally placed in their own phylum. Recent molecular and morphological findings suggest a close affinity to the segmented Annelida. Results The first complete mitochondrial genome of a member of Sipuncula, Sipunculus nudus, is presented. All 37 genes characteristic for metazoan mtDNA were detected and are encoded on the same strand. The mitochondrial gene order (protein-coding and ribosomal RNA genes resembles that of annelids, but shows several derivations so far found only in Sipuncula. Sequence based phylogenetic analysis of mitochondrial protein-coding genes results in significant bootstrap support for Annelida sensu lato, combining Annelida together with Sipuncula, Echiura, Pogonophora and Myzostomida. Conclusion The mitochondrial sequence data support a close relationship of Annelida and Sipuncula. Also the most parsimonious explanation of changes in gene order favours a derivation from the annelid gene order. These results complement findings from recent phylogenetic analyses of nuclear encoded genes as well as a report of a segmental neural patterning in Sipuncula.

  18. Mitochondrial genome sequence and gene order of Sipunculus nudus give additional support for an inclusion of Sipuncula into Annelida.

    Science.gov (United States)

    Mwinyi, Adina; Meyer, Achim; Bleidorn, Christoph; Lieb, Bernhard; Bartolomaeus, Thomas; Podsiadlowski, Lars

    2009-01-16

    Mitochondrial genomes are a valuable source of data for analysing phylogenetic relationships. Besides sequence information, mitochondrial gene order may add phylogenetically useful information, too. Sipuncula are unsegmented marine worms, traditionally placed in their own phylum. Recent molecular and morphological findings suggest a close affinity to the segmented Annelida. The first complete mitochondrial genome of a member of Sipuncula, Sipunculus nudus, is presented. All 37 genes characteristic for metazoan mtDNA were detected and are encoded on the same strand. The mitochondrial gene order (protein-coding and ribosomal RNA genes) resembles that of annelids, but shows several derivations so far found only in Sipuncula. Sequence based phylogenetic analysis of mitochondrial protein-coding genes results in significant bootstrap support for Annelida sensu lato, combining Annelida together with Sipuncula, Echiura, Pogonophora and Myzostomida. The mitochondrial sequence data support a close relationship of Annelida and Sipuncula. Also the most parsimonious explanation of changes in gene order favours a derivation from the annelid gene order. These results complement findings from recent phylogenetic analyses of nuclear encoded genes as well as a report of a segmental neural patterning in Sipuncula.

  19. Phylogeny of metabolic networks: A spectral graph theoretical ...

    Indian Academy of Sciences (India)

    Many methods have been developed for finding the commonalities between different organisms in order to study their phylogeny. The structure of metabolic networks also reveals valuable insights into metabolic capacity of species as well as into the habitats where they have evolved. We constructed metabolic networks of ...

  20. Sequence diversity in the Dickeya fliC gene: phylogeny of the Dickeya genus and TaqMan® PCR for 'D. solani', new biovar 3 variant on potato in Europe.

    Science.gov (United States)

    Van Vaerenbergh, Johan; Baeyen, Steve; De Vos, Paul; Maes, Martine

    2012-01-01

    Worldwide, Dickeya (formerly Erwinia chrysanthemi) is causing soft rot diseases on a large diversity of crops and ornamental plants. Strains affecting potato are mainly found in D. dadantii, D. dianthicola and D. zeae, which appear to have a marked geographical distribution. Furthermore, a few Dickeya isolates from potato are attributed to D. chrysanthemi and D. dieffenbachiae. In Europe, isolates of Erwinia chrysanthemi biovar 1 and biovar 7 from potato are now classified in D. dianthicola. However, in the past few years, a new Dickeya biovar 3 variant, tentatively named 'Dickeya solani', has emerged as a common major threat, in particular in seed potatoes. Sequences of a fliC gene fragment were used to generate a phylogeny of Dickeya reference strains from culture collections and with this reference backbone, to classify pectinolytic isolates, i.e. Dickeya spp. from potato and ornamental plants. The reference strains of the currently recognized Dickeya species and 'D. solani' were unambiguously delineated in the fliC phylogram. D. dadantii, D. dianthicola and 'D. solani' displayed unbranched clades, while D. chrysanthemi, D. zeae and D. dieffenbachiae branched into subclades and lineages. Moreover, Dickeya isolates from diagnostic samples, in particular biovar 3 isolates from greenhouse ornamentals, formed several new lineages. Most of these isolates were positioned between the clade of 'D. solani' and D. dadantii as transition variants. New lineages also appeared in D. dieffenbachiae and in D. zeae. The strains and isolates of D. dianthicola and 'D. solani' were differentiated by a fliC sequence useful for barcode identification. A fliC TaqMan®real-time PCR was developed for 'D. solani' and the assay was provisionally evaluated in direct analysis of diagnostic potato samples. This molecular tool can support the efforts to control this particular phytopathogen in seed potato certification.

  1. Sequence diversity in the Dickeya fliC gene: phylogeny of the Dickeya genus and TaqMan® PCR for 'D. solani', new biovar 3 variant on potato in Europe.

    Directory of Open Access Journals (Sweden)

    Johan Van Vaerenbergh

    Full Text Available Worldwide, Dickeya (formerly Erwinia chrysanthemi is causing soft rot diseases on a large diversity of crops and ornamental plants. Strains affecting potato are mainly found in D. dadantii, D. dianthicola and D. zeae, which appear to have a marked geographical distribution. Furthermore, a few Dickeya isolates from potato are attributed to D. chrysanthemi and D. dieffenbachiae. In Europe, isolates of Erwinia chrysanthemi biovar 1 and biovar 7 from potato are now classified in D. dianthicola. However, in the past few years, a new Dickeya biovar 3 variant, tentatively named 'Dickeya solani', has emerged as a common major threat, in particular in seed potatoes. Sequences of a fliC gene fragment were used to generate a phylogeny of Dickeya reference strains from culture collections and with this reference backbone, to classify pectinolytic isolates, i.e. Dickeya spp. from potato and ornamental plants. The reference strains of the currently recognized Dickeya species and 'D. solani' were unambiguously delineated in the fliC phylogram. D. dadantii, D. dianthicola and 'D. solani' displayed unbranched clades, while D. chrysanthemi, D. zeae and D. dieffenbachiae branched into subclades and lineages. Moreover, Dickeya isolates from diagnostic samples, in particular biovar 3 isolates from greenhouse ornamentals, formed several new lineages. Most of these isolates were positioned between the clade of 'D. solani' and D. dadantii as transition variants. New lineages also appeared in D. dieffenbachiae and in D. zeae. The strains and isolates of D. dianthicola and 'D. solani' were differentiated by a fliC sequence useful for barcode identification. A fliC TaqMan®real-time PCR was developed for 'D. solani' and the assay was provisionally evaluated in direct analysis of diagnostic potato samples. This molecular tool can support the efforts to control this particular phytopathogen in seed potato certification.

  2. Genome-wide identification, phylogeny, evolution and expression patterns of AP2/ERF genes and cytokinin response factors in Brassica rapa ssp. pekinensis.

    Directory of Open Access Journals (Sweden)

    Zhenning Liu

    Full Text Available The AP2/ERF transcription factor family is one of the largest families involved in growth and development, hormone responses, and biotic or abiotic stress responses in plants. In this study, 281 AP2/ERF transcription factor unigenes were identified in Chinese cabbage. These superfamily members were classified into three families (AP2, ERF, and RAV. The ERF family was subdivided into the DREB subfamily and the ERF subfamily with 13 groups (I- XI based on sequence similarity. Duplication, evolution and divergence of the AP2/ERF genes in B. rapa and Arabidopsis thaliana were investigated and estimated. Cytokinin response factors (CRFs, as a subclade of the AP2/ERF family, are important transcription factors that define a branch point in the cytokinin two-component signal (TCS transduction pathway. Up to 21 CRFs with a conserved CRF domain were retrieved and designated as BrCRFs. The amino acid sequences, conserved regions and motifs, phylogenetic relationships, and promoter regions of the 21 BrCRFs were analyzed in detail. The BrCRFs broadly expressed in various tissues and organs. The transcripts of BrCRFs were regulated by factors such as drought, high salinity, and exogenous 6-BA, NAA, and ABA, suggesting their involvement in abiotic stress conditions and regulatory mechanisms of plant hormone homeostasis. These results provide new insight into the divergence, variation, and evolution of AP2/ERF genes at the genome-level in Chinese cabbage.

  3. Complete mitochondrial genome of Bugula neritina (Bryozoa, Gymnolaemata, Cheilostomata: phylogenetic position of Bryozoa and phylogeny of lophophorates within the Lophotrochozoa

    Directory of Open Access Journals (Sweden)

    Jang Kuem

    2009-04-01

    Full Text Available Abstract Background The phylogenetic position of Bryozoa is one of the most controversial issues in metazoan phylogeny. In an attempt to address this issue, the first bryozoan mitochondrial genome from Flustrellidra hispida (Gymnolaemata, Ctenostomata was recently sequenced and characterized. Unfortunately, it has extensive gene translocation and extremely reduced size. In addition, the phylogenies obtained from the result were conflicting, so they failed to assign a reliable phylogenetic position to Bryozoa or to clarify lophophorate phylogeny. Thus, it is necessary to characterize further mitochondrial genomes from slowly-evolving bryozoans to obtain a more credible lophophorate phylogeny. Results The complete mitochondrial genome (15,433 bp of Bugula neritina (Bryozoa, Gymnolaemata, Cheilostomata, one of the most widely distributed cheliostome bryozoans, is sequenced. This second bryozoan mitochondrial genome contains the set of 37 components generally observed in other metazoans, differing from that of F. hispida (Bryozoa, Gymnolaemata, Ctenostomata, which has only 36 components with loss of tRNAser(ucn genes. The B. neritina mitochondrial genome possesses 27 multiple noncoding regions. The gene order is more similar to those of the two remaining lophophorate phyla (Brachiopoda and Phoronida and a chiton Katharina tunicate than to that of F. hispida. Phylogenetic analyses based on the nucleotide sequences or amino acid residues of 12 protein-coding genes showed consistently that, within the Lophotrochozoa, the monophyly of the bryozoan class Gymnolaemata (B. neritina and F. hispida was strongly supported and the bryozoan clade was grouped with brachiopods. Echiura appeared as a subtaxon of Annelida, and Entoprocta as a sister taxon of Phoronida. The clade of Bryozoa + Brachiopoda was clustered with either the clade of Annelida-Echiura or that of Phoronida + Entoprocta. Conclusion This study presents the complete mitochondrial genome of a

  4. Phylogeny and evolutionary history of Leymus (Triticeae; Poaceae based on a single-copy nuclear gene encoding plastid acetyl-CoA carboxylase

    Directory of Open Access Journals (Sweden)

    Ding Cun-Bang

    2009-10-01

    Full Text Available Abstract Background Single- and low- copy genes are less likely subject to concerted evolution, thus making themselves ideal tools for studying the origin and evolution of polyploid taxa. Leymus is a polyploid genus with a diverse array of morphology, ecology and distribution in Triticeae. The genomic constitution of Leymus was assigned as NsXm, where Ns was presumed to be originated from Psathyrostachys, while Xm represented a genome of unknown origin. In addition, little is known about the evolutionary history of Leymus. Here, we investigate the phylogenetic relationship, genome donor, and evolutionary history of Leymus based on a single-copy nuclear Acc1 gene. Results Two homoeologues of the Acc1 gene were isolated from nearly all the sampled Leymus species using allele-specific primer and were analyzed with those from 35 diploid taxa representing 18 basic genomes in Triticeae. Sequence diversity patterns and genealogical analysis suggested that (1 Leymus is closely related to Psathyrostachys, Agropyron, and Eremopyrum; (2 Psathyrostachys juncea is an ancestral Ns-genome donor of Leymus species; (3 the Xm genome in Leymus may be originated from an ancestral lineage of Agropyron and Eremopyrum triticeum; (4 the Acc1 sequences of Leymus species from the Qinghai-Tibetan plateau are evolutionarily distinct; (5 North America Leymus species might originate from colonization via the Bering land bridge; (6 Leymus originated about 11-12MYA in Eurasia, and adaptive radiation might have occurred in Leymus during the period of 3.7-4.3 MYA and 1.7-2.1 MYA. Conclusion Leymus species have allopolyploid origin. It is hypothesized that the adaptive radiation of Leymus species might have been triggered by the recent upliftings of the Qinghai-Tibetan plateau and subsequent climatic oscillations. Adaptive radiation may have promoted the rapid speciation, as well as the fixation of unique morphological characters in Leymus. Our results shed new light on our

  5. Phylogeny and expression analysis of C-reactive protein (CRP) and serum amyloid-P (SAP) like genes reveal two distinct groups in fish.

    Science.gov (United States)

    Lee, P T; Bird, S; Zou, J; Martin, S A M

    2017-06-01

    The acute phase response (APR) is an early innate immune function that is initiated by inflammatory signals, leading to the release of acute phase proteins to the bloodstream to re-establish homeostasis following microbial infection. In this study we analysed the Atlantic salmon (Salmo salar) whole-genome database and identified five C-reactive protein (CRP)/serum amyloid P component (SAP) like molecules namely CRP/SAP-1a, CRP/SAP-1b, CRP/SAP-1c, CRP/SAP-2 and CRP/SAP-3. These CRP/SAP genes formed two distinct sub-families, a universal group (group I) present in all vertebrates and a fish/amphibian specific group (group II). Salmon CRP/SAP-1a, CRP/SAP-1b and CRP/SAP-1c and CRP/SAP-2 belong to the group I family whilst salmon CRP/SAP-3 is a member of group II. Gene expression analysis showed that the salmon CRP/SAP-1a as well as serum amyloid A-5 (SAA-5), one of the major acute phase proteins, were significantly up-regulated by recombinant cytokines (rIL-1β and rIFNγ) in primary head kidney cells whilst the other four CRP/SAPs remained refractory. Furthermore, SAA-5 was produced as the main acute phase protein (APP) in Atlantic salmon challenged with Aeromonas salmonicida (aroA(-) strain) whilst salmon CRP/SAPs remained unaltered. Overall, these data illustrate the potential different functions of expanded salmon CRP/SAPs to their mammalian homologues. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Phylogeny and Evolution of Lepidoptera.

    Science.gov (United States)

    Mitter, Charles; Davis, Donald R; Cummings, Michael P

    2017-01-31

    Until recently, deep-level phylogeny in Lepidoptera, the largest single radiation of plant-feeding insects, was very poorly understood. Over the past two decades, building on a preceding era of morphological cladistic studies, molecular data have yielded robust initial estimates of relationships both within and among the ∼43 superfamilies, with unsolved problems now yielding to much larger data sets from high-throughput sequencing. Here we summarize progress on lepidopteran phylogeny since 1975, emphasizing the superfamily level, and discuss some resulting advances in our understanding of lepidopteran evolution.

  7. Molecular characterization of coat protein gene of Garlic common latent virus isolates from India: an evidence for distinct phylogeny and recombination.

    Science.gov (United States)

    Pramesh, D; Baranwal, Virendra K

    2013-08-01

    The coat protein (CP) gene of five Indian Garlic common latent virus (GarCLV) isolates was sequenced and it was 960 bp long in all the five isolates, encoding a protein of 319 amino acids. Comparative nucleotide sequence analysis revealed diversity of 4.3% among the Indian isolates and of 11.9% among all isolates worldwide. Amino acid sequence comparison showed a significant variability in the N-terminal of CP of GarCLV. Various protein analysis tools identified thirteen conserved domains and motifs including Carlavirus and Potexvirus-specific Flexi CP and Flexi N CP. Phylogenetic analysis clustered GarCLV isolates in the subgroup II with isolates from Australia, Brazil, Japan, and South Korea. Intraspecies recombination study revealed that only one of the Indian isolates was a recombinant. Interspecies recombination study suggested the absence of genetic exchange from Carlavirus species to GarCLV; conversely, GarCLV was identified as a putative donor for at least two other Carlavirus species. This is the first report of molecular variability and recombination in GarCLV isolates.

  8. Effects of methodology and analysis strategy on robustness of pestivirus phylogeny.

    Science.gov (United States)

    Liu, Lihong; Xia, Hongyan; Baule, Claudia; Belák, Sándor; Wahlberg, Niklas

    2010-01-01

    Phylogenetic analysis of pestiviruses is a useful tool for classifying novel pestiviruses and for revealing their phylogenetic relationships. In this study, robustness of pestivirus phylogenies has been compared by analyses of the 5'UTR, and complete N(pro) and E2 gene regions separately and combined, performed by four methods: neighbour-joining (NJ), maximum parsimony (MP), maximum likelihood (ML), and Bayesian inference (BI). The strategy of analysing the combined sequence dataset by BI, ML, and MP methods resulted in a single, well-supported tree topology, indicating a reliable and robust pestivirus phylogeny. By contrast, the single-gene analysis strategy resulted in 12 trees of different topologies, revealing different relationships among pestiviruses. These results indicate that the strategies and methodologies are two vital aspects affecting the robustness of the pestivirus phylogeny. The strategy and methodologies outlined in this paper may have a broader application in inferring phylogeny of other RNA viruses.

  9. The evolutionary host switches of Polychromophilus: a multi-gene phylogeny of the bat malaria genus suggests a second invasion of mammals by a haemosporidian parasite

    Science.gov (United States)

    2012-01-01

    Background The majority of Haemosporida species infect birds or reptiles, but many important genera, including Plasmodium, infect mammals. Dipteran vectors shared by avian, reptilian and mammalian Haemosporida, suggest multiple invasions of Mammalia during haemosporidian evolution; yet, phylogenetic analyses have detected only a single invasion event. Until now, several important mammal-infecting genera have been absent in these analyses. This study focuses on the evolutionary origin of Polychromophilus, a unique malaria genus that only infects bats (Microchiroptera) and is transmitted by bat flies (Nycteribiidae). Methods Two species of Polychromophilus were obtained from wild bats caught in Switzerland. These were molecularly characterized using four genes (asl, clpc, coI, cytb) from the three different genomes (nucleus, apicoplast, mitochondrion). These data were then combined with data of 60 taxa of Haemosporida available in GenBank. Bayesian inference, maximum likelihood and a range of rooting methods were used to test specific hypotheses concerning the phylogenetic relationships between Polychromophilus and the other haemosporidian genera. Results The Polychromophilus melanipherus and Polychromophilus murinus samples show genetically distinct patterns and group according to species. The Bayesian tree topology suggests that the monophyletic clade of Polychromophilus falls within the avian/saurian clade of Plasmodium and directed hypothesis testing confirms the Plasmodium origin. Conclusion Polychromophilus' ancestor was most likely a bird- or reptile-infecting Plasmodium before it switched to bats. The invasion of mammals as hosts has, therefore, not been a unique event in the evolutionary history of Haemosporida, despite the suspected costs of adapting to a new host. This was, moreover, accompanied by a switch in dipteran host. PMID:22356874

  10. Homology and phylogeny and their automated inference.

    Science.gov (United States)

    Fuellen, Georg

    2008-06-01

    The analysis of the ever-increasing amount of biological and biomedical data can be pushed forward by comparing the data within and among species. For example, an integrative analysis of data from the genome sequencing projects for various species traces the evolution of the genomes and identifies conserved and innovative parts. Here, I review the foundations and advantages of this "historical" approach and evaluate recent attempts at automating such analyses. Biological data is comparable if a common origin exists (homology), as is the case for members of a gene family originating via duplication of an ancestral gene. If the family has relatives in other species, we can assume that the ancestral gene was present in the ancestral species from which all the other species evolved. In particular, describing the relationships among the duplicated biological sequences found in the various species is often possible by a phylogeny, which is more informative than homology statements. Detecting and elaborating on common origins may answer how certain biological sequences developed, and predict what sequences are in a particular species and what their function is. Such knowledge transfer from sequences in one species to the homologous sequences of the other is based on the principle of 'my closest relative looks and behaves like I do', often referred to as 'guilt by association'. To enable knowledge transfer on a large scale, several automated 'phylogenomics pipelines' have been developed in recent years, and seven of these will be described and compared. Overall, the examples in this review demonstrate that homology and phylogeny analyses, done on a large (and automated) scale, can give insights into function in biology and biomedicine.

  11. The mitochondrial genome sequence of Enterobius vermicularis (Nematoda: Oxyurida)--an idiosyncratic gene order and phylogenetic information for chromadorean nematodes.

    Science.gov (United States)

    Kang, Seokha; Sultana, Tahera; Eom, Keeseon S; Park, Yung Chul; Soonthornpong, Nathan; Nadler, Steven A; Park, Joong-Ki

    2009-01-15

    The complete mitochondrial genome sequence was determined for the human pinworm Enterobius vermicularis (Oxyurida: Nematoda) and used to infer its phylogenetic relationship to other major groups of chromadorean nematodes. The E. vermicularis genome is a 14,010-bp circular DNA molecule that encodes 36 genes (12 proteins, 22 tRNAs, and 2 rRNAs). This mtDNA genome lacks atp8, as reported for almost all other nematode species investigated. Phylogenetic analyses (maximum parsimony, maximum likelihood, neighbor joining, and Bayesian inference) of nucleotide sequences for the 12 protein-coding genes of 25 nematode species placed E. vermicularis, a representative of the order Oxyurida, as sister to the main Ascaridida+Rhabditida group. Tree topology comparisons using statistical tests rejected an alternative hypothesis favoring a closer relationship among Ascaridida, Spirurida, and Oxyurida, which has been supported from most studies based on nuclear ribosomal DNA sequences. Unlike the relatively conserved gene arrangement found for most chromadorean taxa, E. vermicularis mtDNA gene order is very unique, not sharing similarity to any other nematode species reported to date. This lack of gene order similarity may represent idiosyncratic gene rearrangements unique to this specific lineage of the oxyurids. To more fully understand the extent of gene rearrangement and its evolutionary significance within the nematode phylogenetic framework, additional mitochondrial genomes representing a greater evolutionary diversity of species must be characterized.

  12. Species-specific evolution of class I MHC genes in iguanas (order: Squamata; subfamily: Iguaninae).

    Science.gov (United States)

    Glaberman, Scott; Caccone, Adalgisa

    2008-07-01

    Over the last few decades, the major histocompatibility complex (MHC) has emerged as a model for understanding the influence of natural selection on genetic diversity in populations as well as for investigating the genetic basis of host resistance to pathogens. However, many vertebrate taxa remain underrepresented in the field of MHC research, preventing its application to studies of disease, evolution, and conservation genetics in these groups. This is particularly true for squamates, which are by far the most diversified order of non-avian reptiles but have not been the subject of any recent MHC studies. In this paper, we present MHC class I complementary DNA data from three squamate species in the subfamily Iguaninae (iguanas): the Galápagos marine iguana (Amblyrhynchus cristatus), the Galápagos land iguana (Conolophus subcristatus), and the green iguana (Iguana iguana). All sequences obtained are related to the few published class I genes from other squamates. There is evidence for multiple loci in each species, and the conserved alpha-3 domain appears to be evolving in a species-specific manner. Conversely, there is some indication of shared polymorphism between species in the peptide-binding alpha-1 and alpha-2 domains, suggesting that these two regions have different phylogenetic histories. The great similarity between alpha-3 sequences in marine iguanas in particular suggests that concerted evolution is acting to homogenize class I loci within species. However, while less likely, the data are also compatible with a birth and death model of evolution.

  13. Physiology, phylogeny, and LUCA

    Directory of Open Access Journals (Sweden)

    William F. Martin

    2016-11-01

    Full Text Available Genomes record their own history. But if we want to look all the way back to life’s beginnings some 4 billion years ago, the record of microbial evolution that is preserved in prokaryotic genomes is not easy to read. Microbiology has a lot in common with geology in that regard. Geologists know that plate tectonics and erosion have erased much of the geological record, with ancient rocks being truly rare. The same is true of microbes. Lateral gene transfer (LGT and sequence divergence have erased much of the evolutionary record that was once written in genomes, and it is not obvious which genes among sequenced genomes are genuinely ancient. Which genes trace to the last universal ancestor, LUCA? The classical approach has been to look for genes that are universally distributed. Another approach is to make all trees for all genes, and sift out the trees where signals have been overwritten by LGT. What is left ought to be ancient. If we do that, what do we find?

  14. A supertree approach to shorebird phylogeny

    Directory of Open Access Journals (Sweden)

    Thomas Gavin H

    2004-08-01

    Full Text Available Abstract Background Order Charadriiformes (shorebirds is an ideal model group in which to study a wide range of behavioural, ecological and macroevolutionary processes across species. However, comparative studies depend on phylogeny to control for the effects of shared evolutionary history. Although numerous hypotheses have been presented for subsets of the Charadriiformes none to date include all recognised species. Here we use the matrix representation with parsimony method to produce the first fully inclusive supertree of Charadriiformes. We also provide preliminary estimates of ages for all nodes in the tree. Results Three main lineages are revealed: i the plovers and allies; ii the gulls and allies; and iii the sandpipers and allies. The relative position of these clades is unresolved in the strict consensus tree but a 50% majority-rule consensus tree indicates that the sandpiper clade is sister group to the gulls and allies whilst the plover group is placed at the base of the tree. The overall topology is highly consistent with recent molecular hypotheses of shorebird phylogeny. Conclusion The supertree hypothesis presented herein is (to our knowledge the only complete phylogenetic hypothesis of all extant shorebirds. Despite concerns over the robustness of supertrees (see Discussion, we believe that it provides a valuable framework for testing numerous evolutionary hypotheses relating to the diversity of behaviour, ecology and life-history of the Charadriiformes.

  15. Aire controls gene expression in the thymic epithelium with ordered stochasticity

    OpenAIRE

    Meredith, Matthew; Zemmour, David; Mathis, Diane; Benoist, Christophe

    2015-01-01

    Aire controls immunologic tolerance by inducing the ectopic thymic expression of many tissue-specific genes, acting broadly by removing stops on the transcriptional machinery. To better understand Aire’s specificity, we performed single-cell RNAseq and DNA methylation analysis in Aire-sufficient and -deficient medullary epithelial cells (mTECs). Each of Aire’s target genes was induced in only a minority of mTECs, independently of DNA methylation patterns, as small inter-chromosomal gene clust...

  16. Multigene phylogeny and taxonomic revision of yeasts and related fungi in the Ustilaginomycotina.

    Science.gov (United States)

    Wang, Q-M; Begerow, D; Groenewald, M; Liu, X-Z; Theelen, B; Bai, F-Y; Boekhout, T

    2015-06-01

    The subphylum Ustilaginomycotina (Basidiomycota, Fungi) comprises mainly plant pathogenic fungi (smuts). Some of the lineages possess cultivable unicellular stages that are usually classified as yeast or yeast-like species in a largely artificial taxonomic system which is independent from and largely incompatible with that of the smut fungi. Here we performed phylogenetic analyses based on seven genes including three nuclear ribosomal RNA genes and four protein coding genes to address the molecular phylogeny of the ustilaginomycetous yeast species and their filamentous counterparts. Taxonomic revisions were proposed to reflect this phylogeny and to implement the 'One Fungus = One Name' principle. The results confirmed that the yeast-containing classes Malasseziomycetes, Moniliellomycetes and Ustilaginomycetes are monophyletic, whereas Exobasidiomycetes in the current sense remains paraphyletic. Four new genera, namely Dirkmeia gen. nov., Kalmanozyma gen. nov., Golubevia gen. nov. and Robbauera gen. nov. are proposed to accommodate Pseudozyma and Tilletiopsis species that are distinct from the other smut taxa and belong to clades that are separate from those containing type species of the hitherto described genera. Accordingly, new orders Golubeviales ord. nov. with Golubeviaceae fam. nov. and Robbauerales ord. nov. with Robbaueraceae fam. nov. are proposed to accommodate the sisterhood of Golubevia gen. nov. and Robbauera gen. nov. with other orders of Exobasidiomycetes. The majority of the remaining anamorphic yeast species are transferred to corresponding teleomorphic genera based on strongly supported phylogenetic affinities, resulting in the proposal of 28 new combinations. The taxonomic status of a few Pseudozyma species remains to be determined because of their uncertain phylogenetic positions. We propose to use the term pro tempore or pro tem. in abbreviation to indicate the single-species lineages that are temporarily maintained.

  17. Phylogeny mandalas of birds using the lithographs of John Gould's folio bird books.

    Science.gov (United States)

    Hasegawa, Masami; Kuroda, Sayako

    2017-12-01

    The phylogeny mandala, which is a circular phylogeny with photos or drawings of species, is a suitable way to show visually how the biodiversity has developed in the course of evolution as clarified by the molecular phylogenetics. In this article, in order to demonstrate the recent progress of avian molecular phylogenetics, six phylogeny mandalas of various taxonomic groups of birds are presented with the lithographs of John Gould's folio bird books; i.e., (1) whole Aves, (2) Passeriformes, (3) Paradisaeidae in Corvoidea (Passeriformes), (4) Meliphagoidea (Passeriformes), (5) Trochili in Apodiformes, and (6) Galliformes. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Correlating molecular phylogeny with venom apparatus occurrence in Panamic auger snails (Terebridae.

    Directory of Open Access Journals (Sweden)

    Mandë Holford

    2009-11-01

    Full Text Available Central to the discovery of neuroactive compounds produced by predatory marine snails of the superfamily Conoidea (cone snails, terebrids, and turrids is identifying those species with a venom apparatus. Previous analyses of western Pacific terebrid specimens has shown that some Terebridae groups have secondarily lost their venom apparatus. In order to efficiently characterize terebrid toxins, it is essential to devise a key for identifying which species have a venom apparatus. The findings presented here integrate molecular phylogeny and the evolution of character traits to infer the presence or absence of the venom apparatus in the Terebridae. Using a combined dataset of 156 western and 33 eastern Pacific terebrid samples, a phylogenetic tree was constructed based on analyses of 16S, COI and 12S mitochondrial genes. The 33 eastern Pacific specimens analyzed represent four different species: Acus strigatus, Terebra argyosia, T. ornata, and T. cf. formosa. Anatomical analysis was congruent with molecular characters, confirming that species included in the clade Acus do not have a venom apparatus, while those in the clade Terebra do. Discovery of the association between terebrid molecular phylogeny and the occurrence of a venom apparatus provides a useful tool for effectively identifying the terebrid lineages that may be investigated for novel pharmacological active neurotoxins, enhancing conservation of this important resource, while providing supplementary information towards understanding terebrid evolutionary diversification.

  19. Molecular Phylogeny and Morphological Distinctions of Two Popular Bivalves, Ctenoides scaber and Ctenoides mitis

    Directory of Open Access Journals (Sweden)

    Lindsey F. Dougherty

    2017-01-01

    Full Text Available One of the most well-known species in the bivalve family Limidae (d’Orbigny, 1846 is the brightly colored Ctenoides scaber (Born, 1778, commonly known as the rough file clam or flame scallop. Distinguishing this bivalve from its close relative, C. mitis (Lamarck, 1807, can be difficult using only morphological features and has led to much taxonomic confusion throughout the literature. In this study, morphological characters were compared to a molecular phylogeny constructed using three genes (COI, 28S, and H3 in order to differentiate C. scaber and C. mitis. The phylogeny recovered two well-supported clades that differ significantly in shell rib numbers, but not tentacle colors. The two species were then placed in a larger phylogenetic context of the Limidae family, which revealed the need for further systematic revision across genera. As these bivalves are popular in aquaria, cannot be tank-raised, and have been overcollected in the past, proper species identification is important for assessing sustainable collection practices.

  20. Brassicales phylogeny inferred from 72 plastid genes

    NARCIS (Netherlands)

    Edger, Patrick P.; Hall, Jocelyn C.; Harkess, Alex; Tang, Michelle; Coombs, Jill; Mohammadin, Setareh; Schranz, Eric; Xiong, Zhiyong; Leebens-Mack, James; Meyers, Blake C.; Sytsma, Kenneth J.; Koch, Marcus A.; Al-Shehbaz, Ihsan A.; Pires, J.C.

    2018-01-01

    PREMISE OF THE STUDY: Previous phylogenetic studies employing molecular markers have yielded various insights into the evolutionary history across Brassicales, but many relationships between families remain poorly supported or unresolved. A recent phylotranscriptomic approach utilizing 1155 nuclear

  1. The Order Bacillales Hosts Functional Homologs of the Worrisome cfr Antibiotic Resistance Gene

    DEFF Research Database (Denmark)

    Hansen, Lykke H.; Planellas, Mercè H.; Long, Katherine S.

    2012-01-01

    The cfr gene encodes the Cfr methyltransferase that methylates a single adenine in the peptidyl transferase region of bacterial ribosomes. The methylation provides resistance to several classes of antibiotics that include drugs of clinical and veterinary importance. This paper describes a first...... coli, and MICs for selected antibiotics indicate that the cfr-like genes confer resistance to PhLOPSa (phenicol, lincosamide, oxazolidinone, pleuromutilin, and streptogramin A) antibiotics in the same way as the cfr gene. In addition, modification at A2503 on 23S rRNA was confirmed by primer extension...

  2. High-Performance Phylogeny Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Tiffani L. Williams

    2004-11-10

    Under the Alfred P. Sloan Fellowship in Computational Biology, I have been afforded the opportunity to study phylogenetics--one of the most important and exciting disciplines in computational biology. A phylogeny depicts an evolutionary relationship among a set of organisms (or taxa). Typically, a phylogeny is represented by a binary tree, where modern organisms are placed at the leaves and ancestral organisms occupy internal nodes, with the edges of the tree denoting evolutionary relationships. The task of phylogenetics is to infer this tree from observations upon present-day organisms. Reconstructing phylogenies is a major component of modern research programs in many areas of biology and medicine, but it is enormously expensive. The most commonly used techniques attempt to solve NP-hard problems such as maximum likelihood and maximum parsimony, typically by bounded searches through an exponentially-sized tree-space. For example, there are over 13 billion possible trees for 13 organisms. Phylogenetic heuristics that quickly analyze large amounts of data accurately will revolutionize the biological field. This final report highlights my activities in phylogenetics during the two-year postdoctoral period at the University of New Mexico under Prof. Bernard Moret. Specifically, this report reports my scientific, community and professional activities as an Alfred P. Sloan Postdoctoral Fellow in Computational Biology.

  3. The ordering of expression among a few genes can provide simple cancer biomarkers and signal BRCA1 mutations

    Directory of Open Access Journals (Sweden)

    Parmigiani Giovanni

    2009-08-01

    Full Text Available Abstract Background A major challenge in computational biology is to extract knowledge about the genetic nature of disease from high-throughput data. However, an important obstacle to both biological understanding and clinical applications is the "black box" nature of the decision rules provided by most machine learning approaches, which usually involve many genes combined in a highly complex fashion. Achieving biologically relevant results argues for a different strategy. A promising alternative is to base prediction entirely upon the relative expression ordering of a small number of genes. Results We present a three-gene version of "relative expression analysis" (RXA, a rigorous and systematic comparison with earlier approaches in a variety of cancer studies, a clinically relevant application to predicting germline BRCA1 mutations in breast cancer and a cross-study validation for predicting ER status. In the BRCA1 study, RXA yields high accuracy with a simple decision rule: in tumors carrying mutations, the expression of a "reference gene" falls between the expression of two differentially expressed genes, PPP1CB and RNF14. An analysis of the protein-protein interactions among the triplet of genes and BRCA1 suggests that the classifier has a biological foundation. Conclusion RXA has the potential to identify genomic "marker interactions" with plausible biological interpretation and direct clinical applicability. It provides a general framework for understanding the roles of the genes involved in decision rules, as illustrated for the difficult and clinically relevant problem of identifying BRCA1 mutation carriers.

  4. Phylogeny of Orchidantha (Lowiaceae) and the Zingiberales Based on Six DNA Regions

    DEFF Research Database (Denmark)

    Johansen, Louise Buchholt

    2005-01-01

    Very little is known about the small, tropical, monogeneric monocotyledon family Lowiaceae within the order Zingiberales. The phylogenetic position of Lowiaceae within Zingiberales is unclear, as are relationships within its single genus Orchidantha, which includes at least 16 species. This paper...... presents a phylogenetic analysis of Zingiberales based on 613 parsimony informative characters of the plastid matK gene, the trnL-trnF region, the rps16 intron, and a conservative part of the nuclear ribosomal ITS region (part of the 18S, 5.8S, and 26S rDNA). The resulting single most parsimonious tree...... indicates that Lowiaceae is sister to all the remaining families of Zingiberales. An analysis of the family (14 species) based on a data set consisting of six plastid and nuclear DNA regions, includes the first use of a cam intron for estimating phylogeny. The results suggest that the nuclear calmodulin...

  5. Molecular phylogeny of extant Holothuroidea (Echinodermata).

    Science.gov (United States)

    Miller, Allison K; Kerr, Alexander M; Paulay, Gustav; Reich, Mike; Wilson, Nerida G; Carvajal, Jose I; Rouse, Greg W

    2017-06-01

    Sea cucumbers (Holothuroidea) are a morphologically diverse, ecologically important, and economically valued clade of echinoderms; however, the understanding of the overall systematics of the group remains controversial. Here, we present a phylogeny of extant Holothuroidea assessed with maximum parsimony, maximum likelihood, and Bayesian approaches using approximately 4.3kb of mt- (COI, 16S, 12S) and nDNA (H3, 18S, 28S) sequences from 82 holothuroid terminals representing 23 of the 27 widely-accepted family-ranked taxa. Currently five holothuroid taxa of ordinal rank are accepted. We find that three of the five orders are non-monophyletic, and we revise the taxonomy of the groups accordingly. Apodida is sister to the rest of Holothuroidea, here considered Actinopoda. Within Actinopoda, Elasipodida in part is sister to the remaining Actinopoda. This latter clade, comprising holothuroids with respiratory trees, is now called Pneumonophora. The traditional Aspidochirotida is paraphyletic, with representatives from three orders (Molpadida, Dendrochirotida, and Elasipodida in part) nested within. Therefore, we discontinue the use of Aspidochirotida and instead erect Holothuriida as the sister group to the remaining Pneumonophora, here termed Neoholothuriida. We found four well-supported major clades in Neoholothuriida: Dendrochirotida, Molpadida and two new clades, Synallactida and Persiculida. The mapping of traditionally-used morphological characters in holothuroid systematics onto the phylogeny revealed marked homoplasy in most characters demonstrating that further taxonomic revision of Holothuroidea is required. Two time-tree analyses, one based on calibrations for uncontroversial crown group dates for Eleutherozoa, Echinozoa and Holothuroidea and another using these calibrations plus four more from within Holothuroidea, showed major discrepancies, suggesting that fossils of Holothuroidea may need reassessment in terms of placing these forms with existing crown

  6. Independent losses of visual perception genes Gja10 and Rbp3 in echolocating bats (Order: Chiroptera.

    Directory of Open Access Journals (Sweden)

    Bin Shen

    Full Text Available A trade-off between the sensory modalities of vision and hearing is likely to have occurred in echolocating bats as the sophisticated mechanism of laryngeal echolocation requires considerable neural processing and has reduced the reliance of echolocating bats on vision for perceiving the environment. If such a trade-off exists, it is reasonable to hypothesize that some genes involved in visual function may have undergone relaxed selection or even functional loss in echolocating bats. The Gap junction protein, alpha 10 (Gja10, encoded by Gja10 gene is expressed abundantly in mammal retinal horizontal cells and plays an important role in horizontal cell coupling. The interphotoreceptor retinoid-binding protein (Irbp, encoded by the Rbp3 gene is mainly expressed in interphotoreceptor matrix and is known to be critical for normal functioning of the visual cycle. We sequenced Gja10 and Rbp3 genes in a taxonomically wide range of bats with divergent auditory characteristics (35 and 18 species for Gja10 and Rbp3, respectively. Both genes have became pseudogenes in species from the families Hipposideridae and Rhinolophidae that emit constant frequency echolocation calls with Doppler shift compensation at high-duty-cycles (the most sophisticated form of biosonar known, and in some bat species that emit echolocation calls at low-duty-cycles. Our study thus provides further evidence for the hypothesis that a trade-off occurs at the genetic level between vision and echolocation in bats.

  7. Independent losses of visual perception genes Gja10 and Rbp3 in echolocating bats (Order: Chiroptera).

    Science.gov (United States)

    Shen, Bin; Fang, Tao; Dai, Mengyao; Jones, Gareth; Zhang, Shuyi

    2013-01-01

    A trade-off between the sensory modalities of vision and hearing is likely to have occurred in echolocating bats as the sophisticated mechanism of laryngeal echolocation requires considerable neural processing and has reduced the reliance of echolocating bats on vision for perceiving the environment. If such a trade-off exists, it is reasonable to hypothesize that some genes involved in visual function may have undergone relaxed selection or even functional loss in echolocating bats. The Gap junction protein, alpha 10 (Gja10, encoded by Gja10 gene) is expressed abundantly in mammal retinal horizontal cells and plays an important role in horizontal cell coupling. The interphotoreceptor retinoid-binding protein (Irbp, encoded by the Rbp3 gene) is mainly expressed in interphotoreceptor matrix and is known to be critical for normal functioning of the visual cycle. We sequenced Gja10 and Rbp3 genes in a taxonomically wide range of bats with divergent auditory characteristics (35 and 18 species for Gja10 and Rbp3, respectively). Both genes have became pseudogenes in species from the families Hipposideridae and Rhinolophidae that emit constant frequency echolocation calls with Doppler shift compensation at high-duty-cycles (the most sophisticated form of biosonar known), and in some bat species that emit echolocation calls at low-duty-cycles. Our study thus provides further evidence for the hypothesis that a trade-off occurs at the genetic level between vision and echolocation in bats.

