WorldWideScience

Sample records for gene island reveals

  1. Pathogenicity island mobility and gene content.

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Kelly Porter

    2013-10-01

    Key goals towards national biosecurity include methods for analyzing pathogens, predicting their emergence, and developing countermeasures. These goals are served by studying bacterial genes that promote pathogenicity and the pathogenicity islands that mobilize them. Cyberinfrastructure promoting an island database advances this field and enables deeper bioinformatic analysis that may identify novel pathogenicity genes. New automated methods and rich visualizations were developed for identifying pathogenicity islands, based on the principle that islands occur sporadically among closely related strains. The chromosomally-ordered pan-genome organizes all genes from a clade of strains; gaps in this visualization indicate islands, and decorations of the gene matrix facilitate exploration of island gene functions. A %E2%80%9Clearned phyloblocks%E2%80%9D method was developed for automated island identification, that trains on the phylogenetic patterns of islands identified by other methods. Learned phyloblocks better defined termini of previously identified islands in multidrug-resistant Klebsiella pneumoniae ATCC BAA-2146, and found its only antibiotic resistance island.

  2. Genomic islands of differentiation in two songbird species reveal candidate genes for hybrid female sterility.

    Science.gov (United States)

    Mořkovský, Libor; Janoušek, Václav; Reif, Jiří; Rídl, Jakub; Pačes, Jan; Choleva, Lukáš; Janko, Karel; Nachman, Michael W; Reifová, Radka

    2018-02-01

    Hybrid sterility is a common first step in the evolution of postzygotic reproductive isolation. According to Haldane's Rule, it affects predominantly the heterogametic sex. While the genetic basis of hybrid male sterility in organisms with heterogametic males has been studied for decades, the genetic basis of hybrid female sterility in organisms with heterogametic females has received much less attention. We investigated the genetic basis of reproductive isolation in two closely related avian species, the common nightingale (Luscinia megarhynchos) and the thrush nightingale (L. luscinia), that hybridize in a secondary contact zone and produce viable hybrid progeny. In accordance with Haldane's Rule, hybrid females are sterile, while hybrid males are fertile, allowing gene flow to occur between the species. Using transcriptomic data from multiple individuals of both nightingale species, we identified genomic islands of high differentiation (F ST ) and of high divergence (D xy ), and we analysed gene content and patterns of molecular evolution within these islands. Interestingly, we found that these islands were enriched for genes related to female meiosis and metabolism. The islands of high differentiation and divergence were also characterized by higher levels of linkage disequilibrium than the rest of the genome in both species indicating that they might be situated in genomic regions of low recombination. This study provides one of the first insights into genetic basis of hybrid female sterility in organisms with heterogametic females. © 2018 John Wiley & Sons Ltd.

  3. Comparative mapping reveals similar linkage of functional genes to ...

    Indian Academy of Sciences (India)

    genes between O. sativa and B. napus may have consistent function and control similar traits, which may be ..... acea chromosomes reveals islands of conserved organization. ... 1998 Conserved structure and function of the Arabidopsis flow-.

  4. Integrated analysis of gene expression, CpG island methylation, and gene copy number in breast cancer cells by deep sequencing.

    Directory of Open Access Journals (Sweden)

    Zhifu Sun

    Full Text Available We used deep sequencing technology to profile the transcriptome, gene copy number, and CpG island methylation status simultaneously in eight commonly used breast cell lines to develop a model for how these genomic features are integrated in estrogen receptor positive (ER+ and negative breast cancer. Total mRNA sequence, gene copy number, and genomic CpG island methylation were carried out using the Illumina Genome Analyzer. Sequences were mapped to the human genome to obtain digitized gene expression data, DNA copy number in reference to the non-tumor cell line (MCF10A, and methylation status of 21,570 CpG islands to identify differentially expressed genes that were correlated with methylation or copy number changes. These were evaluated in a dataset from 129 primary breast tumors. Gene expression in cell lines was dominated by ER-associated genes. ER+ and ER- cell lines formed two distinct, stable clusters, and 1,873 genes were differentially expressed in the two groups. Part of chromosome 8 was deleted in all ER- cells and part of chromosome 17 amplified in all ER+ cells. These loci encoded 30 genes that were overexpressed in ER+ cells; 9 of these genes were overexpressed in ER+ tumors. We identified 149 differentially expressed genes that exhibited differential methylation of one or more CpG islands within 5 kb of the 5' end of the gene and for which mRNA abundance was inversely correlated with CpG island methylation status. In primary tumors we identified 84 genes that appear to be robust components of the methylation signature that we identified in ER+ cell lines. Our analyses reveal a global pattern of differential CpG island methylation that contributes to the transcriptome landscape of ER+ and ER- breast cancer cells and tumors. The role of gene amplification/deletion appears to more modest, although several potentially significant genes appear to be regulated by copy number aberrations.

  5. In silico analysis of bacterial arsenic islands reveals remarkable synteny and functional relatedness between arsenate and phosphate

    DEFF Research Database (Denmark)

    Li, Hang; Li, Mingshun; Huang, Yinyan

    2013-01-01

    In order to construct a more universal model for understanding the genetic requirements for bacterial AsIII oxidation, an in silico examination of the available sequences in the GenBank was assessed and revealed 21 conserved 5-71 kb arsenic islands within phylogenetically diverse bacterial genomes....... The arsenic islands included the AsIII oxidase structural genes aioBA, ars operons (e.g., arsRCB) which code for arsenic resistance, and pho, pst, and phn genes known to be part of the classical phosphate stress response and that encode functions associated with regulating and acquiring organic and inorganic...... phosphorus. The regulatory genes aioXSR were also an island component, but only in Proteobacteria and orientated differently depending on whether they were in a-Proteobacteria or β-/γ-Proteobacteria. Curiously though, while these regulatory genes have been shown to be essential to AsIII oxidation...

  6. Intersectional gene flow between insular endemics of Ilex (Aquifoliaceae) on the Bonin Islands and the Ryukyu Islands.

    Science.gov (United States)

    Setoguchi, H; Watanabe, I

    2000-06-01

    Hybridization and introgression play important roles in plant evolution, and their occurrence on the oceanic islands provides good examples of plant speciation and diversification. Restriction fragment length polymorphisms (RFLPs) and trnL (UAA) 3'exon-trnF (GAA) intergenic spacer (IGS) sequences of chloroplast DNA (cpDNA), and the sequences of internal transcribed spacer (ITS) of nuclear ribosomal DNA were examined to investigate the occurrence of gene transfer in Ilex species on the Bonin Islands and the Ryukyu Islands in Japan. A gene phylogeny for the plastid genome is in agreement with the morphologically based taxonomy, whereas the nuclear genome phylogeny clusters putatively unrelated endemics both on the Bonin and the Ryukyu Islands. Intersectional hybridization and nuclear gene flow were independently observed in insular endemics of Ilex on both sets of islands without evidence of plastid introgression. Gene flow observed in these island systems can be explained by ecological features of insular endemics, i.e., limits of distribution range or sympatric distribution in a small land area.

  7. The New Macrolide-Lincosamide-Streptogramin B Resistance Gene erm(45) Is Located within a Genomic Island in Staphylococcus fleurettii

    DEFF Research Database (Denmark)

    Wipf, Juliette R K; Schwendener, Sybille; Nielsen, Jesper Boye

    2015-01-01

    Genome alignment of a macrolide, lincosamide, and streptogramin B (MLSB)-resistant Staphylococcus fleurettii strain with an MLSB-susceptible S. fleurettii strain revealed a novel 11,513-bp genomic island carrying the new erythromycin resistance methylase gene erm(45). This gene was shown to confer...... inducible MLSB resistance when cloned into Staphylococcus aureus. The erm(45)-containing island was integrated into the housekeeping gene guaA in S. fleurettii and was able to form a circular intermediate but was not transmissible to S. aureus....

  8. Inferred vs realized patterns of gene flow: an analysis of population structure in the Andros Island Rock Iguana.

    Science.gov (United States)

    Colosimo, Giuliano; Knapp, Charles R; Wallace, Lisa E; Welch, Mark E

    2014-01-01

    Ecological data, the primary source of information on patterns and rates of migration, can be integrated with genetic data to more accurately describe the realized connectivity between geographically isolated demes. In this paper we implement this approach and discuss its implications for managing populations of the endangered Andros Island Rock Iguana, Cyclura cychlura cychlura. This iguana is endemic to Andros, a highly fragmented landmass of large islands and smaller cays. Field observations suggest that geographically isolated demes were panmictic due to high, inferred rates of gene flow. We expand on these observations using 16 polymorphic microsatellites to investigate the genetic structure and rates of gene flow from 188 Andros Iguanas collected across 23 island sites. Bayesian clustering of specimens assigned individuals to three distinct genotypic clusters. An analysis of molecular variance (AMOVA) indicates that allele frequency differences are responsible for a significant portion of the genetic variance across the three defined clusters (Fst =  0.117, p<0.01). These clusters are associated with larger islands and satellite cays isolated by broad water channels with strong currents. These findings imply that broad water channels present greater obstacles to gene flow than was inferred from field observation alone. Additionally, rates of gene flow were indirectly estimated using BAYESASS 3.0. The proportion of individuals originating from within each identified cluster varied from 94.5 to 98.7%, providing further support for local isolation. Our assessment reveals a major disparity between inferred and realized gene flow. We discuss our results in a conservation perspective for species inhabiting highly fragmented landscapes.

  9. Inferred vs Realized Patterns of Gene Flow: An Analysis of Population Structure in the Andros Island Rock Iguana

    Science.gov (United States)

    Colosimo, Giuliano; Knapp, Charles R.; Wallace, Lisa E.; Welch, Mark E.

    2014-01-01

    Ecological data, the primary source of information on patterns and rates of migration, can be integrated with genetic data to more accurately describe the realized connectivity between geographically isolated demes. In this paper we implement this approach and discuss its implications for managing populations of the endangered Andros Island Rock Iguana, Cyclura cychlura cychlura. This iguana is endemic to Andros, a highly fragmented landmass of large islands and smaller cays. Field observations suggest that geographically isolated demes were panmictic due to high, inferred rates of gene flow. We expand on these observations using 16 polymorphic microsatellites to investigate the genetic structure and rates of gene flow from 188 Andros Iguanas collected across 23 island sites. Bayesian clustering of specimens assigned individuals to three distinct genotypic clusters. An analysis of molecular variance (AMOVA) indicates that allele frequency differences are responsible for a significant portion of the genetic variance across the three defined clusters (Fst =  0.117, p0.01). These clusters are associated with larger islands and satellite cays isolated by broad water channels with strong currents. These findings imply that broad water channels present greater obstacles to gene flow than was inferred from field observation alone. Additionally, rates of gene flow were indirectly estimated using BAYESASS 3.0. The proportion of individuals originating from within each identified cluster varied from 94.5 to 98.7%, providing further support for local isolation. Our assessment reveals a major disparity between inferred and realized gene flow. We discuss our results in a conservation perspective for species inhabiting highly fragmented landscapes. PMID:25229344

  10. Inferred vs realized patterns of gene flow: an analysis of population structure in the Andros Island Rock Iguana.

    Directory of Open Access Journals (Sweden)

    Giuliano Colosimo

    Full Text Available Ecological data, the primary source of information on patterns and rates of migration, can be integrated with genetic data to more accurately describe the realized connectivity between geographically isolated demes. In this paper we implement this approach and discuss its implications for managing populations of the endangered Andros Island Rock Iguana, Cyclura cychlura cychlura. This iguana is endemic to Andros, a highly fragmented landmass of large islands and smaller cays. Field observations suggest that geographically isolated demes were panmictic due to high, inferred rates of gene flow. We expand on these observations using 16 polymorphic microsatellites to investigate the genetic structure and rates of gene flow from 188 Andros Iguanas collected across 23 island sites. Bayesian clustering of specimens assigned individuals to three distinct genotypic clusters. An analysis of molecular variance (AMOVA indicates that allele frequency differences are responsible for a significant portion of the genetic variance across the three defined clusters (Fst =  0.117, p<<0.01. These clusters are associated with larger islands and satellite cays isolated by broad water channels with strong currents. These findings imply that broad water channels present greater obstacles to gene flow than was inferred from field observation alone. Additionally, rates of gene flow were indirectly estimated using BAYESASS 3.0. The proportion of individuals originating from within each identified cluster varied from 94.5 to 98.7%, providing further support for local isolation. Our assessment reveals a major disparity between inferred and realized gene flow. We discuss our results in a conservation perspective for species inhabiting highly fragmented landscapes.

  11. Identification of a novel gene in ROD9 island of Salmonella Enteritidis involved in the alteration of virulence-associated genes expression.

    Science.gov (United States)

    Das, Susmita; Ray, Shilpa; Ryan, Daniel; Sahu, Bikash; Suar, Mrutyunjay

    2018-01-01

    Salmonella enterica subsp. I serovar Enteritidis (S. Enteritidis), one of the causative agents for non-typhoidal gastrointestinal diseases in humans is an intracellular bacterium and mechanism for its invasion into host cells is critical to cause infection. The virulence of the pathogen is explained by the expression of genes located on its pathogenicity islands, mostly encoded under SPI-1 and SPI-2. However, S. Typhimurium SL1344, despite sharing ∼98% of its genome with S. Enteritidis P125109, lacks few regions of differences (ROD) that are hypothesized to impart virulence potential to S. Enteritidis. In this study, we created different mutants in the ROD9 island of S. Enteritidis, also referred as SPI-19 and identified a novel locus, SEN1005, encoding a hypothetical protein that is involved in its pathogenesis. ΔSEN1005 displayed significantly reduced entry into cultured epithelial cells as well as uptake by macrophages and failed to cause acute colitis in C57BL/6 mice at day 3 post-infection (p.i.). Additionally, the global transcriptome analysis revealed a highly repressed SPI-1 and other down-regulated genes responsible for flagellar assembly, chemotaxis and motility in the mutant which correlated with decreased invasion and abated inflammation as compared to the wild-type. Therefore, our findings revealed that ΔSEN1005 was attenuated in vitro as well as in vivo and we propose this hypothetical protein to play a role in altering the expression of genes involved in Salmonella virulence.

  12. The Polynesian gene pool: an early contribution by Amerindians to Easter Island.

    Science.gov (United States)

    Thorsby, Erik

    2012-03-19

    It is now generally accepted that Polynesia was first settled by peoples from southeast Asia. An alternative that eastern parts of Polynesia were first inhabited by Amerindians has found little support. There are, however, many indications of a 'prehistoric' (i.e. before Polynesia was discovered by Europeans) contact between Polynesia and the Americas, but genetic evidence of a prehistoric Amerindian contribution to the Polynesian gene pool has been lacking. We recently carried out genomic HLA (human leucocyte antigen) typing as well as typing for mitochondrial DNA (mtDNA) and Y chromosome markers of blood samples collected in 1971 and 2008 from reputedly non-admixed Easter Islanders. All individuals carried HLA alleles and mtDNA types previously found in Polynesia, and most of the males carried Y chromosome markers of Polynesian origin (a few had European Y chromosome markers), further supporting an initial Polynesian population on Easter Island. The HLA investigations revealed, however, that some individuals also carried HLA alleles which have previously almost only been found in Amerindians. We could trace the introduction of these Amerindian alleles to before the Peruvian slave trades, i.e. before the 1860s, and provide suggestive evidence that they were introduced already in prehistoric time. Our results demonstrate an early Amerindian contribution to the Polynesian gene pool on Easter Island, and illustrate the usefulness of typing for immunogenetic markers such as HLA to complement mtDNA and Y chromosome analyses in anthropological investigations.

  13. Origin and Evolution of Nitrogen Fixation Genes on Symbiosis Islands and Plasmid in Bradyrhizobium

    Science.gov (United States)

    Okubo, Takashi; Piromyou, Pongdet; Tittabutr, Panlada; Teaumroong, Neung; Minamisawa, Kiwamu

    2016-01-01

    The nitrogen fixation (nif) genes of nodule-forming Bradyrhizobium strains are generally located on symbiosis islands or symbiosis plasmids, suggesting that these genes have been transferred laterally. The nif genes of rhizobial and non-rhizobial Bradyrhizobium strains were compared in order to infer the evolutionary histories of nif genes. Based on all codon positions, the phylogenetic tree of concatenated nifD and nifK sequences showed that nifDK on symbiosis islands formed a different clade from nifDK on non-symbiotic loci (located outside of symbiosis islands and plasmids) with elongated branches; however, these genes were located in close proximity, when only the 1st and 2nd codon positions were analyzed. The guanine (G) and cytosine (C) content of the 3rd codon position of nifDK on symbiosis islands was lower than that on non-symbiotic loci. These results suggest that nif genes on symbiosis islands were derived from the non-symbiotic loci of Bradyrhizobium or closely related strains and have evolved toward a lower GC content with a higher substitution rate than the ancestral state. Meanwhile, nifDK on symbiosis plasmids clustered with nifDK on non-symbiotic loci in the tree representing all codon positions, and the GC content of symbiotic and non-symbiotic loci were similar. These results suggest that nif genes on symbiosis plasmids were derived from the non-symbiotic loci of Bradyrhizobium and have evolved with a similar evolutionary pattern and rate as the ancestral state. PMID:27431195

  14. Plant nodulation inducers enhance horizontal gene transfer of Azorhizobium caulinodans symbiosis island.

    Science.gov (United States)

    Ling, Jun; Wang, Hui; Wu, Ping; Li, Tao; Tang, Yu; Naseer, Nawar; Zheng, Huiming; Masson-Boivin, Catherine; Zhong, Zengtao; Zhu, Jun

    2016-11-29

    Horizontal gene transfer (HGT) of genomic islands is a driving force of bacterial evolution. Many pathogens and symbionts use this mechanism to spread mobile genetic elements that carry genes important for interaction with their eukaryotic hosts. However, the role of the host in this process remains unclear. Here, we show that plant compounds inducing the nodulation process in the rhizobium-legume mutualistic symbiosis also enhance the transfer of symbiosis islands. We demonstrate that the symbiosis island of the Sesbania rostrata symbiont, Azorhizobium caulinodans, is an 87.6-kb integrative and conjugative element (ICE Ac ) that is able to excise, form a circular DNA, and conjugatively transfer to a specific site of gly-tRNA gene of other rhizobial genera, expanding their host range. The HGT frequency was significantly increased in the rhizosphere. An ICE Ac -located LysR-family transcriptional regulatory protein AhaR triggered the HGT process in response to plant flavonoids that induce the expression of nodulation genes through another LysR-type protein, NodD. Our study suggests that rhizobia may sense rhizosphere environments and transfer their symbiosis gene contents to other genera of rhizobia, thereby broadening rhizobial host-range specificity.

  15. Involvement of β-carbonic anhydrase (β-CA) genes in bacterial genomic islands and horizontal transfer to protists.

    Science.gov (United States)

    Zolfaghari Emameh, Reza; Barker, Harlan R; Hytönen, Vesa P; Parkkila, Seppo

    2018-05-25

    Genomic islands (GIs) are a type of mobile genetic element (MGE) that are present in bacterial chromosomes. They consist of a cluster of genes which produce proteins that contribute to a variety of functions, including, but not limited to, regulation of cell metabolism, anti-microbial resistance, pathogenicity, virulence, and resistance to heavy metals. The genes carried in MGEs can be used as a trait reservoir in times of adversity. Transfer of genes using MGEs, occurring outside of reproduction, is called horizontal gene transfer (HGT). Previous literature has shown that numerous HGT events have occurred through endosymbiosis between prokaryotes and eukaryotes.Beta carbonic anhydrase (β-CA) enzymes play a critical role in the biochemical pathways of many prokaryotes and eukaryotes. We have previously suggested horizontal transfer of β-CA genes from plasmids of some prokaryotic endosymbionts to their protozoan hosts. In this study, we set out to identify β-CA genes that might have transferred between prokaryotic and protist species through HGT in GIs. Therefore, we investigated prokaryotic chromosomes containing β-CA-encoding GIs and utilized multiple bioinformatics tools to reveal the distinct movements of β-CA genes among a wide variety of organisms. Our results identify the presence of β-CA genes in GIs of several medically and industrially relevant bacterial species, and phylogenetic analyses reveal multiple cases of likely horizontal transfer of β-CA genes from GIs of ancestral prokaryotes to protists. IMPORTANCE The evolutionary process is mediated by mobile genetic elements (MGEs), such as genomic islands (GIs). A gene or set of genes in the GIs are exchanged between and within various species through horizontal gene transfer (HGT). Based on the crucial role that GIs can play in bacterial survival and proliferation, they were introduced as the environmental- and pathogen-associated factors. Carbonic anhydrases (CAs) are involved in many critical

  16. DELETION AND 5'CPG ISLAND METHYLATION OF p15 GENE IN BRAIN GLIOMA

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective: To investigate the abnormality of p15 gene in brain glioma and the correlation of it with occurrence or malignant progression of brain glioma. Methods: Deletion and 5'CPG island methylation of p15 gene were detected by the methods of PCR and PCR-based methylation in 56 cases of brain glioma. Results: Out of 43 cases of high grade glioma, 14 cases were found to have homozygous deletion of p15E1, while none of the 13 cases of low grade glioma was found to have deletion of p15E1 (P<0.05). Methylation of 5'CPG Island of p15 gene was found only in four cases of glioma. Conclusion: Abnormality of p15 gene may involved in the occurrence and malignant progression of brain glioma. Homozygous deletion of gene is the major mechanism of inactivation for p15 gene in brain glioma.

  17. The novel kasugamycin 2'-N-acetyltransferase gene aac(2')-IIa, carried by the IncP island, confers kasugamycin resistance to rice-pathogenic bacteria.

    Science.gov (United States)

    Yoshii, Atsushi; Moriyama, Hiromitsu; Fukuhara, Toshiyuki

    2012-08-01

    Kasugamycin (KSM), a unique aminoglycoside antibiotic, has been used in agriculture for many years to control not only rice blast caused by the fungus Magnaporthe grisea but also rice bacterial grain and seedling rot or rice bacterial brown stripe caused by Burkholderia glumae or Acidovorax avenae subsp. avenae, respectively. Since both bacterial pathogens are seed-borne and cause serious injury to rice seedlings, the emergence of KSM-resistant B. glumae and A. avenae isolates highlights the urgent need to understand the mechanism of resistance to KSM. Here, we identified a novel gene, aac(2')-IIa, encoding a KSM 2'-N-acetyltransferase from both KSM-resistant pathogens but not from KSM-sensitive bacteria. AAC(2')-IIa inactivates KSM, although it reveals no cross-resistance to other aminoglycosides. The aac(2')-IIa gene from B. glumae strain 5091 was identified within the IncP genomic island inserted into the bacterial chromosome, indicating the acquisition of this gene by horizontal gene transfer. Although excision activity of the IncP island and conjugational gene transfer was not detected under the conditions tested, circular intermediates containing the aac(2')-IIa gene were detected. These results indicate that the aac(2')-IIa gene had been integrated into the IncP island of a donor bacterial species. Molecular detection of the aac(2')-IIa gene could distinguish whether isolates are resistant or susceptible to KSM. This may contribute to the production of uninfected rice seeds and lead to the effective control of these pathogens by KSM.

  18. Past climate change on Sky Islands drives novelty in a core developmental gene network and its phenotype.

    Science.gov (United States)

    Favé, Marie-Julie; Johnson, Robert A; Cover, Stefan; Handschuh, Stephan; Metscher, Brian D; Müller, Gerd B; Gopalan, Shyamalika; Abouheif, Ehab

    2015-09-04

    A fundamental and enduring problem in evolutionary biology is to understand how populations differentiate in the wild, yet little is known about what role organismal development plays in this process. Organismal development integrates environmental inputs with the action of gene regulatory networks to generate the phenotype. Core developmental gene networks have been highly conserved for millions of years across all animals, and therefore, organismal development may bias variation available for selection to work on. Biased variation may facilitate repeatable phenotypic responses when exposed to similar environmental inputs and ecological changes. To gain a more complete understanding of population differentiation in the wild, we integrated evolutionary developmental biology with population genetics, morphology, paleoecology and ecology. This integration was made possible by studying how populations of the ant species Monomorium emersoni respond to climatic and ecological changes across five 'Sky Islands' in Arizona, which are mountain ranges separated by vast 'seas' of desert. Sky Islands represent a replicated natural experiment allowing us to determine how repeatable is the response of M. emersoni populations to climate and ecological changes at the phenotypic, developmental, and gene network levels. We show that a core developmental gene network and its phenotype has kept pace with ecological and climate change on each Sky Island over the last ~90,000 years before present (BP). This response has produced two types of evolutionary change within an ant species: one type is unpredictable and contingent on the pattern of isolation of Sky lsland populations by climate warming, resulting in slight changes in gene expression, organ growth, and morphology. The other type is predictable and deterministic, resulting in the repeated evolution of a novel wingless queen phenotype and its underlying gene network in response to habitat changes induced by climate warming. Our

  19. Molecular phylogenetics of Micromeria (Lamiaceae) in the Canary Islands, diversification and inter-island colonization patterns inferred from nuclear genes.

    Science.gov (United States)

    Puppo, Pamela; Curto, Manuel; Gusmão-Guedes, Joana; Cochofel, Jaqueline; Pérez de Paz, Pedro Luis; Bräuchler, Christian; Meimberg, Harald

    2015-08-01

    Here we reconstruct the evolutionary history of Micromeria in the Canary Islands using eight nuclear markers. Our results show two centers of diversification for Micromeria, one in the eastern islands Gran Canaria and Lanzarote, the other in the western islands, Tenerife, La Palma and El Hierro. Suggested directions of inter-island colonization are the following: Gran Canaria to Lanzarote and La Gomera; Tenerife to La Palma (from the paleoisland of Teno), to El Hierro (from the younger, central part), and to La Gomera and Madeira (from the paleoislands). Colonization of La Gomera probably occurred several times from Gran Canaria and Tenerife. The taxonomic implications of these results are discussed. Incongruence among the different markers was evaluated and, using next generation sequencing, we investigated if this incongruence is due to gene duplication. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Further evidence of an Amerindian contribution to the Polynesian gene pool on Easter Island.

    Science.gov (United States)

    Thorsby, E; Flåm, S T; Woldseth, B; Dupuy, B M; Sanchez-Mazas, A; Fernandez-Vina, M A

    2009-06-01

    Available evidence suggests a Polynesian origin of the Easter Island population. We recently found that some native Easter Islanders also carried some common American Indian (Amerindian) human leukocyte antigen (HLA) alleles, which probably were introduced before Europeans discovered the island in 1722. In this study, we report molecular genetic investigations of 21 other selected native Easter Islanders. Analysis of mitochondrial DNA and Y chromosome markers showed no traces of an Amerindian contribution. However, high-resolution genomic HLA typing showed that two individuals carried some other common Amerindian HLA alleles, different from those found in our previous investigations. The new data support our previous evidence of an Amerindian contribution to the gene pool on Easter Island.

  1. The Novel Kasugamycin 2′-N-Acetyltransferase Gene aac(2′)-IIa, Carried by the IncP Island, Confers Kasugamycin Resistance to Rice-Pathogenic Bacteria

    Science.gov (United States)

    Moriyama, Hiromitsu; Fukuhara, Toshiyuki

    2012-01-01

    Kasugamycin (KSM), a unique aminoglycoside antibiotic, has been used in agriculture for many years to control not only rice blast caused by the fungus Magnaporthe grisea but also rice bacterial grain and seedling rot or rice bacterial brown stripe caused by Burkholderia glumae or Acidovorax avenae subsp. avenae, respectively. Since both bacterial pathogens are seed-borne and cause serious injury to rice seedlings, the emergence of KSM-resistant B. glumae and A. avenae isolates highlights the urgent need to understand the mechanism of resistance to KSM. Here, we identified a novel gene, aac(2′)-IIa, encoding a KSM 2′-N-acetyltransferase from both KSM-resistant pathogens but not from KSM-sensitive bacteria. AAC(2′)-IIa inactivates KSM, although it reveals no cross-resistance to other aminoglycosides. The aac(2′)-IIa gene from B. glumae strain 5091 was identified within the IncP genomic island inserted into the bacterial chromosome, indicating the acquisition of this gene by horizontal gene transfer. Although excision activity of the IncP island and conjugational gene transfer was not detected under the conditions tested, circular intermediates containing the aac(2′)-IIa gene were detected. These results indicate that the aac(2′)-IIa gene had been integrated into the IncP island of a donor bacterial species. Molecular detection of the aac(2′)-IIa gene could distinguish whether isolates are resistant or susceptible to KSM. This may contribute to the production of uninfected rice seeds and lead to the effective control of these pathogens by KSM. PMID:22660700

  2. Identifying Pathogenicity Islands in Bacterial Pathogenomics Using Computational Approaches

    Directory of Open Access Journals (Sweden)

    Dongsheng Che

    2014-01-01

    Full Text Available High-throughput sequencing technologies have made it possible to study bacteria through analyzing their genome sequences. For instance, comparative genome sequence analyses can reveal the phenomenon such as gene loss, gene gain, or gene exchange in a genome. By analyzing pathogenic bacterial genomes, we can discover that pathogenic genomic regions in many pathogenic bacteria are horizontally transferred from other bacteria, and these regions are also known as pathogenicity islands (PAIs. PAIs have some detectable properties, such as having different genomic signatures than the rest of the host genomes, and containing mobility genes so that they can be integrated into the host genome. In this review, we will discuss various pathogenicity island-associated features and current computational approaches for the identification of PAIs. Existing pathogenicity island databases and related computational resources will also be discussed, so that researchers may find it to be useful for the studies of bacterial evolution and pathogenicity mechanisms.

  3. High CpG island methylation ofp16 gene and loss of p16 protein ...

    Indian Academy of Sciences (India)

    Navya

    employed to detect CpG island methylation in p16 promoter region and ... of Fallot;p16 gene;p16 protein;CpG islands;Methylation;Promoter regions ..... Our findings that p16 has a role in heart development is ... Asian Pac J Cancer Prev 15, 75-84. .... phenotype in colorectal cancer using a large population-based sample.

  4. A seven-gene CpG-island methylation panel predicts breast cancer progression

    International Nuclear Information System (INIS)

    Li, Yan; Melnikov, Anatoliy A.; Levenson, Victor; Guerra, Emanuela; Simeone, Pasquale; Alberti, Saverio; Deng, Youping

    2015-01-01

    DNA methylation regulates gene expression, through the inhibition/activation of gene transcription of methylated/unmethylated genes. Hence, DNA methylation profiling can capture pivotal features of gene expression in cancer tissues from patients at the time of diagnosis. In this work, we analyzed a breast cancer case series, to identify DNA methylation determinants of metastatic versus non-metastatic tumors. CpG-island methylation was evaluated on a 56-gene cancer-specific biomarker microarray in metastatic versus non-metastatic breast cancers in a multi-institutional case series of 123 breast cancer patients. Global statistical modeling and unsupervised hierarchical clustering were applied to identify a multi-gene binary classifier with high sensitivity and specificity. Network analysis was utilized to quantify the connectivity of the identified genes. Seven genes (BRCA1, DAPK1, MSH2, CDKN2A, PGR, PRKCDBP, RANKL) were found informative for prognosis of metastatic diffusion and were used to calculate classifier accuracy versus the entire data-set. Individual-gene performances showed sensitivities of 63–79 %, 53–84 % specificities, positive predictive values of 59–83 % and negative predictive values of 63–80 %. When modelled together, these seven genes reached a sensitivity of 93 %, 100 % specificity, a positive predictive value of 100 % and a negative predictive value of 93 %, with high statistical power. Unsupervised hierarchical clustering independently confirmed these findings, in close agreement with the accuracy measurements. Network analyses indicated tight interrelationship between the identified genes, suggesting this to be a functionally-coordinated module, linked to breast cancer progression. Our findings identify CpG-island methylation profiles with deep impact on clinical outcome, paving the way for use as novel prognostic assays in clinical settings. The online version of this article (doi:10.1186/s12885-015-1412-9) contains supplementary

  5. Upper crustal structure of Madeira Island revealed from ambient noise tomography

    Science.gov (United States)

    Matos, Catarina; Silveira, Graça; Matias, Luís; Caldeira, Rita; Ribeiro, M. Luísa; Dias, Nuno A.; Krüger, Frank; Bento dos Santos, Telmo

    2015-06-01

    We present the first image of the Madeira upper crustal structure, using ambient seismic noise tomography. 16 months of ambient noise, recorded in a dense network of 26 seismometers deployed across Madeira, allowed reconstructing Rayleigh wave Green's functions between receivers. Dispersion analysis was performed in the short period band from 1.0 to 4.0 s. Group velocity measurements were regionalized to obtain 2D tomographic images, with a lateral resolution of 2.0 km in central Madeira. Afterwards, the dispersion curves, extracted from each cell of the 2D group velocity maps, were inverted as a function of depth to obtain a 3D shear wave velocity model of the upper crust, from the surface to a depth of 2.0 km. The obtained 3D velocity model reveals features throughout the island that correlates well with surface geology and island evolution.

  6. Gene Silencing Triggers Polycomb Repressive Complex 2 Recruitment to CpG Islands Genome Wide

    DEFF Research Database (Denmark)

    Riising, Eva Madi; Vacher-Comet, Itys; Leblanc, Benjamin Olivier

    2014-01-01

    -wide ectopic PRC2 recruitment to endogenous PcG target genes found in other tissues. PRC2 binding analysis shows that it is restricted to nucleosome-free CpG islands (CGIs) of untranscribed genes. Our results show that it is the transcriptional state that governs PRC2 binding, and we propose that it binds...

  7. High CpG island methylation ofp16 gene and loss of p16 protein ...

    Indian Academy of Sciences (India)

    Navya

    :Tetralogy of Fallot;p16 gene;p16 protein;CpG islands;Methylation;Promoter regions ... of congenital heart disease, as well as the exclusion of previous history of ..... malignant progression of oral epithelial dysplasia: a prospective cohort study.

  8. Fine mapping of the EDA gene: A translocation breakpoint is associated with a CpG island that is transcribed

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, A.K.; Schlessinger, D. [Washington Univ. School of Medicine, St. Louis, MO (United States); Montonen, O. [Univ. of Helsinki (Finland)] [and others

    1996-01-01

    In order to identify the gene for human X-linked anhidrotic ectodermal dysplasia (EDA), a translocation breakpoint in a female with t(X;1)(q13.1;p36.3) and EDA (patient AK) was finely mapped. The EDA region contains five groups of rare-cutter restriction sites that define CpG islands. The two more centromeric of these islands are associated with transcripts of 3.5 kb and 1.8 kb. The third CpG island maps within <1 kb of the translocation breakpoint in patient AK, as indicated by a genomic rearrangement, and {approximately}100 kb centromeric from another previously mapped translocation breakpoint (patient AnLy). Northern analysis with a probe from this CpG island detected an {approximately}6-kb mRNA in several fetal tissues tested. An extended YAC contig of 1,200 kb with an average of fivefold coverage was constructed. The two most telomeric CpG islands map 350 kb telomeric of the two translocations. Taken together, the results suggest that the CpG island just proximal of the AK translocation breakpoint lies at the 5{prime} end of a candidate gene for EDA. 26 refs., 4 figs., 1 tab.

  9. The stealth episome: suppression of gene expression on the excised genomic island PPHGI-1 from Pseudomonas syringae pv. phaseolicola.

    Directory of Open Access Journals (Sweden)

    Scott A C Godfrey

    2011-03-01

    Full Text Available Pseudomonas syringae pv. phaseolicola is the causative agent of halo blight in the common bean, Phaseolus vulgaris. P. syringae pv. phaseolicola race 4 strain 1302A contains the avirulence gene avrPphB (syn. hopAR1, which resides on PPHGI-1, a 106 kb genomic island. Loss of PPHGI-1 from P. syringae pv. phaseolicola 1302A following exposure to the hypersensitive resistance response (HR leads to the evolution of strains with altered virulence. Here we have used fluorescent protein reporter systems to gain insight into the mobility of PPHGI-1. Confocal imaging of dual-labelled P. syringae pv. phaseolicola 1302A strain, F532 (dsRFP in chromosome and eGFP in PPHGI-1, revealed loss of PPHGI-1::eGFP encoded fluorescence during plant infection and when grown in vitro on extracted leaf apoplastic fluids. Fluorescence-activated cell sorting (FACS of fluorescent and non-fluorescent PPHGI-1::eGFP F532 populations showed that cells lost fluorescence not only when the GI was deleted, but also when it had excised and was present as a circular episome. In addition to reduced expression of eGFP, quantitative PCR on sub-populations separated by FACS showed that transcription of other genes on PPHGI-1 (avrPphB and xerC was also greatly reduced in F532 cells harbouring the excised PPHGI-1::eGFP episome. Our results show how virulence determinants located on mobile pathogenicity islands may be hidden from detection by host surveillance systems through the suppression of gene expression in the episomal state.

  10. RNA-Seq reveals seven promising candidate genes affecting the proportion of thick egg albumen in layer-type chickens.

    Science.gov (United States)

    Wan, Yi; Jin, Sihua; Ma, Chendong; Wang, Zhicheng; Fang, Qi; Jiang, Runshen

    2017-12-22

    Eggs with a much higher proportion of thick albumen are preferred in the layer industry, as they are favoured by consumers. However, the genetic factors affecting the thick egg albumen trait have not been elucidated. Using RNA sequencing, we explored the magnum transcriptome in 9 Rhode Island white layers: four layers with phenotypes of extremely high ratios of thick to thin albumen (high thick albumen, HTA) and five with extremely low ratios (low thick albumen, LTA). A total of 220 genes were differentially expressed, among which 150 genes were up-regulated and 70 were down-regulated in the HTA group compared with the LTA group. Gene Ontology (GO) analysis revealed that the up-regulated genes in HTA were mainly involved in a wide range of regulatory functions. In addition, a large number of these genes were related to glycosphingolipid biosynthesis, focal adhesion, ECM-receptor interactions and cytokine-cytokine receptor interactions. Based on functional analysis, ST3GAL4, FUT4, ITGA2, SDC3, PRLR, CDH4 and GALNT9 were identified as promising candidate genes for thick albumen synthesis and metabolism during egg formation. These results provide new insights into the molecular mechanisms of egg albumen traits and may contribute to future breeding strategies that optimise the proportion of thick egg albumen.

  11. Population structures of the red fox (Vulpes vulpes) on the Hokkaido Island, Japan, revealed by microsatellite analysis.

    Science.gov (United States)

    Oishi, Takuya; Uraguchi, Kohji; Takahashi, Kenichi; Masuda, Ryuichi

    2011-01-01

    In order to examine the population structures of the red fox (Vulpes vulpes) on the Hokkaido Island in Japan, we conducted analysis on 250 foxes from all over the island for 12 microsatellite loci. Assignment tests using the genotype data set showed that they were divided into 6 subpopulations. Of the 6, one was geographically isolated in the southern region and considered definitive subpopulation, whereas the other 5 were not. The slight differences among the latter 5 subpopulations were explained by the high adaptability and long dispersal of the red fox on the Hokkaido Island. Although there are few ecological data to explain the genetic differentiation of the southern population, we have proposed some hypotheses from the present ecological and geohistorical viewpoints. One convincing reason from the ecological viewpoint is the restriction of gene flow to southern Hokkaido from other areas due to geographical isolation resulting from the land shape. The other explanation is the geohistorical division of southern Hokkaido from other regions on the island during the last interglacial age, resulting in the isolation of the fox population.

  12. Significant genetic differentiation within the population of the Island of Corsica (France) revealed by y-chromosome analysis.

    Science.gov (United States)

    Ghiani, Maria Elena; Varesi, Laurent; Mitchell, Robert John; Vona, Giuseppe

    2009-12-01

    Using 10 Y-chromosome short tandem repeat allelic and haplotypic frequencies, we examined genetic variation within the population of Corsica and its relationship with other Mediterranean populations. The most significant finding is the high level of genetic differentiation within Corsica, with strong evidence of an effective barrier to male-mediated gene flow between the south and the rest of the island. This internal differentiation most probably results from low exogamy among small isolated populations and also from the orography of the island, with a central mountain chain running the length of the island restricting human movement. This physical barrier is reflected not only in present-day intraisland linguistic and genetic differences but also in the relatedness of Corsican regions to other Mediterranean groups. Northwest and Central Corsica are much closer to West Mediterranean populations, whereas South Corsica is closer to Central-North Sardinia and East Mediterranean populations.

  13. Seismic tomography model reveals mantle magma sources of recent volcanic activity at El Hierro Island (Canary Islands, Spain)

    Science.gov (United States)

    García-Yeguas, Araceli; Ibáñez, Jesús M.; Koulakov, Ivan; Jakovlev, Andrey; Romero-Ruiz, M. Carmen; Prudencio, Janire

    2014-12-01

    We present a 3-D model of P and S velocities beneath El Hierro Island, constructed using the traveltime data of more than 13 000 local earthquakes recorded by the Instituto Geográfico Nacional (IGN, Spain) in the period from 2011 July to 2012 September. The velocity models were performed using the LOTOS code for iterative passive source tomography. The results of inversion were thoroughly verified using different resolution and robustness tests. The results reveal that the majority of the onshore area of El Hierro is associated with a high-velocity anomaly observed down to 10-12-km depth. This anomaly is interpreted as the accumulation of solid igneous rocks erupted during the last 1 Myr and intrusive magmatic bodies. Below this high-velocity pattern, we observe a low-velocity anomaly, interpreted as a batch of magma coming from the mantle located beneath El Hierro. The boundary between the low- and high-velocity anomalies is marked by a prominent seismicity cluster, thought to represent anomalous stresses due to the interaction of the batch of magma with crust material. The areas of recent eruptions, Orchilla and La Restinga, are associated with low-velocity anomalies surrounding the main high-velocity block. These eruptions took place around the island where the crust is much weaker than the onshore area and where the melted material cannot penetrate. These results put constraints on the geological model that could explain the origin of the volcanism in oceanic islands, such as in the Canaries, which is not yet clearly understood.

  14. Revealing gene action for production characteristics by inbreeding ...

    African Journals Online (AJOL)

    Revealing gene action for production characteristics by inbreeding, based on a long-term selection ... The gene action involved in the expression of production characters was investigated, using the effect of the theoretical inbreeding ..... and predicted selection responses for growth, fat and lean traits in mice. J. Anim. Sci.

  15. Gene expression profiling in the ovary of Queen conch (Strombus gigas) exposed to environments with high tributyltin in the British Virgin Islands

    International Nuclear Information System (INIS)

    Titley-O'Neal, Cassander P.; Spade, Daniel J.; Zhang, Yanping; Kan, Rosalinda; Martyniuk, Christopher J.; Denslow, Nancy D.; MacDonald, Bruce A.

    2013-01-01

    Queen conch (Strombus gigas) are listed in CITES Appendix II. Populations may be declining due to anthropogenic inputs that include pollutants from boating activity. In the British Virgin Islands (BVI), some conch exhibit imposex, a condition in which male external genitalia are present in female conch. Previous studies suggest that tributyltin (TBT), an antifouling chemical used in boat paint, is correlated to increased incidence of imposex although the mechanisms leading to imposex are not known. The present study utilized a Queen conch microarray to measure the response of the ovarian transcriptome in conch inhabiting polluted environments with high TBT levels in the BVI. The polluted sites, Road Harbour (RH) and Trellis Bay (TB), are areas with high boating activity while the reference sites, Guana Island (GI) and Anegada (AN), are areas with low boating activity. There were 754 and 898 probes differentially expressed in the ovary of conch collected at RH and TB respectively compared to conch collected at GI. Of the genes that were differentially expressed at both sites, > 10% were shared suggesting that these sites have additional environmental factors influencing gene expression patterns. Functional enrichment analysis showed that the biological processes of cell proliferation, translation, and oxidative stress were over-represented in the polluted sites. Gene set enrichment analysis revealed that transcripts involved in the biological processes of general metabolism, immune, lipid metabolism, and stress were affected in conch from polluted environments. Interestingly, altered stress genes appeared to be more prevalent in conch collected from RH than TB, corresponding to the higher TBT load at RH compared to TB. Our study shows that stress pathways are affected in conch ovary in environments that experience heavy boating activity in the BVIs, although we are unable to directly link changes at the transcriptomics level to high TBT levels. Highlights:

  16. Gene expression profiling in the ovary of Queen conch (Strombus gigas) exposed to environments with high tributyltin in the British Virgin Islands

    Energy Technology Data Exchange (ETDEWEB)

    Titley-O' Neal, Cassander P. [Department of Biology, University of New Brunswick, Saint John, New Brunswick, Canada E2L 4L5 (Canada); Spade, Daniel J. [Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611 (United States); Zhang, Yanping [Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32611 (United States); Kan, Rosalinda; Martyniuk, Christopher J. [Department of Biology, University of New Brunswick, Saint John, New Brunswick, Canada E2L 4L5 (Canada); Denslow, Nancy D. [Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611 (United States); MacDonald, Bruce A., E-mail: bmacdon@unbsj.ca [Department of Biology, University of New Brunswick, Saint John, New Brunswick, Canada E2L 4L5 (Canada)

    2013-04-01

    Queen conch (Strombus gigas) are listed in CITES Appendix II. Populations may be declining due to anthropogenic inputs that include pollutants from boating activity. In the British Virgin Islands (BVI), some conch exhibit imposex, a condition in which male external genitalia are present in female conch. Previous studies suggest that tributyltin (TBT), an antifouling chemical used in boat paint, is correlated to increased incidence of imposex although the mechanisms leading to imposex are not known. The present study utilized a Queen conch microarray to measure the response of the ovarian transcriptome in conch inhabiting polluted environments with high TBT levels in the BVI. The polluted sites, Road Harbour (RH) and Trellis Bay (TB), are areas with high boating activity while the reference sites, Guana Island (GI) and Anegada (AN), are areas with low boating activity. There were 754 and 898 probes differentially expressed in the ovary of conch collected at RH and TB respectively compared to conch collected at GI. Of the genes that were differentially expressed at both sites, > 10% were shared suggesting that these sites have additional environmental factors influencing gene expression patterns. Functional enrichment analysis showed that the biological processes of cell proliferation, translation, and oxidative stress were over-represented in the polluted sites. Gene set enrichment analysis revealed that transcripts involved in the biological processes of general metabolism, immune, lipid metabolism, and stress were affected in conch from polluted environments. Interestingly, altered stress genes appeared to be more prevalent in conch collected from RH than TB, corresponding to the higher TBT load at RH compared to TB. Our study shows that stress pathways are affected in conch ovary in environments that experience heavy boating activity in the BVIs, although we are unable to directly link changes at the transcriptomics level to high TBT levels. Highlights:

  17. Progressive colonization and restricted gene flow shape island-dependent population structure in Galápagos marine iguanas (Amblyrhynchus cristatus).

    Science.gov (United States)

    Steinfartz, Sebastian; Glaberman, Scott; Lanterbecq, Deborah; Russello, Michael A; Rosa, Sabrina; Hanley, Torrance C; Marquez, Cruz; Snell, Howard L; Snell, Heidi M; Gentile, Gabriele; Dell'Olmo, Giacomo; Powell, Alessandro M; Caccone, Adalgisa

    2009-12-22

    Marine iguanas (Amblyrhynchus cristatus) inhabit the coastlines of large and small islands throughout the Galápagos archipelago, providing a rich system to study the spatial and temporal factors influencing the phylogeographic distribution and population structure of a species. Here, we analyze the microevolution of marine iguanas using the complete mitochondrial control region (CR) as well as 13 microsatellite loci representing more than 1200 individuals from 13 islands. CR data show that marine iguanas occupy three general clades: one that is widely distributed across the northern archipelago, and likely spread from east to west by way of the South Equatorial current, a second that is found mostly on the older eastern and central islands, and a third that is limited to the younger northern and western islands. Generally, the CR haplotype distribution pattern supports the colonization of the archipelago from the older, eastern islands to the younger, western islands. However, there are also signatures of recurrent, historical gene flow between islands after population establishment. Bayesian cluster analysis of microsatellite genotypes indicates the existence of twenty distinct genetic clusters generally following a one-cluster-per-island pattern. However, two well-differentiated clusters were found on the easternmost island of San Cristóbal, while nine distinct and highly intermixed clusters were found on youngest, westernmost islands of Isabela and Fernandina. High mtDNA and microsatellite genetic diversity were observed for populations on Isabela and Fernandina that may be the result of a recent population expansion and founder events from multiple sources. While a past genetic study based on pure FST analysis suggested that marine iguana populations display high levels of nuclear (but not mitochondrial) gene flow due to male-biased dispersal, the results of our sex-biased dispersal tests and the finding of strong genetic differentiation between islands do

  18. Genome-wide CpG island methylation analysis implicates novel genes in the pathogenesis of renal cell carcinoma

    OpenAIRE

    Ricketts, Christopher J.; Morris, Mark R.; Gentle, Dean; Brown, Michael; Wake, Naomi; Woodward, Emma R.; Clarke, Noel; Latif, Farida; Maher, Eamonn R.

    2012-01-01

    In order to identify novel candidate tumor suppressor genes (TSGs) implicated in renal cell carcinoma (RCC), we performed genome-wide methylation profiling of RCC using the HumanMethylation27 BeadChips to assess methylation at >14,000 genes. Two hundred and twenty hypermethylated probes representing 205 loci/genes were identified in genomic CpG islands. A subset of TSGs investigated in detail exhibited frequent tumor methylation, promoter methylation associated transcriptional silencing an...

  19. Genomic island excisions in Bordetella petrii

    Directory of Open Access Journals (Sweden)

    Levillain Erwan

    2009-07-01

    Full Text Available Abstract Background Among the members of the genus Bordetella B. petrii is unique, since it is the only species isolated from the environment, while the pathogenic Bordetellae are obligately associated with host organisms. Another feature distinguishing B. petrii from the other sequenced Bordetellae is the presence of a large number of mobile genetic elements including several large genomic regions with typical characteristics of genomic islands collectively known as integrative and conjugative elements (ICEs. These elements mainly encode accessory metabolic factors enabling this bacterium to grow on a large repertoire of aromatic compounds. Results During in vitro culture of Bordetella petrii colony variants appear frequently. We show that this variability can be attributed to the presence of a large number of metastable mobile genetic elements on its chromosome. In fact, the genome sequence of B. petrii revealed the presence of at least seven large genomic islands mostly encoding accessory metabolic functions involved in the degradation of aromatic compounds and detoxification of heavy metals. Four of these islands (termed GI1 to GI3 and GI6 are highly related to ICEclc of Pseudomonas knackmussii sp. strain B13. Here we present first data about the molecular characterization of these islands. We defined the exact borders of each island and we show that during standard culture of the bacteria these islands get excised from the chromosome. For all but one of these islands (GI5 we could detect circular intermediates. For the clc-like elements GI1 to GI3 of B. petrii we provide evidence that tandem insertion of these islands which all encode highly related integrases and attachment sites may also lead to incorporation of genomic DNA which originally was not part of the island and to the formation of huge composite islands. By integration of a tetracycline resistance cassette into GI3 we found this island to be rather unstable and to be lost from

  20. New genes of Xanthomonas citri subsp. citri involved in pathogenesis and adaptation revealed by a transposon-based mutant library.

    Science.gov (United States)

    Laia, Marcelo L; Moreira, Leandro M; Dezajacomo, Juliana; Brigati, Joice B; Ferreira, Cristiano B; Ferro, Maria I T; Silva, Ana C R; Ferro, Jesus A; Oliveira, Julio C F

    2009-01-16

    mutated genes are differentially expressed when the bacterium is grown in citrus leaves. Finally, comparative genomic analysis revealed that 5 mutated ORFs are in new putative pathogenicity islands. The identification of these new genes related with Xcc infection and virulence is a great step towards the understanding of plant-pathogen interactions and could allow the development of strategies to control citrus canker.

  1. Expansion of the known Klebsiella pneumoniae species gene pool by characterization of novel alien DNA islands integrated into tmRNA gene sites.

    Science.gov (United States)

    Zhang, Jie; van Aartsen, Jon Jurriaan; Jiang, Xiaofei; Shao, Yucheng; Tai, Cui; He, Xinyi; Tan, Zhilei; Deng, Zixin; Jia, Shiru; Rajakumar, Kumar; Ou, Hong-Yu

    2011-02-01

    Klebsiella pneumoniae is an important bacterial pathogen of man that is commonly associated with opportunistic and hospital-associated infections. Increasing levels of multiple-antibiotic resistance associated with this species pose a major emerging clinical problem. This organism also occurs naturally in other diverse environments, including the soil. Consistent with its varied lifestyle and membership of the Enterobacteriaceae family, K. pneumoniae genomes exhibit highly plastic architecture comprising a core genome backbone interspersed with numerous and varied alien genomic islands. In this study the size of the presently known K. pneumoniae pan-genome gene pool was estimated through analysis of complete sequences of three chromosomes and 31 plasmids belonging to K. pneumoniae strains. In addition, using a PCR-based strategy the genomic content of eight tRNA/tmRNA gene sites that serve as DNA insertion hotspots were investigated in 28 diverse environmental and clinical strains of K. pneumoniae. Sequencing and characterization of five newly identified horizontally-acquired tmRNA-associated islands further expanded the archived K. pneumoniae gene pool to a total of 7648 unique gene members. Large-scale investigation of the content of tRNA/tmRNA hotspots will be useful to identify and/or survey accessory sequences dispersed amongst hundreds to thousands of members of many key bacterial species. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Pan-cancer stratification of solid human epithelial tumors and cancer cell lines reveals commonalities and tissue-specific features of the CpG island methylator phenotype.

    Science.gov (United States)

    Sánchez-Vega, Francisco; Gotea, Valer; Margolin, Gennady; Elnitski, Laura

    2015-01-01

    The term CpG island methylator phenotype (CIMP) has been used to describe widespread DNA hypermethylation at CpG-rich genomic regions affecting clinically distinct subsets of cancer patients. Even though there have been numerous studies of CIMP in individual cancer types, a uniform analysis across tissues is still lacking. We analyze genome-wide patterns of CpG island hypermethylation in 5,253 solid epithelial tumors from 15 cancer types from TCGA and 23 cancer cell lines from ENCODE. We identify differentially methylated loci that define CIMP+ and CIMP- samples, and we use unsupervised clustering to provide a robust molecular stratification of tumor methylomes for 12 cancer types and all cancer cell lines. With a minimal set of 89 discriminative loci, we demonstrate accurate pan-cancer separation of the 12 CIMP+/- subpopulations, based on their average levels of methylation. Tumor samples in different CIMP subclasses show distinctive correlations with gene expression profiles and recurrence of somatic mutations, copy number variations, and epigenetic silencing. Enrichment analyses indicate shared canonical pathways and upstream regulators for CIMP-targeted regions across cancer types. Furthermore, genomic alterations showing consistent associations with CIMP+/- status include genes involved in DNA repair, chromatin remodeling genes, and several histone methyltransferases. Associations of CIMP status with specific clinical features, including overall survival in several cancer types, highlight the importance of the CIMP+/- designation for individual tumor evaluation and personalized medicine. We present a comprehensive computational study of CIMP that reveals pan-cancer commonalities and tissue-specific differences underlying concurrent hypermethylation of CpG islands across tumors. Our stratification of solid tumors and cancer cell lines based on CIMP status is data-driven and agnostic to tumor type by design, which protects against known biases that have hindered

  3. Cross-species transcriptomic approach reveals genes in hamster implantation sites.

    Science.gov (United States)

    Lei, Wei; Herington, Jennifer; Galindo, Cristi L; Ding, Tianbing; Brown, Naoko; Reese, Jeff; Paria, Bibhash C

    2014-12-01

    The mouse model has greatly contributed to understanding molecular mechanisms involved in the regulation of progesterone (P4) plus estrogen (E)-dependent blastocyst implantation process. However, little is known about contributory molecular mechanisms of the P4-only-dependent blastocyst implantation process that occurs in species such as hamsters, guineapigs, rabbits, pigs, rhesus monkeys, and perhaps humans. We used the hamster as a model of P4-only-dependent blastocyst implantation and carried out cross-species microarray (CSM) analyses to reveal differentially expressed genes at the blastocyst implantation site (BIS), in order to advance the understanding of molecular mechanisms of implantation. Upregulation of 112 genes and downregulation of 77 genes at the BIS were identified using a mouse microarray platform, while use of the human microarray revealed 62 up- and 38 down-regulated genes at the BIS. Excitingly, a sizable number of genes (30 up- and 11 down-regulated genes) were identified as a shared pool by both CSMs. Real-time RT-PCR and in situ hybridization validated the expression patterns of several up- and down-regulated genes identified by both CSMs at the hamster and mouse BIS to demonstrate the merit of CSM findings across species, in addition to revealing genes specific to hamsters. Functional annotation analysis found that genes involved in the spliceosome, proteasome, and ubiquination pathways are enriched at the hamster BIS, while genes associated with tight junction, SAPK/JNK signaling, and PPARα/RXRα signalings are repressed at the BIS. Overall, this study provides a pool of genes and evidence of their participation in up- and down-regulated cellular functions/pathways at the hamster BIS. © 2014 Society for Reproduction and Fertility.

  4. Core and symbiotic genes reveal nine Mesorhizobium genospecies and three symbiotic lineages among the rhizobia nodulating Cicer canariense in its natural habitat (La Palma, Canary Islands).

    Science.gov (United States)

    Armas-Capote, Natalia; Pérez-Yépez, Juan; Martínez-Hidalgo, Pilar; Garzón-Machado, Víctor; Del Arco-Aguilar, Marcelino; Velázquez, Encarna; León-Barrios, Milagros

    2014-03-01

    Cicer canariense is a threatened perennial wild chickpea endemic to the Canary Islands. In this study, rhizobia that nodulate this species in its natural habitats on La Palma (Canary Islands) were characterised. The genetic diversity and phylogeny were estimated by RAPD profiles, 16S-RFLP analysis and sequencing of the rrs, recA, glnII and nodC genes. 16S-RFLP grouped the isolates within the Mesorhizobium genus and distinguished nine different ribotypes. Four branches included minority ribotypes (3-5 isolates), whereas another five contained the predominant ribotypes that clustered with reference strains of M. tianshanense/M. gobiense/M. metallidurans, M. caraganae, M. opportunistum, M. ciceri and M. tamadayense. The sequences confirmed the RFLP groupings but resolved additional internal divergence within the M. caraganae group and outlined several potential novel species. The RAPD profiles showed a high diversity at the infraspecific level, except in the M. ciceri group. The nodC phylogeny resolved three symbiotic lineages. A small group of isolates had sequences identical to those of symbiovar ciceri and were only detected in M. ciceri isolates. Another group of sequences represented a novel symbiotic lineage that was associated with two particular chromosomal backgrounds. However, nodC sequences closely related to symbiovar loti predominated in most isolates, and they were detected in several chromosomal backgrounds corresponding to up to nine Mesorhizobium lineages. The results indicated that C. canariense is a promiscuous legume that can be nodulated by several rhizobial species and symbiotypes, which means it will be important to determine the combination of core and symbiotic genes that produce the most effective symbiosis. Copyright © 2013 Elsevier GmbH. All rights reserved.

  5. Progressive colonization and restricted gene flow shape island-dependent population structure in Galápagos marine iguanas (Amblyrhynchus cristatus

    Directory of Open Access Journals (Sweden)

    Snell Howard L

    2009-12-01

    Full Text Available Abstract Background Marine iguanas (Amblyrhynchus cristatus inhabit the coastlines of large and small islands throughout the Galápagos archipelago, providing a rich system to study the spatial and temporal factors influencing the phylogeographic distribution and population structure of a species. Here, we analyze the microevolution of marine iguanas using the complete mitochondrial control region (CR as well as 13 microsatellite loci representing more than 1200 individuals from 13 islands. Results CR data show that marine iguanas occupy three general clades: one that is widely distributed across the northern archipelago, and likely spread from east to west by way of the South Equatorial current, a second that is found mostly on the older eastern and central islands, and a third that is limited to the younger northern and western islands. Generally, the CR haplotype distribution pattern supports the colonization of the archipelago from the older, eastern islands to the younger, western islands. However, there are also signatures of recurrent, historical gene flow between islands after population establishment. Bayesian cluster analysis of microsatellite genotypes indicates the existence of twenty distinct genetic clusters generally following a one-cluster-per-island pattern. However, two well-differentiated clusters were found on the easternmost island of San Cristóbal, while nine distinct and highly intermixed clusters were found on youngest, westernmost islands of Isabela and Fernandina. High mtDNA and microsatellite genetic diversity were observed for populations on Isabela and Fernandina that may be the result of a recent population expansion and founder events from multiple sources. Conclusions While a past genetic study based on pure FST analysis suggested that marine iguana populations display high levels of nuclear (but not mitochondrial gene flow due to male-biased dispersal, the results of our sex-biased dispersal tests and the

  6. SIGI: score-based identification of genomic islands

    Directory of Open Access Journals (Sweden)

    Merkl Rainer

    2004-03-01

    Full Text Available Abstract Background Genomic islands can be observed in many microbial genomes. These stretches of DNA have a conspicuous composition with regard to sequence or encoded functions. Genomic islands are assumed to be frequently acquired via horizontal gene transfer. For the analysis of genome structure and the study of horizontal gene transfer, it is necessary to reliably identify and characterize these islands. Results A scoring scheme on codon frequencies Score_G1G2(cdn = log(f_G2(cdn / f_G1(cdn was utilized. To analyse genes of a species G1 and to test their relatedness to species G2, scores were determined by applying the formula to log-odds derived from mean codon frequencies of the two genomes. A non-redundant set of nearly 400 codon usage tables comprising microbial species was derived; its members were used alternatively at position G2. Genes having at least one score value above a species-specific and dynamically determined cut-off value were analysed further. By means of cluster analysis, genes were identified that comprise clusters of statistically significant size. These clusters were predicted as genomic islands. Finally and individually for each of these genes, the taxonomical relation among those species responsible for significant scores was interpreted. The validity of the approach and its limitations were made plausible by an extensive analysis of natural genes and synthetic ones aimed at modelling the process of gene amelioration. Conclusions The method reliably allows to identify genomic island and the likely origin of alien genes.

  7. Molecular genetic studies of natives on Easter Island: evidence of an early European and Amerindian contribution to the Polynesian gene pool.

    Science.gov (United States)

    Lie, B A; Dupuy, B M; Spurkland, A; Fernández-Viña, M A; Hagelberg, E; Thorsby, E

    2007-01-01

    Most archaeological and linguistic evidence suggest a Polynesian origin of the population of Easter Island (Rapanui), and this view has been supported by the identification of Polynesian mitochondrial DNA (mtDNA) polymorphisms in prehistoric skeletal remains. However, some evidence of an early South American contact also exists (the sweet potato, bottle gourd etc.), but genetic studies have so far failed to show an early Amerindian contribution to the gene pool on Easter Island. To address this issue, we analyzed mtDNA and Y chromosome markers and performed high-resolution human leukocyte antigen (HLA) genotyping of DNA harvested from previously collected sera of 48 reputedly nonadmixed native Easter Islanders. All individuals carried mtDNA types and HLA alleles previously found in Polynesia, and most men carried Y chromosome markers of Polynesian origin, providing further evidence of a Polynesian origin of the population of Easter Island. A few individuals carried HLA alleles and/or Y chromosome markers of European origin. More interestingly, some individuals carried the HLA alleles A*0212 and B*3905, which are of typical Amerindian origin. The genealogy of some of the individuals carrying these non-Polynesian HLA alleles and their haplotypic backgrounds suggest an introduction into Easter Island in the early 1800s, or earlier. Thus, there may have been an early European and Amerindian contribution to the Polynesian gene pool of Easter Island.

  8. Deletion and aberrant CpG island methylation of Caspase 8 gene in medulloblastoma.

    Science.gov (United States)

    Gonzalez-Gomez, Pilar; Bello, M Josefa; Inda, M Mar; Alonso, M Eva; Arjona, Dolores; Amiñoso, Cinthia; Lopez-Marin, Isabel; de Campos, Jose M; Sarasa, Jose L; Castresana, Javier S; Rey, Juan A

    2004-09-01

    Aberrant methylation of promoter CpG islands in human genes is an alternative genetic inactivation mechanism that contributes to the development of human tumors. Nevertheless, few studies have analyzed methylation in medulloblastomas. We determined the frequency of aberrant CpG island methylation for Caspase 8 (CASP8) in a group of 24 medulloblastomas arising in 8 adult and 16 pediatric patients. Complete methylation of CASP8 was found in 15 tumors (62%) and one case displayed hemimethylation. Three samples amplified neither of the two primer sets for methylated or unmethylated alleles, suggesting that genomic deletion occurred in the 5' flanking region of CASP8. Our findings suggest that methylation commonly contributes to CASP8 silencing in medulloblastomas and that homozygous deletion or severe sequence changes involving the promoter region may be another mechanism leading to CASP8 inactivation in this neoplasm.

  9. Prevalence of H63D, S65C, and C282Y hereditary hemochromatosis gene variants in Madeira Island (Portugal).

    Science.gov (United States)

    Spínola, Carla; Brehm, António; Spínola, Hélder

    2011-01-01

    Hereditary HFE Hemochromatosis is an inherited disorder of iron metabolism that results from mutations in the HFE gene. Almost all patients with hereditary hemochromatosis show a C282Y mutation in homozygosity or in compound heterozygosity with H63D. Also, the mutation S65C has been shown to be associated to a milder iron overload. Since allele and genotype frequencies of these three variants of the HFE gene vary between populations, the determination of their prevalence in Madeira Island will clarify the population susceptibility to hereditary hemochromatosis. One hundred and fifty-four samples from Madeira Island were genotyped for the three most common HFE gene mutations, H63D, C282Y, and S65C, by polymerase chain reaction followed by restriction fragment length polymorphism analysis. Results have shown a prevalence of 20.5%, 0.33%, and 1% for H63D, C282Y, and S65C, respectively. Accordingly to our estimates, both genotypes associated to hereditary hemochromatosis, C282Y homozygotes and C282/H63D compound heterozygotes, could be present in Madeira Island population in 1,648 individuals, which represents 0.65% of the total population.

  10. Mitochondrial control region I and microsatellite analyses of endangered Philippine hornbill species (Aves; Bucerotidae detect gene flow between island populations and genetic diversity loss

    Directory of Open Access Journals (Sweden)

    Sammler Svenja

    2012-10-01

    Full Text Available Abstract Background The Visayan Tarictic Hornbill (Penelopides panini and the Walden’s Hornbill (Aceros waldeni are two threatened hornbill species endemic to the western islands of the Visayas that constitute - between Luzon and Mindanao - the central island group of the Philippine archipelago. In order to evaluate their genetic diversity and to support efforts towards their conservation, we analyzed genetic variation in ~ 600 base pairs (bp of the mitochondrial control region I and at 12–19 nuclear microsatellite loci. The sampling covered extant populations, still occurring only on two islands (P. panini: Panay and Negros, A. waldeni: only Panay, and it was augmented with museum specimens of extinct populations from neighboring islands. For comparison, their less endangered (= more abundant sister taxa, the Luzon Tarictic Hornbill (P. manillae from the Luzon and Polillo Islands and the Writhed Hornbill (A. leucocephalus from Mindanao Island, were also included in the study. We reconstructed the population history of the two Penelopides species and assessed the genetic population structure of the remaining wild populations in all four species. Results Mitochondrial and nuclear data concordantly show a clear genetic separation according to the island of origin in both Penelopides species, but also unravel sporadic over-water movements between islands. We found evidence that deforestation in the last century influenced these migratory events. Both classes of markers and the comparison to museum specimens reveal a genetic diversity loss in both Visayan hornbill species, P. panini and A. waldeni, as compared to their more abundant relatives. This might have been caused by local extinction of genetically differentiated populations together with the dramatic decline in the abundance of the extant populations. Conclusions We demonstrated a loss in genetic diversity of P. panini and A. waldeni as compared to their sister taxa P. manillae and A

  11. Mitochondrial control region I and microsatellite analyses of endangered Philippine hornbill species (Aves; Bucerotidae) detect gene flow between island populations and genetic diversity loss.

    Science.gov (United States)

    Sammler, Svenja; Ketmaier, Valerio; Havenstein, Katja; Krause, Ulrike; Curio, Eberhard; Tiedemann, Ralph

    2012-10-12

    The Visayan Tarictic Hornbill (Penelopides panini) and the Walden's Hornbill (Aceros waldeni) are two threatened hornbill species endemic to the western islands of the Visayas that constitute - between Luzon and Mindanao - the central island group of the Philippine archipelago. In order to evaluate their genetic diversity and to support efforts towards their conservation, we analyzed genetic variation in ~ 600 base pairs (bp) of the mitochondrial control region I and at 12-19 nuclear microsatellite loci. The sampling covered extant populations, still occurring only on two islands (P. panini: Panay and Negros, A. waldeni: only Panay), and it was augmented with museum specimens of extinct populations from neighboring islands. For comparison, their less endangered (= more abundant) sister taxa, the Luzon Tarictic Hornbill (P. manillae) from the Luzon and Polillo Islands and the Writhed Hornbill (A. leucocephalus) from Mindanao Island, were also included in the study. We reconstructed the population history of the two Penelopides species and assessed the genetic population structure of the remaining wild populations in all four species. Mitochondrial and nuclear data concordantly show a clear genetic separation according to the island of origin in both Penelopides species, but also unravel sporadic over-water movements between islands. We found evidence that deforestation in the last century influenced these migratory events. Both classes of markers and the comparison to museum specimens reveal a genetic diversity loss in both Visayan hornbill species, P. panini and A. waldeni, as compared to their more abundant relatives. This might have been caused by local extinction of genetically differentiated populations together with the dramatic decline in the abundance of the extant populations. We demonstrated a loss in genetic diversity of P. panini and A. waldeni as compared to their sister taxa P. manillae and A. leucocephalus. Because of the low potential for gene flow

  12. Intercontinental gene flow among western arctic populations of Lesser Snow Geese

    Science.gov (United States)

    Shorey, Rainy I.; Scribner, Kim T.; Kanefsky, Jeannette; Samuel, Michael D.; Libants, Scot V.

    2011-01-01

    Quantifying the spatial genetic structure of highly vagile species of birds is important in predicting their degree of population demographic and genetic independence during changing environmental conditions, and in assessing their abundance and distribution. In the western Arctic, Lesser Snow Geese (Chen caerulescens caerulescens) provide an example useful for evaluating spatial population genetic structure and the relative contribution of male and female philopatry to breeding and wintering locales. We analyzed biparentally inherited microsatellite loci and maternally inherited mtDNA sequences from geese breeding at Wrangel Island (Russia) and Banks Island (Canada) to estimate gene flow among populations whose geographic overlap during breeding and winter differ. Significant differences in the frequencies of mtDNA haplotypes contrast with the homogeneity of allele frequencies for microsatellite loci. Coalescence simulations revealed high variability and asymmetry between males and females in rates and direction of gene flow between populations. Our results highlight the importance of wintering areas to demographic independence and spatial genetic structure of these populations. Male-mediated gene flow among the populations on northern Wrangel Island, southern Wrangel Island, and Banks Island has been substantial. A high rate of female-mediated gene flow from southern Wrangel Island to Banks Island suggests that population exchange can be achieved when populations winter in a common area. Conversely, when birds from different breeding populations do not share a common wintering area, the probability of population exchange is likely to be dramatically reduced.

  13. Specific patterns of gene space organisation revealed in wheat by using the combination of barley and wheat genomic resources

    Directory of Open Access Journals (Sweden)

    Waugh Robbie

    2010-12-01

    Full Text Available Abstract Background Because of its size, allohexaploid nature and high repeat content, the wheat genome has always been perceived as too complex for efficient molecular studies. We recently constructed the first physical map of a wheat chromosome (3B. However gene mapping is still laborious in wheat because of high redundancy between the three homoeologous genomes. In contrast, in the closely related diploid species, barley, numerous gene-based markers have been developed. This study aims at combining the unique genomic resources developed in wheat and barley to decipher the organisation of gene space on wheat chromosome 3B. Results Three dimensional pools of the minimal tiling path of wheat chromosome 3B physical map were hybridised to a barley Agilent 15K expression microarray. This led to the fine mapping of 738 barley orthologous genes on wheat chromosome 3B. In addition, comparative analyses revealed that 68% of the genes identified were syntenic between the wheat chromosome 3B and barley chromosome 3 H and 59% between wheat chromosome 3B and rice chromosome 1, together with some wheat-specific rearrangements. Finally, it indicated an increasing gradient of gene density from the centromere to the telomeres positively correlated with the number of genes clustered in islands on wheat chromosome 3B. Conclusion Our study shows that novel structural genomics resources now available in wheat and barley can be combined efficiently to overcome specific problems of genetic anchoring of physical contigs in wheat and to perform high-resolution comparative analyses with rice for deciphering the organisation of the wheat gene space.

  14. Biogeographical Evidences Help Revealing the Origin of Hainan Island.

    Directory of Open Access Journals (Sweden)

    Hua Zhu

    Full Text Available Both the continental or island origin of Hainan, and the Indo-Malaysian or East Asian affinity of its flora, are debatable. In this study, 196 families, 1283 genera and 3894 species of Hainan plants were recognized. Patterns of seed plant distribution were quantified at the generic and the family levels. The floras of Vietnam, and the adjacent Guangxi and Guangdong provinces of mainland China, were compared with Hainan. The results showed that the flora of Hainan Island is dominated by families and genera with tropical distributions. Among its floristic elements, tropical Asian distributions make up 23.85% of the total flora, while East Asian distributions contribute only 3.74%. There are only 7 genera and c. 10% of species endemic to Hainan Island. The Hainan flora has strong similarities to the flora of Vietnam at the family and the generic levels, and also to the flora of Guangxi, but less with the adjacent Guangdong province. The main conclusions are: Hainan's flora is tropical in nature with a strongly tropical Asian affinity, and it has very low endemism at the generic and species levels, which implies a continental origin. We conjecture that Hainan Island could have been adjacent to northern Vietnam and the Guangxi at least in Eocene. This suggestion is supported by palaeobotanical, palaeomagnetic and volcanism studies.

  15. The KL24 gene cluster and a genomic island encoding a Wzy polymerase contribute genes needed for synthesis of the K24 capsular polysaccharide by the multiply antibiotic resistant Acinetobacter baumannii isolate RCH51.

    Science.gov (United States)

    Kenyon, Johanna J; Kasimova, Anastasiya A; Shneider, Mikhail M; Shashkov, Alexander S; Arbatsky, Nikolay P; Popova, Anastasiya V; Miroshnikov, Konstantin A; Hall, Ruth M; Knirel, Yuriy A

    2017-03-01

    The whole-genome sequence of the multiply antibiotic resistant Acinetobacter baumannii isolate RCH51 belonging to sequence type ST103 (Institut Pasteur scheme) revealed that the set of genes at the capsule locus, KL24, includes four genes predicted to direct the synthesis of 3-acetamido-3,6-dideoxy-d-galactose (d-Fuc3NAc), and this sugar was found in the capsular polysaccharide (CPS). One of these genes, fdtE, encodes a novel bifunctional protein with an N-terminal FdtA 3,4-ketoisomerase domain and a C-terminal acetyltransferase domain. KL24 lacks a gene encoding a Wzy polymerase to link the oligosaccharide K units to form the CPS found associated with isolate RCH51, and a wzy gene was found in a small genomic island (GI) near the cpn60 gene. This GI is in precisely the same location as another GI carrying wzy and atr genes recently found in several A. baumannii isolates, but it does not otherwise resemble it. The CPS isolated from RCH51, studied by sugar analysis and 1D and 2D 1H and 13C NMR spectroscopy, revealed that the K unit has a branched pentasaccharide structure made up of Gal, GalNAc and GlcNAc residues with d-Fuc3NAc as a side branch, and the K units are linked via a β-d-GlcpNAc-(1→3)-β-d-Galp linkage formed by the Wzy encoded by the GI. The functions of the glycosyltransferases encoded by KL24 were assigned to formation of specific bonds. A correspondence between the order of the genes in KL24 and other KL and the order of the linkages they form was noted, and this may be useful in future predictions of glycosyltransferase specificities.

  16. Cryptorchestia ruffoi sp. n. from the island of Rhodes (Greece, revealed by morphological and phylogenetic analysis (Crustacea, Amphipoda, Talitridae

    Directory of Open Access Journals (Sweden)

    Domenico Davolos

    2017-02-01

    Full Text Available A new Cryptorchestia species, Cryptorchestia ruffoi Latella & Vonk, sp. n. from the island of Rhodes in south-eastern Greece, can be distinguished on the basis of morphological and phylogenetic data. Morphological analysis and DNA sequencing of mitochondrial and nuclear protein-coding genes indicated that this species is related to C. cavimana (Cyprus and C. garbinii (Mediterranean regions, with a recent northward expansion. Results supported a genetic separation between the Cryptorchestia species of the east Mediterranean regions and those of the northeast Atlantic volcanic islands examined in this study (C. canariensis, C. gomeri, C. guancha, and C. stocki from the Canary islands, C. monticola from Madeira, and C. chevreuxi from the Azores. The Mediterranean and Atlantic Cryptorchestia species appear to be also morphologically distinct. Cryptorchestia ruffoi sp. n., C. cavimana, C. garbinii, and C. kosswigi (Turkish coast clearly have a small lobe on the male gnathopod 1 merus. This character was the main diagnostic difference between Cryptorchestia (sensu Lowry, 2013 and Orchestia. However, among the six northeast Atlantic island Cryptorchestia species only C. stocki has a small lobe on the merus of gnathopod 1. Reduction or loss of the lobe in the Atlantic Island species cannot be ruled out; however, molecular phylogenetic analysis leads us to presume that this lobe independently evolved between the east Mediterranean Cryptorchestia species and C. stocki from Gran Canaria.

  17. Molecular Subtyping of Primary Prostate Cancer Reveals Specific and Shared Target Genes of Different ETS Rearrangements

    Directory of Open Access Journals (Sweden)

    Paula Paulo

    2012-07-01

    Full Text Available This work aimed to evaluate whether ETS transcription factors frequently involved in rearrangements in prostate carcinomas (PCa, namely ERG and ETV1, regulate specific or shared target genes. We performed differential expression analysis on nine normal prostate tissues and 50 PCa enriched for different ETS rearrangements using exon-level expression microarrays, followed by in vitro validation using cell line models. We found specific deregulation of 57 genes in ERG-positive PCa and 15 genes in ETV1-positive PCa, whereas deregulation of 27 genes was shared in both tumor subtypes. We further showed that the expression of seven tumor-associated ERG target genes (PLA1A, CACNA1D, ATP8A2, HLA-DMB, PDE3B, TDRD1, and TMBIM1 and two tumor-associated ETV1 target genes (FKBP10 and GLYATL2 was significantly affected by specific ETS silencing in VCaP and LNCaP cell line models, respectively, whereas the expression of three candidate ERG and ETV1 shared targets (GRPR, KCNH8, and TMEM45B was significantly affected by silencing of either ETS. Interestingly, we demonstrate that the expression of TDRD1, the topmost overexpressed gene of our list of ERG-specific candidate targets, is inversely correlated with the methylation levels of a CpG island found at -66 bp of the transcription start site in PCa and that TDRD1 expression is regulated by direct binding of ERG to the CpG island in VCaP cells. We conclude that ETS transcription factors regulate specific and shared target genes and that TDRD1, FKBP10, and GRPR are promising therapeutic targets and can serve as diagnostic markers for molecular subtypes of PCa harboring specific fusion gene rearrangements.

  18. Common variant in myocilin gene is associated with high myopia in isolated population of Korcula Island, Croatia.

    LENUS (Irish Health Repository)

    Vatavuk, Zoran

    2012-01-31

    AIM: To study the association between genetic variants in myocilin and collagen type I alpha 1 genes and high myopia in an isolated island population. METHODS: A total of 944 examinees from the genetic epidemiology study conducted on the island of Korcula, Croatia, were included in the study. We selected 2 short nucleotide polymorphisms (SNP) available in our genome-wide scan set of SNPs that were previously associated with high myopia and used them to replicate previous claims of possible association. RESULTS: Nineteen cases of high myopia, defined as the refraction of <\\/=-6.00 diopters, were identified and included in the analysis. We showed that rs2075555 in the COL1A1 gene was not associated with high myopia. In contrast, rs2421853 in the myocilin gene was significantly associated in both bivariate (P=0.006) and age- and sex-adjusted analysis (P=0.049). CONCLUSION: Myocilin seems to be a very strong candidate for explaining some of the pathophysiological pathways leading to the development of both glaucoma and high myopia. As our finding was obtained in a relatively under-powered sample, further research and replication of these results is needed.

  19. Targeted and genome-scale methylomics reveals gene body signatures in human cell lines

    Science.gov (United States)

    Ball, Madeleine Price; Li, Jin Billy; Gao, Yuan; Lee, Je-Hyuk; LeProust, Emily; Park, In-Hyun; Xie, Bin; Daley, George Q.; Church, George M.

    2012-01-01

    Cytosine methylation, an epigenetic modification of DNA, is a target of growing interest for developing high throughput profiling technologies. Here we introduce two new, complementary techniques for cytosine methylation profiling utilizing next generation sequencing technology: bisulfite padlock probes (BSPPs) and methyl sensitive cut counting (MSCC). In the first method, we designed a set of ~10,000 BSPPs distributed over the ENCODE pilot project regions to take advantage of existing expression and chromatin immunoprecipitation data. We observed a pattern of low promoter methylation coupled with high gene body methylation in highly expressed genes. Using the second method, MSCC, we gathered genome-scale data for 1.4 million HpaII sites and confirmed that gene body methylation in highly expressed genes is a consistent phenomenon over the entire genome. Our observations highlight the usefulness of techniques which are not inherently or intentionally biased in favor of only profiling particular subsets like CpG islands or promoter regions. PMID:19329998

  20. Defense islands in bacterial and archaeal genomes and prediction of novel defense systems.

    Science.gov (United States)

    Makarova, Kira S; Wolf, Yuri I; Snir, Sagi; Koonin, Eugene V

    2011-11-01

    The arms race between cellular life forms and viruses is a major driving force of evolution. A substantial fraction of bacterial and archaeal genomes is dedicated to antivirus defense. We analyzed the distribution of defense genes and typical mobilome components (such as viral and transposon genes) in bacterial and archaeal genomes and demonstrated statistically significant clustering of antivirus defense systems and mobile genes and elements in genomic islands. The defense islands are enriched in putative operons and contain numerous overrepresented gene families. A detailed sequence analysis of the proteins encoded by genes in these families shows that many of them are diverged variants of known defense system components, whereas others show features, such as characteristic operonic organization, that are suggestive of novel defense systems. Thus, genomic islands provide abundant material for the experimental study of bacterial and archaeal antivirus defense. Except for the CRISPR-Cas systems, different classes of defense systems, in particular toxin-antitoxin and restriction-modification systems, show nonrandom clustering in defense islands. It remains unclear to what extent these associations reflect functional cooperation between different defense systems and to what extent the islands are genomic "sinks" that accumulate diverse nonessential genes, particularly those acquired via horizontal gene transfer. The characteristics of defense islands resemble those of mobilome islands. Defense and mobilome genes are nonrandomly associated in islands, suggesting nonadaptive evolution of the islands via a preferential attachment-like mechanism underpinned by the addictive properties of defense systems such as toxins-antitoxins and an important role of horizontal mobility in the evolution of these islands.

  1. Global methylation profiling of lymphoblastoid cell lines reveals epigenetic contributions to autism spectrum disorders and a novel autism candidate gene, RORA, whose protein product is reduced in autistic brain

    Science.gov (United States)

    Nguyen, AnhThu; Rauch, Tibor A.; Pfeifer, Gerd P.; Hu, Valerie W.

    2010-01-01

    Autism is currently considered a multigene disorder with epigenetic influences. To investigate the contribution of DNA methylation to autism spectrum disorders, we have recently completed large-scale methylation profiling by CpG island microarray analysis of lymphoblastoid cell lines derived from monozygotic twins discordant for diagnosis of autism and their nonautistic siblings. Methylation profiling revealed many candidate genes differentially methylated between discordant MZ twins as well as between both twins and nonautistic siblings. Bioinformatics analysis of the differentially methylated genes demonstrated enrichment for high-level functions including gene transcription, nervous system development, cell death/survival, and other biological processes implicated in autism. The methylation status of 2 of these candidate genes, BCL-2 and retinoic acid-related orphan receptor alpha (RORA), was further confirmed by bisulfite sequencing and methylation-specific PCR, respectively. Immunohistochemical analyses of tissue arrays containing slices of the cerebellum and frontal cortex of autistic and age- and sex-matched control subjects revealed decreased expression of RORA and BCL-2 proteins in the autistic brain. Our data thus confirm the role of epigenetic regulation of gene expression via differential DNA methylation in idiopathic autism, and furthermore link molecular changes in a peripheral cell model with brain pathobiology in autism.—Nguyen, A., Rauch, T. A., Pfeifer, G. P., Hu, V. W. Global methylation profiling of lymphoblastoid cell lines reveals epigenetic contributions to autism spectrum disorders and a novel autism candidate gene, RORA, whose protein product is reduced in autistic brain. PMID:20375269

  2. Heat islands over Mumbai as revealed by autorecorded thermograph data

    Science.gov (United States)

    Srivastava, A. K.; Voogt, James; Kshirsagar, S. R.; Srivastava, Kavita

    2016-02-01

    This study examined hourly temperature data of two locations of Mumbai metropolitan city. One data point (Coloba, Mumbai) is in centre of the city and the other one (Santacruz, Mumbai) is at the airport. The study finds that there were many occasions when night-time hourly temperatures over the city centre were considerably higher than that of the airport, even though temperature at the time of sunset at both the places was nearly same. In this study, the occasions, when hourly night-time temperature over city was more than that of the airport by objectively defined threshold value (3.0 ∘C in this study) for most of the hours in the night, were termed as heat island events. Analysis of the study reveals that these events are mostly confined to November-February months. The study also found that frequency of such events has doubled in recent two decades in comparison to the earlier two decades.

  3. Integration of the blaNDM-1 carbapenemase gene into Proteus genomic island 1 (PGI1-PmPEL) in a Proteus mirabilis clinical isolate.

    Science.gov (United States)

    Girlich, Delphine; Dortet, Laurent; Poirel, Laurent; Nordmann, Patrice

    2015-01-01

    To decipher the mechanisms and their associated genetic determinants responsible for β-lactam resistance in a Proteus mirabilis clinical isolate. The entire genetic structure surrounding the β-lactam resistance genes was characterized by PCR, gene walking and DNA sequencing. Genes encoding the carbapenemase NDM-1 and the ESBL VEB-6 were located in a 38.5 kb MDR structure, which itself was inserted into a new variant of the Proteus genomic island 1 (PGI1). This new PGI1-PmPEL variant of 64.4 kb was chromosomally located, as an external circular form in the P. mirabilis isolate, suggesting potential mobility. This is the first known description of the bla(NDM-1) gene in a genomic island structure, which might further enhance the spread of the bla(NDM-1) carbapenemase gene among enteric pathogens. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Iron homeostasis in Arabidopsis thaliana: transcriptomic analyses reveal novel FIT-regulated genes, iron deficiency marker genes and functional gene networks.

    Science.gov (United States)

    Mai, Hans-Jörg; Pateyron, Stéphanie; Bauer, Petra

    2016-10-03

    FIT (FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR) is the central regulator of iron uptake in Arabidopsis thaliana roots. We performed transcriptome analyses of six day-old seedlings and roots of six week-old plants using wild type, a fit knock-out mutant and a FIT over-expression line grown under iron-sufficient or iron-deficient conditions. We compared genes regulated in a FIT-dependent manner depending on the developmental stage of the plants. We assembled a high likelihood dataset which we used to perform co-expression and functional analysis of the most stably iron deficiency-induced genes. 448 genes were found FIT-regulated. Out of these, 34 genes were robustly FIT-regulated in root and seedling samples and included 13 novel FIT-dependent genes. Three hundred thirty-one genes showed differential regulation in response to the presence and absence of FIT only in the root samples, while this was the case for 83 genes in the seedling samples. We assembled a virtual dataset of iron-regulated genes based on a total of 14 transcriptomic analyses of iron-deficient and iron-sufficient wild-type plants to pinpoint the best marker genes for iron deficiency and analyzed this dataset in depth. Co-expression analysis of this dataset revealed 13 distinct regulons part of which predominantly contained functionally related genes. We could enlarge the list of FIT-dependent genes and discriminate between genes that are robustly FIT-regulated in roots and seedlings or only in one of those. FIT-regulated genes were mostly induced, few of them were repressed by FIT. With the analysis of a virtual dataset we could filter out and pinpoint new candidates among the most reliable marker genes for iron deficiency. Moreover, co-expression and functional analysis of this virtual dataset revealed iron deficiency-induced and functionally distinct regulons.

  5. Whole genome DNA methylation: beyond genes silencing

    OpenAIRE

    Tirado-Magallanes, Roberto; Rebbani, Khadija; Lim, Ricky; Pradhan, Sriharsa; Benoukraf, Touati

    2016-01-01

    The combination of DNA bisulfite treatment with high-throughput sequencing technologies has enabled investigation of genome-wide DNA methylation at near base pair level resolution, far beyond that of the kilobase-long canonical CpG islands that initially revealed the biological relevance of this covalent DNA modification. The latest high-resolution studies have revealed a role for very punctual DNA methylation in chromatin plasticity, gene regulation and splicing. Here, we aim to outline the ...

  6. Extracting gene expression patterns and identifying co-expressed genes from microarray data reveals biologically responsive processes

    Directory of Open Access Journals (Sweden)

    Paules Richard S

    2007-11-01

    Full Text Available Abstract Background A common observation in the analysis of gene expression data is that many genes display similarity in their expression patterns and therefore appear to be co-regulated. However, the variation associated with microarray data and the complexity of the experimental designs make the acquisition of co-expressed genes a challenge. We developed a novel method for Extracting microarray gene expression Patterns and Identifying co-expressed Genes, designated as EPIG. The approach utilizes the underlying structure of gene expression data to extract patterns and identify co-expressed genes that are responsive to experimental conditions. Results Through evaluation of the correlations among profiles, the magnitude of variation in gene expression profiles, and profile signal-to-noise ratio's, EPIG extracts a set of patterns representing co-expressed genes. The method is shown to work well with a simulated data set and microarray data obtained from time-series studies of dauer recovery and L1 starvation in C. elegans and after ultraviolet (UV or ionizing radiation (IR-induced DNA damage in diploid human fibroblasts. With the simulated data set, EPIG extracted the appropriate number of patterns which were more stable and homogeneous than the set of patterns that were determined using the CLICK or CAST clustering algorithms. However, CLICK performed better than EPIG and CAST with respect to the average correlation between clusters/patterns of the simulated data. With real biological data, EPIG extracted more dauer-specific patterns than CLICK. Furthermore, analysis of the IR/UV data revealed 18 unique patterns and 2661 genes out of approximately 17,000 that were identified as significantly expressed and categorized to the patterns by EPIG. The time-dependent patterns displayed similar and dissimilar responses between IR and UV treatments. Gene Ontology analysis applied to each pattern-related subset of co-expressed genes revealed underlying

  7. A systems level approach reveals new gene regulatory modules in the developing ear

    OpenAIRE

    Chen, Jingchen; Tambalo, Monica; Barembaum, Meyer; Ranganathan, Ramya; Simões-Costa, Marcos; Bronner, Marianne E.; Streit, Andrea

    2017-01-01

    The inner ear is a complex vertebrate sense organ, yet it arises from a simple epithelium, the otic placode. Specification towards otic fate requires diverse signals and transcriptional inputs that act sequentially and/or in parallel. Using the chick embryo, we uncover novel genes in the gene regulatory network underlying otic commitment and reveal dynamic changes in gene expression. Functional analysis of selected transcription factors reveals the genetic hierarchy underlying the transition ...

