WorldWideScience

Sample records for gene interaction enrichment

  1. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool

    National Research Council Canada - National Science Library

    Chen, Edward Y; Tan, Christopher M; Kou, Yan; Duan, Qiaonan; Wang, Zichen; Meirelles, Gabriela Vaz; Clark, Neil R; Ma'ayan, Avi

    2013-01-01

    .... Here, we present Enrichr, an integrative web-based and mobile software application that includes new gene-set libraries, an alternative approach to rank enriched terms, and various interactive...

  2. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool.

    Science.gov (United States)

    Chen, Edward Y; Tan, Christopher M; Kou, Yan; Duan, Qiaonan; Wang, Zichen; Meirelles, Gabriela Vaz; Clark, Neil R; Ma'ayan, Avi

    2013-04-15

    System-wide profiling of genes and proteins in mammalian cells produce lists of differentially expressed genes/proteins that need to be further analyzed for their collective functions in order to extract new knowledge. Once unbiased lists of genes or proteins are generated from such experiments, these lists are used as input for computing enrichment with existing lists created from prior knowledge organized into gene-set libraries. While many enrichment analysis tools and gene-set libraries databases have been developed, there is still room for improvement. Here, we present Enrichr, an integrative web-based and mobile software application that includes new gene-set libraries, an alternative approach to rank enriched terms, and various interactive visualization approaches to display enrichment results using the JavaScript library, Data Driven Documents (D3). The software can also be embedded into any tool that performs gene list analysis. We applied Enrichr to analyze nine cancer cell lines by comparing their enrichment signatures to the enrichment signatures of matched normal tissues. We observed a common pattern of up regulation of the polycomb group PRC2 and enrichment for the histone mark H3K27me3 in many cancer cell lines, as well as alterations in Toll-like receptor and interlukin signaling in K562 cells when compared with normal myeloid CD33+ cells. Such analyses provide global visualization of critical differences between normal tissues and cancer cell lines but can be applied to many other scenarios. Enrichr is an easy to use intuitive enrichment analysis web-based tool providing various types of visualization summaries of collective functions of gene lists. Enrichr is open source and freely available online at: http://amp.pharm.mssm.edu/Enrichr.

  3. Evidence-based prioritisation and enrichment of genes interacting with metformin in type 2 diabetes.

    Science.gov (United States)

    Dawed, Adem Y; Ali, Ashfaq; Zhou, Kaixin; Pearson, Ewan R; Franks, Paul W

    2017-08-25

    There is an extensive body of literature suggesting the involvement of multiple loci in regulating the action of metformin; most findings lack replication, without which distinguishing true-positive from false-positive findings is difficult. To address this, we undertook evidence-based, multiple data integration to determine the validity of published evidence. We (1) built a database of published data on gene-metformin interactions using an automated text-mining approach (n = 5963 publications), (2) generated evidence scores for each reported locus, (3) from which a rank-ordered gene set was generated, and (4) determined the extent to which this gene set was enriched for glycaemic response through replication analyses in a well-powered independent genome-wide association study (GWAS) dataset from the Genetics of Diabetes and Audit Research Tayside Study (GoDARTS). From the literature search, seven genes were identified that are related to the clinical outcomes of metformin. Fifteen genes were linked with either metformin pharmacokinetics or pharmacodynamics, and the expression profiles of a further 51 genes were found to be responsive to metformin. Gene-set enrichment analysis consisting of the three sets and two more composite sets derived from the above three showed no significant enrichment in four of the gene sets. However, we detected significant enrichment of genes in the least prioritised category (a gene set in which their expression is affected by metformin) with glycaemic response to metformin (p = 0.03). This gene set includes novel candidate genes such as SLC2A4 (p = 3.24 × 10(-04)) and G6PC (p = 4.77 × 10(-04)). We have described a semi-automated text-mining and evidence-scoring algorithm that facilitates the organisation and extraction of useful information about gene-drug interactions. We further validated the output of this algorithm in a drug-response GWAS dataset, providing novel candidate loci for gene-metformin interactions.

  4. Improving functional modules discovery by enriching interaction networks with gene profiles

    KAUST Repository

    Salem, Saeed

    2013-05-01

    Recent advances in proteomic and transcriptomic technologies resulted in the accumulation of vast amount of high-throughput data that span multiple biological processes and characteristics in different organisms. Much of the data come in the form of interaction networks and mRNA expression arrays. An important task in systems biology is functional modules discovery where the goal is to uncover well-connected sub-networks (modules). These discovered modules help to unravel the underlying mechanisms of the observed biological processes. While most of the existing module discovery methods use only the interaction data, in this work we propose, CLARM, which discovers biological modules by incorporating gene profiles data with protein-protein interaction networks. We demonstrate the effectiveness of CLARM on Yeast and Human interaction datasets, and gene expression and molecular function profiles. Experiments on these real datasets show that the CLARM approach is competitive to well established functional module discovery methods.

  5. Identification of compound-protein interactions through the analysis of gene ontology, KEGG enrichment for proteins and molecular fragments of compounds.

    Science.gov (United States)

    Chen, Lei; Zhang, Yu-Hang; Zheng, Mingyue; Huang, Tao; Cai, Yu-Dong

    2016-12-01

    Compound-protein interactions play important roles in every cell via the recognition and regulation of specific functional proteins. The correct identification of compound-protein interactions can lead to a good comprehension of this complicated system and provide useful input for the investigation of various attributes of compounds and proteins. In this study, we attempted to understand this system by extracting properties from both proteins and compounds, in which proteins were represented by gene ontology and KEGG pathway enrichment scores and compounds were represented by molecular fragments. Advanced feature selection methods, including minimum redundancy maximum relevance, incremental feature selection, and the basic machine learning algorithm random forest, were used to analyze these properties and extract core factors for the determination of actual compound-protein interactions. Compound-protein interactions reported in The Binding Databases were used as positive samples. To improve the reliability of the results, the analytic procedure was executed five times using different negative samples. Simultaneously, five optimal prediction methods based on a random forest and yielding maximum MCCs of approximately 77.55 % were constructed and may be useful tools for the prediction of compound-protein interactions. This work provides new clues to understanding the system of compound-protein interactions by analyzing extracted core features. Our results indicate that compound-protein interactions are related to biological processes involving immune, developmental and hormone-associated pathways.

  6. Genome-wide Anaplasma phagocytophilum AnkA-DNA interactions are enriched in intergenic regions and gene promoters and correlate with infection-induced differential gene expression.

    Directory of Open Access Journals (Sweden)

    J Stephen Dumler

    2016-09-01

    Full Text Available Anaplasma phagocytophilum, an obligate intracellular prokaryote, infects neutrophils and alters cardinal functions via reprogrammed transcription. Large contiguous regions of neutrophil chromosomes are differentially expressed during infection. Secreted A. phagocytophilum effector AnkA transits into the neutrophil or granulocyte nucleus to complex with DNA in heterochromatin across all chromosomes. AnkA binds to gene promoters to dampen cis-transcription and also has features of matrix attachment region (MAR-binding proteins that regulate three-dimensional chromatin architecture and coordinate transcriptional programs encoded in topologically-associated chromatin domains. We hypothesize that identification of additional AnkA binding sites will better delineate how A. phagocytophilum infection results in reprogramming of the neutrophil genome. Using AnkA-binding ChIP-seq, we showed that AnkA binds broadly throughout all chromosomes in a reproducible pattern, especially at: i intergenic regions predicted to be matrix attachment regions (MARs; ii within predicted lamina-associated domains; and iii at promoters ≤3,000 bp upstream of transcriptional start sites. These findings provide genome-wide support for AnkA as a regulator of cis-gene transcription. Moreover, the dominant mark of AnkA in distal intergenic regions known to be AT-enriched, coupled with frequent enrichment in the nuclear lamina, provides strong support for its role as a MAR-binding protein and genome re-organizer. AnkA must be considered a prime candidate to promote neutrophil reprogramming and subsequent functional changes that belie improved microbial fitness and pathogenicity.

  7. Protein-protein interaction and pathway analyses of top schizophrenia genes reveal schizophrenia susceptibility genes converge on common molecular networks and enrichment of nucleosome (chromatin) assembly genes in schizophrenia susceptibility loci.

    Science.gov (United States)

    Luo, Xiongjian; Huang, Liang; Jia, Peilin; Li, Ming; Su, Bing; Zhao, Zhongming; Gan, Lin

    2014-01-01

    Recent genome-wide association studies have identified many promising schizophrenia candidate genes and demonstrated that common polygenic variation contributes to schizophrenia risk. However, whether these genes represent perturbations to a common but limited set of underlying molecular processes (pathways) that modulate risk to schizophrenia remains elusive, and it is not known whether these genes converge on common biological pathways (networks) or represent different pathways. In addition, the theoretical and genetic mechanisms underlying the strong genetic heterogeneity of schizophrenia remain largely unknown. Using 4 well-defined data sets that contain top schizophrenia susceptibility genes and applying protein-protein interaction (PPI) network analysis, we investigated the interactions among proteins encoded by top schizophrenia susceptibility genes. We found proteins encoded by top schizophrenia susceptibility genes formed a highly significant interconnected network, and, compared with random networks, these PPI networks are statistically highly significant for both direct connectivity and indirect connectivity. We further validated these results using empirical functional data (transcriptome data from a clinical sample). These highly significant findings indicate that top schizophrenia susceptibility genes encode proteins that significantly directly interacted and formed a densely interconnected network, suggesting perturbations of common underlying molecular processes or pathways that modulate risk to schizophrenia. Our findings that schizophrenia susceptibility genes encode a highly interconnected protein network may also provide a novel explanation for the observed genetic heterogeneity of schizophrenia, ie, mutation in any member of this molecular network will lead to same functional consequences that eventually contribute to risk of schizophrenia.

  8. ChIP-Enrich: gene set enrichment testing for ChIP-seq data.

    Science.gov (United States)

    Welch, Ryan P; Lee, Chee; Imbriano, Paul M; Patil, Snehal; Weymouth, Terry E; Smith, R Alex; Scott, Laura J; Sartor, Maureen A

    2014-07-01

    Gene set enrichment testing can enhance the biological interpretation of ChIP-seq data. Here, we develop a method, ChIP-Enrich, for this analysis which empirically adjusts for gene locus length (the length of the gene body and its surrounding non-coding sequence). Adjustment for gene locus length is necessary because it is often positively associated with the presence of one or more peaks and because many biologically defined gene sets have an excess of genes with longer or shorter gene locus lengths. Unlike alternative methods, ChIP-Enrich can account for the wide range of gene locus length-to-peak presence relationships (observed in ENCODE ChIP-seq data sets). We show that ChIP-Enrich has a well-calibrated type I error rate using permuted ENCODE ChIP-seq data sets; in contrast, two commonly used gene set enrichment methods, Fisher's exact test and the binomial test implemented in Genomic Regions Enrichment of Annotations Tool (GREAT), can have highly inflated type I error rates and biases in ranking. We identify DNA-binding proteins, including CTCF, JunD and glucocorticoid receptor α (GRα), that show different enrichment patterns for peaks closer to versus further from transcription start sites. We also identify known and potential new biological functions of GRα. ChIP-Enrich is available as a web interface (http://chip-enrich.med.umich.edu) and Bioconductor package. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. The lung enriched transcription factor TTF-1 and the ubiquitously expressed proteins Sp1 and Sp3 interact with elements located in the minimal promoter of the rat Clara cell secretory protein gene.

    Science.gov (United States)

    Toonen, R F; Gowan, S; Bingle, C D

    1996-01-01

    The mechanisms that direct expression of the Clara cell secretory protein (CCSP) gene to the bronchiolar epithelial cells of the lung remain to be elucidated. Previous studies have identified a number of proteins which bind to a functionally important region (Region 1) located -132 to -76 bp from the transcription start site in the rat CCSP gene. Subsequently we have shown that while Region 1 is an important positive regulator of CCSP gene expression, sequences 3' of this region (-75 to +38) are sufficient to confer tissue-specific expression of a reporter gene. In the present study we have used transient transfections with a deletion series of CCSP-CAT reporter plasmids (where CAT is chloramphenicol acetyltransferase) and gel mobility shift assays with a series of overlapping oligonucleotides covering the whole minimal promoter region to study protein-DNA interactions within this region. These studies have identified a conserved functional binding site for the lung and thyroid enriched homeodomain transcription factor TTF-1, located between positions -51 and -42 from the transcription start site. CCSP-CAT chimaeric reporters containing this region are specifically activated by TTF-1 in co-transfection assays, and nuclear extracts from cells which express TTF-1 bind to this region, as does in vitro translated rat TTF-1. Three additional conserved regions were identified, and in further gel mobility shift studies with an oligonucleotide spanning the conserved region immediately 5' to the TTF-1 site we identified a binding site for the ubiquitously expressed zinc-finger-containing proteins Sp1 and Sp3. These studies suggest that cell-type-restricted and ubiquitous nuclear proteins may play a combined role in the regulation of the CCSP gene within the bronchiolar epithelium by interacting with the minimal promoter region. PMID:8687389

  10. Effects of environmental enrichment on gene expression in the brain

    OpenAIRE

    Rampon, Claire; Jiang, Cecilia H.; Dong, Helin; Tang, Ya-Ping; Lockhart, David J; Schultz, Peter G.; Joe Z Tsien; Hu, Yinghe

    2000-01-01

    An enriched environment is known to promote structural changes in the brain and to enhance learning and memory performance in rodents [Hebb, D. O. (1947) Am. Psychol. 2, 306–307]. To better understand the molecular mechanisms underlying these experience-dependent cognitive changes, we have used high-density oligonucleotide microarrays to analyze gene expression in the brain. Expression of a large number of genes changes in response to enrichment training, many of w...

  11. Separate enrichment analysis of pathways for up- and downregulated genes.

    Science.gov (United States)

    Hong, Guini; Zhang, Wenjing; Li, Hongdong; Shen, Xiaopei; Guo, Zheng

    2014-03-06

    Two strategies are often adopted for enrichment analysis of pathways: the analysis of all differentially expressed (DE) genes together or the analysis of up- and downregulated genes separately. However, few studies have examined the rationales of these enrichment analysis strategies. Using both microarray and RNA-seq data, we show that gene pairs with functional links in pathways tended to have positively correlated expression levels, which could result in an imbalance between the up- and downregulated genes in particular pathways. We then show that the imbalance could greatly reduce the statistical power for finding disease-associated pathways through the analysis of all-DE genes. Further, using gene expression profiles from five types of tumours, we illustrate that the separate analysis of up- and downregulated genes could identify more pathways that are really pertinent to phenotypic difference. In conclusion, analysing up- and downregulated genes separately is more powerful than analysing all of the DE genes together.

  12. The paradox of enrichment in phytoplankton by induced competitive interactions

    Science.gov (United States)

    Tubay, Jerrold M.; Ito, Hiromu; Uehara, Takashi; Kakishima, Satoshi; Morita, Satoru; Togashi, Tatsuya; Tainaka, Kei-ichi; Niraula, Mohan P.; Casareto, Beatriz E.; Suzuki, Yoshimi; Yoshimura, Jin

    2013-01-01

    The biodiversity loss of phytoplankton with eutrophication has been reported in many aquatic ecosystems, e.g., water pollution and red tides. This phenomenon seems similar, but different from the paradox of enrichment via trophic interactions, e.g., predator-prey systems. We here propose the paradox of enrichment by induced competitive interactions using multiple contact process (a lattice Lotka-Volterra competition model). Simulation results demonstrate how eutrophication invokes more competitions in a competitive ecosystem resulting in the loss of phytoplankton diversity in ecological time. The paradox is enhanced under local interactions, indicating that the limited dispersal of phytoplankton reduces interspecific competition greatly. Thus, the paradox of enrichment appears when eutrophication destroys an ecosystem either by elevated interspecific competition within a trophic level and/or destabilization by trophic interactions. Unless eutrophication due to human activities is ceased, the world's aquatic ecosystems will be at risk. PMID:24089056

  13. Systematic enrichment analysis of gene expression profiling studies identifies consensus pathways implicated in colorectal cancer development

    Directory of Open Access Journals (Sweden)

    Jesús Lascorz

    2011-01-01

    Full Text Available Background: A large number of gene expression profiling (GEP studies on colorectal carcinogenesis have been performed but no reliable gene signature has been identified so far due to the lack of reproducibility in the reported genes. There is growing evidence that functionally related genes, rather than individual genes, contribute to the etiology of complex traits. We used, as a novel approach, pathway enrichment tools to define functionally related genes that are consistently up- or down-regulated in colorectal carcinogenesis. Materials and Methods: We started the analysis with 242 unique annotated genes that had been reported by any of three recent meta-analyses covering GEP studies on genes differentially expressed in carcinoma vs normal mucosa. Most of these genes (218, 91.9% had been reported in at least three GEP studies. These 242 genes were submitted to bioinformatic analysis using a total of nine tools to detect enrichment of Gene Ontology (GO categories or Kyoto Encyclopedia of Genes and Genomes (KEGG pathways. As a final consistency criterion the pathway categories had to be enriched by several tools to be taken into consideration. Results: Our pathway-based enrichment analysis identified the categories of ribosomal protein constituents, extracellular matrix receptor interaction, carbonic anhydrase isozymes, and a general category related to inflammation and cellular response as significantly and consistently overrepresented entities. Conclusions: We triaged the genes covered by the published GEP literature on colorectal carcinogenesis and subjected them to multiple enrichment tools in order to identify the consistently enriched gene categories. These turned out to have known functional relationships to cancer development and thus deserve further investigation.

  14. Enriching Absorptive Capacity Through Social Interaction

    DEFF Research Database (Denmark)

    Hotho, Jasper Jaap; Becker-Ritterspach, Florian; Saka-Helmhout, Ayse

    Absorptive capacity is frequently highlighted as a key determinant of knowledge transfer within MNEs. But how individual behaviour translates to absorptive capacity at the subsidiary level, and exactly how this is contingent on subsidiaries’ social context, remains under-addressed. This not only...... their organization’s capacity to put new knowledge to use. To address this shortcoming we conduct an in-depth comparative case study of a headquarters-initiated knowledge transfer initiative at two subsidiaries of the same MNE. The findings demonstrate that social interaction is a key requirement for subsidiary....... These insights contribute to the absorptive capacity literature by demonstrating the scale and scope of social interaction as the key link between individual- and organizational-level absorptive capacity....

  15. A general modular framework for gene set enrichment analysis

    Directory of Open Access Journals (Sweden)

    Strimmer Korbinian

    2009-02-01

    Full Text Available Abstract Background Analysis of microarray and other high-throughput data on the basis of gene sets, rather than individual genes, is becoming more important in genomic studies. Correspondingly, a large number of statistical approaches for detecting gene set enrichment have been proposed, but both the interrelations and the relative performance of the various methods are still very much unclear. Results We conduct an extensive survey of statistical approaches for gene set analysis and identify a common modular structure underlying most published methods. Based on this finding we propose a general framework for detecting gene set enrichment. This framework provides a meta-theory of gene set analysis that not only helps to gain a better understanding of the relative merits of each embedded approach but also facilitates a principled comparison and offers insights into the relative interplay of the methods. Conclusion We use this framework to conduct a computer simulation comparing 261 different variants of gene set enrichment procedures and to analyze two experimental data sets. Based on the results we offer recommendations for best practices regarding the choice of effective procedures for gene set enrichment analysis.

  16. Protein-Protein Interaction and Pathway Analyses of Top Schizophrenia Genes Reveal Schizophrenia Susceptibility Genes Converge on Common Molecular Networks and Enrichment of Nucleosome (Chromatin) Assembly Genes in Schizophrenia Susceptibility Loci

    OpenAIRE

    Luo, Xiongjian; Huang, Liang; Jia, Peilin; Li, Ming; SU, Bing; Zhao, Zhongming; Gan, Lin

    2013-01-01

    Recent genome-wide association studies have identified many promising schizophrenia candidate genes and demonstrated that common polygenic variation contributes to schizophrenia risk. However, whether these genes represent perturbations to a common but limited set of underlying molecular processes (pathways) that modulate risk to schizophrenia remains elusive, and it is not known whether these genes converge on common biological pathways (networks) or represent different pathways. In addition...

  17. Enriching Absorptive Capacity through Social Interaction

    DEFF Research Database (Denmark)

    Hotho, Jasper J.; Saka-Helmhout, Ayse; Becker-Ritterspach, Florian

    2012-01-01

    their organization's capacity to put new knowledge to use. To address this shortcoming we conduct an in-depth comparative case study of a headquarters-initiated knowledge transfer at two subsidiaries of the same multinational enterprise. The findings demonstrate that social interaction is a prerequisite...... for subsidiary absorptive capacity as it enables employees to participate in the transformation of new knowledge to the local context and the development of local applications. The findings also illustrate how organizational conditions at the subsidiary level can impact subsidiary absorptive capacity by enabling......Absorptive capacity is frequently highlighted as a key determinant of knowledge transfer within multinational enterprises. But how individual behaviour translates into absorptive capacity at the subsidiary level, and how this is contingent on subsidiaries' social context, remains under...

  18. Gene enrichment in plant genomic shotgun libraries.

    Science.gov (United States)

    Rabinowicz, Pablo D; McCombie, W Richard; Martienssen, Robert A

    2003-04-01

    The Arabidopsis genome (about 130 Mbp) has been completely sequenced; whereas a draft sequence of the rice genome (about 430 Mbp) is now available and the sequencing of this genome will be completed in the near future. The much larger genomes of several important crop species, such as wheat (about 16,000 Mbp) or maize (about 2500 Mbp), may not be fully sequenced with current technology. Instead, sequencing-analysis strategies are being developed to obtain sequencing and mapping information selectively for the genic fraction (gene space) of complex plant genomes.

  19. The limitations of simple gene set enrichment analysis assuming gene independence.

    Science.gov (United States)

    Tamayo, Pablo; Steinhardt, George; Liberzon, Arthur; Mesirov, Jill P

    2016-02-01

    Since its first publication in 2003, the Gene Set Enrichment Analysis method, based on the Kolmogorov-Smirnov statistic, has been heavily used, modified, and also questioned. Recently a simplified approach using a one-sample t-test score to assess enrichment and ignoring gene-gene correlations was proposed by Irizarry et al. 2009 as a serious contender. The argument criticizes Gene Set Enrichment Analysis's nonparametric nature and its use of an empirical null distribution as unnecessary and hard to compute. We refute these claims by careful consideration of the assumptions of the simplified method and its results, including a comparison with Gene Set Enrichment Analysis's on a large benchmark set of 50 datasets. Our results provide strong empirical evidence that gene-gene correlations cannot be ignored due to the significant variance inflation they produced on the enrichment scores and should be taken into account when estimating gene set enrichment significance. In addition, we discuss the challenges that the complex correlation structure and multi-modality of gene sets pose more generally for gene set enrichment methods.

  20. Enriched environments for rodents and their interaction with nicotine administration.

    Science.gov (United States)

    Mesa-Gresa, Patricia; Ramos-Campos, Marta; Redolat, Rosa

    2013-09-01

    An active lifestyle throughout the life cycle seems to delay cognitive aging and dementia and has also been evaluated as an intervention against addiction to cocaine and other drugs of abuse. In epidemiological studies with humans, it has proved difficult to separate the cognitive, social and physical components from other variables that influence lifestyle. Studies in animal models are useful for evaluating the impact of each of these factors and for uncovering the underlying mechanisms of the benefits of complex environments. Preclinical studies have employed the Environmental Enrichment paradigm (EE) which has been proposed as a preclinical model of positive life experiences in humans. EE has been associated with protective effects against addiction to some drugs, but few studies have been carried out in order to evaluate how its actions interact with nicotine addiction. In this context, the main aim of this review is to provide an analysis of the preclinical studies evaluating the interaction between exposure to enriched environments with the neurobiological and behavioral effects of nicotine administration. These studies will contribute to the development of future preventive and therapeutic applications of enriched environments and positive experiences for drug addiction in human beings, taking into account individual vulnerability. They also may shed light on new approaches to the treatment of nicotine addiction, as interventions based in physical exercise in interaction with other environmental variables.

  1. Gene-environment interaction.

    Science.gov (United States)

    Manuck, Stephen B; McCaffery, Jeanne M

    2014-01-01

    With the advent of increasingly accessible technologies for typing genetic variation, studies of gene-environment (G×E) interactions have proliferated in psychological research. Among the aims of such studies are testing developmental hypotheses and models of the etiology of behavioral disorders, defining boundaries of genetic and environmental influences, and identifying individuals most susceptible to risk exposures or most amenable to preventive and therapeutic interventions. This research also coincides with the emergence of unanticipated difficulties in detecting genetic variants of direct association with behavioral traits and disorders, which may be obscured if genetic effects are expressed only in predisposing environments. In this essay we consider these and other rationales for positing G×E interactions, review conceptual models meant to inform G×E interpretations from a psychological perspective, discuss points of common critique to which G×E research is vulnerable, and address the role of the environment in G×E interactions.

  2. Switch-like genes populate cell communication pathways and are enriched for extracellular proteins

    Directory of Open Access Journals (Sweden)

    Tozeren Aydin

    2008-01-01

    Full Text Available Abstract Background Recent studies have placed gene expression in the context of distribution profiles including housekeeping, graded, and bimodal (switch-like. Single-gene studies have shown bimodal expression results from healthy cell signaling and complex diseases such as cancer, however developing a comprehensive list of human bimodal genes has remained a major challenge due to inherent noise in human microarray data. This study presents a two-component mixture analysis of mouse gene expression data for genes on the Affymetrix MG-U74Av2 array for the detection and annotation of switch-like genes. Two-component normal mixtures were fit to the data to identify bimodal genes and their potential roles in cell signaling and disease progression. Results Seventeen percent of the genes on the MG-U74Av2 array (1519 out of 9091 were identified as bimodal or switch-like. KEGG pathways significantly enriched for bimodal genes included ECM-receptor interaction, cell communication, and focal adhesion. Similarly, the GO biological process "cell adhesion" and cellular component "extracellular matrix" were significantly enriched. Switch-like genes were found to be associated with such diseases as congestive heart failure, Alzheimer's disease, arteriosclerosis, breast neoplasms, hypertension, myocardial infarction, obesity, rheumatoid arthritis, and type I and type II diabetes. In diabetes alone, over two hundred bimodal genes were in a different mode of expression compared to normal tissue. Conclusion This research identified and annotated bimodal or switch-like genes in the mouse genome using a large collection of microarray data. Genes with bimodal expression were enriched within the cell membrane and extracellular environment. Hundreds of bimodal genes demonstrated alternate modes of expression in diabetic muscle, pancreas, liver, heart, and adipose tissue. Bimodal genes comprise a candidate set of biomarkers for a large number of disease states because

  3. GeneCodis3: a non-redundant and modular enrichment analysis tool for functional genomics.

    Science.gov (United States)

    Tabas-Madrid, Daniel; Nogales-Cadenas, Ruben; Pascual-Montano, Alberto

    2012-07-01

    Since its first release in 2007, GeneCodis has become a valuable tool to functionally interpret results from experimental techniques in genomics. This web-based application integrates different sources of information to finding groups of genes with similar biological meaning. This process, known as enrichment analysis, is essential in the interpretation of high-throughput experiments. The frequent feedbacks and the natural evolution of genomics and bioinformatics have allowed the growth of the tool and the development of this third release. In this version, a special effort has been made to remove noisy and redundant output from the enrichment results with the inclusion of a recently reported algorithm that summarizes significantly enriched terms and generates functionally coherent modules of genes and terms. A new comparative analysis has been added to allow the differential analysis of gene sets. To expand the scope of the application, new sources of biological information have been included, such as genetic diseases, drugs-genes interactions and Pubmed information among others. Finally, the graphic section has been renewed with the inclusion of new interactive graphics and filtering options. The application is freely available at http://genecodis.cnb.csic.es.

  4. Associations between DNA methylation and schizophrenia-related intermediate phenotypes - a gene set enrichment analysis.

    Science.gov (United States)

    Hass, Johanna; Walton, Esther; Wright, Carrie; Beyer, Andreas; Scholz, Markus; Turner, Jessica; Liu, Jingyu; Smolka, Michael N; Roessner, Veit; Sponheim, Scott R; Gollub, Randy L; Calhoun, Vince D; Ehrlich, Stefan

    2015-06-03

    Multiple genetic approaches have identified microRNAs as key effectors in psychiatric disorders as they post-transcriptionally regulate expression of thousands of target genes. However, their role in specific psychiatric diseases remains poorly understood. In addition, epigenetic mechanisms such as DNA methylation, which affect the expression of both microRNAs and coding genes, are critical for our understanding of molecular mechanisms in schizophrenia. Using clinical, imaging, genetic, and epigenetic data of 103 patients with schizophrenia and 111 healthy controls of the Mind Clinical Imaging Consortium (MCIC) study of schizophrenia, we conducted gene set enrichment analysis to identify markers for schizophrenia-associated intermediate phenotypes. Genes were ranked based on the correlation between DNA methylation patterns and each phenotype, and then searched for enrichment in 221 predicted microRNA target gene sets. We found the predicted hsa-miR-219a-5p target gene set to be significantly enriched for genes (EPHA4, PKNOX1, ESR1, among others) whose methylation status is correlated with hippocampal volume independent of disease status. Our results were strengthened by significant associations between hsa-miR-219a-5p target gene methylation patterns and hippocampus-related neuropsychological variables. IPA pathway analysis of the respective predicted hsa-miR-219a-5p target genes revealed associated network functions in behavior and developmental disorders. Altered methylation patterns of predicted hsa-miR-219a-5p target genes are associated with a structural aberration of the brain that has been proposed as a possible biomarker for schizophrenia. The (dys)regulation of microRNA target genes by epigenetic mechanisms may confer additional risk for developing psychiatric symptoms. Further study is needed to understand possible interactions between microRNAs and epigenetic changes and their impact on risk for brain-based disorders such as schizophrenia.

  5. Gene ontology and KEGG enrichment analyses of genes related to age-related macular degeneration.

    Science.gov (United States)

    Zhang, Jian; Xing, ZhiHao; Ma, Mingming; Wang, Ning; Cai, Yu-Dong; Chen, Lei; Xu, Xun

    2014-01-01

    Identifying disease genes is one of the most important topics in biomedicine and may facilitate studies on the mechanisms underlying disease. Age-related macular degeneration (AMD) is a serious eye disease; it typically affects older adults and results in a loss of vision due to retina damage. In this study, we attempt to develop an effective method for distinguishing AMD-related genes. Gene ontology and KEGG enrichment analyses of known AMD-related genes were performed, and a classification system was established. In detail, each gene was encoded into a vector by extracting enrichment scores of the gene set, including it and its direct neighbors in STRING, and gene ontology terms or KEGG pathways. Then certain feature-selection methods, including minimum redundancy maximum relevance and incremental feature selection, were adopted to extract key features for the classification system. As a result, 720 GO terms and 11 KEGG pathways were deemed the most important factors for predicting AMD-related genes.

  6. Enrichment of putative PAX8 target genes at serous epithelial ovarian cancer susceptibility loci.

    Science.gov (United States)

    Kar, Siddhartha P; Adler, Emily; Tyrer, Jonathan; Hazelett, Dennis; Anton-Culver, Hoda; Bandera, Elisa V; Beckmann, Matthias W; Berchuck, Andrew; Bogdanova, Natalia; Brinton, Louise; Butzow, Ralf; Campbell, Ian; Carty, Karen; Chang-Claude, Jenny; Cook, Linda S; Cramer, Daniel W; Cunningham, Julie M; Dansonka-Mieszkowska, Agnieszka; Doherty, Jennifer Anne; Dörk, Thilo; Dürst, Matthias; Eccles, Diana; Fasching, Peter A; Flanagan, James; Gentry-Maharaj, Aleksandra; Glasspool, Rosalind; Goode, Ellen L; Goodman, Marc T; Gronwald, Jacek; Heitz, Florian; Hildebrandt, Michelle A T; Høgdall, Estrid; Høgdall, Claus K; Huntsman, David G; Jensen, Allan; Karlan, Beth Y; Kelemen, Linda E; Kiemeney, Lambertus A; Kjaer, Susanne K; Kupryjanczyk, Jolanta; Lambrechts, Diether; Levine, Douglas A; Li, Qiyuan; Lissowska, Jolanta; Lu, Karen H; Lubiński, Jan; Massuger, Leon F A G; McGuire, Valerie; McNeish, Iain; Menon, Usha; Modugno, Francesmary; Monteiro, Alvaro N; Moysich, Kirsten B; Ness, Roberta B; Nevanlinna, Heli; Paul, James; Pearce, Celeste L; Pejovic, Tanja; Permuth, Jennifer B; Phelan, Catherine; Pike, Malcolm C; Poole, Elizabeth M; Ramus, Susan J; Risch, Harvey A; Rossing, Mary Anne; Salvesen, Helga B; Schildkraut, Joellen M; Sellers, Thomas A; Sherman, Mark; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa; Terry, Kathryn L; Tworoger, Shelley S; Walsh, Christine; Wentzensen, Nicolas; Whittemore, Alice S; Wu, Anna H; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Freedman, Matthew L; Gayther, Simon A; Pharoah, Paul D P; Lawrenson, Kate

    2017-02-14

    Genome-wide association studies (GWAS) have identified 18 loci associated with serous ovarian cancer (SOC) susceptibility but the biological mechanisms driving these findings remain poorly characterised. Germline cancer risk loci may be enriched for target genes of transcription factors (TFs) critical to somatic tumorigenesis. All 615 TF-target sets from the Molecular Signatures Database were evaluated using gene set enrichment analysis (GSEA) and three GWAS for SOC risk: discovery (2196 cases/4396 controls), replication (7035 cases/21 693 controls; independent from discovery), and combined (9627 cases/30 845 controls; including additional individuals). The PAX8-target gene set was ranked 1/615 in the discovery (PGSEA<0.001; FDR=0.21), 7/615 in the replication (PGSEA=0.004; FDR=0.37), and 1/615 in the combined (PGSEA<0.001; FDR=0.21) studies. Adding other genes reported to interact with PAX8 in the literature to the PAX8-target set and applying an alternative to GSEA, interval enrichment, further confirmed this association (P=0.006). Fifteen of the 157 genes from this expanded PAX8 pathway were near eight loci associated with SOC risk at P<10(-5) (including six with P<5 × 10(-8)). The pathway was also associated with differential gene expression after shRNA-mediated silencing of PAX8 in HeyA8 (PGSEA=0.025) and IGROV1 (PGSEA=0.004) SOC cells and several PAX8 targets near SOC risk loci demonstrated in vitro transcriptomic perturbation. Putative PAX8 target genes are enriched for common SOC risk variants. This finding from our agnostic evaluation is of particular interest given that PAX8 is well-established as a specific marker for the cell of origin of SOC.

  7. Epigenomic elements enriched in the promoters of autoimmunity susceptibility genes.

    Science.gov (United States)

    Dozmorov, Mikhail G; Wren, Jonathan D; Alarcón-Riquelme, Marta E

    2014-02-01

    Genome-wide association studies have identified a number of autoimmune disease-susceptibility genes. Whether or not these loci share any regulatory or functional elements, however, is an open question. Finding such common regulators is of considerable research interest in order to define systemic therapeutic targets. The growing amount of experimental genomic annotations, particularly those from the ENCODE project, provide a wealth of opportunities to search for such commonalities. We hypothesized that regulatory commonalities might not only delineate a regulatory landscape predisposing to autoimmune diseases, but also define functional elements distinguishing specific diseases. We further investigated if, and how, disease-specific epigenomic elements can identify novel genes yet to be associated with the diseases. We evaluated transcription factors, histone modifications, and chromatin state data obtained from the ENCODE project for statistically significant over- or under-representation in the promoters of genes associated with Systemic Lupus Erythematosus (SLE), Rheumatoid Arthritis (RA), and Systemic Sclerosis (SSc). We identified BATF, BCL11A, IRF4, NFkB, PAX5, and PU.1 as transcription factors over-represented in SLE- and RA-susceptibility gene promoters. H3K4me1 and H3K4me2 epigenomic marks were associated with SLE susceptibility genes, and H3K9me3 was common to both SLE and RA. In contrast to a transcriptionally active signature in SLE and RA, SSc-susceptibility genes were depleted in activating epigenomic elements. Using epigenomic elements enriched in SLE and RA, we identified additional immune and B cell signaling-related genes with the same elements in their promoters. Our analysis suggests common and disease-specific epigenomic elements that may define novel therapeutic targets for controlling aberrant activation of autoimmune susceptibility genes.

  8. Utilizing ion-pairing hydrophilic interaction chromatography solid phase extraction for efficient glycopeptide enrichment in glycoproteomics

    DEFF Research Database (Denmark)

    Mysling, Simon; Palmisano, Giuseppe; Højrup, Peter;

    2010-01-01

    Glycopeptide enrichment is a prerequisite to enable structural characterization of protein glycosylation in glycoproteomics. Here we present an improved method for glycopeptide enrichment based on zwitter-ionic hydrophilic interaction chromatography solid phase extraction (ZIC-HILIC SPE...

  9. Dorsal horn-enriched genes identified by DNA microarray, in situ hybridization and immunohistochemistry

    Directory of Open Access Journals (Sweden)

    Koblan Kenneth S

    2002-08-01

    Full Text Available Abstract Background Neurons in the dorsal spinal cord play important roles in nociception and pain. These neurons receive input from peripheral sensory neurons and then transmit the signals to the brain, as well as receive and integrate descending control signals from the brain. Many molecules important for pain transmission have been demonstrated to be localized to the dorsal horn of the spinal cord. Further understanding of the molecular interactions and signaling pathways in the dorsal horn neurons will require a better knowledge of the molecular neuroanatomy in the dorsal spinal cord. Results A large scale screening was conducted for genes with enriched expression in the dorsal spinal cord using DNA microarray and quantitative real-time PCR. In addition to genes known to be specifically expressed in the dorsal spinal cord, other neuropeptides, receptors, ion channels, and signaling molecules were also found enriched in the dorsal spinal cord. In situ hybridization and immunohistochemistry revealed the cellular expression of a subset of these genes. The regulation of a subset of the genes was also studied in the spinal nerve ligation (SNL neuropathic pain model. In general, we found that the genes that are enriched in the dorsal spinal cord were not among those found to be up-regulated in the spinal nerve ligation model of neuropathic pain. This study also provides a level of validation of the use of DNA microarrays in conjunction with our novel analysis algorithm (SAFER for the identification of differences in gene expression. Conclusion This study identified molecules that are enriched in the dorsal horn of the spinal cord and provided a molecular neuroanatomy in the spinal cord, which will aid in the understanding of the molecular mechanisms important in nociception and pain.

  10. Environmental enrichment modulates cortico-cortical interactions in the mouse.

    Directory of Open Access Journals (Sweden)

    Angelo Di Garbo

    Full Text Available Environmental enrichment (EE is an experimental protocol based on a complex sensorimotor stimulation that dramatically affects brain development. While it is widely believed that the effects of EE result from the unique combination of different sensory and motor stimuli, it is not known whether and how cortico-cortical interactions are shaped by EE. Since the primary visual cortex (V1 is one of the best characterized targets of EE, we looked for direct cortico-cortical projections impinging on V1, and we identified a direct monosynaptic connection between motor cortex and V1 in the mouse brain. To measure the interactions between these areas under standard and EE rearing conditions, we used simultaneous recordings of local field potentials (LFPs in awake, freely moving animals. LFP signals were analyzed by using different methods of linear and nonlinear analysis of time series (cross-correlation, mutual information, phase synchronization. We found that EE decreases the level of coupling between the electrical activities of the two cortical regions with respect to the control group. From a functional point of view, our results indicate, for the first time, that an enhanced sensorimotor experience impacts on the brain by affecting the functional crosstalk between different cortical areas.

  11. Dominance from the perspective of gene-gene and gene-chemical interactions.

    Science.gov (United States)

    Gladki, Arkadiusz; Zielenkiewicz, Piotr; Kaczanowski, Szymon

    2016-02-01

    In this study, we used genetic interaction (GI) and gene-chemical interaction (GCI) data to compare mutations with different dominance phenotypes. Our analysis focused primarily on Saccharomyces cerevisiae, where haploinsufficient genes (HI; genes with dominant loss-of-function mutations) were found to be participating in gene expression processes, namely, the translation and regulation of gene transcription. Non-ribosomal HI genes (mainly regulators of gene transcription) were found to have more GIs and GCIs than haplosufficient (HS) genes. Several properties seem to lead to the enrichment of interactions, most notably, the following: importance, pleiotropy, gene expression level and gene expression variation. Importantly, after these properties were appropriately considered in the analysis, the correlation between dominance and GI/GCI degrees was still observed. Strikingly, for the GCIs of heterozygous strains, haploinsufficiency was the only property significantly correlated with the number of GCIs. We found ribosomal HI genes to be depleted in GIs/GCIs. This finding can be explained by their high variation in gene expression under different genetic backgrounds and environmental conditions. We observed the same distributions of GIs among non-ribosomal HI, ribosomal HI and HS genes in three other species: Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens. One potentially interesting exception was the lack of significant differences in the degree of GIs between non-ribosomal HI and HS genes in Schizosaccharomyces pombe.

  12. Gene Ontology and KEGG Enrichment Analyses of Genes Related to Age-Related Macular Degeneration

    Directory of Open Access Journals (Sweden)

    Jian Zhang

    2014-01-01

    Full Text Available Identifying disease genes is one of the most important topics in biomedicine and may facilitate studies on the mechanisms underlying disease. Age-related macular degeneration (AMD is a serious eye disease; it typically affects older adults and results in a loss of vision due to retina damage. In this study, we attempt to develop an effective method for distinguishing AMD-related genes. Gene ontology and KEGG enrichment analyses of known AMD-related genes were performed, and a classification system was established. In detail, each gene was encoded into a vector by extracting enrichment scores of the gene set, including it and its direct neighbors in STRING, and gene ontology terms or KEGG pathways. Then certain feature-selection methods, including minimum redundancy maximum relevance and incremental feature selection, were adopted to extract key features for the classification system. As a result, 720 GO terms and 11 KEGG pathways were deemed the most important factors for predicting AMD-related genes.

  13. Grouping Gene Ontology terms to improve the assessment of gene set enrichment in microarray data.

    Science.gov (United States)

    Lewin, Alex; Grieve, Ian C

    2006-10-03

    Gene Ontology (GO) terms are often used to assess the results of microarray experiments. The most common way to do this is to perform Fisher's exact tests to find GO terms which are over-represented amongst the genes declared to be differentially expressed in the analysis of the microarray experiment. However, due to the high degree of dependence between GO terms, statistical testing is conservative, and interpretation is difficult. We propose testing groups of GO terms rather than individual terms, to increase statistical power, reduce dependence between tests and improve the interpretation of results. We use the publicly available package POSOC to group the terms. Our method finds groups of GO terms significantly over-represented amongst differentially expressed genes which are not found by Fisher's tests on individual GO terms. Grouping Gene Ontology terms improves the interpretation of gene set enrichment for microarray data.

  14. Grouping Gene Ontology terms to improve the assessment of gene set enrichment in microarray data

    Directory of Open Access Journals (Sweden)

    Grieve Ian C

    2006-10-01

    Full Text Available Abstract Background Gene Ontology (GO terms are often used to assess the results of microarray experiments. The most common way to do this is to perform Fisher's exact tests to find GO terms which are over-represented amongst the genes declared to be differentially expressed in the analysis of the microarray experiment. However, due to the high degree of dependence between GO terms, statistical testing is conservative, and interpretation is difficult. Results We propose testing groups of GO terms rather than individual terms, to increase statistical power, reduce dependence between tests and improve the interpretation of results. We use the publicly available package POSOC to group the terms. Our method finds groups of GO terms significantly over-represented amongst differentially expressed genes which are not found by Fisher's tests on individual GO terms. Conclusion Grouping Gene Ontology terms improves the interpretation of gene set enrichment for microarray data.

  15. Prediction and analysis of essential genes using the enrichments of gene ontology and KEGG pathways.

    Science.gov (United States)

    Chen, Lei; Zhang, Yu-Hang; Wang, ShaoPeng; Zhang, YunHua; Huang, Tao; Cai, Yu-Dong

    2017-01-01

    Identifying essential genes in a given organism is important for research on their fundamental roles in organism survival. Furthermore, if possible, uncovering the links between core functions or pathways with these essential genes will further help us obtain deep insight into the key roles of these genes. In this study, we investigated the essential and non-essential genes reported in a previous study and extracted gene ontology (GO) terms and biological pathways that are important for the determination of essential genes. Through the enrichment theory of GO and KEGG pathways, we encoded each essential/non-essential gene into a vector in which each component represented the relationship between the gene and one GO term or KEGG pathway. To analyze these relationships, the maximum relevance minimum redundancy (mRMR) was adopted. Then, the incremental feature selection (IFS) and support vector machine (SVM) were employed to extract important GO terms and KEGG pathways. A prediction model was built simultaneously using the extracted GO terms and KEGG pathways, which yielded nearly perfect performance, with a Matthews correlation coefficient of 0.951, for distinguishing essential and non-essential genes. To fully investigate the key factors influencing the fundamental roles of essential genes, the 21 most important GO terms and three KEGG pathways were analyzed in detail. In addition, several genes was provided in this study, which were predicted to be essential genes by our prediction model. We suggest that this study provides more functional and pathway information on the essential genes and provides a new way to investigate related problems.

  16. Community Structure in Methanogenic Enrichments Provides Insight into Syntrophic Interactions in Hydrocarbon-Impacted Environments.

    Science.gov (United States)

    Fowler, S Jane; Toth, Courtney R A; Gieg, Lisa M

    2016-01-01

    The methanogenic biodegradation of crude oil involves the conversion of hydrocarbons to methanogenic substrates by syntrophic bacteria and subsequent methane production by methanogens. Assessing the metabolic roles played by various microbial species in syntrophic communities remains a challenge, but such information has important implications for bioremediation and microbial enhanced energy recovery technologies. Many factors such as changing environmental conditions or substrate variations can influence the composition and biodegradation capabilities of syntrophic microbial communities in hydrocarbon-impacted environments. In this study, a methanogenic crude oil-degrading enrichment culture was successively transferred onto the single long chain fatty acids palmitate or stearate followed by their parent alkanes, hexadecane or octadecane, respectively, in order to assess the impact of different substrates on microbial community composition and retention of hydrocarbon biodegradation genes. 16S rRNA gene sequencing showed that a reduction in substrate diversity resulted in a corresponding loss of microbial diversity, but that hydrocarbon biodegradation genes (such as assA/masD encoding alkylsuccinate synthase) could be retained within a community even in the absence of hydrocarbon substrates. Despite substrate-related diversity changes, all communities were dominated by hydrogenotrophic and acetotrophic methanogens along with bacteria including Clostridium sp., members of the Deltaproteobacteria, and a number of other phyla. Microbial co-occurrence network analysis revealed a dense network of interactions amongst syntrophic bacteria and methanogens that were maintained despite changes in the substrates for methanogenesis. Our results reveal the effect of substrate diversity loss on microbial community diversity, indicate that many syntrophic interactions are stable over time despite changes in substrate pressure, and show that syntrophic interactions amongst

  17. Community structure in methanogenic enrichments provides insight into syntrophic interactions in hydrocarbon-impacted environments

    Directory of Open Access Journals (Sweden)

    S. Jane eFowler

    2016-04-01

    Full Text Available The methanogenic biodegradation of crude oil involves the conversion of hydrocarbons to methanogenic substrates by syntrophic bacteria and subsequent methane production by methanogens. Assessing the metabolic roles played by various microbial species in syntrophic communities remains a challenge, but such information has important implications for bioremediation and microbial enhanced energy recovery technologies. Many factors such as changing environmental conditions or substrate variations can influence the composition and biodegradation capabilities of syntrophic microbial communities in hydrocarbon-impacted environments. In this study, a methanogenic crude oil-degrading enrichment culture was successively transferred onto the single long chain fatty acids palmitate or stearate followed by their parent alkanes, hexadecane or octadecane, respectively, in order to assess the impact of different substrates on microbial community composition and retention of hydrocarbon biodegradation genes. 16S rRNA gene sequencing showed that a reduction in substrate diversity resulted in a corresponding loss of microbial diversity, but that hydrocarbon biodegradation genes (such as assA/masD encoding alkylsuccinate synthase could be retained within a community even in the absence of hydrocarbon substrates. Despite substrate-related diversity changes, all communities were dominated by hydrogenotrophic and acetotrophic methanogens along with bacteria including Clostridium sp., members of the Deltaproteobacteria, and a number of other phyla. Microbial co-occurrence network analysis revealed a dense network of interactions amongst syntrophic bacteria and methanogens that were maintained despite changes in the substrates for methanogenesis. Our results reveal the effect of substrate diversity loss on microbial community diversity, indicate that many syntrophic interactions are stable over time despite changes in substrate pressure, and show that syntrophic

  18. Development and application of an interaction network ontology for literature mining of vaccine-associated gene-gene interactions.

    Science.gov (United States)

    Hur, Junguk; Özgür, Arzucan; Xiang, Zuoshuang; He, Yongqun

    2015-01-01

    Literature mining of gene-gene interactions has been enhanced by ontology-based name classifications. However, in biomedical literature mining, interaction keywords have not been carefully studied and used beyond a collection of keywords. In this study, we report the development of a new Interaction Network Ontology (INO) that classifies >800 interaction keywords and incorporates interaction terms from the PSI Molecular Interactions (PSI-MI) and Gene Ontology (GO). Using INO-based literature mining results, a modified Fisher's exact test was established to analyze significantly over- and under-represented enriched gene-gene interaction types within a specific area. Such a strategy was applied to study the vaccine-mediated gene-gene interactions using all PubMed abstracts. The Vaccine Ontology (VO) and INO were used to support the retrieval of vaccine terms and interaction keywords from the literature. INO is aligned with the Basic Formal Ontology (BFO) and imports terms from 10 other existing ontologies. Current INO includes 540 terms. In terms of interaction-related terms, INO imports and aligns PSI-MI and GO interaction terms and includes over 100 newly generated ontology terms with 'INO_' prefix. A new annotation property, 'has literature mining keywords', was generated to allow the listing of different keywords mapping to the interaction types in INO. Using all PubMed documents published as of 12/31/2013, approximately 266,000 vaccine-associated documents were identified, and a total of 6,116 gene-pairs were associated with at least one INO term. Out of 78 INO interaction terms associated with at least five gene-pairs of the vaccine-associated sub-network, 14 terms were significantly over-represented (i.e., more frequently used) and 17 under-represented based on our modified Fisher's exact test. These over-represented and under-represented terms share some common top-level terms but are distinct at the bottom levels of the INO hierarchy. The analysis of these

  19. Risk score modeling of multiple gene to gene interactions using aggregated-multifactor dimensionality reduction

    Directory of Open Access Journals (Sweden)

    Dai Hongying

    2013-01-01

    Full Text Available Abstract Background Multifactor Dimensionality Reduction (MDR has been widely applied to detect gene-gene (GxG interactions associated with complex diseases. Existing MDR methods summarize disease risk by a dichotomous predisposing model (high-risk/low-risk from one optimal GxG interaction, which does not take the accumulated effects from multiple GxG interactions into account. Results We propose an Aggregated-Multifactor Dimensionality Reduction (A-MDR method that exhaustively searches for and detects significant GxG interactions to generate an epistasis enriched gene network. An aggregated epistasis enriched risk score, which takes into account multiple GxG interactions simultaneously, replaces the dichotomous predisposing risk variable and provides higher resolution in the quantification of disease susceptibility. We evaluate this new A-MDR approach in a broad range of simulations. Also, we present the results of an application of the A-MDR method to a data set derived from Juvenile Idiopathic Arthritis patients treated with methotrexate (MTX that revealed several GxG interactions in the folate pathway that were associated with treatment response. The epistasis enriched risk score that pooled information from 82 significant GxG interactions distinguished MTX responders from non-responders with 82% accuracy. Conclusions The proposed A-MDR is innovative in the MDR framework to investigate aggregated effects among GxG interactions. New measures (pOR, pRR and pChi are proposed to detect multiple GxG interactions.

  20. Methods for Determining the Statistical Significance of Enrichment or Depletion of Gene Ontology Classifications under Weighted Membership

    Directory of Open Access Journals (Sweden)

    Ernesto eIacucci

    2012-02-01

    Full Text Available High-throughput molecular biology studies, such as microarray assays of gene expression, two-hybrid experiments for detecting protein interactions, or ChIP-Seq experiments for transcription factor binding, often result in an interesting set of genes—say, genes that are co-expressed or bound by the same factor. One way of understanding the biological meaning of such a set is to consider what processes or functions, as defined in an ontology, are over-represented (enriched or under-represented (depleted among genes in the set. Usually, the significance of enrichment or depletion scores is based on simple statistical models and on the membership of genes in different classifications. We consider the more general problem of computing p-values for arbitrary integer additive statistics, or weighted membership functions. Such membership functions can be used to represent, for example, prior knowledge on the role of certain genes or classifications, differential importance of different classifications or genes to the experimenter, hierarchical relationships between classifications, or different degrees of interestingness or evidence for specific genes. We describe a generic dynamic programming algorithm that can compute exact p-values for arbitrary integer additive statistics. We also describe several optimizations for important special cases, which can provide orders-of-magnitude speed up in the computations. We apply our methods to datasets describing oxidative phosphorylation and parturition and compare p-values based on computations of several different statistics for measuring enrichment. We find major differences between p-values resulting from these statistics, and that some statistics recover gold standard annotations of the data better than others. Our work establishes a theoretical and algorithmic basis for far richer notions of enrichment or depletion of gene sets with respect to gene ontologies than has previously been available.

  1. Gene-based analysis of regionally enriched cortical genes in GWAS data sets of cognitive traits and psychiatric disorders.

    Directory of Open Access Journals (Sweden)

    Kari M Ersland

    Full Text Available BACKGROUND: Despite its estimated high heritability, the genetic architecture leading to differences in cognitive performance remains poorly understood. Different cortical regions play important roles in normal cognitive functioning and impairment. Recently, we reported on sets of regionally enriched genes in three different cortical areas (frontomedial, temporal and occipital cortices of the adult rat brain. It has been suggested that genes preferentially, or specifically, expressed in one region or organ reflect functional specialisation. Employing a gene-based approach to the analysis, we used the regionally enriched cortical genes to mine a genome-wide association study (GWAS of the Norwegian Cognitive NeuroGenetics (NCNG sample of healthy adults for association to nine psychometric tests measures. In addition, we explored GWAS data sets for the serious psychiatric disorders schizophrenia (SCZ (n = 3 samples and bipolar affective disorder (BP (n = 3 samples, to which cognitive impairment is linked. PRINCIPAL FINDINGS: At the single gene level, the temporal cortex enriched gene RAR-related orphan receptor B (RORB showed the strongest overall association, namely to a test of verbal intelligence (Vocabulary, P = 7.7E-04. We also applied gene set enrichment analysis (GSEA to test the candidate genes, as gene sets, for enrichment of association signal in the NCNG GWAS and in GWASs of BP and of SCZ. We found that genes differentially expressed in the temporal cortex showed a significant enrichment of association signal in a test measure of non-verbal intelligence (Reasoning in the NCNG sample. CONCLUSION: Our gene-based approach suggests that RORB could be involved in verbal intelligence differences, while the genes enriched in the temporal cortex might be important to intellectual functions as measured by a test of reasoning in the healthy population. These findings warrant further replication in independent samples on cognitive traits.

  2. Soft, Embodied, Situated & Connected: enriching interactions with soft wearables

    DEFF Research Database (Denmark)

    Tomico, Oscar; Wilde, Danielle

    2016-01-01

    Soft wearables include clothing and textile-based accessories that incorporate smart textiles and soft electronic interfaces to enable responsive and interactive experiences. When designed well, soft wearables leverage the cultural, sociological and material qualities of textiles, fashion and dress...... approaches impact use. Finally, we reflect on how embodied and collocated interactions might extend understanding of how to frame wearables research and development to arrive at rich interactions that are soft, embodied, situated and connected....

  3. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists

    Directory of Open Access Journals (Sweden)

    Steinfeld Israel

    2009-02-01

    Full Text Available Abstract Background Since the inception of the GO annotation project, a variety of tools have been developed that support exploring and searching the GO database. In particular, a variety of tools that perform GO enrichment analysis are currently available. Most of these tools require as input a target set of genes and a background set and seek enrichment in the target set compared to the background set. A few tools also exist that support analyzing ranked lists. The latter typically rely on simulations or on union-bound correction for assigning statistical significance to the results. Results GOrilla is a web-based application that identifies enriched GO terms in ranked lists of genes, without requiring the user to provide explicit target and background sets. This is particularly useful in many typical cases where genomic data may be naturally represented as a ranked list of genes (e.g. by level of expression or of differential expression. GOrilla employs a flexible threshold statistical approach to discover GO terms that are significantly enriched at the top of a ranked gene list. Building on a complete theoretical characterization of the underlying distribution, called mHG, GOrilla computes an exact p-value for the observed enrichment, taking threshold multiple testing into account without the need for simulations. This enables rigorous statistical analysis of thousand of genes and thousands of GO terms in order of seconds. The output of the enrichment analysis is visualized as a hierarchical structure, providing a clear view of the relations between enriched GO terms. Conclusion GOrilla is an efficient GO analysis tool with unique features that make a useful addition to the existing repertoire of GO enrichment tools. GOrilla's unique features and advantages over other threshold free enrichment tools include rigorous statistics, fast running time and an effective graphical representation. GOrilla is publicly available at: http://cbl-gorilla.cs.technion.ac.il

  4. Second Screen Interactions for Automatically Web-Enriched Broadcast Video

    NARCIS (Netherlands)

    Pérez Romero, L.; Traub, M.C.; Leyssen, M.H.R.; Hardman, L.

    2013-01-01

    Including hypermedia in broadcast video combines content formatted for a lean-forward medium (the Web) with a lean-back one (TV) to form a hybrid medium. We identify four challenges for interacting with and experiencing this new medium. We discuss the role a second screen may play in addressing

  5. MGMT enrichment and second gene co-expression in hematopoietic progenitor cells using separate or dual-gene lentiviral vectors.

    Science.gov (United States)

    Roth, Justin C; Alberti, Michael O; Ismail, Mourad; Lingas, Karen T; Reese, Jane S; Gerson, Stanton L

    2015-01-22

    The DNA repair gene O(6)-methylguanine-DNA methyltransferase (MGMT) allows efficient in vivo enrichment of transduced hematopoietic stem cells (HSC). Thus, linking this selection strategy to therapeutic gene expression offers the potential to reconstitute diseased hematopoietic tissue with gene-corrected cells. However, different dual-gene expression vector strategies are limited by poor expression of one or both transgenes. To evaluate different co-expression strategies in the context of MGMT-mediated HSC enrichment, we compared selection and expression efficacies in cells cotransduced with separate single-gene MGMT and GFP lentivectors to those obtained with dual-gene vectors employing either encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES) or foot and mouth disease virus (FMDV) 2A elements for co-expression strategies. Each strategy was evaluated in vitro and in vivo using equivalent multiplicities of infection (MOI) to transduce 5-fluorouracil (5-FU) or Lin(-)Sca-1(+)c-kit(+) (LSK)-enriched murine bone marrow cells (BMCs). The highest dual-gene expression (MGMT(+)GFP(+)) percentages were obtained with the FMDV-2A dual-gene vector, but half of the resulting gene products existed as fusion proteins. Following selection, dual-gene expression percentages in single-gene vector cotransduced and dual-gene vector transduced populations were similar. Equivalent MGMT expression levels were obtained with each strategy, but GFP expression levels derived from the IRES dual-gene vector were significantly lower. In mice, vector-insertion averages were similar among cells enriched after dual-gene vectors and those cotransduced with single-gene vectors. These data demonstrate the limitations and advantages of each strategy in the context of MGMT-mediated selection, and may provide insights into vector design with respect to a particular therapeutic gene or hematologic defect.

  6. Prediction of Effective Drug Combinations by Chemical Interaction, Protein Interaction and Target Enrichment of KEGG Pathways

    Directory of Open Access Journals (Sweden)

    Lei Chen

    2013-01-01

    Full Text Available Drug combinatorial therapy could be more effective in treating some complex diseases than single agents due to better efficacy and reduced side effects. Although some drug combinations are being used, their underlying molecular mechanisms are still poorly understood. Therefore, it is of great interest to deduce a novel drug combination by their molecular mechanisms in a robust and rigorous way. This paper attempts to predict effective drug combinations by a combined consideration of: (1 chemical interaction between drugs, (2 protein interactions between drugs’ targets, and (3 target enrichment of KEGG pathways. A benchmark dataset was constructed, consisting of 121 confirmed effective combinations and 605 random combinations. Each drug combination was represented by 465 features derived from the aforementioned three properties. Some feature selection techniques, including Minimum Redundancy Maximum Relevance and Incremental Feature Selection, were adopted to extract the key features. Random forest model was built with its performance evaluated by 5-fold cross-validation. As a result, 55 key features providing the best prediction result were selected. These important features may help to gain insights into the mechanisms of drug combinations, and the proposed prediction model could become a useful tool for screening possible drug combinations.

  7. Gene set of nuclear-encoded mitochondrial regulators is enriched for common inherited variation in obesity.

    Directory of Open Access Journals (Sweden)

    Nadja Knoll

    Full Text Available There are hints of an altered mitochondrial function in obesity. Nuclear-encoded genes are relevant for mitochondrial function (3 gene sets of known relevant pathways: (1 16 nuclear regulators of mitochondrial genes, (2 91 genes for oxidative phosphorylation and (3 966 nuclear-encoded mitochondrial genes. Gene set enrichment analysis (GSEA showed no association with type 2 diabetes mellitus in these gene sets. Here we performed a GSEA for the same gene sets for obesity. Genome wide association study (GWAS data from a case-control approach on 453 extremely obese children and adolescents and 435 lean adult controls were used for GSEA. For independent confirmation, we analyzed 705 obesity GWAS trios (extremely obese child and both biological parents and a population-based GWAS sample (KORA F4, n = 1,743. A meta-analysis was performed on all three samples. In each sample, the distribution of significance levels between the respective gene set and those of all genes was compared using the leading-edge-fraction-comparison test (cut-offs between the 50(th and 95(th percentile of the set of all gene-wise corrected p-values as implemented in the MAGENTA software. In the case-control sample, significant enrichment of associations with obesity was observed above the 50(th percentile for the set of the 16 nuclear regulators of mitochondrial genes (p(GSEA,50 = 0.0103. This finding was not confirmed in the trios (p(GSEA,50 = 0.5991, but in KORA (p(GSEA,50 = 0.0398. The meta-analysis again indicated a trend for enrichment (p(MAGENTA,50 = 0.1052, p(MAGENTA,75 = 0.0251. The GSEA revealed that weak association signals for obesity might be enriched in the gene set of 16 nuclear regulators of mitochondrial genes.

  8. Gene set of nuclear-encoded mitochondrial regulators is enriched for common inherited variation in obesity.

    Science.gov (United States)

    Knoll, Nadja; Jarick, Ivonne; Volckmar, Anna-Lena; Klingenspor, Martin; Illig, Thomas; Grallert, Harald; Gieger, Christian; Wichmann, Heinz-Erich; Peters, Annette; Hebebrand, Johannes; Scherag, André; Hinney, Anke

    2013-01-01

    There are hints of an altered mitochondrial function in obesity. Nuclear-encoded genes are relevant for mitochondrial function (3 gene sets of known relevant pathways: (1) 16 nuclear regulators of mitochondrial genes, (2) 91 genes for oxidative phosphorylation and (3) 966 nuclear-encoded mitochondrial genes). Gene set enrichment analysis (GSEA) showed no association with type 2 diabetes mellitus in these gene sets. Here we performed a GSEA for the same gene sets for obesity. Genome wide association study (GWAS) data from a case-control approach on 453 extremely obese children and adolescents and 435 lean adult controls were used for GSEA. For independent confirmation, we analyzed 705 obesity GWAS trios (extremely obese child and both biological parents) and a population-based GWAS sample (KORA F4, n = 1,743). A meta-analysis was performed on all three samples. In each sample, the distribution of significance levels between the respective gene set and those of all genes was compared using the leading-edge-fraction-comparison test (cut-offs between the 50(th) and 95(th) percentile of the set of all gene-wise corrected p-values) as implemented in the MAGENTA software. In the case-control sample, significant enrichment of associations with obesity was observed above the 50(th) percentile for the set of the 16 nuclear regulators of mitochondrial genes (p(GSEA,50) = 0.0103). This finding was not confirmed in the trios (p(GSEA,50) = 0.5991), but in KORA (p(GSEA,50) = 0.0398). The meta-analysis again indicated a trend for enrichment (p(MAGENTA,50) = 0.1052, p(MAGENTA,75) = 0.0251). The GSEA revealed that weak association signals for obesity might be enriched in the gene set of 16 nuclear regulators of mitochondrial genes.

  9. Pathways targeted by antidiabetes drugs are enriched for multiple genes associated with type 2 diabetes risk.

    Science.gov (United States)

    Segrè, Ayellet V; Wei, Nancy; Altshuler, David; Florez, Jose C

    2015-04-01

    Genome-wide association studies (GWAS) have uncovered >65 common variants associated with type 2 diabetes (T2D); however, their relevance for drug development is not yet clear. Of note, the first two T2D-associated loci (PPARG and KCNJ11/ABCC8) encode known targets of antidiabetes medications. We therefore tested whether other genes/pathways targeted by antidiabetes drugs are associated with T2D. We compiled a list of 102 genes in pathways targeted by marketed antidiabetic medications and applied Gene Set Enrichment Analysis (MAGENTA [Meta-Analysis Gene-set Enrichment of variaNT Associations]) to this gene set, using available GWAS meta-analyses for T2D and seven quantitative glycemic traits. We detected a strong enrichment of drug target genes associated with T2D (P = 2 × 10(-5); 14 potential new associations), primarily driven by insulin and thiazolidinedione (TZD) targets, which was replicated in an independent meta-analysis (Metabochip). The glycemic traits yielded no enrichment. The T2D enrichment signal was largely due to multiple genes of modest effects (P = 4 × 10(-4), after removing known loci), highlighting new associations for follow-up (ACSL1, NFKB1, SLC2A2, incretin targets). Furthermore, we found that TZD targets were enriched for LDL cholesterol associations, illustrating the utility of this approach in identifying potential side effects. These results highlight the potential biomedical relevance of genes revealed by GWAS and may provide new avenues for tailored therapy and T2D treatment design. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  10. A novel hypothesis-unbiased method for Gene Ontology enrichment based on transcriptome data.

    Science.gov (United States)

    Fruzangohar, Mario; Ebrahimie, Esmaeil; Adelson, David L

    2017-01-01

    Gene Ontology (GO) classification of statistically significantly differentially expressed genes is commonly used to interpret transcriptomics data as a part of functional genomic analysis. In this approach, all significantly expressed genes contribute equally to the final GO classification regardless of their actual expression levels. Gene expression levels can significantly affect protein production and hence should be reflected in GO term enrichment. Genes with low expression levels can also participate in GO term enrichment through cumulative effects. In this report, we have introduced a new GO enrichment method that is suitable for multiple samples and time series experiments that uses a statistical outlier test to detect GO categories with special patterns of variation that can potentially identify candidate biological mechanisms. To demonstrate the value of our approach, we have performed two case studies. Whole transcriptome expression profiles of Salmonella enteritidis and Alzheimer's disease (AD) were analysed in order to determine GO term enrichment across the entire transcriptome instead of a subset of differentially expressed genes used in traditional GO analysis. Our result highlights the key role of inflammation related functional groups in AD pathology as granulocyte colony-stimulating factor receptor binding, neuromedin U binding, and interleukin were remarkably upregulated in AD brain when all using all of the gene expression data in the transcriptome. Mitochondrial components and the molybdopterin synthase complex were identified as potential key cellular components involved in AD pathology.

  11. A novel hypothesis-unbiased method for Gene Ontology enrichment based on transcriptome data

    Science.gov (United States)

    Fruzangohar, Mario; Ebrahimie, Esmaeil; Adelson, David L.

    2017-01-01

    Gene Ontology (GO) classification of statistically significantly differentially expressed genes is commonly used to interpret transcriptomics data as a part of functional genomic analysis. In this approach, all significantly expressed genes contribute equally to the final GO classification regardless of their actual expression levels. Gene expression levels can significantly affect protein production and hence should be reflected in GO term enrichment. Genes with low expression levels can also participate in GO term enrichment through cumulative effects. In this report, we have introduced a new GO enrichment method that is suitable for multiple samples and time series experiments that uses a statistical outlier test to detect GO categories with special patterns of variation that can potentially identify candidate biological mechanisms. To demonstrate the value of our approach, we have performed two case studies. Whole transcriptome expression profiles of Salmonella enteritidis and Alzheimer’s disease (AD) were analysed in order to determine GO term enrichment across the entire transcriptome instead of a subset of differentially expressed genes used in traditional GO analysis. Our result highlights the key role of inflammation related functional groups in AD pathology as granulocyte colony-stimulating factor receptor binding, neuromedin U binding, and interleukin were remarkably upregulated in AD brain when all using all of the gene expression data in the transcriptome. Mitochondrial components and the molybdopterin synthase complex were identified as potential key cellular components involved in AD pathology. PMID:28199395

  12. Community Structure in Methanogenic Enrichments Provides Insight into Syntrophic Interactions in Hydrocarbon-Impacted Environments

    DEFF Research Database (Denmark)

    Fowler, Jane; Toth, Courtney R. A.; Gieg, Lisa M.

    2016-01-01

    -impacted environments. In this study, a methanogenic crude oil-degrading enrichment culture was successively transferred onto the single long chain fatty acids palmitate or stearate followed by their parent alkanes, hexadecane or octadecane, respectively, in order to assess the impact of different substrates......, indicate that many syntrophic interactions are stable over time despite changes in substrate pressure, and show that syntrophic interactions amongst bacteria themselves are as important as interactions between bacteria and methanogens in complex methanogenic communities....

  13. Gene set enrichment analysis for non-monotone association and multiple experimental categories

    OpenAIRE

    Heinloth Alexandra N; Irwin Richard D; Dai Shuangshuang; Lin Rongheng; Boorman Gary A; Li Leping

    2008-01-01

    Abstract Background Recently, microarray data analyses using functional pathway information, e.g., gene set enrichment analysis (GSEA) and significance analysis of function and expression (SAFE), have gained recognition as a way to identify biological pathways/processes associated with a phenotypic endpoint. In these analyses, a local statistic is used to assess the association between the expression level of a gene and the value of a phenotypic endpoint. Then these gene-specific local statis...