  8. The first complete mitochondrial genome sequences of Amblypygi (Chelicerata: Arachnida) reveal conservation of the ancestral arthropod gene order.

    Science.gov (United States)

    Fahrein, Kathrin; Masta, Susan E; Podsiadlowski, Lars

    2009-05-01

    Amblypygi (whip spiders) are terrestrial chelicerates inhabiting the subtropics and tropics. In morphological and rRNA-based phylogenetic analyses, Amblypygi cluster with Uropygi (whip scorpions) and Araneae (spiders) to form the taxon Tetrapulmonata, but there is controversy regarding the interrelationship of these three taxa. Mitochondrial genomes provide an additional large data set of phylogenetic information (sequences, gene order, RNA secondary structure), but in arachnids, mitochondrial genome data are missing for some of the major orders. In the course of an ongoing project concerning arachnid mitochondrial genomics, we present the first two complete mitochondrial genomes from Amblypygi. Both genomes were found to be typical circular duplex DNA molecules with all 37 genes usually present in bilaterian mitochondrial genomes. In both species, gene order is identical to that of Limulus polyphemus (Xiphosura), which is assumed to reflect the putative arthropod ground pattern. All tRNA gene sequences have the potential to fold into structures that are typical of metazoan mitochondrial tRNAs, except for tRNA-Ala, which lacks the D arm in both amblypygids, suggesting the loss of this feature early in amblypygid evolution. Phylogenetic analysis resulted in weak support for Uropygi being the sister group of Amblypygi.

  9. Multicolor in situ hybridization and linkage analysis order Charcot-Marie-Tooth type I (CMTIA) gene-region markers

    Energy Technology Data Exchange (ETDEWEB)

    Lebo, R.V.; Lynch, E.D.; Golbus, M.S. (Univ. of California, San Francisco (United States)); Bird, T.D. (Univ. of Washington, Seattle (United States)); Barker, D.F.; O' Connell, P.; Chance, P.F. (Univ. of Utah, Salt Lake City (United States))

    1992-01-01

    This study demonstrates a clear and current role for multicolor in situ hybridization in expediting positional cloning studies of unknown disease genes. Nine polymorphic DNA cosmids have been mapped to eight ordered locations spanning the Charcot-Marie-Tooth type 1 (CMT1A) disease gene region in distal band 17p11.2, by multicolor in situ hybridization. When used with linkage analysis, these methods have generated a fine physical map and have firmly assigned the CMT1A gene to distal band 17p11.2. Linkage analysis with four CMT1A pedigrees mapped the CMT1A gene with respect to two flanking markers. Additional loci were physically mapped and ordered by in situ hybridization and analysis of phase-known recombinants in CMT1A pedigrees. These data demonstrate the ability of in situ hybridization to resolve loci within 0.5 Mb on early-metaphase chromosomes. Multicolor in situ hybridization also excluded the possibility of pericentric inversions in two unrelated patients with CMT1 and neurofibromatosis type 1. When used with pulsed-field gel electrophoresis, multicolor in situ hybridization can establish physical location, order, and distance in closely spaced chromosome loci.

  10. Analysis of an ordered, comprehensive STM mutant library in infectious Borrelia burgdorferi: insights into the genes required for mouse infectivity.

    Directory of Open Access Journals (Sweden)

    Tao Lin

    Full Text Available The identification of genes important in the pathogenesis of Lyme disease Borrelia has been hampered by exceedingly low transformation rates in low-passage, infectious organisms. Using the infectious, moderately transformable B. burgdorferi derivative 5A18NP1 and signature-tagged versions of the Himar1 transposon vector pGKT, we have constructed a defined transposon library for the efficient genome-wide investigation of genes required for wild-type pathogenesis, in vitro growth, physiology, morphology, and plasmid replication. To facilitate analysis, the insertion sites of 4,479 transposon mutants were determined by sequencing. The transposon insertions were widely distributed across the entire B. burgdorferi genome, with an average of 2.68 unique insertion sites per kb DNA. The 10 linear plasmids and 9 circular plasmids had insertions in 33 to 100 percent of their predicted genes. In contrast, only 35% of genes in the 910 kb linear chromosome had incapacitating insertions; therefore, the remaining 601 chromosomal genes may represent essential gene candidates. In initial signature-tagged mutagenesis (STM analyses, 434 mutants were examined at multiple tissue sites for infectivity in mice using a semi-quantitative, Luminex-based DNA detection method. Examples of genes found to be important in mouse infectivity included those involved in motility, chemotaxis, the phosphoenolpyruvate phosphotransferase system, and other transporters, as well as putative plasmid maintenance genes. Availability of this ordered STM library and a high-throughput screening method is expected to lead to efficient assessment of the roles of B. burgdorferi genes in the infectious cycle and pathogenesis of Lyme disease.

  11. Aire controls gene expression in the thymic epithelium with ordered stochasticity.

    Science.gov (United States)

    Meredith, Matthew; Zemmour, David; Mathis, Diane; Benoist, Christophe

    2015-09-01

    The transcription factor Aire controls immunological tolerance by inducing the ectopic thymic expression of many tissue-specific genes, acting broadly by removing stops on the transcriptional machinery. To better understand Aire's specificity, we performed single-cell RNA-seq and DNA-methylation analysis of Aire-sufficient and Aire-deficient medullary epithelial cells (mTECs). Each of Aire's target genes was induced in only a minority of mTECs, independently of DNA-methylation patterns, as small inter-chromosomal gene clusters activated in concert in a proportion of mTECs. These microclusters differed between individual mice. Thus, our results suggest an organization of the DNA or of the epigenome that results from stochastic determinism but is 'bookmarked' and stable through mTEC divisions, which ensures more effective presentation of self antigens and favors diversity of self-tolerance between individuals.

  12. Phylogeny by a polyphasic approach of the order Caulobacterales, proposal of Caulobacter mirabilis sp. nov., Phenylobacterium haematophilum sp. nov. and Phenylobacterium conjunctum sp. nov., and emendation of the genus Phenylobacterium.

    Science.gov (United States)

    Abraham, Wolf-Rainer; Macedo, Alexandre J; Lünsdorf, Heinrich; Fischer, Roman; Pawelczyk, Sonja; Smit, John; Vancanneyt, Marc

    2008-08-01

    Three strains of Gram-negative, rod-shaped, non-spore-forming bacteria were isolated from fresh water and human blood. As determined by analyses of 16S rRNA gene sequences, the prosthecate strain FWC 38T was affiliated to the alphaproteobacterial genus Caulobacter, with Caulobacter henricii (96.8 %) and Caulobacter fusiformis (96.8 %) as its closest relatives. The non-prosthecate strain LMG 11050T and the prosthecate strain FWC 21T both belonged to the genus Phenylobacterium with Phenylobacterium koreense (96.9 %) and Phenylobacterium immobile (96.3 %) as the closest relatives. This affiliation was supported by chemotaxonomic data (polar lipids and cellular fatty acids). Physiological and biochemical tests allowed genotypic and phenotypic differentiation of the novel strains from all hitherto recognized species of the genera Caulobacter and Phenylobacterium. The strains therefore represent novel species, for which the names Caulobacter mirabilis sp. nov. (type strain FWC 38T=LMG 24261T=CCUG 55073T), Phenylobacterium conjunctum (type strain FWC 21T=LMG 24262T=CCUG 55074T), the first described prosthecate Phenylobacterium species, and Phenylobacterium haematophilum sp. nov. (type strain LMG 11050T=CCUG 26751T) are proposed. Marker nucleotides within the 16S rRNA genes were determined for the genera Asticcacaulis, Brevundimonas, Caulobacter and Phenylobacterium and the description of the genus Phenylobacterium is emended.

  13. Inclusion of Cetaceans within the order Artiodactyla based on phylogenetic analysis of pancreatic ribonuclease genes

    NARCIS (Netherlands)

    Kleineidam, RG; Pesole, G; Breukelman, HJ; Beintema, JJ; Kastelein, RA

    Mammalian secretory ribonucleases (RNases 1) form a family of extensively studied homologous proteins that were already used for phylogenetic analyses at the protein sequence level previously. In this paper we report the determination of six ribonuclease gene sequences of Artiodactyla and two of

  14. Phylogeny of Echinoderm Hemoglobins.

    Directory of Open Access Journals (Sweden)

    Ana B Christensen

    Full Text Available Recent genomic information has revealed that neuroglobin and cytoglobin are the two principal lineages of vertebrate hemoglobins, with the latter encompassing the familiar myoglobin and α-globin/β-globin tetramer hemoglobin, and several minor groups. In contrast, very little is known about hemoglobins in echinoderms, a phylum of exclusively marine organisms closely related to vertebrates, beyond the presence of coelomic hemoglobins in sea cucumbers and brittle stars. We identified about 50 hemoglobins in sea urchin, starfish and sea cucumber genomes and transcriptomes, and used Bayesian inference to carry out a molecular phylogenetic analysis of their relationship to vertebrate sequences, specifically, to assess the hypothesis that the neuroglobin and cytoglobin lineages are also present in echinoderms.The genome of the sea urchin Strongylocentrotus purpuratus encodes several hemoglobins, including a unique chimeric 14-domain globin, 2 androglobin isoforms and a unique single androglobin domain protein. Other strongylocentrotid genomes appear to have similar repertoires of globin genes. We carried out molecular phylogenetic analyses of 52 hemoglobins identified in sea urchin, brittle star and sea cucumber genomes and transcriptomes, using different multiple sequence alignment methods coupled with Bayesian and maximum likelihood approaches. The results demonstrate that there are two major globin lineages in echinoderms, which are related to the vertebrate neuroglobin and cytoglobin lineages. Furthermore, the brittle star and sea cucumber coelomic hemoglobins appear to have evolved independently from the cytoglobin lineage, similar to the evolution of erythroid oxygen binding globins in cyclostomes and vertebrates.The presence of echinoderm globins related to the vertebrate neuroglobin and cytoglobin lineages suggests that the split between neuroglobins and cytoglobins occurred in the deuterostome ancestor shared by echinoderms and vertebrates.

  15. Phylogeny of Echinoderm Hemoglobins.

    Science.gov (United States)

    Christensen, Ana B; Herman, Joseph L; Elphick, Maurice R; Kober, Kord M; Janies, Daniel; Linchangco, Gregorio; Semmens, Dean C; Bailly, Xavier; Vinogradov, Serge N; Hoogewijs, David

    2015-01-01

    Recent genomic information has revealed that neuroglobin and cytoglobin are the two principal lineages of vertebrate hemoglobins, with the latter encompassing the familiar myoglobin and α-globin/β-globin tetramer hemoglobin, and several minor groups. In contrast, very little is known about hemoglobins in echinoderms, a phylum of exclusively marine organisms closely related to vertebrates, beyond the presence of coelomic hemoglobins in sea cucumbers and brittle stars. We identified about 50 hemoglobins in sea urchin, starfish and sea cucumber genomes and transcriptomes, and used Bayesian inference to carry out a molecular phylogenetic analysis of their relationship to vertebrate sequences, specifically, to assess the hypothesis that the neuroglobin and cytoglobin lineages are also present in echinoderms. The genome of the sea urchin Strongylocentrotus purpuratus encodes several hemoglobins, including a unique chimeric 14-domain globin, 2 androglobin isoforms and a unique single androglobin domain protein. Other strongylocentrotid genomes appear to have similar repertoires of globin genes. We carried out molecular phylogenetic analyses of 52 hemoglobins identified in sea urchin, brittle star and sea cucumber genomes and transcriptomes, using different multiple sequence alignment methods coupled with Bayesian and maximum likelihood approaches. The results demonstrate that there are two major globin lineages in echinoderms, which are related to the vertebrate neuroglobin and cytoglobin lineages. Furthermore, the brittle star and sea cucumber coelomic hemoglobins appear to have evolved independently from the cytoglobin lineage, similar to the evolution of erythroid oxygen binding globins in cyclostomes and vertebrates. The presence of echinoderm globins related to the vertebrate neuroglobin and cytoglobin lineages suggests that the split between neuroglobins and cytoglobins occurred in the deuterostome ancestor shared by echinoderms and vertebrates.

  16. Extensions and improvements to the chordal graph approach to the multistate perfect phylogeny problem.

    Science.gov (United States)

    Gysel, Rob; Gusfield, Dan

    2011-01-01

    The multistate perfect phylogeny problem is a classic problem in computational biology. When no perfect phylogeny exists, it is of interest to find a set of characters to remove in order to obtain a perfect phylogeny in the remaining data. This is known as the character removal problem. We show how to use chordal graphs and triangulations to solve the character removal problem for an arbitrary number of states, which was previously unsolved. We outline a preprocessing technique that speeds up the computation of the minimal separators of a graph. Minimal separators are used in our solution to the missing data character removal problem and to Gusfield's solution of the perfect phylogeny problem with missing data.

  17. Novel intron markers to study the phylogeny of closely related mammalian species

    Directory of Open Access Journals (Sweden)

    Castresana Jose

    2010-11-01

    Full Text Available Abstract Background Multilocus phylogenies can be used to infer the species tree of a group of closely related species. In species trees, the nodes represent the actual separation between species, thus providing essential information about their evolutionary history. In addition, multilocus phylogenies can help in analyses of species delimitation, gene flow and genetic differentiation within species. However, few adequate markers are available for such studies. Results In order to develop nuclear markers that can be useful in multilocus studies of mammals, we analyzed the mammalian genomes of human, chimpanzee, macaque, dog and cow. Rodents were excluded due to their unusual genomic features. Introns were extracted from the mammalian genomes because of their greater genetic variability and ease of amplification from the flanking exons. To an initial set of more than 10,000 one-to-one orthologous introns we applied several filters to select introns that belong to single-copy genes, show neutral evolutionary rates and have an adequate length for their amplification. This analysis led to a final list of 224 intron markers randomly distributed along the genome. To experimentally test their validity, we amplified twelve of these introns in a panel of six mammalian species. The result was that seven of these introns gave rise to a PCR band of the expected size in all species. In addition, we sequenced these bands and analyzed the accumulation of substitutions in these introns in five pairs of closely related species. The results showed that the estimated genetic distances in the five species pairs was quite variable among introns and that this divergence cannot be directly predicted from the overall intron divergence in mammals. Conclusions We have designed a new set of 224 nuclear introns with optimal features for the phylogeny of closely related mammalian species. A large proportion of the introns tested experimentally showed a perfect amplification

  18. Generation of ordered phage sublibraries of YAC clones: construction of a 400-kb phage contig in the human dystrophin gene.

    Science.gov (United States)

    Whittaker, P A; Wood, L; Mathrubutham, M; Anand, R

    1993-02-01

    A phage contig of 400 kb that extends from the brain-specific promoter at the 5'-end of the human dystrophin gene, through the muscle-specific promoter over 100 kb further downstream, and across most of intron 1 has been assembled. To achieve this, a yeast artificial chromosome (YAC) subcloning approach was used. Total DNA from a yeast strain containing a 400-kb YAC from the dystrophin gene was cloned using a lambda phage vector containing RNA polymerase promoters flanking the cloning sites. Phage containing human DNA inserts were then ordered into an overlapping set by hybridization of end-specific RNA probes from individual clones back to plaque lifts of gridded phage subclones. The clones generated will be useful as reagents for detailed structural and functional analyses of this region of the dystrophin gene.

  19. Generation of ordered phage sublibraries of YAC clones: Construction of a 400-kb phage contig in the human dystrophin gene

    Energy Technology Data Exchange (ETDEWEB)

    Whittaker, P.A.; Wood, L.; Mathrubutham, M. (Southampton General Hospital (United Kingdom)); Anand, R. (ICI Pharmaceuticals, Macclesfield Cheshire (United Kingdom))

    1993-02-01

    A phage contig of 400 kb that extends from the brain-specific promoter at the 5[prime]-end of the human dystrophin gene, through the muscle-specific promoter over 100 kb further downstream, and across most of intron 1 has been assembled. To achieve this, a yeast artificial chromosome (YAC) subcloning approach was used. Total DNA from a yeast strain containing a 400-kb YAC from the dystrophin gene was cloned using [lambda] phage vector containing RNA polymerase promoters flanking the cloning sites. Phage containing human DNA inserts were then ordered into an overlapping set by hybridization of end-specific RNA probes from individual clones back to plaque lifts of gridded phage subclones. The clones generated will be useful as reagents for detailed structural and functional analyses of this region of the dystrophin gene. 6 refs., 2 figs.

  20. Phylogeny and subgeneric taxonomy of Aspergillus

    DEFF Research Database (Denmark)

    Peterson, S.W.; Varga, Janos; Frisvad, Jens Christian

    2008-01-01

    The phylogeny of the genus Aspergillus and its teleomorphs is discussed based on multilocus sequence data. DNA sequence analysis was used to formulate a nucleotide sequence framework of the genus and to analyze character changes in relationship to the phylogeny hypothesized from the DNA sequence ...

  1. Multigenic phylogeny and analysis of tree incongruences in Triticeae (Poaceae

    Directory of Open Access Journals (Sweden)

    Guilhaumon Claire

    2011-06-01

    Full Text Available Abstract Background Introgressive events (e.g., hybridization, gene flow, horizontal gene transfer and incomplete lineage sorting of ancestral polymorphisms are a challenge for phylogenetic analyses since different genes may exhibit conflicting genealogical histories. Grasses of the Triticeae tribe provide a particularly striking example of incongruence among gene trees. Previous phylogenies, mostly inferred with one gene, are in conflict for several taxon positions. Therefore, obtaining a resolved picture of relationships among genera and species of this tribe has been a challenging task. Here, we obtain the most comprehensive molecular dataset to date in Triticeae, including one chloroplastic and 26 nuclear genes. We aim to test whether it is possible to infer phylogenetic relationships in the face of (potentially large-scale introgressive events and/or incomplete lineage sorting; to identify parts of the evolutionary history that have not evolved in a tree-like manner; and to decipher the biological causes of gene-tree conflicts in this tribe. Results We obtain resolved phylogenetic hypotheses using the supermatrix and Bayesian Concordance Factors (BCF approaches despite numerous incongruences among gene trees. These phylogenies suggest the existence of 4-5 major clades within Triticeae, with Psathyrostachys and Hordeum being the deepest genera. In addition, we construct a multigenic network that highlights parts of the Triticeae history that have not evolved in a tree-like manner. Dasypyrum, Heteranthelium and genera of clade V, grouping Secale, Taeniatherum, Triticum and Aegilops, have evolved in a reticulated manner. Their relationships are thus better represented by the multigenic network than by the supermatrix or BCF trees. Noteworthy, we demonstrate that gene-tree incongruences increase with genetic distance and are greater in telomeric than centromeric genes. Together, our results suggest that recombination is the main factor

  2. Ribosomal RNA genes challenge the monophyly of the Hyalospheniidae (Amoebozoa: Arcellinida)

    DEFF Research Database (Denmark)

    Lara, Enrique; Heger, Thierry J; Ekelund, Flemming

    2008-01-01

    causes confusion in the phylogeny, taxonomy and the debate on cosmopolitanism of free-living protists. Here we present a SSU rRNA-based phylogeny of the Hyalospheniidae including the most common species. Similar to the filose testate amoebae of the order Euglyphida the most basal clades have a terminal......To date only five partial and two complete SSU rRNA gene sequences are available for the lobose testate amoebae (Arcellinida). Consequently, the phylogenetic relationships among taxa and the definition of species are still largely dependant on morphological characters of uncertain value, which...

  3. The phylogeny of amphibian metamorphosis.

    Science.gov (United States)

    Reiss, John O

    2002-01-01

    Frogs have one of the most extreme metamorphoses among vertebrates. How did this metamorphosis evolve? By combining the methods previously proposed by Mabee and Humphries (1993) and Velhagen (1997), I develop a phylogenetic method suited for rigorous analysis of this question. In a preliminary analysis using 12 transformation sequence characters and 36 associated event sequence characters, all drawn from the osteology of the skull, the evolution of metamorphosis is traced on an assumed phylogeny. This phylogeny has lissamphibians (frogs, salamanders, and caecilians) monophyletic, with frogs the sister group of salamanders. Successive outgroups used are temnospondyls and discosauriscids, both of which are fossil groups for which ontogenetic data are available. In the reconstruction of character evolution, an unambiguous change (synapomorphy) along the branch leading to lissamphibians is a delay in the lengthening of the maxilla until metamorphosis, in accordance with my previous suggestion (Reiss, 1996). However, widening of the interpterygoid vacuity does not appear as a synapomophy of lissamphibians, due to variation in the character states in the outgroups. From a more theoretical perspective, the reconstructed evolution of amphibian metamorphosis involves examples of heterochrony, through the shift of ancestral premetamorphic events to the metamorphic period, caenogenesis, through the origin of new larval features, and terminal addition, through the origin of new adult features. Other changes don't readily fit these categories. This preliminary study provides evidence that metamorphic changes in frogs arose as further modifications of changes unique to lissamphibians, as well as a new method by which such questions can be examined.

  4. Mitochondrial phylogeny of the Chrysisignita (Hymenoptera: Chrysididae) species group based on simultaneous Bayesian alignment and phylogeny reconstruction.

    Science.gov (United States)

    Soon, Villu; Saarma, Urmas

    2011-07-01

    The ignita species group within the genus Chrysis includes over 100 cuckoo wasp species, which all lead a parasitic lifestyle and exhibit very similar morphology. The lack of robust, diagnostic morphological characters has hindered phylogenetic reconstructions and contributed to frequent misidentification and inconsistent interpretations of species in this group. Therefore, molecular phylogenetic analysis is the most suitable approach for resolving the phylogeny and taxonomy of this group. We present a well-resolved phylogeny of the Chrysis ignita species group based on mitochondrial sequence data from 41 ingroup and six outgroup taxa. Although our emphasis was on European taxa, we included samples from most of the distribution range of the C. ignita species group to test for monophyly. We used a continuous mitochondrial DNA sequence consisting of 16S rRNA, tRNA(Val), 12S rRNA and ND4. The location of the ND4 gene at the 3' end of this continuous sequence, following 12S rRNA, represents a novel mitochondrial gene arrangement for insects. Due to difficulties in aligning rRNA genes, two different Bayesian approaches were employed to reconstruct phylogeny: (1) using a reduced data matrix including only those positions that could be aligned with confidence; or (2) using the full sequence dataset while estimating alignment and phylogeny simultaneously. In addition maximum-parsimony and maximum-likelihood analyses were performed to test the robustness of the Bayesian approaches. Although all approaches yielded trees with similar topology, considerably more nodes were resolved with analyses using the full data matrix. Phylogenetic analysis supported the monophyly of the C. ignita species group and divided its species into well-supported clades. The resultant phylogeny was only partly in accordance with published subgroupings based on morphology. Our results suggest that several taxa currently treated as subspecies or names treated as synonyms may in fact constitute

  5. Spatially differentiated expression of quadruplicated green-sensitive RH2 opsin genes in zebrafish is determined by proximal regulatory regions and gene order to the locus control region.

    Science.gov (United States)

    Tsujimura, Taro; Masuda, Ryoko; Ashino, Ryuichi; Kawamura, Shoji

    2015-11-04

    Fish are remarkably diverse in repertoires of visual opsins by gene duplications. Differentiation of their spatiotemporal expression patterns and absorption spectra enables fine-tuning of feature detection in spectrally distinct regions of the visual field during ontogeny. Zebrafish have quadruplicated green-sensitive (RH2) opsin genes in tandem (RH2-1, -2, -3, -4), which are expressed in the short member of the double cones (SDC). The shortest wavelength RH2 subtype (RH2-1) is expressed in the central to dorsal area of the adult retina. The second shortest wave subtype (RH2-2) is expressed overlapping with RH2-1 but extending outside of it. The second longest wave subtype (RH2-3) is expressed surrounding the RH2-2 area, and the longest wave subtype (RH2-4) is expressed outside of the RH2-3 area broadly occupying the ventral area. Expression of the four RH2 genes in SDC requires a single enhancer (RH2-LCR), but the mechanism of their spatial differentiation remains elusive. Functional comparison of the RH2-LCR with its counterpart in medaka revealed that the regulatory role of the RH2-LCR in SDC-specific expression is evolutionarily conserved. By combining the RH2-LCR and the proximal upstream region of each RH2 gene with fluorescent protein reporters, we show that the RH2-LCR and the RH2-3 proximal regulatory region confer no spatial selectivity of expression in the retina. But those of RH2-1, -2 and -4 are capable of inducing spatial differentiation of expression. Furthermore, by analyzing transgenic fish with a series of arrays consisting of the RH2-LCR and multiple upstream regions of the RH2 genes in different orders, we show that a gene expression pattern related to an upstream region is greatly influenced by another flanking upstream region in a relative position-dependent manner. The zebrafish RH2 genes except RH2-3 acquired differential cis-elements in the proximal upstream regions to specify the differential expression patterns. The input from these

  6. Whole genome association mapping by incompatibilities and local perfect phylogenies

    Directory of Open Access Journals (Sweden)

    Besenbacher Søren

    2006-10-01

    Full Text Available Abstract Background With current technology, vast amounts of data can be cheaply and efficiently produced in association studies, and to prevent data analysis to become the bottleneck of studies, fast and efficient analysis methods that scale to such data set sizes must be developed. Results We present a fast method for accurate localisation of disease causing variants in high density case-control association mapping experiments with large numbers of cases and controls. The method searches for significant clustering of case chromosomes in the "perfect" phylogenetic tree defined by the largest region around each marker that is compatible with a single phylogenetic tree. This perfect phylogenetic tree is treated as a decision tree for determining disease status, and scored by its accuracy as a decision tree. The rationale for this is that the perfect phylogeny near a disease affecting mutation should provide more information about the affected/unaffected classification than random trees. If regions of compatibility contain few markers, due to e.g. large marker spacing, the algorithm can allow the inclusion of incompatibility markers in order to enlarge the regions prior to estimating their phylogeny. Haplotype data and phased genotype data can be analysed. The power and efficiency of the method is investigated on 1 simulated genotype data under different models of disease determination 2 artificial data sets created from the HapMap ressource, and 3 data sets used for testing of other methods in order to compare with these. Our method has the same accuracy as single marker association (SMA in the simplest case of a single disease causing mutation and a constant recombination rate. However, when it comes to more complex scenarios of mutation heterogeneity and more complex haplotype structure such as found in the HapMap data our method outperforms SMA as well as other fast, data mining approaches such as HapMiner and Haplotype Pattern Mining (HPM

  7. Multifactor-Dimensionality Reduction Reveals High-Order Interactions among Estrogen-Metabolism Genes in Sporadic Breast Cancer

    Science.gov (United States)

    Ritchie, Marylyn D.; Hahn, Lance W.; Roodi, Nady; Bailey, L. Renee; Dupont, William D.; Parl, Fritz F.; Moore, Jason H.

    2001-01-01

    One of the greatest challenges facing human geneticists is the identification and characterization of susceptibility genes for common complex multifactorial human diseases. This challenge is partly due to the limitations of parametric-statistical methods for detection of gene effects that are dependent solely or partially on interactions with other genes and with environmental exposures. We introduce multifactor-dimensionality reduction (MDR) as a method for reducing the dimensionality of multilocus information, to improve the identification of polymorphism combinations associated with disease risk. The MDR method is nonparametric (i.e., no hypothesis about the value of a statistical parameter is made), is model-free (i.e., it assumes no particular inheritance model), and is directly applicable to case-control and discordant-sib-pair studies. Using simulated case-control data, we demonstrate that MDR has reasonable power to identify interactions among two or more loci in relatively small samples. When it was applied to a sporadic breast cancer case-control data set, in the absence of any statistically significant independent main effects, MDR identified a statistically significant high-order interaction among four polymorphisms from three different estrogen-metabolism genes. To our knowledge, this is the first report of a four-locus interaction associated with a common complex multifactorial disease. PMID:11404819

  8. Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer.

    Science.gov (United States)

    Ritchie, M D; Hahn, L W; Roodi, N; Bailey, L R; Dupont, W D; Parl, F F; Moore, J H

    2001-07-01

    One of the greatest challenges facing human geneticists is the identification and characterization of susceptibility genes for common complex multifactorial human diseases. This challenge is partly due to the limitations of parametric-statistical methods for detection of gene effects that are dependent solely or partially on interactions with other genes and with environmental exposures. We introduce multifactor-dimensionality reduction (MDR) as a method for reducing the dimensionality of multilocus information, to improve the identification of polymorphism combinations associated with disease risk. The MDR method is nonparametric (i.e., no hypothesis about the value of a statistical parameter is made), is model-free (i.e., it assumes no particular inheritance model), and is directly applicable to case-control and discordant-sib-pair studies. Using simulated case-control data, we demonstrate that MDR has reasonable power to identify interactions among two or more loci in relatively small samples. When it was applied to a sporadic breast cancer case-control data set, in the absence of any statistically significant independent main effects, MDR identified a statistically significant high-order interaction among four polymorphisms from three different estrogen-metabolism genes. To our knowledge, this is the first report of a four-locus interaction associated with a common complex multifactorial disease.

  9. Reconciling molecular phylogenies with the fossil record.

    Science.gov (United States)

    Morlon, Hélène; Parsons, Todd L; Plotkin, Joshua B

    2011-09-27

    Historical patterns of species diversity inferred from phylogenies typically contradict the direct evidence found in the fossil record. According to the fossil record, species frequently go extinct, and many clades experience periods of dramatic diversity loss. However, most analyses of molecular phylogenies fail to identify any periods of declining diversity, and they typically infer low levels of extinction. This striking inconsistency between phylogenies and fossils limits our understanding of macroevolution, and it undermines our confidence in phylogenetic inference. Here, we show that realistic extinction rates and diversity trajectories can be inferred from molecular phylogenies. To make this inference, we derive an analytic expression for the likelihood of a phylogeny that accommodates scenarios of declining diversity, time-variable rates, and incomplete sampling; we show that this likelihood expression reliably detects periods of diversity loss using simulation. We then study the cetaceans (whales, dolphins, and porpoises), a group for which standard phylogenetic inferences are strikingly inconsistent with fossil data. When the cetacean phylogeny is considered as a whole, recently radiating clades, such as the Balaneopteridae, Delphinidae, Phocoenidae, and Ziphiidae, mask the signal of extinctions. However, when isolating these groups, we infer diversity dynamics that are consistent with the fossil record. These results reconcile molecular phylogenies with fossil data, and they suggest that most extant cetaceans arose from four recent radiations, with a few additional species arising from clades that have been in decline over the last ~10 Myr.

  10. Genomic organization and molecular phylogenies of the beta (β keratin multigene family in the chicken (Gallus gallus and zebra finch (Taeniopygia guttata: implications for feather evolution

    Directory of Open Access Journals (Sweden)

    Sawyer Roger H

    2010-05-01

    Full Text Available Abstract Background The epidermal appendages of reptiles and birds are constructed of beta (β keratins. The molecular phylogeny of these keratins is important to understanding the evolutionary origin of these appendages, especially feathers. Knowing that the crocodilian β-keratin genes are closely related to those of birds, the published genomes of the chicken and zebra finch provide an opportunity not only to compare the genomic organization of their β-keratins, but to study their molecular evolution in archosaurians. Results The subfamilies (claw, feather, feather-like, and scale of β-keratin genes are clustered in the same 5' to 3' order on microchromosome 25 in chicken and zebra finch, although the number of claw and feather genes differs between the species. Molecular phylogenies show that the monophyletic scale genes are the basal group within birds and that the monophyletic avian claw genes form the basal group to all feather and feather-like genes. Both species have a number of feather clades on microchromosome 27 that form monophyletic groups. An additional monophyletic cluster of feather genes exist on macrochromosome 2 for each species. Expression sequence tag analysis for the chicken demonstrates that all feather β-keratin clades are expressed. Conclusions Similarity in the overall genomic organization of β-keratins in Galliformes and Passeriformes suggests similar organization in all Neognathae birds, and perhaps in the ancestral lineages leading to modern birds, such as the paravian Anchiornis huxleyi. Phylogenetic analyses demonstrate that evolution of archosaurian epidermal appendages in the lineage leading to birds was accompanied by duplication and divergence of an ancestral β-keratin gene cluster. As morphological diversification of epidermal appendages occurred and the β-keratin multigene family expanded, novel β-keratin genes were selected for novel functions within appendages such as feathers.

  11. Mitogenomes of two neotropical bird species and the multiple independent origin of mitochondrial gene orders in Passeriformes.

    Science.gov (United States)

    Caparroz, Renato; Rocha, Amanda V; Cabanne, Gustavo S; Tubaro, Pablo; Aleixo, Alexandre; Lemmon, Emily M; Lemmon, Alan R

    2018-02-17

    At least four mitogenome arrangements occur in Passeriformes and differences among them are derived from an initial tandem duplication involving a segment containing the control region (CR), followed by loss or reduction of some parts of this segment. However, it is still unclear how often duplication events have occurred in this bird order. In this study, the mitogenomes from two species of Neotropical passerines (Sicalis olivascens and Lepidocolaptes angustirostris) with different gene arrangements were first determined. We also estimated how often duplication events occurred in Passeriformes and if the two CR copies demonstrate a pattern of concerted evolution in Sylvioidea. One tissue sample for each species was used to obtain the mitogenomes as a byproduct using next generation sequencing. The evolutionary history of mitogenome rearrangements was reconstructed mapping these characters onto a mitogenome Bayesian phylogenetic tree of Passeriformes. Finally, we performed a Bayesian analysis for both CRs from some Sylvioidea species in order to evaluate the evolutionary process involving these two copies. Both mitogenomes described comprise 2 rRNAs, 22 tRNAs, 13 protein-codon genes and the CR. However, S. olivascens has 16,768 bp showing the ancestral avian arrangement, while L. angustirostris has 16,973 bp and the remnant CR2 arrangement. Both species showed the expected gene order compared to their closest relatives. The ancestral state reconstruction suggesting at least six independent duplication events followed by partial deletions or loss of one copy in some lineages. Our results also provide evidence that both CRs in some Sylvioidea species seem to be maintained in an apparently functional state, perhaps by concerted evolution, and that this mechanism may be important for the evolution of the bird mitogenome.

  12. PhyloPars: estimation of missing parameter values using phylogeny.

    Science.gov (United States)

    Bruggeman, Jorn; Heringa, Jaap; Brandt, Bernd W

    2009-07-01

    A wealth of information on metabolic parameters of a species can be inferred from observations on species that are phylogenetically related. Phylogeny-based information can complement direct empirical evidence, and is particularly valuable if experiments on the species of interest are not feasible. The PhyloPars web server provides a statistically consistent method that combines an incomplete set of empirical observations with the species phylogeny to produce a complete set of parameter estimates for all species. It builds upon a state-of-the-art evolutionary model, extended with the ability to handle missing data. The resulting approach makes optimal use of all available information to produce estimates that can be an order of magnitude more accurate than ad-hoc alternatives. Uploading a phylogeny and incomplete feature matrix suffices to obtain estimates of all missing values, along with a measure of certainty. Real-time cross-validation provides further insight in the accuracy and bias expected for estimated values. The server allows for easy, efficient estimation of metabolic parameters, which can benefit a wide range of fields including systems biology and ecology. PhyloPars is available at: http://www.ibi.vu.nl/programs/phylopars/.

  13. Molecular phylogeny of Chrysomya albiceps and C. rufifacies (Diptera: Calliphoridae).

    Science.gov (United States)

    Wells, J D; Sperling, F A

    1999-05-01

    Mitochondrial DNA was used to infer the phylogeny and genetic divergences of Chrysomya albiceps (Wiedemann) and C. rufifacies (Maquart) specimens from widely separated localities in the Old and New World. Analyses based on a 2.3-kb region including the genes for cytochrome oxidase subunits I and II indicated that the 2 species were separate monophyletic lineages that have been separated for > 1 million years. Analysis of DNA, in the form of either sequence or restriction fragment-length polymorphism (RFLP) data, will permit the identification of problematic specimens.

  14. A Molecular Phylogeny of Hemiptera Inferred from Mitochondrial Genome Sequences

    Science.gov (United States)

    Song, Nan; Liang, Ai-Ping; Bu, Cui-Ping

    2012-01-01

    Classically, Hemiptera is comprised of two suborders: Homoptera and Heteroptera. Homoptera includes Cicadomorpha, Fulgoromorpha and Sternorrhyncha. However, according to previous molecular phylogenetic studies based on 18S rDNA, Fulgoromorpha has a closer relationship to Heteroptera than to other hemipterans, leaving Homoptera as paraphyletic. Therefore, the position of Fulgoromorpha is important for studying phylogenetic structure of Hemiptera. We inferred the evolutionary affiliations of twenty-five superfamilies of Hemiptera using mitochondrial protein-coding genes and rRNAs. We sequenced three mitogenomes, from Pyrops candelaria, Lycorma delicatula and Ricania marginalis, representing two additional families in Fulgoromorpha. Pyrops and Lycorma are representatives of an additional major family Fulgoridae in Fulgoromorpha, whereas Ricania is a second representative of the highly derived clade Ricaniidae. The organization and size of these mitogenomes are similar to those of the sequenced fulgoroid species. Our consensus phylogeny of Hemiptera largely supported the relationships (((Fulgoromorpha,Sternorrhyncha),Cicadomorpha),Heteroptera), and thus supported the classic phylogeny of Hemiptera. Selection of optimal evolutionary models (exclusion and inclusion of two rRNA genes or of third codon positions of protein-coding genes) demonstrated that rapidly evolving and saturated sites should be removed from the analyses. PMID:23144967

  15. The phylogeny and relationships between the insect orders

    OpenAIRE

    Alvaro Wille

    2002-01-01

    El trabajo presente consiste en un análisis y evaluación de la literatura sobre la evolución e interrelación de los órdenes de los insectos, dando como resultado las siguientes conclusiones: 1) Nuestros conocimientos actuales parecen indicar que los artrópodos más cercanos a 105 insectos son los miriápodos, de los cuales los Symphyla poseen el mayor número de caracteres en común con los insectos primitivos. Esto parece sugerir que Insecta y Symphyla se derivaron de un tronco común, formado de...

  16. The phylogeny and relationships between the insect orders

    Directory of Open Access Journals (Sweden)

    Alvaro Wille

    2002-06-01

    Full Text Available El trabajo presente consiste en un análisis y evaluación de la literatura sobre la evolución e interrelación de los órdenes de los insectos, dando como resultado las siguientes conclusiones: 1 Nuestros conocimientos actuales parecen indicar que los artrópodos más cercanos a 105 insectos son los miriápodos, de los cuales los Symphyla poseen el mayor número de caracteres en común con los insectos primitivos. Esto parece sugerir que Insecta y Symphyla se derivaron de un tronco común, formado de artrópodos de tipo miriápodo. Hay evidencia también de que los insectos pueden haberse originado por medio de neotenia de dicho tronco común. 2 La tendencia reciente de excluir los apterigotos entognatos de la clase Insecta no parece estar bien justificada. 3 Investigaciones recientes indican que los apterigotos entognatos (Protura, Collembola y Diplura están interrelacionados. 4 En vista de que las diferencias entre lepismátidos y maquílidos incluyen varias características de gran importancia filogenética (Cuadro 1, se considera que forman dos órdenes: Microcoryphia, que comprende a los maquílidos, y Thysanura propiamente dichos, o sea los lepismátidos. 5 El origen de los pterigotos aun continúa sin solución. 6 De todos los grupos vivientes de Pterygota los Ephemeroptera parecen ser los más primitivos. Los Odonata forman un grupo aislado, lo cual también es cierto de los Ephemeroptera, pero de todos los órdenes vivientes de Pterygota los efemerópteros son los que más se aproximan a los odonatos. 7 Los órdenes neópteros comprenden tres grupos o tendencias evolucionarias principales: Las líneas Orthopteroidea, Hemipteroidea y Neuropteroidea (Cuadro 2. 8 En el grupo ortopteroideo se pueden distinguir dos líneas: los Orthopteroidea propiamente dichos, con afinidades claras, y una línea (Panplecoptera representada por Plecoptera, Embioptera, y Dermaptera (Cuadro 3, con afinidades dudosas. En el grupo ortopteroideo propiamente dicho pueden reconocerse ottas dos líneas: los Panorthoptera, representados por Grylloblattodea, Saltatoria, y Phasmida; los Dietyoptera, representados por Blattaria, Mantodea e Isoptera (Cuadro 4. Aunque los comejenes (Isoptera superficialmente parecen estar muy lejanos de las cucarachas, un examen cuidadoso revelará una relación cercana entre los dos grupos (Cuadro 5. 9 La principal tendencia evolucionaria en los hemipteroideos es un desarrollo gradual de un aparato bucal chupador. 10 Dos líneas de evolución pueden ser reconocidas en el grupo neuropteroideo: los Panneuroptera incluyendo Neuroptera, Megaloptera, Raphidiodea, Coleoptera, Strepsiptera e Hymenoptera, y los Panmecoptera (= Panorpoidea incluyendo Mecoptera, Trichoptera, Lepidoptera, Diptera y Siphonap.tera. En ambos grupos hay una tendencia hacia el desarrollo de un aparato bucal chupador

  17. Phylogeny of nematodes from birds of prey

    OpenAIRE

    Honisch, Michaela

    2010-01-01

    Birds of prey host a wide variety of endoparasites. The majority of these endoparasites are nematodes. They can be found mainly in the digestive and respiratory system. The current accepted phylogeny of nematodes found in birds of prey is based on morphological traits. In this study molecular data were used to assess phylogenetic relationships in this group of parasitic nematodes. The aim of the study was to evaluate a method for rapid species identification, to construct a phylogeny of paras...