  8. Statistical analyses of conserved features of genomic islands in bacteria.

    Science.gov (United States)

    Guo, F-B; Xia, Z-K; Wei, W; Zhao, H-L

    2014-03-17

    We performed statistical analyses of five conserved features of genomic islands of bacteria. Analyses were made based on 104 known genomic islands, which were identified by comparative methods. Four of these features include sequence size, abnormal G+C content, flanking tRNA gene, and embedded mobility gene, which are frequently investigated. One relatively new feature, G+C homogeneity, was also investigated. Among the 104 known genomic islands, 88.5% were found to fall in the typical length of 10-200 kb and 80.8% had G+C deviations with absolute values larger than 2%. For the 88 genomic islands whose hosts have been sequenced and annotated, 52.3% of them were found to have flanking tRNA genes and 64.7% had embedded mobility genes. For the homogeneity feature, 85% had an h homogeneity index less than 0.1, indicating that their G+C content is relatively uniform. Taking all the five features into account, 87.5% of 88 genomic islands had three of them. Only one genomic island had only one conserved feature and none of the genomic islands had zero features. These statistical results should help to understand the general structure of known genomic islands. We found that larger genomic islands tend to have relatively small G+C deviations relative to absolute values. For example, the absolute G+C deviations of 9 genomic islands longer than 100,000 bp were all less than 5%. This is a novel but reasonable result given that larger genomic islands should have greater restrictions in their G+C contents, in order to maintain the stable G+C content of the recipient genome.

  9. Transcriptome analysis reveals key differentially expressed genes involved in wheat grain development

    Directory of Open Access Journals (Sweden)

    Yonglong Yu

    2016-04-01

    Full Text Available Wheat seed development is an important physiological process of seed maturation and directly affects wheat yield and quality. In this study, we performed dynamic transcriptome microarray analysis of an elite Chinese bread wheat cultivar (Jimai 20 during grain development using the GeneChip Wheat Genome Array. Grain morphology and scanning electron microscope observations showed that the period of 11–15 days post-anthesis (DPA was a key stage for the synthesis and accumulation of seed starch. Genome-wide transcriptional profiling and significance analysis of microarrays revealed that the period from 11 to 15 DPA was more important than the 15–20 DPA stage for the synthesis and accumulation of nutritive reserves. Series test of cluster analysis of differential genes revealed five statistically significant gene expression profiles. Gene ontology annotation and enrichment analysis gave further information about differentially expressed genes, and MapMan analysis revealed expression changes within functional groups during seed development. Metabolic pathway network analysis showed that major and minor metabolic pathways regulate one another to ensure regular seed development and nutritive reserve accumulation. We performed gene co-expression network analysis to identify genes that play vital roles in seed development and identified several key genes involved in important metabolic pathways. The transcriptional expression of eight key genes involved in starch and protein synthesis and stress defense was further validated by qRT-PCR. Our results provide new insight into the molecular mechanisms of wheat seed development and the determinants of yield and quality.

  10. Phenotype specific analyses reveal distinct regulatory mechanism for chronically activated p53.

    Directory of Open Access Journals (Sweden)

    Kristina Kirschner

    2015-03-01

    Full Text Available The downstream functions of the DNA binding tumor suppressor p53 vary depending on the cellular context, and persistent p53 activation has recently been implicated in tumor suppression and senescence. However, genome-wide information about p53-target gene regulation has been derived mostly from acute genotoxic conditions. Using ChIP-seq and expression data, we have found distinct p53 binding profiles between acutely activated (through DNA damage and chronically activated (in senescent or pro-apoptotic conditions p53. Compared to the classical 'acute' p53 binding profile, 'chronic' p53 peaks were closely associated with CpG-islands. Furthermore, the chronic CpG-island binding of p53 conferred distinct expression patterns between senescent and pro-apoptotic conditions. Using the p53 targets seen in the chronic conditions together with external high-throughput datasets, we have built p53 networks that revealed extensive self-regulatory 'p53 hubs' where p53 and many p53 targets can physically interact with each other. Integrating these results with public clinical datasets identified the cancer-associated lipogenic enzyme, SCD, which we found to be directly repressed by p53 through the CpG-island promoter, providing a mechanistic link between p53 and the 'lipogenic phenotype', a hallmark of cancer. Our data reveal distinct phenotype associations of chronic p53 targets that underlie specific gene regulatory mechanisms.

  11. Microdiversification of a Pelagic Polynucleobacter Species Is Mainly Driven by Acquisition of Genomic Islands from a Partially Interspecific Gene Pool

    Science.gov (United States)

    Schmidt, Johanna; Jezberová, Jitka; Koll, Ulrike; Hahn, Martin W.

    2016-01-01

    ABSTRACT Microdiversification of a planktonic freshwater bacterium was studied by comparing 37 Polynucleobacter asymbioticus strains obtained from three geographically separated sites in the Austrian Alps. Genome comparison of nine strains revealed a core genome of 1.8 Mb, representing 81% of the average genome size. Seventy-five percent of the remaining flexible genome is clustered in genomic islands (GIs). Twenty-four genomic positions could be identified where GIs are potentially located. These positions are occupied strain specifically from a set of 28 GI variants, classified according to similarities in their gene content. One variant, present in 62% of the isolates, encodes a pathway for the degradation of aromatic compounds, and another, found in 78% of the strains, contains an operon for nitrate assimilation. Both variants were shown in ecophysiological tests to be functional, thus providing the potential for microniche partitioning. In addition, detected interspecific horizontal exchange of GIs indicates a large gene pool accessible to Polynucleobacter species. In contrast to core genes, GIs are spread more successfully across spatially separated freshwater habitats. The mobility and functional diversity of GIs allow for rapid evolution, which may be a key aspect for the ubiquitous occurrence of Polynucleobacter bacteria. IMPORTANCE Assessing the ecological relevance of bacterial diversity is a key challenge for current microbial ecology. The polyphasic approach which was applied in this study, including targeted isolation of strains, genome analysis, and ecophysiological tests, is crucial for the linkage of genetic and ecological knowledge. Particularly great importance is attached to the high number of closely related strains which were investigated, represented by genome-wide average nucleotide identities (ANI) larger than 97%. The extent of functional diversification found on this narrow phylogenetic scale is compelling. Moreover, the transfer of

  12. IS3 profiling identifies the enterohaemorrhagic Escherichia coli O-island 62 in a distinct enteroaggregative E. coli lineage

    Directory of Open Access Journals (Sweden)

    Okeke Iruka N

    2011-03-01

    Full Text Available Abstract Background Enteroaggregative Escherichia coli (EAEC are important diarrhoeal pathogens that are defined by a HEp-2 adherence assay performed in specialist laboratories. Multilocus sequence typing (MLST has revealed that aggregative adherence is convergent, providing an explanation for why not all EAEC hybridize with the plasmid-derived probe for this category, designated CVD432. Some EAEC lineages are globally disseminated or more closely associated with disease. Results To identify genetic loci conserved within significant EAEC lineages, but absent from non-EAEC, IS3-based PCR profiles were generated for 22 well-characterised EAEC strains. Six bands that were conserved among, or missing from, specific EAEC lineages were cloned and sequenced. One band corresponded to the aggR gene, a plasmid-encoded regulator that has been used as a diagnostic target but predominantly detects EAEC bearing the plasmid already marked by CVD432. The sequence from a second band was homologous to an open-reading frame within the cryptic enterohaemorrhagic E. coli (EHEC O157 genomic island, designated O-island 62. Screening of an additional 46 EAEC strains revealed that the EHEC O-island 62 was only present in those EAEC strains belonging to the ECOR phylogenetic group D, largely comprised of sequence type (ST complexes 31, 38 and 394. Conclusions The EAEC 042 gene orf1600, which lies within the EAEC equivalent of O-island 62 island, can be used as a marker for EAEC strains belonging to the ECOR phylogenetic group D. The discovery of EHEC O-island 62 in EAEC validates the genetic profiling approach for identifying conserved loci among phylogenetically related strains.

  13. Distribution patterns of Babesia gibsoni infection in hunting dogs from nine Japanese islands.

    Science.gov (United States)

    El-Dakhly, Khaled Mohamed; Goto, Minami; Noishiki, Kaori; El-Nahass, El-Shaymaa; Sakai, Hiroki; Yanai, Tokuma; Takashima, Yasuhiro

    2015-04-01

    Canine babesiosis constitutes a major global veterinary medical problem caused by tick-borne hemoparasites Babesia gibsoni and Babesia canis. Babesia gibsoni induces more severe clinical signs and is mainly transmitted by the ixodid Haemaphysalis longicornis. In Japan, B. gibsoni is primarily found in the western districts, with few records in the eastern parts. The aim of the current investigation was to evaluate distribution patterns of B. gibsoni infection in 9 Japanese islands and peninsulas using direct microscopy and PCR. Therefore, 196 hunting dogs were randomly sampled during the period from March to September 2011. Ages and sexes of dogs were identified. Direct microscopy of Giemsa-stained blood smear revealed pear-shaped piroplasms of B. gibsoni in 3 (1.6%) dogs. PCR was done initially with the universal primer set (B18S-F and B18S-R) amplifying the 1,665-bp portion of the 18S rRNA gene, followed by the specific primer set (Bg18F1 and Bg18R2) amplifying 2,363-bp fragments of the same gene. Accordingly, 84 (42.9%) and 8 (4.1%) dogs were positive, respectively. The current investigation shows that canine babesiosis was recorded in all islands except for Sado Island, Atsumi Peninsula, and Tanegashima Island. The highest infection rate was detected in the main island of Okinawa, while the lowest was on Ishigaki Island. Both sexes were non-significantly infected. However, the diversity of infection in islands was significantly different (P < 0.05). Although B. gibsoni has been previously found in western and eastern Japan, the present work highlights the prevalence of infection in many Japanese districts, including islands and peninsulas, giving realistic data that can facilitate treatment and control.

  14. Microsatellite Analysis of the Population Genetic Structure of Anolis carolinensis Introduced to the Ogasawara Islands.

    Science.gov (United States)

    Sugawara, Hirotaka; Takahashi, Hiroo; Hayashi, Fumio

    2015-01-01

    DNA analysis can reveal the origins and dispersal patterns of invasive species. The green anole Anolis carolinensis is one such alien animal, which has been dispersed widely by humans from its native North America to many Pacific Ocean islands. In the Ogasawara (Bonin) Islands, this anole was recorded from Chichi-jima at the end of the 1960s, and then from Haha-jima in the early 1980s. These two islands are inhabited. In 2013, it was also found on the uninhabited Ani-jima, close to Chichi-jima. Humans are thought to have introduced the anole to Haha-jima, while the mode of introduction to Ani-jima is unknown. To clarify its dispersal patterns within and among these three islands, we assessed the fine-scale population genetic structure using five microsatellite loci. The results show a homogeneous genetic structure within islands, but different genetic structures among islands, suggesting that limited gene flow occurs between islands. The recently established Ani-jima population may have originated from several individuals simultaneously, or by repeated immigration from Chichi-jima. We must consider frequent incursions among these islands to control these invasive lizard populations and prevent their negative impact on native biodiversity.

  15. Ancient islands and modern invasions: disparate phylogeographic histories among Hispaniola's endemic birds.

    Science.gov (United States)

    Sly, Nicholas D; Townsend, Andrea K; Rimmer, Christopher C; Townsend, Jason M; Latta, Steven C; Lovette, Irby J

    2011-12-01

    With its large size, complex topography and high number of avian endemics, Hispaniola appears to be a likely candidate for the in situ speciation of its avifauna, despite the worldwide rarity of avian speciation within single islands. We used multilocus comparative phylogeography techniques to examine the pattern and history of divergence in 11 endemic birds representing potential within-island speciation events. Haplotype and allele networks from mitochondrial ND2 and nuclear intron loci reveal a consistent pattern: phylogeographic divergence within or between closely related species is correlated with the likely distribution of ancient sea barriers that once divided Hispaniola into several smaller paleo-islands. Coalescent and mitochondrial clock dating of divergences indicate species-specific response to different geological events over the wide span of the island's history. We found no evidence that ecological or topographical complexity generated diversity, either by creating open niches or by restricting long-term gene flow. Thus, no true within-island speciation appears to have occurred among the species sampled on Hispaniola. Divergence events predating the merging of Hispaniola's paleo-island blocks cannot be considered in situ divergence, and postmerging divergence in response to episodic island segmentation by marine flooding probably represents in situ vicariance or interarchipelago speciation by dispersal. Our work highlights the necessity of considering island geologic history while investigating the speciation-area relationship in birds and other taxa. © 2011 Blackwell Publishing Ltd.

  16. Structural, Geochemical, and Isotopic Studies on Magmatic Dyke Swarms of the South Shetland Islands Volcanic Arc, West Antarctica - Revealing the Geodynamic History

    Science.gov (United States)

    Kraus, S.; Miller, H.

    2003-12-01

    Between 2000 and 2002 areas of up to 100,000 m2 have been mapped at several locations of the South Shetland Islands, mainly on King George and Livingston Islands. A structural analysis of the dykes and the host rocks was undertaken, and about 250 dykes were sampled for geochemical studies. On Livingston Island six different strike directions were identified, yielding a reliable relative time sequence as deduced from field-relationships. Geochemically, these dykes can be separated into five different groups, correlating with the different strike directions, one of those groups comprising two directions. Analysis of the structural data shows, that at least on Livingston Island only minor changes of the tensional situation occurred. Geochemical data reveal that all dykes of the South Shetland Islands belong to a calc-alkaline, arc-related suite, ranging from primitive basalts to highly differentiated rhyolites. Interpretation of Sr isotopic data of the dykes proves difficult, as there are indications for sea-water induced Sr-alteration. Nd isotopic analysis yield better results, revealing a three-stage development from the oldest dykes (ɛ Nd -0.2 to 0.6) on Livingston Island towards a second, younger group (ɛ Nd 2.8 to 4.2, also Livingston), terminating with a third one (ɛ Nd 5.2 to 7.6), which includes the youngest dykes on Livingston and all dykes on King George and also Penguin Island. Either two mantle sources were involved, or the amount of crustal contamination changed considerately with time. It may have been high during initial arc volcanism, because of a still unstretched crust, then decreasing continually with progressing volcanism. In any case, the pattern reflects a chronological sequence corresponding with other authors' hypothesis of a migrating arc volcanism from SW to NE, i.e. from Livingston (older dykes) towards King George Island (younger dykes). Pb isotopic data, plottet together with MORB- and sediment-samples dredged from the Drake Passage

  17. Defense Islands in Bacterial and Archaeal Genomes and Prediction of Novel Defense Systems ▿†‡

    Science.gov (United States)

    Makarova, Kira S.; Wolf, Yuri I.; Snir, Sagi; Koonin, Eugene V.

    2011-01-01

    The arms race between cellular life forms and viruses is a major driving force of evolution. A substantial fraction of bacterial and archaeal genomes is dedicated to antivirus defense. We analyzed the distribution of defense genes and typical mobilome components (such as viral and transposon genes) in bacterial and archaeal genomes and demonstrated statistically significant clustering of antivirus defense systems and mobile genes and elements in genomic islands. The defense islands are enriched in putative operons and contain numerous overrepresented gene families. A detailed sequence analysis of the proteins encoded by genes in these families shows that many of them are diverged variants of known defense system components, whereas others show features, such as characteristic operonic organization, that are suggestive of novel defense systems. Thus, genomic islands provide abundant material for the experimental study of bacterial and archaeal antivirus defense. Except for the CRISPR-Cas systems, different classes of defense systems, in particular toxin-antitoxin and restriction-modification systems, show nonrandom clustering in defense islands. It remains unclear to what extent these associations reflect functional cooperation between different defense systems and to what extent the islands are genomic “sinks” that accumulate diverse nonessential genes, particularly those acquired via horizontal gene transfer. The characteristics of defense islands resemble those of mobilome islands. Defense and mobilome genes are nonrandomly associated in islands, suggesting nonadaptive evolution of the islands via a preferential attachment-like mechanism underpinned by the addictive properties of defense systems such as toxins-antitoxins and an important role of horizontal mobility in the evolution of these islands. PMID:21908672

  18. Evolutionary forces shaping genomic islands of population differentiation in humans

    Directory of Open Access Journals (Sweden)

    Hofer Tamara

    2012-03-01

    Full Text Available Abstract Background Levels of differentiation among populations depend both on demographic and selective factors: genetic drift and local adaptation increase population differentiation, which is eroded by gene flow and balancing selection. We describe here the genomic distribution and the properties of genomic regions with unusually high and low levels of population differentiation in humans to assess the influence of selective and neutral processes on human genetic structure. Methods Individual SNPs of the Human Genome Diversity Panel (HGDP showing significantly high or low levels of population differentiation were detected under a hierarchical-island model (HIM. A Hidden Markov Model allowed us to detect genomic regions or islands of high or low population differentiation. Results Under the HIM, only 1.5% of all SNPs are significant at the 1% level, but their genomic spatial distribution is significantly non-random. We find evidence that local adaptation shaped high-differentiation islands, as they are enriched for non-synonymous SNPs and overlap with previously identified candidate regions for positive selection. Moreover there is a negative relationship between the size of islands and recombination rate, which is stronger for islands overlapping with genes. Gene ontology analysis supports the role of diet as a major selective pressure in those highly differentiated islands. Low-differentiation islands are also enriched for non-synonymous SNPs, and contain an overly high proportion of genes belonging to the 'Oncogenesis' biological process. Conclusions Even though selection seems to be acting in shaping islands of high population differentiation, neutral demographic processes might have promoted the appearance of some genomic islands since i as much as 20% of islands are in non-genic regions ii these non-genic islands are on average two times shorter than genic islands, suggesting a more rapid erosion by recombination, and iii most loci are

  19. Genomic evidence of geographically widespread effect of gene flow from polar bears into brown bears.

    Science.gov (United States)

    Cahill, James A; Stirling, Ian; Kistler, Logan; Salamzade, Rauf; Ersmark, Erik; Fulton, Tara L; Stiller, Mathias; Green, Richard E; Shapiro, Beth

    2015-03-01

    Polar bears are an arctic, marine adapted species that is closely related to brown bears. Genome analyses have shown that polar bears are distinct and genetically homogeneous in comparison to brown bears. However, these analyses have also revealed a remarkable episode of polar bear gene flow into the population of brown bears that colonized the Admiralty, Baranof and Chichagof islands (ABC islands) of Alaska. Here, we present an analysis of data from a large panel of polar bear and brown bear genomes that includes brown bears from the ABC islands, the Alaskan mainland and Europe. Our results provide clear evidence that gene flow between the two species had a geographically wide impact, with polar bear DNA found within the genomes of brown bears living both on the ABC islands and in the Alaskan mainland. Intriguingly, while brown bear genomes contain up to 8.8% polar bear ancestry, polar bear genomes appear to be devoid of brown bear ancestry, suggesting the presence of a barrier to gene flow in that direction. © 2014 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  20. A genome-wide map of aberrantly expressed chromosomal islands in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Castanos-Velez Esmeralda

    2006-09-01

    Full Text Available Abstract Background Cancer development is accompanied by genetic phenomena like deletion and amplification of chromosome parts or alterations of chromatin structure. It is expected that these mechanisms have a strong effect on regional gene expression. Results We investigated genome-wide gene expression in colorectal carcinoma (CRC and normal epithelial tissues from 25 patients using oligonucleotide arrays. This allowed us to identify 81 distinct chromosomal islands with aberrant gene expression. Of these, 38 islands show a gain in expression and 43 a loss of expression. In total, 7.892 genes (25.3% of all human genes are located in aberrantly expressed islands. Many chromosomal regions that are linked to hereditary colorectal cancer show deregulated expression. Also, many known tumor genes localize to chromosomal islands of misregulated expression in CRC. Conclusion An extensive comparison with published CGH data suggests that chromosomal regions known for frequent deletions in colon cancer tend to show reduced expression. In contrast, regions that are often amplified in colorectal tumors exhibit heterogeneous expression patterns: even show a decrease of mRNA expression. Because for several islands of deregulated expression chromosomal aberrations have never been observed, we speculate that additional mechanisms (like abnormal states of regional chromatin also have a substantial impact on the formation of co-expression islands in colorectal carcinoma.

  1. Molecular characterization of Aedes aegypti (L. (Diptera: Culicidae of Easter Island based on analysis of the mitochondrial ND4 gene

    Directory of Open Access Journals (Sweden)

    Claudia Andrea Núñez

    2016-06-01

    Full Text Available ABSTRACT Aedes aegypti mosquitoes are the main vector of viruses Dengue, Zika and Chikungunya. Shortly after the first report of the dengue vector Ae. aegypti in Easter Island (Rapa Nui in late 2000, the first disease outbreak dengue occurred. Viral serotyping during the 2002 outbreak revealed a close relationship with Pacific DENV-1 genotype IV viruses, supporting the idea that the virus most likely originated in Tahiti. Mitochondrial NADH dehydrogenase subunit 4 (ND4 DNA sequences generated from 68 specimens of Ae. aegypti from Easter Island reporting a unique finding of a single maternal lineage of Ae. aegypti on Easter Island.

  2. HLA in anthropology: the enigma of Easter Island.

    Science.gov (United States)

    Sanchez-Mazas, Alicia; Thorsby, Erik

    2013-01-01

    In this article, we first present four significant cases where human leukocyte antigen (HLA) studies have been useful for the reconstruction of human peopling history on the worldwide scale; i.e., the spread of modern humans from East Africa, the colonization of East Asia along two geographic routes, the co-evolution of genes and languages in Africa, and the peopling of Europe through a main northward migration. These examples show that natural selection did not erase the genetic signatures of our past migrations in the HLA genetic diversity patterns observed today. In the second part, we summarize our studies on Easter Island. Using genomic HLA typing, we could trace an introduction of HLA alleles of native American (Amerindian) origin to Easter Island before the Peruvian slave trades; i.e., before the 1860s, and provide suggestive evidence that they may have already been introduced in prehistoric time. Our results give further support to an initial Polynesian population of the island, but also reveal an early contribution by Amerindians. Together, our data illustrate the usefulness of typing for HLA alleles to complement genetic analyses in anthropological investigations.

  3. Genes but not genomes reveal bacterial domestication of Lactococcus lactis.

    Directory of Open Access Journals (Sweden)

    Delphine Passerini

    Full Text Available BACKGROUND: The population structure and diversity of Lactococcus lactis subsp. lactis, a major industrial bacterium involved in milk fermentation, was determined at both gene and genome level. Seventy-six lactococcal isolates of various origins were studied by different genotyping methods and thirty-six strains displaying unique macrorestriction fingerprints were analyzed by a new multilocus sequence typing (MLST scheme. This gene-based analysis was compared to genomic characteristics determined by pulsed-field gel electrophoresis (PFGE. METHODOLOGY/PRINCIPAL FINDINGS: The MLST analysis revealed that L. lactis subsp. lactis is essentially clonal with infrequent intra- and intergenic recombination; also, despite its taxonomical classification as a subspecies, it displays a genetic diversity as substantial as that within several other bacterial species. Genome-based analysis revealed a genome size variability of 20%, a value typical of bacteria inhabiting different ecological niches, and that suggests a large pan-genome for this subspecies. However, the genomic characteristics (macrorestriction pattern, genome or chromosome size, plasmid content did not correlate to the MLST-based phylogeny, with strains from the same sequence type (ST differing by up to 230 kb in genome size. CONCLUSION/SIGNIFICANCE: The gene-based phylogeny was not fully consistent with the traditional classification into dairy and non-dairy strains but supported a new classification based on ecological separation between "environmental" strains, the main contributors to the genetic diversity within the subspecies, and "domesticated" strains, subject to recent genetic bottlenecks. Comparison between gene- and genome-based analyses revealed little relationship between core and dispensable genome phylogenies, indicating that clonal diversification and phenotypic variability of the "domesticated" strains essentially arose through substantial genomic flux within the dispensable

  4. A report on the outbreak of Zika virus on Easter Island, South Pacific, 2014.

    Science.gov (United States)

    Tognarelli, J; Ulloa, S; Villagra, E; Lagos, J; Aguayo, C; Fasce, R; Parra, B; Mora, J; Becerra, N; Lagos, N; Vera, L; Olivares, B; Vilches, M; Fernández, J

    2016-03-01

    Zika virus (ZIKV) is an emerging mosquito-borne flavivirus circulating in Asia and Africa. In 2013, a large outbreak was reported on the archipelago of French Polynesia. In this study, we report the detection and molecular characterization of Zika virus for the first time in Chile from an outbreak among the inhabitants of Easter Island. A total of 89 samples from patients suspected of having ZIKV infection were collected between the period from January to May, 2014. Molecular diagnosis of the virus was performed by RT-PCR followed by the sequencing of the region containing the NS5 gene. A comparison of the viral nucleic acid sequence with those of other strains of ZIKA virus was performed using the MEGA software. Fifty-one samples were found positive for ZIKV by RT-PCR analysis. Further analysis of the NS5 gene revealed that the ZIKV strains identified in Easter Island were most closely related to those found in French Polynesia (99.8 to 99.9% nt and 100% aa sequence identity). These results strongly suggest that the transmission pathway leading to the introduction of Zika virus on Easter Island has its origin in French Polynesia.

  5. EuGI: a novel resource for studying genomic islands to facilitate horizontal gene transfer detection in eukaryotes.

    Science.gov (United States)

    Clasen, Frederick Johannes; Pierneef, Rian Ewald; Slippers, Bernard; Reva, Oleg

    2018-05-03

    Genomic islands (GIs) are inserts of foreign DNA that have potentially arisen through horizontal gene transfer (HGT). There are evidences that GIs can contribute significantly to the evolution of prokaryotes. The acquisition of GIs through HGT in eukaryotes has, however, been largely unexplored. In this study, the previously developed GI prediction tool, SeqWord Gene Island Sniffer (SWGIS), is modified to predict GIs in eukaryotic chromosomes. Artificial simulations are used to estimate ratios of predicting false positive and false negative GIs by inserting GIs into different test chromosomes and performing the SWGIS v2.0 algorithm. Using SWGIS v2.0, GIs are then identified in 36 fungal, 22 protozoan and 8 invertebrate genomes. SWGIS v2.0 predicts GIs in large eukaryotic chromosomes based on the atypical nucleotide composition of these regions. Averages for predicting false negative and false positive GIs were 20.1% and 11.01% respectively. A total of 10,550 GIs were identified in 66 eukaryotic species with 5299 of these GIs coding for at least one functional protein. The EuGI web-resource, freely accessible at http://eugi.bi.up.ac.za , was developed that allows browsing the database created from identified GIs and genes within GIs through an interactive and visual interface. SWGIS v2.0 along with the EuGI database, which houses GIs identified in 66 different eukaryotic species, and the EuGI web-resource, provide the first comprehensive resource for studying HGT in eukaryotes.

  6. Systems-level analysis of risk genes reveals the modular nature of schizophrenia.

    Science.gov (United States)

    Liu, Jiewei; Li, Ming; Luo, Xiong-Jian; Su, Bing

    2018-05-19

    Schizophrenia (SCZ) is a complex mental disorder with high heritability. Genetic studies (especially recent genome-wide association studies) have identified many risk genes for schizophrenia. However, the physical interactions among the proteins encoded by schizophrenia risk genes remain elusive and it is not known whether the identified risk genes converge on common molecular networks or pathways. Here we systematically investigated the network characteristics of schizophrenia risk genes using the high-confidence protein-protein interactions (PPI) from the human interactome. We found that schizophrenia risk genes encode a densely interconnected PPI network (P = 4.15 × 10 -31 ). Compared with the background genes, the schizophrenia risk genes in the interactome have significantly higher degree (P = 5.39 × 10 -11 ), closeness centrality (P = 7.56 × 10 -11 ), betweeness centrality (P = 1.29 × 10 -11 ), clustering coefficient (P = 2.22 × 10 -2 ), and shorter average shortest path length (P = 7.56 × 10 -11 ). Based on the densely interconnected PPI network, we identified 48 hub genes and 4 modules formed by highly interconnected schizophrenia genes. We showed that the proteins encoded by schizophrenia hub genes have significantly more direct physical interactions. Gene ontology (GO) analysis revealed that cell adhesion, cell cycle, immune system response, and GABR-receptor complex categories were enriched in the modules formed by highly interconnected schizophrenia risk genes. Our study reveals that schizophrenia risk genes encode a densely interconnected molecular network and demonstrates the modular nature of schizophrenia. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. 'Candidatus Phytoplasma noviguineense', a novel taxon associated with Bogia coconut syndrome and banana wilt disease on the island of New Guinea.

    Science.gov (United States)

    Miyazaki, Akio; Shigaki, Toshiro; Koinuma, Hiroaki; Iwabuchi, Nozomu; Rauka, Gou Bue; Kembu, Alfred; Saul, Josephine; Watanabe, Kiyoto; Nijo, Takamichi; Maejima, Kensaku; Yamaji, Yasuyuki; Namba, Shigetou

    2018-01-01

    Bogia coconut syndrome (BCS) is one of the lethal yellowing (LY)-type diseases associated with phytoplasma presence that are seriously threatening coconut cultivation worldwide. It has recently emerged, and is rapidly spreading in northern parts of the island of New Guinea. BCS-associated phytoplasmas collected in different regions were compared in terms of 16S rRNA gene sequences, revealing high identity among them represented by strain BCS-Bo R . Comparative analysis of the 16S rRNA gene sequences revealed that BCS-Bo R shared less than a 97.5 % similarity with other species of 'Candidatus Phytoplasma', with a maximum value of 96.08 % (with strain LY; GenBank accession no. U18747). This result indicates the necessity and propriety of a novel taxon for BCS phytoplasmas according to the recommendations of the IRPCM. Phylogenetic analysis was also conducted on 16S rRNA gene sequences, resulting in a monophyletic cluster composed of BCS-Bo R and other LY-associated phytoplasmas. Other phytoplasmas on the island of New Guinea associated with banana wilt and arecanut yellow leaf diseases showed high similarities to BCS-Bo R and were closely related to BCS phytoplasmas. Based on the uniqueness of their 16S rRNA gene sequences, a novel taxon 'Ca.Phytoplasma noviguineense' is proposed for these phytoplasmas found on the island of New Guinea, with strain BCS-Bo R (GenBank accession no. LC228755) as the reference strain. The novel taxon is described in detail, including information on the symptoms of associated diseases and additional genetic features of the secY gene and rp operon.

  8. Study on the Mitochondrial Genome of Sea Island Cotton (Gossypium barbadense) by BAC Library Screening

    Institute of Scientific and Technical Information of China (English)

    SU Ai-guo; LI Shuang-shuang; LIU Guo-zheng; LEI Bin-bin; KANG Ding-ming; LI Zhao-hu; MA Zhi-ying; HUA Jin-ping

    2014-01-01

    The plant mitochondrial genome displays complex features, particularly in terms of cytoplasmic male sterility (CMS). Therefore, research on the cotton mitochondrial genome may provide important information for analyzing genome evolution and exploring the molecular mechanism of CMS. In this paper, we present a preliminary study on the mitochondrial genome of sea island cotton (Gossypium barbadense) based on positive clones from the bacterial artiifcial chromosome (BAC) library. Thirty-ifve primers designed with the conserved sequences of functional genes and exons of mitochondria were used to screen positive clones in the genome library of the sea island cotton variety called Pima 90-53. Ten BAC clones were obtained and veriifed for further study. A contig was obtained based on six overlapping clones and subsequently laid out primarily on the mitochondrial genome. One BAC clone, clone 6 harbored with the inserter of approximate 115 kb mtDNA sequence, in which more than 10 primers fragments could be ampliifed, was sequenced and assembled using the Solexa strategy. Fifteen mitochondrial functional genes were revealed in clone 6 by gene annotation. The characteristics of the syntenic gene/exon of the sequences and RNA editing were preliminarily predicted.

  9. Non-CpG island promoter hypomethylation and miR-149 regulate the expression of SRPX2 in colorectal cancer

    DEFF Research Database (Denmark)

    Oster, Bodil; Linnet, Lene; Christensen, Lise Lotte

    2012-01-01

    Gene silencing by DNA hypermethylation of CpG islands is a well-characterized phenomenon in cancer. The effect of hypomethylation in particular of non-CpG island genes is much less well described. By genome-wide screening, we identified 105 genes in microsatellite stable (MSS) colorectal adenocar......Gene silencing by DNA hypermethylation of CpG islands is a well-characterized phenomenon in cancer. The effect of hypomethylation in particular of non-CpG island genes is much less well described. By genome-wide screening, we identified 105 genes in microsatellite stable (MSS) colorectal...... of non-CpG island-associated promoters deregulate gene expression nearly as frequent as do CpG-island hypermethylation. The hypomethylation of SRPX2 is focal and not part of a large block. Furthermore, it often translates to an increased expression level, which may be modulated by miR-149....

  10. Population Structure, Genetic Diversity, and Evolutionary History of Kleinia neriifolia (Asteraceae) on the Canary Islands.

    Science.gov (United States)

    Sun, Ye; Vargas-Mendoza, Carlos F

    2017-01-01

    Kleinia neriifolia Haw. is an endemic species on the Canarian archipelago, this species is widespread in the coastal thicket of all the Canarian islands. In the present study, genetic diversity and population structure of K. neriifolia were investigated using chloroplast gene sequences and nuclear SSR (simple sequence repeat). The differentiation among island populations, the historical demography, and the underlying evolutionary scenarios of this species are further tested based on the genetic data. Chloroplast diversity reveals a strong genetic divergence between eastern islands (Gran Canaria, Fuerteventura, and Lanzarote) and western islands (EI Hierro, La Palma, La Gomera, Tenerife), this west-east genetic divergence may reflect a very beginning of speciation. The evolutionary scenario with highest posterior probabilities suggests Gran Canaria as oldest population with a westward colonization path to Tenerife, La Gomera, La Palma, and EI Hierro, and eastward dispersal path to Lanzarote through Fuerteventura. In the western islands, there is a slight decrease in the effective population size toward areas of recent colonization. However, in the eastern islands, the effective population size increase in Lanzarote relative to Gran Canaria and Fuerteventura. These results further our understanding of the evolution of widespread endemic plants within Canarian archipelago.

  11. Population Structure, Genetic Diversity, and Evolutionary History of Kleinia neriifolia (Asteraceae on the Canary Islands

    Directory of Open Access Journals (Sweden)

    Ye Sun

    2017-06-01

    Full Text Available Kleinia neriifolia Haw. is an endemic species on the Canarian archipelago, this species is widespread in the coastal thicket of all the Canarian islands. In the present study, genetic diversity and population structure of K. neriifolia were investigated using chloroplast gene sequences and nuclear SSR (simple sequence repeat. The differentiation among island populations, the historical demography, and the underlying evolutionary scenarios of this species are further tested based on the genetic data. Chloroplast diversity reveals a strong genetic divergence between eastern islands (Gran Canaria, Fuerteventura, and Lanzarote and western islands (EI Hierro, La Palma, La Gomera, Tenerife, this west–east genetic divergence may reflect a very beginning of speciation. The evolutionary scenario with highest posterior probabilities suggests Gran Canaria as oldest population with a westward colonization path to Tenerife, La Gomera, La Palma, and EI Hierro, and eastward dispersal path to Lanzarote through Fuerteventura. In the western islands, there is a slight decrease in the effective population size toward areas of recent colonization. However, in the eastern islands, the effective population size increase in Lanzarote relative to Gran Canaria and Fuerteventura. These results further our understanding of the evolution of widespread endemic plants within Canarian archipelago.

  12. Global gene expression analysis of the zoonotic parasite Trichinella spiralis revealed novel genes in host parasite interaction.

    Directory of Open Access Journals (Sweden)

    Xiaolei Liu

    Full Text Available BACKGROUND: Trichinellosis is a typical food-borne zoonotic disease which is epidemic worldwide and the nematode Trichinella spiralis is the main pathogen. The life cycle of T. spiralis contains three developmental stages, i.e. adult worms, new borne larva (new borne L1 larva and muscular larva (infective L1 larva. Stage-specific gene expression in the parasites has been investigated with various immunological and cDNA cloning approaches, whereas the genome-wide transcriptome and expression features of the parasite have been largely unknown. The availability of the genome sequence information of T. spiralis has made it possible to deeply dissect parasite biology in association with global gene expression and pathogenesis. METHODOLOGY AND PRINCIPAL FINDINGS: In this study, we analyzed the global gene expression patterns in the three developmental stages of T. spiralis using digital gene expression (DGE analysis. Almost 15 million sequence tags were generated with the Illumina RNA-seq technology, producing expression data for more than 9,000 genes, covering 65% of the genome. The transcriptome analysis revealed thousands of differentially expressed genes within the genome, and importantly, a panel of genes encoding functional proteins associated with parasite invasion and immuno-modulation were identified. More than 45% of the genes were found to be transcribed from both strands, indicating the importance of RNA-mediated gene regulation in the development of the parasite. Further, based on gene ontological analysis, over 3000 genes were functionally categorized and biological pathways in the three life cycle stage were elucidated. CONCLUSIONS AND SIGNIFICANCE: The global transcriptome of T. spiralis in three developmental stages has been profiled, and most gene activity in the genome was found to be developmentally regulated. Many metabolic and biological pathways have been revealed. The findings of the differential expression of several protein

  13. Genetic analysis of the isolated Faroe Islands reveals SORCS3 as a potential multiple sclerosis risk gene

    DEFF Research Database (Denmark)

    Binzer, Stefanie; Stenager, Egon; Binzer, Michael

    2016-01-01

    BACKGROUND: In search of the missing heritability in multiple sclerosis (MS), additional approaches adding to the genetic discoveries of large genome-wide association studies are warranted. OBJECTIVE: The objective of this research paper is to search for rare genetic MS risk variants...... in the genetically homogenous population of the isolated Faroe Islands. METHODS: Twenty-nine Faroese MS cases and 28 controls were genotyped with the HumanOmniExpressExome-chip. The individuals make up 1596 pair-combinations in which we searched for identical-by-descent shared segments using the PLINK...... of neurotrophin factors and involvement in glutamate homeostasis. Although additional work is needed to scrutinise the genetic effect of the SORCS3-covering haplotype, this study suggests that SORCS3 may also be important in MS pathogenesis....

  14. Ecological release and venom evolution of a predatory marine snail at Easter Island.

    Science.gov (United States)

    Duda, Thomas F; Lee, Taehwan

    2009-05-20

    Ecological release is coupled with adaptive radiation and ecological diversification yet little is known about the molecular basis of phenotypic changes associated with this phenomenon. The venomous, predatory marine gastropod Conus miliaris has undergone ecological release and exhibits increased dietary breadth at Easter Island. We examined the extent of genetic differentiation of two genes expressed in the venom of C. miliaris among samples from Easter Island, American Samoa and Guam. The population from Easter Island exhibits unique frequencies of alleles that encode distinct peptides at both loci. Levels of divergence at these loci exceed observed levels of divergence observed at a mitochondrial gene region at Easter Island. Patterns of genetic variation at two genes expressed in the venom of this C. miliaris suggest that selection has operated at these genes and contributed to the divergence of venom composition at Easter Island. These results show that ecological release is associated with strong selection pressures that promote the evolution of new phenotypes.

  15. Concurrent growth rate and transcript analyses reveal essential gene stringency in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Shan Goh

    Full Text Available BACKGROUND: Genes essential for bacterial growth are of particular scientific interest. Many putative essential genes have been identified or predicted in several species, however, little is known about gene expression requirement stringency, which may be an important aspect of bacterial physiology and likely a determining factor in drug target development. METHODOLOGY/PRINCIPAL FINDINGS: Working from the premise that essential genes differ in absolute requirement for growth, we describe silencing of putative essential genes in E. coli to obtain a titration of declining growth rates and transcript levels by using antisense peptide nucleic acids (PNA and expressed antisense RNA. The relationship between mRNA decline and growth rate decline reflects the degree of essentiality, or stringency, of an essential gene, which is here defined by the minimum transcript level for a 50% reduction in growth rate (MTL(50. When applied to four growth essential genes, both RNA silencing methods resulted in MTL(50 values that reveal acpP as the most stringently required of the four genes examined, with ftsZ the next most stringently required. The established antibacterial targets murA and fabI were less stringently required. CONCLUSIONS: RNA silencing can reveal stringent requirements for gene expression with respect to growth. This method may be used to validate existing essential genes and to quantify drug target requirement.

  16. Reveal genes functionally associated with ACADS by a network study.

    Science.gov (United States)

    Chen, Yulong; Su, Zhiguang

    2015-09-15

    Establishing a systematic network is aimed at finding essential human gene-gene/gene-disease pathway by means of network inter-connecting patterns and functional annotation analysis. In the present study, we have analyzed functional gene interactions of short-chain acyl-coenzyme A dehydrogenase gene (ACADS). ACADS plays a vital role in free fatty acid β-oxidation and regulates energy homeostasis. Modules of highly inter-connected genes in disease-specific ACADS network are derived by integrating gene function and protein interaction data. Among the 8 genes in ACADS web retrieved from both STRING and GeneMANIA, ACADS is effectively conjoined with 4 genes including HAHDA, HADHB, ECHS1 and ACAT1. The functional analysis is done via ontological briefing and candidate disease identification. We observed that the highly efficient-interlinked genes connected with ACADS are HAHDA, HADHB, ECHS1 and ACAT1. Interestingly, the ontological aspect of genes in the ACADS network reveals that ACADS, HAHDA and HADHB play equally vital roles in fatty acid metabolism. The gene ACAT1 together with ACADS indulges in ketone metabolism. Our computational gene web analysis also predicts potential candidate disease recognition, thus indicating the involvement of ACADS, HAHDA, HADHB, ECHS1 and ACAT1 not only with lipid metabolism but also with infant death syndrome, skeletal myopathy, acute hepatic encephalopathy, Reye-like syndrome, episodic ketosis, and metabolic acidosis. The current study presents a comprehensible layout of ACADS network, its functional strategies and candidate disease approach associated with ACADS network. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Stygofauna of the Canary Islands, 9. The amphipod genus Pseudoniphargus (Crustacea) in the Canary Islands

    NARCIS (Netherlands)

    Stock, Jan H.

    1988-01-01

    Pseudoniphargus was known from inland stygohabitats in the Iberian peninsula, the Azores, Madeira, N.W. Africa, and Bermuda, but not from the Canary Islands. Systematic sampling in six of the seven larger islands of the latter archipelago has revealed the presence of the genus in Tenerife (4

  18. Molecular evolution and diversification of snake toxin genes, revealed by analysis of intron sequences.

    Science.gov (United States)

    Fujimi, T J; Nakajyo, T; Nishimura, E; Ogura, E; Tsuchiya, T; Tamiya, T

    2003-08-14

    The genes encoding erabutoxin (short chain neurotoxin) isoforms (Ea, Eb, and Ec), LsIII (long chain neurotoxin) and a novel long chain neurotoxin pseudogene were cloned from a Laticauda semifasciata genomic library. Short and long chain neurotoxin genes were also cloned from the genome of Laticauda laticaudata, a closely related species of L. semifasciata, by PCR. A putative matrix attached region (MAR) sequence was found in the intron I of the LsIII gene. Comparative analysis of 11 structurally relevant snake toxin genes (three-finger-structure toxins) revealed the molecular evolution of these toxins. Three-finger-structure toxin genes diverged from a common ancestor through two types of evolutionary pathways (long and short types), early in the course of evolution. At a later stage of evolution in each gene, the accumulation of mutations in the exons, especially exon II, by accelerated evolution may have caused the increased diversification in their functions. It was also revealed that the putative MAR sequence found in the LsIII gene was integrated into the gene after the species-level divergence.

  19. Novel candidate genes important for asthma and hypertension comorbidity revealed from associative gene networks.

    Science.gov (United States)

    Saik, Olga V; Demenkov, Pavel S; Ivanisenko, Timofey V; Bragina, Elena Yu; Freidin, Maxim B; Goncharova, Irina A; Dosenko, Victor E; Zolotareva, Olga I; Hofestaedt, Ralf; Lavrik, Inna N; Rogaev, Evgeny I; Ivanisenko, Vladimir A

    2018-02-13

    Hypertension and bronchial asthma are a major issue for people's health. As of 2014, approximately one billion adults, or ~ 22% of the world population, have had hypertension. As of 2011, 235-330 million people globally have been affected by asthma and approximately 250,000-345,000 people have died each year from the disease. The development of the effective treatment therapies against these diseases is complicated by their comorbidity features. This is often a major problem in diagnosis and their treatment. Hence, in this study the bioinformatical methodology for the analysis of the comorbidity of these two diseases have been developed. As such, the search for candidate genes related to the comorbid conditions of asthma and hypertension can help in elucidating the molecular mechanisms underlying the comorbid condition of these two diseases, and can also be useful for genotyping and identifying new drug targets. Using ANDSystem, the reconstruction and analysis of gene networks associated with asthma and hypertension was carried out. The gene network of asthma included 755 genes/proteins and 62,603 interactions, while the gene network of hypertension - 713 genes/proteins and 45,479 interactions. Two hundred and five genes/proteins and 9638 interactions were shared between asthma and hypertension. An approach for ranking genes implicated in the comorbid condition of two diseases was proposed. The approach is based on nine criteria for ranking genes by their importance, including standard methods of gene prioritization (Endeavor, ToppGene) as well as original criteria that take into account the characteristics of an associative gene network and the presence of known polymorphisms in the analysed genes. According to the proposed approach, the genes IL10, TLR4, and CAT had the highest priority in the development of comorbidity of these two diseases. Additionally, it was revealed that the list of top genes is enriched with apoptotic genes and genes involved in

  20. Constraints on genome dynamics revealed from gene distribution among the Ralstonia solanacearum species.

    Directory of Open Access Journals (Sweden)

    Pierre Lefeuvre

    Full Text Available Because it is suspected that gene content may partly explain host adaptation and ecology of pathogenic bacteria, it is important to study factors affecting genome composition and its evolution. While recent genomic advances have revealed extremely large pan-genomes for some bacterial species, it remains difficult to predict to what extent gene pool is accessible within or transferable between populations. As genomes bear imprints of the history of the organisms, gene distribution pattern analyses should provide insights into the forces and factors at play in the shaping and maintaining of bacterial genomes. In this study, we revisited the data obtained from a previous CGH microarrays analysis in order to assess the genomic plasticity of the R. solanacearum species complex. Gene distribution analyses demonstrated the remarkably dispersed genome of R. solanacearum with more than half of the genes being accessory. From the reconstruction of the ancestral genomes compositions, we were able to infer the number of gene gain and loss events along the phylogeny. Analyses of gene movement patterns reveal that factors associated with gene function, genomic localization and ecology delineate gene flow patterns. While the chromosome displayed lower rates of movement, the megaplasmid was clearly associated with hot-spots of gene gain and loss. Gene function was also confirmed to be an essential factor in gene gain and loss dynamics with significant differences in movement patterns between different COG categories. Finally, analyses of gene distribution highlighted possible highways of horizontal gene transfer. Due to sampling and design bias, we can only speculate on factors at play in this gene movement dynamic. Further studies examining precise conditions that favor gene transfer would provide invaluable insights in the fate of bacteria, species delineation and the emergence of successful pathogens.

  1. The Effect of Pleistocene Climate Fluctuations on Distribution of European Abalone (Haliotis tuberculata), Revealed by Combined Mitochondrial and Nuclear Marker Analyses.

    Science.gov (United States)

    Roussel, Valérie; Van Wormhoudt, Alain

    2017-04-01

    The genetic differentiation among the populations of the European abalone Haliotis tuberculata was investigated using different markers to better understand the evolutionary history and exchanges between populations. Three markers were used: mitochondrial cytochrome oxidase I (COI), the sperm lysin nuclear gene, and eight nuclear microsatellites. These markers present different characteristics concerning mutation rate and inheritance, which provided complementary information about abalone history and gene diversity. Genetic diversity and relationships among subspecies were calculated from a sample of approximately 500 individuals, collected from 17 different locations in the north-eastern Atlantic Ocean, Macaronesia, and Mediterranean Sea. COI marker was used to explore the phylogeny of the species with a network analysis and two phylogenetic methods. The analysis revealed 18 major haplotypes grouped into two distinct clades with a pairwise sequence divergence up to 3.5 %. These clades do not correspond to subspecies but revealed many contacts along Atlantic coast during the Pleistocene interglaciations. The sperm lysin gene analysis separated two different subtaxa: one associated to Macaronesian islands, and the other to all other populations. Moreover, a small population of the northern subtaxon was isolated in the Adriatic Sea-probably before the separation of the two lineages-and evolved independently. Microsatellites were analyzed by different genetics methods, including the Bayesian clustering method and migration patterns analysis. It revealed genetically distinct microsatellite patterns among populations from Mediterranean Sea, Brittany and Normandy, Morocco, and Canary and Balearic islands. Gene flow is asymmetric among the regions; the Azores and the Canary Islands are particularly isolated and have low effective population sizes. Our results support the hypothesis that climate changes since the Pleistocene glaciations have played a major role in the

  2. Recent adaptive events in human brain revealed by meta-analysis of positively selected genes.

    Directory of Open Access Journals (Sweden)

    Yue Huang

    Full Text Available BACKGROUND AND OBJECTIVES: Analysis of positively-selected genes can help us understand how human evolved, especially the evolution of highly developed cognitive functions. However, previous works have reached conflicting conclusions regarding whether human neuronal genes are over-represented among genes under positive selection. METHODS AND RESULTS: We divided positively-selected genes into four groups according to the identification approaches, compiling a comprehensive list from 27 previous studies. We showed that genes that are highly expressed in the central nervous system are enriched in recent positive selection events in human history identified by intra-species genomic scan, especially in brain regions related to cognitive functions. This pattern holds when different datasets, parameters and analysis pipelines were used. Functional category enrichment analysis supported these findings, showing that synapse-related functions are enriched in genes under recent positive selection. In contrast, immune-related functions, for instance, are enriched in genes under ancient positive selection revealed by inter-species coding region comparison. We further demonstrated that most of these patterns still hold even after controlling for genomic characteristics that might bias genome-wide identification of positively-selected genes including gene length, gene density, GC composition, and intensity of negative selection. CONCLUSION: Our rigorous analysis resolved previous conflicting conclusions and revealed recent adaptation of human brain functions.

  3. High Prevalence of Porocephalus crotali Infection on a Barrier Island (Cumberland Island) off the Coast of Georgia, with Identification of Novel Intermediate Hosts.

    Science.gov (United States)

    Yabsley, Michael J; Ellis, Angela E; Cleveland, Christopher A; Ruckdeschel, Carol

    2015-10-01

    Porocephalus crotali is a pentastomid parasite that uses crotaline snakes as definitive hosts and a variety of rodents as intermediate hosts. A study of definitive and intermediate pentastome hosts on Cumberland Island, Georgia, revealed high prevalence of P. crotali infection in crotalid snakes as well as several mammalian species. Despite the presence of numerous nymphs in some animals, clinical signs of disease were not observed. In intermediate hosts, the liver, mesentery, and reproductive organs were most commonly infected. No gross evidence of tissue damage was noted in association with the numerous encysted nymphal pentastomes, and histopathology demonstrated minimal reaction to the encysted nymphs. Partial 18S rRNA gene sequences confirmed the parasites were P. crotali. In contrast to many previous reports in rodents, the prevalence on this barrier island was high, and this is the first report of Virginia opossums (Didelphis virginiana) and any insectivore species as intermediate hosts. Although generally not considered pathogenic, the long-term consequences of high nymph intensities on individuals deserve attention.

  4. Genomic evidence of geographically widespread effect of gene flow from polar bears into brown bears

    OpenAIRE

    Cahill, James A; Stirling, Ian; Kistler, Logan; Salamzade, Rauf; Ersmark, Erik; Fulton, Tara L; Stiller, Mathias; Green, Richard E; Shapiro, Beth

    2015-01-01

    © 2014 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd. Polar bears are an arctic, marine adapted species that is closely related to brown bears. Genome analyses have shown that polar bears are distinct and genetically homogeneous in comparison to brown bears. However, these analyses have also revealed a remarkable episode of polar bear gene flow into the population of brown bears that colonized the Admiralty, Baranof and Chichagof islands (ABC islands) of Alaska. Here, we...

  5. Population Size and Decadal Trends of Three Penguin Species Nesting at Signy Island, South Orkney Islands.

    Science.gov (United States)

    Dunn, Michael J; Jackson, Jennifer A; Adlard, Stacey; Lynnes, Amanda S; Briggs, Dirk R; Fox, Derren; Waluda, Claire M

    2016-01-01

    We report long-term changes in population size of three species of sympatrically breeding pygoscelid penguins: Adélie (Pygoscelis adeliae), chinstrap (Pygoscelis antarctica) and gentoo (Pygoscelis papua ellsworthii) over a 38 year period at Signy Island, South Orkney Islands, based on annual counts from selected colonies and decadal all-island systematic counts of occupied nests. Comparing total numbers of breeding pairs over the whole island from 1978/79 to 2015/16 revealed varying fortunes: gentoo penguin pairs increased by 255%, (3.5% per annum), chinstrap penguins declined by 68% (-3.6% per annum) and Adélie penguins declined by 42% (-1.5% per annum). The chinstrap population has declined steadily over the last four decades. In contrast, Adélie and gentoo penguins have experienced phases of population increase and decline. Annual surveys of selected chinstrap and Adélie colonies produced similar trends from those revealed by island-wide surveys, allowing total island population trends to be inferred relatively well. However, while the annual colony counts of chinstrap and Adélie penguins showed a trend consistent in direction with the results from all-island surveys, the magnitude of estimated population change was markedly different between colony wide and all island counts. Annual population patterns suggest that pair numbers in the study areas partly reflect immigration and emigration of nesting birds between different parts of the island. Breeding success for all three species remained broadly stable over time in the annually monitored colonies. Breeding success rates in gentoo and chinstrap penguins were strongly correlated, despite the differing trends in population size. This study shows the importance of effective, standardised monitoring to accurately determine long-term population trajectories. Our results indicate significant declines in the Adélie and chinstrap penguin populations at Signy Island over the last five decades, and a gradual

  6. Frog size on continental islands of the coast of Rio de Janeiro and the generality of the Island Rule.

    Directory of Open Access Journals (Sweden)

    Raoni Rebouças

    Full Text Available Island Rule postulated that individuals on islands tend to dwarfism when individuals from mainland populations are large and to gigantism when mainland populations present small individuals. There has been much discussion about this rule, but only few studies were carried out aiming to reveal this pattern for anurans. Our study focused on measuring the size of individuals on islands and to find a possible pattern of size modification for insular anurans. Individuals were collected on continental islands, measured and compared to mainland populations. We selected four species with different natural history aspects during these analyses. Island parameters were compared to size of individuals in order to find an explanation to size modification. Three of the four species presented size shifting on islands. Ololygon trapicheiroi and Adenomera marmorata showed dwarfism, Boana albomarginata showed gigantism and in Thoropa miliaris there was no evident size modification. Allometric analysis also revealed differential modification, which might be a result of different selective pressures on islands in respect of mainland populations. Regression model explained most of the size modification in B. albomarginata, but not for the other species. Our results indicate that previous assumptions, usually proposed for mammals from older islands, do not fit to the anurans studied here. We support the assumption that size modification on islands are population-specific. Hence, in B. albomarginata some factor associated to competition, living area and isolation time might likely be responsible for gigantism on islands.

  7. Gene expression profiling in equine polysaccharide storage myopathy revealed inflammation, glycogenesis inhibition, hypoxia and mitochondrial dysfunctions

    Directory of Open Access Journals (Sweden)

    Benech Philippe

    2009-08-01

    Full Text Available Abstract Background Several cases of myopathies have been observed in the horse Norman Cob breed. Muscle histology examinations revealed that some families suffer from a polysaccharide storage myopathy (PSSM. It is assumed that a gene expression signature related to PSSM should be observed at the transcriptional level because the glycogen storage disease could also be linked to other dysfunctions in gene regulation. Thus, the functional genomic approach could be conducted in order to provide new knowledge about the metabolic disorders related to PSSM. We propose exploring the PSSM muscle fiber metabolic disorders by measuring gene expression in relationship with the histological phenotype. Results Genotypying analysis of GYS1 mutation revealed 2 homozygous (AA and 5 heterozygous (GA PSSM horses. In the PSSM muscles, histological data revealed PAS positive amylase resistant abnormal polysaccharides, inflammation, necrosis, and lipomatosis and active regeneration of fibers. Ultrastructural evaluation revealed a decrease of mitochondrial number and structural disorders. Extensive accumulation of an abnormal polysaccharide displaced and partially replaced mitochondria and myofibrils. The severity of the disease was higher in the two homozygous PSSM horses. Gene expression analysis revealed 129 genes significantly modulated (p Conclusion The main disorders observed in PSSM muscles could be related to mitochondrial dysfunctions, glycogenesis inhibition and the chronic hypoxia of the PSSM muscles.

  8. Molecular Analysis of Asymptomatic Bacteriuria Escherichia coli Strain VR50 Reveals Adaptation to the Urinary Tract by Gene Acquisition

    DEFF Research Database (Denmark)

    Beatson, Scott A.; Ben Zakour, Nouri L.; Totsika, Makrina

    2015-01-01

    the evolution and molecular mechanisms that underpin ABU, the genome of the ABU E. coli strain VR50 was sequenced. Analysis of the complete genome indicated that it most resembles E. coli K-12, with the addition of a 94-kb genomic island (GI-VR50-pheV), eight prophages, and multiple plasmids. GI-VR50-pheV has...... a mosaic structure and contains genes encoding a number of UTI-associated virulence factors, namely, Afa (afimbrial adhesin), two autotransporter proteins (Ag43 and Sat), and aerobactin. We demonstrated that the presence of this island in VR50 confers its ability to colonize the murine bladder, as a VR50...... mutant with GI-VR50-pheV deleted was attenuated in a mouse model of UTI in vivo. We established that Afa is the island-encoded factor responsible for this phenotype using two independent deletion (Afa operon and AfaE adhesin) mutants. E. coli VR50afa and VR50afaE displayed significantly decreased ability...

  9. Integrated analysis of DNA methylation and gene expression reveals specific signaling pathways associated with platinum resistance in ovarian cancer

    Directory of Open Access Journals (Sweden)

    Chung Jae

    2009-06-01

    Full Text Available Abstract Background Cisplatin and carboplatin are the primary first-line therapies for the treatment of ovarian cancer. However, resistance to these platinum-based drugs occurs in the large majority of initially responsive tumors, resulting in fully chemoresistant, fatal disease. Although the precise mechanism(s underlying the development of platinum resistance in late-stage ovarian cancer patients currently remains unknown, CpG-island (CGI methylation, a phenomenon strongly associated with aberrant gene silencing and ovarian tumorigenesis, may contribute to this devastating condition. Methods To model the onset of drug resistance, and investigate DNA methylation and gene expression alterations associated with platinum resistance, we treated clonally derived, drug-sensitive A2780 epithelial ovarian cancer cells with increasing concentrations of cisplatin. After several cycles of drug selection, the isogenic drug-sensitive and -resistant pairs were subjected to global CGI methylation and mRNA expression microarray analyses. To identify chemoresistance-associated, biological pathways likely impacted by DNA methylation, promoter CGI methylation and mRNA expression profiles were integrated and subjected to pathway enrichment analysis. Results Promoter CGI methylation revealed a positive association (Spearman correlation of 0.99 between the total number of hypermethylated CGIs and GI50 values (i.e., increased drug resistance following successive cisplatin treatment cycles. In accord with that result, chemoresistance was reversible by DNA methylation inhibitors. Pathway enrichment analysis revealed hypermethylation-mediated repression of cell adhesion and tight junction pathways and hypomethylation-mediated activation of the cell growth-promoting pathways PI3K/Akt, TGF-beta, and cell cycle progression, which may contribute to the onset of chemoresistance in ovarian cancer cells. Conclusion Selective epigenetic disruption of distinct biological

  10. Genetic diversity and population differentiation of small giant clam Tridacna maxima in Comoros islands assessed by microsatellite markers.

    Science.gov (United States)

    Ahmed Mohamed, Nadjim; Yu, Qian; Chanfi, Mohamed Ibrahim; Li, Yangping; Wang, Shi; Huang, Xiaoting; Bao, Zhenmin

    2016-01-01

    Small giant clam, Tridacna maxima , widely distributed from French Polynesia to East Africa, has faced population declines due to over-exploitation. Comoros islands are an important biogeographic region due to potential richness of marine species, but no relevant information is available. In order to facilitate devising effective conservation management plan for T. maxima , nine microsatellite markers were used to survey genetic diversity and population differentiation of 72 specimens collected from three Comoros islands, Grande Comore, Moheli and Anjouan. A total of 51 alleles were detected ranged from 2 to 8 per locus. Observed and expected heterozygosity varied from 0.260 to 0.790 and from 0.542 to 0.830, respectively. All populations have high genetic diversity, especially the population in Moheli, a protected area, has higher genetic diversity than the others. Significant heterozygote deficiencies were recorded, and null alleles were probably the main factor leading to these deficits. F ST value indicated medium genetic differentiation among the populations. Although significant, AMOVA revealed 48.9 % of genetic variation within individuals and only a small variation of 8.9 % was found between populations. Gene flow was high ( Nm  = 12.40) between Grande Comore and Moheli, while lower ( Nm  = 1.80) between Grande Comore and Anjouan, explaining geographic barriers to genetic exchanges might exist in these two islands. Global gene flow analysis ( Nm  = 5.50) showed that larval dispersal is enough to move between the islands. The high genetic diversity and medium population differentiation revealed in the present study offer useful information on genetic conservation of small giant clams.

  11. Virtually Impossible: Deleuze and Derrida on the Political Problem of Islands (and Island Studies

    Directory of Open Access Journals (Sweden)

    Stewart Williams

    2012-11-01

    Full Text Available It is commonplace to think of an island as a discreetly bounded unit. Selected writings on islands by the poststructuralist philosophers Gilles Deleuze and Jacques Derrida reveal the island variously to be both real and imaginary, mythological and scientific, but as most problematic when constituted in political terms as an indivisible, sovereign entity. These two thinkers’ more broadly developed concepts of the virtual and the impossible, respectively, are seen to disrupt any assumptions about the fixity and closure of the island polity. Instead they emphasize its actualization through processual relations that can be difficult yet dynamic and decisive in effecting the move from being to becoming-other. As the possibilities for instituting more ethical as well as different political relations open up, the question of island studies remaining in its currently coherent, familiar form is raised for consideration.

  12. Prevalence and diversity of Hepatozoon canis in naturally infected dogs in Japanese islands and peninsulas.

    Science.gov (United States)

    El-Dakhly, Khaled Mohamed; Goto, Minami; Noishiki, Kaori; El-Nahass, El-Shaymaa; Hirata, Akihiro; Sakai, Hiroki; Takashima, Yasuhiro; El-Morsey, Ahmed; Yanai, Tokuma

    2013-09-01

    Canine hepatozoonosis is a worldwide protozoal disease caused by Hepatozoon canis and Hepatozoon americanum and is transmitted by ixodid ticks, Rhipicephalus and Amblyomma spp., respectively. H. canis infection is widespread in Africa, Europe, South America, and Asia, including Japan. The objective of this study was to study the distribution pattern and diversity of H. canis in naturally infected dogs in nine Japanese islands and peninsulas. Therefore, 196 hunting dogs were randomly sampled during the period from March to September 2011 and the ages and sexes were identified. Direct microscopy using Giemsa-stained blood smears revealed H. canis gametocytes in the peripheral blood of 45 (23.6%) dogs. Polymerase chain reaction (PCR) was performed on EDTA-anticoagulated blood, initially with the common primer set (B18S-F and B18S-R) amplifying the 1,665-bp portion of the 18S rRNA gene, and then with the specific primer set (HepF and HepR) amplifying about 660 bp fragments of the same gene. Based on PCR, 84 (42.9%) dogs were positive using the common primer and 81 (41.3%) were positive using the specific primer. The current investigation indicated that all screened areas, except for Sado Island and Atsumi Peninsula, were infected. Yaku Island had the highest infection rate (84.6% in males and 100.0% in females), while Ishigaki Island showed the lowest infection rates (8.3% in males and 17.7% in females). Both sexes were infected with no significant difference. However, diversity of infection among the surveyed islands and peninsulas was significantly different (P canis has previously been reported in dogs in Japan, the higher infection rate described in the current study and the diversity of infection in a wide range of islands strongly encourage prospective studies dealing with the prevention and treatment of the infection in dogs, as well as control of ticks.

  13. Prediction of epigenetically regulated genes in breast cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Loss, Leandro A; Sadanandam, Anguraj; Durinck, Steffen; Nautiyal, Shivani; Flaucher, Diane; Carlton, Victoria EH; Moorhead, Martin; Lu, Yontao; Gray, Joe W; Faham, Malek; Spellman, Paul; Parvin, Bahram

    2010-05-04

    Methylation of CpG islands within the DNA promoter regions is one mechanism that leads to aberrant gene expression in cancer. In particular, the abnormal methylation of CpG islands may silence associated genes. Therefore, using high-throughput microarrays to measure CpG island methylation will lead to better understanding of tumor pathobiology and progression, while revealing potentially new biomarkers. We have examined a recently developed high-throughput technology for measuring genome-wide methylation patterns called mTACL. Here, we propose a computational pipeline for integrating gene expression and CpG island methylation profles to identify epigenetically regulated genes for a panel of 45 breast cancer cell lines, which is widely used in the Integrative Cancer Biology Program (ICBP). The pipeline (i) reduces the dimensionality of the methylation data, (ii) associates the reduced methylation data with gene expression data, and (iii) ranks methylation-expression associations according to their epigenetic regulation. Dimensionality reduction is performed in two steps: (i) methylation sites are grouped across the genome to identify regions of interest, and (ii) methylation profles are clustered within each region. Associations between the clustered methylation and the gene expression data sets generate candidate matches within a fxed neighborhood around each gene. Finally, the methylation-expression associations are ranked through a logistic regression, and their significance is quantified through permutation analysis. Our two-step dimensionality reduction compressed 90% of the original data, reducing 137,688 methylation sites to 14,505 clusters. Methylation-expression associations produced 18,312 correspondences, which were used to further analyze epigenetic regulation. Logistic regression was used to identify 58 genes from these correspondences that showed a statistically signifcant negative correlation between methylation profles and gene expression in the

  14. Submarine physiography off Lakshadweep Islands, Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Chauhan, O.S; Chaubey, A

    Analysis of echosoundings, side scan sonar and shallow seismic data, supplementEd. by 152 sediment samples, collected along 150 km around Lakshadweep Islands, Arabian Sea, revealed that the islands have a very narrow shelf, and an abrupt, shelf...

  15. DNA barcoding of schistosome cercariae reveals a novel sub-lineage within Schistosoma rodhaini from Ngamba Island Chimpanzee Sanctuary, Lake Victoria.

    Science.gov (United States)

    Standley, C J; Stothard, J R

    2012-10-01

    While Schistosoma rodhaini is typically considered a parasite of small mammals and is very scantly distributed in the Lake Victoria basin, it is known to hybridize with the more widespread Schistosoma mansoni, the causative agent of intestinal schistosomiasis. As part of broader parasitological and malacological surveys for S. mansoni across Lake Victoria, schistosome cercariae were harvested from a field-caught Biomphalaria choanomphala taken on Ngamba Island Chimpanzee Sanctuary, Uganda. Upon DNA barcoding, these cercariae were found to be a mixture of both S. rodhaini and S. mansoni, with further phylogenetic analysis revealing a hitherto unknown sub-lineage within S. rodhaini. Despite repeated sampling for eggs and miracidia from both chimpanzees and staff on Ngamba Island Sanctuary, detection of S. rodhaini within local definitive hosts awaits additional efforts, which should be mindful of a potential host role of spotted-necked otters.

  16. A novel CpG island set identifies tissue-specific methylation at developmental gene loci.

    Directory of Open Access Journals (Sweden)

    Robert Illingworth

    2008-01-01

    Full Text Available CpG islands (CGIs are dense clusters of CpG sequences that punctuate the CpG-deficient human genome and associate with many gene promoters. As CGIs also differ from bulk chromosomal DNA by their frequent lack of cytosine methylation, we devised a CGI enrichment method based on nonmethylated CpG affinity chromatography. The resulting library was sequenced to define a novel human blood CGI set that includes many that are not detected by current algorithms. Approximately half of CGIs were associated with annotated gene transcription start sites, the remainder being intra- or intergenic. Using an array representing over 17,000 CGIs, we established that 6%-8% of CGIs are methylated in genomic DNA of human blood, brain, muscle, and spleen. Inter- and intragenic CGIs are preferentially susceptible to methylation. CGIs showing tissue-specific methylation were overrepresented at numerous genetic loci that are essential for development, including HOX and PAX family members. The findings enable a comprehensive analysis of the roles played by CGI methylation in normal and diseased human tissues.

  17. [Archaeal diversity in permafrost deposits of Bunger Hills Oasis and King George Island (Antarctica) according to the 16S rRNA gene sequencing].

    Science.gov (United States)

    Karaevskaia, E S; Demchenko, L S; Demidov, N É; Rivkina, E M; Bulat, S A; Gilichinskiĭ, D A

    2014-01-01

    Archaeal communities of permafrost deposits of King George Island and Bunger Hills Oasis (Antarctica) differing in the content of biogenic methane were analyzed using clone libraries of two 16S rRNA gene regions. Phylotypes belonging to methanogenic archaea were identified in all horizons.

  18. A quantitative account of genomic island acquisitions in prokaryotes

    Directory of Open Access Journals (Sweden)

    Roos Tom E

    2011-08-01

    Full Text Available Abstract Background Microbial genomes do not merely evolve through the slow accumulation of mutations, but also, and often more dramatically, by taking up new DNA in a process called horizontal gene transfer. These innovation leaps in the acquisition of new traits can take place via the introgression of single genes, but also through the acquisition of large gene clusters, which are termed Genomic Islands. Since only a small proportion of all the DNA diversity has been sequenced, it can be hard to find the appropriate donors for acquired genes via sequence alignments from databases. In contrast, relative oligonucleotide frequencies represent a remarkably stable genomic signature in prokaryotes, which facilitates compositional comparisons as an alignment-free alternative for phylogenetic relatedness. In this project, we test whether Genomic Islands identified in individual bacterial genomes have a similar genomic signature, in terms of relative dinucleotide frequencies, and can therefore be expected to originate from a common donor species. Results When multiple Genomic Islands are present within a single genome, we find that up to 28% of these are compositionally very similar to each other, indicative of frequent recurring acquisitions from the same donor to the same acceptor. Conclusions This represents the first quantitative assessment of common directional transfer events in prokaryotic evolutionary history. We suggest that many of the resident Genomic Islands per prokaryotic genome originated from the same source, which may have implications with respect to their regulatory interactions, and for the elucidation of the common origins of these acquired gene clusters.

  19. Distinct Biological Potential of Streptococcus gordonii and Streptococcus sanguinis Revealed by Comparative Genome Analysis.

    Science.gov (United States)

    Zheng, Wenning; Tan, Mui Fern; Old, Lesley A; Paterson, Ian C; Jakubovics, Nicholas S; Choo, Siew Woh

    2017-06-07

    Streptococcus gordonii and Streptococcus sanguinis are pioneer colonizers of dental plaque and important agents of bacterial infective endocarditis (IE). To gain a greater understanding of these two closely related species, we performed comparative analyses on 14 new S. gordonii and 5 S. sanguinis strains using various bioinformatics approaches. We revealed S. gordonii and S. sanguinis harbor open pan-genomes and share generally high sequence homology and number of core genes including virulence genes. However, we observed subtle differences in genomic islands and prophages between the species. Comparative pathogenomics analysis identified S. sanguinis strains have genes encoding IgA proteases, mitogenic factor deoxyribonucleases, nickel/cobalt uptake and cobalamin biosynthesis. On the contrary, genomic islands of S. gordonii strains contain additional copies of comCDE quorum-sensing system components involved in genetic competence. Two distinct polysaccharide locus architectures were identified, one of which was exclusively present in S. gordonii strains. The first evidence of genes encoding the CylA and CylB system by the α-haemolytic S. gordonii is presented. This study provides new insights into the genetic distinctions between S. gordonii and S. sanguinis, which yields understanding of tooth surfaces colonization and contributions to dental plaque formation, as well as their potential roles in the pathogenesis of IE.

  20. The dnd operon for DNA phosphorothioation modification system in Escherichia coli is located in diverse genomic islands.

    Science.gov (United States)

    Ho, Wing Sze; Ou, Hong-Yu; Yeo, Chew Chieng; Thong, Kwai Lin

    2015-03-17

    Strains of Escherichia coli that are non-typeable by pulsed-field gel electrophoresis (PFGE) due to in-gel degradation can influence their molecular epidemiological data. The DNA degradation phenotype (Dnd(+)) is mediated by the dnd operon that encode enzymes catalyzing the phosphorothioation of DNA, rendering the modified DNA susceptible to oxidative cleavage during a PFGE run. In this study, a PCR assay was developed to detect the presence of the dnd operon in Dnd(+) E. coli strains and to improve their typeability. Investigations into the genetic environments of the dnd operon in various E. coli strains led to the discovery that the dnd operon is harboured in various diverse genomic islands. The dndBCDE genes (dnd operon) were detected in all Dnd(+) E. coli strains by PCR. The addition of thiourea improved the typeability of Dnd(+) E. coli strains to 100% using PFGE and the Dnd(+) phenotype can be observed in both clonal and genetically diverse E. coli strains. Genomic analysis of 101 dnd operons from genome sequences of Enterobacteriaceae revealed that the dnd operons of the same bacterial species were generally clustered together in the phylogenetic tree. Further analysis of dnd operons of 52 E. coli genomes together with their respective immediate genetic environments revealed a total of 7 types of genetic organizations, all of which were found to be associated with genomic islands designated dnd-encoding GIs. The dnd-encoding GIs displayed mosaic structure and the genomic context of the 7 islands (with 1 representative genome from each type of genetic organization) were also highly variable, suggesting multiple recombination events. This is also the first report where two dnd operons were found within a strain although the biological implication is unknown. Surprisingly, dnd operons were frequently found in pathogenic E. coli although their link with virulence has not been explored. Genomic islands likely play an important role in facilitating the horizontal

  1. Complete genome sequence and comparative genomic analysis of Mycobacterium massiliense JCM 15300 in the Mycobacterium abscessus group reveal a conserved genomic island MmGI-1 related to putative lipid metabolism.

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Sekizuka

    Full Text Available Mycobacterium abscessus group subsp., such as M. massiliense, M. abscessus sensu stricto and M. bolletii, are an environmental organism found in soil, water and other ecological niches, and have been isolated from respiratory tract infection, skin and soft tissue infection, postoperative infection of cosmetic surgery. To determine the unique genetic feature of M. massiliense, we sequenced the complete genome of M. massiliense type strain JCM 15300 (corresponding to CCUG 48898. Comparative genomic analysis was performed among Mycobacterium spp. and among M. abscessus group subspp., showing that additional ß-oxidation-related genes and, notably, the mammalian cell entry (mce operon were located on a genomic island, M. massiliense Genomic Island 1 (MmGI-1, in M. massiliense. In addition, putative anaerobic respiration system-related genes and additional mycolic acid cyclopropane synthetase-related genes were found uniquely in M. massiliense. Japanese isolates of M. massiliense also frequently possess the MmGI-1 (14/44, approximately 32% and three unique conserved regions (26/44; approximately 60%, 34/44; approximately 77% and 40/44; approximately 91%, as well as isolates of other countries (Malaysia, France, United Kingdom and United States. The well-conserved genomic island MmGI-1 may play an important role in high growth potential with additional lipid metabolism, extra factors for survival in the environment or synthesis of complex membrane-associated lipids. ORFs on MmGI-1 showed similarities to ORFs of phylogenetically distant M. avium complex (MAC, suggesting that horizontal gene transfer or genetic recombination events might have occurred within MmGI-1 among M. massiliense and MAC.

  2. Relationship between ADD1 Gly460Trp gene polymorphism and essential hypertension in Madeira Island.

    Science.gov (United States)

    Sousa, Ana Célia; Palma Dos Reis, Roberto; Pereira, Andreia; Borges, Sofia; Freitas, Ana Isabel; Guerra, Graça; Góis, Teresa; Rodrigues, Mariana; Henriques, Eva; Freitas, Sónia; Ornelas, Ilídio; Pereira, Décio; Brehm, António; Mendonça, Maria Isabel

    2017-10-01

    Essential hypertension (EH) is a complex disease in which physiological, environmental, and genetic factors are involved in its genesis. The genetic variant of the alpha-adducin gene (ADD1) has been described as a risk factor for EH, but with controversial results.The objective of this study was to evaluate the association of ADD1 (Gly460Trp) gene polymorphism with the EH risk in a population from Madeira Island.A case-control study with 1614 individuals of Caucasian origin was performed, including 817 individuals with EH and 797 controls. Cases and controls were matched for sex and age, by frequency-matching method. All participants collected blood for biochemical and genotypic analysis for the Gly460Trp polymorphism. We further investigated which variables were independently associated to EH, and, consequently, analyzed their interactions.In our study, we found a significant association between the ADD1 gene polymorphism and EH (odds ratio 2.484, P = .01). This association remained statistically significant after the multivariate analysis (odds ratio 2.548, P = .02).The ADD1 Gly460Trp gene polymorphism is significantly and independently associated with EH risk in our population. The knowledge of genetic polymorphisms associated with EH is of paramount importance because it leads to a better understanding of the etiology and pathophysiology of this pathology.

  3. Analysis of global gene expression in Brachypodium distachyon reveals extensive network plasticity in response to abiotic stress.

    Directory of Open Access Journals (Sweden)

    Henry D Priest

    Full Text Available Brachypodium distachyon is a close relative of many important cereal crops. Abiotic stress tolerance has a significant impact on productivity of agriculturally important food and feedstock crops. Analysis of the transcriptome of Brachypodium after chilling, high-salinity, drought, and heat stresses revealed diverse differential expression of many transcripts. Weighted Gene Co-Expression Network Analysis revealed 22 distinct gene modules with specific profiles of expression under each stress. Promoter analysis implicated short DNA sequences directly upstream of module members in the regulation of 21 of 22 modules. Functional analysis of module members revealed enrichment in functional terms for 10 of 22 network modules. Analysis of condition-specific correlations between differentially expressed gene pairs revealed extensive plasticity in the expression relationships of gene pairs. Photosynthesis, cell cycle, and cell wall expression modules were down-regulated by all abiotic stresses. Modules which were up-regulated by each abiotic stress fell into diverse and unique gene ontology GO categories. This study provides genomics resources and improves our understanding of abiotic stress responses of Brachypodium.

  4. Proteus genomic island 1 (PGI1), a new resistance genomic island from two Proteus mirabilis French clinical isolates.

    Science.gov (United States)

    Siebor, Eliane; Neuwirth, Catherine

    2014-12-01

    To analyse the genetic environment of the antibiotic resistance genes in two clinical Proteus mirabilis isolates resistant to multiple antibiotics. PCR, gene walking and whole-genome sequencing were used to determine the sequence of the resistance regions, the surrounding genetic structure and the flanking chromosomal regions. A genomic island of 81.1 kb named Proteus genomic island 1 (PGI1) located at the 3'-end of trmE (formerly known as thdF) was characterized. The large MDR region of PGI1 (55.4 kb) included a class 1 integron (aadB and aadA2) and regions deriving from several transposons: Tn2 (blaTEM-135), Tn21, Tn6020-like transposon (aphA1b), a hybrid Tn502/Tn5053 transposon, Tn501, a hybrid Tn1696/Tn1721 transposon [tetA(A)] carrying a class 1 integron (aadA1) and Tn5393 (strA and strB). Several ISs were also present (IS4321, IS1R and IS26). The PGI1 backbone (25.7 kb) was identical to that identified in Salmonella Heidelberg SL476 and shared some identity with the Salmonella genomic island 1 (SGI1) backbone. An IS26-mediated recombination event caused the division of the MDR region into two parts separated by a large chromosomal DNA fragment of 197 kb, the right end of PGI1 and this chromosomal sequence being in inverse orientation. PGI1 is a new resistance genomic island from P. mirabilis belonging to the same island family as SGI1. The role of PGI1 in the spread of antimicrobial resistance genes among Enterobacteriaceae of medical importance needs to be evaluated. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Phylogeographic patterns of Hawaiian Megalagrion damselflies (Odonata: Coenagrionidae) correlate with Pleistocene island boundaries

    Science.gov (United States)

    Jordan, Stephen A.; Simon, C.; Foote, D.; Englund, R.A.

    2005-01-01

    The Pleistocene geological history of the Hawaiian Islands is becoming well understood. Numerous predictions about the influence of this history on the genetic diversity of Hawaiian organisms have been made, including the idea that changing sea levels would lead to the genetic differentiation of populations isolated on individual volcanoes during high sea stands. Here, we analyse DNA sequence data from two closely related, endemic Hawaiian damselfly species in order to test these predictions, and generate novel insights into the effects of Pleistocene glaciation and climate change on island organisms. Megalagrion xanthomelas and Megalagrion pacificum are currently restricted to five islands, including three islands of the Maui Nui super-island complex (Molokai, Lanai, and Maui) that were connected during periods of Pleistocene glaciation, and Hawaii island, which has never been subdivided. Maui Nui and Hawaii are effectively a controlled, natural experiment on the genetic effects of Pleistocene sea level change. We confirm well-defined morphological species boundaries using data from the nuclear EF-1?? gene and show that the species are reciprocally monophyletic. We perform phylogeographic analyses of 663 base pairs (bp) of cytochrome oxidase subunit II (COII) gene sequence data from 157 individuals representing 25 populations. Our results point to the importance of Pleistocene land bridges and historical island habitat availability in maintaining inter-island gene flow. We also propose that repeated bottlenecks on Maui Nui caused by sea level change and restricted habitat availability are likely responsible for low genetic diversity there. An island analogue to northern genetic purity and southern diversity is proposed, whereby islands with little suitable habitat exhibit genetic purity while islands with more exhibit genetic diversity. ?? 2005 Blackwell Publishing Ltd.

  6. Population Size and Decadal Trends of Three Penguin Species Nesting at Signy Island, South Orkney Islands.

    Directory of Open Access Journals (Sweden)

    Michael J Dunn

    Full Text Available We report long-term changes in population size of three species of sympatrically breeding pygoscelid penguins: Adélie (Pygoscelis adeliae, chinstrap (Pygoscelis antarctica and gentoo (Pygoscelis papua ellsworthii over a 38 year period at Signy Island, South Orkney Islands, based on annual counts from selected colonies and decadal all-island systematic counts of occupied nests. Comparing total numbers of breeding pairs over the whole island from 1978/79 to 2015/16 revealed varying fortunes: gentoo penguin pairs increased by 255%, (3.5% per annum, chinstrap penguins declined by 68% (-3.6% per annum and Adélie penguins declined by 42% (-1.5% per annum. The chinstrap population has declined steadily over the last four decades. In contrast, Adélie and gentoo penguins have experienced phases of population increase and decline. Annual surveys of selected chinstrap and Adélie colonies produced similar trends from those revealed by island-wide surveys, allowing total island population trends to be inferred relatively well. However, while the annual colony counts of chinstrap and Adélie penguins showed a trend consistent in direction with the results from all-island surveys, the magnitude of estimated population change was markedly different between colony wide and all island counts. Annual population patterns suggest that pair numbers in the study areas partly reflect immigration and emigration of nesting birds between different parts of the island. Breeding success for all three species remained broadly stable over time in the annually monitored colonies. Breeding success rates in gentoo and chinstrap penguins were strongly correlated, despite the differing trends in population size. This study shows the importance of effective, standardised monitoring to accurately determine long-term population trajectories. Our results indicate significant declines in the Adélie and chinstrap penguin populations at Signy Island over the last five decades, and a

  7. Cell-Specific PEAR1 Methylation Studies Reveal a Locus that Coordinates Expression of Multiple Genes

    Directory of Open Access Journals (Sweden)

    Benedetta Izzi

    2018-04-01

    Full Text Available Chromosomal interactions connect distant enhancers and promoters on the same chromosome, activating or repressing gene expression. PEAR1 encodes the Platelet-Endothelial Aggregation Receptor 1, a contact receptor involved in platelet function and megakaryocyte and endothelial cell proliferation. PEAR1 expression during megakaryocyte differentiation is controlled by DNA methylation at its first CpG island. We identified a PEAR1 cell-specific methylation sensitive region in endothelial cells and megakaryocytes that showed strong chromosomal interactions with ISGL20L2, RRNAD1, MRLP24, HDGF and PRCC, using available promoter capture Hi-C datasets. These genes are involved in ribosome processing, protein synthesis, cell cycle and cell proliferation. We next studied the methylation and expression profile of these five genes in Human Umbilical Vein Endothelial Cells (HUVECs and megakaryocyte precursors. While cell-specific PEAR1 methylation corresponded to variability in expression for four out of five genes, no methylation change was observed in their promoter regions across cell types. Our data suggest that PEAR1 cell-type specific methylation changes may control long distance interactions with other genes. Further studies are needed to show whether such interaction data might be relevant for the genome-wide association data that showed a role for non-coding PEAR1 variants in the same region and platelet function, platelet count and cardiovascular risk.

  8. Development and characterization of 12 microsatellite markers for the Island Night Lizard (Xantusia riversiana), a threatened species endemic to the Channel Islands, California, USA

    Science.gov (United States)

    O'Donnell, Ryan P.; Drost, Charles A.; Mock, Karen E.

    2014-01-01

    The Island Night Lizard is a federally threatened species endemic to the Channel Islands of California. Twelve microsatellite loci were developed for use in this species and screened in 197 individuals from across San Nicolas Island, California. The number of alleles per locus ranged from 6 to 21. Observed heterozygosities ranged from 0.520 to 0.843. These microsatellite loci will be used to investigate population structure, effective population size, and gene flow across the island, to inform protection and management of this species.

  9. Climate change vulnerability to agrarian ecosystem of small Island: evidence from Sagar Island, India

    Science.gov (United States)

    Mandal, S.; Satpati, L. N.; Choudhury, B. U.; Sadhu, S.

    2018-04-01

    The present study assessed climate change vulnerability in agricultural sector of low-lying Sagar Island of Bay of Bengal. Vulnerability indices were estimated using spatially aggregated biophysical and socio-economic parameters by applying principal component analysis and equal weight method. The similarities and differences of outputs of these two methods were analysed across the island. From the integration of outputs and based on the severity of vulnerability, explicit vulnerable zones were demarcated spatially. Results revealed that life subsistence agriculture in 11.8% geographical area (2829 ha) of the island along the western coast falls under very high vulnerable zone (VHVZ VI of 84-99%) to climate change. Comparatively higher values of exposure (0.53 ± 0.26) and sensitivity (0.78 ± 0.14) subindices affirmed that the VHV zone is highly exposed to climate stressor with very low adaptive capacity (ADI= 0.24 ± 0.16) to combat vulnerability to climate change. Hence, food security for a population of >22 thousands comprising >3.7 thousand agrarian households are highly exposed to climate change. Another 17% area comprising 17.5% population covering 20% villages in north-western and eastern parts of the island also falls under high vulnerable (VI= 61%-77%) zone. Findings revealed large spatial heterogeneity in the degree of vulnerability across the island and thus, demands devising area specific planning (adaptation and mitigation strategies) to address the climate change impact implications both at macro and micro levels.

  10. Characterization of the avian Trojan gene family reveals contrasting evolutionary constraints.

    Science.gov (United States)

    Petrov, Petar; Syrjänen, Riikka; Smith, Jacqueline; Gutowska, Maria Weronika; Uchida, Tatsuya; Vainio, Olli; Burt, David W

    2015-01-01

    "Trojan" is a leukocyte-specific, cell surface protein originally identified in the chicken. Its molecular function has been hypothesized to be related to anti-apoptosis and the proliferation of immune cells. The Trojan gene has been localized onto the Z sex chromosome. The adjacent two genes also show significant homology to Trojan, suggesting the existence of a novel gene/protein family. Here, we characterize this Trojan family, identify homologues in other species and predict evolutionary constraints on these genes. The two Trojan-related proteins in chicken were predicted as a receptor-type tyrosine phosphatase and a transmembrane protein, bearing a cytoplasmic immuno-receptor tyrosine-based activation motif. We identified the Trojan gene family in ten other bird species and found related genes in three reptiles and a fish species. The phylogenetic analysis of the homologues revealed a gradual diversification among the family members. Evolutionary analyzes of the avian genes predicted that the extracellular regions of the proteins have been subjected to positive selection. Such selection was possibly a response to evolving interacting partners or to pathogen challenges. We also observed an almost complete lack of intracellular positively selected sites, suggesting a conserved signaling mechanism of the molecules. Therefore, the contrasting patterns of selection likely correlate with the interaction and signaling potential of the molecules.

  11. Methylation of miRNA genes and oncogenesis.

    Science.gov (United States)

    Loginov, V I; Rykov, S V; Fridman, M V; Braga, E A

    2015-02-01

    Interaction between microRNA (miRNA) and messenger RNA of target genes at the posttranscriptional level provides fine-tuned dynamic regulation of cell signaling pathways. Each miRNA can be involved in regulating hundreds of protein-coding genes, and, conversely, a number of different miRNAs usually target a structural gene. Epigenetic gene inactivation associated with methylation of promoter CpG-islands is common to both protein-coding genes and miRNA genes. Here, data on functions of miRNAs in development of tumor-cell phenotype are reviewed. Genomic organization of promoter CpG-islands of the miRNA genes located in inter- and intragenic areas is discussed. The literature and our own results on frequency of CpG-island methylation in miRNA genes from tumors are summarized, and data regarding a link between such modification and changed activity of miRNA genes and, consequently, protein-coding target genes are presented. Moreover, the impact of miRNA gene methylation on key oncogenetic processes as well as affected signaling pathways is discussed.