  14. Rapid Glycopeptide Enrichment Using Cellulose Hydrophilic Interaction/Reversed-Phase StageTips

    Science.gov (United States)

    Ohta, Yuki; Kameda, Kotaro; Matsumoto, Mei; Kawasaki, Nana

    2017-01-01

    Because the ionization efficiency for glycopeptides is lower than that of peptides in electrospray ionization, it is frequently necessary to enrich them prior to their analysis using liquid chromatography coupled with tandem mass spectrometry. Although some methods for selectively enriching glycopeptides (e.g., lectin, agarose, and cellulose methods) have been reported, they are time-consuming (procedures that require several hours) and may not be applicable to submicrogram-sized samples. Here, we report on a rapid, simple method for enriching glycopeptides in small sample amounts using cellulose hydrophilic interaction (cellulose HILIC)/reversed-phase (RP) stop-and-go extraction tips (StageTips). Using the cellulose HILIC/RP StageTips, glycopeptide-selective enrichment can be achieved at the nanogram level within a few minutes. PMID:28852604

  15. Digital gene expression profiling of flax (Linum usitatissimum L.) stem peel identifies genes enriched in fiber-bearing phloem tissue.

    Science.gov (United States)

    Guo, Yuan; Qiu, Caisheng; Long, Songhua; Chen, Ping; Hao, Dongmei; Preisner, Marta; Wang, Hui; Wang, Yufu

    2017-08-30

    To better understand the molecular mechanisms and gene expression characteristics associated with development of bast fiber cell within flax stem phloem, the gene expression profiling of flax stem peels and leaves were screened, using Illumina's Digital Gene Expression (DGE) analysis. Four DGE libraries (2 for stem peel and 2 for leaf), ranging from 6.7 to 9.2 million clean reads were obtained, which produced 7.0 million and 6.8 million mapped reads for flax stem peel and leave, respectively. By differential gene expression analysis, a total of 975 genes, of which 708 (73%) genes have protein-coding annotation, were identified as phloem enriched genes putatively involved in the processes of polysaccharide and cell wall metabolism. Differential expression genes (DEGs) was validated using quantitative RT-PCR, the expression pattern of all nine genes determined by qRT-PCR fitted in well with that obtained by sequencing analysis. Cluster and Gene Ontology (GO) analysis revealed that a large number of genes related to metabolic process, catalytic activity and binding category were expressed predominantly in the stem peels. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the phloem enriched genes suggested approximately 111 biological pathways. The large number of genes and pathways produced from DGE sequencing will expand our understanding of the complex molecular and cellular events in flax bast fiber development and provide a foundation for future studies on fiber development in other bast fiber crops. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Human interaction as environmental enrichment for pair-housed wolves and wolf-dog crosses.

    Science.gov (United States)

    Mehrkam, Lindsay R; Verdi, Nicolle T; Wynne, Clive D L

    2014-01-01

    Private nonhuman animal sanctuaries are often financially limited in their ability to implement traditional environmental enrichment strategies. One possible solution may be to provide socialized animals with human interaction sessions. However, the merit of human interaction as enrichment has received little empirical attention to date. The present study aimed to evaluate whether human interaction could be enriching for socialized, pair-housed wolves and wolf-dog crosses at a private sanctuary. Observations of each subject were conducted in a reversal design to measure species-typical affiliation, activity levels, and aberrant behaviors when caretakers were both present and absent. The results demonstrate significantly higher levels of conspecific-directed affiliation and activity levels and reduced aberrant behavior when human interaction was available. Social play also increased when caregivers were present, supporting the hypothesis that play among conspecifics may be maintained by positive changes in an animal's environment. The potential for human interaction to be established as a scientifically validated, cost-effective enrichment strategy is supported by these findings.

  17. Transcriptome outlier analysis implicates schizophrenia susceptibility genes and enriches putatively functional rare genetic variants.

    Science.gov (United States)

    Duan, Jubao; Sanders, Alan R; Moy, Winton; Drigalenko, Eugene I; Brown, Eric C; Freda, Jessica; Leites, Catherine; Göring, Harald H H; Gejman, Pablo V

    2015-08-15

    We searched a gene expression dataset comprised of 634 schizophrenia (SZ) cases and 713 controls for expression outliers (i.e., extreme tails of the distribution of transcript expression values) with SZ cases overrepresented compared with controls. These outlier genes were enriched for brain expression and for genes known to be associated with neurodevelopmental disorders. SZ cases showed higher outlier burden (i.e., total outlier events per subject) than controls for genes within copy number variants (CNVs) associated with SZ or neurodevelopmental disorders. Outlier genes were enriched for CNVs and for rare putative regulatory variants, but this only explained a small proportion of the outlier subjects, highlighting the underlying presence of additional genetic and potentially, epigenetic mechanisms.

  18. Duplicability of self-interacting human genes.

    LENUS (Irish Health Repository)

    Pérez-Bercoff, Asa

    2010-01-01

    BACKGROUND: There is increasing interest in the evolution of protein-protein interactions because this should ultimately be informative of the patterns of evolution of new protein functions within the cell. One model proposes that the evolution of new protein-protein interactions and protein complexes proceeds through the duplication of self-interacting genes. This model is supported by data from yeast. We examined the relationship between gene duplication and self-interaction in the human genome. RESULTS: We investigated the patterns of self-interaction and duplication among 34808 interactions encoded by 8881 human genes, and show that self-interacting proteins are encoded by genes with higher duplicability than genes whose proteins lack this type of interaction. We show that this result is robust against the system used to define duplicate genes. Finally we compared the presence of self-interactions amongst proteins whose genes have duplicated either through whole-genome duplication (WGD) or small-scale duplication (SSD), and show that the former tend to have more interactions in general. After controlling for age differences between the two sets of duplicates this result can be explained by the time since the gene duplication. CONCLUSIONS: Genes encoding self-interacting proteins tend to have higher duplicability than proteins lacking self-interactions. Moreover these duplicate genes have more often arisen through whole-genome rather than small-scale duplication. Finally, self-interacting WGD genes tend to have more interaction partners in general in the PIN, which can be explained by their overall greater age. This work adds to our growing knowledge of the importance of contextual factors in gene duplicability.

  19. The mouse X chromosome is enriched for multicopy testis genes showing postmeiotic expression.

    Science.gov (United States)

    Mueller, Jacob L; Mahadevaiah, Shantha K; Park, Peter J; Warburton, Peter E; Page, David C; Turner, James M A

    2008-06-01

    According to the prevailing view, mammalian X chromosomes are enriched in spermatogenesis genes expressed before meiosis and deficient in spermatogenesis genes expressed after meiosis. The paucity of postmeiotic genes on the X chromosome has been interpreted as a consequence of meiotic sex chromosome inactivation (MSCI)--the complete silencing of genes on the XY bivalent at meiotic prophase. Recent studies have concluded that MSCI-initiated silencing persists beyond meiosis and that most genes on the X chromosome remain repressed in round spermatids. Here, we report that 33 multicopy gene families, representing approximately 273 mouse X-linked genes, are expressed in the testis and that this expression is predominantly in postmeiotic cells. RNA FISH and microarray analysis show that the maintenance of X chromosome postmeiotic repression is incomplete. Furthermore, X-linked multicopy genes exhibit a similar degree of expression as autosomal genes. Thus, not only is the mouse X chromosome enriched for spermatogenesis genes functioning before meiosis, but in addition, approximately 18% of mouse X-linked genes are expressed in postmeiotic cells.

  20. Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain

    Science.gov (United States)

    Krienen, Fenna M.; Yeo, B. T. Thomas; Ge, Tian; Buckner, Randy L.; Sherwood, Chet C.

    2016-01-01

    The human brain is patterned with disproportionately large, distributed cerebral networks that connect multiple association zones in the frontal, temporal, and parietal lobes. The expansion of the cortical surface, along with the emergence of long-range connectivity networks, may be reflected in changes to the underlying molecular architecture. Using the Allen Institute’s human brain transcriptional atlas, we demonstrate that genes particularly enriched in supragranular layers of the human cerebral cortex relative to mouse distinguish major cortical classes. The topography of transcriptional expression reflects large-scale brain network organization consistent with estimates from functional connectivity MRI and anatomical tracing in nonhuman primates. Microarray expression data for genes preferentially expressed in human upper layers (II/III), but enriched only in lower layers (V/VI) of mouse, were cross-correlated to identify molecular profiles across the cerebral cortex of postmortem human brains (n = 6). Unimodal sensory and motor zones have similar molecular profiles, despite being distributed across the cortical mantle. Sensory/motor profiles were anticorrelated with paralimbic and certain distributed association network profiles. Tests of alternative gene sets did not consistently distinguish sensory and motor regions from paralimbic and association regions: (i) genes enriched in supragranular layers in both humans and mice, (ii) genes cortically enriched in humans relative to nonhuman primates, (iii) genes related to connectivity in rodents, (iv) genes associated with human and mouse connectivity, and (v) 1,454 gene sets curated from known gene ontologies. Molecular innovations of upper cortical layers may be an important component in the evolution of long-range corticocortical projections. PMID:26739559

  1. Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain.

    Science.gov (United States)

    Krienen, Fenna M; Yeo, B T Thomas; Ge, Tian; Buckner, Randy L; Sherwood, Chet C

    2016-01-26

    The human brain is patterned with disproportionately large, distributed cerebral networks that connect multiple association zones in the frontal, temporal, and parietal lobes. The expansion of the cortical surface, along with the emergence of long-range connectivity networks, may be reflected in changes to the underlying molecular architecture. Using the Allen Institute's human brain transcriptional atlas, we demonstrate that genes particularly enriched in supragranular layers of the human cerebral cortex relative to mouse distinguish major cortical classes. The topography of transcriptional expression reflects large-scale brain network organization consistent with estimates from functional connectivity MRI and anatomical tracing in nonhuman primates. Microarray expression data for genes preferentially expressed in human upper layers (II/III), but enriched only in lower layers (V/VI) of mouse, were cross-correlated to identify molecular profiles across the cerebral cortex of postmortem human brains (n = 6). Unimodal sensory and motor zones have similar molecular profiles, despite being distributed across the cortical mantle. Sensory/motor profiles were anticorrelated with paralimbic and certain distributed association network profiles. Tests of alternative gene sets did not consistently distinguish sensory and motor regions from paralimbic and association regions: (i) genes enriched in supragranular layers in both humans and mice, (ii) genes cortically enriched in humans relative to nonhuman primates, (iii) genes related to connectivity in rodents, (iv) genes associated with human and mouse connectivity, and (v) 1,454 gene sets curated from known gene ontologies. Molecular innovations of upper cortical layers may be an important component in the evolution of long-range corticocortical projections.

  2. The Core Mouse Response to Infection by Neospora Caninum Defined by Gene Set Enrichment Analyses

    Science.gov (United States)

    Ellis, John; Goodswen, Stephen; Kennedy, Paul J; Bush, Stephen

    2012-01-01

    In this study, the BALB/c and Qs mouse responses to infection by the parasite Neospora caninum were investigated in order to identify host response mechanisms. Investigation was done using gene set (enrichment) analyses of microarray data. GSEA, MANOVA, Romer, subGSE and SAM-GS were used to study the contrasts Neospora strain type, Mouse type (BALB/c and Qs) and time post infection (6 hours post infection and 10 days post infection). The analyses show that the major signal in the core mouse response to infection is from time post infection and can be defined by gene ontology terms Protein Kinase Activity, Cell Proliferation and Transcription Initiation. Several terms linked to signaling, morphogenesis, response and fat metabolism were also identified. At 10 days post infection, genes associated with fatty acid metabolism were identified as up regulated in expression. The value of gene set (enrichment) analyses in the analysis of microarray data is discussed. PMID:23012496

  3. Enrichment of putative PAX8 target genes at serous epithelial ovarian cancer susceptibility loci

    DEFF Research Database (Denmark)

    Kar, Siddhartha P; Adler, Emily; Tyrer, Jonathan

    2017-01-01

    BACKGROUND: Genome-wide association studies (GWAS) have identified 18 loci associated with serous ovarian cancer (SOC) susceptibility but the biological mechanisms driving these findings remain poorly characterised. Germline cancer risk loci may be enriched for target genes of transcription facto...

  4. Gowinda: unbiased analysis of gene set enrichment for genome-wide association studies.

    Science.gov (United States)

    Kofler, Robert; Schlötterer, Christian

    2012-08-01

    An analysis of gene set [e.g. Gene Ontology (GO)] enrichment assumes that all genes are sampled independently from each other with the same probability. These assumptions are violated in genome-wide association (GWA) studies since (i) longer genes typically have more single-nucleotide polymorphisms resulting in a higher probability of being sampled and (ii) overlapping genes are sampled in clusters. Herein, we introduce Gowinda, a software specifically designed to test for enrichment of gene sets in GWA studies. We show that GO tests on GWA data could result in a substantial number of false-positive GO terms. Permutation tests implemented in Gowinda eliminate these biases, but maintain sufficient power to detect enrichment of GO terms. Since sufficient resolution for large datasets requires millions of permutations, we use multi-threading to keep computation times reasonable. Gowinda is implemented in Java (v1.6) and freely available on http://code.google.com/p/gowinda/ christian.schloetterer@vetmeduni.ac.at Manual: http://code.google.com/p/gowinda/wiki/Manual. Test data and tutorial: http://code.google.com/p/gowinda/wiki/Tutorial. http://code.google.com/p/gowinda/wiki/VALIDATION.

  5. Gene-Based Analysis of Regionally Enriched Cortical Genes in GWAS Data Sets of Cognitive Traits and Psychiatric Disorders

    DEFF Research Database (Denmark)

    Ersland, Kari M; Christoforou, Andrea; Stansberg, Christine;

    2012-01-01

    the regionally enriched cortical genes to mine a genome-wide association study (GWAS) of the Norwegian Cognitive NeuroGenetics (NCNG) sample of healthy adults for association to nine psychometric tests measures. In addition, we explored GWAS data sets for the serious psychiatric disorders schizophrenia (SCZ) (n......Despite its estimated high heritability, the genetic architecture leading to differences in cognitive performance remains poorly understood. Different cortical regions play important roles in normal cognitive functioning and impairment. Recently, we reported on sets of regionally enriched genes...... in three different cortical areas (frontomedial, temporal and occipital cortices) of the adult rat brain. It has been suggested that genes preferentially, or specifically, expressed in one region or organ reflect functional specialisation. Employing a gene-based approach to the analysis, we used...

  6. Genetic network and gene set enrichment analysis to identify biomarkers related to cigarette smoking and lung cancer.

    Science.gov (United States)

    Fang, Xiaocong; Netzer, Michael; Baumgartner, Christian; Bai, Chunxue; Wang, Xiangdong

    2013-02-01

    Cigarette smoking is the most demonstrated risk factor for the development of lung cancer, while the related genetic mechanisms are still unclear. The preprocessed microarray expression dataset was downloaded from Gene Expression Omnibus database. Samples were classified according to the disease state, stage and smoking state. A new computational strategy was applied for the identification and biological interpretation of new candidate genes in lung cancer and smoking by coupling a network-based approach with gene set enrichment analysis. Network analysis was performed by pair-wise comparison according to the disease states (tumor or normal), smoking states (current smokers or nonsmokers or former smokers), or the disease stage (stages I-IV). The most activated metabolic pathways were identified by gene set enrichment analysis. Panels of top ranked gene candidates in smoking or cancer development were identified, including genes involved in cell proliferation and drug metabolism like cytochrome P450 and WW domain containing transcription regulator 1. Semaphorin 5A and protein phosphatase 1F are the common genes represented as major hubs in both the smoking and cancer related network. Six pathways, e.g. cell cycle, DNA replication, RNA transport, protein processing in endoplasmic reticulum, vascular smooth muscle contraction and endocytosis were commonly involved in smoking and lung cancer when comparing the top ten selected pathways. New approach of bioinformatics for biomarker identification and validation can probe into deep genetic relationships between cigarette smoking and lung cancer. Our studies indicate that disease-specific network biomarkers, interaction between genes/proteins, or cross-talking of pathways provide more specific values for the development of precision therapies for lung. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Testing for gene-gene interaction with AMMI models.

    Science.gov (United States)

    Barhdadi, Amina; Dubé, Marie-Pierre

    2010-01-01

    Studies have shown that many common diseases are influenced by multiple genes and their interactions. There is currently a strong interest in testing for association between combinations of these genes and disease, in particular because genes that affect the risk of disease only in the presence of another genetic variant may not be detected in marginal analysis. In this paper we propose the use of additive main effect and multiplicative interaction (AMMI) models to detect and to quantify gene-gene interaction effects for a quantitative trait. The objective of the present research is to demonstrate the practical advantages of these models to describe complex interaction between two unlinked loci. Although gene-gene interactions have often been defined as a deviance from additive genetic effects, the residual term has generally not been appropriately treated. The AMMI models allow for the analysis of a two way factorial data structure and combine the analysis of variance of the two main genotype effects with a principal component analysis of the residual multiplicative interaction. The AMMI models for gene-gene interaction presented here allow for the testing of non additivity between the two loci, and also describe how their interaction structure fits the existing non-additivity. Moreover, these models can be used to identify the specific two genotypes combinations that contribute to the significant gene-gene interaction. We describe the use of the biplot to display the structure of the interaction and evaluate the performance of the AMMI and the special cases of the AMMI previously described by Tukey and Mandel with simulated data sets. Our simulated study showed that the AMMI model is as powerful as general linear models when the interaction is not modeled in the presence of marginal effects. However, in the presence of pure epitasis, i.e. in the absence of marginal effects, the AMMI method was not found to be superior to other tested regression methods.

  8. Identification of fever and vaccine-associated gene interaction networks using ontology-based literature mining.

    Science.gov (United States)

    Hur, Junguk; Ozgür, Arzucan; Xiang, Zuoshuang; He, Yongqun

    2012-12-20

    Fever is one of the most common adverse events of vaccines. The detailed mechanisms of fever and vaccine-associated gene interaction networks are not fully understood. In the present study, we employed a genome-wide, Centrality and Ontology-based Network Discovery using Literature data (CONDL) approach to analyse the genes and gene interaction networks associated with fever or vaccine-related fever responses. Over 170,000 fever-related articles from PubMed abstracts and titles were retrieved and analysed at the sentence level using natural language processing techniques to identify genes and vaccines (including 186 Vaccine Ontology terms) as well as their interactions. This resulted in a generic fever network consisting of 403 genes and 577 gene interactions. A vaccine-specific fever sub-network consisting of 29 genes and 28 gene interactions was extracted from articles that are related to both fever and vaccines. In addition, gene-vaccine interactions were identified. Vaccines (including 4 specific vaccine names) were found to directly interact with 26 genes. Gene set enrichment analysis was performed using the genes in the generated interaction networks. Moreover, the genes in these networks were prioritized using network centrality metrics. Making scientific discoveries and generating new hypotheses were possible by using network centrality and gene set enrichment analyses. For example, our study found that the genes in the generic fever network were more enriched in cell death and responses to wounding, and the vaccine sub-network had more gene enrichment in leukocyte activation and phosphorylation regulation. The most central genes in the vaccine-specific fever network are predicted to be highly relevant to vaccine-induced fever, whereas genes that are central only in the generic fever network are likely to be highly relevant to generic fever responses. Interestingly, no Toll-like receptors (TLRs) were found in the gene-vaccine interaction network. Since

  9. Differential Gene Expression Profiling of Enriched Human Spermatogonia after Short- and Long-Term Culture

    Directory of Open Access Journals (Sweden)

    Sabine Conrad

    2014-01-01

    Full Text Available This study aimed to provide a molecular signature for enriched adult human stem/progenitor spermatogonia during short-term (<2 weeks and long-term culture (up to more than 14 months in comparison to human testicular fibroblasts and human embryonic stem cells. Human spermatogonia were isolated by CD49f magnetic activated cell sorting and collagen−/laminin+ matrix binding from primary testis cultures obtained from ten adult men. For transcriptomic analysis, single spermatogonia-like cells were collected based on their morphology and dimensions using a micromanipulation system from the enriched germ cell cultures. Immunocytochemical, RT-PCR and microarray analyses revealed that the analyzed populations of cells were distinct at the molecular level. The germ- and pluripotency-associated genes and genes of differentiation/spermatogenesis pathway were highly expressed in enriched short-term cultured spermatogonia. After long-term culture, a proportion of cells retained and aggravated the “spermatogonial” gene expression profile with the expression of germ and pluripotency-associated genes, while in the majority of long-term cultured cells this molecular profile, typical for the differentiation pathway, was reduced and more genes related to the extracellular matrix production and attachment were expressed. The approach we provide here to study the molecular status of in vitro cultured spermatogonia may be important to optimize the culture conditions and to evaluate the germ cell plasticity in the future.

  10. Differential gene expression profiling of enriched human spermatogonia after short- and long-term culture.

    Science.gov (United States)

    Conrad, Sabine; Azizi, Hossein; Hatami, Maryam; Kubista, Mikael; Bonin, Michael; Hennenlotter, Jörg; Renninger, Markus; Skutella, Thomas

    2014-01-01

    This study aimed to provide a molecular signature for enriched adult human stem/progenitor spermatogonia during short-term (differentiation/spermatogenesis pathway were highly expressed in enriched short-term cultured spermatogonia. After long-term culture, a proportion of cells retained and aggravated the "spermatogonial" gene expression profile with the expression of germ and pluripotency-associated genes, while in the majority of long-term cultured cells this molecular profile, typical for the differentiation pathway, was reduced and more genes related to the extracellular matrix production and attachment were expressed. The approach we provide here to study the molecular status of in vitro cultured spermatogonia may be important to optimize the culture conditions and to evaluate the germ cell plasticity in the future.

  11. The Schizophrenia-Associated BRD1 Gene Regulates Behavior, Neurotransmission, and Expression of Schizophrenia Risk Enriched Gene Sets in Mice

    DEFF Research Database (Denmark)

    Qvist, Per; Christensen, Jane Hvarregaard; Vardya, Irina;

    2016-01-01

    BACKGROUND: The schizophrenia-associated BRD1 gene encodes a transcriptional regulator whose comprehensive chromatin interactome is enriched with schizophrenia risk genes. However, the biology underlying the disease association of BRD1 remains speculative. METHODS: This study assessed......-inhibition imbalances involving loss of parvalbumin immunoreactive interneurons. RNA-sequencing analyses of cortical and striatal micropunches from Brd1(+/-) and wild-type mice revealed differential expression of genes enriched for schizophrenia risk, including several schizophrenia genome-wide association study risk...... the transcriptional drive of a schizophrenia-associated BRD1 risk variant in vitro. Accordingly, to examine the effects of reduced Brd1 expression, we generated a genetically modified Brd1(+/-) mouse and subjected it to behavioral, electrophysiological, molecular, and integrative genomic analyses with focus...

  12. Clusters of Antibiotic Resistance Genes Enriched Together Stay Together in Swine Agriculture.

    Science.gov (United States)

    Johnson, Timothy A; Stedtfeld, Robert D; Wang, Qiong; Cole, James R; Hashsham, Syed A; Looft, Torey; Zhu, Yong-Guan; Tiedje, James M

    2016-04-12

    Antibiotic resistance is a worldwide health risk, but the influence of animal agriculture on the genetic context and enrichment of individual antibiotic resistance alleles remains unclear. Using quantitative PCR followed by amplicon sequencing, we quantified and sequenced 44 genes related to antibiotic resistance, mobile genetic elements, and bacterial phylogeny in microbiomes from U.S. laboratory swine and from swine farms from three Chinese regions. We identified highly abundant resistance clusters: groups of resistance and mobile genetic element alleles that cooccur. For example, the abundance of genes conferring resistance to six classes of antibiotics together with class 1 integrase and the abundance of IS6100-type transposons in three Chinese regions are directly correlated. These resistance cluster genes likely colocalize in microbial genomes in the farms. Resistance cluster alleles were dramatically enriched (up to 1 to 10% as abundant as 16S rRNA) and indicate that multidrug-resistant bacteria are likely the norm rather than an exception in these communities. This enrichment largely occurred independently of phylogenetic composition; thus, resistance clusters are likely present in many bacterial taxa. Furthermore, resistance clusters contain resistance genes that confer resistance to antibiotics independently of their particular use on the farms. Selection for these clusters is likely due to the use of only a subset of the broad range of chemicals to which the clusters confer resistance. The scale of animal agriculture and its wastes, the enrichment and horizontal gene transfer potential of the clusters, and the vicinity of large human populations suggest that managing this resistance reservoir is important for minimizing human risk. Agricultural antibiotic use results in clusters of cooccurring resistance genes that together confer resistance to multiple antibiotics. The use of a single antibiotic could select for an entire suite of resistance genes if

  13. Phytosterols and phytosterolemia: gene-diet interactions.

    Science.gov (United States)

    Izar, Maria C; Tegani, Daniela M; Kasmas, Soraia H; Fonseca, Francisco A

    2011-02-01

    Phytosterol intake is recommended as an adjunctive therapy for hypercholesterolemia, and plant sterols/stanols can reduce cholesterol absorption at the intestinal lumen through the Niemann-Pick C1 Like 1 (NPC1L1) transporter pathway by competitive solubilization in mixed micelles. Phytosterol absorption is of less magnitude than cholesterol and is preferably secreted in the intestinal lumen by ABCG5/G8 transporters. Therefore, plasma levels of plant sterols/stanols are negligible compared with cholesterol, under an ordinary diet. The mechanisms of cholesterol and plant sterols absorption and the whole-body pool of sterols are discussed in this chapter. There is controversy about treatment with statins inducing further increase in plasma non-cholesterol sterols raising concerns about the safety of supplementation of plant sterols to such drugs. In addition, increase in plant sterols has also been reported upon consumption of plant sterol-enriched foods, regardless of other treatments. Rare mutations on ABCG5/G8 transporters affecting cholesterol/non-cholesterol extrusion, causing sitosterolemia with xanthomas and premature atheroslerotic disease are now known, and cholesterol/plant sterols absorption inhibitor, ezetimibe, emerges as the drug that reduces phytosterolemia and promotes xanthoma regression. On the other hand, common polymorphisms affecting the NPC1L1 transporter can interfere with the action of ezetimibe. Gene-diet interactions participate in this intricate network modulating the expression of genetic variants on specific phenotypes and can also affect the individual response to the hypolipidemic treatment. These very interesting aspects promoted a great deal of research in the field.

  14. Zebrafish Expression Ontology of Gene Sets (ZEOGS): a tool to analyze enrichment of zebrafish anatomical terms in large gene sets.

    Science.gov (United States)

    Prykhozhij, Sergey V; Marsico, Annalisa; Meijsing, Sebastiaan H

    2013-09-01

    The zebrafish (Danio rerio) is an established model organism for developmental and biomedical research. It is frequently used for high-throughput functional genomics experiments, such as genome-wide gene expression measurements, to systematically analyze molecular mechanisms. However, the use of whole embryos or larvae in such experiments leads to a loss of the spatial information. To address this problem, we have developed a tool called Zebrafish Expression Ontology of Gene Sets (ZEOGS) to assess the enrichment of anatomical terms in large gene sets. ZEOGS uses gene expression pattern data from several sources: first, in situ hybridization experiments from the Zebrafish Model Organism Database (ZFIN); second, it uses the Zebrafish Anatomical Ontology, a controlled vocabulary that describes connected anatomical structures; and third, the available connections between expression patterns and anatomical terms contained in ZFIN. Upon input of a gene set, ZEOGS determines which anatomical structures are overrepresented in the input gene set. ZEOGS allows one for the first time to look at groups of genes and to describe them in terms of shared anatomical structures. To establish ZEOGS, we first tested it on random gene selections and on two public microarray datasets with known tissue-specific gene expression changes. These tests showed that ZEOGS could reliably identify the tissues affected, whereas only very few enriched terms to none were found in the random gene sets. Next we applied ZEOGS to microarray datasets of 24 and 72 h postfertilization zebrafish embryos treated with beclomethasone, a potent glucocorticoid. This analysis resulted in the identification of several anatomical terms related to glucocorticoid-responsive tissues, some of which were stage-specific. Our studies highlight the ability of ZEOGS to extract spatial information from datasets derived from whole embryos, indicating that ZEOGS could be a useful tool to automatically analyze gene expression

  15. EWS and FUS bind a subset of transcribed genes encoding proteins enriched in RNA regulatory functions

    DEFF Research Database (Denmark)

    Luo, Yonglun; Friis, Jenny Blechingberg; Fernandes, Ana Miguel;

    2015-01-01

    IP-seq). Our results show that FUS and EWS bind to a subset of actively transcribed genes, that binding often is downstream the poly(A)-signal, and that binding overlaps with RNA polymerase II. Functional examinations of selected target genes identified that FUS and EWS can regulate gene expression...... at different levels. Gene Ontology analyses showed that FUS and EWS target genes preferentially encode proteins involved in regulatory processes at the RNA level. Conclusions The presented results yield new insights into gene interactions of EWS and FUS and have identified a set of FUS and EWS target genes...

  16. Toxoplasmosis and Polygenic Disease Susceptibility Genes: Extensive Toxoplasma gondii Host/Pathogen Interactome Enrichment in Nine Psychiatric or Neurological Disorders

    Directory of Open Access Journals (Sweden)

    C. J. Carter

    2013-01-01

    Full Text Available Toxoplasma gondii is not only implicated in schizophrenia and related disorders, but also in Alzheimer's or Parkinson's disease, cancer, cardiac myopathies, and autoimmune disorders. During its life cycle, the pathogen interacts with ~3000 host genes or proteins. Susceptibility genes for multiple sclerosis, Alzheimer's disease, schizophrenia, bipolar disorder, depression, childhood obesity, Parkinson's disease, attention deficit hyperactivity disorder (multiple sclerosis, and autism (, but not anorexia or chronic fatigue are highly enriched in the human arm of this interactome and 18 (ADHD to 33% (MS of the susceptibility genes relate to it. The signalling pathways involved in the susceptibility gene/interactome overlaps are relatively specific and relevant to each disease suggesting a means whereby susceptibility genes could orient the attentions of a single pathogen towards disruption of the specific pathways that together contribute (positively or negatively to the endophenotypes of different diseases. Conditional protein knockdown, orchestrated by T. gondii proteins or antibodies binding to those of the host (pathogen derived autoimmunity and metabolite exchange, may contribute to this disruption. Susceptibility genes may thus be related to the causes and influencers of disease, rather than (and as well as to the disease itself.

  17. Microbial gene functions enriched in the Deepwater Horizon deep-sea oil plume

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Z.; Deng, Y.; Nostrand, J.D. Van; He, Z.; Voordeckers, J.; Zhou, A.; Lee, Y.-J.; Mason, O.U.; Dubinsky, E.; Chavarria, K.; Tom, L.; Fortney, J.; Lamendella, R.; Jansson, J.K.; D?haeseleer, P.; Hazen, T.C.; Zhou, J.

    2011-06-15

    The Deepwater Horizon oil spill in the Gulf of Mexico is the deepest and largest offshore spill in U.S. history and its impacts on marine ecosystems are largely unknown. Here, we showed that the microbial community functional composition and structure were dramatically altered in a deep-sea oil plume resulting from the spill. A variety of metabolic genes involved in both aerobic and anaerobic hydrocarbon degradation were highly enriched in the plume compared to outside the plume, indicating a great potential for intrinsic bioremediation or natural attenuation in the deep-sea. Various other microbial functional genes relevant to carbon, nitrogen, phosphorus, sulfur and iron cycling, metal resistance, and bacteriophage replication were also enriched in the plume. Together, these results suggest that the indigenous marine microbial communities could play a significant role in biodegradation of oil spills in deep-sea environments.

  18. Identification of a set of genes showing regionally enriched expression in the mouse brain

    Directory of Open Access Journals (Sweden)

    Marra Marco A

    2008-07-01

    Full Text Available Abstract Background The Pleiades Promoter Project aims to improve gene therapy by designing human mini-promoters ( Results We have utilized LongSAGE to identify regionally enriched transcripts in the adult mouse brain. As supplemental strategies, we also performed a meta-analysis of published literature and inspected the Allen Brain Atlas in situ hybridization data. From a set of approximately 30,000 mouse genes, 237 were identified as showing specific or enriched expression in 30 target regions of the mouse brain. GO term over-representation among these genes revealed co-involvement in various aspects of central nervous system development and physiology. Conclusion Using a multi-faceted expression validation approach, we have identified mouse genes whose human orthologs are good candidates for design of mini-promoters. These mouse genes represent molecular markers in several discrete brain regions/cell-types, which could potentially provide a mechanistic explanation of unique functions performed by each region. This set of markers may also serve as a resource for further studies of gene regulatory elements influencing brain expression.

  19. Systematic analysis of a novel human renal glomerulus-enriched gene expression dataset.

    Directory of Open Access Journals (Sweden)

    Maja T Lindenmeyer

    Full Text Available Glomerular diseases account for the majority of cases with chronic renal failure. Several genes have been identified with key relevance for glomerular function. Quite a few of these genes show a specific or preferential mRNA expression in the renal glomerulus. To identify additional candidate genes involved in glomerular function in humans we generated a human renal glomerulus-enriched gene expression dataset (REGGED by comparing gene expression profiles from human glomeruli and tubulointerstitium obtained from six transplant living donors using Affymetrix HG-U133A arrays. This analysis resulted in 677 genes with prominent overrepresentation in the glomerulus. Genes with 'a priori' known prominent glomerular expression served for validation and were all found in the novel dataset (e.g. CDKN1, DAG1, DDN, EHD3, MYH9, NES, NPHS1, NPHS2, PDPN, PLA2R1, PLCE1, PODXL, PTPRO, SYNPO, TCF21, TJP1, WT1. The mRNA expression of several novel glomerulus-enriched genes in REGGED was validated by qRT-PCR. Gene ontology and pathway analysis identified biological processes previously not reported to be of relevance in glomeruli of healthy human adult kidneys including among others axon guidance. This finding was further validated by assessing the expression of the axon guidance molecules neuritin (NRN1 and roundabout receptor ROBO1 and -2. In diabetic nephropathy, a prevalent glomerulopathy, differential regulation of glomerular ROBO2 mRNA was found.In summary, novel transcripts with predominant expression in the human glomerulus could be identified using a comparative strategy on microdissected nephrons. A systematic analysis of this glomerulus-specific gene expression dataset allows the detection of target molecules and biological processes involved in glomerular biology and renal disease.

  20. The effect of peptidoglycan enriched diets on antimicrobial peptide gene expression in rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Casadei, Elisa; Bird, Steve; Vecino, Jose L González; Wadsworth, Simon; Secombes, Christopher J

    2013-02-01

    The aim of this study was to investigate the effect of feeding rainbow trout (Oncorhynchus mykiss) peptidoglycan (PG) enriched diets on antimicrobial peptide (AMP) gene expression. Fish were divided into 5 groups and fed diets containing 0, 5, 10, 50 and 100 mg PG/Kg, and sampled 1, 7 and 14 days later. The expression of eight AMP genes (four defensins, two cathelicidins and two liver expressed AMPs) was determined in skin, gill, gut and liver, tissues important for first lines of defence or production of acute phase proteins. Up-regulation of many AMPs was found after feeding the PG enriched diets, with sequential expression seen over the time course studied, where defensins were typically expressed early and cathelicidins and LEAPs later on. A number of clear differences in AMP responsiveness between the tissues examined were also apparent. Of the four PG concentrations used, 5 mg PG/Kg did not always elicit AMP gene induction or to the same degree as seen with the other diets. The three higher dose groups generally showed similar trends although differences in fold change were more pronounced in the 50 and 100 mg PG/Kg groups. Curiously several AMPs were down-regulated after 14 days of feeding in gills, gut and liver. Nevertheless, overall the PG enriched diets had a positive effect on AMP expression. Further investigations now need to be undertaken to confirm whether this higher AMP gene expression correlates with protection against common bacterial diseases and if PG enriched diets have value as a means to temporarily boost the piscine immune system.

  1. Gene expression analysis uncovers novel hedgehog interacting protein (HHIP) effects in human bronchial epithelial cells.

    Science.gov (United States)

    Zhou, Xiaobo; Qiu, Weiliang; Sathirapongsasuti, J Fah; Cho, Michael H; Mancini, John D; Lao, Taotao; Thibault, Derek M; Litonjua, Augusto A; Bakke, Per S; Gulsvik, Amund; Lomas, David A; Beaty, Terri H; Hersh, Craig P; Anderson, Christopher; Geigenmuller, Ute; Raby, Benjamin A; Rennard, Stephen I; Perrella, Mark A; Choi, Augustine M K; Quackenbush, John; Silverman, Edwin K

    2013-05-01

    Hedgehog interacting protein (HHIP) was implicated in chronic obstructive pulmonary disease (COPD) by genome-wide association studies (GWAS). However, it remains unclear how HHIP contributes to COPD pathogenesis. To identify genes regulated by HHIP, we performed gene expression microarray analysis in a human bronchial epithelial cell line (Beas-2B) stably infected with HHIP shRNAs. HHIP silencing led to differential expression of 296 genes; enrichment for variants nominally associated with COPD was found. Eighteen of the differentially expressed genes were validated by real-time PCR in Beas-2B cells. Seven of 11 validated genes tested in human COPD and control lung tissues demonstrated significant gene expression differences. Functional annotation indicated enrichment for extracellular matrix and cell growth genes. Network modeling demonstrated that the extracellular matrix and cell proliferation genes influenced by HHIP tended to be interconnected. Thus, we identified potential HHIP targets in human bronchial epithelial cells that may contribute to COPD pathogenesis.

  2. The use of gene interaction networks to improve the identification of cancer driver genes

    Directory of Open Access Journals (Sweden)

    Emilie Ramsahai

    2017-01-01

    Full Text Available Bioinformaticians have implemented different strategies to distinguish cancer driver genes from passenger genes. One of the more recent advances uses a pathway-oriented approach. Methods that employ this strategy are highly dependent on the quality and size of the pathway interaction network employed, and require a powerful statistical environment for analyses. A number of genomic libraries are available in R. DriverNet and DawnRank employ pathway-based methods that use gene interaction graphs in matrix form. We investigated the benefit of combining data from 3 different sources on the prediction outcome of cancer driver genes by DriverNet and DawnRank. An enriched dataset was derived comprising 13,862 genes with 372,250 interactions, which increased its accuracy by 17% and 28%, respectively, compared to their original networks. The study identified 33 new candidate driver genes. Our study highlights the potential of combining networks and weighting edges to provide greater accuracy in the identification of cancer driver genes.

  3. Alcohol-related genes show an enrichment of associations with a persistent externalizing factor.

    Science.gov (United States)

    Ashenhurst, James R; Harden, K Paige; Corbin, William R; Fromme, Kim

    2016-10-01

    Research using twins has found that much of the variability in externalizing phenotypes-including alcohol and drug use, impulsive personality traits, risky sex, and property crime-is explained by genetic factors. Nevertheless, identification of specific genes and variants associated with these traits has proven to be difficult, likely because individual differences in externalizing are explained by many genes of small individual effect. Moreover, twin research indicates that heritable variance in externalizing behaviors is mostly shared across the externalizing spectrum rather than specific to any behavior. We use a longitudinal, "deep phenotyping" approach to model a general externalizing factor reflecting persistent engagement in a variety of socially problematic behaviors measured at 11 assessment occasions spanning early adulthood (ages 18 to 28). In an ancestrally homogenous sample of non-Hispanic Whites (N = 337), we then tested for enrichment of associations between the persistent externalizing factor and a set of 3,281 polymorphisms within 104 genes that were previously identified as associated with alcohol-use behaviors. Next, we tested for enrichment among domain-specific factors (e.g., property crime) composed of residual variance not accounted for by the common factor. Significance was determined relative to bootstrapped empirical thresholds derived from permutations of phenotypic data. Results indicated significant enrichment of genetic associations for persistent externalizing, but not for domain-specific factors. Consistent with twin research findings, these results suggest that genetic variants are broadly associated with externalizing behaviors rather than unique to specific behaviors. (PsycINFO Database Record

  4. Candidate genes for obesity-susceptibility show enriched association within a large genome-wide association study for BMI

    Science.gov (United States)

    Vimaleswaran, Karani S.; Tachmazidou, Ioanna; Zhao, Jing Hua; Hirschhorn, Joel N.; Dudbridge, Frank; Loos, Ruth J.F.

    2012-01-01

    Before the advent of genome-wide association studies (GWASs), hundreds of candidate genes for obesity-susceptibility had been identified through a variety of approaches. We examined whether those obesity candidate genes are enriched for associations with body mass index (BMI) compared with non-candidate genes by using data from a large-scale GWAS. A thorough literature search identified 547 candidate genes for obesity-susceptibility based on evidence from animal studies, Mendelian syndromes, linkage studies, genetic association studies and expression studies. Genomic regions were defined to include the genes ±10 kb of flanking sequence around candidate and non-candidate genes. We used summary statistics publicly available from the discovery stage of the genome-wide meta-analysis for BMI performed by the genetic investigation of anthropometric traits consortium in 123 564 individuals. Hypergeometric, rank tail-strength and gene-set enrichment analysis tests were used to test for the enrichment of association in candidate compared with non-candidate genes. The hypergeometric test of enrichment was not significant at the 5% P-value quantile (P = 0.35), but was nominally significant at the 25% quantile (P = 0.015). The rank tail-strength and gene-set enrichment tests were nominally significant for the full set of genes and borderline significant for the subset without SNPs at P < 10−7. Taken together, the observed evidence for enrichment suggests that the candidate gene approach retains some value. However, the degree of enrichment is small despite the extensive number of candidate genes and the large sample size. Studies that focus on candidate genes have only slightly increased chances of detecting associations, and are likely to miss many true effects in non-candidate genes, at least for obesity-related traits. PMID:22791748

  5. Interaction of core self-evaluations and perceived organizational support on work-to-family enrichment.

    Science.gov (United States)

    McNall, Laurel A; Masuda, Aline D; Shanock, Linda Rhoades; Nicklin, Jessica M

    2011-01-01

    The purpose of this article was to offer an empirical test of J. H. Greenhaus and G. N. Powell's (2006) model of work-family enrichment by examining dispositional (i.e., core self-evaluations; CSEs) and situational (i.e., perceived organizational support; POS) factors associated with work-to-family enrichment (WFE) and whether these variables interact in predicting WFE. In a survey of 220 employed adults, our hierarchical regression analysis revealed that in highly supportive work environments, individuals reported high WFE regardless of CSE. However, when POS was low, individuals high in CSEs reported higher WFE than those low in CSEs, in support of conservation of resources theory (S. E. Hobfoll, 2002). Implications for research and practice are discussed.

  6. Core and region-enriched networks of behaviorally regulated genes and the singing genome

    Science.gov (United States)

    Whitney, Osceola; Pfenning, Andreas R.; Howard, Jason T.; Blatti, Charles A; Liu, Fang; Ward, James M.; Wang, Rui; Audet, Jean-Nicolas; Kellis, Manolis; Mukherjee, Sayan; Sinha, Saurabh; Hartemink, Alexander J.; West, Anne E.; Jarvis, Erich D.

    2015-01-01

    Songbirds represent an important model organism for elucidating molecular mechanisms that link genes with complex behaviors, in part because they have discrete vocal learning circuits that have parallels with those that mediate human speech. We found that ~10% of the genes in the avian genome were regulated by singing, and we found a striking regional diversity of both basal and singing-induced programs in the four key song nuclei of the zebra finch, a vocal learning songbird. The region-enriched patterns were a result of distinct combinations of region-enriched transcription factors (TFs), their binding motifs, and presinging acetylation of histone 3 at lysine 27 (H3K27ac) enhancer activity in the regulatory regions of the associated genes. RNA interference manipulations validated the role of the calcium-response transcription factor (CaRF) in regulating genes preferentially expressed in specific song nuclei in response to singing. Thus, differential combinatorial binding of a small group of activity-regulated TFs and predefined epigenetic enhancer activity influences the anatomical diversity of behaviorally regulated gene networks. PMID:25504732

  7. Gene-ontology enrichment analysis in two independent family-based samples highlights biologically plausible processes for autism spectrum disorders.

    LENUS (Irish Health Repository)

    Anney, Richard J L

    2012-02-01

    Recent genome-wide association studies (GWAS) have implicated a range of genes from discrete biological pathways in the aetiology of autism. However, despite the strong influence of genetic factors, association studies have yet to identify statistically robust, replicated major effect genes or SNPs. We apply the principle of the SNP ratio test methodology described by O\\'Dushlaine et al to over 2100 families from the Autism Genome Project (AGP). Using a two-stage design we examine association enrichment in 5955 unique gene-ontology classifications across four groupings based on two phenotypic and two ancestral classifications. Based on estimates from simulation we identify excess of association enrichment across all analyses. We observe enrichment in association for sets of genes involved in diverse biological processes, including pyruvate metabolism, transcription factor activation, cell-signalling and cell-cycle regulation. Both genes and processes that show enrichment have previously been examined in autistic disorders and offer biologically plausibility to these findings.

  8. Constructing gene-enriched plant genomic libraries using methylation filtration technology.

    Science.gov (United States)

    Rabinowicz, Pablo D

    2003-01-01

    Full genome sequencing in higher plants is a very difficult task, because their genomes are often very large and repetitive. For this reason, gene targeted partial genomic sequencing becomes a realistic option. The method reported here is a simple approach to generate gene-enriched plant genomic libraries called methylation filtration. This technique takes advantage of the fact that repetitive DNA is heavily methylated and genes are hypomethylated. Then, by simply using an Escherichia coli host strain harboring a wild-type modified cytosine restriction (McrBC) system, which cuts DNA containing methylcytosine, repetitive DNA is eliminated from these genomic libraries, while low copy DNA (i.e., genes) is recovered. To prevent cloning significant proportions of organelle DNA, a crude nuclear preparation must be performed prior to purifying genomic DNA. Adaptor-mediated cloning and DNA size fractionation are necessary for optimal results.

  9. Enrichment of short interspersed transposable elements to embryonic stem cell-specific hypomethylated gene regions.

    Science.gov (United States)

    Muramoto, Hiroki; Yagi, Shintaro; Hirabayashi, Keiji; Sato, Shinya; Ohgane, Jun; Tanaka, Satoshi; Shiota, Kunio

    2010-08-01

    Embryonic stem cells (ESCs) have a distinctive epigenome, which includes their genome-wide DNA methylation modification status, as represented by the ESC-specific hypomethylation of tissue-dependent and differentially methylated regions (T-DMRs) of Pou5f1 and Nanog. Here, we conducted a genome-wide investigation of sequence characteristics associated with T-DMRs that were differentially methylated between ESCs and somatic cells, by focusing on transposable elements including short interspersed elements (SINEs), long interspersed elements (LINEs) and long terminal repeats (LTRs). We found that hypomethylated T-DMRs were predominantly present in SINE-rich/LINE-poor genomic loci. The enrichment for SINEs spread over 300 kb in cis and there existed SINE-rich genomic domains spreading continuously over 1 Mb, which contained multiple hypomethylated T-DMRs. The characterization of sequence information showed that the enriched SINEs were relatively CpG rich and belonged to specific subfamilies. A subset of the enriched SINEs were hypomethylated T-DMRs in ESCs at Dppa3 gene locus, although SINEs are overall methylated in both ESCs and the liver. In conclusion, we propose that SINE enrichment is the genomic property of regions harboring hypomethylated T-DMRs in ESCs, which is a novel aspect of the ESC-specific epigenomic information.

  10. Gene-gene Interaction Analyses for Atrial Fibrillation

    NARCIS (Netherlands)

    Lin, Honghuang; Mueller-Nurasyid, Martina; Smith, Albert V; Arking, Dan E; Barnard, John; Bartz, Traci M; Lunetta, Kathryn L; Lohman, Kurt; Kleber, Marcus E; Lubitz, Steven A; Geelhoed, Bastiaan; Trompet, Stella; Niemeijer, Maartje N; Kacprowski, Tim; Chasman, Daniel I; Klarin, Derek; Sinner, Moritz F; Waldenberger, Melanie; Meitinger, Thomas; Harris, Tamara B; Launer, Lenore J; Soliman, Elsayed Z; Chen, Lin Y; Smith, Jonathan D; Van Wagoner, David R; Rotter, Jerome I; Psaty, Bruce M; Xie, Zhijun; Hendricks, Audrey E; Ding, Jingzhong; Delgado, Graciela E; Verweij, Niek; van der Harst, Pim; Macfarlane, Peter W; Ford, Ian; Hofman, Albert; Uitterlinden, André; Heeringa, Jan; Franco, Oscar H; Kors, Jan A; Weiss, Stefan; Völzke, Henry; Rose, Lynda M; Natarajan, Pradeep; Kathiresan, Sekar; Kääb, Stefan; Gudnason, Vilmundur; Alonso, Alvaro; Chung, Mina K; Heckbert, Susan R; Benjamin, Emelia J; Liu, Yongmei; März, Winfried; Rienstra, Michiel; Jukema, J Wouter; Stricker, Bruno H; Dörr, Marcus; Albert, Christine M; Ellinor, Patrick T

    2016-01-01

    Atrial fibrillation (AF) is a heritable disease that affects more than thirty million individuals worldwide. Extensive efforts have been devoted to the study of genetic determinants of AF. The objective of our study is to examine the effect of gene-gene interaction on AF susceptibility. We performed

  11. Gene-gene Interaction Analyses for Atrial Fibrillation

    NARCIS (Netherlands)

    H. Lin (Honghuang); M. Mueller-Nurasyid; A.V. Smith (Albert Vernon); D.E. Arking (Dan); J. Barnard (John); T.M. Bartz (Traci M.); K.L. Lunetta (Kathryn); K. Lohman (Kurt); M.E. Kleber (Marcus); S.A. Lubitz (Steven); Geelhoed, B. (Bastiaan); S. Trompet (Stella); M.N. Niemeijer (Maartje); T. Kacprowski (Tim); D.I. Chasman (Daniel); Klarin, D. (Derek); M.F. Sinner (Moritz); M. Waldenberger (Melanie); T. Meitinger (Thomas); T.B. Harris (Tamara); Launer, L.J. (Lenore J.); E.Z. Soliman (Elsayed Z.); L. Chen (Lin); J.D. Smith (Jonathan); D.R. van Wagoner (David); Rotter, J.I. (Jerome I.); B.M. Psaty (Bruce); Xie, Z. (Zhijun); A.E. Hendricks (Audrey E.); Ding, J. (Jingzhong); G.E. Delgado (Graciela E.); N. Verweij (Niek); P. van der Harst (Pim); P.W. MacFarlane (Peter); I. Ford (Ian); A. Hofman (Albert); A.G. Uitterlinden (André); J. Heeringa (Jan); O.H. Franco (Oscar); J.A. Kors (Jan); Weiss, S. (Stefan); H. Völzke (Henry); L.M. Rose (Lynda); Natarajan, P. (Pradeep); S. Kathiresan (Sekar); S. Kääb (Stefan); V. Gudnason (Vilmundur); A. Alonso (Alvaro); M.K. Chung (Mina); S.R. Heckbert (Susan); E.J. Benjamin (Emelia); Y. Liu (Yongmei); W. März (Winfried); S.A. Rienstra; J.W. Jukema (Jan Wouter); B.H.Ch. Stricker (Bruno); M. Dörr (Marcus); C.M. Albert (Christine); P.T. Ellinor (Patrick)

    2016-01-01

    textabstractAtrial fibrillation (AF) is a heritable disease that affects more than thirty million individuals worldwide. Extensive efforts have been devoted to the study of genetic determinants of AF. The objective of our study is to examine the effect of gene-gene interaction on AF susceptibility.

  12. Definition, conservation and epigenetics of housekeeping and tissue-enriched genes

    Directory of Open Access Journals (Sweden)

    Johnson Jason M

    2009-06-01

    Full Text Available Abstract Background Housekeeping genes (HKG are constitutively expressed in all tissues while tissue-enriched genes (TEG are expressed at a much higher level in a single tissue type than in others. HKGs serve as valuable experimental controls in gene and protein expression experiments, while TEGs tend to represent distinct physiological processes and are frequently candidates for biomarkers or drug targets. The genomic features of these two groups of genes expressed in opposing patterns may shed light on the mechanisms by which cells maintain basic and tissue-specific functions. Results Here, we generate gene expression profiles of 42 normal human tissues on custom high-density microarrays to systematically identify 1,522 HKGs and 975 TEGs and compile a small subset of 20 housekeeping genes which are highly expressed in all tissues with lower variance than many commonly used HKGs. Cross-species comparison shows that both the functions and expression patterns of HKGs are conserved. TEGs are enriched with respect to both segmental duplication and copy number variation, while no such enrichment is observed for HKGs, suggesting the high expression of HKGs are not due to high copy numbers. Analysis of genomic and epigenetic features of HKGs and TEGs reveals that the high expression of HKGs across different tissues is associated with decreased nucleosome occupancy at the transcription start site as indicated by enhanced DNase hypersensitivity. Additionally, we systematically and quantitatively demonstrated that the CpG islands' enrichment in HKGs transcription start sites (TSS and their depletion in TEGs TSS. Histone methylation patterns differ significantly between HKGs and TEGs, suggesting that methylation contributes to the differential expression patterns as well. Conclusion We have compiled a set of high quality HKGs that should provide higher and more consistent expression when used as references in laboratory experiments than currently used

  13. Hydrogen-bond interaction assisted branched copolymer HILIC material for separation and N-glycopeptides enrichment.

    Science.gov (United States)

    Shao, Wenya; Liu, Jianxi; Yang, Kaiguang; Liang, Yu; Weng, Yejing; Li, Senwu; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2016-09-01

    Hydrophilic interaction chromatography (HILIC) has attracted increasing attention in recent years due to its efficient application in the separation of polar compounds and the enrichment of glycopeptides. However, HILIC materials are still of weak hydrophilicity and thereby present weak retention and selectivity. In this work, branched copolymer modified hydrophilic material Sil@Poly(THMA-co-MBAAm), with high hydrophilicity and unique "claw-like" polyhydric groups, were prepared by "grafting from" thiol-ene click reaction. Due to the abundant functional groups provided by branched copolymer, the material showed excellent retention for nucleosides, necleobases, acidic compounds, sugars and peptides. Furthermore, Sil@Poly(THMA-co-MBAAm) was also applied for the N-glycosylation sites profiling towards the digests of the mouse brain, and 1997N-glycosylated peptides were identified, corresponding to 686 glycoprotein groups. Due to the assisted hydrogen-bond interaction, the selectivity for glycopeptide enrichment in the real sample reached 94.6%, which was the highest as far as we know. All these results indicated that such hydrogen-bond interaction assisted branched copolymer HILIC material possessed great potential for the separation and large scale glycoproteomics analysis.

  14. Systematically characterizing and prioritizing chemosensitivity related gene based on Gene Ontology and protein interaction network

    Directory of Open Access Journals (Sweden)

    Chen Xin

    2012-10-01

    Full Text Available Abstract Background The identification of genes that predict in vitro cellular chemosensitivity of cancer cells is of great importance. Chemosensitivity related genes (CRGs have been widely utilized to guide clinical and cancer chemotherapy decisions. In addition, CRGs potentially share functional characteristics and network features in protein interaction networks (PPIN. Methods In this study, we proposed a method to identify CRGs based on Gene Ontology (GO and PPIN. Firstly, we documented 150 pairs of drug-CCRG (curated chemosensitivity related gene from 492 published papers. Secondly, we characterized CCRGs from the perspective of GO and PPIN. Thirdly, we prioritized CRGs based on CCRGs’ GO and network characteristics. Lastly, we evaluated the performance of the proposed method. Results We found that CCRG enriched GO terms were most often related to chemosensitivity and exhibited higher similarity scores compared to randomly selected genes. Moreover, CCRGs played key roles in maintaining the connectivity and controlling the information flow of PPINs. We then prioritized CRGs using CCRG enriched GO terms and CCRG network characteristics in order to obtain a database of predicted drug-CRGs that included 53 CRGs, 32 of which have been reported to affect susceptibility to drugs. Our proposed method identifies a greater number of drug-CCRGs, and drug-CCRGs are much more significantly enriched in predicted drug-CRGs, compared to a method based on the correlation of gene expression and drug activity. The mean area under ROC curve (AUC for our method is 65.2%, whereas that for the traditional method is 55.2%. Conclusions Our method not only identifies CRGs with expression patterns strongly correlated with drug activity, but also identifies CRGs in which expression is weakly correlated with drug activity. This study provides the framework for the identification of signatures that predict in vitro cellular chemosensitivity and offers a valuable

  15. An Immune Response Enriched 72-Gene Prognostic Profile for Early-Stage Non-Small-Cell Lung Cancer

    NARCIS (Netherlands)

    Roepman, P.; Jassem, J; Smit, E.F.; Muley, T.; Niklinski, J.; Vel, van de T.; Witteveen, A.T.; Rzyman, W.; Floore, A.; Burgers, S.; Giaccone, G.; Meister, M.; Dienemann, H.; Skrzypski, M.; Kozlowski, M.; Mooi, W.J.; Zandwijk, van N.

    2009-01-01

    0.01; n = 69). Genes in our prognostic signature were strongly enriched for genes associated with immune response. Conclusions: Our 72-gene signature is closely associated with recurrence-free and overall survival in early-stage NSCLC patients and may become a tool for patient selection for adjuvant

  16. Prediction of drug-drug interactions from chemogenomic and gene-gene interactions and analysis of drug-drug interactions

    OpenAIRE

    2013-01-01

    The interactions between multiple drugs administered to an organism concurrently, whether in the form of synergy or antagonism, are of clinical relevance. Moreover, un-derstanding the mechanisms and nature of drug-drug interactions is of great practical and theoretical interest. Work has previously been done on gene-gene and gene-drug interactions, but the prediction and rationalization of drug-drug interactions from this data is not straightforward. We present a strategy for attacking this p...

  17. Ribosomal protein genes are highly enriched among genes with allele-specific expression in the interspecific F1 hybrid catfish.

    Science.gov (United States)

    Chen, Ailu; Wang, Ruijia; Liu, Shikai; Peatman, Eric; Sun, Luyang; Bao, Lisui; Jiang, Chen; Li, Chao; Li, Yun; Zeng, Qifan; Liu, Zhanjiang

    2016-06-01

    Interspecific hybrids provide a rich source for the analysis of allele-specific expression (ASE). In this work, we analyzed ASE in F1 hybrid catfish using RNA-Seq datasets. While the vast majority of genes were expressed with both alleles, 7-8 % SNPs exhibited significant differences in allele ratios of expression. Of the 66,251 and 177,841 SNPs identified from the datasets of the liver and gill, 5420 (8.2 %) and 13,390 (7.5 %) SNPs were identified as significant ASE-SNPs, respectively. With these SNPs, a total of 1519 and 3075 ASE-genes were identified. Gene Ontology analysis revealed that genes encoding cytoplasmic ribosomal proteins (RP) were highly enriched among ASE genes. Parent-of-origin was determined for 27 and 30 ASE RP genes in the liver and gill, respectively. The results indicated that genes from both channel catfish and blue catfish were involved in ASE. However, each RP gene appeared to be almost exclusively expressed from only one parent, indicating that ribosomes in the hybrid catfish were in the "hybrid" form. Overall representation of RP transcripts among the transcriptome appeared lower in the F1 hybrid catfish than in channel catfish or blue catfish, suggesting that the "hybrid" ribosomes may work more efficiently for translation in the F1 hybrid catfish.

  18. EWS and FUS bind a subset of transcribed genes encoding proteins enriched in RNA regulatory functions

    DEFF Research Database (Denmark)

    Luo, Yonglun; Friis, Jenny Blechingberg; Fernandes, Ana Miguel

    2015-01-01

    at different levels. Gene Ontology analyses showed that FUS and EWS target genes preferentially encode proteins involved in regulatory processes at the RNA level. Conclusions The presented results yield new insights into gene interactions of EWS and FUS and have identified a set of FUS and EWS target genes...... and involved in the human neurological diseases amyotrophic lateral sclerosis and fronto-temporal lobar degeneration. Results To determine the gene regulatory functions of FUS and EWS at the level of chromatin, we have performed chromatin immunoprecipitation followed by next generation sequencing (Ch......IP-seq). Our results show that FUS and EWS bind to a subset of actively transcribed genes, that binding often is downstream the poly(A)-signal, and that binding overlaps with RNA polymerase II. Functional examinations of selected target genes identified that FUS and EWS can regulate gene expression...

  19. Gene and miRNA expression signature of Lewis lung carcinoma LLC1 cells in extracellular matrix enriched microenvironment.

    Science.gov (United States)

    Stankevicius, Vaidotas; Vasauskas, Gintautas; Bulotiene, Danute; Butkyte, Stase; Jarmalaite, Sonata; Rotomskis, Ricardas; Suziedelis, Kestutis

    2016-10-11

    The extracellular matrix (ECM), one of the key components of tumor microenvironment, has a tremendous impact on cancer development and highly influences tumor cell features. ECM affects vital cellular functions such as cell differentiation, migration, survival and proliferation. Gene and protein expression levels are regulated in cell-ECM interaction dependent manner as well. The rate of unsuccessful clinical trials, based on cell culture research models lacking the ECM microenvironment, indicates the need for alternative models and determines the shift to three-dimensional (3D) laminin rich ECM models, better simulating tissue organization. Recognized advantages of 3D models suggest the development of new anticancer treatment strategies. This is among the most promising directions of 3D cell cultures application. However, detailed analysis at the molecular level of 2D/3D cell cultures and tumors in vivo is still needed to elucidate cellular pathways most promising for the development of targeted therapies. In order to elucidate which biological pathways are altered during microenvironmental shift we have analyzed whole genome mRNA and miRNA expression differences in LLC1 cells cultured in 2D or 3D culture conditions. In our study we used DNA microarrays for whole genome analysis of mRNA and miRNA expression differences in LLC1 cells cultivated in 2D or 3D culture conditions. Next, we indicated the most common enriched functional categories using KEGG pathway enrichment analysis. Finally, we validated the microarray data by quantitative PCR in LLC1 cells cultured under 2D or 3D conditions or LLC1 tumors implanted in experimental animals. Microarray gene expression analysis revealed that 1884 genes and 77 miRNAs were significantly altered in LLC1 cells after 48 h cell growth under 2D and ECM based 3D cell growth conditions. Pathway enrichment results indicated metabolic pathway, MAP kinase, cell adhesion and immune response as the most significantly altered

  20. Coevolution of gene expression among interacting proteins

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, Hunter B.; Hirsh, Aaron E.; Wall, Dennis P.; Eisen,Michael B.

    2004-03-01

    Physically interacting proteins or parts of proteins are expected to evolve in a coordinated manner that preserves proper interactions. Such coevolution at the amino acid-sequence level is well documented and has been used to predict interacting proteins, domains, and amino acids. Interacting proteins are also often precisely coexpressed with one another, presumably to maintain proper stoichiometry among interacting components. Here, we show that the expression levels of physically interacting proteins coevolve. We estimate average expression levels of genes from four closely related fungi of the genus Saccharomyces using the codon adaptation index and show that expression levels of interacting proteins exhibit coordinated changes in these different species. We find that this coevolution of expression is a more powerful predictor of physical interaction than is coevolution of amino acid sequence. These results demonstrate previously uncharacterized coevolution of gene expression, adding a different dimension to the study of the coevolution of interacting proteins and underscoring the importance of maintaining coexpression of interacting proteins over evolutionary time. Our results also suggest that expression coevolution can be used for computational prediction of protein protein interactions.

  1. Integrative Analysis of Gene Expression Data Including an Assessment of Pathway Enrichment for Predicting Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Pingzhao Hu

    2006-01-01

    Full Text Available Background: Microarray technology has been previously used to identify genes that are differentially expressed between tumour and normal samples in a single study, as well as in syntheses involving multiple studies. When integrating results from several Affymetrix microarray datasets, previous studies summarized probeset-level data, which may potentially lead to a loss of information available at the probe-level. In this paper, we present an approach for integrating results across studies while taking probe-level data into account. Additionally, we follow a new direction in the analysis of microarray expression data, namely to focus on the variation of expression phenotypes in predefined gene sets, such as pathways. This targeted approach can be helpful for revealing information that is not easily visible from the changes in the individual genes. Results: We used a recently developed method to integrate Affymetrix expression data across studies. The idea is based on a probe-level based test statistic developed for testing for differentially expressed genes in individual studies. We incorporated this test statistic into a classic random-effects model for integrating data across studies. Subsequently, we used a gene set enrichment test to evaluate the significance of enriched biological pathways in the differentially expressed genes identified from the integrative analysis. We compared statistical and biological significance of the prognostic gene expression signatures and pathways identified in the probe-level model (PLM with those in the probeset-level model (PSLM. Our integrative analysis of Affymetrix microarray data from 110 prostate cancer samples obtained from three studies reveals thousands of genes significantly correlated with tumour cell differentiation. The bioinformatics analysis, mapping these genes to the publicly available KEGG database, reveals evidence that tumour cell differentiation is significantly associated with many

  2. Female C57BL/6 mice show consistent individual differences in spontaneous interaction with environmental enrichment that are predicted by neophobia.

    Science.gov (United States)

    Walker, Michael D; Mason, Georgia

    2011-10-10

    Environmental enrichment typically improves learning, increases cortical thickness and hippocampal neurogenesis, reduces anxiety, and reduces stereotypic behaviour, yet sometimes such effects are absent or even reversed. We investigated whether neophobia governs how mice interact with enrichments, since this could explain why enrichments vary in impact. Female C57BL/6 mice, previously screened for neophobia, had free access to enriched cages connected to their standard cages. The relative consumption of food in each cage revealed approximate dwelling times; the use of two enrichments was also measured. High neophobia significantly predicted reduced use of the enriched cage. Thus even within this homogeneous population, provided with identical enrichments, differential neophobia predicted differential enrichment use.

  3. Reprint of: Female C57BL/6 mice show consistent individual differences in spontaneous interaction with environmental enrichment that are predicted by neophobia.

    Science.gov (United States)

    Walker, Michael D; Mason, Georgia

    2012-02-14

    Environmental enrichment typically improves learning, increases cortical thickness and hippocampal neurogenesis, reduces anxiety, and reduces stereotypic behaviour, yet sometimes such effects are absent or even reversed. We investigated whether neophobia governs how mice interact with enrichments, since this could explain why enrichments vary in impact. Female C57BL/6 mice, previously screened for neophobia, had free access to enriched cages connected to their standard cages. The relative consumption of food in each cage revealed approximate dwelling times; the use of two enrichments was also measured. High neophobia significantly predicted reduced use of the enriched cage. Thus even within this homogeneous population, provided with identical enrichments, differential neophobia predicted differential enrichment use.

  4. 'Trophic whales' as biotic buffers: weak interactions stabilize ecosystems against nutrient enrichment.

    Science.gov (United States)

    Schwarzmüller, Florian; Eisenhauer, Nico; Brose, Ulrich

    2015-05-01

    Human activities may compromise biodiversity if external stressors such as nutrient enrichment endanger overall network stability by inducing unstable dynamics. However, some ecosystems maintain relatively high diversity levels despite experiencing continuing disturbances. This indicates that some intrinsic properties prevent unstable dynamics and resulting extinctions. Identifying these 'ecosystem buffers' is crucial for our understanding of the stability of ecosystems and an important tool for environmental and conservation biologists. In this vein, weak interactions have been suggested as stabilizing elements of complex systems, but their relevance has rarely been tested experimentally. Here, using network and allometric theory, we present a novel concept for a priori identification of species that buffer against externally induced instability of increased population oscillations via weak interactions. We tested our model in a microcosm experiment using a soil food-web motif. Our results show that large-bodied species feeding at the food web's base, so called 'trophic whales', can buffer ecosystems against unstable dynamics induced by nutrient enrichment. Similar to the functionality of chemical or mechanical buffers, they serve as 'biotic buffers' that take up stressor effects and thus protect fragile systems from instability. We discuss trophic whales as common functional building blocks across ecosystems. Considering increasing stressor effects under anthropogenic global change, conservation of these network-intrinsic biotic buffers may help maintain the stability and diversity of natural ecosystems.

  5. Selenium enrichment of broccoli: interactions between selenium and secondary plant compounds.

    Science.gov (United States)

    Finley, John W; Sigrid-Keck, Anna; Robbins, Rebecca J; Hintze, Korry J

    2005-05-01

    Multiple components of broccoli, such as sulforaphane (Sf) and phenolic acids, may inhibit cancer. Additionally, broccoli can accumulate selenium (Se), and Se has been demonstrated to reduce the risk of cancer. Studies were conducted to determine whether enhancement of broccoli with Se would produce a plant with superior health benefits. Although increasing the concentration of Se in broccoli from 800 microg/g resulted in inhibition of colon cancer in rats, it also decreased the Sf content by >80% and inhibited production of most phenolic acids. The inclusion of Se-enriched broccoli in the diet of rats induced the activity of the selenoprotein thioredoxin reductase beyond the maximum activity induced by Se alone. These results emphasize the complex interactions of bioactive chemicals in a food; attempts to maximize one component may affect accumulation of another, and consumption of high amounts of multiple bioactive compounds may result in unexpected metabolic interactions within the body.

  6. Gene-gene interaction between tuberculosis candidate genes in a South African population.

    Science.gov (United States)

    de Wit, Erika; van der Merwe, Lize; van Helden, Paul D; Hoal, Eileen G

    2011-02-01

    In a complex disease such as tuberculosis (TB) it is increasingly evident that gene-gene interactions play a far more important role in an individual's susceptibility to develop the disease than single polymorphisms on their own, as one gene can enhance or hinder the expression of another gene. Gene-gene interaction analysis is a new approach to elucidate susceptibility to TB. The possibility of gene-gene interactions was assessed, focusing on 11 polymorphisms in nine genes (DC-SIGN, IFN-γ, IFNGR1, IL-8, IL-1Ra, MBL, NRAMP1, RANTES, and SP-D) that have been associated with TB, some repeatedly. An optimal model, which best describes and predicts TB case-control status, was constructed. Significant interactions were detected between eight pairs of variants. The models fitted the observed data extremely well, with p activation is greatly enhanced by IFN-γ and IFN-γ response elements that are present in the human NRAMP1 promoter region, providing further evidence for their interaction. This study enabled us to test the theory that disease outcome may be due to interaction of several gene effects. With eight instances of statistically significant gene-gene interactions, the importance of epistasis is clearly identifiable in this study. Methods for studying gene-gene interactions are based on a multilocus and multigene approach, consistent with the nature of complex-trait diseases, and may provide the paradigm for future genetic studies of TB.