  18. An expanded phylogeny of treefrogs (Hylidae) based on nuclear and mitochondrial sequence data.

    Science.gov (United States)

    Wiens, John J; Kuczynski, Caitlin A; Hua, Xia; Moen, Daniel S

    2010-06-01

    The treefrogs (Hylidae) make up one of the most species-rich families of amphibians. With 885 species currently described, they contain >13% of all amphibian species. In recent years, there has been considerable progress in resolving hylid phylogeny. However, the most comprehensive phylogeny to date (Wiens et al., 2006) included only 292 species, was based only on parsimony, provided only poor support for most higher-level relationships, and conflicted with previous hypotheses in several parts (including the monophyly and relationships of major clades of Hylinae). Here, we present an expanded phylogeny for hylid frogs, including data for 362 hylid taxa for up to 11 genes (4 mitochondrial, 7 nuclear), including 70 additional taxa and >270 sequences not included in the previously most comprehensive analysis. The new tree from maximum likelihood analysis is more well-resolved, strongly supported, and concordant with previous hypotheses, and provides a framework for future systematic, biogeographic, ecological, and evolutionary studies. 2010 Elsevier Inc. All rights reserved.

  19. Phylogeny of cockroaches (Insecta, Dictyoptera, Blattodea), with placement of aberrant taxa and exploration of out-group sampling

    DEFF Research Database (Denmark)

    Djernæs, Marie; Klass, Klaus-Dieter; Picker, Mike D.

    2012-01-01

    We addressed the phylogeny of cockroaches using DNA sequence data from a broad taxon sample of Dictyoptera and other non-endopterygotan insect orders. We paid special attention to several taxa in which relationships are controversial, or where no molecular evidence has been used previously......: Nocticolidae, a family of small, often cave-dwelling cockroaches, has been suggested to be the sister group of the predaceous Mantodea or of the cockroach family Polyphagidae; Lamproblatta, traditionally placed in Blattidae, has recently been given family status and placed as sister to Polyphagidae......; and Saltoblattella montistabularis Bohn, Picker, Klass & Colville, a jumping cockroach, which has not yet been included in any phylogenetic studies. We used mitochondrial (COI + COII and 16S) and nuclear (18S and 28S) genes, and analysed the data using Bayesian inference (BI) and maximum likelihood (ML...

  20. Molecular phylogeny of Myriapoda provides insights into evolutionary patterns of the mode in post-embryonic development

    Science.gov (United States)

    Miyazawa, Hideyuki; Ueda, Chiaki; Yahata, Kensuke; Su, Zhi-Hui

    2014-01-01

    Myriapoda, a subphylum of Arthropoda, comprises four classes, Chilopoda, Diplopoda, Pauropoda, and Symphyla. While recent molecular evidence has shown that Myriapoda is monophyletic, the internal phylogeny, which is pivotal for understanding the evolutionary history of myriapods, remains unresolved. Here we report the results of phylogenetic analyses and estimations of divergence time and ancestral state of myriapods. Phylogenetic analyses were performed based on three nuclear protein-coding genes determined from 19 myriapods representing the four classes (17 orders) and 11 outgroup species. The results revealed that Symphyla whose phylogenetic position has long been debated is the sister lineage to all other myriapods, and that the interordinal relationships within classes were consistent with traditional classifications. Ancestral state estimation based on the tree topology suggests that myriapods evolved from an ancestral state that was characterized by a hemianamorphic mode of post-embryonic development and had a relatively low number of body segments and legs. PMID:24535281

  1. Comparison of nuclear, plastid, and mitochondrial phylogenies and the origin of wild octoploid strawberry species.

    Science.gov (United States)

    Govindarajulu, Rajanikanth; Parks, Matthew; Tennessen, Jacob A; Liston, Aaron; Ashman, Tia-Lynn

    2015-04-01

    Molecular phylogenies derived from all three plant genomes can provide insight into the evolutionary history of plant groups influenced by reticulation. We sought to reconstruct mitochondrial exome, chloroplast, and nuclear genome phylogenies for octoploid Fragaria and their diploid ancestors and to document patterns of incongruence between and within the cytoplasmic genomes and interpret these in the context of evolutionary origin of the octoploid strawberries. Using a genome-skimming approach, we assembled chloroplast genomes and mitochondrial exomes, and we used the POLiMAPS method to assemble nuclear sequence for octoploid species and constructed phylogenies from all three genomes. We assessed incongruence between and within cytoplasmic genomes using topology-based phylogenetic incongruence tests. The incongruent cytoplasmic genome phylogeny with respect to the placement of octoploids suggests potential breakage in linkage disequilibrium of cytoplasmic genomes during allopolyploid origin of the octoploids. Furthermore, a single mitochondrial chimeric gene with a putative role in cytoplasmic male sterility yields a phylogeny that is inconsistent with the rest of the mitochondrial genome but consistent with the chloroplast phylogeny, suggesting intracellular gene transfer between heteroplasmic mitochondria, possibly driven by selection to overcome the effects of mito-nuclear incompatibility in octoploid origins. This work expands on the current understanding of evolutionary history of the octoploid ancestors of cultivated strawberry. It demonstrates phylogenetic incongruence between cytoplasmic genomes in octoploids with respect to diploid ancestors, indicating breakage in linkage disequilibrium of cytoplasmic genomes. We discuss potential organism-level processes that may have contributed to the observed incongruence in Fragaria. © 2015 Botanical Society of America, Inc.

  2. Gene order for rubella virus structural proteins is NH/sub 2/-C-E2-E1-COOH

    Energy Technology Data Exchange (ETDEWEB)

    Oker-Blom, C.

    1984-08-01

    The order of translation in vivo of the genes coding for rubella virus structural proteins was studied in infected B-Vero cells. The proteins were sequentially pulse-chase labeled with (/sup 35/S)methionine after synchronization of translation initiation with hypertonic salt treatment. A sequential labeling procedure (window-labeling) to specifically label defined segments of the structural proteins was also used. The labeled proteins were identified by sodium dodecyl sulfate-gel electrophoresis after immunoprecipitation with specific antisera directed against the two virion glycoproteins (E1 and E2a/E2b) and the nucleocapsid (C) protein. The order of translation was found to be NH/sub 2/-C-E2-E1-COOH. We have previously shown that the structural proteins are synthesized in vitro from a cytoplasmic 24S subgenomic mRNA as a 110,000-dalton (p110) precursor. Here, it is shown that p110 is precipitated with anti-C, anti-E2, and anti-E1 sera, indicating that p110 is the precursor of all three structural proteins. Two major in vitro translation products (M/sub r/s, 66,000 and 62,000) that could represent preterminated polypeptide chains or proteolytic cleavage products were precipitated with anti-C and anti-Es sera, but not with anti-E1 serum, indicating, in conformity with the in vivo results, that the genes for the C and E2 proteins are adjacent to each other. Using these specific antisera, we have also confirmed the identity of the unglycosylated forms of E1 (M/sub r/, 53,000) and E2 (M/sub r/ 30,000) immunoprecipitated from tunicamycin-treated infected cells. 18 references, 6 figures.

  3. Gene order for rubella virus structural proteins is NH2-C-E2-E1-COOH

    International Nuclear Information System (INIS)

    Oker-Blom, C.

    1984-01-01

    The order of translation in vivo of the genes coding for rubella virus structural proteins was studied in infected B-Vero cells. The proteins were sequentially pulse-chase labeled with [ 35 S]methionine after synchronization of translation initiation with hypertonic salt treatment. A sequential labeling procedure (window-labeling) to specifically label defined segments of the structural proteins was also used. The labeled proteins were identified by sodium dodecyl sulfate-gel electrophoresis after immunoprecipitation with specific antisera directed against the two virion glycoproteins (E1 and E2a/E2b) and the nucleocapsid (C) protein. The order of translation was found to be NH 2 -C-E2-E1-COOH. We have previously shown that the structural proteins are synthesized in vitro from a cytoplasmic 24S subgenomic mRNA as a 110,000-dalton (p110) precursor. Here, it is shown that p110 is precipitated with anti-C, anti-E2, and anti-E1 sera, indicating that p110 is the precursor of all three structural proteins. Two major in vitro translation products (M/sub r/s, 66,000 and 62,000) that could represent preterminated polypeptide chains or proteolytic cleavage products were precipitated with anti-C and anti-Es sera, but not with anti-E1 serum, indicating, in conformity with the in vivo results, that the genes for the C and E2 proteins are adjacent to each other. Using these specific antisera, we have also confirmed the identity of the unglycosylated forms of E1 (M/sub r/, 53,000) and E2 (M/sub r/ 30,000) immunoprecipitated from tunicamycin-treated infected cells. 18 references, 6 figures

  4. Deducing the temporal order of cofactor function in ligand-regulated gene transcription: theory and experimental verification.

    Directory of Open Access Journals (Sweden)

    Edward J Dougherty

    Full Text Available Cofactors are intimately involved in steroid-regulated gene expression. Two critical questions are (1 the steps at which cofactors exert their biological activities and (2 the nature of that activity. Here we show that a new mathematical theory of steroid hormone action can be used to deduce the kinetic properties and reaction sequence position for the functioning of any two cofactors relative to a concentration limiting step (CLS and to each other. The predictions of the theory, which can be applied using graphical methods similar to those of enzyme kinetics, are validated by obtaining internally consistent data for pair-wise analyses of three cofactors (TIF2, sSMRT, and NCoR in U2OS cells. The analysis of TIF2 and sSMRT actions on GR-induction of an endogenous gene gave results identical to those with an exogenous reporter. Thus new tools to determine previously unobtainable information about the nature and position of cofactor action in any process displaying first-order Hill plot kinetics are now available.

  5. Deducing the temporal order of cofactor function in ligand-regulated gene transcription: theory and experimental verification.

    Science.gov (United States)

    Dougherty, Edward J; Guo, Chunhua; Simons, S Stoney; Chow, Carson C

    2012-01-01

    Cofactors are intimately involved in steroid-regulated gene expression. Two critical questions are (1) the steps at which cofactors exert their biological activities and (2) the nature of that activity. Here we show that a new mathematical theory of steroid hormone action can be used to deduce the kinetic properties and reaction sequence position for the functioning of any two cofactors relative to a concentration limiting step (CLS) and to each other. The predictions of the theory, which can be applied using graphical methods similar to those of enzyme kinetics, are validated by obtaining internally consistent data for pair-wise analyses of three cofactors (TIF2, sSMRT, and NCoR) in U2OS cells. The analysis of TIF2 and sSMRT actions on GR-induction of an endogenous gene gave results identical to those with an exogenous reporter. Thus new tools to determine previously unobtainable information about the nature and position of cofactor action in any process displaying first-order Hill plot kinetics are now available.

  6. Revisiting the mitogenomic phylogeny of Salmoninae: new insights thanks to recent sequencing advances

    Directory of Open Access Journals (Sweden)

    Jose L. Horreo

    2017-09-01

    Full Text Available The phylogeny of the Salmonidae family, the only living one of the Order Salmoniformes, remains still unclear because of several reasons. Such reasons include insufficient taxon sampling and/or DNA information. The use of complete mitochondrial genomes (mitogenomics could provide some light on it, but despite the high number of mitogenomes of species belonging to this family published during last years, an integrative work containing all this information has not been done. In this work, the phylogeny of 46 Salmonidae species was inferred from their mitogenomic sequences. Results include a Bayesian molecular-dated phylogenetic tree with very high statistical support showing Coregoninae and Salmoninae as sister subfamilies, as well as several new phylogenetic relationships among species and genus of the family. All these findings contribute to improve our understanding of the Salmonidae systematics and could have consequences on related evolutionary studies, as well as highlight the importance of revisiting phylogenies with integrative studies.

  7. Nuclear ribosomal DNA phylogeny and its implications for evolutionary trends in Mexican Bursera (Burseraceae).

    Science.gov (United States)

    Becerra, J X; Venable, D L

    1999-07-01

    The genus Bursera (Burseraceae) is one of the most diversified and abundant groups of plants of the tropical dry forests of Mexico. In order to provide a basis for better understanding of its evolutionary biology, we reconstructed a phylogeny of 57 species and varieties using the nucleotide sequences of the internal transcribed spacer regions (ITS1 and ITS2) of 18S-26S and the 5.8S coding region of nuclear ribosomal DNA. We used four species of the allied genera Commiphora and Boswellia and one species of Spondias (Anacardiaceae) as outgroups. Our results support the views that Bursera is monophyletic and more closely related to Commiphora than to Boswellia. The division of Bursera into sections Bullockia and Bursera is also strongly supported by our phylogeny. Several other subclades also had high bootstrap values, especially within section Bursera. We use the phylogeny as a basis for discussing evolutionary tendencies in bark, leaves, breeding systems, and fruits.

  8. Resolution of ray-finned fish phylogeny and timing of diversification.

    Science.gov (United States)

    Near, Thomas J; Eytan, Ron I; Dornburg, Alex; Kuhn, Kristen L; Moore, Jon A; Davis, Matthew P; Wainwright, Peter C; Friedman, Matt; Smith, W Leo

    2012-08-21

    Ray-finned fishes make up half of all living vertebrate species. Nearly all ray-finned fishes are teleosts, which include most commercially important fish species, several model organisms for genomics and developmental biology, and the dominant component of marine and freshwater vertebrate faunas. Despite the economic and scientific importance of ray-finned fishes, the lack of a single comprehensive phylogeny with corresponding divergence-time estimates has limited our understanding of the evolution and diversification of this radiation. Our analyses, which use multiple nuclear gene sequences in conjunction with 36 fossil age constraints, result in a well-supported phylogeny of all major ray-finned fish lineages and molecular age estimates that are generally consistent with the fossil record. This phylogeny informs three long-standing problems: specifically identifying elopomorphs (eels and tarpons) as the sister lineage of all other teleosts, providing a unique hypothesis on the radiation of early euteleosts, and offering a promising strategy for resolution of the "bush at the top of the tree" that includes percomorphs and other spiny-finned teleosts. Contrasting our divergence time estimates with studies using a single nuclear gene or whole mitochondrial genomes, we find that the former underestimates ages of the oldest ray-finned fish divergences, but the latter dramatically overestimates ages for derived teleost lineages. Our time-calibrated phylogeny reveals that much of the diversification leading to extant groups of teleosts occurred between the late Mesozoic and early Cenozoic, identifying this period as the "Second Age of Fishes."

  9. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host.

    Science.gov (United States)

    Yun, Ji-Hyun; Roh, Seong Woon; Whon, Tae Woong; Jung, Mi-Ja; Kim, Min-Soo; Park, Doo-Sang; Yoon, Changmann; Nam, Young-Do; Kim, Yun-Ji; Choi, Jung-Hye; Kim, Joon-Yong; Shin, Na-Ri; Kim, Sung-Hee; Lee, Won-Jae; Bae, Jin-Woo

    2014-09-01

    Insects are the most abundant animals on Earth, and the microbiota within their guts play important roles by engaging in beneficial and pathological interactions with these hosts. In this study, we comprehensively characterized insect-associated gut bacteria of 305 individuals belonging to 218 species in 21 taxonomic orders, using 454 pyrosequencing of 16S rRNA genes. In total, 174,374 sequence reads were obtained, identifying 9,301 bacterial operational taxonomic units (OTUs) at the 3% distance level from all samples, with an average of 84.3 (± 97.7) OTUs per sample. The insect gut microbiota were dominated by Proteobacteria (62.1% of the total reads, including 14.1% Wolbachia sequences) and Firmicutes (20.7%). Significant differences were found in the relative abundances of anaerobes in insects and were classified according to the criteria of host environmental habitat, diet, developmental stage, and phylogeny. Gut bacterial diversity was significantly higher in omnivorous insects than in stenophagous (carnivorous and herbivorous) insects. This insect-order-spanning investigation of the gut microbiota provides insights into the relationships between insects and their gut bacterial communities. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  10. Insect Gut Bacterial Diversity Determined by Environmental Habitat, Diet, Developmental Stage, and Phylogeny of Host

    Science.gov (United States)

    Yun, Ji-Hyun; Roh, Seong Woon; Whon, Tae Woong; Jung, Mi-Ja; Kim, Min-Soo; Park, Doo-Sang; Yoon, Changmann; Nam, Young-Do; Kim, Yun-Ji; Choi, Jung-Hye; Kim, Joon-Yong; Shin, Na-Ri; Kim, Sung-Hee; Lee, Won-Jae

    2014-01-01

    Insects are the most abundant animals on Earth, and the microbiota within their guts play important roles by engaging in beneficial and pathological interactions with these hosts. In this study, we comprehensively characterized insect-associated gut bacteria of 305 individuals belonging to 218 species in 21 taxonomic orders, using 454 pyrosequencing of 16S rRNA genes. In total, 174,374 sequence reads were obtained, identifying 9,301 bacterial operational taxonomic units (OTUs) at the 3% distance level from all samples, with an average of 84.3 (±97.7) OTUs per sample. The insect gut microbiota were dominated by Proteobacteria (62.1% of the total reads, including 14.1% Wolbachia sequences) and Firmicutes (20.7%). Significant differences were found in the relative abundances of anaerobes in insects and were classified according to the criteria of host environmental habitat, diet, developmental stage, and phylogeny. Gut bacterial diversity was significantly higher in omnivorous insects than in stenophagous (carnivorous and herbivorous) insects. This insect-order-spanning investigation of the gut microbiota provides insights into the relationships between insects and their gut bacterial communities. PMID:24928884

  11. Internal phylogeny of the Chilopoda (Myriapoda, Arthropoda) using complete 18S rDNA and partial 28S rDNA sequences.

    Science.gov (United States)

    Giribet, G; Carranza, S; Riutort, M; Baguñà, J; Ribera, C

    1999-01-29

    The internal phylogeny of the 'myriapod' class Chilopoda is evaluated for 12 species belonging to the five extant centipede orders, using 18S rDNA complete gene sequence and 28S rDNA partial gene sequence data. Equally and differentially weighted parsimony, neighbour-joining and maximum-likelihood were used for phylogenetic reconstruction, and bootstrapping and branch support analyses were performed to evaluate tree topology stability. The results show that the Chilopoda constitute a monophyletic group that is divided into two lines, Notostigmophora (= Scutigeromorpha) and Pleurostigmophora, as found in previous morphological analyses. The Notostigmophora are markedly modified for their epigenic mode of life. The first offshoot of the Pleurostigmophora are the Lithobiomorpha, followed by the Craterostigmomorpha and by the Epimorpha s. str. (= Scolopendromorpha + Geophilomorpha), although strong support for the monophyly of the Epimorpha s. lat. (= Craterostigmomorpha + Epimorpha s. str.) is only found in the differentially weighted parsimony analysis.

  12. The reticulating phylogeny of island biogeography theory.

    Science.gov (United States)

    Lomolino, Mark V; Brown, James H

    2009-12-01

    Biogeographers study all patterns in the geographic variation of life, from the spatial variation in genetic and physiological characteristics of cells and individuals, to the diversity and dynamics of biological communities among continental biotas or across oceanic archipelagoes. The field of island biogeography, in particular, has provided some genuinely transformative insights for the biological sciences, especially ecology and evolutionary biology. Our purpose here is to review the historical development of island biogeography theory during the 20th century by identifying the common threads that run through four sets of contributions made during this period, including those by Eugene Gordon Munroe (1948, 1953), Edward O. Wilson (1959, 1961), Frank W. Preston (1962a,b), and the seminal collaborations between Wilson and Robert H. MacArthur (1963, 1967), which revolutionized the field and served as its paradigm for nearly four decades. This epistemological account not only reviews the intriguing history of island theory, but it also includes fundamental lessons for advancing science through transformative integrations. Indeed, as is likely the case with many disciplines, island theory advanced not as a simple accumulation of facts and an orderly succession of theories and paradigms, but rather in fits and starts through a reticulating phylogeny of ideas and alternating periods of specialization and reintegration. We conclude this review with a summary of the salient features of this scientific revolution in the contest of Kuhn's structure, which strongly influenced theoretical advances during this period, and we then describe some of the fundamental assumptions and tenets of an emerging reintegration of island biogeography theory.

  13. First divergence time estimate of spiders, scorpions, mites and ticks (subphylum: Chelicerata) inferred from mitochondrial phylogeny.

    Science.gov (United States)

    Jeyaprakash, Ayyamperumal; Hoy, Marjorie A

    2009-01-01

    Spiders, scorpions, mites and ticks (chelicerates) form one of the most diverse groups of arthropods on land, but their origin and times of diversification are not yet established. We estimated, for the first time, the molecular divergence times for these chelicerates using complete mitochondrial sequences from 25 taxa. All mitochondrial genes were evaluated individually or after concatenation. Sequences belonging to three missing genes (ND3, 6, and tRNA-Asp) from three taxa, as well as the faster-evolving ribosomal RNAs (12S and 16S), tRNAs, and the third base of each codon from 11 protein-coding genes (PCGs) (COI-III, CYTB, ATP8, 6, ND1-2, 4L, and 4-5), were identified and removed. The remaining concatenated sequences from 11 PCGs produced a completely resolved phylogenetic tree and confirmed that all chelicerates are monophyletic. Removing the third base from each codon was essential to resolve the phylogeny, which allowed deep divergence times to be calculated using three nodes calibrated with upper and lower priors. Our estimates indicate that the orders and classes of spiders, scorpions, mites, and ticks diversified in the late Paleozoic, much earlier than previously reported from fossil date estimates. The divergence time estimated for ticks suggests that their first land hosts could have been amphibians rather than reptiles. Using molecular data, we separated the spider-scorpion clades and estimated their divergence times at 397 +/- 23 million years ago. Algae, fungi, plants, and animals, including insects, were well established on land when these chelicerates diversified. Future analyses, involving mitochondrial sequences from additional chelicerate taxa and the inclusion of nuclear genes (or entire genomes) will provide a more complete picture of the evolution of the Chelicerata, the second most abundant group of animals on earth.

  14. Molecular Phylogeny of the Bamboo Sharks (Chiloscyllium spp.

    Directory of Open Access Journals (Sweden)

    Noor Haslina Masstor

    2014-01-01

    Full Text Available Chiloscyllium, commonly called bamboo shark, can be found inhabiting the waters of the Indo-West Pacific around East Asian countries such as Malaysia, Myanmar, Thailand, Singapore, and Indonesia. The International Union for Conservation of Nature (IUCN Red List has categorized them as nearly threatened sharks out of their declining population status due to overexploitation. A molecular study was carried out to portray the systematic relationships within Chiloscyllium species using 12S rRNA and cytochrome b gene sequences. Maximum parsimony and Bayesian were used to reconstruct their phylogeny trees. A total of 381 bp sequences’ lengths were successfully aligned in the 12S rRNA region, with 41 bp sites being parsimony-informative. In the cytochrome b region, a total of 1120 bp sites were aligned, with 352 parsimony-informative characters. All analyses yield phylogeny trees on which C. indicum has close relationships with C. plagiosum. C. punctatum is sister taxon to both C. indicum and C. plagiosum while C. griseum and C. hasseltii formed their own clade as sister taxa. These Chiloscyllium classifications can be supported by some morphological characters (lateral dermal ridges on the body, coloring patterns, and appearance of hypobranchials and basibranchial plate that can clearly be used to differentiate each species.

  15. Phylogeny of the Pluteaceae (Agaricales, Basidiomycota): taxonomy and character evolution.

    Science.gov (United States)

    Justo, Alfredo; Vizzini, Alfredo; Minnis, Andrew M; Menolli, Nelson; Capelari, Marina; Rodríguez, Olivia; Malysheva, Ekaterina; Contu, Marco; Ghignone, Stefano; Hibbett, David S

    2011-01-01

    The phylogeny of the genera traditionally classified in the family Pluteaceae (Agaricales, Basidiomycota) was investigated using molecular data from nuclear ribosomal genes (nSSU, ITS, nLSU) and consequences for taxonomy and character evolution were evaluated. The genus Volvariella is polyphyletic, as most of its representatives fall outside the Pluteoid clade and shows affinities to some hygrophoroid genera (Camarophyllus, Cantharocybe). Volvariella gloiocephala and allies are placed in a different clade, which represents the sister group of Pluteus, and a new generic name, Volvopluteus, is proposed to accommodate these taxa. Characters such as basidiospore size and pileipellis structure can be used to separate Pluteus, Volvariella and Volvopluteus. The genus Pluteus is monophyletic and includes species with partial veil traditionally classified in the genus Chamaeota. The evolution of morphological features used in the infrageneric taxonomy of the genus, such as metuloid cystidia and pileipellis structure, was analyzed. Agreement between the molecular phylogeny and morphological subdivision of Pluteus is, generally speaking, good, though some rearrangements are necessary: (i) species with non-metuloid pleurocystidia and pileipellis as a cutis are placed either in sect. Celluloderma, together with the species characterized by a hymenidermal pipeipellis, or in sect. Pluteus, with the metuloid bearing species; (ii) subdivision of sect. Celluloderma according to the presence/absence of cystidioid elements in the pileipellis is not supported by molecular data. Copyright © 2010 The British Mycological Society. All rights reserved.

  16. Birth-death prior on phylogeny and speed dating

    Directory of Open Access Journals (Sweden)

    Sennblad Bengt

    2008-03-01

    Full Text Available Abstract Background In recent years there has been a trend of leaving the strict molecular clock in order to infer dating of speciations and other evolutionary events. Explicit modeling of substitution rates and divergence times makes formulation of informative prior distributions for branch lengths possible. Models with birth-death priors on tree branching and auto-correlated or iid substitution rates among lineages have been proposed, enabling simultaneous inference of substitution rates and divergence times. This problem has, however, mainly been analysed in the Markov chain Monte Carlo (MCMC framework, an approach requiring computation times of hours or days when applied to large phylogenies. Results We demonstrate that a hill-climbing maximum a posteriori (MAP adaptation of the MCMC scheme results in considerable gain in computational efficiency. We demonstrate also that a novel dynamic programming (DP algorithm for branch length factorization, useful both in the hill-climbing and in the MCMC setting, further reduces computation time. For the problem of inferring rates and times parameters on a fixed tree, we perform simulations, comparisons between hill-climbing and MCMC on a plant rbcL gene dataset, and dating analysis on an animal mtDNA dataset, showing that our methodology enables efficient, highly accurate analysis of very large trees. Datasets requiring a computation time of several days with MCMC can with our MAP algorithm be accurately analysed in less than a minute. From the results of our example analyses, we conclude that our methodology generally avoids getting trapped early in local optima. For the cases where this nevertheless can be a problem, for instance when we in addition to the parameters also infer the tree topology, we show that the problem can be evaded by using a simulated-annealing like (SAL method in which we favour tree swaps early in the inference while biasing our focus towards rate and time parameter changes

  17. A preliminary mitochondrial genome phylogeny of Orthoptera (Insecta) and approaches to maximizing phylogenetic signal found within mitochondrial genome data.

    Science.gov (United States)

    Fenn, J Daniel; Song, Hojun; Cameron, Stephen L; Whiting, Michael F

    2008-10-01

    The phylogenetic utility of mitochondrial genomes (mtgenomes) is examined using the framework of a preliminary phylogeny of Orthoptera. This study presents five newly sequenced genomes from four orthopteran families. While all ensiferan and polyneopteran taxa retain the ancestral gene order, all caeliferan lineages including the newly sequenced caeliferan species contain a tRNA rearrangement from the insect ground plan tRNA(Lys)(K)-tRNA(Asp)(D) swapping to tRNA(Asp) (D)-tRNA(Lys) (K) confirming that this rearrangement is a possible molecular synapomorphy for this suborder. The phylogenetic signal in mtgenomes is rigorously examined under the analytical regimens of parsimony, maximum likelihood and Bayesian inference, along with how gene inclusion/exclusion, data recoding, gap coding, and different partitioning schemes influence the phylogenetic reconstruction. When all available data are analyzed simultaneously, the monophyly of Orthoptera and its two suborders, Caelifera and Ensifera, are consistently recovered in the context of our taxon sampling, regardless of the optimality criteria. When protein-coding genes are analyzed as a single partition, nearly identical topology to the combined analyses is recovered, suggesting that much of the signals of the mtgenome come from the protein-coding genes. Transfer and ribosomal RNAs perform poorly when analyzed individually, but contribute signal when analyzed in combination with the protein-coding genes. Inclusion of third codon position of the protein-coding genes does not negatively affect the phylogenetic reconstruction when all genes are analyzed together, whereas recoding of the protein-coding genes into amino acid sequences introduces artificial resolution. Over-partitioning in a Bayesian framework appears to have a negative effect in achieving convergence. Our findings suggest that the best phylogenetic inferences are made when all available nucleotide data from the mtgenome are analyzed simultaneously, and that

  18. New insights into the wheat chromosome 4D structure and virtual gene order, revealed by survey pyrosequencing

    Czech Academy of Sciences Publication Activity Database

    Helguera, M.; Rivarola, M.; Clavijo, B.; Martis, M.M.; Vanzetti, L.S.; Gonzalez, S.; Garbus, I.; LeRoy, P.; Šimková, Hana; Valárik, Miroslav; Caccamo, M.; Doležel, Jaroslav; Mayer, K. F. X.; Feuillet, C.; Tranquilli, G.; Paniego, N.; Echenique, V.

    2015-01-01

    Roč. 233, APR 2015 (2015), s. 200-212 ISSN 0168-9452 R&D Projects: GA ČR GBP501/12/G090; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Chromosome 4D survey sequence * Gene annotation * Gene content Subject RIV: EB - Gene tics ; Molecular Biology Impact factor: 3.362, year: 2015

  19. Phylogeny and classification of Dickeya based on multilocus sequence analysis.

    Science.gov (United States)

    Marrero, Glorimar; Schneider, Kevin L; Jenkins, Daniel M; Alvarez, Anne M

    2013-09-01

    Bacterial heart rot of pineapple reported in Hawaii in 2003 and reoccurring in 2006 was caused by an undetermined species of Dickeya. Classification of the bacterial strains isolated from infected pineapple to one of the recognized Dickeya species and their phylogenetic relationships with Dickeya were determined by a multilocus sequence analysis (MLSA), based on the partial gene sequences of dnaA, dnaJ, dnaX, gyrB and recN. Individual and concatenated gene phylogenies revealed that the strains form a clade with reference Dickeya sp. isolated from pineapple in Malaysia and are closely related to D. zeae; however, previous DNA-DNA reassociation values suggest that these strains do not meet the genomic threshold for consideration in D. zeae, and require further taxonomic analysis. An analysis of the markers used in this MLSA determined that recN was the best overall marker for resolution of species within Dickeya. Differential intraspecies resolution was observed with the other markers, suggesting that marker selection is important for defining relationships within a clade. Phylogenies produced with gene sequences from the sequenced genomes of strains D. dadantii Ech586, D. dadantii Ech703 and D. zeae Ech1591 did not place the sequenced strains with members of other well-characterized members of their respective species. The average nucleotide identity (ANI) and tetranucleotide frequencies determined for the sequenced strains corroborated the results of the MLSA that D. dadantii Ech586 and D. dadantii Ech703 should be reclassified as Dickeya zeae Ech586 and Dickeya paradisiaca Ech703, respectively, whereas D. zeae Ech1591 should be reclassified as Dickeya chrysanthemi Ech1591.

  20. A comparison of complete mitochondrial genomes of silver carp hypophthalmichthys molitrix and bighead carp hypophthalmichthys nobilis: Implications for their taxonomic relationship and phylogeny

    Science.gov (United States)

    Li, S.-F.; Xu, J.-W.; Yang, Q.-L.; Wang, C.H.; Chen, Q.; Chapman, D.C.; Lu, G.

    2009-01-01

    Based upon morphological characters, Silver carp Hypophthalmichthys molitrix and bighead carp Hypophthalmichthys nobilis (or Aristichthys nobilis) have been classified into either the same genus or two distinct genera. Consequently, the taxonomic relationship of the two species at the generic level remains equivocal. This issue is addressed by sequencing complete mitochondrial genomes of H. molitrix and H. nobilis, comparing their mitogenome organization, structure and sequence similarity, and conducting a comprehensive phylogenetic analysis of cyprinid species. As with other cyprinid fishes, the mitogenomes of the two species were structurally conserved, containing 37 genes including 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA (tRNAs) genes and a putative control region (D-loop). Sequence similarity between the two mitogenomes varied in different genes or regions, being highest in the tRNA genes (98??8%), lowest in the control region (89??4%) and intermediate in the protein-coding genes (94??2%). Analyses of the sequence comparison and phylogeny using concatenated protein sequences support the view that the two species belong to the genus Hypophthalmichthys. Further studies using nuclear markers and involving more closely related species, and the systematic combination of traditional biology and molecular biology are needed in order to confirm this conclusion. ?? 2009 The Fisheries Society of the British Isles.

  1. Primate diversification inferred from phylogenies and fossils.

    Science.gov (United States)

    Herrera, James P

    2017-12-01

    Biodiversity arises from the balance between speciation and extinction. Fossils record the origins and disappearance of organisms, and the branching patterns of molecular phylogenies allow estimation of speciation and extinction rates, but the patterns of diversification are frequently incongruent between these two data sources. I tested two hypotheses about the diversification of primates based on ∼600 fossil species and 90% complete phylogenies of living species: (1) diversification rates increased through time; (2) a significant extinction event occurred in the Oligocene. Consistent with the first hypothesis, analyses of phylogenies supported increasing speciation rates and negligible extinction rates. In contrast, fossils showed that while speciation rates increased, speciation and extinction rates tended to be nearly equal, resulting in zero net diversification. Partially supporting the second hypothesis, the fossil data recorded a clear pattern of diversity decline in the Oligocene, although diversification rates were near zero. The phylogeny supported increased extinction ∼34 Ma, but also elevated extinction ∼10 Ma, coinciding with diversity declines in some fossil clades. The results demonstrated that estimates of speciation and extinction ignoring fossils are insufficient to infer diversification and information on extinct lineages should be incorporated into phylogenetic analyses. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  2. The phylogeny of Monsonia L. (Geraniaceae)

    NARCIS (Netherlands)

    Touloumenidou, T.; Bakker, F.T.; Albers, F.

    2007-01-01

    The phylogeny of Monsonia L. (Geraniaceae) is examined. Analysis of nrDNA ITS and trnL (UAA) 5'exon-trnF (GAA) chloroplast DNA sequence data of 26 Monsonia and two outgroup Pelargonium species, suggests monophyly for the genus including the former genus Sarcocaulon (DC.) Sweet. The species of

  3. Molecular phylogeny of Ranunculaceae based on internal ...

    African Journals Online (AJOL)

    The botanical family Ranunculaceae contains important medicinal plants. To obtain new evolutionary evidence regarding the systematic classification of Ranunculaceae plants, we used molecular phylogenies to test relationships based on the internal transcribed spacer region. The results of phylogenetic analysis of 92 ...

  4. Book review: Insect morphology and phylogeny

    Directory of Open Access Journals (Sweden)

    Susanne Randolf

    2014-05-01

    Full Text Available Beutel RG, Friedrich F, Ge S-Q, Yang X-K (2014 Insect Morphology and Phylogeny: A textbook for students of entomology. De Gruyter, Berlin/Boston, 516 pp., softcover. ISBN 978-3-11-026263-6.

  5. Molecular phylogeny of Ranunculaceae based on internal ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... The botanical family Ranunculaceae contains important medicinal plants. To obtain new evolutionary evidence regarding the systematic classification of Ranunculaceae plants, we used molecular phylogenies to test relationships based on the internal transcribed spacer region. The results of phylogenetic ...

  6. Bayesian inference of the metazoan phylogeny

    DEFF Research Database (Denmark)

    Glenner, Henrik; Hansen, Anders J; Sørensen, Martin V

    2004-01-01

    Metazoan phylogeny remains one of evolutionary biology's major unsolved problems. Molecular and morphological data, as well as different analytical approaches, have produced highly conflicting results due to homoplasy resulting from more than 570 million years of evolution. To date, parsimony has...

  7. Multifactor-Dimensionality Reduction Reveals High-Order Interactions among Estrogen-Metabolism Genes in Sporadic Breast Cancer

    OpenAIRE

    Ritchie, Marylyn D.; Hahn, Lance W.; Roodi, Nady; Bailey, L. Renee; Dupont, William D.; Parl, Fritz F.; Moore, Jason H.

    2001-01-01

    One of the greatest challenges facing human geneticists is the identification and characterization of susceptibility genes for common complex multifactorial human diseases. This challenge is partly due to the limitations of parametric-statistical methods for detection of gene effects that are dependent solely or partially on interactions with other genes and with environmental exposures. We introduce multifactor-dimensionality reduction (MDR) as a method for reducing the dimensionality of mul...

  8. New Insights into 1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase Phylogeny, Evolution and Ecological Significance

    Science.gov (United States)

    Nascimento, Francisco X.; Rossi, Márcio J.; Soares, Cláudio R. F. S.; McConkey, Brendan J.; Glick, Bernard R.

    2014-01-01

    The main objective of this work is the study of the phylogeny, evolution and ecological importance of the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, the activity of which represents one of the most important and studied mechanisms used by plant growth–promoting microorganisms. The ACC deaminase gene and its regulatory elements presence in completely sequenced organisms was verified by multiple searches in diverse databases, and based on the data obtained a comprehensive analysis was conducted. Strain habitat, origin and ACC deaminase activity were taken into account when analyzing the results. In order to unveil ACC deaminase origin, evolution and relationships with other closely related pyridoxal phosphate (PLP) dependent enzymes a phylogenetic analysis was also performed. The data obtained show that ACC deaminase is mostly prevalent in some Bacteria, Fungi and members of Stramenopiles. Contrary to previous reports, we show that ACC deaminase genes are predominantly vertically inherited in various bacterial and fungal classes. Still, results suggest a considerable degree of horizontal gene transfer events, including interkingdom transfer events. A model for ACC deaminase origin and evolution is also proposed. This study also confirms the previous reports suggesting that the Lrp-like regulatory protein AcdR is a common mechanism regulating ACC deaminase expression in Proteobacteria, however, we also show that other regulatory mechanisms may be present in some Proteobacteria and other bacterial phyla. In this study we provide a more complete view of the role for ACC deaminase than was previously available. The results show that ACC deaminase may not only be related to plant growth promotion abilities, but may also play multiple roles in microorganism's developmental processes. Hence, exploring the origin and functioning of this enzyme may be the key in a variety of important agricultural and biotechnological applications. PMID:24905353

  9. Pan-genome and phylogeny of Bacillus cereus sensu lato.

    Science.gov (United States)

    Bazinet, Adam L

    2017-08-02

    produced phylogenies that were largely concordant with each other and with previous studies. Phylogenetic support as measured by bootstrap probabilities increased markedly when all suitable pan-genome data was included in phylogenetic analyses, as opposed to when only core genes were used. Bayesian population genetic analysis recommended subdividing the three major clades of B. cereus s. l. into nine clusters. Taxa sharing common traits and species designations exhibited varying degrees of phylogenetic clustering. All phylogenetic analyses recapitulated two previously used classification systems, and taxa were consistently assigned to the same major clade and group. By including accessory genes from the pan-genome in the phylogenetic analyses, I produced an exceptionally well-supported phylogeny of 114 complete B. cereus s. l. genomes. The best-performing methods were used to produce a phylogeny of all 498 publicly available B. cereus s. l. genomes, which was in turn used to compare three different classification systems and to test the monophyly status of various B. cereus s. l. species. The majority of the methodology used in this study is generic and could be leveraged to produce pan-genome estimates and similarly robust phylogenetic hypotheses for other bacterial groups.

  10. Re-examining the phylogeny of clinically relevant Candida species and allied genera based on multigene analyses

    NARCIS (Netherlands)

    Tsui, Clement K M; Daniel, Heide-Marie; Robert, Vincent; Meyer, Wieland

    Yeasts of the artificial genus Candida include plant endophytes, insect symbionts, and opportunistic human pathogens. Phylogenies based on rRNA gene and actin sequences confirmed that the genus is not monophyletic, and the relationships among Candida species and allied teleomorph genera are not

  11. Phylogeny and morphological variability of trypanosomes from African pelomedusid turtles with redescription of Trypanosoma mocambicum Pienaar, 1962

    Czech Academy of Sciences Publication Activity Database

    Dvořáková, N.; Čepička, I.; Qablan, M. A.; Gibson, W.; Blažek, Radim; Široký, P.