  12. A Gene Homologous to rRNA Methylase Genes Confers Erythromycin and Clindamycin Resistance in Bifidobacterium breve.

    Science.gov (United States)

    Martínez, Noelia; Luque, Roberto; Milani, Christian; Ventura, Marco; Bañuelos, Oscar; Margolles, Abelardo

    2018-05-15

    Bifidobacteria are mutualistic intestinal bacteria, and their presence in the human gut has been associated with health-promoting activities. The presence of antibiotic resistance genes in this genus is controversial, since, although bifidobacteria are nonpathogenic microorganisms, they could serve as reservoirs of resistance determinants for intestinal pathogens. However, until now, few antibiotic resistance determinants have been functionally characterized in this genus. In this work, we show that Bifidobacterium breve CECT7263 displays atypical resistance to erythromycin and clindamycin. In order to delimit the genomic region responsible for the observed resistance phenotype, a library of genomic DNA was constructed and a fragment of 5.8 kb containing a gene homologous to rRNA methylase genes was able to confer erythromycin resistance in Escherichia coli This genomic region seems to be very uncommon, and homologs of the gene have been detected in only one strain of Bifidobacterium longum and two other strains of B. breve In this context, analysis of shotgun metagenomics data sets revealed that the gene is also uncommon in the microbiomes of adults and infants. The structural gene and its upstream region were cloned into a B. breve -sensitive strain, which became resistant after acquiring the genetic material. In vitro conjugation experiments did not allow us to detect gene transfer to other recipients. Nevertheless, prediction of genes potentially acquired through horizontal gene transfer events revealed that the gene is located in a putative genomic island. IMPORTANCE Bifidobacterium breve is a very common human intestinal bacterium. Often described as a pioneer microorganism in the establishment of early-life intestinal microbiota, its presence has been associated with several beneficial effects for the host, including immune stimulation and protection against infections. Therefore, some strains of this species are considered probiotics. In relation to this

  13. CRISPR loci reveal networks of gene exchange in archaea.

    Science.gov (United States)

    Brodt, Avital; Lurie-Weinberger, Mor N; Gophna, Uri

    2011-12-21

    CRISPR (Clustered, Regularly, Interspaced, Short, Palindromic Repeats) loci provide prokaryotes with an adaptive immunity against viruses and other mobile genetic elements. CRISPR arrays can be transcribed and processed into small crRNA molecules, which are then used by the cell to target the foreign nucleic acid. Since spacers are accumulated by active CRISPR/Cas systems, the sequences of these spacers provide a record of the past "infection history" of the organism. Here we analyzed all currently known spacers present in archaeal genomes and identified their source by DNA similarity. While nearly 50% of archaeal spacers matched mobile genetic elements, such as plasmids or viruses, several others matched chromosomal genes of other organisms, primarily other archaea. Thus, networks of gene exchange between archaeal species were revealed by the spacer analysis, including many cases of inter-genus and inter-species gene transfer events. Spacers that recognize viral sequences tend to be located further away from the leader sequence, implying that there exists a selective pressure for their retention. CRISPR spacers provide direct evidence for extensive gene exchange in archaea, especially within genera, and support the current dogma where the primary role of the CRISPR/Cas system is anti-viral and anti-plasmid defense. This article was reviewed by: Profs. W. Ford Doolittle, John van der Oost, Christa Schleper (nominated by board member Prof. J Peter Gogarten).

  14. Gene organization in rice revealed by full-length cDNA mapping and gene expression analysis through microarray.

    Directory of Open Access Journals (Sweden)

    Kouji Satoh

    Full Text Available Rice (Oryza sativa L. is a model organism for the functional genomics of monocotyledonous plants since the genome size is considerably smaller than those of other monocotyledonous plants. Although highly accurate genome sequences of indica and japonica rice are available, additional resources such as full-length complementary DNA (FL-cDNA sequences are also indispensable for comprehensive analyses of gene structure and function. We cross-referenced 28.5K individual loci in the rice genome defined by mapping of 578K FL-cDNA clones with the 56K loci predicted in the TIGR genome assembly. Based on the annotation status and the presence of corresponding cDNA clones, genes were classified into 23K annotated expressed (AE genes, 33K annotated non-expressed (ANE genes, and 5.5K non-annotated expressed (NAE genes. We developed a 60mer oligo-array for analysis of gene expression from each locus. Analysis of gene structures and expression levels revealed that the general features of gene structure and expression of NAE and ANE genes were considerably different from those of AE genes. The results also suggested that the cloning efficiency of rice FL-cDNA is associated with the transcription activity of the corresponding genetic locus, although other factors may also have an effect. Comparison of the coverage of FL-cDNA among gene families suggested that FL-cDNA from genes encoding rice- or eukaryote-specific domains, and those involved in regulatory functions were difficult to produce in bacterial cells. Collectively, these results indicate that rice genes can be divided into distinct groups based on transcription activity and gene structure, and that the coverage bias of FL-cDNA clones exists due to the incompatibility of certain eukaryotic genes in bacteria.

  15. Presence of pathogenicity island genes in Enterococcus faecalis isolates from pigs in Denmark

    DEFF Research Database (Denmark)

    Shankar, Nathan; Baghdayan, Arto S.; Willems, Rob

    2006-01-01

    Enterococcus faecalis isolates of porcine origin were screened for the presence of a previously identified pathogenicity island (PAI). By using the esp gene as a genetic marker for the presence of this PAI, 9 esp-positive and 10 esp-negative isolates of porcine origin were investigated by use...... of a designed oligonucleotide array. The results indicated the clustering of esp-positive strains by multilocus sequence typing (MLST), but surprisingly, all strains investigated contained parts of the PAL None of the strains of animal origin investigated belonged to previously identified MLST complex 2, where...... most isolates from patients cluster. Five of the nine esp-positive E. faecalis isolates of animal origin belonged to the same PAI complex as human isolate MMH594 but differed in their sequence types, which strongly indicates the horizontal transfer of the PAI between enterococci of porcine and human...

  16. Isolation of Hox cluster genes from insects reveals an accelerated sequence evolution rate.

    Directory of Open Access Journals (Sweden)

    Heike Hadrys

    Full Text Available Among gene families it is the Hox genes and among metazoan animals it is the insects (Hexapoda that have attracted particular attention for studying the evolution of development. Surprisingly though, no Hox genes have been isolated from 26 out of 35 insect orders yet, and the existing sequences derive mainly from only two orders (61% from Hymenoptera and 22% from Diptera. We have designed insect specific primers and isolated 37 new partial homeobox sequences of Hox cluster genes (lab, pb, Hox3, ftz, Antp, Scr, abd-a, Abd-B, Dfd, and Ubx from six insect orders, which are crucial to insect phylogenetics. These new gene sequences provide a first step towards comparative Hox gene studies in insects. Furthermore, comparative distance analyses of homeobox sequences reveal a correlation between gene divergence rate and species radiation success with insects showing the highest rate of homeobox sequence evolution.

  17. Established Population of Blacklegged Ticks with High Infection Prevalence for the Lyme Disease Bacterium, Borrelia burgdorferi Sensu Lato, on Corkscrew Island, Kenora District, Ontario

    Science.gov (United States)

    Scott, John D.; Foley, Janet E.; Clark, Kerry L.; Anderson, John F.; Durden, Lance A.; Manord, Jodi M.; Smith, Morgan L.

    2016-01-01

    We document an established population of blacklegged ticks, Ixodes scapularis, on Corkscrew Island, Kenora District, Ontario, Canada. Primers of the outer surface protein A (OspA) gene, the flagellin (fla) gene, and the flagellin B (flaB) gene were used in the PCR assays to detect Borrelia burgdorferi sensu lato (s.l.), the Lyme disease bacterium. In all, 60 (73%) of 82 adult I. scapularis, were infected with B. burgdorferi s.l. As well, 6 (43%) of 14 unfed I. scapularis nymphs were positive for B. burgdorferi s.l. An I. scapularis larva was also collected from a deer mouse, and several unfed larvae were gathered by flagging leaf litter. Based on DNA sequencing of randomly selected Borrelia amplicons from six nymphal and adult I. scapularis ticks, primers for the flagellin (fla) and flagellin B (flaB) genes reveal the presence of B. burgdorferi sensu stricto (s.s.), a genospecies pathogenic to humans and certain domestic animals. We collected all 3 host-feeding life stages of I. scapularis in a single year, and report the northernmost established population of I. scapularis in Ontario. Corkscrew Island is hyperendemic for Lyme disease and has the highest prevalence of B. burgdorferi s.l. for any established population in Canada. Because of this very high infection prevalence, this population of I. scapularis has likely been established for decades. Of epidemiological significance, cottage owners, island visitors, outdoors enthusiasts, and medical professionals must be vigilant that B. burgdorferi s.l.-infected I. scapularis on Corkscrew Island pose a serious public health risk. PMID:27877080

  18. New insights into the biodiversity and generic relationships of foliose Bangiales (Rhodophyta) in Iceland and the Faroe Islands

    DEFF Research Database (Denmark)

    Mols-Mortensen, Agnes; Neefus, Christopher D.; Nielsen, Ruth

    2012-01-01

    Foliose species of the Bangiales (Porphyra sensu lato) have a long history of study in the N Atlantic, but there are still regions, especially in the northern parts of the N Atlantic that need more attention. A molecular study using rbcL and cox1 sequences was undertaken to assess the diversity...... of foliose Bangiales species in Iceland and the Faroe Islands. Herbarium collections from the intertidal and subtidal of Iceland (summer and winter) and the Faroe Islands (all seasons) revealed a total of 13 species (11 common to both areas), which were referred to four of the genera recognized in a recent...... two-gene global phylogeny. Boreophyllum birdiae, Porphyra dioica, P. linearis, P. purpurea, P. umbilicalis, Pyropia ?leucosticta? A, Pyropia njordii Mols-Mortensen, J. Brodie Porphyra sp. FO and Pyropia elongata were reported from the Faroe Islands but not from Iceland. Boreophyllum birdiae...

  19. Characterization of the avian Trojan gene family reveals contrasting evolutionary constraints.

    Directory of Open Access Journals (Sweden)

    Petar Petrov

    Full Text Available "Trojan" is a leukocyte-specific, cell surface protein originally identified in the chicken. Its molecular function has been hypothesized to be related to anti-apoptosis and the proliferation of immune cells. The Trojan gene has been localized onto the Z sex chromosome. The adjacent two genes also show significant homology to Trojan, suggesting the existence of a novel gene/protein family. Here, we characterize this Trojan family, identify homologues in other species and predict evolutionary constraints on these genes. The two Trojan-related proteins in chicken were predicted as a receptor-type tyrosine phosphatase and a transmembrane protein, bearing a cytoplasmic immuno-receptor tyrosine-based activation motif. We identified the Trojan gene family in ten other bird species and found related genes in three reptiles and a fish species. The phylogenetic analysis of the homologues revealed a gradual diversification among the family members. Evolutionary analyzes of the avian genes predicted that the extracellular regions of the proteins have been subjected to positive selection. Such selection was possibly a response to evolving interacting partners or to pathogen challenges. We also observed an almost complete lack of intracellular positively selected sites, suggesting a conserved signaling mechanism of the molecules. Therefore, the contrasting patterns of selection likely correlate with the interaction and signaling potential of the molecules.

  20. Genomic islands of divergence are not affected by geography of speciation in sunflowers.

    Science.gov (United States)

    Renaut, S; Grassa, C J; Yeaman, S; Moyers, B T; Lai, Z; Kane, N C; Bowers, J E; Burke, J M; Rieseberg, L H

    2013-01-01

    Genomic studies of speciation often report the presence of highly differentiated genomic regions interspersed within a milieu of weakly diverged loci. The formation of these speciation islands is generally attributed to reduced inter-population gene flow near loci under divergent selection, but few studies have critically evaluated this hypothesis. Here, we report on transcriptome scans among four recently diverged pairs of sunflower (Helianthus) species that vary in the geographical context of speciation. We find that genetic divergence is lower in sympatric and parapatric comparisons, consistent with a role for gene flow in eroding neutral differences. However, genomic islands of divergence are numerous and small in all comparisons, and contrary to expectations, island number and size are not significantly affected by levels of interspecific gene flow. Rather, island formation is strongly associated with reduced recombination rates. Overall, our results indicate that the functional architecture of genomes plays a larger role in shaping genomic divergence than does the geography of speciation.

  1. The tad locus: postcards from the widespread colonization island.

    Science.gov (United States)

    Tomich, Mladen; Planet, Paul J; Figurski, David H

    2007-05-01

    The Tad (tight adherence) macromolecular transport system, which is present in many bacterial and archaeal species, represents an ancient and major new subtype of type II secretion. The tad genes are present on a genomic island named the widespread colonization island (WCI), and encode the machinery that is required for the assembly of adhesive Flp (fimbrial low-molecular-weight protein) pili. The tad genes are essential for biofilm formation, colonization and pathogenesis in the genera Aggregatibacter (Actinobacillus), Haemophilus, Pasteurella, Pseudomonas, Yersinia, Caulobacter and perhaps others. Here we review the structure, function and evolution of the Tad secretion system.

  2. CRISPR loci reveal networks of gene exchange in archaea

    Directory of Open Access Journals (Sweden)

    Brodt Avital

    2011-12-01

    Full Text Available Abstract Background CRISPR (Clustered, Regularly, Interspaced, Short, Palindromic Repeats loci provide prokaryotes with an adaptive immunity against viruses and other mobile genetic elements. CRISPR arrays can be transcribed and processed into small crRNA molecules, which are then used by the cell to target the foreign nucleic acid. Since spacers are accumulated by active CRISPR/Cas systems, the sequences of these spacers provide a record of the past "infection history" of the organism. Results Here we analyzed all currently known spacers present in archaeal genomes and identified their source by DNA similarity. While nearly 50% of archaeal spacers matched mobile genetic elements, such as plasmids or viruses, several others matched chromosomal genes of other organisms, primarily other archaea. Thus, networks of gene exchange between archaeal species were revealed by the spacer analysis, including many cases of inter-genus and inter-species gene transfer events. Spacers that recognize viral sequences tend to be located further away from the leader sequence, implying that there exists a selective pressure for their retention. Conclusions CRISPR spacers provide direct evidence for extensive gene exchange in archaea, especially within genera, and support the current dogma where the primary role of the CRISPR/Cas system is anti-viral and anti-plasmid defense. Open peer review This article was reviewed by: Profs. W. Ford Doolittle, John van der Oost, Christa Schleper (nominated by board member Prof. J Peter Gogarten

  3. Genomic analysis of primordial dwarfism reveals novel disease genes.

    Science.gov (United States)

    Shaheen, Ranad; Faqeih, Eissa; Ansari, Shinu; Abdel-Salam, Ghada; Al-Hassnan, Zuhair N; Al-Shidi, Tarfa; Alomar, Rana; Sogaty, Sameera; Alkuraya, Fowzan S

    2014-02-01

    Primordial dwarfism (PD) is a disease in which severely impaired fetal growth persists throughout postnatal development and results in stunted adult size. The condition is highly heterogeneous clinically, but the use of certain phenotypic aspects such as head circumference and facial appearance has proven helpful in defining clinical subgroups. In this study, we present the results of clinical and genomic characterization of 16 new patients in whom a broad definition of PD was used (e.g., 3M syndrome was included). We report a novel PD syndrome with distinct facies in two unrelated patients, each with a different homozygous truncating mutation in CRIPT. Our analysis also reveals, in addition to mutations in known PD disease genes, the first instance of biallelic truncating BRCA2 mutation causing PD with normal bone marrow analysis. In addition, we have identified a novel locus for Seckel syndrome based on a consanguineous multiplex family and identified a homozygous truncating mutation in DNA2 as the likely cause. An additional novel PD disease candidate gene XRCC4 was identified by autozygome/exome analysis, and the knockout mouse phenotype is highly compatible with PD. Thus, we add a number of novel genes to the growing list of PD-linked genes, including one which we show to be linked to a novel PD syndrome with a distinct facial appearance. PD is extremely heterogeneous genetically and clinically, and genomic tools are often required to reach a molecular diagnosis.

  4. Avifaunal changes revealed in Quaternary deposits near Waitomo Caves, North Island, New Zealand

    International Nuclear Information System (INIS)

    Worthy, T.H.; Swabey, E.J.

    2002-01-01

    Late Pleistocene (23,000-10,000 14 C yr BP) and Holocene (10,000 14 C yr - present BP) avifaunas are described from the Henry Lambert and associated passages in Gardners Gut Cave, Waitomo Caves, North Island, New Zealand. Nine radiocarbon dates on bones and three uranium series dates on speleothems support the dating of the sites. These data are augmented by six new dates and reanalysis of the avifaunas from F1c Cave, also in the Waitomo karst. A distinctive Pleistocene avifauna characterised by the moa Euryapterix curtus and Pachyornis mappini and the North Island goose (Cnemiornis gracilis) with common associates including New Zealand coot (Fulica prisca), North Island takahe (Porphyrio mantelli), Finsch's duck (Euryanas finschi), and North Island kokako (Callaeas wilsoni) was present. The presence of kokako, saddleback (Philesturnus rufusater), and robin (Petroica longipes) in the Pleistocene deposits and the absence of grassland taxa such as pipit (Anthus noveaseelandiae) and quail (Coturnix novaezelandiae) indicate that the vegetation about Gardners Gut Cave included tall shrubland and probably lacked much grassland, even over the Last Glacial Maximum. The Holocene at Waitomo was characterised by a moa fauna dominated by Anomalopteryx didiformis, although both Euryapteryx curtus and Pachyornis mappini persisted in small numbers. The frequent occurrence of kakapo (Strigops habroptilus), weka (Gallirallus australis), and brown teal (Anas chlorotis) typifies Holocene avifaunas; Cnemiornis and Fulica are unknown from Holocene deposits in the area. (author). 45 refs., 7 figs., 8 tabs

  5. Involvement of the Helicobacter pylori plasticity region and cag pathogenicity island genes in the development of gastroduodenal diseases.

    Science.gov (United States)

    Pacheco, A R; Proença-Módena, J L; Sales, A I L; Fukuhara, Y; da Silveira, W D; Pimenta-Módena, J L; de Oliveira, R B; Brocchi, M

    2008-11-01

    Infection by Helicobacter pylori is associated with the development of several gastroduodenal diseases, including gastritis, peptic ulcer disease (gastric ulcers and duodenal ulcers), and gastric adenocarcinoma. Although a number of putative virulence factors have been reported for H. pylori, there are conflicting results regarding their association with specific H. pylori-related diseases. In this work, we investigated the presence of virB11 and cagT, located in the left half of the cag pathogenicity island (cagPAI), and the jhp917-jhp918 sequences, components of the dupA gene located in the plasticity zone of H. pylori, in Brazilian isolates of H. pylori. We also examined the association between these genes and H. pylori-related gastritis, peptic ulcer disease, and gastric and duodenal ulcers in an attempt to identify a gene marker for clinical outcomes related to infection by H. pylori. The cagT gene was associated with peptic ulcer disease and gastric ulcers, whereas the virB11 gene was detected in nearly all of the samples. The dupA gene was not associated with duodenal ulcers or any gastroduodenal disease here analyzed. These results suggest that cagT could be a useful prognostic marker for the development of peptic ulcer disease in the state of São Paulo, Brazil. They also indicate that cagT is associated with greater virulence and peptic ulceration, and that this gene is an essential component of the type IV secretion system of H. pylori.

  6. Effects of insularity on digestion: living on islands induces shifts in physiological and morphological traits in island reptiles

    Science.gov (United States)

    Sagonas, Kostas; Pafilis, Panayiotis; Valakos, Efstratios D.

    2015-10-01

    Living on islands entails numerous challenges for animals, among which resource scarcity stands out. In order to survive, animals have to optimize energy acquisition. We examined the impact of insularity on digestion comparing a series of physiological and morphological traits of adult males between insular and mainland populations of the Balkan green lizard. Island lizards had longer gastrointestinal tracts and gut passage times and higher digestive efficiencies. The dissection of the hindgut revealed an unexpected finding, the presence of cecal valves that were more frequent in island lizards. Thanks to all above islanders retain food for longer periods and thus maximize energy income and increase the amount of the extracted nutrients. That way, they secure energy income from the limited, in time and quantity, food resources of the islands.

  7. Quantification of Functional Marker Genes for Denitrifying Microbial Populations in the Chandeleur Islands Impacted by the 2010 Gulf of Mexico Oil Spill

    Science.gov (United States)

    Crawford, P.; Flournoy, N.; Taylor, C.; Tatariw, C.; Mortazavi, B.; Sobecky, P.

    2017-12-01

    Barrier island ecosystems provide protection by reducing storm surges, dissipating wave energy, and economically through services such as fisheries, water catchment, and water quality. As these ecosystems are deteriorating and threatened in this century, services provided to humans are being valued monetarily to communicate their importance. Events such as the 2010 Gulf of Mexico oil spill, act as catalysts to accelerate deterioration and further loss of these vital ecosystem services. The oil spill impacted the Chandeleur Islands, barrier islands in Louisiana waters located forty miles south of Gulfport, MS. Island chain vegetation; i.e., Avicennia germinans and native Spartina alterniflora was heavily damaged as a result of the oil spill. As oil was deposited differentially, it was important to investigate the microbiology of oil-impacted areas as marsh vegetation is directly linked to microbe-driven ecosystem services such as denitrification, a nitrogen (N) cycle pathway. The objectives of this study were: i) characterize the biodiversity of microorganisms; ii) quantify denitrifying microbial populations using functional marker genes; and iii) measure rates of denitrification during a one-year period. Eco-functional marker genes narG, nirS, norB, nosZ, and nrfA were selected to represent denitrification. Three different marsh sites were selected for study based upon estimated amounts of prior oiling. Highest rates of denitrification were in September while the lowest rates were observed in February. The highest nirS abundance was detected for two of the three sites (Site 1 and 2) in September while Site 3 exhibited the highest abundance in November. Similarly, the highest abundances observed for norB and nosZ varied by site and by month. Weathered oil was also detected in some of the marsh sediment cores and chemically typed to Macondo oil. Studies such as this one are designed to characterize the barrier island microbial biodiversity and N cycle processes to

  8. Functional analysis of the Gonococcal Genetic Island of Neisseria gonorrhoeae.

    Directory of Open Access Journals (Sweden)

    Emilia Pachulec

    Full Text Available Neisseria gonorrhoeae is an obligate human pathogen that is responsible for the sexually-transmitted disease gonorrhea. N. gonorrhoeae encodes a T4SS within the Gonococcal Genetic Island (GGI, which secretes ssDNA directly into the external milieu. Type IV secretion systems (T4SSs play a role in horizontal gene transfer and delivery of effector molecules into target cells. We demonstrate that GGI-like T4SSs are present in other β-proteobacteria, as well as in α- and γ-proteobacteria. Sequence comparison of GGI-like T4SSs reveals that the GGI-like T4SSs form a highly conserved unit that can be found located both on chromosomes and on plasmids. To better understand the mechanism of DNA secretion by N. gonorrhoeae, we performed mutagenesis of all genes encoded within the GGI, and studied the effects of these mutations on DNA secretion. We show that genes required for DNA secretion are encoded within the yaa-atlA and parA-parB regions, while genes encoded in the yfeB-exp1 region could be deleted without any effect on DNA secretion. Genes essential for DNA secretion are encoded within at least four different operons.

  9. Reanalysis of RNA-sequencing data reveals several additional fusion genes with multiple isoforms.

    Science.gov (United States)

    Kangaspeska, Sara; Hultsch, Susanne; Edgren, Henrik; Nicorici, Daniel; Murumägi, Astrid; Kallioniemi, Olli

    2012-01-01

    RNA-sequencing and tailored bioinformatic methodologies have paved the way for identification of expressed fusion genes from the chaotic genomes of solid tumors. We have recently successfully exploited RNA-sequencing for the discovery of 24 novel fusion genes in breast cancer. Here, we demonstrate the importance of continuous optimization of the bioinformatic methodology for this purpose, and report the discovery and experimental validation of 13 additional fusion genes from the same samples. Integration of copy number profiling with the RNA-sequencing results revealed that the majority of the gene fusions were promoter-donating events that occurred at copy number transition points or involved high-level DNA-amplifications. Sequencing of genomic fusion break points confirmed that DNA-level rearrangements underlie selected fusion transcripts. Furthermore, a significant portion (>60%) of the fusion genes were alternatively spliced. This illustrates the importance of reanalyzing sequencing data as gene definitions change and bioinformatic methods improve, and highlights the previously unforeseen isoform diversity among fusion transcripts.

  10. Reanalysis of RNA-sequencing data reveals several additional fusion genes with multiple isoforms.

    Directory of Open Access Journals (Sweden)

    Sara Kangaspeska

    Full Text Available RNA-sequencing and tailored bioinformatic methodologies have paved the way for identification of expressed fusion genes from the chaotic genomes of solid tumors. We have recently successfully exploited RNA-sequencing for the discovery of 24 novel fusion genes in breast cancer. Here, we demonstrate the importance of continuous optimization of the bioinformatic methodology for this purpose, and report the discovery and experimental validation of 13 additional fusion genes from the same samples. Integration of copy number profiling with the RNA-sequencing results revealed that the majority of the gene fusions were promoter-donating events that occurred at copy number transition points or involved high-level DNA-amplifications. Sequencing of genomic fusion break points confirmed that DNA-level rearrangements underlie selected fusion transcripts. Furthermore, a significant portion (>60% of the fusion genes were alternatively spliced. This illustrates the importance of reanalyzing sequencing data as gene definitions change and bioinformatic methods improve, and highlights the previously unforeseen isoform diversity among fusion transcripts.

  11. Diversification in continental island archipelagos: new evidence on the roles of fragmentation, colonization and gene flow on the genetic divergence of Aegean Nigella (Ranunculaceae).

    Science.gov (United States)

    Jaros, Ursula; Tribsch, Andreas; Comes, Hans Peter

    2018-02-12

    Disentangling the relative roles of past fragmentation (vicariance), colonization (dispersal) and post-divergence gene flow in the genetic divergence of continental island organisms remains a formidable challenge. Amplified fragment length polymorphisms (AFLPs) were used to (1) gain further insights into the biogeographical processes underlying the Pleistocene diversification of the Aegean Nigella arvensis complex; (2) evaluate the role of potential key factors driving patterns of population genetic variability (mating system, geographical isolation and historical contingencies); and (3) test the robustness of conclusions previously drawn from chloroplast (cp) DNA. Genetic diversity was analysed for 235 AFLP markers from 48 populations (497 individuals) representing 11 taxa of the complex using population genetic methods and Bayesian assignment tests. Most designated taxa are identifiable as genetically distinct units. Both fragmentation and dispersal-driven diversification processes occurred at different geological time scales, from Early to Late Pleistocene, specifically (1) sea barrier-induced vicariant speciation in the Cyclades, the Western Cretan Strait and Ikaria; and (2) bi-regional colonizations of the 'Southern Aegean Island Arc' from the Western vs. Eastern Aegean mainland, followed by allopatric divergences in Crete vs. Rhodos and Karpathos/Kasos. Outcrossing island taxa experienced drift-related demographic processes that are magnified in the two insular selfing species. Population genetic differentiation on the mainland seems largely driven by dispersal limitation, while in the Central Aegean it may still be influenced by historical events (island fragmentation and sporadic long-distance colonization). The biogeographical history of Aegean Nigella is more complex than expected for a strictly allopatric vicariant model of divergence. Nonetheless, the major phylogeographical boundaries of this radiation are largely congruent with the geography and

  12. Targeted Gene Deletion Demonstrates that Cell Adhesion MoleculeICAM-4 is Critical for Erythroblastic Island Formation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gloria; Lo, Annie; Short, Sarah A.; Mankelow, Tosti J.; Spring, Frances; Parsons, Stephen F.; Mohandas, Narla; Anstee, David J.; Chasis, Joel Anne

    2006-02-15

    Erythroid progenitors differentiate in erythroblastic islands, bone marrow niches composed of erythroblasts surrounding a central macrophage. Evidence suggests that within islands adhesive interactions regulate erythropoiesis and apoptosis. We are exploring whether erythroid intercellular adhesion molecule-4 (ICAM-4), animmunoglobulin superfamily member, participates in island formation. Earlier, we identified alpha V integrins as ICAM-4 counter receptors. Since macrophages express alpha V, ICAM-4 potentially mediates island attachments. To test this, we generated ICAM-4 knockout mice and developed quantitative, live cell techniques for harvesting intact islands and for reforming islands in vitro. We observed a 47 percent decrease in islands reconstituted from ICAM-4 null marrow compared to wild type. We also found a striking decrease in islands formed in vivo in knockout mice. Further, peptides that block ICAM-4 alpha V adhesion produced a 53-57 percent decrease in reconstituted islands, strongly suggesting that ICAM-4 binding to macrophage alpha V functions in island integrity. Importantly, we documented that alpha V integrin is expressed in macrophages isolated from erythro blastic islands. Collectively, these data provide convincing evidence that ICAM-4 is critical in erythroblastic island formation via ICAM-4/alpha V adhesion and also demonstrate that the novel experimental strategies we developed will be valuable in exploring molecular mechanisms of erythroblastic island formation and their functional role in regulating erythropoiesis.

  13. Isolation of thermotolerant Vermamoeba vermiformis strains from water sources in Lanzarote Island, Canary Islands, Spain.

    Science.gov (United States)

    Reyes-Batlle, María; Wagner, Carolina; Zamora-Herrera, Jonadab; Vargas-Mesa, Alejandro; Sifaoui, Ines; González, Ana C; López-Arencibia, Atteneri; Valladares, Basilio; Martínez-Carretero, Enrique; Piñero, José E; Lorenzo-Morales, Jacob

    2016-09-01

    In this study, twenty water samples were collected in the island of Lanzarote, Canary Islands, Spain in order to check for the presence of V. vermiformis strains in these samples. Water samples were cultured on 2% Non-Nutrient Agar (NNA) plates covered with a thin layer of heat killed E. coli and checked daily for the presence of Vermamoeba. After a week, V. vermiformis amoebae were observed in 2 of the 20 processed samples (10%) incubated at room temperature and 37°C. Molecular characterization was carried out by amplifying the 18S rDNA gene and DNA sequencing in order to confirm the identity of the isolated amoebic strains. To the best of our knowledge, this is the first report on the presence of FLA in environmental sources in Lanzarote Island and the first report of Vermamoeba vermiformis in water sources in this island. Furthermore, the two strains isolated in this study were collected in recreational areas with close contact with humans and thus awareness should be raised.

  14. Methylation of the estrogen receptor CpG island distinguishes spontaneous and plutonium-induced tumors from nitrosamine-induced lung tumors

    Energy Technology Data Exchange (ETDEWEB)

    Belinsky, S.A.; Baylin, S.B.; Issa, J.J. [Johns Hopkins Univ., Baltimore, MD (United States)

    1995-12-01

    CpG islands located in the promoter region of genes constitute one mechanism for regulating transcription. These islands are normally free of methylation, regardless of the expression state of the gene. Hypermethylation of CpG islands, the addition of a methyl group to the internal cytosine within CpG dinucleotides, can cause silencing of a gene. Hypermethylation has been detected as an early event at specific chromosome loci during the development of colon cancer and represents one mechanism used by neoplatic cells to inactivate tumor suppressor genes. Recent studies have demonstrated this mechanism in inactivation of the VHL tumor suppressor gene in 19% of sporadic renal tumors and the p16 {sup INK4a} tumor suppressor gene in 30% of non-small cell lung cancers. A recent report indicates that the estrogen receptor gene could also be inactivated through methylation. In addition, estrogen receptor CpG island methylation arises as a direct function of age in normal colonic mucosa and is present in virtually all colonic tumors. In cultured colon cancer cells, methylation-associated loss of expression of the estrogen receptor gene results in deregulated growth, suggesting a role for the estrogen receptor in colon cancer development. These results provide further evidence that gene silencing through methylation could be a predominant epigenetic mechanism underlying the development of many different types of cancer. The purpose of the current investigation was to determine whether estrogen receptor CpG island methylation is involved in the development of lung cancer. The frequency for methylation of the estrogen receptor CpG island in rodent lung tumors is summarized.

  15. The Idea of the Archipelago: Contemplating Island Relations

    Directory of Open Access Journals (Sweden)

    Elaine Stratford

    2013-05-01

    Full Text Available Creative, innovative, and timely research on islands and island futures is warranted and pressing, not least because island(ers are poorly served by established tropes of them as subordinate to continents or mainlands. Opportunities exist to provide a more thoroughgoing account of island life and island relations, and the seven papers in this special issue address that task. In works that consider islands in the Timor Sea, the Caribbean, the Pacific, Atlantic and Southern Oceans, and that span several different disciplinary frames—archival-historical, critical theoretical, literary, cultural, geopolitical, sociological and artistic—these papers evidence both the diversity of approach to thinking with the archipelago, and numerous points in common. Among the latter is an understanding that island relations are built on connection, assemblage, mobility, and multiplicity, and a commitment to critically examine the ways in which these entanglements affect and give effect to island life. The models of island relationality brought to light by this collective focus on the archipelago reveal new and diverse connections of island peoples with their physical and cultural environments, and with the world beyond; create spaces for growing resilience, association and engagement; and invite further study.

  16. Are TMEM genes potential candidate genes for panic disorder?

    DEFF Research Database (Denmark)

    NO, Gregersen; Buttenschøn, Henriette Nørmølle; Hedemand, Anne

    2014-01-01

    We analysed single nucleotide polymorphisms in two transmembrane genes (TMEM98 and TMEM132E) in panic disorder (PD) patients and control individuals from the Faroe Islands, Denmark and Germany. The genes encode single-pass membrane proteins and are located within chromosome 17q11.2-q12...

  17. Identification of horizontally transferred genes in the genus Colletotrichum reveals a steady tempo of bacterial to fungal gene transfer.

    Science.gov (United States)

    Jaramillo, Vinicio D Armijos; Sukno, Serenella A; Thon, Michael R

    2015-01-02

    Horizontal gene transfer (HGT) is the stable transmission of genetic material between organisms by means other than vertical inheritance. HGT has an important role in the evolution of prokaryotes but is relatively rare in eukaryotes. HGT has been shown to contribute to virulence in eukaryotic pathogens. We studied the importance of HGT in plant pathogenic fungi by identifying horizontally transferred genes in the genomes of three members of the genus Colletotrichum. We identified eleven HGT events from bacteria into members of the genus Colletotrichum or their ancestors. The HGT events include genes involved in amino acid, lipid and sugar metabolism as well as lytic enzymes. Additionally, the putative minimal dates of transference were calculated using a time calibrated phylogenetic tree. This analysis reveals a constant flux of genes from bacteria to fungi throughout the evolution of subphylum Pezizomycotina. Genes that are typically transferred by HGT are those that are constantly subject to gene duplication and gene loss. The functions of some of these genes suggest roles in niche adaptation and virulence. We found no evidence of a burst of HGT events coinciding with major geological events. In contrast, HGT appears to be a constant, albeit rare phenomenon in the Pezizomycotina, occurring at a steady rate during their evolution.

  18. Genetic differentiation in Elaeocarpus photiniifolia (Elaeocarpaceae) associated with geographic distribution and habitat variation in the Bonin (Ogasawara) Islands.

    Science.gov (United States)

    Sugai, Kyoko; Setsuko, Suzuki; Nagamitsu, Teruyoshi; Murakami, Noriaki; Kato, Hidetoshi; Yoshimaru, Hiroshi

    2013-11-01

    Gene flow between populations in different environmental conditions can be limited due to divergent natural selection, thus promoting genetic differentiation. Elaeocarpus photiniifolia, an endemic tree species in the Bonin Islands, is distributed in two types of habitats, dry scrubs and mesic forests. We aim to elucidate the genetic differentiation in E. photiniifolia within and between islands and between the habitat types. We investigated genotypes of 639 individuals from 19 populations of E. photiniifolia and its closely-related E. sylvestris at 24 microsatellite loci derived from expressed sequence tags. The data revealed genetic differentiation (1) between E. photiniifolia and E. sylvestris (0.307 ≤ F ST ≤ 0.470), (2) between the E. photiniifolia populations of the Chichijima and Hahajima Island Groups in the Bonin Islands (0.033 ≤ F ST ≤ 0.121) and (3) between E. photiniifolia populations associated with dry scrubs and mesic forests in the Chichijima Island Group (0.005 ≤ F ST ≤ 0.071). Principal coordinate analysis and Bayesian clustering analysis also showed that genetically distinct groups were associated with the habitat types, and isolation by distance was not responsible for the genetic differentiation. These findings suggest that E. photiniifolia is divided into genetically differentiated groups associated with different environmental conditions in the Bonin Islands.

  19. A Chinese Herbal Decoction, Danggui Buxue Tang, Stimulates Proliferation, Differentiation and Gene Expression of Cultured Osteosarcoma Cells: Genomic Approach to Reveal Specific Gene Activation

    Directory of Open Access Journals (Sweden)

    Roy C. Y. Choi

    2011-01-01

    Full Text Available Danggui Buxue Tang (DBT, a Chinese herbal decoction used to treat ailments in women, contains Radix Astragali (Huangqi; RA and Radix Angelicae Sinensis (Danggui; RAS. When DBT was applied onto cultured MG-63 cells, an increase of cell proliferation and differentiation of MG-63 cell were revealed: both of these effects were significantly higher in DBT than RA or RAS extract. To search for the biological markers that are specifically regulated by DBT, DNA microarray was used to reveal the gene expression profiling of DBT in MG-63 cells as compared to that of RA- or RAS-treated cells. Amongst 883 DBT-regulated genes, 403 of them are specifically regulated by DBT treatment, including CCL-2, CCL-7, CCL-8, and galectin-9. The signaling cascade of this DBT-regulated gene expression was also elucidated in cultured MG-63 cells. The current results reveal the potential usage of this herbal decoction in treating osteoporosis and suggest the uniqueness of Chinese herbal decoction that requires a well-defined formulation. The DBT-regulated genes in the culture could serve as biological responsive markers for quality assurance of the herbal preparation.

  20. Genetic diversity of sea-island cotton (Gossypium barbadense) revealed by mapped SSRs.

    Science.gov (United States)

    Wang, X Q; Feng, C H; Lin, Z X; Zhang, X L

    2011-12-08

    In order to evaluate the genetic diversity of sea-island cotton (Gossypium barbadense), 237 commonly mapped SSR markers covering the cotton genome were used to genotype 56 sea-island cotton accessions. A total of 218 polymorphic primer pairs (91.98%) amplified 361 loci, with a mean of 1.66 loci. Polymorphism information content values of the SSR primers ranged from 0.035 to 0.862, with a mean of 0.320. The highest mean polymorphism information content value for the SSR motifs was from a compound motif (0.402), and for the chromosomes it was Chr10 (0.589); the highest ratio of polymorphic primers in Xinjiang accessions was from Chr21 (83.33%). Genetic diversity was high in Xinjiang accessions. AMOVA showed that variation was 8 and 92% among populations and within populations, respectively. The 56 sea-island accessions were divided into three groups in the UPGMA dendrogram: Xinhai5 was in the first group; accessions from Xinjiang, except the five main ones, were in the second group, and the other 34 accessions were in the third group. Accessions from the former Soviet Union and Xinjiang main accessions were closely related. Both PCA and UPGMA confirmed that Xinhai5 was distinct from the other accessions, and accessions from Xinjiang were in an independent group. Given the differences between principal components analysis and UPGMA results, it is necessary to combine molecular markers and pedigree information so that genetic diversity can be objectively analyzed.

  1. Genetic variability of Rickettsia spp. in Ixodes persulcatus ticks from continental and island areas of the Russian Far East.

    Science.gov (United States)

    Igolkina, Y; Bondarenko, E; Rar, V; Epikhina, T; Vysochina, N; Pukhovskaya, N; Tikunov, A; Ivanov, L; Golovljova, I; Ivanov, М; Tikunova, N

    2016-10-01

    Rickettsia spp. are intracellular Gram-negative bacteria transmitted by arthropods. Two potentially pathogenic rickettsiae, Candidatus Rickettsia tarasevichiae and Rickettsia helvetica, have been found in unfed adult Ixodes persulcatus ticks. The aim of this study was to assess the prevalence and genetic variability of Rickettsia spp. in I. persulcatus ticks collected from different locations in the Russian Far East. In total, 604 adult I. persulcatus ticks collected from four sites in the Khabarovsk Territory (continental area) and one site in Sakhalin Island were examined for the presence of Rickettsia spp. by real-time PCR. Nested PCR with species-specific primers and sequencing were used for genotyping of revealed rickettsiae. The overall prevalence of Rickettsia spp. in ticks collected in different sites varied from 67.9 to 90.7%. However, the proportion of different Rickettsia species observed in ticks from Sakhalin Island significantly differed from that in ticks from the Khabarovsk Territory. In Sakhalin Island, R. helvetica prevailed in examined ticks, while Candidatus R. tarasevichiae was predominant in the Khabarovsk Territory. For gltA and ompB gene fragments, the sequences obtained for Candidatus R. tarasevichiae from all studied sites were identical to each other and to the known sequences of this species. According to sequence analysis of gltA, оmpB and sca4 genes, R. helvetica isolates from Sakhalin Island and the Khabarovsk Territory were identical to each other, but they differed from R. helvetica from other regions and from those found in other tick species. For the first time, DNA of pathogenic Rickettsia heilongjiangensis was detected in I. persulcatus ticks in two sites from the Khabarovsk Territory. The gltA, ompA and оmpB gene sequences of R. heilongjiangensis were identical to or had solitary mismatches with the corresponding sequences of R. heilongjiangensis found in other tick species. Copyright © 2016 Elsevier GmbH. All rights

  2. Bioinformatics analysis of RNA-seq data revealed critical genes in colon adenocarcinoma.

    Science.gov (United States)

    Xi, W-D; Liu, Y-J; Sun, X-B; Shan, J; Yi, L; Zhang, T-T

    2017-07-01

    RNA-seq data of colon adenocarcinoma (COAD) were analyzed with bioinformatics tools to discover critical genes in the disease. Relevant small molecule drugs, transcription factors (TFs) and microRNAs (miRNAs) were also investigated. RNA-seq data of COAD were downloaded from The Cancer Genome Atlas (TCGA). Differential analysis was performed with package edgeR. False positive discovery (FDR) 1 were set as the cut-offs to screen out differentially expressed genes (DEGs). Gene coexpression network was constructed with package Ebcoexpress. GO enrichment analysis was performed for the DEGs in the gene coexpression network with DAVID. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was also performed for the genes with KOBASS 2.0. Modules were identified with MCODE of Cytoscape. Relevant small molecules drugs were predicted by Connectivity map. Relevant miRNAs and TFs were searched by WebGestalt. A total of 457 DEGs, including 255 up-regulated and 202 down-regulated genes, were identified from 437 COAD and 39 control samples. A gene coexpression network was constructed containing 40 DEGs and 101 edges. The genes were mainly associated with collagen fibril organization, extracellular matrix organization and translation. Two modules were identified from the gene coexpression network, which were implicated in muscle contraction and extracellular matrix organization, respectively. Several critical genes were disclosed, such as MYH11, COL5A2 and ribosomal proteins. Nine relevant small molecule drugs were identified, such as scriptaid and STOCK1N-35874. Accordingly, a total of 17 TFs and 10 miRNAs related to COAD were acquired, such as ETS2, NFAT, AP4, miR-124A, MiR-9, miR-96 and let-7. Several critical genes and relevant drugs, TFs and miRNAs were revealed in COAD. These findings could advance the understanding of the disease and benefit therapy development.

  3. Comparative genome and transcriptome analysis reveals distinctive surface characteristics and unique physiological potentials of Pseudomonas aeruginosa ATCC 27853

    KAUST Repository

    Cao, Huiluo

    2017-06-12

    Pseudomonas aeruginosa ATCC 27853 was isolated from a hospital blood specimen in 1971 and has been widely used as a model strain to survey antibiotics susceptibilities, biofilm development, and metabolic activities of Pseudomonas spp.. Although four draft genomes of P. aeruginosa ATCC 27853 have been sequenced, the complete genome of this strain is still lacking, hindering a comprehensive understanding of its physiology and functional genome.Here we sequenced and assembled the complete genome of P. aeruginosa ATCC 27853 using the Pacific Biosciences SMRT (PacBio) technology and Illumina sequencing platform. We found that accessory genes of ATCC 27853 including prophages and genomic islands (GIs) mainly contribute to the difference between P. aeruginosa ATCC 27853 and other P. aeruginosa strains. Seven prophages were identified within the genome of P. aeruginosa ATCC 27853. Of the predicted 25 GIs, three contain genes that encode monoxoygenases, dioxygenases and hydrolases that could be involved in the metabolism of aromatic compounds. Surveying virulence-related genes revealed that a series of genes that encode the B-band O-antigen of LPS are lacking in ATCC 27853. Distinctive SNPs in genes of cellular adhesion proteins such as type IV pili and flagella biosynthesis were also observed in this strain. Colony morphology analysis confirmed an enhanced biofilm formation capability of ATCC 27853 on solid agar surface compared to Pseudomonas aeruginosa PAO1. We then performed transcriptome analysis of ATCC 27853 and PAO1 using RNA-seq and compared the expression of orthologous genes to understand the functional genome and the genomic details underlying the distinctive colony morphogenesis. These analyses revealed an increased expression of genes involved in cellular adhesion and biofilm maturation such as type IV pili, exopolysaccharide and electron transport chain components in ATCC 27853 compared with PAO1. In addition, distinctive expression profiles of the

  4. Chromosomal islands of Streptococcus pyogenes and related streptococci: molecular switches for survival and virulence.

    Science.gov (United States)

    Nguyen, Scott V; McShan, William M

    2014-01-01

    Streptococcus pyogenes is a significant pathogen of humans, annually causing over 700,000,000 infections and 500,000 deaths. Virulence in S. pyogenes is closely linked to mobile genetic elements like phages and chromosomal islands (CI). S. pyogenes phage-like chromosomal islands (SpyCI) confer a complex mutator phenotype on their host. SpyCI integrate into the 5' end of DNA mismatch repair (MMR) gene mutL, which also disrupts downstream operon genes lmrP, ruvA, and tag. During early logarithmic growth, SpyCI excise from the bacterial chromosome and replicate as episomes, relieving the mutator phenotype. As growth slows and the cells enter stationary phase, SpyCI reintegrate into the chromosome, again silencing the MMR operon. This system creates a unique growth-dependent and reversible mutator phenotype. Additional CI using the identical attachment site in mutL have been identified in related species, including Streptococcus dysgalactiae subsp. equisimilis, Streptococcus anginosus, Streptococcus intermedius, Streptococcus parauberis, and Streptococcus canis. These CI have small genomes, which range from 13 to 20 kB, conserved integrase and DNA replication genes, and no identifiable genes encoding capsid proteins. SpyCI may employ a helper phage for packaging and dissemination in a fashion similar to the Staphylococcus aureus pathogenicity islands (SaPI). Outside of the core replication and integration genes, SpyCI and related CI show considerable diversity with the presence of many indels that may contribute to the host cell phenotype or fitness. SpyCI are a subset of a larger family of streptococcal CI who potentially regulate the expression of other host genes. The biological and phylogenetic analysis of streptococcal chromosomal islands provides important clues as to how these chromosomal islands help S. pyogenes and other streptococcal species persist in human populations in spite of antibiotic therapy and immune challenges.

  5. Emergence of influenza A (H1N1) PDM09 in the remote Islands of India--a molecular approach.

    Science.gov (United States)

    Muruganandam, N; Bhattacharya, D; Chaaithanya, I K; Bhattacharya, H; Reesu, R; Maile, A; Bharathi, G S J; Sugunan, A P; Vijayachari, P

    2015-01-01

    A disease outbreak of A (H1N1) PDM09 was reported in Andaman and Nicobar islands in 2009 with an attack rate of 33.5% among settler population and 26.3% among the aboriginal Nicobarese tribe. During the ongoing outbreak of A (H1N1) PDM09 disease in different parts of the world, a subject working in Dubai city of Saudi Arabia, came to Port Blair, following which the pandemic triggered for the first time in these Islands. During the period August 2009 to January 2011, 30 confirmed cases of Influenza A (H1N1) PDM09 virus infection was detected. To understand the genetic relationship, the NA gene sequences of the viruses were phylogenetically analysed together along with the virus sequence isolated from other parts of the world. Formation of multiple clusters were observed, with the sequences of Andaman Islands, mainland India, Mexico, Saudi Arabia and few other counties clustering together. The sequence analysis data revealed that there was no specific mutation conferring resistance to oseltamivir among the Andaman A (H1N1) PDM09 virus isolates. The result of phylogenetic analysis have also revealed that the A (H1N1) PDM09 virus might have spread in these remote Islands of India via the subject from Saudi Arabia/Dubai. A (H1N1) PDM09 Influenza outbreak have highlighted the need to strengthen the region-specific pandemic preparedness plans and surveillance strategies.

  6. Comparison of CpG island methylator phenotype (CIMP) frequency in colon cancer using different probe- and gene-specific scoring alternatives on recommended multi-gene panels.

    Science.gov (United States)

    Berg, Marianne; Hagland, Hanne R; Søreide, Kjetil

    2014-01-01

    In colorectal cancer a distinct subgroup of tumours demonstrate the CpG island methylator phenotype (CIMP). However, a consensus of how to score CIMP is not reached, and variation in definition may influence the reported CIMP prevalence in tumours. Thus, we sought to compare currently suggested definitions and cut-offs for methylation markers and how they influence CIMP classification in colon cancer. Methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA), with subsequent fragment analysis, was used to investigate methylation of tumour samples. In total, 31 CpG sites, located in 8 different genes (RUNX3, MLH1, NEUROG1, CDKN2A, IGF2, CRABP1, SOCS1 and CACNA1G) were investigated in 64 distinct colon cancers and 2 colon cancer cell lines. The Ogino gene panel includes all 8 genes, in addition to the Weisenberger panel of which only 5 of the 8 genes included were investigated. In total, 18 alternative combinations of scoring of CIMP positivity on probe-, gene-, and panel-level were analysed and compared. For 47 samples (71%), the CIMP status was constant and independent of criteria used for scoring; 34 samples were constantly scored as CIMP negative, and 13 (20%) consistently scored as CIMP positive. Only four of 31 probes (13%) investigated showed no difference in the numbers of positive samples using the different cut-offs. Within the panels a trend was observed that increasing the gene-level stringency resulted in a larger difference in CIMP positive samples than increasing the probe-level stringency. A significant difference between positive samples using 'the most stringent' as compared to 'the least stringent' criteria (20% vs 46%, respectively; pCIMP depending on the cut-offs and genes included in a panel was found, with twice as many positives samples by least compared to most stringent definition used.

  7. Gain and loss of phototrophic genes revealed by comparison of two Citromicrobium bacterial genomes.

    Directory of Open Access Journals (Sweden)

    Qiang Zheng

    Full Text Available Proteobacteria are thought to have diverged from a phototrophic ancestor, according to the scattered distribution of phototrophy throughout the proteobacterial clade, and so the occurrence of numerous closely related phototrophic and chemotrophic microorganisms may be the result of the loss of genes for phototrophy. A widespread form of bacterial phototrophy is based on the photochemical reaction center, encoded by puf and puh operons that typically are in a 'photosynthesis gene cluster' (abbreviated as the PGC with pigment biosynthesis genes. Comparison of two closely related Citromicrobial genomes (98.1% sequence identity of complete 16S rRNA genes, Citromicrobium sp. JL354, which contains two copies of reaction center genes, and Citromicrobium strain JLT1363, which is chemotrophic, revealed evidence for the loss of phototrophic genes. However, evidence of horizontal gene transfer was found in these two bacterial genomes. An incomplete PGC (pufLMC-puhCBA in strain JL354 was located within an integrating conjugative element, which indicates a potential mechanism for the horizontal transfer of genes for phototrophy.

  8. The CpG island searcher: a new WWW resource.

    Science.gov (United States)

    Takai, Daiya; Jones, Peter A

    2003-01-01

    Clusters of CpG dinucleotides in GC rich regions of the genome called "CpG islands" frequently occur in the 5' ends of genes. Methylation of CpG islands plays a role in transcriptional silencing in higher organisms in certain situations. We have established a CpG-island-extraction algorithm, which we previously developed [Takai and Jones, 2002], on a web site which has a simple user interface to identify CpG islands from submitted sequences of up to 50kb. The web site determines the locations of CpG islands using parameters (lower limit of %GC, ObsCpG/ExpCpG, length) set by the user, to display the value of parameters on each CpG island, and provides a graphical map of CpG dinucleotide distribution and borders of CpG islands. A command-line version of the CpG islands searcher has also been developed for larger sequences. The CpG Island Searcher was applied to the latest sequence and mapping information of human chromosomes 20, 21 and 22, and a total of 2345 CpG islands were extracted and 534 (23%) of them contained first coding exons and 650 (28%) contained other exons. The CpG Island Searcher is available on the World Wide Web at http://www.cpgislands.com or http://www.uscnorris.com/cpgislands/cpg.cgi.

  9. Incidence and Carrier Frequency of CFTR Gene Mutations in Pregnancies With Echogenic Bowel in Nova Scotia and Prince Edward Island.

    Science.gov (United States)

    Miller, Michelle E; Allen, Victoria M; Brock, Jo-Ann K

    2018-03-01

    Fetal echogenic bowel (echogenic bowel) is associated with cystic fibrosis (CF), with a reported incidence ranging from 1% to 13%. Prenatal testing for CF in the setting of echogenic bowel can be done by screening parental or fetal samples for pathogenic CFTR variants. If only one pathogenic variant is identified, sequencing of the CFTR gene can be undertaken, to identify a second pathogenic variant not covered in the standard screening panel. Full gene sequencing, however, also introduces the potential to identify variants of uncertain significance (VUSs) that can create counselling challenges and cause parental anxiety. To provide accurate counselling for families in the study population, the incidence of CF associated with echogenic bowel and the carrier frequency of CFTR variants were investigated. All pregnancies for which CF testing was undertaken for the indication of echogenic bowel (from Nova Scotia and Prince Edward Island) were identified (January 2007-July 2017). The CFTR screening and sequencing results were reviewed, and fetal outcomes related to CF were assessed. A total of 463 pregnancies with echogenic bowel were tested. Four were confirmed to be affected with CF, giving an incidence of 0.9% in this cohort. The carrier frequency of CF among all parents in the cohort was 5.0% (1 in 20); however, when excluding parents of affected fetuses, the carrier frequency for the population was estimated at 4.1% (1 in 25). CFTR gene sequencing identified an additional VUS in two samples. The incidence of CF in pregnancies with echogenic bowel in Nova Scotia and Prince Edward Island is 0.9%, with an estimated population carrier frequency of 4.1%. These results provide the basis for improved counselling to assess the risk of CF in the pregnancy, after parental carrier screening, using Bayesian probability. Counselling regarding VUSs should be undertaken before gene sequencing. Copyright © 2017 Society of Obstetricians and Gynaecologists of Canada. Published by

  10. Challenges for Sustainable Communities in the Solomon Islands: Food Security in Honiara and Livelihoods on Savo Island

    Directory of Open Access Journals (Sweden)

    Nichole Georgeou

    2017-10-01

    Full Text Available This article highlights the challenges of community sustainability in the emerging market economy of Solomon Islands as it grows increasingly reliant on imported foodstuffs. It examines the ways in which Solomon Islanders from neighbouring Savo Island engage with HCM and the opportunities it brings. Using Renzaho and Mellor’s (2010 conceptual framework for analysis of food security assessment we explore the symbiotic relationship that provides food security for those living in and around Honiara city, and income for the mostly subsistence farmers who supply Honiara’s growing population with fresh agricultural produce. Data from five focus groups from three villages on Savo Island reveals the critical importance of income from market sales at the HCM. The article demonstrates the mix of logistical and environmental challenges that confront people when trying to earn money through farming and sales of surplus food.

  11. The overmethylated genes in Helicobacter pylori-infected gastric mucosa are demethylated in gastric cancers

    Directory of Open Access Journals (Sweden)

    Choi Sang-Wook

    2010-11-01

    Full Text Available Abstract Background The transitional-CpG sites between weakly methylated genes and densely methylated retroelements are overmethylated in the gastric mucosa infected with Helicobacter pylori (H. pylori and they are undermethylated in the gastric cancers depending on the level of loss of heterozygosity (LOH events. This study delineated the transitional-CpG methylation patterns of CpG-island-containing and -lacking genes in view of the retroelements. Methods The transitional-CpG sites of eight CpG-island-containing genes and six CpG-island-lacking genes were semi-quantitatively examined by performing radioisotope-labelling methylation-specific PCR under stringent conditions. The level of LOH in the gastric cancers was estimated using the 40 microsatellite markers on eight cancer-associated chromosomes. Each gene was scored as overmethylated or undermethylated based on an intermediate level of transitional-CpG methylation common in the H. pylori-negative gastric mucosa. Results The eight CpG-island genes examined were overmethylated depending on the proximity to the nearest retroelement in the H. pylori-positive gastric mucosa. The six CpG-island-lacking genes were similarly methylated in the H. pylori-positive and -negative gastric mucosa. In the gastric cancers, long transitional-CpG segments of the CpG-island genes distant from the retroelements remained overmethylated, whereas the overmethylation of short transitional-CpG segments close to the retroelements was not significant. Both the CpG-island-containing and -lacking genes tended to be decreasingly methylated in a LOH-level-dependent manner. Conclusions The overmethylated genes under the influence of retroelement methylation in the H. pylori-infected stomach are demethylated in the gastric cancers influenced by LOH.

  12. Genetic affinities between the Yami tribe people of Orchid Island and the Philippine Islanders of the Batanes archipelago

    Science.gov (United States)

    2011-01-01

    Background Yami and Ivatan islanders are Austronesian speakers from Orchid Island and the Batanes archipelago that are located between Taiwan and the Philippines. The paternal genealogies of the Yami tribe from 1962 monograph of Wei and Liu were compared with our dataset of non-recombining Y (NRY) chromosomes from the corresponding families. Then mitochondrial DNA polymorphism was also analyzed to determine the matrilineal relationships between Yami, Ivatan, and other East Asian populations. Results The family relationships inferred from the NRY Phylogeny suggested a low number of paternal founders and agreed with the genealogy of Wei and Liu (P Philippine people was closer than that between Yami and Ivatan, suggesting that the Orchid islanders were colonized separately by their nearest neighbors and bred in isolation. However a northward gene flow to Orchid Island from the Philippines was suspected as Yami and Ivatan peoples both speak Western Malayo-Polynesian languages which are not spoken in Taiwan. Actually, only very little gene flow was observed between Yami and Ivatan or between Yami and the Philippines as indicated by the sharing of mtDNA haplogroup B4a1a4 and one O1a1* Y-STR lineage. Conclusions The NRY and mtDNA genetic information among Yami tribe peoples fitted well the patrilocal society model proposed by Wei and Liu. In this proposal, there were likely few genetic exchanges among Yami and the Philippine people. Trading activities may have contributed to the diffusion of Malayo-Polynesian languages among them. Finally, artifacts dating 4,000 YBP, found on Orchid Island and indicating association with the Out of Taiwan hypothesis might be related to a pioneering stage of settlement, as most dating estimates inferred from DNA variation in our data set ranged between 100-3,000 YBP. PMID:21281460

  13. Systematic Prioritization and Integrative Analysis of Copy Number Variations in Schizophrenia Reveal Key Schizophrenia Susceptibility Genes

    Science.gov (United States)

    Luo, Xiongjian; Huang, Liang; Han, Leng; Luo, Zhenwu; Hu, Fang; Tieu, Roger; Gan, Lin

    2014-01-01

    Schizophrenia is a common mental disorder with high heritability and strong genetic heterogeneity. Common disease-common variants hypothesis predicts that schizophrenia is attributable in part to common genetic variants. However, recent studies have clearly demonstrated that copy number variations (CNVs) also play pivotal roles in schizophrenia susceptibility and explain a proportion of missing heritability. Though numerous CNVs have been identified, many of the regions affected by CNVs show poor overlapping among different studies, and it is not known whether the genes disrupted by CNVs contribute to the risk of schizophrenia. By using cumulative scoring, we systematically prioritized the genes affected by CNVs in schizophrenia. We identified 8 top genes that are frequently disrupted by CNVs, including NRXN1, CHRNA7, BCL9, CYFIP1, GJA8, NDE1, SNAP29, and GJA5. Integration of genes affected by CNVs with known schizophrenia susceptibility genes (from previous genetic linkage and association studies) reveals that many genes disrupted by CNVs are also associated with schizophrenia. Further protein-protein interaction (PPI) analysis indicates that protein products of genes affected by CNVs frequently interact with known schizophrenia-associated proteins. Finally, systematic integration of CNVs prioritization data with genetic association and PPI data identifies key schizophrenia candidate genes. Our results provide a global overview of genes impacted by CNVs in schizophrenia and reveal a densely interconnected molecular network of de novo CNVs in schizophrenia. Though the prioritized top genes represent promising schizophrenia risk genes, further work with different prioritization methods and independent samples is needed to confirm these findings. Nevertheless, the identified key candidate genes may have important roles in the pathogenesis of schizophrenia, and further functional characterization of these genes may provide pivotal targets for future therapeutics and

  14. Memory functions reveal structural properties of gene regulatory networks

    Science.gov (United States)

    Perez-Carrasco, Ruben

    2018-01-01

    Gene regulatory networks (GRNs) control cellular function and decision making during tissue development and homeostasis. Mathematical tools based on dynamical systems theory are often used to model these networks, but the size and complexity of these models mean that their behaviour is not always intuitive and the underlying mechanisms can be difficult to decipher. For this reason, methods that simplify and aid exploration of complex networks are necessary. To this end we develop a broadly applicable form of the Zwanzig-Mori projection. By first converting a thermodynamic state ensemble model of gene regulation into mass action reactions we derive a general method that produces a set of time evolution equations for a subset of components of a network. The influence of the rest of the network, the bulk, is captured by memory functions that describe how the subnetwork reacts to its own past state via components in the bulk. These memory functions provide probes of near-steady state dynamics, revealing information not easily accessible otherwise. We illustrate the method on a simple cross-repressive transcriptional motif to show that memory functions not only simplify the analysis of the subnetwork but also have a natural interpretation. We then apply the approach to a GRN from the vertebrate neural tube, a well characterised developmental transcriptional network composed of four interacting transcription factors. The memory functions reveal the function of specific links within the neural tube network and identify features of the regulatory structure that specifically increase the robustness of the network to initial conditions. Taken together, the study provides evidence that Zwanzig-Mori projections offer powerful and effective tools for simplifying and exploring the behaviour of GRNs. PMID:29470492

  15. Common SNPs in FTO gene are associated with obesity related anthropometric traits in an island population from the eastern Adriatic coast of Croatia.

    Directory of Open Access Journals (Sweden)

    Ge Zhang

    2010-04-01

    Full Text Available Multiple studies have provided compelling evidence that the FTO gene variants are associated with obesity measures. The objective of the study was to investigate whether FTO variants are associated with a broad range of obesity related anthropometric traits in an island population.We examined genetic association between 29 FTO SNPs and a comprehensive set of anthropometric traits in 843 unrelated individuals from an island population in the eastern Adriatic coast of Croatia. The traits include 11 anthropometrics (height, weight, waist circumference, hip circumference, bicondilar upper arm width, upper arm circumference, and biceps, triceps, subscapular, suprailiac and abdominal skin-fold thicknesses and two derived measures (BMI and WHR. Using single locus score tests, 15 common SNPs were found to be significantly associated with "body fatness" measures such as weight, BMI, hip and waist circumferences with P-values ranging from 0.0004 to 0.01. Similar but less significant associations were also observed between these markers and bicondilar upper arm width and upper arm circumference. Most of these significant findings could be explained by a mediating effect of "body fatness". However, one unique association signal between upper arm width and rs16952517 (P-value = 0.00156 could not be explained by this mediating effect. In addition, using a principle component analysis and conditional association tests adjusted for "body fatness", two novel association signals were identified between upper arm circumference and rs11075986 (P-value = 0.00211 and rs16945088 (P-value = 0.00203.The current study confirmed the association of common variants of FTO gene with "body fatness" measures in an isolated island population. We also observed evidence of pleiotropic effects of FTO gene on fat-free mass, such as frame size and muscle mass assessed by bicondilar upper arm width and upper arm circumference respectively and these pleiotropic effects might be

  16. Genome-wide identification of Bcl11b gene targets reveals role in brain-derived neurotrophic factor signaling.

    Directory of Open Access Journals (Sweden)

    Bin Tang

    Full Text Available B-cell leukemia/lymphoma 11B (Bcl11b is a transcription factor showing predominant expression in the striatum. To date, there are no known gene targets of Bcl11b in the nervous system. Here, we define targets for Bcl11b in striatal cells by performing chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq in combination with genome-wide expression profiling. Transcriptome-wide analysis revealed that 694 genes were significantly altered in striatal cells over-expressing Bcl11b, including genes showing striatal-enriched expression similar to Bcl11b. ChIP-seq analysis demonstrated that Bcl11b bound a mixture of coding and non-coding sequences that were within 10 kb of the transcription start site of an annotated gene. Integrating all ChIP-seq hits with the microarray expression data, 248 direct targets of Bcl11b were identified. Functional analysis on the integrated gene target list identified several zinc-finger encoding genes as Bcl11b targets, and further revealed a significant association of Bcl11b to brain-derived neurotrophic factor/neurotrophin signaling. Analysis of ChIP-seq binding regions revealed significant consensus DNA binding motifs for Bcl11b. These data implicate Bcl11b as a novel regulator of the BDNF signaling pathway, which is disrupted in many neurological disorders. Specific targeting of the Bcl11b-DNA interaction could represent a novel therapeutic approach to lowering BDNF signaling specifically in striatal cells.

  17. Functional gene polymorphism to reveal species history: the case of the CRTISO gene in cultivated carrots.

    Directory of Open Access Journals (Sweden)

    Vanessa Soufflet-Freslon

    Full Text Available Carrot is a vegetable cultivated worldwide for the consumption of its root. Historical data indicate that root colour has been differentially selected over time and according to geographical areas. Root pigmentation depends on the relative proportion of different carotenoids for the white, yellow, orange and red types but only internally for the purple one. The genetic control for root carotenoid content might be partially associated with carotenoid biosynthetic genes. Carotenoid isomerase (CRTISO has emerged as a regulatory step in the carotenoid biosynthesis pathway and could be a good candidate to show how a metabolic pathway gene reflects a species genetic history.In this study, the nucleotide polymorphism and the linkage disequilibrium among the complete CRTISO sequence, and the deviation from neutral expectation were analysed by considering population subdivision revealed with 17 microsatellite markers. A sample of 39 accessions, which represented different geographical origins and root colours, was used. Cultivated carrot was divided into two genetic groups: one from Middle East and Asia (Eastern group, and another one mainly from Europe (Western group. The Western and Eastern genetic groups were suggested to be differentially affected by selection: a signature of balancing selection was detected within the first group whereas the second one showed no selection. A focus on orange-rooted carrots revealed that cultivars cultivated in Asia were mainly assigned to the Western group but showed CRTISO haplotypes common to Eastern carrots.The carotenoid pathway CRTISO gene data proved to be complementary to neutral markers in order to bring critical insight in the cultivated carrot history. We confirmed the occurrence of two migration events since domestication. Our results showed a European background in material from Japan and Central Asia. While confirming the introduction of European carrots in Japanese resources, the history of Central Asia

  18. Dissection of a locus on mouse chromosome 5 reveals arthritis promoting and inhibitory genes

    DEFF Research Database (Denmark)

    Lindvall, Therese; Karlsson, Jenny; Holmdahl, Rikard

    2009-01-01

    with Eae39 congenic- and sub-interval congenic mice, carrying RIIIS/J genes on the B10.RIII genetic background, revealed three loci within Eae39 that control disease and anti-collagen antibody titers. Two of the loci promoted disease and the third locus was protecting from collagen induced arthritis...... development. By further breeding of mice with small congenic fragments, we identified a 3.2 Megabasepair (Mbp) interval that regulates disease. CONCLUSIONS: Disease promoting- and protecting genes within the Eae39 locus on mouse chromosome 5, control susceptibility to collagen induced arthritis. A disease......-protecting locus in the telomeric part of Eae39 results in lower anti-collagen antibody responses. The study shows the importance of breeding sub-congenic mouse strains to reveal genetic effects on complex diseases....

  19. Island-Model Genomic Selection for Long-Term Genetic Improvement of Autogamous Crops.

    Science.gov (United States)

    Yabe, Shiori; Yamasaki, Masanori; Ebana, Kaworu; Hayashi, Takeshi; Iwata, Hiroyoshi

    2016-01-01

    Acceleration of genetic improvement of autogamous crops such as wheat and rice is necessary to increase cereal production in response to the global food crisis. Population and pedigree methods of breeding, which are based on inbred line selection, are used commonly in the genetic improvement of autogamous crops. These methods, however, produce a few novel combinations of genes in a breeding population. Recurrent selection promotes recombination among genes and produces novel combinations of genes in a breeding population, but it requires inaccurate single-plant evaluation for selection. Genomic selection (GS), which can predict genetic potential of individuals based on their marker genotype, might have high reliability of single-plant evaluation and might be effective in recurrent selection. To evaluate the efficiency of recurrent selection with GS, we conducted simulations using real marker genotype data of rice cultivars. Additionally, we introduced the concept of an "island model" inspired by evolutionary algorithms that might be useful to maintain genetic variation through the breeding process. We conducted GS simulations using real marker genotype data of rice cultivars to evaluate the efficiency of recurrent selection and the island model in an autogamous species. Results demonstrated the importance of producing novel combinations of genes through recurrent selection. An initial population derived from admixture of multiple bi-parental crosses showed larger genetic gains than a population derived from a single bi-parental cross in whole cycles, suggesting the importance of genetic variation in an initial population. The island-model GS better maintained genetic improvement in later generations than the other GS methods, suggesting that the island-model GS can utilize genetic variation in breeding and can retain alleles with small effects in the breeding population. The island-model GS will become a new breeding method that enhances the potential of genomic

  20. Island-Model Genomic Selection for Long-Term Genetic Improvement of Autogamous Crops.

    Directory of Open Access Journals (Sweden)

    Shiori Yabe

    Full Text Available Acceleration of genetic improvement of autogamous crops such as wheat and rice is necessary to increase cereal production in response to the global food crisis. Population and pedigree methods of breeding, which are based on inbred line selection, are used commonly in the genetic improvement of autogamous crops. These methods, however, produce a few novel combinations of genes in a breeding population. Recurrent selection promotes recombination among genes and produces novel combinations of genes in a breeding population, but it requires inaccurate single-plant evaluation for selection. Genomic selection (GS, which can predict genetic potential of individuals based on their marker genotype, might have high reliability of single-plant evaluation and might be effective in recurrent selection. To evaluate the efficiency of recurrent selection with GS, we conducted simulations using real marker genotype data of rice cultivars. Additionally, we introduced the concept of an "island model" inspired by evolutionary algorithms that might be useful to maintain genetic variation through the breeding process. We conducted GS simulations using real marker genotype data of rice cultivars to evaluate the efficiency of recurrent selection and the island model in an autogamous species. Results demonstrated the importance of producing novel combinations of genes through recurrent selection. An initial population derived from admixture of multiple bi-parental crosses showed larger genetic gains than a population derived from a single bi-parental cross in whole cycles, suggesting the importance of genetic variation in an initial population. The island-model GS better maintained genetic improvement in later generations than the other GS methods, suggesting that the island-model GS can utilize genetic variation in breeding and can retain alleles with small effects in the breeding population. The island-model GS will become a new breeding method that enhances the

  1. Ontogeny of hepatic energy metabolism genes in mice as revealed by RNA-sequencing.

    Directory of Open Access Journals (Sweden)

    Helen J Renaud

    Full Text Available The liver plays a central role in metabolic homeostasis by coordinating synthesis, storage, breakdown, and redistribution of nutrients. Hepatic energy metabolism is dynamically regulated throughout different life stages due to different demands for energy during growth and development. However, changes in gene expression patterns throughout ontogeny for factors important in hepatic energy metabolism are not well understood. We performed detailed transcript analysis of energy metabolism genes during various stages of liver development in mice. Livers from male C57BL/6J mice were collected at twelve ages, including perinatal and postnatal time points (n = 3/age. The mRNA was quantified by RNA-Sequencing, with transcript abundance estimated by Cufflinks. One thousand sixty energy metabolism genes were examined; 794 were above detection, of which 627 were significantly changed during at least one developmental age compared to adult liver. Two-way hierarchical clustering revealed three major clusters dependent on age: GD17.5-Day 5 (perinatal-enriched, Day 10-Day 20 (pre-weaning-enriched, and Day 25-Day 60 (adolescence/adulthood-enriched. Clustering analysis of cumulative mRNA expression values for individual pathways of energy metabolism revealed three patterns of enrichment: glycolysis, ketogenesis, and glycogenesis were all perinatally-enriched; glycogenolysis was the only pathway enriched during pre-weaning ages; whereas lipid droplet metabolism, cholesterol and bile acid metabolism, gluconeogenesis, and lipid metabolism were all enriched in adolescence/adulthood. This study reveals novel findings such as the divergent expression of the fatty acid β-oxidation enzymes Acyl-CoA oxidase 1 and Carnitine palmitoyltransferase 1a, indicating a switch from mitochondrial to peroxisomal β-oxidation after weaning; as well as the dynamic ontogeny of genes implicated in obesity such as Stearoyl-CoA desaturase 1 and Elongation of very long chain fatty

  2. Deletion of a regulatory gene within the cpk gene cluster reveals novel antibacterial activity in Streptomyces coelicolor A3(2)

    NARCIS (Netherlands)

    Gottelt, Marco; Kol, Stefan; Gomez-Escribano, Juan Pablo; Bibb, Mervyn; Takano, Eriko

    Genome sequencing of Streptomyces coelicolor A3(2) revealed an uncharacterized type I polyketide synthase gene cluster (cpk) Here we describe the discovery of a novel antibacterial activity (abCPK) and a yellow-pigmented secondary metabolite (yCPK) after deleting a presumed pathway-specific

  3. A new phylogeographic pattern of endemic Bufo bankorensis in Taiwan Island is attributed to the genetic variation of populations.

    Directory of Open Access Journals (Sweden)

    Teng-Lang Yu

    Full Text Available To comprehend the phylogeographic patterns of genetic variation in anurans at Taiwan Island, this study attempted to examine (1 the existence of various geological barriers (Central Mountain Ranges, CMRs; and (2 the genetic variation of Bufo bankorensis using mtDNA sequences among populations located in different regions of Taiwan, characterized by different climates and existing under extreme conditions when compared available sequences of related species B. gargarizans of mainland China.Phylogenetic analyses of the dataset with mitochondrial DNA (mtDNA D-loop gene (348 bp recovered a close relationship between B. bankorensis and B. gargarizans, identified three distinct lineages. Furthermore, the network of mtDNA D-loop gene (564 bp amplified (279 individuals, 27 localities from Taiwan Island indicated three divergent clades within B. bankorensis (Clade W, E and S, corresponding to the geography, thereby verifying the importance of the CMRs and Kaoping River drainage as major biogeographic barriers. Mismatch distribution analysis, neutrality tests and Bayesian skyline plots revealed that a significant population expansion occurred for the total population and Clade W, with horizons dated to approximately 0.08 and 0.07 Mya, respectively. These results suggest that the population expansion of Taiwan Island species B. bankorensis might have resulted from the release of available habitat in post-glacial periods, the genetic variation on mtDNA showing habitat selection, subsequent population dispersal, and co-distribution among clades.The multiple origins (different clades of B. bankorensis mtDNA sequences were first evident in this study. The divergent genetic clades found within B. bankorensis could be independent colonization by previously diverged lineages; inferring B. bankorensis originated from B. gargarizans of mainland China, then dispersal followed by isolation within Taiwan Island. Highly divergent clades between W and E of B

  4. Genomic evidence for island population conversion resolves conflicting theories of polar bear evolution.

    Directory of Open Access Journals (Sweden)

    James A Cahill

    Full Text Available Despite extensive genetic analysis, the evolutionary relationship between polar bears (Ursus maritimus and brown bears (U. arctos remains unclear. The two most recent comprehensive reports indicate a recent divergence with little subsequent admixture or a much more ancient divergence followed by extensive admixture. At the center of this controversy are the Alaskan ABC Islands brown bears that show evidence of shared ancestry with polar bears. We present an analysis of genome-wide sequence data for seven polar bears, one ABC Islands brown bear, one mainland Alaskan brown bear, and a black bear (U. americanus, plus recently published datasets from other bears. Surprisingly, we find clear evidence for gene flow from polar bears into ABC Islands brown bears but no evidence of gene flow from brown bears into polar bears. Importantly, while polar bears contributed <1% of the autosomal genome of the ABC Islands brown bear, they contributed 6.5% of the X chromosome. The magnitude of sex-biased polar bear ancestry and the clear direction of gene flow suggest a model wherein the enigmatic ABC Island brown bears are the descendants of a polar bear population that was gradually converted into brown bears via male-dominated brown bear admixture. We present a model that reconciles heretofore conflicting genetic observations. We posit that the enigmatic ABC Islands brown bears derive from a population of polar bears likely stranded by the receding ice at the end of the last glacial period. Since then, male brown bear migration onto the island has gradually converted these bears into an admixed population whose phenotype and genotype are principally brown bear, except at mtDNA and X-linked loci. This process of genome erosion and conversion may be a common outcome when climate change or other forces cause a population to become isolated and then overrun by species with which it can hybridize.

  5. Genomic characterisation of Wongabel virus reveals novel genes within the Rhabdoviridae.

    Science.gov (United States)

    Gubala, Aneta J; Proll, David F; Barnard, Ross T; Cowled, Chris J; Crameri, Sandra G; Hyatt, Alex D; Boyle, David B

    2008-06-20

    Viruses belonging to the family Rhabdoviridae infect a variety of different hosts, including insects, vertebrates and plants. Currently, there are approximately 200 ICTV-recognised rhabdoviruses isolated around the world. However, the majority remain poorly characterised and only a fraction have been definitively assigned to genera. The genomic and transcriptional complexity displayed by several of the characterised rhabdoviruses indicates large diversity and complexity within this family. To enable an improved taxonomic understanding of this family, it is necessary to gain further information about the poorly characterised members of this family. Here we present the complete genome sequence and predicted transcription strategy of Wongabel virus (WONV), a previously uncharacterised rhabdovirus isolated from biting midges (Culicoides austropalpalis) collected in northern Queensland, Australia. The 13,196 nucleotide genome of WONV encodes five typical rhabdovirus genes N, P, M, G and L. In addition, the WONV genome contains three genes located between the P and M genes (U1, U2, U3) and two open reading frames overlapping with the N and G genes (U4, U5). These five additional genes and their putative protein products appear to be novel, and their functions are unknown. Predictive analysis of the U5 gene product revealed characteristics typical of viroporins, and indicated structural similarities with the alpha-1 protein (putative viroporin) of viruses in the genus Ephemerovirus. Phylogenetic analyses of the N and G proteins of WONV indicated closest similarity with the avian-associated Flanders virus; however, the genomes of these two viruses are significantly diverged. WONV displays a novel and unique genome structure that has not previously been described for any animal rhabdovirus.

  6. Circuit-wide Transcriptional Profiling Reveals Brain Region-Specific Gene Networks Regulating Depression Susceptibility.

    Science.gov (United States)

    Bagot, Rosemary C; Cates, Hannah M; Purushothaman, Immanuel; Lorsch, Zachary S; Walker, Deena M; Wang, Junshi; Huang, Xiaojie; Schlüter, Oliver M; Maze, Ian; Peña, Catherine J; Heller, Elizabeth A; Issler, Orna; Wang, Minghui; Song, Won-Min; Stein, Jason L; Liu, Xiaochuan; Doyle, Marie A; Scobie, Kimberly N; Sun, Hao Sheng; Neve, Rachael L; Geschwind, Daniel; Dong, Yan; Shen, Li; Zhang, Bin; Nestler, Eric J

    2016-06-01

    Depression is a complex, heterogeneous disorder and a leading contributor to the global burden of disease. Most previous research has focused on individual brain regions and genes contributing to depression. However, emerging evidence in humans and animal models suggests that dysregulated circuit function and gene expression across multiple brain regions drive depressive phenotypes. Here, we performed RNA sequencing on four brain regions from control animals and those susceptible or resilient to chronic social defeat stress at multiple time points. We employed an integrative network biology approach to identify transcriptional networks and key driver genes that regulate susceptibility to depressive-like symptoms. Further, we validated in vivo several key drivers and their associated transcriptional networks that regulate depression susceptibility and confirmed their functional significance at the levels of gene transcription, synaptic regulation, and behavior. Our study reveals novel transcriptional networks that control stress susceptibility and offers fundamentally new leads for antidepressant drug discovery. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Pyrosequencing analysis of the microbiota of kusaya gravy obtained from Izu Islands.

    Science.gov (United States)

    Fujii, Tateo; Kyoui, Daisuke; Takahashi, Hajime; Kuda, Takashi; Kimura, Bon; Washizu, Yukio; Emoto, Eiji; Hiramoto, Tadahiro

    2016-12-05

    Kusaya is a salted, dried fish product traditionally produced on the Izu Islands in Japan. Fish are added to kusaya gravy repeatedly and intermittently, and used over several hundred years, which makes unique microbiota and unique flavors. In this study, we performed a metagenomic analysis to compare the composition of the microbiota of kusaya gravy between different islands. Twenty samples obtained from a total of 13 manufacturers on three islands (Hachijojima, Niijima, and Oshima Islands) were analyzed. The statistical analysis revealed that the microbiota in kusaya gravy maintain a stable composition regardless of the production steps, and that the microbiota are characteristic to the particular islands. The bacterial taxa common to all of the samples were not necessarily the dominant ones. On the other hand, the genera Halanaerobium and Tissierella were found to be characteristic to the microbiota of one or two islands. Because these genera are known to be present in the natural environment, it is likely that the bacterial strains peculiar to an island had colonized kusaya gravy for many years. The results of this study revealed an influence of geographical conditions on the microbiota in fermented food. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Integrated bioinformatics analysis reveals key candidate genes and pathways in breast cancer.

    Science.gov (United States)

    Wang, Yuzhi; Zhang, Yi; Huang, Qian; Li, Chengwen

    2018-04-19

    Breast cancer (BC) is the leading malignancy in women worldwide, yet relatively little is known about the genes and signaling pathways involved in BC tumorigenesis and progression. The present study aimed to elucidate potential key candidate genes and pathways in BC. Five gene expression profile data sets (GSE22035, GSE3744, GSE5764, GSE21422 and GSE26910) were downloaded from the Gene Expression Omnibus (GEO) database, which included data from 113 tumorous and 38 adjacent non‑tumorous tissue samples. Differentially expressed genes (DEGs) were identified using t‑tests in the limma R package. These DEGs were subsequently investigated by pathway enrichment analysis and a protein‑protein interaction (PPI) network was constructed. The most significant module from the PPI network was selected for pathway enrichment analysis. In total, 227 DEGs were identified, of which 82 were upregulated and 145 were downregulated. Pathway enrichment analysis results revealed that the upregulated DEGs were mainly enriched in 'cell division', the 'proteinaceous extracellular matrix (ECM)', 'ECM structural constituents' and 'ECM‑receptor interaction', whereas downregulated genes were mainly enriched in 'response to drugs', 'extracellular space', 'transcriptional activator activity' and the 'peroxisome proliferator‑activated receptor signaling pathway'. The PPI network contained 174 nodes and 1,257 edges. DNA topoisomerase 2‑a, baculoviral inhibitor of apoptosis repeat‑containing protein 5, cyclin‑dependent kinase 1, G2/mitotic‑specific cyclin‑B1 and kinetochore protein NDC80 homolog were identified as the top 5 hub genes. Furthermore, the genes in the most significant module were predominantly involved in 'mitotic nuclear division', 'mid‑body', 'protein binding' and 'cell cycle'. In conclusion, the DEGs, relative pathways and hub genes identified in the present study may aid in understanding of the molecular mechanisms underlying BC progression and provide

  9. Diversification in a fluctuating island setting: rapid radiation of Ohomopterus ground beetles in the Japanese Islands.

    Science.gov (United States)

    Sota, Teiji; Nagata, Nobuaki

    2008-10-27

    The Japanese Islands have been largely isolated from the East Asian mainland since the Early Pleistocene, allowing the diversification of endemic lineages. Here, we explore speciation rates and historical biogeography of the ground beetles of the subgenus Ohomopterus (genus Carabus) based on nuclear and mitochondrial gene sequences. Ohomopterus diverged into 15 species during the Pleistocene. The speciation rate was 1.92 Ma(-1) and was particularly fast (2.37 Ma(-1)) in a group with highly divergent genitalia. Speciation occurred almost solely within Honshu, the largest island with complex geography. Species diversity is highest in central Honshu, where closely related species occur parapatrically and different-sized species co-occur. Range expansion of some species in the past has resulted in such species assemblages. Introgressive hybridization, at least for mitochondrial DNA, has occurred repeatedly between species in contact, but has not greatly disturbed species distinctness. Small-island populations of some species were separated from main-island populations only after the last glacial (or the last interglacial) period, indicating that island isolation had little role in speciation. Thus, the speciation and formation of the Ohomopterus assemblage occurred despite frequent opportunities for secondary contact and hybridization and the lack of persistent isolation. This radiation was achieved without substantial ecological differentiation, but with marked differentiation in mechanical agents of reproductive isolation (body size and genital morphology).

  10. Comparative genomics of the type VI secretion systems of Pantoea and Erwinia species reveals the presence of putative effector islands that may be translocated by the VgrG and Hcp proteins

    Directory of Open Access Journals (Sweden)

    De Maayer Pieter

    2011-11-01

    Full Text Available Abstract Background The Type VI secretion apparatus is assembled by a conserved set of proteins encoded within a distinct locus. The putative effector proteins Hcp and VgrG are also encoded within these loci. We have identified numerous distinct Type VI secretion system (T6SS loci in the genomes of several ecologically diverse Pantoea and Erwinia species and detected the presence of putative effector islands associated with the hcp and vgrG genes. Results Between two and four T6SS loci occur among the Pantoea and Erwinia species. While two of the loci (T6SS-1 and T6SS-2 are well conserved among the various strains, the third (T6SS-3 locus is not universally distributed. Additional orthologous loci are present in Pantoea sp. aB-valens and Erwinia billingiae Eb661. Comparative analysis of the T6SS-1 and T6SS-3 loci showed non-conserved islands associated with the vgrG and hcp, and vgrG genes, respectively. These regions had a G+C content far lower than the conserved portions of the loci. Many of the proteins encoded within the hcp and vgrG islands carry conserved domains, which suggests they may serve as effector proteins for the T6SS. A number of the proteins also show homology to the C-terminal extensions of evolved VgrG proteins. Conclusions Extensive diversity was observed in the number and content of the T6SS loci among the Pantoea and Erwinia species. Genomic islands could be observed within some of T6SS loci, which are associated with the hcp and vgrG proteins and carry putative effector domain proteins. We propose new hypotheses concerning a role for these islands in the acquisition of T6SS effectors and the development of novel evolved VgrG and Hcp proteins.

  11. Genomic islands predict functional adaptation in marine actinobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Penn, Kevin; Jenkins, Caroline; Nett, Markus; Udwary, Daniel; Gontang, Erin; McGlinchey, Ryan; Foster, Brian; Lapidus, Alla; Podell, Sheila; Allen, Eric; Moore, Bradley; Jensen, Paul

    2009-04-01

    Linking functional traits to bacterial phylogeny remains a fundamental but elusive goal of microbial ecology 1. Without this information, it becomes impossible to resolve meaningful units of diversity and the mechanisms by which bacteria interact with each other and adapt to environmental change. Ecological adaptations among bacterial populations have been linked to genomic islands, strain-specific regions of DNA that house functionally adaptive traits 2. In the case of environmental bacteria, these traits are largely inferred from bioinformatic or gene expression analyses 2, thus leaving few examples in which the functions of island genes have been experimentally characterized. Here we report the complete genome sequences of Salinispora tropica and S. arenicola, the first cultured, obligate marine Actinobacteria 3. These two species inhabit benthic marine environments and dedicate 8-10percent of their genomes to the biosynthesis of secondary metabolites. Despite a close phylogenetic relationship, 25 of 37 secondary metabolic pathways are species-specific and located within 21 genomic islands, thus providing new evidence linking secondary metabolism to ecological adaptation. Species-specific differences are also observed in CRISPR sequences, suggesting that variations in phage immunity provide fitness advantages that contribute to the cosmopolitan distribution of S. arenicola 4. The two Salinispora genomes have evolved by complex processes that include the duplication and acquisition of secondary metabolite genes, the products of which provide immediate opportunities for molecular diversification and ecological adaptation. Evidence that secondary metabolic pathways are exchanged by Horizontal Gene Transfer (HGT) yet are fixed among globally distributed populations 5 supports a functional role for their products and suggests that pathway acquisition represents a previously unrecognized force driving bacterial diversification

  12. Gene expression analysis reveals new possible mechanisms of vancomycin-induced nephrotoxicity and identifies gene markers candidates.

    Science.gov (United States)

    Dieterich, Christine; Puey, Angela; Lin, Sylvia; Lyn, Sylvia; Swezey, Robert; Furimsky, Anna; Fairchild, David; Mirsalis, Jon C; Ng, Hanna H

    2009-01-01

    Vancomycin, one of few effective treatments against methicillin-resistant Staphylococcus aureus, is nephrotoxic. The goals of this study were to (1) gain insights into molecular mechanisms of nephrotoxicity at the genomic level, (2) evaluate gene markers of vancomycin-induced kidney injury, and (3) compare gene expression responses after iv and ip administration. Groups of six female BALB/c mice were treated with seven daily iv or ip doses of vancomycin (50, 200, and 400 mg/kg) or saline, and sacrificed on day 8. Clinical chemistry and histopathology demonstrated kidney injury at 400 mg/kg only. Hierarchical clustering analysis revealed that kidney gene expression profiles of all mice treated at 400 mg/kg clustered with those of mice administered 200 mg/kg iv. Transcriptional profiling might thus be more sensitive than current clinical markers for detecting kidney damage, though the profiles can differ with the route of administration. Analysis of transcripts whose expression was changed by at least twofold compared with vehicle saline after high iv and ip doses of vancomycin suggested the possibility of oxidative stress and mitochondrial damage in vancomycin-induced toxicity. In addition, our data showed changes in expression of several transcripts from the complement and inflammatory pathways. Such expression changes were confirmed by relative real-time reverse transcription-polymerase chain reaction. Finally, our results further substantiate the use of gene markers of kidney toxicity such as KIM-1/Havcr1, as indicators of renal injury.