  7. Polycyclic aromatic hydrocarbons (PAHs) enriching antibiotic resistance genes (ARGs) in the soils.

    Science.gov (United States)

    Chen, Baowei; He, Rong; Yuan, Ke; Chen, Enzhong; Lin, Lan; Chen, Xin; Sha, Sha; Zhong, Jianan; Lin, Li; Yang, Lihua; Yang, Ying; Wang, Xiaowei; Zou, Shichun; Luan, Tiangang

    2017-01-01

    The prevalence of antibiotic resistance genes (ARGs) in modern environment raises an emerging global health concern. In this study, soil samples were collected from three sites in petrochemical plant that represented different pollution levels of polycyclic aromatic hydrocarbons (PAHs). Metagenomic profiling of these soils demonstrated that ARGs in the PAHs-contaminated soils were approximately 15 times more abundant than those in the less-contaminated ones, with Proteobacterial being the preponderant phylum. Resistance profile of ARGs in the PAHs-polluted soils was characterized by the dominance of efflux pump-encoding ARGs associated with aromatic antibiotics (e.g., fluoroquinolones and acriflavine) that accounted for more than 70% of the total ARGs, which was significantly different from representative sources of ARG pollution due to wide use of antibiotics. Most of ARGs enriched in the PAHs-contaminated soils were not carried by plasmids, indicating the low possibilities of them being transferred between bacteria. Significant correlation was observed between the total abundance of ARGs and that of Proteobacteria in the soils. Proteobacteria selected by PAHs led to simultaneously enriching of ARGs carried by them in the soils. Our results suggested that PAHs could serve as one of selective stresses for greatly enriching of ARGs in the human-impacted environment.

  8. Simultaneous clustering of multiple gene expression and physical interaction datasets.

    Directory of Open Access Journals (Sweden)

    Manikandan Narayanan

    2010-04-01

    Full Text Available Many genome-wide datasets are routinely generated to study different aspects of biological systems, but integrating them to obtain a coherent view of the underlying biology remains a challenge. We propose simultaneous clustering of multiple networks as a framework to integrate large-scale datasets on the interactions among and activities of cellular components. Specifically, we develop an algorithm JointCluster that finds sets of genes that cluster well in multiple networks of interest, such as coexpression networks summarizing correlations among the expression profiles of genes and physical networks describing protein-protein and protein-DNA interactions among genes or gene-products. Our algorithm provides an efficient solution to a well-defined problem of jointly clustering networks, using techniques that permit certain theoretical guarantees on the quality of the detected clustering relative to the optimal clustering. These guarantees coupled with an effective scaling heuristic and the flexibility to handle multiple heterogeneous networks make our method JointCluster an advance over earlier approaches. Simulation results showed JointCluster to be more robust than alternate methods in recovering clusters implanted in networks with high false positive rates. In systematic evaluation of JointCluster and some earlier approaches for combined analysis of the yeast physical network and two gene expression datasets under glucose and ethanol growth conditions, JointCluster discovers clusters that are more consistently enriched for various reference classes capturing different aspects of yeast biology or yield better coverage of the analysed genes. These robust clusters, which are supported across multiple genomic datasets and diverse reference classes, agree with known biology of yeast under these growth conditions, elucidate the genetic control of coordinated transcription, and enable functional predictions for a number of uncharacterized genes.

  9. Machine learning approaches to supporting the identification of photoreceptor-enriched genes based on expression data

    Directory of Open Access Journals (Sweden)

    Simpson David

    2006-03-01

    Full Text Available Abstract Background Retinal photoreceptors are highly specialised cells, which detect light and are central to mammalian vision. Many retinal diseases occur as a result of inherited dysfunction of the rod and cone photoreceptor cells. Development and maintenance of photoreceptors requires appropriate regulation of the many genes specifically or highly expressed in these cells. Over the last decades, different experimental approaches have been developed to identify photoreceptor enriched genes. Recent progress in RNA analysis technology has generated large amounts of gene expression data relevant to retinal development. This paper assesses a machine learning methodology for supporting the identification of photoreceptor enriched genes based on expression data. Results Based on the analysis of publicly-available gene expression data from the developing mouse retina generated by serial analysis of gene expression (SAGE, this paper presents a predictive methodology comprising several in silico models for detecting key complex features and relationships encoded in the data, which may be useful to distinguish genes in terms of their functional roles. In order to understand temporal patterns of photoreceptor gene expression during retinal development, a two-way cluster analysis was firstly performed. By clustering SAGE libraries, a hierarchical tree reflecting relationships between developmental stages was obtained. By clustering SAGE tags, a more comprehensive expression profile for photoreceptor cells was revealed. To demonstrate the usefulness of machine learning-based models in predicting functional associations from the SAGE data, three supervised classification models were compared. The results indicated that a relatively simple instance-based model (KStar model performed significantly better than relatively more complex algorithms, e.g. neural networks. To deal with the problem of functional class imbalance occurring in the dataset, two data re

  10. Enriched Environment-induced Maternal Weight Loss Reprograms Metabolic Gene Expression in Mouse Offspring*

    Science.gov (United States)

    Wei, Yanchang; Yang, Cai-Rong; Wei, Yan-Ping; Ge, Zhao-Jia; Zhao, Zhen-Ao; Zhang, Bing; Hou, Yi; Schatten, Heide; Sun, Qing-Yuan

    2015-01-01

    The global prevalence of weight loss is increasing, especially in young women. However, the extent and mechanisms by which maternal weight loss affects the offspring is still poorly understood. Here, using an enriched environment (EE)-induced weight loss model, we show that maternal weight loss improves general health and reprograms metabolic gene expression in mouse offspring, and the epigenetic alterations can be inherited for at least two generations. EE in mothers induced weight loss and its associated physiological and metabolic changes such as decreased adiposity and improved glucose tolerance and insulin sensitivity. Relative to controls, their offspring exhibited improved general health such as reduced fat accumulation, decreased plasma and hepatic lipid levels, and improved glucose tolerance and insulin sensitivity. Maternal weight loss altered gene expression patterns in the liver of offspring with coherent down-regulation of genes involved in lipid and cholesterol biosynthesis. Epigenomic profiling of offspring livers revealed numerous changes in cytosine methylation depending on maternal weight loss, including reproducible changes in promoter methylation over several key lipid biosynthesis genes, correlated with their expression patterns. Embryo transfer studies indicated that oocyte alteration in response to maternal metabolic conditions is a strong factor in determining metabolic and epigenetic changes in offspring. Several important lipid metabolism-related genes have been identified to partially inherit methylated alleles from oocytes. Our study reveals a molecular and mechanistic basis of how maternal lifestyle modification affects metabolic changes in the offspring. PMID:25555918

  11. Creating interactive, web-based and data-enriched maps with the Systems Biology Graphical Notation.

    Science.gov (United States)

    Junker, Astrid; Rohn, Hendrik; Czauderna, Tobias; Klukas, Christian; Hartmann, Anja; Schreiber, Falk

    2012-03-01

    The Systems Biology Graphical Notation (SBGN) is an emerging standard for the uniform representation of biological processes and networks. By using examples from gene regulation and metabolism, this protocol shows the construction of SBGN maps by either manual drawing or automatic translation using the tool SBGN-ED. In addition, it discusses the enrichment of SBGN maps with different kinds of -omics data to bring numerical data into the context of these networks in order to facilitate the interpretation of experimental data. Finally, the export of such maps to public websites, including clickable images, supports the communication of results within the scientific community. With regard to the described functionalities, other tools partially overlap with SBGN-ED. However, currently, SBGN-ED is the only tool that combines all of these functions, including the representation in SBGN, data mapping and website export. This protocol aims to assist scientists with the step-by-step procedure, which altogether takes ∼90 min.

  12. Regulating plant/insect interactions using CO2 enrichment in model ecosystems

    Science.gov (United States)

    Grodzinski, B.; Schmidt, J. M.; Watts, B.; Taylor, J.; Bates, S.; Dixon, M. A.; Staines, H.

    1999-01-01

    The greenhouse environment is a challenging artificial ecosystem in which it is possible to study selected plant/insect interaction in a controlled environment. Due to a combination of ``direct'' and ``indirect'' effects of CO2 enrichment on plant photosynthesis and plant development, canopy productivity is generally increased. In this paper, we discuss the effects of daytime and nighttime CO2 enrichment protocols on gas exchange of pepper plants (Capsicum annuum L, cv Cubico) grown in controlled environments. In addition, we present the effects of thrips, a common insect pest, on the photosynthetic and respiratory activity of these plant canopies. Carbon dioxide has diverse effects on the physiology and mortality of insects. However, our data indicate that thrips and whiteflies, at least, are not killed ``directly'' by CO2 levels used to enhance photosynthesis and plant growth. Together the data suggest that the insect population is affected ``indirectly'' by CO2 and that the primary effect of CO2 is via its effects on plant metabolism.

  13. Gene by environment interaction in asthma

    NARCIS (Netherlands)

    Koppelman, Gerard H.

    2006-01-01

    Asthma is a chronic inflammatory disease of the airways that is highly prevalent in the Western world. It is a genetically complex disease caused by multiple genetic and environmental factors, which may interact. Genetic research has recently incorporated environmental factors to investigate gene by

  14. Gene-Drug Interaction in Stroke

    Directory of Open Access Journals (Sweden)

    Serena Amici

    2011-01-01

    Several polymorphisms have been studied and some have been associated with positive drug-gene interaction on stroke, but the superiority of the genotype-guided approach over the clinical approach has not been proved yet; for this reason, it is not routinely recommended.

  15. Biological Implications of Gene-Environment Interaction

    Science.gov (United States)

    Rutter, Michael

    2008-01-01

    Gene-environment interaction (G x E) has been treated as both a statistical phenomenon and a biological reality. It is argued that, although there are important statistical issues that need to be considered, the focus has to be on the biological implications of G x E. Four reports of G x E deriving from the Dunedin longitudinal study are used as…

  16. Targeted gene enrichment and high-throughput sequencing for environmental biomonitoring: a case study using freshwater macroinvertebrates.

    Science.gov (United States)

    Dowle, Eddy J; Pochon, Xavier; C Banks, Jonathan; Shearer, Karen; Wood, Susanna A

    2016-09-01

    Recent studies have advocated biomonitoring using DNA techniques. In this study, two high-throughput sequencing (HTS)-based methods were evaluated: amplicon metabarcoding of the cytochrome C oxidase subunit I (COI) mitochondrial gene and gene enrichment using MYbaits (targeting nine different genes including COI). The gene-enrichment method does not require PCR amplification and thus avoids biases associated with universal primers. Macroinvertebrate samples were collected from 12 New Zealand rivers. Macroinvertebrates were morphologically identified and enumerated, and their biomass determined. DNA was extracted from all macroinvertebrate samples and HTS undertaken using the illumina miseq platform. Macroinvertebrate communities were characterized from sequence data using either six genes (three of the original nine were not used) or just the COI gene in isolation. The gene-enrichment method (all genes) detected the highest number of taxa and obtained the strongest Spearman rank correlations between the number of sequence reads, abundance and biomass in 67% of the samples. Median detection rates across rare (5%) taxa were highest using the gene-enrichment method (all genes). Our data indicated primer biases occurred during amplicon metabarcoding with greater than 80% of sequence reads originating from one taxon in several samples. The accuracy and sensitivity of both HTS methods would be improved with more comprehensive reference sequence databases. The data from this study illustrate the challenges of using PCR amplification-based methods for biomonitoring and highlight the potential benefits of using approaches, such as gene enrichment, which circumvent the need for an initial PCR step. © 2015 John Wiley & Sons Ltd.

  17. Gene-gene and gene-environmental interactions of childhood asthma: a multifactor dimension reduction approach.

    Directory of Open Access Journals (Sweden)

    Ming-Wei Su

    Full Text Available BACKGROUND: The importance of gene-gene and gene-environment interactions on asthma is well documented in literature, but a systematic analysis on the interaction between various genetic and environmental factors is still lacking. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a population-based, case-control study comprised of seventh-grade children from 14 Taiwanese communities. A total of 235 asthmatic cases and 1,310 non-asthmatic controls were selected for DNA collection and genotyping. We examined the gene-gene and gene-environment interactions between 17 single-nucleotide polymorphisms in antioxidative, inflammatory and obesity-related genes, and childhood asthma. Environmental exposures and disease status were obtained from parental questionnaires. The model-free and non-parametrical multifactor dimensionality reduction (MDR method was used for the analysis. A three-way gene-gene interaction was elucidated between the gene coding glutathione S-transferase P (GSTP1, the gene coding interleukin-4 receptor alpha chain (IL4Ra and the gene coding insulin induced gene 2 (INSIG2 on the risk of lifetime asthma. The testing-balanced accuracy on asthma was 57.83% with a cross-validation consistency of 10 out of 10. The interaction of preterm birth and indoor dampness had the highest training-balanced accuracy at 59.09%. Indoor dampness also interacted with many genes, including IL13, beta-2 adrenergic receptor (ADRB2, signal transducer and activator of transcription 6 (STAT6. We also used likelihood ratio tests for interaction and chi-square tests to validate our results and all tests showed statistical significance. CONCLUSIONS/SIGNIFICANCE: The results of this study suggest that GSTP1, INSIG2 and IL4Ra may influence the lifetime asthma susceptibility through gene-gene interactions in schoolchildren. Home dampness combined with each one of the genes STAT6, IL13 and ADRB2 could raise the asthma risk.

  18. Neighbor overlap is enriched in the yeast interaction network: analysis and implications.

    Directory of Open Access Journals (Sweden)

    Ariel Feiglin

    Full Text Available The yeast protein-protein interaction network has been shown to have distinct topological features such as a scale free degree distribution and a high level of clustering. Here we analyze an additional feature which is called Neighbor Overlap. This feature reflects the number of shared neighbors between a pair of proteins. We show that Neighbor Overlap is enriched in the yeast protein-protein interaction network compared with control networks carefully designed to match the characteristics of the yeast network in terms of degree distribution and clustering coefficient. Our analysis also reveals that pairs of proteins with high Neighbor Overlap have higher sequence similarity, more similar GO annotations and stronger genetic interactions than pairs with low ones. Finally, we demonstrate that pairs of proteins with redundant functions tend to have high Neighbor Overlap. We suggest that a combination of three mechanisms is the basis for this feature: The abundance of protein complexes, selection for backup of function, and the need to allow functional variation.

  19. Enrichment of pathogenic alleles in the brittle cornea gene, ZNF469, in keratoconus

    Science.gov (United States)

    Lechner, Judith; Porter, Louise F.; Rice, Aine; Vitart, Veronique; Armstrong, David J.; Schorderet, Daniel F.; Munier, Francis L.; Wright, Alan F.; Inglehearn, Chris F.; Black, Graeme C.; Simpson, David A.; Manson, Forbes; Willoughby, Colin E.

    2014-01-01

    Keratoconus, a common inherited ocular disorder resulting in progressive corneal thinning, is the leading indication for corneal transplantation in the developed world. Genome-wide association studies have identified common SNPs 100 kb upstream of ZNF469 strongly associated with corneal thickness. Homozygous mutations in ZNF469 and PR domain-containing protein 5 (PRDM5) genes result in brittle cornea syndrome (BCS) Types 1 and 2, respectively. BCS is an autosomal recessive generalized connective tissue disorder associated with extreme corneal thinning and a high risk of corneal rupture. Some individuals with heterozygous PRDM5 mutations demonstrate a carrier ocular phenotype, which includes a mildly reduced corneal thickness, keratoconus and blue sclera. We hypothesized that heterozygous variants in PRDM5 and ZNF469 predispose to the development of isolated keratoconus. We found a significant enrichment of potentially pathologic heterozygous alleles in ZNF469 associated with the development of keratoconus (P = 0.00102) resulting in a relative risk of 12.0. This enrichment of rare potentially pathogenic alleles in ZNF469 in 12.5% of keratoconus patients represents a significant mutational load and highlights ZNF469 as the most significant genetic factor responsible for keratoconus identified to date. PMID:24895405

  20. Enrichment of pathogenic alleles in the brittle cornea gene, ZNF469, in keratoconus.

    Science.gov (United States)

    Lechner, Judith; Porter, Louise F; Rice, Aine; Vitart, Veronique; Armstrong, David J; Schorderet, Daniel F; Munier, Francis L; Wright, Alan F; Inglehearn, Chris F; Black, Graeme C; Simpson, David A; Manson, Forbes; Willoughby, Colin E

    2014-10-15

    Keratoconus, a common inherited ocular disorder resulting in progressive corneal thinning, is the leading indication for corneal transplantation in the developed world. Genome-wide association studies have identified common SNPs 100 kb upstream of ZNF469 strongly associated with corneal thickness. Homozygous mutations in ZNF469 and PR domain-containing protein 5 (PRDM5) genes result in brittle cornea syndrome (BCS) Types 1 and 2, respectively. BCS is an autosomal recessive generalized connective tissue disorder associated with extreme corneal thinning and a high risk of corneal rupture. Some individuals with heterozygous PRDM5 mutations demonstrate a carrier ocular phenotype, which includes a mildly reduced corneal thickness, keratoconus and blue sclera. We hypothesized that heterozygous variants in PRDM5 and ZNF469 predispose to the development of isolated keratoconus. We found a significant enrichment of potentially pathologic heterozygous alleles in ZNF469 associated with the development of keratoconus (P = 0.00102) resulting in a relative risk of 12.0. This enrichment of rare potentially pathogenic alleles in ZNF469 in 12.5% of keratoconus patients represents a significant mutational load and highlights ZNF469 as the most significant genetic factor responsible for keratoconus identified to date.

  1. Gene expression profiles and physiological data from mice fed resveratrol-enriched rice DJ526

    Science.gov (United States)

    Chung, Hea-Jong; Lee, Heui-Kwan; Kim, Hyeon-Jin; Baek, So-Hyeon; Hong, Seong-Tshool

    2016-01-01

    The molecular mechanism underlying lifespan extension by resveratrol remains widely discussed. To help study this mechanism, we previously created resveratrol-enriched rice, DJ526, by transferring the resveratrol biosynthesis gene into Dongjin rice. DJ526 accumulates 1.4–1.9 μg g−1 of resveratrol in its grain and can ameliorates age-related deterioration in mice, as compared to control animals, based on assessments of motor coordination, physical strength and cutaneous tissue aging. Here, we present raw data sets, deposited in public repositories, from microarray analysis and physiological data of mice fed with DJ526 and Dongjin rice and treated with resveratrol. We also provide a method to analyze blood serum at micron levels. These data sets may help other researchers find new clues regarding the etiology of the anti-aging process and signaling pathways induced by resveratrol, rice, or DJ526. PMID:27996975

  2. Identification and characterization of Argonaute gene family and meiosis-enriched Argonaute during sporogenesis in maize

    Institute of Scientific and Technical Information of China (English)

    Zuxin Zhang

    2014-01-01

    Argonaute (AGO) proteins play a key role in regulation of gene expression through smal RNA‐directed RNA cleavage and translational repression, and are essential for multiple developmental processes. In the present study, 17 AGO genes of maize (Zea mays L., ZmAGOs) were identified using a Hidden Markov Model and validated by rapid amplifica-tion of cDNA ends assay. Subsequently, quantitative PCR revealed that expressions of these genes were higher in reproductive than in vegetative tissues. AGOs presented five temporal and spatial expression patterns, which were likely modulated by DNA methylation, 50‐untranslated exons and microRNA‐mediated feedback loops. Intriguingly, ZmAGO18b was highly expressed in tassels during meiosis. Furthermore, in situ hybridization and immunofluorescence showed that ZmA- GO18b was enriched in the tapetum and germ cel s in meiotic anthers. We hypothesized that ZmAGOs are highly expressed in reproductive tissues, and that ZmAGO18b is a tapetum and germ cel‐specific member of the AGO family in maize.

  3. High-throughput sequencing of mGluR signaling pathway genes reveals enrichment of rare variants in autism.

    Directory of Open Access Journals (Sweden)

    Raymond J Kelleher

    Full Text Available Identification of common molecular pathways affected by genetic variation in autism is important for understanding disease pathogenesis and devising effective therapies. Here, we test the hypothesis that rare genetic variation in the metabotropic glutamate-receptor (mGluR signaling pathway contributes to autism susceptibility. Single-nucleotide variants in genes encoding components of the mGluR signaling pathway were identified by high-throughput multiplex sequencing of pooled samples from 290 non-syndromic autism cases and 300 ethnically matched controls on two independent next-generation platforms. This analysis revealed significant enrichment of rare functional variants in the mGluR pathway in autism cases. Higher burdens of rare, potentially deleterious variants were identified in autism cases for three pathway genes previously implicated in syndromic autism spectrum disorder, TSC1, TSC2, and SHANK3, suggesting that genetic variation in these genes also contributes to risk for non-syndromic autism. In addition, our analysis identified HOMER1, which encodes a postsynaptic density-localized scaffolding protein that interacts with Shank3 to regulate mGluR activity, as a novel autism-risk gene. Rare, potentially deleterious HOMER1 variants identified uniquely in the autism population affected functionally important protein regions or regulatory sequences and co-segregated closely with autism among children of affected families. We also identified rare ASD-associated coding variants predicted to have damaging effects on components of the Ras/MAPK cascade. Collectively, these findings suggest that altered signaling downstream of mGluRs contributes to the pathogenesis of non-syndromic autism.

  4. Enrichment of human hematopoietic stem/progenitor cells facilitates transduction for stem cell gene therapy.

    Science.gov (United States)

    Baldwin, Kismet; Urbinati, Fabrizia; Romero, Zulema; Campo-Fernandez, Beatriz; Kaufman, Michael L; Cooper, Aaron R; Masiuk, Katelyn; Hollis, Roger P; Kohn, Donald B

    2015-05-01

    Autologous hematopoietic stem cell (HSC) gene therapy for sickle cell disease has the potential to treat this illness without the major immunological complications associated with allogeneic transplantation. However, transduction efficiency by β-globin lentiviral vectors using CD34-enriched cell populations is suboptimal and large vector production batches may be needed for clinical trials. Transducing a cell population more enriched for HSC could greatly reduce vector needs and, potentially, increase transduction efficiency. CD34(+) /CD38(-) cells, comprising ∼1%-3% of all CD34(+) cells, were isolated from healthy cord blood CD34(+) cells by fluorescence-activated cell sorting and transduced with a lentiviral vector expressing an antisickling form of beta-globin (CCL-β(AS3) -FB). Isolated CD34(+) /CD38(-) cells were able to generate progeny over an extended period of long-term culture (LTC) compared to the CD34(+) cells and required up to 40-fold less vector for transduction compared to bulk CD34(+) preparations containing an equivalent number of CD34(+) /CD38(-) cells. Transduction of isolated CD34(+) /CD38(-) cells was comparable to CD34(+) cells measured by quantitative PCR at day 14 with reduced vector needs, and average vector copy/cell remained higher over time for LTC initiated from CD34(+) /38(-) cells. Following in vitro erythroid differentiation, HBBAS3 mRNA expression was similar in cultures derived from CD34(+) /CD38(-) cells or unfractionated CD34(+) cells. In vivo studies showed equivalent engraftment of transduced CD34(+) /CD38(-) cells when transplanted in competition with 100-fold more CD34(+) /CD38(+) cells. This work provides initial evidence for the beneficial effects from isolating human CD34(+) /CD38(-) cells to use significantly less vector and potentially improve transduction for HSC gene therapy.

  5. Genome engineering uncovers 54 evolutionarily conserved and testis-enriched genes that are not required for male fertility in mice.

    Science.gov (United States)

    Miyata, Haruhiko; Castaneda, Julio M; Fujihara, Yoshitaka; Yu, Zhifeng; Archambeault, Denise R; Isotani, Ayako; Kiyozumi, Daiji; Kriseman, Maya L; Mashiko, Daisuke; Matsumura, Takafumi; Matzuk, Ryan M; Mori, Masashi; Noda, Taichi; Oji, Asami; Okabe, Masaru; Prunskaite-Hyyrylainen, Renata; Ramirez-Solis, Ramiro; Satouh, Yuhkoh; Zhang, Qian; Ikawa, Masahito; Matzuk, Martin M

    2016-07-12

    Gene-expression analysis studies from Schultz et al. estimate that more than 2,300 genes in the mouse genome are expressed predominantly in the male germ line. As of their 2003 publication [Schultz N, Hamra FK, Garbers DL (2003) Proc Natl Acad Sci USA 100(21):12201-12206], the functions of the majority of these testis-enriched genes during spermatogenesis and fertilization were largely unknown. Since the study by Schultz et al., functional analysis of hundreds of reproductive-tract-enriched genes have been performed, but there remain many testis-enriched genes for which their relevance to reproduction remain unexplored or unreported. Historically, a gene knockout is the "gold standard" to determine whether a gene's function is essential in vivo. Although knockout mice without apparent phenotypes are rarely published, these knockout mouse lines and their phenotypic information need to be shared to prevent redundant experiments. Herein, we used bioinformatic and experimental approaches to uncover mouse testis-enriched genes that are evolutionarily conserved in humans. We then used gene-disruption approaches, including Knockout Mouse Project resources (targeting vectors and mice) and CRISPR/Cas9, to mutate and quickly analyze the fertility of these mutant mice. We discovered that 54 mutant mouse lines were fertile. Thus, despite evolutionary conservation of these genes in vertebrates and in some cases in all eukaryotes, our results indicate that these genes are not individually essential for male mouse fertility. Our phenotypic data are highly relevant in this fiscally tight funding period and postgenomic age when large numbers of genomes are being analyzed for disease association, and will prevent unnecessary expenditures and duplications of effort by others.

  6. Identification of oral cancer related candidate genes by integrating protein-protein interactions, gene ontology, pathway analysis and immunohistochemistry.

    Science.gov (United States)

    Kumar, Ravindra; Samal, Sabindra K; Routray, Samapika; Dash, Rupesh; Dixit, Anshuman

    2017-05-30

    In the recent years, bioinformatics methods have been reported with a high degree of success for candidate gene identification. In this milieu, we have used an integrated bioinformatics approach assimilating information from gene ontologies (GO), protein-protein interaction (PPI) and network analysis to predict candidate genes related to oral squamous cell carcinoma (OSCC). A total of 40973 PPIs were considered for 4704 cancer-related genes to construct human cancer gene network (HCGN). The importance of each node was measured in HCGN by ten different centrality measures. We have shown that the top ranking genes are related to a significantly higher number of diseases as compared to other genes in HCGN. A total of 39 candidate oral cancer target genes were predicted by combining top ranked genes and the genes corresponding to significantly enriched oral cancer related GO terms. Initial verification using literature and available experimental data indicated that 29 genes were related with OSCC. A detailed pathway analysis led us to propose a role for the selected candidate genes in the invasion and metastasis in OSCC. We further validated our predictions using immunohistochemistry (IHC) and found that the gene FLNA was upregulated while the genes ARRB1 and HTT were downregulated in the OSCC tissue samples.

  7. Finding gene-environment interactions for Phobias

    OpenAIRE

    Gregory, Alice M.; Lau, Jennifer Y. F.; Eley, Thalia C

    2008-01-01

    Phobias are common disorders causing a great deal of suffering. Studies of gene-environment interaction (G × E) have revealed much about the complex processes underlying the development of various psychiatric disorders but have told us little about phobias. This article describes what is already known about genetic and environmental influences upon phobias and suggests how this information can be used to optimise the chances of discovering G × Es for phobias. In addition to the careful concep...

  8. Literature-Based Discovery of IFN-γ and Vaccine-Mediated Gene Interaction Networks

    Directory of Open Access Journals (Sweden)

    Arzucan Özgür

    2010-01-01

    Full Text Available Interferon-gamma (IFN-γ regulates various immune responses that are often critical for vaccine-induced protection. In order to annotate the IFN-γ-related gene interaction network from a large amount of IFN-γ research reported in the literature, a literature-based discovery approach was applied with a combination of natural language processing (NLP and network centrality analysis. The interaction network of human IFN-γ (Gene symbol: IFNG and its vaccine-specific subnetwork were automatically extracted using abstracts from all articles in PubMed. Four network centrality metrics were further calculated to rank the genes in the constructed networks. The resulting generic IFNG network contains 1060 genes and 26313 interactions among these genes. The vaccine-specific subnetwork contains 102 genes and 154 interactions. Fifty six genes such as TNF, NFKB1, IL2, IL6, and MAPK8 were ranked among the top 25 by at least one of the centrality methods in one or both networks. Gene enrichment analysis indicated that these genes were classified in various immune mechanisms such as response to extracellular stimulus, lymphocyte activation, and regulation of apoptosis. Literature evidence was manually curated for the IFN-γ relatedness of 56 genes and vaccine development relatedness for 52 genes. This study also generated many new hypotheses worth further experimental studies.

  9. The mouse X chromosome is enriched for sex-biased genes not subject to selection by meiotic sex chromosome inactivation.

    Science.gov (United States)

    Khil, Pavel P; Smirnova, Natalya A; Romanienko, Peter J; Camerini-Otero, R Daniel

    2004-06-01

    Sex chromosomes are subject to sex-specific selective evolutionary forces. One model predicts that genes with sex-biased expression should be enriched on the X chromosome. In agreement with Rice's hypothesis, spermatogonial genes are over-represented on the X chromosome of mice and sex- and reproduction-related genes are over-represented on the human X chromosome. Male-biased genes are under-represented on the X chromosome in worms and flies, however. Here we show that mouse spermatogenesis genes are relatively under-represented on the X chromosome and female-biased genes are enriched on it. We used Spo11(-/-) mice blocked in spermatogenesis early in meiosis to evaluate the temporal pattern of gene expression in sperm development. Genes expressed before the Spo11 block are enriched on the X chromosome, whereas those expressed later in spermatogenesis are depleted. Inactivation of the X chromosome in male meiosis may be a universal driving force for X-chromosome demasculinization.

  10. Omega-3 Fatty Acid Enriched Chevon (Goat Meat Lowers Plasma Cholesterol Levels and Alters Gene Expressions in Rats

    Directory of Open Access Journals (Sweden)

    Mahdi Ebrahimi

    2014-01-01

    Full Text Available In this study, control chevon (goat meat and omega-3 fatty acid enriched chevon were obtained from goats fed a 50% oil palm frond diet and commercial goat concentrate for 100 days, respectively. Goats fed the 50% oil palm frond diet contained high amounts of α-linolenic acid (ALA in their meat compared to goats fed the control diet. The chevon was then used to prepare two types of pellets (control or enriched chevon that were then fed to twenty-male-four-month-old Sprague-Dawley rats (n=10 in each group for 12 weeks to evaluate their effects on plasma cholesterol levels, tissue fatty acids, and gene expression. There was a significant increase in ALA and docosahexaenoic acid (DHA in the muscle tissues and liver of the rats fed the enriched chevon compared with the control group. Plasma cholesterol also decreased (P<0.05 in rats fed the enriched chevon compared to the control group. The rat pellets containing enriched chevon significantly upregulated the key transcription factor PPAR-γ and downregulated SREBP-1c expression relative to the control group. The results showed that the omega-3 fatty acid enriched chevon increased the omega-3 fatty acids in the rat tissues and altered PPAR-γ and SREBP-1c genes expression.

  11. Enrichment experiment changes microbial interactions in an ultra-oligotrophic environment.

    Science.gov (United States)

    Ponce-Soto, Gabriel Y; Aguirre-von-Wobeser, Eneas; Eguiarte, Luis E; Elser, James J; Lee, Zarraz M-P; Souza, Valeria

    2015-01-01

    The increase of nutrients in water bodies, in particular nitrogen (N) and phosphorus (P) due to the recent expansion of agricultural and other human activities is accelerating environmental degradation of these water bodies, elevating the risk of eutrophication and reducing biodiversity. To evaluate the ecological effects of the influx of nutrients in an oligotrophic and stoichiometrically imbalanced environment, we performed a replicated in situ mesocosm experiment. We analyzed the effects of a N- and P-enrichment on the bacterial interspecific interactions in an experiment conducted in the Cuatro Cienegas Basin (CCB) in Mexico. This is a desert ecosystem comprised of several aquatic systems with a large number of microbial endemic species. The abundance of key nutrients in this basin exhibits strong stoichiometric imbalance (high N:P ratios), suggesting that species diversity is maintained mostly by competition for resources. We focused on the biofilm formation and antibiotic resistance of 960 strains of cultivated bacteria in two habitats, water and sediment, before and after 3 weeks of fertilization. The water habitat was dominated by Pseudomonas, while Halomonas dominated the sediment. Strong antibiotic resistance was found among the isolates at time zero in the nutrient-poor bacterial communities, but resistance declined in the bacteria isolated in the nutrient-rich environments, suggesting that in the nutrient-poor original environment, negative inter-specific interactions were important, while in the nutrient-rich environments, competitive interactions are not so important. In water, a significant increase in the percentage of biofilm-forming strains was observed for all treatments involving nutrient addition.

  12. Enrichment experiment changes microbial interactions in an ultra-oligotrophic environment

    Directory of Open Access Journals (Sweden)

    Gabriel Yaxal Ponce-Soto

    2015-04-01

    Full Text Available The increase of nutrients in water bodies, in particular nitrogen (N and phosphorus (P due to the recent expansion of agricultural and other human activities is accelerating environmental degradation of these water bodies, elevating the risk of eutrophication and reducing biodiversity. To evaluate the ecological effects of the influx of nutrients in an oligotrophic and stoichiometrically imbalanced environment, we performed a replicated in situ mesocosm experiment. We analyzed the effects of a N- and P-enrichment on the bacterial interspecific interactions in an experiment conducted in the Cuatro Cienegas Basin (CCB in Mexico. This is a desert ecosystem comprised of several aquatic systems with a large number of microbial endemic species. The abundance of key nutrients in this basin exhibits strong stoichiometric imbalance (high N:P ratios, suggesting that species diversity is maintained mostly by competition for resources. We focused on the biofilm formation and antibiotic resistance of 960 strains of cultivated bacteria in two habitats, water and sediment, before and after three weeks of fertilization. The water habitat was dominated by Pseudomonas, while Halomonas dominated the sediment. Strong antibiotic resistance was found among the isolates at time zero in the nutrient-poor bacterial communities, but resistance declined in the bacteria isolated in the nutrient-rich environments, suggesting that in the nutrient-poor original environment, negative inter-specific interactions were important, while in the nutrient-rich environments, competitive interactions are not so important. In water, a significant increase in the percentage of biofilm-forming strains was observed for all treatments involving nutrient addition.

  13. Genome engineering uncovers 54 evolutionarily conserved and testis-enriched genes that are not required for male fertility in mice

    Science.gov (United States)

    Miyata, Haruhiko; Castaneda, Julio M.; Fujihara, Yoshitaka; Yu, Zhifeng; Archambeault, Denise R.; Isotani, Ayako; Kiyozumi, Daiji; Kriseman, Maya L.; Mashiko, Daisuke; Matsumura, Takafumi; Matzuk, Ryan M.; Mori, Masashi; Noda, Taichi; Oji, Asami; Okabe, Masaru; Prunskaite-Hyyrylainen, Renata; Ramirez-Solis, Ramiro; Satouh, Yuhkoh; Zhang, Qian; Ikawa, Masahito; Matzuk, Martin M.

    2016-01-01

    Gene-expression analysis studies from Schultz et al. estimate that more than 2,300 genes in the mouse genome are expressed predominantly in the male germ line. As of their 2003 publication [Schultz N, Hamra FK, Garbers DL (2003) Proc Natl Acad Sci USA 100(21):12201–12206], the functions of the majority of these testis-enriched genes during spermatogenesis and fertilization were largely unknown. Since the study by Schultz et al., functional analysis of hundreds of reproductive-tract–enriched genes have been performed, but there remain many testis-enriched genes for which their relevance to reproduction remain unexplored or unreported. Historically, a gene knockout is the “gold standard” to determine whether a gene’s function is essential in vivo. Although knockout mice without apparent phenotypes are rarely published, these knockout mouse lines and their phenotypic information need to be shared to prevent redundant experiments. Herein, we used bioinformatic and experimental approaches to uncover mouse testis-enriched genes that are evolutionarily conserved in humans. We then used gene-disruption approaches, including Knockout Mouse Project resources (targeting vectors and mice) and CRISPR/Cas9, to mutate and quickly analyze the fertility of these mutant mice. We discovered that 54 mutant mouse lines were fertile. Thus, despite evolutionary conservation of these genes in vertebrates and in some cases in all eukaryotes, our results indicate that these genes are not individually essential for male mouse fertility. Our phenotypic data are highly relevant in this fiscally tight funding period and postgenomic age when large numbers of genomes are being analyzed for disease association, and will prevent unnecessary expenditures and duplications of effort by others. PMID:27357688

  14. Module-based functional pathway enrichment analysis of a protein-protein interaction network to study the effects of intestinal microbiota depletion in mice.

    Science.gov (United States)

    Jia, Zhen-Yi; Xia, Yang; Tong, Danian; Yao, Jing; Chen, Hong-Qi; Yang, Jun

    2014-06-01

    Complex communities of microorganisms play important roles in human health, and alterations in the intestinal microbiota may induce intestinal inflammation and numerous diseases. The purpose of this study was to identify the key genes and processes affected by depletion of the intestinal microbiota in a murine model. The Affymetrix microarray dataset GSE22648 was downloaded from the Gene Expression Omnibus database, and differentially expressed genes (DEGs) were identified using the limma package in R. A protein-protein interaction (PPI) network was constructed for the DEGs using the Cytoscape software, and the network was divided into several modules using the MCODE plugin. Furthermore, the modules were functionally annotated using the PiNGO plugin, and DEG-related pathways were retrieved and analyzed using the GenMAPP software. A total of 53 DEGs were identified, of which 26 were upregulated and 27 were downregulated. The PPI network of these DEGs comprised 3 modules. The most significant module-related DEGs were the cytochrome P450 (CYP) 4B1 isozyme gene (CYP4B1) in module 1, CYP4F14 in module 2 and the tachykinin precursor 1 gene (TAC1) in module 3. The majority of enriched pathways of module 1 and 2 were oxidation reduction pathways (metabolism of xenobiotics by CYPs) and lipid metabolism-related pathways, including linoleic acid and arachidonic acid metabolism. The neuropeptide signaling pathway was the most significantly enriched functional pathway of module 3. In conclusion, our findings strongly suggest that intestinal microbiota depletion affects cellular metabolism and oxidation reduction pathways. In addition, this is the first time, to the best of our knowledge, that the neuropeptide signaling pathway is reported to be affected by intestinal microbiota depletion in mice. The present study provides a list of candidate genes and processes related to the interaction of microbiota with the intestinal tract.

  15. The seperate and interactive effects of handling and environmental enrichment on the behaviour and welfare of growing pigs

    NARCIS (Netherlands)

    Day, J.E.L.; Spoolder, H.A.M.; Burfoot, A.; Chamberlain, H.L.; Edwards, S.A.

    2002-01-01

    The aim of this experiment was to determine the interactive effects of handling and environmental enrichment on the behaviour, performance and welfare of the growing/finishing pig. Groups of pigs were exposed to one of eight treatments arranged in a 2 x 4 factorial design with two levels of handling

  16. Neonicotinoid Insecticides Alter the Gene Expression Profile of Neuron-Enriched Cultures from Neonatal Rat Cerebellum

    Directory of Open Access Journals (Sweden)

    Junko Kimura-Kuroda

    2016-10-01

    Full Text Available Neonicotinoids are considered safe because of their low affinities to mammalian nicotinic acetylcholine receptors (nAChRs relative to insect nAChRs. However, because of importance of nAChRs in mammalian brain development, there remains a need to establish the safety of chronic neonicotinoid exposures with regards to children’s health. Here we examined the effects of longterm (14 days and low dose (1 μM exposure of neuron-enriched cultures from neonatal rat cerebellum to nicotine and two neonicotinoids: acetamiprid and imidacloprid. Immunocytochemistry revealed no differences in the number or morphology of immature neurons or glial cells in any group versus untreated control cultures. However, a slight disturbance in Purkinje cell dendritic arborization was observed in the exposed cultures. Next we performed transcriptome analysis on total RNAs using microarrays, and identified significant differential expression (p < 0.05, q < 0.05, ≥1.5 fold between control cultures versus nicotine-, acetamiprid-, or imidacloprid-exposed cultures in 34, 48, and 67 genes, respectively. Common to all exposed groups were nine genes essential for neurodevelopment, suggesting that chronic neonicotinoid exposure alters the transcriptome of the developing mammalian brain in a similar way to nicotine exposure. Our results highlight the need for further careful investigations into the effects of neonicotinoids in the developing mammalian brain.

  17. A conserved BDNF, glutamate- and GABA-enriched gene module related to human depression identified by coexpression meta-analysis and DNA variant genome-wide association studies.

    Directory of Open Access Journals (Sweden)

    Lun-Ching Chang

    Full Text Available Large scale gene expression (transcriptome analysis and genome-wide association studies (GWAS for single nucleotide polymorphisms have generated a considerable amount of gene- and disease-related information, but heterogeneity and various sources of noise have limited the discovery of disease mechanisms. As systematic dataset integration is becoming essential, we developed methods and performed meta-clustering of gene coexpression links in 11 transcriptome studies from postmortem brains of human subjects with major depressive disorder (MDD and non-psychiatric control subjects. We next sought enrichment in the top 50 meta-analyzed coexpression modules for genes otherwise identified by GWAS for various sets of disorders. One coexpression module of 88 genes was consistently and significantly associated with GWAS for MDD, other neuropsychiatric disorders and brain functions, and for medical illnesses with elevated clinical risk of depression, but not for other diseases. In support of the superior discriminative power of this novel approach, we observed no significant enrichment for GWAS-related genes in coexpression modules extracted from single studies or in meta-modules using gene expression data from non-psychiatric control subjects. Genes in the identified module encode proteins implicated in neuronal signaling and structure, including glutamate metabotropic receptors (GRM1, GRM7, GABA receptors (GABRA2, GABRA4, and neurotrophic and development-related proteins [BDNF, reelin (RELN, Ephrin receptors (EPHA3, EPHA5]. These results are consistent with the current understanding of molecular mechanisms of MDD and provide a set of putative interacting molecular partners, potentially reflecting components of a functional module across cells and biological pathways that are synchronously recruited in MDD, other brain disorders and MDD-related illnesses. Collectively, this study demonstrates the importance of integrating transcriptome data, gene

  18. A conserved BDNF, glutamate- and GABA-enriched gene module related to human depression identified by coexpression meta-analysis and DNA variant genome-wide association studies.

    Science.gov (United States)

    Chang, Lun-Ching; Jamain, Stephane; Lin, Chien-Wei; Rujescu, Dan; Tseng, George C; Sibille, Etienne

    2014-01-01

    Large scale gene expression (transcriptome) analysis and genome-wide association studies (GWAS) for single nucleotide polymorphisms have generated a considerable amount of gene- and disease-related information, but heterogeneity and various sources of noise have limited the discovery of disease mechanisms. As systematic dataset integration is becoming essential, we developed methods and performed meta-clustering of gene coexpression links in 11 transcriptome studies from postmortem brains of human subjects with major depressive disorder (MDD) and non-psychiatric control subjects. We next sought enrichment in the top 50 meta-analyzed coexpression modules for genes otherwise identified by GWAS for various sets of disorders. One coexpression module of 88 genes was consistently and significantly associated with GWAS for MDD, other neuropsychiatric disorders and brain functions, and for medical illnesses with elevated clinical risk of depression, but not for other diseases. In support of the superior discriminative power of this novel approach, we observed no significant enrichment for GWAS-related genes in coexpression modules extracted from single studies or in meta-modules using gene expression data from non-psychiatric control subjects. Genes in the identified module encode proteins implicated in neuronal signaling and structure, including glutamate metabotropic receptors (GRM1, GRM7), GABA receptors (GABRA2, GABRA4), and neurotrophic and development-related proteins [BDNF, reelin (RELN), Ephrin receptors (EPHA3, EPHA5)]. These results are consistent with the current understanding of molecular mechanisms of MDD and provide a set of putative interacting molecular partners, potentially reflecting components of a functional module across cells and biological pathways that are synchronously recruited in MDD, other brain disorders and MDD-related illnesses. Collectively, this study demonstrates the importance of integrating transcriptome data, gene coexpression modules

  19. Choline metabolites: gene by diet interactions.

    Science.gov (United States)

    Smallwood, Tangi; Allayee, Hooman; Bennett, Brian J

    2016-02-01

    The review highlights recent advances in our understanding of the interactions between genetic polymorphisms in genes that metabolize choline and the dietary requirements of choline and how these interactions relate to human health and disease. The importance of choline as an essential nutrient has been well established, but our appreciation of the interaction between our underlying genetic architecture and dietary choline requirements is only beginning. It has been shown in both human and animal studies that choline deficiencies contribute to diseases such as nonalcoholic fatty liver disease and various neurodegenerative diseases. An adequate supply of dietary choline is important for optimum development, highlighted by the increased maternal requirements during fetal development and in breast-fed infants. We discuss recent studies investigating variants in PEMT and MTHFR1 that are associated with a variety of birth defects. In addition to genetic interactions, we discuss several recent studies that uncover changes in fetal global methylation patterns in response to maternal dietary choline intake that result in changes in gene expression in the offspring. In contrast to the developmental role of adequate choline, there is now an appreciation of the role choline has in cardiovascular disease through the gut microbiota-mediated metabolite trimethylamine N-oxide. This pathway highlights some of our understanding of how the microbiome affects nutrient processing and bioavailability. Finally, to better characterize the genetic architecture regulating choline requirements, we discuss recent results focused on identifying polymorphisms that regulate choline and its derivative products. Here we discuss recent studies that have advanced our understanding of how specific alleles in key choline metabolism genes are related to dietary choline requirements and human disease.

  20. Effect of groundwater--lake interactions on arsenic enrichment in freshwater beach aquifers.

    Science.gov (United States)

    Lee, Jacky; Robinson, Clare; Couture, Raoul-Marie

    2014-09-02

    Field measurements combined with numerical simulations provide insight into the water exchange, groundwater flow, and geochemical processes controlling the mobility of arsenic (As) in freshwater beach aquifers. Elevated dissolved As (up to 56 μg/L) was observed 1-2 m below the shoreline at two sandy beaches on Lake Erie, Ontario, Canada. Water and solid-phase analyses suggest that Fe (hydr)oxides present below the shoreline accumulate As, creating a risk of high As in the beach aquifer. Groundwater flow simulations combined with vertical hydraulic gradient measurements indicate that wave-induced flow recirculations across the groundwater-lake interface are significant. These recirculations, which vary with wave intensity and lake water level fluctuations, set up redox and pH gradients, where Fe precipitates and subsequently sequesters As. The elevated As concentrations observed at both beaches, combined with the distribution of other dissolved species, suggest that the As enrichment may be naturally occurring. Regardless of the As source, the interacting hydrologic and geochemical processes revealed may have important implications for the flux of As and also other oxyanions, such as phosphate, across the groundwater-lake interface in nearshore areas of the Great Lakes.

  1. Gender-enriched transcripts in Haemonchus contortus--predicted functions and genetic interactions based on comparative analyses with Caenorhabditis elegans.

    Science.gov (United States)

    Campbell, Bronwyn E; Nagaraj, Shivashankar H; Hu, Min; Zhong, Weiwei; Sternberg, Paul W; Ong, Eng K; Loukas, Alex; Ranganathan, Shoba; Beveridge, Ian; McInnes, Russell L; Hutchinson, Gareth W; Gasser, Robin B

    2008-01-01

    In the present study, a bioinformatic-microarray approach was employed for the analysis of selected expressed sequence tags (ESTs) from Haemonchus contortus, a key parasitic nematode of small ruminants. Following a bioinformatic analysis of EST data using a semiautomated pipeline, 1885 representative ESTs (rESTs) were selected, to which oligonucleotides (three per EST) were designed and spotted on to a microarray. This microarray was hybridized with cyanine-dye labelled cRNA probes synthesized from RNA from female or male adults of H. contortus. Differential hybridisation was displayed for 301 of the 1885 rESTs ( approximately 16%). Of these, 165 (55%) had significantly greater signal intensities for female cRNA and 136 (45%) for male cRNA. Of these, 113 with increased signals in female or male H. contortus had homologues in Caenorhabditis elegans, predicted to function in metabolism, information storage and processing, cellular processes and signalling, and embryonic and/or larval development. Of the rESTs with no known homologues in C. elegans, 24 ( approximately 40%) had homologues in other nematodes, four had homologues in various other organisms and 30 (52%) had no homology to any sequence in current gene databases. A genetic interaction network was predicted for the C. elegans orthologues of the gender-enriched H. contortus genes, and a focused analysis of a subset revealed a tight network of molecules involved in amino acid, carbohydrate or lipid transport and metabolism, energy production and conversion, translation, ribosomal structure and biogenesis and, importantly, those associated with meiosis and/or mitosis in the germline during oogenesis or spermatogenesis. This study provides a foundation for the molecular, biochemical and functional exploration of selected molecules with differential transcription profiles in H. contortus, for further microarray analyses of transcription in different developmental stages of H. contortus, and for an extended

  2. Approaching the axiomatic enrichment of the Gene Ontology from a lexical perspective.

    Science.gov (United States)

    Quesada-Martínez, Manuel; Mikroyannidi, Eleni; Fernández-Breis, Jesualdo Tomás; Stevens, Robert

    2015-09-01

    The main goal of this work is to measure how lexical regularities in biomedical ontology labels can be used for the automatic creation of formal relationships between classes, and to evaluate the results of applying our approach to the Gene Ontology (GO). In recent years, we have developed a method for the lexical analysis of regularities in biomedical ontology labels, and we showed that the labels can present a high degree of regularity. In this work, we extend our method with a cross-products extension (CPE) metric, which estimates the potential interest of a specific regularity for axiomatic enrichment in the lexical analysis, using information on exact matches in external ontologies. The GO consortium recently enriched the GO by using so-called cross-product extensions. Cross-products are generated by establishing axioms that relate a given GO class with classes from the GO or other biomedical ontologies. We apply our method to the GO and study how its lexical analysis can identify and reconstruct the cross-products that are defined by the GO consortium. The label of the classes of the GO are highly regular in lexical terms, and the exact matches with labels of external ontologies affect 80% of the GO classes. The CPE metric reveals that 31.48% of the classes that exhibit regularities have fragments that are classes into two external ontologies that are selected for our experiment, namely, the Cell Ontology and the Chemical Entities of Biological Interest ontology, and 18.90% of them are fully decomposable into smaller parts. Our results show that the CPE metric permits our method to detect GO cross-product extensions with a mean recall of 62% and a mean precision of 28%. The study is completed with an analysis of false positives to explain this precision value. We think that our results support the claim that our lexical approach can contribute to the axiomatic enrichment of biomedical ontologies and that it can provide new insights into the engineering of

  3. ENVIRONMENTAL ENRICHMENT STRENGTHENS CORTICOCORTICAL INTERACTIONS AND REDUCES AMYLOID-β OLIGOMERS IN AGED MICE

    Directory of Open Access Journals (Sweden)

    Marco eMainardi

    2014-01-01

    Full Text Available Brain aging is characterized by global changes which are thought to underlie age-related cognitive decline. These include variations in brain activity and the progressive increase in the concentration of soluble amyloid-β (Aβ oligomers, directly impairing synaptic function and plasticity even in the absence of any neurodegenerative disorder. Considering the high social impact of the decline in brain performance associated to aging, there is an urgent need to better understand how it can be prevented or contrasted. Lifestyle components, such as social interaction, motor exercise and cognitive activity, are thought to modulate brain physiology and its susceptibility to age-related pathologies. However, the precise functional and molecular factors that respond to environmental stimuli and might mediate their protective action again pathological aging still need to be clearly identified. To address this issue, we exploited environmental enrichment (EE, a reliable model for studying the effect of experience on the brain based on the enhancement of cognitive, social and motor experience, in aged wild-type mice. We analyzed the functional consequences of EE on aged brain physiology by performing in vivo local field potential (LFP recordings with chronic implants. In addition, we also investigated changes induced by EE on molecular markers of neural plasticity and on the levels of soluble Aβ oligomers. We report that EE induced profound changes in the activity of the primary visual and auditory cortices and in their functional interaction. At the molecular level, EE enhanced plasticity by an upward shift of the cortical excitation/inhibition balance. In addition, EE reduced brain Aβ oligomers and increased synthesis of the Aβ-degrading enzyme neprilysin. Our findings strengthen the potential of EE procedures as a non-invasive paradigm for counteracting brain aging processes.

  4. Environmental enrichment strengthens corticocortical interactions and reduces amyloid-β oligomers in aged mice.

    Science.gov (United States)

    Mainardi, Marco; Di Garbo, Angelo; Caleo, Matteo; Berardi, Nicoletta; Sale, Alessandro; Maffei, Lamberto

    2014-01-01

    Brain aging is characterized by global changes which are thought to underlie age-related cognitive decline. These include variations in brain activity and the progressive increase in the concentration of soluble amyloid-β (Aβ) oligomers, directly impairing synaptic function and plasticity even in the absence of any neurodegenerative disorder. Considering the high social impact of the decline in brain performance associated to aging, there is an urgent need to better understand how it can be prevented or contrasted. Lifestyle components, such as social interaction, motor exercise and cognitive activity, are thought to modulate brain physiology and its susceptibility to age-related pathologies. However, the precise functional and molecular factors that respond to environmental stimuli and might mediate their protective action again pathological aging still need to be clearly identified. To address this issue, we exploited environmental enrichment (EE), a reliable model for studying the effect of experience on the brain based on the enhancement of cognitive, social and motor experience, in aged wild-type mice. We analyzed the functional consequences of EE on aged brain physiology by performing in vivo local field potential (LFP) recordings with chronic implants. In addition, we also investigated changes induced by EE on molecular markers of neural plasticity and on the levels of soluble Aβ oligomers. We report that EE induced profound changes in the activity of the primary visual and auditory cortices and in their functional interaction. At the molecular level, EE enhanced plasticity by an upward shift of the cortical excitation/inhibition balance. In addition, EE reduced brain Aβ oligomers and increased synthesis of the Aβ-degrading enzyme neprilysin. Our findings strengthen the potential of EE procedures as a non-invasive paradigm for counteracting brain aging processes.

  5. Gene-Environment Interaction in Parkinson's Disease

    DEFF Research Database (Denmark)

    Chuang, Yu-Hsuan; Lill, Christina M; Lee, Pei-Chen

    2016-01-01

    ) metabolizes caffeine; thus, gene polymorphisms in ADORA2A and CYP1A2 may influence the effect coffee consumption has on PD risk. METHODS: In a population-based case-control study (PASIDA) in Denmark (1,556 PD patients and 1,606 birth year- and gender-matched controls), we assessed interactions between...... interactions for ADORA2A rs5760423 and heavy vs. light coffee consumption in incident (OR interaction = 0.66 [95% CI 0.46-0.94], p = 0.02) but not prevalent PD. We did not observe interactions for CYP1A2 rs762551 and rs2472304 in incident or prevalent PD. In meta-analyses, PD associations with daily coffee...... consumption were strongest among carriers of variant alleles in both ADORA2A and CYP1A2. CONCLUSION: We corroborated results from a previous report that described interactions between ADORA2A and CYP1A2 polymorphisms and coffee consumption. Our results also suggest that survivor bias may affect results...

  6. Finding gene-environment interactions for phobias.

    Science.gov (United States)

    Gregory, Alice M; Lau, Jennifer Y F; Eley, Thalia C

    2008-03-01

    Phobias are common disorders causing a great deal of suffering. Studies of gene-environment interaction (G x E) have revealed much about the complex processes underlying the development of various psychiatric disorders but have told us little about phobias. This article describes what is already known about genetic and environmental influences upon phobias and suggests how this information can be used to optimise the chances of discovering G x Es for phobias. In addition to the careful conceptualisation of new studies, it is suggested that data already collected should be re-analysed in light of increased understanding of processes influencing phobias.

  7. Gene expression profiles of Beta-cell enriched tissue obtained by laser capture microdissection from subjects with type 2 diabetes.

    Directory of Open Access Journals (Sweden)

    Lorella Marselli

    Full Text Available BACKGROUND: Changes in gene expression in pancreatic beta-cells from type 2 diabetes (T2D should provide insights into their abnormal insulin secretion and turnover. METHODOLOGY/PRINCIPAL FINDINGS: Frozen sections were obtained from cadaver pancreases of 10 control and 10 T2D human subjects. Beta-cell enriched samples were obtained by laser capture microdissection (LCM. RNA was extracted, amplified and subjected to microarray analysis. Further analysis was performed with DNA-Chip Analyzer (dChip and Gene Set Enrichment Analysis (GSEA software. There were changes in expression of genes linked to glucotoxicity. Evidence of oxidative stress was provided by upregulation of several metallothionein genes. There were few changes in the major genes associated with cell cycle, apoptosis or endoplasmic reticulum stress. There was differential expression of genes associated with pancreatic regeneration, most notably upregulation of members of the regenerating islet gene (REG family and metalloproteinase 7 (MMP7. Some of the genes found in GWAS studies to be related to T2D were also found to be differentially expressed. IGF2BP2, TSPAN8, and HNF1B (TCF2 were upregulated while JAZF1 and SLC30A8 were downregulated. CONCLUSIONS/SIGNIFICANCE: This study made possible by LCM has identified many novel changes in gene expression that enhance understanding of the pathogenesis of T2D.

  8. Enriched environment and the recovery from inflammatory pain: Social versus physical aspects and their interaction.

    Science.gov (United States)

    Gabriel, Anne F; Paoletti, Giulia; Della Seta, Daniele; Panelli, Riccardo; Marcus, Marco A E; Farabollini, Francesca; Carli, Giancarlo; Joosten, Elbert A J

    2010-03-17

    In this study, we aimed at comparing the effect of the social versus the physical enrichment of the environment on inflammatory pain. Hence, a rat model of carrageenan-induced knee inflammation was used. Four housing conditions were investigated: a physically enriched environment (PE), a socially enriched environment (SE), an enriched environment (EE) (i.e. physically and socially enriched) and a restricted environment (RE) (i.e. non-physically or socially enriched housing). Mechanical allodynia was assessed using the von Frey test preoperatively and at day post-operative (DPO) 1, 3, 7, 10, 14, 17, 21, 24 and 28. Besides, anxiety was evaluated at DPO29, using the Elevated Plus-Maze test. Results show that RE housing resulted in a duration of mechanical allodynia of 4 weeks and of only 3 weeks in EE housing. Housing in a physically enriched environment also resulted in a reduction of the duration of mechanical allodynia of 1 week. Finally, if housed in a SE, the mechanical allodynia lasted for 3 weeks and an half. From these data, we conclude that both physical and social aspects of the environment are involved in the reduction of inflammatory pain duration, although the PE has a larger effect than the SE in this experimental setting. Interestingly, an inter-dependent relationship was noted between the PE and SE. Moreover, no significant difference in the rat anxiety was measured between groups, suggesting that the pain outcomes are likely not biased by the mean of potential housing condition-induced anxiety.

  9. Polymorphism Interaction Analysis (PIA: a method for investigating complex gene-gene interactions

    Directory of Open Access Journals (Sweden)

    Chanock Stephen J

    2008-03-01

    Full Text Available Abstract Background The risk of common diseases is likely determined by the complex interplay between environmental and genetic factors, including single nucleotide polymorphisms (SNPs. Traditional methods of data analysis are poorly suited for detecting complex interactions due to sparseness of data in high dimensions, which often occurs when data are available for a large number of SNPs for a relatively small number of samples. Validation of associations observed using multiple methods should be implemented to minimize likelihood of false-positive associations. Moreover, high-throughput genotyping methods allow investigators to genotype thousands of SNPs at one time. Investigating associations for each individual SNP or interactions between SNPs using traditional approaches is inefficient and prone to false positives. Results We developed the Polymorphism Interaction Analysis tool (PIA version 2.0 to include different approaches for ranking and scoring SNP combinations, to account for imbalances between case and control ratios, stratify on particular factors, and examine associations of user-defined pathways (based on SNP or gene with case status. PIA v. 2.0 detected 2-SNP interactions as the highest ranking model 77% of the time, using simulated data sets of genetic models of interaction (minor allele frequency = 0.2; heritability = 0.01; N = 1600 generated previously [Velez DR, White BC, Motsinger AA, Bush WS, Ritchie MD, Williams SM, Moore JH: A balanced accuracy function for epistasis modeling in imbalanced datasets using multifactor dimensionality reduction. Genet Epidemiol 2007, 31:306–315.]. Interacting SNPs were detected in both balanced (20 SNPs and imbalanced data (case:control 1:2 and 1:4, 10 SNPs in the context of non-interacting SNPs. Conclusion PIA v. 2.0 is a useful tool for exploring gene*gene or gene*environment interactions and identifying a small number of putative associations which may be investigated further using other

  10. Case-control admixture mapping in Latino populations enriches for known asthma-associated genes

    Science.gov (United States)

    Torgerson, Dara G.; Gignoux, Christopher R.; Galanter, Joshua M.; Drake, Katherine A.; Roth, Lindsey A.; Eng, Celeste; Huntsman, Scott; Torres, Raul; Avila, Pedro C.; Chapela, Rocio; Ford, Jean G.; Rodríguez-Santana, José R.; Rodríguez-Cintrón, William; Hernandez, Ryan D.; Burchard, Esteban G.

    2012-01-01

    Background Polymorphisms in more than 100 genes have been associated with asthma susceptibility, yet much of the heritability remains to be explained. Asthma disproportionately affects different racial and ethnic groups in the United States, suggesting that admixture mapping is a useful strategy to identify novel asthma-associated loci. Objective We sought to identify novel asthma-associated loci in Latino populations using case-control admixture mapping. Methods We performed genome-wide admixture mapping by comparing levels of local Native American, European, and African ancestry between children with asthma and nonasthmatic control subjects in Puerto Rican and Mexican populations. Within candidate peaks, we performed allelic tests of association, controlling for differences in local ancestry. Results Between the 2 populations, we identified a total of 62 admixture mapping peaks at a P value of less than 10−3 that were significantly enriched for previously identified asthma-associated genes (P = .0051). One of the peaks was statistically significant based on 100 permutations in the Mexican sample (6q15); however, it was not significant in Puerto Rican subjects. Another peak was identified at nominal significance in both populations (8q12); however, the association was observed with different ancestries. Conclusion Case-control admixture mapping is a promising strategy for identifying novel asthma-associated loci in Latino populations and implicates genetic variation at 6q15 and 8q12 regions with asthma susceptibility. This approach might be useful for identifying regions that contribute to both shared and population-specific differences in asthma susceptibility. PMID:22502797

  11. Diversity of reductive dehalogenase genes from environmental samples and enrichment cultures identified with degenerate primer PCR screens.

    Directory of Open Access Journals (Sweden)

    Laura Audrey Hug

    2013-11-01

    Full Text Available Reductive dehalogenases are the critical enzymes for anaerobic organohalide respiration, a microbial metabolic process that has been harnessed for bioremediation efforts to resolve chlorinated solvent contamination in groundwater and is implicated in the global halogen cycle. Reductive dehalogenase sequence diversity is informative for the dechlorination potential of the site or enrichment culture. A suite of degenerate PCR primers targeting a comprehensive curated set of reductive dehalogenase genes was designed and applied to twelve DNA samples extracted from contaminated and pristine sites, as well as six enrichment cultures capable of reducing chlorinated compounds to non-toxic end-products. The amplified gene products from four environmental sites and two enrichment cultures were sequenced using Illumina HiSeq, and the reductive dehalogenase complement of each sample determined. The results indicate that the diversity of the reductive dehalogenase gene family is much deeper than is currently accounted for: one-third of the translated proteins have less than 70% pairwise amino acid identity to database sequences. Approximately 60% of the sequenced reductive dehalogenase genes were broadly distributed, being identified in four or more samples, and often in previously sequenced genomes as well. In contrast, 17% of the sequenced reductive dehalogenases were unique, present in only a single sample and bearing less than 90% pairwise amino acid identity to any previously identified proteins. Many of the broadly distributed reductive dehalogenases are uncharacterized in terms of their substrate specificity, making these intriguing targets for further biochemical experimentation. Finally, comparison of samples from a contaminated site and an enrichment culture derived from the same site eight years prior allowed examination of the effect of the enrichment process.

  12. Random matrix analysis for gene interaction networks in cancer cells

    CERN Document Server

    Kikkawa, Ayumi

    2016-01-01

    Motivation: The investigation of topological modifications of the gene interaction networks in cancer cells is essential for understanding the desease. We study gene interaction networks in various human cancer cells with the random matrix theory. This study is based on the Cancer Network Galaxy (TCNG) database which is the repository of huge gene interactions inferred by Bayesian network algorithms from 256 microarray experimental data downloaded from NCBI GEO. The original GEO data are provided by the high-throughput microarray expression experiments on various human cancer cells. We apply the random matrix theory to the computationally inferred gene interaction networks in TCNG in order to detect the universality in the topology of the gene interaction networks in cancer cells. Results: We found the universal behavior in almost one half of the 256 gene interaction networks in TCNG. The distribution of nearest neighbor level spacing of the gene interaction matrix becomes the Wigner distribution when the net...

  13. Common inherited variation in mitochondrial genes is not enriched for associations with type 2 diabetes or related glycemic traits.

    Directory of Open Access Journals (Sweden)

    Ayellet V Segrè

    2010-08-01

    Full Text Available Mitochondrial dysfunction has been observed in skeletal muscle of people with diabetes and insulin-resistant individuals. Furthermore, inherited mutations in mitochondrial DNA can cause a rare form of diabetes. However, it is unclear whether mitochondrial dysfunction is a primary cause of the common form of diabetes. To date, common genetic variants robustly associated with type 2 diabetes (T2D are not known to affect mitochondrial function. One possibility is that multiple mitochondrial genes contain modest genetic effects that collectively influence T2D risk. To test this hypothesis we developed a method named Meta-Analysis Gene-set Enrichment of variaNT Associations (MAGENTA; http://www.broadinstitute.org/mpg/magenta. MAGENTA, in analogy to Gene Set Enrichment Analysis, tests whether sets of functionally related genes are enriched for associations with a polygenic disease or trait. MAGENTA was specifically designed to exploit the statistical power of large genome-wide association (GWA study meta-analyses whose individual genotypes are not available. This is achieved by combining variant association p-values into gene scores and then correcting for confounders, such as gene size, variant number, and linkage disequilibrium properties. Using simulations, we determined the range of parameters for which MAGENTA can detect associations likely missed by single-marker analysis. We verified MAGENTA's performance on empirical data by identifying known relevant pathways in lipid and lipoprotein GWA meta-analyses. We then tested our mitochondrial hypothesis by applying MAGENTA to three gene sets: nuclear regulators of mitochondrial genes, oxidative phosphorylation genes, and approximately 1,000 nuclear-encoded mitochondrial genes. The analysis was performed using the most recent T2D GWA meta-analysis of 47,117 people and meta-analyses of seven diabetes-related glycemic traits (up to 46,186 non-diabetic individuals. This well-powered analysis found no

  14. Detection of gene x gene interactions in genome-wide association studies of human population data

    National Research Council Canada - National Science Library

    Musani, Solomon K; Shriner, Daniel; Liu, Nianjun; Feng, Rui; Coffey, Christopher S; Yi, Nengjun; Tiwari, Hemant K; Allison, David B

    2007-01-01

    Empirical evidence supporting the commonality of gene x gene interactions, coupled with frequent failure to replicate results from previous association studies, has prompted statisticians to develop...

  15. Characterizing gene-gene interactions in a statistical epistasis network of twelve candidate genes for obesity.

    Science.gov (United States)

    De, Rishika; Hu, Ting; Moore, Jason H; Gilbert-Diamond, Diane

    2015-01-01

    Recent findings have reemphasized the importance of epistasis, or gene-gene interactions, as a contributing factor to the unexplained heritability of obesity. Network-based methods such as statistical epistasis networks (SEN), present an intuitive framework to address the computational challenge of studying pairwise interactions between thousands of genetic variants. In this study, we aimed to analyze pairwise interactions that are associated with Body Mass Index (BMI) between SNPs from twelve genes robustly associated with obesity (BDNF, ETV5, FAIM2, FTO, GNPDA2, KCTD15, MC4R, MTCH2, NEGR1, SEC16B, SH2B1, and TMEM18). We used information gain measures to identify all SNP-SNP interactions among and between these genes that were related to obesity (BMI > 30 kg/m(2)) within the Framingham Heart Study Cohort; interactions exceeding a certain threshold were used to build an SEN. We also quantified whether interactions tend to occur more between SNPs from the same gene (dyadicity) or between SNPs from different genes (heterophilicity). We identified a highly connected SEN of 709 SNPs and 1241 SNP-SNP interactions. Combining the SEN framework with dyadicity and heterophilicity analyses, we found 1 dyadic gene (TMEM18, P-value = 0.047) and 3 heterophilic genes (KCTD15, P-value = 0.045; SH2B1, P-value = 0.003; and TMEM18, P-value = 0.001). We also identified a lncRNA SNP (rs4358154) as a key node within the SEN using multiple network measures. This study presents an analytical framework to characterize the global landscape of genetic interactions from genome-wide arrays and also to discover nodes of potential biological significance within the identified network.

  16. 3DBIONOTES: A unified, enriched and interactive view of macromolecular information.

    Science.gov (United States)

    Tabas-Madrid, D; Segura, J; Sanchez-Garcia, R; Cuenca-Alba, J; Sorzano, C O S; Carazo, J M

    2016-05-01

    With the advent of high throughput techniques like Next Generation Sequencing, the amount of biological information for genes and proteins is growing faster than ever. Structural information is also rapidly growing, especially in the cryo Electron Microscopy area. However, in many cases, the proteomic and genomic data are spread in multiple databases and with no simple connection to structural information. In this work we present a new web platform that integrates EMDB/PDB structures and UniProt sequences with different sources of protein annotations. The application provides an interactive interface linking sequence and structure, including EM maps, presenting the different sources of information at sequence and structural level. The web application is available at http://3dbionotes.cnb.csic.es.

  17. Between-species differences in gene copy number are enriched among functions critical for adaptive evolution in Arabidopsis halleri.

    Science.gov (United States)

    Suryawanshi, Vasantika; Talke, Ina N; Weber, Michael; Eils, Roland; Brors, Benedikt; Clemens, Stephan; Krämer, Ute

    2016-12-22

    Gene copy number divergence between species is a form of genetic polymorphism that contributes significantly to both genome size and phenotypic variation. In plants, copy number expansions of single genes were implicated in cultivar- or species-specific tolerance of high levels of soil boron, aluminium or calamine-type heavy metals, respectively. Arabidopsis halleri is a zinc- and cadmium-hyperaccumulating extremophile species capable of growing on heavy-metal contaminated, toxic soils. In contrast, its non-accumulating sister species A. lyrata and the closely related reference model species A. thaliana exhibit merely basal metal tolerance. For a genome-wide assessment of the role of copy number divergence (CND) in lineage-specific environmental adaptation, we conducted cross-species array comparative genome hybridizations of three plant species and developed a global signal scaling procedure to adjust for sequence divergence. In A. halleri, transition metal homeostasis functions are enriched twofold among the genes detected as copy number expanded. Moreover, biotic stress functions including mostly disease Resistance (R) gene-related genes are enriched twofold among genes detected as copy number reduced, when compared to the abundance of these functions among all genes. Our results provide genome-wide support for a link between evolutionary adaptation and CND in A. halleri as shown previously for Heavy metal ATPase4. Moreover our results support the hypothesis that elemental defences, which result from the hyperaccumulation of toxic metals, allow the reduction of classical defences against biotic stress as a trade-off.