    2015-01-01

    Roč. 166, č. 6 (2015), s. 599-608 ISSN 1434-4610 Institutional support: RVO:68081766 Keywords : Trypanosoma * turtle * Pelusios * polymorphism * phylogeny * SSU rRNA gene Subject RIV: EG - Zoology Impact factor: 2.898, year: 2015

  12. A practical approach to phylogenomics: the phylogeny of ray-finned fish (Actinopterygii as a case study

    Directory of Open Access Journals (Sweden)

    Zhang Gong

    2007-03-01

    Full Text Available Abstract Background Molecular systematics occupies one of the central stages in biology in the genomic era, ushered in by unprecedented progress in DNA technology. The inference of organismal phylogeny is now based on many independent genetic loci, a widely accepted approach to assemble the tree of life. Surprisingly, this approach is hindered by lack of appropriate nuclear gene markers for many taxonomic groups especially at high taxonomic level, partially due to the lack of tools for efficiently developing new phylogenetic makers. We report here a genome-comparison strategy to identifying nuclear gene markers for phylogenetic inference and apply it to the ray-finned fishes – the largest vertebrate clade in need of phylogenetic resolution. Results A total of 154 candidate molecular markers – relatively well conserved, putatively single-copy gene fragments with long, uninterrupted exons – were obtained by comparing whole genome sequences of two model organisms, Danio rerio and Takifugu rubripes. Experimental tests of 15 of these (randomly picked markers on 36 taxa (representing two-thirds of the ray-finned fish orders demonstrate the feasibility of amplifying by PCR and directly sequencing most of these candidates from whole genomic DNA in a vast diversity of fish species. Preliminary phylogenetic analyses of sequence data obtained for 14 taxa and 10 markers (total of 7,872 bp for each species are encouraging, suggesting that the markers obtained will make significant contributions to future fish phylogenetic studies. Conclusion We present a practical approach that systematically compares whole genome sequences to identify single-copy nuclear gene markers for inferring phylogeny. Our method is an improvement over traditional approaches (e.g., manually picking genes for testing because it uses genomic information and automates the process to identify large numbers of candidate makers. This approach is shown here to be successful for fishes

  13. Completion of the Chloroplast Genomes of Five ChineseJuglansand Their Contribution to Chloroplast Phylogeny.

    Science.gov (United States)

    Hu, Yiheng; Woeste, Keith E; Zhao, Peng

    2016-01-01

    Juglans L. (walnuts and butternuts) is an economically and ecologically important genus in the family Juglandaceae. All Juglans are important nut and timber trees. Juglans regia (Common walnut), J. sigillata (Iron walnut), J. cathayensis (Chinese walnut), J. hopeiensis (Ma walnut), and J. mandshurica (Manchurian walnut) are native to or naturalized in China. A strongly supported phylogeny of these five species is not available due to a lack of informative molecular markers. We compared complete chloroplast genomes and determined the phylogenetic relationships among the five Chinese Juglans using IIumina sequencing. The plastid genomes ranged from 159,714 to 160,367 bp encoding 128 functional genes, including 88 protein-coding genes and 40 tRNA genes each. A complete map of the variability across the genomes of the five Juglans species was produced that included single nucleotide variants, indels (insertions and deletions), and large structural variants, as well as differences in simple sequence repeats (SSR) and repeat sequences. Molecular phylogeny strongly supported division of the five walnut species into two previously recognized sections ( Juglans/Dioscaryon and Cardiocaryon ) with a 100% bootstrap (BS) value using the complete cp genomes, protein coding sequences (CDS), and the introns and spacers (IGS) data. The availability of these genomes will provide genetic information for identifying species and hybrids, taxonomy, phylogeny, and evolution in Juglans , and also provide insight into utilization of Juglans plants.

  14. The distribution, diversity, and importance of 16S rRNA gene introns in the order Thermoproteales.

    Science.gov (United States)

    Jay, Zackary J; Inskeep, William P

    2015-07-09

    Intron sequences are common in 16S rRNA genes of specific thermophilic lineages of Archaea, specifically the Thermoproteales (phylum Crenarchaeota). Environmental sequencing (16S rRNA gene and metagenome) from geothermal habitats in Yellowstone National Park (YNP) has expanded the available datasets for investigating 16S rRNA gene introns. The objectives of this study were to characterize and curate archaeal 16S rRNA gene introns from high-temperature habitats, evaluate the conservation and distribution of archaeal 16S rRNA introns in geothermal systems, and determine which "universal" archaeal 16S rRNA gene primers are impacted by the presence of intron sequences. Several new introns were identified and their insertion loci were constrained to thirteen locations across the 16S rRNA gene. Many of these introns encode homing endonucleases, although some introns were short or partial sequences. Pyrobaculum, Thermoproteus, and Caldivirga 16S rRNA genes contained the most abundant and diverse intron sequences. Phylogenetic analysis of introns revealed that sequences within the same locus are distributed biogeographically. The most diverse set of introns were observed in a high-temperature, circumneutral (pH 6) sulfur sediment environment, which also contained the greatest diversity of different Thermoproteales phylotypes. The widespread presence of introns in the Thermoproteales indicates a high probability of misalignments using different "universal" 16S rRNA primers employed in environmental microbial community analysis.

  15. The complete mitochondrial genome of the common sea slater, Ligia oceanica (Crustacea, Isopoda bears a novel gene order and unusual control region features

    Directory of Open Access Journals (Sweden)

    Podsiadlowski Lars

    2006-09-01

    Full Text Available Abstract Background Sequence data and other characters from mitochondrial genomes (gene translocations, secondary structure of RNA molecules are useful in phylogenetic studies among metazoan animals from population to phylum level. Moreover, the comparison of complete mitochondrial sequences gives valuable information about the evolution of small genomes, e.g. about different mechanisms of gene translocation, gene duplication and gene loss, or concerning nucleotide frequency biases. The Peracarida (gammarids, isopods, etc. comprise about 21,000 species of crustaceans, living in many environments from deep sea floor to arid terrestrial habitats. Ligia oceanica is a terrestrial isopod living at rocky seashores of the european North Sea and Atlantic coastlines. Results The study reveals the first complete mitochondrial DNA sequence from a peracarid crustacean. The mitochondrial genome of Ligia oceanica is a circular double-stranded DNA molecule, with a size of 15,289 bp. It shows several changes in mitochondrial gene order compared to other crustacean species. An overview about mitochondrial gene order of all crustacean taxa yet sequenced is also presented. The largest non-coding part (the putative mitochondrial control region of the mitochondrial genome of Ligia oceanica is unexpectedly not AT-rich compared to the remainder of the genome. It bears two repeat regions (4× 10 bp and 3× 64 bp, and a GC-rich hairpin-like secondary structure. Some of the transfer RNAs show secondary structures which derive from the usual cloverleaf pattern. While some tRNA genes are putative targets for RNA editing, trnR could not be localized at all. Conclusion Gene order is not conserved among Peracarida, not even among isopods. The two isopod species Ligia oceanica and Idotea baltica show a similarly derived gene order, compared to the arthropod ground pattern and to the amphipod Parhyale hawaiiensis, suggesting that most of the translocation events were already

  16. Evolutionary relationships among salivarius streptococci as inferred from multilocus phylogenies based on 16S rRNA-encoding, recA, secA, and secY gene sequences

    Directory of Open Access Journals (Sweden)

    Boissinot Maurice

    2009-10-01

    Full Text Available Abstract Background Streptococci are divided into six phylogenetic groups, i.e, anginosus, bovis, mitis, mutans, pyogenic, and salivarius, with the salivarius group consisting of only three distinct species. Two of these species, Streptococcus salivarius and Streptococcus vestibularis, are members of the normal human oral microflora whereas the third, Streptococcus thermophilus, is found in bovine milk. Given that S. salivarius and S. vestibularis share several physiological characteristics, in addition to inhabiting the same ecosystem, one would assume that they would be more closely related to each other than to S. thermophilus. However, the few phylogenetic trees published so far suggest that S. vestibularis is more closely related to S. thermophilus. To determine whether this phylogenetic relationship is genuine, we performed phylogenetic inferences derived from secA and secY, the general secretion housekeeping genes, recA, a gene from a separate genetic locus that encodes a major component of the homologous recombinational apparatus, and 16S rRNA-encoding gene sequences using other streptococcal species as outgroups. Results The maximum likelihood (ML and maximum parsimony (MP phylogenetic inferences derived from the secA and recA gene sequences provided strong support for the S. vestibularis/S. thermophilus sister-relationship, whereas 16S rRNA-encoding and secY-based analyses could not discriminate between alternate topologies. Phylogenetic analyses derived from the concatenation of these sequences unambiguously supported the close affiliation of S. vestibularis and S. thermophilus. Conclusion Our results corroborated the sister-relationship between S. vestibularis and S. thermophilus and the concomitant early divergence of S. salivarius at the base of the salivarius lineage.

  17. Evolutionary relationships among salivarius streptococci as inferred from multilocus phylogenies based on 16S rRNA-encoding, recA, secA, and secY gene sequences.

    Science.gov (United States)

    Pombert, Jean-François; Sistek, Viridiana; Boissinot, Maurice; Frenette, Michel

    2009-10-30

    Streptococci are divided into six phylogenetic groups, i.e, anginosus, bovis, mitis, mutans, pyogenic, and salivarius, with the salivarius group consisting of only three distinct species. Two of these species, Streptococcus salivarius and Streptococcus vestibularis, are members of the normal human oral microflora whereas the third, Streptococcus thermophilus, is found in bovine milk. Given that S. salivarius and S. vestibularis share several physiological characteristics, in addition to inhabiting the same ecosystem, one would assume that they would be more closely related to each other than to S. thermophilus. However, the few phylogenetic trees published so far suggest that S. vestibularis is more closely related to S. thermophilus. To determine whether this phylogenetic relationship is genuine, we performed phylogenetic inferences derived from secA and secY, the general secretion housekeeping genes, recA, a gene from a separate genetic locus that encodes a major component of the homologous recombinational apparatus, and 16S rRNA-encoding gene sequences using other streptococcal species as outgroups. The maximum likelihood (ML) and maximum parsimony (MP) phylogenetic inferences derived from the secA and recA gene sequences provided strong support for the S. vestibularis/S. thermophilus sister-relationship, whereas 16S rRNA-encoding and secY-based analyses could not discriminate between alternate topologies. Phylogenetic analyses derived from the concatenation of these sequences unambiguously supported the close affiliation of S. vestibularis and S. thermophilus. Our results corroborated the sister-relationship between S. vestibularis and S. thermophilus and the concomitant early divergence of S. salivarius at the base of the salivarius lineage.

  18. A molecular phylogeny of living primates.

    Directory of Open Access Journals (Sweden)

    Polina Perelman

    2011-03-01

    Full Text Available Comparative genomic analyses of primates offer considerable potential to define and understand the processes that mold, shape, and transform the human genome. However, primate taxonomy is both complex and controversial, with marginal unifying consensus of the evolutionary hierarchy of extant primate species. Here we provide new genomic sequence (~8 Mb from 186 primates representing 61 (~90% of the described genera, and we include outgroup species from Dermoptera, Scandentia, and Lagomorpha. The resultant phylogeny is exceptionally robust and illuminates events in primate evolution from ancient to recent, clarifying numerous taxonomic controversies and providing new data on human evolution. Ongoing speciation, reticulate evolution, ancient relic lineages, unequal rates of evolution, and disparate distributions of insertions/deletions among the reconstructed primate lineages are uncovered. Our resolution of the primate phylogeny provides an essential evolutionary framework with far-reaching applications including: human selection and adaptation, global emergence of zoonotic diseases, mammalian comparative genomics, primate taxonomy, and conservation of endangered species.

  19. A molecular phylogeny of living primates.

    Science.gov (United States)

    Perelman, Polina; Johnson, Warren E; Roos, Christian; Seuánez, Hector N; Horvath, Julie E; Moreira, Miguel A M; Kessing, Bailey; Pontius, Joan; Roelke, Melody; Rumpler, Yves; Schneider, Maria Paula C; Silva, Artur; O'Brien, Stephen J; Pecon-Slattery, Jill

    2011-03-01

    Comparative genomic analyses of primates offer considerable potential to define and understand the processes that mold, shape, and transform the human genome. However, primate taxonomy is both complex and controversial, with marginal unifying consensus of the evolutionary hierarchy of extant primate species. Here we provide new genomic sequence (~8 Mb) from 186 primates representing 61 (~90%) of the described genera, and we include outgroup species from Dermoptera, Scandentia, and Lagomorpha. The resultant phylogeny is exceptionally robust and illuminates events in primate evolution from ancient to recent, clarifying numerous taxonomic controversies and providing new data on human evolution. Ongoing speciation, reticulate evolution, ancient relic lineages, unequal rates of evolution, and disparate distributions of insertions/deletions among the reconstructed primate lineages are uncovered. Our resolution of the primate phylogeny provides an essential evolutionary framework with far-reaching applications including: human selection and adaptation, global emergence of zoonotic diseases, mammalian comparative genomics, primate taxonomy, and conservation of endangered species.

  20. Analysis of gene order data supports vertical inheritance of the leukotoxin operon and genome rearrangements in the 5' flanking region in genus Mannheimia

    DEFF Research Database (Denmark)

    Larsen, Jesper; Kuhnert, Peter; Frey, Joachim

    2007-01-01

    examined the gene order in the 5' flanking region of the leukotoxin operon and found that the 5' flanking gene strings, hslVU-lapB-artJ-lktC and xylAB-lktC, are peculiar to M. haemolytica + M. glucosida and M. granulomatis, respectively, whereas the gene string hslVU-lapB-lktC is present in M. ruminalis...... than the hslVU-lapB-artJ-lktC and xylAB-lktC gene strings. The presence of (remnants of) the ancient gene string hslVU-lapB-lktC among any subclades within genus Mannheimia supports that it has been vertically inherited from the last common ancestor of genus Mannheimia to any ancestor of the diverging......, the supposed sister group of M. haemolytica + M. glucosida, and in the most ancient subclade M. varigena. In M. granulomatis, we found remnants of the gene string hslVU-lapB-lktC in the xylB-lktC intergenic region. CONCLUSIONS: These observations indicate that the gene string hslVU-lapB-lktC is more ancient...

  1. Whole genome phylogenies for multiple Drosophila species

    Directory of Open Access Journals (Sweden)

    Seetharam Arun

    2012-12-01

    Full Text Available Abstract Background Reconstructing the evolutionary history of organisms using traditional phylogenetic methods may suffer from inaccurate sequence alignment. An alternative approach, particularly effective when whole genome sequences are available, is to employ methods that don’t use explicit sequence alignments. We extend a novel phylogenetic method based on Singular Value Decomposition (SVD to reconstruct the phylogeny of 12 sequenced Drosophila species. SVD analysis provides accurate comparisons for a high fraction of sequences within whole genomes without the prior identification of orthologs or homologous sites. With this method all protein sequences are converted to peptide frequency vectors within a matrix that is decomposed to provide simplified vector representations for each protein of the genome in a reduced dimensional space. These vectors are summed together to provide a vector representation for each species, and the angle between these vectors provides distance measures that are used to construct species trees. Results An unfiltered whole genome analysis (193,622 predicted proteins strongly supports the currently accepted phylogeny for 12 Drosophila species at higher dimensions except for the generally accepted but difficult to discern sister relationship between D. erecta and D. yakuba. Also, in accordance with previous studies, many sequences appear to support alternative phylogenies. In this case, we observed grouping of D. erecta with D. sechellia when approximately 55% to 95% of the proteins were removed using a filter based on projection values or by reducing resolution by using fewer dimensions. Similar results were obtained when just the melanogaster subgroup was analyzed. Conclusions These results indicate that using our novel phylogenetic method, it is possible to consult and interpret all predicted protein sequences within multiple whole genomes to produce accurate phylogenetic estimations of relatedness between

  2. Determining the order of resistance genes against Stagonospora nodorum blotch, Fusarium head blight and stem rust on wheat chromosome arm 3BS.

    Science.gov (United States)

    Thapa, Rima; Brown-Guedira, Gina; Ohm, Herbert W; Mateos-Hernandez, Maria; Wise, Kiersten A; Goodwin, Stephen B

    2016-02-02

    Stagonospora nodorum blotch (SNB), Fusarium head blight (FHB) and stem rust (SR), caused by the fungi Parastagonospora (synonym Stagonospora) nodorum, Fusarium graminearum and Puccinia graminis, respectively, significantly reduce yield and quality of wheat. Three resistance factors, QSng.sfr-3BS, Fhb1 and Sr2, conferring resistance, respectively, to SNB, FHB and SR, each from a unique donor line, were mapped previously to the short arm of wheat chromosome 3B. Based on published reports, our hypothesis was that Sr2 is the most distal, Fhb1 the most proximal and QSng.sfr-3BS is in between Sr2 and Fhb1 on wheat chromosome arm 3BS. To test this hypothesis, 1600 F2 plants from crosses between parental lines Arina, Alsen and Ocoroni86, conferring resistance genes QSng.sfr-3BS, Fhb1 and Sr2, respectively, were genotyped and phenotyped for SNB along with the parental lines. Five closely linked single-nucleotide polymorphism (SNP) markers were used to make the genetic map and determine the gene order. The results indicate that QSng.sfr-3BS is located between the other two resistance genes on chromosome 3BS. Knowing the positional order of these resistance genes will aid in developing a wheat line with all three genes in coupling, which has the potential to provide broad-spectrum resistance preventing grain yield and quality losses.

  3. Phylogeny of ladybirds (Coleoptera: Coccinellidae): are the subfamilies monophyletic?

    Science.gov (United States)

    Magro, A; Lecompte, E; Magné, F; Hemptinne, J-L; Crouau-Roy, B

    2010-03-01

    The Coccinellidae (ladybirds) is a highly speciose family of the Coleoptera. Ladybirds are well known because of their use as biocontrol agents, and are the subject of many ecological studies. However, little is known about phylogenetic relationships of the Coccinellidae, and a precise evolutionary framework is needed for the family. This paper provides the first phylogenetic reconstruction of the relationships within the Coccinellidae based on analysis of five genes: the 18S and 28S rRNA nuclear genes and the mitochondrial 12S, 16S rRNA and cytochrome oxidase subunit I (COI) genes. The phylogenetic relationships of 67 terminal taxa, representative of all the subfamilies of the Coccinellidae (61 species, 37 genera), and relevant outgroups, were reconstructed using multiple approaches, including Bayesian inference with partitioning strategies. The recovered phylogenies are congruent and show that the Coccinellinae is monophyletic but the Coccidulinae, Epilachninae, Scymninae and Chilocorinae are paraphyletic. The tribe Chilocorini is identified as the sister-group of the Coccinellinae for the first time. Copyright 2009 Elsevier Inc. All rights reserved.

  4. The geological record and phylogeny of the Myriapoda.

    Science.gov (United States)

    Shear, William A; Edgecombe, Gregory D

    2010-01-01

    We review issues of myriapod phylogeny, from the position of the Myriapoda amongst arthropods to the relationships of the orders of the classes Chilopoda and Diplopoda. The fossil record of each myriapod class is reviewed, with an emphasis on developments since 1997. We accept as working hypotheses that Myriapoda is monophyletic and belongs in Mandibulata, that the classes of Myriapoda are monophyletic, and that they are related as (Chilopoda (Symphyla (Diplopoda+Pauropoda))). The most pressing challenges to these hypotheses are some molecular and developmental evidence for an alliance between myriapods and chelicerates, and the attraction of symphylans to pauropods in some molecular analyses. While the phylogeny of the orders of Chilopoda appears settled, the relationships within Diplopoda remain unclear at several levels. Chilopoda and Diplopoda have a relatively sparse representation as fossils, and Symphyla and Pauropoda fossils are known only from Tertiary ambers. Fossils are difficult to place in trees based on living forms because many morphological characters are not very likely to be preserved in the fossils; as a consequence, most diplopod fossils have been placed in extinct higher taxa. Nevertheless, important information from diplopod fossils includes the first documented occurrence of air-breathing, and the first evidence for the use of a chemical defense. Stem-group myriapods are unknown, but evidence suggests the group must have arisen in the Early Cambrian, with a major period of cladogenesis in the Late Ordovician and early Silurian. Large terrestrial myriapods were on land at least by mid-Silurian. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  5. Review of Australian Scirtes Illiger, Ora Clark and Exochomoscirtes Pic Coleoptera: Scirtidae) including descriptions of new species, new groups and a multi-gene molecular phylogeny of Australian and non-Australian species.

    Science.gov (United States)

    Watts, Chris H S; Cooper, Steven J B; Saint, Kathleen M

    2017-11-14

    The phylogenetic relationships of 26 Australian species of Scirtes Illiger, Ora Clark and Exochomoscirtes Pic (Scirtidae) were investigated using adult morphology, particularly male and female genitalia, larval morphology and molecular data from the mitochondrial cytochrome c oxidase subunit I (COI) gene and the nuclear genes elongation factor 1-alpha (EF1- a) and topoisomerase I (TOP1). Four species of Scirtes and one of Ora from Europe, Southeast Asia and Japan were included. The genus Scirtes is shown to be paraphyletic with respect to the genera Ora and Exochomoscirtes. Australian Scirtes were shown to belong to four species groups: Scirtes elegans group (Yoshitomi 2009); S. helmsi group (Watts 2004); S. japonicus group (Nyholm 2002); and S. haemisphaericus group (Yoshitomi 2005). The prehensor and bursal sclerite of 15 species are illustrated as well as habitus illustrations of S. zwicki sp. nov. and S. albamaculatus Watts. Three new species from Australia are described: Scirtes lynnae, S. zwicki and S. serratus spp. nov. Scirtes nehouensis Ruta & Yoshitomi 2010 is synonymised with S. emmaae Watts 2004. Scirtes pygmaeus Watts, 2004 is synonymised with S. pinjarraensis Watts, 2006. Scirtes rutai nom. nov. is proposed as a replacement name for S. beccus Ruta, Kiałka & Yoshitomi, 2014 from Sabah as it is preoccupied by S. beccus Watts, 2004 from Australia.

  6. Mitochondrial tRNA gene translocations in highly eusocial bees

    Directory of Open Access Journals (Sweden)

    Daniela Silvestre

    2006-01-01

    Full Text Available Mitochondrial gene rearrangement events, especially involving tRNA genes, have been described more frequently as more complete mitochondrial genome sequences are becoming available. In the present work, we analyzed mitochondrial tRNA gene rearrangements between two bee species belonging to the tribes Apini and Meliponini within the "corbiculate Apidae". Eleven tRNA genes are in different genome positions or strands. The molecular events responsible for each translocation are explained. Considering the high number of rearrangements observed, the data presented here contradict the general rule of high gene order conservation among closely related organisms, and also represent a powerful molecular tool to help solve questions about phylogeny and evolution in bees.

  7. Lignocellulose-converting enzyme activity profiles correlate with molecular systematics and phylogeny grouping in the incoherent genus Phlebia (Polyporales, Basidiomycota).

    Science.gov (United States)

    Kuuskeri, Jaana; Mäkelä, Miia R; Isotalo, Jarkko; Oksanen, Ilona; Lundell, Taina

    2015-10-19

    The fungal genus Phlebia consists of a number of species that are significant in wood decay. Biotechnological potential of a few species for enzyme production and degradation of lignin and pollutants has been previously studied, when most of the species of this genus are unknown. Therefore, we carried out a wider study on biochemistry and systematics of Phlebia species. Isolates belonging to the genus Phlebia were subjected to four-gene sequence analysis in order to clarify their phylogenetic placement at species level and evolutionary relationships of the genus among phlebioid Polyporales. rRNA-encoding (5.8S, partial LSU) and two protein-encoding gene (gapdh, rpb2) sequences were adopted for the evolutionary analysis, and ITS sequences (ITS1+5.8S+ITS2) were aligned for in-depth species-level phylogeny. The 49 fungal isolates were cultivated on semi-solid milled spruce wood medium for 21 days in order to follow their production of extracellular lignocellulose-converting oxidoreductases and carbohydrate active enzymes. Four-gene phylogenetic analysis confirmed the polyphyletic nature of the genus Phlebia. Ten species-level subgroups were formed, and their lignocellulose-converting enzyme activity profiles coincided with the phylogenetic grouping. The highest enzyme activities for lignin modification (manganese peroxidase activity) were obtained for Phlebia radiata group, which supports our previous studies on the enzymology and gene expression of this species on lignocellulosic substrates. Our study implies that there is a species-level connection of molecular systematics (genotype) to the efficiency in production of both lignocellulose-converting carbohydrate active enzymes and oxidoreductases (enzyme phenotype) on spruce wood. Thus, we may propose a similar phylogrouping approach for prediction of lignocellulose-converting enzyme phenotypes in new fungal species or genetically and biochemically less-studied isolates of the wood-decay Polyporales.

  8. Nuclear and original DNA application in Oryza taxonomy and phylogeny

    International Nuclear Information System (INIS)

    Romero, Gabriel O.

    1998-01-01

    Conventional taxonomy and phylogeny of germplasm are based on the tedious characterization of morphological variation. The ability to assay DNA variation that underlies morphological variation offers great promise as a convenient alternative for the genetic characterization of germplasm. Restriction fragment length polymorphism (RFLP) was used to survey DNA variation in 22 species of the genus Oryza. At the ribosomal DNA (rDNA) multigene family, 15 rDNA spacer length (sl) variants were identified using restriction enzyme Sst1 and wheatrDNA unit as probe. Particular sl variants predominated in certain isozyme groups of O. sativa, indicating a potential of sl ploymorphism in varietal classification. The distribution of sl variants supports the origin of O. sativa and O. nivara from O. rufipogon, and that O. spontanea arose from introgressions among O. sativa, O. nivara, and O. rufipogon. The distribution also suggests that the CCgenome, of all the genomes in the Officinalis complex, may be closest to the Sativa complex genomes, and it affirms the genetic position of the Officinalis complex intermediate between the Sativa and Ridleyi complexes. Variation at the Oryza organelle genomes was probed with a maize mitochondrial gene, atpA, a wheat chloroplast inverted repeat segment, p6. Results indicated that the complexes can be differentiated by their mitochondrial genome, but not their chloroplast genome when digested by Sst1 or BamH1. Therefore, the natural DNA variation in the nuclear and mitochondrial genomes has demonstrated great potential in complementing the conventional basis of taxa classification and phylogeny in the genus Oryza. (Author)

  9. Molecular phylogeny restores the supra-generic subdivision of homoscleromorph sponges (Porifera, Homoscleromorpha.

    Directory of Open Access Journals (Sweden)

    Eve Gazave

    2010-12-01

    Full Text Available Homoscleromorpha is the fourth major sponge lineage, recently recognized to be distinct from the Demospongiae. It contains <100 described species of exclusively marine sponges that have been traditionally subdivided into 7 genera based on morphological characters. Because some of the morphological features of the homoscleromorphs are shared with eumetazoans and are absent in other sponges, the phylogenetic position of the group has been investigated in several recent studies. However, the phylogenetic relationships within the group remain unexplored by modern methods.Here we describe the first molecular phylogeny of Homoscleromorpha based on nuclear (18S and 28S rDNA and complete mitochondrial DNA sequence data that focuses on inter-generic relationships. Our results revealed two robust clades within this group, one containing the spiculate species (genera Plakina, Plakortis, Plakinastrella and Corticium and the other containing aspiculate species (genera Oscarella and Pseudocorticium, thus rejecting a close relationship between Pseudocorticium and Corticium. Among the spiculate species, we found affinities between the Plakortis and Plakinastrella genera, and between the Plakina and Corticium. The validity of these clades is furthermore supported by specific morphological characters, notably the type of spicules. Furthermore, the monophyly of the Corticium genus is supported while the monophyly of Plakina is not.As the result of our study we propose to restore the pre-1995 subdivision of Homoscleromorpha into two families: Plakinidae Schulze, 1880 for spiculate species and Oscarellidae Lendenfeld, 1887 for aspiculate species that had been rejected after the description of the genus Pseudocorticium. We also note that the two families of homoscleromorphs exhibit evolutionary stable, but have drastically distinct mitochondrial genome organizations that differ in gene content and gene order.

  10. Bears in a forest of gene trees: phylogenetic inference is complicated by incomplete lineage sorting and gene flow.

    Science.gov (United States)

    Kutschera, Verena E; Bidon, Tobias; Hailer, Frank; Rodi, Julia L; Fain, Steven R; Janke, Axel

    2014-08-01

    Ursine bears are a mammalian subfamily that comprises six morphologically and ecologically distinct extant species. Previous phylogenetic analyses of concatenated nuclear genes could not resolve all relationships among bears, and appeared to conflict with the mitochondrial phylogeny. Evolutionary processes such as incomplete lineage sorting and introgression can cause gene tree discordance and complicate phylogenetic inferences, but are not accounted for in phylogenetic analyses of concatenated data. We generated a high-resolution data set of autosomal introns from several individuals per species and of Y-chromosomal markers. Incorporating intraspecific variability in coalescence-based phylogenetic and gene flow estimation approaches, we traced the genealogical history of individual alleles. Considerable heterogeneity among nuclear loci and discordance between nuclear and mitochondrial phylogenies were found. A species tree with divergence time estimates indicated that ursine bears diversified within less than 2 My. Consistent with a complex branching order within a clade of Asian bear species, we identified unidirectional gene flow from Asian black into sloth bears. Moreover, gene flow detected from brown into American black bears can explain the conflicting placement of the American black bear in mitochondrial and nuclear phylogenies. These results highlight that both incomplete lineage sorting and introgression are prominent evolutionary forces even on time scales up to several million years. Complex evolutionary patterns are not adequately captured by strictly bifurcating models, and can only be fully understood when analyzing multiple independently inherited loci in a coalescence framework. Phylogenetic incongruence among gene trees hence needs to be recognized as a biologically meaningful signal. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  11. The complete mitochondrial genome sequence and gene organization of the rainbow runner (Elagatis bipinnulata) (Perciformes: Carangidae).

    Science.gov (United States)

    Ma, Chunyan; Ma, Hongyu; Zhang, Heng; Feng, Chunlei; Wei, Hongqing; Wang, Wei; Chen, Wei; Zhang, Fengying; Ma, Lingbo

    2017-01-01

    The complete mitochondrial genome information can play an important role in species identification, phylogeny, evolution research, genetic differentiation, and diversity. Here we determined the complete mitochondrial genome sequence of Elagatis bipinnulata (Perciformes: Carangidae). This circular genome was 16 542 bp in length, and included all 37 typical mitochondrial genes, containing 13 protein-coding genes, 22 tRNA genes, two rRNA genes, and a putative control region. The gene order of E. bipinnulata was identical to that observed in most other vertebrates. Of 37 genes, 28 were encoded by heavy strand, while the other ones were encoded by light strand. According to the phylogenetic analysis based on 13 concatenated protein-coding genes, E. bipinnulata was genetically closer to the species of genus Seriola compared with any other species within Perciformes. This work can provide helpful data for further studies on population genetic diversity and molecular evolution.

  12. Eumalacostracan phylogeny and total evidence: limitations of the usual suspects

    Directory of Open Access Journals (Sweden)

    Ferla Matteo P

    2009-01-01

    Full Text Available Abstract Background The phylogeny of Eumalacostraca (Crustacea remains elusive, despite over a century of interest. Recent morphological and molecular phylogenies appear highly incongruent, but this has not been assessed quantitatively. Moreover, 18S rRNA trees show striking branch length differences between species, accompanied by a conspicuous clustering of taxa with similar branch lengths. Surprisingly, previous research found no rate heterogeneity. Hitherto, no phylogenetic analysis of all major eumalacostracan taxa (orders has either combined evidence from multiple loci, or combined molecular and morphological evidence. Results We combined evidence from four nuclear ribosomal and mitochondrial loci (18S rRNA, 28S rRNA, 16S rRNA, and cytochrome c oxidase subunit I with a newly synthesized morphological dataset. We tested the homogeneity of data partitions, both in terms of character congruence and the topological congruence of inferred trees. We also performed Bayesian and parsimony analyses on separate and combined partitions, and tested the contribution of each partition. We tested for potential long-branch attraction (LBA using taxon deletion experiments, and with relative rate tests. Additionally we searched for molecular polytomies (spurious clades. Lastly, we investigated the phylogenetic stability of taxa, and assessed their impact on inferred relationships over the whole tree. We detected significant conflict between data partitions, especially between morphology and molecules. We found significant rate heterogeneity between species for both the 18S rRNA and combined datasets, introducing the possibility of LBA. As a test case, we showed that LBA probably affected the position of Spelaeogriphacea in the combined molecular evidence analysis. We also demonstrated that several clades, including the previously reported and surprising clade of Amphipoda plus Spelaeogriphacea, are 'supported' by zero length branches. Furthermore we showed

  13. Echinothurioid phylogeny and the phylogenetic significance of Kamptosoma (Echinoidea: Echinodermata)

    Science.gov (United States)

    Mooi, Rich; Constable, Heather; Lockhart, Susanne; Pearse, John

    2004-07-01

    The Echinothurioida is an unusual group of regular sea urchins that are characterized by soft, flexible tests and in some cases, hoof-shaped spines used for locomotion across soft, deep-sea sediments. As far as is known, all species are armed with venom-bearing spines that have been known to cause serious injury in humans. There are 50 species of echinothurioids arranged in 11 extant genera. Their fossil record is very poor, being limited to two additional fossil taxa (one of which is only tentatively considered an echinothurioid), two assigned to extant taxa, and three of more dubious affinity. With very few exceptions, only disjointed plates are preserved—and those very rarely. Today, echinothurioids are found around the globe from as far north as the Arctic Circle and as far south as Antarctica, with a bathymetric distribution ranging from inshore on coral reefs to depths of almost 5000 m. The majority of species are characteristic of the deep sea, and consequently little is known about these urchins. Many are known only from type and associated material. Their fragile tests, deep benthic habitat, and rarity make it difficult to develop a complete picture of their morphology, and as we demonstrate, breakage of the test can lead to misinterpretations of plate architecture in some taxa. The sole Antarctic species, Kamptosoma asterias, is usually considered an echinothurioid, but its unusual morphology has made its position difficult to ascertain. In addition, previous genus-level phylogenies do not test the monophyly of the genera, and some studies even suggest that the echinothurioids themselves do not constitute a monophyletic group. This study focuses on finding a species level phylogeny of the echinothurioids in order to perform these tests, and to place the enigmatic Kamptosoma in a phylogenetic context that determines whether it is indeed an echinothurioid, and if so, to which clade it is most closely related. The present analysis surveys ambulacral

  14. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes

    Science.gov (United States)

    2013-01-01

    Background The extant squamates (>9400 known species of lizards and snakes) are one of the most diverse and conspicuous radiations of terrestrial vertebrates, but no studies have attempted to reconstruct a phylogeny for the group with large-scale taxon sampling. Such an estimate is invaluable for comparative evolutionary studies, and to address their classification. Here, we present the first large-scale phylogenetic estimate for Squamata. Results The estimated phylogeny contains 4161 species, representing all currently recognized families and subfamilies. The analysis is based on up to 12896 base pairs of sequence data per species (average = 2497 bp) from 12 genes, including seven nuclear loci (BDNF, c-mos, NT3, PDC, R35, RAG-1, and RAG-2), and five mitochondrial genes (12S, 16S, cytochrome b, ND2, and ND4). The tree provides important confirmation for recent estimates of higher-level squamate phylogeny based on molecular data (but with more limited taxon sampling), estimates that are very different from previous morphology-based hypotheses. The tree also includes many relationships that differ from previous molecular estimates and many that differ from traditional taxonomy. Conclusions We present a new large-scale phylogeny of squamate reptiles that should be a valuable resource for future comparative studies. We also present a revised classification of squamates at the family and subfamily level to bring the taxonomy more in line with the new phylogenetic hypothesis. This classification includes new, resurrected, and modified subfamilies within gymnophthalmid and scincid lizards, and boid, colubrid, and lamprophiid snakes. PMID:23627680

  15. Multi-locus fossil-calibrated phylogeny of Atheriniformes (Teleostei, Ovalentaria).

    Science.gov (United States)

    Campanella, Daniela; Hughes, Lily C; Unmack, Peter J; Bloom, Devin D; Piller, Kyle R; Ortí, Guillermo

    2015-05-01

    Phylogenetic relationships among families within the order Atheriniformes have been difficult to resolve on the basis of morphological evidence. Molecular studies so far have been fragmentary and based on a small number taxa and loci. In this study, we provide a new phylogenetic hypothesis based on sequence data collected for eight molecular markers for a representative sample of 103 atheriniform species, covering 2/3 of the genera in this order. The phylogeny is calibrated with six carefully chosen fossil taxa to provide an explicit timeframe for the diversification of this group. Our results support the subdivision of Atheriniformes into two suborders (Atherinopsoidei and Atherinoidei), the nesting of Notocheirinae within Atherinopsidae, and the monophyly of tribe Menidiini, among others. We propose taxonomic changes for Atherinopsoidei, but a few weakly supported nodes in our phylogeny suggests that further study is necessary to support a revised taxonomy of Atherinoidei. The time-calibrated phylogeny was used to infer ancestral habitat reconstructions to explain the current distribution of marine and freshwater taxa. Based on these results, the current distribution of Atheriniformes is likely due to widespread marine dispersal along the margins of continents, infrequent trans-oceanic dispersal, and repeated invasion of freshwater habitats. This conclusion is supported by post-Gondwanan divergence times among families within the order, and a high probability of a marine ancestral habitat. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Sequence analysis of a few species of termites (Order: Isoptera) on the basis of partial characterization of COII gene.

    Science.gov (United States)

    Sobti, Ranbir Chander; Kumari, Mamtesh; Sharma, Vijay Lakshmi; Sodhi, Monika; Mukesh, Manishi; Shouche, Yogesh

    2009-11-01

    The present study was aimed to get the nucleotide sequences of a part of COII mitochondrial gene amplified from individuals of five species of Termites (Isoptera: Termitidae: Macrotermitinae). Four of them belonged to the genus Odontotermes (O. obesus, O. horni, O. bhagwatii and Odontotermes sp.) and one to Microtermes (M. obesi). Partial COII gene fragments were amplified by using specific primers. The sequences so obtained were characterized to calculate the frequencies of each nucleotide bases and a high A + T content was observed. The interspecific pairwise sequence divergence in Odontotermes species ranged from 6.5% to 17.1% across COII fragment. M. obesi sequence diversity ranged from 2.5 with Odontotermes sp. to 19.0% with O. bhagwatii. Phylogenetic trees drawn on the basis of distance neighbour-joining method revealed three main clades clustering all the individuals according to their genera and families.

  17. Global transcriptome analysis of the C57BL/6J mouse testis by SAGE: evidence for nonrandom gene order

    Czech Academy of Sciences Publication Activity Database

    Divina, Petr; Vlček, Čestmír; Strnad, Petr; Pačes, Václav; Forejt, Jiří

    2005-01-01

    Roč. 6, č. 1 (2005), s. 29-45 ISSN 1471-2164 R&D Projects: GA MŠk(CZ) LN00A079; GA AV ČR(CZ) KSK5052113 Grant - others:HHMI(US) 55000306 Institutional research plan: CEZ:AV0Z50520514 Keywords : SAGE * testis * gene expression Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.092, year: 2005

  18. Complete chloroplast genome sequences of Drimys, Liriodendron, andPiper: Implications for the phylogeny of magnoliids and the evolution ofGC content

    Energy Technology Data Exchange (ETDEWEB)

    Zhengqiu, C.; Penaflor, C.; Kuehl, J.V.; Leebens-Mack, J.; Carlson, J.; dePamphilis, C.W.; Boore, J.L.; Jansen, R.K.