  13. Multiple independent colonization of the Canary Islands by the winged grasshopper genus Sphingonotus Fieber, 1852.

    Science.gov (United States)

    Husemann, Martin; Deppermann, Jana; Hochkirch, Axel

    2014-12-01

    Volcanic archipelagos represent ideal systems to study processes of colonization, differentiation and speciation. The Canary Islands are one of the best studied archipelagos, being composed of seven main islands with a well-known geological history. Most taxa have colonized these islands stepwise from the African or Iberian mainland from east to west, following their geological origin as well as the predominating wind direction and ocean currents. Furthermore, within-island radiations have been reported for several taxa. The grasshopper genus Sphingonotus is species-rich and occurs with nine fully winged species on the Canary Islands, seven of which are endemic to single or few islands. We inferred a phylogeny of these species and their North African and Iberian relatives based upon sequences of three mitochondrial genes and one nuclear gene of 136 specimens. Surprisingly, our results suggest that almost all Sphingonotus species colonized the archipelago independently from the mainland and nearly no inter-island colonization occurred. Despite their strong flight capabilities, only one pair of endemic species are closely related (S. sublaevis from Gran Canary and S. pachecoi from Lanzarote). Moreover, no within-island speciation events were detected. We hypothesize that passive wind dispersal from the African mainland was the main driver of the colonization process and that most Sphingonotus species are not able to cover inter-island distances by active flight. This, together with strong intrageneric niche overlap might explain the lack of within-island speciation in this taxon. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Methylation profiles of thirty four promoter-CpG islands and concordant methylation behaviours of sixteen genes that may contribute to carcinogenesis of astrocytoma

    Directory of Open Access Journals (Sweden)

    Wang Yifei

    2004-09-01

    Full Text Available Abstract Background Astrocytoma is a common aggressive intracranial tumor and presents a formidable challenge in the clinic. Association of altered DNA methylation patterns of the promoter CpG islands with the expression profile of cancer-related genes, has been found in many human tumors. Therefore, DNA methylation status as such may serve as an epigenetic biomarker for both diagnosis and prognosis of human tumors, including astrocytoma. Methods We used the methylation specific PCR in conjunction with sequencing verification to establish the methylation profile of the promoter CpG island of thirty four genes in astrocytoma tissues from fifty three patients (The WHO grading:. I: 14, II: 15, III: 12 and IV: 12 cases, respectively. In addition, compatible tissues (normal tissues distant from lesion from three non-astrocytoma patients were included as the control. Results Seventeen genes (ABL, APC, APAF1, BRCA1, CSPG2, DAPK1, hMLH1, LKB1, PTEN, p14ARF, p15INK4b, p27KIP1, p57KIP2, RASSF1C, RB1, SURVIVIN, and VHL displayed a uniformly unmethylated pattern in all the astrocytoma and non-astrocytoma tissues examined. However, the MAGEA1 gene that was inactivated and hypermethylated in non-astrocytoma tissues, was partially demethylated in 24.5% of the astrocytoma tissues (co-existence of the hypermethylated and demethylated alleles. Of the astrocytoma associated hypermethylated genes, the methylation pattern of the CDH13, cyclin a1, DBCCR1, EPO, MYOD1, and p16INK4a genes changed in no more than 5.66% (3/53 of astrocytoma tissues compared to non-astrocytoma controls, while the RASSF1A, p73, AR, MGMT, CDH1, OCT6,, MT1A, WT1, and IRF7 genes were more frequently hypermethylated in 69.8%, 47.2%, 41.5%, 35.8%, 32%, 30.2%, 30.2%, 30.2% and 26.4% of astrocytoma tissues, respectively. Demethylation mediated inducible expression of the CDH13, MAGEA1, MGMT, p73 and RASSF1A genes was established in an astrocytoma cell line (U251, demonstrating that expression of

  15. Adaptation in Toxic Environments: Arsenic Genomic Islands in the Bacterial Genus Thiomonas.

    Directory of Open Access Journals (Sweden)

    Kelle C Freel

    Full Text Available Acid mine drainage (AMD is a highly toxic environment for most living organisms due to the presence of many lethal elements including arsenic (As. Thiomonas (Tm. bacteria are found ubiquitously in AMD and can withstand these extreme conditions, in part because they are able to oxidize arsenite. In order to further improve our knowledge concerning the adaptive capacities of these bacteria, we sequenced and assembled the genome of six isolates derived from the Carnoulès AMD, and compared them to the genomes of Tm. arsenitoxydans 3As (isolated from the same site and Tm. intermedia K12 (isolated from a sewage pipe. A detailed analysis of the Tm. sp. CB2 genome revealed various rearrangements had occurred in comparison to what was observed in 3As and K12 and over 20 genomic islands (GEIs were found in each of these three genomes. We performed a detailed comparison of the two arsenic-related islands found in CB2, carrying the genes required for arsenite oxidation and As resistance, with those found in K12, 3As, and five other Thiomonas strains also isolated from Carnoulès (CB1, CB3, CB6, ACO3 and ACO7. Our results suggest that these arsenic-related islands have evolved differentially in these closely related Thiomonas strains, leading to divergent capacities to survive in As rich environments.

  16. The Escherichia coli argW-dsdCXA genetic island is highly variable, and E. coli K1 strains commonly possess two copies of dsdCXA.

    Science.gov (United States)

    Moritz, Rebecca L; Welch, Rodney A

    2006-11-01

    The genome sequences of Escherichia coli pathotypes reveal extensive genetic variability in the argW-dsdCXA island. Interestingly, the archetype E. coli K1 neonatal meningitis strain, strain RS218, has two copies of the dsdCXA genes for d-serine utilization at the argW and leuX islands. Because the human brain contains d-serine, an epidemiological study emphasizing K1 isolates surveyed the dsdCXA copy number and function. Forty of 41 (97.5%) independent E. coli K1 isolates could utilize d-serine. Southern blot hybridization revealed physical variability within the argW-dsdC region, even among 22 E. coli O18:K1:H7 isolates. In addition, 30 of 41 K1 strains, including 21 of 22 O18:K1:H7 isolates, had two dsdCXA loci. Mutational analysis indicated that each of the dsdA genes is functional in a rifampin-resistant mutant of RS218, mutant E44. The high percentage of K1 strains that can use d-serine is in striking contrast to our previous observation that only 4 of 74 (5%) isolates in the diarrheagenic E. coli (DEC) collection have this activity. The genome sequence of diarrheagenic E. coli isolates indicates that the csrRAKB genes for sucrose utilization are often substituted for dsdC and a portion of dsdX present at the argW-dsdCXA island of extraintestinal isolates. Among DEC isolates there is a reciprocal pattern of sucrose fermentation versus d-serine utilization. The ability to use d-serine is a trait strongly selected for among E. coli K1 strains, which have the ability to infect a wide range of extraintestinal sites. Conversely, diarrheagenic E. coli pathotypes appear to have substituted sucrose for d-serine as a potential nutrient.

  17. On detection and assessment of statistical significance of Genomic Islands

    Directory of Open Access Journals (Sweden)

    Chaudhuri Probal

    2008-04-01

    Full Text Available Abstract Background Many of the available methods for detecting Genomic Islands (GIs in prokaryotic genomes use markers such as transposons, proximal tRNAs, flanking repeats etc., or they use other supervised techniques requiring training datasets. Most of these methods are primarily based on the biases in GC content or codon and amino acid usage of the islands. However, these methods either do not use any formal statistical test of significance or use statistical tests for which the critical values and the P-values are not adequately justified. We propose a method, which is unsupervised in nature and uses Monte-Carlo statistical tests based on randomly selected segments of a chromosome. Such tests are supported by precise statistical distribution theory, and consequently, the resulting P-values are quite reliable for making the decision. Results Our algorithm (named Design-Island, an acronym for Detection of Statistically Significant Genomic Island runs in two phases. Some 'putative GIs' are identified in the first phase, and those are refined into smaller segments containing horizontally acquired genes in the refinement phase. This method is applied to Salmonella typhi CT18 genome leading to the discovery of several new pathogenicity, antibiotic resistance and metabolic islands that were missed by earlier methods. Many of these islands contain mobile genetic elements like phage-mediated genes, transposons, integrase and IS elements confirming their horizontal acquirement. Conclusion The proposed method is based on statistical tests supported by precise distribution theory and reliable P-values along with a technique for visualizing statistically significant islands. The performance of our method is better than many other well known methods in terms of their sensitivity and accuracy, and in terms of specificity, it is comparable to other methods.

  18. Emergence of influenza A (H1N1 PDM09 in the remote Islands of India - A molecular approach

    Directory of Open Access Journals (Sweden)

    N Muruganandam

    2015-01-01

    Full Text Available Background: A disease outbreak of A (H1N1 PDM09 was reported in Andaman and Nicobar islands in 2009 with an attack rate of 33.5% among settler population and 26.3% among the aboriginal Nicobarese tribe. During the ongoing outbreak of A (H1N1 PDM09 disease in different parts of the world, a subject working in Dubai city of Saudi Arabia, came to Port Blair, following which the pandemic triggered for the first time in these Islands. Materials and Methods: During the period August 2009 to January 2011, 30 confirmed cases of Influenza A (H1N1 PDM09 virus infection was detected. To understand the genetic relationship, the NA gene sequences of the viruses were phylogenetically analysed together along with the virus sequence isolated from other parts of the world. Result: Formation of multiple clusters were observed, with the sequences of Andaman Islands, mainland India, Mexico, Saudi Arabia and few other counties clustering together. The sequence analysis data revealed that there was no specific mutation conferring resistance to oseltamivir among the Andaman A (H1N1 PDM09 virus isolates. The result of phylogenetic analysis have also revealed that the A (H1N1 PDM09 virus might have spread in these remote Islands of India via the subject from Saudi Arabia/Dubai. Conclusion: A (H1N1 PDM09 Influenza outbreak have highlighted the need to strengthen the region-specific pandemic preparedness plans and surveillance strategies.

  19. Dual gene activation and knockout screen reveals directional dependencies in genetic networks. | Office of Cancer Genomics

    Science.gov (United States)

    Understanding the direction of information flow is essential for characterizing how genetic networks affect phenotypes. However, methods to find genetic interactions largely fail to reveal directional dependencies. We combine two orthogonal Cas9 proteins from Streptococcus pyogenes and Staphylococcus aureus to carry out a dual screen in which one gene is activated while a second gene is deleted in the same cell. We analyze the quantitative effects of activation and knockout to calculate genetic interaction and directionality scores for each gene pair.

  20. Comparative genomics analyses revealed two virulent Listeria monocytogenes strains isolated from ready-to-eat food.

    Science.gov (United States)

    Lim, Shu Yong; Yap, Kien-Pong; Thong, Kwai Lin

    2016-01-01

    Listeria monocytogenes is an important foodborne pathogen that causes considerable morbidity in humans with high mortality rates. In this study, we have sequenced the genomes and performed comparative genomics analyses on two strains, LM115 and LM41, isolated from ready-to-eat food in Malaysia. The genome size of LM115 and LM41 was 2,959,041 and 2,963,111 bp, respectively. These two strains shared approximately 90% homologous genes. Comparative genomics and phylogenomic analyses revealed that LM115 and LM41 were more closely related to the reference strains F2365 and EGD-e, respectively. Our virulence profiling indicated a total of 31 virulence genes shared by both analysed strains. These shared genes included those that encode for internalins and L. monocytogenes pathogenicity island 1 (LIPI-1). Both the Malaysian L. monocytogenes strains also harboured several genes associated with stress tolerance to counter the adverse conditions. Seven antibiotic and efflux pump related genes which may confer resistance against lincomycin, erythromycin, fosfomycin, quinolone, tetracycline, and penicillin, and macrolides were identified in the genomes of both strains. Whole genome sequencing and comparative genomics analyses revealed two virulent L. monocytogenes strains isolated from ready-to-eat foods in Malaysia. The identification of strains with pathogenic, persistent, and antibiotic resistant potentials from minimally processed food warrant close attention from both healthcare and food industry.

  1. Borehole temperatures reveal a changed energy budget at Mill Island, East Antarctica, over recent decades

    Directory of Open Access Journals (Sweden)

    J. L. Roberts

    2013-02-01

    Full Text Available A borehole temperature record from the Mill Island (East Antarctica icecap reveals a large surface warming signal manifested as a 0.75 K temperature difference over the approximate 100 m depth in the zone of zero annual amplitude below the seasonally varying zone. The temperature profile shows a break in gradient around 49 m depth, which we model with inverse numerical simulations, indicating that surface warming started around the austral summer of 1980/81 AD ±5 yr. This warming of approximately 0.37 K per decade is consistent with trends seen in both instrumental and other reconstructions for Antarctica and, therefore, suggests that regional- rather than local-scale processes are largely responsible. Alteration of the surface energy budget arising from changes in radiation balances due to local cloud, the amount of liquid deposition and local air temperatures associated with altered air/sea exchanges also potentially plays a role at this location due to the proximity of the Shackleton Ice Shelf and sea-ice zone.

  2. Comprehensive regional and temporal gene expression profiling of the rat brain during the first 24 h after experimental stroke identifies dynamic ischemia-induced gene expression patterns, and reveals a biphasic activation of genes in surviving tissue

    DEFF Research Database (Denmark)

    Rickhag, Karl Mattias; Wieloch, Tadeusz; Gidö, Gunilla

    2006-01-01

    middle cerebral artery occlusion in the rat. K-means cluster analysis revealed two distinct biphasic gene expression patterns that contained 44 genes (including 18 immediate early genes), involved in cell signaling and plasticity (i.e. MAP2K7, Sprouty2, Irs-2, Homer1, GPRC5B, Grasp). The first gene...

  3. Pollinating fig wasps: genetic consequences of island recolonization

    NARCIS (Netherlands)

    Zavodna, M.; Arens, P.; Partomihardjo, T.; Vosman, B.; van Dijk, P.J.; Van Damme, J.M.M.

    2005-01-01

    The levels of genetic diversity and gene flow may influence the long-term persistence of populations. Using microsatellite markers, we investigated genetic diversity and genetic differentiation in island (Krakatau archipelago, Indonesia) and mainland (Java and Sumatra, Indonesia) populations of

  4. Systems Nutrigenomics Reveals Brain Gene Networks Linking Metabolic and Brain Disorders.

    Science.gov (United States)

    Meng, Qingying; Ying, Zhe; Noble, Emily; Zhao, Yuqi; Agrawal, Rahul; Mikhail, Andrew; Zhuang, Yumei; Tyagi, Ethika; Zhang, Qing; Lee, Jae-Hyung; Morselli, Marco; Orozco, Luz; Guo, Weilong; Kilts, Tina M; Zhu, Jun; Zhang, Bin; Pellegrini, Matteo; Xiao, Xinshu; Young, Marian F; Gomez-Pinilla, Fernando; Yang, Xia

    2016-05-01

    Nutrition plays a significant role in the increasing prevalence of metabolic and brain disorders. Here we employ systems nutrigenomics to scrutinize the genomic bases of nutrient-host interaction underlying disease predisposition or therapeutic potential. We conducted transcriptome and epigenome sequencing of hypothalamus (metabolic control) and hippocampus (cognitive processing) from a rodent model of fructose consumption, and identified significant reprogramming of DNA methylation, transcript abundance, alternative splicing, and gene networks governing cell metabolism, cell communication, inflammation, and neuronal signaling. These signals converged with genetic causal risks of metabolic, neurological, and psychiatric disorders revealed in humans. Gene network modeling uncovered the extracellular matrix genes Bgn and Fmod as main orchestrators of the effects of fructose, as validated using two knockout mouse models. We further demonstrate that an omega-3 fatty acid, DHA, reverses the genomic and network perturbations elicited by fructose, providing molecular support for nutritional interventions to counteract diet-induced metabolic and brain disorders. Our integrative approach complementing rodent and human studies supports the applicability of nutrigenomics principles to predict disease susceptibility and to guide personalized medicine. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Comparison of CpG island methylator phenotype (CIMP frequency in colon cancer using different probe- and gene-specific scoring alternatives on recommended multi-gene panels.

    Directory of Open Access Journals (Sweden)

    Marianne Berg

    Full Text Available BACKGROUND: In colorectal cancer a distinct subgroup of tumours demonstrate the CpG island methylator phenotype (CIMP. However, a consensus of how to score CIMP is not reached, and variation in definition may influence the reported CIMP prevalence in tumours. Thus, we sought to compare currently suggested definitions and cut-offs for methylation markers and how they influence CIMP classification in colon cancer. METHODS: Methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA, with subsequent fragment analysis, was used to investigate methylation of tumour samples. In total, 31 CpG sites, located in 8 different genes (RUNX3, MLH1, NEUROG1, CDKN2A, IGF2, CRABP1, SOCS1 and CACNA1G were investigated in 64 distinct colon cancers and 2 colon cancer cell lines. The Ogino gene panel includes all 8 genes, in addition to the Weisenberger panel of which only 5 of the 8 genes included were investigated. In total, 18 alternative combinations of scoring of CIMP positivity on probe-, gene-, and panel-level were analysed and compared. RESULTS: For 47 samples (71%, the CIMP status was constant and independent of criteria used for scoring; 34 samples were constantly scored as CIMP negative, and 13 (20% consistently scored as CIMP positive. Only four of 31 probes (13% investigated showed no difference in the numbers of positive samples using the different cut-offs. Within the panels a trend was observed that increasing the gene-level stringency resulted in a larger difference in CIMP positive samples than increasing the probe-level stringency. A significant difference between positive samples using 'the most stringent' as compared to 'the least stringent' criteria (20% vs 46%, respectively; p<0.005 was demonstrated. CONCLUSIONS: A statistical significant variation in the frequency of CIMP depending on the cut-offs and genes included in a panel was found, with twice as many positives samples by least compared to most stringent definition

  6. Predicting Where a Radiation Will Occur: Acoustic and Molecular Surveys Reveal Overlooked Diversity in Indian Ocean Island Crickets (Mogoplistinae: Ornebius.

    Directory of Open Access Journals (Sweden)

    Ben H Warren

    Full Text Available Recent theory suggests that the geographic location of island radiations (local accumulation of species diversity due to cladogenesis can be predicted based on island area and isolation. Crickets are a suitable group for testing these predictions, as they show both the ability to reach some of the most isolated islands in the world, and to speciate at small spatial scales. Despite substantial song variation between closely related species in many island cricket lineages worldwide, to date this characteristic has not received attention in the western Indian Ocean islands; existing species descriptions are based on morphology alone. Here we use a combination of acoustics and DNA sequencing to survey these islands for Ornebius crickets. We uncover a small but previously unknown radiation in the Mascarenes, constituting a three-fold increase in the Ornebius species diversity of this archipelago (from two to six species. A further new species is detected in the Comoros. Although double archipelago colonisation is the best explanation for species diversity in the Seychelles, in situ cladogenesis is the best explanation for the six species in the Mascarenes and two species of the Comoros. Whether the radiation of Mascarene Ornebius results from intra- or purely inter- island speciation cannot be determined on the basis of the phylogenetic data alone. However, the existence of genetic, song and ecological divergence at the intra-island scale is suggestive of an intra-island speciation scenario in which ecological and mating traits diverge hand-in-hand. Our results suggest that the geographic location of Ornebius radiations is partially but not fully explained by island area and isolation. A notable anomaly is Madagascar, where our surveys are consistent with existing accounts in finding no Ornebius species present. Possible explanations are discussed, invoking ecological differences between species and differences in environmental history between

  7. Mobilisation and remobilisation of a large archetypal pathogenicity island of uropathogenic Escherichia coli in vitro support the role of conjugation for horizontal transfer of genomic islands

    Directory of Open Access Journals (Sweden)

    Hochhut Bianca

    2011-09-01

    Full Text Available Abstract Background A substantial amount of data has been accumulated supporting the important role of genomic islands (GEIs - including pathogenicity islands (PAIs - in bacterial genome plasticity and the evolution of bacterial pathogens. Their instability and the high level sequence similarity of different (partial islands suggest an exchange of PAIs between strains of the same or even different bacterial species by horizontal gene transfer (HGT. Transfer events of archetypal large genomic islands of enterobacteria which often lack genes required for mobilisation or transfer have been rarely investigated so far. Results To study mobilisation of such large genomic regions in prototypic uropathogenic E. coli (UPEC strain 536, PAI II536 was supplemented with the mobRP4 region, an origin of replication (oriVR6K, an origin of transfer (oriTRP4 and a chloramphenicol resistance selection marker. In the presence of helper plasmid RP4, conjugative transfer of the 107-kb PAI II536 construct occured from strain 536 into an E. coli K-12 recipient. In transconjugants, PAI II536 existed either as a cytoplasmic circular intermediate (CI or integrated site-specifically into the recipient's chromosome at the leuX tRNA gene. This locus is the chromosomal integration site of PAI II536 in UPEC strain 536. From the E. coli K-12 recipient, the chromosomal PAI II536 construct as well as the CIs could be successfully remobilised and inserted into leuX in a PAI II536 deletion mutant of E. coli 536. Conclusions Our results corroborate that mobilisation and conjugal transfer may contribute to evolution of bacterial pathogens through horizontal transfer of large chromosomal regions such as PAIs. Stabilisation of these mobile genetic elements in the bacterial chromosome result from selective loss of mobilisation and transfer functions of genomic islands.

  8. Genome-wide analysis of gene expression in primate taste buds reveals links to diverse processes.

    Directory of Open Access Journals (Sweden)

    Peter Hevezi

    Full Text Available Efforts to unravel the mechanisms underlying taste sensation (gustation have largely focused on rodents. Here we present the first comprehensive characterization of gene expression in primate taste buds. Our findings reveal unique new insights into the biology of taste buds. We generated a taste bud gene expression database using laser capture microdissection (LCM procured fungiform (FG and circumvallate (CV taste buds from primates. We also used LCM to collect the top and bottom portions of CV taste buds. Affymetrix genome wide arrays were used to analyze gene expression in all samples. Known taste receptors are preferentially expressed in the top portion of taste buds. Genes associated with the cell cycle and stem cells are preferentially expressed in the bottom portion of taste buds, suggesting that precursor cells are located there. Several chemokines including CXCL14 and CXCL8 are among the highest expressed genes in taste buds, indicating that immune system related processes are active in taste buds. Several genes expressed specifically in endocrine glands including growth hormone releasing hormone and its receptor are also strongly expressed in taste buds, suggesting a link between metabolism and taste. Cell type-specific expression of transcription factors and signaling molecules involved in cell fate, including KIT, reveals the taste bud as an active site of cell regeneration, differentiation, and development. IKBKAP, a gene mutated in familial dysautonomia, a disease that results in loss of taste buds, is expressed in taste cells that communicate with afferent nerve fibers via synaptic transmission. This database highlights the power of LCM coupled with transcriptional profiling to dissect the molecular composition of normal tissues, represents the most comprehensive molecular analysis of primate taste buds to date, and provides a foundation for further studies in diverse aspects of taste biology.

  9. Genome sequencing and analysis reveals possible determinants of Staphylococcus aureus nasal carriage

    Directory of Open Access Journals (Sweden)

    Cole Alexander M

    2008-09-01

    Full Text Available Abstract Background Nasal carriage of Staphylococcus aureus is a major risk factor in clinical and community settings due to the range of etiologies caused by the organism. We have identified unique immunological and ultrastructural properties associated with nasal carriage isolates denoting a role for bacterial factors in nasal carriage. However, despite extensive molecular level characterizations by several groups suggesting factors necessary for colonization on nasal epithelium, genetic determinants of nasal carriage are unknown. Herein, we have set a genomic foundation for unraveling the bacterial determinants of nasal carriage in S. aureus. Results MLST analysis revealed no lineage specific differences between carrier and non-carrier strains suggesting a role for mobile genetic elements. We completely sequenced a model carrier isolate (D30 and a model non-carrier strain (930918-3 to identify differential gene content. Comparison revealed the presence of 84 genes unique to the carrier strain and strongly suggests a role for Type VII secretion systems in nasal carriage. These genes, along with a putative pathogenicity island (SaPIBov present uniquely in the carrier strains are likely important in affecting carriage. Further, PCR-based genotyping of other clinical isolates for a specific subset of these 84 genes raise the possibility of nasal carriage being caused by multiple gene sets. Conclusion Our data suggest that carriage is likely a heterogeneic phenotypic trait and implies a role for nucleotide level polymorphism in carriage. Complete genome level analyses of multiple carriage strains of S. aureus will be important in clarifying molecular determinants of S. aureus nasal carriage.

  10. Origin and diversification of hindwingless Damaster ground beetles within the Japanese islands as deduced from mitochondrial ND5 gene sequences (Coleoptera, Carabidae).

    Science.gov (United States)

    Su, Z H; Tominaga, O; Okamoto, M; Osawa, S

    1998-08-01

    Genealogical trees have been constructed using mitochondrial ND5 gene sequences of 78 Damaster (s. str.) specimens from all over the Japanese Islands. Eight lineages (called races in this paper) have been recognized. The races are tightly linked to geography with sharp distribution boundaries between them. The races and their distribution ranges do not coincide with those of classical morphology. Based on the observed distribution of the mitochondrial DNA haplotypes and the geohistorical data, we propose a diversification scenario of Damaster.

  11. Satellite air temperature estimation for monitoring the canopy layer heat island of Milan

    DEFF Research Database (Denmark)

    Pichierri, Manuele; Bonafoni, Stefania; Biondi, Riccardo

    2012-01-01

    across the city center from June to September confirming that, in Milan, urban heating is not an occasional phenomenon. Furthermore, this study shows the utility of space missions to monitor the metropolis heat islands if they are able to provide nighttime observations when CLHI peaks are generally......In this work, satellite maps of the urban heat island of Milan are produced using satellite-based infrared sensor data. For this aim, we developed suitable algorithms employing satellite brightness temperatures for the direct air temperature estimation 2 m above the surface (canopy layer), showing...... 2007 and 2010 were processed. Analysis of the canopy layer heat island (CLHI) maps during summer months reveals an average heat island effect of 3–4K during nighttime (with some peaks around 5K) and a weak CLHI intensity during daytime. In addition, the satellite maps reveal a well defined island shape...

  12. CpG Island Methylator Phenotype in Primary Gastric Carcinoma

    OpenAIRE

    TOJO Masayuki:筆頭著者; KONISHI Kazuo; YANO Yuichiro; KATAGIRI Atsushi; NOZAWA Hisako; KUBOTA Yutaro; MURAMOTO Takashi; KONDA Kenichi; SHINMURA Kensuke; TAKIMOTO Masafumi; IMAWARI Michio; YOSHIDA Hitoshi

    2013-01-01

    Gastric cancers (GC) with methylation of multiple CpG islands have a CpG island methylator phenotype (CIMP) and they can have different biological features. The aim of this study was to investigate the DNA methylation status of GCs and its association with their clinicopathological features. We evaluated the methylation status of four genes (MINT1, MINT2, MINT25 and MINT31) in 105 primary GCs using bisulfite-pyrosequencing analysis. We classified tumors as CIMP-high (CIMP-H), CIMP-low (CIMP-L...

  13. Aira (Poaceae: a new generic record for Nicobar Islands, India

    Directory of Open Access Journals (Sweden)

    Kumar Vinod Chhotupuri Gosavi

    2016-06-01

    Full Text Available During plant exploration of Andaman and Nicobar in 2014, we were collected some interesting grass specimens from Kamorta Islands of Nicobar. After critical study and taxonomic analysis the unidentified grass species has identified as an Aira caryophyllea L.  Perusals of relevant literature were revealed that, the genus Aira L. has so far not reported from Andaman and Nicobar islands. Hence, it is reported in present communication for new record to the Andaman and Nicobar Islands

  14. Peripheral blood transcriptome sequencing reveals rejection-relevant genes in long-term heart transplantation.

    Science.gov (United States)

    Chen, Yan; Zhang, Haibo; Xiao, Xue; Jia, Yixin; Wu, Weili; Liu, Licheng; Jiang, Jun; Zhu, Baoli; Meng, Xu; Chen, Weijun

    2013-10-03

    Peripheral blood-based gene expression patterns have been investigated as biomarkers to monitor the immune system and rule out rejection after heart transplantation. Recent advances in the high-throughput deep sequencing (HTS) technologies provide new leads in transcriptome analysis. By performing Solexa/Illumina's digital gene expression (DGE) profiling, we analyzed gene expression profiles of PBMCs from 6 quiescent (grade 0) and 6 rejection (grade 2R&3R) heart transplant recipients at more than 6 months after transplantation. Subsequently, quantitative real-time polymerase chain reaction (qRT-PCR) was carried out in an independent validation cohort of 47 individuals from three rejection groups (ISHLT, grade 0,1R, 2R&3R). Through DGE sequencing and qPCR validation, 10 genes were identified as informative genes for detection of cardiac transplant rejection. A further clustering analysis showed that the 10 genes were not only effective for distinguishing patients with acute cardiac allograft rejection, but also informative for discriminating patients with renal allograft rejection based on both blood and biopsy samples. Moreover, PPI network analysis revealed that the 10 genes were connected to each other within a short interaction distance. We proposed a 10-gene signature for heart transplant patients at high-risk of developing severe rejection, which was found to be effective as well in other organ transplant. Moreover, we supposed that these genes function systematically as biomarkers in long-time allograft rejection. Further validation in broad transplant population would be required before the non-invasive biomarkers can be generally utilized to predict the risk of transplant rejection. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Island forming processes in the Okavango Delta, Botswana

    Science.gov (United States)

    McCarthy, T. S.; Humphries, M. S.; Mahomed, I.; Le Roux, P.; Verhagen, B. Th.

    2012-12-01

    The Okavango Delta in Botswana is a large (40,000 km2) alluvial fan that is characterised by the presence of numerous tree-covered islands. Thought to originate from the mound-building activities of termites or through fluvial processes associated with development of scroll bars and inverted channels, islands have been shown to play an important role in the structure and functioning of the Delta through the creation of habitat diversity, focusing of nutrients, and disposal of toxic salts. This study investigates the processes responsible for the maintenance and growth of two such islands in the seasonal swamps. Transpiration by vegetation is shown to result in substantial increases in groundwater salinity beneath the islands, contributing to their growth through chemical precipitation. Detailed chemical analyses revealed that the precipitation of magnesian calcite and silica within the island soils contributes 30-40% of the total island volume. Isotopic analyses of carbonate samples show that vegetation plays an important role in providing carbon for carbonate precipitation. Variations in δ13C carbonate values appear to reflect the relative proportion of C3 to C4 plants on the island, with C4 species becoming more dominant toward island centres in response to increases in groundwater salinity. The study suggests that continued island growth is also related to the deposition of aerosols and the accumulation of dust preferentially on islands and possibly to ongoing termite activity. Tall trees that characterise the island margins trap dust carried from the floodplains, resulting particularly in the lateral growth of islands. Islands in the Okavango are considered to be the product of long-term aggradation processes, with the two islands studied estimated to be in the order of tens of thousands of years old.

  16. Towards a Molecular Definition of Enterohemorrhagic Escherichia coli (EHEC): Detection of Genes Located on O Island 57 as Markers To Distinguish EHEC from Closely Related Enteropathogenic E. coli Strains

    Science.gov (United States)

    Delannoy, Sabine; Beutin, Lothar

    2013-01-01

    Among strains of Shiga-toxin (Stx) producing Escherichia coli (STEC), seven serogroups (O26, O45, O103, O111, O121, O145, and O157) are associated with severe clinical illness in humans. These strains are also called enterohemorrhagic E. coli (EHEC), and the development of methods for their reliable detection from food has been challenging thus far. PCR detection of major EHEC virulence genes stx1, stx2, eae, and O-serogroup-specific genes is useful but does not identify EHEC strains specifically. Searching for the presence of additional genes issued from E. coli O157:H7 genomic islands OI-122 and OI-71 increases the specificity but does not clearly discriminate EHEC from enteropathogenic E. coli (EPEC) strains. Here, we identified two putative genes, called Z2098 and Z2099, from the genomic island OI-57 that were closely associated with EHEC and their stx-negative derivative strains (87% for Z2098 and 91% for Z2099). Z2098 and Z2099 were rarely found in EPEC (10% for Z2098 and 12% for Z2099), STEC (2 and 15%), and apathogenic E. coli (1% each) strains. Our findings indicate that Z2098 and Z2099 are useful genetic markers for a more targeted diagnosis of typical EHEC and new emerging EHEC strains. PMID:23325824

  17. Massive gene swamping among cheese-making Penicillium fungi

    Directory of Open Access Journals (Sweden)

    Jeanne Ropars

    2015-03-01

    Full Text Available Horizontal gene transfers (HGT, i.e., the transmission of genetic material between species not directly attributable to meiotic gene exchange, have long been acknowledged as a major driver of prokaryotic evolution and is increasingly recognized as an important source of adaptation in eukaryotes. In fungi in particular, many convincing examples of HGT have been reported to confer selective advantages on the recipient fungal host, either promoting fungal pathogenicity on plants or increasing their toxicity by the acquisition of secondary metabolic clusters, resulting in adaptation to new niches and in some cases eventually even in speciation. These horizontal gene transfers involve single genes, complete metabolic pathways or even entire chromosomes. A recent study has uncovered multiple recent horizontal transfers of a 575 kb genomic island in cheese Penicillium fungi, representing ca. 2% of the Penicillium roqueforti’s genome, that may confer selective advantage in the competing cheese environment where bacteria and fungi occur. Novel phylogenomic methods are being developed, revealing massive HGT among fungi. Altogether, these recent studies indicate that HGT is a crucial mechanism of rapid adaptation, even among eukaryotes.

  18. Genomic evidence for island population conversion resolves conflicting theories of polar bear evolution.

    Science.gov (United States)

    Cahill, James A; Green, Richard E; Fulton, Tara L; Stiller, Mathias; Jay, Flora; Ovsyanikov, Nikita; Salamzade, Rauf; St John, John; Stirling, Ian; Slatkin, Montgomery; Shapiro, Beth

    2013-01-01

    Despite extensive genetic analysis, the evolutionary relationship between polar bears (Ursus maritimus) and brown bears (U. arctos) remains unclear. The two most recent comprehensive reports indicate a recent divergence with little subsequent admixture or a much more ancient divergence followed by extensive admixture. At the center of this controversy are the Alaskan ABC Islands brown bears that show evidence of shared ancestry with polar bears. We present an analysis of genome-wide sequence data for seven polar bears, one ABC Islands brown bear, one mainland Alaskan brown bear, and a black bear (U. americanus), plus recently published datasets from other bears. Surprisingly, we find clear evidence for gene flow from polar bears into ABC Islands brown bears but no evidence of gene flow from brown bears into polar bears. Importantly, while polar bears contributed bear, they contributed 6.5% of the X chromosome. The magnitude of sex-biased polar bear ancestry and the clear direction of gene flow suggest a model wherein the enigmatic ABC Island brown bears are the descendants of a polar bear population that was gradually converted into brown bears via male-dominated brown bear admixture. We present a model that reconciles heretofore conflicting genetic observations. We posit that the enigmatic ABC Islands brown bears derive from a population of polar bears likely stranded by the receding ice at the end of the last glacial period. Since then, male brown bear migration onto the island has gradually converted these bears into an admixed population whose phenotype and genotype are principally brown bear, except at mtDNA and X-linked loci. This process of genome erosion and conversion may be a common outcome when climate change or other forces cause a population to become isolated and then overrun by species with which it can hybridize.

  19. Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity

    Science.gov (United States)

    Schoggins, John W.; MacDuff, Donna A.; Imanaka, Naoko; Gainey, Maria D.; Shrestha, Bimmi; Eitson, Jennifer L.; Mar, Katrina B.; Richardson, R. Blake; Ratushny, Alexander V.; Litvak, Vladimir; Dabelic, Rea; Manicassamy, Balaji; Aitchison, John D.; Aderem, Alan; Elliott, Richard M.; García-Sastre, Adolfo; Racaniello, Vincent; Snijder, Eric J.; Yokoyama, Wayne M.; Diamond, Michael S.; Virgin, Herbert W.; Rice, Charles M.

    2014-01-01

    The type I interferon (IFN) response protects cells from viral infection by inducing hundreds of interferon-stimulated genes (ISGs), some of which encode direct antiviral effectors. Recent screening studies have begun to catalogue ISGs with antiviral activity against several RNA and DNA viruses. However, antiviral ISG specificity across multiple distinct classes of viruses remains largely unexplored. Here we used an ectopic expression assay to screen a library of more than 350 human ISGs for effects on 14 viruses representing 7 families and 11 genera. We show that 47 genes inhibit one or more viruses, and 25 genes enhance virus infectivity. Comparative analysis reveals that the screened ISGs target positive-sense single-stranded RNA viruses more effectively than negative-sense single-stranded RNA viruses. Gene clustering highlights the cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS, also known as MB21D1) as a gene whose expression also broadly inhibits several RNA viruses. In vitro, lentiviral delivery of enzymatically active cGAS triggers a STING-dependent, IRF3-mediated antiviral program that functions independently of canonical IFN/STAT1 signalling. In vivo, genetic ablation of murine cGAS reveals its requirement in the antiviral response to two DNA viruses, and an unappreciated contribution to the innate control of an RNA virus. These studies uncover new paradigms for the preferential specificity of IFN-mediated antiviral pathways spanning several virus families.

  20. Whole genome transcript profiling of drug induced steatosis in rats reveals a gene signature predictive of outcome.

    Directory of Open Access Journals (Sweden)

    Nishika Sahini

    Full Text Available Drug induced steatosis (DIS is characterised by excess triglyceride accumulation in the form of lipid droplets (LD in liver cells. To explore mechanisms underlying DIS we interrogated the publically available microarray data from the Japanese Toxicogenomics Project (TGP to study comprehensively whole genome gene expression changes in the liver of treated rats. For this purpose a total of 17 and 12 drugs which are diverse in molecular structure and mode of action were considered based on their ability to cause either steatosis or phospholipidosis, respectively, while 7 drugs served as negative controls. In our efforts we focused on 200 genes which are considered to be mechanistically relevant in the process of lipid droplet biogenesis in hepatocytes as recently published (Sahini and Borlak, 2014. Based on mechanistic considerations we identified 19 genes which displayed dose dependent responses while 10 genes showed time dependency. Importantly, the present study defined 9 genes (ANGPTL4, FABP7, FADS1, FGF21, GOT1, LDLR, GK, STAT3, and PKLR as signature genes to predict DIS. Moreover, cross tabulation revealed 9 genes to be regulated ≥10 times amongst the various conditions and included genes linked to glucose metabolism, lipid transport and lipogenesis as well as signalling events. Additionally, a comparison between drugs causing phospholipidosis and/or steatosis revealed 26 genes to be regulated in common including 4 signature genes to predict DIS (PKLR, GK, FABP7 and FADS1. Furthermore, a comparison between in vivo single dose (3, 6, 9 and 24 h and findings from rat hepatocyte studies (2 h, 8 h, 24 h identified 10 genes which are regulated in common and contained 2 DIS signature genes (FABP7, FGF21. Altogether, our studies provide comprehensive information on mechanistically linked gene expression changes of a range of drugs causing steatosis and phospholipidosis and encourage the screening of DIS signature genes at the preclinical stage.

  1. Draft genome sequence of Streptomyces coelicoflavus ZG0656 reveals the putative biosynthetic gene cluster of acarviostatin family α-amylase inhibitors.

    Science.gov (United States)

    Guo, X; Geng, P; Bai, F; Bai, G; Sun, T; Li, X; Shi, L; Zhong, Q

    2012-08-01

    The aims of this study are to obtain the draft genome sequence of Streptomyces coelicoflavus ZG0656, which produces novel acarviostatin family α-amylase inhibitors, and then to reveal the putative acarviostatin-related gene cluster and the biosynthetic pathway. The draft genome sequence of S. coelicoflavus ZG0656 was generated using a shotgun approach employing a combination of 454 and Solexa sequencing technologies. Genome analysis revealed a putative gene cluster for acarviostatin biosynthesis, termed sct-cluster. The cluster contains 13 acarviostatin synthetic genes, six transporter genes, four starch degrading or transglycosylation enzyme genes and two regulator genes. On the basis of bioinformatic analysis, we proposed a putative biosynthetic pathway of acarviostatins. The intracellular steps produce a structural core, acarviostatin I00-7-P, and the extracellular assemblies lead to diverse acarviostatin end products. The draft genome sequence of S. coelicoflavus ZG0656 revealed the putative biosynthetic gene cluster of acarviostatins and a putative pathway of acarviostatin production. To our knowledge, S. coelicoflavus ZG0656 is the first strain in this species for which a genome sequence has been reported. The analysis of sct-cluster provided important insights into the biosynthesis of acarviostatins. This work will be a platform for producing novel variants and yield improvement. © 2012 The Authors. Letters in Applied Microbiology © 2012 The Society for Applied Microbiology.

  2. Multilocus analysis reveals three candidate genes for Chinese migraine susceptibility.

    Science.gov (United States)

    An, X-K; Fang, J; Yu, Z-Z; Lin, Q; Lu, C-X; Qu, H-L; Ma, Q-L

    2017-08-01

    Several genome-wide association studies (GWASs) in Caucasian populations have identified 12 loci that are significantly associated with migraine. More evidence suggests that serotonin receptors are also involved in migraine pathophysiology. In the present study, a case-control study was conducted in a cohort of 581 migraine cases and 533 ethnically matched controls among a Chinese population. Eighteen polymorphisms from serotonin receptors and GWASs were selected, and genotyping was performed using a Sequenom MALDI-TOF mass spectrometry iPLEX platform. The genotypic and allelic distributions of MEF2D rs2274316 and ASTN2 rs6478241 were significantly different between migraine patients and controls. Univariate and multivariate analysis revealed significant associations of polymorphisms in the MEF2D and ASTN2 genes with migraine susceptibility. MEF2D, PRDM16 and ASTN2 were also found to be associated with migraine without aura (MO) and migraine with family history. And, MEF2D and ASTN2 also served as genetic risk factors for the migraine without family history. The generalized multifactor dimensionality reduction analysis identified that MEF2D and HTR2E constituted the two-factor interaction model. Our study suggests that the MEF2D, PRDM16 and ASTN2 genes from GWAS are associated with migraine susceptibility, especially MO, among Chinese patients. It appears that there is no association with serotonin receptor related genes. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Spatio-Temporal Dynamics of a Coastal Island Using Geospatial Techniques: A Case in Hatiya Island, Bangladesh

    Science.gov (United States)

    Ramjan, S.; Mahmud, M. S.; Hossain, M. A.; Hasan, M.; Ashrafi, Z. M.

    2016-12-01

    Bangladesh is recognized for its high vulnerability to sea level rise (SLR). SLR directly and indirectly (by altering morphology of river estuary) accelerates erosion processes, washes out the loose materials of the coast and coastal islands. Hatiya, highly populated coastal island, located in Meghna river estuary is under severe threat of coastal erosion, which has not been quantified yet. The accurate mapping of the shoreline and coastal changes are very important for adopting conservation measures e.g. protection of human life, property and the natural environment. The objectives of the present study are to use remote sensing and Geographical Information System techniques to evaluate spatial and temporal changes in the shoreline and coastal land area of the Hatiya Island between the year of 1985 and 2016 from multi-temporal satellite images, i.e. assessing shifting of the shoreline position through digital shoreline analysis besides the erosion-accretion measurements. Study reveals that about 67 square kilometer areas has been lost between 1985 and 2016 which was about 17 percent of original area (1985). Erosion mainly took place in northern, north-western banks of the island. In these areas, the landward movement and rate of the shoreline were higher with a highest value of the net shoreline movement (NSM) around 6.2 km. Erosion rate is significant in exposed part of the island where tidal water pressure, shoreline configuration, loose bank materials and steep slope were observed. However, the accretion was noticed in recent years (2010-2016) in southern part of the island where slopes were gentle, perhaps due to backwash sediment deposition. As erosion process is prominent in this island, significant amounnt of usable land was lost. Therefore, local livelihood pattern has changed that has noticable effect on local economy. By quantifying the erosion-accretion rate, livelihood planning can be initiated in climatically threated vulnerable islands.

  4. Genetic variability of psychrotolerant Acidithiobacillus ferrivorans revealed by (meta)genomic analysis.

    Science.gov (United States)

    González, Carolina; Yanquepe, María; Cardenas, Juan Pablo; Valdes, Jorge; Quatrini, Raquel; Holmes, David S; Dopson, Mark

    2014-11-01

    Acidophilic microorganisms inhabit low pH environments such as acid mine drainage that is generated when sulfide minerals are exposed to air. The genome sequence of the psychrotolerant Acidithiobacillus ferrivorans SS3 was compared to a metagenome from a low temperature acidic stream dominated by an A. ferrivorans-like strain. Stretches of genomic DNA characterized by few matches to the metagenome, termed 'metagenomic islands', encoded genes associated with metal efflux and pH homeostasis. The metagenomic islands were enriched in mobile elements such as phage proteins, transposases, integrases and in one case, predicted to be flanked by truncated tRNAs. Cus gene clusters predicted to be involved in copper efflux and further Cus-like RND systems were predicted to be located in metagenomic islands and therefore, constitute part of the flexible gene complement of the species. Phylogenetic analysis of Cus clusters showed both lineage specificity within the Acidithiobacillus genus as well as niche specificity associated with an acidic environment. The metagenomic islands also contained a predicted copper efflux P-type ATPase system and a polyphosphate kinase potentially involved in polyphosphate mediated copper resistance. This study identifies genetic variability of low temperature acidophiles that likely reflects metal resistance selective pressures in the copper rich environment. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  5. The master activator of IncA/C conjugative plasmids stimulates genomic islands and multidrug resistance dissemination.

    Science.gov (United States)

    Carraro, Nicolas; Matteau, Dominick; Luo, Peng; Rodrigue, Sébastien; Burrus, Vincent

    2014-10-01

    Dissemination of antibiotic resistance genes occurs mostly by conjugation, which mediates DNA transfer between cells in direct contact. Conjugative plasmids of the IncA/C incompatibility group have become a substantial threat due to their broad host-range, the extended spectrum of antimicrobial resistance they confer, their prevalence in enteric bacteria and their very efficient spread by conjugation. However, their biology remains largely unexplored. Using the IncA/C conjugative plasmid pVCR94ΔX as a prototype, we have investigated the regulatory circuitry that governs IncA/C plasmids dissemination and found that the transcriptional activator complex AcaCD is essential for the expression of plasmid transfer genes. Using chromatin immunoprecipitation coupled with exonuclease digestion (ChIP-exo) and RNA sequencing (RNA-seq) approaches, we have identified the sequences recognized by AcaCD and characterized the AcaCD regulon. Data mining using the DNA motif recognized by AcaCD revealed potential AcaCD-binding sites upstream of genes involved in the intracellular mobility functions (recombination directionality factor and mobilization genes) in two widespread classes of genomic islands (GIs) phylogenetically unrelated to IncA/C plasmids. The first class, SGI1, confers and propagates multidrug resistance in Salmonella enterica and Proteus mirabilis, whereas MGIVmi1 in Vibrio mimicus belongs to a previously uncharacterized class of GIs. We have demonstrated that through expression of AcaCD, IncA/C plasmids specifically trigger the excision and mobilization of the GIs at high frequencies. This study provides new evidence of the considerable impact of IncA/C plasmids on bacterial genome plasticity through their own mobility and the mobilization of genomic islands.

  6. Signalling pathways involved in adult heart formation revealed by gene expression profiling in Drosophila.

    Directory of Open Access Journals (Sweden)

    Bruno Zeitouni

    2007-10-01

    Full Text Available Drosophila provides a powerful system for defining the complex genetic programs that drive organogenesis. Under control of the steroid hormone ecdysone, the adult heart in Drosophila forms during metamorphosis by a remodelling of the larval cardiac organ. Here, we evaluated the extent to which transcriptional signatures revealed by genomic approaches can provide new insights into the molecular pathways that underlie heart organogenesis. Whole-genome expression profiling at eight successive time-points covering adult heart formation revealed a highly dynamic temporal map of gene expression through 13 transcript clusters with distinct expression kinetics. A functional atlas of the transcriptome profile strikingly points to the genomic transcriptional response of the ecdysone cascade, and a sharp regulation of key components belonging to a few evolutionarily conserved signalling pathways. A reverse genetic analysis provided evidence that these specific signalling pathways are involved in discrete steps of adult heart formation. In particular, the Wnt signalling pathway is shown to participate in inflow tract and cardiomyocyte differentiation, while activation of the PDGF-VEGF pathway is required for cardiac valve formation. Thus, a detailed temporal map of gene expression can reveal signalling pathways responsible for specific developmental programs and provides here substantial grasp into heart formation.

  7. Patterns and architecture of genomic islands in marine bacteria

    Directory of Open Access Journals (Sweden)

    Fernández-Gómez Beatriz

    2012-07-01

    Full Text Available Abstract Background Genomic Islands (GIs have key roles since they modulate the structure and size of bacterial genomes displaying a diverse set of laterally transferred genes. Despite their importance, GIs in marine bacterial genomes have not been explored systematically to uncover possible trends and to analyze their putative ecological significance. Results We carried out a comprehensive analysis of GIs in 70 selected marine bacterial genomes detected with IslandViewer to explore the distribution, patterns and functional gene content in these genomic regions. We detected 438 GIs containing a total of 8152 genes. GI number per genome was strongly and positively correlated with the total GI size. In 50% of the genomes analyzed the GIs accounted for approximately 3% of the genome length, with a maximum of 12%. Interestingly, we found transposases particularly enriched within Alphaproteobacteria GIs, and site-specific recombinases in Gammaproteobacteria GIs. We described specific Homologous Recombination GIs (HR-GIs in several genera of marine Bacteroidetes and in Shewanella strains among others. In these HR-GIs, we recurrently found conserved genes such as the β-subunit of DNA-directed RNA polymerase, regulatory sigma factors, the elongation factor Tu and ribosomal protein genes typically associated with the core genome. Conclusions Our results indicate that horizontal gene transfer mediated by phages, plasmids and other mobile genetic elements, and HR by site-specific recombinases play important roles in the mobility of clusters of genes between taxa and within closely related genomes, modulating the flexible pool of the genome. Our findings suggest that GIs may increase bacterial fitness under environmental changing conditions by acquiring novel foreign genes and/or modifying gene transcription and/or transduction.

  8. Low genetic variation in the MHC class II DRB gene and MHC-linked microsatellites in endangered island populations of the leopard cat (Prionailurus bengalensis) in Japan.

    Science.gov (United States)

    Saka, Toshinori; Nishita, Yoshinori; Masuda, Ryuichi

    2018-02-01

    Isolated populations of the leopard cat (Prionailurus bengalensis) on Tsushima and Iriomote islands in Japan are classified as subspecies P. b. euptilurus and P. b. iriomotensis, respectively. Because both populations have decreased to roughly 100, an understanding of their genetic diversity is essential for conservation. We genotyped MHC class II DRB exon 2 and MHC-linked microsatellite loci to evaluate the diversity of MHC genes in the Tsushima and Iriomote cat populations. We detected ten and four DRB alleles in these populations, respectively. A phylogenetic analysis showed DRB alleles from both populations to be closely related to those in other felid DRB lineages, indicating trans-species polymorphism. The MHC-linked microsatellites were more polymorphic in the Tsushima than in the Iriomote population. The MHC diversity of both leopard cat populations is much lower than in the domestic cat populations on these islands, probably due to inbreeding associated with founder effects, geographical isolation, or genetic drift. Our results predict low resistance of the two endangered populations to new pathogens introduced to the islands.

  9. Recent volcanism and mitochondrial DNA structuring in the lizard Gallotia atlantica from the island of Lanzarote.

    Science.gov (United States)

    Bloor, P; Kemp, S J; Brown, R P

    2008-02-01

    The phylogeography of the lacertid lizard Gallotia atlantica from the small volcanic island of Lanzarote (Canary Islands) was analysed based on 1075 bp of mitochondrial DNA (mtDNA) sequence (partial cytochrome b and ND2) for 157 individuals from 27 sites (including three sites from neighbouring islets). Levels of sequence divergence were generally low, with the most distant haplotypes separated by only 14 mutational steps. MtDNA divergence appears to coincide with formation of the middle Pleistocene lowland that united formerly separate ancient islands to form the current island of Lanzarote, allowing rejection of a two-island model of phylogeographical structure. There was evidence of large-scale population expansion after island unification, consistent with the colonization of new areas. A nested clade phylogeographical analysis (NCPA) revealed significant phylogeographical structuring. Two-step and higher-level clades each had disjunct distributions, being found to the east and west of a common area with a north-south orientation that extends between coasts in the centre-east of the island (El Jable). Other clades were almost entirely restricted to the El Jable region alone. Bayesian Markov chain Monte Carlo analyses were used to separate ongoing gene flow from historical associations. These supported the NCPA by indicating recent (75,000-150,000 years ago) east-west vicariance across the El Jable region. Lava flows covered El Jable and other parts of the central lowland at this time and likely led to population extinctions and temporary dispersal barriers, although present-day evidence suggests some populations would have survived in small refugia. Expansion of the latter appears to explain the presence of a clade located between the eastern and western components of the disjunct clades. Direct relationships between mtDNA lineages and morphology were not found, although one of two morphological forms on the island has a disjunct distribution that is broadly

  10. Vertical Land Movements and Sea Level Changes around South Georgia Island

    OpenAIRE

    Teferle, Felix Norman; Hunegnaw, Addisu; Abraha, Kibrom Ebuy; Woodworth, Phil; Williams, Simon; Hibbert, Angela; Smalley, Robert; Dalziel, Ian; Lawver, Larry

    2018-01-01

    South Georgia Island in the Southern Atlantic Ocean is a key location for the seismic, geomagnetic and oceanic global monitoring networks. In its sub-Antarctic location, the island is largely covered by mountain glaciers which have been reported to be retreating due to climatic change. Furthermore, during past glaciation periods the island and its shelf area have been ice covered as was revealed by scarring of the sub-oceanic topography. Together with ongoing tectonics along the North Scotia ...

  11. Embryonic stem cell-like features of testicular carcinoma in situ revealed by genome-wide gene expression profiling.

    Science.gov (United States)

    Almstrup, Kristian; Hoei-Hansen, Christina E; Wirkner, Ute; Blake, Jonathon; Schwager, Christian; Ansorge, Wilhelm; Nielsen, John E; Skakkebaek, Niels E; Rajpert-De Meyts, Ewa; Leffers, Henrik

    2004-07-15

    Carcinoma in situ (CIS) is the common precursor of histologically heterogeneous testicular germ cell tumors (TGCTs), which in recent decades have markedly increased and now are the most common malignancy of young men. Using genome-wide gene expression profiling, we identified >200 genes highly expressed in testicular CIS, including many never reported in testicular neoplasms. Expression was further verified by semiquantitative reverse transcription-PCR and in situ hybridization. Among the highest expressed genes were NANOG and POU5F1, and reverse transcription-PCR revealed possible changes in their stoichiometry on progression into embryonic carcinoma. We compared the CIS expression profile with patterns reported in embryonic stem cells (ESCs), which revealed a substantial overlap that may be as high as 50%. We also demonstrated an over-representation of expressed genes in regions of 17q and 12, reported as unstable in cultured ESCs. The close similarity between CIS and ESCs explains the pluripotency of CIS. Moreover, the findings are consistent with an early prenatal origin of TGCTs and thus suggest that etiologic factors operating in utero are of primary importance for the incidence trends of TGCTs. Finally, some of the highly expressed genes identified in this study are promising candidates for new diagnostic markers for CIS and/or TGCTs.

  12. Intergenic DNA sequences from the human X chromosome reveal high rates of global gene flow

    Directory of Open Access Journals (Sweden)

    Wall Jeffrey D

    2008-11-01

    Full Text Available Abstract Background Despite intensive efforts devoted to collecting human polymorphism data, little is known about the role of gene flow in the ancestry of human populations. This is partly because most analyses have applied one of two simple models of population structure, the island model or the splitting model, which make unrealistic biological assumptions. Results Here, we analyze 98-kb of DNA sequence from 20 independently evolving intergenic regions on the X chromosome in a sample of 90 humans from six globally diverse populations. We employ an isolation-with-migration (IM model, which assumes that populations split and subsequently exchange migrants, to independently estimate effective population sizes and migration rates. While the maximum effective size of modern humans is estimated at ~10,000, individual populations vary substantially in size, with African populations tending to be larger (2,300–9,000 than non-African populations (300–3,300. We estimate mean rates of bidirectional gene flow at 4.8 × 10-4/generation. Bidirectional migration rates are ~5-fold higher among non-African populations (1.5 × 10-3 than among African populations (2.7 × 10-4. Interestingly, because effective sizes and migration rates are inversely related in African and non-African populations, population migration rates are similar within Africa and Eurasia (e.g., global mean Nm = 2.4. Conclusion We conclude that gene flow has played an important role in structuring global human populations and that migration rates should be incorporated as critical parameters in models of human demography.

  13. Marine investigations in the Lakshadweep Islands, India

    Digital Repository Service at National Institute of Oceanography (India)

    Tripati, S.

    to navigators through the ages. Recent discoveries made during marine archaeological exploration and excavations in the Lakshadweep have revealed evidences of early settlement and shipwrecks. The findings suggest that the islands had been inhabited much before...

  14. Genome-wide characterization of pectin methyl esterase genes reveals members differentially expressed in tolerant and susceptible wheats in response to Fusarium graminearum.

    Science.gov (United States)

    Zega, Alessandra; D'Ovidio, Renato

    2016-11-01

    Pectin methyl esterase (PME) genes code for enzymes that are involved in structural modifications of the plant cell wall during plant growth and development. They are also involved in plant-pathogen interaction. PME genes belong to a multigene family and in this study we report the first comprehensive analysis of the PME gene family in bread wheat (Triticum aestivum L.). Like in other species, the members of the TaPME family are dispersed throughout the genome and their encoded products retain the typical structural features of PMEs. qRT-PCR analysis showed variation in the expression pattern of TaPME genes in different tissues and revealed that these genes are mainly expressed in flowering spikes. In our attempt to identify putative TaPME genes involved in wheat defense, we revealed a strong variation in the expression of the TaPME following Fusarium graminearum infection, the causal agent of Fusarium head blight (FHB). Particularly interesting was the finding that the expression profile of some PME genes was markedly different between the FHB-resistant wheat cultivar Sumai3 and the FHB-susceptible cultivar Bobwhite, suggesting a possible involvement of these PME genes in FHB resistance. Moreover, the expression analysis of the TaPME genes during F. graminearum progression within the spike revealed those genes that responded more promptly to pathogen invasion. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Computational integration of homolog and pathway gene module expression reveals general stemness signatures.

    Directory of Open Access Journals (Sweden)

    Martina Koeva

    Full Text Available The stemness hypothesis states that all stem cells use common mechanisms to regulate self-renewal and multi-lineage potential. However, gene expression meta-analyses at the single gene level have failed to identify a significant number of genes selectively expressed by a broad range of stem cell types. We hypothesized that stemness may be regulated by modules of homologs. While the expression of any single gene within a module may vary from one stem cell type to the next, it is possible that the expression of the module as a whole is required so that the expression of different, yet functionally-synonymous, homologs is needed in different stem cells. Thus, we developed a computational method to test for stem cell-specific gene expression patterns from a comprehensive collection of 49 murine datasets covering 12 different stem cell types. We identified 40 individual genes and 224 stemness modules with reproducible and specific up-regulation across multiple stem cell types. The stemness modules included families regulating chromatin remodeling, DNA repair, and Wnt signaling. Strikingly, the majority of modules represent evolutionarily related homologs. Moreover, a score based on the discovered modules could accurately distinguish stem cell-like populations from other cell types in both normal and cancer tissues. This scoring system revealed that both mouse and human metastatic populations exhibit higher stemness indices than non-metastatic populations, providing further evidence for a stem cell-driven component underlying the transformation to metastatic disease.

  16. Chicken genome analysis reveals novel genes encoding biotin-binding proteins related to avidin family

    Directory of Open Access Journals (Sweden)

    Nordlund Henri R

    2005-03-01

    Full Text Available Abstract Background A chicken egg contains several biotin-binding proteins (BBPs, whose complete DNA and amino acid sequences are not known. In order to identify and characterise these genes and proteins we studied chicken cDNAs and genes available in the NCBI database and chicken genome database using the reported N-terminal amino acid sequences of chicken egg-yolk BBPs as search strings. Results Two separate hits showing significant homology for these N-terminal sequences were discovered. For one of these hits, the chromosomal location in the immediate proximity of the avidin gene family was found. Both of these hits encode proteins having high sequence similarity with avidin suggesting that chicken BBPs are paralogous to avidin family. In particular, almost all residues corresponding to biotin binding in avidin are conserved in these putative BBP proteins. One of the found DNA sequences, however, seems to encode a carboxy-terminal extension not present in avidin. Conclusion We describe here the predicted properties of the putative BBP genes and proteins. Our present observations link BBP genes together with avidin gene family and shed more light on the genetic arrangement and variability of this family. In addition, comparative modelling revealed the potential structural elements important for the functional and structural properties of the putative BBP proteins.

  17. Detailed Analysis of Japanese Population Substructure with a Focus on the Southwest Islands of Japan

    Science.gov (United States)

    Nishiyama, Takeshi; Kishino, Hirohisa; Suzuki, Sadao; Ando, Ryosuke; Niimura, Hideshi; Uemura, Hirokazu; Horita, Mikako; Ohnaka, Keizo; Kuriyama, Nagato; Mikami, Haruo; Takashima, Naoyuki; Mastuo, Keitaro; Guang, Yin; Wakai, Kenji; Hamajima, Nobuyuki; Tanaka, Hideo

    2012-01-01

    Uncovering population structure is important for properly conducting association studies and for examining the demographic history of a population. Here, we examined the Japanese population substructure using data from the Japan Multi-Institutional Collaborative Cohort (J-MICC), which covers all but the northern region of Japan. Using 222 autosomal loci from 4502 subjects, we investigated population substructure by estimating FST among populations, testing population differentiation, and performing principal component analysis (PCA) and correspondence analysis (CA). All analyses revealed a low but significant differentiation between the Amami Islanders and the mainland Japanese population. Furthermore, we examined the genetic differentiation between the mainland population, Amami Islanders and Okinawa Islanders using six loci included in both the Pan-Asian SNP (PASNP) consortium data and the J-MICC data. This analysis revealed that the Amami and Okinawa Islanders were differentiated from the mainland population. In conclusion, we revealed a low but significant level of genetic differentiation between the mainland population and populations in or to the south of the Amami Islands, although genetic variation between both populations might be clinal. Therefore, the possibility of population stratification must be considered when enrolling the islander population of this area, such as in the J-MICC study. PMID:22509376

  18. DNA microarray revealed and RNAi plants confirmed key genes conferring low Cd accumulation in barley grains

    DEFF Research Database (Denmark)

    Sun, Hongyan; Chen, Zhong-Hua; Chen, Fei

    2015-01-01

    Background Understanding the mechanism of low Cd accumulation in crops is crucial for sustainable safe food production in Cd-contaminated soils. Results Confocal microscopy, atomic absorption spectrometry, gas exchange and chlorophyll fluorescence analyses revealed a distinct difference in Cd...... with a substantial difference between the two genotypes. Cd stress led to higher expression of genes involved in transport, carbohydrate metabolism and signal transduction in the low-grain-Cd-accumulating genotype. Novel transporter genes such as zinc transporter genes were identified as being associated with low Cd...... accumulation. Quantitative RT-PCR confirmed our microarray data. Furthermore, suppression of the zinc transporter genes HvZIP3 and HvZIP8 by RNAi silencing showed increased Cd accumulation and reduced Zn and Mn concentrations in barley grains. Thus, HvZIP3 and HvZIP8 could be candidate genes related to low...

  19. Insecticide resistance is mediated by multiple mechanisms in recently introduced Aedes aegypti from Madeira Island (Portugal).

    Science.gov (United States)

    Seixas, Gonçalo; Grigoraki, Linda; Weetman, David; Vicente, José Luís; Silva, Ana Clara; Pinto, João; Vontas, John; Sousa, Carla Alexandra

    2017-07-01

    Aedes aegypti is a major mosquito vector of arboviruses, including dengue, chikungunya and Zika. In 2005, Ae. aegypti was identified for the first time in Madeira Island. Despite an initial insecticide-based vector control program, the species expanded throughout the Southern coast of the island, suggesting the presence of insecticide resistance. Here, we characterized the insecticide resistance status and the underlying mechanisms of two populations of Ae. aegypti from Madeira Island, Funchal and Paúl do Mar. WHO susceptibility bioassays indicated resistance to cyfluthrin, permethrin, fenitrothion and bendiocarb. Use of synergists significantly increased mortality rates, and biochemical assays indicated elevated activities of detoxification enzymes, suggesting the importance of metabolic resistance. Microarray-based transcriptome analysis detected significant upregulation in both populations of nine cytochrome P450 oxidase genes (including four known pyrethroid metabolizing enzymes), the organophosphate metabolizer CCEae3a, Glutathione-S-transferases, and multiple putative cuticle proteins. Genotyping of knockdown resistance loci linked to pyrethroid resistance revealed fixation of the 1534C mutation, and presence with moderate frequencies of the V1016I mutation in each population. Significant resistance to three major insecticide classes (pyrethroid, carbamate and organophosphate) is present in Ae. aegypti from Madeira Island, and appears to be mediated by multiple mechanisms. Implementation of appropriate resistance management strategies including rotation of insecticides with alternative modes of action, and methods other than chemical-based vector control are strongly advised to delay or reverse the spread of resistance and achieve efficient control.

  20. Genome-wide identification and comparative expression analysis reveal a rapid expansion and functional divergence of duplicated genes in the WRKY gene family of cabbage, Brassica oleracea var. capitata.

    Science.gov (United States)

    Yao, Qiu-Yang; Xia, En-Hua; Liu, Fei-Hu; Gao, Li-Zhi

    2015-02-15

    WRKY transcription factors (TFs), one of the ten largest TF families in higher plants, play important roles in regulating plant development and resistance. To date, little is known about the WRKY TF family in Brassica oleracea. Recently, the completed genome sequence of cabbage (B. oleracea var. capitata) allows us to systematically analyze WRKY genes in this species. A total of 148 WRKY genes were characterized and classified into seven subgroups that belong to three major groups. Phylogenetic and synteny analyses revealed that the repertoire of cabbage WRKY genes was derived from a common ancestor shared with Arabidopsis thaliana. The B. oleracea WRKY genes were found to be preferentially retained after the whole-genome triplication (WGT) event in its recent ancestor, suggesting that the WGT event had largely contributed to a rapid expansion of the WRKY gene family in B. oleracea. The analysis of RNA-Seq data from various tissues (i.e., roots, stems, leaves, buds, flowers and siliques) revealed that most of the identified WRKY genes were positively expressed in cabbage, and a large portion of them exhibited patterns of differential and tissue-specific expression, demonstrating that these gene members might play essential roles in plant developmental processes. Comparative analysis of the expression level among duplicated genes showed that gene expression divergence was evidently presented among cabbage WRKY paralogs, indicating functional divergence of these duplicated WRKY genes. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Analysis of clock-regulated genes in Neurospora reveals widespread posttranscriptional control of metabolic potential

    Science.gov (United States)

    Hurley, Jennifer M.; Dasgupta, Arko; Emerson, Jillian M.; Zhou, Xiaoying; Ringelberg, Carol S.; Knabe, Nicole; Lipzen, Anna M.; Lindquist, Erika A.; Daum, Christopher G.; Barry, Kerrie W.; Grigoriev, Igor V.; Smith, Kristina M.; Galagan, James E.; Bell-Pedersen, Deborah; Freitag, Michael; Cheng, Chao; Loros, Jennifer J.; Dunlap, Jay C.

    2014-01-01

    Neurospora crassa has been for decades a principal model for filamentous fungal genetics and physiology as well as for understanding the mechanism of circadian clocks. Eukaryotic fungal and animal clocks comprise transcription-translation–based feedback loops that control rhythmic transcription of a substantial fraction of these transcriptomes, yielding the changes in protein abundance that mediate circadian regulation of physiology and metabolism: Understanding circadian control of gene expression is key to understanding eukaryotic, including fungal, physiology. Indeed, the isolation of clock-controlled genes (ccgs) was pioneered in Neurospora where circadian output begins with binding of the core circadian transcription factor WCC to a subset of ccg promoters, including those of many transcription factors. High temporal resolution (2-h) sampling over 48 h using RNA sequencing (RNA-Seq) identified circadianly expressed genes in Neurospora, revealing that from ∼10% to as much 40% of the transcriptome can be expressed under circadian control. Functional classifications of these genes revealed strong enrichment in pathways involving metabolism, protein synthesis, and stress responses; in broad terms, daytime metabolic potential favors catabolism, energy production, and precursor assembly, whereas night activities favor biosynthesis of cellular components and growth. Discriminative regular expression motif elicitation (DREME) identified key promoter motifs highly correlated with the temporal regulation of ccgs. Correlations between ccg abundance from RNA-Seq, the degree of ccg-promoter activation as reported by ccg-promoter–luciferase fusions, and binding of WCC as measured by ChIP-Seq, are not strong. Therefore, although circadian activation is critical to ccg rhythmicity, posttranscriptional regulation plays a major role in determining rhythmicity at the mRNA level. PMID:25362047

  2. Pleistocene land bridges act as semipermeable agents of avian gene flow in Wallacea.

    Science.gov (United States)

    Garg, Kritika M; Chattopadhyay, Balaji; Wilton, Peter R; Malia Prawiradilaga, Dewi; Rheindt, Frank E

    2018-08-01

    Cyclical periods of global cooling have been important drivers of biotic differentiation throughout the Quaternary. Ice age-induced sea level fluctuations can lead to changing patterns of land connections, both facilitating and disrupting gene flow. In this study, we test if species with differing life histories are differentially affected by Quaternary land connections. We used genome-wide SNPs in combination with mitochondrial gene sequences to analyse levels of divergence and gene flow between two songbird complexes across two Wallacean islands that have been repeatedly connected during glaciations. Although the two bird complexes are similar in ecological attributes, the forest and edge-inhabiting golden whistler Pachycephala pectoralis is comparatively flexible in its diet and niche requirements as compared to the henna-tailed jungle-flycatcher Cyornis colonus, which is largely restricted to the forest interior. Using population-genomic and coalescent approaches, we estimated levels of gene flow, population differentiation and divergence time between the two island populations. We observed higher levels of differentiation, an approximately two to four times deeper divergence time and near-zero levels of gene flow between the two island populations of the more forest-dependent henna-tailed jungle-flycatcher as compared to the more generalist golden whistler. Our results suggest that Quaternary land bridges act as semipermeable agents of gene flow in Wallacea, allowing only certain taxa to connect between islands while others remain isolated. Quaternary land bridges do not accommodate all terrestrial species equally, differing in suitability according to life history and species biology. More generalist species are likely to use Quaternary land connections as a conduit for gene flow between islands whereas island populations of more specialist species may continue to be reproductively isolated even during periods of Quaternary land bridges. Copyright © 2018

  3. Functional and phylogenetic structure of island bird communities.

    Science.gov (United States)

    Si, Xingfeng; Cadotte, Marc W; Zeng, Di; Baselga, Andrés; Zhao, Yuhao; Li, Jiaqi; Wu, Yiru; Wang, Siyu; Ding, Ping

    2017-05-01

    Biodiversity change in anthropogenically transformed habitats is often nonrandom, yet the nature and importance of the different mechanisms shaping community structure are unclear. Here, we extend the classic Theory of Island Biogeography (TIB) to account for nonrandom processes by incorporating species traits and phylogenetic relationships into a study of faunal relaxation following habitat loss and fragmentation. Two possible mechanisms can create nonrandom community patterns on fragment islands. First, small and isolated islands might consist of similar or closely related species because they are environmentally homogeneous or select for certain shared traits, such as dispersal ability. Alternatively, communities on small islands might contain more dissimilar or distantly related species than on large islands because limited space and resource availability result in greater competitive exclusion among species with high niche overlap. Breeding birds were surveyed on 36 islands and two mainland sites annually from 2010 to 2014 in the Thousand Island Lake region, China. We assessed community structure of breeding birds on these subtropical land-bridge islands by integrating species' trait and evolutionary distances. We additionally analysed habitat heterogeneity and variance in size ratios to distinguish biotic and abiotic processes of community assembly. Results showed that functional-phylogenetic diversity increased with island area, and decreased with isolation. Bird communities on the mainland were more diverse and generally less clustered than island bird communities and not different than randomly assembled communities. Bird communities on islands tend to be functionally similar and phylogenetically clustered, especially on small and isolated islands. The nonrandom decline in species diversity and change in bird community structure with island area and isolation, along with the relatively homogeneous habitats on small islands, support the environmental

  4. Restricted genetic variation in populations of Achatina (Lissachatina) fulica outside of East Africa and the Indian Ocean Islands points to the Indian Ocean Islands as the earliest known common source.

    Science.gov (United States)

    Fontanilla, Ian Kendrich C; Sta Maria, Inna Mikaella P; Garcia, James Rainier M; Ghate, Hemant; Naggs, Fred; Wade, Christopher M

    2014-01-01

    The Giant African Land Snail, Achatina ( =  Lissachatina) fulica Bowdich, 1822, is a tropical crop pest species with a widespread distribution across East Africa, the Indian subcontinent, Southeast Asia, the Pacific, the Caribbean, and North and South America. Its current distribution is attributed primarily to the introduction of the snail to new areas by Man within the last 200 years. This study determined the extent of genetic diversity in global A. fulica populations using the mitochondrial 16S ribosomal RNA gene. A total of 560 individuals were evaluated from 39 global populations obtained from 26 territories. Results reveal 18 distinct A. fulica haplotypes; 14 are found in East Africa and the Indian Ocean islands, but only two haplotypes from the Indian Ocean islands emerged from this region, the C haplotype, now distributed across the tropics, and the D haplotype in Ecuador and Bolivia. Haplotype E from the Philippines, F from New Caledonia and Barbados, O from India and Q from Ecuador are variants of the emergent C haplotype. For the non-native populations, the lack of genetic variation points to founder effects due to the lack of multiple introductions from the native range. Our current data could only point with certainty to the Indian Ocean islands as the earliest known common source of A. fulica across the globe, which necessitates further sampling in East Africa to determine the source populations of the emergent haplotypes.

  5. Restricted genetic variation in populations of Achatina (Lissachatina fulica outside of East Africa and the Indian Ocean Islands points to the Indian Ocean Islands as the earliest known common source.

    Directory of Open Access Journals (Sweden)

    Ian Kendrich C Fontanilla

    Full Text Available The Giant African Land Snail, Achatina ( =  Lissachatina fulica Bowdich, 1822, is a tropical crop pest species with a widespread distribution across East Africa, the Indian subcontinent, Southeast Asia, the Pacific, the Caribbean, and North and South America. Its current distribution is attributed primarily to the introduction of the snail to new areas by Man within the last 200 years. This study determined the extent of genetic diversity in global A. fulica populations using the mitochondrial 16S ribosomal RNA gene. A total of 560 individuals were evaluated from 39 global populations obtained from 26 territories. Results reveal 18 distinct A. fulica haplotypes; 14 are found in East Africa and the Indian Ocean islands, but only two haplotypes from the Indian Ocean islands emerged from this region, the C haplotype, now distributed across the tropics, and the D haplotype in Ecuador and Bolivia. Haplotype E from the Philippines, F from New Caledonia and Barbados, O from India and Q from Ecuador are variants of the emergent C haplotype. For the non-native populations, the lack of genetic variation points to founder effects due to the lack of multiple introductions from the native range. Our current data could only point with certainty to the Indian Ocean islands as the earliest known common source of A. fulica across the globe, which necessitates further sampling in East Africa to determine the source populations of the emergent haplotypes.

  6. [Analysis of tissue-specific differentially methylated genes with differential gene expression in non-small cell lung cancer].

    Science.gov (United States)

    Yin, L G; Zou, Z Q; Zhao, H Y; Zhang, C L; Shen, J G; Qi, L; Qi, M; Xue, Z Q

    2014-01-01

    Adenocarcinoma (ADC) and squamous cell carcinomas (SCC) are two subtypes of non-small cell lung carcinomas which are regarded as the leading cause of cancer-related malignancy worldwide. The aim of this study is to detect the differentially methylated loci (DMLs) and differentially methylated genes (DMGs) of these two tumor sets, and then to illustrate the different expression level of specific methylated genes. Using TCGA database and Illumina HumanMethylation 27 arrays, we first screened the DMGs and DMLs in tumor samples. Then, we explored the BiologicalProcess terms of hypermethylated and hypomethylated genes using Functional Gene Ontology (GO) catalogues. Hypermethylation intensively occurred in CpG-island, whereas hypomethylation was located in non-CpG-island. Most SCC and ADC hypermethylated genes involved GO function of DNA dependenit regulation of transcription, and hypomethylated genes mainly 'enriched in the term of immune responses. Additionally, the expression level of specific differentially methylated genesis distinctbetween ADC and SCC. It is concluded that ADC and SCC have different methylated status that might play an important role in carcinogenesis.

  7. Evaluation on island ecological vulnerability and its spatial heterogeneity.

    Science.gov (United States)

    Chi, Yuan; Shi, Honghua; Wang, Yuanyuan; Guo, Zhen; Wang, Enkang

    2017-12-15

    The evaluation on island ecological vulnerability (IEV) can help reveal the comprehensive characteristics of the island ecosystem and provide reference for controlling human activities on islands. An IEV evaluation model which reflects the land-sea dual features, natural and anthropogenic attributes, and spatial heterogeneity of the island ecosystem was established, and the southern islands of Miaodao Archipelago in North China were taken as the study area. The IEV, its spatial heterogeneity, and its sensitivities to the evaluation elements were analyzed. Results indicated that the IEV was in status of mild vulnerability in the archipelago scale, and population pressure, ecosystem productivity, environmental quality, landscape pattern, and economic development were the sensitive elements. The IEV showed significant spatial heterogeneities both in land and surrounding waters sub-ecosystems. Construction scale control, optimization of development allocation, improvement of exploitation methods, and reasonable ecological construction are important measures to control the IEV. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. In-depth comparative analysis of malaria parasite genomes reveals protein-coding genes linked to human disease in Plasmodium falciparum genome.

    Science.gov (United States)

    Liu, Xuewu; Wang, Yuanyuan; Liang, Jiao; Wang, Luojun; Qin, Na; Zhao, Ya; Zhao, Gang

    2018-05-02

    Plasmodium falciparum is the most virulent malaria parasite capable of parasitizing human erythrocytes. The identification of genes related to this capability can enhance our understanding of the molecular mechanisms underlying human malaria and lead to the development of new therapeutic strategies for malaria control. With the availability of several malaria parasite genome sequences, performing computational analysis is now a practical strategy to identify genes contributing to this disease. Here, we developed and used a virtual genome method to assign 33,314 genes from three human malaria parasites, namely, P. falciparum, P. knowlesi and P. vivax, and three rodent malaria parasites, namely, P. berghei, P. chabaudi and P. yoelii, to 4605 clusters. Each cluster consisted of genes whose protein sequences were significantly similar and was considered as a virtual gene. Comparing the enriched values of all clusters in human malaria parasites with those in rodent malaria parasites revealed 115 P. falciparum genes putatively responsible for parasitizing human erythrocytes. These genes are mainly located in the chromosome internal regions and participate in many biological processes, including membrane protein trafficking and thiamine biosynthesis. Meanwhile, 289 P. berghei genes were included in the rodent parasite-enriched clusters. Most are located in subtelomeric regions and encode erythrocyte surface proteins. Comparing cluster values in P. falciparum with those in P. vivax and P. knowlesi revealed 493 candidate genes linked to virulence. Some of them encode proteins present on the erythrocyte surface and participate in cytoadhesion, virulence factor trafficking, or erythrocyte invasion, but many genes with unknown function were also identified. Cerebral malaria is characterized by accumulation of infected erythrocytes at trophozoite stage in brain microvascular. To discover cerebral malaria-related genes, fast Fourier transformation (FFT) was introduced to extract

  9. Embryonic stem cell-like features of testicular carcinoma in situ revealed by genome-wide gene expression profiling

    DEFF Research Database (Denmark)

    Almstrup, Kristian; Hoei-Hansen, Christina E; Wirkner, Ute

    2004-01-01

    in their stoichiometry on progression into embryonic carcinoma. We compared the CIS expression profile with patterns reported in embryonic stem cells (ESCs), which revealed a substantial overlap that may be as high as 50%. We also demonstrated an over-representation of expressed genes in regions of 17q and 12, reported......Carcinoma in situ (CIS) is the common precursor of histologically heterogeneous testicular germ cell tumors (TGCTs), which in recent decades have markedly increased and now are the most common malignancy of young men. Using genome-wide gene expression profiling, we identified >200 genes highly...

  10. Flexibility and symmetry of prokaryotic genome rearrangement reveal lineage-associated core-gene-defined genome organizational frameworks.

    Science.gov (United States)

    Kang, Yu; Gu, Chaohao; Yuan, Lina; Wang, Yue; Zhu, Yanmin; Li, Xinna; Luo, Qibin; Xiao, Jingfa; Jiang, Daquan; Qian, Minping; Ahmed Khan, Aftab; Chen, Fei; Zhang, Zhang; Yu, Jun

    2014-11-25

    The prokaryotic pangenome partitions genes into core and dispensable genes. The order of core genes, albeit assumed to be stable under selection in general, is frequently interrupted by horizontal gene transfer and rearrangement, but how a core-gene-defined genome maintains its stability or flexibility remains to be investigated. Based on data from 30 species, including 425 genomes from six phyla, we grouped core genes into syntenic blocks in the context of a pangenome according to their stability across multiple isolates. A subset of the core genes, often species specific and lineage associated, formed a core-gene-defined genome organizational framework (cGOF). Such cGOFs are either single segmental (one-third of the species analyzed) or multisegmental (the rest). Multisegment cGOFs were further classified into symmetric or asymmetric according to segment orientations toward the origin-terminus axis. The cGOFs in Gram-positive species are exclusively symmetric and often reversible in orientation, as opposed to those of the Gram-negative bacteria, which are all asymmetric and irreversible. Meanwhile, all species showing strong strand-biased gene distribution contain symmetric cGOFs and often specific DnaE (α subunit of DNA polymerase III) isoforms. Furthermore, functional evaluations revealed that cGOF genes are hub associated with regard to cellular activities, and the stability of cGOF provides efficient indexes for scaffold orientation as demonstrated by assembling virtual and empirical genome drafts. cGOFs show species specificity, and the symmetry of multisegmental cGOFs is conserved among taxa and constrained by DNA polymerase-centric strand-biased gene distribution. The definition of species-specific cGOFs provides powerful guidance for genome assembly and other structure-based analysis. Prokaryotic genomes are frequently interrupted by horizontal gene transfer (HGT) and rearrangement. To know whether there is a set of genes not only conserved in position

  11. Genetic structure of the Common Eider in the western Aleutian Islands prior to fox eradication

    Science.gov (United States)

    Sonsthagen, Sarah A.; Talbot, Sandra L.; Wilson, Robert E.; Petersen, Margaret R.; Williams, Jeffrey C.; Byrd, G. Vernon; McCracken, Kevin G.

    2013-01-01

    Since the late 18th century bird populations residing in the Aleutian Archipelago have been greatly reduced by introduced arctic foxes (Alopex lagopus). We analyzed data from microsatellite, nuclear intron, and mitochondrial (mtDNA) loci to examine the spatial genetic structure, demography, and gene flow among four Aleutian Island populations of the Common Eider (Somateria mollissima) much reduced by introduced foxes. In mtDNA, we found high levels of genetic structure within and between island groups (ΦST = 0.643), but we found no population subdivision in microsatellites or nuclear introns. Differences in genetic structure between the mitochondrial and nuclear genomes are consistent with the Common Eider's breeding and winter biology, as females are highly philopatric and males disperse. Nevertheless, significant differences between islands in the mtDNA of males and marginal significance (P =0.07) in the Z-linked locus Smo 1 suggest that males may also have some level of fidelity to island groups. Severe reduction of populations by the fox, coupled with females' high philopatry, may have left the genetic signature of a bottleneck effect, resulting in the high levels of genetic differentiation observed in mtDNA (ΦST = 0.460–0.807) between islands only 440 km apart. Reestablishment of the Common Eider following the fox's eradication was likely through recruitment from within the islands and bolstered by dispersal from neighboring islands, as suggested by the lack of genetic structure and asymmetry in gene flow between Attu and the other Near Islands.

  12. Genome wide analysis of acute myeloid leukemia reveal leukemia specific methylome and subtype specific hypomethylation of repeats.

    Directory of Open Access Journals (Sweden)

    Marwa H Saied

    Full Text Available Methylated DNA immunoprecipitation followed by high-throughput sequencing (MeDIP-seq has the potential to identify changes in DNA methylation important in cancer development. In order to understand the role of epigenetic modulation in the development of acute myeloid leukemia (AML we have applied MeDIP-seq to the DNA of 12 AML patients and 4 normal bone marrows. This analysis revealed leukemia-associated differentially methylated regions that included gene promoters, gene bodies, CpG islands and CpG island shores. Two genes (SPHKAP and DPP6 with significantly methylated promoters were of interest and further analysis of their expression showed them to be repressed in AML. We also demonstrated considerable cytogenetic subtype specificity in the methylomes affecting different genomic features. Significantly distinct patterns of hypomethylation of certain interspersed repeat elements were associated with cytogenetic subtypes. The methylation patterns of members of the SINE family tightly clustered all leukemic patients with an enrichment of Alu repeats with a high CpG density (P<0.0001. We were able to demonstrate significant inverse correlation between intragenic interspersed repeat sequence methylation and gene expression with SINEs showing the strongest inverse correlation (R(2 = 0.7. We conclude that the alterations in DNA methylation that accompany the development of AML affect not only the promoters, but also the non-promoter genomic features, with significant demethylation of certain interspersed repeat DNA elements being associated with AML cytogenetic subtypes. MeDIP-seq data were validated using bisulfite pyrosequencing and the Infinium array.

  13. Hox gene cluster of the ascidian, Halocynthia roretzi, reveals multiple ancient steps of cluster disintegration during ascidian evolution.

    Science.gov (United States)

    Sekigami, Yuka; Kobayashi, Takuya; Omi, Ai; Nishitsuji, Koki; Ikuta, Tetsuro; Fujiyama, Asao; Satoh, Noriyuki; Saiga, Hidetoshi

    2017-01-01

    Hox gene clusters with at least 13 paralog group (PG) members are common in vertebrate genomes and in that of amphioxus. Ascidians, which belong to the subphylum Tunicata (Urochordata), are phylogenetically positioned between vertebrates and amphioxus, and traditionally divided into two groups: the Pleurogona and the Enterogona. An enterogonan ascidian, Ciona intestinalis ( Ci ), possesses nine Hox genes localized on two chromosomes; thus, the Hox gene cluster is disintegrated. We investigated the Hox gene cluster of a pleurogonan ascidian, Halocynthia roretzi ( Hr ) to investigate whether Hox gene cluster disintegration is common among ascidians, and if so, how such disintegration occurred during ascidian or tunicate evolution. Our phylogenetic analysis reveals that the Hr Hox gene complement comprises nine members, including one with a relatively divergent Hox homeodomain sequence. Eight of nine Hr Hox genes were orthologous to Ci-Hox1 , 2, 3, 4, 5, 10, 12 and 13. Following the phylogenetic classification into 13 PGs, we designated Hr Hox genes as Hox1, 2, 3, 4, 5, 10, 11/12/13.a , 11/12/13.b and HoxX . To address the chromosomal arrangement of the nine Hox genes, we performed two-color chromosomal fluorescent in situ hybridization, which revealed that the nine Hox genes are localized on a single chromosome in Hr , distinct from their arrangement in Ci . We further examined the order of the nine Hox genes on the chromosome by chromosome/scaffold walking. This analysis suggested a gene order of Hox1 , 11/12/13.b, 11/12/13.a, 10, 5, X, followed by either Hox4, 3, 2 or Hox2, 3, 4 on the chromosome. Based on the present results and those previously reported in Ci , we discuss the establishment of the Hox gene complement and disintegration of Hox gene clusters during the course of ascidian or tunicate evolution. The Hox gene cluster and the genome must have experienced extensive reorganization during the course of evolution from the ancestral tunicate to Hr and Ci

  14. Heat Islands

    Science.gov (United States)

    EPA's Heat Island Effect Site provides information on heat islands, their impacts, mitigation strategies, related research, a directory of heat island reduction initiatives in U.S. communities, and EPA's Heat Island Reduction Program.

  15. DNA entropy reveals a significant difference in complexity between housekeeping and tissue specific gene promoters.

    Science.gov (United States)

    Thomas, David; Finan, Chris; Newport, Melanie J; Jones, Susan

    2015-10-01

    The complexity of DNA can be quantified using estimates of entropy. Variation in DNA complexity is expected between the promoters of genes with different transcriptional mechanisms; namely housekeeping (HK) and tissue specific (TS). The former are transcribed constitutively to maintain general cellular functions, and the latter are transcribed in restricted tissue and cells types for specific molecular events. It is known that promoter features in the human genome are related to tissue specificity, but this has been difficult to quantify on a genomic scale. If entropy effectively quantifies DNA complexity, calculating the entropies of HK and TS gene promoters as profiles may reveal significant differences. Entropy profiles were calculated for a total dataset of 12,003 human gene promoters and for 501 housekeeping (HK) and 587 tissue specific (TS) human gene promoters. The mean profiles show the TS promoters have a significantly lower entropy (pentropy distributions for the 3 datasets show that promoter entropies could be used to identify novel HK genes. Functional features comprise DNA sequence patterns that are non-random and hence they have lower entropies. The lower entropy of TS gene promoters can be explained by a higher density of positive and negative regulatory elements, required for genes with complex spatial and temporary expression. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Comparative Genomic Analyses of Multiple Pseudomonas Strains Infecting Corylus avellana Trees Reveal the Occurrence of Two Genetic Clusters with Both Common and Distinctive Virulence and Fitness Traits

    Science.gov (United States)

    Marcelletti, Simone; Scortichini, Marco

    2015-01-01

    The European hazelnut (Corylus avellana) is threatened in Europe by several pseudomonads which cause symptoms ranging from twig dieback to tree death. A comparison of the draft genomes of nine Pseudomonas strains isolated from symptomatic C. avellana trees was performed to identify common and distinctive genomic traits. The thorough assessment of genetic relationships among the strains revealed two clearly distinct clusters: P. avellanae and P. syringae. The latter including the pathovars avellanae, coryli and syringae. Between these two clusters, no recombination event was found. A genomic island of approximately 20 kb, containing the hrp/hrc type III secretion system gene cluster, was found to be present without any genomic difference in all nine pseudomonads. The type III secretion system effector repertoires were remarkably different in the two groups, with P. avellanae showing a higher number of effectors. Homologue genes of the antimetabolite mangotoxin and ice nucleation activity clusters were found solely in all P. syringae pathovar strains, whereas the siderophore yersiniabactin was only present in P. avellanae. All nine strains have genes coding for pectic enzymes and sucrose metabolism. By contrast, they do not have genes coding for indolacetic acid and anti-insect toxin. Collectively, this study reveals that genomically different Pseudomonas can converge on the same host plant by suppressing the host defence mechanisms with the use of different virulence weapons. The integration into their genomes of a horizontally acquired genomic island could play a fundamental role in their evolution, perhaps giving them the ability to exploit new ecological niches. PMID:26147218

  17. Spiders on a Hot Volcanic Roof: Colonisation Pathways and Phylogeography of the Canary Islands Endemic Trap-Door Spider Titanidiops canariensis (Araneae, Idiopidae)

    Science.gov (United States)

    Opatova, Vera; Arnedo, Miquel A.

    2014-01-01

    Studies conducted on volcanic islands have greatly contributed to our current understanding of how organisms diversify. The Canary Islands archipelago, located northwest of the coast of northern Africa, harbours a large number of endemic taxa. Because of their low vagility, mygalomorph spiders are usually absent from oceanic islands. The spider Titanidiops canariensis, which inhabits the easternmost islands of the archipelago, constitutes an exception to this rule. Here, we use a multi-locus approach that combines three mitochondrial and four nuclear genes to investigate the origins and phylogeography of this remarkable trap-door spider. We provide a timeframe for the colonisation of the Canary Islands using two alternative approaches: concatenation and species tree inference in a Bayesian relaxed clock framework. Additionally, we investigate the existence of cryptic species on the islands by means of a Bayesian multi-locus species delimitation method. Our results indicate that T. canariensis colonised the Canary Islands once, most likely during the Miocene, although discrepancies between the timeframes from different approaches make the exact timing uncertain. A complex evolutionary history for the species in the archipelago is revealed, which involves two independent colonisations of Fuerteventura from the ancestral range of T. canariensis in northern Lanzarote and a possible back colonisation of southern Lanzarote. The data further corroborate a previously proposed volcanic refugium, highlighting the impact of the dynamic volcanic history of the island on the phylogeographic patterns of the endemic taxa. T. canariensis includes at least two different species, one inhabiting the Jandia peninsula and central Fuerteventura and one spanning from central Fuerteventura to Lanzarote. Our data suggest that the extant northern African Titanidiops lineages may have expanded to the region after the islands were colonised and, hence, are not the source of colonisation. In

  18. Spiders on a Hot Volcanic Roof: Colonisation Pathways and Phylogeography of the Canary Islands Endemic Trap-Door Spider Titanidiops canariensis (Araneae, Idiopidae.