  18. Toward the physical basis of thermophilic proteins: linking of enriched polar interactions and reduced heat capacity of unfolding.

    Science.gov (United States)

    Zhou, Huan-Xiang

    2002-01-01

    The enrichment of salt bridges and hydrogen bonding in thermophilic proteins has long been recognized. Another tendency, featuring lower heat capacity of unfolding (DeltaC(p)) than found in mesophilic proteins, is emerging from the recent literature. Here we present a simple electrostatic model to illustrate that formation of a salt-bridge or hydrogen-bonding network around an ionized group in the folded state leads to increased folding stability and decreased DeltaC(p). We thus suggest that the reduced DeltaC(p) of thermophilic proteins could partly be attributed to enriched polar interactions. A reduced DeltaC(p) might serve as an indicator for the contribution of polar interactions to folding stability. PMID:12496083

  19. Annotation of gene promoters by integrative data-mining of ChIP-seq Pol-II enrichment data.

    Science.gov (United States)

    Gupta, Ravi; Wikramasinghe, Priyankara; Bhattacharyya, Anirban; Perez, Francisco A; Pal, Sharmistha; Davuluri, Ramana V

    2010-01-18

    Use of alternative gene promoters that drive widespread cell-type, tissue-type or developmental gene regulation in mammalian genomes is a common phenomenon. Chromatin immunoprecipitation methods coupled with DNA microarray (ChIP-chip) or massive parallel sequencing (ChIP-seq) are enabling genome-wide identification of active promoters in different cellular conditions using antibodies against Pol-II. However, these methods produce enrichment not only near the gene promoters but also inside the genes and other genomic regions due to the non-specificity of the antibodies used in ChIP. Further, the use of these methods is limited by their high cost and strong dependence on cellular type and context. We trained and tested different state-of-art ensemble and meta classification methods for identification of Pol-II enriched promoter and Pol-II enriched non-promoter sequences, each of length 500 bp. The classification models were trained and tested on a bench-mark dataset, using a set of 39 different feature variables that are based on chromatin modification signatures and various DNA sequence features. The best performing model was applied on seven published ChIP-seq Pol-II datasets to provide genome wide annotation of mouse gene promoters. We present a novel algorithm based on supervised learning methods to discriminate promoter associated Pol-II enrichment from enrichment elsewhere in the genome in ChIP-chip/seq profiles. We accumulated a dataset of 11,773 promoter and 46,167 non-promoter sequences, each of length 500 bp, generated from RNA Pol-II ChIP-seq data of five tissues (Brain, Kidney, Liver, Lung and Spleen). We evaluated the classification models in building the best predictor and found that Bagging and Random Forest based approaches give the best accuracy. We implemented the algorithm on seven different published ChIP-seq datasets to provide a comprehensive set of promoter annotations for both protein-coding and non-coding genes in the mouse genome. The

  20. Understanding Epistatic Interactions between Genes Targeted by Non-coding Regulatory Elements in Complex Diseases

    Directory of Open Access Journals (Sweden)

    Min Kyung Sung

    2014-12-01

    Full Text Available Genome-wide association studies have proven the highly polygenic architecture of complex diseases or traits; therefore, single-locus-based methods are usually unable to detect all involved loci, especially when individual loci exert small effects. Moreover, the majority of associated single-nucleotide polymorphisms resides in non-coding regions, making it difficult to understand their phenotypic contribution. In this work, we studied epistatic interactions associated with three common diseases using Korea Association Resource (KARE data: type 2 diabetes mellitus (DM, hypertension (HT, and coronary artery disease (CAD. We showed that epistatic single-nucleotide polymorphisms (SNPs were enriched in enhancers, as well as in DNase I footprints (the Encyclopedia of DNA Elements [ENCODE] Project Consortium 2012, which suggested that the disruption of the regulatory regions where transcription factors bind may be involved in the disease mechanism. Accordingly, to identify the genes affected by the SNPs, we employed whole-genome multiple-cell-type enhancer data which discovered using DNase I profiles and Cap Analysis Gene Expression (CAGE. Assigned genes were significantly enriched in known disease associated gene sets, which were explored based on the literature, suggesting that this approach is useful for detecting relevant affected genes. In our knowledge-based epistatic network, the three diseases share many associated genes and are also closely related with each other through many epistatic interactions. These findings elucidate the genetic basis of the close relationship between DM, HT, and CAD.

  1. Environmental enrichment and social interaction improve cognitive function and decrease reactive oxidative species in normal adult mice.

    Science.gov (United States)

    Doulames, Vanessa; Lee, Sangmook; Shea, Thomas B

    2014-05-01

    Environmental stimulation and increased social interactions stimulate cognitive performance, while decrease in these parameters can exacerbate cognitive decline as a function of illness, injury, or age. We examined the impact of environmental stimulation and social interactions on cognitive performance in healthy adult C57B1/6J mice. Mice were housed for 1 month individually or in groups of three (to prevent or allow social interaction) in either a standard environment (SE) or an enlarged cage containing nesting material and items classically utilized to stimulate exploration and activity ("enriched environment"; EE). Cognitive performance was tested by Y maze navigation and Novel Object Recognition (NOR; which compares the relative amount of time mice spent investigating a novel vs. a familiar object). Mice maintained for 1 month under isolated conditions in the SE statistically declined in performance versus baseline in the Y maze (p species (ROS/RNS) in brain. Environmental enrichment did not influence ROS/RNS. These findings indicate that environmental and social enrichment can positively influence cognitive performance in healthy adult mice, and support the notion that proactive approaches may delay age-related cognitive decline.

  2. WhichGenes: a web-based tool for gathering, building, storing and exporting gene sets with application in gene set enrichment analysis.

    Science.gov (United States)

    Glez-Peña, Daniel; Gómez-López, Gonzalo; Pisano, David G; Fdez-Riverola, Florentino

    2009-07-01

    WhichGenes is a web-based interactive gene set building tool offering a very simple interface to extract always-updated gene lists from multiple databases and unstructured biological data sources. While the user can specify new gene sets of interest by following a simple four-step wizard, the tool is able to run several queries in parallel. Every time a new set is generated, it is automatically added to the private gene-set cart and the user is notified by an e-mail containing a direct link to the new set stored in the server. WhichGenes provides functionalities to edit, delete and rename existing sets as well as the capability of generating new ones by combining previous existing sets (intersection, union and difference operators). The user can export his sets configuring the output format and selecting among multiple gene identifiers. In addition to the user-friendly environment, WhichGenes allows programmers to access its functionalities in a programmatic way through a Representational State Transfer web service. WhichGenes front-end is freely available at http://www.whichgenes.org/, WhichGenes API is accessible at http://www.whichgenes.org/api/.

  3. Retinoid X receptor alpha represses GATA-4-mediated transcription via a retinoid-dependent interaction with the cardiac-enriched repressor FOG-2.

    Science.gov (United States)

    Clabby, Martha L; Robison, Trevor A; Quigley, Heather F; Wilson, David B; Kelly, Daniel P

    2003-02-21

    Dietary vitamin A and its derivatives, retinoids, regulate cardiac growth and development. To delineate mechanisms involved in retinoid-mediated control of cardiac gene expression, the regulatory effects of the retinoid X receptor alpha (RXR alpha) on atrial naturietic factor (ANF) gene transcription was investigated. The transcriptional activity of an ANF promoter-reporter in rat neonatal ventricular myocytes was repressed by RXR alpha in the presence of 9-cis-RA and by the constitutively active mutant RXR alpha F318A indicating that liganded RXR confers the regulatory effect. The RXR alpha-mediated repression mapped to the proximal 147 bp of the rat ANF promoter, a region lacking a consensus retinoid response element but containing several known cardiogenic cis elements including a well characterized GATA response element. Glutathione S-transferase "pull-down" assays revealed that RXR alpha interacts directly with GATA-4, in a ligand-independent manner, via the DNA binding domain of RXR alpha and the second zinc finger of GATA-4. Liganded RXR alpha repressed the activity of a heterologous promoter-reporter construct containing GATA-response element recognition sites in cardiac myocytes but not in several other cell types, suggesting that additional cardiac-enriched factors participate in the repression complex. Co-transfection of liganded RXR alpha and the known cardiac-enriched GATA-4 repressor, FOG-2, resulted in additive repression of GATA-4 activity in ventricular myocytes. In addition, RXR alpha was found to bind FOG-2, in a 9-cis-RA-dependent manner. These data reveal a novel mechanism by which retinoids regulate cardiogenic gene expression through direct interaction with GATA-4 and its co-repressor, FOG-2.

  4. Using targeted enrichment of nuclear genes to increase phylogenetic resolution in the neotropical rain forest genus Inga (Leguminosae: Mimosoideae

    Directory of Open Access Journals (Sweden)

    James A Nicholls

    2015-09-01

    Full Text Available Evolutionary radiations are prominent and pervasive across many plant lineages in diverse geographical and ecological settings; in neotropical rainforests there is growing evidence suggesting that a significant fraction of species richness is the result of recent radiations. Understanding the evolutionary trajectories and mechanisms underlying these radiations demands much greater phylogenetic resolution than is currently available for these groups. The neotropical tree genus Inga (Leguminosae is a good example, with ~300 extant species and a crown age of 2-10 MY, yet over 6kb of plastid and nuclear DNA sequence data gives only poor phylogenetic resolution among species. Here we explore the use of larger-scale nuclear gene data obtained though targeted enrichment to increase phylogenetic resolution within Inga. Transcriptome data from three Inga species were used to select 264 nuclear loci for targeted enrichment and sequencing. Following quality control to remove probable paralogs from these sequence data, the final dataset comprised 259,313 bases from 194 loci for 24 accessions representing 22 Inga species and an outgroup (Zygia. Bayesian phylogenies reconstructed using either all loci concatenated or a subset of 60 loci in a gene-tree/species-tree approach yielded highly resolved phylogenies. We used coalescent approaches to show that the same targeted enrichment data also have significant power to discriminate among alternative within-species population histories in the widespread species I. umbellifera. In either application, targeted enrichment simplifies the informatics challenge of identifying orthologous loci associated with de novo genome sequencing. We conclude that targeted enrichment provides the large volumes of phylogenetically-informative sequence data required to resolve relationships within recent plant species radiations, both at the species level and for within-species phylogeographic studies.

  5. AMD-associated genes encoding stress-activated MAPK pathway constituents are identified by interval-based enrichment analysis.

    Directory of Open Access Journals (Sweden)

    John Paul SanGiovanni

    Full Text Available PURPOSE: To determine whether common DNA sequence variants within groups of genes encoding elements of stress-activated mitogen-activated protein kinase (MAPK signaling pathways are, in aggregate, associated with advanced AMD (AAMD. METHODS: We used meta-regression and exact testing methods to identify AAMD-associated SNPs in 1177 people with AAMD and 1024 AMD-free elderly peers from 3 large-scale genotyping projects on the molecular genetics of AMD. SNPs spanning independent AAMD-associated genomic intervals were examined with a multi-locus-testing method (INRICH for enrichment within five sets of genes encoding constituents of stress-activated MAPK signaling cascades. RESULTS: Four-of-five pathway gene sets showed enrichment with AAMD-associated SNPs; findings persisted after adjustment for multiple testing in two. Strongest enrichment signals (P = 0.006 existed in a c-Jun N-terminal kinase (JNK/MAPK cascade (Science Signaling, STKE CMP_10827. In this pathway, seven independent AAMD-associated regions were resident in 6 of 25 genes examined. These included sequence variants in: 1 three MAP kinase kinase kinases (MAP3K4, MAP3K5, MAP3K9 that phosphorylate and activate the MAP kinase kinases MAP2K4 and MAP2K7 (molecules that phosphorylate threonine and tyrosine residues within the activation loop of JNK; 2 a target of MAP2K7 (JNK3A1 that activates complexes involved in transcriptional regulation of stress related genes influencing cell proliferation, apoptosis, motility, metabolism and DNA repair; and 3 NR2C2, a transcription factor activated by JNK1A1 (a drugable molecule influencing retinal cell viability in model systems. We also observed AAMD-related sequence variants resident in genes encoding PPP3CA (a drugable molecule that inactivates MAP3K5, and two genes (TGFB2, TGFBR2 encoding factors involved in MAPK sensing of growth factors/cytokines. CONCLUSIONS: Linkage disequilibrium (LD-independent genomic enrichment analysis yielded

  6. A global test for gene-gene interactions based on random matrix theory.

    Science.gov (United States)

    Frost, H Robert; Amos, Christopher I; Moore, Jason H

    2016-12-01

    Statistical interactions between markers of genetic variation, or gene-gene interactions, are believed to play an important role in the etiology of many multifactorial diseases and other complex phenotypes. Unfortunately, detecting gene-gene interactions is extremely challenging due to the large number of potential interactions and ambiguity regarding marker coding and interaction scale. For many data sets, there is insufficient statistical power to evaluate all candidate gene-gene interactions. In these cases, a global test for gene-gene interactions may be the best option. Global tests have much greater power relative to multiple individual interaction tests and can be used on subsets of the markers as an initial filter prior to testing for specific interactions. In this paper, we describe a novel global test for gene-gene interactions, the global epistasis test (GET), that is based on results from random matrix theory. As we show via simulation studies based on previously proposed models for common diseases including rheumatoid arthritis, type 2 diabetes, and breast cancer, our proposed GET method has superior performance characteristics relative to existing global gene-gene interaction tests. A glaucoma GWAS data set is used to demonstrate the practical utility of the GET method.

  7. A gene co-expression network in whole blood of schizophrenia patients is independent of antipsychotic-use and enriched for brain-expressed genes

    DEFF Research Database (Denmark)

    de Jong, Simone; Boks, Marco P M; Fuller, Tova F;

    2012-01-01

    Despite large-scale genome-wide association studies (GWAS), the underlying genes for schizophrenia are largely unknown. Additional approaches are therefore required to identify the genetic background of this disorder. Here we report findings from a large gene expression study in peripheral blood...... of schizophrenia patients and controls. We applied a systems biology approach to genome-wide expression data from whole blood of 92 medicated and 29 antipsychotic-free schizophrenia patients and 118 healthy controls. We show that gene expression profiling in whole blood can identify twelve large gene co...... of these robustly defined disease modules is significantly enriched with brain-expressed genes and with genetic variants that were implicated in a GWAS study, which could imply a causal role in schizophrenia etiology. The most highly connected intramodular hub gene in this module (ABCF1), is located in...

  8. Methylation-sensitive linking libraries enhance gene-enriched sequencing of complex genomes and map DNA methylation domains

    Directory of Open Access Journals (Sweden)

    Bharti Arvind K

    2008-12-01

    Full Text Available Abstract Background Many plant genomes are resistant to whole-genome assembly due to an abundance of repetitive sequence, leading to the development of gene-rich sequencing techniques. Two such techniques are hypomethylated partial restriction (HMPR and methylation spanning linker libraries (MSLL. These libraries differ from other gene-rich datasets in having larger insert sizes, and the MSLL clones are designed to provide reads localized to "epigenetic boundaries" where methylation begins or ends. Results A large-scale study in maize generated 40,299 HMPR sequences and 80,723 MSLL sequences, including MSLL clones exceeding 100 kb. The paired end reads of MSLL and HMPR clones were shown to be effective in linking existing gene-rich sequences into scaffolds. In addition, it was shown that the MSLL clones can be used for anchoring these scaffolds to a BAC-based physical map. The MSLL end reads effectively identified epigenetic boundaries, as indicated by their preferential alignment to regions upstream and downstream from annotated genes. The ability to precisely map long stretches of fully methylated DNA sequence is a unique outcome of MSLL analysis, and was also shown to provide evidence for errors in gene identification. MSLL clones were observed to be significantly more repeat-rich in their interiors than in their end reads, confirming the correlation between methylation and retroelement content. Both MSLL and HMPR reads were found to be substantially gene-enriched, with the SalI MSLL libraries being the most highly enriched (31% align to an EST contig, while the HMPR clones exhibited exceptional depletion of repetitive DNA (to ~11%. These two techniques were compared with other gene-enrichment methods, and shown to be complementary. Conclusion MSLL technology provides an unparalleled approach for mapping the epigenetic status of repetitive blocks and for identifying sequences mis-identified as genes. Although the types and natures of

  9. Multiple stressors in agricultural streams: a mesocosm study of interactions among raised water temperature, sediment addition and nutrient enrichment.

    Directory of Open Access Journals (Sweden)

    Jeremy J Piggott

    Full Text Available Changes to land use affect streams through nutrient enrichment, increased inputs of sediment and, where riparian vegetation has been removed, raised water temperature. We manipulated all three stressors in experimental streamside channels for 30 days and determined the individual and pair-wise combined effects on benthic invertebrate and algal communities and on leaf decay, a measure of ecosystem functioning. We added nutrients (phosphorus+nitrogen; high, intermediate, natural and/or sediment (grain size 0.2 mm; high, intermediate, natural to 18 channels supplied with water from a nearby stream. Temperature was increased by 1.4°C in half the channels, simulating the loss of upstream and adjacent riparian shade. Sediment affected 93% of all biological response variables (either as an individual effect or via an interaction with another stressor generally in a negative manner, while nutrient enrichment affected 59% (mostly positive and raised temperature 59% (mostly positive. More of the algal components of the community responded to stressors acting individually than did invertebrate components, whereas pair-wise stressor interactions were more common in the invertebrate community. Stressors interacted often and in a complex manner, with interactions between sediment and temperature most common. Thus, the negative impact of high sediment on taxon richness of both algae and invertebrates was stronger at raised temperature, further reducing biodiversity. In addition, the decay rate of leaf material (strength loss accelerated with nutrient enrichment at ambient but not at raised temperature. A key implication of our findings for resource managers is that the removal of riparian shading from streams already subjected to high sediment inputs, or land-use changes that increase erosion or nutrient runoff in a landscape without riparian buffers, may have unexpected effects on stream health. We highlight the likely importance of intact or restored buffer

  10. NaviGO: interactive tool for visualization and functional similarity and coherence analysis with gene ontology.

    Science.gov (United States)

    Wei, Qing; Khan, Ishita K; Ding, Ziyun; Yerneni, Satwica; Kihara, Daisuke

    2017-03-20

    The number of genomics and proteomics experiments is growing rapidly, producing an ever-increasing amount of data that are awaiting functional interpretation. A number of function prediction algorithms were developed and improved to enable fast and automatic function annotation. With the well-defined structure and manual curation, Gene Ontology (GO) is the most frequently used vocabulary for representing gene functions. To understand relationship and similarity between GO annotations of genes, it is important to have a convenient pipeline that quantifies and visualizes the GO function analyses in a systematic fashion. NaviGO is a web-based tool for interactive visualization, retrieval, and computation of functional similarity and associations of GO terms and genes. Similarity of GO terms and gene functions is quantified with six different scores including protein-protein interaction and context based association scores we have developed in our previous works. Interactive navigation of the GO function space provides intuitive and effective real-time visualization of functional groupings of GO terms and genes as well as statistical analysis of enriched functions. We developed NaviGO, which visualizes and analyses functional similarity and associations of GO terms and genes. The NaviGO webserver is freely available at: http://kiharalab.org/web/navigo .

  11. Detection of Salmonella invA gene in shrimp enrichment culture by polymerase chain reaction.

    Science.gov (United States)

    Upadhyay, Bishnu Prasad; Utrarachkij, Fuangfa; Thongshoob, Jarinee; Mahakunkijcharoen, Yuvadee; Wongchinda, Niracha; Suthienkul, Orasa; Khusmith, Srisin

    2010-03-01

    Contamination of seafood with salmonellae is a major public health concern. Detection of Salmonella by standard culture methods is time consuming. In this study, an enrichment culture step prior to polymerase chain reaction (PCR) was applied to detect 284 bp fragment of Salmonella invA in comparison with the conventional culture method in 100 shrimp samples collected from four different shrimp farms and fresh food markets around Bangkok. Samples were pre-enriched in non-selective lactose broth (LB) and selective tetrathionate broth (TTB). PCR detection limit was 10 pg and 10(4) cfu/ml of viable salmonellae with 100% specificity. PCR assay detected 19 different Salmonella serovars belonging to 8 serogroups (B, C1, C2-C3, D1, E1, E4 and K) commonly found in clinical and environmental samples in Thailand. The detection rate of PCR following TTB enrichment (24%) was higher than conventional culture method (19%). PCR following TTB, but not in LB enrichment allowed salmonella detection with 84% sensitivity, 90% specificity and 89% accuracy. Shrimp samples collected from fresh food markets had higher levels of contaminated salmonellae than those from shrimp farms. The results indicated that incorporation of an enrichment step prior to PCR has the potential to be applied for detection of naturally contaminated salmonellae in food, environment and clinical samples.

  12. Literature Mining and Ontology based Analysis of Host-Brucella Gene-Gene Interaction Network.

    Science.gov (United States)

    Karadeniz, İlknur; Hur, Junguk; He, Yongqun; Özgür, Arzucan

    2015-01-01

    Brucella is an intracellular bacterium that causes chronic brucellosis in humans and various mammals. The identification of host-Brucella interaction is crucial to understand host immunity against Brucella infection and Brucella pathogenesis against host immune responses. Most of the information about the inter-species interactions between host and Brucella genes is only available in the text of the scientific publications. Many text-mining systems for extracting gene and protein interactions have been proposed. However, only a few of them have been designed by considering the peculiarities of host-pathogen interactions. In this paper, we used a text mining approach for extracting host-Brucella gene-gene interactions from the abstracts of articles in PubMed. The gene-gene interactions here represent the interactions between genes and/or gene products (e.g., proteins). The SciMiner tool, originally designed for detecting mammalian gene/protein names in text, was extended to identify host and Brucella gene/protein names in the abstracts. Next, sentence-level and abstract-level co-occurrence based approaches, as well as sentence-level machine learning based methods, originally designed for extracting intra-species gene interactions, were utilized to extract the interactions among the identified host and Brucella genes. The extracted interactions were manually evaluated. A total of 46 host-Brucella gene interactions were identified and represented as an interaction network. Twenty four of these interactions were identified from sentence-level processing. Twenty two additional interactions were identified when abstract-level processing was performed. The Interaction Network Ontology (INO) was used to represent the identified interaction types at a hierarchical ontology structure. Ontological modeling of specific gene-gene interactions demonstrates that host-pathogen gene-gene interactions occur at experimental conditions which can be ontologically represented. Our

  13. Metagenomic survey of methanesulfonic acid (MSA) catabolic genes in an Atlantic Ocean surface water sample and in a partial enrichment

    Science.gov (United States)

    Henriques, Ana C.; Azevedo, Rui M.S.

    2016-01-01

    Methanesulfonic acid (MSA) is a relevant intermediate of the biogeochemical cycle of sulfur and environmental microorganisms assume an important role in the mineralization of this compound. Several methylotrophic bacterial strains able to grow on MSA have been isolated from soil or marine water and two conserved operons, msmABCD coding for MSA monooxygenase and msmEFGH coding for a transport system, have been repeatedly encountered in most of these strains. Homologous sequences have also been amplified directly from the environment or observed in marine metagenomic data, but these showed a base composition (G + C content) very different from their counterparts from cultivated bacteria. The aim of this study was to understand which microorganisms within the coastal surface oceanic microflora responded to MSA as a nutrient and how the community evolved in the early phases of an enrichment by means of metagenome and gene-targeted amplicon sequencing. From the phylogenetic point of view, the community shifted significantly with the disappearance of all signals related to the Archaea, the Pelagibacteraceae and phylum SAR406, and the increase in methylotroph-harboring taxa, accompanied by other groups so far not known to comprise methylotrophs such as the Hyphomonadaceae. At the functional level, the abundance of several genes related to sulfur metabolism and methylotrophy increased during the enrichment and the allelic distribution of gene msmA diagnostic for MSA monooxygenase altered considerably. Even more dramatic was the disappearance of MSA import-related gene msmE, which suggests that alternative transporters must be present in the enriched community and illustrate the inadequacy of msmE as an ecofunctional marker for MSA degradation at sea. PMID:27761315

  14. Metagenomic survey of methanesulfonic acid (MSA) catabolic genes in an Atlantic Ocean surface water sample and in a partial enrichment.

    Science.gov (United States)

    Henriques, Ana C; Azevedo, Rui M S; De Marco, Paolo

    2016-01-01

    Methanesulfonic acid (MSA) is a relevant intermediate of the biogeochemical cycle of sulfur and environmental microorganisms assume an important role in the mineralization of this compound. Several methylotrophic bacterial strains able to grow on MSA have been isolated from soil or marine water and two conserved operons, msmABCD coding for MSA monooxygenase and msmEFGH coding for a transport system, have been repeatedly encountered in most of these strains. Homologous sequences have also been amplified directly from the environment or observed in marine metagenomic data, but these showed a base composition (G + C content) very different from their counterparts from cultivated bacteria. The aim of this study was to understand which microorganisms within the coastal surface oceanic microflora responded to MSA as a nutrient and how the community evolved in the early phases of an enrichment by means of metagenome and gene-targeted amplicon sequencing. From the phylogenetic point of view, the community shifted significantly with the disappearance of all signals related to the Archaea, the Pelagibacteraceae and phylum SAR406, and the increase in methylotroph-harboring taxa, accompanied by other groups so far not known to comprise methylotrophs such as the Hyphomonadaceae. At the functional level, the abundance of several genes related to sulfur metabolism and methylotrophy increased during the enrichment and the allelic distribution of gene msmA diagnostic for MSA monooxygenase altered considerably. Even more dramatic was the disappearance of MSA import-related gene msmE, which suggests that alternative transporters must be present in the enriched community and illustrate the inadequacy of msmE as an ecofunctional marker for MSA degradation at sea.

  15. Coevolution of gene expression among interacting proteins

    OpenAIRE

    2004-01-01

    Physically interacting proteins or parts of proteins are expected to evolve in a coordinated manner that preserves proper interactions. Such coevolution at the amino acid-sequence level is well documented and has been used to predict interacting proteins, domains, and amino acids. Interacting proteins are also often precisely coexpressed with one another, presumably to maintain proper stoichiometry among interacting components. Here, we show that the expression levels of physically inter...

  16. Environmental enrichment, age and PPARα interact to regulate proliferation in neurogenic niches

    Directory of Open Access Journals (Sweden)

    Margarita ePerez-Martin

    2016-03-01

    Full Text Available Peroxisome proliferator-activated receptor alpha (PPARα ligands have been shown to modulate recovery after brain insults such as ischemia and irradiation by enhancing neurogenesis. In the present study, we investigated the effect of the genetic deletion of PPARα receptors on the proliferative rate of neural precursor cells (NPC in the adult brain. The study was performed in aged Pparα-/- mice exposed to nutritional (treats and environmental (games enrichments for 20 days. We performed immunohistochemical analyses of cells containing the replicating cell DNA marker 5-bromo-2’-deoxyuridine (BrdU+ and the immature neuronal marker doublecortin (Dcx+ in the main neurogenic zones of the adult brain: subgranular zone of dentate gyrus (SGZ, subventricular zone of lateral ventricles (SVZ and/or hypothalamus. Results indicated a reduction in the number of BrdU+ cells in the neurogenic zones analyzed as well as Dcx+ cells in the SGZ during aging (2, 6, 18 months. Pparα deficiency alleviated the age-related reduction of NPC proliferation (BrdU+ cells in the SVZ of the 18-months-old mice. While no genotype effect on NPC proliferation was detected in the SGZ during aging, an accentuated reduction in the number of Dcx+ cells was observed in the SGZ of the 6-months-old Pparα-/- mice. Exposing the 18-months-old mice to nutritional and environmental enrichments reversed the Pparα-/--induced impairment of NPC proliferation in the neurogenic zones analyzed. The enriched environment did not modify the number of SGZ Dcx+ cells in the 18 months old Pparα-/- mice. These results identify PPARα receptors as a potential target to counteract the naturally observed decline in adult NPC proliferation associated with aging and impoverished environments.

  17. Predictability of Genetic Interactions from Functional Gene Modules

    Directory of Open Access Journals (Sweden)

    Jonathan H. Young

    2017-02-01

    Full Text Available Characterizing genetic interactions is crucial to understanding cellular and organismal response to gene-level perturbations. Such knowledge can inform the selection of candidate disease therapy targets, yet experimentally determining whether genes interact is technically nontrivial and time-consuming. High-fidelity prediction of different classes of genetic interactions in multiple organisms would substantially alleviate this experimental burden. Under the hypothesis that functionally related genes tend to share common genetic interaction partners, we evaluate a computational approach to predict genetic interactions in Homo sapiens, Drosophila melanogaster, and Saccharomyces cerevisiae. By leveraging knowledge of functional relationships between genes, we cross-validate predictions on known genetic interactions and observe high predictive power of multiple classes of genetic interactions in all three organisms. Additionally, our method suggests high-confidence candidate interaction pairs that can be directly experimentally tested. A web application is provided for users to query genes for predicted novel genetic interaction partners. Finally, by subsampling the known yeast genetic interaction network, we found that novel genetic interactions are predictable even when knowledge of currently known interactions is minimal.

  18. Prioritization of gene regulatory interactions from large-scale modules in yeast

    Directory of Open Access Journals (Sweden)

    Bringas Ricardo

    2008-01-01

    Full Text Available Abstract Background The identification of groups of co-regulated genes and their transcription factors, called transcriptional modules, has been a focus of many studies about biological systems. While methods have been developed to derive numerous modules from genome-wide data, individual links between regulatory proteins and target genes still need experimental verification. In this work, we aim to prioritize regulator-target links within transcriptional modules based on three types of large-scale data sources. Results Starting with putative transcriptional modules from ChIP-chip data, we first derive modules in which target genes show both expression and function coherence. The most reliable regulatory links between transcription factors and target genes are established by identifying intersection of target genes in coherent modules for each enriched functional category. Using a combination of genome-wide yeast data in normal growth conditions and two different reference datasets, we show that our method predicts regulatory interactions with significantly higher predictive power than ChIP-chip binding data alone. A comparison with results from other studies highlights that our approach provides a reliable and complementary set of regulatory interactions. Based on our results, we can also identify functionally interacting target genes, for instance, a group of co-regulated proteins related to cell wall synthesis. Furthermore, we report novel conserved binding sites of a glycoprotein-encoding gene, CIS3, regulated by Swi6-Swi4 and Ndd1-Fkh2-Mcm1 complexes. Conclusion We provide a simple method to prioritize individual TF-gene interactions from large-scale transcriptional modules. In comparison with other published works, we predict a complementary set of regulatory interactions which yields a similar or higher prediction accuracy at the expense of sensitivity. Therefore, our method can serve as an alternative approach to prioritization for

  19. Environmental confounding in gene-environment interaction studies.

    Science.gov (United States)

    Vanderweele, Tyler J; Ko, Yi-An; Mukherjee, Bhramar

    2013-07-01

    We show that, in the presence of uncontrolled environmental confounding, joint tests for the presence of a main genetic effect and gene-environment interaction will be biased if the genetic and environmental factors are correlated, even if there is no effect of either the genetic factor or the environmental factor on the disease. When environmental confounding is ignored, such tests will in fact reject the joint null of no genetic effect with a probability that tends to 1 as the sample size increases. This problem with the joint test vanishes under gene-environment independence, but it still persists if estimating the gene-environment interaction parameter itself is of interest. Uncontrolled environmental confounding will bias estimates of gene-environment interaction parameters even under gene-environment independence, but it will not do so if the unmeasured confounding variable itself does not interact with the genetic factor. Under gene-environment independence, if the interaction parameter without controlling for the environmental confounder is nonzero, then there is gene-environment interaction either between the genetic factor and the environmental factor of interest or between the genetic factor and the unmeasured environmental confounder. We evaluate several recently proposed joint tests in a simulation study and discuss the implications of these results for the conduct of gene-environment interaction studies.

  20. Characterization of gene mutations and copy number changes in acute myeloid leukemia using a rapid target enrichment protocol.

    Science.gov (United States)

    Bolli, Niccolò; Manes, Nicla; McKerrell, Thomas; Chi, Jianxiang; Park, Naomi; Gundem, Gunes; Quail, Michael A; Sathiaseelan, Vijitha; Herman, Bram; Crawley, Charles; Craig, Jenny I O; Conte, Natalie; Grove, Carolyn; Papaemmanuil, Elli; Campbell, Peter J; Varela, Ignacio; Costeas, Paul; Vassiliou, George S

    2015-02-01

    Prognostic stratification is critical for making therapeutic decisions and maximizing survival of patients with acute myeloid leukemia. Advances in the genomics of acute myeloid leukemia have identified several recurrent gene mutations whose prognostic impact is being deciphered. We used HaloPlex target enrichment and Illumina-based next generation sequencing to study 24 recurrently mutated genes in 42 samples of acute myeloid leukemia with a normal karyotype. Read depth varied between and within genes for the same sample, but was predictable and highly consistent across samples. Consequently, we were able to detect copy number changes, such as an interstitial deletion of BCOR, three MLL partial tandem duplications, and a novel KRAS amplification. With regards to coding mutations, we identified likely oncogenic variants in 41 of 42 samples. NPM1 mutations were the most frequent, followed by FLT3, DNMT3A and TET2. NPM1 and FLT3 indels were reported with good efficiency. We also showed that DNMT3A mutations can persist post-chemotherapy and in 2 cases studied at diagnosis and relapse, we were able to delineate the dynamics of tumor evolution and give insights into order of acquisition of variants. HaloPlex is a quick and reliable target enrichment method that can aid diagnosis and prognostic stratification of acute myeloid leukemia patients.

  1. Long-Range Chromosome Interactions Mediated by Cohesin Shape Circadian Gene Expression.

    Directory of Open Access Journals (Sweden)

    Yichi Xu

    2016-05-01

    Full Text Available Mammalian circadian rhythm is established by the negative feedback loops consisting of a set of clock genes, which lead to the circadian expression of thousands of downstream genes in vivo. As genome-wide transcription is organized under the high-order chromosome structure, it is largely uncharted how circadian gene expression is influenced by chromosome architecture. We focus on the function of chromatin structure proteins cohesin as well as CTCF (CCCTC-binding factor in circadian rhythm. Using circular chromosome conformation capture sequencing, we systematically examined the interacting loci of a Bmal1-bound super-enhancer upstream of a clock gene Nr1d1 in mouse liver. These interactions are largely stable in the circadian cycle and cohesin binding sites are enriched in the interactome. Global analysis showed that cohesin-CTCF co-binding sites tend to insulate the phases of circadian oscillating genes while cohesin-non-CTCF sites are associated with high circadian rhythmicity of transcription. A model integrating the effects of cohesin and CTCF markedly improved the mechanistic understanding of circadian gene expression. Further experiments in cohesin knockout cells demonstrated that cohesin is required at least in part for driving the circadian gene expression by facilitating the enhancer-promoter looping. This study provided a novel insight into the relationship between circadian transcriptome and the high-order chromosome structure.

  2. Molecular Basis of Gene-Gene Interaction: Cyclic Cross-Regulation of Gene Expression and Post-GWAS Gene-Gene Interaction Involved in Atrial Fibrillation.

    Directory of Open Access Journals (Sweden)

    Yufeng Huang

    2015-08-01

    Full Text Available Atrial fibrillation (AF is the most common cardiac arrhythmia at the clinic. Recent GWAS identified several variants associated with AF, but they account for <10% of heritability. Gene-gene interaction is assumed to account for a significant portion of missing heritability. Among GWAS loci for AF, only three were replicated in the Chinese Han population, including SNP rs2106261 (G/A substitution in ZFHX3, rs2200733 (C/T substitution near PITX2c, and rs3807989 (A/G substitution in CAV1. Thus, we analyzed the interaction among these three AF loci. We demonstrated significant interaction between rs2106261 and rs2200733 in three independent populations and combined population with 2,020 cases/5,315 controls. Compared to non-risk genotype GGCC, two-locus risk genotype AATT showed the highest odds ratio in three independent populations and the combined population (OR=5.36 (95% CI 3.87-7.43, P=8.00×10-24. The OR of 5.36 for AATT was significantly higher than the combined OR of 3.31 for both GGTT and AACC, suggesting a synergistic interaction between rs2106261 and rs2200733. Relative excess risk due to interaction (RERI analysis also revealed significant interaction between rs2106261 and rs2200733 when exposed two copies of risk alleles (RERI=2.87, P<1.00×10-4 or exposed to one additional copy of risk allele (RERI=1.29, P<1.00×10-4. The INTERSNP program identified significant genotypic interaction between rs2106261 and rs2200733 under an additive by additive model (OR=0.85, 95% CI: 0.74-0.97, P=0.02. Mechanistically, PITX2c negatively regulates expression of miR-1, which negatively regulates expression of ZFHX3, resulting in a positive regulation of ZFHX3 by PITX2c; ZFHX3 positively regulates expression of PITX2C, resulting in a cyclic loop of cross-regulation between ZFHX3 and PITX2c. Both ZFHX3 and PITX2c regulate expression of NPPA, TBX5 and NKX2.5. These results suggest that cyclic cross-regulation of gene expression is a molecular basis for gene-gene

  3. ExAtlas: An interactive online tool for meta-analysis of gene expression data.

    Science.gov (United States)

    Sharov, Alexei A; Schlessinger, David; Ko, Minoru S H

    2015-12-01

    We have developed ExAtlas, an on-line software tool for meta-analysis and visualization of gene expression data. In contrast to existing software tools, ExAtlas compares multi-component data sets and generates results for all combinations (e.g. all gene expression profiles versus all Gene Ontology annotations). ExAtlas handles both users' own data and data extracted semi-automatically from the public repository (GEO/NCBI database). ExAtlas provides a variety of tools for meta-analyses: (1) standard meta-analysis (fixed effects, random effects, z-score, and Fisher's methods); (2) analyses of global correlations between gene expression data sets; (3) gene set enrichment; (4) gene set overlap; (5) gene association by expression profile; (6) gene specificity; and (7) statistical analysis (ANOVA, pairwise comparison, and PCA). ExAtlas produces graphical outputs, including heatmaps, scatter-plots, bar-charts, and three-dimensional images. Some of the most widely used public data sets (e.g. GNF/BioGPS, Gene Ontology, KEGG, GAD phenotypes, BrainScan, ENCODE ChIP-seq, and protein-protein interaction) are pre-loaded and can be used for functional annotations.

  4. rapidGSEA: Speeding up gene set enrichment analysis on multi-core CPUs and CUDA-enabled GPUs.

    Science.gov (United States)

    Hundt, Christian; Hildebrandt, Andreas; Schmidt, Bertil

    2016-09-23

    Gene Set Enrichment Analysis (GSEA) is a popular method to reveal significant dependencies between predefined sets of gene symbols and observed phenotypes by evaluating the deviation of gene expression values between cases and controls. An established measure of inter-class deviation, the enrichment score, is usually computed using a weighted running sum statistic over the whole set of gene symbols. Due to the lack of analytic expressions the significance of enrichment scores is determined using a non-parametric estimation of their null distribution by permuting the phenotype labels of the probed patients. Accordingly, GSEA is a time-consuming task due to the large number of required permutations to accurately estimate the nominal p-value - a circumstance that is even more pronounced during multiple hypothesis testing since its estimate is lower-bounded by the inverse number of samples in permutation space. We present rapidGSEA - a software suite consisting of two tools for facilitating permutation-based GSEA: cudaGSEA and ompGSEA. cudaGSEA is a CUDA-accelerated tool using fine-grained parallelization schemes on massively parallel architectures while ompGSEA is a coarse-grained multi-threaded tool for multi-core CPUs. Nominal p-value estimation of 4,725 gene sets on a data set consisting of 20,639 unique gene symbols and 200 patients (183 cases + 17 controls) each probing one million permutations takes 19 hours on a Xeon CPU and less than one hour on a GeForce Titan X GPU while the established GSEA tool from the Broad Institute (broadGSEA) takes roughly 13 days. cudaGSEA outperforms broadGSEA by around two orders-of-magnitude on a single Tesla K40c or GeForce Titan X GPU. ompGSEA provides around one order-of-magnitude speedup to broadGSEA on a standard Xeon CPU. The rapidGSEA suite is open-source software and can be downloaded at https://github.com/gravitino/cudaGSEA as standalone application or package for the R framework.

  5. Gene set enrichment analysis and ingenuity pathway analysis of metastatic clear cell renal cell carcinoma cell line.

    Science.gov (United States)

    Khan, Mohammed I; Dębski, Konrad J; Dabrowski, Michał; Czarnecka, Anna M; Szczylik, Cezary

    2016-08-01

    In recent years, genome-wide RNA expression analysis has become a routine tool that offers a great opportunity to study and understand the key role of genes that contribute to carcinogenesis. Various microarray platforms and statistical approaches can be used to identify genes that might serve as prognostic biomarkers and be developed as antitumor therapies in the future. Metastatic renal cell carcinoma (mRCC) is a serious, life-threatening disease, and there are few treatment options for patients. In this study, we performed one-color microarray gene expression (4×44K) analysis of the mRCC cell line Caki-1 and the healthy kidney cell line ASE-5063. A total of 1,921 genes were differentially expressed in the Caki-1 cell line (1,023 upregulated and 898 downregulated). Gene Set Enrichment Analysis (GSEA) and Ingenuity Pathway Analysis (IPA) approaches were used to analyze the differential-expression data. The objective of this research was to identify complex biological changes that occur during metastatic development using Caki-1 as a model mRCC cell line. Our data suggest that there are multiple deregulated pathways associated with metastatic clear cell renal cell carcinoma (mccRCC), including integrin-linked kinase (ILK) signaling, leukocyte extravasation signaling, IGF-I signaling, CXCR4 signaling, and phosphoinositol 3-kinase/AKT/mammalian target of rapamycin signaling. The IPA upstream analysis predicted top transcriptional regulators that are either activated or inhibited, such as estrogen receptors, TP53, KDM5B, SPDEF, and CDKN1A. The GSEA approach was used to further confirm enriched pathway data following IPA.

  6. Effects related to gene-gene interactions of peroxisome proliferator-activated receptor on essential hypertension

    Institute of Scientific and Technical Information of China (English)

    俞浩

    2013-01-01

    Objective To explore the impact of the gene-gene interaction among the single nucleotide polymorphisms(SNPs) of peroxisome proliferator-activated receptorα/δ/γ on essential hypertension(EH).Methods

  7. A gene co-expression network in whole blood of schizophrenia patients is independent of antipsychotic-use and enriched for brain-expressed genes.

    Science.gov (United States)

    de Jong, Simone; Boks, Marco P M; Fuller, Tova F; Strengman, Eric; Janson, Esther; de Kovel, Carolien G F; Ori, Anil P S; Vi, Nancy; Mulder, Flip; Blom, Jan Dirk; Glenthøj, Birte; Schubart, Chris D; Cahn, Wiepke; Kahn, René S; Horvath, Steve; Ophoff, Roel A

    2012-01-01

    Despite large-scale genome-wide association studies (GWAS), the underlying genes for schizophrenia are largely unknown. Additional approaches are therefore required to identify the genetic background of this disorder. Here we report findings from a large gene expression study in peripheral blood of schizophrenia patients and controls. We applied a systems biology approach to genome-wide expression data from whole blood of 92 medicated and 29 antipsychotic-free schizophrenia patients and 118 healthy controls. We show that gene expression profiling in whole blood can identify twelve large gene co-expression modules associated with schizophrenia. Several of these disease related modules are likely to reflect expression changes due to antipsychotic medication. However, two of the disease modules could be replicated in an independent second data set involving antipsychotic-free patients and controls. One of these robustly defined disease modules is significantly enriched with brain-expressed genes and with genetic variants that were implicated in a GWAS study, which could imply a causal role in schizophrenia etiology. The most highly connected intramodular hub gene in this module (ABCF1), is located in, and regulated by the major histocompatibility (MHC) complex, which is intriguing in light of the fact that common allelic variants from the MHC region have been implicated in schizophrenia. This suggests that the MHC increases schizophrenia susceptibility via altered gene expression of regulatory genes in this network.

  8. Novel histone biotinylation marks are enriched in repeat regions and participate in repression of transcriptionally competent genes.

    Science.gov (United States)

    Pestinger, Valerie; Wijeratne, Subhashinee S K; Rodriguez-Melendez, Rocio; Zempleni, Janos

    2011-04-01

    Covalent histone modifications play crucial roles in chromatin structure and genome stability. We previously reported biotinylation of lysine (K) residues in histones H2A, H3 and H4 by holocarboxylase synthetase and demonstrated that K12-biotinylated histone H4 (H4K12bio) is enriched in repeat regions and participates in gene repression. The biological functions of biotinylation marks other than H4K12bio are poorly understood. Here, novel biotinylation site-specific antibodies against H3K9bio, H3K18bio and H4K8bio were used in chromatin immunoprecipitation studies to obtain first insights into possible biological functions of these marks. Chromatin immunoprecipitation assays were conducted in human primary fibroblasts and Jurkat lymphoblastoma cells, and revealed that H3K9bio, H3K18bio and H4K8bio are enriched in repeat regions such as pericentromeric alpha satellite repeats and long-terminal repeats while being depleted in transcriptionally active promoters in euchromatin. Transcriptional stimulation of the repressed interleukin-2 promoter triggered a rapid depletion of histone biotinylation marks at this locus in Jurkat cells, which was paralleled by an increase in interleukin-2 mRNA. Importantly, the enrichment of H3K9bio, H3K18bio and H4K8bio at genomic loci depended on the concentration of biotin in culture media at nutritionally relevant levels, suggesting a novel mechanism of gene regulation by biotin. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Flavanol-Enriched Cocoa Powder Alters the Intestinal Microbiota, Tissue and Fluid Metabolite Profiles, and Intestinal Gene Expression in Pigs.

    Science.gov (United States)

    Jang, Saebyeol; Sun, Jianghao; Chen, Pei; Lakshman, Sukla; Molokin, Aleksey; Harnly, James M; Vinyard, Bryan T; Urban, Joseph F; Davis, Cindy D; Solano-Aguilar, Gloria

    2016-04-01

    Consumption of cocoa-derived polyphenols has been associated with several health benefits; however, their effects on the intestinal microbiome and related features of host intestinal health are not adequately understood. The objective of this study was to determine the effects of eating flavanol-enriched cocoa powder on the composition of the gut microbiota, tissue metabolite profiles, and intestinal immune status. Male pigs (5 mo old, 28 kg mean body weight) were supplemented with 0, 2.5, 10, or 20 g flavanol-enriched cocoa powder/d for 27 d. Metabolites in serum, urine, the proximal colon contents, liver, and adipose tissue; bacterial abundance in the intestinal contents and feces; and intestinal tissue gene expression of inflammatory markers and Toll-like receptors (TLRs) were then determined. O-methyl-epicatechin-glucuronide conjugates dose-dependently increased (Pcocoa powder. The concentration of 3-hydroxyphenylpropionic acid isomers in urine decreased as the dose of cocoa powder fed to pigs increased (75-85%,Pcocoa powder/d, respectively. Moreover, consumption of cocoa powder reducedTLR9gene expression in ileal Peyer's patches (67-80%,Pcocoa powder/d compared with pigs not supplemented with cocoa powder. This study demonstrates that consumption of cocoa powder by pigs can contribute to gut health by enhancing the abundance ofLactobacillusandBifidobacteriumspecies and modulating markers of localized intestinal immunity. © 2016 American Society for Nutrition.

  10. Program to enrich science and mathematics experiences of high school students through interactive museum internships

    Energy Technology Data Exchange (ETDEWEB)

    Reif, R.J. [State Univ. of New York, New Paltz, NY (United States); Lock, C.R. [Univ. of North Carolina, Charlotte, NC (United States)

    1998-11-01

    This project addressed the problem of female and minority representation in science and mathematics education and in related fields. It was designed to recruit high school students from under-represented groups into a program that provided significant, meaningful experiences to encourage those young people to pursue careers in science and science teaching. It provided role models for those students. It provided experiences outside of the normal school environment, experiences that put the participants in the position to serve as role models themselves for disadvantaged young people. It also provided encouragement to pursue careers in science and mathematics teaching and related careers. In these respects, it complemented other successful programs to encourage participation in science. And, it differed in that it provided incentives at a crucial time, when career decisions are being made during the high school years. Further, it encouraged the pursuit of careers in science teaching. The objectives of this project were to: (1) provide enrichment instruction in basic concepts in the life, earth, space, physical sciences and mathematics to selected high school students participating in the program; (2) provide instruction in teaching methods or processes, including verbal communication skills and the use of questioning; (3) provide opportunities for participants, as paid student interns, to transfer knowledge to other peers and adults; (4) encourage minority and female students with high academic potential to pursue careers in science teaching.

  11. Reconstructability analysis as a tool for identifying gene-gene interactions in studies of human diseases.

    Science.gov (United States)

    Shervais, Stephen; Kramer, Patricia L; Westaway, Shawn K; Cox, Nancy J; Zwick, Martin

    2010-01-01

    There are a number of common human diseases for which the genetic component may include an epistatic interaction of multiple genes. Detecting these interactions with standard statistical tools is difficult because there may be an interaction effect, but minimal or no main effect. Reconstructability analysis (RA) uses Shannon's information theory to detect relationships between variables in categorical datasets. We applied RA to simulated data for five different models of gene-gene interaction, and find that even with heritability levels as low as 0.008, and with the inclusion of 50 non-associated genes in the dataset, we can identify the interacting gene pairs with an accuracy of > or =80%. We applied RA to a real dataset of type 2 non-insulin-dependent diabetes (NIDDM) cases and controls, and closely approximated the results of more conventional single SNP disease association studies. In addition, we replicated prior evidence for epistatic interactions between SNPs on chromosomes 2 and 15.

  12. Transcriptome and Gene Ontology (GO) Enrichment Analysis Reveals Genes Involved in Biotin Metabolism That Affect L-Lysine Production in Corynebacterium glutamicum.

    Science.gov (United States)

    Kim, Hong-Il; Kim, Jong-Hyeon; Park, Young-Jin

    2016-03-09

    Corynebacterium glutamicum is widely used for amino acid production. In the present study, 543 genes showed a significant change in their mRNA expression levels in L-lysine-producing C. glutamicum ATCC21300 than that in the wild-type C. glutamicum ATCC13032. Among these 543 differentially expressed genes (DEGs), 28 genes were up- or downregulated. In addition, 454 DEGs were functionally enriched and categorized based on BLAST sequence homologies and gene ontology (GO) annotations using the Blast2GO software. Interestingly, NCgl0071 (bioB, encoding biotin synthase) was expressed at levels ~20-fold higher in the L-lysine-producing ATCC21300 strain than that in the wild-type ATCC13032 strain. Five other genes involved in biotin metabolism or transport--NCgl2515 (bioA, encoding adenosylmethionine-8-amino-7-oxononanoate aminotransferase), NCgl2516 (bioD, encoding dithiobiotin synthetase), NCgl1883, NCgl1884, and NCgl1885--were also expressed at significantly higher levels in the L-lysine-producing ATCC21300 strain than that in the wild-type ATCC13032 strain, which we determined using both next-generation RNA sequencing and quantitative real-time PCR analysis. When we disrupted the bioB gene in C. glutamicum ATCC21300, L-lysine production decreased by approximately 76%, and the three genes involved in biotin transport (NCgl1883, NCgl1884, and NCgl1885) were significantly downregulated. These results will be helpful to improve our understanding of C. glutamicum for industrial amino acid production.

  13. Clustering based gene expression feature selection method: A computational approach to enrich the classifier efficiency of differentially expressed genes

    KAUST Repository

    Abusamra, Heba

    2016-07-20

    The native nature of high dimension low sample size of gene expression data make the classification task more challenging. Therefore, feature (gene) selection become an apparent need. Selecting a meaningful and relevant genes for classifier not only decrease the computational time and cost, but also improve the classification performance. Among different approaches of feature selection methods, however most of them suffer from several problems such as lack of robustness, validation issues etc. Here, we present a new feature selection technique that takes advantage of clustering both samples and genes. Materials and methods We used leukemia gene expression dataset [1]. The effectiveness of the selected features were evaluated by four different classification methods; support vector machines, k-nearest neighbor, random forest, and linear discriminate analysis. The method evaluate the importance and relevance of each gene cluster by summing the expression level for each gene belongs to this cluster. The gene cluster consider important, if it satisfies conditions depend on thresholds and percentage otherwise eliminated. Results Initial analysis identified 7120 differentially expressed genes of leukemia (Fig. 15a), after applying our feature selection methodology we end up with specific 1117 genes discriminating two classes of leukemia (Fig. 15b). Further applying the same method with more stringent higher positive and lower negative threshold condition, number reduced to 58 genes have be tested to evaluate the effectiveness of the method (Fig. 15c). The results of the four classification methods are summarized in Table 11. Conclusions The feature selection method gave good results with minimum classification error. Our heat-map result shows distinct pattern of refines genes discriminating between two classes of leukemia.

  14. Gene x environment interactions as dynamical systems: clinical implications

    National Research Council Canada - National Science Library

    Sarah S. Knox

    2015-01-01

    The etiology and progression of the chronic diseases that account for the highest rates of mortality in the US, namely, cardiovascular diseases and cancers, involve complex gene x environment interactions...

  15. Multimodal Adaptation and Enriched Interaction of Multimedia Content for Mobile Users

    NARCIS (Netherlands)

    Cesar Garcia, P.S.; Bulterman, D.C.A.; Kernchen, R.; Hesselman, C.; Boussard, M.; Spedalieri, A.; Vaishnavi, I.; Gao, B.

    2008-01-01

    This paper introduces an architecture, together with an implemented scenario, capable of dynamically adapt the way mobile users consume and interact with multimedia content. The architecture is based on a representative scenario identified by the European project SPICE, in which multimedia content i

  16. Phospholipase C isozymes are deregulated in colorectal cancer--insights gained from gene set enrichment analysis of the transcriptome.

    Directory of Open Access Journals (Sweden)

    Stine A Danielsen

    Full Text Available Colorectal cancer (CRC is one of the most common cancer types in developed countries. To identify molecular networks and biological processes that are deregulated in CRC compared to normal colonic mucosa, we applied Gene Set Enrichment Analysis to two independent transcriptome datasets, including a total of 137 CRC and ten normal colonic mucosa samples. Eighty-two gene sets as described by the Kyoto Encyclopedia of Genes and Genomes database had significantly altered gene expression in both datasets. These included networks associated with cell division, DNA maintenance, and metabolism. Among signaling pathways with known changes in key genes, the "Phosphatidylinositol signaling network", comprising part of the PI3K pathway, was found deregulated. The downregulated genes in this pathway included several members of the Phospholipase C protein family, and the reduced expression of two of these, PLCD1 and PLCE1, were successfully validated in CRC biopsies (n = 70 and cell lines (n = 19 by quantitative analyses. The repression of both genes was found associated with KRAS mutations (P = 0.005 and 0.006, respectively, and we observed that microsatellite stable carcinomas with reduced PLCD1 expression more frequently had TP53 mutations (P = 0.002. Promoter methylation analyses of PLCD1 and PLCE1 performed in cell lines and tumor biopsies revealed that methylation of PLCD1 can contribute to reduced expression in 40% of the microsatellite instable carcinomas. In conclusion, we have identified significantly deregulated pathways in CRC, and validated repression of PLCD1 and PLCE1 expression. This illustrates that the GSEA approach may guide discovery of novel biomarkers in cancer.

  17. Pathways enrichment analysis for differentially expressed genes in squamous lung cancer.

    Science.gov (United States)

    Qian, Liqiang; Luo, Qingquan; Zhao, Xiaojing; Huang, Jia

    2014-01-01

    Squamous lung cancer (SQLC) is a common type of lung cancer, but its oncogenesis mechanism is not so clear. The aim of this study was to screen the potential pathways changed in SQLC and elucidate the mechanism of it. Published microarray data of GSE3268 series was downloaded from Gene Expression Omnibus (GEO). Significance analysis of microarrays was performed using software R, and differentially expressed genes (DEGs) were harvested. The functions and pathways of DEGs were mapped in Gene Otology and KEGG pathway database, respectively. A total of 2961 genes were filtered as DEGs between normal and SQLC cells. Cell cycle and metabolism were the mainly changed functions of SQLC cells. Meanwhile genes such as MCM, RFC, FEN1, and POLD may induce SQLC through DNA replication pathway, and genes such as PTTG1, CCNB1, CDC6, and PCNA may be involved in SQLC through cell cycle pathway. It is demonstrated that pathway analysis is useful in the identification of target genes in SQLC.

  18. Torsion-mediated interaction between adjacent genes.

    Directory of Open Access Journals (Sweden)

    Sam Meyer

    2014-09-01

    Full Text Available DNA torsional stress is generated by virtually all biomolecular processes involving the double helix, in particular transcription where a significant level of stress propagates over several kilobases. If another promoter is located in this range, this stress may strongly modify its opening properties, and hence facilitate or hinder its transcription. This mechanism implies that transcribed genes distant of a few kilobases are not independent, but coupled by torsional stress, an effect for which we propose the first quantitative and systematic model. In contrast to previously proposed mechanisms of transcriptional interference, the suggested coupling is not mediated by the transcription machineries, but results from the universal mechanical features of the double-helix. The model shows that the effect likely affects prokaryotes as well as eukaryotes, but with different consequences owing to their different basal levels of torsion. It also depends crucially on the relative orientation of the genes, enhancing the expression of eukaryotic divergent pairs while reducing that of prokaryotic convergent ones. To test the in vivo influence of the torsional coupling, we analyze the expression of isolated gene pairs in the Drosophila melanogaster genome. Their orientation and distance dependence is fully consistent with the model, suggesting that torsional gene coupling may constitute a widespread mechanism of (coregulation in eukaryotes.

  19. Visualizing Gene - Interactions within the Rice and Maize Network

    Science.gov (United States)

    Sampong, A.; Feltus, A.; Smith, M.

    2014-12-01

    The purpose of this research was to design a simpler visualization tool for comparing or viewing gene interaction graphs in systems biology. This visualization tool makes it possible and easier for a researcher to visualize the biological metadata of a plant and interact with the graph on a webpage. Currently available visualization software like Cytoscape and Walrus are difficult to interact with and do not scale effectively for large data sets, limiting the ability to visualize interactions within a biological system. The visualization tool developed is useful for viewing and interpreting the dataset of a gene interaction network. The graph layout drawn by this visualization tool is an improvement from the previous method of comparing lines of genes in two separate data files to, now having the ability to visually see the layout of the gene networks and how the two systems are related. The graph layout presented by the visualization tool draws a graph of the sample rice and maize gene networks, linking the common genes found in both plants and highlighting the functions served by common genes from each plant. The success of this visualization tool will enable Dr. Feltus to continue his investigations and draw conclusions on the biological evolution of the sorghum plant as well. REU Funded by NSF ACI Award 1359223 Vetria L. Byrd, PI

  20. Isolation and characterization of rice cesium transporter genes from a rice-transporter-enriched yeast expression library.

    Science.gov (United States)

    Yamaki, Tomohiro; Otani, Masahiro; Ono, Kohei; Mimura, Takuro; Oda, Koshiro; Minamii, Takeshi; Matsumoto, Shingo; Matsuo, Yuzy; Kawamukai, Makoto; Akihiro, Takashi

    2017-08-01

    A considerable portion of agricultural land in central-east Japan has been contaminated by radioactive material, particularly radioactive Cs, due to the industrial accident at the Fukushima Daiichi nuclear power plant. Understanding the mechanism of absorption, translocation and accumulation of Cs(+) in plants will greatly assist in developing approaches to help reduce the radioactive contamination of agricultural products. At present, however, little is known regarding the Cs(+) transporters in rice. A transporter-enriched yeast expression library was constructed and the library was screened for Cs(+) transporter genes. The 1452 full length cDNAs encoding transporter genes were obtained from the Rice Genome Resource Center and 1358 clones of these transporter genes were successively subcloned into yeast expression vectors; which were then transferred into yeast. Using this library, both positive and negative selection screens can be performed, which have not been previously possible. The constructed library is an excellent tool for the isolation of novel transporter genes. This library was screened for clones that were sensitive to Cs(+) using a SD-Gal medium containing either 30 or 70 mM CsCl; resulting in the isolation of 13 Cs(+) sensitive clones. (137) Cs absorption experiments were conducted and confirmed that all of the identified clones were able to absorb (137) Cs. A total of 3 potassium transporters, 2 ABC transporters and 1 NRAMP transporter were among the 13 identified clones. © 2017 Scandinavian Plant Physiology Society.

  1. Gene × Smoking Interactions on Human Brain Gene Expression: Finding Common Mechanisms in Adolescents and Adults

    Science.gov (United States)

    Wolock, Samuel L.; Yates, Andrew; Petrill, Stephen A.; Bohland, Jason W.; Blair, Clancy; Li, Ning; Machiraju, Raghu; Huang, Kun; Bartlett, Christopher W.

    2013-01-01

    Background: Numerous studies have examined gene × environment interactions (G × E) in cognitive and behavioral domains. However, these studies have been limited in that they have not been able to directly assess differential patterns of gene expression in the human brain. Here, we assessed G × E interactions using two publically available datasets…

  2. Gene × Smoking Interactions on Human Brain Gene Expression: Finding Common Mechanisms in Adolescents and Adults

    Science.gov (United States)

    Wolock, Samuel L.; Yates, Andrew; Petrill, Stephen A.; Bohland, Jason W.; Blair, Clancy; Li, Ning; Machiraju, Raghu; Huang, Kun; Bartlett, Christopher W.

    2013-01-01

    Background: Numerous studies have examined gene × environment interactions (G × E) in cognitive and behavioral domains. However, these studies have been limited in that they have not been able to directly assess differential patterns of gene expression in the human brain. Here, we assessed G × E interactions using two publically available datasets…

  3. Neural correlates of gene-environment interactions in ADHD

    NARCIS (Netherlands)

    van der Meer, Dennis

    2016-01-01

    The way we respond to our environment partly depends on our genes. So-called gene-environment interactions (GxE) may explain why some children develop attention-deficit/hyperactivity disorder (ADHD) when exposed to a stressful environment, whereas others do not. Knowledge of GxE may therefore not on

  4. liver-enriched gene 1a and 1b encode novel secretory proteins essential for normal liver development in zebrafish.

    Directory of Open Access Journals (Sweden)

    Changqing Chang

    Full Text Available liver-enriched gene 1 (leg1 is a liver-enriched gene in zebrafish and encodes a novel protein. Our preliminary data suggested that Leg1 is probably involved in early liver development. However, no detailed characterization of Leg1 has been reported thus far. We undertook both bioinformatic and experimental approaches to study leg1 gene structure and its role in early liver development. We found that Leg1 identifies a new conserved protein superfamily featured by the presence of domain of unknown function 781 (DUF781. There are two copies of leg1 in zebrafish, namely leg1a and leg1b. Both leg1a and leg1b are expressed in the larvae and adult liver with leg1a being the predominant form. Knockdown of Leg1a or Leg1b by their respective morpholinos specifically targeting their 5'-UTR each resulted in a small liver phenotype, demonstrating that both Leg1a and Leg1b are important for early liver development. Meanwhile, we found that injection of leg1-ATG(MO, a morpholino which can simultaneously block the translation of Leg1a and Leg1b, caused not only a small liver phenotype but hypoplastic exocrine pancreas and intestinal tube as well. Further examination of leg1-ATG(MO morphants with early endoderm markers and early hepatic markers revealed that although depletion of total Leg1 does not alter the hepatic and pancreatic fate of the endoderm cells, it leads to cell cycle arrest that results in growth retardation of liver, exocrine pancreas and intestine. Finally, we proved that Leg1 is a secretory protein. This intrigued us to propose that Leg1 might act as a novel secreted regulator that is essential for liver and other digestive organ development in zebrafish.

  5. Effect of biochar amendment on the control of soil sulfonamides, antibiotic-resistant bacteria, and gene enrichment in lettuce tissues

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Mao [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Sun, Mingming [Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Feng, Yanfang, E-mail: fengyanfang@163.com [Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014 (China); Wan, Jinzhong [Nanjing Institute of Environmental Science, Ministry of Environmental Protection of China, Nanjing 210042 (China); Xie, Shanni; Tian, Da [Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Zhao, Yu [Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Wu, Jun; Hu, Feng; Li, Huixin [Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Jiang, Xin, E-mail: Jiangxin@issas.ac.cn [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China)

    2016-05-15

    Highlights: • Biochar can prevent soil sulfonamides from accumulating in lettuce tissues. • ARB enrichment in lettuce tissues decreased significantly after biochar amendment. • Impedance effect of biochar addition on soil ARGs was also quite effective. • Biochar application can be a practical strategy to protect vegetable safety. - Abstract: Considering the potential threat of vegetables growing in antibiotic-polluted soil with high abundance of antibiotic-resistant genes (ARGs) against human health through the food chain, it is thus urgent to develop novel control technology to ensure vegetable safety. In the present work, pot experiments were conducted in lettuce cultivation to assess the impedance effect of biochar amendment on soil sulfonamides (SAs), antibiotic-resistant bacteria (ARB), and ARG enrichment in lettuce tissues. After 100 days of cultivation, lettuce cultivation with biochar amendment exhibited the greatest soil SA dissipation as well as the significant improvement of lettuce growth indices, with residual soil SAs mainly existing as the tightly bound fraction. Moreover, the SA contents in roots and new/old leaves were reduced by one to two orders of magnitude compared to those without biochar amendment. In addition, isolate counts for SA-resistant bacterial endophytes in old leaves and sul gene abundances in roots and old leaves also decreased significantly after biochar application. However, neither SA resistant bacteria nor sul genes were detected in new leaves. It was the first study to demonstrate that biochar amendment can be a practical strategy to protect lettuce safety growing in SA-polluted soil with rich ARB and ARGs.

  6. Screening Key Genes Associated with the Development and Progression of Non-small Cell Lung Cancer Based on Gene-enrichment Analysis and Meta-analysis

    Directory of Open Access Journals (Sweden)

    Wenwu HE

    2012-07-01

    Full Text Available Background and objective Non-small cell lung cancer (NSCLC is one of the most common malignant tumors; however, its causes are still not completely understood. This study was designed to screen the key genes and pathways related to NSCLC occurrence and development and to establish the scientific foundation for the genetic mechanisms and targeted therapy of NSCLC. Methods Both gene set-enrichment analysis (GSEA and meta-analysis (meta were used to screen the critical pathways and genes that might be corretacted with the development and progression of lung cancer at the transcription level. Results Using the GSEA and meta methods, focal adhesion and regulation of actin cytoskeleton were determined to be the more prominent overlapping significant pathways. In the focal adhesion pathway, 31 genes were statistically significant (P<0.05, whereas in the regulation of actin cytoskeleton pathway, 32 genes were statistically significant (P<0.05. Conclusion The focal adhesion and the regulation of actin cytoskeleton pathways might play important roles in the occurrence and development of NSCLC. Further studies are needed to determine the biological function for the positiue genes.

  7. Gene environment interactions in bipolar disorder.

    Science.gov (United States)

    Pregelj, Peter

    2011-09-01

    It has been estimated that the heritable component of bipolar disorder ranges between 80 and 90%. However, even genome-wide association studies explain only a fraction of phenotypic variability not resolving the problem of "lost heritability". Although direct evidence for epigenetic dysfunction in bipolar disorder is still limited, methodological technologies in epigenomic profiling have advanced, offering even single cell analysing and resolving the problem of cell heterogeneity in epigenetics research. Gene overlapping with other mental disorders represents another problem in identifying potential susceptibility genes in bipolar disorder. Better understanding of the interplay between multiple environmental and genetic factors involved in the patogenesis of bipolar disorder could provide relevant information for treatment of patients with this complex disorder. Future studies on the role of these factors in psychopathological conditions, subphenotypes and endophenotypes may greatly benefit by using more precise clinical data and a combined approach with multiple research tools incorporated into a single study.

  8. Adipose tissue transcriptional response of lipid metabolism genes in growing Iberian pigs fed oleic acid v. carbohydrate enriched diets.

    Science.gov (United States)

    Benítez, R; Núñez, Y; Fernández, A; Isabel, B; Rodríguez, C; Daza, A; López-Bote, C; Silió, L; Óvilo, C

    2016-06-01

    Diet influences animal body and tissue composition due to direct deposition and to the nutrients effects on metabolism. The influence of specific nutrients on the molecular regulation of lipogenesis is not well characterized and is known to be influenced by many factors including timing and physiological status. A trial was performed to study the effects of different dietary energy sources on lipogenic genes transcription in ham adipose tissue of Iberian pigs, at different growth periods and on feeding/fasting situations. A total of 27 Iberian male pigs of 28 kg BW were allocated to two separate groups and fed with different isocaloric feeding regimens: standard diet with carbohydrates as energy source (CH) or diet enriched with high oleic sunflower oil (HO). Ham subcutaneous adipose tissue was sampled by biopsy at growing (44 kg mean BW) and finishing (100 kg mean BW) periods. The first sampling was performed on fasted animals, while the last sampling was performed twice, with animals fasted overnight and 3 h after refeeding. Effects of diet, growth period and feeding/fasting status on gene expression were explored quantifying the expression of a panel of key genes implicated in lipogenesis and lipid metabolism processes. Quantitative PCR revealed several differentially expressed genes according to diet, with similar results at both timings: RXRG, LEP and FABP5 genes were upregulated in HO group while ME1, FASN, ACACA and ELOVL6 were upregulated in CH. The diet effect on ME1 gene expression was conditional on feeding/fasting status, with the higher ME1 gene expression in CH than HO groups, observed only in fasting samples. Results are compatible with a higher de novo endogenous synthesis of fatty acids (FA) in the carbohydrate-supplemented group and a higher FA transport in the oleic acid-supplemented group. Growth period significantly affected the expression of most of the studied genes, with all but PPARG showing higher expression in finishing pigs according to

  9. Approximation scheme based on effective interactions for stochastic gene regulation

    CERN Document Server

    Ohkubo, Jun

    2010-01-01

    Since gene regulatory systems contain sometimes only a small number of molecules, these systems are not described well by macroscopic rate equations; a master equation approach is needed for such cases. We develop an approximation scheme for dealing with the stochasticity of the gene regulatory systems. Using an effective interaction concept, original master equations can be reduced to simpler master equations, which can be solved analytically. We apply the approximation scheme to self-regulating systems with monomer or dimer interactions, and a two-gene system with an exclusive switch. The approximation scheme can recover bistability of the exclusive switch adequately.