    2006-06-01

    The magnoliids represent the largest basal angiosperm clade with four orders, 19 families and 8,500 species. Although several recent angiosperm molecular phylogenies have supported the monophyly of magnoliids and suggested relationships among the orders, the limited number of genes examined resulted in only weak support, and these issues remain controversial. Furthermore, considerable incongruence has resulted in phylogenies supporting three different sets of relationships among magnoliids and the two large angiosperm clades, monocots and eudicots. This is one of the most important remaining issues concerning relationships among basal angiosperms. We sequenced the chloroplast genomes of three magnoliids, Drimys (Canellales), Liriodendron (Magnoliales), and Piper (Piperales), and used these data in combination with 32 other completed angiosperm chloroplast genomes to assess phylogenetic relationships among magnoliids. The Drimys and Piper chloroplast genomes are nearly identical in size at 160,606 and 160,624 bp, respectively. The genomes include a pair of inverted repeats of 26,649 bp (Drimys) and 27,039 (Piper), separated by a small single copy region of 18,621 (Drimys) and 18,878 (Piper) and a large single copy region of 88,685 bp (Drimys) and 87,666 bp (Piper). The gene order of both taxa is nearly identical to many other unrearranged angiosperm chloroplast genomes, including Calycanthus, the other published magnoliid genome. Comparisons of angiosperm chloroplast genomes indicate that GC content is not uniformly distributed across the genome. Overall GC content ranges from 34-39%, and coding regions have a substantially higher GC content than non-coding regions (both intergenic spacers and introns). Among protein-coding genes, GC content varies by codon position with 1st codon > 2nd codon > 3rd codon, and it varies by functional group with photosynthetic genes having the highest percentage and NADH genes the lowest. Across the genome, GC content is highest in

  19. Digging deeper: new gene order rearrangements and distinct patterns of codons usage in mitochondrial genomes among shrimps from the Axiidea, Gebiidea and Caridea (Crustacea: Decapoda

    Directory of Open Access Journals (Sweden)

    Mun Hua Tan

    2017-03-01

    Full Text Available Background Whole mitochondrial DNA is being increasingly utilized for comparative genomic and phylogenetic studies at deep and shallow evolutionary levels for a range of taxonomic groups. Although mitogenome sequences are deposited at an increasing rate into public databases, their taxonomic representation is unequal across major taxonomic groups. In the case of decapod crustaceans, several infraorders, including Axiidea (ghost shrimps, sponge shrimps, and mud lobsters and Caridea (true shrimps are still under-represented, limiting comprehensive phylogenetic studies that utilize mitogenomic information. Methods Sequence reads from partial genome scans were generated using the Illumina MiSeq platform and mitogenome sequences were assembled from these low coverage reads. In addition to examining phylogenetic relationships within the three infraorders, Axiidea, Gebiidea, and Caridea, we also investigated the diversity and frequency of codon usage bias and mitogenome gene order rearrangements. Results We present new mitogenome sequences for five shrimp species from Australia that includes two ghost shrimps, Callianassa ceramica and Trypaea australiensis, along with three caridean shrimps, Macrobrachium bullatum, Alpheus lobidens, and Caridina cf. nilotica. Strong differences in codon usage were discovered among the three infraorders and significant gene order rearrangements were observed. While the gene order rearrangements are congruent with the inferred phylogenetic relationships and consistent with taxonomic classification, they are unevenly distributed within and among the three infraorders. Discussion Our findings suggest potential for mitogenome rearrangements to be useful phylogenetic markers for decapod crustaceans and at the same time raise important questions concerning the drivers of mitogenome evolution in different decapod crustacean lineages.

  20. Unusual linkage patterns of ligands and their cognate receptors indicate a novel reason for non-random gene order in the human genome

    Directory of Open Access Journals (Sweden)

    Lercher Martin J

    2005-11-01

    Full Text Available Abstract Background Prior to the sequencing of the human genome it was typically assumed that, tandem duplication aside, gene order is for the most part random. Numerous observers, however, highlighted instances in which a ligand was linked to one of its cognate receptors, with some authors suggesting that this may be a general and/or functionally important pattern, possibly associated with recombination modification between epistatically interacting loci. Here we ask whether ligands are more closely linked to their receptors than expected by chance. Results We find no evidence that ligands are linked to their receptors more closely than expected by chance. However, in the human genome there are approximately twice as many co-occurrences of ligand and receptor on the same human chromosome as expected by chance. Although a weak effect, the latter might be consistent with a past history of block duplication. Successful duplication of some ligands, we hypothesise, is more likely if the cognate receptor is duplicated at the same time, so ensuring appropriate titres of the two products. Conclusion While there is an excess of ligands and their receptors on the same human chromosome, this cannot be accounted for by classical models of non-random gene order, as the linkage of ligands/receptors is no closer than expected by chance. Alternative hypotheses for non-random gene order are hence worth considering.

  1. Identification of evolutionarily conserved Momordica charantia microRNAs using computational approach and its utility in phylogeny analysis.

    Science.gov (United States)

    Thirugnanasambantham, Krishnaraj; Saravanan, Subramanian; Karikalan, Kulandaivelu; Bharanidharan, Rajaraman; Lalitha, Perumal; Ilango, S; HairulIslam, Villianur Ibrahim

    2015-10-01

    Momordica charantia (bitter gourd, bitter melon) is a monoecious Cucurbitaceae with anti-oxidant, anti-microbial, anti-viral and anti-diabetic potential. Molecular studies on this economically valuable plant are very essential to understand its phylogeny and evolution. MicroRNAs (miRNAs) are conserved, small, non-coding RNA with ability to regulate gene expression by bind the 3' UTR region of target mRNA and are evolved at different rates in different plant species. In this study we have utilized homology based computational approach and identified 27 mature miRNAs for the first time from this bio-medically important plant. The phylogenetic tree developed from binary data derived from the data on presence/absence of the identified miRNAs were noticed to be uncertain and biased. Most of the identified miRNAs were highly conserved among the plant species and sequence based phylogeny analysis of miRNAs resolved the above difficulties in phylogeny approach using miRNA. Predicted gene targets of the identified miRNAs revealed their importance in regulation of plant developmental process. Reported miRNAs held sequence conservation in mature miRNAs and the detailed phylogeny analysis of pre-miRNA sequences revealed genus specific segregation of clusters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Phylogeny of the Botryosphaeriaceae reveals patterns of host association.

    Science.gov (United States)

    De Wet, Juanita; Slippers, Bernard; Preisig, Oliver; Wingfield, Brenda D; Wingfield, Michael J

    2008-01-01

    Three anamorph genera of the Botryosphaeriaceae namely Diplodia, Lasiodiplodia and Dothiorella have typically dark, ovoid conidia with thick walls, and are consequently difficult to distinguish from each other. These genera are well-known pathogens of especially pine species. We generated a multiple gene genealogy to resolve the phylogenetic relationships of Botryosphaeriaceae with dark conidial anamorphs, and mapped host associations based on this phylogeny. The multiple gene genealogy separated Diplodia, Lasiodiplodia and Dothiorella and it revealed trends in the patterns of host association. The data set was expanded to include more lineages of the Botryosphaeriaceae, and included all isolates from different host species for which ITS sequence data are available. Results indicate that Diplodia species occur mainly on gymnosperms, with a few species on both gymnosperms and angiosperms. Lasiodiplodia species occur equally on both gymnosperms and angiosperms, Dothiorella species are restricted to angiosperms and Neofusicoccum species occur mainly on angiosperms with rare reports on Southern Hemisphere gymnosperms. Botryosphaeria species with Fusicoccum anamorphs occur mostly on angiosperms with rare reports on gymnosperms. Ancestral state reconstruction suggests that a putative ancestor of the Botryosphaeriaceae most likely evolved on the angiosperms. Another interesting observation was that both host generalist and specialist species were observed in all the lineages of the Botryosphaeriaceae, with little evidence of host associated co-evolution.

  3. Genomes-based phylogeny of the genus Xanthomonas

    Directory of Open Access Journals (Sweden)

    Rodriguez-R Luis M

    2012-03-01

    Full Text Available Abstract Background The genus Xanthomonas comprises several plant pathogenic bacteria affecting a wide range of hosts. Despite the economic, industrial and biological importance of Xanthomonas, the classification and phylogenetic relationships within the genus are still under active debate. Some of the relationships between pathovars and species have not been thoroughly clarified, with old pathovars becoming new species. A change in the genus name has been recently suggested for Xanthomonas albilineans, an early branching species currently located in this genus, but a thorough phylogenomic reconstruction would aid in solving these and other discrepancies in this genus. Results Here we report the results of the genome-wide analysis of DNA sequences from 989 orthologous groups from 17 Xanthomonas spp. genomes available to date, representing all major lineages within the genus. The phylogenetic and computational analyses used in this study have been automated in a Perl package designated Unus, which provides a framework for phylogenomic analyses which can be applied to other datasets at the genomic level. Unus can also be easily incorporated into other phylogenomic pipelines. Conclusions Our phylogeny agrees with previous phylogenetic topologies on the genus, but revealed that the genomes of Xanthomonas citri and Xanthomonas fuscans belong to the same species, and that of Xanthomonas albilineans is basal to the joint clade of Xanthomonas and Xylella fastidiosa. Genome reduction was identified in the species Xanthomonas vasicola in addition to the previously identified reduction in Xanthomonas albilineans. Lateral gene transfer was also observed in two gene clusters.

  4. Molecular phylogeny of elasmobranchs inferred from mitochondrial and nuclear markers.

    Science.gov (United States)

    Pavan-Kumar, A; Gireesh-Babu, P; Babu, P P Suresh; Jaiswar, A K; Hari Krishna, V; Prasasd, K Pani; Chaudhari, Aparna; Raje, S G; Chakraborty, S K; Krishna, Gopal; Lakra, W S

    2014-01-01

    The elasmobranchs (sharks, rays and skates) being the extant survivors of one of the earliest offshoots of the vertebrate evolutionary tree are good model organisms to study the primitive vertebrate conditions. They play a significant role in maintaining the ecological balance and have high economic value. Due to over-exploitation and illegal fishing worldwide, the elasmobranch stocks are being decimated at an alarming rate. Appropriate management measures are necessary for restoring depleted elasmobranch stocks. One approach for restoring stocks is implementation of conservation measures and these measures can be formulated effectively by knowing the evolutionary relationship among the elasmobranchs. In this study, a total of 30 species were chosen for molecular phylogeny studies using mitochondrial cytochrome c oxidase subunit I, 12S ribosomal RNA gene and nuclear Internal Transcribed Spacer 2. Among different genes, the combined dataset of COI and 12S rRNA resulted in a well resolved tree topology with significant bootstrap/posterior probabilities values. The results supported the reciprocal monophyly of sharks and batoids. Within Galeomorphii, Heterodontiformes (bullhead sharks) formed as a sister group to Lamniformes (mackerel sharks): Orectolobiformes (carpet sharks) and to Carcharhiniformes (ground sharks). Within batoids, the Myliobatiformes formed a monophyly group while Pristiformes (sawfishes) and Rhinobatiformes (guitar fishes) formed a sister group to all other batoids.

  5. Chromosomal phylogeny of Lagothrix, Brachyteles, and Cacajao.

    Science.gov (United States)

    Viegas Péquignot, E; Koiffmann, C P; Dutrillaux, B

    1985-01-01

    Based on a comparison of the karyotypes of two Plathyrrhini species, Cacajao melanocephalus (Pitheciinae) and Brachyteles arachnoides (Atelinae), with those of two previously studied species, Lagothrix lagothrica (Atelinae) and C calvus rubicundus (Pitheciinae), it appears that the two Cacajao species have undergone the same number of chromosome rearrangements since they diverged from their common ancestor and that the karyotype of Brachyteles is ancestral to that of Lagothrix. The chromosomal phylogeny of these four species is proposed. A Y-autosome translocation is present in the karyotypes of the two Cacajao species.

  6. Algorithms For Phylogeny Reconstruction In a New Mathematical Model

    NARCIS (Netherlands)

    Lenzini, Gabriele; Marianelli, Silvia

    1997-01-01

    The evolutionary history of a set of species is represented by a tree called phylogenetic tree or phylogeny. Its structure depends on precise biological assumptions about the evolution of species. Problems related to phylogeny reconstruction (i.e., finding a tree representation of information

  7. Analysis of 90 Mb of the potato genome reveals conservation of gene structures and order with tomato but divergence in repetitive sequence composition

    Directory of Open Access Journals (Sweden)

    O'Brien Kimberly

    2008-06-01

    Full Text Available Abstract Background The Solanaceae family contains a number of important crop species including potato (Solanum tuberosum which is grown for its underground storage organ known as a tuber. Albeit the 4th most important food crop in the world, other than a collection of ~220,000 Expressed Sequence Tags, limited genomic sequence information is currently available for potato and advances in potato yield and nutrition content would be greatly assisted through access to a complete genome sequence. While morphologically diverse, Solanaceae species such as potato, tomato, pepper, and eggplant share not only genes but also gene order thereby permitting highly informative comparative genomic analyses. Results In this study, we report on analysis 89.9 Mb of potato genomic sequence representing 10.2% of the genome generated through end sequencing of a potato bacterial artificial chromosome (BAC clone library (87 Mb and sequencing of 22 potato BAC clones (2.9 Mb. The GC content of potato is very similar to Solanum lycopersicon (tomato and other dicotyledonous species yet distinct from the monocotyledonous grass species, Oryza sativa. Parallel analyses of repetitive sequences in potato and tomato revealed substantial differences in their abundance, 34.2% in potato versus 46.3% in tomato, which is consistent with the increased genome size per haploid genome of these two Solanum species. Specific classes and types of repetitive sequences were also differentially represented between these two species including a telomeric-related repetitive sequence, ribosomal DNA, and a number of unclassified repetitive sequences. Comparative analyses between tomato and potato at the gene level revealed a high level of conservation of gene content, genic feature, and gene order although discordances in synteny were observed. Conclusion Genomic level analyses of potato and tomato confirm that gene sequence and gene order are conserved between these solanaceous species and that

  8. Phylogeny and species delineation in European species of the genus Steganacarus (Acari, Oribatida) using mitochondrial and nuclear markers.

    Science.gov (United States)

    Kreipe, Victoria; Corral-Hernández, Elena; Scheu, Stefan; Schaefer, Ina; Maraun, Mark

    2015-06-01

    Species of the genus Steganacarus are soil-living oribatid mites (Acari, Phthiracaridae) with a ptychoid body. The phylogeny and species status of the species of Steganacarus are not resolved, some authors group all ten German species of Steganacarus within the genus Steganacarus whereas others split them into three subgenera, Steganacarus, Tropacarus and Atropacarus. Additionally, two species, S. magnus and T. carinatus, comprise morphotypes of questionable species status. We investigated the phylogeny and species status of ten European Steganacarus species, i.e. S. applicatus, S. herculeanus, S. magnus forma magna, S. magnus forma anomala, S. spinosus, Tropacarus brevipilus, T. carinatus forma carinata, T. carinatus forma pulcherrima, Atropacarus striculus and Rhacaplacarus ortizi. We used two molecular markers, a 251 bp fragment of the nuclear gene 28S rDNA (D3) and a 477 bp fragment of the mitochondrial COI region. The phylogeny based on a combined analysis of D3 and COI separated four subgenera (Steganacarus, Tropacarus and Atropacarus, Rhacaplacarus) indicating that they form monophyletic groups. The COI region separated all ten species of the genus Steganacarus and showed variation within some species often correlating with the geographic origin of the species. Resolution of the more conserved D3 region was limited, indicating that radiation events are rather recent. Overall, our results indicate that both genes alone cannot be used for phylogeny and barcoding since variation is too low in D3 and too high in COI. However, when used in combination these genes provide reliable insight into the phylogeny, radiation and species status of taxa of the genus Steganacarus.

  9. Advances in the use of DNA barcodes to build a community phylogeny for tropical trees in a Puerto Rican forest dynamics plot.

    Directory of Open Access Journals (Sweden)

    W John Kress

    2010-11-01

    Full Text Available Species number, functional traits, and phylogenetic history all contribute to characterizing the biological diversity in plant communities. The phylogenetic component of diversity has been particularly difficult to quantify in species-rich tropical tree assemblages. The compilation of previously published (and often incomplete data on evolutionary relationships of species into a composite phylogeny of the taxa in a forest, through such programs as Phylomatic, has proven useful in building community phylogenies although often of limited resolution. Recently, DNA barcodes have been used to construct a robust community phylogeny for nearly 300 tree species in a forest dynamics plot in Panama using a supermatrix method. In that study sequence data from three barcode loci were used to generate a well-resolved species-level phylogeny.Here we expand upon this earlier investigation and present results on the use of a phylogenetic constraint tree to generate a community phylogeny for a diverse, tropical forest dynamics plot in Puerto Rico. This enhanced method of phylogenetic reconstruction insures the congruence of the barcode phylogeny with broadly accepted hypotheses on the phylogeny of flowering plants (i.e., APG III regardless of the number and taxonomic breadth of the taxa sampled. We also compare maximum parsimony versus maximum likelihood estimates of community phylogenetic relationships as well as evaluate the effectiveness of one- versus two- versus three-gene barcodes in resolving community evolutionary history.As first demonstrated in the Panamanian forest dynamics plot, the results for the Puerto Rican plot illustrate that highly resolved phylogenies derived from DNA barcode sequence data combined with a constraint tree based on APG III are particularly useful in comparative analysis of phylogenetic diversity and will enhance research on the interface between community ecology and evolution.

  10. Hylid frog phylogeny and sampling strategies for speciose clades.

    Science.gov (United States)

    Wiens, John J; Fetzner, James W; Parkinson, Christopher L; Reeder, Tod W

    2005-10-01

    How should characters and taxa be sampled to resolve efficiently the phylogeny of ancient and highly speciose groups? We addressed this question empirically in the treefrog family Hylidae, which contains > 800 species and may be nonmonophyletic with respect to other anuran families. We sampled 81 species (54 hylids and 27 outgroups) for two mitochondrial genes (12S, ND1), two nuclear genes (POMC, c-myc), and morphology (144 characters) in an attempt to resolve higher-level relationships. We then added 117 taxa to the combined data set, many of which were sampled for only one gene (12S). Despite the relative incompleteness of the majority of taxa, the resulting trees placed all taxa in the expected higher-level clades with strong support, despite some taxa being > 90% incomplete. Furthermore, we found no relationship between the completeness of a taxon and the support (parsimony bootstrap or Bayesian posterior probabilities) for its localized placement on the tree. Separate analysis of the data set with the most taxa (12S) gives a somewhat problematic estimate of higher-level relationships, suggesting that data sets scored only for some taxa (ND1, nuclear genes, morphology) are important in determining the outcome of the combined analysis. The results show that hemiphractine hylids are not closely related to other hylids and should be recognized as a distinct family. They also show that the speciose genus Hyla is polyphyletic, but that its species can be arranged into three monophyletic genera. A new classification of hylid frogs is proposed. Several potentially misleading signals in the morphological data are discussed.

  11. Phylogeny and species traits predict bird detectability

    Science.gov (United States)

    Solymos, Peter; Matsuoka, Steven M.; Stralberg, Diana; Barker, Nicole K. S.; Bayne, Erin M.

    2018-01-01

    Avian acoustic communication has resulted from evolutionary pressures and ecological constraints. We therefore expect that auditory detectability in birds might be predictable by species traits and phylogenetic relatedness. We evaluated the relationship between phylogeny, species traits, and field‐based estimates of the two processes that determine species detectability (singing rate and detection distance) for 141 bird species breeding in boreal North America. We used phylogenetic mixed models and cross‐validation to compare the relative merits of using trait data only, phylogeny only, or the combination of both to predict detectability. We found a strong phylogenetic signal in both singing rates and detection distances; however the strength of phylogenetic effects was less than expected under Brownian motion evolution. The evolution of behavioural traits that determine singing rates was found to be more labile, leaving more room for species to evolve independently, whereas detection distance was mostly determined by anatomy (i.e. body size) and thus the laws of physics. Our findings can help in disentangling how complex ecological and evolutionary mechanisms have shaped different aspects of detectability in boreal birds. Such information can greatly inform single‐ and multi‐species models but more work is required to better understand how to best correct possible biases in phylogenetic diversity and other community metrics.

  12. Mitochondrial phylogeny and systematics of baboons (Papio).

    Science.gov (United States)

    Newman, Timothy K; Jolly, Clifford J; Rogers, Jeffrey

    2004-05-01

    Baboons (Papio, s.s.) comprise a series of parapatric allotaxa (subspecies or closely related species) widely distributed in sub-Saharan Africa. Despite extensive studies of their ecology, morphology, and behavior, disagreement about their phylogenetic relationships continues, as expressed in the current coexistence of at least three major, competing taxonomic treatments. To help resolve this situation, we sequenced approximately 900 bases of mitochondrial DNA of 40 individuals from five of the widely recognized "major" allotaxa. Total sequence diversity (>5%) is high compared to most primate species. Major mitochondrial clades correspond to recognized allotaxa, with the important exception that haplotypes from yellow and olive baboons form a single, monophyletic clade within which the two allotaxa do not comprise mutually exclusive clusters. The major clades fall unambiguously into the pattern: (chacma (Guinea (hamadryas (yellow + olive)))). This phylogeny does not support taxonomies that oppose hamadryas to all other baboons ("desert" vs. "savanna"), but is compatible with the view that all definable allotaxa should be recognized as coordinates, either as "phylogenetic" species or "biological" subspecies. The close relationship and unsegregated distribution of haplotypes from Kenyan and Tanzanian yellow and olive baboons are unexplained, but may reflect introgression across the documented hybrid zone. The overall phylogeny, when combined with paleontological data, suggests a southern African origin for extant Papio baboons, with all extant lineages sharing a common mitochondrial ancestor at approximately 1.8 Ma. Copyright 2003 Wiley-Liss, Inc.

  13. The mitogenomic phylogeny of the Elasmobranchii (Chondrichthyes).

    Science.gov (United States)

    Amaral, Cesar R L; Pereira, Filipe; Silva, Dayse A; Amorim, António; de Carvalho, Elizeu F

    2017-09-20

    Here we present a mitogenomic perspective on the evolution of sharks and rays, being a first glance on the complete mitochondrial history of such an old and diversified group of vertebrates. The Elasmobranchii is a diverse subclass of Chondrichthyes, or cartilaginous fish, with about 1200 species of ocean- and freshwater-dwelling fishes spread all over the world's seas, including some of the ocean's largest fishes. The group dates back about 400 million years near the Devonian-Silurian boundary, being nowadays represented by several derivative lineages, mainly related to Mesozoic forms. Although considered of ecological, commercial and conservation importance, the phylogeny of this old group is poorly studied and still under debate. Here we apply a molecular systematic approach on 82 complete mitochondrial genomes to investigate the phylogeny of the Elasmobranchii. By using maximum likelihood (ML) and Bayesian analyses, we found a clear separation within the shark clade between the Galeomorphii and the Squalomorphii, as well as sister taxa relationships between the Carcharhiniformes and the Lamniformes. Moreover, we found that Pristoidei clusters within the Rhinobatoidei, having been recovered as the sister taxon of the Rhinobatos genus in a clade which also includes the basal Zapteryx. Our results also reject the Hypnosqualea hypothesis, which proposes that the Batoidea should be placed within the Selachii.

  14. Mitochondrial and nuclear genes suggest that stony corals are monophyletic but most families of stony corals are not (Order Scleractinia, Class Anthozoa, Phylum Cnidaria.

    Directory of Open Access Journals (Sweden)

    Hironobu Fukami

    Full Text Available Modern hard corals (Class Hexacorallia; Order Scleractinia are widely studied because of their fundamental role in reef building and their superb fossil record extending back to the Triassic. Nevertheless, interpretations of their evolutionary relationships have been in flux for over a decade. Recent analyses undermine the legitimacy of traditional suborders, families and genera, and suggest that a non-skeletal sister clade (Order Corallimorpharia might be imbedded within the stony corals. However, these studies either sampled a relatively limited array of taxa or assembled trees from heterogeneous data sets. Here we provide a more comprehensive analysis of Scleractinia (127 species, 75 genera, 17 families and various outgroups, based on two mitochondrial genes (cytochrome oxidase I, cytochrome b, with analyses of nuclear genes (ss-tubulin, ribosomal DNA of a subset of taxa to test unexpected relationships. Eleven of 16 families were found to be polyphyletic. Strikingly, over one third of all families as conventionally defined contain representatives from the highly divergent "robust" and "complex" clades. However, the recent suggestion that corallimorpharians are true corals that have lost their skeletons was not upheld. Relationships were supported not only by mitochondrial and nuclear genes, but also often by morphological characters which had been ignored or never noted previously. The concordance of molecular characters and more carefully examined morphological characters suggests a future of greater taxonomic stability, as well as the potential to trace the evolutionary history of this ecologically important group using fossils.

  15. Using genomic data to unravel the root of the placental mammal phylogeny.

    Science.gov (United States)

    Murphy, William J; Pringle, Thomas H; Crider, Tess A; Springer, Mark S; Miller, Webb

    2007-04-01

    The phylogeny of placental mammals is a critical framework for choosing future genome sequencing targets and for resolving the ancestral mammalian genome at the nucleotide level. Despite considerable recent progress defining superordinal relationships, several branches remain poorly resolved, including the root of the placental tree. Here we analyzed the genome sequence assemblies of human, armadillo, elephant, and opossum to identify informative coding indels that would serve as rare genomic changes to infer early events in placental mammal phylogeny. We also expanded our species sampling by including sequence data from >30 ongoing genome projects, followed by PCR and sequencing validation of each indel in additional taxa. Our data provide support for a sister-group relationship between Afrotheria and Xenarthra (the Atlantogenata hypothesis), which is in turn the sister-taxon to Boreoeutheria. We failed to recover any indels in support of a basal position for Xenarthra (Epitheria), which is suggested by morphology and a recent retroposon analysis, or a hypothesis with Afrotheria basal (Exafricoplacentalia), which is favored by phylogenetic analysis of large nuclear gene data sets. In addition, we identified two retroposon insertions that also support Atlantogenata and none for the alternative hypotheses. A revised molecular timescale based on these phylogenetic inferences suggests Afrotheria and Xenarthra diverged from other placental mammals approximately 103 (95-114) million years ago. We discuss the impacts of this topology on earlier phylogenetic reconstructions and repeat-based inferences of phylogeny.

  16. Molecular phylogeny and evolution of Scomber (Teleostei: Scombridae) based on mitochondrial and nuclear DNA sequences

    Science.gov (United States)

    Cheng, Jiao; Gao, Tianxiang; Miao, Zhenqing; Yanagimoto, Takashi

    2011-03-01

    A molecular phylogenetic analysis of the genus Scomber was conducted based on mitochondrial (COI, Cyt b and control region) and nuclear (5S rDNA) DNA sequence data in multigene perspective. A variety of phylogenetic analytic methods were used to clarify the current taxonomic Classification and to assess phylogenetic relationships and the evolutionary history of this genus. The present study produced a well-resolved phylogeny that strongly supported the monophyly of Scomber. We confirmed that S. japonicus and S. colias were genetically distinct. Although morphologically and ecologically similar to S. colias, the molecular data showed that S. japonicus has a greater molecular affinity with S. australasicus, which conflicts with the traditional taxonomy. This phylogenetic pattern was corroborated by the mtDNA data, but incompletely by the nuclear DNA data. Phylogenetic concordance between the mitochondrial and nuclear DNA regions for the basal nodes Supports an Atlantic origin for Scomber. The present-day geographic ranges of the species were compared with the resultant molecular phylogeny derived from partition Bayesian analyses of the combined data sets to evaluate possible dispersal routes of the genus. The present-day geographic distribution of Scomber species might be best ascribed to multiple dispersal events. In addition, our results suggest that phylogenies derived from multiple genes and long sequences exhibited improved phylogenetic resolution, from which we conclude that the phylogenetic reconstruction is a reliable representation of the evolutionary history of Scomber.

  17. Evolution of genes and genomes on the Drosophila phylogeny

    DEFF Research Database (Denmark)

    Clark, Andrew G; Eisen, Michael B; Smith, Douglas R

    2007-01-01

    Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the ...

  18. Gene structure, phylogeny and expression profile of the sucrose ...

    Indian Academy of Sciences (India)

    2015-09-16

    Sep 16, 2015 ... serine residue for phosphorylation by Ser/Thr protein kinase is indicated by a red star. The characteristic sucrose synthase domain (single underline) and a glycosyltransferases domain (double underline) were identified by the Interproscan algorithm (http://www.ebi.ac.uk/Tools/ pfa/iprscan/). 464. Journal of ...

  19. Gene structure, phylogeny and expression profile of the sucrose ...

    Indian Academy of Sciences (India)

    Dual DNA binding specificity of a petal epidermis-specific MYB transcription factor (MYB.Ph3) from Petunia hybrida. EMBO J. 14, 1773–1784. Stalberg K., Ellerstom M., Ezcurra I., Ablov S. and Rask L. 1996. Disruption of an overlapping E-box/ABRE motif abolished high transcription of the napA storage-protein promoter in ...

  20. Phylogeny and character behavior in the family Lemuridae.

    Science.gov (United States)

    Wyner, Y; DeSalle, R; Absher, R

    2000-04-01

    A phylogenetic analysis of the family Lemuridae was accomplished using multiple gene partitions and morphological characters. The results of the study suggest that several nodes in the lemurid phylogeny can be robustly resolved; however, the relationships of the species within the genus Eulemur are problematically nonrobust. The genus Varecia is strongly supported as the basal genus in the family. Hapalemur and Lemur catta are strongly supported as sister taxa and together are the sister group to the genus Eulemur. E. mongoz is the most basal species in the genus Eulemur. E. fulvus subspecies form a monophyletic group with three distinct lineages. E. coronatus is strongly supported as the sister taxon to E. macaco. The relationships of E. rubriventer, E. fulvus, and the E. macaco-E. coronatus pair are unresolved. Our combined molecular and morphological analysis demonstrates the lack of influence that morphology has on the simultaneous analysis tree when these two kinds of data are given equal weight. The effects of several extreme weighting schemes (removal of transitions and of third positions in protein-coding regions) and maximum-likelihood analysis were also explored. We suggest that these other forms of inference add little to resolving the problematic relationships of the species in the genus Eulemur. Copyright 2000 Academic Press.

  1. Morphology and phylogeny of Reticulitermes sp. (Isoptera, Rhinotermitidae) from Cyprus.

    Science.gov (United States)

    Ghesini, S; Marini, M

    2012-12-01

    Taxonomy and phylogeny of termites of the genus Reticulitermes in central and eastern Mediterranean lands are poorly understood, partly due to insufficient sampling. This study aims to contribute to the knowledge of east Mediterranean termites by presenting morphological and molecular data on Reticulitermes from Cyprus. Samples from 15 colonies were collected throughout the island. Qualitative and quantitative morphological characters were analyzed for alate and soldier castes. Partial sequences of the mitochondrial genes COII and 16S were used to evaluate genetic diversity of Cypriot colonies and to determine their phylogenetic relationships with taxa from central and eastern Mediterranean areas. Cypriot alates have some morphological features in common with the Israeli R. clypeatus: an enlarged postclypeus and a wide unpigmented margin of the eye. They are larger than R. clypeatus but smaller than western European species, such as R. banyulensis, R. lucifugus corsicus and R. grassei. For Cypriot soldiers, two size groups were identified, possibly in relation with the age of their mother colonies. Phylogenetic analysis shows that, contrary to what might be expected, the samples with the highest affinity with Cypriot samples are not those from the nearby mainland (south Turkey, Israel), but from north-eastern Greece. Comprehensive sampling in the nearby mainland is lacking, so the possibility that populations exist it that region with an affinity towards Cypriot Reticulitermes sp. cannot be ruled out. Together with samples from the Halkidiki peninsula, north-eastern Greece, northern Turkey and Crete, Cypriot Reticulitermes form a well-supported north-eastern Mediterranean clade.

  2. Bounded noise induced first-order phase transitions in a baseline non-spatial model of gene transcription

    Science.gov (United States)

    d'Onofrio, Alberto; Caravagna, Giulio; de Franciscis, Sebastiano

    2018-02-01

    In this work we consider, from a statistical mechanics point of view, the effects of bounded stochastic perturbations of the protein decay rate for a bistable biomolecular network module. Namely, we consider the perturbations of the protein decay/binding rate constant (DBRC) in a circuit modeling the positive feedback of a transcription factor (TF) on its own synthesis. The DBRC models both the spontaneous degradation of the TF and its linking to other unknown biomolecular factors or drugs. We show that bounded perturbations of the DBRC preserve the positivity of the parameter value (and also its limited variation), and induce effects of interest. First, the noise amplitude induces a first-order phase transition. This is of interest since the system in study has neither spatial components nor it is composed by multiple interacting networks. In particular, we observe that the system passes from two to a unique stochastic attractor, and vice-versa. This behavior is different from noise-induced transitions (also termed phenomenological bifurcations), where a unique stochastic attractor changes its shape depending on the values of a parameter. Moreover, we observe irreversible jumps as a consequence of the above-mentioned phase transition. We show that the illustrated mechanism holds for general models with the same deterministic hysteresis bifurcation structure. Finally, we illustrate the possible implications of our findings to the intracellular pharmacodynamics of drugs delivered in continuous infusion.

  3. Future of phylogeny in HIV prevention.

    Science.gov (United States)

    Brenner, Bluma G; Wainberg, Mark A

    2013-07-01

    The success of the HIV Prevention Trials Network 052 trial has led to revisions in HIV-1 treatment guidelines. Antiretroviral therapy may reduce the risk of HIV-1 transmissions at the population level. The design of successful treatment as prevention interventions will be predicated on a comprehensive understanding of the spatial, temporal, and biological dynamics of heterosexual men who have sex with men and intravenous drug user epidemics. Viral phylogenetics can capture the underlying structure of transmission networks based on the genetic interrelatedness of viral sequences and cluster networks that could not be otherwise identified. This article describes the phylogenetic expansion of the Montreal men who have sex with men epidemic over the last decade. High rates of coclustering of primary infections are associated with 1 infection leading to 13 onward transmissions. Phylogeny substantiates the role of primary and recent stage infection in transmission dynamics, underlying the importance of timely diagnosis and immediate antiretroviral therapy initiation to avert transmission cascades.

  4. Coloration mechanisms and phylogeny of Morpho butterflies.

    Science.gov (United States)

    Giraldo, M A; Yoshioka, S; Liu, C; Stavenga, D G

    2016-12-15

    Morpho butterflies are universally admired for their iridescent blue coloration, which is due to nanostructured wing scales. We performed a comparative study on the coloration of 16 Morpho species, investigating the morphological, spectral and spatial scattering properties of the differently organized wing scales. In numerous previous studies, the bright blue Morpho coloration has been fully attributed to the multi-layered ridges of the cover scales' upper laminae, but we found that the lower laminae of the cover and ground scales play an important additional role, by acting as optical thin film reflectors. We conclude that Morpho coloration is a subtle combination of overlapping pigmented and/or unpigmented scales, multilayer systems, optical thin films and sometimes undulated scale surfaces. Based on the scales' architecture and their organization, five main groups can be distinguished within the genus Morpho, largely agreeing with the accepted phylogeny. © 2016. Published by The Company of Biologists Ltd.

  5. Microbiome analysis among bats describes influences of host phylogeny, life history, physiology and geography.

    Science.gov (United States)

    Phillips, Caleb D; Phelan, Georgina; Dowd, Scot E; McDonough, Molly M; Ferguson, Adam W; Delton Hanson, J; Siles, Lizette; Ordóñez-Garza, Nicté; San Francisco, Michael; Baker, Robert J

    2012-06-01

    Metagenomic methods provide an experimental approach to inform the relationships between hosts and their microbial inhabitants. Previous studies have provided the conceptual realization that microbiomes are dynamic among hosts and the intimacy of relation between micro- and macroorganisms. Here, we present an intestinal microflora community analysis for members of the order Chiroptera and investigate the relative influence of variables in shaping observed microbiome relationships. The variables ranged from those considered to have ancient and long-term influences (host phylogeny and life history) to the relatively transient variable of host reproductive condition. In addition, collection locality data, representing the geographic variable, were included in analyses. Results indicate a complex influence of variables in shaping sample relationships in which signal for host phylogeny is recovered at broad taxonomic levels (family), whereas intrafamilial analyses disclosed various degrees of resolution for the remaining variables. Although cumulative probabilities of assignment indicated both reproductive condition and geography influenced relationships, comparison of ecological measures among groups revealed statistical differences between most variable classifications. For example, ranked ecological diversity was associated with host phylogeny (deeper coalescences among families were associated with more microfloral diversity), dietary strategy (herbivory generally retained higher diversity than carnivory) and reproductive condition (reproductively active females displayed more diverse microflora than nonreproductive conditions). Overall, the results of this study describe a complex process shaping microflora communities of wildlife species as well as provide avenues for future research that will further inform the nature of symbiosis between microflora communities and hosts. © 2012 Blackwell Publishing Ltd.

  6. Echinoderm phylogeny including Xyloplax, a progenetic asteroid.

    Science.gov (United States)

    Janies, Daniel A; Voight, Janet R; Daly, Marymegan

    2011-07-01

    Reconstruction of the phylogeny of the five extant classes of the phylum Echinodermata has proven difficult. Results concerning higher-level taxonomic relationships among echinoderms are sensitive to the choice of analytical parameters and methods. Moreover, the proposal of a putative sixth class based on a small enigmatic disc-shaped echinoderm, Xyloplax, from the deep seas of the Bahamas and New Zealand in the 1980s further complicated the problem. Although clearly an echinoderm, Xyloplax did not have clear affinity among known groups. Using molecular sequence and developmental data from recently collected Xyloplax adults and embryos, we show that rather than representing an ancient distinct lineage as implied by its status as a class, Xyloplax is simply a starfish that is closely related to the asteroid family Pterasteridae. Many members of the Pterasteridae and all Xyloplax inhabit deep or polar seas and brood young. Brooding pterasterids and Xyloplax hold their young in specialized adult chambers until the young reach an advanced juvenile stage after which they are released as free-living individuals. We hypothesize that the unique morphology of Xyloplax evolved via progenesis--the truncation of somatic growth at a juvenile body plan but with gonadal growth to maturity. Although the overall phylogeny of extant echinoderms remains sensitive to the choice of analytical methods, the placement of Xyloplax as sister to pterasterid asteroids is unequivocal. Based on this, we argue that the proposed class and infraclass status of Xyloplax should be suppressed. © The Author(s) 2011. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved.

  7. Chloroplast phylogeny of asplenioid ferns based on rbcL and trnL-F Spacer sequences (Polypodiidae, aspleniaceae) and its implications for biogeography

    NARCIS (Netherlands)

    Schneider, H.; Russell, S.J.; Cox, C.J.; Bakker, F.T.; Henderson, S.; Rumsey, F.; Barrett, J.; Gibby, M.; Vogel, J.C.

    2004-01-01

    Molecular phylogenies have been generated to investigate relationships among species and putative segregates in Asplenium, one of the largest genera in ferns. Of the ~700 described taxa, 71 are included in a phylogenetic analysis using the chloroplast rbcL gene and trnL-F spacer. Our results support

  8. The Ascomycota tree of life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits

    Science.gov (United States)

    C.L. Schoch; G.-H. Sung; F. Lopez-Giraldez

    2009-01-01

    We present a six-gene, 420-species maximum-likelihood phylogeny of Ascomycota, the largest phylum of fungi. This analysis is the most taxonomically complete to date with species sampled from all 15 currently circumscribed classes. A number of superclass-level nodes that have previously evaded resolution and were unnamed in classifications of the fungi are resolved for...

  9. Phylogeny and Species Diversity of Gulf of California Oysters

    Data.gov (United States)

    U.S. Environmental Protection Agency — Dataset of DNA sequence data from two mitochondrial loci (COI and 16S) used to infer the phylogeny of oysters in the genus Ostrea along the Pacific coast of North...

  10. Phylogeny and taxonomy of the Inonotus linteus complex

    Czech Academy of Sciences Publication Activity Database

    Tian, X.-M.; Yu, H.-Y.; Zhou, L.-W.; Decock, C.; Vlasák, Josef; Dai, Y.C.

    2013-01-01

    Roč. 58, č. 1 (2013), s. 159-169 ISSN 1560-2745 Institutional support: RVO:60077344 Keywords : Hymenochaetaceae * Phellinus * Phylogeny * ITS Subject RIV: EF - Botanics Impact factor: 6.938, year: 2013

  11. Cloning of fusion protein gene of Newcastle disease virus into a baculovirus derived bacmid shuttle vector, in order to express it in insect cell line

    Directory of Open Access Journals (Sweden)

    Hashemzadeh MS

    2015-05-01

    Full Text Available Abstract Background: Newcastle disease virus (NDV is one of the major pathogens in poultry and vaccination is intended to control the disease, as an effective solution, yet. Fusion protein (F on surface of NDV, has a fundamental role in virus pathogenicity and can induce protective immunity, alone. With this background, here our aim was to construct a baculovirus derived recombinant bacmid shuttle vector (encoding F-protein in order to express it in insect cell line. Materials and Methods: In this experimental study, at first complete F gene from avirulent strain La Sota of NDV was amplified by RT-PCR to produce F cDNA. The amplicon was cloned into T/A cloning vector and afterwards into pFastBac Dual donor plasmid. After the verification of cloning process by two methods, PCR and enzymatic digestion analysis, the accuracy of F gene sequence was confirmed by sequencing. Finally, F-containing recombinant bacmid was subsequently generated in DH10Bac cell and the construct production was confirmed by a special PCR panel, using F specific primers and M13 universal primers. Results: Analysis of confirmatory tests showed that the recombinant bacmid, expressing of F-protein gene in correct sequence and framework, has been constructed successfully. Conclusion: The product of this F-containing recombinant bacmid, in addition to its independent application in the induction of protective immunity, can be used with the other individual recombinant baculoviruses, expressing HN and NP genes to produce NDV-VLPs in insect cell line.