    Directory of Open Access Journals (Sweden)

    Vera Opatova

    Full Text Available Studies conducted on volcanic islands have greatly contributed to our current understanding of how organisms diversify. The Canary Islands archipelago, located northwest of the coast of northern Africa, harbours a large number of endemic taxa. Because of their low vagility, mygalomorph spiders are usually absent from oceanic islands. The spider Titanidiops canariensis, which inhabits the easternmost islands of the archipelago, constitutes an exception to this rule. Here, we use a multi-locus approach that combines three mitochondrial and four nuclear genes to investigate the origins and phylogeography of this remarkable trap-door spider. We provide a timeframe for the colonisation of the Canary Islands using two alternative approaches: concatenation and species tree inference in a Bayesian relaxed clock framework. Additionally, we investigate the existence of cryptic species on the islands by means of a Bayesian multi-locus species delimitation method. Our results indicate that T. canariensis colonised the Canary Islands once, most likely during the Miocene, although discrepancies between the timeframes from different approaches make the exact timing uncertain. A complex evolutionary history for the species in the archipelago is revealed, which involves two independent colonisations of Fuerteventura from the ancestral range of T. canariensis in northern Lanzarote and a possible back colonisation of southern Lanzarote. The data further corroborate a previously proposed volcanic refugium, highlighting the impact of the dynamic volcanic history of the island on the phylogeographic patterns of the endemic taxa. T. canariensis includes at least two different species, one inhabiting the Jandia peninsula and central Fuerteventura and one spanning from central Fuerteventura to Lanzarote. Our data suggest that the extant northern African Titanidiops lineages may have expanded to the region after the islands were colonised and, hence, are not the source

  19. Spiders on a Hot Volcanic Roof: Colonisation Pathways and Phylogeography of the Canary Islands Endemic Trap-Door Spider Titanidiops canariensis (Araneae, Idiopidae).

    Science.gov (United States)

    Opatova, Vera; Arnedo, Miquel A

    2014-01-01

    Studies conducted on volcanic islands have greatly contributed to our current understanding of how organisms diversify. The Canary Islands archipelago, located northwest of the coast of northern Africa, harbours a large number of endemic taxa. Because of their low vagility, mygalomorph spiders are usually absent from oceanic islands. The spider Titanidiops canariensis, which inhabits the easternmost islands of the archipelago, constitutes an exception to this rule. Here, we use a multi-locus approach that combines three mitochondrial and four nuclear genes to investigate the origins and phylogeography of this remarkable trap-door spider. We provide a timeframe for the colonisation of the Canary Islands using two alternative approaches: concatenation and species tree inference in a Bayesian relaxed clock framework. Additionally, we investigate the existence of cryptic species on the islands by means of a Bayesian multi-locus species delimitation method. Our results indicate that T. canariensis colonised the Canary Islands once, most likely during the Miocene, although discrepancies between the timeframes from different approaches make the exact timing uncertain. A complex evolutionary history for the species in the archipelago is revealed, which involves two independent colonisations of Fuerteventura from the ancestral range of T. canariensis in northern Lanzarote and a possible back colonisation of southern Lanzarote. The data further corroborate a previously proposed volcanic refugium, highlighting the impact of the dynamic volcanic history of the island on the phylogeographic patterns of the endemic taxa. T. canariensis includes at least two different species, one inhabiting the Jandia peninsula and central Fuerteventura and one spanning from central Fuerteventura to Lanzarote. Our data suggest that the extant northern African Titanidiops lineages may have expanded to the region after the islands were colonised and, hence, are not the source of colonisation. In

  20. Gene expression profiling reveals new potential players of gonad differentiation in the chicken embryo.

    Directory of Open Access Journals (Sweden)

    Gwenn-Aël Carré

    Full Text Available BACKGROUND: In birds as in mammals, a genetic switch determines whether the undifferentiated gonad develops into an ovary or a testis. However, understanding of the molecular pathway(s involved in gonad differentiation is still incomplete. METHODOLOGY/PRINCIPAL FINDINGS: With the aim of improving characterization of the molecular pathway(s involved in gonad differentiation in the chicken embryo, we developed a large scale real time reverse transcription polymerase chain reaction approach on 110 selected genes for evaluation of their expression profiles during chicken gonad differentiation between days 5.5 and 19 of incubation. Hierarchical clustering analysis of the resulting datasets discriminated gene clusters expressed preferentially in the ovary or the testis, and/or at early or later periods of embryonic gonad development. Fitting a linear model and testing the comparisons of interest allowed the identification of new potential actors of gonad differentiation, such as Z-linked ADAMTS12, LOC427192 (corresponding to NIM1 protein and CFC1, that are upregulated in the developing testis, and BMP3 and Z-linked ADAMTSL1, that are preferentially expressed in the developing ovary. Interestingly, the expression patterns of several members of the transforming growth factor β family were sexually dimorphic, with inhibin subunits upregulated in the testis, and bone morphogenetic protein subfamily members including BMP2, BMP3, BMP4 and BMP7, upregulated in the ovary. This study also highlighted several genes displaying asymmetric expression profiles such as GREM1 and BMP3 that are potentially involved in different aspects of gonad left-right asymmetry. CONCLUSION/SIGNIFICANCE: This study supports the overall conservation of vertebrate sex differentiation pathways but also reveals some particular feature of gene expression patterns during gonad development in the chicken. In particular, our study revealed new candidate genes which may be potential actors

  1. Gene Expression Profiling Reveals New Potential Players of Gonad Differentiation in the Chicken Embryo

    Science.gov (United States)

    Carré, Gwenn-Aël; Couty, Isabelle; Hennequet-Antier, Christelle; Govoroun, Marina S.

    2011-01-01

    Background In birds as in mammals, a genetic switch determines whether the undifferentiated gonad develops into an ovary or a testis. However, understanding of the molecular pathway(s) involved in gonad differentiation is still incomplete. Methodology/Principal Findings With the aim of improving characterization of the molecular pathway(s) involved in gonad differentiation in the chicken embryo, we developed a large scale real time reverse transcription polymerase chain reaction approach on 110 selected genes for evaluation of their expression profiles during chicken gonad differentiation between days 5.5 and 19 of incubation. Hierarchical clustering analysis of the resulting datasets discriminated gene clusters expressed preferentially in the ovary or the testis, and/or at early or later periods of embryonic gonad development. Fitting a linear model and testing the comparisons of interest allowed the identification of new potential actors of gonad differentiation, such as Z-linked ADAMTS12, LOC427192 (corresponding to NIM1 protein) and CFC1, that are upregulated in the developing testis, and BMP3 and Z-linked ADAMTSL1, that are preferentially expressed in the developing ovary. Interestingly, the expression patterns of several members of the transforming growth factor β family were sexually dimorphic, with inhibin subunits upregulated in the testis, and bone morphogenetic protein subfamily members including BMP2, BMP3, BMP4 and BMP7, upregulated in the ovary. This study also highlighted several genes displaying asymmetric expression profiles such as GREM1 and BMP3 that are potentially involved in different aspects of gonad left-right asymmetry. Conclusion/Significance This study supports the overall conservation of vertebrate sex differentiation pathways but also reveals some particular feature of gene expression patterns during gonad development in the chicken. In particular, our study revealed new candidate genes which may be potential actors of chicken gonad

  2. Spin-polarized scanning tunneling spectroscopy of self-organized nanoscale Co islands on Au(111) surfaces.

    Science.gov (United States)

    Schouteden, K; Muzychenko, D A; Van Haesendonck, C

    2008-07-01

    Magnetic monolayer and bilayer Co islands of only a few nanometer in size were grown by atomic deposition on atomically flat Au(111) films. The islands were studied in situ by scanning tunneling microscopy (STM) and spectroscopy at low temperatures. Spin-resolved tunneling spectroscopy, using an STM tip with a magnetic coating, revealed that the Co islands exhibit a net magnetization perpendicular to the substrate surface due to the presence of spin-polarized d-states. A random distribution of islands with either upward or downward pointing magnetization was observed, without any specific correlation of magnetization orientation with island size or island height.

  3. Experimental single-strain mobilomics reveals events that shape pathogen emergence.

    Science.gov (United States)

    Schoeniger, Joseph S; Hudson, Corey M; Bent, Zachary W; Sinha, Anupama; Williams, Kelly P

    2016-08-19

    Virulence genes on mobile DNAs such as genomic islands (GIs) and plasmids promote bacterial pathogen emergence. Excision is an early step in GI mobilization, producing a circular GI and a deletion site in the chromosome; circular forms are also known for some bacterial insertion sequences (ISs). The recombinant sequence at the junctions of such circles and deletions can be detected sensitively in high-throughput sequencing data, using new computational methods that enable empirical discovery of mobile DNAs. For the rich mobilome of a hospital Klebsiella pneumoniae strain, circularization junctions (CJs) were detected for six GIs and seven IS types. Our methods revealed differential biology of multiple mobile DNAs, imprecision of integrases and transposases, and differential activity among identical IS copies for IS26, ISKpn18 and ISKpn21 Using the resistance of circular dsDNA molecules to exonuclease, internally calibrated with the native plasmids, showed that not all molecules bearing GI CJs were circular. Transpositions were also detected, revealing replicon preference (ISKpn18 prefers a conjugative IncA/C2 plasmid), local action (IS26), regional preferences, selection (against capsule synthesis) and IS polarity inversion. Efficient discovery and global characterization of numerous mobile elements per experiment improves accounting for the new gene combinations that arise in emerging pathogens. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. What history reveals about Forge River pollution on Long Island, New York's south shore.

    Science.gov (United States)

    Swanson, R Lawrence; Brownawell, B; Wilson, Robert E; O'Connell, Christine

    2010-06-01

    Fifty years ago, the Forge River and Moriches Bay, of Long Island's south shore lagoonal system, achieved notoriety when their polluted conditions were alluded to in a report of the US President's Science Advisory Committee (1965). The Woods Hole Oceanographic Institution investigated the bay throughout the 1950s, identifying duck farming as the cause of "objectionable", "highly contaminated" conditions of these waters. Much has changed: duck farming declined; the river was dredged to remove polluted sediments, improve navigation; and barrier island inlets stabilized. Yet, the river remains seasonally eutrophic. Why? This paper reviews what occurred in the Forge River watershed. While governments aggressively curtailed the impacts of duck pollution, they failed to manage development and sewage pollution. The Forge experience indicates that watershed management is a continuing governmental responsibility as development accelerates. Otherwise, we will always be looking for that instantaneous remediation that is usually not affordable and is socially contentious.

  5. Global identification of genes regulated by estrogen signaling and demethylation in MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Putnik, Milica, E-mail: milica.putnik@ki.se [Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183 (Sweden); Zhao, Chunyan, E-mail: chunyan.zhao@ki.se [Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183 (Sweden); Gustafsson, Jan-Ake, E-mail: jan-ake.gustafsson@ki.se [Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183 (Sweden); Department of Biology and Biochemistry, Science and Engineering Research Center Bldg, University of Houston, Houston, TX 77204-5056 (United States); Dahlman-Wright, Karin, E-mail: karin.dahlman-wright@ki.se [Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183 (Sweden)

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Estrogen signaling and demethylation can both control gene expression in breast cancers. Black-Right-Pointing-Pointer Cross-talk between these mechanisms is investigated in human MCF-7 breast cancer cells. Black-Right-Pointing-Pointer 137 genes are influenced by both 17{beta}-estradiol and demethylating agent 5-aza-2 Prime -deoxycytidine. Black-Right-Pointing-Pointer A set of genes is identified as targets of both estrogen signaling and demethylation. Black-Right-Pointing-Pointer There is no direct molecular interplay of mediators of estrogen and epigenetic signaling. -- Abstract: Estrogen signaling and epigenetic modifications, in particular DNA methylation, are involved in regulation of gene expression in breast cancers. Here we investigated a potential regulatory cross-talk between these two pathways by identifying their common target genes and exploring underlying molecular mechanisms in human MCF-7 breast cancer cells. Gene expression profiling revealed that the expression of approximately 140 genes was influenced by both 17{beta}-estradiol (E2) and a demethylating agent 5-aza-2 Prime -deoxycytidine (DAC). Gene ontology (GO) analysis suggests that these genes are involved in intracellular signaling cascades, regulation of cell proliferation and apoptosis. Based on previously reported association with breast cancer, estrogen signaling and/or DNA methylation, CpG island prediction and GO analysis, we selected six genes (BTG3, FHL2, PMAIP1, BTG2, CDKN1A and TGFB2) for further analysis. Tamoxifen reverses the effect of E2 on the expression of all selected genes, suggesting that they are direct targets of estrogen receptor. Furthermore, DAC treatment reactivates the expression of all selected genes in a dose-dependent manner. Promoter CpG island methylation status analysis revealed that only the promoters of BTG3 and FHL2 genes are methylated, with DAC inducing demethylation, suggesting DNA methylation directs repression of

  6. Global identification of genes regulated by estrogen signaling and demethylation in MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Putnik, Milica; Zhao, Chunyan; Gustafsson, Jan-Åke; Dahlman-Wright, Karin

    2012-01-01

    Highlights: ► Estrogen signaling and demethylation can both control gene expression in breast cancers. ► Cross-talk between these mechanisms is investigated in human MCF-7 breast cancer cells. ► 137 genes are influenced by both 17β-estradiol and demethylating agent 5-aza-2′-deoxycytidine. ► A set of genes is identified as targets of both estrogen signaling and demethylation. ► There is no direct molecular interplay of mediators of estrogen and epigenetic signaling. -- Abstract: Estrogen signaling and epigenetic modifications, in particular DNA methylation, are involved in regulation of gene expression in breast cancers. Here we investigated a potential regulatory cross-talk between these two pathways by identifying their common target genes and exploring underlying molecular mechanisms in human MCF-7 breast cancer cells. Gene expression profiling revealed that the expression of approximately 140 genes was influenced by both 17β-estradiol (E2) and a demethylating agent 5-aza-2′-deoxycytidine (DAC). Gene ontology (GO) analysis suggests that these genes are involved in intracellular signaling cascades, regulation of cell proliferation and apoptosis. Based on previously reported association with breast cancer, estrogen signaling and/or DNA methylation, CpG island prediction and GO analysis, we selected six genes (BTG3, FHL2, PMAIP1, BTG2, CDKN1A and TGFB2) for further analysis. Tamoxifen reverses the effect of E2 on the expression of all selected genes, suggesting that they are direct targets of estrogen receptor. Furthermore, DAC treatment reactivates the expression of all selected genes in a dose-dependent manner. Promoter CpG island methylation status analysis revealed that only the promoters of BTG3 and FHL2 genes are methylated, with DAC inducing demethylation, suggesting DNA methylation directs repression of these genes in MCF-7 cells. In a further analysis of the potential interplay between estrogen signaling and DNA methylation, E2 treatment

  7. QTL mapping and transcriptome analysis of cowpea reveals candidate genes for root-knot nematode resistance.

    Science.gov (United States)

    Santos, Jansen Rodrigo Pereira; Ndeve, Arsenio Daniel; Huynh, Bao-Lam; Matthews, William Charles; Roberts, Philip Alan

    2018-01-01

    Cowpea is one of the most important food and forage legumes in drier regions of the tropics and subtropics. However, cowpea yield worldwide is markedly below the known potential due to abiotic and biotic stresses, including parasitism by root-knot nematodes (Meloidogyne spp., RKN). Two resistance genes with dominant effect, Rk and Rk2, have been reported to provide resistance against RKN in cowpea. Despite their description and use in breeding for resistance to RKN and particularly genetic mapping of the Rk locus, the exact genes conferring resistance to RKN remain unknown. In the present work, QTL mapping using recombinant inbred line (RIL) population 524B x IT84S-2049 segregating for a newly mapped locus and analysis of the transcriptome changes in two cowpea near-isogenic lines (NIL) were used to identify candidate genes for Rk and the newly mapped locus. A major QTL, designated QRk-vu9.1, associated with resistance to Meloidogyne javanica reproduction, was detected and mapped on linkage group LG9 at position 13.37 cM using egg production data. Transcriptome analysis on resistant and susceptible NILs 3 and 9 days after inoculation revealed up-regulation of 109 and 98 genes and down-regulation of 110 and 89 genes, respectively, out of 19,922 unique genes mapped to the common bean reference genome. Among the differentially expressed genes, four and nine genes were found within the QRk-vu9.1 and QRk-vu11.1 QTL intervals, respectively. Six of these genes belong to the TIR-NBS-LRR family of resistance genes and three were upregulated at one or more time-points. Quantitative RT-PCR validated gene expression to be positively correlated with RNA-seq expression pattern for eight genes. Future functional analysis of these cowpea genes will enhance our understanding of Rk-mediated resistance and identify the specific gene responsible for the resistance.

  8. Island biogeography

    DEFF Research Database (Denmark)

    Whittaker, Robert James; Fernández-Palacios, José María; Matthews, Thomas J.

    2017-01-01

    Islands provide classic model biological systems. We review how growing appreciation of geoenvironmental dynamics of marine islands has led to advances in island biogeographic theory accommodating both evolutionary and ecological phenomena. Recognition of distinct island geodynamics permits gener...

  9. Mitochondrial DNA heritage of Cres Islanders--example of Croatian genetic outliers.

    Science.gov (United States)

    Jeran, Nina; Havas Augustin, Dubravka; Grahovac, Blaienka; Kapović, Miljenko; Metspalu, Ene; Villems, Richard; Rudan, Pavao

    2009-12-01

    Diversity of mitochondrial DNA (mtDNA) lineages of the Island of Cres was determined by high-resolution phylogenetic analysis on a sample of 119 adult unrelated individuals from eight settlements. The composition of mtDNA pool of this Island population is in contrast with other Croatian and European populations. The analysis revealed the highest frequency of haplogroup U (29.4%) with the predominance of one single lineage of subhaplogroup U2e (20.2%). Haplogroup H is the second most prevalent one with only 27.7%. Other very interesting features of contemporary Island population are extremely low frequency of haplogroup J (only 0.84%), and much higher frequency of haplogroup W (12.6%) comparing to other Croatian and European populations. Especially interesting finding is a strikingly higher frequency of haplogroup N1a (9.24%) presented with African/south Asian branch almost absent in Europeans, while its European sister-branch, proved to be highly prevalent among Neolithic farmers, is present in contemporary Europeans with only 0.2%. Haplotype analysis revealed that only five mtDNA lineages account for almost 50% of maternal genetic heritage of this island and they present supposed founder lineages. All presented findings confirm that genetic drift, especially founder effect, has played significant role in shaping genetic composition of the isolated population of the Island of Cres. Due to presented data contemporary population of Cres Island can be considered as genetic "outlier" among Croatian populations.

  10. Comparative Genomic Hybridization (CGH) reveals a neo-X chromosome and biased gene movement in stalk-eyed flies (genus Teleopsis).

    Science.gov (United States)

    Baker, Richard H; Wilkinson, Gerald S

    2010-09-16

    Chromosomal location has a significant effect on the evolutionary dynamics of genes involved in sexual dimorphism, impacting both the pattern of sex-specific gene expression and the rate of duplication and protein evolution for these genes. For nearly all non-model organisms, however, knowledge of chromosomal gene content is minimal and difficult to obtain on a genomic scale. In this study, we utilized Comparative Genomic Hybridization (CGH), using probes designed from EST sequence, to identify genes located on the X chromosome of four species in the stalk-eyed fly genus Teleopsis. Analysis of log(2) ratio values of female-to-male hybridization intensities from the CGH microarrays for over 3,400 genes reveals a strongly bimodal distribution that clearly differentiates autosomal from X-linked genes for all four species. Genotyping of 33 and linkage mapping of 28 of these genes in Teleopsis dalmanni indicate the CGH results correctly identified chromosomal location in all cases. Syntenic comparison with Drosophila indicates that 90% of the X-linked genes in Teleopsis are homologous to genes located on chromosome 2L in Drosophila melanogaster, suggesting the formation of a nearly complete neo-X chromosome from Muller element B in the dipteran lineage leading to Teleopsis. Analysis of gene movement both relative to Drosophila and within Teleopsis indicates that gene movement is significantly associated with 1) rates of protein evolution, 2) the pattern of gene duplication, and 3) the evolution of eyespan sexual dimorphism. Overall, this study reveals that diopsids are a critical group for understanding the evolution of sex chromosomes within Diptera. In addition, we demonstrate that CGH is a useful technique for identifying chromosomal sex-linkage and should be applicable to other organisms with EST or partial genomic information.

  11. Comparative Genomic Hybridization (CGH reveals a neo-X chromosome and biased gene movement in stalk-eyed flies (genus Teleopsis.

    Directory of Open Access Journals (Sweden)

    Richard H Baker

    2010-09-01

    Full Text Available Chromosomal location has a significant effect on the evolutionary dynamics of genes involved in sexual dimorphism, impacting both the pattern of sex-specific gene expression and the rate of duplication and protein evolution for these genes. For nearly all non-model organisms, however, knowledge of chromosomal gene content is minimal and difficult to obtain on a genomic scale. In this study, we utilized Comparative Genomic Hybridization (CGH, using probes designed from EST sequence, to identify genes located on the X chromosome of four species in the stalk-eyed fly genus Teleopsis. Analysis of log(2 ratio values of female-to-male hybridization intensities from the CGH microarrays for over 3,400 genes reveals a strongly bimodal distribution that clearly differentiates autosomal from X-linked genes for all four species. Genotyping of 33 and linkage mapping of 28 of these genes in Teleopsis dalmanni indicate the CGH results correctly identified chromosomal location in all cases. Syntenic comparison with Drosophila indicates that 90% of the X-linked genes in Teleopsis are homologous to genes located on chromosome 2L in Drosophila melanogaster, suggesting the formation of a nearly complete neo-X chromosome from Muller element B in the dipteran lineage leading to Teleopsis. Analysis of gene movement both relative to Drosophila and within Teleopsis indicates that gene movement is significantly associated with 1 rates of protein evolution, 2 the pattern of gene duplication, and 3 the evolution of eyespan sexual dimorphism. Overall, this study reveals that diopsids are a critical group for understanding the evolution of sex chromosomes within Diptera. In addition, we demonstrate that CGH is a useful technique for identifying chromosomal sex-linkage and should be applicable to other organisms with EST or partial genomic information.

  12. Tenarife Island, Canary Island Archipelago, Atlantic Ocean

    Science.gov (United States)

    1991-01-01

    Tenarife Island is one of the most volcanically active of the Canary Island archipelago, Atlantic Ocean, just off the NW coast of Africa, (28.5N, 16.5W). The old central caldera, nearly filled in by successive volcanic activity culminating in two stratocones. From those two peaks, a line of smaller cinder cones extend to the point of the island. Extensive gullies dissect the west side of the island and some forests still remain on the east side.

  13. Geographic Distribution of Ammonia-Oxidizing Archaea along the Kuril Islands in the Western Subarctic Pacific

    Directory of Open Access Journals (Sweden)

    Hongmei Jing

    2017-06-01

    Full Text Available Community composition and abundance of ammonia-oxidizing archaea (AOA in the ocean were affected by different physicochemical conditions, but their responses to physical barriers (such as a chain of islands were largely unknown. In our study, geographic distribution of the AOA from the surface photic zone to the deep bathypelagic waters in the western subarctic Pacific adjacent to the Kuril Islands was investigated using pyrosequencing based on the ammonia monooxygenase subunit A (amoA gene. Genotypes of clusters A and B dominated in the upper euphotic zone and the deep waters, respectively. Quantitative PCR assays revealed that the occurrence and ammonia-oxidizing activity of ammonia-oxidizing archaea (AOA reached their maxima at the depth of 200 m, where a higher diversity and abundance of actively transcribed AOA was observed at the station located in the marginal sea exposed to more terrestrial input. Similar community composition of AOA observed at the two stations adjacent to the Kuril Islands maybe due to water exchange across the Bussol Strait. They distinct from the station located in the western subarctic gyre, where sub-cluster WCAII had a specific distribution in the surface water, and this sub-cluster seemed having a confined distribution in the western Pacific. Habitat-specific groupings of different WCB sub-clusters were observed reflecting the isolated microevolution existed in cluster WCB. The effect of the Kuril Islands on the phylogenetic composition of AOA between the Sea of Okhotsk and the western subarctic Pacific is not obvious, possibly because our sampling stations are near to the Bussol Strait, the main gateway through which water is exchanged between the Sea of Okhotsk and the Pacific. The vertical and horizontal distribution patterns of AOA communities among stations along the Kuril Islands were essentially determined by the in situ prevailing physicochemical gradients along the two dimensions.

  14. Evolution of reproductive life histories in island birds worldwide.

    Science.gov (United States)

    Covas, Rita

    2012-04-22

    Island environments typically share characteristics such as impoverished biotas and less-seasonal climates, which should be conducive to specific adaptations by organisms. However, with the exception of morphological studies, broad-scale tests of patterns of adaptation on islands are rare. Here, I examine reproductive patterns in island birds worldwide. Reproductive life histories are influenced by latitude, which could affect the response to insularity; therefore, I additionally test this hypothesis. Island colonizers showed mostly bi-parental care, but there was a significant increase in cooperative breeding on islands. Additionally, I found support for previous suggestions of reduced fecundity, longer developmental periods and increased investment in young on islands. However, clutch size increased with latitude at a rate nearly five times faster on the mainland than on the islands revealing a substantially stronger effect of insularity at higher latitudes. Latitude and insularity may also interact to determine egg volume and incubation periods, but these effects were less clear. Analyses of reproductive success did not support an effect of reduced nest predation as a driver of reproductive change, but this requires further study. The effect of latitude detected here suggests that the evolutionary changes associated with insularity relate to environmental stability and improved adult survival.

  15. Matrix factorization reveals aging-specific co-expression gene modules in the fat and muscle tissues in nonhuman primates

    Science.gov (United States)

    Wang, Yongcui; Zhao, Weiling; Zhou, Xiaobo

    2016-10-01

    Accurate identification of coherent transcriptional modules (subnetworks) in adipose and muscle tissues is important for revealing the related mechanisms and co-regulated pathways involved in the development of aging-related diseases. Here, we proposed a systematically computational approach, called ICEGM, to Identify the Co-Expression Gene Modules through a novel mathematical framework of Higher-Order Generalized Singular Value Decomposition (HO-GSVD). ICEGM was applied on the adipose, and heart and skeletal muscle tissues in old and young female African green vervet monkeys. The genes associated with the development of inflammation, cardiovascular and skeletal disorder diseases, and cancer were revealed by the ICEGM. Meanwhile, genes in the ICEGM modules were also enriched in the adipocytes, smooth muscle cells, cardiac myocytes, and immune cells. Comprehensive disease annotation and canonical pathway analysis indicated that immune cells, adipocytes, cardiomyocytes, and smooth muscle cells played a synergistic role in cardiac and physical functions in the aged monkeys by regulation of the biological processes associated with metabolism, inflammation, and atherosclerosis. In conclusion, the ICEGM provides an efficiently systematic framework for decoding the co-expression gene modules in multiple tissues. Analysis of genes in the ICEGM module yielded important insights on the cooperative role of multiple tissues in the development of diseases.

  16. The origins of the enigmatic Falkland Islands wolf.

    Science.gov (United States)

    Austin, Jeremy J; Soubrier, Julien; Prevosti, Francisco J; Prates, Luciano; Trejo, Valentina; Mena, Francisco; Cooper, Alan

    2013-01-01

    The origins of the extinct Falkland Islands wolf (FIW), Dusicyon australis, have remained a mystery since it was first recorded by Europeans in the seventeenth century. It is the only terrestrial mammal on the Falkland Islands (also known as the Malvinas Islands), which lie ~460 km from Argentina, leading to suggestions of either human-mediated transport or overwater dispersal. Previous studies used ancient DNA from museum specimens to suggest that the FIW diverged from its closest living relative, the South American maned wolf (Chrysocyon brachyurus) around 7 Ma, and colonized the islands ~330 ka by unknown means. Here we retrieve ancient DNA from subfossils of an extinct mainland relative, Dusicyon avus, and reveal the FIW lineage became isolated only 16 ka (8-31 ka), during the last glacial phase. Submarine terraces, formed on the Argentine coastal shelf by low sea-stands during this period, suggest that the FIW colonized via a narrow, shallow marine strait, potentially while it was frozen over.

  17. Network Analysis Reveals Putative Genes Affecting Meat Quality in Angus Cattle.

    Science.gov (United States)

    Mateescu, Raluca G; Garrick, Dorian J; Reecy, James M

    2017-01-01

    Improvements in eating satisfaction will benefit consumers and should increase beef demand which is of interest to the beef industry. Tenderness, juiciness, and flavor are major determinants of the palatability of beef and are often used to reflect eating satisfaction. Carcass qualities are used as indicator traits for meat quality, with higher quality grade carcasses expected to relate to more tender and palatable meat. However, meat quality is a complex concept determined by many component traits making interpretation of genome-wide association studies (GWAS) on any one component challenging to interpret. Recent approaches combining traditional GWAS with gene network interactions theory could be more efficient in dissecting the genetic architecture of complex traits. Phenotypic measures of 23 traits reflecting carcass characteristics, components of meat quality, along with mineral and peptide concentrations were used along with Illumina 54k bovine SNP genotypes to derive an annotated gene network associated with meat quality in 2,110 Angus beef cattle. The efficient mixed model association (EMMAX) approach in combination with a genomic relationship matrix was used to directly estimate the associations between 54k SNP genotypes and each of the 23 component traits. Genomic correlated regions were identified by partial correlations which were further used along with an information theory algorithm to derive gene network clusters. Correlated SNP across 23 component traits were subjected to network scoring and visualization software to identify significant SNP. Significant pathways implicated in the meat quality complex through GO term enrichment analysis included angiogenesis, inflammation, transmembrane transporter activity, and receptor activity. These results suggest that network analysis using partial correlations and annotation of significant SNP can reveal the genetic architecture of complex traits and provide novel information regarding biological mechanisms

  18. Gene expression profile analysis of Ligon lintless-1 (Li1) mutant reveals important genes and pathways in cotton leaf and fiber development.

    Science.gov (United States)

    Ding, Mingquan; Jiang, Yurong; Cao, Yuefen; Lin, Lifeng; He, Shae; Zhou, Wei; Rong, Junkang

    2014-02-10

    Ligon lintless-1 (Li1) is a monogenic dominant mutant of Gossypium hirsutum (upland cotton) with a phenotype of impaired vegetative growth and short lint fibers. Despite years of research involving genetic mapping and gene expression profile analysis of Li1 mutant ovule tissues, the gene remains uncloned and the underlying pathway of cotton fiber elongation is still unclear. In this study, we report the whole genome-level deep-sequencing analysis of leaf tissues of the Li1 mutant. Differentially expressed genes in leaf tissues of mutant versus wild-type (WT) plants are identified, and the underlying pathways and potential genes that control leaf and fiber development are inferred. The results show that transcription factors AS2, YABBY5, and KANDI-like are significantly differentially expressed in mutant tissues compared with WT ones. Interestingly, several fiber development-related genes are found in the downregulated gene list of the mutant leaf transcriptome. These genes include heat shock protein family, cytoskeleton arrangement, cell wall synthesis, energy, H2O2 metabolism-related genes, and WRKY transcription factors. This finding suggests that the genes are involved in leaf morphology determination and fiber elongation. The expression data are also compared with the previously published microarray data of Li1 ovule tissues. Comparative analysis of the ovule transcriptomes of Li1 and WT reveals that a number of pathways important for fiber elongation are enriched in the downregulated gene list at different fiber development stages (0, 6, 9, 12, 15, 18dpa). Differentially expressed genes identified in both leaf and fiber samples are aligned with cotton whole genome sequences and combined with the genetic fine mapping results to identify a list of candidate genes for Li1. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Genomic Islands: an overview of current software tools and future improvements

    Directory of Open Access Journals (Sweden)

    Soares Siomar de Castro

    2016-03-01

    Full Text Available Microbes are highly diverse and widely distributed organisms. They account for ~60% of Earth’s biomass and new predictions point for the existence of 1011 to 1012 species, which are constantly sharing genes through several different mechanisms. Genomic Islands (GI are critical in this context, as they are large regions acquired through horizontal gene transfer. Also, they present common features like genomic signature deviation, transposase genes, flanking tRNAs and insertion sequences. GIs carry large numbers of genes related to specific lifestyle and are commonly classified in Pathogenicity, Resistance, Metabolic or Symbiotic Islands. With the advent of the next-generation sequencing technologies and the deluge of genomic data, many software tools have been developed that aim to tackle the problem of GI prediction and they are all based on the prediction of GI common features. However, there is still room for the development of new software tools that implements new approaches, such as, machine learning and pangenomics based analyses. Finally, GIs will always hold a potential application in every newly invented genomic approach as they are directly responsible for much of the genomic plasticity of bacteria.

  20. Genomic Islands: an overview of current software tools and future improvements.

    Science.gov (United States)

    Soares, Siomar de Castro; Oliveira, Letícia de Castro; Jaiswal, Arun Kumar; Azevedo, Vasco

    2016-03-01

    Microbes are highly diverse and widely distributed organisms. They account for ~60% of Earth's biomass and new predictions point for the existence of 1011 to 1012 species, which are constantly sharing genes through several different mechanisms. Genomic Islands (GI) are critical in this context, as they are large regions acquired through horizontal gene transfer. Also, they present common features like genomic signature deviation, transposase genes, flanking tRNAs and insertion sequences. GIs carry large numbers of genes related to specific lifestyle and are commonly classified in Pathogenicity, Resistance, Metabolic or Symbiotic Islands. With the advent of the next-generation sequencing technologies and the deluge of genomic data, many software tools have been developed that aim to tackle the problem of GI prediction and they are all based on the prediction of GI common features. However, there is still room for the development of new software tools that implements new approaches, such as, machine learning and pangenomics based analyses. Finally, GIs will always hold a potential application in every newly invented genomic approach as they are directly responsible for much of the genomic plasticity of bacteria.

  1. Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs.

    Science.gov (United States)

    Edmondson, J L; Stott, I; Davies, Z G; Gaston, K J; Leake, J R

    2016-09-19

    Urban areas are major contributors to air pollution and climate change, causing impacts on human health that are amplified by the microclimatological effects of buildings and grey infrastructure through the urban heat island (UHI) effect. Urban greenspaces may be important in reducing surface temperature extremes, but their effects have not been investigated at a city-wide scale. Across a mid-sized UK city we buried temperature loggers at the surface of greenspace soils at 100 sites, stratified by proximity to city centre, vegetation cover and land-use. Mean daily soil surface temperature over 11 months increased by 0.6 °C over the 5 km from the city outskirts to the centre. Trees and shrubs in non-domestic greenspace reduced mean maximum daily soil surface temperatures in the summer by 5.7 °C compared to herbaceous vegetation, but tended to maintain slightly higher temperatures in winter. Trees in domestic gardens, which tend to be smaller, were less effective at reducing summer soil surface temperatures. Our findings reveal that the UHI effects soil temperatures at a city-wide scale, and that in their moderating urban soil surface temperature extremes, trees and shrubs may help to reduce the adverse impacts of urbanization on microclimate, soil processes and human health.

  2. Diversity hotspots of the laurel forest on Tenerife, Canary Islands: a phylogeographic study of Laurus and Ixanthus.

    Science.gov (United States)

    Betzin, Anja; Thiv, Mike; Koch, Marcus A

    2016-09-01

    Macaronesian laurel forest is among the worldwide hotspots of threatened biodiversity. With increasing evidence that woodland composition on the Canary Islands changed dramatically during the last few thousand years, the aim of this study was to find evidence for substantial recent population dynamics of two representative species from laurel forest. Amplified fragment length polymorphism (AFLP) was used to evaluate fine-scaled genetic variation of the paradigmatic tree Laurus novocanariensis (Lauraceae) and a long-lived herbaceous gentian from core laurel forest, Ixanthus viscosus (Gentianaceae), on Tenerife. Bioclimatic variables were analysed to study the respective climate niches. A chloroplast DNA screening was performed to evaluate additional genetic variation. Genetic diversity of the laurel tree showed severe geographic partitioning. On Tenerife, fine-scaled Bayesian clustering of genetic variation revealed a western and an eastern gene pool, separated by a zone of high admixture and with a third major gene pool. Compared with genetic clusters found on the other Canary Islands, the East-West differentiation on Tenerife seems to be more recent than differentiation between islands. This is substantiated by the finding of extremly low levels of chloroplast DNA-based polymorphisms. Ixanthus showed no geographic structuring of genetic variation. Genetic data from Tenerife indicate contemporary gene flow and dispersal on a micro/local scale rather than reflecting an old and relic woodland history. In particular for Laurus, it is shown that this species occupies a broad bioclimatic niche. This is not correlated with its respective distribution of genetic variation, therefore indicating its large potential for contemporary rapid and effective colonization. Ixanthus is more specialized to humid conditions and is mostly found in the natural Monteverde húmedo vegetation types, but even for this species indications for long-term persistence in the respective

  3. Gene expression profiling in the stress control brain region hypothalamic paraventricular nucleus reveals a novel gene network including Amyloid beta Precursor Protein

    Directory of Open Access Journals (Sweden)

    Deussing Jan M

    2010-10-01

    Full Text Available Abstract Background The pivotal role of stress in the precipitation of psychiatric diseases such as depression is generally accepted. This study aims at the identification of genes that are directly or indirectly responding to stress. Inbred mouse strains that had been evidenced to differ in their stress response as well as in their response to antidepressant treatment were chosen for RNA profiling after stress exposure. Gene expression and regulation was determined by microarray analyses and further evaluated by bioinformatics tools including pathway and cluster analyses. Results Forced swimming as acute stressor was applied to C57BL/6J and DBA/2J mice and resulted in sets of regulated genes in the paraventricular nucleus of the hypothalamus (PVN, 4 h or 8 h after stress. Although the expression changes between the mouse strains were quite different, they unfolded in phases over time in both strains. Our search for connections between the regulated genes resulted in potential novel signalling pathways in stress. In particular, Guanine nucleotide binding protein, alpha inhibiting 2 (GNAi2 and Amyloid β (A4 precursor protein (APP were detected as stress-regulated genes, and together with other genes, seem to be integrated into stress-responsive pathways and gene networks in the PVN. Conclusions This search for stress-regulated genes in the PVN revealed its impact on interesting genes (GNAi2 and APP and a novel gene network. In particular the expression of APP in the PVN that is governing stress hormone balance, is of great interest. The reported neuroprotective role of this molecule in the CNS supports the idea that a short acute stress can elicit positive adaptational effects in the brain.

  4. Comparative study of human mitochondrial proteome reveals extensive protein subcellular relocalization after gene duplications

    Directory of Open Access Journals (Sweden)

    Huang Yong

    2009-11-01

    Full Text Available Abstract Background Gene and genome duplication is the principle creative force in evolution. Recently, protein subcellular relocalization, or neolocalization was proposed as one of the mechanisms responsible for the retention of duplicated genes. This hypothesis received support from the analysis of yeast genomes, but has not been tested thoroughly on animal genomes. In order to evaluate the importance of subcellular relocalizations for retention of duplicated genes in animal genomes, we systematically analyzed nuclear encoded mitochondrial proteins in the human genome by reconstructing phylogenies of mitochondrial multigene families. Results The 456 human mitochondrial proteins selected for this study were clustered into 305 gene families including 92 multigene families. Among the multigene families, 59 (64% consisted of both mitochondrial and cytosolic (non-mitochondrial proteins (mt-cy families while the remaining 33 (36% were composed of mitochondrial proteins (mt-mt families. Phylogenetic analyses of mt-cy families revealed three different scenarios of their neolocalization following gene duplication: 1 relocalization from mitochondria to cytosol, 2 from cytosol to mitochondria and 3 multiple subcellular relocalizations. The neolocalizations were most commonly enabled by the gain or loss of N-terminal mitochondrial targeting signals. The majority of detected subcellular relocalization events occurred early in animal evolution, preceding the evolution of tetrapods. Mt-mt protein families showed a somewhat different pattern, where gene duplication occurred more evenly in time. However, for both types of protein families, most duplication events appear to roughly coincide with two rounds of genome duplications early in vertebrate evolution. Finally, we evaluated the effects of inaccurate and incomplete annotation of mitochondrial proteins and found that our conclusion of the importance of subcellular relocalization after gene duplication on

  5. Transcriptome sequencing of Mycosphaerella fijiensis during association with Musa acuminata reveals candidate pathogenicity genes.

    Science.gov (United States)

    Noar, Roslyn D; Daub, Margaret E

    2016-08-30

    genes with higher expression in infected leaf tissue, suggesting that they may play a role in pathogenicity. For two other scaffolds, no transcripts were detected in either condition, and PCR assays support the hypothesis that at least one of these scaffolds corresponds to a dispensable chromosome that is not required for survival or pathogenicity. Our study revealed major changes in the transcriptome of Mycosphaerella fijiensis, when associating with its host compared to during saprophytic growth in medium. This analysis identified putative pathogenicity genes and also provides support for the existence of dispensable chromosomes in this fungus.

  6. Canary Islands

    Science.gov (United States)

    1992-01-01

    This easterly looking view shows the seven major volcanic islands of the Canary Island chain (28.0N, 16.5W) and offers a unique view of the islands that have become a frequent vacation spot for Europeans. The northwest coastline of Africa, (Morocco and Western Sahara), is visible in the background. Frequently, these islands create an impact on local weather (cloud formations) and ocean currents (island wakes) as seen in this photo.

  7. Dynamic compression of chondrocyte-agarose constructs reveals new candidate mechanosensitive genes.

    Directory of Open Access Journals (Sweden)

    Carole Bougault

    Full Text Available Articular cartilage is physiologically exposed to repeated loads. The mechanical properties of cartilage are due to its extracellular matrix, and homeostasis is maintained by the sole cell type found in cartilage, the chondrocyte. Although mechanical forces clearly control the functions of articular chondrocytes, the biochemical pathways that mediate cellular responses to mechanical stress have not been fully characterised. The aim of our study was to examine early molecular events triggered by dynamic compression in chondrocytes. We used an experimental system consisting of primary mouse chondrocytes embedded within an agarose hydrogel; embedded cells were pre-cultured for one week and subjected to short-term compression experiments. Using Western blots, we demonstrated that chondrocytes maintain a differentiated phenotype in this model system and reproduce typical chondrocyte-cartilage matrix interactions. We investigated the impact of dynamic compression on the phosphorylation state of signalling molecules and genome-wide gene expression. After 15 min of dynamic compression, we observed transient activation of ERK1/2 and p38 (members of the mitogen-activated protein kinase (MAPK pathways and Smad2/3 (members of the canonical transforming growth factor (TGF-β pathways. A microarray analysis performed on chondrocytes compressed for 30 min revealed that only 20 transcripts were modulated more than 2-fold. A less conservative list of 325 modulated genes included genes related to the MAPK and TGF-β pathways and/or known to be mechanosensitive in other biological contexts. Of these candidate mechanosensitive genes, 85% were down-regulated. Down-regulation may therefore represent a general control mechanism for a rapid response to dynamic compression. Furthermore, modulation of transcripts corresponding to different aspects of cellular physiology was observed, such as non-coding RNAs or primary cilium. This study provides new insight into how

  8. Babesia (Theileria) annae in a red fox (Vulpes vulpes) from Prince Edward Island, Canada.

    Science.gov (United States)

    Clancey, Noel; Horney, Barbara; Burton, Shelley; Birkenheuer, Adam; McBurney, Scott; Tefft, Karen

    2010-04-01

    A 4-6-mo-old female red fox (Vulpes vulpes) was presented to the Atlantic Veterinary College (AVC) Teaching Hospital, Prince Edward Island, Canada. On presentation, the fox was weak and had pale mucous membranes. A complete blood count and a serum biochemistry profile were performed. Blood smear examination revealed low numbers of erythrocytes containing centrally to paracentrally located, single, rarely multiple, approximately 1 x 2 microm, oval to round organisms with morphology similar to Babesia microti. Polymerase chain reaction testing and DNA sequencing of the Babesia species 18S rRNA gene were performed on DNA extracted from whole blood. Results were positive for a Babesia microti-like parasite genetically identical to Babesia (Theileria) annae. The fox was euthanized due to poor prognosis for recovery. Necropsy examination revealed multifocal to locally extensive subacute nonsuppurative meningoencephalitis, an eosinophilic broncho-pneumonia, a moderate diffuse vacuolar hepatopathy, and lesions associated with blunt trauma to the left abdominal region. This is the first reported case of a red fox in Canada infected with a piroplasm. It remains uncertain whether the presence of this hemoparasite in this fox was pathogenic or an incidental finding. The potential for competent vectors of Babesia species on Prince Edward Island, the potential for this Babesia microti-like parasite to infect other wild and domestic canids, and the significance of this parasite to the health of infected individuals are yet to be determined.

  9. Distribution of Anaerobic Hydrocarbon-Degrading Bacteria in Soils from King George Island, Maritime Antarctica.

    Science.gov (United States)

    Sampaio, Dayanna Souza; Almeida, Juliana Rodrigues Barboza; de Jesus, Hugo E; Rosado, Alexandre S; Seldin, Lucy; Jurelevicius, Diogo

    2017-11-01

    Anaerobic diesel fuel Arctic (DFA) degradation has already been demonstrated in Antarctic soils. However, studies comparing the distribution of anaerobic bacterial groups and of anaerobic hydrocarbon-degrading bacteria in Antarctic soils containing different concentrations of DFA are scarce. In this study, functional genes were used to study the diversity and distribution of anaerobic hydrocarbon-degrading bacteria (bamA, assA, and bssA) and of sulfate-reducing bacteria (SRB-apsR) in highly, intermediate, and non-DFA-contaminated soils collected during the summers of 2009, 2010, and 2011 from King George Island, Antarctica. Signatures of bamA genes were detected in all soils analyzed, whereas bssA and assA were found in only 4 of 10 soils. The concentration of DFA was the main factor influencing the distribution of bamA-containing bacteria and of SRB in the analyzed soils, as shown by PCR-DGGE results. bamA sequences related to genes previously described in Desulfuromonas, Lautropia, Magnetospirillum, Sulfuritalea, Rhodovolum, Rhodomicrobium, Azoarcus, Geobacter, Ramlibacter, and Gemmatimonas genera were dominant in King George Island soils. Although DFA modulated the distribution of bamA-hosting bacteria, DFA concentration was not related to bamA abundance in the soils studied here. This result suggests that King George Island soils show functional redundancy for aromatic hydrocarbon degradation. The results obtained in this study support the hypothesis that specialized anaerobic hydrocarbon-degrading bacteria have been selected by hydrocarbon concentrations present in King George Island soils.

  10. Bone island (enostosis): current concept - a review

    International Nuclear Information System (INIS)

    Greenspan, A.

    1995-01-01

    A bone island can be virtually diagnosed based on its characteristic clinical and radiologic features. Typically asymptomatic, the lesion is usually an incidental finding, with a preference for the pelvis, femur, and other long bones, although it may be found anywhere in the skeleton, including the spine. Plain radiography reveals a homogeneously dense, sclerotic focus in the cancellous bone with distinctive radiating bony streaks (''thorny radiation'') that blend with the trabeculae of the host bone, creating a feathered or brush-like border. On CT scan, a bone island appears as a low-attenuation focus, and on MRI sequences it shows low signal intensity like cortical bone. A distinguishing feature of bone islands is that they are usually ''cold'' on skeletal scintigraphy. Thus, bone scan has been and continues to be the means of differentiating bone islands from the more aggressive entities. However, reports of histologically confirmed bone islands that were scintigraphically active have raised a note of caution about relying on this modality in the differential consideration of lesions otherwise characteristic of bone islands. Guides to the correct diagnosis should be looked for in the individual clinical situation and in the morphologic features of the lesion on plain radiography, CT, and MRI, without regard to the lesion's activity on bone scan. If such a lesion, however, is symptomatic and ''hot'' on scintigraphy, it demands close observation with follow-up imaging studies. (orig./VHE)

  11. Radiating on oceanic islands: patterns and processes of speciation in the land snail genus Theba (Risso 1826.

    Directory of Open Access Journals (Sweden)

    Carola Greve

    Full Text Available Island radiations have played a major role in shaping our current understanding of allopatric, sympatric and parapatric speciation. However, the fact that species divergence correlates with island size emphasizes the importance of geographic isolation (allopatry in speciation. Based on molecular and morphological data, we investigated the diversification of the land snail genus Theba on the two Canary Islands of Lanzarote and Fuerteventura. Due to the geological history of both islands, this study system provides ideal conditions to investigate the interplay of biogeography, dispersal ability and differentiation in generating species diversity. Our analyses demonstrated extensive cryptic diversification of Theba on these islands, probably driven mainly by non-adaptive allopatric differentiation and secondary gene flow. In a few cases, we observed a complete absence of gene flow among sympatrically distributed forms suggesting an advanced stage of speciation. On the Jandía peninsula genome scans suggested genotype-environment associations and potentially adaptive diversification of two closely related Theba species to different ecological environments. We found support for the idea that genetic differentiation was enhanced by divergent selection in different environments. The diversification of Theba on both islands is therefore best explained by a mixture of non-adaptive and adaptive speciation, promoted by ecological and geomorphological factors.

  12. Radiating on oceanic islands: patterns and processes of speciation in the land snail genus Theba (Risso 1826).

    Science.gov (United States)

    Greve, Carola; Gimnich, France; Hutterer, Rainer; Misof, Bernhard; Haase, Martin

    2012-01-01

    Island radiations have played a major role in shaping our current understanding of allopatric, sympatric and parapatric speciation. However, the fact that species divergence correlates with island size emphasizes the importance of geographic isolation (allopatry) in speciation. Based on molecular and morphological data, we investigated the diversification of the land snail genus Theba on the two Canary Islands of Lanzarote and Fuerteventura. Due to the geological history of both islands, this study system provides ideal conditions to investigate the interplay of biogeography, dispersal ability and differentiation in generating species diversity. Our analyses demonstrated extensive cryptic diversification of Theba on these islands, probably driven mainly by non-adaptive allopatric differentiation and secondary gene flow. In a few cases, we observed a complete absence of gene flow among sympatrically distributed forms suggesting an advanced stage of speciation. On the Jandía peninsula genome scans suggested genotype-environment associations and potentially adaptive diversification of two closely related Theba species to different ecological environments. We found support for the idea that genetic differentiation was enhanced by divergent selection in different environments. The diversification of Theba on both islands is therefore best explained by a mixture of non-adaptive and adaptive speciation, promoted by ecological and geomorphological factors.

  13. Gene expression analysis after receptor tyrosine kinase activation reveals new potential melanoma proteins

    International Nuclear Information System (INIS)

    Teutschbein, Janka; Haydn, Johannes M; Samans, Birgit; Krause, Michael; Eilers, Martin; Schartl, Manfred; Meierjohann, Svenja

    2010-01-01

    Melanoma is an aggressive tumor with increasing incidence. To develop accurate prognostic markers and targeted therapies, changes leading to malignant transformation of melanocytes need to be understood. In the Xiphophorus melanoma model system, a mutated version of the EGF receptor Xmrk (Xiphophorus melanoma receptor kinase) triggers melanomagenesis. Cellular events downstream of Xmrk, such as the activation of Akt, Ras, B-Raf or Stat5, were also shown to play a role in human melanomagenesis. This makes the elucidation of Xmrk downstream targets a useful method for identifying processes involved in melanoma formation. Here, we analyzed Xmrk-induced gene expression using a microarray approach. Several highly expressed genes were confirmed by realtime PCR, and pathways responsible for their induction were revealed using small molecule inhibitors. The expression of these genes was also monitored in human melanoma cell lines, and the target gene FOSL1 was knocked down by siRNA. Proliferation and migration of siRNA-treated melanoma cell lines were then investigated. Genes with the strongest upregulation after receptor activation were FOS-like antigen 1 (Fosl1), early growth response 1 (Egr1), osteopontin (Opn), insulin-like growth factor binding protein 3 (Igfbp3), dual-specificity phosphatase 4 (Dusp4), and tumor-associated antigen L6 (Taal6). Interestingly, most genes were blocked in presence of a SRC kinase inhibitor. Importantly, we found that FOSL1, OPN, IGFBP3, DUSP4, and TAAL6 also exhibited increased expression levels in human melanoma cell lines compared to human melanocytes. Knockdown of FOSL1 in human melanoma cell lines reduced their proliferation and migration. Altogether, the data show that the receptor tyrosine kinase Xmrk is a useful tool in the identification of target genes that are commonly expressed in Xmrk-transgenic melanocytes and melanoma cell lines. The identified molecules constitute new possible molecular players in melanoma development

  14. Gene expression analysis after receptor tyrosine kinase activation reveals new potential melanoma proteins

    Directory of Open Access Journals (Sweden)

    Krause Michael

    2010-07-01

    Full Text Available Abstract Background Melanoma is an aggressive tumor with increasing incidence. To develop accurate prognostic markers and targeted therapies, changes leading to malignant transformation of melanocytes need to be understood. In the Xiphophorus melanoma model system, a mutated version of the EGF receptor Xmrk (Xiphophorus melanoma receptor kinase triggers melanomagenesis. Cellular events downstream of Xmrk, such as the activation of Akt, Ras, B-Raf or Stat5, were also shown to play a role in human melanomagenesis. This makes the elucidation of Xmrk downstream targets a useful method for identifying processes involved in melanoma formation. Methods Here, we analyzed Xmrk-induced gene expression using a microarray approach. Several highly expressed genes were confirmed by realtime PCR, and pathways responsible for their induction were revealed using small molecule inhibitors. The expression of these genes was also monitored in human melanoma cell lines, and the target gene FOSL1 was knocked down by siRNA. Proliferation and migration of siRNA-treated melanoma cell lines were then investigated. Results Genes with the strongest upregulation after receptor activation were FOS-like antigen 1 (Fosl1, early growth response 1 (Egr1, osteopontin (Opn, insulin-like growth factor binding protein 3 (Igfbp3, dual-specificity phosphatase 4 (Dusp4, and tumor-associated antigen L6 (Taal6. Interestingly, most genes were blocked in presence of a SRC kinase inhibitor. Importantly, we found that FOSL1, OPN, IGFBP3, DUSP4, and TAAL6 also exhibited increased expression levels in human melanoma cell lines compared to human melanocytes. Knockdown of FOSL1 in human melanoma cell lines reduced their proliferation and migration. Conclusion Altogether, the data show that the receptor tyrosine kinase Xmrk is a useful tool in the identification of target genes that are commonly expressed in Xmrk-transgenic melanocytes and melanoma cell lines. The identified molecules constitute

  15. Genome-wide comparative analysis reveals similar types of NBS genes in hybrid Citrus sinensis genome and original Citrus clementine genome and provides new insights into non-TIR NBS genes

    Science.gov (United States)

    In this study, we identified and compared nucleotide-binding site (NBS) domain-containing genes from three Citrus genomes (C. clementina, C. sinensis from USA and C. sinensis from China). Phylogenetic analysis of all Citrus NBS genes across these three genomes revealed that there are three approxima...

  16. Comprehensive gene expression profiling reveals synergistic functional networks in cerebral vessels after hypertension or hypercholesterolemia.

    Directory of Open Access Journals (Sweden)

    Wei-Yi Ong

    Full Text Available Atherosclerotic stenosis of cerebral arteries or intracranial large artery disease (ICLAD is a major cause of stroke especially in Asians, Hispanics and Africans, but relatively little is known about gene expression changes in vessels at risk. This study compares comprehensive gene expression profiles in the middle cerebral artery (MCA of New Zealand White rabbits exposed to two stroke risk factors i.e. hypertension and/or hypercholesterolemia, by the 2-Kidney-1-Clip method, or dietary supplementation with cholesterol. Microarray and Ingenuity Pathway Analyses of the MCA of the hypertensive rabbits showed up-regulated genes in networks containing the node molecules: UBC (ubiquitin, P38 MAPK, ERK, NFkB, SERPINB2, MMP1 and APP (amyloid precursor protein; and down-regulated genes related to MAPK, ERK 1/2, Akt, 26 s proteasome, histone H3 and UBC. The MCA of hypercholesterolemic rabbits showed differentially expressed genes that are surprisingly, linked to almost the same node molecules as the hypertensive rabbits, despite a relatively low percentage of 'common genes' (21 and 7% between the two conditions. Up-regulated common genes were related to: UBC, SERPINB2, TNF, HNF4A (hepatocyte nuclear factor 4A and APP, and down-regulated genes, related to UBC. Increased HNF4A message and protein were verified in the aorta. Together, these findings reveal similar nodal molecules and gene pathways in cerebral vessels affected by hypertension or hypercholesterolemia, which could be a basis for synergistic action of risk factors in the pathogenesis of ICLAD.

  17. Phage-inducible chromosomal islands are ubiquitous within the bacterial universe.

    Science.gov (United States)

    Fillol-Salom, Alfred; Martínez-Rubio, Roser; Abdulrahman, Rezheen F; Chen, John; Davies, Robert; Penadés, José R

    2018-06-06

    Phage-inducible chromosomal islands (PICIs) are a recently discovered family of pathogenicity islands that contribute substantively to horizontal gene transfer, host adaptation and virulence in Gram-positive cocci. Here we report that similar elements also occur widely in Gram-negative bacteria. As with the PICIs from Gram-positive cocci, their uniqueness is defined by a constellation of features: unique and specific attachment sites, exclusive PICI genes, a phage-dependent mechanism of induction, conserved replication origin organization, convergent mechanisms of phage interference, and specific packaging of PICI DNA into phage-like infectious particles, resulting in very high transfer frequencies. We suggest that the PICIs represent two or more distinct lineages, have spread widely throughout the bacterial world, and have diverged much more slowly than their host organisms or their prophage cousins. Overall, these findings represent the discovery of a universal class of mobile genetic elements.

  18. A dengue outbreak on a floating village at Cat Ba Island in Vietnam.

    Science.gov (United States)

    Le Viet, Thanh; Choisy, Marc; Bryant, Juliet E; Vu Trong, Duoc; Pham Quang, Thai; Horby, Peter; Nguyen Tran, Hien; Tran Thi Kieu, Huong; Nguyen Vu, Trung; Nguyen Van, Kinh; Le Quynh, Mai; Wertheim, Heiman F L

    2015-09-22

    A dengue outbreak in an ecotourism destination spot in Vietnam, from September to November 2013, impacted a floating village of fishermen on the coastal island of Cat Ba. The outbreak raises questions about how tourism may impact disease spread in rural areas. Epidemiological data were obtained from the Hai Phong Preventive Medical Center (PMC), including case histories and residential location from all notified dengue cases from this outbreak. All household addresses were geo-located. Knox test, a spatio-temporal analysis that enables inference dengue clustering constrained by space and time, was performed on the geocoded locations. From the plasma available from two patients, positive for Dengue serotype 3 virus (DENV3), the Envelope (E) gene was sequenced, and their genetic relationships compared to other E sequences in the region. Of 192 dengue cases, the odds ratio of contracting dengue infections for people living in the floating villages compared to those living on the island was 4.9 (95 % CI: 3.6-6.7). The space-time analyses on 111 geocoded dengue residences found the risk of dengue infection to be the highest within 4 days and a radius of 20 m of a given case. Of the total of ten detected clusters with an excess risk greater than 2, the cluster with the highest number of cases was in the floating village area (24 patients for a total duration of 31 days). Phylogenetic analysis revealed a high homology of the two DENV3 strains (genotype III) from Cat Ba with DENV3 viruses circulating in Hanoi in the same year (99.1 %). Our study showed that dengue transmission is unlikely to be sustained on Cat Ba Island and that the 2013 epidemic likely originated through introduction of viruses from the mainland, potentially Hanoi. These findings suggest that prevention efforts should be focused on mainland rather than on the island.

  19. Effects of religion, economics, and geography on genetic structure of Fogo Island, Newfoundland.

    Science.gov (United States)

    Crawford, M H; Koertevlyessy, T; Huntsman, R G; Collins, M; Duggirala, R; Martin, L; Keeping, D

    1995-01-01

    The population structure of Fogo Island, Newfoundland is described using geography, religious affiliation, economic factors (such as the presence of a fish-packing plant), and genetic markers. Five different analytic methods, R-matrix analysis, r ii VS. mean per locus heterozygosity, predicted kinship (ϕ), mean first passage time, and Mantel matrix comparisons, were applied to the Fogo Island genetic and demographic data. The results suggest that geography plays a role on Fogo Island in the distribution of genes, while religion, ethnicity, and economic factors play less significant roles. The communities with fish-packing plants and tourism serve as migratory "sinks" for Fogo islanders seeking employment. Reproductively, the most isolated village on Fogo Island is Tilting, and this is reflected in its genetic uniqueness, initially caused by Irish settlement and subsequently the action of stochastic processes. © 1995 Wiley-Liss, Inc. Copyright © 1995 Wiley-Liss, Inc., A Wiley Company.

  20. Combined Analysis of the Fruit Metabolome and Transcriptome Reveals Candidate Genes Involved in Flavonoid Biosynthesis in Actinidia arguta.

    Science.gov (United States)

    Li, Yukuo; Fang, Jinbao; Qi, Xiujuan; Lin, Miaomiao; Zhong, Yunpeng; Sun, Leiming; Cui, Wen

    2018-05-15

    To assess the interrelation between the change of metabolites and the change of fruit color, we performed a combined metabolome and transcriptome analysis of the flesh in two different Actinidia arguta cultivars: "HB" ("Hongbaoshixing") and "YF" ("Yongfengyihao") at two different fruit developmental stages: 70d (days after full bloom) and 100d (days after full bloom). Metabolite and transcript profiling was obtained by ultra-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometer and high-throughput RNA sequencing, respectively. The identification and quantification results of metabolites showed that a total of 28,837 metabolites had been obtained, of which 13,715 were annotated. In comparison of HB100 vs. HB70, 41 metabolites were identified as being flavonoids, 7 of which, with significant difference, were identified as bracteatin, luteolin, dihydromyricetin, cyanidin, pelargonidin, delphinidin and (-)-epigallocatechin. Association analysis between metabolome and transcriptome revealed that there were two metabolic pathways presenting significant differences during fruit development, one of which was flavonoid biosynthesis, in which 14 structural genes were selected to conduct expression analysis, as well as 5 transcription factor genes obtained by transcriptome analysis. RT-qPCR results and cluster analysis revealed that AaF3H , AaLDOX , AaUFGT , AaMYB , AabHLH , and AaHB2 showed the best possibility of being candidate genes. A regulatory network of flavonoid biosynthesis was established to illustrate differentially expressed candidate genes involved in accumulation of metabolites with significant differences, inducing red coloring during fruit development. Such a regulatory network linking genes and flavonoids revealed a system involved in the pigmentation of all-red-fleshed and all-green-fleshed A. arguta , suggesting this conjunct analysis approach is not only useful in understanding the relationship between genotype and phenotype

  1. Network analysis of ChIP-Seq data reveals key genes in prostate cancer.

    Science.gov (United States)

    Zhang, Yu; Huang, Zhen; Zhu, Zhiqiang; Liu, Jianwei; Zheng, Xin; Zhang, Yuhai

    2014-09-03

    Prostate cancer (PC) is the second most common cancer among men in the United States, and it imposes a considerable threat to human health. A deep understanding of its underlying molecular mechanisms is the premise for developing effective targeted therapies. Recently, deep transcriptional sequencing has been used as an effective genomic assay to obtain insights into diseases and may be helpful in the study of PC. In present study, ChIP-Seq data for PC and normal samples were compared, and differential peaks identified, based upon fold changes (with P-values calculated with t-tests). Annotations of these peaks were performed. Protein-protein interaction (PPI) network analysis was performed with BioGRID and constructed with Cytoscape, following which the highly connected genes were screened. We obtained a total of 5,570 differential peaks, including 3,726 differentially enriched peaks in tumor samples and 1,844 differentially enriched peaks in normal samples. There were eight significant regions of the peaks. The intergenic region possessed the highest score (51%), followed by intronic (31%) and exonic (11%) regions. The analysis revealed the top 35 highly connected genes, which comprised 33 differential genes (such as YWHAQ, tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein and θ polypeptide) from ChIP-Seq data and 2 differential genes retrieved from the PPI network: UBA52 (ubiquitin A-52 residue ribosomal protein fusion product (1) and SUMO2 (SMT3 suppressor of mif two 3 homolog (2) . Our findings regarding potential PC-related genes increase the understanding of PC and provides direction for future research.

  2. The emergence of volcanic oceanic islands on a slow-moving plate: The example of Madeira Island, NE Atlantic

    Science.gov (United States)

    Ramalho, Ricardo S.; Brum da Silveira, António; Fonseca, Paulo E.; Madeira, José; Cosca, Michael; Cachão, Mário; Fonseca, Maria M.; Prada, Susana N.

    2015-02-01

    The transition from seamount to oceanic island typically involves surtseyan volcanism. However, the geological record at many islands in the NE Atlantic—all located within the slow-moving Nubian plate—does not exhibit evidence for an emergent surtseyan phase but rather an erosive unconformity between the submarine basement and the overlying subaerial shield sequences. This suggests that the transition between seamount and island may frequently occur by a relative fall of sea level through uplift, eustatic changes, or a combination of both, and may not involve summit volcanism. In this study, we explore the consequences for island evolutionary models using Madeira Island (Portugal) as a case study. We have examined the geologic record at Madeira using a combination of detailed fieldwork, biostratigraphy, and 40Ar/39Ar geochronology in order to document the mode, timing, and duration of edifice emergence above sea level. Our study confirms that Madeira's subaerial shield volcano was built upon the eroded remains of an uplifted seamount, with shallow marine sediments found between the two eruptive sequences and presently located at 320-430 m above sea level. This study reveals that Madeira emerged around 7.0-5.6 Ma essentially through an uplift process and before volcanic activity resumed to form the subaerial shield volcano. Basal intrusions are a likely uplift mechanism, and their emplacement is possibly enhanced by the slow motion of the Nubian plate relative to the source of partial melting. Alternating uplift and subsidence episodes suggest that island edifice growth may be governed by competing dominantly volcanic and dominantly intrusive processes.

  3. Comparative expression profiling reveals gene functions in female meiosis and gametophyte development in Arabidopsis.

    Science.gov (United States)

    Zhao, Lihua; He, Jiangman; Cai, Hanyang; Lin, Haiyan; Li, Yanqiang; Liu, Renyi; Yang, Zhenbiao; Qin, Yuan

    2014-11-01

    Megasporogenesis is essential for female fertility, and requires the accomplishment of meiosis and the formation of functional megaspores. The inaccessibility and low abundance of female meiocytes make it particularly difficult to elucidate the molecular basis underlying megasporogenesis. We used high-throughput tag-sequencing analysis to identify genes expressed in female meiocytes (FMs) by comparing gene expression profiles from wild-type ovules undergoing megasporogenesis with those from the spl mutant ovules, which lack megasporogenesis. A total of 862 genes were identified as FMs, with levels that are consistently reduced in spl ovules in two biological replicates. Fluorescence-assisted cell sorting followed by RNA-seq analysis of DMC1:GFP-labeled female meiocytes confirmed that 90% of the FMs are indeed detected in the female meiocyte protoplast profiling. We performed reverse genetic analysis of 120 candidate genes and identified four FM genes with a function in female meiosis progression in Arabidopsis. We further revealed that KLU, a putative cytochrome P450 monooxygenase, is involved in chromosome pairing during female meiosis, most likely by affecting the normal expression pattern of DMC1 in ovules during female meiosis. Our studies provide valuable information for functional genomic analyses of plant germline development as well as insights into meiosis. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  4. MobilomeFINDER: web-based tools for in silico and experimental discovery of bacterial genomic islands

    Science.gov (United States)

    Ou, Hong-Yu; He, Xinyi; Harrison, Ewan M.; Kulasekara, Bridget R.; Thani, Ali Bin; Kadioglu, Aras; Lory, Stephen; Hinton, Jay C. D.; Barer, Michael R.; Rajakumar, Kumar

    2007-01-01

    MobilomeFINDER (http://mml.sjtu.edu.cn/MobilomeFINDER) is an interactive online tool that facilitates bacterial genomic island or ‘mobile genome’ (mobilome) discovery; it integrates the ArrayOme and tRNAcc software packages. ArrayOme utilizes a microarray-derived comparative genomic hybridization input data set to generate ‘inferred contigs’ produced by merging adjacent genes classified as ‘present’. Collectively these ‘fragments’ represent a hypothetical ‘microarray-visualized genome (MVG)’. ArrayOme permits recognition of discordances between physical genome and MVG sizes, thereby enabling identification of strains rich in microarray-elusive novel genes. Individual tRNAcc tools facilitate automated identification of genomic islands by comparative analysis of the contents and contexts of tRNA sites and other integration hotspots in closely related sequenced genomes. Accessory tools facilitate design of hotspot-flanking primers for in silico and/or wet-science-based interrogation of cognate loci in unsequenced strains and analysis of islands for features suggestive of foreign origins; island-specific and genome-contextual features are tabulated and represented in schematic and graphical forms. To date we have used MobilomeFINDER to analyse several Enterobacteriaceae, Pseudomonas aeruginosa and Streptococcus suis genomes. MobilomeFINDER enables high-throughput island identification and characterization through increased exploitation of emerging sequence data and PCR-based profiling of unsequenced test strains; subsequent targeted yeast recombination-based capture permits full-length sequencing and detailed functional studies of novel genomic islands. PMID:17537813

  5. Analysis of the robustness of network-based disease-gene prioritization methods reveals redundancy in the human interactome and functional diversity of disease-genes.

    Directory of Open Access Journals (Sweden)

    Emre Guney

    Full Text Available Complex biological systems usually pose a trade-off between robustness and fragility where a small number of perturbations can substantially disrupt the system. Although biological systems are robust against changes in many external and internal conditions, even a single mutation can perturb the system substantially, giving rise to a pathophenotype. Recent advances in identifying and analyzing the sequential variations beneath human disorders help to comprehend a systemic view of the mechanisms underlying various disease phenotypes. Network-based disease-gene prioritization methods rank the relevance of genes in a disease under the hypothesis that genes whose proteins interact with each other tend to exhibit similar phenotypes. In this study, we have tested the robustness of several network-based disease-gene prioritization methods with respect to the perturbations of the system using various disease phenotypes from the Online Mendelian Inheritance in Man database. These perturbations have been introduced either in the protein-protein interaction network or in the set of known disease-gene associations. As the network-based disease-gene prioritization methods are based on the connectivity between known disease-gene associations, we have further used these methods to categorize the pathophenotypes with respect to the recoverability of hidden disease-genes. Our results have suggested that, in general, disease-genes are connected through multiple paths in the human interactome. Moreover, even when these paths are disturbed, network-based prioritization can reveal hidden disease-gene associations in some pathophenotypes such as breast cancer, cardiomyopathy, diabetes, leukemia, parkinson disease and obesity to a greater extend compared to the rest of the pathophenotypes tested in this study. Gene Ontology (GO analysis highlighted the role of functional diversity for such diseases.

  6. QTL mapping and transcriptome analysis of cowpea reveals candidate genes for root-knot nematode resistance.

    Directory of Open Access Journals (Sweden)

    Jansen Rodrigo Pereira Santos

    Full Text Available Cowpea is one of the most important food and forage legumes in drier regions of the tropics and subtropics. However, cowpea yield worldwide is markedly below the known potential due to abiotic and biotic stresses, including parasitism by root-knot nematodes (Meloidogyne spp., RKN. Two resistance genes with dominant effect, Rk and Rk2, have been reported to provide resistance against RKN in cowpea. Despite their description and use in breeding for resistance to RKN and particularly genetic mapping of the Rk locus, the exact genes conferring resistance to RKN remain unknown. In the present work, QTL mapping using recombinant inbred line (RIL population 524B x IT84S-2049 segregating for a newly mapped locus and analysis of the transcriptome changes in two cowpea near-isogenic lines (NIL were used to identify candidate genes for Rk and the newly mapped locus. A major QTL, designated QRk-vu9.1, associated with resistance to Meloidogyne javanica reproduction, was detected and mapped on linkage group LG9 at position 13.37 cM using egg production data. Transcriptome analysis on resistant and susceptible NILs 3 and 9 days after inoculation revealed up-regulation of 109 and 98 genes and down-regulation of 110 and 89 genes, respectively, out of 19,922 unique genes mapped to the common bean reference genome. Among the differentially expressed genes, four and nine genes were found within the QRk-vu9.1 and QRk-vu11.1 QTL intervals, respectively. Six of these genes belong to the TIR-NBS-LRR family of resistance genes and three were upregulated at one or more time-points. Quantitative RT-PCR validated gene expression to be positively correlated with RNA-seq expression pattern for eight genes. Future functional analysis of these cowpea genes will enhance our understanding of Rk-mediated resistance and identify the specific gene responsible for the resistance.

  7. De novo transcriptome and small RNA analysis of two Chinese willow cultivars reveals stress response genes in Salix matsudana.

    Directory of Open Access Journals (Sweden)

    Guodong Rao

    Full Text Available Salix matsudana Koidz. is a deciduous, rapidly growing, and drought resistant tree and is one of the most widely distributed and commonly cultivated willow species in China. Currently little transcriptomic and small RNAomic data are available to reveal the genes involve in the stress resistant in S. matsudana. Here, we report the RNA-seq analysis results of both transcriptome and small RNAome data using Illumina deep sequencing of shoot tips from two willow variants(Salix. matsudana and Salix matsudana Koidz. cultivar 'Tortuosa'. De novo gene assembly was used to generate the consensus transcriptome and small RNAome, which contained 106,403 unique transcripts with an average length of 944 bp and a total length of 100.45 MB, and 166 known miRNAs representing 35 miRNA families. Comparison of transcriptomes and small RNAomes combined with quantitative real-time PCR from the two Salix libraries revealed a total of 292 different expressed genes(DEGs and 36 different expressed miRNAs (DEMs. Among the DEGs and DEMs, 196 genes and 24 miRNAs were up regulated, 96 genes and 12 miRNA were down regulated in S. matsudana. Functional analysis of DEGs and miRNA targets showed that many genes were involved in stress resistance in S. matsudana. Our global gene expression profiling presents a comprehensive view of the transcriptome and small RNAome which provide valuable information and sequence resources for uncovering the stress response genes in S. matsudana. Moreover the transcriptome and small RNAome data provide a basis for future study of genetic resistance in Salix.

  8. Combined multibeam and bathymetry data from Rhode Island Sound and Block Island Sound: a regional perspective

    Science.gov (United States)

    Poppe, Lawrence J.; McMullen, Katherine Y.; Danforth, William W.; Blankenship, Mark R.; Clos, Andrew R.; Glomb, Kimberly A.; Lewit, Peter G.; Nadeau, Megan A.; Wood, Douglas A.; Parker, Castleton E.

    2014-01-01

    Detailed bathymetric maps of the sea floor in Rhode Island and Block Island Sounds are of great interest to the New York, Rhode Island, and Massachusetts research and management communities because of this area's ecological, recreational, and commercial importance. Geologically interpreted digital terrain models from individual surveys provide important benthic environmental information, yet many applications of this information require a geographically broader perspective. For example, individual surveys are of limited use for the planning and construction of cross-sound infrastructure, such as cables and pipelines, or for the testing of regional circulation models. To address this need, we integrated 14 contiguous multibeam bathymetric datasets that were produced by the National Oceanic and Atmospheric Administration during charting operations into one digital terrain model that covers much of Block Island Sound and extends eastward across Rhode Island Sound. The new dataset, which covers over 1244 square kilometers, is adjusted to mean lower low water, gridded to 4-meter resolution, and provided in Universal Transverse Mercator Zone 19, North American Datum of 1983 and geographic World Geodetic Survey of 1984 projections. This resolution is adequate for sea-floor feature and process interpretation but is small enough to be queried and manipulated with standard Geographic Information System programs and to allow for future growth. Natural features visible in the data include boulder lag deposits of winnowed Pleistocene strata, sand-wave fields, and scour depressions that reflect the strength of oscillating tidal currents and scour by storm-induced waves. Bedform asymmetry allows interpretations of net sediment transport. Anthropogenic features visible in the data include shipwrecks and dredged channels. Together the merged data reveal a larger, more continuous perspective of bathymetric topography than previously available, providing a fundamental framework for

  9. Genetic diversity of Bactrocera dorsalis (Diptera: Tephritidae) on the Hawaiian islands: Implications for an introduction pathway into California

    International Nuclear Information System (INIS)

    Barr, Norman B.; Ledezma, Lisa A.; Bartels, David W.; Garza, Daniel; Leblanc, Luc; Jose, Michael San; Rubinoff, Daniel; Geib, Scott M.; Fujita, Brian; Kerr, Peter; Hauser, Martin; Gaimari, Stephen

    2015-01-01

    Population genetic diversity of the oriental fruit fly, Bactrocera dorsalis (Hendel), on the Hawaiian islands of Oahu, Maui, Kauai, and Hawaii (the Big Island) was estimated using DNA sequences of the mitochondrial cytochrome c oxidase subunit I gene. In total, 932 flies representing 36 sampled sites across the four islands were sequenced for a 1,500-bp fragment of the gene named the C1500 marker. Genetic variation was low on the Hawaiian Islands with >96% of flies having just two haplotypes: C1500- Haplotype 1 (63.2%) or C1500-Haplotype 2 (33.3%). The other 33 flies (3.5%) had haplotypes similar to the two dominant haplotypes. No population structure was detected among the islands or within islands. The two haplotypes were present at similar frequencies at each sample site, suggesting that flies on the various islands can be considered one population. Comparison of the Hawaiian data set to DNA sequences of 165 flies from outbreaks in California between 2006 and 2012 indicates that a single-source introduction pathway of Hawaiian origin cannot explain many of the flies in California. Hawaii, however, could not be excluded as a maternal source for 69 flies. There was no clear geographic association for Hawaiian or non-Hawaiian haplotypes in the Bay Area or Los Angeles Basin over time. This suggests that California experienced multiple, independent introductions from different sources. (author)

  10. Gene array analysis of PD-1H overexpressing monocytes reveals a pro-inflammatory profile

    Directory of Open Access Journals (Sweden)

    Preeti Bharaj

    2018-02-01

    Full Text Available We have previously reported that overexpression of Programmed Death -1 Homolog (PD-1H in human monocytes leads to activation and spontaneous secretion of multiple pro inflammatory cytokines. Here we evaluate changes in monocytes gene expression after enforced PD-1H expression by gene array. The results show that there are significant alterations in 51 potential candidate genes that relate to immune response, cell adhesion and metabolism. Genes corresponding to pro-inflammatory cytokines showed the highest upregulation, 7, 3.2, 3.0, 5.8, 4.4 and 3.1 fold upregulation of TNF-α, IL-1 β, IFN-α, γ, λ and IL-27 relative to vector control. The data are in agreement with cytometric bead array analysis showing induction of proinflammatory cytokines, IL-6, IL-1β and TNF-α by PD-1H. Other genes related to inflammation, include transglutaminase 2 (TG2, NF-κB (p65 and p50 and toll like receptors (TLR 3 and 4 were upregulated 5, 4.5 and 2.5 fold, respectively. Gene set enrichment analysis (GSEA also revealed that signaling pathways related to inflammatory response, such as NFκB, AT1R, PYK2, MAPK, RELA, TNFR1, MTOR and proteasomal degradation, were significantly upregulated in response to PD-1H overexpression. We validated the results utilizing a standard inflammatory sepsis model in humanized BLT mice, finding that PD-1H expression was highly correlated with proinflammatory cytokine production. We therefore conclude that PD-1H functions to enhance monocyte activation and the induction of a pro-inflammatory gene expression profile.

  11. Comparative genome analysis of PHB gene family reveals deep evolutionary origins and diverse gene function.

    Science.gov (United States)

    Di, Chao; Xu, Wenying; Su, Zhen; Yuan, Joshua S

    2010-10-07

    PHB (Prohibitin) gene family is involved in a variety of functions important for different biological processes. PHB genes are ubiquitously present in divergent species from prokaryotes to eukaryotes. Human PHB genes have been found to be associated with various diseases. Recent studies by our group and others have shown diverse function of PHB genes in plants for development, senescence, defence, and others. Despite the importance of the PHB gene family, no comprehensive gene family analysis has been carried to evaluate the relatedness of PHB genes across different species. In order to better guide the gene function analysis and understand the evolution of the PHB gene family, we therefore carried out the comparative genome analysis of the PHB genes across different kingdoms. The relatedness, motif distribution, and intron/exon distribution all indicated that PHB genes is a relatively conserved gene family. The PHB genes can be classified into 5 classes and each class have a very deep evolutionary origin. The PHB genes within the class maintained the same motif patterns during the evolution. With Arabidopsis as the model species, we found that PHB gene intron/exon structure and domains are also conserved during the evolution. Despite being a conserved gene family, various gene duplication events led to the expansion of the PHB genes. Both segmental and tandem gene duplication were involved in Arabidopsis PHB gene family expansion. However, segmental duplication is predominant in Arabidopsis. Moreover, most of the duplicated genes experienced neofunctionalization. The results highlighted that PHB genes might be involved in important functions so that the duplicated genes are under the evolutionary pressure to derive new function. PHB gene family is a conserved gene family and accounts for diverse but important biological functions based on the similar molecular mechanisms. The highly diverse biological function indicated that more research needs to be carried out

  12. Bathymetry and ocean properties beneath Pine Island Glacier revealed by Autosub3 and implications for recent ice stream evolution (Invited)

    Science.gov (United States)

    Jenkins, A.; Dutrieux, P.; McPhail, S.; Perrett, J.; Webb, A.; White, D.; Jacobs, S. S.

    2009-12-01

    The Antarctic ice sheet, which represents the largest of all potential contributors to sea level rise, appears to be losing mass at a rate that has accelerated over recent decades. Ice loss is focussed in a number of key drainage basins where dynamical changes in the outlet glaciers have led to increased discharge. The synchronous response of several independent glaciers, coupled with the observation that thinning is most rapid over their floating termini, is generally taken as an indicator that the changes have been driven from the ocean. Some of the most significant changes have been observed on Pine Island Glacier, where thinning, acceleration and grounding line retreat have all been observed, primarily through satellite remote sensing. Even during the relatively short satellite record, rates of change have been observed to increase. Between 20th and 30th January 2009 the Autosub3 autonomous underwater vehicle was deployed from host ship RVIB Nathaniel B Palmer on six sorties into the ocean cavity beneath Pine Island Glacier. Total track length was 887 km (taking 167 hours) of which 510 km (taking 94 hours) were beneath the glacier. Some of the main aims were to map both the seabed beneath and the underside of the glacier and to investigate how warm Circumpolar Deep Water (CDW) flows beneath Pine Island Glacier and determines its melt rate. Among the instruments carried by Autosub-3 were a Seabird CTD, with dual conductivity and temperature sensors plus a dissolved oxygen sensor and a transmissometer, a multi-beam echosounder that could be configured to look up or down, and two Acoustic Doppler Current Profilers (ADCPs): an upward-looking 300 kHz instrument and a downward-looking 150 kHz instrument, providing a record of ice draft and seabed depth along the vehicle track. The ADCP data reveal an apparently continuous ridge with an undulating crest that extends across the cavity about 30km in from the current ice front. This topographic feature blocks CDW inflow

  13. Multidecadal shoreline changes of atoll islands in the Marshall Islands

    Science.gov (United States)

    Ford, M.

    2012-12-01

    Atoll islands are considered highly vulnerable to the impacts of continued sea level rise. One of the most commonly predicted outcomes of continued sea level rise is widespread and chronic shoreline erosion. Despite the widespread implications of predicted erosion, the decadal scale changes of atoll island shorelines are poorly resolved. The Marshall Islands is one of only four countries where the majority of inhabited land is comprised of reef and atoll islands. Consisting of 29 atolls and 5 mid-ocean reef islands, the Marshall Islands are considered highly vulnerable to the impacts of sea level rise. A detailed analysis of shoreline change on over 300 islands on 10 atolls was undertaken using historic aerial photos (1945-1978) and modern high resolution satellite imagery (2004-2012). Results highlight the complex and dynamic nature of atoll islands, with significant shifts in shoreline position observed over the period of analysis. Results suggest shoreline accretion is the dominant mode of change on the islands studied, often associated with a net increase in vegetated island area. However, considerable inter- and intra-atoll variability exists with regards to shoreline stability. Findings are discussed with respect to island morphodynamics and potential hazard mitigation and planning responses within atoll settings.

  14. Morphological differentiation despite gene flow in an endangered grasshopper.

    Science.gov (United States)

    Dowle, Eddy J; Morgan-Richards, Mary; Trewick, Steven A

    2014-10-16

    Gene flow is traditionally considered a limitation to speciation because selection is required to counter the homogenising effect of allele exchange. Here we report on two sympatric short-horned grasshoppers species in the South Island of New Zealand; one (Sigaus australis) widespread and the other (Sigaus childi) a narrow endemic. Of the 79 putatively neutral markers (mtDNA, microsatellite loci, ITS sequences and RAD-seq SNPs) all but one marker we examined showed extensive allele sharing, and similar or identical allele frequencies in the two species where they co-occur. We found no genetic evidence of deviation from random mating in the region of sympatry. However, analysis of morphological and geometric traits revealed no evidence of morphological introgression. Based on phenotype the two species are clearly distinct, but their genotypes thus far reveal no divergence. The best explanation for this is that some loci associated with the distinguishing morphological characters are under strong selection, but exchange of neutral loci is occurring freely between the two species. Although it is easier to define species as requiring a barrier between them, a dynamic model that accommodates gene flow is a biologically more reasonable explanation for these grasshoppers.

  15. Gene-Environment Interaction and Breast Cancer on Long Island, NY

    Science.gov (United States)

    2008-05-01

    Dietary flavonoid intake and breast cancer survival among women on Long Island. Cancer Epidemiol Biomarkers Prev. 2007 Nov;16(11):2285-92...Kuklenyik, Z., Needham, L.L., Calafat, A.M., 2005. Automated on-line column-switching HPLC -MS/MS method with peak focusing for the determination of...action. Environ Health Perspect 110:917–921. Rybak ME, Parker DL, Pfeiffer CM. 2006. Determination of Urinary Phytoestrogens by HPLC -MS/MS: A Comparison

  16. Tracing the origins and signatures of selection of antifolate resistance in island populations of Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Pinto João

    2010-06-01

    Full Text Available Abstract Background Resistance of the malaria parasite Plasmodium falciparum to sulfadoxine-pyrimethamine (SP has evolved worldwide. In the archipelago of São Tomé and Principe (STP, West Africa, although SP resistance is highly prevalent the drug is still in use in particular circumstances. To address the evolutionary origins of SP resistance in these islands, we genotyped point mutations at P. falciparum dhfr and dhps genes and analysed microsatellites flanking those genes. Methods Blood samples were collected in July and December 2004 in three localities of São Tomé Island and one in Principe Island. Species-specific nested-PCR was used to identify P. falciparum infected samples. Subsequently, SNPs at the dhfr and dhps genes were identified through PCR-RFLP. Isolates were also analysed for three microsatellite loci flanking the dhfr gene, three loci flanking dhps and four loci located at putative neutral genomic regions. Results An increase of resistance-associated mutations at dhfr and dhps was observed, in particular for the dhfr/dhps quintuple mutant, associated with clinical SP failure. Analysis of flanking microsatellites suggests multiple independent introductions for dhfr and dhps mutant haplotypes, possibly from West Africa. A reduced genetic diversity and increased differentiation at flanking microsatellites when compared to neutral loci is consistent with a selective sweep for resistant alleles at both loci. Conclusions This study provides additional evidence for the crucial role of gene flow and drug selective pressures in the rapid spread of SP resistance in P. falciparum populations, from only a few mutation events giving rise to resistance-associated mutants. It also highlights the importance of human migration in the spread of drug resistant malaria parasites, as the distance between the islands and mainland is not consistent with mosquito-mediated parasite dispersal.

  17. Comprehensive Gene Expression Profiling Reveals Synergistic Functional Networks in Cerebral Vessels after Hypertension or Hypercholesterolemia

    Science.gov (United States)

    Ong, Wei-Yi; Ng, Mary Pei-Ern; Loke, Sau-Yeen; Jin, Shalai; Wu, Ya-Jun; Tanaka, Kazuhiro; Wong, Peter Tsun-Hon

    2013-01-01

    Atherosclerotic stenosis of cerebral arteries or intracranial large artery disease (ICLAD) is a major cause of stroke especially in Asians, Hispanics and Africans, but relatively little is known about gene expression changes in vessels at risk. This study compares comprehensive gene expression profiles in the middle cerebral artery (MCA) of New Zealand White rabbits exposed to two stroke risk factors i.e. hypertension and/or hypercholesterolemia, by the 2-Kidney-1-Clip method, or dietary supplementation with cholesterol. Microarray and Ingenuity Pathway Analyses of the MCA of the hypertensive rabbits showed up-regulated genes in networks containing the node molecules: UBC (ubiquitin), P38 MAPK, ERK, NFkB, SERPINB2, MMP1 and APP (amyloid precursor protein); and down-regulated genes related to MAPK, ERK 1/2, Akt, 26 s proteasome, histone H3 and UBC. The MCA of hypercholesterolemic rabbits showed differentially expressed genes that are surprisingly, linked to almost the same node molecules as the hypertensive rabbits, despite a relatively low percentage of ‘common genes’ (21 and 7%) between the two conditions. Up-regulated common genes were related to: UBC, SERPINB2, TNF, HNF4A (hepatocyte nuclear factor 4A) and APP, and down-regulated genes, related to UBC. Increased HNF4A message and protein were verified in the aorta. Together, these findings reveal similar nodal molecules and gene pathways in cerebral vessels affected by hypertension or hypercholesterolemia, which could be a basis for synergistic action of risk factors in the pathogenesis of ICLAD. PMID:23874591

  18. Exome sequencing in Jewish and Arab patients with rhabdomyolysis reveals single-gene etiology in 43% of cases.

    Science.gov (United States)

    Vivante, Asaf; Ityel, Hadas; Pode-Shakked, Ben; Chen, Jing; Shril, Shirlee; van der Ven, Amelie T; Mann, Nina; Schmidt, Johanna Magdalena; Segel, Reeval; Aran, Adi; Zeharia, Avraham; Staretz-Chacham, Orna; Bar-Yosef, Omer; Raas-Rothschild, Annick; Landau, Yuval E; Lifton, Richard P; Anikster, Yair; Hildebrandt, Friedhelm

    2017-12-01

    Rhabdomyolysis is a clinical emergency that may cause acute kidney injury (AKI). It can be acquired or due to monogenic mutations. Around 60 different rare monogenic forms of rhabdomyolysis have been reported to date. In the clinical setting, identifying the underlying molecular diagnosis is challenging due to nonspecific presentation, the high number of causative genes, and current lack of data on the prevalence of monogenic forms. We employed whole exome sequencing (WES) to reveal the percentage of rhabdomyolysis cases explained by single-gene (monogenic) mutations in one of 58 candidate genes. We investigated a cohort of 21 unrelated families with rhabdomyolysis, in whom no underlying etiology had been previously established. Using WES, we identified causative mutations in candidate genes in nine of the 21 families (43%). We detected disease-causing mutations in eight of 58 candidate genes, grouped into the following categories: (1) disorders of fatty acid metabolism (CPT2), (2) disorders of glycogen metabolism (PFKM and PGAM2), (3) disorders of abnormal skeletal muscle relaxation and contraction (CACNA1S, MYH3, RYR1 and SCN4A), and (4) disorders of purine metabolism (AHCY). Our findings demonstrate a very high detection rate for monogenic etiologies using WES and reveal broad genetic heterogeneity for rhabdomyolysis. These results highlight the importance of molecular genetic diagnostics for establishing an etiologic diagnosis. Because these patients are at risk for recurrent episodes of rhabdomyolysis and subsequent risk for AKI, WES allows adequate prophylaxis and treatment for these patients and their family members and enables a personalized medicine approach.