  10. PARP1 Differentially Interacts with Promoter region of DUX4 Gene in FSHD Myoblasts

    Science.gov (United States)

    Sharma, Vishakha; Pandey, Sachchida Nand; Khawaja, Hunain; Brown, Kristy J; Hathout, Yetrib; Chen, Yi-Wen

    2016-01-01

    Objective The goal of the study is to identity proteins, which interact with the promoter region of double homeobox protein 4 (DUX4) gene known to be causative for the autosomal dominant disorder Facioscapulohumeral Muscular Dystrophy (FSHD). Methods We performed a DNA pull down assay coupled with mass spectrometry analysis to identify proteins that interact with a DUX4 promoter probe in Rhabdomyosarcomca (RD) cells. We selected the top ranked protein poly (ADP-ribose) polymerase 1 (PARP1) from our mass spectrometry data for further ChIP-qPCR validation using patients' myoblasts. We then treated FSHD myoblasts with PARP1 inhibitors to investigate the role of PARP1 in the FSHD myoblasts. Results In our mass spectrometry analysis, PARP1 was found to be the top ranked protein interacting preferentially with the DUX4 promoter probe in RD cells. We further validated this interaction by immunoblotting in RD cells (2-fold enrichment compared to proteins pulled down by a control probe, pfisetin (0.5 mM), a polyphenol compound with PARP1 inhibitory property, for 24 h also suppressed the expression of DUX4 (44.8 fold, p<0.01) and ZSCAN4 (2.2 fold, p<0.05) in the FSHD myoblasts. We further showed that DNA methyltransferase 1 (DNMT1), a gene regulated by PARP1 was also enriched at the DUX4 promoter in RD cells through immunoblotting (2-fold, p<0.01) and immortalized FSHD myoblasts (42-fold, p<0.01) but not control myoblasts through ChIP qPCR. Conclusion Our results showed that PARP1 and DNMT1 interacted with DUX4 promoter and may be involved in modulating DUX4 expression in FSHD. PMID:27722032

  11. Gene-Environment Interactions in Asthma: Genetic and Epigenetic Effects.

    Science.gov (United States)

    Lee, Jong-Uk; Kim, Jeong Dong; Park, Choon-Sik

    2015-07-01

    Over the past three decades, a large number of genetic studies have been aimed at finding genetic variants associated with the risk of asthma, applying various genetic and genomic approaches including linkage analysis, candidate gene polymorphism studies, and genome-wide association studies (GWAS). However, contrary to general expectation, even single nucleotide polymorphisms (SNPs) discovered by GWAS failed to fully explain the heritability of asthma. Thus, application of rare allele polymorphisms in well defined phenotypes and clarification of environmental factors have been suggested to overcome the problem of 'missing' heritability. Such factors include allergens, cigarette smoke, air pollutants, and infectious agents during pre- and post-natal periods. The first and simplest interaction between a gene and the environment is a candidate interaction of both a well known gene and environmental factor in a direct physical or chemical interaction such as between CD14 and endotoxin or between HLA and allergens. Several GWAS have found environmental interactions with occupational asthma, aspirin exacerbated respiratory disease, tobacco smoke-related airway dysfunction, and farm-related atopic diseases. As one of the mechanisms behind gene-environment interaction is epigenetics, a few studies on DNA CpG methylation have been reported on subphenotypes of asthma, pitching the exciting idea that it may be possible to intervene at the junction between the genome and the environment. Epigenetic studies are starting to include data from clinical samples, which will make them another powerful tool for re-search on gene-environment interactions in asthma.

  12. Artificial neural networks modeling gene-environment interaction

    Directory of Open Access Journals (Sweden)

    Günther Frauke

    2012-05-01

    Full Text Available Abstract Background Gene-environment interactions play an important role in the etiological pathway of complex diseases. An appropriate statistical method for handling a wide variety of complex situations involving interactions between variables is still lacking, especially when continuous variables are involved. The aim of this paper is to explore the ability of neural networks to model different structures of gene-environment interactions. A simulation study is set up to compare neural networks with standard logistic regression models. Eight different structures of gene-environment interactions are investigated. These structures are characterized by penetrance functions that are based on sigmoid functions or on combinations of linear and non-linear effects of a continuous environmental factor and a genetic factor with main effect or with a masking effect only. Results In our simulation study, neural networks are more successful in modeling gene-environment interactions than logistic regression models. This outperfomance is especially pronounced when modeling sigmoid penetrance functions, when distinguishing between linear and nonlinear components, and when modeling masking effects of the genetic factor. Conclusion Our study shows that neural networks are a promising approach for analyzing gene-environment interactions. Especially, if no prior knowledge of the correct nature of the relationship between co-variables and response variable is present, neural networks provide a valuable alternative to regression methods that are limited to the analysis of linearly separable data.

  13. Gene-physical activity interactions and their impact on diabetes

    DEFF Research Database (Denmark)

    Oskari Kilpeläinen, Tuomas; Franks, Paul W

    2014-01-01

    mechanisms of how type 2 diabetes develops, which could open up new avenues for the development of novel treatments. It has also been postulated that knowledge of interactions could improve the prevention and treatment of type 2 diabetes by enabling targeted interventions. The present chapter will introduce...... to an equal bout of physical activity. Individuals with specific genetic profiles are also expected to be more responsive to the beneficial effects of physical activity in the prevention of type 2 diabetes. Identification of such gene-physical activity interactions could give new insights into the biological...... the reader to the recent advances in the genetics of type 2 diabetes, summarize the current evidence on gene-physical activity interactions in relation to type 2 diabetes, and outline how information on gene-physical activity interactions might help improve the prevention and treatment of type 2 diabetes...

  14. Functional Ecological Gene Networks to Reveal the Changes Among Microbial Interactions Under Elevated Carbon Dioxide Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Ye; Zhou, Jizhong; Luo, Feng; He, Zhili; Tu, Qichao; Zhi, Xiaoyang

    2010-05-17

    Biodiversity and its responses to environmental changes is a central issue in ecology, and for society. Almost all microbial biodiversity researches focus on species richness and abundance but ignore the interactions among different microbial species/populations. However, determining the interactions and their relationships to environmental changes in microbial communities is a grand challenge, primarily due to the lack of information on the network structure among different microbial species/populations. Here, a novel random matrix theory (RMT)-based conceptual framework for identifying functional ecological gene networks (fEGNs) is developed with the high throughput functional gene array hybridization data from the grassland microbial communities in a long-term FACE (Free Air CO2 Enrichment) experiment. Both fEGNs under elevated CO2 (eCO2) and ambient CO2 (aCO2) possessed general characteristics of many complex systems such as scale-free, small-world, modular and hierarchical. However, the topological structure of the fEGNs is distinctly different between eCO2 and aCO2, suggesting that eCO2 dramatically altered the interactions among different microbial functional groups/populations. In addition, the changes in network structure were significantly correlated with soil carbon and nitrogen dynamics, and plant productivity, indicating the potential importance of network interactions in ecosystem functioning. Elucidating network interactions in microbial communities and their responses to environmental changes are fundamentally important for research in microbial ecology, systems microbiology, and global change.

  15. Enrichment of brain-related genes on the mammalian X chromosome is ancient and predates the divergence of synapsid and sauropsid lineages.

    Science.gov (United States)

    Kemkemer, Claus; Kohn, Matthias; Kehrer-Sawatzki, Hildegard; Fundele, Reinald H; Hameister, Horst

    2009-01-01

    Previous studies have revealed an enrichment of reproduction- and brain-related genes on the human X chromosome. In the present study, we investigated the evolutionary history that underlies this functional specialization. To do so, we analyzed the orthologous building blocks of the mammalian X chromosome in the chicken genome. We used Affymetrix chicken genome microarrays to determine tissue-selective gene expression in several tissues of the chicken, including testis and brain. Subsequently, chromosomal distribution of genes with tissue-selective expression was determined. These analyzes provided several new findings. Firstly, they showed that chicken chromosomes orthologous to the mammalian X chromosome exhibited an increased concentration of genes expressed selectively in brain. More specifically, the highest concentration of brain-selectively expressed genes was found on chicken chromosome GGA12, which shows orthology to the X chromosomal regions with the highest enrichment of non-syndromic X-linked mental retardation (MRX) genes. Secondly, and in contrast to the first finding, no enrichment of testis-selective genes could be detected on these chicken chromosomes. These findings indicate that the accumulation of brain-related genes on the prospective mammalian X chromosome antedates the divergence of sauropsid and synapsid lineages 315 million years ago, whereas the accumulation of testis-related genes on the mammalian X chromosome is more recent and due to adaptational changes.

  16. ABAEnrichment: an R package to test for gene set expression enrichment in the adult and developing human brain.

    Science.gov (United States)

    Grote, Steffi; Prüfer, Kay; Kelso, Janet; Dannemann, Michael

    2016-10-15

    We present ABAEnrichment, an R package that tests for expression enrichment in specific brain regions at different developmental stages using expression information gathered from multiple regions of the adult and developing human brain, together with ontologically organized structural information about the brain, both provided by the Allen Brain Atlas. We validate ABAEnrichment by successfully recovering the origin of gene sets identified in specific brain cell-types and developmental stages. ABAEnrichment was implemented as an R package and is available under GPL (≥ 2) from the Bioconductor website (http://bioconductor.org/packages/3.3/bioc/html/ABAEnrichment.html). steffi_grote@eva.mpg.de, kelso@eva.mpg.de or michael_dannemann@eva.mpg.deSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  17. Deletion of the Novel Oocyte-Enriched Gene, Gpr149, Leads to Increased Fertility in Mice

    Science.gov (United States)

    Edson, Mark A.; Lin, Yi-Nan; Matzuk, Martin M.

    2010-01-01

    Through in silico subtraction and microarray analysis, we identified mouse Gpr149, a novel, oocyte-enriched transcript that encodes a predicted orphan G-protein-coupled receptor (GPR). Phylogenetic analysis of GPR149 from fish to mammals suggests that it is widely conserved in vertebrates. By multitissue RT-PCR analysis, we found that Gpr149 is highly expressed in the ovary and also in the brain and the digestive tract at low levels. Gpr149 levels are low in newborn ovaries but increase throughout folliculogenesis. In the ovary, we found that granulosa cells did not express Gpr149, whereas germinal vesicle and meiosis II stage oocytes showed high levels of Gpr149 expression. After fertilization, Gpr149 expression declined, becoming undetectable by the two-cell stage. To study the function of GPR149 in oocyte growth and maturation, we generated Gpr149 null mice. Surprisingly, Gpr149 null mice are viable and have normal folliculogenesis, but demonstrate increased fertility, enhanced ovulation, increased oocyte Gdf9 mRNA levels, and increased levels of FSH receptor and cyclin D2 mRNA levels in granulosa cells. Thus, Gpr149 null mice are one of the few models with enhanced fertility, and GPR149 could be a target for small molecules to enhance fertility in the assisted reproductive technology clinic. PMID:19887567

  18. Reduced expression of brain-enriched microRNAs in glioblastomas permits targeted regulation of a cell death gene.

    Directory of Open Access Journals (Sweden)

    Rebecca L Skalsky

    Full Text Available Glioblastoma is a highly aggressive malignant tumor involving glial cells in the human brain. We used high-throughput sequencing to comprehensively profile the small RNAs expressed in glioblastoma and non-tumor brain tissues. MicroRNAs (miRNAs made up the large majority of small RNAs, and we identified over 400 different cellular pre-miRNAs. No known viral miRNAs were detected in any of the samples analyzed. Cluster analysis revealed several miRNAs that were significantly down-regulated in glioblastomas, including miR-128, miR-124, miR-7, miR-139, miR-95, and miR-873. Post-transcriptional editing was observed for several miRNAs, including the miR-376 family, miR-411, miR-381, and miR-379. Using the deep sequencing information, we designed a lentiviral vector expressing a cell suicide gene, the herpes simplex virus thymidine kinase (HSV-TK gene, under the regulation of a miRNA, miR-128, that was found to be enriched in non-tumor brain tissue yet down-regulated in glioblastomas, Glioblastoma cells transduced with this vector were selectively killed when cultured in the presence of ganciclovir. Using an in vitro model to recapitulate expression of brain-enriched miRNAs, we demonstrated that neuronally differentiated SH-SY5Y cells transduced with the miRNA-regulated HSV-TK vector are protected from killing by expression of endogenous miR-128. Together, these results provide an in-depth analysis of miRNA dysregulation in glioblastoma and demonstrate the potential utility of these data in the design of miRNA-regulated therapies for the treatment of brain cancers.

  19. Effects of water-sediment interaction and irrigation practices on iodine enrichment in shallow groundwater

    Science.gov (United States)

    Li, Junxia; Wang, Yanxin; Xie, Xianjun; DePaolo, Donald J.

    2016-12-01

    High iodine concentrations in groundwater have caused serious health problems to the local residents in the Datong basin, northern China. To determine the impact of water-sediment interaction and irrigation practices on iodine mobilization in aquifers, isotope (2H, 18O and 87Sr/86Sr) and hydrogeochemical studies were conducted. The results show that groundwater iodine concentrations vary from 14.4 to 2180 μg/L, and high iodine groundwater (>150 μg/L) mainly occurs in the central area of the Datong basin. Sediment iodine content is between organic matter acts as the main source of groundwater iodine. The 87Sr/86Sr values and groundwater chemistry suggest that aluminosilicate hydrolysis is the dominant process controlling hydrochemical evolution along groundwater flowpath, and the degradation of TOC/iodine-rich sediment mediated by microbes potentially triggers the iodine release from the sediment into groundwater in the discharge area. The vertical stratification of groundwater 18O and 2H isotope reflects the occurrence of a vertical mixing process driven by periodic surface irrigation. The vertical mixing could change the redox potential of shallow groundwater from sub-reducing to oxidizing condition, thereby affecting the iodine mobilization in shallow groundwater. It is postulated that the extra introduction of organic matter and O2/NO3/SO4 could accelerate the microbial activity due to the supplement of high ranking electron acceptors and promote the iodine release from the sediment into shallow groundwater.

  20. THE ROLE OF THE VIDEO INTERACTION GUIDANCE IN THE ENRICHMENT OF STUDENT TEACHERS’ SOCIAL SKILLS

    Directory of Open Access Journals (Sweden)

    ŠÍROVÁ, Eva

    2011-12-01

    Full Text Available The school is a complicated social organism. The integration in it could be complicated for teacher novices, who have studied theoretically psychological and pedagogical aspects of learning, but have not many opportunities to develop their professional abilities in the real education. The article deals with using of the video interaction guidance (VIG in the education of the teachers to support their professional development – above all in the area of communication skills. The improvement of the communication significantly helps to create a positive, relaxed, but learning centred climate whereby increases the efficiency of the whole teaching process. The investigation of using of the VIG in the preparation of student teachers is presented in the form of quantitative research and an illustrative case-study. Results of the research suggest that the positive video feedback provides a valuable opportunity for personal, professional and social development for both teachers and pupils across the range of contexts. The VIG improves the communication skills of student teachers, therefore enhances effective learning and teaching and minimises negative contact, e.g. misunderstanding, inattention or conflict. As a consequence, the using of the VIG had a positive impact on the self-esteem and mental hygiene of student teachers who have started fully enjoy the teaching, being energized by it.

  1. Ontological Enrichment of the Genes-to-Systems Breast Cancer Database

    Science.gov (United States)

    Viti, Federica; Mosca, Ettore; Merelli, Ivan; Calabria, Andrea; Alfieri, Roberta; Milanesi, Luciano

    Breast cancer research need the development of specific and suitable tools to appropriately manage biomolecular knowledge. The presented work deals with the integrative storage of breast cancer related biological data, in order to promote a system biology approach to this network disease. To increase data standardization and resource integration, annotations maintained in Genes-to-Systems Breast Cancer (G2SBC) database are associated to ontological terms, which provide a hierarchical structure to organize data enabling more effective queries, statistical analysis and semantic web searching. Exploited ontologies, which cover all levels of the molecular environment, from genes to systems, are among the most known and widely used bioinformatics resources. In G2SBC database ontology terms both provide a semantic layer to improve data storage, accessibility and analysis and represent a user friendly instrument to identify relations among biological components.

  2. Robust gene signatures from microarray data using genetic algorithms enriched with biological pathway keywords.

    Science.gov (United States)

    Luque-Baena, R M; Urda, D; Gonzalo Claros, M; Franco, L; Jerez, J M

    2014-06-01

    Genetic algorithms are widely used in the estimation of expression profiles from microarrays data. However, these techniques are unable to produce stable and robust solutions suitable to use in clinical and biomedical studies. This paper presents a novel two-stage evolutionary strategy for gene feature selection combining the genetic algorithm with biological information extracted from the KEGG database. A comparative study is carried out over public data from three different types of cancer (leukemia, lung cancer and prostate cancer). Even though the analyses only use features having KEGG information, the results demonstrate that this two-stage evolutionary strategy increased the consistency, robustness and accuracy of a blind discrimination among relapsed and healthy individuals. Therefore, this approach could facilitate the definition of gene signatures for the clinical prognosis and diagnostic of cancer diseases in a near future. Additionally, it could also be used for biological knowledge discovery about the studied disease.

  3. An SCD gene from the Mollusca and its upregulation in carotenoid-enriched scallops.

    Science.gov (United States)

    Li, Xue; Ning, Xianhui; Dou, Jinzhuang; Yu, Qian; Wang, Shuyue; Zhang, Lingling; Wang, Shi; Hu, Xiaoli; Bao, Zhenmin

    2015-06-10

    Carotenoids are a diverse group of red, orange, and yellow pigments that act as vitamin A precursors and antioxidants. Animals can only obtain carotenoids through their diets. Amongst the carotenoids identified in nature, over one third are of marine origin, but current research on carotenoid absorption in marine species is limited. Bivalves possess an adductor muscle, which is normally white in scallops. However, a new variety of Yesso scallop (Patinopecten yessoensis), the 'Haida golden scallop', can be distinguished by its adductor muscle's orange colour, which is caused by carotenoid accumulation. Studying the genes related to carotenoid accumulation in this scallop could benefit our understanding of the mechanisms underlying carotenoid absorption in marine organisms, and it could further improve scallop breeding for carotenoid content. Stearoyl-CoA desaturase (SCD) is the rate-limiting enzyme in the production of monounsaturated fatty acids, which enhance carotenoid absorption. Here, the full-length cDNA and genomic DNA sequences of the SCD gene from the Yesso scallop (PySCD) were obtained. The PySCD gene consisted of four exons and three introns, and it contained a 990-bp open reading frame encoding 329 amino acids. It was ubiquitously expressed in adult tissues, embryos and larvae of both white Yesso scallops and 'Haida golden' scallops. Although the expression pattern of PySCD in both types of scallops was similar, significantly more PySCD transcripts were detected in the 'Haida golden' scallops than in the white scallops. Elevated PySCD expression was found in tissues including the adductor muscle, digestive gland, and gonad, as well as in veliger larvae. This study represents the first characterisation of an SCD gene from the Mollusca. Our data imply that PySCD functions in multiple biological processes, and it might be involved in carotenoid accumulation.

  4. A Review for Detecting Gene-Gene Interactions Using Machine Learning Methods in Genetic Epidemiology

    Directory of Open Access Journals (Sweden)

    Ching Lee Koo

    2013-01-01

    Full Text Available Recently, the greatest statistical computational challenge in genetic epidemiology is to identify and characterize the genes that interact with other genes and environment factors that bring the effect on complex multifactorial disease. These gene-gene interactions are also denoted as epitasis in which this phenomenon cannot be solved by traditional statistical method due to the high dimensionality of the data and the occurrence of multiple polymorphism. Hence, there are several machine learning methods to solve such problems by identifying such susceptibility gene which are neural networks (NNs, support vector machine (SVM, and random forests (RFs in such common and multifactorial disease. This paper gives an overview on machine learning methods, describing the methodology of each machine learning methods and its application in detecting gene-gene and gene-environment interactions. Lastly, this paper discussed each machine learning method and presents the strengths and weaknesses of each machine learning method in detecting gene-gene interactions in complex human disease.

  5. Gene × physical activity interactions in obesity

    DEFF Research Database (Denmark)

    Ahmad, Shafqat; Rukh, Gull; Varga, Tibor V

    2013-01-01

    -administered questionnaires. Multiplicative interactions between the GRS and physical activity on BMI were tested in linear and logistic regression models in each cohort, with adjustment for age, age(2), sex, study center (for multicenter studies), and the marginal terms for physical activity and the GRS. These results were......Numerous obesity loci have been identified using genome-wide association studies. A UK study indicated that physical activity may attenuate the cumulative effect of 12 of these loci, but replication studies are lacking. Therefore, we tested whether the aggregate effect of these loci is diminished...... in adults of European ancestry reporting high levels of physical activity. Twelve obesity-susceptibility loci were genotyped or imputed in 111,421 participants. A genetic risk score (GRS) was calculated by summing the BMI-associated alleles of each genetic variant. Physical activity was assessed using self...

  6. Gene and environment interaction: Is the differential susceptibility hypothesis relevant for obesity?

    Science.gov (United States)

    Dalle Molle, Roberta; Fatemi, Hajar; Dagher, Alain; Levitan, Robert D; Silveira, Patricia P; Dubé, Laurette

    2017-02-01

    The differential susceptibility model states that a given genetic variant is associated with an increased risk of pathology in negative environments but greater than average resilience in enriched ones. While this theory was first implemented in psychiatric-genetic research, it may also help us to unravel the complex ways that genes and environments interact to influence feeding behavior and obesity. We reviewed evidence on gene vs. environment interactions that influence obesity development, aiming to support the applicability of the differential susceptibility model for this condition, and propose that various environmental "layers" relevant for human development should be considered when bearing the differential susceptibility model in mind. Mother-child relationship, socioeconomic status and individual's response are important modifiers of BMI and food intake when interacting with gene variants, "for better and for worse". While only a few studies to date have investigated obesity outcomes using this approach, we propose that the differential susceptibility hypothesis is in fact highly applicable to the study of genetic and environmental influences on feeding behavior and obesity risk.

  7. Molecular cloning and expression analysis of the retinoid X receptor (RXR) gene in golden pompano Trachinotus ovatus fed Artemia nauplii with different enrichments.

    Science.gov (United States)

    Yang, Qibin; Zheng, Panlong; Ma, Zhenhua; Li, Tao; Jiang, Shigui; Qin, Jian G

    2015-12-01

    The retinoid X receptors (RXRs) are involved in the skeletal development and other biological process such as blood vessel formation and metabolism. Partial sequences of RXRα and β genes were obtained, and their expressions were quantified on golden pompano Trachinotus ovatus at 28 days post hatching (DPH) to explore the molecular response to nutritional manipulation in fish larvae. As live food, Artemia nauplii were separately enriched with Nannochloropsis and Algamac 3080 and non-enriched Artemia nauplii (control) for fish feeding. The expressions of RXRs were detected in the embryos and fish larvae at early stages, suggesting that the skeletal development in golden pompano initiated before yolk re-sorption completion. Fish fed non-enriched Artemia nauplii ended up with higher jaw malformation. The highest specific growth rate was obtained when fish were fed with the Artemia nauplii enriched with Algamac 3080, and the lowest growth rate was observed when fish were fed with unenriched Artemia nauplii. The highest survival was obtained when fish were fed with non-enriched or Nannochloropsis-enriched Artemia nauplii. This study indicates that the use of enriched formula for Artemia nauplii can significantly affect the expression levels of RXRs and jaw malformation of golden pompano larvae, but there is no clear correlation between RXRs expressions and malformation rates when fish are subjected to nutrient challenge.

  8. Identification of Multiple Dehalogenase Genes Involved in Tetrachloroethene-to-Ethene Dechlorination in a Dehalococcoides-Dominated Enrichment Culture

    Directory of Open Access Journals (Sweden)

    Mohamed Ismaeil

    2017-01-01

    Full Text Available Chloroethenes (CEs are widespread groundwater toxicants that are reductively dechlorinated to nontoxic ethene (ETH by members of Dehalococcoides. This study established a Dehalococcoides-dominated enrichment culture (designated “YN3” that dechlorinates tetrachloroethene (PCE to ETH with high dechlorination activity, that is, complete dechlorination of 800 μM PCE to ETH within 14 days in the presence of Dehalococcoides species at 5.7±1.9×107 copies of 16S rRNA gene/mL. The metagenome of YN3 harbored 18 rdhA genes (designated YN3rdhA1–18 encoding the catalytic subunit of reductive dehalogenase (RdhA, four of which were suggested to be involved in PCE-to-ETH dechlorination based on significant increases in their transcription in response to CE addition. The predicted proteins for two of these four genes, YN3RdhA8 and YN3RdhA16, showed 94% and 97% of amino acid similarity with PceA and VcrA, which are well known to dechlorinate PCE to trichloroethene (TCE and TCE to ETH, respectively. The other two rdhAs, YN3rdhA6 and YN3rdhA12, which were never proved as rdhA for CEs, showed particularly high transcription upon addition of vinyl chloride (VC, with 75±38 and 16±8.6 mRNA copies per gene, respectively, suggesting their possible functions as novel VC-reductive dehalogenases. Moreover, metagenome data indicated the presence of three coexisting bacterial species, including novel species of the genus Bacteroides, which might promote CE dechlorination by Dehalococcoides.

  9. Environmental enrichment attenuates cognitive deficits, but does not alter neurotrophin gene expression in the hippocampus following lateral fluid percussion brain injury.

    Science.gov (United States)

    Hicks, R R; Zhang, L; Atkinson, A; Stevenon, M; Veneracion, M; Seroogy, K B

    2002-01-01

    Environmental enrichment attenuates neurological deficits associated with experimental brain injury. The molecular events that mediate these environmentally induced improvements in function after injury are largely unknown, but neurotrophins have been hypothesized to be a neural substrate because of their role in cell survival and neural plasticity. Furthermore, exposure to complex environments in normal animals increases neurotrophin gene expression. However, following an ischemic injury, environmental enrichment decreases neurotrophin mRNA levels. Whether these contrasting findings are attributable to differences between injured and uninjured animals or are dependent upon the specific type of brain injury has not been determined. We examined the effects of 14 days of environmental enrichment following a lateral fluid percussion brain injury on behavior and gene expression of brain-derived neurotrophic factor, its high-affinity receptor, TrkB, and neurotrophin-3 in the rat hippocampus. Environmental enrichment attenuated learning deficits in the injured animals, but neither the injury nor housing conditions influenced neurotrophin/receptor mRNA levels. From these data we suggest that following brain trauma, improvements in learning associated with environmental enrichment are not mediated by alterations in brain-derived neurotrophic factor, TrkB or neurotrophin-3 gene expression.

  10. Gene-Environment Interactions in Severe Mental Illness

    Directory of Open Access Journals (Sweden)

    Rudolf eUher

    2014-05-01

    Full Text Available Severe mental illness is a broad category that includes schizophrenia, bipolar disorder and severe depression. Both genetic disposition and environmental exposures play important roles in the development of severe mental illness. Multiple lines of evidence suggest that the roles of genetic and environmental depend on each other. Gene-environment interactions may underlie the paradox of strong environmental factors for highly heritable disorders, the low estimates of shared environmental influences in twin studies of severe mental illness and the heritability gap between twin and molecular heritability estimates. Sons and daughters of parents with severe mental illness are more vulnerable to the effects of prenatal and postnatal environmental exposures, suggesting that the expression of genetic liability depends on environment. In the last decade, gene-environment interactions involving specific molecular variants in candidate genes have been identified. Replicated findings include an interaction between a polymorphism in the AKT1 gene and cannabis use in the development of psychosis and an interaction between the length polymorphism of the serotonin transporter gene and childhood maltreatment in the development of persistent depressive disorder. Bipolar disorder has been underinvestigated, with only a single study showing an interaction between a functional polymorphism in BDNF and stressful life events triggering bipolar depressive episodes. The first systematic search for gene-environment interactions has found that a polymorphism in CTNNA3 may sensitise the developing brain to the pathogenic effect of cytomegalovirus in utero, leading to schizophrenia in adulthood. Strategies for genome-wide investigations will likely include coordination between epidemiological and genetic research efforts, systematic assessment of multiple environmental factors in large samples, and prioritization of genetic variants.

  11. Interactive Naive Bayesian network: A new approach of constructing gene-gene interaction network for cancer classification.

    Science.gov (United States)

    Tian, Xue W; Lim, Joon S

    2015-01-01

    Naive Bayesian (NB) network classifier is a simple and well-known type of classifier, which can be easily induced from a DNA microarray data set. However, a strong conditional independence assumption of NB network sometimes can lead to weak classification performance. In this paper, we propose a new approach of interactive naive Bayesian (INB) network to weaken the conditional independence of NB network and classify cancers using DNA microarray data set. We selected the differently expressed genes (DEGs) to reduce the dimension of the microarray data set. Then, an interactive parent which has the biggest influence among all DEGs is searched for each DEG. And then we calculate a weight to represent the interactive relationship between a DEG and its parent. Finally, the gene-gene interaction network is constructed. We experimentally test the INB network in terms of classification accuracy using leukemia and colon DNA microarray data sets, then we compare it with the NB network. The INB network can get higher classification accuracies than NB network. And INB network can show the gene-gene interactions visually.

  12. Construction and screening of metagenomic libraries derived from enrichment cultures: generation of a gene bank for genes conferring alcohol oxidoreductase activity on Escherichia coli.

    Science.gov (United States)

    Knietsch, Anja; Waschkowitz, Tanja; Bowien, Susanne; Henne, Anke; Daniel, Rolf

    2003-03-01

    Enrichment of microorganisms with special traits and the construction of metagenomic libraries by direct cloning of environmental DNA have great potential for identifying genes and gene products for biotechnological purposes. We have combined these techniques to isolate novel genes conferring oxidation of short-chain (C(2) to C(4)) polyols or reduction of the corresponding carbonyls. In order to favor the growth of microorganisms containing the targeted genes, samples collected from four different environments were incubated in the presence of glycerol and 1,2-propanediol. Subsequently, the DNA was extracted from the four samples and used to construct complex plasmid libraries. Approximately 100,000 Escherichia coli strains of each library per test substrate were screened for the production of carbonyls from polyols on indicator agar. Twenty-four positive E. coli clones were obtained during the initial screen. Sixteen of them contained a plasmid (pAK101 to pAK116) which conferred a stable carbonyl-forming phenotype. Eight of the positive clones exhibited NAD(H)-dependent alcohol oxidoreductase activity with polyols or carbonyls as the substrates in crude extracts. Sequencing revealed that the inserts of pAK101 to pAK116 encoded 36 complete and 17 incomplete presumptive protein-encoding genes. Fifty of these genes showed similarity to sequenced genes from a broad collection of different microorganisms. The genes responsible for the carbonyl formation of E. coli were identified for nine of the plasmids (pAK101, pAK102, pAK105, pAK107 to pAK110, pAK115, and pAK116). Analyses of the amino acid sequences deduced from these genes revealed that three (orf12, orf14, and orf22) encoded novel alcohol dehydrogenases of different types, four (orf5, sucB, fdhD, and yabF) encoded novel putative oxidoreductases belonging to groups distinct from alcohol dehydrogenases, one (glpK) encoded a putative glycerol kinase, and one (orf1) encoded a protein which showed no similarity to any

  13. Identification of novel type 1 diabetes candidate genes by integrating genome-wide association data, protein-protein interactions, and human pancreatic islet gene expression

    DEFF Research Database (Denmark)

    Bergholdt, Regine; Brorsson, Caroline; Palleja, Albert;

    2012-01-01

    Genome-wide association studies (GWAS) have heralded a new era in susceptibility locus discovery in complex diseases. For type 1 diabetes, >40 susceptibility loci have been discovered. However, GWAS do not inevitably lead to identification of the gene or genes in a given locus associated...... with disease, and they do not typically inform the broader context in which the disease genes operate. Here, we integrated type 1 diabetes GWAS data with protein-protein interactions to construct biological networks of relevance for disease. A total of 17 networks were identified. To prioritize...... and substantiate these networks, we performed expressional profiling in human pancreatic islets exposed to proinflammatory cytokines. Three networks were significantly enriched for cytokine-regulated genes and, thus, likely to play an important role for type 1 diabetes in pancreatic islets. Eight of the regulated...

  14. CLEAN: CLustering Enrichment ANalysis

    Directory of Open Access Journals (Sweden)

    Medvedovic Mario

    2009-07-01

    Full Text Available Abstract Background Integration of biological knowledge encoded in various lists of functionally related genes has become one of the most important aspects of analyzing genome-wide functional genomics data. In the context of cluster analysis, functional coherence of clusters established through such analyses have been used to identify biologically meaningful clusters, compare clustering algorithms and identify biological pathways associated with the biological process under investigation. Results We developed a computational framework for analytically and visually integrating knowledge-based functional categories with the cluster analysis of genomics data. The framework is based on the simple, conceptually appealing, and biologically interpretable gene-specific functional coherence score (CLEAN score. The score is derived by correlating the clustering structure as a whole with functional categories of interest. We directly demonstrate that integrating biological knowledge in this way improves the reproducibility of conclusions derived from cluster analysis. The CLEAN score differentiates between the levels of functional coherence for genes within the same cluster based on their membership in enriched functional categories. We show that this aspect results in higher reproducibility across independent datasets and produces more informative genes for distinguishing different sample types than the scores based on the traditional cluster-wide analysis. We also demonstrate the utility of the CLEAN framework in comparing clusterings produced by different algorithms. CLEAN was implemented as an add-on R package and can be downloaded at http://Clusteranalysis.org. The package integrates routines for calculating gene specific functional coherence scores and the open source interactive Java-based viewer Functional TreeView (FTreeView. Conclusion Our results indicate that using the gene-specific functional coherence score improves the reproducibility of the

  15. Towards an international standard for PCR-based detection of foodborne thermotolerant campylobacters: interaction of enrichment media and pre-PCR treatment on carcass rinse samples

    DEFF Research Database (Denmark)

    Josefsen, Mathilde Hartmann; Lübeck, Peter Stephensen; Hansen, F.

    2004-01-01

    As part of a large EU project for standardisation of polymerase chain reaction (PCR), a systematic evaluation of the interaction of enrichment media, type of DNA polymerase and pre-PCR sample treatment for a PCR detecting thermotolerant campylobacters was carried out. The growth-supporting capaci...

  16. Polyamine-DNA interactions and development of gene delivery vehicles.

    Science.gov (United States)

    Thomas, T J; Tajmir-Riahi, H A; Thomas, Thresia

    2016-10-01

    Polyamines are positively charged organic cations under physiologic ionic and pH conditions and hence they interact with negatively charged macromolecules such as DNA and RNA. Although electrostatic interaction is the predominant mode of polyamine-nucleic acid interactions, site- and structure-specific binding has also been recognized. A major consequence of polyamine-DNA interaction is the collapse of DNA to nanoparticles of approximately 100 nm diameter. Electron and atomic force microscopic studies have shown that these nanoparticles are spheroids, toroids and rods. DNA transport to cells for gene therapy applications requires the condensation of DNA to nanoparticles and hence the study of polyamines and related compounds with nucleic acids has received technological importance. In addition to natural and synthetic polyamines, several amine-terminated or polyamine-substituted agents are under intense investigation for non-viral gene delivery vehicles.

  17. Dimethylated H3K27 Is a Repressive Epigenetic Histone Mark in the Protist Entamoeba histolytica and Is Significantly Enriched in Genes Silenced via the RNAi Pathway*

    Science.gov (United States)

    Foda, Bardees M.; Singh, Upinder

    2015-01-01

    RNA interference (RNAi) is a fundamental biological process that plays a crucial role in regulation of gene expression in many organisms. Transcriptional gene silencing (TGS) is one of the important nuclear roles of RNAi. Our previous data show that Entamoeba histolytica has a robust RNAi pathway that links to TGS via Argonaute 2-2 (Ago2-2) associated 27-nucleotide small RNAs with 5′-polyphosphate termini. Here, we report the first repressive histone mark to be identified in E. histolytica, dimethylation of H3K27 (H3K27Me2), and demonstrate that it is enriched at genes that are silenced by RNAi-mediated TGS. An RNAi-silencing trigger can induce H3K27Me2 deposits at both episomal and chromosomal loci, mediating gene silencing. Our data support two phases of RNAi-mediated TGS: an active silencing phase where the RNAi trigger is present and both H3K27Me2 and Ago2-2 concurrently enrich at chromosomal loci; and an established silencing phase in which the RNAi trigger is removed, but gene silencing with H3K27Me2 enrichment persist independently of Ago2-2 deposition. Importantly, some genes display resistance to chromosomal silencing despite induction of functional small RNAs. In those situations, the RNAi-triggering plasmid that is maintained episomally gets partially silenced and has H3K27Me2 enrichment, but the chromosomal copy displays no repressive histone enrichment. Our data are consistent with a model in which H3K27Me2 is a repressive histone modification, which is strongly associated with transcriptional repression. This is the first example of an epigenetic histone modification that functions to mediate RNAi-mediated TGS in the deep-branching eukaryote E. histolytica. PMID:26149683

  18. Dimethylated H3K27 Is a Repressive Epigenetic Histone Mark in the Protist Entamoeba histolytica and Is Significantly Enriched in Genes Silenced via the RNAi Pathway.

    Science.gov (United States)

    Foda, Bardees M; Singh, Upinder

    2015-08-21

    RNA interference (RNAi) is a fundamental biological process that plays a crucial role in regulation of gene expression in many organisms. Transcriptional gene silencing (TGS) is one of the important nuclear roles of RNAi. Our previous data show that Entamoeba histolytica has a robust RNAi pathway that links to TGS via Argonaute 2-2 (Ago2-2) associated 27-nucleotide small RNAs with 5'-polyphosphate termini. Here, we report the first repressive histone mark to be identified in E. histolytica, dimethylation of H3K27 (H3K27Me2), and demonstrate that it is enriched at genes that are silenced by RNAi-mediated TGS. An RNAi-silencing trigger can induce H3K27Me2 deposits at both episomal and chromosomal loci, mediating gene silencing. Our data support two phases of RNAi-mediated TGS: an active silencing phase where the RNAi trigger is present and both H3K27Me2 and Ago2-2 concurrently enrich at chromosomal loci; and an established silencing phase in which the RNAi trigger is removed, but gene silencing with H3K27Me2 enrichment persist independently of Ago2-2 deposition. Importantly, some genes display resistance to chromosomal silencing despite induction of functional small RNAs. In those situations, the RNAi-triggering plasmid that is maintained episomally gets partially silenced and has H3K27Me2 enrichment, but the chromosomal copy displays no repressive histone enrichment. Our data are consistent with a model in which H3K27Me2 is a repressive histone modification, which is strongly associated with transcriptional repression. This is the first example of an epigenetic histone modification that functions to mediate RNAi-mediated TGS in the deep-branching eukaryote E. histolytica. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Genome-wide gene-gene interaction analysis for next-generation sequencing.

    Science.gov (United States)

    Zhao, Jinying; Zhu, Yun; Xiong, Momiao

    2016-03-01

    The critical barrier in interaction analysis for next-generation sequencing (NGS) data is that the traditional pairwise interaction analysis that is suitable for common variants is difficult to apply to rare variants because of their prohibitive computational time, large number of tests and low power. The great challenges for successful detection of interactions with NGS data are (1) the demands in the paradigm of changes in interaction analysis; (2) severe multiple testing; and (3) heavy computations. To meet these challenges, we shift the paradigm of interaction analysis between two SNPs to interaction analysis between two genomic regions. In other words, we take a gene as a unit of analysis and use functional data analysis techniques as dimensional reduction tools to develop a novel statistic to collectively test interaction between all possible pairs of SNPs within two genome regions. By intensive simulations, we demonstrate that the functional logistic regression for interaction analysis has the correct type 1 error rates and higher power to detect interaction than the currently used methods. The proposed method was applied to a coronary artery disease dataset from the Wellcome Trust Case Control Consortium (WTCCC) study and the Framingham Heart Study (FHS) dataset, and the early-onset myocardial infarction (EOMI) exome sequence datasets with European origin from the NHLBI's Exome Sequencing Project. We discovered that 6 of 27 pairs of significantly interacted genes in the FHS were replicated in the independent WTCCC study and 24 pairs of significantly interacted genes after applying Bonferroni correction in the EOMI study.

  20. Gene-air pollution interaction and cardiovascular disease: a review

    OpenAIRE

    Zanobetti, Antonella; Baccarelli, Andrea; Schwartz, Joel

    2011-01-01

    Genetic susceptibility is likely to play a role in response to air pollution. Hence, gene-environment interactions studies can be a tool for exploring the mechanisms and the importance of the pathway in the association between air pollution and a cardiovascular outcome. In this article we present a systematic review of the studies which have examined gene–environment interactions in relation to the cardiovascular health effects of air pollutants. We identified 16 papers meeting our search cri...

  1. Interaction Effect of CO2 Enrichment and Nutritional Conditions on Physiological Characteristics, Essential Oil and Yield of Lemon Balm (Melissa officinalis L.

    Directory of Open Access Journals (Sweden)

    Mahmoud SHOOR

    2012-02-01

    Full Text Available Carbon dioxide enrichment and nutritional improvement can increase photosynthesis and growth of different crops. The aim of the present study was to assess interaction effects of CO2 enrichment and fertilizer on physiological characteristics and lemon balm essential oil. Experimental units were composed of CO2 at 380, 700, and 1050 ppm with and without manure and N fertilizer application. A continuous increasing trend of individual plant leaf area, total dry weight accumulation and relative growth ratio were recorded with CO2 enrichment. When CO2 was elevated from 380 to 1050 ppm, the values of height (24.3%, SPAD reading (2.7%, essential oil yield (26.3% and final yield (65.3% were increased, unlike, stomatal conductance (35.2% and essential oil percentage (53% were decreased. The highest and the lowest values (except for oil percentage were obtained under N and no fertilizer application, respectively. Except for SPAD, interaction between CO2 enrichment and each fertilizer on all measured characteristics had a significant effect, so that CO2 effect was intensified by applying each fertilizer. Therefore, it can be concluded that when temperature increase caused by rising CO2 is not considered or there is not a limitation for resources, CO2 enrichment will improve lemon balm biomass and essential oil yield.

  2. A gene-based information gain method for detecting gene-gene interactions in case-control studies.

    Science.gov (United States)

    Li, Jin; Huang, Dongli; Guo, Maozu; Liu, Xiaoyan; Wang, Chunyu; Teng, Zhixia; Zhang, Ruijie; Jiang, Yongshuai; Lv, Hongchao; Wang, Limei

    2015-11-01

    Currently, most methods for detecting gene-gene interactions (GGIs) in genome-wide association studies are divided into SNP-based methods and gene-based methods. Generally, the gene-based methods can be more powerful than SNP-based methods. Some gene-based entropy methods can only capture the linear relationship between genes. We therefore proposed a nonparametric gene-based information gain method (GBIGM) that can capture both linear relationship and nonlinear correlation between genes. Through simulation with different odds ratio, sample size and prevalence rate, GBIGM was shown to be valid and more powerful than classic KCCU method and SNP-based entropy method. In the analysis of data from 17 genes on rheumatoid arthritis, GBIGM was more effective than the other two methods as it obtains fewer significant results, which was important for biological verification. Therefore, GBIGM is a suitable and powerful tool for detecting GGIs in case-control studies.

  3. MeSH-Informed Enrichment Analysis and MeSH-Guided Semantic Similarity Among Functional Terms and Gene Products in Chicken.

    Science.gov (United States)

    Morota, Gota; Beissinger, Timothy M; Peñagaricano, Francisco

    2016-01-01

    Biomedical vocabularies and ontologies aid in recapitulating biological knowledge. The annotation of gene products is mainly accelerated by Gene Ontology (GO), and more recently by Medical Subject Headings (MeSH). Here, we report a suite of MeSH packages for chicken in Bioconductor, and illustrate some features of different MeSH-based analyses, including MeSH-informed enrichment analysis and MeSH-guided semantic similarity among terms and gene products, using two lists of chicken genes available in public repositories. The two published datasets that were employed represent (i) differentially expressed genes, and (ii) candidate genes under selective sweep or epistatic selection. The comparison of MeSH with GO overrepresentation analyses suggested not only that MeSH supports the findings obtained from GO analysis, but also that MeSH is able to further enrich the representation of biological knowledge and often provide more interpretable results. Based on the hierarchical structures of MeSH and GO, we computed semantic similarities among vocabularies, as well as semantic similarities among selected genes. These yielded the similarity levels between significant functional terms, and the annotation of each gene yielded the measures of gene similarity. Our findings show the benefits of using MeSH as an alternative choice of annotation in order to draw biological inferences from a list of genes of interest. We argue that the use of MeSH in conjunction with GO will be instrumental in facilitating the understanding of the genetic basis of complex traits.

  4. GSTP1 is a hub gene for gene-air pollution interactions on childhood asthma.

    Science.gov (United States)

    Su, M W; Tsai, C H; Tung, K Y; Hwang, B F; Liang, P H; Chiang, B L; Yang, Y H; Lee, Y L

    2013-12-01

    There is growing evidence that multiple genes and air pollutants are associated with asthma. By identifying the effect of air pollution on the general population, the effects of air pollution on childhood asthma can be better understood. We conducted the Taiwan Children Health Study (TCHS) to investigate the influence of gene-air pollution interactions on childhood asthma. Complete monitoring data for the ambient air pollutants were collected from Taiwan Environmental Protection Agency air monitoring stations. Our results show a significant two-way gene-air pollution interaction between glutathione S-transferase P (GSTP1) and PM10 on the risk of childhood asthma. Interactions between GSTP1 and different types of air pollutants have a higher information gain than other gene-air pollutant combinations. Our study suggests that interaction between GSTP1 and PM10 is the most influential gene-air pollution interaction model on childhood asthma. The different types of air pollution combined with the GSTP1 gene may alter the susceptibility to childhood asthma. It implies that GSTP1 is an important hub gene in the anti-oxidative pathway that buffers the harmful effects of air pollution. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. In vitro modulation of inflammatory target gene expression by a polyphenol-enriched fraction of rose oil distillation waste water.

    Science.gov (United States)

    Wedler, Jonas; Weston, Anna; Rausenberger, Julia; Butterweck, Veronika

    2016-10-01

    Classical production of rose oil is based on water steam distillation from the flowers of Rosa damascena. During this process, large quantities of waste water accrue which are discharged to the environment, causing severe pollution of both, groundwater and surface water due to a high content of polyphenols. We recently developed a strategy to purify the waste water into a polyphenol-depleted and a polyphenol-enriched fraction RF20-(SP-207). RF20-(SP-207) and sub-fraction F(IV) significantly inhibited cell proliferation and migration of HaCaT cells. Since there is a close interplay between these actions and inflammatory processes, here we focused on the fractions' influence on pro-inflammatory biomarkers. HaCaT keratinocytes were treated with RF20-(SP-207), F(IV) (both at 50μg/mL) and ellagic acid (10μM) for 24h under TNF-α (20ng/mL) stimulated and non-stimulated conditions. Gene expression of IL-1β, IL-6, IL-8, RANTES and MCP-1 was analyzed by reverse transcriptase polymerase chain reaction (RT-PCR) and cellular protein secretion of IL-8, RANTES and MCP-1 was determined by ELISA based assays. RF20-(SP-207) and F(IV) significantly decreased the expression and cellular protein secretion of IL-1β, IL-6, IL-8, RANTES and MCP-1. The diminishing effects on inflammatory target gene expression were slightly less pronounced under TNF-α stimulated conditions. In conclusion, the recovered polyphenol fraction RF20-(SP-207) from rose oil distillation waste water markedly modified inflammatory target gene expression in vitro, and, therefore, could be further developed as alternative treatment of acute and chronic inflammation. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Deficiency of Prdm13, a dorsomedial hypothalamus-enriched gene, mimics age-associated changes in sleep quality and adiposity.

    Science.gov (United States)

    Satoh, Akiko; Brace, Cynthia S; Rensing, Nick; Imai, Shin-Ichiro

    2015-04-01

    The dorsomedial hypothalamus (DMH) controls a number of essential physiological responses. We have demonstrated that the DMH plays an important role in the regulation of mammalian aging and longevity. To further dissect the molecular basis of the DMH function, we conducted microarray-based gene expression profiling with total RNA from laser-microdissected hypothalamic nuclei and tried to find the genes highly and selectively expressed in the DMH. We found neuropeptide VF precursor (Npvf), PR domain containing 13 (Prdm13), and SK1 family transcriptional corepressor (Skor1) as DMH-enriched genes. Particularly, Prdm13, a member of the Prdm family of transcription regulators, was specifically expressed in the compact region of the DMH (DMC), where Nk2 homeobox 1 (Nkx2-1) is predominantly expressed. The expression of Prdm13 in the hypothalamus increased under diet restriction, whereas it decreased during aging. Prdm13 expression also showed diurnal oscillation and was significantly upregulated in the DMH of long-lived BRASTO mice. The transcriptional activity of the Prdm13 promoter was upregulated by Nkx2-1, and knockdown of Nkx2-1 suppressed Prdm13 expression in primary hypothalamic neurons. Interestingly, DMH-specific Prdm13-knockdown mice showed significantly reduced wake time during the dark period and decreased sleep quality, which was defined by the quantity of electroencephalogram delta activity during NREM sleep. DMH-specific Prdm13-knockdown mice also exhibited progressive increases in body weight and adiposity. Our findings indicate that Prdm13/Nkx2-1-mediated signaling in the DMC declines with advanced age, leading to decreased sleep quality and increased adiposity, which mimic age-associated pathophysiology, and provides a potential link to DMH-mediated aging and longevity control in mammals.

  7. Composting-Like Conditions Are More Efficient for Enrichment and Diversity of Organisms Containing Cellulase-Encoding Genes than Submerged Cultures.

    Science.gov (United States)

    Heiss-Blanquet, Senta; Fayolle-Guichard, Françoise; Lombard, Vincent; Hébert, Agnès; Coutinho, Pedro M; Groppi, Alexis; Barre, Aurélien; Henrissat, Bernard

    2016-01-01

    Cost-effective biofuel production from lignocellulosic biomass depends on efficient degradation of the plant cell wall. One of the major obstacles for the development of a cost-efficient process is the lack of resistance of currently used fungal enzymes to harsh conditions such as high temperature. Adapted, thermophilic microbial communities provide a huge reservoir of potentially interesting lignocellulose-degrading enzymes for improvement of the cellulose hydrolysis step. In order to identify such enzymes, a leaf and wood chip compost was enriched on a mixture of thermo-chemically pretreated wheat straw, poplar and Miscanthus under thermophile conditions, but in two different set-ups. Unexpectedly, metagenome sequencing revealed that incubation of the lignocellulosic substrate with compost as inoculum in a suspension culture resulted in an impoverishment of putative cellulase- and hemicellulase-encoding genes. However, mimicking composting conditions without liquid phase yielded a high number and diversity of glycoside hydrolase genes and an enrichment of genes encoding cellulose binding domains. These identified genes were most closely related to species from Actinobacteria, which seem to constitute important players of lignocellulose degradation under the applied conditions. The study highlights that subtle changes in an enrichment set-up can have an important impact on composition and functions of the microcosm. Composting-like conditions were found to be the most successful method for enrichment in species with high biomass degrading capacity.

  8. DOSE RESPONSE FROM HIGH THROUGHPUT GENE EXPRESSION STUDIES AND THE INFLUENCE OF TIME AND CELL LINE ON INFERRED MODE OF ACTION BY ONTOLOGIC ENRICHMENT (SOT)

    Science.gov (United States)

    Gene expression with ontologic enrichment and connectivity mapping tools is widely used to infer modes of action (MOA) for therapeutic drugs. Despite progress in high-throughput (HT) genomic systems, strategies suitable to identify industrial chemical MOA are needed. The L1000 is...

  9. Gene-gene and gene-environment interactions in prostate, breast and colorectal cancer

    DEFF Research Database (Denmark)

    Kopp, Tine Iskov

    transporters and IL-10 in relation to CRC. Paper V illustrated that genetic variations in CYP19A1 predicts circulating sex-hormone levels in postmenopausal women, and that alcohol intake affects female sex-hormone concentrations in the blood. However, it was not possible to put PPARγ and the aromatase...... single-gene mutations due to their low frequency in the general population. Overall, the contribution from hereditary factors to the causation of BC is only 27%, whereas genetics contributes to 35% and 42% for CRC and PC, respectively. Additionally, immigrations studies point to environmental factors......, such as alcohol consumption, smoking, obesity, inflammation and high meat intake; whereas other factors protect against cancer, such as high intake of dietary fibre, fruits and vegetables, and physical activity. Investigating the interactions between genetic variations and environmental factors, such as dietary...

  10. An environmental analysis of genes associated with schizophrenia: hypoxia and vascular factors as interacting elements in the neurodevelopmental model.

    Science.gov (United States)

    Schmidt-Kastner, R; van Os, J; Esquivel, G; Steinbusch, H W M; Rutten, B P F

    2012-12-01

    Investigating and understanding gene-environment interaction (G × E) in a neurodevelopmentally and biologically plausible manner is a major challenge for schizophrenia research. Hypoxia during neurodevelopment is one of several environmental factors related to the risk of schizophrenia, and links between schizophrenia candidate genes and hypoxia regulation or vascular expression have been proposed. Given the availability of a wealth of complex genetic information on schizophrenia in the literature without knowledge on the connections to environmental factors, we now systematically collected genes from candidate studies (using SzGene), genome-wide association studies (GWAS) and copy number variation (CNV) analyses, and then applied four criteria to test for a (theoretical) link to ischemia-hypoxia and/or vascular factors. In all, 55% of the schizophrenia candidate genes (n=42 genes) met the criteria for a link to ischemia-hypoxia and/or vascular factors. Genes associated with schizophrenia showed a significant, threefold enrichment among genes that were derived from microarray studies of the ischemia-hypoxia response (IHR) in the brain. Thus, the finding of a considerable match between genes associated with the risk of schizophrenia and IHR and/or vascular factors is reproducible. An additional survey of genes identified by GWAS and CNV analyses suggested novel genes that match the criteria. Findings for interactions between specific variants of genes proposed to be IHR and/or vascular factors with obstetric complications in patients with schizophrenia have been reported in the literature. Therefore, the extended gene set defined here may form a reasonable and evidence-based starting point for hypothesis-based testing of G × E interactions in clinical genetic and translational neuroscience studies.

  11. Perinatal Gene-Gene and Gene-Environment Interactions on IgE Production and Asthma Development

    Directory of Open Access Journals (Sweden)

    Jen-Chieh Chang

    2012-01-01

    Full Text Available Atopic asthma is a complex disease associated with IgE-mediated immune reactions. Numerous genome-wide studies identified more than 100 genes in 22 chromosomes associated with atopic asthma, and different genetic backgrounds in different environments could modulate susceptibility to atopic asthma. Current knowledge emphasizes the effect of tobacco smoke on the development of childhood asthma. This suggests that asthma, although heritable, is significantly affected by gene-gene and gene-environment interactions. Evidence has recently shown that molecular mechanism of a complex disease may be limited to not only DNA sequence differences, but also gene-environmental interactions for epigenetic difference. This paper reviews and summarizes how gene-gene and gene-environment interactions affect IgE production and the development of atopic asthma in prenatal and childhood stages. Based on the mechanisms responsible for perinatal gene-environment interactions on IgE production and development of asthma, we formulate several potential strategies to prevent the development of asthma in the perinatal stage.

  12. Immobilization of copper by biochar in Cu-enriched agricultural soils depends on interactions with soil organic carbon

    Science.gov (United States)

    Mlinkov, Slađana; Zehetner, Franz; Rosner, Franz; Dersch, Georg; Soja, Gerhard

    2017-04-01

    The appearance of downy mildew (Plasmopara viticola) in European vineyards of the 19th century was the starting point for the search of effective fungicides to avoid severe yield losses. Copper has been found as an important ingredient for several fungicides that have been used in agriculture and horticulture. For organic viticulture, several diseases can only be antagonized with Cu-containing fungicides as the application of organic fungicides is not permitted. This long-lasting dependence on Cu-fungicides has led to a gradual Cu enrichment of vineyard soils in traditional wine-growing areas, locally exceeding 300 mg/kg. Although these concentrations do not affect the vines or wine quality, they may impair soil microbiological functions in the top soil layer or the root growth of green cover plants. Therefore, measures are demanded that reduce the bioavailability of copper, thereby reducing the ecotoxicological effects. The use of biochar and compost as soil amendment has been suggested as a strategy to immobilize Cu and reduce the exchangeable fractions. In our study we have tested the hypothesis that biochar immobilizes the bioavailability of Cu for soil cover crops and reduces soil pore water concentrations. This study had the objective to test the interactions of compost and biochar with respect to Cu immobilization in vineyard soils. A Cu-enriched vineyard soil (250 mg Cu kg-1) was analyzed both in greenhouse and field experiments. In both experiments, soil with or without biochar and/or compost and mixtures of the two components were used. In the greenhouse experiments, was used as test plant Lolium multiflorum for Cu uptake; in the field, Lolium perenne and Trifolium repens were analyzed. Greenhouse experiment: Soil pore water concentrations showed clearer differences in Cu concentration than Lolium multiflorum shoots. Compost increased dissolved organic carbon (DOC) and Cu in soil pore water and biochar reduced it significantly. The mixtures of compost and

  13. Characterizing genes with distinct methylation patterns in the context of protein-protein interaction network: application to human brain tissues.

    Science.gov (United States)

    Li, Yongsheng; Xu, Juan; Chen, Hong; Zhao, Zheng; Li, Shengli; Bai, Jing; Wu, Aiwei; Jiang, Chunjie; Wang, Yuan; Su, Bin; Li, Xia

    2013-01-01

    DNA methylation is an essential epigenetic mechanism involved in transcriptional control. However, how genes with different methylation patterns are assembled in the protein-protein interaction network (PPIN) remains a mystery. In the present study, we systematically dissected the characterization of genes with different methylation patterns in the PPIN. A negative association was detected between the methylation levels in the brain tissues and topological centralities. By focusing on two classes of genes with considerably different methylation levels in the brain tissues, namely the low methylated genes (LMGs) and high methylated genes (HMGs), we found that their organizing principles in the PPIN are distinct. The LMGs tend to be the center of the PPIN, and attacking them causes a more deleterious effect on the network integrity. Furthermore, the LMGs express their functions in a modular pattern and substantial differences in functions are observed between the two types of genes. The LMGs are enriched in the basic biological functions, such as binding activity and regulation of transcription. More importantly, cancer genes, especially recessive cancer genes, essential genes, and aging-related genes were all found more often in the LMGs. Additionally, our analysis presented that the intra-classes communications are enhanced, but inter-classes communications are repressed. Finally, a functional complementation was revealed between methylation and miRNA regulation in the human genome. We have elucidated the assembling principles of genes with different methylation levels in the context of the PPIN, providing key insights into the complex epigenetic regulation mechanisms.

  14. Targeted enrichment of the black cottonwood (Populus trichocarpa gene space using sequence capture

    Directory of Open Access Journals (Sweden)

    Zhou Lecong

    2012-12-01

    Full Text Available Abstract Background High-throughput re-sequencing is rapidly becoming the method of choice for studies of neutral and adaptive processes in natural populations across taxa. As re-sequencing the genome of large numbers of samples is still cost-prohibitive in many cases, methods for genome complexity reduction have been developed in attempts to capture most ecologically-relevant genetic variation. One of these approaches is sequence capture, in which oligonucleotide baits specific to genomic regions of interest are synthesized and used to retrieve and sequence those regions. Results We used sequence capture to re-sequence most predicted exons, their upstream regulatory regions, as well as numerous random genomic intervals in a panel of 48 genotypes of the angiosperm tree Populus trichocarpa (black cottonwood, or ‘poplar’. A total of 20.76Mb (5% of the poplar genome was targeted, corresponding to 173,040 baits. With 12 indexed samples run in each of four lanes on an Illumina HiSeq instrument (2x100 paired-end, 86.8% of the bait regions were on average sequenced at a depth ≥10X. Few off-target regions (>250bp away from any bait were present in the data, but on average ~80bp on either side of the baits were captured and sequenced to an acceptable depth (≥10X to call heterozygous SNPs. Nucleotide diversity estimates within and adjacent to protein-coding genes were similar to those previously reported in Populus spp., while intergenic regions had higher values consistent with a relaxation of selection. Conclusions Our results illustrate the efficiency and utility of sequence capture for re-sequencing highly heterozygous tree genomes, and suggest design considerations to optimize the use of baits in future studies.

  15. Low enzymatic activity haplotypes of the human catechol-O-methyltransferase gene: enrichment for marker SNPs.

    Directory of Open Access Journals (Sweden)

    Andrea G Nackley

    Full Text Available Catechol-O-methyltransferase (COMT is an enzyme that plays a key role in the modulation of catechol-dependent functions such as cognition, cardiovascular function, and pain processing. Three common haplotypes of the human COMT gene, divergent in two synonymous and one nonsynonymous (val(158met position, designated as low (LPS, average (APS, and high pain sensitive (HPS, are associated with experimental pain sensitivity and risk of developing chronic musculoskeletal pain conditions. APS and HPS haplotypes produce significant functional effects, coding for 3- and 20-fold reductions in COMT enzymatic activity, respectively. In the present study, we investigated whether additional minor single nucleotide polymorphisms (SNPs, accruing in 1 to 5% of the population, situated in the COMT transcript region contribute to haplotype-dependent enzymatic activity. Computer analysis of COMT ESTs showed that one synonymous minor SNP (rs769224 is linked to the APS haplotype and three minor SNPs (two synonymous: rs6267, rs740602 and one nonsynonymous: rs8192488 are linked to the HPS haplotype. Results from in silico and in vitro experiments revealed that inclusion of allelic variants of these minor SNPs in APS or HPS haplotypes did not modify COMT function at the level of mRNA folding, RNA transcription, protein translation, or enzymatic activity. These data suggest that neutral variants are carried with APS and HPS haplotypes, while the high activity LPS haplotype displays less linked variation. Thus, both minor synonymous and nonsynonymous SNPs in the coding region are markers of functional APS and HPS haplotypes rather than independent contributors to COMT activity.

  16. Semiparametric bayesian analysis of gene-environment interactions

    OpenAIRE

    Lobach, I.

    2010-01-01

    A key component to prevention and control of complex diseases, such as cancer, diabetes, hypertension, is to analyze the genetic and environmental factors that lead to the development of these complex diseases. We propose a Bayesian approach for analysis of gene-environment interactions that efficiently models information available in the observed data and a priori biomedical knowledge.

  17. The importance of gene-environment interactions in human obesity.

    Science.gov (United States)

    Reddon, Hudson; Guéant, Jean-Louis; Meyre, David

    2016-09-01

    The worldwide obesity epidemic has been mainly attributed to lifestyle changes. However, who becomes obese in an obesity-prone environment is largely determined by genetic factors. In the last 20 years, important progress has been made in the elucidation of the genetic architecture of obesity. In parallel with successful gene identifications, the number of gene-environment interaction (GEI) studies has grown rapidly. This paper reviews the growing body of evidence supporting gene-environment interactions in the field of obesity. Heritability, monogenic and polygenic obesity studies provide converging evidence that obesity-predisposing genes interact with a variety of environmental, lifestyle and treatment exposures. However, some skepticism remains regarding the validity of these studies based on several issues, which include statistical modelling, confounding, low replication rate, underpowered analyses, biological assumptions and measurement precision. What follows in this review includes (1) an introduction to the study of GEI, (2) the evidence of GEI in the field of obesity, (3) an outline of the biological mechanisms that may explain these interaction effects, (4) methodological challenges associated with GEI studies and potential solutions, and (5) future directions of GEI research. Thus far, this growing body of evidence has provided a deeper understanding of GEI influencing obesity and may have tremendous applications in the emerging field of personalized medicine and individualized lifestyle recommendations. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  18. Rare disease relations through common genes and protein interactions.

    Science.gov (United States)

    Fernandez-Novo, Sara; Pazos, Florencio; Chagoyen, Monica

    2016-06-01

    ODCs (Orphan Disease Connections), available at http://csbg.cnb.csic.es/odcs, is a novel resource to explore potential molecular relations between rare diseases. These molecular relations have been established through the integration of disease susceptibility genes and human protein-protein interactions. The database currently contains 54,941 relations between 3032 diseases.

  19. MiRTargetLink--miRNAs, Genes and Interaction Networks.

    Science.gov (United States)

    Hamberg, Maarten; Backes, Christina; Fehlmann, Tobias; Hart, Martin; Meder, Benjamin; Meese, Eckart; Keller, Andreas

    2016-04-14

    Information on miRNA targeting genes is growing rapidly. For high-throughput experiments, but also for targeted analyses of few genes or miRNAs, easy analysis with concise representation of results facilitates the work of life scientists. We developed miRTargetLink, a tool for automating respective analysis procedures that are frequently applied. Input of the web-based solution is either a single gene or single miRNA, but also sets of genes or miRNAs, can be entered. Validated and predicted targets are extracted from databases and an interaction network is presented. Users can select whether predicted targets, experimentally validated targets with strong or weak evidence, or combinations of those are considered. Central genes or miRNAs are highlighted and users can navigate through the network interactively. To discover the most relevant biochemical processes influenced by the target network, gene set analysis and miRNA set analysis are integrated. As a showcase for miRTargetLink, we analyze targets of five cardiac miRNAs. miRTargetLink is freely available without restrictions at www.ccb.uni-saarland.de/mirtargetlink.

  20. LINCS Canvas Browser: interactive web app to query, browse and interrogate LINCS L1000 gene expression signatures.

    Science.gov (United States)

    Duan, Qiaonan; Flynn, Corey; Niepel, Mario; Hafner, Marc; Muhlich, Jeremy L; Fernandez, Nicolas F; Rouillard, Andrew D; Tan, Christopher M; Chen, Edward Y; Golub, Todd R; Sorger, Peter K; Subramanian, Aravind; Ma'ayan, Avi

    2014-07-01

    For the Library of Integrated Network-based Cellular Signatures (LINCS) project many gene expression signatures using the L1000 technology have been produced. The L1000 technology is a cost-effective method to profile gene expression in large scale. LINCS Canvas Browser (LCB) is an interactive HTML5 web-based software application that facilitates querying, browsing and interrogating many of the currently available LINCS L1000 data. LCB implements two compacted layered canvases, one to visualize clustered L1000 expression data, and the other to display enrichment analysis results using 30 different gene set libraries. Clicking on an experimental condition highlights gene-sets enriched for the differentially expressed genes from the selected experiment. A search interface allows users to input gene lists and query them against over 100 000 conditions to find the top matching experiments. The tool integrates many resources for an unprecedented potential for new discoveries in systems biology and systems pharmacology. The LCB application is available at http://www.maayanlab.net/LINCS/LCB. Customized versions will be made part of the http://lincscloud.org and http://lincs.hms.harvard.edu websites.

  1. Genome-wide association of bipolar disorder suggests an enrichment of replicable associations in regions near genes.

    Directory of Open Access Journals (Sweden)

    Erin N Smith

    2011-06-01

    Full Text Available Although a highly heritable and disabling disease, bipolar disorder's (BD genetic variants have been challenging to identify. We present new genotype data for 1,190 cases and 401 controls and perform a genome-wide association study including additional samples for a total of 2,191 cases and 1,434 controls. We do not detect genome-wide significant associations for individual loci; however, across all SNPs, we show an association between the power to detect effects calculated from a previous genome-wide association study and evidence for replication (P = 1.5×10(-7. To demonstrate that this result is not likely to be a false positive, we analyze replication rates in a large meta-analysis of height and show that, in a large enough study, associations replicate as a function of power, approaching a linear relationship. Within BD, SNPs near exons exhibit a greater probability of replication, supporting an enrichment of reproducible associations near functional regions of genes. These results indicate that there is likely common genetic variation associated with BD near exons (±10 kb that could be identified in larger studies and, further, provide a framework for assessing the potential for replication when combining results from multiple studies.

  2. Genome-wide association of bipolar disorder suggests an enrichment of replicable associations in regions near genes.

    Directory of Open Access Journals (Sweden)

    Erin N Smith

    2011-06-01

    Full Text Available Although a highly heritable and disabling disease, bipolar disorder's (BD genetic variants have been challenging to identify. We present new genotype data for 1,190 cases and 401 controls and perform a genome-wide association study including additional samples for a total of 2,191 cases and 1,434 controls. We do not detect genome-wide significant associations for individual loci; however, across all SNPs, we show an association between the power to detect effects calculated from a previous genome-wide association study and evidence for replication (P = 1.5×10(-7. To demonstrate that this result is not likely to be a false positive, we analyze replication rates in a large meta-analysis of height and show that, in a large enough study, associations replicate as a function of power, approaching a linear relationship. Within BD, SNPs near exons exhibit a greater probability of replication, supporting an enrichment of reproducible associations near functional regions of genes. These results indicate that there is likely common genetic variation associated with BD near exons (±10 kb that could be identified in larger studies and, further, provide a framework for assessing the potential for replication when combining results from multiple studies.

  3. Genome-Wide Association Studies Suggest Limited Immune Gene Enrichment in Schizophrenia Compared to 5 Autoimmune Diseases.

    Science.gov (United States)

    Pouget, Jennie G; Gonçalves, Vanessa F; Spain, Sarah L; Finucane, Hilary K; Raychaudhuri, Soumya; Kennedy, James L; Knight, Jo

    2016-09-01

    There has been intense debate over the immunological basis of schizophrenia, and the potential utility of adjunct immunotherapies. The major histocompatibility complex is consistently the most powerful region of association in genome-wide association studies (GWASs) of schizophrenia and has been interpreted as strong genetic evidence supporting the immune hypothesis. However, global pathway analyses provide inconsistent evidence of immune involvement in schizophrenia, and it remains unclear whether genetic data support an immune etiology per se. Here we empirically test the hypothesis that variation in immune genes contributes to schizophrenia. We show that there is no enrichment of immune loci outside of the MHC region in the largest genetic study of schizophrenia conducted to date, in contrast to 5 diseases of known immune origin. Among 108 regions of the genome previously associated with schizophrenia, we identify 6 immune candidates (DPP4, HSPD1, EGR1, CLU, ESAM, NFATC3) encoding proteins with alternative, nonimmune roles in the brain. While our findings do not refute evidence that has accumulated in support of the immune hypothesis, they suggest that genetically mediated alterations in immune function may not play a major role in schizophrenia susceptibility. Instead, there may be a role for pleiotropic effects of a small number of immune genes that also regulate brain development and plasticity. Whether immune alterations drive schizophrenia progression is an important question to be addressed by future research, especially in light of the growing interest in applying immunotherapies in schizophrenia. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center.