  12. Direct maximum parsimony phylogeny reconstruction from genotype data.

    Science.gov (United States)

    Sridhar, Srinath; Lam, Fumei; Blelloch, Guy E; Ravi, R; Schwartz, Russell

    2007-12-05

    Maximum parsimony phylogenetic tree reconstruction from genetic variation data is a fundamental problem in computational genetics with many practical applications in population genetics, whole genome analysis, and the search for genetic predictors of disease. Efficient methods are available for reconstruction of maximum parsimony trees from haplotype data, but such data are difficult to determine directly for autosomal DNA. Data more commonly is available in the form of genotypes, which consist of conflated combinations of pairs of haplotypes from homologous chromosomes. Currently, there are no general algorithms for the direct reconstruction of maximum parsimony phylogenies from genotype data. Hence phylogenetic applications for autosomal data must therefore rely on other methods for first computationally inferring haplotypes from genotypes. In this work, we develop the first practical method for computing maximum parsimony phylogenies directly from genotype data. We show that the standard practice of first inferring haplotypes from genotypes and then reconstructing a phylogeny on the haplotypes often substantially overestimates phylogeny size. As an immediate application, our method can be used to determine the minimum number of mutations required to explain a given set of observed genotypes. Phylogeny reconstruction directly from unphased data is computationally feasible for moderate-sized problem instances and can lead to substantially more accurate tree size inferences than the standard practice of treating phasing and phylogeny construction as two separate analysis stages. The difference between the approaches is particularly important for downstream applications that require a lower-bound on the number of mutations that the genetic region has undergone.

  13. Gene

    Data.gov (United States)

    U.S. Department of Health & Human Services — Gene integrates information from a wide range of species. A record may include nomenclature, Reference Sequences (RefSeqs), maps, pathways, variations, phenotypes,...

  14. What an rRNA secondary structure tells about phylogeny of fungi in Ascomycota with emphasis on evolution of major types of ascus.

    Directory of Open Access Journals (Sweden)

    Wen-Ying Zhuang

    Full Text Available BACKGROUND: RNA secondary structure is highly conserved throughout evolution. The higher order structure is fundamental in establishing important structure-function relationships. Nucleotide sequences from ribosomal RNA (rRNA genes have made a great contribution to our understanding of Ascomycota phylogeny. However, filling the gaps between molecular phylogeny and morphological assumptions based on ascus dehiscence modes and type of fruitbodies at the higher level classification of the phylum remains an unfulfilled task faced by mycologists. METHODOLOGY/PRINCIPAL FINDINGS: We selected some major groups of Ascomycota to view their phylogenetic relationships based on analyses of rRNA secondary structure. Using rRNA secondary structural information, here, we converted nucleotide sequences into the structure ones over a 20-symbol code. Our structural analyses together with ancestral character state reconstruction produced reasonable phylogenetic position for the class Geoglossomycetes as opposed to the classic nucleotide analyses. Judging from the secondary structure analyses with consideration of mode of ascus dehiscence and the ability of forming fruitbodies, we draw a clear picture of a possible evolutionary route for fungal asci and some major groups of fungi in Ascomycota. The secondary structure trees show a more reasonable phylogenetic position for the class Geoglossomycetes. CONCLUSIONS: Our results illustrate that asci lacking of any dehiscence mechanism represent the most primitive type. Passing through the operculate and Orbilia-type asci, bitunicate asci occurred. The evolution came to the most advanced inoperculate type. The ascus-producing fungi might be derived from groups lacking of the capacity to form fruitbodies, and then evolved multiple times. The apothecial type of fruitbodies represents the ancestral state, and the ostiolar type is advanced. The class Geoglossomycetes is closely related to Leotiomycetes and Sordariomycetes

  15. Bootstrapping phylogenies inferred from rearrangement data

    Directory of Open Access Journals (Sweden)

    Lin Yu

    2012-08-01

    Full Text Available Abstract Background Large-scale sequencing of genomes has enabled the inference of phylogenies based on the evolution of genomic architecture, under such events as rearrangements, duplications, and losses. Many evolutionary models and associated algorithms have been designed over the last few years and have found use in comparative genomics and phylogenetic inference. However, the assessment of phylogenies built from such data has not been properly addressed to date. The standard method used in sequence-based phylogenetic inference is the bootstrap, but it relies on a large number of homologous characters that can be resampled; yet in the case of rearrangements, the entire genome is a single character. Alternatives such as the jackknife suffer from the same problem, while likelihood tests cannot be applied in the absence of well established probabilistic models. Results We present a new approach to the assessment of distance-based phylogenetic inference from whole-genome data; our approach combines features of the jackknife and the bootstrap and remains nonparametric. For each feature of our method, we give an equivalent feature in the sequence-based framework; we also present the results of extensive experimental testing, in both sequence-based and genome-based frameworks. Through the feature-by-feature comparison and the experimental results, we show that our bootstrapping approach is on par with the classic phylogenetic bootstrap used in sequence-based reconstruction, and we establish the clear superiority of the classic bootstrap for sequence data and of our corresponding new approach for rearrangement data over proposed variants. Finally, we test our approach on a small dataset of mammalian genomes, verifying that the support values match current thinking about the respective branches. Conclusions Our method is the first to provide a standard of assessment to match that of the classic phylogenetic bootstrap for aligned sequences. Its

  16. Bootstrapping phylogenies inferred from rearrangement data.

    Science.gov (United States)

    Lin, Yu; Rajan, Vaibhav; Moret, Bernard Me

    2012-08-29

    Large-scale sequencing of genomes has enabled the inference of phylogenies based on the evolution of genomic architecture, under such events as rearrangements, duplications, and losses. Many evolutionary models and associated algorithms have been designed over the last few years and have found use in comparative genomics and phylogenetic inference. However, the assessment of phylogenies built from such data has not been properly addressed to date. The standard method used in sequence-based phylogenetic inference is the bootstrap, but it relies on a large number of homologous characters that can be resampled; yet in the case of rearrangements, the entire genome is a single character. Alternatives such as the jackknife suffer from the same problem, while likelihood tests cannot be applied in the absence of well established probabilistic models. We present a new approach to the assessment of distance-based phylogenetic inference from whole-genome data; our approach combines features of the jackknife and the bootstrap and remains nonparametric. For each feature of our method, we give an equivalent feature in the sequence-based framework; we also present the results of extensive experimental testing, in both sequence-based and genome-based frameworks. Through the feature-by-feature comparison and the experimental results, we show that our bootstrapping approach is on par with the classic phylogenetic bootstrap used in sequence-based reconstruction, and we establish the clear superiority of the classic bootstrap for sequence data and of our corresponding new approach for rearrangement data over proposed variants. Finally, we test our approach on a small dataset of mammalian genomes, verifying that the support values match current thinking about the respective branches. Our method is the first to provide a standard of assessment to match that of the classic phylogenetic bootstrap for aligned sequences. Its support values follow a similar scale and its receiver

  17. Evolution of electric communication signals in the South American ghost knifefishes (Gymnotiformes: Apteronotidae): A phylogenetic comparative study using a sequence-based phylogeny

    Science.gov (United States)

    Smith, Adam R.; Proffitt, Melissa R.; Ho, Winnie W.; Mullaney, Claire B.; Maldonado-Ocampo, Javier A.; Lovejoy, Nathan R.; Alves-Gomes, José A.; Smith, G. Troy

    2018-01-01

    The electric communication signals of weakly electric ghost knifefishes (Gymnotiformes: Apteronotidae) provide a valuable model system for understanding the evolution and physiology of behavior. Apteronotids produce continuous wave-type electric organ discharges (EODs) that are used for electrolocation and communication. The frequency and waveform of EODs, as well as the structure of transient EOD modulations (chirps), vary substantially across species. Understanding how these signals have evolved, however, has been hampered by the lack of a well-supported phylogeny for this family. We constructed a molecular phylogeny for the Apteronotidae by using sequence data from three genes (cytochrome c oxidase subunit 1, recombination activating gene 2, and cytochrome oxidase B) in 32 species representing 13 apteronotid genera. This phylogeny and an extensive database of apteronotid signals allowed us to examine signal evolution by using ancestral state reconstruction (ASR) and phylogenetic generalized least squares (PGLS) models. Our molecular phylogeny largely agrees with another recent sequence-based phylogeny and identified five robust apteronotid clades: (i) Sternarchorhamphus + Orthosternarchus, (ii) Adontosternarchus, (iii) Apteronotus + Parapteronotus, (iv) Sternarchorhynchus, and (v) a large clade including Porotergus, ‘Apteronotus’, Compsaraia, Sternarchogiton, Sternarchella, and Magosternarchus. We analyzed novel chirp recordings from two apteronotid species (Orthosternarchus tamandua and Sternarchorhynchus mormyrus), and combined data from these species with that from previously recorded species in our phylogenetic analyses. Some signal parameters in O. tamandua were plesiomorphic (e.g., low frequency EODs and chirps with little frequency modulation that nevertheless interrupt the EOD), suggesting that ultra-high frequency EODs and ‘‘big” chirps evolved after apteronotids diverged from other gymnotiforms. In contrast to previous studies, our PGLS

  18. Molecular phylogeny of the livebearing Goodeidae (Cyprinodontiformes).

    Science.gov (United States)

    Webb, Shane A; Graves, Jefferson A; Macias-Garcia, Constantino; Magurran, Anne E; Foighil, Diarmaid O; Ritchie, Michael G

    2004-03-01

    The Goodeinae is a speciose group of viviparous freshwater fishes endemic to the Mesa Central of Mexico. The current taxonomy of the group is based on morphology associated with viviparity and several of the groupings are questionable. We sequenced part of the mitochondrial cytochrome c oxidase subunit I (COI) gene (627bp) and control region (approximately 430bp aligned) of representatives of 36 species (all genera) of goodeid fishes in order to establish phylogenetic relationships among the taxa. Findings support the monophyly of the Goodeidae, the sister-group relationship of the Empetrichthyinae and Goodeinae, and the relationship of Profundulus to the Goodeidae. All goodeine genera but Xenotoca were recovered as monophyletic. Many of the higher-level relationships within the group contradict the findings of previous studies based upon morphology. The rate of molecular change in COI (0.9% per Myr), calibrated with the fossil record and geological data, suggests an approximate age for the Goodeidae of 16.5Myr. The majority of divergence within the Goodeinae appears to have occurred during the Miocene, with subsequent cladogenesis in the Pliocene and Pleistocene. Most recent speciation appears allopatric. River piracy, particularly involving the Rio Ameca basin, has played a significant role in the diversification of the Goodeinae.

  19. A new theory of phylogeny inference through construction of multidimensional vector space.

    Science.gov (United States)

    Kitazoe, Y; Kurihara, Y; Narita, Y; Okuhara, Y; Tominaga, A; Suzuki, T

    2001-05-01

    Here, a new theory of molecular phylogeny is developed in a multidimensional vector space (MVS). The molecular evolution is represented as a successive splitting of branch vectors in the MVS. The end points of these vectors are the extant species and indicate the specific directions reflected by their individual histories of evolution in the past. This representation makes it possible to infer the phylogeny (evolutionary histories) from the spatial positions of the end points. Search vectors are introduced to draw out the groups of species distributed around them. These groups are classified according to the nearby order of branches with them. A law of physics is applied to determine the species positions in the MVS. The species are regarded as the particles moving in time according to the equation of motion, finally falling into the lowest-energy state in spite of their randomly distributed initial condition. This falling into the ground state results in the construction of an MVS in which the relative distances between two particles are equal to the substitution distances. The species positions are obtained prior to the phylogeny inference. Therefore, as the number of species increases, the species vectors can be more specific in an MVS of a larger size, such that the vector analysis gives a more stable and reliable topology. The efficacy of the present method was examined by using computer simulations of molecular evolution in which all the branch- and end-point sequences of the trees are known in advance. In the phylogeny inference from the end points with 100 multiple data sets, the present method consistently reconstructed the correct topologies, in contrast to standard methods. In applications to 185 vertebrates in the alpha-hemoglobin, the vector analysis drew out the two lineage groups of birds and mammals. A core member of the mammalian radiation appeared at the base of the mammalian lineage. Squamates were isolated from the bird lineage to compose the

  20. Aproximación a la filogenia de Spodoptera (Lepidoptera: Noctuidae con el uso de un fragmento del gen de la citocromo oxidasa I (COI Approach to Spodoptera (Lepidoptera: Noctuidae phylogeny based on the sequence of the cytocrhome oxydase I (COI mitochondrial gene

    Directory of Open Access Journals (Sweden)

    Clara Inés Saldamando

    2012-09-01

    Full Text Available En este trabajo se secuenció un fragmento de 451pb del gen mitocondrial de la citocromo oxidasa I (COI en 62 secuencias del género Spodoptera y una secuencia de Bombix mori (grupo externo. Los resultados mostraron gran diferenciación genética (distancia K2 entre los haplotipos de Spodoptera frugiperda de Colombia y Estados Unidos, según los estimadores de diversidad haplotípica, diversidad y polimorfismo nucleotídicos calculados. Un árbol de ML agrupó las especies con valores de bootstrap entre 73-99% en las ramas internas. No obstante algunas ramas presentaron bajos valores de bootstrap. Este árbol formó un grupo constituido por las especies del hemisferio oriental (S. littoralis y S. litura y también agrupó las especies localizadas en el hemisferio occidental (S. androgea, S. dolichos, S. eridania, S. exigua, S. frugiperda, S. latifascia, S. ornithogalli y S. pulchella. Esto demuestra que el árbol agrupó las especies con base en su origen geográfico. Contrariamente, el árbol no agrupó a S. frugiperda con S. ornithogalli, demostrando que a pesar de que ambas coexisten en el cultivo de algodón, no comparten un ancestro común reciente. En Colombia, estas especies forman parte del “complejo Spodoptera” del algodón, y nuestros resultados demuestran que la secuenciación de este gen permite diferenciarlas sin necesidad del uso de claves taxonómicas de sus estadios larvales. Este trabajo es una aproximación a la filogenia de este género, por lo cual la inclusión de más genes (mitocondriales y nucleares son necesarios para futuros trabajos.The genus Spodoptera includes 30 species of moths considered important pests worldwide, with a great representation in the Western Hemisphere. In general, Noctuidae species have morphological similarities that have caused some difficulties for assertive species identification by conventional methods. The purpose of this work was to generate an approach to the genus phylogeny from

  1. Phylogeny and cryptic diversity in geckos (Phyllopezus; Phyllodactylidae; Gekkota) from South America's open biomes.

    Science.gov (United States)

    Gamble, Tony; Colli, Guarino R; Rodrigues, Miguel T; Werneck, Fernanda P; Simons, Andrew M

    2012-03-01

    The gecko genus Phyllopezus occurs across South America's open biomes: Cerrado, Seasonally Dry Tropical Forests (SDTF, including Caatinga), and Chaco. We generated a multi-gene dataset and estimated phylogenetic relationships among described Phyllopezus taxa and related species. We included exemplars from both described Phyllopezus pollicaris subspecies, P. p. pollicaris and P. p.przewalskii. Phylogenies from the concatenated data as well as species trees constructed from individual gene trees were largely congruent. All phylogeny reconstruction methods showed Bogertia lutzae as the sister species of Phyllopezus maranjonensis, rendering Phyllopezus paraphyletic. We synonymized the monotypic genus Bogertia with Phyllopezus to maintain a taxonomy that is isomorphic with phylogenetic history. We recovered multiple, deeply divergent, cryptic lineages within P. pollicaris. These cryptic lineages possessed mtDNA distances equivalent to distances among other gekkotan sister taxa. Described P. pollicaris subspecies are not reciprocally monophyletic and current subspecific taxonomy does not accurately reflect evolutionary relationships among cryptic lineages. We highlight the conservation significance of these results in light of the ongoing habitat loss in South America's open biomes. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. BorreliaBase: a phylogeny-centered browser of Borrelia genomes.

    Science.gov (United States)

    Di, Lia; Pagan, Pedro E; Packer, Daniel; Martin, Che L; Akther, Saymon; Ramrattan, Girish; Mongodin, Emmanuel F; Fraser, Claire M; Schutzer, Steven E; Luft, Benjamin J; Casjens, Sherwood R; Qiu, Wei-Gang

    2014-07-03

    The bacterial genus Borrelia (phylum Spirochaetes) consists of two groups of pathogens represented respectively by B. burgdorferi, the agent of Lyme borreliosis, and B. hermsii, the agent of tick-borne relapsing fever. The number of publicly available Borrelia genomic sequences is growing rapidly with the discovery and sequencing of Borrelia strains worldwide. There is however a lack of dedicated online databases to facilitate comparative analyses of Borrelia genomes. We have developed BorreliaBase, an online database for comparative browsing of Borrelia genomes. The database is currently populated with sequences from 35 genomes of eight Lyme-borreliosis (LB) group Borrelia species and 7 Relapsing-fever (RF) group Borrelia species. Distinct from genome repositories and aggregator databases, BorreliaBase serves manually curated comparative-genomic data including genome-based phylogeny, genome synteny, and sequence alignments of orthologous genes and intergenic spacers. With a genome phylogeny at its center, BorreliaBase allows online identification of hypervariable lipoprotein genes, potential regulatory elements, and recombination footprints by providing evolution-based expectations of sequence variability at each genomic locus. The phylo-centric design of BorreliaBase (http://borreliabase.org) is a novel model for interactive browsing and comparative analysis of bacterial genomes online.

  3. High-level phylogeny of the Coleoptera inferred with mitochondrial genome sequences.

    Science.gov (United States)

    Yuan, Ming-Long; Zhang, Qi-Lin; Zhang, Li; Guo, Zhong-Long; Liu, Yong-Jian; Shen, Yu-Ying; Shao, Renfu

    2016-11-01

    The Coleoptera (beetles) exhibits tremendous morphological, ecological, and behavioral diversity. To better understand the phylogenetics and evolution of beetles, we sequenced three complete mitogenomes from two families (Cleridae and Meloidae), which share conserved mitogenomic features with other completely sequenced beetles. We assessed the influence of six datasets and three inference methods on topology and nodal support within the Coleoptera. We found that both Bayesian inference and maximum likelihood with homogeneous-site models were greatly affected by nucleotide compositional heterogeneity, while the heterogeneous-site mixture model in PhyloBayes could provide better phylogenetic signals for the Coleoptera. The amino acid dataset generated more reliable tree topology at the higher taxonomic levels (i.e. suborders and series), where the inclusion of rRNA genes and the third positions of protein-coding genes improved phylogenetic inference at the superfamily level, especially under a heterogeneous-site model. We recovered the suborder relationships as (Archostemata+Adephaga)+(Myxophaga+Polyphaga). The series relationships within Polyphaga were recovered as (Scirtiformia+(Elateriformia+((Bostrichiformia+Scarabaeiformia+Staphyliniformia)+Cucujiformia))). All superfamilies within Cucujiformia were recovered as monophyletic. We obtained a cucujiform phylogeny of (Cleroidea+(Coccinelloidea+((Lymexyloidea+Tenebrionoidea)+(Cucujoidea+(Chrysomeloidea+Curculionoidea))))). This study showed that although tree topologies were sensitive to data types and inference methods, mitogenomic data could provide useful information for resolving the Coleoptera phylogeny at various taxonomic levels by using suitable datasets and heterogeneous-site models. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. A Framework for Studying Emotions Across Phylogeny

    Science.gov (United States)

    Anderson, David J.; Adolphs, Ralph

    2014-01-01

    Since the 19th century, there has been disagreement over the fundamental question of whether “emotions” are cause or consequence of their associated behaviors. This question of causation is most directly addressable in genetically tractable model organisms, including invertebrates such as Drosophila. Yet there is ongoing debate about whether such species even have “emotions,” since emotions are typically defined with reference to human behavior and neuroanatomy. Here we argue that emotional behaviors are a class of behaviors that express internal emotion states. These emotion states exhibit certain general functional and adaptive properties that apply across any specific human emotions like fear or anger, as well as across phylogeny. These general properties, which can be thought of as “emotion primitives”, can be modeled and studied in evolutionarily distant model organisms, allowing functional dissection of their mechanistic bases, and tests of their causal relationships to behavior. More generally, our approach aims not only at better integration of such studies in model organisms with studies of emotion in humans, but also suggests a revision of how emotion should be operationalized within psychology and psychiatry. PMID:24679535

  5. Phylogeny based discovery of regulatory elements

    Directory of Open Access Journals (Sweden)

    Cohen Barak A

    2006-05-01

    Full Text Available Abstract Background Algorithms that locate evolutionarily conserved sequences have become powerful tools for finding functional DNA elements, including transcription factor binding sites; however, most methods do not take advantage of an explicit model for the constrained evolution of functional DNA sequences. Results We developed a probabilistic framework that combines an HKY85 model, which assigns probabilities to different base substitutions between species, and weight matrix models of transcription factor binding sites, which describe the probabilities of observing particular nucleotides at specific positions in the binding site. The method incorporates the phylogenies of the species under consideration and takes into account the position specific variation of transcription factor binding sites. Using our framework we assessed the suitability of alignments of genomic sequences from commonly used species as substrates for comparative genomic approaches to regulatory motif finding. We then applied this technique to Saccharomyces cerevisiae and related species by examining all possible six base pair DNA sequences (hexamers and identifying sequences that are conserved in a significant number of promoters. By combining similar conserved hexamers we reconstructed known cis-regulatory motifs and made predictions of previously unidentified motifs. We tested one prediction experimentally, finding it to be a regulatory element involved in the transcriptional response to glucose. Conclusion The experimental validation of a regulatory element prediction missed by other large-scale motif finding studies demonstrates that our approach is a useful addition to the current suite of tools for finding regulatory motifs.

  6. Molecular phylogeny of Triatomini (Hemiptera: Reduviidae: Triatominae).

    Science.gov (United States)

    Justi, Silvia Andrade; Russo, Claudia A M; Mallet, Jacenir Reis dos Santos; Obara, Marcos Takashi; Galvão, Cleber

    2014-03-31

    The Triatomini and Rhodniini (Hemiptera: Reduviidae) tribes include the most diverse Chagas disease vectors; however, the phylogenetic relationships within the tribes remain obscure. This study provides the most comprehensive phylogeny of Triatomini reported to date. The relationships between all of the Triatomini genera and representatives of the three Rhodniini species groups were examined in a novel molecular phylogenetic analysis based on the following six molecular markers: the mitochondrial 16S; Cytochrome Oxidase I and II (COI and COII) and Cytochrome B (Cyt B); and the nuclear 18S and 28S. Our results show that the Rhodnius prolixus and R. pictipes groups are more closely related to each other than to the R. pallescens group. For Triatomini, we demonstrate that the large complexes within the paraphyletic Triatoma genus are closely associated with their geographical distribution. Additionally, we observe that the divergence within the spinolai and flavida complex clades are higher than in the other Triatoma complexes. We propose that the spinolai and flavida complexes should be ranked under the genera Mepraia and Nesotriatoma. Finally, we conclude that a thorough morphological investigation of the paraphyletic genera Triatoma and Panstrongylus is required to accurately assign queries to natural genera.

  7. Sessile snails, dynamic genomes: gene rearrangements within the mitochondrial genome of a family of caenogastropod molluscs

    Science.gov (United States)

    2010-01-01

    Background Widespread sampling of vertebrates, which comprise the majority of published animal mitochondrial genomes, has led to the view that mitochondrial gene rearrangements are relatively rare, and that gene orders are typically stable across major taxonomic groups. In contrast, more limited sampling within the Phylum Mollusca has revealed an unusually high number of gene order arrangements. Here we provide evidence that the lability of the molluscan mitochondrial genome extends to the family level by describing extensive gene order changes that have occurred within the Vermetidae, a family of sessile marine gastropods that radiated from a basal caenogastropod stock during the Cenozoic Era. Results Major mitochondrial gene rearrangements have occurred within this family at a scale unexpected for such an evolutionarily young group and unprecedented for any caenogastropod examined to date. We determined the complete mitochondrial genomes of four species (Dendropoma maximum, D. gregarium, Eualetes tulipa, and Thylacodes squamigerus) and the partial mitochondrial genomes of two others (Vermetus erectus and Thylaeodus sp.). Each of the six vermetid gastropods assayed possessed a unique gene order. In addition to the typical mitochondrial genome complement of 37 genes, additional tRNA genes were evident in D. gregarium (trnK) and Thylacodes squamigerus (trnV, trnLUUR). Three pseudogenes and additional tRNAs found within the genome of Thylacodes squamigerus provide evidence of a past duplication event in this taxon. Likewise, high sequence similarities between isoaccepting leucine tRNAs in Thylacodes, Eualetes, and Thylaeodus suggest that tRNA remolding has been rife within this family. While vermetids exhibit gene arrangements diagnostic of this family, they also share arrangements with littorinimorph caenogastropods, with which they have been linked based on sperm morphology and primary sequence-based phylogenies. Conclusions We have uncovered major changes in gene

  8. Breast cancer-associated high-order SNP-SNP interaction of CXCL12/CXCR4-related genes by an improved multifactor dimensionality reduction (MDR-ER).

    Science.gov (United States)

    Fu, Ou-Yang; Chang, Hsueh-Wei; Lin, Yu-Da; Chuang, Li-Yeh; Hou, Ming-Feng; Yang, Cheng-Hong

    2016-09-01

    In association studies, the combined effects of single nucleotide polymorphism (SNP)-SNP interactions and the problem of imbalanced data between cases and controls are frequently ignored. In the present study, we used an improved multifactor dimensionality reduction (MDR) approach namely MDR-ER to detect the high order SNP‑SNP interaction in an imbalanced breast cancer data set containing seven SNPs of chemokine CXCL12/CXCR4 pathway genes. Most individual SNPs were not significantly associated with breast cancer. After MDR‑ER analysis, six significant SNP‑SNP interaction models with seven genes (highest cross‑validation consistency, 10; classification error rates, 41.3‑21.0; and prediction error rates, 47.4‑55.3) were identified. CD4 and VEGFA genes were associated in a 2‑loci interaction model (classification error rate, 41.3; prediction error rate, 47.5; odds ratio (OR), 2.069; 95% bootstrap CI, 1.40‑2.90; P=1.71E‑04) and it also appeared in all the best 2‑7‑loci models. When the loci number increased, the classification error rates and P‑values decreased. The powers in 2‑7‑loci in all models were >0.9. The minimum classification error rate of the MDR‑ER‑generated model was shown with the 7‑loci interaction model (classification error rate, 21.0; OR=15.282; 95% bootstrap CI, 9.54‑23.87; P=4.03E‑31). In the epistasis network analysis, the overall effect with breast cancer susceptibility was identified and the SNP order of impact on breast cancer was identified as follows: CD4 = VEGFA > KITLG > CXCL12 > CCR7 = MMP2 > CXCR4. In conclusion, the MDR‑ER can effectively and correctly identify the best SNP‑SNP interaction models in an imbalanced data set for breast cancer cases.

  9. Molecular Phylogeny of the Small Ermine Moth Genus Yponomeuta (Lepidoptera, Yponomeutidae) in the Palaearctic

    Science.gov (United States)

    Turner, Hubert; Lieshout, Niek; Van Ginkel, Wil E.; Menken, Steph B. J.

    2010-01-01

    Background The small ermine moth genus Yponomeuta (Lepidoptera, Yponomeutidae) contains 76 species that are specialist feeders on hosts from Celastraceae, Rosaceae, Salicaceae, and several other plant families. The genus is a model for studies in the evolution of phytophagous insects and their host-plant associations. Here, we reconstruct the phylogeny to provide a solid framework for these studies, and to obtain insight into the history of host-plant use and the biogeography of the genus. Methodology/Principal Findings DNA sequences from an internal transcribed spacer region (ITS-1) and from the 16S rDNA (16S) and cytochrome oxidase (COII) mitochondrial genes were collected from 20–23 (depending on gene) species and two outgroup taxa to reconstruct the phylogeny of the Palaearctic members of this genus. Sequences were analysed using three different phylogenetic methods (parsimony, likelihood, and Bayesian inference). Conclusions/Significance Roughly the same patterns are retrieved irrespective of the method used, and they are similar among the three genes. Monophyly is well supported for a clade consisting of the Japanese (but not the Dutch) population of Yponomeuta sedellus and Y. yanagawanus, a Y. kanaiellus–polystictus clade, and a Rosaceae-feeding, western Palaearctic clade (Y. cagnagellus–irrorellus clade). Within these clades, relationships are less well supported, and the patterns between the different gene trees are not so similar. The position of the remaining taxa is also variable among the gene trees and rather weakly supported. The phylogenetic information was used to elucidate patterns of biogeography and resource use. In the Palaearctic, the genus most likely originated in the Far East, feeding on Celastraceae, dispersing to the West concomitant with a shift to Rosaceae and further to Salicaceae. The association of Y. cagnagellus with Euonymus europaeus (Celastraceae), however, is a reversal. The only oligophagous species, Y. padellus, belongs

  10. Phylogeny of Cirsium spp. in North America: Host Specificity Does Not Follow Phylogeny

    Directory of Open Access Journals (Sweden)

    Tracey A. Bodo Slotta

    2012-10-01

    Full Text Available Weedy invasive Cirsium spp. are widespread in temperate regions of North America and some of their biological control agents have attacked native Cirsium spp. A phylogenetic tree was developed from DNA sequences for the internal transcribed spacer and external transcribed spacer regions from native and non-native Great Plains Cirsium spp. and other thistles to determine if host specificity follows phylogeny. The monophyly of Cirsium spp. and Carduus within the tribe Cardinae was confirmed with native North American and European lineages of the Cirsium spp. examined. We did not detect interspecific hybridization between the introduced invasive and the native North American Cirsium spp. Selected host-biological control agent interactions were mapped onto the phylogenic tree derived by maximum likelihood analysis to examine the co-occurrence of known hosts with biological control agents. Within Cirsium-Cardueae, the insect biological control agents do not associate with host phylogenetic lines. Thus, more comprehensive testing of species in host-specificity trials, rather than relying on a single representative of a given clade may be necessary; because the assumption that host-specificity follows phylogeny does not necessarily hold. Since the assumption does not always hold, it will also be important to evaluate ecological factors to provide better cues for host specificity.

  11. Phylogeny, adaptive radiation, and historical biogeography in Bromeliaceae: insights from an eight-locus plastid phylogeny.

    Science.gov (United States)

    Givnish, Thomas J; Barfuss, Michael H J; Van Ee, Benjamin; Riina, Ricarda; Schulte, Katharina; Horres, Ralf; Gonsiska, Philip A; Jabaily, Rachel S; Crayn, Darren M; Smith, J Andrew C; Winter, Klaus; Brown, Gregory K; Evans, Timothy M; Holst, Bruce K; Luther, Harry; Till, Walter; Zizka, Georg; Berry, Paul E; Sytsma, Kenneth J

    2011-05-01

    Bromeliaceae form a large, ecologically diverse family of angiosperms native to the New World. We use a bromeliad phylogeny based on eight plastid regions to analyze relationships within the family, test a new, eight-subfamily classification, infer the chronology of bromeliad evolution and invasion of different regions, and provide the basis for future analyses of trait evolution and rates of diversification. We employed maximum-parsimony, maximum-likelihood, and Bayesian approaches to analyze 9341 aligned bases for four outgroups and 90 bromeliad species representing 46 of 58 described genera. We calibrate the resulting phylogeny against time using penalized likelihood applied to a monocot-wide tree based on plastid ndhF sequences and use it to analyze patterns of geographic spread using parsimony, Bayesian inference, and the program S-DIVA. Bromeliad subfamilies are related to each other as follows: (Brocchinioideae, (Lindmanioideae, (Tillandsioideae, (Hechtioideae, (Navioideae, (Pitcairnioideae, (Puyoideae, Bromelioideae))))))). Bromeliads arose in the Guayana Shield ca. 100 million years ago (Ma), spread centrifugally in the New World beginning ca. 16-13 Ma, and dispersed to West Africa ca. 9.3 Ma. Modern lineages began to diverge from each other roughly 19 Ma. Nearly two-thirds of extant bromeliads belong to two large radiations: the core tillandsioids, originating in the Andes ca. 14.2 Ma, and the Brazilian Shield bromelioids, originating in the Serro do Mar and adjacent regions ca. 9.1 Ma.

  12. Dogs, cats, and kin: a molecular species-level phylogeny of Carnivora.

    Science.gov (United States)

    Agnarsson, Ingi; Kuntner, Matjaz; May-Collado, Laura J

    2010-03-01

    Phylogenies underpin comparative biology as high-utility tools to test evolutionary and biogeographic hypotheses, inform on conservation strategies, and reveal the age and evolutionary histories of traits and lineages. As tools, most powerful are those phylogenies that contain all, or nearly all, of the taxa of a given group. Despite their obvious utility, such phylogenies, other than summary 'supertrees', are currently lacking for most mammalian orders, including the order Carnivora. Carnivora consists of about 270 extant species including most of the world's large terrestrial predators (e.g., the big cats, wolves, bears), as well as many of man's favorite wild (panda, cheetah, tiger) and domesticated animals (dog, cat). Distributed globally, carnivores are highly diverse ecologically, having occupied all major habitat types on the planet and being diverse in traits such as sociality, communication, body/brain size, and foraging ecology. Thus, numerous studies continue to address comparative questions within the order, highlighting the need for a detailed species-level phylogeny. Here we present a phylogeny of Carnivora that increases taxon sampling density from 28% in the most detailed primary-data study to date, to 82% containing 243 taxa (222 extant species, 17 subspecies). In addition to extant species, we sampled four extinct species: American cheetah, saber-toothed cat, cave bear and the giant short-faced bear. Bayesian analysis of cytochrome b sequences data-mined from GenBank results in a phylogenetic hypothesis that is largely congruent with prior studies based on fewer taxa but more characters. We find support for the monophyly of Carnivora, its major division into Caniformia and Feliformia, and for all but one family within the order. The only exception is the placement of the kinkajou outside Procyonidae, however, prior studies have already cast doubt on its family placement. In contrast, at the subfamily and genus level, our results indicate numerous

  13. Complete plastome sequences of Equisetum arvense and Isoetes flaccida: implications for phylogeny and plastid genome evolution of early land plant lineages

    Directory of Open Access Journals (Sweden)

    Mandoli Dina F

    2010-10-01

    Full Text Available Abstract Background Despite considerable progress in our understanding of land plant phylogeny, several nodes in the green tree of life remain poorly resolved. Furthermore, the bulk of currently available data come from only a subset of major land plant clades. Here we examine early land plant evolution using complete plastome sequences including two previously unexamined and phylogenetically critical lineages. To better understand the evolution of land plants and their plastomes, we examined aligned nucleotide sequences, indels, gene and nucleotide composition, inversions, and gene order at the boundaries of the inverted repeats. Results We present the plastome sequences of Equisetum arvense, a horsetail, and of Isoetes flaccida, a heterosporous lycophyte. Phylogenetic analysis of aligned nucleotides from 49 plastome genes from 43 taxa supported monophyly for the following clades: embryophytes (land plants, lycophytes, monilophytes (leptosporangiate ferns + Angiopteris evecta + Psilotum nudum + Equisetum arvense, and seed plants. Resolution among the four monilophyte lineages remained moderate, although nucleotide analyses suggested that P. nudum and E. arvense form a clade sister to A. evecta + leptosporangiate ferns. Results from phylogenetic analyses of nucleotides were consistent with the distribution of plastome gene rearrangements and with analysis of sequence gaps resulting from insertions and deletions (indels. We found one new indel and an inversion of a block of genes that unites the monilophytes. Conclusions Monophyly of monilophytes has been disputed on the basis of morphological and fossil evidence. In the context of a broad sampling of land plant data we find several new pieces of evidence for monilophyte monophyly. Results from this study demonstrate resolution among the four monilophytes lineages, albeit with moderate support; we posit a clade consisting of Equisetaceae and Psilotaceae that is sister to the "true ferns

  14. Mitogenomic phylogeny of cone snails endemic to Senegal.

    Science.gov (United States)

    Abalde, Samuel; Tenorio, Manuel J; Afonso, Carlos M L; Zardoya, Rafael

    2017-07-01

    Cone snails attain in Senegal one of their highest peaks of species diversity throughout the continental coast of Western Africa. A total of 15 endemic species have been described, all placed in the genus Lautoconus. While there is ample data regarding the morphology of the shell and the radular tooth of these species, virtually nothing is known regarding the genetic diversity and phylogenetic relationships of one of the most endangered groups of cones. In this work, we determined the complete or near-complete (only lacking the control region) mitochondrial (mt) genomes of 17 specimens representing 11 endemic species (Lautoconus belairensis, Lautoconus bruguieresi, Lautoconus cacao, Lautoconus cloveri, Lautoconus cf. echinophilus, Lautoconus guinaicus, Lautoconus hybridus, Lautoconus senegalensis, Lautoconus mercator, Lautoconus taslei, and Lautoconus unifasciatus). We also sequenced the complete mt genome of Lautoconus guanche from the Canary Islands, which has been related to the cones endemic to Senegal. All mt genomes share the same gene arrangement, which conforms to the consensus reported for Conidae, Neogastropoda and Caenogastropoda. Phylogenetic analyses using probabilistic methods recovered three major lineages, whose divergence coincided in time with sea level and ocean current changes as well as temperature fluctuations during the Messinian salinity crisis and the Plio-Pleistocene transition. Furthermore, the three lineages corresponded to distinct types of radular tooth (robust, small, and elongated), suggesting that dietary specialization could be an additional evolutionary driver in the diversification of the cones endemic to Senegal. The reconstructed phylogeny showed several cases of phenotypic convergence (cryptic species) and questions the validity of some species (ecotypes or phenotypic plasticity), both results having important taxonomic and conservation consequences. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Skipper genome sheds light on unique phenotypic traits and phylogeny.

    Science.gov (United States)

    Cong, Qian; Borek, Dominika; Otwinowski, Zbyszek; Grishin, Nick V

    2015-08-27

    Butterflies and moths are emerging as model organisms in genetics and evolutionary studies. The family Hesperiidae (skippers) was traditionally viewed as a sister to other butterflies based on its moth-like morphology and darting flight habits with fast wing beats. However, DNA studies suggest that the family Papilionidae (swallowtails) may be the sister to other butterflies including skippers. The moth-like features and the controversial position of skippers in Lepidoptera phylogeny make them valuable targets for comparative genomics. We obtained the 310 Mb draft genome of the Clouded Skipper (Lerema accius) from a wild-caught specimen using a cost-effective strategy that overcomes the high (1.6 %) heterozygosity problem. Comparative analysis of Lerema accius and the highly heterozygous genome of Papilio glaucus revealed differences in patterns of SNP distribution, but similarities in functions of genes that are enriched in non-synonymous SNPs. Comparison of Lepidoptera genomes revealed possible molecular bases for unique traits of skippers: a duplication of electron transport chain components could result in efficient energy supply for their rapid flight; a diversified family of predicted cellulases might allow them to feed on cellulose-enriched grasses; an expansion of pheromone-binding proteins and enzymes for pheromone synthesis implies a more efficient mate-recognition system, which compensates for the lack of clear visual cues due to the similarities in wing colors and patterns of many species of skippers. Phylogenetic analysis of several Lepidoptera genomes suggested that the position of Hesperiidae remains uncertain as the tree topology varied depending on the evolutionary model. Completion of the first genome from the family Hesperiidae allowed comparative analyses with other Lepidoptera that revealed potential genetic bases for the unique phenotypic traits of skippers. This work lays the foundation for future experimental studies of skippers and

  16. Blastocystis phylogeny among various isolates from humans to insects.

    Science.gov (United States)

    Yoshikawa, Hisao; Koyama, Yukiko; Tsuchiya, Erika; Takami, Kazutoshi

    2016-12-01

    Blastocystis is a common unicellular eukaryotic parasite found not only in humans, but also in various kinds of animal species worldwide. Since Blastocystis isolates are morphologically indistinguishable, many molecular biological approaches have been applied to classify these isolates. The complete or partial sequences of the small subunit rRNA gene (SSU rDNA) are mainly used for comparisons and phylogenetic analyses among Blastocystis isolates. However, various lengths of the partial SSU rDNA sequence have been used for phylogenetic inference among genetically different isolates. Based on the complete SSU rDNA sequences, consensus terminology of nine subtypes (STs) of Blastocystis sp. that were supported by phylogenetically monophyletic nine clades was proposed in 2007. Thereafter, eight additional kinds of STs comprising non-human mammalian Blastocystis isolates have been reported based on the phylogeny of SSU rDNA sequences, while STs 11 and 12 were only proposed on the base of partial sequences. Although many sequence data from mammalian and avian Blastocystis are registered in GenBank, only limited data on SSU rDNA are available for poikilotherm-derived Blastocystis isolates. Therefore, the phylogenetic positions of the reptilian/amphibian Blastocystis clades are unstable. The phylogenetic inference of various STs comprising mammalian and/or avian Blastocystis isolates was verified herein based on comparisons between partial and complete SSU rDNA sequences, and the phylogenetic positions of reptilian and amphibian Blastocystis isolates were also investigated using 14 new Blastocystis isolates from reptiles with all known isolates from other reptilians, amphibians, and insects registered in GenBank. Copyright © 2016. Published by Elsevier Ireland Ltd.