  19. Non-deposit system option for waste management on small islands.

    Science.gov (United States)

    Vilms, Monica; Voronova, Viktoria

    2016-08-01

    This paper analyses waste management on small islands (on a global scale these are micro-islands). In the context of the paper, small islands are islands that have an area less than 50 km(2) The study presents an overview of the problems connected with waste transport from islands to the mainland. Waste generation on islands is very much related to tourists. If tourists do not handle waste properly, it will cause problems. Four small Estonian islands in the range of 3-19 km(2) are studied in detail. For these and other small islands, the main problem is the waste produced by tourists, or related to tourists and waste transport to the mainland. Currently, the local municipality has to arrange and finance waste transport. In fact, and based on the polluter-pays principle, the tourists should bear the cost of waste management. There are different tax options available in order to collect the money from tourists - waste tax, harbour tax, tourist tax, donations, environmental tax and others. The study results revealed that the best possible solution for Estonian islands may be a non-deposit system - including an additional charge on ferry ticket prices. The extra money should cover the costs of waste management and waste shipping. The tourists arriving in their own boats should pay a harbour tax, which includes a waste tax to compensate for the cost of waste management. © The Author(s) 2016.

  20. Differential Gene Expression by Lactobacillus plantarum WCFS1 in Response to Phenolic Compounds Reveals New Genes Involved in Tannin Degradation.

    Science.gov (United States)

    Reverón, Inés; Jiménez, Natalia; Curiel, José Antonio; Peñas, Elena; López de Felipe, Félix; de Las Rivas, Blanca; Muñoz, Rosario

    2017-04-01

    Lactobacillus plantarum is a lactic acid bacterium that can degrade food tannins by the successive action of tannase and gallate decarboxylase enzymes. In the L. plantarum genome, the gene encoding the catalytic subunit of gallate decarboxylase ( lpdC , or lp_2945 ) is only 6.5 kb distant from the gene encoding inducible tannase ( L. plantarum tanB [ tanB Lp ], or lp_2956 ). This genomic context suggests concomitant activity and regulation of both enzymatic activities. Reverse transcription analysis revealed that subunits B ( lpdB , or lp_0271 ) and D ( lpdD , or lp_0272 ) of the gallate decarboxylase are cotranscribed, whereas subunit C ( lpdC , or lp_2945 ) is cotranscribed with a gene encoding a transport protein ( gacP , or lp_2943 ). In contrast, the tannase gene is transcribed as a monocistronic mRNA. Investigation of knockout mutations of genes located in this chromosomal region indicated that only mutants of the gallate decarboxylase (subunits B and C), tannase, GacP transport protein, and TanR transcriptional regulator ( lp_2942 ) genes exhibited altered tannin metabolism. The expression profile of genes involved in tannin metabolism was also analyzed in these mutants in the presence of methyl gallate and gallic acid. It is noteworthy that inactivation of tanR suppresses the induction of all genes overexpressed in the presence of methyl gallate and gallic acid. This transcriptional regulator was also induced in the presence of other phenolic compounds, such as kaempferol and myricetin. This study complements the catalog of L. plantarum expression profiles responsive to phenolic compounds, which enable this bacterium to adapt to a plant food environment. IMPORTANCE Lactobacillus plantarum is a bacterial species frequently found in the fermentation of vegetables when tannins are present. L. plantarum strains degrade tannins to the less-toxic pyrogallol by the successive action of tannase and gallate decarboxylase enzymes. The genes encoding these enzymes are

  1. Hierarchical clustering of breast cancer methylomes revealed differentially methylated and expressed breast cancer genes.

    Directory of Open Access Journals (Sweden)

    I-Hsuan Lin

    Full Text Available Oncogenic transformation of normal cells often involves epigenetic alterations, including histone modification and DNA methylation. We conducted whole-genome bisulfite sequencing to determine the DNA methylomes of normal breast, fibroadenoma, invasive ductal carcinomas and MCF7. The emergence, disappearance, expansion and contraction of kilobase-sized hypomethylated regions (HMRs and the hypomethylation of the megabase-sized partially methylated domains (PMDs are the major forms of methylation changes observed in breast tumor samples. Hierarchical clustering of HMR revealed tumor-specific hypermethylated clusters and differential methylated enhancers specific to normal or breast cancer cell lines. Joint analysis of gene expression and DNA methylation data of normal breast and breast cancer cells identified differentially methylated and expressed genes associated with breast and/or ovarian cancers in cancer-specific HMR clusters. Furthermore, aberrant patterns of X-chromosome inactivation (XCI was found in breast cancer cell lines as well as breast tumor samples in the TCGA BRCA (breast invasive carcinoma dataset. They were characterized with differentially hypermethylated XIST promoter, reduced expression of XIST, and over-expression of hypomethylated X-linked genes. High expressions of these genes were significantly associated with lower survival rates in breast cancer patients. Comprehensive analysis of the normal and breast tumor methylomes suggests selective targeting of DNA methylation changes during breast cancer progression. The weak causal relationship between DNA methylation and gene expression observed in this study is evident of more complex role of DNA methylation in the regulation of gene expression in human epigenetics that deserves further investigation.

  2. Gene S characterization of Hantavirus species Seoul virus isolated from Rattus norvegicuson an Indonesian island

    Directory of Open Access Journals (Sweden)

    Dian Perwitasari

    2014-08-01

    Full Text Available AbstrakLatar belakang: Hantavirus hidup dan berkembang biak di tubuh hewan pengerat, salah satunya Rattus norvegicus yang banyak ditemukan di daerah kepulauan di Indonesia. Hantavirus spesies Seoul virus (SEOV adalah virus RNA negatif rantai tunggal yang termasuk dalam keluarga Bunyaviridae, mempunyai beberapa gen spesifik terutama gen S yang dapat dikembangkan untuk uji diagnostik. Tujuan penelitian ini ialah untuk mengetahui karakter dari gen S dari Hantavirus spesies Seoulvirus.Metode:Pada penelitian ini dilakukan sekuensing gen S yang berasal dari jaringan paru-paru rodensia.  Fragmen DNA yang disekuensing menggunakan primer DNA SEOS-28F danSEOS -360R,VNS-1501F dan VNS-CSR. Hasil sekuensing dianalisis menggunakan program seqscapedan dianalisis menggunakan program Bioedit dan Mega5. Analisis filogenetik untuk homologi nukleotida dan asam amino dari ketiga strain Kepulauan Seribu tersebut dibandingkan dengan spesies hantavirus lainnya yang diambil dari genebank. Hasil:Analisis Homologi nukleotida dan asam amino antara strain Kepulauan Seribu dengan SEOV menunjukkan homologi nukleotida tertinggi pada strain KS74 (88,4% dan terendah pada KS90 (87,2%, sedangkan homologi asam amino tertinggi adalah strain KS74 (91.3% dan terendah pada strain KS90 (89,5%. Kesimpulan:Karakter gen S virus yang ditemukan di Kepulauan Seribu sebanding dengan virus SEOV yang ditemukan di Singapura dan Korea.  (Health Science Indones 2014;1:1-6Kata kunci:Seoul virus, gen S, Kepulauan Seribu, IndonesiaAbstractBackground: Hantavirus lives and reproduces in the body of rodents. Rattus norvegicuswas one found in the Kepulauan Seribu islands of Indonesia. Hantavirus species Seoul virus (SEOV is a negative single chain RNA viruses included in the family Bunyaviridae. It has a few specific genes, especially genes S that can be developed for a diagnostic test. The aim of this study was to ascertain the character of gene S of hantavirus species Seoul virus. Methods: Gene

  3. A population genetic assessment of coral recovery on highly disturbed reefs of the Keppel Island archipelago in the southern Great Barrier Reef

    Directory of Open Access Journals (Sweden)

    Madeleine J.H. van Oppen

    2015-07-01

    Full Text Available Coral reefs surrounding the islands lying close to the coast are unique to the Great Barrier Reef (GBR in that they are frequently exposed to disturbance events including floods caused by cyclonic rainfall, strong winds and occasional periods of prolonged above-average temperatures during summer. In one such group of islands in the southern GBR, the Keppel Island archipelago, climate-driven disturbances frequently result in major coral mortality. Whilst these island reefs have clearly survived such dramatic disturbances in the past, the consequences of extreme mortality events may include the loss of genetic diversity, and hence adaptive potential, and a reduction in fitness due to inbreeding, especially if new recruitment from external sources is limited. Here we examined the level of isolation of the Keppel Island group as well as patterns of gene flow within the Keppel Islands using 10 microsatellite markers in nine populations of the coral, Acropora millepora. Bayesian cluster analysis and assignment tests indicated gene flow is restricted, but not absent, between the outer and inner Keppel Island groups, and that extensive gene flow exists within each of these island groups. Comparison of the Keppel Island data with results from a previous GBR-wide study that included a single Keppel Island population, confirmed that A. millepora in the Keppel Islands is genetically distinct from populations elsewhere on the GBR, with exception of the nearby inshore High Peak Reef just north of the Keppel Islands. We compared patterns of genetic diversity in the Keppel Island populations with those from other GBR populations and found them to be slightly, but significantly lower, consistent with the archipelago being geographically isolated, but there was no evidence for recent bottlenecks or deviation from mutation-drift equilibrium. A high incidence of private alleles in the Keppel Islands, particularly in the outer islands, supports their relative

  4. Foundation Investigation for Ground Based Radar Project-Kwajalein Island, Marshall Islands

    Science.gov (United States)

    1990-04-01

    iL_ COPY MISCELLANEOUS PAPER GL-90-5 i iFOUNDATION INVESTIGATION FOR GROUND BASED RADAR PROJECT--KWAJALEIN ISLAND, MARSHALL ISLANDS by Donald E...C!assification) Foundatioa Investigation for Ground Based Radar Project -- Kwajalein Island, Marshall Islands 12. PERSONAL AUTHOR(S) Yule, Donald E...investigation for the Ground Based Radar Project -- Kwajalein Island, Marshall Islands , are presented.- eophysical tests comprised of surface refrac- tion

  5. Phylogenetic Analysis of Dengue Virus in Bangkalan, Madura Island, East Java Province, Indonesia.

    Science.gov (United States)

    Sucipto, Teguh Hari; Kotaki, Tomohiro; Mulyatno, Kris Cahyo; Churrotin, Siti; Labiqah, Amaliah; Soegijanto, Soegeng; Kameoka, Masanori

    2018-01-01

    Dengue virus (DENV) infection is a major health issue in tropical and subtropical areas. Indonesia is one of the biggest dengue endemic countries in the world. In the present study, the phylogenetic analysis of DENV in Bangkalan, Madura Island, Indonesia, was performed in order to obtain a clearer understanding of its dynamics in this country. A total of 359 blood samples from dengue-suspected patients were collected between 2012 and 2014. Serotyping was conducted using a multiplex Reverse Transcriptase-Polymerase Chain Reaction and a phylogenetic analysis of E gene sequences was performed using the Bayesian Markov chain Monte Carlo (MCMC) method. 17 out of 359 blood samples (4.7%) were positive for the isolation of DENV. Serotyping and the phylogenetic analysis revealed the predominance of DENV-1 genotype I (9/17, 52.9%), followed by DENV-2 Cosmopolitan type (7/17, 41.2%) and DENV-3 genotype I (1/17, 5.9%) . DENV-4 was not isolated. The Madura Island isolates showed high nucleotide similarity to other Indonesian isolates, indicating frequent virus circulation in Indonesia. The results of the present study highlight the importance of continuous viral surveillance in dengue endemic areas in order to obtain a clearer understanding of the dynamics of DENV in Indonesia.

  6. Gene response profiles for Daphnia pulex exposed to the environmental stressor cadmium reveals novel crustacean metallothioneins

    Directory of Open Access Journals (Sweden)

    Davey Jennifer C

    2007-12-01

    Full Text Available Abstract Background Genomic research tools such as microarrays are proving to be important resources to study the complex regulation of genes that respond to environmental perturbations. A first generation cDNA microarray was developed for the environmental indicator species Daphnia pulex, to identify genes whose regulation is modulated following exposure to the metal stressor cadmium. Our experiments revealed interesting changes in gene transcription that suggest their biological roles and their potentially toxicological features in responding to this important environmental contaminant. Results Our microarray identified genes reported in the literature to be regulated in response to cadmium exposure, suggested functional attributes for genes that share no sequence similarity to proteins in the public databases, and pointed to genes that are likely members of expanded gene families in the Daphnia genome. Genes identified on the microarray also were associated with cadmium induced phenotypes and population-level outcomes that we experimentally determined. A subset of genes regulated in response to cadmium exposure was independently validated using quantitative-realtime (Q-RT-PCR. These microarray studies led to the discovery of three genes coding for the metal detoxication protein metallothionein (MT. The gene structures and predicted translated sequences of D. pulex MTs clearly place them in this gene family. Yet, they share little homology with previously characterized MTs. Conclusion The genomic information obtained from this study represents an important first step in characterizing microarray patterns that may be diagnostic to specific environmental contaminants and give insights into their toxicological mechanisms, while also providing a practical tool for evolutionary, ecological, and toxicological functional gene discovery studies. Advances in Daphnia genomics will enable the further development of this species as a model organism for

  7. Epilithic Cyanobacterial Communities of a Marine Tropical Beach Rock (Heron Island, Great Barrier Reef): Diversity and Diazotrophy▿

    Science.gov (United States)

    Díez, Beatriz; Bauer, Karolina; Bergman, Birgitta

    2007-01-01

    The diversity and nitrogenase activity of epilithic marine microbes in a Holocene beach rock (Heron Island, Great Barrier Reef, Australia) with a proposed biological calcification “microbialite” origin were examined. Partial 16S rRNA gene sequences from the dominant mat (a coherent and layered pink-pigmented community spread over the beach rock) and biofilms (nonstratified, differently pigmented microbial communities of small shallow depressions) were retrieved using denaturing gradient gel electrophoresis (DGGE), and a clone library was retrieved from the dominant mat. The 16S rRNA gene sequences and morphological analyses revealed heterogeneity in the cyanobacterial distribution patterns. The nonheterocystous filamentous genus Blennothrix sp., phylogenetically related to Lyngbya, dominated the mat together with unidentified nonheterocystous filaments of members of the Pseudanabaenaceae and the unicellular genus Chroococcidiopsis. The dominance and three-dimensional intertwined distribution of these organisms were confirmed by nonintrusive scanning microscopy. In contrast, the less pronounced biofilms were dominated by the heterocystous cyanobacterial genus Calothrix, two unicellular Entophysalis morphotypes, Lyngbya spp., and members of the Pseudanabaenaceae family. Cytophaga-Flavobacterium-Bacteroides and Alphaproteobacteria phylotypes were also retrieved from the beach rock. The microbial diversity of the dominant mat was accompanied by high nocturnal nitrogenase activities (as determined by in situ acetylene reduction assays). A new DGGE nifH gene optimization approach for cyanobacterial nitrogen fixers showed that the sequences retrieved from the dominant mat were related to nonheterocystous uncultured cyanobacterial phylotypes, only distantly related to sequences of nitrogen-fixing cultured cyanobacteria. These data stress the occurrence and importance of nonheterocystous epilithic cyanobacteria, and it is hypothesized that such epilithic cyanobacteria

  8. Promoters of Escherichia coli versus promoter islands: function and structure comparison.

    Directory of Open Access Journals (Sweden)

    Valeriy V Panyukov

    Full Text Available Expression of bacterial genes takes place under the control of RNA polymerase with exchangeable σ-subunits and multiple transcription factors. A typical promoter region contains one or several overlapping promoters. In the latter case promoters have the same or different σ-specificity and are often subjected to different regulatory stimuli. Genes, transcribed from multiple promoters, have on average higher expression levels. However, recently in the genome of Escherichia coli we found 78 regions with an extremely large number of potential transcription start points (promoter islands, PIs. It was shown that all PIs interact with RNA polymerase in vivo and are able to form transcriptionally competent open complexes both in vitro and in vivo but their transcriptional activity measured by oligonucleotide microarrays was very low, if any. Here we confirmed transcriptional defectiveness of PIs by analyzing the 5'-end specific RNA-seq data, but showed their ability to produce short oligos (9-14 bases. This combination of functional properties indicated a deliberate suppression of transcriptional activity within PIs. According to our data this suppression may be due to a specific conformation of the DNA double helix, which provides an ideal platform for interaction with both RNA polymerase and the histone-like nucleoid protein H-NS. The genomic DNA of E.coli contains therefore several dozen sites optimized by evolution for staying in a heterochromatin-like state. Since almost all promoter islands are associated with horizontally acquired genes, we offer them as specific components of bacterial evolution involved in acquisition of foreign genetic material by turning off the expression of toxic or useless aliens or by providing optimal promoter for beneficial genes. The putative molecular mechanism underlying the appearance of promoter islands within recipient genomes is discussed.

  9. The Gene tia, Harbored by the Subtilase-Encoding Pathogenicity Island, Is Involved in the Ability of Locus of Enterocyte Effacement-Negative Shiga Toxin-Producing Escherichia coli Strains To Invade Monolayers of Epithelial Cells

    Science.gov (United States)

    Chiani, Paola; Michelacci, Valeria; Minelli, Fabio; Caprioli, Alfredo; Morabito, Stefano

    2017-01-01

    ABSTRACT Locus of enterocyte effacement (LEE)-negative Shiga toxin (Stx)-producing Escherichia coli (STEC) strains are human pathogens that lack the LEE locus, a pathogenicity island (PAI) involved in the intimate adhesion of LEE-positive strains to the host gut epithelium. The mechanism used by LEE-negative STEC strains to colonize the host intestinal mucosa is still not clear. The cell invasion determinant tia, previously described in enterotoxigenic E. coli strains, has been identified in LEE-negative STEC strains that possess the subtilase-encoding pathogenicity island (SE-PAI). We evaluated the role of the gene tia, present in these LEE-negative STEC strains, in the invasion of monolayers of cultured cells. We observed that these strains were able to invade Caco-2 and HEp-2 cell monolayers and compared their invasion ability with that of a mutant strain in which the gene tia had been inactivated. Mutation of the gene tia resulted in a strong reduction of the invasive phenotype, and complementation of the tia mutation with a functional copy of the gene restored the invasion activity. Moreover, we show that the gene tia is overexpressed in bacteria actively invading cell monolayers, demonstrating that tia is involved in the ability to invade cultured monolayers of epithelial cells shown by SE-PAI-positive E. coli, including STEC, strains. However, the expression of the tia gene in the E. coli K-12 strain JM109 was not sufficient, in its own right, to confer to this strain the ability to invade cell monolayers, suggesting that at least another factor must be involved in the invasion ability displayed by the SE-PAI-positive strains. PMID:28893912

  10. The Gene tia, Harbored by the Subtilase-Encoding Pathogenicity Island, Is Involved in the Ability of Locus of Enterocyte Effacement-Negative Shiga Toxin-Producing Escherichia coli Strains To Invade Monolayers of Epithelial Cells.

    Science.gov (United States)

    Bondì, Roslen; Chiani, Paola; Michelacci, Valeria; Minelli, Fabio; Caprioli, Alfredo; Morabito, Stefano

    2017-12-01

    Locus of enterocyte effacement (LEE)-negative Shiga toxin (Stx)-producing Escherichia coli (STEC) strains are human pathogens that lack the LEE locus, a pathogenicity island (PAI) involved in the intimate adhesion of LEE-positive strains to the host gut epithelium. The mechanism used by LEE-negative STEC strains to colonize the host intestinal mucosa is still not clear. The cell invasion determinant tia , previously described in enterotoxigenic E. coli strains, has been identified in LEE-negative STEC strains that possess the subtilase-encoding pathogenicity island (SE-PAI). We evaluated the role of the gene tia , present in these LEE-negative STEC strains, in the invasion of monolayers of cultured cells. We observed that these strains were able to invade Caco-2 and HEp-2 cell monolayers and compared their invasion ability with that of a mutant strain in which the gene tia had been inactivated. Mutation of the gene tia resulted in a strong reduction of the invasive phenotype, and complementation of the tia mutation with a functional copy of the gene restored the invasion activity. Moreover, we show that the gene tia is overexpressed in bacteria actively invading cell monolayers, demonstrating that tia is involved in the ability to invade cultured monolayers of epithelial cells shown by SE-PAI-positive E. coli , including STEC, strains. However, the expression of the tia gene in the E. coli K-12 strain JM109 was not sufficient, in its own right, to confer to this strain the ability to invade cell monolayers, suggesting that at least another factor must be involved in the invasion ability displayed by the SE-PAI-positive strains. Copyright © 2017 American Society for Microbiology.

  11. Charge storage in mesoscopic graphitic islands fabricated using AFM bias lithography

    Energy Technology Data Exchange (ETDEWEB)

    Kurra, Narendra; Basavaraja, S; Kulkarni, G U [Chemistry and Physics of Materials Unit and DST Unit on Nanoscience, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur PO, Bangalore 560 064 (India); Prakash, Gyan; Fisher, Timothy S; Reifenberger, Ronald G, E-mail: kulkarni@jncasr.ac.in, E-mail: reifenbr@purdue.edu [Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907 (United States)

    2011-06-17

    Electrochemical oxidation and etching of highly oriented pyrolytic graphite (HOPG) has been achieved using biased atomic force microscopy (AFM) lithography, allowing patterns of varying complexity to be written into the top layers of HOPG. The graphitic oxidation process and the trench geometry after writing were monitored using intermittent contact mode AFM. Electrostatic force microscopy reveals that the isolated mesoscopic islands formed during the AFM lithography process become positively charged, suggesting that they are laterally isolated from the surrounding HOPG substrate. The electrical transport studies of these laterally isolated finite-layer graphitic islands enable detailed characterization of electrical conduction along the c-direction and reveal an unexpected stability of the charged state. Utilizing conducting-atomic force microscopy, the measured I(V) characteristics revealed significant non-linearities. Micro-Raman studies confirm the presence of oxy functional groups formed during the lithography process.

  12. Stratigraphy and morphology of the barrier platform of Breton Island, Louisiana: deltaic, marine and human influences

    Science.gov (United States)

    Flocks, James G.; Kindinger, Jack G.; Miselis, Jennifer L.; Locker, Stanley D.

    2015-01-01

    Breton Island, located at the southern end of the Chandeleur Islands, Louisiana, is part of the Breton National Wildlife Refuge (NWR). Breton NWR is recognized as an important bird habitat and is host to one of Louisiana's largest historical brown pelican nesting colonies. Loss of island area through relative sea-level rise, storm impact, and impeded and diminishing sediment supply is reducing the available habitat, and restoration is necessary if the island is to remain emergent. Physical investigation of the Breton Island platform has provided new insight into the geologic framework. The data reveal a complex system that is undergoing both long-term and short-term change. Results of the study help to resolve uncertainties in island evolution and will assist in effective restoration of the island.

  13. Phylogenetic analyses suggest a hybrid origin of the figs (Moraceae: Ficus) that are endemic to the Ogasawara (Bonin) Islands, Japan.

    Science.gov (United States)

    Kusumi, Junko; Azuma, Hiroshi; Tzeng, Hsy-Yu; Chou, Lien-Siang; Peng, Yan-Qiong; Nakamura, Keiko; Su, Zhi-Hui

    2012-04-01

    The Ogasawara Islands are oceanic islands and harbor a unique endemic flora. There are three fig species (Ficus boninsimae, F. nishimurae and F. iidaiana) endemic to the Ogasawara Islands, and these species have been considered to be closely related to Ficus erecta, and to have diverged within the islands. However, this hypothesis remains uncertain. To investigate this issue, we assessed the phylogenetic relationships of the Ogasawara figs and their close relatives occurring in Japan, Taiwan and South China based on six plastid genome regions, nuclear ITS region and two nuclear genes. The plastid genome-based tree indicated a close relationship between the Ogasawara figs and F. erecta, whereas some of the nuclear gene-based trees suggested this relationship was not so close. In addition, the phylogenetic analyses of the pollinating wasps associated with these fig species based on the nuclear 28S rRNA and mitochondrial cytB genes suggested that the fig-pollinating wasps of F. erecta are not sister to those of the Ogasawara figs These results suggest the occurrence of an early hybridization event(s) in the lineage leading to the Ogasawara figs. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Snake and bird predation drive the repeated convergent evolution of correlated life history traits and phenotype in the Izu Island Scincid lizard (Plestiodon latiscutatus.

    Directory of Open Access Journals (Sweden)

    Matthew C Brandley

    Full Text Available Predation may create strong natural selection pressure on the phenotype and life history characteristics of prey species. The Izu scincid lizards (Plestiodon latiscutatus that inhabit the four Japanese Izu Islands with only bird predators are drab brown, mature later, lay small clutches of large eggs, and hatch large neonates. In contrast, skinks on seven islands with both snake and bird predators are conspicuously colored, mature early, lay large clutches of small eggs, and hatch small neonates. We test the hypothesis that these suites of traits have evolved independently on each island via natural selection pressures from one of two predator regimes--birds-only and birds + snakes. Using two mtDNA genes and a nuclear locus, we infer a time-calibrated phylogeny of P. latiscutatus that reveals a basal split between Mikura and all islands south, and Miyake, all islands north, and the Izu Peninsula. Populations inhabiting Miyake, Niijima, Shikine, and Toshima are not monophyletic, suggesting either multiple colonizations or an artifact of incomplete lineage sorting (ILS. We therefore developed novel phylogenetic comparative analyses that assume either a multiple colonization or more restrictive single colonization ILS scenario and found 1 statistically significant support for the of different suites of phenotypic and life history characteristics with the presence of bird-only or bird + snake predator assemblages, and 2 strong phylogenetic support for at least two independent derivations of either the "bird-only" or "snakes + birds" phenotypes regardless of colonization scenario. Finally, our time-calibrated phylogeographic analysis supports the conclusion that the ancestor to modern Izu Island P. latiscutatus dispersed from the mainland to the Izu proto-islands between 3-7.6 million years ago (Ma. These lineages remained present in the area during successive formation of the islands, with one lineage re-colonizing the mainland 0.24-0.7 Ma.

  15. Insecticidal genes of Yersinia spp.: taxonomical distribution, contribution to toxicity towards Manduca sexta and Galleria mellonella, and evolution

    Directory of Open Access Journals (Sweden)

    Schachtner Joachim

    2008-12-01

    Full Text Available Abstract Background Toxin complex (Tc proteins termed TcaABC, TcdAB, and TccABC with insecticidal activity are present in a variety of bacteria including the yersiniae. Results The tc gene sequences of thirteen Yersinia strains were compared, revealing a high degree of gene order conservation, but also remarkable differences with respect to pseudogenes, sequence variability and gene duplications. Outside the tc pathogenicity island (tc-PAIYe of Y. enterocolitica strain W22703, a pseudogene (tccC2'/3' encoding proteins with homology to TccC and similarity to tyrosine phosphatases at its C-terminus was identified. PCR analysis revealed the presence of the tc-PAIYe and of tccC2'/3'-homologues in all biotype 2–5 strains tested, and their absence in most representatives of biotypes 1A and 1B. Phylogenetic analysis of 39 TccC sequences indicates the presence of the tc-PAIYe in an ancestor of Yersinia. Oral uptake experiments with Manduca sexta revealed a higher larvae lethality of Yersinia strains harbouring the tc-PAIYe in comparison to strains lacking this island. Following subcutaneous infection of Galleria mellonella larvae with five non-human pathogenic Yersinia spp. and four Y. enterocolitica strains, we observed a remarkable variability of their insecticidal activity ranging from 20% (Y. kristensenii to 90% (Y. enterocolitica strain 2594 dead larvae after five days. Strain W22703 and its tcaA deletion mutant did not exhibit a significantly different toxicity towards G. mellonella. These data confirm a role of TcaA upon oral uptake only, and suggest the presence of further insecticidal determinants in Yersinia strains formerly unknown to kill insects. Conclusion This study investigated the tc gene distribution among yersiniae and the phylogenetic relationship between TccC proteins, thus contributing novel aspects to the current discussion about the evolution of insecticidal toxins in the genus Yersinia. The toxic potential of several Yersinia

  16. Compositional searching of CpG islands in the human genome

    Science.gov (United States)

    Luque-Escamilla, Pedro Luis; Martínez-Aroza, José; Oliver, José L.; Gómez-Lopera, Juan Francisco; Román-Roldán, Ramón

    2005-06-01

    We report on an entropic edge detector based on the local calculation of the Jensen-Shannon divergence with application to the search for CpG islands. CpG islands are pieces of the genome related to gene expression and cell differentiation, and thus to cancer formation. Searching for these CpG islands is a major task in genetics and bioinformatics. Some algorithms have been proposed in the literature, based on moving statistics in a sliding window, but its size may greatly influence the results. The local use of Jensen-Shannon divergence is a completely different strategy: the nucleotide composition inside the islands is different from that in their environment, so a statistical distance—the Jensen-Shannon divergence—between the composition of two adjacent windows may be used as a measure of their dissimilarity. Sliding this double window over the entire sequence allows us to segment it compositionally. The fusion of those segments into greater ones that satisfy certain identification criteria must be achieved in order to obtain the definitive results. We find that the local use of Jensen-Shannon divergence is very suitable in processing DNA sequences for searching for compositionally different structures such as CpG islands, as compared to other algorithms in literature.

  17. Comparative Genomic Analysis Reveals a Diverse Repertoire of Genes Involved in Prokaryote-Eukaryote Interactions within the Pseudovibrio Genus.

    Science.gov (United States)

    Romano, Stefano; Fernàndez-Guerra, Antonio; Reen, F Jerry; Glöckner, Frank O; Crowley, Susan P; O'Sullivan, Orla; Cotter, Paul D; Adams, Claire; Dobson, Alan D W; O'Gara, Fergal

    2016-01-01

    Strains of the Pseudovibrio genus have been detected worldwide, mainly as part of bacterial communities associated with marine invertebrates, particularly sponges. This recurrent association has been considered as an indication of a symbiotic relationship between these microbes and their host. Until recently, the availability of only two genomes, belonging to closely related strains, has limited the knowledge on the genomic and physiological features of the genus to a single phylogenetic lineage. Here we present 10 newly sequenced genomes of Pseudovibrio strains isolated from marine sponges from the west coast of Ireland, and including the other two publicly available genomes we performed an extensive comparative genomic analysis. Homogeneity was apparent in terms of both the orthologous genes and the metabolic features shared amongst the 12 strains. At the genomic level, a key physiological difference observed amongst the isolates was the presence only in strain P. axinellae AD2 of genes encoding proteins involved in assimilatory nitrate reduction, which was then proved experimentally. We then focused on studying those systems known to be involved in the interactions with eukaryotic and prokaryotic cells. This analysis revealed that the genus harbors a large diversity of toxin-like proteins, secretion systems and their potential effectors. Their distribution in the genus was not always consistent with the phylogenetic relationship of the strains. Finally, our analyses identified new genomic islands encoding potential toxin-immunity systems, previously unknown in the genus. Our analyses shed new light on the Pseudovibrio genus, indicating a large diversity of both metabolic features and systems for interacting with the host. The diversity in both distribution and abundance of these systems amongst the strains underlines how metabolically and phylogenetically similar bacteria may use different strategies to interact with the host and find a niche within its

  18. Knock-down of transcript abundance of a family of Kunitz proteinase inhibitor genes in white clover (Trifolium repens) reveals a redundancy and diversity of gene function.

    Science.gov (United States)

    Islam, Afsana; Leung, Susanna; Burgess, Elisabeth P J; Laing, William A; Richardson, Kim A; Hofmann, Rainer W; Dijkwel, Paul P; McManus, Michael T

    2015-12-01

    The transcriptional regulation of four phylogenetically distinct members of a family of Kunitz proteinase inhibitor (KPI) genes isolated from white clover (Trifolium repens; designated Tr-KPI1, Tr-KPI2, Tr-KPI4 and Tr-KPI5) has been investigated to determine their wider functional role. The four genes displayed differential transcription during seed germination, and in different tissues of the mature plant, and transcription was also ontogenetically regulated. Heterologous over-expression of Tr-KPI1, Tr-KPI2, Tr-KPI4 and Tr-KPI5 in Nicotiana tabacum retarded larval growth of the herbivore Spodoptera litura, and an increase in the transcription of the pathogenesis-related genes PR1 and PR4 was observed in the Tr-KPI1 and Tr-KPI4 over-expressing lines. RNA interference (RNAi) knock-down lines in white clover displayed significantly altered vegetative growth phenotypes with inhibition of shoot growth and a stimulation of root growth, while knock-down of Tr-KPI1, Tr-KPI2 and Tr-KPI5 transcript abundance also retarded larval growth of S. litura. Examination of these RNAi lines revealed constitutive stress-associated phenotypes as well as altered transcription of cellular signalling genes. These results reveal a functional redundancy across members of the KPI gene family. Further, the regulation of transcription of at least one member of the family, Tr-KPI2, may occupy a central role in the maintenance of a cellular homeostasis. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  19. Integrated analysis of microRNA and gene expression profiles reveals a functional regulatory module associated with liver fibrosis.

    Science.gov (United States)

    Chen, Wei; Zhao, Wenshan; Yang, Aiting; Xu, Anjian; Wang, Huan; Cong, Min; Liu, Tianhui; Wang, Ping; You, Hong

    2017-12-15

    Liver fibrosis, characterized with the excessive accumulation of extracellular matrix (ECM) proteins, represents the final common pathway of chronic liver inflammation. Ever-increasing evidence indicates microRNAs (miRNAs) dysregulation has important implications in the different stages of liver fibrosis. However, our knowledge of miRNA-gene regulation details pertaining to such disease remains unclear. The publicly available Gene Expression Omnibus (GEO) datasets of patients suffered from cirrhosis were extracted for integrated analysis. Differentially expressed miRNAs (DEMs) and genes (DEGs) were identified using GEO2R web tool. Putative target gene prediction of DEMs was carried out using the intersection of five major algorithms: DIANA-microT, TargetScan, miRanda, PICTAR5 and miRWalk. Functional miRNA-gene regulatory network (FMGRN) was constructed based on the computational target predictions at the sequence level and the inverse expression relationships between DEMs and DEGs. DAVID web server was selected to perform KEGG pathway enrichment analysis. Functional miRNA-gene regulatory module was generated based on the biological interpretation. Internal connections among genes in liver fibrosis-related module were determined using String database. MiRNA-gene regulatory modules related to liver fibrosis were experimentally verified in recombinant human TGFβ1 stimulated and specific miRNA inhibitor treated LX-2 cells. We totally identified 85 and 923 dysregulated miRNAs and genes in liver cirrhosis biopsy samples compared to their normal controls. All evident miRNA-gene pairs were identified and assembled into FMGRN which consisted of 990 regulations between 51 miRNAs and 275 genes, forming two big sub-networks that were defined as down-network and up-network, respectively. KEGG pathway enrichment analysis revealed that up-network was prominently involved in several KEGG pathways, in which "Focal adhesion", "PI3K-Akt signaling pathway" and "ECM

  20. Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process

    International Nuclear Information System (INIS)

    Chandran, Uma R; Ma, Changqing; Dhir, Rajiv; Bisceglia, Michelle; Lyons-Weiler, Maureen; Liang, Wenjing; Michalopoulos, George; Becich, Michael; Monzon, Federico A

    2007-01-01

    Prostate cancer is characterized by heterogeneity in the clinical course that often does not correlate with morphologic features of the tumor. Metastasis reflects the most adverse outcome of prostate cancer, and to date there are no reliable morphologic features or serum biomarkers that can reliably predict which patients are at higher risk of developing metastatic disease. Understanding the differences in the biology of metastatic and organ confined primary tumors is essential for developing new prognostic markers and therapeutic targets. Using Affymetrix oligonucleotide arrays, we analyzed gene expression profiles of 24 androgen-ablation resistant metastatic samples obtained from 4 patients and a previously published dataset of 64 primary prostate tumor samples. Differential gene expression was analyzed after removing potentially uninformative stromal genes, addressing the differences in cellular content between primary and metastatic tumors. The metastatic samples are highly heterogenous in expression; however, differential expression analysis shows that 415 genes are upregulated and 364 genes are downregulated at least 2 fold in every patient with metastasis. The expression profile of metastatic samples reveals changes in expression of a unique set of genes representing both the androgen ablation related pathways and other metastasis related gene networks such as cell adhesion, bone remodelling and cell cycle. The differentially expressed genes include metabolic enzymes, transcription factors such as Forkhead Box M1 (FoxM1) and cell adhesion molecules such as Osteopontin (SPP1). We hypothesize that these genes have a role in the biology of metastatic disease and that they represent potential therapeutic targets for prostate cancer

  1. Island in an island – The suggestions for transportation improvement plan for Haidian Island, Haikou, Hainan

    Directory of Open Access Journals (Sweden)

    Sia Rosalind Juo Ling

    2017-01-01

    Full Text Available Haidian Island, which situated at the Northern part of Haikou City of Hainan Province, is an island within a city. Haidian Island is unique in term of it's development which centered around an university, the Hainan University, besides some others important landmarks, such as Haikou city hospital, Baishamen municipal park, Golf Driving Range etc. All commercials, residential, recreational activities etc are planned to serve Hainan University in particular. The study, taking ‘Haidian Island Area Development Control Plan’ as case study, would like to look into the importance of transportation and traffic planning. The study used observation, site investigation and traffic study methods to gather data needed. Firstly the study analyzed the current state of transportation system for Haidian Island in accordance to the Island Development Control plan and Haikou master plan and identified the problems. Then, the study made some recommendations for these problems. The study highlighted the important of non-motorized, cycling and walking as the main transportation system for an education-based island and as supportive to domestic tourism activities found. The transportation planning suggested by the study took ‘green and low-carbon’ approaches considered the role of University as the core activity in the island.

  2. The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system.

    Science.gov (United States)

    Vonk, Freek J; Casewell, Nicholas R; Henkel, Christiaan V; Heimberg, Alysha M; Jansen, Hans J; McCleary, Ryan J R; Kerkkamp, Harald M E; Vos, Rutger A; Guerreiro, Isabel; Calvete, Juan J; Wüster, Wolfgang; Woods, Anthony E; Logan, Jessica M; Harrison, Robert A; Castoe, Todd A; de Koning, A P Jason; Pollock, David D; Yandell, Mark; Calderon, Diego; Renjifo, Camila; Currier, Rachel B; Salgado, David; Pla, Davinia; Sanz, Libia; Hyder, Asad S; Ribeiro, José M C; Arntzen, Jan W; van den Thillart, Guido E E J M; Boetzer, Marten; Pirovano, Walter; Dirks, Ron P; Spaink, Herman P; Duboule, Denis; McGlinn, Edwina; Kini, R Manjunatha; Richardson, Michael K

    2013-12-17

    Snakes are limbless predators, and many species use venom to help overpower relatively large, agile prey. Snake venoms are complex protein mixtures encoded by several multilocus gene families that function synergistically to cause incapacitation. To examine venom evolution, we sequenced and interrogated the genome of a venomous snake, the king cobra (Ophiophagus hannah), and compared it, together with our unique transcriptome, microRNA, and proteome datasets from this species, with data from other vertebrates. In contrast to the platypus, the only other venomous vertebrate with a sequenced genome, we find that snake toxin genes evolve through several distinct co-option mechanisms and exhibit surprisingly variable levels of gene duplication and directional selection that correlate with their functional importance in prey capture. The enigmatic accessory venom gland shows a very different pattern of toxin gene expression from the main venom gland and seems to have recruited toxin-like lectin genes repeatedly for new nontoxic functions. In addition, tissue-specific microRNA analyses suggested the co-option of core genetic regulatory components of the venom secretory system from a pancreatic origin. Although the king cobra is limbless, we recovered coding sequences for all Hox genes involved in amniote limb development, with the exception of Hoxd12. Our results provide a unique view of the origin and evolution of snake venom and reveal multiple genome-level adaptive responses to natural selection in this complex biological weapon system. More generally, they provide insight into mechanisms of protein evolution under strong selection.

  3. Simultaneous CXCL12 and ESR1 CpG island hypermethylation correlates with poor prognosis in sporadic breast cancer

    International Nuclear Information System (INIS)

    Ramos, Edneia AS; Klassen, Giseli; Camargo, Anamaria A; Braun, Karin; Slowik, Renata; Cavalli, Iglenir J; Ribeiro, Enilze MSF; Pedrosa, Fábio de O; Souza, Emanuel M de; Costa, Fabrício F

    2010-01-01

    CXCL12 is a chemokine that is constitutively expressed in many organs and tissues. CXCL12 promoter hypermethylation has been detected in primary breast tumours and contributes to their metastatic potential. It has been shown that the oestrogen receptor α (ESR1) gene can also be silenced by DNA methylation. In this study, we used methylation-specific PCR (MSP) to analyse the methylation status in two regions of the CXCL12 promoter and ESR1 in tumour cell lines and in primary breast tumour samples, and correlated our results with clinicopathological data. First, we analysed CXCL12 expression in breast tumour cell lines by RT-PCR. We also used 5-aza-2'-deoxycytidine (5-aza-CdR) treatment and DNA bisulphite sequencing to study the promoter methylation for a specific region of CXCL12 in breast tumour cell lines. We evaluated CXCL12 and ESR1 methylation in primary tumour samples by methylation-specific PCR (MSP). Finally, promoter hypermethylation of these genes was analysed using Fisher's exact test and correlated with clinicopathological data using the Chi square test, Kaplan-Meier survival analysis and Cox regression analysis. CXCL12 promoter hypermethylation in the first region (island 2) and second region (island 4) was correlated with lack of expression of the gene in tumour cell lines. In the primary tumours, island 2 was hypermethylated in 14.5% of the samples and island 4 was hypermethylated in 54% of the samples. The ESR1 promoter was hypermethylated in 41% of breast tumour samples. In addition, the levels of ERα protein expression diminished with increased frequency of ESR1 methylation (p < 0.0001). This study also demonstrated that CXCL12 island 4 and ESR1 methylation occur simultaneously at a high frequency (p = 0.0220). This is the first study showing a simultaneous involvement of epigenetic regulation for both CXCL12 and ESR1 genes in Brazilian women. The methylation status of both genes was significantly correlated with histologically advanced

  4. Large scale gene expression meta-analysis reveals tissue-specific, sex-biased gene expression in humans

    Directory of Open Access Journals (Sweden)

    Benjamin Mayne

    2016-10-01

    Full Text Available The severity and prevalence of many diseases are known to differ between the sexes. Organ specific sex-biased gene expression may underpin these and other sexually dimorphic traits. To further our understanding of sex differences in transcriptional regulation, we performed meta-analyses of sex biased gene expression in multiple human tissues. We analysed 22 publicly available human gene expression microarray data sets including over 2500 samples from 15 different tissues and 9 different organs. Briefly, by using an inverse-variance method we determined the effect size difference of gene expression between males and females. We found the greatest sex differences in gene expression in the brain, specifically in the anterior cingulate cortex, (1818 genes, followed by the heart (375 genes, kidney (224 genes, colon (218 genes and thyroid (163 genes. More interestingly, we found different parts of the brain with varying numbers and identity of sex-biased genes, indicating that specific cortical regions may influence sexually dimorphic traits. The majority of sex-biased genes in other tissues such as the bladder, liver, lungs and pancreas were on the sex chromosomes or involved in sex hormone production. On average in each tissue, 32% of autosomal genes that were expressed in a sex-biased fashion contained androgen or estrogen hormone response elements. Interestingly, across all tissues, we found approximately two-thirds of autosomal genes that were sex-biased were not under direct influence of sex hormones. To our knowledge this is the largest analysis of sex-biased gene expression in human tissues to date. We identified many sex-biased genes that were not under the direct influence of sex chromosome genes or sex hormones. These may provide targets for future development of sex-specific treatments for diseases.

  5. A model of gene expression based on random dynamical systems reveals modularity properties of gene regulatory networks.

    Science.gov (United States)

    Antoneli, Fernando; Ferreira, Renata C; Briones, Marcelo R S

    2016-06-01

    Here we propose a new approach to modeling gene expression based on the theory of random dynamical systems (RDS) that provides a general coupling prescription between the nodes of any given regulatory network given the dynamics of each node is modeled by a RDS. The main virtues of this approach are the following: (i) it provides a natural way to obtain arbitrarily large networks by coupling together simple basic pieces, thus revealing the modularity of regulatory networks; (ii) the assumptions about the stochastic processes used in the modeling are fairly general, in the sense that the only requirement is stationarity; (iii) there is a well developed mathematical theory, which is a blend of smooth dynamical systems theory, ergodic theory and stochastic analysis that allows one to extract relevant dynamical and statistical information without solving the system; (iv) one may obtain the classical rate equations form the corresponding stochastic version by averaging the dynamic random variables (small noise limit). It is important to emphasize that unlike the deterministic case, where coupling two equations is a trivial matter, coupling two RDS is non-trivial, specially in our case, where the coupling is performed between a state variable of one gene and the switching stochastic process of another gene and, hence, it is not a priori true that the resulting coupled system will satisfy the definition of a random dynamical system. We shall provide the necessary arguments that ensure that our coupling prescription does indeed furnish a coupled regulatory network of random dynamical systems. Finally, the fact that classical rate equations are the small noise limit of our stochastic model ensures that any validation or prediction made on the basis of the classical theory is also a validation or prediction of our model. We illustrate our framework with some simple examples of single-gene system and network motifs. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Comparative genomic analysis of Brucella abortus vaccine strain 104M reveals a set of candidate genes associated with its virulence attenuation.

    Science.gov (United States)

    Yu, Dong; Hui, Yiming; Zai, Xiaodong; Xu, Junjie; Liang, Long; Wang, Bingxiang; Yue, Junjie; Li, Shanhu

    2015-01-01

    The Brucella abortus strain 104M, a spontaneously attenuated strain, has been used as a vaccine strain in humans against brucellosis for 6 decades in China. Despite many studies, the molecular mechanisms that cause the attenuation are still unclear. Here, we determined the whole-genome sequence of 104M and conducted a comprehensive comparative analysis against the whole genome sequences of the virulent strain, A13334, and other reference strains. This analysis revealed a highly similar genome structure between 104M and A13334. The further comparative genomic analysis between 104M and A13334 revealed a set of genes missing in 104M. Some of these genes were identified to be directly or indirectly associated with virulence. Similarly, a set of mutations in the virulence-related genes was also identified, which may be related to virulence alteration. This study provides a set of candidate genes associated with virulence attenuation in B.abortus vaccine strain 104M.

  7. Threatened pollination systems in native flora of the Ogasawara (Bonin) Islands.

    Science.gov (United States)

    Abe, Tetsuto

    2006-08-01

    Various alien species have been introduced to the Ogasawara Islands (Japan). A survey was made investigating whether the native pollination systems fit an 'island syndrome' (biasing the flora to dioecy, with subdued, inconspicuous flowers) and whether alien species have disrupted the native pollination network. Flower visitors and floral traits were determined in the field (12 islands) and from the literature. Associations among floral traits such as sexual expression, flower colour and flower shape were tested. Among the 269 native flowering plants, 74.7 % are hermaphroditic, 13.0 % are dioecious and 7.1 % are monoecious. Classification by flower colour revealed that 36.0 % were white, 21.6 % green and 13.8 % yellow. Woody species (trees and shrubs) comprised 36.5 % of the flora and were associated with dioecy and white flowers. Solitary, endemic small bees were the dominant flower visitors and visited 66.7 % of the observed species on satellite islands where the native pollination networks are preserved. In contrast to the situation on the satellite islands, introduced honeybees were the most dominant pollinator (visiting 60.1 % of observed species) on the two main islands, Chichi-jima and Haha-jima, and had spread to satellite islands near Chichi-jima Island. The island syndrome for pollination systems in the Ogasawara Islands was evident in a high percentage of dioecious species, the subdued colour of the native flora and solitary flower visitors on satellite islands. The shape and colour adaptations of several flowers suggested native pollination niches for long-proboscis moths and carpenter bees. However, the domination and expansion of introduced honeybees have the potential for disruption of the native pollination network in the two main, and several satellite, islands of the Ogasawara Islands.

  8. Gene expression profiles reveal key genes for early diagnosis and treatment of adamantinomatous craniopharyngioma.

    Science.gov (United States)

    Yang, Jun; Hou, Ziming; Wang, Changjiang; Wang, Hao; Zhang, Hongbing

    2018-04-23

    Adamantinomatous craniopharyngioma (ACP) is an aggressive brain tumor that occurs predominantly in the pediatric population. Conventional diagnosis method and standard therapy cannot treat ACPs effectively. In this paper, we aimed to identify key genes for ACP early diagnosis and treatment. Datasets GSE94349 and GSE68015 were obtained from Gene Expression Omnibus database. Consensus clustering was applied to discover the gene clusters in the expression data of GSE94349 and functional enrichment analysis was performed on gene set in each cluster. The protein-protein interaction (PPI) network was built by the Search Tool for the Retrieval of Interacting Genes, and hubs were selected. Support vector machine (SVM) model was built based on the signature genes identified from enrichment analysis and PPI network. Dataset GSE94349 was used for training and testing, and GSE68015 was used for validation. Besides, RT-qPCR analysis was performed to analyze the expression of signature genes in ACP samples compared with normal controls. Seven gene clusters were discovered in the differentially expressed genes identified from GSE94349 dataset. Enrichment analysis of each cluster identified 25 pathways that highly associated with ACP. PPI network was built and 46 hubs were determined. Twenty-five pathway-related genes that overlapped with the hubs in PPI network were used as signatures to establish the SVM diagnosis model for ACP. The prediction accuracy of SVM model for training, testing, and validation data were 94, 85, and 74%, respectively. The expression of CDH1, CCL2, ITGA2, COL8A1, COL6A2, and COL6A3 were significantly upregulated in ACP tumor samples, while CAMK2A, RIMS1, NEFL, SYT1, and STX1A were significantly downregulated, which were consistent with the differentially expressed gene analysis. SVM model is a promising classification tool for screening and early diagnosis of ACP. The ACP-related pathways and signature genes will advance our knowledge of ACP pathogenesis

  9. Wine tourism in the Canary Islands: An exploratory study

    Directory of Open Access Journals (Sweden)

    Duarte Alonso, Abel

    2008-04-01

    Full Text Available Wine tourism is experiencing significant development in both new and old European wine regions. In the case of the Canary Islands, wine has been produced and traded for centuries but little is known about the current state or potential for wine tourism on the islands, despite the fact that millions of tourists, including many potential wine tourists, visit the islands each year. In this exploratory study, the perspectives of winery owners and managers on wine tourism are examined via in-depth face-to-face interviews among 23 small winery operators to reveal that the scope for exploiting wine tourism on the islands has been recognized and that some wineries are either already involved in wine tourism, includ-ing as part of a wine trail, or plan to be more involved in the future. It was also discovered, that there were a number of issues that challenge the development of their wine and wine tourism industry, includ-ing competition from non-Canary Island wines and anti-drink-drive laws that are inhibit passers by to consume wine at the cellar door. Operators stressed the need to find a balance between mass tourism and the niche produce of wine. Moreover, the findings identify avenues for future research on wine tourism development in the Canary Islands.

  10. Equilibrium Bird Species Diversity in Atlantic Islands.

    Science.gov (United States)

    Valente, Luis; Illera, Juan Carlos; Havenstein, Katja; Pallien, Tamara; Etienne, Rampal S; Tiedemann, Ralph

    2017-06-05

    Half a century ago, MacArthur and Wilson proposed that the number of species on islands tends toward a dynamic equilibrium diversity around which species richness fluctuates [1]. The current prevailing view in island biogeography accepts the fundamentals of MacArthur and Wilson's theory [2] but questions whether their prediction of equilibrium can be fulfilled over evolutionary timescales, given the unpredictable and ever-changing nature of island geological and biotic features [3-7]. Here we conduct a complete molecular phylogenetic survey of the terrestrial bird species from four oceanic archipelagos that make up the diverse Macaronesian bioregion-the Azores, the Canary Islands, Cape Verde, and Madeira [8, 9]. We estimate the times at which birds colonized and speciated in the four archipelagos, including many previously unsampled endemic and non-endemic taxa and their closest continental relatives. We develop and fit a new multi-archipelago dynamic stochastic model to these data, explicitly incorporating information from 91 taxa, both extant and extinct. Remarkably, we find that all four archipelagos have independently achieved and maintained a dynamic equilibrium over millions of years. Biogeographical rates are homogeneous across archipelagos, except for the Canary Islands, which exhibit higher speciation and colonization. Our finding that the avian communities of the four Macaronesian archipelagos display an equilibrium diversity pattern indicates that a diversity plateau may be rapidly achieved on islands where rates of in situ radiation are low and extinction is high. This study reveals that equilibrium processes may be more prevalent than recently proposed, supporting MacArthur and Wilson's 50-year-old theory. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Origin and diversification of Hibiscus glaber, species endemic to the oceanic Bonin Islands, revealed by chloroplast DNA polymorphism.

    Science.gov (United States)

    Takayama, Koji; Ohi-Toma, Tetsuo; Kudoh, Hiroshi; Kato, Hidetoshi

    2005-04-01

    Abstract Two woody Hibiscus species co-occur in the Bonin Islands of the northwestern Pacific Ocean: Hibiscus glaber Matsum. is endemic to the islands, and its putative ancestral species, Hibiscus tiliaceus L., is widely distributed in coastal areas of the tropics and subtropics. To infer isolating mechanisms that led to speciation of H. glaber and the processes that resulted in co-occurrence of the two closely related species on the Bonin Islands, we conducted molecular phylogenetic analyses on chloroplast DNA (cpDNA) sequences. Materials collected from a wide area of the Pacific and Indian Oceans were used, and two closely related species, Hibiscus hamabo Siebold Zucc. and Hibiscus macrophyllus Roxb., were also included in the analyses. The constructed tree suggested that H. glaber has been derived from H. tiliaceus, and that most of the modern Bonin populations of H. tiliaceus did not share most recent ancestry with H. glaber. Geographic isolation appears to be the most important mechanism in the speciation of H. glaber. The co-occurrence of the two species can be attributed to multiple migrations of different lineages into the islands. While a wide and overlapping geographical distribution of haplotypes was found in H. tiliaceus, localized geographical distribution of haplotypes was detected in H. glaber. It is hypothesized that a shift to inland habitats may have affected the mode of seed dispersal from ocean currents to gravity and hence resulted in geographical structuring of H. glaber haplotypes.

  12. Phylogeography of a successful aerial disperser: the golden orb spider Nephila on Indian Ocean islands

    Directory of Open Access Journals (Sweden)

    Kuntner Matjaž

    2011-05-01

    Full Text Available Abstract Background The origin and diversification patterns of lineages across the Indian Ocean islands are varied due to the interplay of the complex geographic and geologic island histories, the varying dispersal abilities of biotas, and the proximity to major continental landmasses. Our aim was to reconstruct phylogeographic history of the giant orbweaving spider (Nephila on western Indian Ocean islands (Madagascar, Mayotte, Réunion, Mauritius, Rodrigues, to test its origin and route of dispersal, and to examine the consequences of good dispersal abilities for colonization and diversification, in comparison with related spiders (Nephilengys inhabiting the same islands, and with other organisms known for over water dispersal. We used mitochondrial (COI and nuclear (ITS2 markers to examine phylogenetic and population genetic patterns in Nephila populations and species. We employed Bayesian and parsimony methods to reconstruct phylogenies and haplotype networks, respectively, and calculated genetic distances, fixation indices, and estimated clade ages under a relaxed clock model. Results Our results suggest an African origin of Madagascar Nephila inaurata populations via Cenozoic dispersal, and the colonization of the Mascarene islands from Madagascar. We find evidence of gene flow across Madagascar and Comoros. The Mascarene islands share a common 'ancestral' COI haplotype closely related to those found on Madagascar, but itself absent, or as yet unsampled, from Madagascar. Each island has one or more unique haplotypes related to the ancestral Mascarene haplotype. The Indian Ocean N. inaurata are genetically distinct from the African populations. Conclusions Nephila spiders colonized Madagascar from Africa about 2.5 (0.6-5.3 Ma. Our results are consistent with subsequent, recent and rapid, colonization of all three Mascarene islands. On each island, however, we detected unique haplotypes, consistent with a limited gene flow among the islands

  13. Polyploid genome of Camelina sativa revealed by isolation of fatty acid synthesis genes

    Directory of Open Access Journals (Sweden)

    Shewmaker Christine K

    2010-10-01

    Full Text Available Abstract Background Camelina sativa, an oilseed crop in the Brassicaceae family, has inspired renewed interest due to its potential for biofuels applications. Little is understood of the nature of the C. sativa genome, however. A study was undertaken to characterize two genes in the fatty acid biosynthesis pathway, fatty acid desaturase (FAD 2 and fatty acid elongase (FAE 1, which revealed unexpected complexity in the C. sativa genome. Results In C. sativa, Southern analysis indicates the presence of three copies of both FAD2 and FAE1 as well as LFY, a known single copy gene in other species. All three copies of both CsFAD2 and CsFAE1 are expressed in developing seeds, and sequence alignments show that previously described conserved sites are present, suggesting that all three copies of both genes could be functional. The regions downstream of CsFAD2 and upstream of CsFAE1 demonstrate co-linearity with the Arabidopsis genome. In addition, three expressed haplotypes were observed for six predicted single-copy genes in 454 sequencing analysis and results from flow cytometry indicate that the DNA content of C. sativa is approximately three-fold that of diploid Camelina relatives. Phylogenetic analyses further support a history of duplication and indicate that C. sativa and C. microcarpa might share a parental genome. Conclusions There is compelling evidence for triplication of the C. sativa genome, including a larger chromosome number and three-fold larger measured genome size than other Camelina relatives, three isolated copies of FAD2, FAE1, and the KCS17-FAE1 intergenic region, and three expressed haplotypes observed for six predicted single-copy genes. Based on these results, we propose that C. sativa be considered an allohexaploid. The characterization of fatty acid synthesis pathway genes will allow for the future manipulation of oil composition of this emerging biofuel crop; however, targeted manipulations of oil composition and general

  14. Middle Pleistocene palaeoenvironmental changes of the eastern Canary Islands - revealed by the Mála dune-palaeosol-sequence at Lanzarote (Canary Islands)

    Science.gov (United States)

    von Suchodoletz, H.; Zöller, L.; Hilgers, A.; Radtke, U.; Faust, D.

    2012-04-01

    The Canary Islands are located at the transition between the Mediterranean and the Saharan climate off NW-Africa. Thus, they are a key area for the investigation of palaeoenvironmental changes. Several terrestrial studies investigated the palaeoenvironmental development of that region during the later part of the last glacial cycle. However, apart from recent investigations of "vega" sediments on Lanzarote Island (Suchodoletz et al. 2010) the palaeoenvironmental evolution during the Middle Pleistocene is hardly studied yet, basically due to the lack of reliable geochronological data. The Mála dune-palaeosol-sequence is located in the north of Lanzarote. It consists of marine shell detritus originally blown out from the insular shelf during periods of low global sea level, and to a small part of Saharan dust and fine quartz sand. The aeolian layers are intercalated with up to eight silty-clayey palaeosol horizons. Unlike the dune sands, the soils indicate stable landscape conditions with trapping of Saharan dust. Using a combination of ESR and luminescence dating techniques, we are able to place this sequence into the Middle Pleistocene, in contrast to former investigations based on 14C datings postulating a Late Pleistocene age (Ortiz et al. 2006). As a consequence, clayey-silty palaeosols represent periods of stable landscape conditions in the Canarian region during the Middle Pleistocene, which we compare with marine palaeoclimatic studies from the area.

  15. Islands and non-islands in native and heritage Korean

    Directory of Open Access Journals (Sweden)

    Boyoung eKim

    2016-02-01

    Full Text Available To a large extent, island phenomena are cross-linguistically invariable, but English and Korean present some striking differences in this domain. English has wh-movement and Korean does not, and while both languages show sensitivity to wh-islands, only English has island effects for adjunct clauses. Given this complex set of differences, one might expect Korean/English bilinguals, and especially heritage Korean speakers (i.e. early bilinguals whose L2 became their dominant language during childhood to be different from native speakers, since heritage speakers have had more limited exposure to Korean, may have had incomplete acquisition and/or attrition, and may show significant transfer effects from the L2. Here we examine islands in heritage speakers of Korean in the U.S. Through a series of four formal acceptability experiments comparing these heritage speakers with native speakers residing in Korea, we show that the two groups are remarkably similar. Both show clear evidence for wh-islands and an equally clear lack of adjunct island effects. Given the very different linguistic environment that the heritage speakers have had since early childhood, this result lends support to the idea that island phenomena are largely immune to environmental influences and stem from deeper properties of the processor and/or grammar. Similarly, it casts some doubt on recent proposals that islands are learned from the input.

  16. Class renormalization: islands around islands

    International Nuclear Information System (INIS)

    Meiss, J.D.

    1986-01-01

    An orbit of 'class' is one that rotates about a periodic orbit of one lower class with definite frequency. This contrasts to the 'level' of a periodic orbit which is the number of elements in its continued fraction expansion. Level renormalization is conventionally used to study the structure of quasi-periodic orbits. The scaling structure of periodic orbits encircling other periodic orbits in area preserving maps is discussed here. Fixed points corresponding to the accumulation of p/q bifurcations are found and scaling exponents determined. Fixed points for q > 2 correspond to self-similar islands around islands. Frequencies of the island boundary circles at the fixed points are obtained. Importance of this scaling for the motion of particles in stochastic regions is emphasized. (author)

  17. Reliable and rapid characterization of functional FCN2 gene variants reveals diverse geographical patterns

    Directory of Open Access Journals (Sweden)

    Ojurongbe Olusola

    2012-05-01

    Full Text Available Abstract Background Ficolin-2 coded by FCN2 gene is a soluble serum protein and an innate immune recognition element of the complement system. FCN2 gene polymorphisms reveal distinct geographical patterns and are documented to alter serum ficolin levels and modulate disease susceptibility. Methods We employed a real-time PCR based on Fluorescence Resonance Energy Transfer (FRET method to genotype four functional SNPs including -986 G > A (#rs3124952, -602 G > A (#rs3124953, -4A > G (#rs17514136 and +6424 G > T (#rs7851696 in the ficolin-2 (FCN2 gene. We characterized the FCN2 variants in individuals representing Brazilian (n = 176, Nigerian (n = 180, Vietnamese (n = 172 and European Caucasian ethnicity (n = 165. Results We observed that the genotype distribution of three functional SNP variants (−986 G > A, -602 G > A and -4A > G differ significantly between the populations investigated (p p  Conclusions The observed distribution of the FCN2 functional SNP variants may likely contribute to altered serum ficolin levels and this may depend on the different disease settings in world populations. To conclude, the use of FRET based real-time PCR especially for FCN2 gene will benefit a larger scientific community who extensively depend on rapid, reliable method for FCN2 genotyping.

  18. A Phyletically Rare Gene Promotes the Niche-specific Fitness of an E. coli Pathogen during Bacteremia

    Science.gov (United States)

    Wiles, Travis J.; Lewis, Adam J.; Mobley, Harry L. T.; Casjens, Sherwood R.; Mulvey, Matthew A.

    2013-01-01

    In bacteria, laterally acquired genes are often concentrated within chromosomal regions known as genomic islands. Using a recently developed zebrafish infection model, we set out to identify unique factors encoded within genomic islands that contribute to the fitness and virulence of a reference urosepsis isolate—extraintestinal pathogenic Escherichia coli strain CFT073. By screening a series of deletion mutants, we discovered a previously uncharacterized gene, neaT, that is conditionally required by the pathogen during systemic infections. In vitro assays indicate that neaT can limit bacterial interactions with host phagocytes and alter the aggregative properties of CFT073. The neaT gene is localized within an integrated P2-like bacteriophage in CFT073, but was rarely found within other proteobacterial genomes. Sequence-based analyses revealed that neaT homologues are present, but discordantly conserved, within a phyletically diverse set of bacterial species. In CFT073, neaT appears to be unameliorated, having an exceptionally A+T-rich composition along with a notably altered codon bias. These data suggest that neaT was recently brought into the proteobacterial pan-genome from an extra-phyletic source. Interestingly, even in G+C-poor genomes, as found within the Firmicutes lineage, neaT-like genes are often unameliorated. Sequence-level features of neaT homologues challenge the common supposition that the A+T-rich nature of many recently acquired genes reflects the nucleotide composition of their genomes of origin. In total, these findings highlight the complexity of the evolutionary forces that can affect the acquisition, utilization, and assimilation of rare genes that promote the niche-dependent fitness and virulence of a bacterial pathogen. PMID:23459509

  19. Building tobacco cessation capacity in the U.S.-affiliated Pacific Islands.

    Science.gov (United States)

    David, Annette M; Cruz, Peter J; Mercado, Susan P; Li, Dan

    2013-09-01

    Tobacco control stakeholders in priority populations are searching for culturally appropriate cessation training models to strengthen cessation capacity and infrastructure. We adapted the University of Arizona model for Brief Tobacco Cessation Interventions training for Pacific Islanders and pilot-tested it in four Pacific Islands-Palau, the Federated States of Micronesia, the Northern Mariana Islands and the Marshall Islands. All participants completed a posttraining knowledge assessment exam, pre- and posttraining confidence assessments, and a quality improvement evaluation. Of 70 participants, 65 (93%) completed the training. Forty-one (63%) passed the posttraining knowledge assessment exam at the first attempt; an additional 9 (14%) successfully passed on their second attempt, for a total pass rate of 77%. The pre- and posttraining confidence surveys demonstrated a statistically significant increase in confidence across all competency areas for delivering brief advice. The quality improvement survey revealed high acceptance and approval for the content and delivery of the locally adapted training model. As Pacific Island communities enact tobacco control policies, cessation demand is growing. The Guam cessation training model used culturally relevant data, materials, and training approaches and appeared effective in four different Pacific island countries. This underscores the importance of culturally competent adaptation of cessation training for priority populations such as Pacific Islanders.

  20. HOX Gene Promoter Prediction and Inter-genomic Comparison: An Evo-Devo Study

    Directory of Open Access Journals (Sweden)

    Marla A. Endriga

    2010-10-01

    Full Text Available Homeobox genes direct the anterior-posterior axis of the body plan in eukaryotic organisms. Promoter regions upstream of the Hox genes jumpstart the transcription process. CpG islands found within the promoter regions can cause silencing of these promoters. The locations of the promoter regions and the CpG islands of Homeo sapiens sapiens (human, Pan troglodytes (chimpanzee, Mus musculus (mouse, and Rattus norvegicus (brown rat are compared and related to the possible influence on the specification of the mammalian body plan. The sequence of each gene in Hox clusters A-D of the mammals considered were retrieved from Ensembl and locations of promoter regions and CpG islands predicted using Exon Finder. The predicted promoter sequences were confirmed via BLAST and verified against the Eukaryotic Promoter Database. The significance of the locations was determined using the Kruskal-Wallis test. Among the four clusters, only promoter locations in cluster B showed significant difference. HOX B genes have been linked with the control of genes that direct the development of axial morphology, particularly of the vertebral column bones. The magnitude of variation among the body plans of closely-related species can thus be partially attributed to the promoter kind, location and number, and gene inactivation via CpG methylation.

  1. Genetic and morphological differences among populations of the Bonin Islands White-eye in Japan.

    Science.gov (United States)

    Kawakami, Kazuto; Harada, Sachiko; Suzuki, Tadashi; Higuchi, Hiroyoshi

    2008-09-01

    The Bonin Islands White-eye, Apalopteron familiare , is the sole endemic avian species surviving on the Bonin Islands. The current distribution of this species is limited to only three islands of the Hahajima Island group: Hahajima, Imotojima, and Mukohjima. Imotojima and Mukohjima, which are small satellite islands of Hahajima, are about 3.6 km and 5.5 km, respectively, from the larger island. To investigate genetic and morphological differences among A. familiare populations on these islands, we assayed 634 bp of mitochondrial control region sequence for 132 birds from five locations among the three islands. We detected five haplotypes: two endemic haplotypes each on Hahajima and Imotojima and one on Mukohjima. Principal component analysis based on eight morphological characters of 162 birds from the three island populations revealed that birds from the small satellite islands had significantly different beak morphological characters. Our findings indicate that over-sea dispersal is rare in A. familiare , even when islands are separated by only a few kilometers, and suggest that little movement occurs on Hahajima. Thus, each population on each island should be conserved as an evolutionarily significant unit. The low dispersal ability of this species suggests that it is vulnerable to habitat fragmentation. Although the populations are currently stable and do not require rapid countermeasures, they should be monitored, especially those on the smaller islands.

  2. Digital Gene Expression Analysis Based on De Novo Transcriptome Assembly Reveals New Genes Associated with Floral Organ Differentiation of the Orchid Plant Cymbidium ensifolium.

    Directory of Open Access Journals (Sweden)

    Fengxi Yang

    Full Text Available Cymbidium ensifolium belongs to the genus Cymbidium of the orchid family. Owing to its spectacular flower morphology, C. ensifolium has considerable ecological and cultural value. However, limited genetic data is available for this non-model plant, and the molecular mechanism underlying floral organ identity is still poorly understood. In this study, we characterize the floral transcriptome of C. ensifolium and present, for the first time, extensive sequence and transcript abundance data of individual floral organs. After sequencing, over 10 Gb clean sequence data were generated and assembled into 111,892 unigenes with an average length of 932.03 base pairs, including 1,227 clusters and 110,665 singletons. Assembled sequences were annotated with gene descriptions, gene ontology, clusters of orthologous group terms, the Kyoto Encyclopedia of Genes and Genomes, and the plant transcription factor database. From these annotations, 131 flowering-associated unigenes, 61 CONSTANS-LIKE (COL unigenes and 90 floral homeotic genes were identified. In addition, four digital gene expression libraries were constructed for the sepal, petal, labellum and gynostemium, and 1,058 genes corresponding to individual floral organ development were identified. Among them, eight MADS-box genes were further investigated by full-length cDNA sequence analysis and expression validation, which revealed two APETALA1/AGL9-like MADS-box genes preferentially expressed in the sepal and petal, two AGAMOUS-like genes particularly restricted to the gynostemium, and four DEF-like genes distinctively expressed in different floral organs. The spatial expression of these genes varied distinctly in different floral mutant corresponding to different floral morphogenesis, which validated the specialized roles of them in floral patterning and further supported the effectiveness of our in silico analysis. This dataset generated in our study provides new insights into the molecular mechanisms

  3. Mycobacterium malmesburyense sp. nov., a non-tuberculous species of the genus Mycobacterium revealed by multiple gene sequence characterization

    CSIR Research Space (South Africa)

    Gcebe, N

    2017-04-01

    Full Text Available Journal of Systematic and Evolutionary Microbiology: DOI 10.1099/ijsem.0.001678 Mycobacterium malmesburyense sp. nov., a non-tuberculous species of the genus Mycobacterium revealed by multiple gene sequence characterization Gcebe N Rutten V Gey...

  4. Expression Profiling Reveals Genes Involved in the Regulation of Wool Follicle Bulb Regression and Regeneration in Sheep

    Directory of Open Access Journals (Sweden)

    Guangbin Liu

    2015-04-01

    Full Text Available Wool is an important material in textile manufacturing. In order to investigate the intrinsic factors that regulate wool follicle cycling and wool fiber properties, Illumina sequencing was performed on wool follicle bulb samples from the middle anagen, catagen and late telogen/early anagen phases. In total, 13,898 genes were identified. KRTs and KRTAPs are the most highly expressed gene families in wool follicle bulb. In addition, 438 and 203 genes were identified to be differentially expressed in wool follicle bulb samples from the middle anagen phase compared to the catagen phase and the samples from the catagen phase compared to the late telogen/early anagen phase, respectively. Finally, our data revealed that two groups of genes presenting distinct expression patterns during the phase transformation may have important roles for wool follicle bulb regression and regeneration. In conclusion, our results demonstrated the gene expression patterns in the wool follicle bulb and add new data towards an understanding of the mechanisms involved in wool fiber growth in sheep.

  5. Genome-wide analysis of the Dof transcription factor gene family reveals soybean-specific duplicable and functional characteristics.

    Directory of Open Access Journals (Sweden)

    Yong Guo

    Full Text Available The Dof domain protein family is a classic plant-specific zinc-finger transcription factor family involved in a variety of biological processes. There is great diversity in the number of Dof genes in different plants. However, there are only very limited reports on the characterization of Dof transcription factors in soybean (Glycine max. In the present study, 78 putative Dof genes were identified from the whole-genome sequence of soybean. The predicted GmDof genes were non-randomly distributed within and across 19 out of 20 chromosomes and 97.4% (38 pairs were preferentially retained duplicate paralogous genes located in duplicated regions of the genome. Soybean-specific segmental duplications contributed significantly to the expansion of the soybean Dof gene family. These Dof proteins were phylogenetically clustered into nine distinct subgroups among which the gene structure and motif compositions were considerably conserved. Comparative phylogenetic analysis of these Dof proteins revealed four major groups, similar to those reported for Arabidopsis and rice. Most of the GmDofs showed specific expression patterns based on RNA-seq data analyses. The expression patterns of some duplicate genes were partially redundant while others showed functional diversity, suggesting the occurrence of sub-functionalization during subsequent evolution. Comprehensive expression profile analysis also provided insights into the soybean-specific functional divergence among members of the Dof gene family. Cis-regulatory element analysis of these GmDof genes suggested diverse functions associated with different processes. Taken together, our results provide useful information for the functional characterization of soybean Dof genes by combining phylogenetic analysis with global gene-expression profiling.

  6. Evidence of stable genetic structure across a remote island archipelago through self-recruitment in a widely dispersed coral reef fish

    KAUST Repository

    Priest, Mark

    2012-11-19

    We used microsatellite markers to assess the population genetic structure of the scribbled rabbitfish Siganus spinus in the western Pacific. This species is a culturally important food fish in the Mariana Archipelago and subject to high fishing pressure. Our primary hypothesis was to test whether the individuals resident in the southern Mariana Island chain were genetically distinct and hence should be managed as discrete stocks. In addition to spatial sampling of adults, newly-settled individuals were sampled on Guam over four recruitment events to assess the temporal stability of the observed spatial patterns, and evidence of self-recruitment. We found significant genetic structure in S. spinus across the western Pacific, with Bayesian analyses revealing three genetically distinct clusters: the southernMariana Islands, east Micronesia, and the west Pacific; with the southern Mariana Islands beingmore strongly differentiated fromthe rest of the region. Analyses of temporal samples from Guam indicated the southern Mariana cluster was stable over time, with no genetic differentiation between adults versus recruits, or between samples collected across four separate recruitment events spanning 11 months. Subsequent assignment tests indicated seven recruits had self-recruited from within the Southern Mariana Islands population. Our results confirm the relative isolation of the southern Mariana Islands population and highlight how local processes can act to isolate populations that, by virtue of their broad-scale distribution, have been subject to traditionally high gene flows. Our results add to a growing consensus that self-recruitment is a highly significant influence on the population dynamics of tropical reef fish. 2012 The Authors. Ecology and Evolution published by Blackwell Publishing Ltd.

  7. Fine Mapping and Transcriptome Analysis Reveal Candidate Genes Associated with Hybrid Lethality in Cabbage (Brassica Oleracea).

    Science.gov (United States)

    Xiao, Zhiliang; Hu, Yang; Zhang, Xiaoli; Xue, Yuqian; Fang, Zhiyuan; Yang, Limei; Zhang, Yangyong; Liu, Yumei; Li, Zhansheng; Liu, Xing; Liu, Zezhou; Lv, Honghao; Zhuang, Mu

    2017-06-05

    Hybrid lethality is a deleterious phenotype that is vital to species evolution. We previously reported hybrid lethality in cabbage ( Brassica oleracea ) and performed preliminary mapping of related genes. In the present study, the fine mapping of hybrid lethal genes revealed that BoHL1 was located on chromosome C1 between BoHLTO124 and BoHLTO130, with an interval of 101 kb. BoHL2 was confirmed to be between insertion-deletion (InDels) markers HL234 and HL235 on C4, with a marker interval of 70 kb. Twenty-eight and nine annotated genes were found within the two intervals of BoHL1 and BoHL2 , respectively. We also applied RNA-Seq to analyze hybrid lethality in cabbage. In the region of BoHL1 , seven differentially expressed genes (DEGs) and five resistance (R)-related genes (two in common, i.e., Bo1g153320 and Bo1g153380 ) were found, whereas in the region of BoHL2 , two DEGs and four R-related genes (two in common, i.e., Bo4g173780 and Bo4g173810 ) were found. Along with studies in which R genes were frequently involved in hybrid lethality in other plants, these interesting R-DEGs may be good candidates associated with hybrid lethality. We also used SNP/InDel analyses and quantitative real-time PCR to confirm the results. This work provides new insight into the mechanisms of hybrid lethality in cabbage.

  8. Transcriptome and proteome data reveal candidate genes for pollinator attraction in sexually deceptive orchids.

    Science.gov (United States)

    Sedeek, Khalid E M; Qi, Weihong; Schauer, Monica A; Gupta, Alok K; Poveda, Lucy; Xu, Shuqing; Liu, Zhong-Jian; Grossniklaus, Ueli; Schiestl, Florian P; Schlüter, Philipp M

    2013-01-01

    Sexually deceptive orchids of the genus Ophrys mimic the mating signals of their pollinator females to attract males as pollinators. This mode of pollination is highly specific and leads to strong reproductive isolation between species. This study aims to identify candidate genes responsible for pollinator attraction and reproductive isolation between three closely related species, O. exaltata, O. sphegodes and O. garganica. Floral traits such as odour, colour and morphology are necessary for successful pollinator attraction. In particular, different odour hydrocarbon profiles have been linked to differences in specific pollinator attraction among these species. Therefore, the identification of genes involved in these traits is important for understanding the molecular basis of pollinator attraction by sexually deceptive orchids. We have created floral reference transcriptomes and proteomes for these three Ophrys species using a combination of next-generation sequencing (454 and Solexa), Sanger sequencing, and shotgun proteomics (tandem mass spectrometry). In total, 121 917 unique transcripts and 3531 proteins were identified. This represents the first orchid proteome and transcriptome from the orchid subfamily Orchidoideae. Proteome data revealed proteins corresponding to 2644 transcripts and 887 proteins not observed in the transcriptome. Candidate genes for hydrocarbon and anthocyanin biosynthesis were represented by 156 and 61 unique transcripts in 20 and 7 genes classes, respectively. Moreover, transcription factors putatively involved in the regulation of flower odour, colour and morphology were annotated, including Myb, MADS and TCP factors. Our comprehensive data set generated by combining transcriptome and proteome technologies allowed identification of candidate genes for pollinator attraction and reproductive isolation among sexually deceptive orchids. This includes genes for hydrocarbon and anthocyanin biosynthesis and regulation, and the development of

  9. Integrative DNA methylation and gene expression analysis to assess the universality of the CpG island methylator phenotype.

    Science.gov (United States)

    Moarii, Matahi; Reyal, Fabien; Vert, Jean-Philippe

    2015-10-13

    The CpG island methylator phenotype (CIMP) was first characterized in colorectal cancer but since has been extensively studied in several other tumor types such as breast, bladder, lung, and gastric. CIMP is of clinical importance as it has been reported to be associated with prognosis or response to treatment. However, the identification of a universal molecular basis to define CIMP across tumors has remained elusive. We perform a genome-wide methylation analysis of over 2000 tumor samples from 5 cancer sites to assess the existence of a CIMP with common molecular basis across cancers. We then show that the CIMP phenotype is associated with specific gene expression variations. However, we do not find a common genetic signature in all tissues associated with CIMP. Our results suggest the existence of a universal epigenetic and transcriptomic signature that defines the CIMP across several tumor types but does not indicate the existence of a common genetic signature of CIMP.

  10. Prognostication of patients with clear cell renal cell carcinomas based on quantification of DNA methylation levels of CpG island methylator phenotype marker genes.

    Science.gov (United States)

    Tian, Ying; Arai, Eri; Gotoh, Masahiro; Komiyama, Motokiyo; Fujimoto, Hiroyuki; Kanai, Yae

    2014-10-20

    The CpG island methylator phenotype (CIMP) of clear cell renal cell carcinomas (ccRCCs) is characterized by accumulation of DNA methylation at CpG islands and poorer patient outcome. The aim of this study was to establish criteria for prognostication of patients with ccRCCs using the ccRCC-specific CIMP marker genes. DNA methylation levels at 299 CpG sites in the 14 CIMP marker genes were evaluated quantitatively in tissue specimens of 88 CIMP-negative and 14 CIMP-positive ccRCCs in a learning cohort using the MassARRAY system. An additional 100 ccRCCs were also analyzed as a validation cohort. Receiver operating characteristic curve analysis showed that area under the curve values for the 23 CpG units including the 32 CpG sites in the 7 CIMP-marker genes, i.e. FAM150A, ZNF540, ZNF671, ZNF154, PRAC, TRH and SLC13A5, for discrimination of CIMP-positive from CIMP-negative ccRCCs were larger than 0.95. Criteria combining the 23 CpG units discriminated CIMP-positive from CIMP-negative ccRCCs with 100% sensitivity and specificity in the learning cohort. Cancer-free and overall survival rates of patients with CIMP-positive ccRCCs diagnosed using the criteria combining the 23 CpG units in a validation cohort were significantly lower than those of patients with CIMP-negative ccRCCs (P = 1.41 × 10-5 and 2.43 × 10-13, respectively). Patients with CIMP-positive ccRCCs in the validation cohort had a higher likelihood of disease-related death (hazard ratio, 75.8; 95% confidence interval, 7.81 to 735; P = 1.89 × 10-4) than those with CIMP-negative ccRCCs. The established criteria are able to reproducibly diagnose CIMP-positive ccRCCs and may be useful for personalized medicine for patients with ccRCCs.

  11. Gene expression analysis of zebrafish melanocytes, iridophores, and retinal pigmented epithelium reveals indicators of biological function and developmental origin.

    Directory of Open Access Journals (Sweden)

    Charles W Higdon

    Full Text Available In order to facilitate understanding of pigment cell biology, we developed a method to concomitantly purify melanocytes, iridophores, and retinal pigmented epithelium from zebrafish, and analyzed their transcriptomes. Comparing expression data from these cell types and whole embryos allowed us to reveal gene expression co-enrichment in melanocytes and retinal pigmented epithelium, as well as in melanocytes and iridophores. We found 214 genes co-enriched in melanocytes and retinal pigmented epithelium, indicating the shared functions of melanin-producing cells. We found 62 genes significantly co-enriched in melanocytes and iridophores, illustrative of their shared developmental origins from the neural crest. This is also the first analysis of the iridophore transcriptome. Gene expression analysis for iridophores revealed extensive enrichment of specific enzymes to coordinate production of their guanine-based reflective pigment. We speculate the coordinated upregulation of specific enzymes from several metabolic pathways recycles the rate-limiting substrate for purine synthesis, phosphoribosyl pyrophosphate, thus constituting a guanine cycle. The purification procedure and expression analysis described here, along with the accompanying transcriptome-wide expression data, provide the first mRNA sequencing data for multiple purified zebrafish pigment cell types, and will be a useful resource for further studies of pigment cell biology.

  12. Human mast cell tryptase: Multiple cDNAs and genes reveal a multigene serine protease family

    International Nuclear Information System (INIS)

    Vanderslice, P.; Ballinger, S.M.; Tam, E.K.; Goldstein, S.M.; Craik, C.S.; Caughey, G.H.

    1990-01-01

    Three different cDNAs and a gene encoding human skin mast cell tryptase have been cloned and sequenced in their entirety. The deduced amino acid sequences reveal a 30-amino acid prepropeptide followed by a 245-amino acid catalytic domain. The C-terminal undecapeptide of the human preprosequence is identical in dog tryptase and appears to be part of a prosequence unique among serine proteases. The differences among the three human tryptase catalytic domains include the loss of a consensus N-glycosylation site in one cDNA, which may explain some of the heterogeneity in size and susceptibility to deglycosylation seen in tryptase preparations. All three tryptase cDNAs are distinct from a recently reported cDNA obtained from a human lung mast cell library. A skin tryptase cDNA was used to isolate a human tryptase gene, the exons of which match one of the skin-derived cDNAs. The organization of the ∼1.8-kilobase-pair tryptase gene is unique and is not closely related to that of any other mast cell or leukocyte serine protease. The 5' regulatory regions of the gene share features with those of other serine proteases, including mast cell chymase, but are unusual in being separated from the protein-coding sequence by an intron. High-stringency hybridization of a human genomic DNA blot with a fragment of the tryptase gene confirms the presence of multiple tryptase genes. These findings provide genetic evidence that human mast cell tryptases are the products of a multigene family

  13. The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system

    Science.gov (United States)

    Vonk, Freek J.; Casewell, Nicholas R.; Henkel, Christiaan V.; Heimberg, Alysha M.; Jansen, Hans J.; McCleary, Ryan J. R.; Kerkkamp, Harald M. E.; Vos, Rutger A.; Guerreiro, Isabel; Calvete, Juan J.; Wüster, Wolfgang; Woods, Anthony E.; Logan, Jessica M.; Harrison, Robert A.; Castoe, Todd A.; de Koning, A. P. Jason; Pollock, David D.; Yandell, Mark; Calderon, Diego; Renjifo, Camila; Currier, Rachel B.; Salgado, David; Pla, Davinia; Sanz, Libia; Hyder, Asad S.; Ribeiro, José M. C.; Arntzen, Jan W.; van den Thillart, Guido E. E. J. M.; Boetzer, Marten; Pirovano, Walter; Dirks, Ron P.; Spaink, Herman P.; Duboule, Denis; McGlinn, Edwina; Kini, R. Manjunatha; Richardson, Michael K.

    2013-01-01

    Snakes are limbless predators, and many species use venom to help overpower relatively large, agile prey. Snake venoms are complex protein mixtures encoded by several multilocus gene families that function synergistically to cause incapacitation. To examine venom evolution, we sequenced and interrogated the genome of a venomous snake, the king cobra (Ophiophagus hannah), and compared it, together with our unique transcriptome, microRNA, and proteome datasets from this species, with data from other vertebrates. In contrast to the platypus, the only other venomous vertebrate with a sequenced genome, we find that snake toxin genes evolve through several distinct co-option mechanisms and exhibit surprisingly variable levels of gene duplication and directional selection that correlate with their functional importance in prey capture. The enigmatic accessory venom gland shows a very different pattern of toxin gene expression from the main venom gland and seems to have recruited toxin-like lectin genes repeatedly for new nontoxic functions. In addition, tissue-specific microRNA analyses suggested the co-option of core genetic regulatory components of the venom secretory system from a pancreatic origin. Although the king cobra is limbless, we recovered coding sequences for all Hox genes involved in amniote limb development, with the exception of Hoxd12. Our results provide a unique view of the origin and evolution of snake venom and reveal multiple genome-level adaptive responses to natural selection in this complex biological weapon system. More generally, they provide insight into mechanisms of protein evolution under strong selection. PMID:24297900

  14. Archipelago-wide island restoration in the Galápagos Islands: reducing costs of invasive mammal eradication programs and reinvasion risk.

    Directory of Open Access Journals (Sweden)

    Victor Carrion

    Full Text Available Invasive alien mammals are the major driver of biodiversity loss and ecosystem degradation on islands. Over the past three decades, invasive mammal eradication from islands has become one of society's most powerful tools for preventing extinction of insular endemics and restoring insular ecosystems. As practitioners tackle larger islands for restoration, three factors will heavily influence success and outcomes: the degree of local support, the ability to mitigate for non-target impacts, and the ability to eradicate non-native species more cost-effectively. Investments in removing invasive species, however, must be weighed against the risk of reintroduction. One way to reduce reintroduction risks is to eradicate the target invasive species from an entire archipelago, and thus eliminate readily available sources. We illustrate the costs and benefits of this approach with the efforts to remove invasive goats from the Galápagos Islands. Project Isabela, the world's largest island restoration effort to date, removed >140,000 goats from >500,000 ha for a cost of US$10.5 million. Leveraging the capacity built during Project Isabela, and given that goat reintroductions have been common over the past decade, we implemented an archipelago-wide goat eradication strategy. Feral goats remain on three islands in the archipelago, and removal efforts are underway. Efforts on the Galápagos Islands demonstrate that for some species, island size is no longer the limiting factor with respect to eradication. Rather, bureaucratic processes, financing, political will, and stakeholder approval appear to be the new challenges. Eradication efforts have delivered a suite of biodiversity benefits that are in the process of revealing themselves. The costs of rectifying intentional reintroductions are high in terms of financial and human resources. Reducing the archipelago-wide goat density to low levels is a technical approach to reducing reintroduction risk in the short

  15. Archipelago-wide island restoration in the Galápagos Islands: reducing costs of invasive mammal eradication programs and reinvasion risk.

    Science.gov (United States)

    Carrion, Victor; Donlan, C Josh; Campbell, Karl J; Lavoie, Christian; Cruz, Felipe

    2011-05-11

    Invasive alien mammals are the major driver of biodiversity loss and ecosystem degradation on islands. Over the past three decades, invasive mammal eradication from islands has become one of society's most powerful tools for preventing extinction of insular endemics and restoring insular ecosystems. As practitioners tackle larger islands for restoration, three factors will heavily influence success and outcomes: the degree of local support, the ability to mitigate for non-target impacts, and the ability to eradicate non-native species more cost-effectively. Investments in removing invasive species, however, must be weighed against the risk of reintroduction. One way to reduce reintroduction risks is to eradicate the target invasive species from an entire archipelago, and thus eliminate readily available sources. We illustrate the costs and benefits of this approach with the efforts to remove invasive goats from the Galápagos Islands. Project Isabela, the world's largest island restoration effort to date, removed >140,000 goats from >500,000 ha for a cost of US$10.5 million. Leveraging the capacity built during Project Isabela, and given that goat reintroductions have been common over the past decade, we implemented an archipelago-wide goat eradication strategy. Feral goats remain on three islands in the archipelago, and removal efforts are underway. Efforts on the Galápagos Islands demonstrate that for some species, island size is no longer the limiting factor with respect to eradication. Rather, bureaucratic processes, financing, political will, and stakeholder approval appear to be the new challenges. Eradication efforts have delivered a suite of biodiversity benefits that are in the process of revealing themselves. The costs of rectifying intentional reintroductions are high in terms of financial and human resources. Reducing the archipelago-wide goat density to low levels is a technical approach to reducing reintroduction risk in the short-term, and is being

  16. Rhizobia from Lanzarote, the Canary Islands, that nodulate Phaseolus vulgars have characteristics in common with Sinorhizobium meliloti isolates from mainland Spain

    Science.gov (United States)

    Common bean and Medicago rhizobia isolated from five locations on the island of Lanzarote, the Canary Islands, by partial analysis of 10 chromosomal genes were shown to exhibit close similarity to Sinorhizobium meliloti. Several bean isolates from Lanzarote, mainland Spain and Tunisia nodulated Leu...

  17. Blueprint for a minimal photoautotrophic cell: conserved and variable genes in Synechococcus elongatus PCC 7942

    Directory of Open Access Journals (Sweden)

    Peretó Juli

    2011-01-01

    Full Text Available Abstract Background Simpler biological systems should be easier to understand and to engineer towards pre-defined goals. One way to achieve biological simplicity is through genome minimization. Here we looked for genomic islands in the fresh water cyanobacteria Synechococcus elongatus PCC 7942 (genome size 2.7 Mb that could be used as targets for deletion. We also looked for conserved genes that might be essential for cell survival. Results By using a combination of methods we identified 170 xenologs, 136 ORFans and 1401 core genes in the genome of S. elongatus PCC 7942. These represent 6.5%, 5.2% and 53.6% of the annotated genes respectively. We considered that genes in genomic islands could be found if they showed a combination of: a unusual G+C content; b unusual phylogenetic similarity; and/or c a small number of the highly iterated palindrome 1 (HIP1 motif plus an unusual codon usage. The origin of the largest genomic island by horizontal gene transfer (HGT could be corroborated by lack of coverage among metagenomic sequences from a fresh water microbialite. Evidence is also presented that xenologous genes tend to cluster in operons. Interestingly, most genes coding for proteins with a diguanylate cyclase domain are predicted to be xenologs, suggesting a role for horizontal gene transfer in the evolution of Synechococcus sensory systems. Conclusions Our estimates of genomic islands in PCC 7942 are larger than those predicted by other published methods like SIGI-HMM. Our results set a guide to non-essential genes in S. elongatus PCC 7942 indicating a path towards the engineering of a model photoautotrophic bacterial cell.