  4. Network-based functional enrichment

    Directory of Open Access Journals (Sweden)

    Poirel Christopher L

    2011-11-01

    Full Text Available Abstract Background Many methods have been developed to infer and reason about molecular interaction networks. These approaches often yield networks with hundreds or thousands of nodes and up to an order of magnitude more edges. It is often desirable to summarize the biological information in such networks. A very common approach is to use gene function enrichment analysis for this task. A major drawback of this method is that it ignores information about the edges in the network being analyzed, i.e., it treats the network simply as a set of genes. In this paper, we introduce a novel method for functional enrichment that explicitly takes network interactions into account. Results Our approach naturally generalizes Fisher’s exact test, a gene set-based technique. Given a function of interest, we compute the subgraph of the network induced by genes annotated to this function. We use the sequence of sizes of the connected components of this sub-network to estimate its connectivity. We estimate the statistical significance of the connectivity empirically by a permutation test. We present three applications of our method: i determine which functions are enriched in a given network, ii given a network and an interesting sub-network of genes within that network, determine which functions are enriched in the sub-network, and iii given two networks, determine the functions for which the connectivity improves when we merge the second network into the first. Through these applications, we show that our approach is a natural alternative to network clustering algorithms. Conclusions We presented a novel approach to functional enrichment that takes into account the pairwise relationships among genes annotated by a particular function. Each of the three applications discovers highly relevant functions. We used our methods to study biological data from three different organisms. Our results demonstrate the wide applicability of our methods. Our algorithms are

  5. Comparative genomics of free-living Gammaproteobacteria: pathogenesis-related genes or interaction-related genes?

    Science.gov (United States)

    Vázquez-Rosas-Landa, Mirna; Ponce-Soto, Gabriel Yaxal; Eguiarte, Luis E; Souza, V

    2017-07-31

    Bacteria have numerous strategies to interact with themselves and with their environment, but genes associated with these interactions are usually cataloged as pathogenic. To understand the role that these genes have not only in pathogenesis but also in bacterial interactions, we compared the genomes of eight bacteria from human-impacted environments with those of free-living bacteria from the Cuatro Ciénegas Basin (CCB), a relatively pristine oligotrophic site. Fifty-one genomes from CCB bacteria, including Pseudomonas, Vibrio, Photobacterium and Aeromonas, were analyzed. We found that the CCB strains had several virulence-related genes, 15 of which were common to all strains and were related to flagella and chemotaxis. We also identified the presence of Type III and VI secretion systems, which leads us to propose that these systems play an important role in interactions among bacterial communities beyond pathogenesis. None of the CCB strains had pathogenicity islands, despite having genes associated with antibiotics. Integrons were rare, while CRISPR elements were common. The idea that pathogenicity-related genes in many cases form part of a wider strategy used by bacteria to interact with other organisms could help us to understand the role of pathogenicity-related elements in an ecological and evolutionary framework leading toward a more inclusive One Health concept. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Gene-environment interactions in sporadic Parkinson's disease.

    Science.gov (United States)

    Benmoyal-Segal, Liat; Soreq, Hermona

    2006-06-01

    Much has been learned in recent years about the genetics of familial Parkinson's disease. However, far less is known about those malfunctioning genes which contribute to the emergence and/or progression of the vast majority of cases, the 'sporadic Parkinson's disease', which is the focus of our current review. Drastic differences in the reported prevalence of Parkinson's disease in different continents and countries suggest ethnic and/or environmental-associated multigenic contributions to this disease. Numerous association studies showing variable involvement of multiple tested genes in these distinct locations support this notion. Also, variable increases in the risk of Parkinson's disease due to exposure to agricultural insecticides indicate complex gene-environment interactions, especially when genes involved in protection from oxidative stress are explored. Further consideration of the brain regions damaged in Parkinson's disease points at the age-vulnerable cholinergic-dopaminergic balance as being involved in the emergence of sporadic Parkinson's disease in general and in the exposure-induced risks in particular. More specifically, the chromosome 7 ACHE/PON1 locus emerges as a key region controlling this sensitive balance, and animal model experiments are compatible with this concept. Future progress in the understanding of the genetics of sporadic Parkinson's disease depends on globally coordinated, multileveled studies of gene-environment interactions.

  7. Relating diseases by integrating gene associations and information flow through protein interaction network.

    Science.gov (United States)

    Hamaneh, Mehdi Bagheri; Yu, Yi-Kuo

    2014-01-01

    Identifying similar diseases could potentially provide deeper understanding of their underlying causes, and may even hint at possible treatments. For this purpose, it is necessary to have a similarity measure that reflects the underpinning molecular interactions and biological pathways. We have thus devised a network-based measure that can partially fulfill this goal. Our method assigns weights to all proteins (and consequently their encoding genes) by using information flow from a disease to the protein interaction network and back. Similarity between two diseases is then defined as the cosine of the angle between their corresponding weight vectors. The proposed method also provides a way to suggest disease-pathway associations by using the weights assigned to the genes to perform enrichment analysis for each disease. By calculating pairwise similarities between 2534 diseases, we show that our disease similarity measure is strongly correlated with the probability of finding the diseases in the same disease family and, more importantly, sharing biological pathways. We have also compared our results to those of MimMiner, a text-mining method that assigns pairwise similarity scores to diseases. We find the results of the two methods to be complementary. It is also shown that clustering diseases based on their similarities and performing enrichment analysis for the cluster centers significantly increases the term association rate, suggesting that the cluster centers are better representatives for biological pathways than the diseases themselves. This lends support to the view that our similarity measure is a good indicator of relatedness of biological processes involved in causing the diseases. Although not needed for understanding this paper, the raw results are available for download for further study at ftp://ftp.ncbi.nlm.nih.gov/pub/qmbpmn/DiseaseRelations/.

  8. Water-rock interactions, orthopyroxene growth, and Si-enrichment in the mantle: evidence in xenoliths from the Colorado Plateau, southwestern United States

    Science.gov (United States)

    Smith, Douglas; Alexis Riter, J. C.; Mertzman, Stanley A.

    1999-01-01

    Water-rock interactions and consequent orthopyroxene growth are documented by mantle xenoliths from opposite margins of the Colorado Plateau province. The interactions are inferred from a distinctive texture plus composition of orthopyroxene in spinel peridotite, in which porphyroblasts of orthopyroxene with inclusions of resorbed olivine are zoned to interiors exceptionally low in Al 2O 3 (Bandera Crater, New Mexico, in the southeastern margin of the Colorado Plateau, extending the known distribution from the northwestern margin (Grand Canyon field). Evidence that Si-enrichment locally accompanied movement of aqueous fluid is provided by an orthopyroxenite xenolith that is about 95% enstatite. The enstatite occurs in curved laths to 25 mm long, and the texture and composition (Al 2O 3 1 to 2 wt%, Mg/(Mg + Fe) 0.92) are attributed to growth during subsolidus interaction between peridotite and hydrous fluid. Modal orthopyroxene calculated from 4 bulk rock analyses of peridotite xenoliths from the Grand Canyon field ranges from 26 to 29%, more than in comparably depleted oceanic mantle. The mantle root of the Colorado Plateau may have formed from accreted ocean lithosphere and subsequently been enriched in Si by aqueous metasomatism at widely distributed sites. Similar fluid-rock interaction may have contributed to the orthopyroxene-enrichment characteristic of some mantle xenoliths from roots of Archaean cratons.

  9. Gene interactions in the evolution of genomic imprinting.

    Science.gov (United States)

    Wolf, J B; Brandvain, Y

    2014-08-01

    Numerous evolutionary theories have been developed to explain the epigenetic phenomenon of genomic imprinting. Here, we explore a subset of theories wherein non-additive genetic interactions can favour imprinting. In the simplest genic interaction--the case of underdominance--imprinting can be favoured to hide effectively low-fitness heterozygous genotypes; however, as there is no asymmetry between maternally and paternally inherited alleles in this model, other means of enforcing monoallelic expression may be more plausible evolutionary outcomes than genomic imprinting. By contrast, more successful interaction models of imprinting rely on an asymmetry between the maternally and paternally inherited alleles at a locus that favours the silencing of one allele as a means of coordinating the expression of high-fitness allelic combinations. For example, with interactions between autosomal loci, imprinting functionally preserves high-fitness genotypes that were favoured by selection in the previous generation. In this scenario, once a focal locus becomes imprinted, selection at interacting loci favours a matching imprint. Uniparental transmission generates similar asymmetries for sex chromosomes and cytoplasmic factors interacting with autosomal loci, with selection favouring the expression of either maternal or paternally derived autosomal alleles depending on the pattern of transmission of the uniparentally inherited factor. In a final class of models, asymmetries arise when genes expressed in offspring interact with genes expressed in one of its parents. Under such a scenario, a locus evolves to have imprinted expression in offspring to coordinate the interaction with its parent's genome. We illustrate these models and explore key links and differences using a unified framework.

  10. Differences in Gene-Gene Interactions in Graves' Disease Patients Stratified by Age of Onset.

    Directory of Open Access Journals (Sweden)

    Beata Jurecka-Lubieniecka

    Full Text Available Graves' disease (GD is a complex disease in which genetic predisposition is modified by environmental factors. Each gene exerts limited effects on the development of autoimmune disease (OR = 1.2-1.5. An epidemiological study revealed that nearly 70% of the risk of developing inherited autoimmunological thyroid diseases (AITD is the result of gene interactions. In the present study, we analyzed the effects of the interactions of multiple loci on the genetic predisposition to GD. The aim of our analyses was to identify pairs of genes that exhibit a multiplicative interaction effect.A total of 709 patients with GD were included in the study. The patients were stratified into more homogeneous groups depending on the age at time of GD onset: younger patients less than 30 years of age and older patients greater than 30 years of age. Association analyses were performed for genes that influence the development of GD: HLADRB1, PTPN22, CTLA4 and TSHR. The interactions among polymorphisms were analyzed using the multiple logistic regression and multifactor dimensionality reduction (MDR methods.GD patients stratified by the age of onset differed in the allele frequencies of the HLADRB1*03 and 1858T polymorphisms of the PTPN22 gene (OR = 1.7, p = 0.003; OR = 1.49, p = 0.01, respectively. We evaluated the genetic interactions of four SNPs in a pairwise fashion with regard to disease risk. The coexistence of HLADRB1 with CTLA4 or HLADRB1 with PTPN22 exhibited interactions on more than additive levels (OR = 3.64, p = 0.002; OR = 4.20, p < 0.001, respectively. These results suggest that interactions between these pairs of genes contribute to the development of GD. MDR analysis confirmed these interactions.In contrast to a single gene effect, we observed that interactions between the HLADRB1/PTPN22 and HLADRB1/CTLA4 genes more closely predicted the risk of GD onset in young patients.

  11. Gene-Diet Interaction and Precision Nutrition in Obesity.

    Science.gov (United States)

    Heianza, Yoriko; Qi, Lu

    2017-04-07

    The rapid rise of obesity during the past decades has coincided with a profound shift of our living environment, including unhealthy dietary patterns, a sedentary lifestyle, and physical inactivity. Genetic predisposition to obesity may have interacted with such an obesogenic environment in determining the obesity epidemic. Growing studies have found that changes in adiposity and metabolic response to low-calorie weight loss diets might be modified by genetic variants related to obesity, metabolic status and preference to nutrients. This review summarized data from recent studies of gene-diet interactions, and discussed integration of research of metabolomics and gut microbiome, as well as potential application of the findings in precision nutrition.

  12. Gene and protein analysis of brain derived neurotrophic factor expression in relation to neurological recovery induced by an enriched environment in a rat stroke model.

    Science.gov (United States)

    Hirata, Kenji; Kuge, Yuji; Yokota, Chiaki; Harada, Akina; Kokame, Koichi; Inoue, Hiroyasu; Kawashima, Hidekazu; Hanzawa, Hiroko; Shono, Yuji; Saji, Hideo; Minematsu, Kazuo; Tamaki, Nagara

    2011-05-20

    Although an enriched environment enhances functional recovery after ischemic stroke, the mechanism underlying this effect remains unclear. We previously reported that brain derived neurotrophic factor (BDNF) gene expression decreased in rats housed in an enriched environment for 4 weeks compared to those housed in a standard cage for the same period. To further clarify the relationship between the decrease in BDNF and functional recovery, we investigated the effects of differential 2-week housing conditions on the mRNA of BDNF and protein levels of proBDNF and mature BDNF (matBDNF). After transient occlusion of the right middle cerebral artery of male Sprague-Dawley rats, we divided the rats into two groups: (1) an enriched group housed multiply in large cages equipped with toys, and (2) a standard group housed alone in small cages without toys. Behavioral tests before and after 2-week differential housing showed better neurological recovery in the enriched group than in the standard group. Synaptophysin immunostaining demonstrated that the density of synapses in the peri-infarct area was increased in the enriched group compared to the standard group, while infarct volumes were not significantly different. Real-time reverse transcription polymerase chain reaction, Western blotting and immunostaining all revealed no significant difference between the groups. The present results suggest that functional recovery cannot be ascribed to an increase in matBDNF or a decrease in proBDNF but rather to other underlying mechanisms.

  13. GSNO Reductase and β2 Adrenergic Receptor Gene-gene Interaction: Bronchodilator Responsiveness to Albuterol

    Science.gov (United States)

    Choudhry, Shweta; Que, Loretta G.; Yang, Zhonghui; Liu, Limin; Eng, Celeste; Kim, Sung O.; Kumar, Gunjan; Thyne, Shannon; Chapela, Rocio; Rodriguez-Santana, Jose R.; Rodriguez-Cintron, William; Avila, Pedro C.; Stamler, Jonathan S.; Burchard, Esteban G.

    2010-01-01

    Background Short-acting inhaled β2-agonists such as albuterol are used for bronchodilation and are the mainstay of asthma treatment worldwide. There is significant variation in bronchodilator responsiveness to albuterol not only between individuals but also across racial/ethnic groups. The β2-adrenergic receptor (β2AR) is the target for β2-agonist drugs. The enzyme S-nitrosoglutathione reductase (GSNOR), which regulates levels of the endogenous bronchodilator S-nitrosoglutathione, has been shown to modulate the response to β2-agonists. Objective We hypothesized that there are pharmacogenetic interactions between GSNOR and β2AR gene variants which are associated with variable response to albuterol. Methods We performed family-based analyses to test for association between GSNOR gene variants and asthma and related phenotypes in 609 Puerto Rican and Mexican families with asthma. In addition, we tested these subjects for pharmacogenetic interaction between GSNOR and β2AR gene variants and responsiveness to albuterol using linear regression. Cell transfection experiments were performed to test the potential effect of the GSNOR gene variants. Results Among Puerto Ricans, several GSNOR SNPs and a haplotype in the 3′UTR were significantly associated with increased risk for asthma and lower bronchodilator responsiveness (p = 0.04 to 0.007). The GSNOR risk haplotype affects expression of GSNOR mRNA and protein, suggesting a gain of function. Furthermore, gene-gene interaction analysis provided evidence of pharmacogenetic interaction between GSNOR and β2AR gene variants and the response to albuterol in Puerto Rican (p = 0.03), Mexican (p = 0.15) and combined Puerto Rican and Mexican asthmatics (p = 0.003). Specifically, GSNOR+17059*β2AR+46 genotype combinations (TG+GG*AG and TG+GG*GG) were associated with lower bronchodilator response. Conclusion Genotyping of GSNOR and β2AR genes may be a useful in identifying Latino subjects, who might benefit from adjuvant

  14. Host response transcriptional profiling reveals extracellular components and ABC (ATP-binding cassette transporters gene enrichment in typhoid fever-infected Nigerian children

    Directory of Open Access Journals (Sweden)

    Resau James H

    2011-09-01

    Full Text Available Abstract Background Salmonella enterica serovar Typhi (S. Typhi is a human-specific pathogen that causes typhoid fever, and remains a global health problem especially in developing countries. Its pathogenesis is complex and host response is poorly understood. In Africa, typhoid fever can be a major cause of morbidity in young infected children. The onset of the illness is insidious and clinical diagnosis is often unreliable. Gold standard blood culture diagnostic services are limited, thus rapid, sensitive, and affordable diagnostic test is essential in poor-resourced clinical settings. Routine typhoid fever vaccination is highly recommended but currently licensed vaccines provide only 55-75% protection. Recent epidemiological studies also show the rapid emergence of multi-drug resistant S. Typhi strains. High-throughput molecular technologies, such as microarrays, can dissect the molecular mechanisms of host responses which are S. Typhi-specific to provide a comprehensive genomic component of immunological responses and suggest new insights for diagnosis and treatment. Methods Global transcriptional profiles of S. Typhi-infected young Nigerian children were obtained from their peripheral blood and compared with that of other bacteremic infections using Agilent gene expression microarrays. The host-response profiles of the same patients in acute vs. convalescent phases were also determined. The top 96-100 differentially-expressed genes were identified and four genes were validated by quantitative real-time PCR. Gene clusters were obtained and functional pathways were predicted by DAVID (Database for Annotation, Visualization and Integrated Discovery. Results Transcriptional profiles from S. Typhi-infected children could be distinguished from those of other bacteremic infections. Enriched gene clusters included genes associated with extracellular peptides/components such as lipocalin (LCN2 and systemic immune response which is atypical in

  15. pathDIP: an annotated resource for known and predicted human gene-pathway associations and pathway enrichment analysis

    Science.gov (United States)

    Rahmati, Sara; Abovsky, Mark; Pastrello, Chiara; Jurisica, Igor

    2017-01-01

    Molecular pathway data are essential in current computational and systems biology research. While there are many primary and integrated pathway databases, several challenges remain, including low proteome coverage (57%), low overlap across different databases, unavailability of direct information about underlying physical connectivity of pathway members, and high fraction of protein-coding genes without any pathway annotations, i.e. ‘pathway orphans’. In order to address all these challenges, we developed pathDIP, which integrates data from 20 source pathway databases, ‘core pathways’, with physical protein–protein interactions to predict biologically relevant protein–pathway associations, referred to as ‘extended pathways’. Cross-validation determined 71% recovery rate of our predictions. Data integration and predictions increase coverage of pathway annotations for protein-coding genes to 86%, and provide novel annotations for 5732 pathway orphans. PathDIP (http://ophid.utoronto.ca/pathdip) annotates 17 070 protein-coding genes with 4678 pathways, and provides multiple query, analysis and output options. PMID:27899558

  16. Association and gene-gene interactions study of reelin signaling pathway related genes with autism in the Han Chinese population.

    Science.gov (United States)

    Shen, Yidong; Xun, Guanglei; Guo, Hui; He, Yiqun; Ou, Jianjun; Dong, Huixi; Xia, Kun; Zhao, Jingping

    2016-04-01

    Autism is a neurodevelopmental disorder with unclear etiology. Reelin had been proposed to participate in the etiology of autism due to its important role in brain development. The goal of this study was to explore the association and gene-gene interactions of reelin signaling pathway related genes (RELN, VLDLR, LRP8, DAB1, FYN, and CDK5) with autism in Han Chinese population. Genotyping data of the six genes were obtained from a recent genome-wide association study performed in 430 autistic children who fulfilled the DSM-IV-TR criteria for autistic disorder, and 1,074 healthy controls. Single marker case-control association analysis and haplotype case-control association analysis were conducted after the data was screened. Multifactor dimensionality reduction (MDR) was applied to further test gene-gene interactions. Neither the single marker nor the haplotype association tests found any significant difference between the autistic group and the control group after permutation test of 1,000 rounds. The 4-locus MDR model (comprising rs6143734, rs1858782, rs634500, and rs1924267 which belong to RELN and DAB1) was determined to be the model with the highest cross-validation consistency (CVC) and testing balanced accuracy. The results indicate that an interaction between RELN and DAB1 may increase the risk of autism in the Han Chinese population. Furthermore, it can also be inferred that the involvement of RELN in the etiology of autism would occur through interaction with DAB1.

  17. Mining disease genes using integrated protein-protein interaction and gene-gene co-regulation information.

    Science.gov (United States)

    Li, Jin; Wang, Limei; Guo, Maozu; Zhang, Ruijie; Dai, Qiguo; Liu, Xiaoyan; Wang, Chunyu; Teng, Zhixia; Xuan, Ping; Zhang, Mingming

    2015-01-01

    In humans, despite the rapid increase in disease-associated gene discovery, a large proportion of disease-associated genes are still unknown. Many network-based approaches have been used to prioritize disease genes. Many networks, such as the protein-protein interaction (PPI), KEGG, and gene co-expression networks, have been used. Expression quantitative trait loci (eQTLs) have been successfully applied for the determination of genes associated with several diseases. In this study, we constructed an eQTL-based gene-gene co-regulation network (GGCRN) and used it to mine for disease genes. We adopted the random walk with restart (RWR) algorithm to mine for genes associated with Alzheimer disease. Compared to the Human Protein Reference Database (HPRD) PPI network alone, the integrated HPRD PPI and GGCRN networks provided faster convergence and revealed new disease-related genes. Therefore, using the RWR algorithm for integrated PPI and GGCRN is an effective method for disease-associated gene mining.

  18. Association testing to detect gene-gene interactions on sex chromosomes in trio data

    Directory of Open Access Journals (Sweden)

    Yeonok eLee

    2013-11-01

    Full Text Available Autism Spectrum Disorder (ASD occurs more often among males than females in a 4:1 ratio. Among theories used to explain the causes of ASD, the X chromosome and the Y chromosome theories attribute ASD to X-linked mutation and the male-limited gene expressions on the Y chromosome, respectively. Despite the rationale of the theory, studies have failed to attribute the sex-biased ratio to the significant linkage or association on the regions of interest on X chromosome. We further study the gender biased ratio by examining the possible interaction effects between two genes in the sex chromosomes. We propose a logistic regression model with mixed effects to detect gene-gene interactions on sex chromosomes. We investigated the power and type I error rates of the approach for a range of minor allele frequencies and varying linkage disequilibrium between markers and QTLs. We also evaluated the robustness of the model to population stratification. We applied the model to a trio-family data set with an ASD affected male child to study gene-gene interactions on sex chromosomes.

  19. Prioritizing cancer-related genes with aberrant methylation based on a weighted protein-protein interaction network

    Directory of Open Access Journals (Sweden)

    Lv Jie

    2011-10-01

    Full Text Available Abstract Background As an important epigenetic modification, DNA methylation plays a crucial role in the development of mammals and in the occurrence of complex diseases. Genes that interact directly or indirectly may have the same or similar functions in the biological processes in which they are involved and together contribute to the related disease phenotypes. The complicated relations between genes can be clearly represented using network theory. A protein-protein interaction (PPI network offers a platform from which to systematically identify disease-related genes from the relations between genes with similar functions. Results We constructed a weighted human PPI network (WHPN using DNA methylation correlations based on human protein-protein interactions. WHPN represents the relationships of DNA methylation levels in gene pairs for four cancer types. A cancer-associated subnetwork (CASN was obtained from WHPN by selecting genes associated with seed genes which were known to be methylated in the four cancers. We found that CASN had a more densely connected network community than WHPN, indicating that the genes in CASN were much closer to seed genes. We prioritized 154 potential cancer-related genes with aberrant methylation in CASN by neighborhood-weighting decision rule. A function enrichment analysis for GO and KEGG indicated that the optimized genes were mainly involved in the biological processes of regulating cell apoptosis and programmed cell death. An analysis of expression profiling data revealed that many of the optimized genes were expressed differentially in the four cancers. By examining the PubMed co-citations, we found 43 optimized genes were related with cancers and aberrant methylation, and 10 genes were validated to be methylated aberrantly in cancers. Of 154 optimized genes, 27 were as diagnostic markers and 20 as prognostic markers previously identified in literature for cancers and other complex diseases by searching Pub

  20. Immunity related genes in dipterans share common enrichment of AT-rich motifs in their 5' regulatory regions that are potentially involved in nucleosome formation

    Directory of Open Access Journals (Sweden)

    Rodriguez Mario H

    2008-07-01

    Full Text Available Abstract Background Understanding the transcriptional regulation mechanisms in response to environmental challenges is of fundamental importance in biology. Transcription factors associated to response elements and the chromatin structure had proven to play important roles in gene expression regulation. We have analyzed promoter regions of dipteran genes induced in response to immune challenge, in search for particular sequence patterns involved in their transcriptional regulation. Results 5' upstream regions of D. melanogaster and A. gambiae immunity-induced genes and their corresponding orthologous genes in 11 non-melanogaster drosophilid species and Ae. aegypti share enrichment in AT-rich short motifs. AT-rich motifs are associated with nucleosome formation as predicted by two different algorithms. In A. gambiae and D. melanogaster, many immunity genes 5' upstream sequences also showed NFκB response elements, located within 500 bp from the transcription start site. In A. gambiae, the frequency of ATAA motif near the NFκB response elements was increased, suggesting a functional link between nucleosome formation/remodelling and NFκB regulation of transcription. Conclusion AT-rich motif enrichment in 5' upstream sequences in A. gambiae, Ae. aegypti and the Drosophila genus immunity genes suggests a particular pattern of nucleosome formation/chromatin organization. The co-occurrence of such motifs with the NFκB response elements suggests that these sequence signatures may be functionally involved in transcriptional activation during dipteran immune response. AT-rich motif enrichment in regulatory regions in this group of co-regulated genes could represent an evolutionary constrained signature in dipterans and perhaps other distantly species.

  1. Chronic vitamin A-enriched diet feeding regulates hypercholesterolaemia through transcriptional regulation of reverse cholesterol transport pathway genes in obese rat model of WNIN/GR-Ob strain

    Directory of Open Access Journals (Sweden)

    Shanmugam M Jeyakumar

    2016-01-01

    Full Text Available Background & objectives: Hepatic scavenger receptor class B1 (SR-B1, a high-density lipoprotein (HDL receptor, is involved in the selective uptake of HDL-associated esterified cholesterol (EC, thereby regulates cholesterol homoeostasis and improves reverse cholesterol transport. Previously, we reported in euglycaemic obese rats (WNIN/Ob strain that feeding of vitamin A-enriched diet normalized hypercholesterolaemia, possibly through hepatic SR-B1-mediated pathway. This study was aimed to test whether it would be possible to normalize hypercholesterolaemia in glucose-intolerant obese rat model (WNIN/GR/Ob through similar mechanism by feeding identical vitamin A-enriched diet. Methods: In this study, 30 wk old male lean and obese rats of WNIN/GR-Ob strain were divided into two groups and received either stock diet or vitamin A-enriched diet (2.6 mg or 129 mg vitamin A/kg diet for 14 wk. Blood and other tissues were collected for various biochemical analyses. Results: Chronic vitamin A-enriched diet feeding decreased hypercholesterolaemia and normalized abnormally elevated plasma HDL-cholesterol (HDL-C levels in obese rats as compared to stock diet-fed obese groups. Further, decreased free cholesterol (FC and increased esterified cholesterol (EC contents of plasma cholesterol were observed, which were reflected in higher EC to FC ratio of vitamin A-enriched diet-fed obese rats. However, neither lecithin-cholesterol acyltransferase (LCAT activity of plasma nor its expression (both gene and protein in the liver were altered. On the contrary, hepatic cholesterol levels significantly increased in vitamin A-enriched diet fed obese rats. Hepatic SR-B1 expression (both mRNA and protein remained unaltered among groups. Vitamin A-enriched diet fed obese rats showed a significant increase in hepatic low-density lipoprotein receptor mRNA levels, while the expression of genes involved in HDL synthesis, namely, ATP-binding cassette protein 1 (ABCA1 and

  2. MeSH-Informed Enrichment Analysis and MeSH-Guided Semantic Similarity Among Functional Terms and Gene Products in Chicken

    Directory of Open Access Journals (Sweden)

    Gota Morota

    2016-08-01

    Full Text Available Biomedical vocabularies and ontologies aid in recapitulating biological knowledge. The annotation of gene products is mainly accelerated by Gene Ontology (GO, and more recently by Medical Subject Headings (MeSH. Here, we report a suite of MeSH packages for chicken in Bioconductor, and illustrate some features of different MeSH-based analyses, including MeSH-informed enrichment analysis and MeSH-guided semantic similarity among terms and gene products, using two lists of chicken genes available in public repositories. The two published datasets that were employed represent (i differentially expressed genes, and (ii candidate genes under selective sweep or epistatic selection. The comparison of MeSH with GO overrepresentation analyses suggested not only that MeSH supports the findings obtained from GO analysis, but also that MeSH is able to further enrich the representation of biological knowledge and often provide more interpretable results. Based on the hierarchical structures of MeSH and GO, we computed semantic similarities among vocabularies, as well as semantic similarities among selected genes. These yielded the similarity levels between significant functional terms, and the annotation of each gene yielded the measures of gene similarity. Our findings show the benefits of using MeSH as an alternative choice of annotation in order to draw biological inferences from a list of genes of interest. We argue that the use of MeSH in conjunction with GO will be instrumental in facilitating the understanding of the genetic basis of complex traits.

  3. Ultrahigh-dimensional variable selection method for whole-genome gene-gene interaction analysis

    Directory of Open Access Journals (Sweden)

    Ueki Masao

    2012-05-01

    Full Text Available Abstract Background Genome-wide gene-gene interaction analysis using single nucleotide polymorphisms (SNPs is an attractive way for identification of genetic components that confers susceptibility of human complex diseases. Individual hypothesis testing for SNP-SNP pairs as in common genome-wide association study (GWAS however involves difficulty in setting overall p-value due to complicated correlation structure, namely, the multiple testing problem that causes unacceptable false negative results. A large number of SNP-SNP pairs than sample size, so-called the large p small n problem, precludes simultaneous analysis using multiple regression. The method that overcomes above issues is thus needed. Results We adopt an up-to-date method for ultrahigh-dimensional variable selection termed the sure independence screening (SIS for appropriate handling of numerous number of SNP-SNP interactions by including them as predictor variables in logistic regression. We propose ranking strategy using promising dummy coding methods and following variable selection procedure in the SIS method suitably modified for gene-gene interaction analysis. We also implemented the procedures in a software program, EPISIS, using the cost-effective GPGPU (General-purpose computing on graphics processing units technology. EPISIS can complete exhaustive search for SNP-SNP interactions in standard GWAS dataset within several hours. The proposed method works successfully in simulation experiments and in application to real WTCCC (Wellcome Trust Case–control Consortium data. Conclusions Based on the machine-learning principle, the proposed method gives powerful and flexible genome-wide search for various patterns of gene-gene interaction.

  4. The DAO gene is associated with schizophrenia and interacts with other genes in the Taiwan Han Chinese population.

    Directory of Open Access Journals (Sweden)

    Hsin-Chou Yang

    Full Text Available BACKGROUND: Schizophrenia is a highly heritable disease with a polygenic mode of inheritance. Many studies have contributed to our understanding of the genetic underpinnings of schizophrenia, but little is known about how interactions among genes affect the risk of schizophrenia. This study aimed to assess the associations and interactions among genes that confer vulnerability to schizophrenia and to examine the moderating effect of neuropsychological impairment. METHODS: We analyzed 99 SNPs from 10 candidate genes in 1,512 subject samples. The permutation-based single-locus, multi-locus association tests, and a gene-based multifactorial dimension reduction procedure were used to examine genetic associations and interactions to schizophrenia. RESULTS: We found that no single SNP was significantly associated with schizophrenia. However, a risk haplotype, namely A-T-C of the SNP triplet rsDAO7-rsDAO8-rsDAO13 of the DAO gene, was strongly associated with schizophrenia. Interaction analyses identified multiple between-gene and within-gene interactions. Between-gene interactions including DAO*DISC1 , DAO*NRG1 and DAO*RASD2 and a within-gene interaction for CACNG2 were found among schizophrenia subjects with severe sustained attention deficits, suggesting a modifying effect of impaired neuropsychological functioning. Other interactions such as the within-gene interaction of DAO and the between-gene interaction of DAO and PTK2B were consistently identified regardless of stratification by neuropsychological dysfunction. Importantly, except for the within-gene interaction of CACNG2, all of the identified risk haplotypes and interactions involved SNPs from DAO. CONCLUSIONS: These results suggest that DAO, which is involved in the N-methyl-d-aspartate receptor regulation, signaling and glutamate metabolism, is the master gene of the genetic associations and interactions underlying schizophrenia. Besides, the interaction between DAO and RASD2 has provided

  5. Towards an international standard for PCR-based detection of foodborne thermotolerant campylobacters: interaction of enrichment media and pre-PCR treatment on carcass rinse samples.

    Science.gov (United States)

    Josefsen, M H; Lübeck, P S; Hansen, F; Hoorfar, J

    2004-07-01

    As part of a large EU project for standardisation of polymerase chain reaction (PCR), a systematic evaluation of the interaction of enrichment media, type of DNA polymerase and pre-PCR sample treatment for a PCR detecting thermotolerant campylobacters was carried out. The growth-supporting capacity and PCR compatibility of enrichment in Preston, Mueller-Hinton and Bolton broth (blood-containing and blood-free) were evaluated. The effect of resin-based DNA extraction and DNA extraction by boiling on the final PCR assay was investigated. The time-course studies indicated that a 20-h sample enrichment in blood-containing Bolton broth, followed by a simple resin-based extraction of DNA and a PCR amplification using Tth polymerase, resulted in strong and clear PCR amplicons for target (287 bp) and internal amplification control (IAC, 124 bp). The enrichment PCR-based method, tested on 68 presumably naturally contaminated poultry-rinse samples, showed a diagnostic sensitivity of 97.5% (39 PCR-positive/40 total positive samples) and a diagnostic specificity of 100% (28 PCR-negative/28 total negative samples; P=0.32) when compared to a standard bacteriological method (ISO 10272).

  6. Gene-gene interactions among genetic variants from obesity candidate genes for nonobese and obese populations in type 2 diabetes.

    Science.gov (United States)

    Lin, Eugene; Pei, Dee; Huang, Yi-Jen; Hsieh, Chang-Hsun; Wu, Lawrence Shih-Hsin

    2009-08-01

    Recent studies indicate that obesity may play a key role in modulating genetic predispositions to type 2 diabetes (T2D). This study examines the main effects of both single-locus and multilocus interactions among genetic variants in Taiwanese obese and nonobese individuals to test the hypothesis that obesity-related genes may contribute to the etiology of T2D independently and/or through such complex interactions. We genotyped 11 single nucleotide polymorphisms for 10 obesity candidate genes including adrenergic beta-2-receptor surface, adrenergic beta-3-receptor surface, angiotensinogen, fat mass and obesity associated gene, guanine nucleotide binding protein beta polypeptide 3 (GNB3), interleukin 6 receptor, proprotein convertase subtilisin/kexin type 1 (PCSK1), uncoupling protein 1, uncoupling protein 2, and uncoupling protein 3. There were 389 patients diagnosed with T2D and 186 age- and sex-matched controls. Single-locus analyses showed significant main effects of the GNB3 and PCSK1 genes on the risk of T2D among the nonobese group (p = 0.002 and 0.047, respectively). Further, interactions involving GNB3 and PCSK1 were suggested among the nonobese population using the generalized multifactor dimensionality reduction method (p = 0.001). In addition, interactions among angiotensinogen, fat mass and obesity associated gene, GNB3, and uncoupling protein 3 genes were found in a significant four-locus generalized multifactor dimensionality reduction model among the obese population (p = 0.001). The results suggest that the single nucleotide polymorphisms from the obesity candidate genes may contribute to the risk of T2D independently and/or in an interactive manner according to the presence or absence of obesity.

  7. Growing functional modules from a seed protein via integration of protein interaction and gene expression data

    Directory of Open Access Journals (Sweden)

    Dimitrakopoulou Konstantina

    2007-10-01

    Full Text Available Abstract Background Nowadays modern biology aims at unravelling the strands of complex biological structures such as the protein-protein interaction (PPI networks. A key concept in the organization of PPI networks is the existence of dense subnetworks (functional modules in them. In recent approaches clustering algorithms were applied at these networks and the resulting subnetworks were evaluated by estimating the coverage of well-established protein complexes they contained. However, most of these algorithms elaborate on an unweighted graph structure which in turn fails to elevate those interactions that would contribute to the construction of biologically more valid and coherent functional modules. Results In the current study, we present a method that corroborates the integration of protein interaction and microarray data via the discovery of biologically valid functional modules. Initially the gene expression information is overlaid as weights onto the PPI network and the enriched PPI graph allows us to exploit its topological aspects, while simultaneously highlights enhanced functional association in specific pairs of proteins. Then we present an algorithm that unveils the functional modules of the weighted graph by expanding a kernel protein set, which originates from a given 'seed' protein used as starting-point. Conclusion The integrated data and the concept of our approach provide reliable functional modules. We give proofs based on yeast data that our method manages to give accurate results in terms both of structural coherency, as well as functional consistency.

  8. Three Approaches to Modeling Gene-Environment Interactions in Longitudinal Family Data: Gene-Smoking Interactions in Blood Pressure.

    Science.gov (United States)

    Basson, Jacob; Sung, Yun Ju; de Las Fuentes, Lisa; Schwander, Karen L; Vazquez, Ana; Rao, Dabeeru C

    2016-01-01

    Blood pressure (BP) has been shown to be substantially heritable, yet identified genetic variants explain only a small fraction of the heritability. Gene-smoking interactions have detected novel BP loci in cross-sectional family data. Longitudinal family data are available and have additional promise to identify BP loci. However, this type of data presents unique analysis challenges. Although several methods for analyzing longitudinal family data are available, which method is the most appropriate and under what conditions has not been fully studied. Using data from three clinic visits from the Framingham Heart Study, we performed association analysis accounting for gene-smoking interactions in BP at 31,203 markers on chromosome 22. We evaluated three different modeling frameworks: generalized estimating equations (GEE), hierarchical linear modeling, and pedigree-based mixed modeling. The three models performed somewhat comparably, with multiple overlaps in the most strongly associated loci from each model. Loci with the greatest significance were more strongly supported in the longitudinal analyses than in any of the component single-visit analyses. The pedigree-based mixed model was more conservative, with less inflation in the variant main effect and greater deflation in the gene-smoking interactions. The GEE, but not the other two models, resulted in substantial inflation in the tail of the distribution when variants with minor allele frequency familial and longitudinal data. © 2015 WILEY PERIODICALS, INC.

  9. Bi-directional gene set enrichment and canonical correlation analysis identify key diet-sensitive pathways and biomarkers of metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Gaora Peadar Ó

    2010-10-01

    Full Text Available Abstract Background Currently, a number of bioinformatics methods are available to generate appropriate lists of genes from a microarray experiment. While these lists represent an accurate primary analysis of the data, fewer options exist to contextualise those lists. The development and validation of such methods is crucial to the wider application of microarray technology in the clinical setting. Two key challenges in clinical bioinformatics involve appropriate statistical modelling of dynamic transcriptomic changes, and extraction of clinically relevant meaning from very large datasets. Results Here, we apply an approach to gene set enrichment analysis that allows for detection of bi-directional enrichment within a gene set. Furthermore, we apply canonical correlation analysis and Fisher's exact test, using plasma marker data with known clinical relevance to aid identification of the most important gene and pathway changes in our transcriptomic dataset. After a 28-day dietary intervention with high-CLA beef, a range of plasma markers indicated a marked improvement in the metabolic health of genetically obese mice. Tissue transcriptomic profiles indicated that the effects were most dramatic in liver (1270 genes significantly changed; p Conclusion Bi-directional gene set enrichment analysis more accurately reflects dynamic regulatory behaviour in biochemical pathways, and as such highlighted biologically relevant changes that were not detected using a traditional approach. In such cases where transcriptomic response to treatment is exceptionally large, canonical correlation analysis in conjunction with Fisher's exact test highlights the subset of pathways showing strongest correlation with the clinical markers of interest. In this case, we have identified selenoamino acid metabolism and steroid biosynthesis as key pathways mediating the observed relationship between metabolic health and high-CLA beef. These results indicate that this type of

  10. Gene-Gene Interactions in the Folate Metabolic Pathway and the Risk of Conotruncal Heart Defects

    Directory of Open Access Journals (Sweden)

    Philip J. Lupo

    2010-01-01

    Full Text Available Conotruncal and related heart defects (CTRD are common, complex malformations. Although there are few established risk factors, there is evidence that genetic variation in the folate metabolic pathway influences CTRD risk. This study was undertaken to assess the association between inherited (i.e., case and maternal gene-gene interactions in this pathway and the risk of CTRD. Case-parent triads (n=727, ascertained from the Children's Hospital of Philadelphia, were genotyped for ten functional variants of nine folate metabolic genes. Analyses of inherited genotypes were consistent with the previously reported association between MTHFR A1298C and CTRD (adjusted P=.02, but provided no evidence that CTRD was associated with inherited gene-gene interactions. Analyses of the maternal genotypes provided evidence of a MTHFR C677T/CBS 844ins68 interaction and CTRD risk (unadjusted P=.02. This association is consistent with the effects of this genotype combination on folate-homocysteine biochemistry but remains to be confirmed in independent study populations.

  11. Inverse gene-for-gene interactions contribute additively to tan spot susceptibility in wheat

    Science.gov (United States)

    Tan spot of wheat, caused by Pyrenophora tritici-repentis, is an important disease in almost all wheat-growing areas of the world. The disease system is known to involve at least three fungal-produced necrotrophic effectors (NEs) that interact with corresponding host sensitivity (S) genes in an inv...

  12. Hypusine is required for a sequence-specific interaction of eukaryotic initiation factor 5A with postsystematic evolution of ligands by exponential enrichment RNA.

    Science.gov (United States)

    Xu, A; Chen, K Y

    2001-01-26

    Hypusine is formed through a spermidine-dependent posttranslational modification of eukaryotic initiation factor 5A (eIF-5A) at a specific lysine residue. The reaction is catalyzed by deoxyhypusine synthase and deoxyhypusine hydroxylase. eIF-5A is the only protein in eukaryotes and archaebacteria known to contain hypusine. Although both eIF-5A and deoxyhypusine synthase are essential genes for cell survival and proliferation, the precise biological function of eIF-5A is unclear. We have previously proposed that eIF-5A may function as a bimodular protein, capable of interacting with protein and nucleic acid (Liu, Y. P., Nemeroff, M., Yan, Y. P., and Chen, K. Y. (1997) Biol. Signals 6, 166-174). Here we used the method of systematic evolution of ligands by exponential enrichment (SELEX) to identify the sequence specificity of the potential eIF-5A RNA targets. The post-SELEX RNA obtained after 16 rounds of selection exhibited a significant increase in binding affinity for eIF-5A with an apparent dissociation constant of 1 x 10(-7) m. The hypusine residue was found to be critical for this sequence-specific binding. The post-SELEX RNAs shared a high sequence homology characterized by two conserved motifs, UAACCA and AAUGUCACAC. The consensus sequence was determined as AAAUGUCACAC by sequence alignment and binding studies. BLAST analysis indicated that this sequence was present in > 400 human expressed sequence tag sequences. The C terminus of eIF-5A contains a cold shock domain-like structure, similar to that present in cold shock protein A (CspA). However, unlike CspA, the binding of eIF-5A to either the post-SELEX RNA or the 5'-untranslated region of CspA mRNA did not affect the sensitivity of these RNAs to ribonucleases. These data suggest that the physiological significance of eIF-5A-RNA interaction depends on hypusine and the core motif of the target RNA.

  13. NH4+ enrichment and UV radiation interact to affect the photosynthesis and nitrogen uptake of Gracilaria lemaneiformis (Rhodophyta).

    Science.gov (United States)

    Xu, Zhiguang; Gao, Kunshan

    2012-01-01

    Solar ultraviolet radiation (UVR, 280-400 nm) is known to inhibit the photosynthesis of macroalgae, whereas nitrogen availability may alter the sensitivity of the algae to UVR. Here, we show that UV-B (280-315 nm) significantly reduced the net photosynthetic rate of Gracilaria lemaneiformis. This inhibition was alleviated by enrichment with ammonia, which also caused a decrease in dark respiration. The presence of both UV-A (315-400 nm) and UV-B stimulated the accumulation of UV-absorbing compounds. However, this stimulation was not affected by enrichment with ammonia. The content of phycoerythrin (PE) was increased by the enrichment of ammonia only in the absence of UVR. Ammonia uptake and the activity of nitrate reductase were repressed by UVR. However, exposure to UVR had an insignificant effect on the rate of nitrate uptake. In conclusion, increased PE content associated with ammonia enrichment played a protective role against UVR in this alga, and UVR differentially affected the uptake of nitrate and ammonia.

  14. Comparison of the Dictyostelium rasD and ecmA genes reveals two distinct mechanisms whereby an mRNA may become enriched in prestalk cells.

    Science.gov (United States)

    Jermyn, K; Wiliams, J

    1995-04-01

    The Dictyostelium ras gene, rasD, encodes an mRNA that is more abundant in prestalk than prespore cells in the migratory slug. Its expression is inducible by extracellular cAMP but is not inducible by the prestalk and stalk cell morphogen differentiation inducing factor (DIF). We show that a rasD-lacZ fusion gene is first expressed in approximately one half of the cells in the aggregate, including some cells that also express a prespore-specific marker. The amount of rasD-lacZ fusion protein in prespore cells then diminishes as the slug is formed. Analysis of a rasD-lacZ fusion protein with an N terminal substitution that reduces protein stability within the cell provides strong confirmatory evidence that the ras gene product becomes enriched in prestalk cells by selective repression of gene expression in prespore cells. In contrast, the DIF-inducible ecmA gene is expressed only in those cells that will become prestalk cells in the migratory slug. These results show that there are two different ways in which an mRNA may become enriched in prestalk cells and support the view that DIF is the inducer of prestalk cell differentiation.

  15. Comparative Analysis of 16S rRNA and amoA Genes from Archaea Selected with Organic and Inorganic Amendments in Enrichment Culture

    Science.gov (United States)

    Xu, Mouzhong; Schnorr, Jon; Keibler, Brandon

    2012-01-01

    We took advantage of a plant-root enrichment culture system to characterize mesophilic soil archaea selected through the use of organic and inorganic amendments. Comparative analysis of 16S rRNA and amoA genes indicated that specific archaeal clades were selected under different conditions. Three amoA sequence clades were identified, while for a fourth group, identified by 16S rRNA gene analysis alone and referred to as the “root” clade, we detected no corresponding amoA gene. The amoA-containing archaea were present in media with either organic or inorganic amendments, whereas archaea representing the root clade were present only when organic amendment was used. Analysis of amoA gene abundance and expression, together with nitrification-coupled growth assays, indicated potential growth by autotrophic ammonia oxidation for members of two group 1.1b clades. Increased abundance of one of these clades, however, also occurred upon the addition of organic amendment. Finally, although amoA-containing group 1.1a archaea were present in enrichments, we detected neither expression of amoA genes nor evidence for nitrification-coupled growth of these organisms. These data support a model of a diverse metabolic community in mesophilic soil archaea that is just beginning to be characterized. PMID:22267662

  16. The genome of the generalist plant pathogen Fusarium avenaceum is enriched with genes involved in redox, signaling and secondary metabolism.

    Directory of Open Access Journals (Sweden)

    Erik Lysøe

    Full Text Available Fusarium avenaceum is a fungus commonly isolated from soil and associated with a wide range of host plants. We present here three genome sequences of F. avenaceum, one isolated from barley in Finland and two from spring and winter wheat in Canada. The sizes of the three genomes range from 41.6-43.1 MB, with 13217-13445 predicted protein-coding genes. Whole-genome analysis showed that the three genomes are highly syntenic, and share>95% gene orthologs. Comparative analysis to other sequenced Fusaria shows that F. avenaceum has a very large potential for producing secondary metabolites, with between 75 and 80 key enzymes belonging to the polyketide, non-ribosomal peptide, terpene, alkaloid and indole-diterpene synthase classes. In addition to known metabolites from F. avenaceum, fuscofusarin and JM-47 were detected for the first time in this species. Many protein families are expanded in F. avenaceum, such as transcription factors, and proteins involved in redox reactions and signal transduction, suggesting evolutionary adaptation to a diverse and cosmopolitan ecology. We found that 20% of all predicted proteins were considered to be secreted, supporting a life in the extracellular space during interaction with plant hosts.

  17. The Genome of the Generalist Plant Pathogen Fusarium avenaceum Is Enriched with Genes Involved in Redox, Signaling and Secondary Metabolism

    Science.gov (United States)

    Lysøe, Erik; Harris, Linda J.; Walkowiak, Sean; Subramaniam, Rajagopal; Divon, Hege H.; Riiser, Even S.; Llorens, Carlos; Gabaldón, Toni; Kistler, H. Corby; Jonkers, Wilfried; Kolseth, Anna-Karin; Nielsen, Kristian F.; Thrane, Ulf; Frandsen, Rasmus J. N.

    2014-01-01

    Fusarium avenaceum is a fungus commonly isolated from soil and associated with a wide range of host plants. We present here three genome sequences of F. avenaceum, one isolated from barley in Finland and two from spring and winter wheat in Canada. The sizes of the three genomes range from 41.6–43.1 MB, with 13217–13445 predicted protein-coding genes. Whole-genome analysis showed that the three genomes are highly syntenic, and share>95% gene orthologs. Comparative analysis to other sequenced Fusaria shows that F. avenaceum has a very large potential for producing secondary metabolites, with between 75 and 80 key enzymes belonging to the polyketide, non-ribosomal peptide, terpene, alkaloid and indole-diterpene synthase classes. In addition to known metabolites from F. avenaceum, fuscofusarin and JM-47 were detected for the first time in this species. Many protein families are expanded in F. avenaceum, such as transcription factors, and proteins involved in redox reactions and signal transduction, suggesting evolutionary adaptation to a diverse and cosmopolitan ecology. We found that 20% of all predicted proteins were considered to be secreted, supporting a life in the extracellular space during interaction with plant hosts. PMID:25409087

  18. Association study of polymorphisms in the ABO gene and their gene-gene interactions with ischemic stroke in Chinese population.

    Science.gov (United States)

    Li, Hao; Cai, Yong; Xu, An-Ding

    2017-10-06

    To investigate the impact of 4 single nucleotide polymorphisms (SNPs) within ABO gene and their gene-gene interactions on ischemic stroke (IS) susceptibility in Chinese Han population. A total of 1993 participants (1375 males, 618 females) were selected, including 991 IS patients and 1002 normal controls. The SNPstats (http://bioinfo.iconcologia.net/SNPstats) was used for Hardy-Weinberg equilibrium (HWE) test. Generalized multifactor dimensionality reduction (GMDR) was used to screen the best interaction combination among 4 SNPs within ABO gene. Logistic regression was performed to calculate the ORs (95%CI) for interaction between SNPs. Both rs579459 and rs505922 within ABO gene were associated with IS risk in additive and dominant models. IS risks were higher in those with minor alleles of rs579459 and rs505922 than those with wild-type homozygotes, OR (95%CI) were 1.62 (1.19-2.10) and 1.69 (1.23-2.18), respectively. We did not find any relation of rs651007 and rs529565 with IS risk in both additive and dominant models. GMDR model indicated a significant two-locus model (P = .0010) involving rs505922 and rs579459, indicating a potential interaction between rs505922 and rs579459, the cross-validation consistency of the two-locus models was 9/10, and the testing accuracy was 60.72%. We also found that participants with rs505922- TC/CC and rs579459- TC/CC genotype have the highest IS risk, compared to participants with rs505922- TT and rs579459- TT genotype, OR (95%CI) was 2.94 (1.28-4.66). We found that rs579459 and rs505922 within ABO gene and their interaction were both associated with increased IS risk in Chinese population. © 2017 Wiley Periodicals, Inc.

  19. Dynamic and coordinated single-molecular interactions at TM4SF5-enriched microdomains guide invasive behaviors in 2- and 3-dimensional environments.

    Science.gov (United States)

    Kim, Hye-Jin; Kwon, Sojung; Nam, Seo Hee; Jung, Jae Woo; Kang, Minkyung; Ryu, Jihye; Kim, Ji Eon; Cheong, Jin-Gyu; Cho, Chang Yun; Kim, Somi; Song, Dae-Geun; Kim, Yong-Nyun; Kim, Tai Young; Jung, Min-Kyo; Lee, Kyung-Min; Pack, Chan-Gi; Lee, Jung Weon

    2017-04-01

    Membrane proteins sense extracellular cues and transduce intracellular signaling to coordinate directionality and speed during cellular migration. They are often localized to specific regions, as with lipid rafts or tetraspanin-enriched microdomains; however, the dynamic interactions of tetraspanins with diverse receptors within tetraspanin-enriched microdomains on cellular surfaces remain largely unexplored. Here, we investigated effects of tetraspan(in) TM4SF5 (transmembrane 4 L6 family member 5)-enriched microdomains (T5ERMs) on the directionality of cell migration. Physical association of TM4SF5 with epidermal growth factor receptor (EGFR) and integrin α5 was visualized by live fluorescence cross-correlation spectroscopy and higher-resolution microscopy at the leading edge of migratory cells, presumably forming TM4SF5-enriched microdomains. Whereas TM4SF5 and EGFR colocalized at the migrating leading region more than at the rear, TM4SF5 and integrin α5 colocalized evenly throughout cells. Cholesterol depletion and disruption in TM4SF5 post-translational modifications, including N-glycosylation and palmitoylation, altered TM4SF5 interactions and cellular localization, which led to less cellular migration speed and directionality in 2- or 3-dimensional conditions. TM4SF5 controlled directional cell migration and invasion, and importantly, these TM4SF5 functions were dependent on cholesterol, TM4SF5 post-translational modifications, and EGFR and integrin α5 activity. Altogether, we showed that TM4SF5 dynamically interacted with EGFR and integrin α5 in migratory cells to control directionality and invasion.-Kim, H.-J., Kwon, S., Nam, S. H., Jung, J. W., Kang, M., Ryu, J., Kim, J. E., Cheong, J.-G., Cho, C. Y., Kim, S., Song, D.-G., Kim, Y.-N., Kim, T. Y., Jung, M.-K., Lee, K.-M., Pack, C.-G., Lee, J. W. Dynamic and coordinated single-molecular interactions at TM4SF5-enriched microdomains guide invasive behaviors in 2- and 3-dimensional environments. © FASEB.

  20. Linking Genes to Cardiovascular Diseases: Gene Action and Gene-Environment Interactions.

    Science.gov (United States)

    Pasipoularides, Ares

    2015-12-01

    A unique myocardial characteristic is its ability to grow/remodel in order to adapt; this is determined partly by genes and partly by the environment and the milieu intérieur. In the "post-genomic" era, a need is emerging to elucidate the physiologic functions of myocardial genes, as well as potential adaptive and maladaptive modulations induced by environmental/epigenetic factors. Genome sequencing and analysis advances have become exponential lately, with escalation of our knowledge concerning sometimes controversial genetic underpinnings of cardiovascular diseases. Current technologies can identify candidate genes variously involved in diverse normal/abnormal morphomechanical phenotypes, and offer insights into multiple genetic factors implicated in complex cardiovascular syndromes. The expression profiles of thousands of genes are regularly ascertained under diverse conditions. Global analyses of gene expression levels are useful for cataloging genes and correlated phenotypes, and for elucidating the role of genes in maladies. Comparative expression of gene networks coupled to complex disorders can contribute insights as to how "modifier genes" influence the expressed phenotypes. Increasingly, a more comprehensive and detailed systematic understanding of genetic abnormalities underlying, for example, various genetic cardiomyopathies is emerging. Implementing genomic findings in cardiology practice may well lead directly to better diagnosing and therapeutics. There is currently evolving a strong appreciation for the value of studying gene anomalies, and doing so in a non-disjointed, cohesive manner. However, it is challenging for many-practitioners and investigators-to comprehend, interpret, and utilize the clinically increasingly accessible and affordable cardiovascular genomics studies. This survey addresses the need for fundamental understanding in this vital area.

  1. The interactions of genes, age, and environment in glaucoma pathogenesis.

    Science.gov (United States)

    Doucette, Lance P; Rasnitsyn, Alexandra; Seifi, Morteza; Walter, Michael A

    2015-01-01

    Glaucoma, a progressive degenerative condition that results in the death of retinal ganglion cells, is one of the leading causes of blindness, affecting millions worldwide. The mechanisms underlying glaucoma are not well understood, although years of studies have shown that the largest risk factors are elevated intraocular pressure, age, and genetics. Eleven genes and multiple loci have been identified as contributing factors. These genes act by a number of mechanisms, including mechanical stress, ischemic/oxidative stress, and neurodegeneration. We summarize the recent advances in the understanding of glaucoma and propose a unified hypothesis for glaucoma pathogenesis. Glaucoma does not result from a single pathological mechanism, but rather a combination of pathways that are influenced by genes, age, and environment. In particular, we hypothesize that, in the presence of genetic risk factors, exposure to environment stresses results in an earlier age of onset for glaucoma. This hypothesis is based upon the overlap of the molecular pathways in which glaucoma genes are involved. Because of the interactions between these processes, it is likely that there are common therapies that may be effective for different subtypes of glaucoma.

  2. Chemical-gene interaction networks and causal reasoning for ...

    Science.gov (United States)

    Evaluating the potential human health and ecological risks associated with exposures to complex chemical mixtures in the environment is one of the main challenges of chemical safety assessment and environmental protection. There is a need for approaches that can help to integrate chemical monitoring and biological effects data to evaluate risks associated with chemicals present in the environment. Here, we used prior knowledge about chemical-gene interactions to develop a knowledge assembly model for detected chemicals at five locations near the North Branch and Chisago wastewater treatment plants (WWTP) in the St. Croix River Basin, MN and WI. The assembly model was used to generate hypotheses about the biological impacts of the chemicals at each location. The hypotheses were tested using empirical hepatic gene expression data from fathead minnows exposed for 12 d at each location. Empirical gene expression data were also mapped to the assembly models to evaluate the likelihood of a chemical contributing to the observed biological responses using richness and concordance statistics. The prior knowledge approach was able predict the observed biological pathways impacted at one site but not the other. Atrazine was identified as a potential contributor to the observed gene expression responses at a location upstream of the North Branch WTTP. Four chemicals were identified as contributors to the observed biological responses at the effluent and downstream o

  3. Origin of low δ26Mg basalts with EM-I component: Evidence for interaction between enriched lithosphere and carbonated asthenosphere

    Science.gov (United States)

    Tian, H.; Yang, W.; Li, S. G.; Ke, S.; Chu, Z. Y.

    2016-12-01

    Many studies have focused on the interactions between recycled materials and depleted mantle to explain the origins of EM and HIMU components (e.g., Cohen and O'Nions, 1982; White and Hofmann, 1982). However, little is known about the interactions between recycled materials and enriched mantle and the associated consequences, e.g., late recycled crustal material overprints mantle previously enriched by earlier recycling events of the crust. Recently, light Mg isotopic composition of the basalts from North China Craton (NCC) and South China Block (SCB) has been attributed to recycled carbonate metasomatism from subducted Pacific slab (Yang et al., 2012; Huang et al., 2015). If this explanation is correct, the Cenozoic basalts from Northeast (NE) China should also contain light Mg isotopic compositions. The basalts from NE China have EMI Sr-Nd-Pb isotopic features that are distinct from the NCC and SCB basalts, indicating the contribution of an enriched mantle source (Choi et al., 2006; Chu et al., 2013). Therefore, Mg isotopic compositions of the Cenozoic basalts from NE China will help to determine the interaction between recycled sedimentary carbonates and an enriched mantle. Consistent with the hypothesis, our results show that the Cenozoic basalts from Wudalianchi and Erkeshan, NE China, have homogeneous and light Mg isotopic compositions (δ26Mg =-0.57 to -0.46‰). Based on the similarity to the basalts from NCC and SCB, their light Mg isotopic feature should also be derived from carbonate metasomatism (i.e. carbonated asthenosphere). In addition to that, a question arise that why the interaction between carbonated asthenosphere and the EM-I SLCM significantly modify the trace element and Sr-Nd-Pb isotopic composition of the mantle-derived melt, but have little effect on the Mg isotopes? The possible mechanism is the interaction between low SiO2 melt and peridotite, which converts pyroxene to olivine, as reported in previous studies (e.g., Kelemen et al., 1992

  4. Spatially Uniform ReliefF (SURF for computationally-efficient filtering of gene-gene interactions

    Directory of Open Access Journals (Sweden)

    Greene Casey S

    2009-09-01

    Full Text Available Abstract Background Genome-wide association studies are becoming the de facto standard in the genetic analysis of common human diseases. Given the complexity and robustness of biological networks such diseases are unlikely to be the result of single points of failure but instead likely arise from the joint failure of two or more interacting components. The hope in genome-wide screens is that these points of failure can be linked to single nucleotide polymorphisms (SNPs which confer disease susceptibility. Detecting interacting variants that lead to disease in the absence of single-gene effects is difficult however, and methods to exhaustively analyze sets of these variants for interactions are combinatorial in nature thus making them computationally infeasible. Efficient algorithms which can detect interacting SNPs are needed. ReliefF is one such promising algorithm, although it has low success rate for noisy datasets when the interaction effect is small. ReliefF has been paired with an iterative approach, Tuned ReliefF (TuRF, which improves the estimation of weights in noisy data but does not fundamentally change the underlying ReliefF algorithm. To improve the sensitivity of studies using these methods to detect small effects we introduce Spatially Uniform ReliefF (SURF. Results SURF's ability to detect interactions in this domain is significantly greater than that of ReliefF. Similarly SURF, in combination with the TuRF strategy significantly outperforms TuRF alone for SNP selection under an epistasis model. It is important to note that this success rate increase does not require an increase in algorithmic complexity and allows for increased success rate, even with the removal of a nuisance parameter from the algorithm. Conclusion Researchers performing genetic association studies and aiming to discover gene-gene interactions associated with increased disease susceptibility should use SURF in place of ReliefF. For instance, SURF should be

  5. Genotype-based association models of complex diseases to detect gene-gene and gene-environment interactions.

    Science.gov (United States)

    Lobach, Iryna; Fan, Ruzong; Manga, Prashiela

    A central problem in genetic epidemiology is to identify and rank genetic markers involved in a disease. Complex diseases, such as cancer, hypertension, diabetes, are thought to be caused by an interaction of a panel of genetic factors, that can be identified by markers, which modulate environmental factors. Moreover, the effect of each genetic marker may be small. Hence, the association signal may be missed unless a large sample is considered, or a priori biomedical data are used. Recent advances generated a vast variety of a priori information, including linkage maps and information about gene regulatory dependence assembled into curated pathway databases. We propose a genotype-based approach that takes into account linkage disequilibrium (LD) information between genetic markers that are in moderate LD while modeling gene-gene and gene-environment interactions. A major advantage of our method is that the observed genetic information enters a model directly thus eliminating the need to estimate haplotype-phase. Our approach results in an algorithm that is inexpensive computationally and does not suffer from bias induced by haplotype-phase ambiguity. We investigated our model in a series of simulation experiments and demonstrated that the proposed approach results in estimates that are nearly unbiased and have small variability. We applied our method to the analysis of data from a melanoma case-control study and investigated interaction between a set of pigmentation genes and environmental factors defined by age and gender. Furthermore, an application of our method is demonstrated using a study of Alcohol Dependence.

  6. Gene-Diet Interaction and Precision Nutrition in Obesity

    Directory of Open Access Journals (Sweden)

    Yoriko Heianza

    2017-04-01

    Full Text Available The rapid rise of obesity during the past decades has coincided with a profound shift of our living environment, including unhealthy dietary patterns, a sedentary lifestyle, and physical inactivity. Genetic predisposition to obesity may have interacted with such an obesogenic environment in determining the obesity epidemic. Growing studies have found that changes in adiposity and metabolic response to low-calorie weight loss diets might be modified by genetic variants related to obesity, metabolic status and preference to nutrients. This review summarized data from recent studies of gene-diet interactions, and discussed integration of research of metabolomics and gut microbiome, as well as potential application of the findings in precision nutrition.

  7. Exploring Plant Co-Expression and Gene-Gene Interactions with CORNET 3.0.

    Science.gov (United States)

    Van Bel, Michiel; Coppens, Frederik

    2017-01-01

    Selecting and filtering a reference expression and interaction dataset when studying specific pathways and regulatory interactions can be a very time-consuming and error-prone task. In order to reduce the duplicated efforts required to amass such datasets, we have created the CORNET (CORrelation NETworks) platform which allows for easy access to a wide variety of data types: coexpression data, protein-protein interactions, regulatory interactions, and functional annotations. The CORNET platform outputs its results in either text format or through the Cytoscape framework, which is automatically launched by the CORNET website.CORNET 3.0 is the third iteration of the web platform designed for the user exploration of the coexpression space of plant genomes, with a focus on the model species Arabidopsis thaliana. Here we describe the platform: the tools, data, and best practices when using the platform. We indicate how the platform can be used to infer networks from a set of input genes, such as upregulated genes from an expression experiment. By exploring the network, new target and regulator genes can be discovered, allowing for follow-up experiments and more in-depth study. We also indicate how to avoid common pitfalls when evaluating the networks and how to avoid over interpretation of the results.All CORNET versions are available at http://bioinformatics.psb.ugent.be/cornet/ .

  8. Predicting gene ontology annotations of orphan GWAS genes using protein-protein interactions.

    Science.gov (United States)

    Kuppuswamy, Usha; Ananthasubramanian, Seshan; Wang, Yanli; Balakrishnan, Narayanaswamy; Ganapathiraju, Madhavi K

    2014-04-03

    The number of genome-wide association studies (GWAS) has increased rapidly in the past couple of years, resulting in the identification of genes associated with different diseases. The next step in translating these findings into biomedically useful information is to find out the mechanism of the action of these genes. However, GWAS studies often implicate genes whose functions are currently unknown; for example, MYEOV, ANKLE1, TMEM45B and ORAOV1 are found to be associated with breast cancer, but their molecular function is unknown. We carried out Bayesian inference of Gene Ontology (GO) term annotations of genes by employing the directed acyclic graph structure of GO and the network of protein-protein interactions (PPIs). The approach is designed based on the fact that two proteins that interact biophysically would be in physical proximity of each other, would possess complementary molecular function, and play role in related biological processes. Predicted GO terms were ranked according to their relative association scores and the approach was evaluated quantitatively by plotting the precision versus recall values and F-scores (the harmonic mean of precision and recall) versus varying thresholds. Precisions of ~58% and ~ 40% for localization and functions respectively of proteins were determined at a threshold of ~30 (top 30 GO terms in the ranked list). Comparison with function prediction based on semantic similarity among nodes in an ontology and incorporation of those similarities in a k-nearest neighbor classifier confirmed that our results compared favorably. This approach was applied to predict the cellular component and molecular function GO terms of all human proteins that have interacting partners possessing at least one known GO annotation. The list of predictions is available at http://severus.dbmi.pitt.edu/engo/GOPRED.html. We present the algorithm, evaluations and the results of the computational predictions, especially for genes identified in

  9. Cognitive endophenotypes, gene-environment interactions and experience-dependent plasticity in animal models of schizophrenia.

    Science.gov (United States)

    Burrows, Emma L; Hannan, Anthony J

    2016-04-01

    Schizophrenia is a devastating brain disorder caused by a complex and heterogeneous combination of genetic and environmental factors. In order to develop effective new strategies to prevent and treat schizophrenia, valid animal models are required which accurately model the disorder, and ideally provide construct, face and predictive validity. The cognitive deficits in schizophrenia represent some of the most debilitating symptoms and are also currently the most poorly treated. Therefore it is crucial that animal models are able to capture the cognitive dysfunction that characterizes schizophrenia, as well as the negative and psychotic symptoms. The genomes of mice have, prior to the recent gene-editing revolution, proven the most easily manipulable of mammalian laboratory species, and hence most genetic targeting has been performed using mouse models. Importantly, when key environmental factors of relevance to schizophrenia are experimentally manipulated, dramatic changes in the phenotypes of these animal models are often observed. We will review recent studies in rodent models which provide insight into gene-environment interactions in schizophrenia. We will focus specifically on environmental factors which modulate levels of experience-dependent plasticity, including environmental enrichment, cognitive stimulation, physical activity and stress. The insights provided by this research will not only help refine the establishment of optimally valid animal models which facilitate development of novel therapeutics, but will also provide insight into the pathogenesis of schizophrenia, thus identifying molecular and cellular targets for future preclinical and clinical investigations.

  10. Enriched environment inhibits mouse pancreatic cancer growth and down-regulates the expression of mitochondria-related genes in cancer cells.

    Science.gov (United States)

    Li, Guohua; Gan, Yu; Fan, Yingchao; Wu, Yufeng; Lin, Hechun; Song, Yanfang; Cai, Xiaojin; Yu, Xiang; Pan, Weihong; Yao, Ming; Gu, Jianren; Tu, Hong

    2015-01-19

    Psycho-social stress has been suggested to influence the development of cancer, but it remains poorly defined with regard to pancreatic cancer, a lethal malignancy with few effective treatment modalities. In this study, we sought to investigate the impacts of enriched environment (EE) housing, a rodent model of "eustress", on the growth of mouse pancreatic cancer, and to explore the potential underlying mechanisms through gene expression profiling. The EE mice showed significantly reduced tumor weights in both subcutaneous (53%) and orthotopic (41%) models, while each single component of EE (inanimate stimulation, social stimulation or physical exercise) was not profound enough to achieve comparative anti-tumor effects as EE. The integrative transcriptomic and proteomic analysis revealed that in response to EE, a total of 129 genes in the tumors showed differential expression at both the mRNA and protein levels. The differentially expressed genes were mostly localized to the mitochondria and enriched in the citrate cycle and oxidative phosphorylation pathways. Interestingly, nearly all of the mitochondria-related genes were down-regulated by EE. Our data have provided experimental evidence in favor of the application of positive stress or of benign environmental stimulation in pancreatic cancer therapy.

  11. Double-bottom chaotic map particle swarm optimization based on chi-square test to determine gene-gene interactions.

    Science.gov (United States)

    Yang, Cheng-Hong; Lin, Yu-Da; Chuang, Li-Yeh; Chang, Hsueh-Wei

    2014-01-01

    Gene-gene interaction studies focus on the investigation of the association between the single nucleotide polymorphisms (SNPs) of genes for disease susceptibility. Statistical methods are widely used to search for a good model of gene-gene interaction for disease analysis, and the previously determined models have successfully explained the effects between SNPs and diseases. However, the huge numbers of potential combinations of SNP genotypes limit the use of statistical methods for analysing high-order interaction, and finding an available high-order model of gene-gene interaction remains a challenge. In this study, an improved particle swarm optimization with double-bottom chaotic maps (DBM-PSO) was applied to assist statistical methods in the analysis of associated variations to disease susceptibility. A big data set was simulated using the published genotype frequencies of 26 SNPs amongst eight genes for breast cancer. Results showed that the proposed DBM-PSO successfully determined two- to six-order models of gene-gene interaction for the risk association with breast cancer (odds ratio > 1.0; P value <0.05). Analysis results supported that the proposed DBM-PSO can identify good models and provide higher chi-square values than conventional PSO. This study indicates that DBM-PSO is a robust and precise algorithm for determination of gene-gene interaction models for breast cancer.

  12. Double-Bottom Chaotic Map Particle Swarm Optimization Based on Chi-Square Test to Determine Gene-Gene Interactions

    Directory of Open Access Journals (Sweden)

    Cheng-Hong Yang

    2014-01-01

    Full Text Available Gene-gene interaction studies focus on the investigation of the association between the single nucleotide polymorphisms (SNPs of genes for disease susceptibility. Statistical methods are widely used to search for a good model of gene-gene interaction for disease analysis, and the previously determined models have successfully explained the effects between SNPs and diseases. However, the huge numbers of potential combinations of SNP genotypes limit the use of statistical methods for analysing high-order interaction, and finding an available high-order model of gene-gene interaction remains a challenge. In this study, an improved particle swarm optimization with double-bottom chaotic maps (DBM-PSO was applied to assist statistical methods in the analysis of associated variations to disease susceptibility. A big data set was simulated using the published genotype frequencies of 26 SNPs amongst eight genes for breast cancer. Results showed that the proposed DBM-PSO successfully determined two- to six-order models of gene-gene interaction for the risk association with breast cancer (odds ratio > 1.0; P value <0.05. Analysis results supported that the proposed DBM-PSO can identify good models and provide higher chi-square values than conventional PSO. This study indicates that DBM-PSO is a robust and precise algorithm for determination of gene-gene interaction models for breast cancer.