  17. On simulated annealing phase transitions in phylogeny reconstruction.

    Science.gov (United States)

    Strobl, Maximilian A R; Barker, Daniel

    2016-08-01

    Phylogeny reconstruction with global criteria is NP-complete or NP-hard, hence in general requires a heuristic search. We investigate the powerful, physically inspired, general-purpose heuristic simulated annealing, applied to phylogeny reconstruction. Simulated annealing mimics the physical process of annealing, where a liquid is gently cooled to form a crystal. During the search, periods of elevated specific heat occur, analogous to physical phase transitions. These simulated annealing phase transitions play a crucial role in the outcome of the search. Nevertheless, they have received comparably little attention, for phylogeny or other optimisation problems. We analyse simulated annealing phase transitions during searches for the optimal phylogenetic tree for 34 real-world multiple alignments. In the same way in which melting temperatures differ between materials, we observe distinct specific heat profiles for each input file. We propose this reflects differences in the search landscape and can serve as a measure for problem difficulty and for suitability of the algorithm's parameters. We discuss application in algorithmic optimisation and as a diagnostic to assess parameterisation before computationally costly, large phylogeny reconstructions are launched. Whilst the focus here lies on phylogeny reconstruction under maximum parsimony, it is plausible that our results are more widely applicable to optimisation procedures in science and industry. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Generic phylogeny, historical biogeography and character evolution of the cosmopolitan aquatic plant family Hydrocharitaceae.

    Science.gov (United States)

    Chen, Ling-Yun; Chen, Jin-Ming; Gituru, Robert Wahiti; Wang, Qing-Feng

    2012-03-10

    Hydrocharitaceae is a fully aquatic monocot family, consists of 18 genera with approximately 120 species. The family includes both fresh and marine aquatics and exhibits great diversity in form and habit including annual and perennial life histories; submersed, partially submersed and floating leaf habits and linear to orbicular leaf shapes. The family has a cosmopolitan distribution and is well represented in the Tertiary fossil record in Europe. At present, the historical biogeography of the family is not well understood and the generic relationships remain controversial. In this study we investigated the phylogeny and biogeography of Hydrocharitaceae by integrating fossils and DNA sequences from eight genes. We also conducted ancestral state reconstruction for three morphological characters. Phylogenetic analyses produced a phylogeny with most branches strongly supported by bootstrap values greater than 95 and Bayesian posterior probability values of 1.0. Stratiotes is the first diverging lineage with the remaining genera in two clades, one clade consists of Lagarosiphon, Ottelia, Blyxa, Apalanthe, Elodea and Egeria; and the other consists of Hydrocharis-Limnobium, Thalassia, Enhalus, Halophila, Najas, Hydrilla, Vallisneria, Nechamandra and Maidenia. Biogeographic analyses (DIVA, Mesquite) and divergence time estimates (BEAST) resolved the most recent common ancestor of Hydrocharitaceae as being in Asia during the Late Cretaceous and Palaeocene (54.7-72.6 Ma). Dispersals (including long-distance dispersal and migrations through Tethys seaway and land bridges) probably played major roles in the intercontinental distribution of this family. Ancestral state reconstruction suggested that in Hydrocharitaceae evolution of dioecy is bidirectional, viz., from dioecy to hermaphroditism, and from hermaphroditism to dioecy, and that the aerial-submerged leaf habit and short-linear leaf shape are the ancestral states. Our study has shed light on the previously controversial

  19. Apical groove type and molecular phylogeny suggests reclassification of Cochlodinium geminatum as Polykrikos geminatum.

    Science.gov (United States)

    Qiu, Dajun; Huang, Liangmin; Liu, Sheng; Zhang, Huan; Lin, Senjie

    2013-01-01

    Traditionally Cocholodinium and Gymnodinium sensu lato clade are distinguished based on the cingulum turn number, which has been increasingly recognized to be inadequate for Gymnodiniales genus classification. This has been improved by the combination of the apical groove characteristics and molecular phylogeny, which has led to the erection of several new genera (Takayama, Akashiwo, Karenia, and Karlodinium). Taking the apical groove characteristics and molecular phylogeny combined approach, we reexamined the historically taxonomically uncertain species Cochlodinium geminatum that formed massive blooms in Pearl River Estuary, China, in recent years. Samples were collected from a bloom in 2011 for morphological, characteristic pigment, and molecular analyses. We found that the cingulum in this species wraps around the cell body about 1.2 turns on average but can appear under the light microscopy to be >1.5 turns after the cells have been preserved. The shape of its apical groove, however, was stably an open-ended anticlockwise loop of kidney bean shape, similar to that of Polykrikos. Furthermore, the molecular phylogenetic analysis using 18S rRNA-ITS-28S rRNA gene cistron we obtained in this study also consistently placed this species closest to Polykrikos within the Gymnodinium sensu stricto clade and set it far separated from the clade of Cochlodinium. These results suggest that this species should be transferred to Polykrikos as Polykrikos geminatum. Our results reiterate the need to use the combination of apical groove morphology and molecular phylogeny for the classification of species within the genus of Cochlodinium and other Gymnodiniales lineages.

  20. Apical groove type and molecular phylogeny suggests reclassification of Cochlodinium geminatum as Polykrikos geminatum.

    Directory of Open Access Journals (Sweden)

    Dajun Qiu

    Full Text Available Traditionally Cocholodinium and Gymnodinium sensu lato clade are distinguished based on the cingulum turn number, which has been increasingly recognized to be inadequate for Gymnodiniales genus classification. This has been improved by the combination of the apical groove characteristics and molecular phylogeny, which has led to the erection of several new genera (Takayama, Akashiwo, Karenia, and Karlodinium. Taking the apical groove characteristics and molecular phylogeny combined approach, we reexamined the historically taxonomically uncertain species Cochlodinium geminatum that formed massive blooms in Pearl River Estuary, China, in recent years. Samples were collected from a bloom in 2011 for morphological, characteristic pigment, and molecular analyses. We found that the cingulum in this species wraps around the cell body about 1.2 turns on average but can appear under the light microscopy to be >1.5 turns after the cells have been preserved. The shape of its apical groove, however, was stably an open-ended anticlockwise loop of kidney bean shape, similar to that of Polykrikos. Furthermore, the molecular phylogenetic analysis using 18S rRNA-ITS-28S rRNA gene cistron we obtained in this study also consistently placed this species closest to Polykrikos within the Gymnodinium sensu stricto clade and set it far separated from the clade of Cochlodinium. These results suggest that this species should be transferred to Polykrikos as Polykrikos geminatum. Our results reiterate the need to use the combination of apical groove morphology and molecular phylogeny for the classification of species within the genus of Cochlodinium and other Gymnodiniales lineages.

  1. Phylogeny and Phylogeography of Rhizobial Symbionts Nodulating Legumes of the Tribe Genisteae

    Directory of Open Access Journals (Sweden)

    Tomasz Stępkowski

    2018-03-01

    Full Text Available The legume tribe Genisteae comprises 618, predominantly temperate species, showing an amphi-Atlantic distribution that was caused by several long-distance dispersal events. Seven out of the 16 authenticated rhizobial genera can nodulate particular Genisteae species. Bradyrhizobium predominates among rhizobia nodulating Genisteae legumes. Bradyrhizobium strains that infect Genisteae species belong to both the Bradyrhizobium japonicum and Bradyrhizobium elkanii superclades. In symbiotic gene phylogenies, Genisteae bradyrhizobia are scattered among several distinct clades, comprising strains that originate from phylogenetically distant legumes. This indicates that the capacity for nodulation of Genisteae spp. has evolved independently in various symbiotic gene clades, and that it has not been a long-multi-step process. The exception is Bradyrhizobium Clade II, which unlike other clades comprises strains that are specialized in nodulation of Genisteae, but also Loteae spp. Presumably, Clade II represents an example of long-lasting co-evolution of bradyrhizobial symbionts with their legume hosts.

  2. Complete genome viral phylogenies suggests the concerted evolution of regulatory cores and accessory satellites.

    Science.gov (United States)

    de Andrade Zanotto, Paolo Marinho; Krakauer, David C

    2008-01-01

    We consider the concerted evolution of viral genomes in four families of DNA viruses. Given the high rate of horizontal gene transfer among viruses and their hosts, it is an open question as to how representative particular genes are of the evolutionary history of the complete genome. To address the concerted evolution of viral genes, we compared genomic evolution across four distinct, extant viral families. For all four viral families we constructed DNA-dependent DNA polymerase-based (DdDp) phylogenies and in addition, whole genome sequence, as quantitative descriptions of inter-genome relationships. We found that the history of the polymerase gene was highly predictive of the history of the genome as a whole, which we explain in terms of repeated, co-divergence events of the core DdDp gene accompanied by a number of satellite, accessory genetic loci. We also found that the rate of gene gain in baculovirus and poxviruses proceeds significantly more quickly than the rate of gene loss and that there is convergent acquisition of satellite functions promoting contextual adaptation when distinct viral families infect related hosts. The congruence of the genome and polymerase trees suggests that a large set of viral genes, including polymerase, derive from a phylogenetically conserved core of genes of host origin, secondarily reinforced by gene acquisition from common hosts or co-infecting viruses within the host. A single viral genome can be thought of as a mutualistic network, with the core genes acting as an effective host and the satellite genes as effective symbionts. Larger virus genomes show a greater departure from linkage equilibrium between core and satellites functions.

  3. Molecular phylogeny of the antiangiogenic and neurotrophic serpin, pigment epithelium derived factor in vertebrates

    Directory of Open Access Journals (Sweden)

    Barnstable Colin J

    2006-10-01

    Full Text Available Abstract Background Pigment epithelium derived factor (PEDF, a member of the serpin family, regulates cell proliferation, promotes survival of neurons, and blocks growth of new blood vessels in mammals. Defining the molecular phylogeny of PEDF by bioinformatic analysis is one approach to understanding the link between its gene structure and its function in these biological processes. Results From a comprehensive search of available DNA databases we identified a single PEDF gene in all vertebrate species examined. These included four mammalian and six non-mammalian vertebrate species in which PEDF had not previously been described. A five gene cluster around PEDF was found in an approximate 100 kb region in mammals, birds, and amphibians. In ray-finned fish these genes are scattered over three chromosomes although only one PEDF gene was consistently found. The PEDF gene is absent in invertebrates including Drosophila melanogaster (D. melanogaster, Caenorhabditis elegans (C. elegans, and sea squirt (C. intestinalis. The PEDF gene is transcribed in all vertebrate phyla, suggesting it is biologically active throughout vertebrate evolution. The multiple actions of PEDF are likely conserved in evolution since it has the same gene structure across phyla, although the size of the gene ranges from 48.3 kb in X. tropicalis to 2.9 kb in fugu, with human PEDF at a size of 15.6 kb. A strong similarity in the proximal 200 bp of the PEDF promoter in mammals suggests the existence of a possible regulatory region across phyla. Using a non-synonymous/synonymous substitution rate ratio we show that mammalian and fish PEDFs have similar ratios of Conclusion The PEDF gene first appears in vertebrates and our studies suggest that the regulation and biological actions of this gene are preserved across vertebrates. This comprehensive analysis of the PEDF gene across phyla provides new information that will aid further characterization of common functional motifs of

  4. Diversity-dependence brings molecular phylogenies closer to agreement with the fossil record

    NARCIS (Netherlands)

    Etienne, Rampal S.; Haegeman, Bart; Stadler, Tanja; Aze, Tracy; Pearson, Paul N.; Purvis, Andy; Phillimore, Albert B.

    2012-01-01

    The branching times of molecular phylogenies allow us to infer speciation and extinction dynamics even when fossils are absent. Troublingly, phylogenetic approaches usually return estimates of zero extinction, conflicting with fossil evidence. Phylogenies and fossils do agree, however, that there

  5. Time-calibrated molecular phylogeny of pteropods.

    Directory of Open Access Journals (Sweden)

    Alice K Burridge

    Full Text Available Pteropods are a widespread group of holoplanktonic gastropod molluscs and are uniquely suitable for study of long-term evolutionary processes in the open ocean because they are the only living metazoan plankton with a good fossil record. Pteropods have been proposed as bioindicators to monitor the impacts of ocean acidification and in consequence have attracted considerable research interest, however, a robust evolutionary framework for the group is still lacking. Here we reconstruct their phylogenetic relationships and examine the evolutionary history of pteropods based on combined analyses of Cytochrome Oxidase I, 28S, and 18S ribosomal rRNA sequences and a molecular clock calibrated using fossils and the estimated timing of the formation of the Isthmus of Panama. Euthecosomes with uncoiled shells were monophyletic with Creseis as the earliest diverging lineage, estimated at 41-38 million years ago (mya. The coiled euthecosomes (Limacina, Heliconoides, Thielea were not monophyletic contrary to the accepted morphology-based taxonomy; however, due to their high rate heterogeneity no firm conclusions can be drawn. We found strong support for monophyly of most euthecosome genera, but Clio appeared as a polyphyletic group, and Diacavolinia grouped within Cavolinia, making the latter genus paraphyletic. The highest evolutionary rates were observed in Heliconoides inflatus and Limacina bulimoides for both 28S and 18S partitions. Using a fossil-calibrated phylogeny that sets the first occurrence of coiled euthecosomes at 79-66 mya, we estimate that uncoiled euthecosomes evolved 51-42 mya and that most extant uncoiled genera originated 40-15 mya. These findings are congruent with a molecular clock analysis using the Isthmus of Panama formation as an independent calibration. Although not all phylogenetic relationships could be resolved based on three molecular markers, this study provides a useful resource to study pteropod diversity and provides

  6. Development of a multiplex assay for genus- and species-specific detection of Phytophthora based on differences in mitochondrial gene order.

    Science.gov (United States)

    Bilodeau, Guillaume J; Martin, Frank N; Coffey, Michael D; Blomquist, Cheryl L

    2014-07-01

    A molecular diagnostic assay for Phytophthora spp. that is specific, sensitive, has both genus- and species-specific detection capabilities multiplexed, and can be used to systematically develop markers for detection of a wide range of species would facilitate research and regulatory efforts. To address this need, a marker system was developed based on the high copy sequences of the mitochondrial DNA utilizing gene orders that were highly conserved in the genus Phytophthora but different in the related genus Pythium and plants to reduce the importance of highly controlled annealing temperatures for specificity. An amplification primer pair designed from conserved regions of the atp9 and nad9 genes produced an amplicon of ≈340 bp specific for the Phytophthora spp. tested. The TaqMan probe for the genus-specific Phytophthora test was designed from a conserved portion of the atp9 gene whereas variable intergenic spacer sequences were used for designing the species-specific TaqMan probes. Specific probes were developed for 13 species and the P. citricola species complex. In silico analysis suggests that species-specific probes could be developed for at least 70 additional described and provisional species; the use of locked nucleic acids in TaqMan probes should expand this list. A second locus spanning three tRNAs (trnM-trnP-trnM) was also evaluated for genus-specific detection capabilities. At 206 bp, it was not as useful for systematic development of a broad range of species-specific probes as the larger 340-bp amplicon. All markers were validated against a test panel that included 87 Phytophthora spp., 14 provisional Phytophthora spp., 29 Pythium spp., 1 Phytopythium sp., and 39 plant species. Species-specific probes were validated further against a range of geographically diverse isolates to ensure uniformity of detection at an intraspecific level, as well as with other species having high levels of sequence similarity to ensure specificity. Both diagnostic

  7. Bayesian phylogeny analysis via stochastic approximation Monte Carlo

    KAUST Repository

    Cheon, Sooyoung

    2009-11-01

    Monte Carlo methods have received much attention in the recent literature of phylogeny analysis. However, the conventional Markov chain Monte Carlo algorithms, such as the Metropolis-Hastings algorithm, tend to get trapped in a local mode in simulating from the posterior distribution of phylogenetic trees, rendering the inference ineffective. In this paper, we apply an advanced Monte Carlo algorithm, the stochastic approximation Monte Carlo algorithm, to Bayesian phylogeny analysis. Our method is compared with two popular Bayesian phylogeny software, BAMBE and MrBayes, on simulated and real datasets. The numerical results indicate that our method outperforms BAMBE and MrBayes. Among the three methods, SAMC produces the consensus trees which have the highest similarity to the true trees, and the model parameter estimates which have the smallest mean square errors, but costs the least CPU time. © 2009 Elsevier Inc. All rights reserved.

  8. Inferring the shallow phylogeny of true salamanders (Salamandra) by multiple phylogenomic approaches.

    Science.gov (United States)

    Rodríguez, Ariel; Burgon, James D; Lyra, Mariana; Irisarri, Iker; Baurain, Denis; Blaustein, Leon; Göçmen, Bayram; Künzel, Sven; Mable, Barbara K; Nolte, Arne W; Veith, Michael; Steinfartz, Sebastian; Elmer, Kathryn R; Philippe, Hervé; Vences, Miguel

    2017-10-01

    The rise of high-throughput sequencing techniques provides the unprecedented opportunity to analyse controversial phylogenetic relationships in great depth, but also introduces a risk of being misinterpreted by high node support values influenced by unevenly distributed missing data or unrealistic model assumptions. Here, we use three largely independent phylogenomic data sets to reconstruct the controversial phylogeny of true salamanders of the genus Salamandra, a group of amphibians providing an intriguing model to study the evolution of aposematism and viviparity. For all six species of the genus Salamandra, and two outgroup species from its sister genus Lyciasalamandra, we used RNA sequencing (RNAseq) and restriction site associated DNA sequencing (RADseq) to obtain data for: (1) 3070 nuclear protein-coding genes from RNAseq; (2) 7440 loci obtained by RADseq; and (3) full mitochondrial genomes. The RNAseq and RADseq data sets retrieved fully congruent topologies when each of them was analyzed in a concatenation approach, with high support for: (1) S. infraimmaculata being sister group to all other Salamandra species; (2) S. algira being sister to S. salamandra; (3) these two species being the sister group to a clade containing S. atra, S. corsica and S. lanzai; and (4) the alpine species S. atra and S. lanzai being sister taxa. The phylogeny inferred from the mitochondrial genome sequences differed from these results, most notably by strongly supporting a clade containing S. atra and S. corsica as sister taxa. A different placement of S. corsica was also retrieved when analysing the RNAseq and RADseq data under species tree approaches. Closer examination of gene trees derived from RNAseq revealed that only a low number of them supported each of the alternative placements of S. atra. Furthermore, gene jackknife support for the S. atra - S. lanzai node stabilized only with very large concatenated data sets. The phylogeny of true salamanders thus provides a

  9. Direct maximum parsimony phylogeny reconstruction from genotype data

    Directory of Open Access Journals (Sweden)

    Ravi R

    2007-12-01

    Full Text Available Abstract Background Maximum parsimony phylogenetic tree reconstruction from genetic variation data is a fundamental problem in computational genetics with many practical applications in population genetics, whole genome analysis, and the search for genetic predictors of disease. Efficient methods are available for reconstruction of maximum parsimony trees from haplotype data, but such data are difficult to determine directly for autosomal DNA. Data more commonly is available in the form of genotypes, which consist of conflated combinations of pairs of haplotypes from homologous chromosomes. Currently, there are no general algorithms for the direct reconstruction of maximum parsimony phylogenies from genotype data. Hence phylogenetic applications for autosomal data must therefore rely on other methods for first computationally inferring haplotypes from genotypes. Results In this work, we develop the first practical method for computing maximum parsimony phylogenies directly from genotype data. We show that the standard practice of first inferring haplotypes from genotypes and then reconstructing a phylogeny on the haplotypes often substantially overestimates phylogeny size. As an immediate application, our method can be used to determine the minimum number of mutations required to explain a given set of observed genotypes. Conclusion Phylogeny reconstruction directly from unphased data is computationally feasible for moderate-sized problem instances and can lead to substantially more accurate tree size inferences than the standard practice of treating phasing and phylogeny construction as two separate analysis stages. The difference between the approaches is particularly important for downstream applications that require a lower-bound on the number of mutations that the genetic region has undergone.

  10. Phylogeny of Bembidion and related ground beetles (Coleoptera: Carabidae: Trechinae: Bembidiini: Bembidiina).

    Science.gov (United States)

    Maddison, David R

    2012-06-01

    The phylogeny of the large genus Bembidion and related genera is inferred from four nuclear protein-coding genes (CAD, wingless, arginine kinase, and topoisomerase I), ribosomal DNA (28S and 18S), and the mitochondrial gene cytochrome oxidase I (COI). 230 of the more than 1200 species of Bembidion are sampled, as well as 26 species of five related genera, and 14 outgroups. Nuclear copies (numts) of COI were found sparsely scattered through sampled species. The resulting phylogeny, based upon individual gene analyses and combined analyses using maximum likelihood and parsimony, is very well supported at most nodes. Additional analyses explored the evidence, and corroborate the phylogeny. Seven analyses, each with one of the seven genes removed from the combined matrix, were also conducted, and yielded maximum likelihood bootstrap trees sharing over 92% of their nodes with the original, well-resolved bootstrap trees based on the complete set of seven genes. All key nodes were present in all seven analyses missing a single gene, indicating that support for these nodes comes from at least two genes. In addition, the inferred maximum likelihood tree based on the combined matrix is well-behaved and self-predicting, in that simulated evolution of sequences on the inferred tree under the inferred model of evolution yields a matrix from which all but one of the model tree's clades are recovered with bootstrap value >50, suggesting that internal branches in the tree may be of a length to yield sequences sufficient to allow their inference. All likelihood analyses were conducted under both a proportion-invariable plus gamma site-to-site rate variation model, as well as a simpler gamma model. The choice of model did not have a major effect on inferred phylogenies or their bootstrap values. The inferred phylogeny shows that Bembidarenas is not closely related to Bembidiina, and Phrypeus is likely distant as well; the remaining genera of Bembidiina form a monophyletic group

  11. A robust molecular phylogeny of the Tricladida (Platyhelminthes: Seriata) with a discussion on morphological synapomorphies.

    Science.gov (United States)

    Carranza, S; Littlewood, D T; Clough, K A; Ruiz-Trillo, I; Baguñà, J; Riutort, M

    1998-01-01

    The suborder Tricladida (Platyhelminthes: Turbellaria, Seriata) comprises most well-known species of free-living flatworms. Four infraorders are recognized: (i) the Maricola (marine planarians); (ii) the Cavernicola (a group of primarily cavernicolan planarians); (iii) the Paludicola (freshwater planarians); and (iv) the Terricola (land planarians). The phylogenetic relationships among these infraorders have been analysed using morphological characters, but they remain uncertain. Here we analyse the phylogeny and classification of the Tricladida, with additional, independent, molecular data from complete sequences of 18S rDNA and 18S rRNA. We use maximum parsimony and neighbour-joining methods and the characterization of a unique gene duplication event involving the Terricola and the dugesiids to reconstruct the phylogeny. The results show that the Maricola is monophyletic and is the primitive sister group to the rest of the Tricladida (the Paludicola plus the Terricola). The Paludicola are paraphyletic since the Terricola and one paludicolan family, the Dugesiidae, share a more recent common ancestor than the dugesiids with other paludicolans (dendrocoelids and planariids). A reassessment of morphological evidence may confirm the apparent redundancy of the existing infraorders Paludicola and Terricola. In the meantime, we suggest replacing the Paludicola and Terricola with a new clade, the Continenticola, which comprises the families Dugesiidae, Planariidae, Dendrocoelidae and the Terricola. PMID:9881470

  12. Angiosperm phylogeny based on matK sequence information

    NARCIS (Netherlands)

    Hilu, K.W.; Borsch, T.; Müller, K.; Soltis, D.E.; Savolainen, V.; Chase, M.W.; Powell, M.; Alice, L.A.; Evans, R.; Sauquet, H.; Neinhuis, C.; Slotta, T.A.B.; Rohwer, J.G.; Campbell, C.; Chatrou, L.W.

    2003-01-01

    Plastid matK gene sequences for 374 genera representing all angiosperm orders and 12 genera of gymnosperms were analyzed using parsimony (MP) and Bayesian inference (BI) approaches. Traditionally, slowly evolving genomic regions have been preferred for deep-level phylogenetic inference in

  13. Microbial population index and community structure in saline-alkaline soil using gene targeted metagenomics.

    Science.gov (United States)

    Keshri, Jitendra; Mishra, Avinash; Jha, Bhavanath

    2013-03-30

    Population indices of bacteria and archaea were investigated from saline-alkaline soil and a possible microbe-environment pattern was established using gene targeted metagenomics. Clone libraries were constructed using 16S rRNA and functional gene(s) involved in carbon fixation (cbbL), nitrogen fixation (nifH), ammonia oxidation (amoA) and sulfur metabolism (apsA). Molecular phylogeny revealed the dominance of Actinobacteria, Firmicutes and Proteobacteria along with archaeal members of Halobacteraceae. The library consisted of novel bacterial (20%) and archaeal (38%) genera showing ≤95% similarity to previously retrieved sequences. Phylogenetic analysis indicated ability of inhabitant to survive in stress condition. The 16S rRNA gene libraries contained novel gene sequences and were distantly homologous with cultured bacteria. Functional gene libraries were found unique and most of the clones were distantly related to Proteobacteria, while clones of nifH gene library also showed homology with Cyanobacteria and Firmicutes. Quantitative real-time PCR exhibited that bacterial abundance was two orders of magnitude higher than archaeal. The gene(s) quantification indicated the size of the functional guilds harboring relevant key genes. The study provides insights on microbial ecology and different metabolic interactions occurring in saline-alkaline soil, possessing phylogenetically diverse groups of bacteria and archaea, which may be explored further for gene cataloging and metabolic profiling. Copyright © 2012 Elsevier GmbH. All rights reserved.

  14. Was the ANITA rooting of the angiosperm phylogeny affected by long-branch attraction? Amborella, Nymphaeales, Illiciales, Trimeniaceae, and Austrobaileya.

    Science.gov (United States)

    Qiu, Y L; Lee, J; Whitlock, B A; Bernasconi-Quadroni, F; Dombrovska, O

    2001-09-01

    Five groups of basal angiosperms, Amborella, Nymphaeales, Illiciales, Trimeniaceae, and Austrobaileya (ANITA), were identified in several recent studies as representing a series of the earliest-diverging lineages of the angiosperm phylogeny. All of these studies except one employed a multigene analysis approach and used gymnosperms as the outgroup to determine the ingroup topology. The high level of divergence between gymnosperms and angiosperms, however, has long been implicated in the difficulty of reconstructing relationships at the base of angiosperm phylogeny using DNA sequences, for fear of long-branch attraction (LBA). In this study, we replaced the gymnosperm sequences from the five-gene matrix (mitochondrial atp1 and matR, plastid atpB and rbcL, and nuclear 18S rDNA) used in our earlier study with four categories of divergent sequences--random sequences with equal base frequencies or equally AT- and GC-rich contents, homopolymers and heteropolymers, misaligned gymnosperm sequences, and aligned lycopod and bryophyte sequences--to evaluate whether the gymnosperms were an appropriate outgroup to angiosperms in our earlier study that identified the ANITA rooting. All 24 analyses performed rooted the angiosperm phylogeny at either Acorus or Alisma (or Alisma-Triglochin-Potamogeton in one case due to use of a slightly different alignment) and placed the monocots as a basal grade, producing genuine LBA results. These analyses demonstrate that the identification of ANITA as the basalmost extant angiosperms was based on historical signals preserved in the gymnosperm sequences and that the gymnosperms were an appropriate outgroup with which to root the angiosperm phylogeny in the multigene sequence analysis. This strategy of evaluating the appropriateness of an outgroup using artificial sequences and a series of outgroups with increments of divergence levels can be applied to investigations of phylogenetic patterns at the bases of other major clades, such as land

  15. Molecular phylogeny of commercially important lobster species from Indian coast inferred from mitochondrial and nuclear DNA sequences.

    Science.gov (United States)

    Jeena, N S; Gopalakrishnan, A; Radhakrishnan, E V; Kizhakudan, Joe K; Basheer, V S; Asokan, P K; Jena, J K

    2016-07-01

    Lobsters constitute low-volume high-value crustacean fishery resource along Indian coast. For the conservation and management of this declining resource, accurate identification of species and larvae is essential. The objectives of this work were to generate species-specific molecular signatures of 11 commercially important species of lobsters of families Palinuridae and Scyllaridae and to reconstruct a phylogeny to clarify the evolutionary relationships among genera and species included in this study. Partial sequences were generated for all the candidate species from sampling sites along the Indian coast using markers like Cytochrome oxidase I (COI), 16SrRNA, 12SrRNA, and 18SrRNA genes, and analyzed. The genetic identities of widely distributed Thenus species along the Indian coast to be Thenus unimaculatus and the sub-species of Panulirus homarus to be P. homarus homarus were confirmed. Phylogeny reconstruction using the individual gene and concatenated mtDNA data set were carried out. The overall results suggested independent monophyly of Scyllaridae and Stridentes of Palinuridae. The interspecific divergence was found to be highest for the 12SrRNA compared with other genes. Significant incongruence between mtDNA and nuclear 18SrRNA gene tree topologies was observed. The results hinted an earlier origin for Palinuridae compared with Scyllaridae. The DNA sequence data generated from this study will aid in the correct identification of lobster larvae and will find application in research related to larval transport and distribution.

  16. Mutational and Evolutionary Analyses of Bovine Reprimo Gene ...

    African Journals Online (AJOL)

    It can therefore be concluded that bovine RPRM gene contained 4 transition mutations and 5 indels that can be used in marker assisted selection. Evolutionary findings also demonstrated the existence of a divergent evolution between bovine RPRM gene and RPRM gene of fishes and frog. Keywords: Identity, phylogeny ...

  17. PhyloPars: estimation of missing parameter values using phylogeny.

    NARCIS (Netherlands)

    Bruggeman, J.; Heringa, J.; Brandt, B.W.

    2009-01-01

    A wealth of information on metabolic parameters of a species can be inferred from observations on species that are phylogenetically related. Phylogeny-based information can complement direct empirical evidence, and is particularly valuable if experiments on the species of interest are not feasible.

  18. Phylogeny of Trochetia species based on morphological and ...

    African Journals Online (AJOL)

    Nafiisah

    Molecular. Phylogenetics and Evolution 1 : 3 – 16. BALDWIN, B.G., SANDERSON, M.J., WOJCIECHOWSKI, M.F., CAMPBELL,. C.S. & DONOGHUE, M.J. (1995). The ITS region of nuclear ribosomal DNA: A valuable source of evidence on angiosperm phylogeny. Ann. of the Missouri. Botanical Garden. 82: 247- 275. BAUM ...

  19. A molecular phylogeny of selected species of Genus Prunus L ...

    African Journals Online (AJOL)

    A molecular phylogeny of selected species of Genus Prunus L. (Rosaceae) from Pakistan using the TRN-L & TRN-F spacer DNA. ... D.A. Webb. (Syn. Prunus amygdalus) and Prunus cornuta (Wall. ex. Royle) Steudel. which are indigenous to Pakistan. Key Words: Prunus, chloroplast, TRN-L, TRN-F, Pakistan.

  20. Phylogeny and biogeography of Alyssum (Brassicaceae) based on ...

    Indian Academy of Sciences (India)

    areas established in the Pliocene/Pleistocene could have provided favourable conditions for the migration and diversification of Alyssum. [Li Y., Kong Y., Zhang Z., Yin Y., Liu B., Lv G. and Wang X. 2014 Phylogeny and biogeography of Alyssum (Brassicaceae) based on nuclear ribosomal ITS DNA sequences. J. Genet.

  1. Phylogeny and biogeography of Alyssum (Brassicaceae) based on ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... The genus Alyssum consists of about 195 species native to Europe, Asia and northern Africa. All species were assigned to six sections. Previous molecular phylogeny studies indicate that Alyssum is polyphyletic. However, the divergence time and dispersal of the genus are not well studied. In this study, the ...

  2. Inference of Large Phylogenies Using Neighbour-Joining

    DEFF Research Database (Denmark)

    Simonsen, Martin; Mailund, Thomas; Pedersen, Christian Nørgaard Storm

    2011-01-01

    The neighbour-joining method is a widely used method for phylogenetic reconstruction which scales to thousands of taxa. However, advances in sequencing technology have made data sets with more than 10,000 related taxa widely available. Inference of such large phylogenies takes hours or days using...

  3. Molecular phylogeny of Neotropical monogeneans (Platyhelminthes: Monogenea) from catfishes (Siluriformes)

    Czech Academy of Sciences Publication Activity Database

    Mendoza-Palmero, Carlos Alonso; Blasco-Costa, I.; Scholz, Tomáš

    2015-01-01

    Roč. 8, MAR 18 2015 (2015), s. 164 ISSN 1756-3305 R&D Projects: GA ČR GBP505/12/G112 Institutional support: RVO:60077344 Keywords : Phylogeny * Monogenea * Dactylogyridae * Neotropical region * Diversity * Siluriformes * 28S rRNA Subject RIV: EG - Zoology Impact factor: 3.234, year: 2015

  4. Molecular phylogeny and evolution of mosquito parasitic Microsporidia (Microsporidia: Amblyosporidae)

    Czech Academy of Sciences Publication Activity Database

    Vossbrinck, C. R.; Andreadis, T.; Vávra, Jiří; Becnel, J. J.

    2004-01-01

    Roč. 51, č. 1 (2004), s. 88-95 ISSN 1066-5234 Institutional research plan: CEZ:AV0Z6022909 Keywords : Microsporidia * molecular phylogeny * evolution Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.403, year: 2004

  5. Ontogeny and Phylogeny from an Epigenetic Point of View.

    Science.gov (United States)

    Lovtrup, Soren

    1984-01-01

    The correlation between ontogeny and phylogeny is analyzed through the discussion of four theories on the reality, history, epigenetic, and ecological aspects of the mechanism of evolution. Also discussed are historical and creative aspects of evolution and three epigenetic mechanisms instantiated in the case of the amphibian embryo. (Author/RH)

  6. Incorporating indel information into phylogeny estimation for rapidly emerging pathogens

    Directory of Open Access Journals (Sweden)

    Suchard Marc A

    2007-03-01

    Full Text Available Abstract Background Phylogenies of rapidly evolving pathogens can be difficult to resolve because of the small number of substitutions that accumulate in the short times since divergence. To improve resolution of such phylogenies we propose using insertion and deletion (indel information in addition to substitution information. We accomplish this through joint estimation of alignment and phylogeny in a Bayesian framework, drawing inference using Markov chain Monte Carlo. Joint estimation of alignment and phylogeny sidesteps biases that stem from conditioning on a single alignment by taking into account the ensemble of near-optimal alignments. Results We introduce a novel Markov chain transition kernel that improves computational efficiency by proposing non-local topology rearrangements and by block sampling alignment and topology parameters. In addition, we extend our previous indel model to increase biological realism by placing indels preferentially on longer branches. We demonstrate the ability of indel information to increase phylogenetic resolution in examples drawn from within-host viral sequence samples. We also demonstrate the importance of taking alignment uncertainty into account when using such information. Finally, we show that codon-based substitution models can significantly affect alignment quality and phylogenetic inference by unrealistically forcing indels to begin and end between codons. Conclusion These results indicate that indel information can improve phylogenetic resolution of recently diverged pathogens and that alignment uncertainty should be considered in such analyses.

  7. Phylogeny Predicts Future Habitat Shifts Due to Climate Change

    Science.gov (United States)

    Kuntner, Matjaž; Năpăruş, Magdalena; Li, Daiqin; Coddington, Jonathan A.

    2014-01-01

    Background Taxa may respond differently to climatic changes, depending on phylogenetic or ecological effects, but studies that discern among these alternatives are scarce. Here, we use two species pairs from globally distributed spider clades, each pair representing two lifestyles (generalist, specialist) to test the relative importance of phylogeny versus ecology in predicted responses to climate change. Methodology We used a recent phylogenetic hypothesis for nephilid spiders to select four species from two genera (Nephilingis and Nephilengys) that match the above criteria, are fully allopatric but combined occupy all subtropical-tropical regions. Based on their records, we modeled each species niche spaces and predicted their ecological shifts 20, 40, 60, and 80 years into the future using customized GIS tools and projected climatic changes. Conclusions Phylogeny better predicts the species current ecological preferences than do lifestyles. By 2080 all species face dramatic reductions in suitable habitat (54.8–77.1%) and adapt by moving towards higher altitudes and latitudes, although at different tempos. Phylogeny and life style explain simulated habitat shifts in altitude, but phylogeny is the sole best predictor of latitudinal shifts. Models incorporating phylogenetic relatedness are an important additional tool to predict accurately biotic responses to global change. PMID:24892737

  8. The genus Gloriosa (Colchicaceae) : ethnobotany, phylogeny and taxonomy

    NARCIS (Netherlands)

    Maroyi, A.

    2012-01-01

    This thesis focuses on the ethnobotany, phylogeny and taxonomy of the genus Gloriosa L. over its distributional range. Some Gloriosa species are known to have economic and commercial value, but the genus is also well known for its complex alpha taxonomy. An appropriate taxonomy for this group is of

  9. Ethnobotany, Phylogeny, and 'Omics' for Human Health and Food Security.

    Science.gov (United States)

    Garnatje, Teresa; Peñuelas, Josep; Vallès, Joan

    2017-03-01

    Here, we propose a new term, 'ethnobotanical convergence', to refer to the similar uses for plants included in the same node of a phylogeny. This phylogenetic approach, together with the 'omics' revolution, shows how combining modern technologies with traditional ethnobotanical knowledge could be used to identify potential new applications of plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Trypanosoma avium of raptors (Falconiformes): phylogeny and identification of vectors

    Czech Academy of Sciences Publication Activity Database

    Votýpka, Jan; Oborník, Miroslav; Volf, P.; Svobodová, M.; Lukeš, Julius

    2002-01-01

    Roč. 125, č. 3 (2002), s. 253ů263 ISSN 0031-1820 R&D Projects: GA ČR GA204/00/1212; GA ČR GA206/00/1094 Institutional research plan: CEZ:AV0Z6022909 Keywords : phylogeny * blood parasites * insect vectors Subject RIV: EG - Zoology Impact factor: 1.828, year: 2002

  11. Molecular phylogeny of Eriocaulon (Eriocaulaceae)

    DEFF Research Database (Denmark)

    Ito, Yu; Tanaka, Norio; Barfod, Anders

    Eriocaulon is a genus of about 400 species of monocotyledonous flowering plants in the family Eriocaulaceae. The genus is widely distributed in the world, with the centers of diversity in tropical regions, such as tropical Asia and tropical Africa. A previous molecular phylogeny implied an Africa...

  12. A large phylogeny of turtles (Testudines) using molecular data

    NARCIS (Netherlands)

    Guillon, J.-M.; Guéry, L.; Hulin, V.; Girondot, M.

    2012-01-01

    Turtles (Testudines) form a monophyletic group with a highly distinctive body plan. The taxonomy and phylogeny of turtles are still under discussion, at least for some clades. Whereas in most previous studies, only a few species or genera were considered, we here use an extensive compilation of DNA

  13. Dermatan sulfate in tunicate phylogeny: Order-specific sulfation pattern and the effect of [→4IdoA(2-Sulfateβ-1→3GalNAc(4-Sulfateβ-1→] motifs in dermatan sulfate on heparin cofactor II activity

    Directory of Open Access Journals (Sweden)

    Sugahara Kazuyuki

    2011-05-01

    Full Text Available Abstract Background Previously, we have reported the presence of highly sulfated dermatans in solitary ascidians from the orders Phlebobranchia (Phallusia nigra and Stolidobranchia (Halocynthia pyriformis and Styela plicata. Despite the identical disaccharide backbone, consisting of [→4IdoA(2Sβ-1→3GalNAcβ-1→], those polymers differ in the position of sulfation on the N-Acetyl galactosamine, which can occur at carbon 4 or 6. We have shown that position rather than degree of sulfation is important for heparin cofactor II activity. As a consequence, 2,4- and 2,6-sulfated dermatans have high and low heparin cofactor II activities, respectively. In the present study we extended the disaccharide analysis of ascidian dermatan sulfates to additional species of the orders Stolidobranchia (Herdmania pallida, Halocynthia roretzi and Phlebobranchia (Ciona intestinalis, aiming to investigate how sulfation evolved within Tunicata. In addition, we analysed how heparin cofactor II activity responds to dermatan sulfates containing different proportions of 2,6- or 2,4-disulfated units. Results Disaccharide analyses indicated a high content of disulfated disaccharide units in the dermatan sulfates from both orders. However, the degree of sulfation decreased from Stolidobranchia to Phlebobranchia. While 76% of the disaccharide units in dermatan sulfates from stolidobranch ascidians are disulfated, 53% of disulfated disaccharides are found in dermatan sulfates from phlebobranch ascidians. Besides this notable difference in the sulfation degree, dermatan sulfates from phlebobranch ascidians contain mainly 2,6-sulfated disaccharides whereas dermatan sulfate from the stolidobranch ascidians contain mostly 2,4-sulfated disaccharides, suggesting that the biosynthesis of dermatan sulfates might be differently regulated during tunicates evolution. Changes in the position of sulfation on N-acetylgalactosamine in the disaccharide [→4IdoA(2-Sulfateβ-1→3GalNAcβ-1

  14. Plasmid and chromosome partitioning: surprises from phylogeny

    DEFF Research Database (Denmark)

    Gerdes, Kenn; Møller-Jensen, Jakob; Bugge Jensen, Rasmus

    2000-01-01

    Plasmids encode partitioning genes (par) that are required for faithful plasmid segregation at cell division. Initially, par loci were identified on plasmids, but more recently they were also found on bacterial chromosomes. We present here a phylogenetic analysis of par loci from plasmids...... and chromosomes from prokaryotic organisms. All known plasmid-encoded par loci specify three components: a cis-acting centromere-like site and two trans-acting proteins that form a nucleoprotein complex at the centromere (i.e. the partition complex). The proteins are encoded by two genes in an operon...... that is autoregulated by the par-encoded proteins. In all cases, the upstream gene encodes an ATPase that is essential for partitioning. Recent cytological analyses indicate that the ATPases function as adaptors between a host-encoded component and the partition complex and thereby tether plasmids and chromosomal...