  18. Genetic structure of human A/H1N1 and A/H3N2 influenza virus on Corsica Island: phylogenetic analysis and vaccine strain match, 2006-2010.

    Directory of Open Access Journals (Sweden)

    Alessandra Falchi

    Full Text Available BACKGROUND: The aim of this study was to analyse the genetic patterns of Hemagglutinin (HA genes of influenza A strains circulating on Corsica Island during the 2006-2009 epidemic seasons and the 2009-2010 pandemic season. METHODS: Nasopharyngeal samples from 371 patients with influenza-like illness (ILI were collected by General Practitioners (GPs of the Sentinelles Network through a randomised selection routine. RESULTS: Phylogenetic analysis of HA revealed that A/H3N2 strains circulating on Corsica were closely related to the WHO recommended vaccine strains in each analyzed season (2006-2007 to 2008-2009. Seasonal Corsican influenza A/H1N1 isolated during the 2007-2008 season had drifted towards the A/Brisbane/59/2007 lineage, the A/H1N1 vaccine strain for the 2008-2009 season. The A/H1N1 2009 (A/H1N1pdm strains isolated on Corsica Island were characterized by the S220T mutation specific to clade 7 isolates. It should be noted that Corsican isolates formed a separate sub-clade of clade 7 as a consequence of the presence of the fixed substitution D222E. The percentages of the perfect match vaccine efficacy, estimated by using the p(epitope model, against influenza viruses circulating on Corsica Island varied substantially across the four seasons analyzed, and tend to be highest for A/H1N1 compared with A/H3N2 vaccines, suggesting that cross-immunity seems to be stronger for the H1 HA gene. CONCLUSION: The molecular analysis of the HA gene of influenza viruses that circulated on Corsica Island between 2006-2010 showed for each season the presence of a dominant lineage characterized by at least one fixed mutation. The A/H3N2 and A/H1N1pdm isolates were characterized by multiples fixation at antigenic sites. The fixation of specific mutations at each outbreak could be explained by the combination of a neutral phenomenon and a founder effect, favoring the presence of a dominant lineage in a closed environment such as Corsica Island.

  19. Score-based prediction of genomic islands in prokaryotic genomes using hidden Markov models

    Directory of Open Access Journals (Sweden)

    Surovcik Katharina

    2006-03-01

    Full Text Available Abstract Background Horizontal gene transfer (HGT is considered a strong evolutionary force shaping the content of microbial genomes in a substantial manner. It is the difference in speed enabling the rapid adaptation to changing environmental demands that distinguishes HGT from gene genesis, duplications or mutations. For a precise characterization, algorithms are needed that identify transfer events with high reliability. Frequently, the transferred pieces of DNA have a considerable length, comprise several genes and are called genomic islands (GIs or more specifically pathogenicity or symbiotic islands. Results We have implemented the program SIGI-HMM that predicts GIs and the putative donor of each individual alien gene. It is based on the analysis of codon usage (CU of each individual gene of a genome under study. CU of each gene is compared against a carefully selected set of CU tables representing microbial donors or highly expressed genes. Multiple tests are used to identify putatively alien genes, to predict putative donors and to mask putatively highly expressed genes. Thus, we determine the states and emission probabilities of an inhomogeneous hidden Markov model working on gene level. For the transition probabilities, we draw upon classical test theory with the intention of integrating a sensitivity controller in a consistent manner. SIGI-HMM was written in JAVA and is publicly available. It accepts as input any file created according to the EMBL-format. It generates output in the common GFF format readable for genome browsers. Benchmark tests showed that the output of SIGI-HMM is in agreement with known findings. Its predictions were both consistent with annotated GIs and with predictions generated by different methods. Conclusion SIGI-HMM is a sensitive tool for the identification of GIs in microbial genomes. It allows to interactively analyze genomes in detail and to generate or to test hypotheses about the origin of acquired

  20. A robust automatic leukocyte recognition method based on island-clustering texture

    Directory of Open Access Journals (Sweden)

    Xiaoshun Li

    2016-01-01

    Full Text Available A leukocyte recognition method for human peripheral blood smear based on island-clustering texture (ICT is proposed. By analyzing the features of the five typical classes of leukocyte images, a new ICT model is established. Firstly, some feature points are extracted in a gray leukocyte image by mean-shift clustering to be the centers of islands. Secondly, the growing region is employed to create regions of the islands in which the seeds are just these feature points. These islands distribution can describe a new texture. Finally, a distinguished parameter vector of these islands is created as the ICT features by combining the ICT features with the geometric features of the leukocyte. Then the five typical classes of leukocytes can be recognized successfully at the correct recognition rate of more than 92.3% with a total sample of 1310 leukocytes. Experimental results show the feasibility of the proposed method. Further analysis reveals that the method is robust and results can provide important information for disease diagnosis.

  1. The blue lizard spandrel and the island syndrome.

    Science.gov (United States)

    Raia, Pasquale; Guarino, Fabio M; Turano, Mimmo; Polese, Gianluca; Rippa, Daniela; Carotenuto, Francesco; Monti, Daria M; Cardi, Manuela; Fulgione, Domenico

    2010-09-20

    Many small vertebrates on islands grow larger, mature later, lay smaller clutches/litters, and are less sexually dimorphic and aggressive than their mainland relatives. This set of observations is referred to as the 'Island Syndrome'. The syndrome is linked to high population density on islands. We predicted that when population density is low and/or fluctuating insular vertebrates may evolve correlated trait shifts running opposite to the Island Syndrome, which we collectively refer to as the 'reversed island syndrome' (RIS) hypothesis. On the proximate level, we hypothesized that RIS is caused by increased activity levels in melanocortin receptors. Melanocortins are postranslational products of the proopiomelanocortin gene, which controls pleiotropically pigmentation, aggressiveness, sexual activity, and food intake in vertebrates. We tested the RIS hypothesis performing a number of behavioral, genetic, and ontogenetic tests on a blue colored insular variant of the Italian Wall lizard Podarcis sicula, living on a small island off the Southern Italian coast. The population density of this blue-colored variant was generally low and highly fluctuating from one year to the next.In keeping with our predictions, insular lizards were more aggressive and sexually dimorphic than their mainland relatives. Insular males had wide, peramorphic heads. The growth rate of insular females was slower than growth rates of mainland individuals of both sexes, and of insular males. Consequently, size and shape dimorphism are higher on the Island. As predicted, melanocortin receptors were much more active in individuals of the insular population. Insular lizards have a higher food intake rate than mainland individuals, which is consistent with the increased activity of melanocortin receptors. This may be adaptive in an unpredictable environment such as Licosa Island. Insular lizards of both sexes spent less time basking than their mainland relatives. We suspect this is a by

  2. The blue lizard spandrel and the island syndrome

    Directory of Open Access Journals (Sweden)

    Monti Daria M

    2010-09-01

    Full Text Available Abstract Background Many small vertebrates on islands grow larger, mature later, lay smaller clutches/litters, and are less sexually dimorphic and aggressive than their mainland relatives. This set of observations is referred to as the 'Island Syndrome'. The syndrome is linked to high population density on islands. We predicted that when population density is low and/or fluctuating insular vertebrates may evolve correlated trait shifts running opposite to the Island Syndrome, which we collectively refer to as the 'reversed island syndrome' (RIS hypothesis. On the proximate level, we hypothesized that RIS is caused by increased activity levels in melanocortin receptors. Melanocortins are postranslational products of the proopiomelanocortin gene, which controls pleiotropically pigmentation, aggressiveness, sexual activity, and food intake in vertebrates. Results We tested the RIS hypothesis performing a number of behavioral, genetic, and ontogenetic tests on a blue colored insular variant of the Italian Wall lizard Podarcis sicula, living on a small island off the Southern Italian coast. The population density of this blue-colored variant was generally low and highly fluctuating from one year to the next. In keeping with our predictions, insular lizards were more aggressive and sexually dimorphic than their mainland relatives. Insular males had wide, peramorphic heads. The growth rate of insular females was slower than growth rates of mainland individuals of both sexes, and of insular males. Consequently, size and shape dimorphism are higher on the Island. As predicted, melanocortin receptors were much more active in individuals of the insular population. Insular lizards have a higher food intake rate than mainland individuals, which is consistent with the increased activity of melanocortin receptors. This may be adaptive in an unpredictable environment such as Licosa Island. Insular lizards of both sexes spent less time basking than their

  3. Mortality in Laysan ducks (Anas laysanensis) by emaciation complicated by Echinuria uncinata on Laysan Island, Hawaii, 1993

    Science.gov (United States)

    Work, Thierry M.; Meteyer, Carol U.; Cole, Rebecca A.

    2004-01-01

    In November 1993, unusual mortality occurred among endangered Laysan ducks on Laysan Island, one of the remote refugia of the Northwestern Hawaiian Islands National Wildlife Refuge (USA). Ten live ducks were emaciated, and blood samples documented anemia, heterophilia, and eosinophilia. Pathology in 13 duck carcasses revealed emaciation, marked thickening of the proventricular wall, abundant mucus, and nodules in the gastrointestinal tract. Histology revealed granulomata associated with nematodes in the proventriculus, small intestines, and body walls of nine of 10 ducks examined on histology. We suspect that low rainfall and low food abundance that year contributed to enhanced pathogenicity of parasite infection, either through increased exposure or decreased host resistance. Because the Laysan duck is found only on Laysan island and is critically endangered, translocation of this species to other islands is being considered. Given that we have not seen pathology associated with Echinuria spp. in native waterfowl on other Hawaiian Islands and given the parasite's potential to cause significant lesions in Laysan ducks, it will be important to prevent the translocation of Echinuria spp.

  4. Submarine geology and geomorphology of active Sub-Antarctic volcanoes: Heard and McDonald Islands

    Science.gov (United States)

    Watson, S. J.; Coffin, M. F.; Whittaker, J. M.; Lucieer, V.; Fox, J. M.; Carey, R.; Arculus, R. J.; Bowie, A. R.; Chase, Z.; Robertson, R.; Martin, T.; Cooke, F.

    2016-12-01

    Heard and McDonald Islands (HIMI) are World Heritage listed sub-Antarctic active volcanic islands in the Southern Indian Ocean. Built atop the Kerguelen Plateau by Neogene-Quaternary volcanism, HIMI represent subaerial exposures of the second largest submarine Large Igneous Province globally. Onshore, processes influencing island evolution include glaciers, weathering, volcanism, vertical tectonics and mass-wasting (Duncan et al. 2016). Waters surrounding HIMI are largely uncharted, due to their remote location. Hence, the extent to which these same processes shape the submarine environment around HIMI has not been investigated. In early 2016, we conducted marine geophysical and geologic surveys around HIMI aboard RV Investigator (IN2016_V01). Results show that volcanic and sedimentary features prominently trend east-west, likely a result of erosion by the eastward flowing Antarctic Circumpolar Current and tidal currents. However, spatial patterns of submarine volcanism and sediment distribution differ substantially between the islands. >70 sea knolls surround McDonald Island suggesting substantial submarine volcanism. Geophysical data reveals hard volcanic seafloor around McDonald Island, whereas Heard Island is characterised by sedimentary sequences tens of meters or more thick and iceberg scours - indicative of glacial processes. Differences in submarine geomorphology are likely due to the active glaciation of Heard Island and differing rock types (Heard: alkali basalt, McDonald: phonolite), and dominant products (clastics vs. lava). Variations may also reflect different magmatic plumbing systems beneath the two active volcanoes (Heard produces larger volumes of more focused lava, whilst McDonald extrudes smaller volumes of more evolved lavas from multiple vents across the edifice). Using geophysical data, corroborated with new and existing geologic data, we present the first geomorphic map revealing the processes that shape the submarine environment around HIMI.

  5. Comparative Genomics Reveals the Core Gene Toolbox for the Fungus-Insect Symbiosis

    Science.gov (United States)

    Stata, Matt; Wang, Wei; White, Merlin M.; Moncalvo, Jean-Marc

    2018-01-01

    ABSTRACT Modern genomics has shed light on many entomopathogenic fungi and expanded our knowledge widely; however, little is known about the genomic features of the insect-commensal fungi. Harpellales are obligate commensals living in the digestive tracts of disease-bearing insects (black flies, midges, and mosquitoes). In this study, we produced and annotated whole-genome sequences of nine Harpellales taxa and conducted the first comparative analyses to infer the genomic diversity within the members of the Harpellales. The genomes of the insect gut fungi feature low (26% to 37%) GC content and large genome size variations (25 to 102 Mb). Further comparisons with insect-pathogenic fungi (from both Ascomycota and Zoopagomycota), as well as with free-living relatives (as negative controls), helped to identify a gene toolbox that is essential to the fungus-insect symbiosis. The results not only narrow the genomic scope of fungus-insect interactions from several thousands to eight core players but also distinguish host invasion strategies employed by insect pathogens and commensals. The genomic content suggests that insect commensal fungi rely mostly on adhesion protein anchors that target digestive system, while entomopathogenic fungi have higher numbers of transmembrane helices, signal peptides, and pathogen-host interaction (PHI) genes across the whole genome and enrich genes as well as functional domains to inactivate the host inflammation system and suppress the host defense. Phylogenomic analyses have revealed that genome sizes of Harpellales fungi vary among lineages with an integer-multiple pattern, which implies that ancient genome duplications may have occurred within the gut of insects. PMID:29764946

  6. The peopling of Madeira Archipelago (Portugal) according to HLA genes.

    Science.gov (United States)

    Arnaiz-Villena, A; Reguera, R; Ferri, A; Barbolla, L; Abd-El-Fatah-Khalil, S; Bakhtiyarova, N; Millan, P; Moscoso, J; Mafalda, A; Serrano-Vela, J I

    2009-02-01

    The Madeira-Porto Santo Archipelago was officially colonized in 1420 by Portuguese settlers. Its importance in Columbus' information for the American discovery and for slave traffic across the Atlantic is unquestionable. Thus, a complex peopling may have given rise to a present-day high admixture of ethnicities according to HLA genes. A sample of 173 healthy unrelated Madeirans was analysed and compared with 6986 HLA chromosomes from other worldwide populations. Genetic distances, neighbour-joining dendrograms and correspondence analyses were used for comparisons. Southern European, North African (including Canary Islands), Jewish and Mediterranean typical HLA alleles were found and genetic distances from Madeirans to these populations were the closest ones. In addition A*24-B*65-DRB1*0102-DQB1*0501 and A*68-B*08-DRB1*0301-DQB1*0201 haplotypes were newly found in Madeira and not found in any other population. Jewish-Armenian-Middle East haplotype (A*33-B*65-DRB1*0102-DQB1*0501) is one of the most common haplotypes; this haplotype is also present in Spaniards and North Africans. Quantitatively, Portuguese, North Africans (Algerians), Spaniards and Canary Islanders (in this order) are the most important parental populations to Madeirans. Results are discussed on the basis of the recorded historical peopling which does not show a noticeable African gene input in present-day Madeiran population according to our data; one of the closest related populations found is the Canary Islanders, suggesting that Guanche (Canary Islands first inhabitants) slaves gene flow is still noticed at present, both in Madeira and in Canary Islands populations.

  7. Genome-wide association and pathway analysis of feed efficiency in pigs reveal candidate genes and pathways for residual feed intake

    DEFF Research Database (Denmark)

    Do, Duy Ngoc; Strathe, Anders Bjerring; Ostersen, Tage

    2014-01-01

    Residual feed intake (RFI) is a complex trait that is economically important for livestock production; however, the genetic and biological mechanisms regulating RFI are largely unknown in pigs. Therefore, the study aimed to identify single nucleotide polymorphisms (SNPs), candidate genes and biol...... revealed key genes and genetic variants that control feed efficiency that could potentially be useful for genetic selection of more feed efficient pigs....

  8. Recombination and horizontal transfer of nodulation and ACC deaminase (acdS) genes within Alpha- and Betaproteobacteria nodulating legumes of the Cape Fynbos biome.

    Science.gov (United States)

    Lemaire, Benny; Van Cauwenberghe, Jannick; Chimphango, Samson; Stirton, Charles; Honnay, Olivier; Smets, Erik; Muasya, A Muthama

    2015-11-01

    The goal of this work is to study the evolution and the degree of horizontal gene transfer (HGT) within rhizobial genera of both Alphaproteobacteria (Mesorhizobium, Rhizobium) and Betaproteobacteria (Burkholderia), originating from South African Fynbos legumes. By using a phylogenetic approach and comparing multiple chromosomal and symbiosis genes, we revealed conclusive evidence of high degrees of horizontal transfer of nodulation genes among closely related species of both groups of rhizobia, but also among species with distant genetic backgrounds (Rhizobium and Mesorhizobium), underscoring the importance of lateral transfer of symbiosis traits as an important evolutionary force among rhizobia of the Cape Fynbos biome. The extensive exchange of symbiosis genes in the Fynbos is in contrast with a lack of significant events of HGT among Burkholderia symbionts from the South American Cerrado and Caatinga biome. Furthermore, homologous recombination among selected housekeeping genes had a substantial impact on sequence evolution within Burkholderia and Mesorhizobium. Finally, phylogenetic analyses of the non-symbiosis acdS gene in Mesorhizobium, a gene often located on symbiosis islands, revealed distinct relationships compared to the chromosomal and symbiosis genes, suggesting a different evolutionary history and independent events of gene transfer. The observed events of HGT and incongruence between different genes necessitate caution in interpreting topologies from individual data types. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Tuppiap Qeqertaa (Tobias Island): a newly discovered island off northeast Greenland

    DEFF Research Database (Denmark)

    Bennike, O.; Mikkelsen, N.; Forsberg, René

    2006-01-01

    The small island of Tuppiap Qeqertaa, formerly known as Tobias circle divide or Tobias Island, is situated 80 km off the northeast Greenland coast. The island was discovered in 1993 and is approximately 2 km long and 1.5 km wide. Most of the island is covered by an ice cap that rises to 35 in abo...

  10. Eastern Caribbean Circulation and Island Mass Effect on St. Croix, US Virgin Islands: A Mechanism for Relatively Consistent Recruitment Patterns

    Science.gov (United States)

    Chérubin, Laurent Marcel; Garavelli, Lysel

    2016-01-01

    The northeastern Caribbean Sea is under the seasonal influence of the Trade Winds but also of the Orinoco/Amazon freshwater plume. The latter is responsible for intensification of the Caribbean Current in general and of its eddy activity in the northern part of the Caribbean Sea. More importantly, we show in this study that the front of the freshwater plume drives a northward flow that impinges directly on the island of St. Croix in the United States Virgin Islands. The angle of incidence of the incoming flow controls the nature of the wake on both sides and ends of the island, which changes from cyclonic to anticylonic wake flow, with either attached or shed eddies. Using an off-line bio-physical model, we simulated the dispersal and recruitment of an abundant Caribbean coral reef fish, the bluehead wrasse (Thalassoma bifasciatum) in the context of the wake flow variability around St. Croix. Our results revealed the role played by the consistent seasonal forcing of the wake flow on the recruitment patterns around the island at the interannual scale. The interannual variability of the timing of arrival and northward penetration of the plume instead controls the nature of the wake, hence the regional spatial recruitment patterns. PMID:26942575

  11. Eastern Caribbean Circulation and Island Mass Effect on St. Croix, US Virgin Islands: A Mechanism for Relatively Consistent Recruitment Patterns.

    Directory of Open Access Journals (Sweden)

    Laurent Marcel Chérubin

    Full Text Available The northeastern Caribbean Sea is under the seasonal influence of the Trade Winds but also of the Orinoco/Amazon freshwater plume. The latter is responsible for intensification of the Caribbean Current in general and of its eddy activity in the northern part of the Caribbean Sea. More importantly, we show in this study that the front of the freshwater plume drives a northward flow that impinges directly on the island of St. Croix in the United States Virgin Islands. The angle of incidence of the incoming flow controls the nature of the wake on both sides and ends of the island, which changes from cyclonic to anticylonic wake flow, with either attached or shed eddies. Using an off-line bio-physical model, we simulated the dispersal and recruitment of an abundant Caribbean coral reef fish, the bluehead wrasse (Thalassoma bifasciatum in the context of the wake flow variability around St. Croix. Our results revealed the role played by the consistent seasonal forcing of the wake flow on the recruitment patterns around the island at the interannual scale. The interannual variability of the timing of arrival and northward penetration of the plume instead controls the nature of the wake, hence the regional spatial recruitment patterns.

  12. Diomede Islands, Bering Straight

    Science.gov (United States)

    2008-01-01

    The Diomede Islands consisting of the western island Big Diomede (also known as Imaqliq, Nunarbuk or Ratmanov Island), and the eastern island Little Diomede (also known as Krusenstern Island or Inaliq), are two rocky islands located in the middle of the Bering Strait between Russia and Alaska. The islands are separated by an international border and the International Date Line which is approximately 1.5 km from each island; you can look from Alaska into tomorrow in Russia. At the closest land approach between the United States, which controls Little Diomede, and Russia, which controls Big Diomede, they are 3 km apart. Little Diomede Island constitutes the Alaskan City of Diomede, while Big Diomede Island is Russia's easternmost point. The first European to reach the islands was the Russian explorer Semyon Dezhnev in 1648. The text of the 1867 treaty finalizing the sale of Alaska uses the islands to designate the border between the two nations. The image was acquired July 8, 2000, covers an area of 13.5 x 10.8 km, and is located at 65.8 degrees north latitude, 169 degrees west longitude. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  13. Sociodemographic Factors Influencing Island Food Consumption in the Pacific Islander Health Study

    OpenAIRE

    Baumhofer, Nicole Kau'i

    2016-01-01

    This dissertation explores the relationships between island food consumption, sociodemographic variables, and cardiovascular risk using data from the Pacific Islander Health Study (PIHS). Chapter 1 explores the associations between self-reported level of island food consumption and key covariates. Island food consumption was modeled using Poisson regression and adjusted for demographic, socioeconomic, and cultural characteristics. Increased Pacific Island cultural affinity was the strongest p...

  14. Salt resistance genes revealed by functional metagenomics from brines and moderate-salinity rhizosphere within a hypersaline environment

    Directory of Open Access Journals (Sweden)

    Salvador eMirete

    2015-10-01

    Full Text Available Hypersaline environments are considered one of the most extreme habitats on earth and microorganisms have developed diverse molecular mechanisms of adaptation to withstand these conditions. The present study was aimed at identifying novel genes involved in salt resistance from the microbial communities of brines and the rhizosphere from the Es Trenc saltern (Mallorca, Spain. The microbial diversity assessed by pyrosequencing of 16S rRNA gene libraries revealed the presence of communities that are typical in such environments. Metagenomic libraries from brine and rhizosphere samples, were transferred to the osmosensitive strain Escherichia coli MKH13, and screened for salt resistance. As a result, eleven genes that conferred salt resistance were identified, some encoding for well known proteins previously related to osmoadaptation as a glycerol and a proton pump, whereas others encoded for proteins not previously related to this function in microorganisms as DNA/RNA helicases, an endonuclease III (Nth and hypothetical proteins of unknown function. Furthermore, four of the retrieved genes were cloned and expressed in Bacillus subtilis and they also exhibited salt resistance in this bacterium, broadening the spectrum of bacterial species where these genes can operate. This is the first report of salt resistance genes recovered from metagenomes of a hypersaline environment.

  15. Comparative genomics of four closely related Clostridium perfringens bacteriophages reveals variable evolution among core genes with therapeutic potential

    Directory of Open Access Journals (Sweden)

    Siragusa Gregory R

    2011-06-01

    Full Text Available Abstract Background Because biotechnological uses of bacteriophage gene products as alternatives to conventional antibiotics will require a thorough understanding of their genomic context, we sequenced and analyzed the genomes of four closely related phages isolated from Clostridium perfringens, an important agricultural and human pathogen. Results Phage whole-genome tetra-nucleotide signatures and proteomic tree topologies correlated closely with host phylogeny. Comparisons of our phage genomes to 26 others revealed three shared COGs; of particular interest within this core genome was an endolysin (PF01520, an N-acetylmuramoyl-L-alanine amidase and a holin (PF04531. Comparative analyses of the evolutionary history and genomic context of these common phage proteins revealed two important results: 1 strongly significant host-specific sequence variation within the endolysin, and 2 a protein domain architecture apparently unique to our phage genomes in which the endolysin is located upstream of its associated holin. Endolysin sequences from our phages were one of two very distinct genotypes distinguished by variability within the putative enzymatically-active domain. The shared or core genome was comprised of genes with multiple sequence types belonging to five pfam families, and genes belonging to 12 pfam families, including the holin genes, which were nearly identical. Conclusions Significant genomic diversity exists even among closely-related bacteriophages. Holins and endolysins represent conserved functions across divergent phage genomes and, as we demonstrate here, endolysins can have significant variability and host-specificity even among closely-related genomes. Endolysins in our phage genomes may be subject to different selective pressures than the rest of the genome. These findings may have important implications for potential biotechnological applications of phage gene products.

  16. Paradise Islands? Island States and Environmental Performance

    Directory of Open Access Journals (Sweden)

    Sverker C. Jagers

    2016-03-01

    Full Text Available Island states have been shown to outperform continental states on a number of large-scale coordination-related outcomes, such as levels of democracy and institutional quality. The argument developed and tested in this article contends that the same kind of logic may apply to islands’ environmental performance, too. However, the empirical analysis shows mixed results. Among the 105 environmental outcomes that we analyzed, being an island only has a positive impact on 20 of them. For example, island states tend to outcompete continental states with respect to several indicators related to water quality but not in aspects related to biodiversity, protected areas, or environmental regulations. In addition, the causal factors previously suggested to make islands outperform continental states in terms of coordination have weak explanatory power in predicting islands’ environmental performance. We conclude the paper by discussing how these interesting findings can be further explored.

  17. A new biogeographically disjunct giant gecko (Gehyra: Gekkonidae: Reptilia) from the East Melanesian Islands

    Science.gov (United States)

    Oliver, Paul M.; Clegg, Jonathan R.; Fisher, Robert N.; Richards, Stephen J.; Taylor, Peter N.; Jocque, Merlijn M. T.

    2016-01-01

    The East Melanesian Islands have been a focal area for research into island biogeography and community ecology. However, previously undescribed and biogeographically significant new species endemic to this region continue to be discovered. Here we describe a phylogenetically distinct (~20% divergence at the mitochondrial ND2 gene) and biogeographically disjunct new species of gecko in the genus Gehyra, from the Admiralty and St Matthias Islands. Gehyra rohan sp. nov. can be distinguished from all congeners by the combination of its very large size, ring of bright orange scales around the eye, moderate degree of lateral folding on the limbs and body, and aspects of head, body and tail scalation. Molecular data indicate mid to late Miocene divergence of the new species from nearest relatives occurring nearly 2000 kilometres away in Vanuatu and Fiji. Large Gehyra have not been recorded on the intervening large islands of the Bismark Archipelago (New Britain and New Ireland) and the Solomon Islands, suggesting this dispersal pre-dated the current configuration of these islands, extinction in intervening regions, or potentially elements of both. Conversely, low genetic divergence between disjunct samples on Manus and Mussau implies recent overseas dispersal via either natural or anthropogenic means.

  18. Whole genome sequencing reveals a novel deletion variant in the KIT gene in horses with white spotted coat colour phenotypes.

    Science.gov (United States)

    Dürig, N; Jude, R; Holl, H; Brooks, S A; Lafayette, C; Jagannathan, V; Leeb, T

    2017-08-01

    White spotting phenotypes in horses can range in severity from the common white markings up to completely white horses. EDNRB, KIT, MITF, PAX3 and TRPM1 represent known candidate genes for such phenotypes in horses. For the present study, we re-investigated a large horse family segregating a variable white spotting phenotype, for which conventional Sanger sequencing of the candidate genes' individual exons had failed to reveal the causative variant. We obtained whole genome sequence data from an affected horse and specifically searched for structural variants in the known candidate genes. This analysis revealed a heterozygous ~1.9-kb deletion spanning exons 10-13 of the KIT gene (chr3:77,740,239_77,742,136del1898insTATAT). In continuity with previously named equine KIT variants we propose to designate the newly identified deletion variant W22. We had access to 21 horses carrying the W22 allele. Four of them were compound heterozygous W20/W22 and had a completely white phenotype. Our data suggest that W22 represents a true null allele of the KIT gene, whereas the previously identified W20 leads to a partial loss of function. These findings will enable more precise genetic testing for depigmentation phenotypes in horses. © 2017 Stichting International Foundation for Animal Genetics.

  19. Relaxation rates of gene expression kinetics reveal the feedback signs of autoregulatory gene networks

    Science.gov (United States)

    Jia, Chen; Qian, Hong; Chen, Min; Zhang, Michael Q.

    2018-03-01

    The transient response to a stimulus and subsequent recovery to a steady state are the fundamental characteristics of a living organism. Here we study the relaxation kinetics of autoregulatory gene networks based on the chemical master equation model of single-cell stochastic gene expression with nonlinear feedback regulation. We report a novel relation between the rate of relaxation, characterized by the spectral gap of the Markov model, and the feedback sign of the underlying gene circuit. When a network has no feedback, the relaxation rate is exactly the decaying rate of the protein. We further show that positive feedback always slows down the relaxation kinetics while negative feedback always speeds it up. Numerical simulations demonstrate that this relation provides a possible method to infer the feedback topology of autoregulatory gene networks by using time-series data of gene expression.

  20. [Epidemiological Study of Poor Visual Acuity among Schoolchildren in Bonin Islands].

    Science.gov (United States)

    Ito, Misae; Shimizu, Kimiya; Kawamorita, Takushi; Shoji, Nobuyuki

    2016-04-01

    To investigate the change in uncorrected visual acuity (UCVA) among schoolchildren in Bonin Islands. UCVA of schoolchildren aged 6 to 14 years, was collected from reports of School Health Examination Surveys conducted from 1981 to 2012. The proportion of schoolchildren with poor UCVA in the Bonin Islands was compared with those in metropolitan Tokyo. The results in Bonin Islands were also divided into two groups, before- and after-1996 when terrestrial television broadcasting service has been started, and the data of those two groups were compared. The proportion of schoolchildren with poor UCVA in Bonin Islands was lower than that in Tokyo. Among the residents of Bonin Islands, the proportion of schoolchildren with UCVA of < 1.0 was higher in the after-1996 group than in the before- 1996 group, with a clear increase in schoolchildren with poor UCVA after 1996 (p < 0.01, Fisher's exact test), examined among the 4th grade of elementary school or above. After 1996, 26.6% of first graders at a public junior high school had poor UCVA of < 0.7, whereas before 1996 no such case could be detected. The present study revealed that the proportions of schoolchildren with poor UCVA in Bonin Islands was lower than that in Tokyo; but in the residents of Bonin Islands after 1996, the proportion of the schoolchildren with poor UCVA increased.

  1. A ChIP-chip approach reveals a novel role for transcription factor IRF1 in the DNA damage response.

    Science.gov (United States)

    Frontini, Mattia; Vijayakumar, Meeraa; Garvin, Alexander; Clarke, Nicole

    2009-03-01

    IRF1 is a transcription factor that regulates key processes in the immune system and in tumour suppression. To gain further insight into IRF1's role in these processes, we searched for new target genes by performing chromatin immunoprecipitation coupled to a CpG island microarray (ChIP-chip). Using this approach we identified 202 new IRF1-binding sites with high confidence. Functional categorization of the target genes revealed a surprising cadre of new roles that can be linked to IRF1. One of the major functional categories was the DNA damage response pathway. In order to further validate our findings, we show that IRF1 can regulate the mRNA expression of a number of the DNA damage response genes in our list. In particular, we demonstrate that the mRNA and protein levels of the DNA repair protein BRIP1 [Fanconi anemia gene J (FANC J)] are upregulated after IRF1 over-expression. We also demonstrate that knockdown of IRF1 by siRNA results in loss of BRIP1 expression, abrogation of BRIP1 foci after DNA interstrand crosslink (ICL) damage and hypersensitivity to the DNA crosslinking agent, melphalan; a characteristic phenotype of FANC J cells. Taken together, our data provides a more complete understanding of the regulatory networks controlled by IRF1 and reveals a novel role for IRF1 in regulating the ICL DNA damage response.

  2. A ChIP–chip approach reveals a novel role for transcription factor IRF1 in the DNA damage response

    Science.gov (United States)

    Frontini, Mattia; Vijayakumar, Meeraa; Garvin, Alexander; Clarke, Nicole

    2009-01-01

    IRF1 is a transcription factor that regulates key processes in the immune system and in tumour suppression. To gain further insight into IRF1's role in these processes, we searched for new target genes by performing chromatin immunoprecipitation coupled to a CpG island microarray (ChIP–chip). Using this approach we identified 202 new IRF1-binding sites with high confidence. Functional categorization of the target genes revealed a surprising cadre of new roles that can be linked to IRF1. One of the major functional categories was the DNA damage response pathway. In order to further validate our findings, we show that IRF1 can regulate the mRNA expression of a number of the DNA damage response genes in our list. In particular, we demonstrate that the mRNA and protein levels of the DNA repair protein BRIP1 [Fanconi anemia gene J (FANC J)] are upregulated after IRF1 over-expression. We also demonstrate that knockdown of IRF1 by siRNA results in loss of BRIP1 expression, abrogation of BRIP1 foci after DNA interstrand crosslink (ICL) damage and hypersensitivity to the DNA crosslinking agent, melphalan; a characteristic phenotype of FANC J cells. Taken together, our data provides a more complete understanding of the regulatory networks controlled by IRF1 and reveals a novel role for IRF1 in regulating the ICL DNA damage response. PMID:19129219

  3. IncA/C Conjugative Plasmids Mobilize a New Family of Multidrug Resistance Islands in Clinical Vibrio cholerae Non-O1/Non-O139 Isolates from Haiti.

    Science.gov (United States)

    Carraro, Nicolas; Rivard, Nicolas; Ceccarelli, Daniela; Colwell, Rita R; Burrus, Vincent

    2016-07-19

    Mobile genetic elements play a pivotal role in the adaptation of bacterial populations, allowing them to rapidly cope with hostile conditions, including the presence of antimicrobial compounds. IncA/C conjugative plasmids (ACPs) are efficient vehicles for dissemination of multidrug resistance genes in a broad range of pathogenic species of Enterobacteriaceae ACPs have sporadically been reported in Vibrio cholerae, the infectious agent of the diarrheal disease cholera. The regulatory network that controls ACP mobility ultimately depends on the transcriptional activation of multiple ACP-borne operons by the master activator AcaCD. Beyond ACP conjugation, AcaCD has also recently been shown to activate the expression of genes located in the Salmonella genomic island 1 (SGI1). Here, we describe MGIVchHai6, a novel and unrelated mobilizable genomic island (MGI) integrated into the 3' end of trmE in chromosome I of V. cholerae HC-36A1, a non-O1/non-O139 multidrug-resistant clinical isolate recovered from Haiti in 2010. MGIVchHai6 contains a mercury resistance transposon and an integron In104-like multidrug resistance element similar to the one of SGI1. We show that MGIVchHai6 excises from the chromosome in an AcaCD-dependent manner and is mobilized by ACPs. Acquisition of MGIVchHai6 confers resistance to β-lactams, sulfamethoxazole, tetracycline, chloramphenicol, trimethoprim, and streptomycin/spectinomycin. In silico analyses revealed that MGIVchHai6-like elements are carried by several environmental and clinical V. cholerae strains recovered from the Indian subcontinent, as well as from North and South America, including all non-O1/non-O139 clinical isolates from Haiti. Vibrio cholerae, the causative agent of cholera, remains a global public health threat. Seventh-pandemic V. cholerae acquired multidrug resistance genes primarily through circulation of SXT/R391 integrative and conjugative elements. IncA/C conjugative plasmids have sporadically been reported to

  4. Integrated Metabolo-Transcriptomics Reveals Fusarium Head Blight Candidate Resistance Genes in Wheat QTL-Fhb2.

    Directory of Open Access Journals (Sweden)

    Dhananjay Dhokane

    Full Text Available Fusarium head blight (FHB caused by Fusarium graminearum not only causes severe losses in yield, but also reduces quality of wheat grain by accumulating mycotoxins. Breeding for host plant resistance is considered as the best strategy to manage FHB. Resistance in wheat to FHB is quantitative in nature, involving cumulative effects of many genes governing resistance. The poor understanding of genetics and lack of precise phenotyping has hindered the development of FHB resistant cultivars. Though more than 100 QTLs imparting FHB resistance have been reported, none discovered the specific genes localized within the QTL region, nor the underlying mechanisms of resistance.In our study recombinant inbred lines (RILs carrying resistant (R-RIL and susceptible (S-RIL alleles of QTL-Fhb2 were subjected to metabolome and transcriptome profiling to discover the candidate genes. Metabolome profiling detected a higher abundance of metabolites belonging to phenylpropanoid, lignin, glycerophospholipid, flavonoid, fatty acid, and terpenoid biosynthetic pathways in R-RIL than in S-RIL. Transcriptome analysis revealed up-regulation of several receptor kinases, transcription factors, signaling, mycotoxin detoxification and resistance related genes. The dissection of QTL-Fhb2 using flanking marker sequences, integrating metabolomic and transcriptomic datasets, identified 4-Coumarate: CoA ligase (4CL, callose synthase (CS, basic Helix Loop Helix (bHLH041 transcription factor, glutathione S-transferase (GST, ABC transporter-4 (ABC4 and cinnamyl alcohol dehydrogenase (CAD as putative resistance genes localized within the QTL-Fhb2 region.Some of the identified genes within the QTL region are associated with structural resistance through cell wall reinforcement, reducing the spread of pathogen through rachis within a spike and few other genes that detoxify DON, the virulence factor, thus eventually reducing disease severity. In conclusion, we report that the wheat

  5. Expression Profiling of Glucosinolate Biosynthetic Genes in Brassica oleracea L. var. capitata Inbred Lines Reveals Their Association with Glucosinolate Content

    Directory of Open Access Journals (Sweden)

    Arif Hasan Khan Robin

    2016-06-01

    Full Text Available Glucosinolates are the biochemical compounds that provide defense to plants against pathogens and herbivores. In this study, the relative expression level of 48 glucosinolate biosynthesis genes was explored in four morphologically-different cabbage inbred lines by qPCR analysis. The content of aliphatic and indolic glucosinolate molecules present in those cabbage lines was also estimated by HPLC analysis. The possible association between glucosinolate accumulation and related gene expression level was explored by principal component analysis (PCA. The genotype-dependent variation in the relative expression level of different aliphatic and indolic glucosinolate biosynthesis genes is the novel result of this study. A total of eight different types of glucosinolates, including five aliphatic and three indolic glucosinolates, was detected in four cabbage lines. Three inbred lines BN3383, BN4059 and BN4072 had no glucoraphanin, sinigrin and gluconapin detected, but the inbred line BN3273 had these three aliphatic glucosinolate compounds. PCA revealed that a higher expression level of ST5b genes and lower expression of GSL-OH was associated with the accumulation of these three aliphatic glucosinolate compounds. PCA further revealed that comparatively higher accumulation of neoglucobrassicin in the inbred line, BN4072, was associated with a high level of expression of MYB34 (Bol017062 and CYP81F1 genes. The Dof1 and IQD1 genes probably trans-activated the genes related to biosynthesis of glucoerucin and methoxyglucobrassicin for their comparatively higher accumulation in the BN4059 and BN4072 lines compared to the other two lines, BN3273 and BN3383. A comparatively higher progoitrin level in BN3273 was probably associated with the higher expression level of the GSL-OH gene. The cabbage inbred line BN3383 accounted for the significantly higher relative expression level for the 12 genes out of 48, but this line had comparatively lower total

  6. RNA Sequencing Reveals the Alteration of the Expression of Novel Genes in Ethanol-Treated Embryoid Bodies.

    Science.gov (United States)

    Mandal, Chanchal; Kim, Sun Hwa; Chai, Jin Choul; Oh, Seon Mi; Lee, Young Seek; Jung, Kyoung Hwa; Chai, Young Gyu

    2016-01-01

    Fetal alcohol spectrum disorder is a collective term representing fetal abnormalities associated with maternal alcohol consumption. Prenatal alcohol exposure and related anomalies are well characterized, but the molecular mechanism behind this phenomenon is not well characterized. In this present study, our aim is to profile important genes that regulate cellular development during fetal development. Human embryonic carcinoma cells (NCCIT) are cultured to form embryoid bodies and then treated in the presence and absence of ethanol (50 mM). We employed RNA sequencing to profile differentially expressed genes in the ethanol-treated embryoid bodies from NCCIT vs. EB, NCCIT vs. EB+EtOH and EB vs. EB+EtOH data sets. A total of 632, 205 and 517 differentially expressed genes were identified from NCCIT vs. EB, NCCIT vs. EB+EtOH and EB vs. EB+EtOH, respectively. Functional annotation using bioinformatics tools reveal significant enrichment of differential cellular development and developmental disorders. Furthermore, a group of 42, 15 and 35 transcription factor-encoding genes are screened from all of the differentially expressed genes obtained from NCCIT vs. EB, NCCIT vs. EB+EtOH and EB vs. EB+EtOH, respectively. We validated relative gene expression levels of several transcription factors from these lists by quantitative real-time PCR. We hope that our study substantially contributes to the understanding of the molecular mechanism underlying the pathology of alcohol-mediated anomalies and ease further research.

  7. The recent history and population structure of five Mandarina snail species from subtropical Ogasawara (Bonin Islands, Japan).

    Science.gov (United States)

    Davison, Angus; Chiba, Satoshi

    2006-09-01

    The effect of Pleistocene climate change on the organisms of tropical and subtropical regions is rather poorly understood. We therefore studied the land snail genus Mandarina (Bradybaenidae) of oceanic Ogasawara (Bonin Islands, Japan), with the aim of using population genetic data to understand their recent history. Our analysis of a mitochondrial 16S ribosomal RNA region from more than 600 snails in five ground-living species suggests that populations on the small islands of Mukoujima, Anejima, Imotojima and Meijima, as well as on the low-lying southern and central parts of Hahajima, have probably undergone recent bottlenecks followed by subsequent expansions. Except between the main island of Hahajima and Mukouijima, there is almost no evidence for gene flow among islands even though the islands were connected repeatedly by land bridges through the Pleistocene. Within islands the population structure is severe, suggestive of a long-term, low level of gene flow (F(ST) is frequently greater than 0.5 among geographically close populations). Finally, there is a marked genetic patchiness, meaning that genetically close populations are sometimes separated by genetically distant populations. These patterns could be a consequence of expansion from bottlenecks, low active dispersal and founder effects caused by rare long-distance migrants. Unfortunately, the exact nature of the refugia and bottlenecks remains unknown because the palaeoclimate of this region is poorly understood. Dating the population size changes is also challenging because the molecular clock is uncertain. We suggest, however, that arid conditions or deforestation induced by decreased atmospheric CO(2) may have been the main factor in determining population size.

  8. Recent recoveries of archaeological ceramics on Santa Isabel, central Solomon Islands

    International Nuclear Information System (INIS)

    Carter, M.J.; Roe, D.; Keopo, J.

    2012-01-01

    Recent field investigations on Santa Isabel in the Central Solomon Islands have revealed the presence of archaeological pottery in both terrestrial and intertidal contexts. Preliminary dating results and comparative stylistic analyses of sherds provide evidence to suggest an antiquity of ceramics in northwest Isabel spanning the late Holocene to the recent historic past. These research outcomes expand the known distribution of pottery within the Solomon Islands and provide new knowledge about the prehistory of Santa Isabel. Here we describe the Santa Isabel ceramics, and suggest several implications of the research for current settlement models of the Solomon Islands and for our understanding of the variability in the archaeological record of mid- to late-Holocene ceramic distribution throughout the region. (author). 24 refs., 7 figs.

  9. The Arsenic Resistance-Associated Listeria Genomic Island LGI2 Exhibits Sequence and Integration Site Diversity and a Propensity for Three Listeria monocytogenes Clones with Enhanced Virulence.

    Science.gov (United States)

    Lee, Sangmi; Ward, Todd J; Jima, Dereje D; Parsons, Cameron; Kathariou, Sophia

    2017-11-01

    In the foodborne pathogen Listeria monocytogenes , arsenic resistance is encountered primarily in serotype 4b clones considered to have enhanced virulence and is associated with an arsenic resistance gene cluster within a 35-kb chromosomal region, Listeria genomic island 2 (LGI2). LGI2 was first identified in strain Scott A and includes genes putatively involved in arsenic and cadmium resistance, DNA integration, conjugation, and pathogenicity. However, the genomic localization and sequence content of LGI2 remain poorly characterized. Here we investigated 85 arsenic-resistant L. monocytogenes strains, mostly of serotype 4b. All but one of the 70 serotype 4b strains belonged to clonal complex 1 (CC1), CC2, and CC4, three major clones associated with enhanced virulence. PCR analysis suggested that 53 strains (62.4%) harbored an island highly similar to LGI2 of Scott A, frequently (42/53) in the same location as Scott A ( LMOf2365_2257 homolog). Random-primed PCR and whole-genome sequencing revealed seven novel insertion sites, mostly internal to chromosomal coding sequences, among strains harboring LGI2 outside the LMOf2365_2257 homolog. Interestingly, many CC1 strains harbored a noticeably diversified LGI2 (LGI2-1) in a unique location ( LMOf2365_0902 homolog) and with a novel additional gene. With few exceptions, the tested LGI2 genes were not detected in arsenic-resistant strains of serogroup 1/2, which instead often harbored a Tn 554 -associated arsenic resistance determinant not encountered in serotype 4b. These findings indicate that in L. monocytogenes , LGI2 has a propensity for certain serotype 4b clones, exhibits content diversity, and is highly promiscuous, suggesting an ability to mobilize various accessory genes into diverse chromosomal loci. IMPORTANCE Listeria monocytogenes is widely distributed in the environment and causes listeriosis, a foodborne disease with high mortality and morbidity. Arsenic and other heavy metals can powerfully shape the

  10. Novel cancer gene variants and gene fusions of triple-negative breast cancers (TNBCs) reveal their molecular diversity conserved in the patient-derived xenograft (PDX) model.

    Science.gov (United States)

    Jung, Jaeyun; Jang, Kiwon; Ju, Jung Min; Lee, Eunji; Lee, Jong Won; Kim, Hee Jung; Kim, Jisun; Lee, Sae Byul; Ko, Beom Seok; Son, Byung Ho; Lee, Hee Jin; Gong, Gyungyup; Ahn, Sei Yeon; Choi, Jung Kyoon; Singh, Shree Ram; Chang, Suhwan

    2018-04-20

    Despite the improved 5-year survival rate of breast cancer, triple-negative breast cancer (TNBC) remains a challenge due to lack of effective targeted therapy and higher recurrence and metastasis than other subtypes. To identify novel druggable targets and to understand its unique biology, we tried to implement 24 patient-derived xenografts (PDXs) of TNBC. The overall success rate of PDX implantation was 45%, much higher than estrogen receptor (ER)-positive cases. Immunohistochemical analysis revealed conserved ER/PR/Her2 negativity (with two exceptions) between the original and PDX tumors. Genomic analysis of 10 primary tumor-PDX pairs with Ion AmpliSeq CCP revealed high degree of variant conservation (85.0% to 96.9%) between primary and PDXs. Further analysis showed 44 rare variants with a predicted high impact in 36 genes including Trp53, Pten, Notch1, and Col1a1. Among them, we confirmed frequent Notch1 variant. Furthermore, RNA-seq analysis of 24 PDXs revealed 594 gene fusions, of which 163 were in-frame, including AZGP1-GJC3 and NF1-AARSD1. Finally, western blot analysis of oncogenic signaling proteins supporting molecular diversity of TNBC PDXs. Overall, our report provides a molecular basis for the usefulness of the TNBC PDX model in preclinical study. Copyright © 2018. Published by Elsevier B.V.

  11. Typhoon Effect on Kuroshio and Green Island Wakes: A Modelling Study

    Directory of Open Access Journals (Sweden)

    Tai-Wen Hsu

    2018-01-01

    Full Text Available Green Island, located in the typhoon-active eastern Taiwan coastal water, is the potential Kuroshio power plant site. In this study, a high resolution (250–2250 m shallow-water equations model is used to investigate the effect of typhoon on the hydro-dynamics of Kuroshio and Green Island wakes. Two typhoon–Kuroshio interactions—typhoon Soulik and Holland’s typhoon model—are studied. Simulation results of typhoon Soulik indicate salient characteristics of Kuroshio, and downstream island wakes seems less affected by the typhoon Soulik, because the shortest distance of typhoon Soulik is 250 km away from Green Island and wind speed near Green Island is small. Moreover, Kuroshio currents increase when flow is in the same direction as the counterclockwise rotation of typhoon, and vice versa. This finding is in favorable agreement with the TOROS (Taiwan Ocean Radar Observing System observed data. Simulations of Kuroshio and Holland’s typhoon model successfully reproduces the downstream recirculation and vortex street. Numerical results reveal that the slow moving typhoon has a more significant impact on the Kuroshio and downstream Green Island wakes than the fast moving typhoon does. The rightward bias phenomenon is evident—Kuroshio currents increase (decrease in the right (left of the moving typhoon’s track, due to the counterclockwise rotation of typhoon.

  12. Global transcriptome analysis reveals extensive gene remodeling, alternative splicing and differential transcription profiles in non-seed vascular plant Selaginella moellendorffii.

    Science.gov (United States)

    Zhu, Yan; Chen, Longxian; Zhang, Chengjun; Hao, Pei; Jing, Xinyun; Li, Xuan

    2017-01-25

    Selaginella moellendorffii, a lycophyte, is a model plant to study the early evolution and development of vascular plants. As the first and only sequenced lycophyte to date, the genome of S. moellendorffii revealed many conserved genes and pathways, as well as specialized genes different from flowering plants. Despite the progress made, little is known about long noncoding RNAs (lncRNA) and the alternative splicing (AS) of coding genes in S. moellendorffii. Its coding gene models have not been fully validated with transcriptome data. Furthermore, it remains important to understand whether the regulatory mechanisms similar to flowering plants are used, and how they operate in a non-seed primitive vascular plant. RNA-sequencing (RNA-seq) was performed for three S. moellendorffii tissues, root, stem, and leaf, by constructing strand-specific RNA-seq libraries from RNA purified using RiboMinus isolation protocol. A total of 176 million reads (44 Gbp) were obtained from three tissue types, and were mapped to S. moellendorffii genome. By comparing with 22,285 existing gene models of S. moellendorffii, we identified 7930 high-confidence novel coding genes (a 35.6% increase), and for the first time reported 4422 lncRNAs in a lycophyte. Further, we refined 2461 (11.0%) of existing gene models, and identified 11,030 AS events (for 5957 coding genes) revealed for the first time for lycophytes. Tissue-specific gene expression with functional implication was analyzed, and 1031, 554, and 269 coding genes, and 174, 39, and 17 lncRNAs were identified in root, stem, and leaf tissues, respectively. The expression of critical genes for vascular development stages, i.e. formation of provascular cells, xylem specification and differentiation, and phloem specification and differentiation, was compared in S. moellendorffii tissues, indicating a less complex regulatory mechanism in lycophytes than in flowering plants. The results were further strengthened by the evolutionary trend of

  13. Magnetite nano-islands on Graphene

    Science.gov (United States)

    Anderson, Nathaniel; Zhang, Qiang; Rosenberg, Richard; Vaknin, David

    X-ray magnetic circular dichroism (XMCD) of ex-situ iron nano-islands grown on graphene reveals that iron oxidation spontaneously leads to the formation of magnetite nano-particles - i.e, the formation of the inverse spinel Fe3O4. Fe islands have been grown with two different heights (20 and 75 MLs) on epitaxial graphene and we have determined their magnetic behavior both as function of temperature and applied external field. Our XAS and XMCD at an applied magnetic field of B = 5 T show that the thin film (20 MLs) is totally converted to magnetite whereas the thicker film (75 MLs) exhibits magnetite properties but also those of pure metal iron. For both samples, temperature dependence of the XMCD shows clear transitions at ~120 K consistent with the Verwey transition of bulk magnetite. XMCD at low temperatures shows a weak hysteresis and provide the average spin and angular-momentum moments, the dipolar term, and the total moment . In addition, manipulation and comparison of the XMCD data from both samples allows us to extract information about the pure iron nano-islands from the thicker sample. Ames Laboratory is supported by the U.S. DOE, BES, MSE Contract No. DE-AC02-07CH11358. APS is supported by U.S. DOE Contract No. DE-AC02-06CH11357.

  14. Serratia marcescens harbouring SME-type class A carbapenemases in Canada and the presence of blaSME on a novel genomic island, SmarGI1-1.

    Science.gov (United States)

    Mataseje, L F; Boyd, D A; Delport, J; Hoang, L; Imperial, M; Lefebvre, B; Kuhn, M; Van Caeseele, P; Willey, B M; Mulvey, M R

    2014-07-01

    An increasing prevalence since 2010 of Serratia marcescens harbouring the Ambler class A carbapenemase SME prompted us to further characterize these isolates. Isolates harbouring bla(SME) were identified by PCR and sequencing. Phenotypic analysis for carbapenemase activity was carried out by a modified Hodge test and a modified Carba NP test. Antimicrobial susceptibilities were determined by Etest and Vitek 2. Typing was by PFGE of macrorestriction digests. Whole-genome sequencing of three isolates was carried out to characterize the genomic region harbouring the bla(SME)-type genes. All S. marcescens harbouring SME-type enzymes could be detected using a modified Carba NP test. Isolates harbouring bla(SME) were resistant to penicillins and carbapenems, but remained susceptible to third-generation cephalosporins, as well as fluoroquinolones and trimethoprim/sulfamethoxazole. Isolates exhibited diverse genetic backgrounds, though 57% of isolates were found in three clusters. Analysis of whole-genome sequence data from three isolates revealed that the bla(SME) gene occurred in a novel cryptic prophage genomic island, SmarGI1-1. There has been an increasing occurrence of S. marcescens harbouring bla(SME) in Canada since 2010. The bla(SME) gene was found on a genomic island, SmarGI1-1, that can be excised and circularized, which probably contributes to its dissemination amongst S. marcescens. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Crustal Deformation During the 2011 Volanic Crisis of El Hierro, Canary Islands, Revealed by Continuous GPS Observation

    Science.gov (United States)

    Sagiya, T.; Barrancos Martinez, J.; Calvo, D.; Padron, E.; Hernandez, G. H.; Hernández, P. A.; Perez Rodriguez, N.; Suárez, J. M. P.

    2012-04-01

    Seismo-volcnic activity of El Hierro started in the middle of July of 2011 and resulted in the active submarine eruption after October 12 south off La Restinga, the southern tip of the island. We have been operating one continuous GPS site on the island since 2004. Responding to the activity, we quickly installed 5 more GPS sites. Including another site operated by the Canary Islands Cartograhical Service (GRAFCAN) for a cartographic purpose, we have been monitoring 7 GPS sites equipped with dual-frequency receivers. We present the result of our crustal deformation monitoring and the magmatic activity inferred from the deformation data. In accordance with the deformation pattern, we divide the volcanic activity in 2011 into 4 stages. The first stage is from the middle of July to middle of September, during which steady magmatic inflation is estimated at the center of the island. The inflated volume of the first stage is estimated to be about 1.3 X 107 m3 at the depth of about 5km. The second stage, which continued until the first submarine eruption on October 12, is characterized by the accelerated deformation due to the upward as well as southward migration of magma. Additional inflation of about 2.1 X 107 m3 occurred in the depth range of 1-2km. The third stage continued for about 3 weeks after the first submarine eruption. During this stage, submarine eruption continues while no significant surface deformation is observed. It is considered magma supply from a deeper magma chamber continued during this 3 weeks period. Therefore, the total inflation volume during the first two stages gives the minimum estimate for the total magma volume. Since the beginning of November 2011, many GPS sites started subsiding. However, this deflation pattern is quite different from those in the shallow inflation stages. Horizontal deformation during this 4th stage is not significant, implying that deflation is occurring below the moho.

  16. Novel gene function revealed by mouse mutagenesis screens for models of age-related disease.

    Science.gov (United States)

    Potter, Paul K; Bowl, Michael R; Jeyarajan, Prashanthini; Wisby, Laura; Blease, Andrew; Goldsworthy, Michelle E; Simon, Michelle M; Greenaway, Simon; Michel, Vincent; Barnard, Alun; Aguilar, Carlos; Agnew, Thomas; Banks, Gareth; Blake, Andrew; Chessum, Lauren; Dorning, Joanne; Falcone, Sara; Goosey, Laurence; Harris, Shelley; Haynes, Andy; Heise, Ines; Hillier, Rosie; Hough, Tertius; Hoslin, Angela; Hutchison, Marie; King, Ruairidh; Kumar, Saumya; Lad, Heena V; Law, Gemma; MacLaren, Robert E; Morse, Susan; Nicol, Thomas; Parker, Andrew; Pickford, Karen; Sethi, Siddharth; Starbuck, Becky; Stelma, Femke; Cheeseman, Michael; Cross, Sally H; Foster, Russell G; Jackson, Ian J; Peirson, Stuart N; Thakker, Rajesh V; Vincent, Tonia; Scudamore, Cheryl; Wells, Sara; El-Amraoui, Aziz; Petit, Christine; Acevedo-Arozena, Abraham; Nolan, Patrick M; Cox, Roger; Mallon, Anne-Marie; Brown, Steve D M

    2016-08-18

    Determining the genetic bases of age-related disease remains a major challenge requiring a spectrum of approaches from human and clinical genetics to the utilization of model organism studies. Here we report a large-scale genetic screen in mice employing a phenotype-driven discovery platform to identify mutations resulting in age-related disease, both late-onset and progressive. We have utilized N-ethyl-N-nitrosourea mutagenesis to generate pedigrees of mutagenized mice that were subject to recurrent screens for mutant phenotypes as the mice aged. In total, we identify 105 distinct mutant lines from 157 pedigrees analysed, out of which 27 are late-onset phenotypes across a range of physiological systems. Using whole-genome sequencing we uncover the underlying genes for 44 of these mutant phenotypes, including 12 late-onset phenotypes. These genes reveal a number of novel pathways involved with age-related disease. We illustrate our findings by the recovery and characterization of a novel mouse model of age-related hearing loss.

  17. Escape from the island. Processing constraints on wh-extraction in Danish

    DEFF Research Database (Denmark)

    Christensen, Ken Ramshøj; Kizach, Johannes; Nyvad, Anne Mette

    2012-01-01

    In the formal syntax literature, it is commonly assumed that there is a constraint on linguistic competence that blocks extraction of WH-expressions (e.g. what or which book) from embedded questions, referred to as WH-islands. Furthermore, it is assumed that there is an argument/adjunct asymmetry...... reveal that WH-island violations, though degraded, are grammatical in Danish. Since the standard assumptions cannot account for the range of results, we argue in favor of a processing account referring to Locality (processing domains) and Working Memory....

  18. Novel algorithms reveal streptococcal transcriptomes and clues about undefined genes.

    Science.gov (United States)

    Ryan, Patricia A; Kirk, Brian W; Euler, Chad W; Schuch, Raymond; Fischetti, Vincent A

    2007-07-01

    Bacteria-host interactions are dynamic processes, and understanding transcriptional responses that directly or indirectly regulate the expression of genes involved in initial infection stages would illuminate the molecular events that result in host colonization. We used oligonucleotide microarrays to monitor (in vitro) differential gene expression in group A streptococci during pharyngeal cell adherence, the first overt infection stage. We present neighbor clustering, a new computational method for further analyzing bacterial microarray data that combines two informative characteristics of bacterial genes that share common function or regulation: (1) similar gene expression profiles (i.e., co-expression); and (2) physical proximity of genes on the chromosome. This method identifies statistically significant clusters of co-expressed gene neighbors that potentially share common function or regulation by coupling statistically analyzed gene expression profiles with the chromosomal position of genes. We applied this method to our own data and to those of others, and we show that it identified a greater number of differentially expressed genes, facilitating the reconstruction of more multimeric proteins and complete metabolic pathways than would have been possible without its application. We assessed the biological significance of two identified genes by assaying deletion mutants for adherence in vitro and show that neighbor clustering indeed provides biologically relevant data. Neighbor clustering provides a more comprehensive view of the molecular responses of streptococci during pharyngeal cell adherence.

  19. Gene expression in the scleractinian Acropora microphthalma exposed to high solar irradiance reveals elements of photoprotection and coral bleaching.

    Science.gov (United States)

    Starcevic, Antonio; Dunlap, Walter C; Cullum, John; Shick, J Malcolm; Hranueli, Daslav; Long, Paul F

    2010-11-12

    The success of tropical reef-building corals depends on the metabolic co-operation between the animal host and the photosynthetic performance of endosymbiotic algae residing within its cells. To examine the molecular response of the coral Acropora microphthalma to high levels of solar irradiance, a cDNA library was constructed by PCR-based suppression subtractive hybridisation (PCR-SSH) from mRNA obtained by transplantation of a colony from a depth of 12.7 m to near-surface solar irradiance, during which the coral became noticeably paler from loss of endosymbionts in sun-exposed tissues. A novel approach to sequence annotation of the cDNA library gave genetic evidence for a hypothetical biosynthetic pathway branching from the shikimic acid pathway that leads to the formation of 4-deoxygadusol. This metabolite is a potent antioxidant and expected precursor of the UV-protective mycosporine-like amino acids (MAAs), which serve as sunscreens in coral phototrophic symbiosis. Empirical PCR based evidence further upholds the contention that the biosynthesis of these MAA sunscreens is a 'shared metabolic adaptation' between the symbiotic partners. Additionally, gene expression induced by enhanced solar irradiance reveals a cellular mechanism of light-induced coral bleaching that invokes a Ca(2+)-binding synaptotagmin-like regulator of SNARE protein assembly of phagosomal exocytosis, whereby algal partners are lost from the symbiosis. Bioinformatics analyses of DNA sequences obtained by differential gene expression of a coral exposed to high solar irradiance has revealed the identification of putative genes encoding key steps of the MAA biosynthetic pathway. Revealed also by this treatment are genes that implicate exocytosis as a cellular process contributing to a breakdown in the metabolically essential partnership between the coral host and endosymbiotic algae, which manifests as coral bleaching.

  20. Gene expression in the scleractinian Acropora microphthalma exposed to high solar irradiance reveals elements of photoprotection and coral bleaching.

    Directory of Open Access Journals (Sweden)

    Antonio Starcevic

    2010-11-01

    Full Text Available The success of tropical reef-building corals depends on the metabolic co-operation between the animal host and the photosynthetic performance of endosymbiotic algae residing within its cells. To examine the molecular response of the coral Acropora microphthalma to high levels of solar irradiance, a cDNA library was constructed by PCR-based suppression subtractive hybridisation (PCR-SSH from mRNA obtained by transplantation of a colony from a depth of 12.7 m to near-surface solar irradiance, during which the coral became noticeably paler from loss of endosymbionts in sun-exposed tissues.A novel approach to sequence annotation of the cDNA library gave genetic evidence for a hypothetical biosynthetic pathway branching from the shikimic acid pathway that leads to the formation of 4-deoxygadusol. This metabolite is a potent antioxidant and expected precursor of the UV-protective mycosporine-like amino acids (MAAs, which serve as sunscreens in coral phototrophic symbiosis. Empirical PCR based evidence further upholds the contention that the biosynthesis of these MAA sunscreens is a 'shared metabolic adaptation' between the symbiotic partners. Additionally, gene expression induced by enhanced solar irradiance reveals a cellular mechanism of light-induced coral bleaching that invokes a Ca(2+-binding synaptotagmin-like regulator of SNARE protein assembly of phagosomal exocytosis, whereby algal partners are lost from the symbiosis.Bioinformatics analyses of DNA sequences obtained by differential gene expression of a coral exposed to high solar irradiance has revealed the identification of putative genes encoding key steps of the MAA biosynthetic pathway. Revealed also by this treatment are genes that implicate exocytosis as a cellular process contributing to a breakdown in the metabolically essential partnership between the coral host and endosymbiotic algae, which manifests as coral bleaching.

  1. Phylogeography and diversification history of the day-gecko genus Phelsuma in the Seychelles islands.

    Science.gov (United States)

    Rocha, Sara; Posada, David; Harris, D James

    2013-01-05

    Lying in a shallow continental shelf cyclically affected by oscillating sea levels since the Miocene, the Seychelles islands are particularly interesting for evolutionary studies. Recent molecular studies are generating an emerging picture of the origin of its biota, yet very little is known regarding their phylogeographic structure or on the factors promoting diversification within the archipelago. Here we aimed to obtain a detailed depiction of the genetic structure and evolution of one of the most widespread vertebrate groups in the archipelago: the day-geckos of the genus Phelsuma. In parallel, we aimed to infer divergence times between species and subspecies, testing a long-standing hypothesis that argues for different time since sympatry between species as the cause of their different morphological differentiation across the archipelago. Molecular data corroborated the existence of two main lineages, corresponding to the two currently recognized species. Divergences between species likely date back to the Mio-Pliocene, while more recent, Pleistocenic, divergences are suggested within each species. Populations from outer islands share mtDNA haplotypes with inner island populations, suggesting very recent dispersals (or introductions). We found no evidence of current gene flow between species, but results pointed to the possibility of gene flow between (now allopatric) subspecies. Time estimates suggest a synchronous divergence within each species (between island groups). The geographic patterns of genetic variation agree with previous taxonomic subdivisions within each species and the origin of outer islands populations is clearly tracked. The similar intraspecific divergence time estimates obtained suggest that the differential body-size differentiation between species within each group of islands may be driven by factors other than character displacement proportional to time since sympatry, as previously suggested. These factors could include different

  2. Transcriptomic changes reveal gene networks responding to the overexpression of a blueberry DWARF AND DELAYED FLOWERING 1 gene in transgenic blueberry plants.

    Science.gov (United States)

    Song, Guo-Qing; Gao, Xuan

    2017-06-19

    Constitutive expression of the CBF/DREB1 for increasing freezing tolerance in woody plants is often associated with other phenotypic changes including dwarf plant and delayed flowering. These phenotypic changes have been observed when Arabidopsis DWARF AND DELAYED FLOWERING 1 (DDF1) was overexpressed in A. thaliana plants. To date, the DDF1 orthologues have not been studied in woody plants. The aim of this study is to investigate transcriptomic responses to the overexpression of blueberry (Vaccinium corymbosum) DDF1 (herein, VcDDF1-OX). The VcDDF1-OX resulted in enhanced freezing tolerance in tetraploid blueberry plants and did not result in significant changes in plant size, chilling requirement, and flowering time. Comparative transcriptome analysis of transgenic 'Legacy-VcDDF1-OX' plants containing an overexpressed VcDDF1 with non-transgenic highbush blueberry 'Legacy' plants revealed the VcDDF1-OX derived differentially expressed (DE) genes and transcripts in the pathways of cold-response, plant flowering, DELLA proteins, and plant phytohormones. The increase in freezing tolerance was associated to the expression of cold-regulated genes (CORs) and the ethylene pathway genes. The unchanged plant size, dormancy and flowering were due to the minimal effect of the VcDDF1-OX on the expression of DELLA proteins, flowering pathway genes, and the other phytohormone genes related to plant growth and development. The DE genes in auxin and cytokinin pathways suggest that the VcDDF1-OX has also altered plant tolerance to drought and high salinity. A DDF1 orthologue in blueberry functioned differently from the DDF1 reported in Arabidopsis. The overexpression of VcDDF1 or its orthologues is a new approach to increase freezing tolerance of deciduous woody plant species with no obvious effect on plant size and plant flowering time.

  3. Anagenetic speciation in Ullung Island, Korea: genetic diversity and structure in the island endemic species, Acer takesimense (Sapindaceae).

    Science.gov (United States)

    Takayama, Koji; Sun, Byung-Yun; Stuessy, Tod F

    2013-05-01

    Anagenetic speciation is an important mode of speciation in oceanic islands; one-fourth of the endemic plants are estimated to have been derived via this process. Few studies, however, have critically examined the genetic consequences of anagenesis in comparison with cladogenesis (involved with adaptive radiation). We hypothesize that endemic species originating via anagenetic speciation in a relatively uniform environment should accumulate genetic variation with limited populational differentiation. We undertook a population genetic analysis using nine nuclear microsatellite loci of Acer takesimense, an anagenetically derived species endemic to Ullung Island, Korea, and its continental progenitor A. pseudosieboldianum on the Korean Peninsula. Microsatellite data reveal a clear genetic distinction between the two species. A high F value in the cluster of A. takesimense was found by Bayesian clustering analysis, suggesting a strong episode of genetic drift during colonization and speciation. In comparison with A. pseudosieboldianum, A. takesimense has slightly lower genetic diversity and possesses less than half the number of private and rare alleles. Consistent with predictions, weak geographical genetic structure within the island was found in A. takesimense. These results imply that anagenetic speciation leads to a different pattern of specific and genetic diversity than often seen with cladogenesis.

  4. The Environmental Acinetobacter baumannii Isolate DSM30011 Reveals Clues into the Preantibiotic Era Genome Diversity, Virulence Potential, and Niche Range of a Predominant Nosocomial Pathogen

    Science.gov (United States)

    Viale, Alejandro M.; Borges, Vítor; Cameranesi, María M.; Taib, Najwa; Espariz, Martín; Brochier-Armanet, Céline; Gomes, João Paulo; Salcedo, Suzana P.

    2017-01-01

    Abstract Acinetobacter baumannii represents nowadays an important nosocomial opportunistic pathogen whose reservoirs outside the clinical setting are obscure. Here, we traced the origins of the collection strain A. baumannii DSM30011 to an isolate first reported in 1944, obtained from the enriched microbiota responsible of the aerobic decomposition of the resinous desert shrub guayule. Whole-genome sequencing and phylogenetic analysis based on core genes confirmed DSM30011 affiliation to A. baumannii. Comparative studies with 32 complete A. baumannii genomes revealed the presence of 12 unique accessory chromosomal regions in DSM30011 including five encompassing phage-related genes, five containing toxin genes of the type-6 secretion system, and one with an atypical CRISPRs/cas cluster. No antimicrobial resistance islands were identified in DSM30011 agreeing with a general antimicrobial susceptibility phenotype including folate synthesis inhibitors. The marginal ampicillin resistance of DSM30011 most likely derived from chromosomal ADC-type ampC and blaOXA-51-type genes. Searching for catabolic pathways genes revealed several clusters involved in the degradation of plant defenses including woody tissues and a previously unreported atu locus responsible of aliphatic terpenes degradation, thus suggesting that resinous plants may provide an effective niche for this organism. DSM30011 also harbored most genes and regulatory mechanisms linked to persistence and virulence in pathogenic Acinetobacter species. This strain thus revealed important clues into the genomic diversity, virulence potential, and niche ranges of the preantibiotic era A. baumannii population, and may provide an useful tool for our understanding of the processes that led to the recent evolution of this species toward an opportunistic pathogen of humans. PMID:28934377

  5. Transcriptome Analysis of an Insecticide Resistant Housefly Strain: Insights about SNPs and Regulatory Elements in Cytochrome P450 Genes.

    Science.gov (United States)

    Mahmood, Khalid; Højland, Dorte H; Asp, Torben; Kristensen, Michael

    2016-01-01

    Insecticide resistance in the housefly, Musca domestica, has been investigated for more than 60 years. It will enter a new era after the recent publication of the housefly genome and the development of multiple next generation sequencing technologies. The genetic background of the xenobiotic response can now be investigated in greater detail. Here, we investigate the 454-pyrosequencing transcriptome of the spinosad-resistant 791spin strain in relation to the housefly genome with focus on P450 genes. The de novo assembly of clean reads gave 35,834 contigs consisting of 21,780 sequences of the spinosad resistant strain. The 3,648 sequences were annotated with an enzyme code EC number and were mapped to 124 KEGG pathways with metabolic processes as most highly represented pathway. One hundred and twenty contigs were annotated as P450s covering 44 different P450 genes of housefly. Eight differentially expressed P450s genes were identified and investigated for SNPs, CpG islands and common regulatory motifs in promoter and coding regions. Functional annotation clustering of metabolic related genes and motif analysis of P450s revealed their association with epigenetic, transcription and gene expression related functions. The sequence variation analysis resulted in 12 SNPs and eight of them found in cyp6d1. There is variation in location, size and frequency of CpG islands and specific motifs were also identified in these P450s. Moreover, identified motifs were associated to GO terms and transcription factors using bioinformatic tools. Transcriptome data of a spinosad resistant strain provide together with genome data fundamental support for future research to understand evolution of resistance in houseflies. Here, we report for the first time the SNPs, CpG islands and common regulatory motifs in differentially expressed P450s. Taken together our findings will serve as a stepping stone to advance understanding of the mechanism and role of P450s in xenobiotic detoxification.

  6. Genetic and epigenetic variation in 5S ribosomal RNA genes reveals genome dynamics in Arabidopsis thaliana.

    Science.gov (United States)

    Simon, Lauriane; Rabanal, Fernando A; Dubos, Tristan; Oliver, Cecilia; Lauber, Damien; Poulet, Axel; Vogt, Alexander; Mandlbauer, Ariane; Le Goff, Samuel; Sommer, Andreas; Duborjal, Hervé; Tatout, Christophe; Probst, Aline V

    2018-04-06

    Organized in tandem repeat arrays in most eukaryotes and transcribed by RNA polymerase III, expression of 5S rRNA genes is under epigenetic control. To unveil mechanisms of transcriptional regulation, we obtained here in depth sequence information on 5S rRNA genes from the Arabidopsis thaliana genome and identified differential enrichment in epigenetic marks between the three 5S rDNA loci situated on chromosomes 3, 4 and 5. We reveal the chromosome 5 locus as the major source of an atypical, long 5S rRNA transcript characteristic of an open chromatin structure. 5S rRNA genes from this locus translocated in the Landsberg erecta ecotype as shown by linkage mapping and chromosome-specific FISH analysis. These variations in 5S rDNA locus organization cause changes in the spatial arrangement of chromosomes in the nucleus. Furthermore, 5S rRNA gene arrangements are highly dynamic with alterations in chromosomal positions through translocations in certain mutants of the RNA-directed DNA methylation pathway and important copy number variations among ecotypes. Finally, variations in 5S rRNA gene sequence, chromatin organization and transcripts indicate differential usage of 5S rDNA loci in distinct ecotypes. We suggest that both the usage of existing and new 5S rDNA loci resulting from translocations may impact neighboring chromatin organization.

  7. Researching Pacific island livelihoods:

    DEFF Research Database (Denmark)

    Egelund Christensen, Andreas; Mertz, Ole

    2010-01-01

    on contemporary theories of nissology and conceptual analytical frameworks for island research. Through a review of selected case-study-based island literature on changing livelihoods coming out of the South Pacific, we wish to illustrate and discuss advantages of finding common grounds for small island studies....... The focus is on two dimensions of island livelihood, migration and natural resource management, both of which are significant contributors in making island livelihoods and shaping Pacific seascapes. We argue that there is still a substantial lack of studies targeting small island dynamics that are empirical...

  8. Diversity of acetic acid bacteria present in healthy grapes from the Canary Islands.

    Science.gov (United States)

    Valera, Maria José; Laich, Federico; González, Sara S; Torija, Maria Jesús; Mateo, Estibaliz; Mas, Albert

    2011-11-15

    The identification of acetic acid bacteria (AAB) from sound grapes from the Canary Islands is reported in the present study. No direct recovery of bacteria was possible in the most commonly used medium, so microvinifications were performed on grapes from Tenerife, La Palma and Lanzarote islands. Up to 396 AAB were isolated from those microvinifications and identified by 16S rRNA gene sequencing and phylogenetic analysis. With this method, Acetobacter pasteurianus, Acetobacter tropicalis, Gluconobacter japonicus and Gluconacetobacter saccharivorans were identified. However, no discrimination between the closely related species Acetobacter malorum and Acetobacter cerevisiae was possible. As previously described, 16S-23S rRNA gene internal transcribed spacer (ITS) region phylogenetic analysis was required to classify isolates as one of those species. These two species were the most frequently occurring, accounting for more than 60% of the isolates. For typing the AAB isolates, both the Enterobacterial Repetitive Intergenic Consensus (ERIC)-PCR and (GTG)5-PCR techniques gave similar resolution. A total of 60 profiles were identified. Thirteen of these profiles were found in more than one vineyard, and only one profile was found on two different islands (Tenerife and La Palma). Copyright © 2011 Elsevier B.V. All rights reserved.

  9. 78 FR 63860 - Amendment of Class D Airspace; Kwajalein Island, Marshall Islands, RMI

    Science.gov (United States)

    2013-10-25

    ...This action amends the Kwajalein Island Class D airspace description by amending the geographic coordinates for Bucholz Army Airfield (AAF), Kwajalein Island, Marshall Islands, RMI. The Bucholz AAF geographic coordinates information was updated in the Kwajalein Island Class E airspace descriptions in 2011, but was inadvertently overlooked in the Kwajalein Island Class D airspace description. This action ensures the safety of aircraft operating in the Kwajalein Island airspace area. This is an administrative action and does not affect the operating requirements of the airspace.

  10. Learning-Induced Gene Expression in the Hippocampus Reveals a Role of Neuron -Astrocyte Metabolic Coupling in Long Term Memory

    KAUST Repository

    Tadi, Monika; Allaman, Igor; Lengacher, Sylvain; Grenningloh, Gabriele; Magistretti, Pierre J.

    2015-01-01

    We examined the expression of genes related to brain energy metabolism and particularly those encoding glia (astrocyte)-specific functions in the dorsal hippocampus subsequent to learning. Context-dependent avoidance behavior was tested in mice using the step-through Inhibitory Avoidance (IA) paradigm. Animals were sacrificed 3, 9, 24, or 72 hours after training or 3 hours after retention testing. The quantitative determination of mRNA levels revealed learning-induced changes in the expression of genes thought to be involved in astrocyte-neuron metabolic coupling in a time dependent manner. Twenty four hours following IA training, an enhanced gene expression was seen, particularly for genes encoding monocarboxylate transporters 1 and 4 (MCT1, MCT4), alpha2 subunit of the Na/K-ATPase and glucose transporter type 1. To assess the functional role for one of these genes in learning, we studied MCT1 deficient mice and found that they exhibit impaired memory in the inhibitory avoidance task. Together, these observations indicate that neuron-glia metabolic coupling undergoes metabolic adaptations following learning as indicated by the change in expression of key metabolic genes.

  11. Learning-Induced Gene Expression in the Hippocampus Reveals a Role of Neuron -Astrocyte Metabolic Coupling in Long Term Memory

    KAUST Repository

    Tadi, Monika

    2015-10-29

    We examined the expression of genes related to brain energy metabolism and particularly those encoding glia (astrocyte)-specific functions in the dorsal hippocampus subsequent to learning. Context-dependent avoidance behavior was tested in mice using the step-through Inhibitory Avoidance (IA) paradigm. Animals were sacrificed 3, 9, 24, or 72 hours after training or 3 hours after retention testing. The quantitative determination of mRNA levels revealed learning-induced changes in the expression of genes thought to be involved in astrocyte-neuron metabolic coupling in a time dependent manner. Twenty four hours following IA training, an enhanced gene expression was seen, particularly for genes encoding monocarboxylate transporters 1 and 4 (MCT1, MCT4), alpha2 subunit of the Na/K-ATPase and glucose transporter type 1. To assess the functional role for one of these genes in learning, we studied MCT1 deficient mice and found that they exhibit impaired memory in the inhibitory avoidance task. Together, these observations indicate that neuron-glia metabolic coupling undergoes metabolic adaptations following learning as indicated by the change in expression of key metabolic genes.

  12. Demethylation by 5-aza-2'-deoxycytidine in colorectal cancer cells targets genomic DNA whilst promoter CpG island methylation persists

    International Nuclear Information System (INIS)

    Mossman, David; Kim, Kyu-Tae; Scott, Rodney J

    2010-01-01

    DNA methylation and histone acetylation are epigenetic modifications that act as regulators of gene expression. Aberrant epigenetic gene silencing in tumours is a frequent event, yet the factors which dictate which genes are targeted for inactivation are unknown. DNA methylation and histone acetylation can be modified with the chemical agents 5-aza-2'-deoxycytidine (5-aza-dC) and Trichostatin A (TSA) respectively. The aim of this study was to analyse de-methylation and re-methylation and its affect on gene expression in colorectal cancer cell lines treated with 5-aza-dC alone and in combination with TSA. We also sought to identify methylation patterns associated with long term reactivation of previously silenced genes. Colorectal cancer cell lines were treated with 5-aza-dC, with and without TSA, to analyse global methylation decreases by High Performance Liquid Chromatography (HPLC). Re-methylation was observed with removal of drug treatments. Expression arrays identified silenced genes with differing patterns of expression after treatment, such as short term reactivation or long term reactivation. Sodium bisulfite sequencing was performed on the CpG island associated with these genes and expression was verified with real time PCR. Treatment with 5-aza-dC was found to affect genomic methylation and to a lesser extent gene specific methylation. Reactivated genes which remained expressed 10 days post 5-aza-dC treatment featured hypomethylated CpG sites adjacent to the transcription start site (TSS). In contrast, genes with uniformly hypermethylated CpG islands were only temporarily reactivated. These results imply that 5-aza-dC induces strong de-methylation of the genome and initiates reactivation of transcriptionally inactive genes, but this does not require gene associated CpG island de-methylation to occur. In addition, for three of our selected genes, hypomethylation at the TSS of an epigenetically silenced gene is associated with the long term reversion of

  13. Stepping-stones to the Edge: Artistic Expressions of Islandness in an Ocean of Islands

    Directory of Open Access Journals (Sweden)

    Laurie Brinklow

    2013-05-01

    Full Text Available Since the earliest of times, islands have captured the artistic imagination—and, often, for the artist who finds his or her muse in being ‘islanded’, the smaller the island the better. Archipelagos offer an ideal setting for artists who take their inspiration from place: on small islands off islands they can experience an intensity of island living they might not otherwise have on a main island: boundedness and connection, isolation and community. This paper examines expressions of islandness by artists who live on islands off islands that are poles apart—‘archipelagos’ of the Canadian North Atlantic and the Great Southern Ocean. It draws upon interviews with those artists and writers to consider the nature of humans’ attachment and attraction to islands, exploring through the lens of phenomenology what Stratford et al. call the “entanglement between and among islands”.

  14. The crossover from collective motion to periphery diffusion for two-dimensional adatom-islands on Cu(111)

    International Nuclear Information System (INIS)

    Karim, Altaf; Kara, Abdelkader; Rahman, Talat S; Trushin, Oleg

    2011-01-01

    The diffusion of two-dimensional adatom-islands (up to 100 atoms) on Cu(111) has been studied, using the self-learning kinetic Monte Carlo method (Trushin et al 2005 Phys. Rev. B 72 115401). A variety of multiple- and single-atom processes are revealed in the simulations, and the size dependences of the diffusion coefficients and effective diffusion barriers are calculated for each. From the tabulated frequencies of events found in the simulation, we show a crossover from diffusion due to the collective motion of the island to a regime in which the island diffuses through periphery-dominated mass transport. This crossover occurs for island sizes between 13 and 19 atoms. For islands containing 19-100 atoms the scaling exponent is 1.5, which is in good agreement with previous work. The diffusion of islands containing 2-13 atoms can be explained primarily on the basis of a linear increase of the barrier for the collective motion with the size of the island. (fast track communication)

  15. Placental gene-expression profiles of intrahepatic cholestasis of pregnancy reveal involvement of multiple molecular pathways in blood vessel formation and inflammation.

    Science.gov (United States)

    Du, QiaoLing; Pan, YouDong; Zhang, YouHua; Zhang, HaiLong; Zheng, YaJuan; Lu, Ling; Wang, JunLei; Duan, Tao; Chen, JianFeng

    2014-07-07

    Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-associated liver disease with potentially deleterious consequences for the fetus, particularly when maternal serum bile-acid concentration >40 μM. However, the etiology and pathogenesis of ICP remain elusive. To reveal the underlying molecular mechanisms for the association of maternal serum bile-acid level and fetal outcome in ICP patients, DNA microarray was applied to characterize the whole-genome expression profiles of placentas from healthy women and women diagnosed with ICP. Thirty pregnant women recruited in this study were categorized evenly into three groups: healthy group; mild ICP, with serum bile-acid concentration ranging from 10-40 μM; and severe ICP, with bile-acid concentration >40 μM. Gene Ontology analysis in combination with construction of gene-interaction and gene co-expression networks were applied to identify the core regulatory genes associated with ICP pathogenesis, which were further validated by quantitative real-time PCR and histological staining. The core regulatory genes were mainly involved in immune response, VEGF signaling pathway and G-protein-coupled receptor signaling, implying essential roles of immune response, vasculogenesis and angiogenesis in ICP pathogenesis. This implication was supported by the observed aggregated immune-cell infiltration and deficient blood vessel formation in ICP placentas. Our study provides a system-level insight into the placental gene-expression profiles of women with mild or severe ICP, and reveals multiple molecular pathways in immune response and blood vessel formation that might contribute to ICP pathogenesis.

  16. Modeling the distribution of Norway rats (Rattus norvegicus on offshore islands in the Falkland Islands

    Directory of Open Access Journals (Sweden)

    Michael A. Tabak

    2015-01-01

    Full Text Available Non-native rats (Rattus spp. threaten native island species worldwide. Efforts to eradicate them from islands have increased in frequency and become more ambitious in recent years. However, the long-term success of some eradication efforts has been compromised by the ability of rats, particularly Norway rats (Rattus norvegicus which are good swimmers, to recolonize islands following eradications. In the Falkland Islands, an archipelago in the South Atlantic Ocean, the distance of 250 m between islands (once suggested as the minimum separation distance for an effective barrier to recolonization has shown to be insufficient. Norway rats are present on about half of the 503 islands in the Falklands. Bird diversity is lower on islands with rats and two vulnerable passerine species, Troglodytes cobbi (the only endemic Falkland Islands passerine and Cinclodes antarcticus, have greatly reduced abundances and/or are absent on islands with rats. We used logistic regression models to investigate the potential factors that may determine the presence of Norway rats on 158 islands in the Falkland Islands. Our models included island area, distance to the nearest rat-infested island, island location, and the history of island use by humans as driving variables. Models best supported by data included only distance to the nearest potential source of rats and island area, but the relative magnitude of the effect of distance and area on the presence of rats varied depending on whether islands were in the eastern or western sector of the archipelago. The human use of an island was not a significant parameter in any models. A very large fraction (72% of islands within 500 m of the nearest potential rat source had rats, but 97% of islands farther than 1,000 m away from potential rat sources were free of rats.

  17. 5C analysis of the Epidermal Differentiation Complex locus reveals distinct chromatin interaction networks between gene-rich and gene-poor TADs in skin epithelial cells.

    Directory of Open Access Journals (Sweden)

    Krzysztof Poterlowicz

    2017-09-01

    Full Text Available Mammalian genomes contain several dozens of large (>0.5 Mbp lineage-specific gene loci harbouring functionally related genes. However, spatial chromatin folding, organization of the enhancer-promoter networks and their relevance to Topologically Associating Domains (TADs in these loci remain poorly understood. TADs are principle units of the genome folding and represents the DNA regions within which DNA interacts more frequently and less frequently across the TAD boundary. Here, we used Chromatin Conformation Capture Carbon Copy (5C technology to characterize spatial chromatin interaction network in the 3.1 Mb Epidermal Differentiation Complex (EDC locus harbouring 61 functionally related genes that show lineage-specific activation during terminal keratinocyte differentiation in the epidermis. 5C data validated by 3D-FISH demonstrate that the EDC locus is organized into several TADs showing distinct lineage-specific chromatin interaction networks based on their transcription activity and the gene-rich or gene-poor status. Correlation of the 5C results with genome-wide studies for enhancer-specific histone modifications (H3K4me1 and H3K27ac revealed that the majority of spatial chromatin interactions that involves the gene-rich TADs at the EDC locus in keratinocytes include both intra- and inter-TAD interaction networks, connecting gene promoters and enhancers. Compared to thymocytes in which the EDC locus is mostly transcriptionally inactive, these interactions were found to be keratinocyte-specific. In keratinocytes, the promoter-enhancer anchoring regions in the gene-rich transcriptionally active TADs are enriched for the binding of chromatin architectural proteins CTCF, Rad21 and chromatin remodeler Brg1. In contrast to gene-rich TADs, gene-poor TADs show preferential spatial contacts with each other, do not contain active enhancers and show decreased binding of CTCF, Rad21 and Brg1 in keratinocytes. Thus, spatial interactions between gene

  18. Spatiotemporal network motif reveals the biological traits of developmental gene regulatory networks in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Kim Man-Sun

    2012-05-01

    Full Text Available Abstract Background Network motifs provided a “conceptual tool” for understanding the functional principles of biological networks, but such motifs have primarily been used to consider static network structures. Static networks, however, cannot be used to reveal time- and region-specific traits of biological systems. To overcome this limitation, we proposed the concept of a “spatiotemporal network motif,” a spatiotemporal sequence of network motifs of sub-networks which are active only at specific time points and body parts. Results On the basis of this concept, we analyzed the developmental gene regulatory network of the Drosophila melanogaster embryo. We identified spatiotemporal network motifs and investigated their distribution pattern in time and space. As a result, we found how key developmental processes are temporally and spatially regulated by the gene network. In particular, we found that nested feedback loops appeared frequently throughout the entire developmental process. From mathematical simulations, we found that mutual inhibition in the nested feedback loops contributes to the formation of spatial expression patterns. Conclusions Taken together, the proposed concept and the simulations can be used to unravel the design principle of developmental gene regulatory networks.

  19. 33 CFR 80.717 - Tybee Island, GA to St. Simons Island, GA.

    Science.gov (United States)

    2010-07-01

    ... Island. (j) An east-west line from the southernmost extremity of Sea Island across Goulds Inlet to St... Tybee Island 255° true across Tybee Inlet to the shore of Little Tybee Island south of the entrance to... shoreline across Cabretta Inlet. (g) A north-south line (longitude 81°16.9′ W.) drawn from the south...

  20. Energy Transition Initiative: Island Energy Snapshot - U.S. Virgin Islands (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2015-03-01

    This profile provides a snapshot of the energy landscape of the U.S. Virgin Islands (USVI) - St. Thomas, St. John, and St. Croix. The Virgin Islands archipelago makes up the northern portion of the Lesser Antilles and the western island group of the Leeward Islands, forming the border between the Atlantic Ocean and the Caribbean Sea.

  1. Whole blood transcriptional profiling reveals significant down-regulation of human leukocyte antigen class I and II genes in essential thrombocythemia, polycythemia vera and myelofibrosis

    DEFF Research Database (Denmark)

    Skov, Vibe; Riley, Caroline Hasselbalch; Thomassen, Mads

    2013-01-01

    Gene expression profiling studies in the Philadelphia-negative chronic myeloproliferative neoplasms have revealed significant deregulation of several immune and inflammation genes that might be of importance for clonal evolution due to defective tumor immune surveillance. Other mechanisms might b...