  13. Systems-level cancer gene identification from protein interaction network topology applied to melanogenesis-related functional genomics data.

    Science.gov (United States)

    Milenkovic, Tijana; Memisevic, Vesna; Ganesan, Anand K; Przulj, Natasa

    2010-03-06

    Many real-world phenomena have been described in terms of large networks. Networks have been invaluable models for the understanding of biological systems. Since proteins carry out most biological processes, we focus on analysing protein-protein interaction (PPI) networks. Proteins interact to perform a function. Thus, PPI networks reflect the interconnected nature of biological processes and analysing their structural properties could provide insights into biological function and disease. We have already demonstrated, by using a sensitive graph theoretic method for comparing topologies of node neighbourhoods called 'graphlet degree signatures', that proteins with similar surroundings in PPI networks tend to perform the same functions. Here, we explore whether the involvement of genes in cancer suggests the similarity of their topological 'signatures' as well. By applying a series of clustering methods to proteins' topological signature similarities, we demonstrate that the obtained clusters are significantly enriched with cancer genes. We apply this methodology to identify novel cancer gene candidates, validating 80 per cent of our predictions in the literature. We also validate predictions biologically by identifying cancer-related negative regulators of melanogenesis identified in our siRNA screen. This is encouraging, since we have done this solely from PPI network topology. We provide clear evidence that PPI network structure around cancer genes is different from the structure around non-cancer genes. Understanding the underlying principles of this phenomenon is an open question, with a potential for increasing our understanding of complex diseases.

  14. Ontology-based literature mining of E. coli vaccine-associated gene interaction networks.

    Science.gov (United States)

    Hur, Junguk; Özgür, Arzucan; He, Yongqun

    2017-03-14

    Pathogenic Escherichia coli infections cause various diseases in humans and many animal species. However, with extensive E. coli vaccine research, we are still unable to fully protect ourselves against E. coli infections. To more rational development of effective and safe E. coli vaccine, it is important to better understand E. coli vaccine-associated gene interaction networks. In this study, we first extended the Vaccine Ontology (VO) to semantically represent various E. coli vaccines and genes used in the vaccine development. We also normalized E. coli gene names compiled from the annotations of various E. coli strains using a pan-genome-based annotation strategy. The Interaction Network Ontology (INO) includes a hierarchy of various interaction-related keywords useful for literature mining. Using VO, INO, and normalized E. coli gene names, we applied an ontology-based SciMiner literature mining strategy to mine all PubMed abstracts and retrieve E. coli vaccine-associated E. coli gene interactions. Four centrality metrics (i.e., degree, eigenvector, closeness, and betweenness) were calculated for identifying highly ranked genes and interaction types. Using vaccine-related PubMed abstracts, our study identified 11,350 sentences that contain 88 unique INO interactions types and 1,781 unique E. coli genes. Each sentence contained at least one interaction type and two unique E. coli genes. An E. coli gene interaction network of genes and INO interaction types was created. From this big network, a sub-network consisting of 5 E. coli vaccine genes, including carA, carB, fimH, fepA, and vat, and 62 other E. coli genes, and 25 INO interaction types was identified. While many interaction types represent direct interactions between two indicated genes, our study has also shown that many of these retrieved interaction types are indirect in that the two genes participated in the specified interaction process in a required but indirect process. Our centrality analysis of

  15. A genetic map of melon highly enriched with fruit quality QTLs and EST markers, including sugar and carotenoid metabolism genes

    Science.gov (United States)

    A genetic map of melon enriched for fruit traits was constructed, using a recombinant inbred (RI) population developed from a cross between representatives of the two subspecies of Cucumis melo L.: PI 414723 (subspecies agrestis) and 'Dulce' (subspecies melo). Phenotyping of 99 RI lines was conducte...

  16. NEAT: an efficient network enrichment analysis test

    OpenAIRE

    Signorelli, Mirko; Vinciotti, Veronica; Wit, Ernst C

    2016-01-01

    Background Network enrichment analysis is a powerful method, which allows to integrate gene enrichment analysis with the information on relationships between genes that is provided by gene networks. Existing tests for network enrichment analysis deal only with undirected networks, they can be computationally slow and are based on normality assumptions. Results We propose NEAT, a test for network enrichment analysis. The test is based on the hypergeometric distribution, which naturally arises ...

  17. Sleep Duration and Depressive Symptoms: A Gene-Environment Interaction

    Science.gov (United States)

    Watson, Nathaniel F.; Harden, Kathryn Paige; Buchwald, Dedra; Vitiello, Michael V.; Pack, Allan I.; Strachan, Eric; Goldberg, Jack

    2014-01-01

    Objective: We used quantitative genetic models to assess whether sleep duration modifies genetic and environmental influences on depressive symptoms. Method: Participants were 1,788 adult twins from 894 same-sex twin pairs (192 male and 412 female monozygotic [MZ] pairs, and 81 male and 209 female dizygotic [DZ] pairs] from the University of Washington Twin Registry. Participants self-reported habitual sleep duration and depressive symptoms. Data were analyzed using quantitative genetic interaction models, which allowed the magnitude of additive genetic, shared environmental, and non-shared environmental influences on depressive symptoms to vary with sleep duration. Results: Within MZ twin pairs, the twin who reported longer sleep duration reported fewer depressive symptoms (ec = -0.17, SE = 0.06, P sleep duration interaction effect on depressive symptoms (a'c = 0.23, SE = 0.08, P sleep duration and depressive symptoms. Among individuals with sleep duration within the normal range (7-8.9 h/night), the total heritability (h2) of depressive symptoms was approximately 27%. However, among individuals with sleep duration within the low (sleep duration extremes (5 h/night: h2 = 53%; 10 h/night: h2 = 49%). Conclusion: Genetic contributions to depressive symptoms increase at both short and long sleep durations. Citation: Watson NF; Harden KP; Buchwald D; Vitiello MV; Pack AI; Stachan E; Goldberg J. Sleep duration and depressive symptoms: a gene-environment interaction. SLEEP 2014;37(2):351-358. PMID:24497663

  18. Computational analysis of HIV-1 resistance based on gene expression profiles and the virus-host interaction network.

    Directory of Open Access Journals (Sweden)

    Tao Huang

    Full Text Available A very small proportion of people remain negative for HIV infection after repeated HIV-1 viral exposure, which is called HIV-1 resistance. Understanding the mechanism of HIV-1 resistance is important for the development of HIV-1 vaccines and Acquired Immune Deficiency Syndrome (AIDS therapies. In this study, we analyzed the gene expression profiles of CD4+ T cells from HIV-1-resistant individuals and HIV-susceptible individuals. One hundred eighty-five discriminative HIV-1 resistance genes were identified using the Minimum Redundancy-Maximum Relevance (mRMR and Incremental Feature Selection (IFS methods. The virus protein target enrichment analysis of the 185 HIV-1 resistance genes suggested that the HIV-1 protein nef might play an important role in HIV-1 infection. Moreover, we identified 29 infection information exchanger genes from the 185 HIV-1 resistance genes based on a virus-host interaction network analysis. The infection information exchanger genes are located on the shortest paths between virus-targeted proteins and are important for the coordination of virus infection. These proteins may be useful targets for AIDS prevention or therapy, as intervention in these pathways could disrupt communication with virus-targeted proteins and HIV-1 infection.

  19. Enriching Glucoraphanin in Brassica rapa Through Replacement of BrAOP2.2/BrAOP2.3 with Non-functional Genes

    Directory of Open Access Journals (Sweden)

    Zhiyuan Liu

    2017-08-01

    Full Text Available Sulforaphane, the hydrolytic product of glucoraphanin glucosinolate, is a potent anticarcinogen that reduces the risk of several human cancers. However, in most B. rapa vegetables, glucoraphanin is undetectable or only present in trace amounts, since the glucoraphanin that is present is converted to gluconapin by three functional BrAOP2 genes. In this study, to enrich beneficial glucoraphanin content in B. rapa, the functional BrAOP2 alleles were replaced by non-functional counterparts through marker-assisted backcrossing (MAB. We identified non-functional mutations of two BrAOP2 genes from B. rapa. The backcross progenies with introgression of both non-functional braop2.2 and braop2.3 alleles significantly increased the glucoraphanin content by 18 times relative to the recurrent parent. In contrast, replacement or introgression of single non-functional braop2.2 or braop2.3 locus did not change glucoraphanin content. Our results suggest that replacement of these two functional BrAOP2 genes with non-functional alleles has the potential for producing improved Brassica crops with enriched beneficial glucoraphanin content.

  20. Development of a Pacific oyster (Crassostrea gigas) 31,918-feature microarray: identification of reference genes and tissue-enriched expression patterns

    Science.gov (United States)

    2011-01-01

    Background Research using the Pacific oyster Crassostrea gigas as a model organism has experienced rapid growth in recent years due to the development of high-throughput molecular technologies. As many as 56,268 EST sequences have been sequenced to date, representing a genome-wide resource that can be used for transcriptomic investigations. Results In this paper, we developed a Pacific oyster microarray containing oligonucleotides representing 31,918 transcribed sequences selected from the publicly accessible GigasDatabase. This newly designed microarray was used to study the transcriptome of male and female gonads, mantle, gills, posterior adductor muscle, visceral ganglia, hemocytes, labial palps and digestive gland. Statistical analyses identified genes differentially expressed among tissues and clusters of tissue-enriched genes. These genes reflect major tissue-specific functions at the molecular level, such as tissue formation in the mantle, filtering in the gills and labial palps, and reproduction in the gonads. Hierarchical clustering predicted the involvement of unannotated genes in specific functional pathways such as the insulin/NPY pathway, an important pathway under study in our model species. Microarray data also accurately identified reference genes whose mRNA level appeared stable across all the analyzed tissues. Adp-ribosylation factor 1 (arf1) appeared to be the most robust reference for normalizing gene expression data across different tissues and is therefore proposed as a relevant reference gene for further gene expression analysis in the Pacific oyster. Conclusions This study provides a new transcriptomic tool for studies of oyster biology, which will help in the annotation of its genome and which identifies candidate reference genes for gene expression analysis. PMID:21951653

  1. Genome-wide search for gene-gene interactions in colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Shuo Jiao

    Full Text Available Genome-wide association studies (GWAS have successfully identified a number of single-nucleotide polymorphisms (SNPs associated with colorectal cancer (CRC risk. However, these susceptibility loci known today explain only a small fraction of the genetic risk. Gene-gene interaction (GxG is considered to be one source of the missing heritability. To address this, we performed a genome-wide search for pair-wise GxG associated with CRC risk using 8,380 cases and 10,558 controls in the discovery phase and 2,527 cases and 2,658 controls in the replication phase. We developed a simple, but powerful method for testing interaction, which we term the Average Risk Due to Interaction (ARDI. With this method, we conducted a genome-wide search to identify SNPs showing evidence for GxG with previously identified CRC susceptibility loci from 14 independent regions. We also conducted a genome-wide search for GxG using the marginal association screening and examining interaction among SNPs that pass the screening threshold (p<10(-4. For the known locus rs10795668 (10p14, we found an interacting SNP rs367615 (5q21 with replication p = 0.01 and combined p = 4.19×10(-8. Among the top marginal SNPs after LD pruning (n = 163, we identified an interaction between rs1571218 (20p12.3 and rs10879357 (12q21.1 (nominal combined p = 2.51×10(-6; Bonferroni adjusted p = 0.03. Our study represents the first comprehensive search for GxG in CRC, and our results may provide new insight into the genetic etiology of CRC.

  2. A novel fuzzy set based multifactor dimensionality reduction method for detecting gene-gene interaction.

    Science.gov (United States)

    Jung, Hye-Young; Leem, Sangseob; Lee, Sungyoung; Park, Taesung

    2016-12-01

    Gene-gene interaction (GGI) is one of the most popular approaches for finding the missing heritability of common complex traits in genetic association studies. The multifactor dimensionality reduction (MDR) method has been widely studied for detecting GGIs. In order to identify the best interaction model associated with disease susceptibility, MDR compares all possible genotype combinations in terms of their predictability of disease status from a simple binary high(H) and low(L) risk classification. However, this simple binary classification does not reflect the uncertainty of H/L classification. We regard classifying H/L as equivalent to defining the degree of membership of two risk groups H/L. By adopting the fuzzy set theory, we propose Fuzzy MDR which takes into account the uncertainty of H/L classification. Fuzzy MDR allows the possibility of partial membership of H/L through a membership function which transforms the degree of uncertainty into a [0,1] scale. The best genotype combinations can be selected which maximizes a new fuzzy set based accuracy measure. Two simulation studies are conducted to compare the power of the proposed Fuzzy MDR with that of MDR. Our results show that Fuzzy MDR has higher power than MDR. We illustrate the proposed Fuzzy MDR by analysing bipolar disorder (BD) trait of the WTCCC dataset to detect GGI associated with BD. We propose a novel Fuzzy MDR method to detect gene-gene interaction by taking into account the uncertainly of H/L classification and show that it has higher power than MDR. Fuzzy MDR can be easily extended to handle continuous phenotypes as well. The program written in R for the proposed Fuzzy MDR is available at https://statgen.snu.ac.kr/software/FuzzyMDR. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. NEXT-GENERATION ANALYSIS OF CATARACTS: DETERMINING KNOWLEDGE DRIVEN GENE-GENE INTERACTIONS USING BIOFILTER, AND GENE-ENVIRONMENT INTERACTIONS USING THE PHENX TOOLKIT*

    Science.gov (United States)

    Pendergrass, Sarah A.; Verma, Shefali S.; Holzinger, Emily R.; Moore, Carrie B.; Wallace, John; Dudek, Scott M.; Huggins, Wayne; Kitchner, Terrie; Waudby, Carol; Berg, Richard; McCarty, Catherine A.; Ritchie, Marylyn D.

    2013-01-01

    Investigating the association between biobank derived genomic data and the information of linked electronic health records (EHRs) is an emerging area of research for dissecting the architecture of complex human traits, where cases and controls for study are defined through the use of electronic phenotyping algorithms deployed in large EHR systems. For our study, 2580 cataract cases and 1367 controls were identified within the Marshfield Personalized Medicine Research Project (PMRP) Biobank and linked EHR, which is a member of the NHGRI-funded electronic Medical Records and Genomics (eMERGE) Network. Our goal was to explore potential gene-gene and gene-environment interactions within these data for 529,431 single nucleotide polymorphisms (SNPs) with minor allele frequency > 1%, in order to explore higher level associations with cataract risk beyond investigations of single SNP-phenotype associations. To build our SNP-SNP interaction models we utilized a prior-knowledge driven filtering method called Biofilter to minimize the multiple testing burden of exploring the vast array of interaction models possible from our extensive number of SNPs. Using the Biofilter, we developed 57,376 prior-knowledge directed SNP-SNP models to test for association with cataract status. We selected models that required 6 sources of external domain knowledge. We identified 5 statistically significant models with an interaction term with p-value < 0.05, as well as an overall model with p-value < 0.05 associated with cataract status. We also conducted gene-environment interaction analyses for all GWAS SNPs and a set of environmental factors from the PhenX Toolkit: smoking, UV exposure, and alcohol use; these environmental factors have been previously associated with the formation of cataracts. We found a total of 288 models that exhibit an interaction term with a p-value ≤ 1×10−4 associated with cataract status. Our results show these approaches enable advanced searches for epistasis

  4. Association of HS6ST3 gene polymorphisms with obesity and triglycerides: gene × gender interaction

    Indian Academy of Sciences (India)

    Ke-Sheng Wang; Liang Wang; Xuefeng Liu; Min Zeng

    2013-12-01

    The heparan sulfate 6-O-sulfotransferase 3 (HS6ST3) gene is involved in heparan sulphate and heparin metabolism, and has been reported to be associated with diabetic retinopathy in type 2 diabetes. We hypothesized that HS6ST3 gene polymorphisms might play an important role in obesity and related phenotypes (such as triglycerides). We examined genetic associations of 117 single-nucleotide polymorphisms (SNPs) within the HS6ST3 gene with obesity and triglycerides using two Caucasian samples: the Marshfield sample (1442 obesity cases and 2122 controls), and the Health aging and body composition (Health ABC) sample (305 cases and 1336 controls). Logistic regression analysis of obesity as a binary trait and linear regression analysis of triglycerides as a continuous trait, adjusted for age and sex, were performed using PLINK. Single marker analysis showed that six SNPs in the Marshfield sample and one SNP in the Health ABC sample were associated with obesity $(P \\lt 0.05)$. SNP rs535812 revealed a stronger association with obesity in meta-analysis of these two samples $(P = 0.0105)$. The T–A haplotype from rs878950 and rs9525149 revealed significant association with obesity in the Marshfield sample $(P = 0.012)$. Moreover, nine SNPs showed associations with triglycerides in the Marshfield sample $(P \\lt 0.05)$ and the best signal was rs1927796 $(P = 0.00858)$. In addition, rs7331762 showed a strong gene × gender interaction $(P = 0.00956)$ for obesity while rs1927796 showed a strong gene × gender interaction $(P = 0.000625)$ for triglycerides in the Marshfield sample. These findings contribute new insights into the pathogenesis of obesity and triglycerides and demonstrate the importance of gender differences in the aetiology.

  5. Gene-environment interactions and alcohol use and dependence: current status and future challenges

    NARCIS (Netherlands)

    Zwaluw, C.S. van der; Engels, R.C.M.E.

    2009-01-01

    To discuss the current status of gene-environment interaction research with regard to alcohol use and dependence. Further, we highlight the difficulties concerning gene-environment studies. Overview of the current evidence for gene-environment interactions in alcohol outcomes, and of the associated

  6. Functional analysis of genes differentially expressed in the Drosophila wing disc: role of transcripts enriched in the wing region.

    Science.gov (United States)

    Jacobsen, Thomas L; Cain, Donna; Paul, Litty; Justiniano, Steven; Alli, Anwar; Mullins, Jeremi S; Wang, Chun Ping; Butchar, Jon P; Simcox, Amanda

    2006-12-01

    Differential gene expression is the major mechanism underlying the development of specific body regions. Here we assessed the role of genes differentially expressed in the Drosophila wing imaginal disc, which gives rise to two distinct adult structures: the body wall and the wing. Reverse genetics was used to test the function of uncharacterized genes first identified in a microarray screen as having high levels of expression in the presumptive wing. Such genes could participate in elaborating the specific morphological characteristics of the wing. The activity of the genes was modulated using misexpression and RNAi-mediated silencing. Misexpression of eight of nine genes tested caused phenotypes. Of 12 genes tested, 10 showed effective silencing with RNAi transgenes, but only 3 of these had resulting phenotypes. The wing phenotypes resulting from RNAi suggest that CG8780 is involved in patterning the veins in the proximal region of the wing blade and that CG17278 and CG30069 are required for adhesion of wing surfaces. Venation and apposition of the wing surfaces are processes specific to wing development providing a correlation between the expression and function of these genes. The results show that a combination of expression profiling and tissue-specific gene silencing has the potential to identify new genes involved in wing development and hence to contribute to our understanding of this process. However, there are both technical and biological limitations to this approach, including the efficacy of RNAi and the role that gene redundancy may play in masking phenotypes.

  7. Gene-gene interaction and RNA splicing profiles of MAP2K4 gene in rheumatoid arthritis.

    Science.gov (United States)

    Shchetynsky, Klementy; Protsyuk, Darya; Ronninger, Marcus; Diaz-Gallo, Lina-Marcela; Klareskog, Lars; Padyukov, Leonid

    2015-05-01

    We performed gene-gene interaction analysis, with HLA-DRB1 shared epitope (SE) alleles for 195 SNPs within immunologically important MAP2K, MAP3K and MAP4K gene families, in 2010 rheumatoid arthritis (RA) patients and 2280 healthy controls. We found a significant statistical interaction for rs10468473 with SE alleles in autoantibody-positive RA. Individuals heterozygous for rs10468473 demonstrated higher expression of total MAP2K4 mRNA in blood, compared to A-allele homozygous. We discovered a novel, putatively translated, "cassette exon" RNA splice form of MAP2K4, differentially expressed in peripheral blood mononuclear cells from 88 RA cases and controls. Within the group of RA patients, we observed a correlation of MAP2K4 isoform expression with carried SE alleles, autoantibody, and rheumatoid factor profiles. TNF-dependent modulation of isoform expression pattern was detected in the Jurkat cell line. Our data suggest a genetic interaction between MAP2K4 and HLA-DRB1, and the importance of rs10468473 and MAP2K4 splice variants in the development of autoantibody-positive RA.

  8. Enrichment of Conserved Synaptic Activity-Responsive Element in Neuronal Genes Predicts a Coordinated Response of MEF2, CREB and SRF

    Science.gov (United States)

    Rodríguez-Tornos, Fernanda M.; San Aniceto, Iñigo; Cubelos, Beatriz; Nieto, Marta

    2013-01-01

    A unique synaptic activity-responsive element (SARE) sequence, composed of the consensus binding sites for SRF, MEF2 and CREB, is necessary for control of transcriptional upregulation of the Arc gene in response to synaptic activity. We hypothesize that this sequence is a broad mechanism that regulates gene expression in response to synaptic activation and during plasticity; and that analysis of SARE-containing genes could identify molecular mechanisms involved in brain disorders. To search for conserved SARE sequences in the mammalian genome, we used the SynoR in silico tool, and found the SARE cluster predominantly in the regulatory regions of genes expressed specifically in the nervous system; most were related to neural development and homeostatic maintenance. Two of these SARE sequences were tested in luciferase assays and proved to promote transcription in response to neuronal activation. Supporting the predictive capacity of our candidate list, up-regulation of several SARE containing genes in response to neuronal activity was validated using external data and also experimentally using primary cortical neurons and quantitative real time RT-PCR. The list of SARE-containing genes includes several linked to mental retardation and cognitive disorders, and is significantly enriched in genes that encode mRNA targeted by FMRP (fragile X mental retardation protein). Our study thus supports the idea that SARE sequences are relevant transcriptional regulatory elements that participate in plasticity. In addition, it offers a comprehensive view of how activity-responsive transcription factors coordinate their actions and increase the selectivity of their targets. Our data suggest that analysis of SARE-containing genes will reveal yet-undescribed pathways of synaptic plasticity and additional candidate genes disrupted in mental disease. PMID:23382855

  9. Enrichment of conserved synaptic activity-responsive element in neuronal genes predicts a coordinated response of MEF2, CREB and SRF.

    Directory of Open Access Journals (Sweden)

    Fernanda M Rodríguez-Tornos

    Full Text Available A unique synaptic activity-responsive element (SARE sequence, composed of the consensus binding sites for SRF, MEF2 and CREB, is necessary for control of transcriptional upregulation of the Arc gene in response to synaptic activity. We hypothesize that this sequence is a broad mechanism that regulates gene expression in response to synaptic activation and during plasticity; and that analysis of SARE-containing genes could identify molecular mechanisms involved in brain disorders. To search for conserved SARE sequences in the mammalian genome, we used the SynoR in silico tool, and found the SARE cluster predominantly in the regulatory regions of genes expressed specifically in the nervous system; most were related to neural development and homeostatic maintenance. Two of these SARE sequences were tested in luciferase assays and proved to promote transcription in response to neuronal activation. Supporting the predictive capacity of our candidate list, up-regulation of several SARE containing genes in response to neuronal activity was validated using external data and also experimentally using primary cortical neurons and quantitative real time RT-PCR. The list of SARE-containing genes includes several linked to mental retardation and cognitive disorders, and is significantly enriched in genes that encode mRNA targeted by FMRP (fragile X mental retardation protein. Our study thus supports the idea that SARE sequences are relevant transcriptional regulatory elements that participate in plasticity. In addition, it offers a comprehensive view of how activity-responsive transcription factors coordinate their actions and increase the selectivity of their targets. Our data suggest that analysis of SARE-containing genes will reveal yet-undescribed pathways of synaptic plasticity and additional candidate genes disrupted in mental disease.

  10. Subtle gene-environment interactions driving paranoia in daily life.

    Science.gov (United States)

    Simons, C J P; Wichers, M; Derom, C; Thiery, E; Myin-Germeys, I; Krabbendam, L; van Os, J

    2009-02-01

    It has been suggested that genes impact on the degree to which minor daily stressors cause variation in the intensity of subtle paranoid experiences. The objective of the present study was to test the hypothesis that catechol-O-methyltransferase (COMT) Val(158)Met and brain-derived neurotrophic factor (BDNF) Val(66)Met in part mediate genetic effects on paranoid reactivity to minor stressors. In a general population sample of 579 young adult female twins, on the one hand, appraisals of (1) event-related stress and (2) social stress and, on the other hand, feelings of paranoia in the flow of daily life were assessed using momentary assessment technology for five consecutive days. Multilevel regression analyses were used to examine moderation of daily life stress-induced paranoia by COMT Val(158)Met and BDNF Val(66)Met genotypes. Catechol-O-methyltransferase Val carriers displayed more feelings of paranoia in response to event stress compared with Met carriers. Brain-derived neurotrophic factor Met carriers showed more social-stress-induced paranoia than individuals with the Val/Val genotype. Thus, paranoia in the flow of daily life may be the result of gene-environment interactions that can be traced to different types of stress being moderated by different types of genetic variation.

  11. Fatty acid-gene interactions, adipokines and obesity.

    Science.gov (United States)

    Stryjecki, C; Mutch, D M

    2011-03-01

    It is now recognized that the low-grade inflammation observed with obesity is associated with the development of a wide range of downstream complications. As such, there is considerable interest in elucidating the regulatory mechanisms underlying the production of inflammatory molecules to improve the prevention and treatment of obesity and its co-morbidities. White adipose tissue is no longer considered a passive reservoir for storing lipids, but rather an important organ influencing energy metabolism, insulin sensitivity and inflammation by the secretion of proteins, commonly referred to as adipokines. Dysregulation of several adipokines, such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and adiponectin, contributes to the low-grade inflammation that is a hallmark of obesity. Evidence now suggests that fatty acids represent a class of molecules that can modulate adipokine production, thereby influencing inflammatory status. Although the precise molecular mechanisms by which dietary fats regulate adipokine production remain unclear, recent findings indicate that diet-gene interactions may have an important role in the transcriptional and secretory regulation of adipokines. Single-nucleotide polymorphisms in the genes encoding TNF-α, IL-6 and adiponectin can modify circulating levels of these adipokines and, subsequently, obesity-related phenotypes. This genetic variation can also alter the influence of dietary fatty acids on adipokine production. Therefore, the current review will show that it is paramount to consider both genetic information and dietary fat intake to unravel the inter-individual variability in inflammatory response observed in intervention protocols targeting obesity.

  12. Leveraging gene-environment interactions and endotypes for asthma gene discovery.

    Science.gov (United States)

    Bønnelykke, Klaus; Ober, Carole

    2016-03-01

    Asthma is a heterogeneous clinical syndrome that includes subtypes of disease with different underlying causes and disease mechanisms. Asthma is caused by a complex interaction between genes and environmental exposures; early-life exposures in particular play an important role. Asthma is also heritable, and a number of susceptibility variants have been discovered in genome-wide association studies, although the known risk alleles explain only a small proportion of the heritability. In this review, we present evidence supporting the hypothesis that focusing on more specific asthma phenotypes, such as childhood asthma with severe exacerbations, and on relevant exposures that are involved in gene-environment interactions (GEIs), such as rhinovirus infections, will improve detection of asthma genes and our understanding of the underlying mechanisms. We will discuss the challenges of considering GEIs and the advantages of studying responses to asthma-associated exposures in clinical birth cohorts, as well as in cell models of GEIs, to dissect the context-specific nature of genotypic risks, to prioritize variants in genome-wide association studies, and to identify pathways involved in pathogenesis in subgroups of patients. We propose that such approaches, in spite of their many challenges, present great opportunities for better understanding of asthma pathogenesis and heterogeneity and, ultimately, for improving prevention and treatment of disease.

  13. Gene-Environment Interactions in Stress Response Contribute Additively to a Genotype-Environment Interaction.

    Directory of Open Access Journals (Sweden)

    Takeshi Matsui

    2016-07-01

    Full Text Available How combinations of gene-environment interactions collectively give rise to genotype-environment interactions is not fully understood. To shed light on this problem, we genetically dissected an environment-specific poor growth phenotype in a cross of two budding yeast strains. This phenotype is detectable when certain segregants are grown on ethanol at 37°C ('E37', a condition that differs from the standard culturing environment in both its carbon source (ethanol as opposed to glucose and temperature (37°C as opposed to 30°C. Using recurrent backcrossing with phenotypic selection, we identified 16 contributing loci. To examine how these loci interact with each other and the environment, we focused on a subset of four loci that together can lead to poor growth in E37. We measured the growth of all 16 haploid combinations of alleles at these loci in all four possible combinations of carbon source (ethanol or glucose and temperature (30 or 37°C in a nearly isogenic population. This revealed that the four loci act in an almost entirely additive manner in E37. However, we also found that these loci have weaker effects when only carbon source or temperature is altered, suggesting that their effect magnitudes depend on the severity of environmental perturbation. Consistent with such a possibility, cloning of three causal genes identified factors that have unrelated functions in stress response. Thus, our results indicate that polymorphisms in stress response can show effects that are intensified by environmental stress, thereby resulting in major genotype-environment interactions when multiple of these variants co-occur.

  14. Protein-Protein Interaction Network and Gene Ontology

    Science.gov (United States)

    Choi, Yunkyu; Kim, Seok; Yi, Gwan-Su; Park, Jinah

    Evolution of computer technologies makes it possible to access a large amount and various kinds of biological data via internet such as DNA sequences, proteomics data and information discovered about them. It is expected that the combination of various data could help researchers find further knowledge about them. Roles of a visualization system are to invoke human abilities to integrate information and to recognize certain patterns in the data. Thus, when the various kinds of data are examined and analyzed manually, an effective visualization system is an essential part. One instance of these integrated visualizations can be combination of protein-protein interaction (PPI) data and Gene Ontology (GO) which could help enhance the analysis of PPI network. We introduce a simple but comprehensive visualization system that integrates GO and PPI data where GO and PPI graphs are visualized side-by-side and supports quick reference functions between them. Furthermore, the proposed system provides several interactive visualization methods for efficiently analyzing the PPI network and GO directedacyclic- graph such as context-based browsing and common ancestors finding.

  15. Study of oral clefts: Indication of gene-environment interaction

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, S.J.; Beaty, T.H.; Panny, S. [Johns Hopkins Univ., Baltimore, MD (United States)] [and others

    1994-09-01

    In this study of infants with isolated birth defects, 69 cleft palate-only (CPO) cases, 114 cleft lip with or without palate (CL/P), and 284 controls with non-cleft birth defects (all born in Maryland during 1984-1992) were examined to test for associations among genetic markers and different oral clefts. Modest associations were found between transforming growth factor {alpha} (TGF{alpha}) marker and CPO, as well as that between D17S579 (Mfd188) and CL/P in this study. The association between TGF{alpha} marker and CPO reflects a statistical interaction between mother`s smoking and child`s TGF{alpha} genotype. A significantly higher risk of CPO was found among those reporting maternal smoking during pregnancy and carrying less common TGF{alpha} TaqI allele (odds ratio=7.02 with 95% confidence interval 1.8-27.6). This gene-environment interaction was also found among those who reported no family history of any type of birth defect (odds ratio=5.60 with 95% confidence interval 1.4-22.9). Similar associations were seen for CL/P, but these were not statistically significant.

  16. Gene-environment Interactions in the Etiology of Dental Caries.

    Science.gov (United States)

    Yildiz, G; Ermis, R B; Calapoglu, N S; Celik, E U; Türel, G Y

    2016-01-01

    Dental caries is a multifactorial disease that can be conceptualized as an interaction between genetic and environmental risk factors. The aim of this study is to examine the effects of AMELX, CA6, DEFB1, and TAS2R38 gene polymorphism and gene-environment interactions on caries etiology and susceptibility in adults. Genomic DNA was extracted from the buccal mucosa, and adults aged 20 to 60 y were placed into 1 of 2 groups: low caries risk (DMFT ≤ 5; n = 77) and high caries risk (DMFT ≥ 14; n = 77). The frequency of AMELX (+522), CA6 (T55M), DEFB1 (G-20A), and TAS2R38 (A49P) single-nucleotide polymorphisms was genotyped with the polymerase chain reaction-restriction fragment length polymorphism method. Environmental risk factors examined in the study included plaque amount, toothbrushing frequency, dietary intake between meals, saliva secretion rate, saliva buffer capacity, mutans streptococci counts, and lactobacilli counts. There was no difference between the caries risk groups in relation to AMELX (+522) polymorphism (χ(2) test, P > 0.05). The distribution of CA6 genotype and allele frequencies in the low caries risk group did not differ from the high caries risk group (χ(2) test, P > 0.05). Polymorphism of DEFB1 (G-20A) was positively associated, and TAS2R38 (A49P) negatively associated, with caries risk (χ(2) test, P = 0.000). There were significant differences between caries susceptibility and each environmental risk factor, except for the saliva secretion rate (Mann-Whitney U test, P = 0.000). Based on stepwise multiple linear regression analyses, dental plaque amount, lactobacilli count, age, and saliva buffer capacity, as well as DEFB1 (G-20A), TAS2R38 (A49P), and CA6 (T55M) gene polymorphism, explained a total of 87.8% of the variations in DMFT scores. It can be concluded that variation in CA6 (T55M), DEFB1 (G-20A), and TAS2R38 (A49P) may be associated with caries experience in Turkish adults with a high level of dental plaque, lactobacilli count

  17. The gene-gene interaction of INSIG-SCAP-SREBP pathway on the risk of obesity in Chinese children.

    Science.gov (United States)

    Liu, Fang-Hong; Song, Jie-Yun; Shang, Xiao-Rui; Meng, Xiang-Rui; Ma, Jun; Wang, Hai-Jun

    2014-01-01

    Childhood obesity has become a global public health problem in recent years. This study aimed to explore the association of genetic variants in INSIG-SCAP-SREBP pathway with obesity in Chinese children. A case-control study was conducted, including 705 obese cases and 1,325 nonobese controls. We genotyped 15 single nucleotide polymorphisms (SNPs) of five genes in INSIG-SCAP-SREBP pathway, including insulin induced gene 1 (INSIG1), insulin induced gene 2 (INSIG2), SREBP cleavage-activating protein gene (SCAP), sterol regulatory element binding protein gene 1 (SREBP1), and sterol regulatory element binding protein gene 2 (SREBP2). We used generalized multifactor dimensionality reduction (GMDR) and logistic regression to investigate gene-gene interactions. Single polymorphism analyses showed that SCAP rs12487736 and rs12490383 were nominally associated with obesity. We identified a 3-locus interaction on obesity in GMDR analyses (P = 0.001), involving 3 genetic variants of INSIG2, SCAP, and SREBP2. The individuals in high-risk group of the 3-locus combinations had a 79.9% increased risk of obesity compared with those in low-risk group (OR = 1.799, 95% CI: 1.475-2.193, P = 6.61 × 10(-9)). We identified interaction of three genes in INSIG-SCAP-SREBP pathway on risk of obesity, revealing that these genes affect obesity more likely through a complex interaction pattern than single gene effect.

  18. Prevalence of the initiator over the TATA box in human and yeast genes and identification of DNA motifs enriched in human TATA-less core promoters.

    Science.gov (United States)

    Yang, Chuhu; Bolotin, Eugene; Jiang, Tao; Sladek, Frances M; Martinez, Ernest

    2007-03-01

    The core promoter of eukaryotic genes is the minimal DNA region that recruits the basal transcription machinery to direct efficient and accurate transcription initiation. The fraction of human and yeast genes that contain specific core promoter elements such as the TATA box and the initiator (INR) remains unclear and core promoter motifs specific for TATA-less genes remain to be identified. Here, we present genome-scale computational analyses indicating that approximately 76% of human core promoters lack TATA-like elements, have a high GC content, and are enriched in Sp1-binding sites. We further identify two motifs - M3 (SCGGAAGY) and M22 (TGCGCANK) - that occur preferentially in human TATA-less core promoters. About 24% of human genes have a TATA-like element and their promoters are generally AT-rich; however, only approximately 10% of these TATA-containing promoters have the canonical TATA box (TATAWAWR). In contrast, approximately 46% of human core promoters contain the consensus INR (YYANWYY) and approximately 30% are INR-containing TATA-less genes. Significantly, approximately 46% of human promoters lack both TATA-like and consensus INR elements. Surprisingly, mammalian-type INR sequences are present - and tend to cluster - in the transcription start site (TSS) region of approximately 40% of yeast core promoters and the frequency of specific core promoter types appears to be conserved in yeast and human genomes. Gene Ontology analyses reveal that TATA-less genes in humans, as in yeast, are frequently involved in basic "housekeeping" processes, while TATA-containing genes are more often highly regulated, such as by biotic or stress stimuli. These results reveal unexpected similarities in the occurrence of specific core promoter types and in their associated biological processes in yeast and humans and point to novel vertebrate-specific DNA motifs that might play a selective role in TATA-independent transcription.

  19. Identifying the Interaction between Genes and Gene Products Based on Frequently Seen Verbs in Medline Abstracts.

    Science.gov (United States)

    Sekimizu; Park; Tsujii

    1998-01-01

    We have selected the most frequently seen verbs from raw texts made up of 1-million-words of Medline abstracts, and we were able to identify (or bracket) noun phrases contained in the corpus, with a precision rate of 90%. Then, based on the noun-phrase-bracketted corpus, we tried to find the subject and object terms for some frequently seen verbs in the domain. The precision rate of finding the right subject and object for each verb was about 73%. This task was only made possible because we were able to linguistically analyze (or parse) a large quantity of a raw corpus. Our approach will be useful for classifying genes and gene products and for identifying the interaction between them. It is the first step of our effort in building a genome-related thesaurus and hierarchies in a fully automatic way.

  20. Flavanol-Enriched Cocoa Powder Alters the Intestinal Microbiota, Tissue and Fluid Metabolite Profiles, and Intestinal Gene Expression in Pigs1234

    Science.gov (United States)

    Jang, Saebyeol; Sun, Jianghao; Chen, Pei; Lakshman, Sukla; Molokin, Aleksey; Harnly, James M; Vinyard, Bryan T; Urban, Joseph F; Davis, Cindy D; Solano-Aguilar, Gloria

    2016-01-01

    Background: Consumption of cocoa-derived polyphenols has been associated with several health benefits; however, their effects on the intestinal microbiome and related features of host intestinal health are not adequately understood. Objective: The objective of this study was to determine the effects of eating flavanol-enriched cocoa powder on the composition of the gut microbiota, tissue metabolite profiles, and intestinal immune status. Methods: Male pigs (5 mo old, 28 kg mean body weight) were supplemented with 0, 2.5, 10, or 20 g flavanol-enriched cocoa powder/d for 27 d. Metabolites in serum, urine, the proximal colon contents, liver, and adipose tissue; bacterial abundance in the intestinal contents and feces; and intestinal tissue gene expression of inflammatory markers and Toll-like receptors (TLRs) were then determined. Results: O-methyl-epicatechin-glucuronide conjugates dose-dependently increased (P cocoa powder. The concentration of 3-hydroxyphenylpropionic acid isomers in urine decreased as the dose of cocoa powder fed to pigs increased (75–85%, P cocoa powder/d, respectively. Moreover, consumption of cocoa powder reduced TLR9 gene expression in ileal Peyer’s patches (67–80%, P cocoa powder/d compared with pigs not supplemented with cocoa powder. Conclusion: This study demonstrates that consumption of cocoa powder by pigs can contribute to gut health by enhancing the abundance of Lactobacillus and Bifidobacterium species and modulating markers of localized intestinal immunity. PMID:26936136

  1. Environmental factors as modulators of neurodegeneration: insights from gene-environment interactions in Huntington's disease.

    Science.gov (United States)

    Mo, Christina; Hannan, Anthony J; Renoir, Thibault

    2015-05-01

    Unlike many other neurodegenerative diseases with established gene-environment interactions, Huntington's disease (HD) is viewed as a disorder governed by genetics. The cause of the disease is a highly penetrant tandem repeat expansion encoding an extended polyglutamine tract in the huntingtin protein. In the year 2000, a pioneering study showed that the disease could be delayed in transgenic mice by enriched housing conditions. This review describes subsequent human and preclinical studies identifying environmental modulation of motor, cognitive, affective and other symptoms found in HD. Alongside the behavioral observations we also discuss potential mechanisms and the relevance to other neurodegenerative disorders, including Alzheimer's and Parkinson's disease. In mouse models of HD, increased sensorimotor and cognitive stimulation can delay or ameliorate various endophenotypes. Potential mechanisms include increased trophic support, synaptic plasticity, adult neurogenesis, and other forms of experience-dependent cellular plasticity. Subsequent clinical investigations support a role for lifetime activity levels in modulating the onset and progression of HD. Stress can accelerate memory and olfactory deficits and exacerbate cellular dysfunctions in HD mice. In the absence of effective treatments to slow the course of HD, environmental interventions offer feasible approaches to delay the disease, however further preclinical and human studies are needed in order to generate clinical recommendations. Environmental interventions could be combined with future pharmacological therapies and stimulate the identification of enviromimetics, drugs which mimic or enhance the beneficial effects of cognitive stimulation and physical activity.

  2. Topology association analysis in weighted protein interaction network for gene prioritization

    Science.gov (United States)

    Wu, Shunyao; Shao, Fengjing; Zhang, Qi; Ji, Jun; Xu, Shaojie; Sun, Rencheng; Sun, Gengxin; Du, Xiangjun; Sui, Yi

    2016-11-01

    Although lots of algorithms for disease gene prediction have been proposed, the weights of edges are rarely taken into account. In this paper, the strengths of topology associations between disease and essential genes are analyzed in weighted protein interaction network. Empirical analysis demonstrates that compared to other genes, disease genes are weakly connected with essential genes in protein interaction network. Based on this finding, a novel global distance measurement for gene prioritization with weighted protein interaction network is proposed in this paper. Positive and negative flow is allocated to disease and essential genes, respectively. Additionally network propagation model is extended for weighted network. Experimental results on 110 diseases verify the effectiveness and potential of the proposed measurement. Moreover, weak links play more important role than strong links for gene prioritization, which is meaningful to deeply understand protein interaction network.

  3. Discharge of KPC-2 genes from the WWTPs contributed to their enriched abundance in the receiving river.

    Science.gov (United States)

    Yang, Fengxia; Huang, Liang; Li, Linyun; Yang, Yang; Mao, Daqing; Luo, Yi

    2017-03-01

    At present, very little is known about the persistence and spread pathway of KPC-2 genes in the environment. Our previous study reported the prevalence and persistence of KPC-2 genes in wastewater treatment plants (WWTPs). In the present work, we investigated the occurrence and fate of KPC-2 genes in a WWTP discharge-receiving river and studied the effect of WWTP discharges on the prevalence of KPC-2 genes and host bacteria in the receiving river. It is observed that a considerable level of KPC-2 genes occurred in the receiving river, and a significant increase of blaKPC-2 abundance in the downstream following WWTP discharge was observed compared to the upstream. Furthermore, opportunistic pathogens with 100% identical blaKPC-2 sequence, like Escherichia coli and Kluyvera georgiana, were isolated from both WWTP and its receiving water, whereas no blaKPC-2 carrying bacteria was detected in the upstream. These findings indicated that the treated wastewater discharges have a considerable influence on blaKPC-2 levels in the receiving river. Interestingly, there is no correlation between concentrations of antibiotics and blaKPC-2 concentrations, demonstrating that the increase of KPC-2 genes in the receiving river is mainly due to WWTP release. This finding is important because it illustrates a significant pathway for KPC-2 gene proliferation to the environment.

  4. Identification of genes involved in radioresistance of nasopharyngeal carcinoma by integrating gene ontology and protein-protein interaction networks.

    Science.gov (United States)

    Guo, Ya; Zhu, Xiao-Dong; Qu, Song; Li, Ling; Su, Fang; Li, Ye; Huang, Shi-Ting; Li, Dan-Rong

    2012-01-01

    Radioresistance remains one of the important factors in relapse and metastasis of nasopharyngeal carcinoma. Thus, it is imperative to identify genes involved in radioresistance and explore the underlying biological processes in the development of radioresistance. In this study, we used cDNA microarrays to select differential genes between radioresistant CNE-2R and parental CNE-2 cell lines. One hundred and eighty-three significantly differentially expressed genes (pgenes were upregulated and 45 genes were downregulated in CNE-2R. We further employed publicly available bioinformatics related software, such as GOEAST and STRING to examine the relationship among differentially expressed genes. The results show that these genes were involved in type I interferon-mediated signaling pathway biological processes; the nodes tended to have high connectivity with the EGFR pathway, IFN-related pathways, NF-κB. The node STAT1 has high connectivity with other nodes in the protein-protein interaction (PPI) networks. Finally, the reliability of microarray data was validated for selected genes by semi-quantitative RT-PCR and Western blotting. The results were consistent with the microarray data. Our study suggests that microarrays combined with gene ontology and protein interaction networks have great value in the identification of genes of radioresistance in nasopharyngeal carcinoma; genes involved in several biological processes and protein interaction networks may be relevant to NPC radioresistance; in particular, the verified genes CCL5, STAT1-α, STAT2 and GSTP1 may become potential biomarkers for predicting NPC response to radiotherapy.

  5. The interactive effects of environmental enrichment and extinction interventions in attenuating cue-elicited cocaine-seeking behavior in rats.

    Science.gov (United States)

    Thiel, Kenneth J; Engelhardt, Ben; Hood, Lauren E; Peartree, Natalie A; Neisewander, Janet L

    2011-01-01

    Cues associated with cocaine can elicit craving and relapse. Attempts have been made to employ extinction therapy, which is aimed at attenuating the incentive motivational effects of cocaine cues, as a treatment for cocaine addiction; however, this approach has been largely unsuccessful perhaps due to the inability to extinguish all cues associated with cocaine use while in a clinic. Recently, environmental enrichment (EE) during abstinence has been proposed as a strategy to attenuate cue-elicited cocaine craving. The present study used an animal model to examine whether the utility of extinction toward attenuating cue-elicited cocaine-seeking behavior could be enhanced by also providing EE. All rats were trained to self-administer cocaine while housed in isolated conditions and then subsequently underwent 17 days of forced abstinence, during which they were either housed in pairs or under EE and they either received daily 1-h extinction sessions or similar handling without exposure to the self-administration environment. Following this intervention period, all rats were tested for cue-elicited cocaine-seeking behavior. To examine whether effects of these interventions persist, all rats were subsequently single-housed for an additional 7-day forced abstinence period, followed by a second test for cue-elicited cocaine-seeking behavior. We found that although daily extinction training and EE each attenuated subsequent cue-elicited cocaine-seeking behavior, the combined treatment of extinction training+EE completely prevented it. However, once these interventions were discontinued, their protective effects diminished. These findings suggest that combining behavioral therapy approaches may improve outcomes; however, future work is needed to improve the longevity of these strategies beyond their implementation.

  6. Music training and speech perception: a gene-environment interaction.

    Science.gov (United States)

    Schellenberg, E Glenn

    2015-03-01

    Claims of beneficial side effects of music training are made for many different abilities, including verbal and visuospatial abilities, executive functions, working memory, IQ, and speech perception in particular. Such claims assume that music training causes the associations even though children who take music lessons are likely to differ from other children in music aptitude, which is associated with many aspects of speech perception. Music training in childhood is also associated with cognitive, personality, and demographic variables, and it is well established that IQ and personality are determined largely by genetics. Recent evidence also indicates that the role of genetics in music aptitude and music achievement is much larger than previously thought. In short, music training is an ideal model for the study of gene-environment interactions but far less appropriate as a model for the study of plasticity. Children seek out environments, including those with music lessons, that are consistent with their predispositions; such environments exaggerate preexisting individual differences. © 2015 New York Academy of Sciences.

  7. Atrazine biodegradation efficiency, metabolite detection, and trzD gene expression by enrichment bacterial cultures from agricultural soil.

    Science.gov (United States)

    Solomon, Robinson David Jebakumar; Kumar, Amit; Satheeja Santhi, Velayudhan

    2013-12-01

    Atrazine is a selective herbicide used in agricultural fields to control the emergence of broadleaf and grassy weeds. The persistence of this herbicide is influenced by the metabolic action of habituated native microorganisms. This study provides information on the occurrence of atrazine mineralizing bacterial strains with faster metabolizing ability. The enrichment cultures were tested for the biodegradation of atrazine by high-performance liquid chromatography (HPLC) and mass spectrometry. Nine cultures JS01.Deg01 to JS09.Deg01 were identified as the degrader of atrazine in the enrichment culture. The three isolates JS04.Deg01, JS07.Deg01, and JS08.Deg01 were identified as efficient atrazine metabolizers. Isolates JS04.Deg01 and JS07.Deg01 produced hydroxyatrazine (HA) N-isopropylammelide and cyanuric acid by dealkylation reaction. The isolate JS08.Deg01 generated deethylatrazine (DEA), deisopropylatrazine (DIA), and cyanuric acid by N-dealkylation in the upper degradation pathway and later it incorporated cyanuric acid in their biomass by the lower degradation pathway. The optimum pH for degrading atrazine by JS08.Deg01 was 7.0 and 16S rDNA phylogenetic typing identified it as Enterobacter cloacae strain JS08.Deg01. The highest atrazine mineralization was observed in case of isolate JS08.Deg01, where an ample amount of trzD mRNA was quantified at 72 h of incubation with atrazine. Atrazine bioremediating isolate E. cloacae strain JS08.Deg01 could be the better environmental remediator of agricultural soils and the crop fields contaminated with atrazine could be the source of the efficient biodegrading microbial strains for the environmental cleanup process.

  8. Atrazine biodegradation efficiency, metabolite detection, and trzD gene expression by enrichment bacterial cultures from agricultural soil

    Institute of Scientific and Technical Information of China (English)

    Robinson David Jebakumar SOLOMON; Amit KUMAR; Velayudhan SATHEEJA SANTHI

    2013-01-01

    Atrazine is a selective herbicide used in agricultural fields to control the emergence of broadleaf and grassy weeds. The persistence of this herbicide is influenced by the metabolic action of habituated native microor-ganisms. This study provides information on the occurrence of atrazine mineralizing bacterial strains with faster me-tabolizing ability. The enrichment cultures were tested for the biodegradation of atrazine by high-performance liquid chromatography (HPLC) and mass spectrometry. Nine cultures JS01.Deg01 to JS09.Deg01 were identified as the degrader of atrazine in the enrichment culture. The three isolates JS04.Deg01, JS07.Deg01, and JS08.Deg01 were identified as efficient atrazine metabolizers. Isolates JS04.Deg01 and JS07.Deg01 produced hydroxyatrazine (HA) N-isopropylammelide and cyanuric acid by dealkylation reaction. The isolate JS08.Deg01 generated deethylatrazine (DEA), deisopropylatrazine (DIA), and cyanuric acid by N-dealkylation in the upper degradation pathway and later it incorporated cyanuric acid in their biomass by the lower degradation pathway. The optimum pH for degrading atrazine by JS08.Deg01 was 7.0 and 16S rDNA phylogenetic typing identified it as Enterobacter cloacae strain JS08.Deg01. The highest atrazine mineralization was observed in case of isolate JS08.Deg01, where an ample amount of trzD mRNA was quantified at 72 h of incubation with atrazine. Atrazine bioremediating isolate E. cloacae strain JS08.Deg01 could be the better environmental remediator of agricultural soils and the crop fields contaminated with atrazine could be the source of the efficient biodegrading microbial strains for the environmental cleanup process.

  9. Atrazine biodegradation efficiency, metabolite detection, and trzD gene expression by enrichment bacterial cultures from agricultural soil

    Science.gov (United States)

    Solomon, Robinson David Jebakumar; Kumar, Amit; Satheeja Santhi, Velayudhan

    2013-01-01

    Atrazine is a selective herbicide used in agricultural fields to control the emergence of broadleaf and grassy weeds. The persistence of this herbicide is influenced by the metabolic action of habituated native microorganisms. This study provides information on the occurrence of atrazine mineralizing bacterial strains with faster metabolizing ability. The enrichment cultures were tested for the biodegradation of atrazine by high-performance liquid chromatography (HPLC) and mass spectrometry. Nine cultures JS01.Deg01 to JS09.Deg01 were identified as the degrader of atrazine in the enrichment culture. The three isolates JS04.Deg01, JS07.Deg01, and JS08.Deg01 were identified as efficient atrazine metabolizers. Isolates JS04.Deg01 and JS07.Deg01 produced hydroxyatrazine (HA) N-isopropylammelide and cyanuric acid by dealkylation reaction. The isolate JS08.Deg01 generated deethylatrazine (DEA), deisopropylatrazine (DIA), and cyanuric acid by N-dealkylation in the upper degradation pathway and later it incorporated cyanuric acid in their biomass by the lower degradation pathway. The optimum pH for degrading atrazine by JS08.Deg01 was 7.0 and 16S rDNA phylogenetic typing identified it as Enterobacter cloacae strain JS08.Deg01. The highest atrazine mineralization was observed in case of isolate JS08.Deg01, where an ample amount of trzD mRNA was quantified at 72 h of incubation with atrazine. Atrazine bioremediating isolate E. cloacae strain JS08.Deg01 could be the better environmental remediator of agricultural soils and the crop fields contaminated with atrazine could be the source of the efficient biodegrading microbial strains for the environmental cleanup process. PMID:24302716

  10. Two-Way Gene Interaction From Microarray Data Based on Correlation Methods

    OpenAIRE

    Alavi Majd, Hamid; Talebi, Atefeh; Gilany, Kambiz; Khayyer, Nasibeh

    2016-01-01

    Background Gene networks have generated a massive explosion in the development of high-throughput techniques for monitoring various aspects of gene activity. Networks offer a natural way to model interactions between genes, and extracting gene network information from high-throughput genomic data is an important and difficult task. Objectives The purpose of this study is to construct a two-way gene network based on parametric and nonparametric correlation coefficients. The first step in const...

  11. Bread enriched with quinoa leaves - the influence of protein-phenolics interactions on the nutritional and antioxidant quality.

    Science.gov (United States)

    Swieca, Michał; Sęczyk, Lukasz; Gawlik-Dziki, Urszula; Dziki, Dariusz

    2014-11-01

    This paper investigates the functional and potential biological properties of bread fortified with quinoa leaves (QL) in the light of protein-phenolic interactions. The addition of QL changed the textural properties of bread crumb. With the replacement of wheat flour by QL (1-5%), a linear increase in crumb hardness, cohesiveness and gumminess was observed. Fortification positively affected antioxidant properties and phenolic contents; however, in some cases experimental values were significantly lower than those predicted. The QL addition affected nutrient content and digestibility. The starch digestibility of the bread investigated in this study was inversely proportional to the percentage content of QL (the changes in protein digestibility were not so pronounced). Increasing peak areas of extracts obtained after digestion of fortified bread and the significant reduction of free amino groups confirm the presence of interactions between phenolics and proteins. The quality of fortified bread is strongly affected by phenolic compounds and food matrix interactions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Whole-Transcriptome RNA-seq, Gene Set Enrichment Pathway Analysis, and Exon Coverage Analysis of Two Plastid RNA Editing Mutants.

    Science.gov (United States)

    Hackett, Justin B; Lu, Yan

    2017-04-07

    In land plants, plastid and mitochondrial RNAs are subject to post-transcriptional C-to-U RNA editing. T-DNA insertions in the ORGANELLE RNA RECOGNITION MOTIF PROTEIN6 gene resulted in reduced photosystem II (PSII) activity and smaller plant and leaf sizes. Exon coverage analysis of the ORRM6 gene showed that orrm6-1 and orrm6-2 are loss-of-function mutants. Compared to other ORRM proteins, ORRM6 affects a relative small number of RNA editing sites. Sanger sequencing of reverse transcription-PCR products of plastid transcripts revealed two plastid RNA editing sites that are substantially affected in the orrm6 mutants: psbF-C77 and accD-C794. The psbF gene encodes the beta subunit of cytochrome b559, an essential component of PSII. The accD gene encodes the beta subunit of acetyl-CoA carboxylase, a protein required in plastid fatty acid biosynthesis. Whole-transcriptome RNA-seq demonstrated that editing at psbF-C77 is nearly absent and the editing extent at accD-C794 was significantly reduced. Gene set enrichment pathway analysis showed that expression of multiple gene sets involved in photosynthesis, especially photosynthetic electron transport, is significantly up-regulated in both orrm6 mutants. The up-regulation could be a mechanism to compensate for the reduced PSII electron transport rate in the orrm6 mutants. These results further demonstrated that Organelle RNA Recognition Motif protein ORRM6 is required in editing of specific RNAs in the Arabidopsis (Arabidopsis thaliana) plastid.

  13. Gene Expression Differences between Enriched Normal and Chronic Myelogenous Leukemia Quiescent Stem/Progenitor Cells and Correlations with Biological Abnormalities

    Directory of Open Access Journals (Sweden)

    M. Affer

    2011-01-01

    Full Text Available In comparing gene expression of normal and CML CD34+ quiescent (G0 cell, 292 genes were downregulated and 192 genes upregulated in the CML/G0 Cells. The differentially expressed genes were grouped according to their reported functions, and correlations were sought with biological differences previously observed between the same groups. The most relevant findings include the following. (i CML G0 cells are in a more advanced stage of development and more poised to proliferate than normal G0 cells. (ii When CML G0 cells are stimulated to proliferate, they differentiate and mature more rapidly than normal counterpart. (iii Whereas normal G0 cells form only granulocyte/monocyte colonies when stimulated by cytokines, CML G0 cells form a combination of the above and erythroid clusters and colonies. (iv Prominin-1 is the gene most downregulated in CML G0 cells, and this appears to be associated with the spontaneous formation of erythroid colonies by CML progenitors without EPO.

  14. A global test for gene‐gene interactions based on random matrix theory

    Science.gov (United States)

    Amos, Christopher I.; Moore, Jason H.

    2016-01-01

    ABSTRACT Statistical interactions between markers of genetic variation, or gene‐gene interactions, are believed to play an important role in the etiology of many multifactorial diseases and other complex phenotypes. Unfortunately, detecting gene‐gene interactions is extremely challenging due to the large number of potential interactions and ambiguity regarding marker coding and interaction scale. For many data sets, there is insufficient statistical power to evaluate all candidate gene‐gene interactions. In these cases, a global test for gene‐gene interactions may be the best option. Global tests have much greater power relative to multiple individual interaction tests and can be used on subsets of the markers as an initial filter prior to testing for specific interactions. In this paper, we describe a novel global test for gene‐gene interactions, the global epistasis test (GET), that is based on results from random matrix theory. As we show via simulation studies based on previously proposed models for common diseases including rheumatoid arthritis, type 2 diabetes, and breast cancer, our proposed GET method has superior performance characteristics relative to existing global gene‐gene interaction tests. A glaucoma GWAS data set is used to demonstrate the practical utility of the GET method. PMID:27386793

  15. The human interactome knowledge base (hint-kb): An integrative human protein interaction database enriched with predicted protein–protein interaction scores using a novel hybrid technique

    KAUST Repository

    Theofilatos, Konstantinos A.

    2013-07-12

    Proteins are the functional components of many cellular processes and the identification of their physical protein–protein interactions (PPIs) is an area of mature academic research. Various databases have been developed containing information about experimentally and computationally detected human PPIs as well as their corresponding annotation data. However, these databases contain many false positive interactions, are partial and only a few of them incorporate data from various sources. To overcome these limitations, we have developed HINT-KB (http://biotools.ceid.upatras.gr/hint-kb/), a knowledge base that integrates data from various sources, provides a user-friendly interface for their retrieval, cal-culatesasetoffeaturesofinterest and computesaconfidence score for every candidate protein interaction. This confidence score is essential for filtering the false positive interactions which are present in existing databases, predicting new protein interactions and measuring the frequency of each true protein interaction. For this reason, a novel machine learning hybrid methodology, called (Evolutionary Kalman Mathematical Modelling—EvoKalMaModel), was used to achieve an accurate and interpretable scoring methodology. The experimental results indicated that the proposed scoring scheme outperforms existing computational methods for the prediction of PPIs.

  16. Gene-Gene-Environment Interactions of Serotonin Transporter, Monoamine Oxidase A and Childhood Maltreatment Predict Aggressive Behavior in Chinese Adolescents

    Science.gov (United States)

    Zhang, Yun; Ming, Qing-sen; Yi, Jin-yao; Wang, Xiang; Chai, Qiao-lian; Yao, Shu-qiao

    2017-01-01

    Gene-environment interactions that moderate aggressive behavior have been identified independently in the serotonin transporter (5-HTT) gene and monoamine oxidase A gene (MAOA). The aim of the present study was to investigate epistasis interactions between MAOA-variable number tandem repeat (VNTR), 5-HTTlinked polymorphism (LPR) and child abuse and the effects of these on aggressive tendencies in a group of otherwise healthy adolescents. A group of 546 Chinese male adolescents completed the Child Trauma Questionnaire and Youth self-report of the Child Behavior Checklist. Buccal cells were collected for DNA analysis. The effects of childhood abuse, MAOA-VNTR, 5-HTTLPR genotypes and their interactive gene-gene-environmental effects on aggressive behavior were analyzed using a linear regression model. The effect of child maltreatment was significant, and a three-way interaction among MAOA-VNTR, 5-HTTLPR and sexual abuse (SA) relating to aggressive behaviors was identified. Chinese male adolescents with high expression of the MAOA-VNTR allele and 5-HTTLPR “SS” genotype exhibited the highest aggression tendencies with an increase in SA during childhood. The findings reported support aggression being a complex behavior involving the synergistic effects of gene-gene-environment interactions. PMID:28203149

  17. Multiplex Real-Time PCR Assays for Screening of Shiga Toxin 1 and 2 Genes, Including All Known Subtypes, and Escherichia coli O26-, O111-, and O157-Specific Genes in Beef and Sprout Enrichment Cultures.

    Science.gov (United States)

    Harada, Tetsuya; Iguchi, Atsushi; Iyoda, Sunao; Seto, Kazuko; Taguchi, Masumi; Kumeda, Yuko

    2015-10-01

    Shiga toxin family members have recently been classified using a new nomenclature into three Stx1 subtypes (Stx1a, Stx1c, and Stx1d) and seven Stx2 subtypes (Stx2a, Stx2b, Stx2c, Stx2d, Stx2e, Stx2f, and Stx2g). To develop screening methods for Stx genes, including all of these subtype genes, and Escherichia coli O26-, O111-, and O157-specific genes in laboratory investigations of Shiga toxin-producing E. coli (STEC) foodborne cases, we developed multiplex real-time PCR assays and evaluated their specificity and quantitative accuracy using STEC and non-STEC isolates, recombinant plasmids, and food enrichment cultures and by performing STEC spiking experiments with beef and sprout enrichment cultures. In addition, we evaluated the relationship between the recovery rates of the target strains by direct plating and immunomagnetic separation and the cycle threshold (CT) values of the real-time PCR assays for the Stx subtypes and STEC O26, O111, and O157 serogroups. All three stx1- and seven stx2-subtype genes were detected by real-time PCR with high sensitivity and specificity, and the quantitative accuracy of this assay was confirmed using control plasmids and STEC spiking experiments. The results of the STEC spiking experiments suggest that it is not routinely possible to isolate STEC from enrichment cultures with real-time PCR CT values greater than 30 by direct plating on MacConkey agar, although highly selective media and immunomagnetic beads were able to isolate the inoculated strains from the enrichment cultures. These data suggest that CT values obtained from the highly quantitative real-time PCR assays developed in this study provide useful information to develop effective isolation strategies for STEC from food samples. The real-time PCR assays developed here are expected to aid in investigations of infections or outbreaks caused by STEC harboring any of the stx-subtype genes in the new Stx nomenclature, as well as STEC O26, O111, and O157.

  18. Diet-gene interactions between dietary fat intake and common polymorphisms in determining lipid metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Corella, D.

    2009-07-01

    Current dietary guidelines for fat intake have not taken into consideration the possible genetic differences underlying the individual variability in responsiveness to dietary components. Genetic variability has been identified in humans for all the known lipid metabolism-related genes resulting in a plethora of candidate genes and genetic variants to examine in diet-gene interaction studies focused on fat consumption. Some examples of fat-gene interaction are reviewed. These include: the interaction between total intake and the 14C/T in the hepatic lipase gene promoter in determining high-density lipoprotein cholesterol (HDL-C) metabolism; the interaction between polyunsaturated fatty acids (PUFA) and the 5G/A polymorphism in the APOA1 gene plasma HDL-C concentrations; the interaction between PUFA and the L162V polymorphism in the PPARA gene in determining triglycerides and APOC3 concentrations; and the interaction between PUFA intake and the -1131T>C in the APOA5 gene in determining triglyceride metabolism. Although hundreds of diet-gene interaction studies in lipid metabolism have been published, the level of evidence to make specific nutritional recommendations to the population is still low and more research in nutrigenetics has to be undertaken. (Author) 31 refs.

  19. Correlations between genetic variance and adiposity measures, and gene × gene interactions for obesity in postmenopausal Vietnamese women

    Indian Academy of Sciences (India)

    Tran Quang Binh; Yutaka Nakahori; Vu Thi Thu Hien; Nguyen Cong Khan; Nguyen Thi Lam; Le Bach Mai; Shigeru Yamamoto

    2011-04-01

    Although environmental factors are important, there is considerable evidence that genes also have a significant role in the pathogenesis of obesity. We conducted a population-based study to investigate the relationship between candidate genes for obesity (UCP1, UCP2, ADRA2B, ADRB3, LEPR, VDR and ESR1) and adiposity measures (body mass index, body fat percentage, weight, waist circumference and waist–hip ratio) in terms of individual gene and gene × gene interaction in models unadjusted and adjusted for covariates (age, years since menopause, educational level and total energy intake). Postmenopausal women with TC genotype of ESR1 gene had higher body fat percentage than those with TT genotype in the models unadjusted and adjusted for the covariates ($P = 0.006$ in adjusted model). In multiple logistic regression analysis, BsmI and ApaI SNPs of VDR genes were significantly associated with overweight and obesity. The UCP2–VDR ApaI interaction to susceptibility of overweight and obesity was first observed from logistic regression analysis, and then confirmed in the multifactor dimensionality reduction method unadjusted and adjusted for the covariates. This interaction had 69.09% prediction accuracy for overweight and obesity ($P = 0.001$, sign test). In conclusion, the study suggests the significant association of ESR1 and VDR genes with adiposity measures and the UCP2–VDR ApaI interaction to susceptibility to being overweight and obesity in postmenopausal Vietnamese women.

  20. Measured Gene-by-Environment Interaction in Relation to Attention-Deficit/Hyperactivity Disorder

    Science.gov (United States)

    Nigg, Joel; Nikolas, Molly; Burt, S. Alexandra

    2010-01-01

    Objective: To summarize and evaluate the state of knowledge regarding the role of measured gene-by-environment interactions in relation to attention-deficit/hyperactivity disorder. Method: A selective review of methodologic issues was followed by a systematic search for relevant articles on measured gene-by-environment interactions; the search…

  1. Gene discovery from Jatropha curcas by sequencing of ESTs from normalized and full-length enriched cDNA library from developing seeds

    Directory of Open Access Journals (Sweden)

    Sugantham Priyanka Annabel

    2010-10-01

    Full Text Available Abstract Background Jatropha curcas L. is promoted as an important non-edible biodiesel crop worldwide. Jatropha oil, which is a triacylglycerol, can be directly blended with petro-diesel or transesterified with methanol and used as biodiesel. Genetic improvement in jatropha is needed to increase the seed yield, oil content, drought and pest resistance, and to modify oil composition so that it becomes a technically and economically preferred source for biodiesel production. However, genetic improvement efforts in jatropha could not take advantage of genetic engineering methods due to lack of cloned genes from this species. To overcome this hurdle, the current gene discovery project was initiated with an objective of isolating as many functional genes as possible from J. curcas by large scale sequencing of expressed sequence tags (ESTs. Results A normalized and full-length enriched cDNA library was constructed from developing seeds of J. curcas. The cDNA library contained about 1 × 106 clones and average insert size of the clones was 2.1 kb. Totally 12,084 ESTs were sequenced to average high quality read length of 576 bp. Contig analysis revealed 2258 contigs and 4751 singletons. Contig size ranged from 2-23 and there were 7333 ESTs in the contigs. This resulted in 7009 unigenes which were annotated by BLASTX. It showed 3982 unigenes with significant similarity to known genes and 2836 unigenes with significant similarity to genes of unknown, hypothetical and putative proteins. The remaining 191 unigenes which did not show similarity with any genes in the public database may encode for unique genes. Functional classification revealed unigenes related to broad range of cellular, molecular and biological functions. Among the 7009 unigenes, 6233 unigenes were identified to be potential full-length genes. Conclusions The high quality normalized cDNA library was constructed from developing seeds of J. curcas for the first time and 7009 unigenes coding

  2. Identification of enriched driver gene alterations in subgroups of non-small cell lung cancer patients based on histology and smoking status.

    Directory of Open Access Journals (Sweden)

    She-Juan An

    Full Text Available BACKGROUND: Appropriate patient selection is needed for targeted therapies that are efficacious only in patients with specific genetic alterations. We aimed to define subgroups of patients with candidate driver genes in patients with non-small cell lung cancer. METHODS: Patients with primary lung cancer who underwent clinical genetic tests at Guangdong General Hospital were enrolled. Driver genes were detected by sequencing, high-resolution melt analysis, qPCR, or multiple PCR and RACE methods. RESULTS: 524 patients were enrolled in this study, and the differences in driver gene alterations among subgroups were analyzed based on histology and smoking status. In a subgroup of non-smokers with adenocarcinoma, EGFR was the most frequently altered gene, with a mutation rate of 49.8%, followed by EML4-ALK (9.3%, PTEN (9.1%, PIK3CA (5.2%, c-Met (4.8%, KRAS (4.5%, STK11 (2.7%, and BRAF (1.9%. The three most frequently altered genes in a subgroup of smokers with adenocarcinoma were EGFR (22.0%, STK11 (19.0%, and KRAS (12.0%. We only found EGFR (8.0%, c-Met (2.8%, and PIK3CA (2.6% alterations in the non-smoker with squamous cell carcinoma (SCC subgroup. PTEN (16.1%, STK11 (8.3%, and PIK3CA (7.2% were the three most frequently enriched genes in smokers with SCC. DDR2 and FGFR2 only presented in smokers with SCC (4.4% and 2.2%, respectively. Among these four subgroups, the differences in EGFR, KRAS, and PTEN mutations were statistically significant. CONCLUSION: The distinct features of driver gene alterations in different subgroups based on histology and smoking status were helpful in defining patients for future clinical trials that target these genes. This study also suggests that we may consider patients with infrequent alterations of driver genes as having rare or orphan diseases that should be managed with special molecularly targeted therapies.