  15. Viral genome phylogeny based on Lempel-Ziv complexity and Hausdorff distance.

    Science.gov (United States)

    Yu, Chenglong; He, Rong Lucy; Yau, Stephen S-T

    2014-05-07

    In this paper, we develop a novel method to study the viral genome phylogeny. We apply Lempel-Ziv complexity to define the distance between two nucleic acid sequences. Then, based on this distance we use the Hausdorff distance (HD) and a modified Hausdorff distance (MHD) to make the phylogenetic analysis for multi-segmented viral genomes. The results show the MHD can provide more accurate phylogenetic relationship. Our method can have global comparison of all multi-segmented genomes simultaneously, that is, we treat the multi-segmented viral genome as an entirety to make the comparative analysis. Our method is not affected by the number or order of segments, and each segment can make contribution for the phylogeny of whole genomes. We have analyzed several groups of real multi-segmented genomes from different viral families. The results show that our method will provide a new powerful tool for studying the classification of viral genomes and their phylogenetic relationships. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. A mitogenomic re-evaluation of the bdelloid phylogeny and relationships among the Syndermata.

    Directory of Open Access Journals (Sweden)

    Erica Lasek-Nesselquist

    Full Text Available Molecular and morphological data regarding the relationships among the three classes of Rotifera (Bdelloidea, Seisonidea, and Monogononta and the phylum Acanthocephala are inconclusive. In particular, Bdelloidea lacks molecular-based phylogenetic appraisal. I obtained coding sequences from the mitochondrial genomes of twelve bdelloids and two monogononts to explore the molecular phylogeny of Bdelloidea and provide insight into the relationships among lineages of Syndermata (Rotifera + Acanthocephala. With additional sequences taken from previously published mitochondrial genomes, the total dataset included nine species of bdelloids, three species of monogononts, and two species of acanthocephalans. A supermatrix of these 10-12 mitochondrial proteins consistently recovered a bdelloid phylogeny that questions the validity of a generally accepted classification scheme despite different methods of inference and various parameter adjustments. Specifically, results showed that neither the family Philodinidae nor the order Philodinida are monophyletic as currently defined. The application of a similar analytical strategy to assess syndermate relationships recovered either a tree with Bdelloidea and Monogononta as sister taxa (Eurotatoria or Bdelloidea and Acanthocephala as sister taxa (Lemniscea. Both outgroup choice and method of inference affected the topological outcome emphasizing the need for sequences from more closely related outgroups and more sophisticated methods of analysis that can account for the complexity of the data.

  17. On 'various contrivances': pollination, phylogeny and flower form in the Solanaceae.

    Science.gov (United States)

    Knapp, Sandra

    2010-02-12

    Members of the euasterid angiosperm family Solanaceae have been characterized as remarkably diverse in terms of flower morphology and pollinator type. In order to test the relative contribution of phylogeny to the pattern of distribution of floral characters related to pollination, flower form and pollinators have been mapped onto a molecular phylogeny of the family. Bilateral flower symmetry (zygomorphy) is prevalent in the basal grades of the family, and more derived clades have flowers that are largely radially symmetric, with some parallel evolution of floral bilateralism. Pollinator types ('syndromes') are extremely homoplastic in the family, but members of subfamily Solanoideae are exceptional in being largely bee pollinated. Pollinator relationships in those genera where they have been investigated more fully are not as specific as flower morphology and the classical pollinator syndrome models might suggest, and more detailed studies in some particularly variable genera, such as Iochroma and Nicotiana, are key to understanding the role of pollinators in floral evolution and adaptive radiation in the family. More studies of pollinators in the field are a priority.

  18. On ‘various contrivances’: pollination, phylogeny and flower form in the Solanaceae

    Science.gov (United States)

    Knapp, Sandra

    2010-01-01

    Members of the euasterid angiosperm family Solanaceae have been characterized as remarkably diverse in terms of flower morphology and pollinator type. In order to test the relative contribution of phylogeny to the pattern of distribution of floral characters related to pollination, flower form and pollinators have been mapped onto a molecular phylogeny of the family. Bilateral flower symmetry (zygomorphy) is prevalent in the basal grades of the family, and more derived clades have flowers that are largely radially symmetric, with some parallel evolution of floral bilateralism. Pollinator types (‘syndromes’) are extremely homoplastic in the family, but members of subfamily Solanoideae are exceptional in being largely bee pollinated. Pollinator relationships in those genera where they have been investigated more fully are not as specific as flower morphology and the classical pollinator syndrome models might suggest, and more detailed studies in some particularly variable genera, such as Iochroma and Nicotiana, are key to understanding the role of pollinators in floral evolution and adaptive radiation in the family. More studies of pollinators in the field are a priority. PMID:20047871

  19. The infrabranchial musculature and its bearing on the phylogeny of percomorph fishes (Osteichthyes: Teleostei).

    Science.gov (United States)

    Datovo, Aléssio; de Pinna, Mário C C; Johnson, G David

    2014-01-01

    The muscles serving the ventral portion of the gill arches ( = infrabranchial musculature) are poorly known in bony fishes. A comparative analysis of the infrabranchial muscles in the major percomorph lineages reveals a large amount of phylogenetically-relevant information. Characters derived from this anatomical system are identified and discussed in light of current hypotheses of phylogenetic relationships among percomorphs. New evidence supports a sister-group relationship between the Batrachoidiformes and Lophiiformes and between the Callionymoidei and Gobiesocoidei. Investigated data also corroborate the existence of two monophyletic groups, one including the Pristolepididae, Badidae, and Nandidae, and a second clade consisting of all non-amarsipid stromateiforms. New synapomorphies are proposed for the Atherinomorphae, Blenniiformes, Lophiiformes, Scombroidei (including Sphyraenidae), and Gobiiformes. Within the latter order, the Rhyacichthyidae and Odontobutidae are supported as the successive sister families of all remaining gobiiforms. The present analysis further confirms the validity of infrabranchial musculature characters previously proposed to support the grouping of the Mugiliformes with the Atherinomorphae and the monophyly of the Labriformes with the possible inclusion of the Pholidichthyiformes. Interestingly, most hypotheses of relationships supported by the infrabranchial musculature have been advanced by preceding anatomists on the basis of distinct data sources, but were never recovered in recent molecular phylogenies. These conflicts clearly indicate the current unsatisfactory resolution of the higher-level phylogeny of percomorphs.

  20. Phylogeny and taxonomy of the genus Gliocladiopsis

    NARCIS (Netherlands)

    Lombard, L.; Crous, P.W.

    2012-01-01

    Using a global set of isolates and a phylogenetic approach employing DNA sequence data from five genes (β-tubulin, histone H3, internal transcribed spacer region, 28S large subunit region and translation elongation factor 1-α), the taxonomic status of the genus Gliocladiopsis (Glionectria)

  1. Phylogeny and taxonomy of the genus Gliocladiopsis

    NARCIS (Netherlands)

    Lombard, L.; Crous, P.W.

    2012-01-01

    Using a global set of isolates and a phylogenetic approach employing DNA sequence data from five genes (ß-tubulin, histone H3, internal transcribed spacer region, 28S large subunit region and translation elongation factor 1-a), the taxonomic status of the genus Gliocladiopsis (Glionectria)

  2. Phylogeny of diving beetles reveals a coevolutionary arms race between the sexes.

    Directory of Open Access Journals (Sweden)

    Johannes Bergsten

    Full Text Available BACKGROUND: Darwin illustrated his sexual selection theory with male and female morphology of diving beetles, but maintained a cooperative view of their interaction. Present theory suggests that instead sexual conflict should be a widespread evolutionary force driving both intersexual coevolutionary arms races and speciation. METHODOLOGY/PRINCIPAL FINDINGS: We combined Bayesian phylogenetics, complete taxon sampling and a multi-gene approach to test the arms race scenario on a robust diving beetle phylogeny. As predicted, suction cups in males and modified dorsal surfaces in females showed a pronounced coevolutionary pattern. The female dorsal modifications impair the attachment ability of male suction cups, but each antagonistic novelty in females corresponds to counter-differentiation of suction cups in males. CONCLUSIONS: A recently diverged sibling species pair in Japan is possibly one consequence of this arms race and we suggest that future studies on hypoxia might reveal the key to the extraordinary selection for female counter-adaptations in diving beetles.

  3. Improving the Analysis of Dinoflagellate Phylogeny based on rDNA

    DEFF Research Database (Denmark)

    Murray, Shauna; Jørgensen, Mårten Flø; Ho, Simon Y.W.

    2005-01-01

    Phylogenetic studies of dinoflagellates are often conducted using rDNA sequences. In analyses to date, the monophyly of some of the major lineages of dinoflagellates remain to be demonstrated. There are several reasons for this uncertainty, one of which may be the use of models of evolution...... that may not closely fit the data. We constructed and examined alignments of SSU and partial LSU rRNA along with a concatenated alignment of the two molecules. The alignments showed several characteristics that may confound phylogeny reconstruction: paired helix (stem) regions that contain non...... on LSU; however, the support was low. The concatenated alignment did not provide a better phylogenetic resolution than the single gene alignments....

  4. Phylogeny of the sea hares in the aplysia clade based on mitochondrial DNA sequence data

    Energy Technology Data Exchange (ETDEWEB)

    Medina, Monica; Collins, Timothy; Walsh, Patrick J.

    2004-02-20

    Sea hare species within the Aplysia clade are distributed worldwide. Their phylogenetic and biogeographic relationships are, however, still poorly known. New molecular evidence is presented from a portion of the mitochondrial cytochrome oxidase c subunit 1 gene (cox1) that improves our understanding of the phylogeny of the group. Based on these data a preliminary discussion of the present distribution of sea hares in a biogeographic context is put forward. Our findings are consistent with only some aspects of the current taxonomy and nomenclatural changes are proposed. The first, is the use of a rank free classification for the different Aplysia clades and subclades as opposed to previously used genus and subgenus affiliations. The second, is the suggestion that Aplysia brasiliana (Rang, 1828) is a junior synonym of Aplysia fasciata (Poiret, 1789). The third, is the elimination of Neaplysia since its only member is confirmed to be part of the large Varria clade.

  5. Structure, function, and phylogeny of the mating locus in the Rhizopus oryzae complex.

    Directory of Open Access Journals (Sweden)

    Andrii P Gryganskyi

    2010-12-01

    Full Text Available The Rhizopus oryzae species complex is a group of zygomycete fungi that are common, cosmopolitan saprotrophs. Some strains are used beneficially for production of Asian fermented foods but they can also act as opportunistic human pathogens. Although R. oryzae reportedly has a heterothallic (+/- mating system, most strains have not been observed to undergo sexual reproduction and the genetic structure of its mating locus has not been characterized. Here we report on the mating behavior and genetic structure of the mating locus for 54 isolates of the R. oryzae complex. All 54 strains have a mating locus similar in overall organization to Phycomyces blakesleeanus and Mucor circinelloides (Mucoromycotina, Zygomycota. In all of these fungi, the minus (- allele features the SexM high mobility group (HMG gene flanked by an RNA helicase gene and a TP transporter gene (TPT. Within the R. oryzae complex, the plus (+ mating allele includes an inserted region that codes for a BTB/POZ domain gene and the SexP HMG gene. Phylogenetic analyses of multiple genes, including the mating loci (HMG, TPT, RNA helicase, ITS1-5.8S-ITS2 rDNA, RPB2, and LDH genes, identified two distinct groups of strains. These correspond to previously described sibling species R. oryzae sensu stricto and R. delemar. Within each species, discordant gene phylogenies among multiple loci suggest an outcrossing population structure. The hypothesis of random-mating is also supported by a 50:50 ratio of plus and minus mating types in both cryptic species. When crossed with tester strains of the opposite mating type, most isolates of R. delemar failed to produce zygospores, while isolates of R. oryzae produced sterile zygospores. In spite of the reluctance of most strains to mate in vitro, the conserved sex locus structure and evidence for outcrossing suggest that a normal sexual cycle occurs in both species.

  6. Structure, Function, and Phylogeny of the Mating Locus in the Rhizopus oryzae Complex

    Science.gov (United States)

    Gryganskyi, Andrii P.; Lee, Soo Chan; Litvintseva, Anastasia P.; Smith, Matthew E.; Bonito, Gregory; Porter, Teresita M.; Anishchenko, Iryna M.; Heitman, Joseph; Vilgalys, Rytas

    2010-01-01

    The Rhizopus oryzae species complex is a group of zygomycete fungi that are common, cosmopolitan saprotrophs. Some strains are used beneficially for production of Asian fermented foods but they can also act as opportunistic human pathogens. Although R. oryzae reportedly has a heterothallic (+/−) mating system, most strains have not been observed to undergo sexual reproduction and the genetic structure of its mating locus has not been characterized. Here we report on the mating behavior and genetic structure of the mating locus for 54 isolates of the R. oryzae complex. All 54 strains have a mating locus similar in overall organization to Phycomyces blakesleeanus and Mucor circinelloides (Mucoromycotina, Zygomycota). In all of these fungi, the minus (−) allele features the SexM high mobility group (HMG) gene flanked by an RNA helicase gene and a TP transporter gene (TPT). Within the R. oryzae complex, the plus (+) mating allele includes an inserted region that codes for a BTB/POZ domain gene and the SexP HMG gene. Phylogenetic analyses of multiple genes, including the mating loci (HMG, TPT, RNA helicase), ITS1-5.8S-ITS2 rDNA, RPB2, and LDH genes, identified two distinct groups of strains. These correspond to previously described sibling species R. oryzae sensu stricto and R. delemar. Within each species, discordant gene phylogenies among multiple loci suggest an outcrossing population structure. The hypothesis of random-mating is also supported by a 50∶50 ratio of plus and minus mating types in both cryptic species. When crossed with tester strains of the opposite mating type, most isolates of R. delemar failed to produce zygospores, while isolates of R. oryzae produced sterile zygospores. In spite of the reluctance of most strains to mate in vitro, the conserved sex locus structure and evidence for outcrossing suggest that a normal sexual cycle occurs in both species. PMID:21151560

  7. Tafuketide, a phylogeny-guided discovery of a new polyketide from Talaromyces funiculosus Salicorn 58.

    Science.gov (United States)

    Guo, Jia; Ran, Huomiao; Zeng, Jie; Liu, Dong; Xin, Zhihong

    2016-06-01

    A phylogeny-guided approach was applied to screen endophytic fungi containing type I polyketide synthase (PKS I) biosynthetic gene sequences and aimed to correlate genotype to chemotype for the discovery of novel bioactive polyketides. Salicorn 58, which was identified as Talaromyces funiculosus based on its internal transcribed spacer (ITS) and ribosomal large-subunit (LSU) DNA sequences, showed significant target bands. A chemical investigation of the culture of Salicorn 58 was allowed for the isolation of a new polyketide, Talafun (1), and a new natural product, N-(2'-hydroxy-3'-octadecenoyl)-9-methyl-4,8-sphingadienin (2), together with six known compounds, including chrodrimanin A (3), chrodrimanin B (4), N-(4-hydroxy-2-methoxyphenyl) acetamide (5), butyl β-glucose (6), 3β,15β-dihydroxyl-(22E, 24R)-ergosta-5,8(14),22-trien-7-dione (7), and (3β,5a,8a,22E)-5,8-epidioxyergosta-6,22-dien-3-ol (8). Their chemical structures were elucidated by extensive spectroscopic analysis and electro circular dichroism (ECD) spectrum calculations. Antioxidant experiments revealed that compound 5 showed strong ABTS(+) radical scavenging activity with an IC50 value of 11.43 ± 1.61 μM and potent ferric reducing activity (FRAP assay) with FRAP value of 187.52 ± 2.97. Antimicrobial assays revealed that compounds 1 and 4 showed high levels of selectivity toward Escherichia coli with MIC values of 18 ± 0.40 and 43 ± 0.52 μM, respectively. Compounds 2 and 3 exhibited broad-spectrum antimicrobial activity against Staphylococcus aureus, Mycobacterium smegmatis, Micrococcus tetragenus, Mycobacterium phlei, and E. coli, respectively. The results from the current research highlight the advantage of phylogeny-guided pipeline for the screening of new polyketides from endophytic fungi containing PKS I genes.

  8. Phylogeny and classification of the trapdoor spider genus Myrmekiaphila: an integrative approach to evaluating taxonomic hypotheses.

    Science.gov (United States)

    Bailey, Ashley L; Brewer, Michael S; Hendrixson, Brent E; Bond, Jason E

    2010-09-14

    Revised by Bond and Platnick in 2007, the trapdoor spider genus Myrmekiaphila comprises 11 species. Species delimitation and placement within one of three species groups was based on modifications of the male copulatory device. Because a phylogeny of the group was not available these species groups might not represent monophyletic lineages; species definitions likewise were untested hypotheses. The purpose of this study is to reconstruct the phylogeny of Myrmekiaphila species using molecular data to formally test the delimitation of species and species-groups. We seek to refine a set of established systematic hypotheses by integrating across molecular and morphological data sets. Phylogenetic analyses comprising Bayesian searches were conducted for a mtDNA matrix composed of contiguous 12S rRNA, tRNA-val, and 16S rRNA genes and a nuclear DNA matrix comprising the glutamyl and prolyl tRNA synthetase gene each consisting of 1348 and 481 bp, respectively. Separate analyses of the mitochondrial and nuclear genome data and a concatenated data set yield M. torreya and M. millerae paraphyletic with respect to M. coreyi and M. howelli and polyphyletic fluviatilis and foliata species groups. Despite the perception that molecular data present a solution to a crisis in taxonomy, studies like this demonstrate the efficacy of an approach that considers data from multiple sources. A DNA barcoding approach during the species discovery process would fail to recognize at least two species (M. coreyi and M. howelli) whereas a combined approach more accurately assesses species diversity and illuminates speciation pattern and process. Concomitantly these data also demonstrate that morphological characters likewise fail in their ability to recover monophyletic species groups and result in an unnatural classification. Optimizations of these characters demonstrate a pattern of "Dollo evolution" wherein a complex character evolves only once but is lost multiple times throughout the group

  9. Lower level relationships in the mushroom genus Cortinarius (Basidiomycota, Agaricales): a comparison of RPB1, RPB2, and ITS phylogenies.

    Science.gov (United States)

    Frøslev, T G; Matheny, P B; Hibbett, D S

    2005-11-01

    We sampled and analyzed approximately 2900bp across the three loci from 54 taxa belonging to a taxonomically difficult group of Cortinarius subgenus Phlegmacium. The combined analyses of ITS and variable regions of RPB1 and RPB2 greatly increase the resolution and nodal support for phylogenies of these closely related species belonging to clades that until now have proven very difficult to resolve with the ribosomal markers, nLSU and ITS. We present the first study of the utility of variable regions of the genes encoding the two largest subunits of RNA polymerase II (RPB1 and RPB2) for inferring the phylogeny of mushroom-forming fungi in combination with and compared to the widely used ribosomal marker ITS. The studied region of RPB1 contains an intron of the size and variability of ITS along with many variable positions in coding regions. Though almost entirely coding, the studied region of RPB2 is more variable than ITS. Both RNA polymerase II genes were alignable across all taxa. Our results indicate that several sections of Cortinarius need redefinition, and that several taxa treated at subspecific and varietal level should be treated at specific level. We suggest a new section for the two species, C. caesiocortinatus and C. prasinocyaneus, which constitute a well-supported separate lineage. We speculate that sequence information from RNA polymerase II genes have the potential for resolving phylogenetic problems at several levels of the diverse and taxonomically very challenging genus Cortinarius.

  10. Genetic characterization and phylogeny of human T-cell lymphotropic virus type I from Chile.

    Science.gov (United States)

    Ramirez, E; Cartier, L; Villota, C; Fernandez, J

    2002-03-20

    Infection with Human T-Cell Lymphotropic Virus type I (HTLV-I) have been associated with the development of the HTLV-I associated myelopathy/tropical spastic paraparesis (HAM/TSP). Phylogenetic analyses of HTLV-I isolates have revealed that HTLV-I can be classified into three major groups: the Cosmopolitan, Central African and Melanesian. In the present study, we analyzed the tax, 5' ltr, gag, pol, and env sequences of proviruses of PBMC from ten HAM/TSP patients to investigate the phylogenetic characterization of HTLV-I in Chilean patients. HTLV-I provirus in PBMC from ten Chilean patients with HAM/TSP were amplified by PCR using primers of tax, 5' ltr, gag, pol, and env genes. Amplified products of the five genes were purified and nucleotide sequence was determined by the dideoxy termination procedure. DNA sequences were aligned with the CLUSTAL W program. The results of this study showed that the tax, 5' ltr, gag, pol, and env gene of the Chilean HTLV-I strains had a nucleotide homology ranged from 98.1 to 100%, 95 to 97%, 98.9 to 100%, 94 to 98%, and 94.2 to 98.5% respect to ATK-1 clone, respectively. According to molecular phylogeny with 5' ltr gene, the Chilean HTLV-I strains were grouped with each other suggesting one cluster included in Transcontinental subgroup.

  11. The complete mitogenome of the hermit crab Clibanarius infraspinatus (Hilgendorf, 1869), (Crustacea; Decapoda; Diogenidae) - a new gene order for the Decapoda.

    Science.gov (United States)

    Gan, Huan You; Gan, Han Ming; Tan, Mun Hua; Lee, Yin Peng; Austin, Christopher M

    2016-11-01

    The complete mitochondrial genome of the hermit crab Clibanarius infraspinatus was recovered by genome skimming using Next-Gen sequencing. The Clibanarius infraspinatus mitogenome has 16,504 base pairs (67.94% A + T content) made up of 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs and a putative 1500 bp non-coding AT-rich region. The Clibanarius infraspinatus mitogenome sequence is the first for the family Diogenidae and the second for the superfamily Paguroidea and exhibits a translocation of the ND3 gene not previously reported for the Decapoda.

  12. One size does not fit all: On how Markov model order dictates performance of genomic sequence analyses

    Science.gov (United States)

    Narlikar, Leelavati; Mehta, Nidhi; Galande, Sanjeev; Arjunwadkar, Mihir

    2013-01-01

    The structural simplicity and ability to capture serial correlations make Markov models a popular modeling choice in several genomic analyses, such as identification of motifs, genes and regulatory elements. A critical, yet relatively unexplored, issue is the determination of the order of the Markov model. Most biological applications use a predetermined order for all data sets indiscriminately. Here, we show the vast variation in the performance of such applications with the order. To identify the ‘optimal’ order, we investigated two model selection criteria: Akaike information criterion and Bayesian information criterion (BIC). The BIC optimal order delivers the best performance for mammalian phylogeny reconstruction and motif discovery. Importantly, this order is different from orders typically used by many tools, suggesting that a simple additional step determining this order can significantly improve results. Further, we describe a novel classification approach based on BIC optimal Markov models to predict functionality of tissue-specific promoters. Our classifier discriminates between promoters active across 12 different tissues with remarkable accuracy, yielding 3 times the precision expected by chance. Application to the metagenomics problem of identifying the taxum from a short DNA fragment yields accuracies at least as high as the more complex mainstream methodologies, while retaining conceptual and computational simplicity. PMID:23267010

  13. Word Order

    DEFF Research Database (Denmark)

    Rijkhoff, Jan

    2015-01-01

    The way constituents are ordered in a linguistic expression is determined by general principles and language specific rules. This article is mostly concerned with general ordering principles and the three main linguistic categories that are relevant for constituent order research: formal, functio...

  14. Distribution and Phylogeny of Microsymbionts Associated with Cowpea (Vigna unguiculata) Nodulation in Three Agroecological Regions of Mozambique.

    Science.gov (United States)

    Chidebe, Ifeoma N; Jaiswal, Sanjay K; Dakora, Felix D

    2018-01-15

    Cowpea derives most of its N nutrition from biological nitrogen fixation (BNF) via symbiotic bacteroids in root nodules. In Sub-Saharan Africa, the diversity and biogeographic distribution of bacterial microsymbionts nodulating cowpea and other indigenous legumes are not well understood, though needed for increased legume production. The aim of this study was to describe the distribution and phylogenies of rhizobia at different agroecological regions of Mozambique using PCR of the BOX element (BOX-PCR), restriction fragment length polymorphism of the internal transcribed spacer (ITS-RFLP), and sequence analysis of ribosomal, symbiotic, and housekeeping genes. A total of 122 microsymbionts isolated from two cowpea varieties (IT-1263 and IT-18) grouped into 17 clades within the BOX-PCR dendrogram. The PCR-ITS analysis yielded 17 ITS types for the bacterial isolates, while ITS-RFLP analysis placed all test isolates in six distinct clusters (I to VI). BLAST n sequence analysis of 16S rRNA and four housekeeping genes ( glnII , gyrB , recA , and rpoB ) showed their alignment with Rhizobium and Bradyrhizobium species. The results revealed a group of highly diverse and adapted cowpea-nodulating microsymbionts which included Bradyrhizobium pachyrhizi , Bradyrhizobium arachidis , Bradyrhizobium yuanmingense , and a novel Bradyrhizobium sp., as well as Rhizobium tropici , Rhizobium pusense , and Neorhizobium galegae in Mozambican soils. Discordances observed in single-gene phylogenies could be attributed to horizontal gene transfer and/or subsequent recombinations of the genes. Natural deletion of 60 bp of the gyrB region was observed in isolate TUTVU7; however, this deletion effect on DNA gyrase function still needs to be confirmed. The inconsistency of nifH with core gene phylogenies suggested differences in the evolutionary history of both chromosomal and symbiotic genes. IMPORTANCE A diverse group of both Bradyrhizobium and Rhizobium species responsible for cowpea

  15. ITS2 secondary structure improves phylogeny estimation in a radiation of blue butterflies of the subgenus Agrodiaetus (Lepidoptera: Lycaenidae: Polyommatus

    Directory of Open Access Journals (Sweden)

    Wolf Matthias

    2009-12-01

    Full Text Available Abstract Background Current molecular phylogenetic studies of Lepidoptera and most other arthropods are predominantly based on mitochondrial genes and a limited number of nuclear genes. The nuclear genes, however, generally do not provide sufficient information for young radiations. ITS2 , which has proven to be an excellent nuclear marker for similarly aged radiations in other organisms like fungi and plants, is only rarely used for phylogeny estimation in arthropods, although universal primers exist. This is partly due to difficulties in the alignment of ITS2 sequences in more distant taxa. The present study uses ITS2 secondary structure information to elucidate the phylogeny of a species-rich young radiation of arthropods, the butterfly subgenus Agrodiaetus. One aim is to evaluate the efficiency of ITS2 to resolve the phylogeny of the subgenus in comparison with COI , the most important mitochondrial marker in arthropods. Furthermore, we assess the use of compensatory base changes in ITS2 for the delimitation of species and discuss the prospects of ITS2 as a nuclear marker for barcoding studies. Results In the butterfly family Lycaenidae, ITS2 secondary structure enabled us to successfully align sequences of different subtribes in Polyommatini and produce a Profile Neighbour Joining tree of this tribe, the resolution of which is comparable to phylogenetic trees obtained with COI+COII . The subgenus Agrodiaetus comprises 6 major clades which are in agreement with COI analyses. A dispersal-vicariance analysis (DIVA traced the origin of most Agrodiaetus clades to separate biogeographical areas in the region encompassing Eastern Anatolia, Transcaucasia and Iran. Conclusions With the inclusion of secondary structure information, ITS2 appears to be a suitable nuclear marker to infer the phylogeny of young radiations, as well as more distantly related genera within a diverse arthropod family. Its phylogenetic signal is comparable to the

  16. Obscured phylogeny and possible recombinational dormancy in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Sawyer Stanley A

    2011-06-01

    Full Text Available Abstract Background Escherichia coli is one of the best studied organisms in all of biology, but its phylogenetic structure has been difficult to resolve with current data and analytical techniques. We analyzed single nucleotide polymorphisms in chromosomes of representative strains to reconstruct the topology of its emergence. Results The phylogeny of E. coli varies according to the segment of chromosome analyzed. Recombination between extant E. coli groups is largely limited to only three intergroup pairings. Conclusions Segment-dependent phylogenies most likely are legacies of a complex recombination history. However, E. coli are now in an epoch in which they no longer broadly share DNA. Using the definition of species as organisms that freely exchange genetic material, this recombinational dormancy could reflect either the end of E. coli as a species, or herald the coalescence of E. coli groups into new species.

  17. Molecular phylogeny and divergence of the map turtles (Emydidae: Graptemys).

    Science.gov (United States)

    Thomson, Robert C; Spinks, Phillip Q; Shaffer, H Bradley

    2018-04-01

    The map turtles (genus Graptemys) comprise a morphologically diverse clade that forms a major component of the southeastern US hotspot of chelonian diversity. Map turtles have experienced both recent and rapid diversification resulting in long-standing uncertainty regarding species boundaries and phylogenetic relationships within the genus as well as timing of their divergence. We present a phylogeny for the group that includes geographically representative sampling for all described species and subspecies. We make use of an empirical prior on rates of molecular evolution to estimate divergence times with a molecular clock under a coalescent framework. Together, the phylogeny and divergence time estimates suggest that diversification has been both more recent and more rapid than has so far been suspected. We provide a well-supported evolutionary framework for Graptemys that is necessary for understanding map turtle diversity, biogeography, and for conservation of this threatened clade of turtles. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Duplicated growth hormone genes in a passerine bird, the jungle crow (Corvus macrorhynchos).

    Science.gov (United States)

    Arai, Natsumi; Iigo, Masayuki

    2010-07-02

    Molecular cloning, molecular phylogeny, gene structure and expression analyses of growth hormone (GH) were performed in a passerine bird, the jungle crow (Corvus macrorhynchos). Unexpectedly, duplicated GH cDNA and genes were identified and designated as GH1A and GH1B. In silico analyses identified the zebra finch orthologs. Both GH genes encode 217 amino acid residues and consist of five exons and four introns, spanning 5.2 kbp in GH1A and 4.2 kbp in GH1B. Predicted GH proteins of the jungle crow and zebra finch contain four conserved cysteine residues, suggesting duplicated GH genes are functional. Molecular phylogenetic analysis revealed that duplication of GH genes occur after divergence of the passerine lineage from the other avian orders as has been suggested from partial genomic DNA sequences of passerine GH genes. RT-PCR analyses confirmed expression of GH1A and GH1B in the pituitary gland. In addition, GH1A gene is expressed in all the tissues examined. However, expression of GH1B is confined to several brain areas and blood cells. These results indicate that the regulatory mechanisms of duplicated GH genes are different and that duplicated GH genes exert both endocrine and autocrine/paracrine functions. Copyright 2010 Elsevier Inc. All rights reserved.

  19. Molecular evolution of the nif gene cluster carrying nifI1 and nifI2 genes in the Gram-positive phototrophic bacterium Heliobacterium chlorum.

    Science.gov (United States)

    Enkh-Amgalan, Jigjiddorj; Kawasaki, Hiroko; Seki, Tatsuji

    2006-01-01

    A major nif cluster was detected in the strictly anaerobic, Gram-positive phototrophic bacterium Heliobacterium chlorum. The cluster consisted of 11 genes arranged within a 10 kb region in the order nifI1, nifI2, nifH, nifD, nifK, nifE, nifN, nifX, fdx, nifB and nifV. The phylogenetic position of Hbt. chlorum was the same in the NifH, NifD, NifK, NifE and NifN trees; Hbt. chlorum formed a cluster with Desulfitobacterium hafniense, the closest neighbour of heliobacteria based on the 16S rRNA phylogeny, and two species of the genus Geobacter belonging to the Deltaproteobacteria. Two nifI genes, known to occur in the nif clusters of methanogenic archaea between nifH and nifD, were found upstream of the nifH gene of Hbt. chlorum. The organization of the nif operon and the phylogeny of individual and concatenated gene products showed that the Hbt. chlorum nif operon carrying nifI genes upstream of the nifH gene was an intermediate between the nif operon with nifI downstream of nifH (group II and III of the nitrogenase classification) and the nif operon lacking nifI (group I). Thus, the phylogenetic position of Hbt. chlorum nitrogenase may reflect an evolutionary stage of a divergence of the two nitrogenase groups, with group I consisting of the aerobic diazotrophs and group II consisting of strictly anaerobic prokaryotes.

  20. SIMMAP: Stochastic character mapping of discrete traits on phylogenies

    OpenAIRE

    Bollback Jonathan P

    2006-01-01

    Abstract Background Character mapping on phylogenies has played an important, if not critical role, in our understanding of molecular, morphological, and behavioral evolution. Until very recently we have relied on parsimony to infer character changes. Parsimony has a number of serious limitations that are drawbacks to our understanding. Recent statistical methods have been developed that free us from these limitations enabling us to overcome the problems of parsimony by accommodating uncertai...

  1. The higher-level phylogeny of Archosauria (Tetrapoda:Diapsida)

    OpenAIRE

    Brusatte, S.L.; Benton, M.J.; Desojo, J.B.; Langer, M.C.

    2010-01-01

    Crown group Archosauria, which includes birds, dinosaurs, crocodylomorphs, and several extinct Mesozoic groups, is a primary division of the vertebrate tree of life. However, the higher-level phylogenetic relationships within Archosauria are poorly resolved and controversial, despite years of study. The phylogeny of crocodile-line archosaurs (Crurotarsi) is particularly contentious, and has been plagued by problematic taxon and character sampling. Recent discoveries and renewed focus on archo...

  2. Dating phylogenies with sequentially sampled tips.

    Science.gov (United States)

    Stadler, Tanja; Yang, Ziheng

    2013-09-01

    We develop a Bayesian Markov chain Monte Carlo (MCMC) algorithm for estimating divergence times using sequentially sampled molecular sequences. This type of data is commonly collected during viral epidemics and is sometimes available from different species in ancient DNA studies. We derive the distribution of ages of nodes in the tree under a birth-death-sequential-sampling (BDSS) model and use it as the prior for divergence times in the dating analysis. We implement the prior in the MCMCtree program in the PAML package for divergence dating. The BDSS prior is very flexible and, with different parameters, can generate trees of very different shapes, suitable for examining the sensitivity of posterior time estimates. We apply the method to a data set of SIV/HIV-2 genes in comparison with a likelihood-based dating method, and to a data set of influenza H1 genes from different hosts in comparison with the Bayesian program BEAST. We examined the impact of tree topology on time estimates and suggest that multifurcating consensus trees should be avoided in dating analysis. We found posterior time estimates for old nodes to be sensitive to the priors on times and rates and suggest that previous Bayesian dating studies may have produced overconfident estimates.

  3. Constraints on genome dynamics revealed from gene distribution among the Ralstonia solanacearum species.

    Directory of Open Access Journals (Sweden)

    Pierre Lefeuvre

    Full Text Available Because it is suspected that gene content may partly explain host adaptation and ecology of pathogenic bacteria, it is important to study factors affecting genome composition and its evolution. While recent genomic advances have revealed extremely large pan-genomes for some bacterial species, it remains difficult to predict to what extent gene pool is accessible within or transferable between populations. As genomes bear imprints of the history of the organisms, gene distribution pattern analyses should provide insights into the forces and factors at play in the shaping and maintaining of bacterial genomes. In this study, we revisited the data obtained from a previous CGH microarrays analysis in order to assess the genomic plasticity of the R. solanacearum species complex. Gene distribution analyses demonstrated the remarkably dispersed genome of R. solanacearum with more than half of the genes being accessory. From the reconstruction of the ancestral genomes compositions, we were able to infer the number of gene gain and loss events along the phylogeny. Analyses of gene movement patterns reveal that factors associated with gene function, genomic localization and ecology delineate gene flow patterns. While the chromosome displayed lower rates of movement, the megaplasmid was clearly associated with hot-spots of gene gain and loss. Gene function was also confirmed to be an essential factor in gene gain and loss dynamics with significant differences in movement patterns between different COG categories. Finally, analyses of gene distribution highlighted possible highways of horizontal gene transfer. Due to sampling and design bias, we can only speculate on factors at play in this gene movement dynamic. Further studies examining precise conditions that favor gene transfer would provide invaluable insights in the fate of bacteria, species delineation and the emergence of successful pathogens.

  4. SIMMAP: Stochastic character mapping of discrete traits on phylogenies

    Directory of Open Access Journals (Sweden)

    Bollback Jonathan P

    2006-02-01

    Full Text Available Abstract Background Character mapping on phylogenies has played an important, if not critical role, in our understanding of molecular, morphological, and behavioral evolution. Until very recently we have relied on parsimony to infer character changes. Parsimony has a number of serious limitations that are drawbacks to our understanding. Recent statistical methods have been developed that free us from these limitations enabling us to overcome the problems of parsimony by accommodating uncertainty in evolutionary time, ancestral states, and the phylogeny. Results SIMMAP has been developed to implement stochastic character mapping that is useful to both molecular evolutionists, systematists, and bioinformaticians. Researchers can address questions about positive selection, patterns of amino acid substitution, character association, and patterns of morphological evolution. Conclusion Stochastic character mapping, as implemented in the SIMMAP software, enables users to address questions that require mapping characters onto phylogenies using a probabilistic approach that does not rely on parsimony. Analyses can be performed using a fully Bayesian approach that is not reliant on considering a single topology, set of substitution model parameters, or reconstruction of ancestral states. Uncertainty in these quantities is accommodated by using MCMC samples from their respective posterior distributions.

  5. SIMMAP: stochastic character mapping of discrete traits on phylogenies.

    Science.gov (United States)

    Bollback, Jonathan P

    2006-02-23

    Character mapping on phylogenies has played an important, if not critical role, in our understanding of molecular, morphological, and behavioral evolution. Until very recently we have relied on parsimony to infer character changes. Parsimony has a number of serious limitations that are drawbacks to our understanding. Recent statistical methods have been developed that free us from these limitations enabling us to overcome the problems of parsimony by accommodating uncertainty in evolutionary time, ancestral states, and the phylogeny. SIMMAP has been developed to implement stochastic character mapping that is useful to both molecular evolutionists, systematists, and bioinformaticians. Researchers can address questions about positive selection, patterns of amino acid substitution, character association, and patterns of morphological evolution. Stochastic character mapping, as implemented in the SIMMAP software, enables users to address questions that require mapping characters onto phylogenies using a probabilistic approach that does not rely on parsimony. Analyses can be performed using a fully Bayesian approach that is not reliant on considering a single topology, set of substitution model parameters, or reconstruction of ancestral states. Uncertainty in these quantities is accommodated by using MCMC samples from their respective posterior distributions.

  6. Mitogenomic perspectives on the origin and phylogeny of living amphibians.

    Science.gov (United States)

    Zhang, Peng; Zhou, Hui; Chen, Yue-Qin; Liu, Yi-Fei; Qu, Liang-Hu

    2005-06-01

    Establishing the relationships among modern amphibians (lissamphibians) and their ancient relatives is necessary for our understanding of early tetrapod evolution. However, the phylogeny is still intractable because of the highly specialized anatomy and poor fossil record of lissamphibians. Paleobiologists are still not sure whether lissamphibians are monophyletic or polyphyletic, and which ancient group (temnospondyls or lepospondyls) is most closely related to them. In an attempt to address these problems, eight mitochondrial genomes of living amphibians were determined and compared with previously published amphibian sequences. A comprehensive molecular phylogenetic analysis of nucleotide sequences yields a highly resolved tree congruent with the traditional hypotheses (Batrachia). By using a molecular clock-independent approach for inferring dating information from molecular phylogenies, we present here the first molecular timescale for lissamphibian evolution, which suggests that lissamphibians first emerged about 330 million years ago. By observing the fit between molecular and fossil times, we suggest that the temnospondyl-origin hypothesis for lissamphibians is more credible than other hypotheses. Moreover, under this timescale, the potential geographic origins of the main living amphibian groups are discussed: (i) advanced frogs (neobatrachians) may possess an Africa-India origin; (ii) salamanders may have originated in east Asia; (iii) the tropic forest of the Triassic Pangaea may be the place of origin for the ancient caecilians. An accurate phylogeny with divergence times can be also helpful to direct the search for "missing" fossils, and can benefit comparative studies of am