  2. Gene structure, expression, and DNA methylation characteristics of sea cucumber cyclin B gene during aestivation.

    Science.gov (United States)

    Zhu, Aijun; Chen, Muyan; Zhang, Xiumei; Storey, Kenneth B

    2016-12-05

    The sea cucumber, Apostichopus japonicus, is a good model for studying environmentally-induced aestivation by a marine invertebrate. One of the central requirements of aestivation is the repression of energy-expensive cellular processes such as cell cycle progression. The present study identified the gene structure of the cell cycle regulator, cyclin B, and detected the expression levels of this gene over three stages of the annual aestivation-arousal cycle. Furthermore, the DNA methylation characteristics of cyclin B were analyzed in non-aestivation and deep-aestivation stages of sea cucumbers. We found that the cyclin B promoter contains a CpG island, three CCAAT-boxes and three cell cycle gene homology regions (CHRs). Application of qRT-PCR analysis showed significant downregulation of cyclin B transcript levels during deep-aestivation in comparison with non-aestivation in both intestine and longitudinal muscle, and these returned to basal levels after arousal from aestivation. Methylation analysis of the cyclin B core promoter revealed that its methylation level showed significant differences between non-aestivation and deep-aestivation stages (p<0.05) and interestingly, a positive correlation between Cyclin B transcripts expression and methylation levels of the core promoter was also observed. Our findings suggest that cell cycle progression may be reversibly arrested during aestivation as indicated by the changes in cyclin B expression levels and we propose that DNA methylation is one of the regulatory mechanisms involved in cyclin B transcriptional variation. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Exploring the molecular basis of insecticide resistance in the dengue vector Aedes aegypti: a case study in Martinique Island (French West Indies).

    Science.gov (United States)

    Marcombe, Sébastien; Poupardin, Rodolphe; Darriet, Frederic; Reynaud, Stéphane; Bonnet, Julien; Strode, Clare; Brengues, Cecile; Yébakima, André; Ranson, Hilary; Corbel, Vincent; David, Jean-Philippe

    2009-10-26

    The yellow fever mosquito Aedes aegypti is a major vector of dengue and hemorrhagic fevers, causing up to 100 million dengue infections every year. As there is still no medicine and efficient vaccine available, vector control largely based on insecticide treatments remains the only method to reduce dengue virus transmission. Unfortunately, vector control programs are facing operational challenges with mosquitoes becoming resistant to commonly used insecticides. Resistance of Ae. aegypti to chemical insecticides has been reported worldwide and the underlying molecular mechanisms, including the identification of enzymes involved in insecticide detoxification are not completely understood. The present paper investigates the molecular basis of insecticide resistance in a population of Ae. aegypti collected in Martinique (French West Indies). Bioassays with insecticides on adults and larvae revealed high levels of resistance to organophosphate and pyrethroid insecticides. Molecular screening for common insecticide target-site mutations showed a high frequency (71%) of the sodium channel 'knock down resistance' (kdr) mutation. Exposing mosquitoes to detoxification enzymes inhibitors prior to bioassays induced a significant increased susceptibility of mosquitoes to insecticides, revealing the presence of metabolic-based resistance mechanisms. This trend was biochemically confirmed by significant elevated activities of cytochrome P450 monooxygenases, glutathione S-transferases and carboxylesterases at both larval and adult stages. Utilization of the microarray Aedes Detox Chip containing probes for all members of detoxification and other insecticide resistance-related enzymes revealed the significant constitutive over-transcription of multiple detoxification genes at both larval and adult stages. The over-transcription of detoxification genes in the resistant strain was confirmed by using real-time quantitative RT-PCR. These results suggest that the high level of

  4. Continental Island Formation and the Archaeology of Defaunation on Zanzibar, Eastern Africa.

    Directory of Open Access Journals (Sweden)

    Mary E Prendergast

    Full Text Available With rising sea levels at the end of the Pleistocene, land-bridge or continental islands were formed around the world. Many of these islands have been extensively studied from a biogeographical perspective, particularly in terms of impacts of island creation on terrestrial vertebrates. However, a majority of studies rely on contemporary faunal distributions rather than fossil data. Here, we present archaeological findings from the island of Zanzibar (also known as Unguja off the eastern African coast, to provide a temporal perspective on island biogeography. The site of Kuumbi Cave, excavated by multiple teams since 2005, has revealed the longest cultural and faunal record for any eastern African island. This record extends to the Late Pleistocene, when Zanzibar was part of the mainland, and attests to the extirpation of large mainland mammals in the millennia after the island became separated. We draw on modeling and sedimentary data to examine the process by which Zanzibar was most recently separated from the mainland, providing the first systematic insights into the nature and chronology of this process. We subsequently investigate the cultural and faunal record from Kuumbi Cave, which provides at least five key temporal windows into human activities and faunal presence: two at the end of the Last Glacial Maximum (LGM, one during the period of post-LGM rapid sea level rise and island formation, and two in the late Holocene (Middle Iron Age and Late Iron Age. This record demonstrates the presence of large mammals during the period of island formation, and their severe reduction or disappearance in the Kuumbi Cave sequence by the late Holocene. While various limitations, including discontinuity in the sequence, problematize attempts to clearly attribute defaunation to anthropogenic or island biogeographic processes, Kuumbi Cave offers an unprecedented opportunity to examine post-Pleistocene island formation and its long-term consequences for

  5. Continental Island Formation and the Archaeology of Defaunation on Zanzibar, Eastern Africa

    Science.gov (United States)

    Prendergast, Mary E.; Rouby, Hélène; Punnwong, Paramita; Marchant, Robert; Crowther, Alison; Kourampas, Nikos; Shipton, Ceri; Walsh, Martin; Lambeck, Kurt; Boivin, Nicole L.

    2016-01-01

    With rising sea levels at the end of the Pleistocene, land-bridge or continental islands were formed around the world. Many of these islands have been extensively studied from a biogeographical perspective, particularly in terms of impacts of island creation on terrestrial vertebrates. However, a majority of studies rely on contemporary faunal distributions rather than fossil data. Here, we present archaeological findings from the island of Zanzibar (also known as Unguja) off the eastern African coast, to provide a temporal perspective on island biogeography. The site of Kuumbi Cave, excavated by multiple teams since 2005, has revealed the longest cultural and faunal record for any eastern African island. This record extends to the Late Pleistocene, when Zanzibar was part of the mainland, and attests to the extirpation of large mainland mammals in the millennia after the island became separated. We draw on modeling and sedimentary data to examine the process by which Zanzibar was most recently separated from the mainland, providing the first systematic insights into the nature and chronology of this process. We subsequently investigate the cultural and faunal record from Kuumbi Cave, which provides at least five key temporal windows into human activities and faunal presence: two at the end of the Last Glacial Maximum (LGM), one during the period of post-LGM rapid sea level rise and island formation, and two in the late Holocene (Middle Iron Age and Late Iron Age). This record demonstrates the presence of large mammals during the period of island formation, and their severe reduction or disappearance in the Kuumbi Cave sequence by the late Holocene. While various limitations, including discontinuity in the sequence, problematize attempts to clearly attribute defaunation to anthropogenic or island biogeographic processes, Kuumbi Cave offers an unprecedented opportunity to examine post-Pleistocene island formation and its long-term consequences for human and animal

  6. Continental Island Formation and the Archaeology of Defaunation on Zanzibar, Eastern Africa.

    Science.gov (United States)

    Prendergast, Mary E; Rouby, Hélène; Punnwong, Paramita; Marchant, Robert; Crowther, Alison; Kourampas, Nikos; Shipton, Ceri; Walsh, Martin; Lambeck, Kurt; Boivin, Nicole L

    2016-01-01

    With rising sea levels at the end of the Pleistocene, land-bridge or continental islands were formed around the world. Many of these islands have been extensively studied from a biogeographical perspective, particularly in terms of impacts of island creation on terrestrial vertebrates. However, a majority of studies rely on contemporary faunal distributions rather than fossil data. Here, we present archaeological findings from the island of Zanzibar (also known as Unguja) off the eastern African coast, to provide a temporal perspective on island biogeography. The site of Kuumbi Cave, excavated by multiple teams since 2005, has revealed the longest cultural and faunal record for any eastern African island. This record extends to the Late Pleistocene, when Zanzibar was part of the mainland, and attests to the extirpation of large mainland mammals in the millennia after the island became separated. We draw on modeling and sedimentary data to examine the process by which Zanzibar was most recently separated from the mainland, providing the first systematic insights into the nature and chronology of this process. We subsequently investigate the cultural and faunal record from Kuumbi Cave, which provides at least five key temporal windows into human activities and faunal presence: two at the end of the Last Glacial Maximum (LGM), one during the period of post-LGM rapid sea level rise and island formation, and two in the late Holocene (Middle Iron Age and Late Iron Age). This record demonstrates the presence of large mammals during the period of island formation, and their severe reduction or disappearance in the Kuumbi Cave sequence by the late Holocene. While various limitations, including discontinuity in the sequence, problematize attempts to clearly attribute defaunation to anthropogenic or island biogeographic processes, Kuumbi Cave offers an unprecedented opportunity to examine post-Pleistocene island formation and its long-term consequences for human and animal

  7. Combined analysis of DNA methylome and transcriptome reveal novel candidate genes with susceptibility to bovine Staphylococcus aureus subclinical mastitis.

    Science.gov (United States)

    Song, Minyan; He, Yanghua; Zhou, Huangkai; Zhang, Yi; Li, Xizhi; Yu, Ying

    2016-07-14

    Subclinical mastitis is a widely spread disease of lactating cows. Its major pathogen is Staphylococcus aureus (S. aureus). In this study, we performed genome-wide integrative analysis of DNA methylation and transcriptional expression to identify candidate genes and pathways relevant to bovine S. aureus subclinical mastitis. The genome-scale DNA methylation profiles of peripheral blood lymphocytes in cows with S. aureus subclinical mastitis (SA group) and healthy controls (CK) were generated by methylated DNA immunoprecipitation combined with microarrays. We identified 1078 differentially methylated genes in SA cows compared with the controls. By integrating DNA methylation and transcriptome data, 58 differentially methylated genes were shared with differently expressed genes, in which 20.7% distinctly hypermethylated genes showed down-regulated expression in SA versus CK, whereas 14.3% dramatically hypomethylated genes showed up-regulated expression. Integrated pathway analysis suggested that these genes were related to inflammation, ErbB signalling pathway and mismatch repair. Further functional analysis revealed that three genes, NRG1, MST1 and NAT9, were strongly correlated with the progression of S. aureus subclinical mastitis and could be used as powerful biomarkers for the improvement of bovine mastitis resistance. Our studies lay the groundwork for epigenetic modification and mechanistic studies on susceptibility of bovine mastitis.

  8. Polygonal patterned peatlands of the White Sea islands

    Science.gov (United States)

    Kutenkov, S. A.; Kozhin, M. N.; Golovina, E. O.; Kopeina, E. I.; Stoikina, N. V.

    2018-03-01

    The summits and slopes of some islands along the northeastern and northern coasts of the White Sea are covered with dried out peatlands. The thickness of the peat deposit is 30–80 cm and it is separated by troughs into gently sloping polygonal peat blocks up to 20 m2 in size. On some northern islands the peat blocks have permafrost cores. The main components of the dried out peatlands vegetation are dwarf shrubs and lichens. The peat stratigraphy reveals two stages of peatland development. On the first stage, the islands were covered with wet cottongrass carpets, which repeated the convex relief shape. On the second stage, they were occupied by the xeromorphic vegetation. We suggest that these polygonal patterned peatlands are the remnants of blanket bogs, the formation of which assumes the conditions of a much more humid climate in the historical past. The time of their active development was calculated according to the White Sea level changes and radiocarbon dates from 1000–4000 BP.

  9. 46 CFR 7.70 - Folly Island, SC to Hilton Head Island, SC.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Folly Island, SC to Hilton Head Island, SC. 7.70 Section... BOUNDARY LINES Atlantic Coast § 7.70 Folly Island, SC to Hilton Head Island, SC. (a) A line drawn from the...′ W. (Port Royal Sound Lighted Whistle Buoy “2PR”); thence to the easternmost extremity of Hilton Head...

  10. GaussianCpG: a Gaussian model for detection of CpG island in human genome sequences.

    Science.gov (United States)

    Yu, Ning; Guo, Xuan; Zelikovsky, Alexander; Pan, Yi

    2017-05-24

    As crucial markers in identifying biological elements and processes in mammalian genomes, CpG islands (CGI) play important roles in DNA methylation, gene regulation, epigenetic inheritance, gene mutation, chromosome inactivation and nuclesome retention. The generally accepted criteria of CGI rely on: (a) %G+C content is ≥ 50%, (b) the ratio of the observed CpG content and the expected CpG content is ≥ 0.6, and (c) the general length of CGI is greater than 200 nucleotides. Most existing computational methods for the prediction of CpG island are programmed on these rules. However, many experimentally verified CpG islands deviate from these artificial criteria. Experiments indicate that in many cases %G+C is human genome. We analyze the energy distribution over genomic primary structure for each CpG site and adopt the parameters from statistics of Human genome. The evaluation results show that the new model can predict CpG islands efficiently by balancing both sensitivity and specificity over known human CGI data sets. Compared with other models, GaussianCpG can achieve better performance in CGI detection. Our Gaussian model aims to simplify the complex interaction between nucleotides. The model is computed not by the linear statistical method but by the Gaussian energy distribution and accumulation. The parameters of Gaussian function are not arbitrarily designated but deliberately chosen by optimizing the biological statistics. By using the pseudopotential analysis on CpG islands, the novel model is validated on both the real and artificial data sets.

  11. Demographic history of Canary Islands male gene-pool: replacement of native lineages by European

    Directory of Open Access Journals (Sweden)

    Amorim António

    2009-08-01

    Full Text Available Abstract Background The origin and prevalence of the prehispanic settlers of the Canary Islands has attracted great multidisciplinary interest. However, direct ancient DNA genetic studies on indigenous and historical 17th–18th century remains, using mitochondrial DNA as a female marker, have only recently been possible. In the present work, the analysis of Y-chromosome polymorphisms in the same samples, has shed light on the way the European colonization affected male and female Canary Island indigenous genetic pools, from the conquest to present-day times. Results Autochthonous (E-M81 and prominent (E-M78 and J-M267 Berber Y-chromosome lineages were detected in the indigenous remains, confirming a North West African origin for their ancestors which confirms previous mitochondrial DNA results. However, in contrast with their female lineages, which have survived in the present-day population since the conquest with only a moderate decline, the male indigenous lineages have dropped constantly being substituted by European lineages. Male and female sub-Saharan African genetic inputs were also detected in the Canary population, but their frequencies were higher during the 17th–18th centuries than today. Conclusion The European colonization of the Canary Islands introduced a strong sex-biased change in the indigenous population in such a way that indigenous female lineages survived in the extant population in a significantly higher proportion than their male counterparts.

  12. Linkage disequilibrium and demographic history of the isolated population of the Faroe Islands

    DEFF Research Database (Denmark)

    Jorgensen, Tove H; Degn, Birte; Wang, August G

    2002-01-01

    The isolated population of the Faroe Islands has a history of recent expansion after being limited to a small size for centuries. Such an isolated population may be ideal for linkage disequilibrium mapping of disease genes if linkage disequilibrium (LD) extends over large regions. Analyses of 18 ...

  13. Brown and polar bear Y chromosomes reveal extensive male-biased gene flow within brother lineages.

    Science.gov (United States)

    Bidon, Tobias; Janke, Axel; Fain, Steven R; Eiken, Hans Geir; Hagen, Snorre B; Saarma, Urmas; Hallström, Björn M; Lecomte, Nicolas; Hailer, Frank

    2014-06-01

    Brown and polar bears have become prominent examples in phylogeography, but previous phylogeographic studies relied largely on maternally inherited mitochondrial DNA (mtDNA) or were geographically restricted. The male-specific Y chromosome, a natural counterpart to mtDNA, has remained underexplored. Although this paternally inherited chromosome is indispensable for comprehensive analyses of phylogeographic patterns, technical difficulties and low variability have hampered its application in most mammals. We developed 13 novel Y-chromosomal sequence and microsatellite markers from the polar bear genome and screened these in a broad geographic sample of 130 brown and polar bears. We also analyzed a 390-kb-long Y-chromosomal scaffold using sequencing data from published male ursine genomes. Y chromosome evidence support the emerging understanding that brown and polar bears started to diverge no later than the Middle Pleistocene. Contrary to mtDNA patterns, we found 1) brown and polar bears to be reciprocally monophyletic sister (or rather brother) lineages, without signals of introgression, 2) male-biased gene flow across continents and on phylogeographic time scales, and 3) male dispersal that links the Alaskan ABC islands population to mainland brown bears. Due to female philopatry, mtDNA provides a highly structured estimate of population differentiation, while male-biased gene flow is a homogenizing force for nuclear genetic variation. Our findings highlight the importance of analyzing both maternally and paternally inherited loci for a comprehensive view of phylogeographic history, and that mtDNA-based phylogeographic studies of many mammals should be reevaluated. Recent advances in sequencing technology render the analysis of Y-chromosomal variation feasible, even in nonmodel organisms. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e

  14. Coastal hazards and groundwater salinization on low coral islands.

    Science.gov (United States)

    Terry, James P.; Chui, T. F. May

    2016-04-01

    Remote oceanic communities living on low-lying coral islands (atolls) without surface water rely for their survival on the continuing viability of fragile groundwater resources. These exist in the form of fresh groundwater lenses (FGLs) that develop naturally within the porous coral sand and gravel substrate. Coastal hazards such as inundation by high-energy waves driven by storms and continuing sea-level rise (SLR) are among many possible threats to viable FGL size and quality on atolls. Yet, not much is known about the combined effects of wave washover during powerful storms and SLR on different sizes of coral island, nor conversely how island size influences lens resilience against damage. This study investigates FGL damage by salinization (and resilience) caused by such coastal hazards using a modelling approach. Numerical modelling is carried out to generate steady-state FGL configurations at three chosen island sizes (400, 600 and 800 m widths). Steady-state solutions reveal how FGL dimensions are related in a non-linear manner to coral island size, such that smaller islands develop much more restricted lenses than larger islands. A 40 cm SLR scenario is then imposed. This is followed by transient simulations to examine storm-induced wave washover and subsequent FGL responses to saline damage over a 1 year period. Smaller FGLs display greater potential for disturbance by SLR, while larger and more robust FGLs tend to show more resilience. Further results produce a somewhat counterintuitive finding: in the post-SLR condition, FGL vulnerability to washover salinization may actually be reduced, owing to the thinner layer of unsaturated substrate lying above the water table into which saline water can infiltrate during a storm event. Nonetheless, combined washover and SLR impacts imply overall that advancing groundwater salinization may lead to some coral islands becoming uninhabitable long before they are completely submerged by sea-level rise, thereby calling

  15. Deletions of a differentially methylated CpG island at SNRPN define a putative imprinting control region

    Energy Technology Data Exchange (ETDEWEB)

    Sutcliffe, J.S.,; Nakao, M.; Beaudet, A.L. [Baylor College of Medicine, Houston, TX (United States)] [and others

    1994-09-01

    Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are associated with paternal and maternal deficiencies, respectively, of gene expression within human chromosome 15q11-q13, and are caused by deletion, uniparental disomy, or other mutations. Four transcripts designated PAR-5, PAR-7, PAR-1 and PAR-4 were isolated and localized to a region within 300 kb telomeric to the gene encoding small nuclear ribonucleoprotein-associated polypeptide N (SNRPN). Analysis of the transcripts in cultured fibroblasts and lymphoblasts from deletion patients demonstrated that SNRPN, PAR-5 and PAR-1 are expressed exclusively from the paternal chromosome, defining an imprinted domain that spans at least 200 kb. All three imprinted transcripts were absent in cells from three PWS patients (one pair of sibs and one sporadic case) with small deletions that involve a differentially methylated CpG island containing a previously undescribed 5{prime} untranslated exon ({alpha}) of SNRPN. Methylation of the CpG island is specific for the maternal chromosome consistent with paternal expression of the imprinted domain. One deletion, which is benign when maternally transmitted, extends upstream <30 kb from the CpG island, and is associated with altered methylation centromeric to SNRPN, and loss of transcription telomeric to SNRPN, implying the presence of an imprinting control region around the CpG island containing exon {alpha}.

  16. Potential translational targets revealed by linking mouse grooming behavioral phenotypes to gene expression using public databases.

    Science.gov (United States)

    Roth, Andrew; Kyzar, Evan J; Cachat, Jonathan; Stewart, Adam Michael; Green, Jeremy; Gaikwad, Siddharth; O'Leary, Timothy P; Tabakoff, Boris; Brown, Richard E; Kalueff, Allan V

    2013-01-10

    Rodent self-grooming is an important, evolutionarily conserved behavior, highly sensitive to pharmacological and genetic manipulations. Mice with aberrant grooming phenotypes are currently used to model various human disorders. Therefore, it is critical to understand the biology of grooming behavior, and to assess its translational validity to humans. The present in-silico study used publicly available gene expression and behavioral data obtained from several inbred mouse strains in the open-field, light-dark box, elevated plus- and elevated zero-maze tests. As grooming duration differed between strains, our analysis revealed several candidate genes with significant correlations between gene expression in the brain and grooming duration. The Allen Brain Atlas, STRING, GoMiner and Mouse Genome Informatics databases were used to functionally map and analyze these candidate mouse genes against their human orthologs, assessing the strain ranking of their expression and the regional distribution of expression in the mouse brain. This allowed us to identify an interconnected network of candidate genes (which have expression levels that correlate with grooming behavior), display altered patterns of expression in key brain areas related to grooming, and underlie important functions in the brain. Collectively, our results demonstrate the utility of large-scale, high-throughput data-mining and in-silico modeling for linking genomic and behavioral data, as well as their potential to identify novel neural targets for complex neurobehavioral phenotypes, including grooming. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Gene expression profiling reveals multiple toxicity endpoints induced by hepatotoxicants

    Energy Technology Data Exchange (ETDEWEB)

    Huang Qihong; Jin Xidong; Gaillard, Elias T.; Knight, Brian L.; Pack, Franklin D.; Stoltz, James H.; Jayadev, Supriya; Blanchard, Kerry T

    2004-05-18

    Microarray technology continues to gain increased acceptance in the drug development process, particularly at the stage of toxicology and safety assessment. In the current study, microarrays were used to investigate gene expression changes associated with hepatotoxicity, the most commonly reported clinical liability with pharmaceutical agents. Acetaminophen, methotrexate, methapyrilene, furan and phenytoin were used as benchmark compounds capable of inducing specific but different types of hepatotoxicity. The goal of the work was to define gene expression profiles capable of distinguishing the different subtypes of hepatotoxicity. Sprague-Dawley rats were orally dosed with acetaminophen (single dose, 4500 mg/kg for 6, 24 and 72 h), methotrexate (1 mg/kg per day for 1, 7 and 14 days), methapyrilene (100 mg/kg per day for 3 and 7 days), furan (40 mg/kg per day for 1, 3, 7 and 14 days) or phenytoin (300 mg/kg per day for 14 days). Hepatic gene expression was assessed using toxicology-specific gene arrays containing 684 target genes or expressed sequence tags (ESTs). Principal component analysis (PCA) of gene expression data was able to provide a clear distinction of each compound, suggesting that gene expression data can be used to discern different hepatotoxic agents and toxicity endpoints. Gene expression data were applied to the multiplicity-adjusted permutation test and significantly changed genes were categorized and correlated to hepatotoxic endpoints. Repression of enzymes involved in lipid oxidation (acyl-CoA dehydrogenase, medium chain, enoyl CoA hydratase, very long-chain acyl-CoA synthetase) were associated with microvesicular lipidosis. Likewise, subsets of genes associated with hepatotocellular necrosis, inflammation, hepatitis, bile duct hyperplasia and fibrosis have been identified. The current study illustrates that expression profiling can be used to: (1) distinguish different hepatotoxic endpoints; (2) predict the development of toxic endpoints; and

  18. Characterization of the biocontrol activity of pseudomonas fluorescens strain X reveals novel genes regulated by glucose.

    Directory of Open Access Journals (Sweden)

    Gerasimos F Kremmydas

    Full Text Available Pseudomonas fluorescens strain X, a bacterial isolate from the rhizosphere of bean seedlings, has the ability to suppress damping-off caused by the oomycete Pythium ultimum. To determine the genes controlling the biocontrol activity of strain X, transposon mutagenesis, sequencing and complementation was performed. Results indicate that, biocontrol ability of this isolate is attributed to gcd gene encoding glucose dehydrogenase, genes encoding its co-enzyme pyrroloquinoline quinone (PQQ, and two genes (sup5 and sup6 which seem to be organized in a putative operon. This operon (named supX consists of five genes, one of which encodes a non-ribosomal peptide synthase. A unique binding site for a GntR-type transcriptional factor is localized upstream of the supX putative operon. Synteny comparison of the genes in supX revealed that they are common in the genus Pseudomonas, but with a low degree of similarity. supX shows high similarity only to the mangotoxin operon of Ps. syringae pv. syringae UMAF0158. Quantitative real-time PCR analysis indicated that transcription of supX is strongly reduced in the gcd and PQQ-minus mutants of Ps. fluorescens strain X. On the contrary, transcription of supX in the wild type is enhanced by glucose and transcription levels that appear to be higher during the stationary phase. Gcd, which uses PQQ as a cofactor, catalyses the oxidation of glucose to gluconic acid, which controls the activity of the GntR family of transcriptional factors. The genes in the supX putative operon have not been implicated before in the biocontrol of plant pathogens by pseudomonads. They are involved in the biosynthesis of an antimicrobial compound by Ps. fluorescens strain X and their transcription is controlled by glucose, possibly through the activity of a GntR-type transcriptional factor binding upstream of this putative operon.

  19. Structural organization of the genes for rat von Ebner's gland proteins 1 and 2 reveals their close relationship to lipocalins.

    Science.gov (United States)

    Kock, K; Ahlers, C; Schmale, H

    1994-05-01

    The rat von Ebner's gland protein 1 (VEGP 1) is a secretory protein, which is abundantly expressed in the small acinar von Ebner's salivary glands of the tongue. Based on the primary structure of this protein we have previously suggested that it is a member of the lipocalin superfamily of lipophilic-ligand carrier proteins. Although the physiological role of VEGP 1 is not clear, it might be involved in sensory or protective functions in the taste epithelium. Here, we report the purification of VEGP 1 and of a closely related secretory polypeptide, VEGP 2, the isolation of a cDNA clone encoding VEGP 2, and the isolation and structural characterization of the genes for both proteins. Protein purification by gel-filtration and anion-exchange chromatography using Mono Q revealed the presence of two different immunoreactive VEGP species. N-terminal sequence determination of peptide fragments isolated after protease Asp-N digestion allowed the identification of a new VEGP, named VEGP 2, in addition to the previously characterized VEGP 1. The complete VEGP 2 sequence was deduced from a cDNA clone isolated from a von Ebner's gland cDNA library. The VEGP 2 cDNA encodes a protein of 177 amino acids and is 94% identical to VEGP 1. DNA sequence analysis of the rat VEGP 1 and 2 genes isolated from rat genomic libraries revealed that both span about 4.5 kb and contain seven exons. The VEGP 1 and 2 genes are non-allelic distinct genes in the rat genome and probably arose by gene duplication. The high degree of nucleotide sequence identity in introns A-C (94-100%) points to a recent gene conversion event that included the 5' part of the genes. The genomic organization of the rat VEGP genes closely resembles that found in other lipocalins such as beta-lactoglobulin, mouse urinary proteins (MUPs) and prostaglandin D synthase, and therefore provides clear evidence that VEGPs belong to this superfamily of proteins.

  20. K19 capsular polysaccharide of Acinetobacter baumannii is produced via a Wzy polymerase encoded in a small genomic island rather than the KL19 capsule gene cluster.

    Science.gov (United States)

    Kenyon, Johanna J; Shneider, Mikhail M; Senchenkova, Sofya N; Shashkov, Alexander S; Siniagina, Maria N; Malanin, Sergey Y; Popova, Anastasiya V; Miroshnikov, Konstantin A; Hall, Ruth M; Knirel, Yuriy A

    2016-08-01

    Polymerization of the oligosaccharides (K units) of complex capsular polysaccharides (CPSs) requires a Wzy polymerase, which is usually encoded in the gene cluster that directs K unit synthesis. Here, a gene cluster at the Acinetobacter K locus (KL) that lacks a wzy gene, KL19, was found in Acinetobacter baumannii ST111 isolates 28 and RBH2 recovered from hospitals in the Russian Federation and Australia, respectively. However, these isolates produced long-chain capsule, and a wzy gene was found in a 6.1 kb genomic island (GI) located adjacent to the cpn60 gene. The GI also includes an acetyltransferase gene, atr25, which is interrupted by an insertion sequence (IS) in RBH2. The capsule structure from both strains was →3)-α-d-GalpNAc-(1→4)-α-d-GalpNAcA-(1→3)-β-d-QuipNAc4NAc-(1→, determined using NMR spectroscopy. Biosynthesis of the K unit was inferred to be initiated with QuiNAc4NAc, and hence the Wzy forms the β-(1→3) linkage between QuipNAc4NAc and GalpNAc. The GalpNAc residue is 6-O-acetylated in isolate 28 only, showing that atr25 is responsible for this acetylation. The same GI with or without an IS in atr25 was found in draft genomes of other KL19 isolates, as well as ones carrying a closely related CPS gene cluster, KL39, which differs from KL19 only in a gene for an acyltransferase in the QuiNAc4NR synthesis pathway. Isolates carrying a KL1 variant with the wzy and atr genes each interrupted by an ISAba125 also have this GI. To our knowledge, this study is the first report of genes involved in capsule biosynthesis normally found at the KL located elsewhere in A. baumannii genomes.

  1. Temporal gene expression profiling reveals CEBPD as a candidate regulator of brain disease in prosaposin deficient mice

    Directory of Open Access Journals (Sweden)

    Ran Huimin

    2008-08-01

    Full Text Available Abstract Background Prosaposin encodes, in tandem, four small acidic activator proteins (saposins with specificities for glycosphingolipid (GSL hydrolases in lysosomes. Extensive GSL storage occurs in various central nervous system regions in mammalian prosaposin deficiencies. Results Our hypomorphic prosaposin deficient mouse, PS-NA, exhibited 45% WT levels of brain saposins and showed neuropathology that included neuronal GSL storage and Purkinje cell loss. Impairment of neuronal function was observed as early as 6 wks as demonstrated by the narrow bridges tests. Temporal transcriptome microarray analyses of brain tissues were conducted with mRNA from three prosaposin deficient mouse models: PS-NA, prosaposin null (PS-/- and a V394L/V394L glucocerebrosidase mutation combined with PS-NA (4L/PS-NA. Gene expression alterations in cerebrum and cerebellum were detectable at birth preceding the neuronal deficits. Differentially expressed genes encompassed a broad spectrum of cellular functions. The number of down-regulated genes was constant, but up-regulated gene numbers increased with age. CCAAT/enhancer-binding protein delta (CEBPD was the only up-regulated transcription factor in these two brain regions of all three models. Network analyses revealed that CEBPD has functional relationships with genes in transcription, pro-inflammation, cell death, binding, myelin and transport. Conclusion These results show that: 1 Regionally specific gene expression abnormalities precede the brain histological and neuronal function changes, 2 Temporal gene expression profiles provide insights into the molecular mechanism during the GSL storage disease course, and 3 CEBPD is a candidate regulator of brain disease in prosaposin deficiency to participate in modulating disease acceleration or progression.

  2. The genetic origins of the Andaman Islanders

    DEFF Research Database (Denmark)

    Endicott, Phillip; Gilbert, M Thomas P; Stringer, Chris

    2002-01-01

    Mitochondrial sequences were retrieved from museum specimens of the enigmatic Andaman Islanders to analyze their evolutionary history. D-loop and protein-coding data reveal that phenotypic similarities with African pygmoid groups are convergent. Genetic and epigenetic data are interpreted as favo...... of humans through Asia. The results demonstrate that Victorian anthropological collections can be used to study extinct, or seriously admixed populations, to provide new data about early human origins....

  3. Comparative Genomics Reveals High Genomic Diversity in the Genus Photobacterium.

    Science.gov (United States)

    Machado, Henrique; Gram, Lone

    2017-01-01

    Vibrionaceae is a large marine bacterial family, which can constitute up to 50% of the prokaryotic population in marine waters. Photobacterium is the second largest genus in the family and we used comparative genomics on 35 strains representing 16 of the 28 species described so far, to understand the genomic diversity present in the Photobacterium genus. Such understanding is important for ecophysiology studies of the genus. We used whole genome sequences to evaluate phylogenetic relationships using several analyses (16S rRNA, MLSA, fur , amino-acid usage, ANI), which allowed us to identify two misidentified strains. Genome analyses also revealed occurrence of higher and lower GC content clades, correlating with phylogenetic clusters. Pan- and core-genome analysis revealed the conservation of 25% of the genome throughout the genus, with a large and open pan-genome. The major source of genomic diversity could be traced to the smaller chromosome and plasmids. Several of the physiological traits studied in the genus did not correlate with phylogenetic data. Since horizontal gene transfer (HGT) is often suggested as a source of genetic diversity and a potential driver of genomic evolution in bacterial species, we looked into evidence of such in Photobacterium genomes. Genomic islands were the source of genomic differences between strains of the same species. Also, we found transposase genes and CRISPR arrays that suggest multiple encounters with foreign DNA. Presence of genomic exchange traits was widespread and abundant in the genus, suggesting a role in genomic evolution. The high genetic variability and indications of genetic exchange make it difficult to elucidate genome evolutionary paths and raise the awareness of the roles of foreign DNA in the genomic evolution of environmental organisms.

  4. Characterization of the polyphenol oxidase gene family reveals a novel microRNA involved in posttranscriptional regulation of PPOs in Salvia miltiorrhiza

    OpenAIRE

    Li, Caili; Li, Dongqiao; Li, Jiang; Shao, Fenjuan; Lu, Shanfa

    2017-01-01

    Salvia miltiorrhiza is a well-known material of traditional Chinese medicine. Understanding the regulatory mechanisms of phenolic acid biosynthesis and metabolism are important for S. miltiorrhiza quality improvement. We report here that S. miltiorrhiza contains 19 polyphenol oxidases (PPOs), forming the largest PPO gene family in plant species to our knowledge. Analysis of gene structures and sequence features revealed the conservation and divergence of SmPPOs. SmPPOs were differentially exp...

  5. Occurrence and genotype characterization of Giardia duodenalis in goat kids from the Canary Islands, Spain.

    Science.gov (United States)

    Ruiz, Antonio; Foronda, Pilar; González, Jorge F; Guedes, Aránzazu; Abreu-Acosta, Néstor; Molina, José M; Valladares, Basilio

    2008-06-14

    Giardia duodenalis (syn. Giardia lamblia, Giardia intestinalis) is a wide-spread intestinal protozoa of both humans and animals. Although giardiosis in goat is commonly asymptomatic, young kids may bear an enteric disease associated with persistent diarrhoea and delayed weight gain. In the present study we have analysed the occurrence of Giardia in 315 young goat kids (2-6 months old) from Gran Canaria Island (Spain) through visualization of faecal cysts. The identification of genotypes of G. duodenalis among the farms was attained by nested PCR of the triophosphate isomerase (TPI) and single PCR of beta-giardin genes and subsequent sequencing. Positive samples were found in 42.2% of the animals and 95.5% of the farms. Goat faecal specimens were positive for only livestock-associated G. duodenalis assemblage E genotype for both TPI and beta-giardin genes. The genetic analysis of these two loci revealed the presence of different haplotypes among the farms included in the survey and high homology with homologous genes from cattle and sheep. Altogether, the data presented here provide additional information to the prevalence and genetic characterization of Giardia isolates. The absence of assemblages A and B in this study suggests that zoonotic transmission of Giardia from goats could be of low epidemiological significance, although these findings should be validated in studies including other geographical areas, age groups and larger number of samples.

  6. Widespread promoter methylation of synaptic plasticity genes in long-term potentiation in the adult brain in vivo.

    Science.gov (United States)

    Maag, Jesper L V; Kaczorowski, Dominik C; Panja, Debabrata; Peters, Timothy J; Bramham, Clive R; Wibrand, Karin; Dinger, Marcel E

    2017-03-23

    DNA methylation is a key modulator of gene expression in mammalian development and cellular differentiation, including neurons. To date, the role of DNA modifications in long-term potentiation (LTP) has not been explored. To investigate the occurrence of DNA methylation changes in LTP, we undertook the first detailed study to describe the methylation status of all known LTP-associated genes during LTP induction in the dentate gyrus of live rats. Using a methylated DNA immunoprecipitation (MeDIP)-array, together with previously published matched RNA-seq and public histone modification data, we discover widespread changes in methylation status of LTP-genes. We further show that the expression of many LTP-genes is correlated with their methylation status. We show that these correlated genes are enriched for RNA-processing, active histone marks, and specific transcription factors. These data reveal that the synaptic activity-evoked methylation changes correlates with pre-existing activation of the chromatin landscape. Finally, we show that methylation of Brain-derived neurotrophic factor (Bdnf) CpG-islands correlates with isoform switching from transcripts containing exon IV to exon I. Together, these data provide the first evidence of widespread regulation of methylation status in LTP-associated genes.

  7. Phylogeny of haemosporidian blood parasites revealed by a multi-gene approach.

    Science.gov (United States)

    Borner, Janus; Pick, Christian; Thiede, Jenny; Kolawole, Olatunji Matthew; Kingsley, Manchang Tanyi; Schulze, Jana; Cottontail, Veronika M; Wellinghausen, Nele; Schmidt-Chanasit, Jonas; Bruchhaus, Iris; Burmester, Thorsten

    2016-01-01

    The apicomplexan order Haemosporida is a clade of unicellular blood parasites that infect a variety of reptilian, avian and mammalian hosts. Among them are the agents of human malaria, parasites of the genus Plasmodium, which pose a major threat to human health. Illuminating the evolutionary history of Haemosporida may help us in understanding their enormous biological diversity, as well as tracing the multiple host switches and associated acquisitions of novel life-history traits. However, the deep-level phylogenetic relationships among major haemosporidian clades have remained enigmatic because the datasets employed in phylogenetic analyses were severely limited in either gene coverage or taxon sampling. Using a PCR-based approach that employs a novel set of primers, we sequenced fragments of 21 nuclear genes from seven haemosporidian parasites of the genera Leucocytozoon, Haemoproteus, Parahaemoproteus, Polychromophilus and Plasmodium. After addition of genomic data from 25 apicomplexan species, the unreduced alignment comprised 20,580 bp from 32 species. Phylogenetic analyses were performed based on nucleotide, codon and amino acid data employing Bayesian inference, maximum likelihood and maximum parsimony. All analyses resulted in highly congruent topologies. We found consistent support for a basal position of Leucocytozoon within Haemosporida. In contrast to all previous studies, we recovered a sister group relationship between the genera Polychromophilus and Plasmodium. Within Plasmodium, the sauropsid and mammal-infecting lineages were recovered as sister clades. Support for these relationships was high in nearly all trees, revealing a novel phylogeny of Haemosporida, which is robust to the choice of the outgroup and the method of tree inference. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Full genome sequences are key to disclose RHDV2 emergence in the Macaronesian islands.

    Science.gov (United States)

    Lopes, Ana M; Blanco-Aguiar, Jose; Martín-Alonso, Aaron; Leitão, Manuel; Foronda, Pilar; Mendes, Marco; Gonçalves, David; Abrantes, Joana; Esteves, Pedro J

    2018-02-01

    A recent publication by Carvalho et al. in "Virus Genes" (June 2017) reported the presence of the new variant of rabbit hemorrhagic disease virus (RHDV2) in the two larger islands of the archipelago of Madeira. Based on the capsid protein sequence, the authors suggested that the high sequence identity, along with the short time spanning between outbreaks, points to dissemination from Porto Santo to Madeira. By including information of the full RHDV2 genome of strains from Azores, Madeira, and the Canary Islands, we confirm the results obtained by Carvalho et al., but further show that several subtypes of RHDV2 circulate in these islands: non-recombinant RHDV2 in the Canary Islands, G1/RHDV2 in Azores, Porto Santo and Madeira, and NP/RHDV2 also in Madeira. Here we conclude that RHDV2 has been independently introduced in these archipelagos, and that in Madeira at least two independent introductions must have occurred. We provide additional information on the dynamics of RHDV2 in the Macaronesian archipelagos of Azores, Madeira, and the Canary Islands and highlight the importance of analyzing RHDV2 complete genome.

  9. Cell-type independent MYC target genes reveal a primordial signature involved in biomass accumulation.

    Directory of Open Access Journals (Sweden)

    Hongkai Ji

    Full Text Available The functions of key oncogenic transcription factors independent of context have not been fully delineated despite our richer understanding of the genetic alterations in human cancers. The MYC oncogene, which produces the Myc transcription factor, is frequently altered in human cancer and is a major regulatory hub for many cancers. In this regard, we sought to unravel the primordial signature of Myc function by using high-throughput genomic approaches to identify the cell-type independent core Myc target gene signature. Using a model of human B lymphoma cells bearing inducible MYC, we identified a stringent set of direct Myc target genes via chromatin immunoprecipitation (ChIP, global nuclear run-on assay, and changes in mRNA levels. We also identified direct Myc targets in human embryonic stem cells (ESCs. We further document that a Myc core signature (MCS set of target genes is shared in mouse and human ESCs as well as in four other human cancer cell types. Remarkably, the expression of the MCS correlates with MYC expression in a cell-type independent manner across 8,129 microarray samples, which include 312 cell and tissue types. Furthermore, the expression of the MCS is elevated in vivo in Eμ-Myc transgenic murine lymphoma cells as compared with premalignant or normal B lymphocytes. Expression of the MCS in human B cell lymphomas, acute leukemia, lung cancers or Ewing sarcomas has the highest correlation with MYC expression. Annotation of this gene signature reveals Myc's primordial function in RNA processing, ribosome biogenesis and biomass accumulation as its key roles in cancer and stem cells.

  10. Patterns and Implications of Gene Gain and Loss in the Evolution of Prochlorococcus

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, Alla; Kettler, Gregory C.; Martiny, Adam C.; Huang, Katherine; Zucker, Jeremy; Coleman, Maureen L.; Rodrigue, Sebastien; Chen, Feng; Lapidus, Alla; Ferriera, Steven; Johnson, Justin; Steglich, Claudia; Church, George M.; Richardson, Paul; Chisholm, Sallie W.

    2007-07-30

    Prochlorococcus is a marine cyanobacterium that numerically dominates the mid-latitude oceans and is the smallest known oxygenic phototroph. Numerous isolatesfrom diverse areas of the world's oceans have been studied and shown to be physiologically and genetically distinct. All isolates described thus far can be assigned to either a tightly clustered high-light (HL)-adapted clade, or a more divergent low-light (LL)-adapted group. The 16S rRNA sequences of the entire Prochlorococcus group differ by at most 3percent, and the four initially published genomes revealed patterns of genetic differentiation that help explain physiological differences among the isolates. Here we describe the genomes of eight newly sequenced isolates and combine them with the first four genomes for a comprehensive analysis of the core (shared by all isolates) and flexible genes of the Prochlorococcus group, and the patterns of loss and gain of the flexible genes over the course of evolution. There are 1,273 genes that represent the core shared by all 12 genomes. They are apparently sufficient, according to metabolic reconstruction, to encode a functional cell. We describe a phylogeny for all 12 isolates by subjecting their complete proteomes to three different phylogenetic analyses. For each non-core gene, we used a maximum parsimony method to estimate which ancestor likely first acquired or lost each gene. Many of the genetic differences among isolates, especially for genes involved in outer membrane synthesis and nutrient transport, are found within the same clade. Nevertheless, we identified some genes defining HL and LL ecotypes, and clades within these broad ecotypes, helping to demonstrate the basis of HL and LL adaptations in Prochlorococcus. Furthermore, our estimates of gene gain events allow us to identify highly variable genomic islands that are not apparent through simple pairwise comparisons. These results emphasize the functional roles, especially those connected to outer

  11. High Prevalence of Aleutian Mink Disease Virus in Free-ranging Mink on a Remote Danish Island

    DEFF Research Database (Denmark)

    Jensen, Trine Hammer; Christensen, Laurids Siig; Chriél, Mariann

    2012-01-01

    Aleutian mink disease virus (AMDV) causes severe disease in farmed mink (Neovison vison) worldwide. In Denmark, AMDV in farmed mink has been confined to the northern part of the mainland since 2002. From 1998 to 2009, samples from 396 free-ranging mink were collected from mainland Denmark......, and a low AMDV antibody prevalence (3% of 296) was found using countercurrent immune electrophoresis. However, on the island of Bornholm in the Baltic Sea, a high prevalence (45% of 142 mink) was detected in the free-ranging mink. Aleutian mink disease virus was detected by polymerase chain reaction in 32...... of 49 antibody-positive free-ranging mink on Bornholm, but not in mink collected from other parts of Denmark. Sequence analysis of 370 base pairs of the nonstructural gene of the AMDV of 17 samples revealed two clusters with closest similarity to Swedish AMDV strains....

  12. Phylogenetic analysis of ferlin genes reveals ancient eukaryotic origins

    Directory of Open Access Journals (Sweden)

    Lek Monkol

    2010-07-01

    Full Text Available Abstract Background The ferlin gene family possesses a rare and identifying feature consisting of multiple tandem C2 domains and a C-terminal transmembrane domain. Much currently remains unknown about the fundamental function of this gene family, however, mutations in its two most well-characterised members, dysferlin and otoferlin, have been implicated in human disease. The availability of genome sequences from a wide range of species makes it possible to explore the evolution of the ferlin family, providing contextual insight into characteristic features that define the ferlin gene family in its present form in humans. Results Ferlin genes were detected from all species of representative phyla, with two ferlin subgroups partitioned within the ferlin phylogenetic tree based on the presence or absence of a DysF domain. Invertebrates generally possessed two ferlin genes (one with DysF and one without, with six ferlin genes in most vertebrates (three DysF, three non-DysF. Expansion of the ferlin gene family is evident between the divergence of lamprey (jawless vertebrates and shark (cartilaginous fish. Common to almost all ferlins is an N-terminal C2-FerI-C2 sandwich, a FerB motif, and two C-terminal C2 domains (C2E and C2F adjacent to the transmembrane domain. Preservation of these structural elements throughout eukaryotic evolution suggests a fundamental role of these motifs for ferlin function. In contrast, DysF, C2DE, and FerA are optional, giving rise to subtle differences in domain topologies of ferlin genes. Despite conservation of multiple C2 domains in all ferlins, the C-terminal C2 domains (C2E and C2F displayed higher sequence conservation and greater conservation of putative calcium binding residues across paralogs and orthologs. Interestingly, the two most studied non-mammalian ferlins (Fer-1 and Misfire in model organisms C. elegans and D. melanogaster, present as outgroups in the phylogenetic analysis, with results suggesting

  13. A Deconvolution Protocol for ChIP-Seq Reveals Analogous Enhancer Structures on the Mouse and Human Ribosomal RNA Genes

    Directory of Open Access Journals (Sweden)

    Jean-Clement Mars

    2018-01-01

    Full Text Available The combination of Chromatin Immunoprecipitation and Massively Parallel Sequencing, or ChIP-Seq, has greatly advanced our genome-wide understanding of chromatin and enhancer structures. However, its resolution at any given genetic locus is limited by several factors. In applying ChIP-Seq to the study of the ribosomal RNA genes, we found that a major limitation to resolution was imposed by the underlying variability in sequence coverage that very often dominates the protein–DNA interaction profiles. Here, we describe a simple numerical deconvolution approach that, in large part, corrects for this variability, and significantly improves both the resolution and quantitation of protein–DNA interaction maps deduced from ChIP-Seq data. This approach has allowed us to determine the in vivo organization of the RNA polymerase I preinitiation complexes that form at the promoters and enhancers of the mouse (Mus musculus and human (Homo sapiens ribosomal RNA genes, and to reveal a phased binding of the HMG-box factor UBF across the rDNA. The data identify and map a “Spacer Promoter” and associated stalled polymerase in the intergenic spacer of the human ribosomal RNA genes, and reveal a very similar enhancer structure to that found in rodents and lower vertebrates.

  14. Microarray analysis reveals key genes and pathways in Tetralogy of Fallot

    Science.gov (United States)

    He, Yue-E; Qiu, Hui-Xian; Jiang, Jian-Bing; Wu, Rong-Zhou; Xiang, Ru-Lian; Zhang, Yuan-Hai

    2017-01-01

    The aim of the present study was to identify key genes that may be involved in the pathogenesis of Tetralogy of Fallot (TOF) using bioinformatics methods. The GSE26125 microarray dataset, which includes cardiovascular tissue samples derived from 16 children with TOF and five healthy age-matched control infants, was downloaded from the Gene Expression Omnibus database. Differential expression analysis was performed between TOF and control samples to identify differentially expressed genes (DEGs) using Student's t-test, and the R/limma package, with a log2 fold-change of >2 and a false discovery rate of <0.01 set as thresholds. The biological functions of DEGs were analyzed using the ToppGene database. The ReactomeFIViz application was used to construct functional interaction (FI) networks, and the genes in each module were subjected to pathway enrichment analysis. The iRegulon plugin was used to identify transcription factors predicted to regulate the DEGs in the FI network, and the gene-transcription factor pairs were then visualized using Cytoscape software. A total of 878 DEGs were identified, including 848 upregulated genes and 30 downregulated genes. The gene FI network contained seven function modules, which were all comprised of upregulated genes. Genes enriched in Module 1 were enriched in the following three neurological disorder-associated signaling pathways: Parkinson's disease, Alzheimer's disease and Huntington's disease. Genes in Modules 0, 3 and 5 were dominantly enriched in pathways associated with ribosomes and protein translation. The Xbox binding protein 1 transcription factor was demonstrated to be involved in the regulation of genes encoding the subunits of cytoplasmic and mitochondrial ribosomes, as well as genes involved in neurodegenerative disorders. Therefore, dysfunction of genes involved in signaling pathways associated with neurodegenerative disorders, ribosome function and protein translation may contribute to the pathogenesis of TOF

  15. Learning-Induced Gene Expression in the Hippocampus Reveals a Role of Neuron -Astrocyte Metabolic Coupling in Long Term Memory.

    Directory of Open Access Journals (Sweden)

    Monika Tadi

    Full Text Available We examined the expression of genes related to brain energy metabolism and particularly those encoding glia (astrocyte-specific functions in the dorsal hippocampus subsequent to learning. Context-dependent avoidance behavior was tested in mice using the step-through Inhibitory Avoidance (IA paradigm. Animals were sacrificed 3, 9, 24, or 72 hours after training or 3 hours after retention testing. The quantitative determination of mRNA levels revealed learning-induced changes in the expression of genes thought to be involved in astrocyte-neuron metabolic coupling in a time dependent manner. Twenty four hours following IA training, an enhanced gene expression was seen, particularly for genes encoding monocarboxylate transporters 1 and 4 (MCT1, MCT4, alpha2 subunit of the Na/K-ATPase and glucose transporter type 1. To assess the functional role for one of these genes in learning, we studied MCT1 deficient mice and found that they exhibit impaired memory in the inhibitory avoidance task. Together, these observations indicate that neuron-glia metabolic coupling undergoes metabolic adaptations following learning as indicated by the change in expression of key metabolic genes.

  16. Holocene river history of the Danube: human-environment interactions on its islands in Hungary

    Science.gov (United States)

    Viczián, István; Balogh, János; Kis, Éva; Szeberényi, József

    2016-04-01

    A change in the frequency and magnitude of floods is the main response of river systems to climatic change. Natural floods are highly sensitive to even modest changes of climate. The discharge and the characteristics of floods basically determine the floodplain evolution and the feasibility of human land use and inhabitation on the islands and floodplains. The study revealed that those small islands of large rivers which have the surface rising only some meters above the river are particularly suitable research objects of Holocene climate variability as they are exposed to floods, react sensitively to environmental changes and their evolution may be paralleled with human history. The research area covers the islands of the Danube along the river between Komárom and Paks in Hungary, which is about 250 km, includes more than 50 smaller or formerly existing islands and two extensive islands: the Szentendre Island and Csepel Island. Data gathered from 570 archaeological sites of those islands from Neolithic to Modern Ages were analysed and interpreted in accordance with climate history and floodplain evolution. Nevertheless, the study is not only about river and its environmental history but it demonstrates the role of river and climatic variability in the history of mankind. The environment of the floodplain, the river hydrology, the sedimentation, the formation of islands and the incision and aggradation of surrounding riverbeds, the frequency of devastating floods have significantly changed through the historical time periods, which is reflected in the number and locations of archaeological sites on the islands. Their occupation history reflects the changes in discharge, climate, geomorphology, floods and human impacts and indicates historical periods with low or high probability of inundation. The most favourable periods for an island's occupation concerning the flood risk of its surfaces - and consequently of the banks along the river - are the first parts of a

  17. The islands are different: human perceptions of game species in Hawaii.

    Science.gov (United States)

    Lohr, Cheryl A; Lepczyk, Christopher A; Johnson, Edwin D

    2014-10-01

    Hawaii's game animals are all non-native species, which provokes human-wildlife conflict among stakeholders. The management of human-wildlife conflict in Hawaii is further complicated by the discrete nature of island communities. Our goal was to understand the desires and perceived values or impacts of game held by residents of Hawaii regarding six game species [pigs (Sus scrofa), goats (Capra hircus), mouflon (Ovis musimon), axis deer (Axis axis), turkeys (Melagris gallopavo), and doves (Geopelia striata)]. We measured the desired abundance of game on the six main Hawaiian Islands using the potential for conflict index and identified explanatory variables for those desires via recursive partitioning. In 2011 we surveyed 5,407 residents (2,360 random residents and 3,047 pre-identified stakeholders). Overall 54.5 and 27.6 % of the emailed and mailed surveys were returned (n = 1,510). A non-respondent survey revealed that respondents and non-respondents had similar interest in wildlife, and a similar education level. The desired abundance of game differed significantly among stakeholders, species, and islands. The desired abundance scores were higher for axis deer, mouflon, and turkeys compared to pigs, goats or doves. Enjoyment at seeing game and the cultural value of game were widespread explanatory variables for desired abundance. Models for Lanai emphasized the economic value of game, whereas models for Maui identified the potential for game to contaminate soil and water. Models for Oahu and Kauai revealed concern for human health and safety. Given our findings we recommend managers design separate management plans for each island taking into consideration the values of residents.

  18. The Islands Are Different: Human Perceptions of Game Species in Hawaii

    Science.gov (United States)

    Lohr, Cheryl A.; Lepczyk, Christopher A.; Johnson, Edwin D.

    2014-10-01

    Hawaii's game animals are all non-native species, which provokes human-wildlife conflict among stakeholders. The management of human-wildlife conflict in Hawaii is further complicated by the discrete nature of island communities. Our goal was to understand the desires and perceived values or impacts of game held by residents of Hawaii regarding six game species [pigs ( Sus scrofa), goats ( Capra hircus), mouflon ( Ovis musimon), axis deer ( Axis axis), turkeys ( Melagris gallopavo), and doves ( Geopelia striata)]. We measured the desired abundance of game on the six main Hawaiian Islands using the potential for conflict index and identified explanatory variables for those desires via recursive partitioning. In 2011 we surveyed 5,407 residents (2,360 random residents and 3,047 pre-identified stakeholders). Overall 54.5 and 27.6 % of the emailed and mailed surveys were returned ( n = 1,510). A non-respondent survey revealed that respondents and non-respondents had similar interest in wildlife, and a similar education level. The desired abundance of game differed significantly among stakeholders, species, and islands. The desired abundance scores were higher for axis deer, mouflon, and turkeys compared to pigs, goats or doves. Enjoyment at seeing game and the cultural value of game were widespread explanatory variables for desired abundance. Models for Lanai emphasized the economic value of game, whereas models for Maui identified the potential for game to contaminate soil and water. Models for Oahu and Kauai revealed concern for human health and safety. Given our findings we recommend managers design separate management plans for each island taking into consideration the values of residents.

  19. Gene expression profiling reveals novel regulation by bisphenol-A in estrogen receptor-α-positive human cells

    International Nuclear Information System (INIS)

    Singleton, David W.; Feng, Yuxin; Yang, Jun; Puga, Alvaro; Lee, Adrian V.; Khan, Sohaib A.

    2006-01-01

    Bisphenol-A (BPA) shows proliferative actions in uterus and mammary glands and may influence the development of male and female reproductive tracts in utero or during early postnatal life. Because of its ability to function as an estrogen receptor (ER) agonist, BPA has the potential to disrupt normal endocrine signaling through regulation of ER target genes. Some genes are regulated by both estradiol (E2) and BPA, but those exclusive to either agent have not been described. Using a yeast strain incorporating a vitellogenin A2 ERE-LacZ reporter gene into the genome, we found that BPA induced expression of the reporter in colonies transformed with the ERα expression plasmid, illustrating BPA-mediated regulation within a chromatin context. Additionally, a reporter gene transiently transfected into the endometrial cancer (Ishikawa) cell line also showed BPA activity, although at 100-fold less potency than E2. To compare global gene expression in response to BPA and E2, we used a variant of the MCF-7 breast cancer cell line stably expressing HA-tagged ERα. Cultures were treated for 3 h with an ethanol vehicle, E2 (10 -8 M), or BPA (10 -6 M), followed by isolation of RNA and microarray analysis with the human U95A probe array (Affymetrix, Santa Clara, CA, USA). More than 300 genes were changed 2-fold or more by either or both agents, with roughly half being up-regulated and half down-regulated. A number of growth- and development-related genes, such as HOXC1 and C6, Wnt5A, Frizzled, TGFβ-2, and STAT inhibitor 2, were found to be affected exclusively by BPA. We used quantitative real-time PCR to verify regulation of the HOXC6 gene, which showed decreased expression of approximately 2.5-fold by BPA. These results reveal novel effects by BPA and E2, raising interesting possibilities regarding the role of endocrine disruptors in sexual development

  20. Natural islands and habitat islands as refuges of vegetation cover and wild bees. The case of the Lednica Landscape Park in western Poland

    Directory of Open Access Journals (Sweden)

    Banaszak Józef

    2016-03-01

    Full Text Available The study has contributed to the identification of the apifauna of central Wielkopolska. The study identified 161 bee species, accounting for 34.2% of the Polish bee fauna. The highest contribution (28.7% of the fauna comes from four species, namely Andrena haemorrhoa, A. helvola, Evylaeus calceatus and Osmia rufa, while Bombus terrestris and Evylaeus pauxillus are two subdominants. The assemblages of Apiformes in the study area are characterised by a significant contribution of spring-associated species, which is probably an effect of the presence of numerous willow thickets offering abundant host plants (mainly Salix sp. div.. Both the islands and the surroundings of the lake have a unique species composition, and there are differences in the proportions of the individual dominant species. The overall abundance of bees varies greatly, with mean seasonal density figures on Ostrów Lednicki Island being more than twice as high as that on the mainland grassland, with a distinct predominance of bumblebees. The exceptional richness of Apiformes, including bumblebees, on Ostrów Lednicki should be regarded as the basis for treating this island as a life refuge for bumblebees and including it and its environs in the list of sites of Community importance (SCI. A simultaneous study of the vegetation cover contributed significant data on the vascular plant flora and plant communities of the Lednica Landscape Park. For example, it was the first such investigation of Mewia Island. The study revealed the importance of marginal habitats (natural islands and habitat islands for the preservation of protected and endangered plant species and plant communities receding from an agricultural landscape.

  1. Gene expression profiling of canine osteosarcoma reveals genes associated with short and long survival times

    Directory of Open Access Journals (Sweden)

    Rao Nagesha AS

    2009-09-01

    Full Text Available Abstract Background Gene expression profiling of spontaneous tumors in the dog offers a unique translational opportunity to identify prognostic biomarkers and signaling pathways that are common to both canine and human. Osteosarcoma (OS accounts for approximately 80% of all malignant bone tumors in the dog. Canine OS are highly comparable with their human counterpart with respect to histology, high metastatic rate and poor long-term survival. This study investigates the prognostic gene profile among thirty-two primary canine OS using canine specific cDNA microarrays representing 20,313 genes to identify genes and cellular signaling pathways associated with survival. This, the first report of its kind in dogs with OS, also demonstrates the advantages of cross-species comparison with human OS. Results The 32 tumors were classified into two prognostic groups based on survival time (ST. They were defined as short survivors (dogs with poor prognosis: surviving fewer than 6 months and long survivors (dogs with better prognosis: surviving 6 months or longer. Fifty-one transcripts were found to be differentially expressed, with common upregulation of these genes in the short survivors. The overexpressed genes in short survivors are associated with possible roles in proliferation, drug resistance or metastasis. Several deregulated pathways identified in the present study, including Wnt signaling, Integrin signaling and Chemokine/cytokine signaling are comparable to the pathway analysis conducted on human OS gene profiles, emphasizing the value of the dog as an excellent model for humans. Conclusion A molecular-based method for discrimination of outcome for short and long survivors is useful for future prognostic stratification at initial diagnosis, where genes and pathways associated with cell cycle/proliferation, drug resistance and metastasis could be potential targets for diagnosis and therapy. The similarities between human and canine OS makes the

  2. Genetic Diversity and Population Structure of Two Tomato Species from the Galapagos Islands

    KAUST Repository

    Pailles, Yveline

    2017-02-15

    Endemic flora of the Galapagos Islands has adapted to thrive in harsh environmental conditions. The wild tomato species from the Galapagos Islands, Solanum cheesmaniae and S. galapagense, are tolerant to various stresses, and can be crossed with cultivated tomato. However, information about genetic diversity and relationships within and between populations is necessary to use these resources efficiently in plant breeding. In this study, we analyzed 3,974 polymorphic SNP markers, obtained through the genotyping-by-sequencing technique, DArTseq, to elucidate the genetic diversity and population structure of 67 accessions of Galapagos tomatoes (compared to two S. lycopersicum varieties and one S. pimpinellifolium accession). Two clustering methods, Principal Component Analysis and STRUCTURE, showed clear distinction between the two species and a subdivision in the S. cheesmaniae group corresponding to geographical origin and age of the islands. High genetic variation among the accessions within each species was suggested by the AMOVA. High diversity in the S. cheesmaniae group and its correlation with the islands of origin were also suggested. This indicates a possible influence of the movement of the islands, from west to east, on the gene flow. Additionally, the absence of S. galapagense populations in the eastern islands points to the species divergence occurring after the eastern islands became isolated. Based on these results, it can be concluded that the population structure of the Galapagos tomatoes collection partially explains the evolutionary history of both species, knowledge that facilitates exploitation of their genetic potential for the identification of novel alleles contributing to stress tolerance.

  3. Mainstreams of horizontal gene exchange in enterobacteria: consideration of the outbreak of enterohemorrhagic E. coli O104:H4 in Germany in 2011.

    Directory of Open Access Journals (Sweden)

    Oliver Bezuidt

    Full Text Available BACKGROUND: Escherichia coli O104:H4 caused a severe outbreak in Europe in 2011. The strain TY-2482 sequenced from this outbreak allowed the discovery of its closest relatives but failed to resolve ways in which it originated and evolved. On account of the previous statement, may we expect similar upcoming outbreaks to occur recurrently or spontaneously in the future? The inability to answer these questions shows limitations of the current comparative and evolutionary genomics methods. PRINCIPAL FINDINGS: The study revealed oscillations of gene exchange in enterobacteria, which originated from marine γ-Proteobacteria. These mobile genetic elements have become recombination hotspots and effective 'vehicles' ensuring a wide distribution of successful combinations of fitness and virulence genes among enterobacteria. Two remarkable peculiarities of the strain TY-2482 and its relatives were observed: i retaining the genetic primitiveness by these strains as they somehow avoided the main fluxes of horizontal gene transfer which effectively penetrated other enetrobacteria; ii acquisition of antibiotic resistance genes in a plasmid genomic island of β-Proteobacteria origin which ontologically is unrelated to the predominant genomic islands of enterobacteria. CONCLUSIONS: Oscillations of horizontal gene exchange activity were reported which result from a counterbalance between the acquired resistance of bacteria towards existing mobile vectors and the generation of new vectors in the environmental microflora. We hypothesized that TY-2482 may originate from a genetically primitive lineage of E. coli that has evolved in confined geographical areas and brought by human migration or cattle trade onto an intersection of several independent streams of horizontal gene exchange. Development of a system for monitoring the new and most active gene exchange events was proposed.

  4. CRISPR-Cas and Contact-Dependent Secretion Systems Present on Excisable Pathogenicity Islands with Conserved Recombination Modules.

    Science.gov (United States)

    Carpenter, Megan R; Kalburge, Sai S; Borowski, Joseph D; Peters, Molly C; Colwell, Rita R; Boyd, E Fidelma

    2017-05-15

    Pathogenicity islands (PAIs) are mobile integrated genetic elements that contain a diverse range of virulence factors. PAIs integrate into the host chromosome at a tRNA locus that contains their specific bacterial attachment site, attB , via integrase-mediated site-specific recombination generating attL and attR sites. We identified conserved recombination modules (integrases and att sites) previously described in choleragenic Vibrio cholerae PAIs but with novel cargo genes. Clustered regularly interspaced short palindromic repeat (CRISPR)-associated proteins (Cas proteins) and a type VI secretion system (T6SS) gene cluster were identified at the Vibrio pathogenicity island 1 (VPI-1) insertion site in 19 V. cholerae strains and contained the same recombination module. Two divergent type I-F CRISPR-Cas systems were identified, which differed in Cas protein homology and content. The CRISPR repeat sequence was identical among all V. cholerae strains, but the CRISPR spacer sequences and the number of spacers varied. In silico analysis suggests that the CRISPR-Cas systems were active against phages and plasmids. A type III secretion system (T3SS) was present in 12 V. cholerae strains on a 68-kb island inserted at the same tRNA-serine insertion site as VPI-2 and contained the same recombination module. Bioinformatics analysis showed that two divergent T3SSs exist among the strains examined. Both the CRISPR and T3SS islands excised site specifically from the bacterial chromosome as complete units, and the cognate integrases were essential for this excision. These data demonstrated that identical recombination modules that catalyze integration and excision from the chromosome can acquire diverse cargo genes, signifying a novel method of acquisition for both CRISPR-Cas systems and T3SSs. IMPORTANCE This work demonstrated the presence of CRISPR-Cas systems and T3SSs on PAIs. Our work showed that similar recombination modules can associate with different cargo genes and

  5. Rhode Island unemployment

    OpenAIRE

    Leonard Lardaro

    2010-01-01

    How can a state like Rhode Island have such a high unemployment rate? This question has been asked often over the past year, especially since at one point, Rhode Island found itself with the dubious distinction of having the highest unemployment rate in the United States. Following that extreme, Rhode Island seemed to settle into a niche where its rank was third nationally.

  6. Laminar and dorsoventral molecular organization of the medial entorhinal cortex revealed by large-scale anatomical analysis of gene expression.

    Directory of Open Access Journals (Sweden)

    Helen L Ramsden

    2015-01-01

    Full Text Available Neural circuits in the medial entorhinal cortex (MEC encode an animal's position and orientation in space. Within the MEC spatial representations, including grid and directional firing fields, have a laminar and dorsoventral organization that corresponds to a similar topography of neuronal connectivity and cellular properties. Yet, in part due to the challenges of integrating anatomical data at the resolution of cortical layers and borders, we know little about the molecular components underlying this organization. To address this we develop a new computational pipeline for high-throughput analysis and comparison of in situ hybridization (ISH images at laminar resolution. We apply this pipeline to ISH data for over 16,000 genes in the Allen Brain Atlas and validate our analysis with RNA sequencing of MEC tissue from adult mice. We find that differential gene expression delineates the borders of the MEC with neighboring brain structures and reveals its laminar and dorsoventral organization. We propose a new molecular basis for distinguishing the deep layers of the MEC and show that their similarity to corresponding layers of neocortex is greater than that of superficial layers. Our analysis identifies ion channel-, cell adhesion- and synapse-related genes as candidates for functional differentiation of MEC layers and for encoding of spatial information at different scales along the dorsoventral axis of the MEC. We also reveal laminar organization of genes related to disease pathology and suggest that a high metabolic demand predisposes layer II to neurodegenerative pathology. In principle, our computational pipeline can be applied to high-throughput analysis of many forms of neuroanatomical data. Our results support the hypothesis that differences in gene expression contribute to functional specialization of superficial layers of the MEC and dorsoventral organization of the scale of spatial representations.

  7. Ethnobotany of Mallorca (Balearic islands): a multidisciplinary approach.

    Science.gov (United States)

    Carrió, Esperança; Vallès, Joan

    2012-09-01

    In this communication, we provide some basic methodological and practical ideas for plant knowledge comparisons among different predefined natural regions of the Mediterranean island of Mallorca, in the frame of an ongoing project in this area. The final goal of this work is to present a tool to find out to what extent plant knowledge is similar in the different regions. We use an uncommon approach to ethnobotanical studies in terms of multidisciplinary methodology. We base our arguments on social anthropology methods, using a diversity index (the Sorensen similarity coefficient), and we also explain the botanical part of the investigation. Our preliminary results reveal few differences among the three natural regions considered on the island, which we believe could find their explanation in geographic, botanical and cultural aspects.

  8. Coastal management strategy for small island: ecotourism potency development in Karimata Island, West Kalimantan

    Science.gov (United States)

    Rudiastuti, A. W.; Munawaroh; Setyawan, I. E.; Pramono, G. H.

    2018-04-01

    Sustainable coastal management is playing an important role in coastal resources conservation, particularly on small islands. Karimata archipelago has unique characteristics and great potential to be developed as a tourism object, one of which is Karimata Island as the largest island and also reserve area. The concept of ecotourism focuses on the ecology conservation, economic benefits, and social life. Ecotourism aims to build sustainable tourism that provides economically viable and social benefits to the community. This study aims to develop coastal management strategy based on ecotourism at Karimata Island. Spatial approaching through coastal type was done. Qualitative descriptive analysis and SWOT are used to develop sustainable management strategies for the coast of Karimata Island, where the opportunities and challenges to the development of coastal ecotourism Karimata Island also included. If this potential is optimally utilized, it can be relied as an economic opportunity for local communities. Structurally shaped coast, marine depositional coast and coast build by organism are several of coastal types found at Karimata Island. Coastal ecosystems inhabited Karimata Island are mangroves, coral reefs, and macro-algae. Karimata Island have not been optimally utilized for tourist destinations. The biggest obstacle encountered is the accessibility from Kalimantan or other island at Karimata islands. Several problems related to the utilization of coastal resources were found such as mangrove and coral reef damage, also regulation that less supportive. The results of this study are expected to provide an overview of solutions for the development of coastal tourism potentials in Karimata Island.

  9. Genome sequencing and comparative genomics reveal a repertoire of putative pathogenicity genes in chilli anthracnose fungus Colletotrichum truncatum.

    Science.gov (United States)

    Rao, Soumya; Nandineni, Madhusudan R

    2017-01-01

    Colletotrichum truncatum, a major fungal phytopathogen, causes the anthracnose disease on an economically important spice crop chilli (Capsicum annuum), resulting in huge economic losses in tropical and sub-tropical countries. It follows a subcuticular intramural infection strategy on chilli with a short, asymptomatic, endophytic phase, which contrasts with the intracellular hemibiotrophic lifestyle adopted by most of the Colletotrichum species. However, little is known about the molecular determinants and the mechanism of pathogenicity in this fungus. A high quality whole genome sequence and gene annotation based on transcriptome data of an Indian isolate of C. truncatum from chilli has been obtained. Analysis of the genome sequence revealed a rich repertoire of pathogenicity genes in C. truncatum encoding secreted proteins, effectors, plant cell wall degrading enzymes, secondary metabolism associated proteins, with potential roles in the host-specific infection strategy, placing it next only to the Fusarium species. The size of genome assembly, number of predicted genes and some of the functional categories were similar to other sequenced Colletotrichum species. The comparative genomic analyses with other species and related fungi identified some unique genes and certain highly expanded gene families of CAZymes, proteases and secondary metabolism associated genes in the genome of C. truncatum. The draft genome assembly and functional annotation of potential pathogenicity genes of C. truncatum provide an important genomic resource for understanding the biology and lifestyle of this important phytopathogen and will pave the way for designing efficient disease control regimens.

  10. A Δ11 desaturase gene genealogy reveals two divergent allelic classes within the European corn borer (Ostrinia nubilalis

    Directory of Open Access Journals (Sweden)

    Harrison Richard G

    2010-04-01

    Full Text Available Abstract Background Moth pheromone mating systems have been characterized at the molecular level, allowing evolutionary biologists to study how changes in protein sequence or gene expression affect pheromone phenotype, patterns of mating, and ultimately, the formation of barriers to gene exchange. Recent studies of Ostrinia pheromones have focused on the diversity of sex pheromone desaturases and their role in the specificity of pheromone production. Here we produce a Δ11 desaturase genealogy within Ostrinia nubilalis. We ask what has been the history of this gene, and whether this history suggests that changes in Δ11 desaturase have been involved in the divergence of the E and Z O. nubilalis pheromone strains. Results The Δ11 desaturase gene genealogy does not differentiate O. nubilalis pheromone strains. However, we find two distinct clades, separated by 2.9% sequence divergence, that do not sort with pheromone strain, geographic origin, or emergence time. We demonstrate that these clades do not represent gene duplicates, but rather allelic variation at a single gene locus. Conclusions Analyses of patterns of variation at the Δ11 desaturase gene in ECB suggest that this enzyme does not contribute to reproductive isolation between pheromone strains (E and Z. However, our genealogy reveals two deeply divergent allelic classes. Standing variation at loci that contribute to mate choice phenotypes may permit novel pheromone mating systems to arise in the presence of strong stabilizing selection.

  11. Spliced leader-based analyses reveal the effects of polycyclic aromatic hydrocarbons on gene expression in the copepod Pseudodiaptomus poplesia.

    Science.gov (United States)

    Zhuang, Yunyun; Yang, Feifei; Xu, Donghui; Chen, Hongju; Zhang, Huan; Liu, Guangxing

    2017-02-01

    Polycyclic aromatic hydrocarbons (PAHs) are a group of toxic and carcinogenic pollutants that can adversely affect the development, growth and reproduction of marine organisms including copepods. However, knowledge on the molecular mechanisms regulating the response to PAH exposure in marine planktonic copepods is limited. In this study, we investigated the survival and gene expression of the calanoid copepod Pseudodiaptomus poplesia upon exposure to two PAHs, 1, 2-dimethylnaphthalene (1, 2-NAPH) and pyrene. Acute toxicity responses resulted in 96-h LC 50 of 788.98μgL -1 and 54.68μgL -1 for 1, 2-NAPH and pyrene, respectively. Using the recently discovered copepod spliced leader as a primer, we constructed full-length cDNA libraries from copepods exposed to sublethal concentrations and revealed 289 unique genes of diverse functions, including stress response genes and novel genes previously undocumented for this species. Eighty-three gene families were specifically expressed in PAH exposure libraries. We further analyzed the expression of seven target genes by reverse transcription-quantitative PCR in a time-course test with three sublethal concentrations. These target genes have primary roles in detoxification, oxidative defense, and signal transduction, and include different forms of glutathione S-transferase (GST), glutathione peroxidases (GPX), peroxiredoxin (PRDX), methylmalonate-semialdehyde dehydrogenase (MSDH) and ras-related C3 botulinum toxin substrate (RAC1). Expression stability of seven candidate reference genes were evaluated and the two most stable ones (RPL15 and RPS20 for 1, 2-NAPH exposure, RPL15 and EF1D for pyrene exposure) were used to normalize the expression levels of the target genes. Significant upregulation was detected in GST-T, GST-DE, GPX4, PRDX6 and RAC1 upon 1, 2-NAPH exposure, and GST-DE and MSDH upon pyrene exposure. These results indicated that the oxidative stress was induced and that signal transduction might be affected by PAH

  12. Stratigraphy and geologic age of the Neogene Shimajiri Group in Kumejima Island, Ryukyu Islands, southwestern Japan

    International Nuclear Information System (INIS)

    Nakamura, Yodai; Asahara, Yoshihiro; Ozawa, Tomowo; Kameo, Koji

    1999-01-01

    The Neogene Shimajiri Group is distributed sporadically in the Ryukyu islands. This study focuses on the Shimajiri Group in Kumejima Island, central Ryukyu, and clarifies its stratigraphy and geologic age on the basis of 1) lithostratigraphy, 2) calcareous nannofossil biostratigraphy, and 3) strontium isotope stratigraphy. The Shimajiri Group in Kumejima Island unconformably overlies the middle Miocene Aradake Formation, and is overlain by the Pleistocene Ryukyu Group. The group is divided into three formations, namely the Maja, the Aka and the Uegusukudake Formations in ascending order, and the first two are redefined in this paper based on the new geologic evidence. The Maja Formation consists mainly of fine-grained sandstone, sandy siltstone and alternating beds of them. The Aka Formation is mainly composed of cross-stratified sandstone, pumiceous sandstone and tuffaceous siltstone, and unconformably overlies the Maja Formation. The Uegusukudake Formation, conformably overlying the Aka Formation, consists of basaltic lava, tuff breccia and andesite. On the basis of calcareous nannofossil biostratigraphy, the Maja and Aka Formations can be assigned to Zone CN9 and Zone CN12b of Okada and Bukry (1980) respectively. Strontium isotope ages of the molluscan fossil specimens obtained from the Maja and Aka Formations revealed that the Maja Formation is assigned to the late Miocene (ca. 7.8-7.2 Ma) and the Aka Formation is assigned to the late Pliocene (ca. 3.2-3.1 Ma). These ages are concordant with the nannofossil biostratigraphy. The upper Miocene Maja Formation yields many molluscan fossils in which the characteristic species of the Kakegawa Fauna, such as Amussiopecten praesignis and Mimachlamys satoi are contained. The molluscan fauna of the Maja Formation is significant in understanding the origin of the Kakegawa Fauna, as the characteristic species of the Plio-Pleistocene Kakegawa Fauna already appeared in the Ryukyu Islands in the late Miocene. (author)

  13. Records of Coastal Change within a Progradational, Wave-Dominated Barrier Island: Morphostratigraphic Framework of the Southern Recurved Spit of Assateague Island, VA

    Science.gov (United States)

    Shawler, J. L.; Seminack, C.; DeMarco, K. R.; Hein, C. J.; Petruny, L. M.

    2017-12-01

    Although generally retrogradational in nature, barrier islands commonly contain progradational segments which may preserve records of past coastal dynamics and environmental changes which affected their formation. In particular, recurved-spit ridges may record former shoreline positions on the surface, while in their stratigraphic architecture contain evidence of the processes influencing spit growth. This study uses topographic mapping and nearly 40 km of ground-penetrating radar (GPR) transects to investigate the pre-historic (ca. 1000-1850 C.E.) and historic elongation of Assateague Island, VA (USA) and affiliated progradation of Chincoteague Island. These data uncovered three previously unknown former tidal inlets which have no discernible surface signatures. GPR data further reveal southerly migration (up to 95 m) and closure of these tidal inlets. In addition, GPR data indicates the apparent overprinting of multiple inlets, suggesting later reoccupation of former channels. Seaward-dipping clinoforms (5-15°) indicate that, following inlet closure, the island widened and elongated through beach-ridge growth, proceeded by the development of aeolian foredune ridges. In particular, two large (5 m elevation, 150 m wide) ridges, bounded by smaller (1-3 m elevation, 20-50 m wide) ridge sets, comprise the relict recurved-spit of Assateague Island. This contrasts with the adjacent beach-ridge plain of Chincoteague Island, where surface morphology is characterized by more spatially uniform ridges (1-2 m high, 50-100 m wide). Thus, despite sharing similar internal structure as imaged in GPR, the formational processes associated with these two systems differ: the large, widely-spaced ridges of Assateague are likely indicative of punctuated progradation possibly associated with sediment pulses or complex inlet dynamics, whereas Chincoteague Island may have been built in a semi-protected environment through sediment delivered by inlet bypassing and local longshore

  14. ISC1-dependent metabolic adaptation reveals an indispensable role for mitochondria in induction of nuclear genes during the diauxic shift in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kitagaki, Hiroshi; Cowart, L Ashley; Matmati, Nabil; Montefusco, David; Gandy, Jason; de Avalos, Silvia Vaena; Novgorodov, Sergei A; Zheng, Jim; Obeid, Lina M; Hannun, Yusuf A

    2009-04-17

    Growth of Saccharomyces cerevisiae following glucose depletion (the diauxic shift) depends on a profound metabolic adaptation accompanied by a global reprogramming of gene expression. In this study, we provide evidence for a heretofore unsuspected role for Isc1p in mediating this reprogramming. Initial studies revealed that yeast cells deleted in ISC1, the gene encoding inositol sphingolipid phospholipase C, which resides in mitochondria in the post-diauxic phase, showed defective aerobic respiration in the post-diauxic phase but retained normal intrinsic mitochondrial functions, including intact mitochondrial DNA, normal oxygen consumption, and normal mitochondrial polarization. Microarray analysis revealed that the Deltaisc1 strain failed to up-regulate genes required for nonfermentable carbon source metabolism during the diauxic shift, thus suggesting a mechanism for the defective supply of respiratory substrates into mitochondria in the post-diauxic phase. This defect in regulating nuclear gene induction in response to a defect in a mitochondrial enzyme raised the possibility that mitochondria may initiate diauxic shift-associated regulation of nucleus-encoded genes. This was established by demonstrating that in respiratory-deficient petite cells these genes failed to be up-regulated across the diauxic shift in a manner similar to the Deltaisc1 strain. Isc1p- and mitochondrial function-dependent genes significantly overlapped with Adr1p-, Snf1p-, and Cat8p-dependent genes, suggesting some functional link among these factors. However, the retrograde response was not activated in Deltaisc1, suggesting that the response of Deltaisc1 cannot be simply attributed to mitochondrial dysfunction. These results suggest a novel role for Isc1p in allowing the reprogramming of gene expression during the transition from anaerobic to aerobic metabolism.

  15. Self-sustained magnetic islands

    Energy Technology Data Exchange (ETDEWEB)

    Chatenet, J H; Luciani, J F [Ecole Polytechnique, 91 - Palaiseau (France); Garbet, X [Association Euratom-CEA, Centre d` Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    1996-06-01

    Numerical simulations of a single magnetic island evolution are presented in the regime where the island width is smaller than an ion Larmor radius. It is shown that the island rotation is controlled by particle diffusion due to collisions or a background of microturbulence. As expected from the theory of a stationary island, there exist cases where linearly stable magnetic perturbation are nonlinearly self-sustained. This situation corresponds to large poloidal beta and temperature gradient. The drive is due to diamagnetic frequency effects. However, this situation is not generic, and islands can also decay. It is found that a magnetic island is self-sustained for a negative off-diagonal diffusion coefficient. This case occurs in a tokamak if the inward particle pinch is due to the temperature gradient. (author). 30 refs.

  16. Self-sustained magnetic islands

    International Nuclear Information System (INIS)

    Chatenet, J.H.; Luciani, J.F.; Garbet, X.

    1996-06-01

    Numerical simulations of a single magnetic island evolution are presented in the regime where the island width is smaller than an ion Larmor radius. It is shown that the island rotation is controlled by particle diffusion due to collisions or a background of microturbulence. As expected from the theory of a stationary island, there exist cases where linearly stable magnetic perturbation are nonlinearly self-sustained. This situation corresponds to large poloidal beta and temperature gradient. The drive is due to diamagnetic frequency effects. However, this situation is not generic, and islands can also decay. It is found that a magnetic island is self-sustained for a negative off-diagonal diffusion coefficient. This case occurs in a tokamak if the inward particle pinch is due to the temperature gradient. (author)

  17. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes.

    Science.gov (United States)

    Biankin, Andrew V; Waddell, Nicola; Kassahn, Karin S; Gingras, Marie-Claude; Muthuswamy, Lakshmi B; Johns, Amber L; Miller, David K; Wilson, Peter J; Patch, Ann-Marie; Wu, Jianmin; Chang, David K; Cowley, Mark J; Gardiner, Brooke B; Song, Sarah; Harliwong, Ivon; Idrisoglu, Senel; Nourse, Craig; Nourbakhsh, Ehsan; Manning, Suzanne; Wani, Shivangi; Gongora, Milena; Pajic, Marina; Scarlett, Christopher J; Gill, Anthony J; Pinho, Andreia V; Rooman, Ilse; Anderson, Matthew; Holmes, Oliver; Leonard, Conrad; Taylor, Darrin; Wood, Scott; Xu, Qinying; Nones, Katia; Fink, J Lynn; Christ, Angelika; Bruxner, Tim; Cloonan, Nicole; Kolle, Gabriel; Newell, Felicity; Pinese, Mark; Mead, R Scott; Humphris, Jeremy L; Kaplan, Warren; Jones, Marc D; Colvin, Emily K; Nagrial, Adnan M; Humphrey, Emily S; Chou, Angela; Chin, Venessa T; Chantrill, Lorraine A; Mawson, Amanda; Samra, Jaswinder S; Kench, James G; Lovell, Jessica A; Daly, Roger J; Merrett, Neil D; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q; Barbour, Andrew; Zeps, Nikolajs; Kakkar, Nipun; Zhao, Fengmei; Wu, Yuan Qing; Wang, Min; Muzny, Donna M; Fisher, William E; Brunicardi, F Charles; Hodges, Sally E; Reid, Jeffrey G; Drummond, Jennifer; Chang, Kyle; Han, Yi; Lewis, Lora R; Dinh, Huyen; Buhay, Christian J; Beck, Timothy; Timms, Lee; Sam, Michelle; Begley, Kimberly; Brown, Andrew; Pai, Deepa; Panchal, Ami; Buchner, Nicholas; De Borja, Richard; Denroche, Robert E; Yung, Christina K; Serra, Stefano; Onetto, Nicole; Mukhopadhyay, Debabrata; Tsao, Ming-Sound; Shaw, Patricia A; Petersen, Gloria M; Gallinger, Steven; Hruban, Ralph H; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Schulick, Richard D; Wolfgang, Christopher L; Morgan, Richard A; Lawlor, Rita T; Capelli, Paola; Corbo, Vincenzo; Scardoni, Maria; Tortora, Giampaolo; Tempero, Margaret A; Mann, Karen M; Jenkins, Nancy A; Perez-Mancera, Pedro A; Adams, David J; Largaespada, David A; Wessels, Lodewyk F A; Rust, Alistair G; Stein, Lincoln D; Tuveson, David A; Copeland, Neal G; Musgrove, Elizabeth A; Scarpa, Aldo; Eshleman, James R; Hudson, Thomas J; Sutherland, Robert L; Wheeler, David A; Pearson, John V; McPherson, John D; Gibbs, Richard A; Grimmond, Sean M

    2012-11-15

    Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome sequencing and copy number analysis to define genomic aberrations in a prospectively accrued clinical cohort (n = 142) of early (stage I and II) sporadic pancreatic ductal adenocarcinoma. Detailed analysis of 99 informative tumours identified substantial heterogeneity with 2,016 non-silent mutations and 1,628 copy-number variations. We define 16 significantly mutated genes, reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1), and uncover novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6). Integrative analysis with in vitro functional data and animal models provided supportive evidence for potential roles for these genetic aberrations in carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in core signalling pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes in each pathway. We also identified frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, which was also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement of axon guidance genes in pancreatic carcinogenesis.

  18. Identification and characterization of lbpA, an indigoidine biosynthetic gene in the γ-butyrolactone signaling system of Streptomyces lavendulae FRI-5.

    Science.gov (United States)

    Pait, Ivy Grace Umadhay; Kitani, Shigeru; Kurniawan, Yohanes Novi; Asa, Maeda; Iwai, Takashi; Ikeda, Haruo; Nihira, Takuya

    2017-10-01

    Streptomyces lavendulae FRI-5 produces the blue pigment indigoidine and other secondary metabolites (d-cycloserine and nucleoside antibiotics). The production of these useful compounds is controlled by a signaling cascade mediated by the γ-butyrolactone autoregulator IM-2. Previously we revealed that the far regulatory island includes the IM-2 receptor, the IM-2 biosynthetic enzyme, and several transcriptional regulators, and that it contributes to the regulation of indigoidine production in response to the signaling molecule. Here, we found that the vicinity of the far regulatory island includes the putative gene cluster for the biosynthesis of indigoidine and unidentified compounds, and demonstrated that the expression of the gene cluster is under the control of the IM-2 regulatory system. Heterologous expression of lbpA, encoding a plausible nonribosomal peptide synthetase, in the versatile model host Streptomyces avermitilis SUKA22 led to indigoidine production, which was enhanced dramatically by feeding of the indigoidine precursor l-glutamine. These results confirmed that LbpA is an indigoidine biosynthetic enzyme in the IM-2 signaling cascade. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Disruption of Msx-1 and Msx-2 reveals roles for these genes in craniofacial, eye, and axial development.

    Science.gov (United States)

    Foerst-Potts, L; Sadler, T W

    1997-05-01

    In mouse embryos, the muscle segment homeobox genes, Msx-1 and Msx-2 are expressed during critical stages of neural tube, neural crest, and craniofacial development, suggesting that these genes play important roles in organogenesis and cell differentiation. Although the patterns of expression are intriguing, little is known about the function of these genes in vertebrate embryonic development. Therefore, the expression of both genes, separately and together, was disrupted using antisense oligodeoxynucleotides and whole embryo culture techniques. Antisense attenuation of Msx-1 during early stages of neurulation produced hypoplasia of the maxillary, mandibular, and frontonasal prominences, eye anomalies, and somite and neural tube abnormalities. Eye defects consisted of enlarged optic vesicles, which may ultimately result in micropthalmia similar to that observed in Small eye mice homozygous for mutations in the Pax-6 gene. Histological sections and SEM analysis revealed a thinning of the neuroepithelium in the diencephalon and optic vesicle and mesenchymal deficiencies in the craniofacial region. Injections of Msx-2 antisense oligodeoxynucleotides produced similar malformations as those targeting Msx-1, with the exception that there was an increase in number and severity of neural tube and somite defects. Embryos injected with the combination of Msx-1 + Msx-2 antisense oligodeoxynucleotides showed no novel abnormalities, suggesting that the genes do not operate in a redundant manner.

  20. Phylogeography and genetic structure of endemic Acmispon argophyllus and A. dendroideus (Fabaceae) across the California Channel Islands.

    Science.gov (United States)

    Wallace, Lisa E; Wheeler, Gregory L; McGlaughlin, Mitchell E; Bresowar, Gerald; Helenurm, Kaius

    2017-05-01

    Taxa inhabiting the California Channel Islands exhibit variation in their degree of isolation, but few studies have considered patterns across the entire archipelago. We studied phylogeography of insular Acmispon argophyllus and A. dendroideus to determine whether infraspecific taxa are genetically divergent and to elucidate patterns of diversification across these islands. DNA sequences were collected from nuclear (ADH) and plastid genomes ( rpL16 , ndhA , psbD-trnT ) from >450 samples on the Channel Islands and California. We estimated population genetic diversity and structure, phylogenetic patterns among populations, and migration rates, and tested for population growth. Populations of northern island A. argophyllus var. niveus are genetically distinct from conspecific populations on southern islands. On the southern islands, A. argophyllus var. argenteus populations on Santa Catalina are phylogenetically distinct from populations of var. argenteus and var. adsurgens on the other southern islands. For A. dendroideus , we found the varieties to be monophyletic. Populations of A. dendroideus var. traskiae on San Clemente are genetically differentiated from other conspecific populations, whereas populations on the northern islands and Santa Catalina show varying degrees of gene flow. Evidence of population growth was found in both species. Oceanic barriers between islands have had a strong influence on population genetic structure in both Acmispon species, although the species have differing phylogeographic patterns. This study provides a contrasting pattern of dispersal on a near island system that does not follow a strict stepping-stone model, commonly found on isolated island systems. © 2017 Botanical Society of America.