  3. ChIP-enriched in silico targets (ChEST), a ChIP-on-chip approach applied to analyzing skeletal muscle genes.

    Science.gov (United States)

    Junion, Guillaume; Jagla, Krzysztof

    2012-01-01

    Mapping the cis-regulatory modules (CRMs) to which bind myogenic transcription factors is an -obligatory step towards understanding gene regulatory networks governing muscle development and function. This can be achieved in silico or by chromatin immunoprecipitation (ChIP) approaches. We have developed a ChIP-enriched in silico targets (ChEST) strategy designed for mapping the CRMs by combining in silico and ChIP methods. ChEST involves a software-assisted prediction of transcription factor (TF) - specific CRMs, which are spotted to produce a computed genomic CRM microarray. In parallel, the in vivo pool of targets of a given TF is isolated by ChIP and used as a probe for hybridization with the array generated. Here we describe ChEST strategy applied to identify direct targets of Myogenic Enhancer Factor, Dmef2 in Drosophila embryos.

  4. Witnessing stressful events induces glutamatergic synapse pathway alterations and gene set enrichment of positive EPSP regulation within the VTA of adult mice: An ontology based approach

    Science.gov (United States)

    Brewer, Jacob S.

    It is well known that exposure to severe stress increases the risk for developing mood disorders. Currently, the neurobiological and genetic mechanisms underlying the functional effects of psychological stress are poorly understood. Presenting a major obstacle to the study of psychological stress is the inability of current animal models of stress to distinguish between physical and psychological stressors. A novel paradigm recently developed by Warren et al., is able to tease apart the effects of physical and psychological stress in adult mice by allowing these mice to "witness," the social defeat of another mouse thus removing confounding variables associated with physical stressors. Using this 'witness' model of stress and RNA-Seq technology, the current study aims to study the genetic effects of psychological stress. After, witnessing the social defeat of another mouse, VTA tissue was extracted, sequenced, and analyzed for differential expression. Since genes often work together in complex networks, a pathway and gene ontology (GO) analysis was performed using data from the differential expression analysis. The pathway and GO analyzes revealed a perturbation of the glutamatergic synapse pathway and an enrichment of positive excitatory post-synaptic potential regulation. This is consistent with the excitatory synapse theory of depression. Together these findings demonstrate a dysregulation of the mesolimbic reward pathway at the gene level as a result of psychological stress potentially contributing to depressive like behaviors.

  5. Gene regulatory network interactions in sea urchin endomesoderm induction.

    Directory of Open Access Journals (Sweden)

    Aditya J Sethi

    2009-02-01

    Full Text Available A major goal of contemporary studies of embryonic development is to understand large sets of regulatory changes that accompany the phenomenon of embryonic induction. The highly resolved sea urchin pregastrular endomesoderm-gene regulatory network (EM-GRN provides a unique framework to study the global regulatory interactions underlying endomesoderm induction. Vegetal micromeres of the sea urchin embryo constitute a classic endomesoderm signaling center, whose potential to induce archenteron formation from presumptive ectoderm was demonstrated almost a century ago. In this work, we ectopically activate the primary mesenchyme cell-GRN (PMC-GRN that operates in micromere progeny by misexpressing the micromere determinant Pmar1 and identify the responding EM-GRN that is induced in animal blastomeres. Using localized loss-of -function analyses in conjunction with expression of endo16, the molecular definition of micromere-dependent endomesoderm specification, we show that the TGFbeta cytokine, ActivinB, is an essential component of this induction in blastomeres that emit this signal, as well as in cells that respond to it. We report that normal pregastrular endomesoderm specification requires activation of the Pmar1-inducible subset of the EM-GRN by the same cytokine, strongly suggesting that early micromere-mediated endomesoderm specification, which regulates timely gastrulation in the sea urchin embryo, is also ActivinB dependent. This study unexpectedly uncovers the existence of an additional uncharacterized micromere signal to endomesoderm progenitors, significantly revising existing models. In one of the first network-level characterizations of an intercellular inductive phenomenon, we describe an important in vivo model of the requirement of ActivinB signaling in the earliest steps of embryonic endomesoderm progenitor specification.

  6. Gene-environment and gene-gene interactions of specific MTHFR, MTR and CBS gene variants in relation to homocysteine in black South Africans.

    Science.gov (United States)

    Nienaber-Rousseau, Cornelie; Ellis, Suria M; Moss, Sarah J; Melse-Boonstra, Alida; Towers, G Wayne

    2013-11-01

    The methylenetetrahydrofolate reductase (MTHFR), cystathione-β-synthase (CBS) and methionine synthase (MTR) genes interact with each other and the environment. These interactions could influence homocysteine (Hcy) and diseases contingent thereon. We determined single nucleotide polymorphisms (SNPs) within these genes, their relationships and interactions with total Hcy concentrations within black South Africans to address the increased prevalence of diseases associated with Hcy. The MTHFR 677 TT and MTR 2756 AA genotypes were associated with higher Hcy concentrations (16.6 and 10.1 μmol/L; pCBS genotypes did not influence Hcy. We demonstrated interactions between the area of residence and the CBS T833C/844ins68 genotypes (p=0.005) so that when harboring the wildtype allele, rural subjects had significantly higher Hcy than their urban counterparts, but when hosting the variant allele the environment made no difference to Hcy. Between the CBS T833C/844ins68 or G9276A and MTHFR C677T genotypes, there were two-way interactions (p=0.003 and=0.004, respectively), with regard to Hcy. Subjects harboring the MTHFR 677 TT genotype in combination with the CBS 833 TT/homozygous 844 non-insert or the MTHFR 677 TT genotype in combination with the CBS 9276 GA/GG displayed higher Hcy concentrations. Therefore, some of the investigated genotypes affected Hcy; residential area changed the way in which the CBS T833C/844ins68 SNPs influenced Hcy concentrations highlighting the importance of environmental factors; and gene-gene interactions allude to epistatic effects. © 2013 Elsevier B.V. All rights reserved.

  7. Locus heterogeneity disease genes encode proteins with high interconnectivity in the human protein interaction network.

    Science.gov (United States)

    Keith, Benjamin P; Robertson, David L; Hentges, Kathryn E

    2014-01-01

    Mutations in genes potentially lead to a number of genetic diseases with differing severity. These disease genes have been the focus of research in recent years showing that the disease gene population as a whole is not homogeneous, and can be categorized according to their interactions. Locus heterogeneity describes a single disorder caused by mutations in different genes each acting individually to cause the same disease. Using datasets of experimentally derived human disease genes and protein interactions, we created a protein interaction network to investigate the relationships between the products of genes associated with a disease displaying locus heterogeneity, and use network parameters to suggest properties that distinguish these disease genes from the overall disease gene population. Through the manual curation of known causative genes of 100 diseases displaying locus heterogeneity and 397 single-gene Mendelian disorders, we use network parameters to show that our locus heterogeneity network displays distinct properties from the global disease network and a Mendelian network. Using the global human proteome, through random simulation of the network we show that heterogeneous genes display significant interconnectivity. Further topological analysis of this network revealed clustering of locus heterogeneity genes that cause identical disorders, indicating that these disease genes are involved in similar biological processes. We then use this information to suggest additional genes that may contribute to diseases with locus heterogeneity.

  8. Transposable elements are enriched within or in close proximity to xenobiotic-metabolizing cytochrome P450 genes

    Directory of Open Access Journals (Sweden)

    Li Xianchun

    2007-03-01

    Full Text Available Abstract Background Transposons, i.e. transposable elements (TEs, are the major internal spontaneous mutation agents for the variability of eukaryotic genomes. To address the general issue of whether transposons mediate genomic changes in environment-adaptation genes, we scanned two alleles per each of the six xenobiotic-metabolizing Helicoverpa zea cytochrome P450 loci, including CYP6B8, CYP6B27, CYP321A1, CYP321A2, CYP9A12v3 and CYP9A14, for the presence of transposon insertions by genome walking and sequence analysis. We also scanned thirteen Drosophila melanogaster P450s genes for TE insertions by in silico mapping and literature search. Results Twelve novel transposons, including LINEs (long interspersed nuclear elements, SINEs (short interspersed nuclear elements, MITEs (miniature inverted-repeat transposable elements, one full-length transib-like transposon, and one full-length Tcl-like DNA transpson, are identified from the alleles of the six H. zea P450 genes. The twelve transposons are inserted into the 5'flanking region, 3'flanking region, exon, or intron of the six environment-adaptation P450 genes. In D. melanogaster, seven out of the eight Drosophila P450s (CYP4E2, CYP6A2, CYP6A8, CYP6A9, CYP6G1, CYP6W1, CYP12A4, CYP12D1 implicated in insecticide resistance are associated with a variety of transposons. By contrast, all the five Drosophila P450s (CYP302A1, CYP306A1, CYP307A1, CYP314A1 and CYP315A1 involved in ecdysone biosynthesis and developmental regulation are free of TE insertions. Conclusion These results indicate that TEs are selectively retained within or in close proximity to xenobiotic-metabolizing P450 genes.

  9. Interactions between iron, phenolic compounds, emulsifiers, and pH in omega-3-enriched oil-in-water emulsions

    DEFF Research Database (Denmark)

    Sørensen, Ann-Dorit Moltke; Haahr, Anne-Mette; Becker, E.M.

    2008-01-01

    in a 10% oil-in-water emulsion. The emulsifiers tested were Tween 80 and Citrem, and the phenolic compounds were naringenin, rutin, caffeic acid, and coumaric acid. Lipid oxidation was evaluated at all levels, that is, formation of radicals (ESR), hydroperoxides (PV), and secondary volatile oxidation......The behavior of antioxidants in emulsions is influenced by several factors such as pH and emulsifier type. This study aimed to evaluate the interaction between selected food emulsifiers, phenolic compounds, iron, and pH and their effect on the oxidative stability of n-3 polyunsaturated lipids...... significant effects, as caffeic acid was found to be prooxidative irrespective of pH, emulsifier type, and presence of iron, although the degrees of lipid oxidation were different at the different experimental conditions. The other evaluated phenols were prooxidative at pH 3 in Citrem-stabilized emulsions...

  10. A semi-supervised method for predicting transcription factor-gene interactions in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Jason Ernst

    2008-03-01

    Full Text Available While Escherichia coli has one of the most comprehensive datasets of experimentally verified transcriptional regulatory interactions of any organism, it is still far from complete. This presents a problem when trying to combine gene expression and regulatory interactions to model transcriptional regulatory networks. Using the available regulatory interactions to predict new interactions may lead to better coverage and more accurate models. Here, we develop SEREND (SEmi-supervised REgulatory Network Discoverer, a semi-supervised learning method that uses a curated database of verified transcriptional factor-gene interactions, DNA sequence binding motifs, and a compendium of gene expression data in order to make thousands of new predictions about transcription factor-gene interactions, including whether the transcription factor activates or represses the gene. Using genome-wide binding datasets for several transcription factors, we demonstrate that our semi-supervised classification strategy improves the prediction of targets for a given transcription factor. To further demonstrate the utility of our inferred interactions, we generated a new microarray gene expression dataset for the aerobic to anaerobic shift response in E. coli. We used our inferred interactions with the verified interactions to reconstruct a dynamic regulatory network for this response. The network reconstructed when using our inferred interactions was better able to correctly identify known regulators and suggested additional activators and repressors as having important roles during the aerobic-anaerobic shift interface.

  11. A Gene Co-Expression Network in Whole Blood of Schizophrenia Patients Is Independent of Antipsychotic-Use and Enriched for Brain-Expressed Genes

    NARCIS (Netherlands)

    de Jong, Simone; Boks, Marco P. M.; Fuller, Tova F.; Strengman, Eric; Janson, Esther; de Kovel, Carolien G. F.; Ori, Anil P. S.; Vi, Nancy; Mulder, Flip; Blom, Jan Dirk; Glenthoj, Birte; Schubart, Chris D.; Cahn, Wiepke; Kahn, Rene S.; Horvath, Steve; Ophoff, Roel A.

    2012-01-01

    Despite large-scale genome-wide association studies (GWAS), the underlying genes for schizophrenia are largely unknown. Additional approaches are therefore required to identify the genetic background of this disorder. Here we report findings from a large gene expression study in peripheral blood of

  12. Conjugated linoleic acid-enriched butter improved memory and up-regulated phospholipase A2 encoding-genes in rat brain tissue.

    Science.gov (United States)

    Gama, Marco A S; Raposo, Nádia R B; Mury, Fábio B; Lopes, Fernando C F; Dias-Neto, Emmanuel; Talib, Leda L; Gattaz, Wagner F

    2015-10-01

    Reduced phospholipase A2 (PLA2) activity has been reported in blood cells and in postmortem brains of patients with Alzheimer disease (AD), and there is evidence that conjugated linoleic acid (CLA) modulates the activity of PLA2 groups in non-brain tissues. As CLA isomers were shown to be actively incorporated and metabolized in the brains of rats, we hypothesized that feeding a diet naturally enriched in CLA would affect the activity and expression of Pla 2 -encoding genes in rat brain tissue, with possible implications for memory. To test this hypothesis, Wistar rats were trained for the inhibitory avoidance task and fed a commercial diet (control) or experimental diets containing either low CLA- or CLA-enriched butter for 4 weeks. After this period, the rats were tested for memory retrieval and killed for tissue collection. Hippocampal expression of 19 Pla 2 genes was evaluated by qPCR, and activities of PLA2 groups (cPLA2, iPLA2, and sPLA2) were determined by radioenzymatic assay. Rats fed the high CLA diet had increased hippocampal mRNA levels for specific PLA2 isoforms (iPla 2 g6γ; cPla 2 g4a, sPla 2 g3, sPla 2 g1b, and sPla 2 g12a) and higher enzymatic activity of all PLA2 groups as compared to those fed the control and the low CLA diet. The increment in PLA2 activities correlated significantly with memory enhancement, as assessed by increased latency in the step-down inhibitory avoidance task after 4 weeks of treatment (rs = 0.69 for iPLA2, P < 0.001; rs = 0.81 for cPLA2, P < 0.001; and rs = 0.69 for sPLA2, P < 0.001). In face of the previous reports showing reduced PLA2 activity in AD brains, the present findings suggest that dairy products enriched in cis-9, trans-11 CLA may be useful in the treatment of this disease.

  13. Enriching regulatory networks by bootstrap learning using optimised GO-based gene similarity and gene links mined from PubMed abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Ronald C.; Sanfilippo, Antonio P.; McDermott, Jason E.; Baddeley, Robert L.; Riensche, Roderick M.; Jensen, Russell S.; Verhagen, Marc; Pustejovsky, James

    2011-02-18

    Transcriptional regulatory networks are being determined using “reverse engineering” methods that infer connections based on correlations in gene state. Corroboration of such networks through independent means such as evidence from the biomedical literature is desirable. Here, we explore a novel approach, a bootstrapping version of our previous Cross-Ontological Analytic method (XOA) that can be used for semi-automated annotation and verification of inferred regulatory connections, as well as for discovery of additional functional relationships between the genes. First, we use our annotation and network expansion method on a biological network learned entirely from the literature. We show how new relevant links between genes can be iteratively derived using a gene similarity measure based on the Gene Ontology that is optimized on the input network at each iteration. Second, we apply our method to annotation, verification, and expansion of a set of regulatory connections found by the Context Likelihood of Relatedness algorithm.

  14. Contributions of renin-angiotensin system-related gene interactions to obesity in a Chinese population.

    Directory of Open Access Journals (Sweden)

    Jian-Bo Zhou

    Full Text Available BACKGROUND: Gene-gene interactions may be partly responsible for complex traits such as obesity. Increasing evidence suggests that the renin-angiotensin system (RAS contributes to the etiology of obesity. How the epistasis of genes in the RAS contributes to obesity is still under research. We aim to evaluate the contribution of RAS-related gene interactions to a predisposition of obesity in a Chinese population. METHODOLOGY AND PRINCIPAL FINDINGS: We selected six single nucleotide polymorphisms (SNPs located in angiotensin (AGT, angiotensin converting enzyme (ACE, angiotensin type 1 receptor (AGTR1, MAS1, nitric oxide synthase 3 (NOS3 and the bradykinin B2 receptor gene (BDKRB2, and genotyped them in 324 unrelated individuals with obesity (BMI ≥ 28 kg/m(2 and 373 non-obese controls (BMI 18.5 to <24 kg/m(2 from a large scale population-based cohort. We analyzed gene-gene interactions among 6 polymorphic loci using the Generalized Multifactor Dimensionality Reduction (GMDR method, which has been shown to be effective for detecting gene-gene interactions in case-control studies with relatively small samples. Then we used logistic regression models to confirm the best combination of loci identified in the GMDR. It showed a significant gene-gene interaction between the rs220721 polymorphism in the MAS1 gene and the rs1799722 polymorphism in the gene BDKB2R. The best two-locus combination scored 9 for cross-validation consistency and 9 for sign test (p = 0.0107. This interaction showed the maximum consistency and minimum prediction error among all gene-gene interaction models evaluated. Moreover, the combination of the MAS1 rs220721 and the BDKRB2 rs1799722 was associated with a significantly increased risk of obesity (OR 1.82, CI 95%: 1.15-2.88, p = 0.0103. CONCLUSIONS AND SIGNIFICANCE: These results suggest that the SNPs from the RAS-related genes may contribute to the risk of obesity in an interactive manner in a Chinese population. The gene-gene

  15. Genome-wide annotation, expression profiling, and protein interaction studies of the core cell-cycle genes in Phalaenopsis aphrodite.

    Science.gov (United States)

    Lin, Hsiang-Yin; Chen, Jhun-Chen; Wei, Miao-Ju; Lien, Yi-Chen; Li, Huang-Hsien; Ko, Swee-Suak; Liu, Zin-Huang; Fang, Su-Chiung

    2014-01-01

    Orchidaceae is one of the most abundant and diverse families in the plant kingdom and its unique developmental patterns have drawn the attention of many evolutionary biologists. Particular areas of interest have included the co-evolution of pollinators and distinct floral structures, and symbiotic relationships with mycorrhizal flora. However, comprehensive studies to decipher the molecular basis of growth and development in orchids remain scarce. Cell proliferation governed by cell-cycle regulation is fundamental to growth and development of the plant body. We took advantage of recently released transcriptome information to systematically isolate and annotate the core cell-cycle regulators in the moth orchid Phalaenopsis aphrodite. Our data verified that Phalaenopsis cyclin-dependent kinase A (CDKA) is an evolutionarily conserved CDK. Expression profiling studies suggested that core cell-cycle genes functioning during the G1/S, S, and G2/M stages were preferentially enriched in the meristematic tissues that have high proliferation activity. In addition, subcellular localization and pairwise interaction analyses of various combinations of CDKs and cyclins, and of E2 promoter-binding factors and dimerization partners confirmed interactions of the functional units. Furthermore, our data showed that expression of the core cell-cycle genes was coordinately regulated during pollination-induced reproductive development. The data obtained establish a fundamental framework for study of the cell-cycle machinery in Phalaenopsis orchids.

  16. Informative Gene Selection and Direct Classification of Tumor Based on Chi-Square Test of Pairwise Gene Interactions

    Directory of Open Access Journals (Sweden)

    Hongyan Zhang

    2014-01-01

    Full Text Available In efforts to discover disease mechanisms and improve clinical diagnosis of tumors, it is useful to mine profiles for informative genes with definite biological meanings and to build robust classifiers with high precision. In this study, we developed a new method for tumor-gene selection, the Chi-square test-based integrated rank gene and direct classifier (χ2-IRG-DC. First, we obtained the weighted integrated rank of gene importance from chi-square tests of single and pairwise gene interactions. Then, we sequentially introduced the ranked genes and removed redundant genes by using leave-one-out cross-validation of the chi-square test-based Direct Classifier (χ2-DC within the training set to obtain informative genes. Finally, we determined the accuracy of independent test data by utilizing the genes obtained above with χ2-DC. Furthermore, we analyzed the robustness of χ2-IRG-DC by comparing the generalization performance of different models, the efficiency of different feature-selection methods, and the accuracy of different classifiers. An independent test of ten multiclass tumor gene-expression datasets showed that χ2-IRG-DC could efficiently control overfitting and had higher generalization performance. The informative genes selected by χ2-IRG-DC could dramatically improve the independent test precision of other classifiers; meanwhile, the informative genes selected by other feature selection methods also had good performance in χ2-DC.

  17. Enrichment of provitamin A content in wheat (Triticum aestivum L.) by introduction of the bacterial carotenoid biosynthetic genes CrtB and CrtI.

    Science.gov (United States)

    Wang, Cheng; Zeng, Jian; Li, Yin; Hu, Wei; Chen, Ling; Miao, Yingjie; Deng, Pengyi; Yuan, Cuihong; Ma, Cheng; Chen, Xi; Zang, Mingli; Wang, Qiong; Li, Kexiu; Chang, Junli; Wang, Yuesheng; Yang, Guangxiao; He, Guangyuan

    2014-06-01

    Carotenoid content is a primary determinant of wheat nutritional value and affects its end-use quality. Wheat grains contain very low carotenoid levels and trace amounts of provitamin A content. In order to enrich the carotenoid content in wheat grains, the bacterial phytoene synthase gene (CrtB) and carotene desaturase gene (CrtI) were transformed into the common wheat cultivar Bobwhite. Expression of CrtB or CrtI alone slightly increased the carotenoid content in the grains of transgenic wheat, while co-expression of both genes resulted in a darker red/yellow grain phenotype, accompanied by a total carotenoid content increase of approximately 8-fold achieving 4.76 μg g(-1) of seed dry weight, a β-carotene increase of 65-fold to 3.21 μg g(-1) of seed dry weight, and a provitamin A content (sum of α-carotene, β-carotene, and β-cryptoxanthin) increase of 76-fold to 3.82 μg g(-1) of seed dry weight. The high provitamin A content in the transgenic wheat was stably inherited over four generations. Quantitative PCR analysis revealed that enhancement of provitamin A content in transgenic wheat was also a result of the highly coordinated regulation of endogenous carotenoid biosynthetic genes, suggesting a metabolic feedback regulation in the wheat carotenoid biosynthetic pathway. These transgenic wheat lines are not only valuable for breeding wheat varieties with nutritional benefits for human health but also for understanding the mechanism regulating carotenoid biosynthesis in wheat endosperm.

  18. Redundancy control in pathway databases (ReCiPa): an application for improving gene-set enrichment analysis in Omics studies and "Big data" biology.

    Science.gov (United States)

    Vivar, Juan C; Pemu, Priscilla; McPherson, Ruth; Ghosh, Sujoy

    2013-08-01

    Abstract Unparalleled technological advances have fueled an explosive growth in the scope and scale of biological data and have propelled life sciences into the realm of "Big Data" that cannot be managed or analyzed by conventional approaches. Big Data in the life sciences are driven primarily via a diverse collection of 'omics'-based technologies, including genomics, proteomics, metabolomics, transcriptomics, metagenomics, and lipidomics. Gene-set enrichment analysis is a powerful approach for interrogating large 'omics' datasets, leading to the identification of biological mechanisms associated with observed outcomes. While several factors influence the results from such analysis, the impact from the contents of pathway databases is often under-appreciated. Pathway databases often contain variously named pathways that overlap with one another to varying degrees. Ignoring such redundancies during pathway analysis can lead to the designation of several pathways as being significant due to high content-similarity, rather than truly independent biological mechanisms. Statistically, such dependencies also result in correlated p values and overdispersion, leading to biased results. We investigated the level of redundancies in multiple pathway databases and observed large discrepancies in the nature and extent of pathway overlap. This prompted us to develop the application, ReCiPa (Redundancy Control in Pathway Databases), to control redundancies in pathway databases based on user-defined thresholds. Analysis of genomic and genetic datasets, using ReCiPa-generated overlap-controlled versions of KEGG and Reactome pathways, led to a reduction in redundancy among the top-scoring gene-sets and allowed for the inclusion of additional gene-sets representing possibly novel biological mechanisms. Using obesity as an example, bioinformatic analysis further demonstrated that gene-sets identified from overlap-controlled pathway databases show stronger evidence of prior association

  19. Effect of a long-chain n-3 polyunsaturated fatty acid-enriched diet on adipose tissue lipid profiles and gene expression in Holstein dairy cows.

    Science.gov (United States)

    Elis, Sebastien; Desmarchais, Alice; Freret, Sandrine; Maillard, Virginie; Labas, Valérie; Cognié, Juliette; Briant, Eric; Hivelin, Celine; Dupont, Joëlle; Uzbekova, Svetlana

    2016-12-01

    The objective of this study was to determine whether fish oil supplement has an effect on adipose tissue lipid profiles and gene expression in postpartum dairy cows. Holstein cows were supplemented with either long-chain n-3 polyunsaturated fatty acid (PUFA; protected fish oil) or control PUFA (n-6; toasted soybeans) for 2mo after calving (n=23 per diet). These cows showed no difference in milk production or metabolic parameters, but exhibited a tendency toward a decrease in early embryo mortality rate after artificial insemination. We hypothesized that, in addition to this effect, modifications in adipose tissue (AT) gene expression and lipid profiles would occur in response to diet. Subcutaneous AT samples were thus collected from the dewlaps of n-3 and n-6 dairy cows at 1mo antepartum, and 1wk, 2mo, and 5mo postpartum for the analysis of lipids and gene expression. Lipid profiles were obtained by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in both positive and negative modes. We found 37 lipid species in the 200 to 1,200 m/z range, which differed between the n-3 and control groups, suggesting that the n-3 supplement affected the lipid composition through the enrichment of lipids integrating long-chain PUFA from fish oil sources: eicosapentaenoic and docosahexaenoic acid. Moreover, a decrease in triacylglycerolipids was observed in AT of n-3 supplemented cows. The expression of 44 genes involved in fatty acid metabolism and the adipokine system was assessed by real-time reverse-transcription PCR. Hierarchical clustering, according to either postpartum stage or diet, enabled us to group genes exhibiting similar kinetic properties during lactation or by those that varied in similar ways after n-3 supplementation, respectively. Among the genes exhibiting a dietary effect, FABP4, LIPE, CD36, and PLIN1 were overexpressed in n-3 AT samples compared with the control, suggesting an increase in lipolysis due to n-3 supplementation, which

  20. Oh, Behave! Behavior as an Interaction between Genes & the Environment

    Science.gov (United States)

    Weigel, Emily G.; DeNieu, Michael; Gall, Andrew J.

    2014-01-01

    This lesson is designed to teach students that behavior is a trait shaped by both genes and the environment. Students will read a scientific paper, discuss and generate predictions based on the ideas and data therein, and model the relationships between genes, the environment, and behavior. The lesson is targeted to meet the educational goals of…

  1. Oh, Behave! Behavior as an Interaction between Genes & the Environment

    Science.gov (United States)

    Weigel, Emily G.; DeNieu, Michael; Gall, Andrew J.

    2014-01-01

    This lesson is designed to teach students that behavior is a trait shaped by both genes and the environment. Students will read a scientific paper, discuss and generate predictions based on the ideas and data therein, and model the relationships between genes, the environment, and behavior. The lesson is targeted to meet the educational goals of…

  2. Modular reorganization of the global network of gene regulatory interactions during perinatal human brain development

    OpenAIRE

    Monzón-Sandoval, Jimena; Castillo-Morales, Atahualpa; Urrutia, Araxi O.; Gutierrez, Humberto

    2016-01-01

    Background During early development of the nervous system, gene expression patterns are known to vary widely depending on the specific developmental trajectories of different structures. Observable changes in gene expression profiles throughout development are determined by an underlying network of precise regulatory interactions between individual genes. Elucidating the organizing principles that shape this gene regulatory network is one of the central goals of developmental biology. Whether...

  3. Characterization of an 18,166 EST dataset for cassava (Manihot esculenta Crantz) enriched for drought-responsive genes.

    Science.gov (United States)

    Lokko, Y; Anderson, J V; Rudd, S; Raji, A; Horvath, D; Mikel, M A; Kim, R; Liu, L; Hernandez, A; Dixon, A G O; Ingelbrecht, I L

    2007-09-01

    Cassava (Manihot esculenta Crantz) is a staple food for over 600 million people in the tropics and subtropics and is increasingly used as an industrial crop for starch production. Cassava has a high growth rate under optimal conditions but also performs well in drought-prone areas and on marginal soils. To increase the tools for understanding and manipulating drought tolerance in cassava, we generated expressed sequence tags (ESTs) from normalized cDNA libraries prepared from dehydration-stressed and control well-watered tissues. Analysis of a total of 18,166 ESTs resulted in the identification of 8,577 unique gene clusters (5,383 singletons and 3,194 clusters). Functional categories could be assigned to 63% of the unigenes, while another approximately 11% were homologous to hypothetical genes with unclear functions. The remaining approximately 26% were not significantly homologous to sequences in public databases suggesting that some may be novel and putatively specific to cassava. The dehydration-stressed library uncovered numerous ESTs with recognized roles in drought-responses, including those that encode late-embryogenesis-abundant proteins thought to confer osmoprotective functions during water stress, transcription factors, heat-shock proteins as well as proteins involved in signal transduction and oxidative stress. The unigene clusters were screened for short tandem repeats for further development as microsatellite markers. A total of 592 clusters contained 646 repeats, representing 3.3% of the ESTs queried. The ESTs presented here are the first dehydration stress transcriptome of cassava and can be utilized for the development of microarrays and gene-derived molecular markers to further dissect the molecular basis of drought tolerance in cassava.

  4. Gene x Environment Interactions in Reading Disability and Attention-Deficit/Hyperactivity Disorder

    Science.gov (United States)

    Pennington, Bruce F.; McGrath, Lauren M.; Rosenberg, Jenni; Barnard, Holly; Smith, Shelley D.; Willcutt, Erik G.; Friend, Angela; DeFries, John C.; Olson, Richard K.

    2009-01-01

    This article examines Gene x Environment (G x E) interactions in two comorbid developmental disorders--reading disability (RD) and attention-deficit/hyperactivity disorder (ADHD)--as a window on broader issues on G x E interactions in developmental psychology. The authors first briefly review types of G x E interactions, methods for detecting…

  5. Gene x Environment Interactions in Reading Disability and Attention-Deficit/Hyperactivity Disorder

    Science.gov (United States)

    Pennington, Bruce F.; McGrath, Lauren M.; Rosenberg, Jenni; Barnard, Holly; Smith, Shelley D.; Willcutt, Erik G.; Friend, Angela; DeFries, John C.; Olson, Richard K.

    2009-01-01

    This article examines Gene x Environment (G x E) interactions in two comorbid developmental disorders--reading disability (RD) and attention-deficit/hyperactivity disorder (ADHD)--as a window on broader issues on G x E interactions in developmental psychology. The authors first briefly review types of G x E interactions, methods for detecting…

  6. Physiological response of a golden tide alga (Sargassum muticum) to the interaction of ocean acidification and phosphorus enrichment

    Science.gov (United States)

    Xu, Zhiguang; Gao, Guang; Xu, Juntian; Wu, Hongyan

    2017-02-01

    The development of golden tides is potentially influenced by global change factors, such as ocean acidification and eutrophication, but related studies are very scarce. In this study, we cultured a golden tide alga, Sargasssum muticum, at two levels of pCO2 (400 and 1000 µatm) and phosphate (0.5 and 40 µM) to investigate the interactive effects of elevated pCO2 and phosphate on the physiological properties of the thalli. Higher pCO2 and phosphate (P) levels alone increased the relative growth rate by 41 and 48 %, the net photosynthetic rate by 46 and 55 %, and the soluble carbohydrates by 33 and 62 %, respectively, while the combination of these two levels did not promote growth or soluble carbohydrates further. The higher levels of pCO2 and P alone also enhanced the nitrate uptake rate by 68 and 36 %, the nitrate reductase activity (NRA) by 89 and 39 %, and the soluble protein by 19 and 15 %, respectively. The nitrate uptake rate and soluble protein was further enhanced, although the nitrate reductase activity was reduced when the higher levels of pCO2 and P worked together. The higher pCO2 and higher P levels alone did not affect the dark respiration rate of the thalli, but together they increased it by 32 % compared to the condition of lower pCO2 and lower P. The neutral effect of the higher levels of pCO2 and higher P on growth and soluble carbohydrates, combined with the promoting effect on soluble protein and dark respiration, suggests that more energy was drawn from carbon assimilation to nitrogen assimilation under conditions of higher pCO2 and higher P; this is most likely to act against the higher pCO2 that caused acid-base perturbation via synthesizing H+ transport-related protein. Our results indicate that ocean acidification and eutrophication may not boost golden tide events synergistically, although each one has a promoting effect.

  7. Assessment of Multifactor Gene-Environment Interactions and Ovarian Cancer Risk: Candidate Genes, Obesity, and Hormone-Related Risk Factors.

    Science.gov (United States)

    Usset, Joseph L; Raghavan, Rama; Tyrer, Jonathan P; McGuire, Valerie; Sieh, Weiva; Webb, Penelope; Chang-Claude, Jenny; Rudolph, Anja; Anton-Culver, Hoda; Berchuck, Andrew; Brinton, Louise; Cunningham, Julie M; DeFazio, Anna; Doherty, Jennifer A; Edwards, Robert P; Gayther, Simon A; Gentry-Maharaj, Aleksandra; Goodman, Marc T; Høgdall, Estrid; Jensen, Allan; Johnatty, Sharon E; Kiemeney, Lambertus A; Kjaer, Susanne K; Larson, Melissa C; Lurie, Galina; Massuger, Leon; Menon, Usha; Modugno, Francesmary; Moysich, Kirsten B; Ness, Roberta B; Pike, Malcolm C; Ramus, Susan J; Rossing, Mary Anne; Rothstein, Joseph; Song, Honglin; Thompson, Pamela J; van den Berg, David J; Vierkant, Robert A; Wang-Gohrke, Shan; Wentzensen, Nicolas; Whittemore, Alice S; Wilkens, Lynne R; Wu, Anna H; Yang, Hannah; Pearce, Celeste Leigh; Schildkraut, Joellen M; Pharoah, Paul; Goode, Ellen L; Fridley, Brooke L

    2016-05-01

    Many epithelial ovarian cancer (EOC) risk factors relate to hormone exposure and elevated estrogen levels are associated with obesity in postmenopausal women. Therefore, we hypothesized that gene-environment interactions related to hormone-related risk factors could differ between obese and non-obese women. We considered interactions between 11,441 SNPs within 80 candidate genes related to hormone biosynthesis and metabolism and insulin-like growth factors with six hormone-related factors (oral contraceptive use, parity, endometriosis, tubal ligation, hormone replacement therapy, and estrogen use) and assessed whether these interactions differed between obese and non-obese women. Interactions were assessed using logistic regression models and data from 14 case-control studies (6,247 cases; 10,379 controls). Histotype-specific analyses were also completed. SNPs in the following candidate genes showed notable interaction: IGF1R (rs41497346, estrogen plus progesterone hormone therapy, histology = all, P = 4.9 × 10(-6)) and ESR1 (rs12661437, endometriosis, histology = all, P = 1.5 × 10(-5)). The most notable obesity-gene-hormone risk factor interaction was within INSR (rs113759408, parity, histology = endometrioid, P = 8.8 × 10(-6)). We have demonstrated the feasibility of assessing multifactor interactions in large genetic epidemiology studies. Follow-up studies are necessary to assess the robustness of our findings for ESR1, CYP11A1, IGF1R, CYP11B1, INSR, and IGFBP2 Future work is needed to develop powerful statistical methods able to detect these complex interactions. Assessment of multifactor interaction is feasible, and, here, suggests that the relationship between genetic variants within candidate genes and hormone-related risk factors may vary EOC susceptibility. Cancer Epidemiol Biomarkers Prev; 25(5); 780-90. ©2016 AACR. ©2016 American Association for Cancer Research.

  8. Mountain pine beetles colonizing historical and naive host trees are associated with a bacterial community highly enriched in genes contributing to terpene metabolism.

    Science.gov (United States)

    Adams, Aaron S; Aylward, Frank O; Adams, Sandye M; Erbilgin, Nadir; Aukema, Brian H; Currie, Cameron R; Suen, Garret; Raffa, Kenneth F

    2013-06-01

    The mountain pine beetle, Dendroctonus ponderosae, is a subcortical herbivore native to western North America that can kill healthy conifers by overcoming host tree defenses, which consist largely of high terpene concentrations. The mechanisms by which these beetles contend with toxic compounds are not well understood. Here, we explore a component of the hypothesis that beetle-associated bacterial symbionts contribute to the ability of D. ponderosae to overcome tree defenses by assisting with terpene detoxification. Such symbionts may facilitate host tree transitions during range expansions currently being driven by climate change. For example, this insect has recently breached the historical geophysical barrier of the Canadian Rocky Mountains, providing access to näive tree hosts and unprecedented connectivity to eastern forests. We use culture-independent techniques to describe the bacterial community associated with D. ponderosae beetles and their galleries from their historical host, Pinus contorta, and their more recent host, hybrid P. contorta-Pinus banksiana. We show that these communities are enriched with genes involved in terpene degradation compared with other plant biomass-processing microbial communities. These pine beetle microbial communities are dominated by members of the genera Pseudomonas, Rahnella, Serratia, and Burkholderia, and the majority of genes involved in terpene degradation belong to these genera. Our work provides the first metagenome of bacterial communities associated with a bark beetle and is consistent with a potential microbial contribution to detoxification of tree defenses needed to survive the subcortical environment.

  9. Impact of date palm fruits extracts and probiotic enriched diet on antioxidant status, innate immune response and immune-related gene expression of European seabass (Dicentrarchus labrax).

    Science.gov (United States)

    Guardiola, F A; Porcino, C; Cerezuela, R; Cuesta, A; Faggio, C; Esteban, M A

    2016-05-01

    The application of additives in the diet as plants or extracts of plants as natural and innocuous compounds has potential in aquaculture as an alternative to antibiotics and immunoprophylactics. The aim of the current study was to evaluate the potential effects of dietary supplementation of date palm fruit extracts alone or in combination with Pdp11 probiotic on serum antioxidant status, on the humoral and cellular innate immune status, as well as, on the expression levels of some immune-related genes in head-kidney and gut of European sea bass (Dicentrarchus labrax) after 2 and 4 weeks of administration. This study showed for the first time in European sea bass an immunostimulation in several of the parameters evaluated in fish fed with date palm fruits extracts enriched diet or fed with this substance in combination with Pdp 11 probiotic, mainly after 4 weeks of treatment. In the same way, dietary supplementation of mixture diet has positive effects on the expression levels of immune-related genes, chiefly in head-kidney of Dicentrarchus labrax. Therefore, the combination of both could be considered of great interest as potential additives for farmed fish.

  10. The Integration of Epistasis Network and Functional Interactions in a GWAS Implicates RXR Pathway Genes in the Immune Response to Smallpox Vaccine

    Science.gov (United States)

    McKinney, Brett A.; Lareau, Caleb; Oberg, Ann L.; Kennedy, Richard B.; Ovsyannikova, Inna G.; Poland, Gregory A.

    2016-01-01

    Although many diseases and traits show large heritability, few genetic variants have been found to strongly separate phenotype groups by genotype. Complex regulatory networks of variants and expression of multiple genes lead to small individual-variant effects and difficulty replicating the effect of any single variant in an affected pathway. Interaction network modeling of GWAS identifies effects ignored by univariate models, but population differences may still cause specific genes to not replicate. Integrative network models may help detect indirect effects of variants in the underlying biological pathway. In this study, we used gene-level functional interaction information from the Integrative Multi-species Prediction (IMP) tool to reveal important genes associated with a complex phenotype through evidence from epistasis networks and pathway enrichment. We test this method for augmenting variant-based network analyses with functional interactions by applying it to a smallpox vaccine immune response GWAS. The integrative analysis spotlights the role of genes related to retinoid X receptor alpha (RXRA), which has been implicated in a previous epistasis network analysis of smallpox vaccine. PMID:27513748

  11. Gene-gene and gene-sex epistatic interactions of DNMT1, DNMT3A and DNMT3B in autoimmune thyroid disease.

    Science.gov (United States)

    Cai, Tian-Tian; Zhang, Jian; Wang, Xuan; Song, Rong-Hua; Qin, Qiu; Muhali, Fatuma-Said; Zhou, Jiao-Zhen; Xu, Jian; Zhang, Jin-An

    2016-07-30

    The aim of this study was to investigate the associations of DNA methyltransferases (DNMTs) polymorphisms with susceptibility to autoimmune thyroid diseases (AITDs) and to test gene-gene/gene-sex epistasis interactions. Eight single-nucleotide polymorphisms (SNPs) in DNMT1, DNMT3A and DNMT3B were selected and genotyped by multiplex polymerase chain reaction combined with ligase detection reaction method (PCR-LDR). A total of 685 Graves' disease (GD) patients, 353 Hashimoto's thyroiditis (HT) patients and 909 healthy controls were included in the final analysis. Epistasis was tested by additive model, multiplicative model and general multifactor dimensionality reduction (general MDR). Rs2424913 (DNMT3B) and rs2228611 (DNMT1) were associated with susceptibility to AITD and GD in the dominant and overdominant model, respectively (rs2424913: P=0.009 for AITD, P=0.0041 for GD; rs2228611: P=0.035 for AITD, P=0.043 for GD). Multiplicative and multiple high dimensional gene-gene or gene-sex interactions were also observed in this study. We have found evidence for a potential role of rs2424913 (DNMT3B) and rs2228611 (DNMT1) in AITD susceptibility and identified novel gene-gene/gene-sex interactions in AITD. Our study may highlight sex and genes of DNMTs family as contributors to the pathogenesis of AITD.

  12. Nuclear Localization of the Autism Candidate Gene Neurobeachin and Functional Interaction with the NOTCH1 Intracellular Domain Indicate a Role in Regulating Transcription.

    Directory of Open Access Journals (Sweden)

    Krizia Tuand

    Full Text Available Neurobeachin (NBEA is an autism spectrum disorders (ASD candidate gene. NBEA deficiency affects regulated secretion, receptor trafficking, synaptic architecture and protein kinase A (PKA-mediated phosphorylation. NBEA is a large multidomain scaffolding protein. From N- to C-terminus, NBEA has a concanavalin A-like lectin domain flanked by armadillo repeats (ACA, an A-kinase anchoring protein domain that can bind to PKA, a domain of unknown function (DUF1088 and a BEACH domain, preceded by a pleckstrin homology-like domain and followed by WD40 repeats (PBW. Although most of these domains mediate protein-protein interactions, no interaction screen has yet been performed.Yeast two-hybrid screens with the ACA and PBW domain modules of NBEA gave a list of interaction partners, which were analyzed for Gene Ontology (GO enrichment. Neuro-2a cells were used for confocal microscopy and nuclear extraction analysis. NOTCH-mediated transcription was studied with luciferase reporter assays and qRT-PCR, combined with NBEA knockdown or overexpression.Both domain modules showed a GO enrichment for the nucleus. PBW almost exclusively interacted with transcription regulators, while ACA interacted with a number of PKA substrates. NBEA was partially localized in the nucleus of Neuro-2a cells, albeit much less than in the cytoplasm. A nuclear localization signal was found in the DUF1088 domain, which was shown to contribute to the nuclear localization of an EGFP-DPBW fusion protein. Yeast two-hybrid identified the Notch1 intracellular domain as a physical interactor of the PBW domain and a role for NBEA as a negative regulator in Notch-mediated transcription was demonstrated.Defining novel interaction partners of conserved NBEA domain modules identified a role for NBEA as transcriptional regulator in the nucleus. The physical interaction of NBEA with NOTCH1 is most relevant for ASD pathogenesis because NOTCH signaling is essential for neural development.

  13. Neuregulin 1: a prime candidate for research into gene-environment interactions in schizophrenia? Insights from genetic rodent models

    Directory of Open Access Journals (Sweden)

    Tim eKarl

    2013-08-01

    Full Text Available Schizophrenia is a multi-factorial disease characterized by a high heritability and environmental risk factors. In recent years, an increasing number of researchers worldwide have started investigating the ‘two-hit hypothesis’ of schizophrenia predicting that genetic and environmental risk factors (GxE interactively cause the development of the disorder. This work is starting to produce valuable new animal models and reveal novel insights into the pathophysiology of schizophrenia. This mini review will focus on recent advancements in the field made by challenging mutant and transgenic rodent models for the schizophrenia candidate gene neuregulin 1 (NRG1 with particular environmental factors. It will outline results obtained from mouse and rat models for various Nrg1 isoforms/isoform types (e.g. transmembrane domain Nrg1, Type II Nrg1, which have been exposed to different forms of stress (acute versus chronic, restraint versus social and housing conditions (standard laboratory versus minimally enriched housing. These studies suggest Nrg1 as a prime candidate for GxE interactions in schizophrenia rodent models and that the use of rodent models will enable a better understanding of GxE interactions and the underlying mechanisms.

  14. Robust de novo pathway enrichment with KeyPathwayMiner 5

    DEFF Research Database (Denmark)

    Alcaraz, Nicolas; List, Markus; Dissing-Hansen, Martin

    2016-01-01

    Identifying functional modules or novel active pathways, recently termed de novo pathway enrichment, is a computational systems biology challenge that has gained much attention during the last decade. Given a large biological interaction network, KeyPathwayMiner extracts connected subnetworks...... several network perturbation techniques and over a range of perturbation degrees. In addition, users may now provide a gold-standard set to determine how enriched extracted pathways are with relevant genes compared to randomized versions of the original network....

  15. Common sources of bias in gene-lifestyle interaction studies of cardiometabolic disease

    DEFF Research Database (Denmark)

    Oskari Kilpeläinen, Tuomas

    2013-01-01

    The role of gene x lifestyle interactions in the development of cardiometabolic diseases is often highlighted, but very few robustly replicated examples of interactions exist in the literature. The slow pace of discoveries may largely be due to interaction effects being generally small in magnitude...... and/or more complex than initially thought. However, the progress may also be hindered by the poor accuracy in large-scale epidemiological studies to estimate the true interaction effect sizes. Often, this bias tends to underestimate the interaction effect, leading to inadequate statistical power...... to detect the interaction. In this review, I will discuss the most common sources of bias in the estimation of gene x lifestyle interactions, and will discuss how such factors could be addressed in the future to enhance our potential to identify and replicate interactions for cardiometabolic diseases....

  16. Mapping Interactive Cancer Susceptibility Genes in Prostate Cancer

    Science.gov (United States)

    2007-04-01

    further analysis around this FHIT marker. Under the assumption of a recessive model, we attempted to narrow the disease interval by examining key meiotic ...examining key meiotic recombinants. A and B, physical map illustrating marker and FHIT exon locations. Solid bar, FHIT gene boundary; vertical bars, exons 5...gene, spanning the chromosome 3p14.2 fragile site and renal carcinoma-associated t(3;8) breakpoint, is abnormal in digestive tract cancers. Cell 1996;84

  17. Assessment of gene-by-sex interaction effect on bone mineral density

    DEFF Research Database (Denmark)

    Liu, Ching-Ti; Estrada, Karol; Yerges-Armstrong, Laura M;

    2012-01-01

    Sexual dimorphism in various bone phenotypes, including bone mineral density (BMD), is widely observed; however, the extent to which genes explain these sex differences is unclear. To identify variants with different effects by sex, we examined gene-by-sex autosomal interactions genome-wide, and ......Sexual dimorphism in various bone phenotypes, including bone mineral density (BMD), is widely observed; however, the extent to which genes explain these sex differences is unclear. To identify variants with different effects by sex, we examined gene-by-sex autosomal interactions genome...

  18. The interaction between smoking and HLA genes in multiple sclerosis

    DEFF Research Database (Denmark)

    Hedström, Anna Karin; Katsoulis, Michail; Hössjer, Ola

    2017-01-01

    Interactions between environment and genetics may contribute to multiple sclerosis (MS) development. We investigated whether the previously observed interaction between smoking and HLA genotype in the Swedish population could be replicated, refined and extended to include other populations. We used...... populations from the Nordic studies (6265 cases, 8401 controls). In both the pooled analyses and in the combined Nordic material, interactions were observed between HLA-DRB*15 and absence of HLA-A*02 and between smoking and each of the genetic risk factors. Two way interactions were observed between each...... with never smokers without these genetic risk factors (OR 12.7, 95% CI 10.8-14.9). The risk of MS associated with HLA genotypes is strongly influenced by smoking status and vice versa. Since the function of HLA molecules is to present peptide antigens to T cells, the demonstrated interactions strongly...

  19. Using Linkage Analysis to Detect Gene-Gene Interactions. 2. Improved Reliability and Extension to More-Complex Models.

    Directory of Open Access Journals (Sweden)

    Susan E Hodge

    Full Text Available Detecting gene-gene interaction in complex diseases has become an important priority for common disease genetics, but most current approaches to detecting interaction start with disease-marker associations. These approaches are based on population allele frequency correlations, not genetic inheritance, and therefore cannot exploit the rich information about inheritance contained within families. They are also hampered by issues of rigorous phenotype definition, multiple test correction, and allelic and locus heterogeneity. We recently developed, tested, and published a powerful gene-gene interaction detection strategy based on conditioning family data on a known disease-causing allele or a disease-associated marker allele4. We successfully applied the method to disease data and used computer simulation to exhaustively test the method for some epistatic models. We knew that the statistic we developed to indicate interaction was less reliable when applied to more-complex interaction models. Here, we improve the statistic and expand the testing procedure. We computer-simulated multipoint linkage data for a disease caused by two interacting loci. We examined epistatic as well as additive models and compared them with heterogeneity models. In all our models, the at-risk genotypes are "major" in the sense that among affected individuals, a substantial proportion has a disease-related genotype. One of the loci (A has a known disease-related allele (as would have been determined from a previous analysis. We removed (pruned family members who did not carry this allele; the resultant dataset is referred to as "stratified." This elimination step has the effect of raising the "penetrance" and detectability at the second locus (B. We used the lod scores for the stratified and unstratified data sets to calculate a statistic that either indicated the presence of interaction or indicated that no interaction was detectable. We show that the new method is robust

  20. ATRX binds to atypical chromatin domains at the 3' exons of zinc finger genes to preserve H3K9me3 enrichment.

    Science.gov (United States)

    Valle-García, David; Qadeer, Zulekha A; McHugh, Domhnall S; Ghiraldini, Flávia G; Chowdhury, Asif H; Hasson, Dan; Dyer, Michael A; Recillas-Targa, Félix; Bernstein, Emily

    2016-06-02

    ATRX is a SWI/SNF chromatin remodeler proposed to govern genomic stability through the regulation of repetitive sequences, such as rDNA, retrotransposons, and pericentromeric and telomeric repeats. However, few direct ATRX target genes have been identified and high-throughput genomic approaches are currently lacking for ATRX. Here we present a comprehensive ChIP-sequencing study of ATRX in multiple human cell lines, in which we identify the 3' exons of zinc finger genes (ZNFs) as a new class of ATRX targets. These 3' exonic regions encode the zinc finger motifs, which can range from 1-40 copies per ZNF gene and share large stretches of sequence similarity. These regions often contain an atypical chromatin signature: they are transcriptionally active, contain high levels of H3K36me3, and are paradoxically enriched in H3K9me3. We find that these ZNF 3' exons are co-occupied by SETDB1, TRIM28, and ZNF274, which form a complex with ATRX. CRISPR/Cas9-mediated loss-of-function studies demonstrate (i) a reduction of H3K9me3 at the ZNF 3' exons in the absence of ATRX and ZNF274 and, (ii) H3K9me3 levels at atypical chromatin regions are particularly sensitive to ATRX loss compared to other H3K9me3-occupied regions. As a consequence of ATRX or ZNF274 depletion, cells with reduced levels of H3K9me3 show increased levels of DNA damage, suggesting that ATRX binds to the 3' exons of ZNFs to maintain their genomic stability through preservation of H3K9me3.

  1. A gene-gene interaction between polymorphisms in the OCT2 and MATE1 genes influences the renal clearance of metformin

    DEFF Research Database (Denmark)

    Hougaard Christensen, Mette Marie; Pedersen, Rasmus Steen; Stage, Tore Bjerregaard;

    2013-01-01

    The aim of this study was to determine the association between the renal clearance (CL(renal)) of metformin in healthy Caucasian volunteers and the single-nucleotide polymorphism (SNP) c.808G>T (rs316019) in OCT2 as well as the relevance of the gene-gene interactions between this SNP and (a...

  2. High Order Gene-Gene Interactions in Eight Single Nucleotide Polymorphisms of Renin-Angiotensin System Genes for Hypertension Association Study

    Directory of Open Access Journals (Sweden)

    Cheng-Hong Yang

    2015-01-01

    Full Text Available Several single nucleotide polymorphisms (SNPs of renin-angiotensin system (RAS genes are associated with hypertension (HT but most of them are focusing on single locus effects. Here, we introduce an unbalanced function based on multifactor dimensionality reduction (MDR for multiloci genotypes to detect high order gene-gene (SNP-SNP interaction in unbalanced cases and controls of HT data. Eight SNPs of three RAS genes (angiotensinogen, AGT; angiotensin-converting enzyme, ACE; angiotensin II type 1 receptor, AT1R in HT and non-HT subjects were included that showed no significant genotype differences. In 2- to 6-locus models of the SNP-SNP interaction, the SNPs of AGT and ACE genes were associated with hypertension (bootstrapping odds ratio [Boot-OR] = 1.972~3.785; 95%, confidence interval (CI 1.26~6.21; P<0.005. In 7- and 8-locus model, SNP A1166C of AT1R gene is joined to improve the maximum Boot-OR values of 4.050 to 4.483; CI = 2.49 to 7.29; P<1.63E−08. In conclusion, the epistasis networks are identified by eight SNP-SNP interaction models. AGT, ACE, and AT1R genes have overall effects with susceptibility to hypertension, where the SNPs of ACE have a mainly hypertension-associated effect and show an interacting effect to SNPs of AGT and AT1R genes.

  3. Effects of Cr(III) and CR(VI) on nitrification inhibition as determined by SOUR, function-specific gene expression and 16S rRNA sequence analysis of wastewater nitrifying enrichments

    Science.gov (United States)

    The effect of Cr(III) and Cr(VI) on ammonia oxidation, the transcriptional responses of functional genes involved in nitrification and changes in 16S rRNA level sequences were examined in nitrifying enrichment cultures. The nitrifying bioreactor was operated as a continuous react...

  4. DGIdb 2.0: mining clinically relevant drug-gene interactions.

    Science.gov (United States)

    Wagner, Alex H; Coffman, Adam C; Ainscough, Benjamin J; Spies, Nicholas C; Skidmore, Zachary L; Campbell, Katie M; Krysiak, Kilannin; Pan, Deng; McMichael, Joshua F; Eldred, James M; Walker, Jason R; Wilson, Richard K; Mardis, Elaine R; Griffith, Malachi; Griffith, Obi L

    2016-01-01

    The Drug-Gene Interaction Database (DGIdb, www.dgidb.org) is a web resource that consolidates disparate data sources describing drug-gene interactions and gene druggability. It provides an intuitive graphical user interface and a documented application programming interface (API) for querying these data. DGIdb was assembled through an extensive manual curation effort, reflecting the combined information of twenty-seven sources. For DGIdb 2.0, substantial updates have been made to increase content and improve its usefulness as a resource for mining clinically actionable drug targets. Specifically, nine new sources of drug-gene interactions have been added, including seven resources specifically focused on interactions linked to clinical trials. These additions have more than doubled the overall count of drug-gene interactions. The total number of druggable gene claims has also increased by 30%. Importantly, a majority of the unrestricted, publicly-accessible sources used in DGIdb are now automatically updated on a weekly basis, providing the most current information for these sources. Finally, a new web view and API have been developed to allow searching for interactions by drug identifiers to complement existing gene-based search functionality. With these updates, DGIdb represents a comprehensive and user friendly tool for mining the druggable genome for precision medicine hypothesis generation.

  5. Gene, environment, and brain-gut interactions in irritable bowel syndrome.

    Science.gov (United States)

    Fukudo, Shin; Kanazawa, Motoyori

    2011-04-01

    The genetic predisposition and influence of environment may underlie in the pathogenesis and/or pathophysiology of irritable bowel syndrome (IBS). This phenomenon, gene x environment interaction together with brain-gut interactions is emerging area to be clarified in IBS research. Earlier studies focused on candidate genes of neurotransmitters, cytokines, and growth factors. Among them, some studies but not all studies revealed association between phenotypes of IBS and 5-hydroxytryptamine (5-HT)-related genes, noradrenaline-related genes, and cytokine genes. Recent prospective cohort study showed that genes encoding immune and adhesion molecules were associated with post-infectious etiology of IBS. Psychosocial stressors and intraluminal factors especially microbiota are keys to develop IBS. IBS patients may have abnormal gut microbiota as well as increased organic acids. IBS is disorder that relates to brain-gut interactions, emotional dysregulation, and illness behaviors. Brain imaging with or without combination of visceral stimulation enables us to depict the detailed information of brain-gut interactions. In IBS patients, thalamus, insula, anterior cingulate cortex, amygdala, and brainstem were more activated in response to visceral stimulation than controls. Corticotropin-releasing hormone and 5-HT are the candidate substances which regulate exaggerated brain-gut response. In conclusion, gene x environment interaction together with brain-gut interactions may play crucial roles in IBS development. Further fundamental research on this issue is warranted.

  6. A systematic gene-gene and gene-environment interaction analysis of DNA repair genes XRCC1, XRCC2, XRCC3, XRCC4, and oral cancer risk.

    Science.gov (United States)

    Yang, Cheng-Hong; Lin, Yu-Da; Yen, Ching-Yui; Chuang, Li-Yeh; Chang, Hsueh-Wei

    2015-04-01

    Oral cancer is the sixth most common cancer worldwide with a high mortality rate. Biomarkers that anticipate susceptibility, prognosis, or response to treatments are much needed. Oral cancer is a polygenic disease involving complex interactions among genetic and environmental factors, which require multifaceted analyses. Here, we examined in a dataset of 103 oral cancer cases and 98 controls from Taiwan the association between oral cancer risk and the DNA repair genes X-ray repair cross-complementing group (XRCCs) 1-4, and the environmental factors of smoking, alcohol drinking, and betel quid (BQ) chewing. We employed logistic regression, multifactor dimensionality reduction (MDR), and hierarchical interaction graphs for analyzing gene-gene (G×G) and gene-environment (G×E) interactions. We identified a significantly elevated risk of the XRCC2 rs2040639 heterozygous variant among smokers [adjusted odds ratio (OR) 3.7, 95% confidence interval (CI)=1.1-12.1] and alcohol drinkers [adjusted OR=5.7, 95% CI=1.4-23.2]. The best two-factor based G×G interaction of oral cancer included the XRCC1 rs1799782 and XRCC2 rs2040639 [OR=3.13, 95% CI=1.66-6.13]. For the G×E interaction, the estimated OR of oral cancer for two (drinking-BQ chewing), three (XRCC1-XRCC2-BQ chewing), four (XRCC1-XRCC2-age-BQ chewing), and five factors (XRCC1-XRCC2-age-drinking-BQ chewing) were 32.9 [95% CI=14.1-76.9], 31.0 [95% CI=14.0-64.7], 49.8 [95% CI=21.0-117.7] and 82.9 [95% CI=31.0-221.5], respectively. Taken together, the genotypes of XRCC1 rs1799782 and XRCC2 rs2040639 DNA repair genes appear to be significantly associated with oral cancer. These were enhanced by exposure to certain environmental factors. The observations presented here warrant further research in larger study samples to examine their relevance for routine clinical care in oncology.

  7. Pilot Sequencing of Onion Genomic DNA Reveals Fragments of Transposable Elements, Low Gene Densities, and Significant Gene Enrichment After Methyl Filtration

    Science.gov (United States)

    Onion (Allium cepa) is a diploid (2n=2x=16) monocot with one of the largest nuclear genomes among cultivated plants, over 6 and 16 times that of maize and rice, respectively. In this study, we sequenced onion BACs to estimate gene densities and investigate the nature and distribution of repetitive ...

  8. Gene Prospector: An evidence gateway for evaluating potential susceptibility genes and interacting risk factors for human diseases

    Directory of Open Access Journals (Sweden)

    Khoury Muin J

    2008-12-01

    Full Text Available Abstract Background Millions of single nucleotide polymorphisms have been identified as a result of the human genome project and the rapid advance of high throughput genotyping technology. Genetic association studies, such as recent genome-wide association studies (GWAS, have provided a springboard for exploring the contribution of inherited genetic variation and gene/environment interactions in relation to disease. Given the capacity of such studies to produce a plethora of information that may then be described in a number of publications, selecting possible disease susceptibility genes and identifying related modifiable risk factors is a major challenge. A Web-based application for finding evidence of such relationships is key to the development of follow-up studies and evidence for translational research. We developed a Web-based application that selects and prioritizes potential disease-related genes by using a highly curated and updated literature database of genetic association studies. The application, called Gene Prospector, also provides a comprehensive set of links to additional data sources. Results We compared Gene Prospector results for the query "Parkinson" with a list of 13 leading candidate genes (Top Results from a curated, specialty database for genetic associations with Parkinson disease (PDGene. Nine of the thirteen leading candidate genes from PDGene were in the top 10th percentile of the ranked list from Gene Prospector. In fact, Gene Prospector included more published genetic association studies for the 13 leading candidate genes than PDGene did. Conclusion Gene Prospector provides an online gateway for searching for evidence about human genes in relation to diseases, other phenotypes, and risk factors, and provides links to published literature and other online data sources. Gene Prospector can be accessed via http://www.hugenavigator.net/HuGENavigator/geneProspectorStartPage.do.

  9. An assessment of gene-by-gene interactions as a tool to unfold missing heritability in dyslexia.

    Science.gov (United States)

    Mascheretti, S; Bureau, A; Trezzi, V; Giorda, R; Marino, C

    2015-07-01

    Even if substantial heritability has been reported and candidate genes have been identified extensively, all known marker associations explain only a small proportion of the phenotypic variance of developmental dyslexia (DD) and related quantitative phenotypes. Gene-by-gene interaction (also known as "epistasis"--G × G) triggers a non-additive effect of genes at different loci and should be taken into account in explaining part of the missing heritability of this complex trait. We assessed potential G × G interactions among five DD candidate genes, i.e., DYX1C1, DCDC2, KIAA0319, ROBO1, and GRIN2B, upon DD-related neuropsychological phenotypes in 493 nuclear families with DD, by implementing two complementary regression-based approaches: (1) a general linear model equation whereby the trait is predicted by the main effect of the number of rare alleles of the two genes and by the effect of the interaction between them, and (2) a family-based association test to detect G × G interactions between two unlinked markers by splitting up the association effect into a between- and a within-family genetic orthogonal components. After applying 500,000 permutations and correcting for multiple testing, both methods show that G × G effects between markers within the DYX1C1, KIAA0319/TTRAP, and GRIN2B genes lower the memory letters composite z-score of on average 0.55 standard deviation. We provided initial evidence that the effects of familial transmission of synergistic interactions between genetic risk variants can be exploited in the study of the etiology of DD, explain part of its missing heritability, and assist in designing customized charts of individualized neurocognitive impairments in complex disorders, such as DD.

  10. Cyclin T1-dependent genes in activated CD4 T and macrophage cell lines appear enriched in HIV-1 co-factors.

    Directory of Open Access Journals (Sweden)

    Wendong Yu

    Full Text Available HIV-1 is dependent upon cellular co-factors to mediate its replication cycle in CD4(+ T cells and macrophages, the two major cell types infected by the virus in vivo. One critical co-factor is Cyclin T1, a subunit of a general RNA polymerase II elongation factor known as P-TEFb. Cyclin T1 is targeted directly by the viral Tat protein to activate proviral transcription. Cyclin T1 is up-regulated when resting CD4(+ T cells are activated and during macrophage differentiation or activation, conditions that are also necessary for high levels of HIV-1 replication. Because Cyclin T1 is a subunit of a transcription factor, the up-regulation of Cyclin T1 in these cells results in the induction of cellular genes, some of which might be HIV-1 co-factors. Using shRNA depletions of Cyclin T1 and transcriptional profiling, we identified 54 cellular mRNAs that appear to be Cyclin T1-dependent for their induction in activated CD4(+ T Jurkat T cells and during differentiation and activation of MM6 cells, a human monocytic cell line. The promoters for these Cyclin T1-dependent genes (CTDGs are over-represented in two transcription factor binding sites, SREBP1 and ARP1. Notably, 10 of these CTDGs have been reported to be involved in HIV-1 replication, a significant over-representation of such genes when compared to randomly generated lists of 54 genes (p value<0.00021. The results of siRNA depletion and dominant-negative protein experiments with two CTDGs identified here, CDK11 and Casein kinase 1 gamma 1, suggest that these genes are involved either directly or indirectly in HIV-1 replication. It is likely that the 54 CTDGs identified here include novel HIV-1 co-factors. The presence of CTDGs in the protein space that was available for HIV-1 to sample during its evolution and acquisition of Tat function may provide an explanation for why CTDGs are enriched in viral co-factors.

  11. Interactive Effects of Experimental Warming and Elevated CO2 on Belowground Allocation and Soil Organic Matter Decomposition at the Prairie Heating and CO2 Enrichment Experiment

    Science.gov (United States)

    Pendall, E.; Blumenthal, D. M.; Carrillo, Y.; Dijkstra, F. A.; Mueller, K. E.; Nelson, L.; Nie, M.; Ogle, K.; Ryan, E.; Samuels-Crow, K. E.; Williams, D. G.; Zelikova, T. J.

    2016-12-01

    Climate change has direct and indirect effects on plant growth and carbon cycling. For instance, elevated CO2 (eCO2) stimulates photosynthesis and enhances soil moisture, while warming increases decomposition and dries soil. Grassland species' belowground carbon allocation responses to climate change will depend on ecological strategies such as rooting depth and nutrient acquisition. Rhizosphere priming of soil organic matter (SOM) decomposition occurs when C-rich substrates fuel ("prime") the activity of microbes to mineralize N from long-lived soil pools. Our work seeks to reveal how interactions of these biotic and abiotic processes influence the stability of SOM in the context of climate change. We conducted 8 years of experimental climate manipulation in native Wyoming grassland, with canopy warming (+1.5C/+3C day/night), free-air CO2 enrichment (ambient + 200 ppm) and supplemental precipitation. We measured SOM decomposition in plant-free plots, and also with a continuous 13CO2 label in the eCO2 treatments (at ambient and warmed temperatures). Experimental duration and soil moisture mediated many of the ecosystem responses we observed. C3 grasses and sedges were favoured in future climate (warming plus eCO2), and this effect became much stronger as the experiment progressed. Root biomass was consistently stimulated by future climate, while aboveground biomass was stimulated primarily in dry years. Aboveground plant activity (greenness) and soil moisture combined to increase ecosystem respiration, especially in future climate conditions. SOM decomposition rates, as measured by root exclusion, were stimulated by eCO2, but relatively unaffected by warming. SOM decomposition, calculated from isotope partitioning on undisturbed plots, increased with warming. Our field results are supported by growth chamber experiments demonstrating the importance of growing plants and mycorrhizae in decomposition. Our combined results contribute an ecosystem perspective on

  12. Use of Information Measures and Their Approximations to Detect Predictive Gene-Gene Interaction

    Directory of Open Access Journals (Sweden)

    Jan Mielniczuk

    2017-01-01

    Full Text Available We reconsider the properties and relationships of the interaction information and its modified versions in the context of detecting the interaction of two SNPs for the prediction of a binary outcome when interaction information is positive. This property is called predictive interaction, and we state some new sufficient conditions for it to hold true. We also study chi square approximations to these measures. It is argued that interaction information is a different and sometimes more natural measure of interaction than the logistic interaction parameter especially when SNPs are dependent. We introduce a novel measure of predictive interaction based on interaction information and its modified version. In numerical experiments, which use copulas to model dependence, we study examples when the logistic interaction parameter is zero or close to zero for which predictive interaction is detected by the new measure, while it remains undetected by the likelihood ratio test.

  13. MDM2 SNP309, gene-gene interaction, and tumor susceptibility: an updated meta-analysis

    Directory of Open Access Journals (Sweden)

    Wu Wei

    2011-05-01

    Full Text Available Abstract Background The tumor suppressor gene p53 is involved in multiple cellular pathways including apoptosis, transcriptional control, and cell cycle regulation. In the last decade it has been demonstrated that the single nucleotide polymorphism (SNP at codon 72 of the p53 gene is associated with the risk for development of various neoplasms. MDM2 SNP309 is a single nucleotide T to G polymorphism located in the MDM2 gene promoter. From the time that this well-characterized functional polymorphism was identified, a variety of case-control studies have been published that investigate the possible association between MDM2 SNP309 and cancer risk. However, the results of the published studies, as well as the subsequent meta-analyses, remain contradictory. Methods To investigate whether currently published epidemiological studies can clarify the potential interaction between MDM2 SNP309 and the functional genetic variant in p53 codon72 (Arg72Pro and p53 mutation status, we performed a meta-analysis of the risk estimate on 27,813 cases with various tumor types and 30,295 controls. Results The data we reviewed indicated that variant homozygote 309GG and heterozygote 309TG were associated with a significant increased risk of all tumor types (homozygote comparison: odds ratio (OR = 1.25, 95% confidence interval (CI = 1.13-1.37; heterozygote comparison: OR = 1.10, 95% CI = 1.03-1.17. We also found that the combination of GG and Pro/Pro, TG and Pro/Pro, GG and Arg/Arg significantly increased the risk of cancer (OR = 3.38, 95% CI = 1.77-6.47; OR = 1.88, 95% CI = 1.26-2.81; OR = 1.96, 95% CI = 1.01-3.78, respectively. In a stratified analysis by tumor location, we also found a significant increased risk in brain, liver, stomach and uterus cancer (OR = 1.47, 95% CI = 1.06-2.03; OR = 2.24, 95%CI = 1.57-3.18; OR = 1.54, 95%CI = 1.04-2.29; OR = 1.34, 95%CI = 1.07-1.29, respectively. However, no association was seen between MDM2 SNP309 and tumor susceptibility

  14. Obesity and the metabolic syndrome: Impact of gene-diet interaction ...

    African Journals Online (AJOL)

    Obesity and the metabolic syndrome: Impact of gene-diet interaction. ... Individuals exposed to the same environmental risk factors or treatment strategies ... It is therefore important to know how certain genomic and lifestyle factors combine in ...

  15. Gene expression changes during Giardia-host cell interactions in serum-free medium.

    Science.gov (United States)

    Ferella, Marcela; Davids, Barbara J; Cipriano, Michael J; Birkeland, Shanda R; Palm, Daniel; Gillin, Frances D; McArthur, Andrew G; Svärd, Staffan

    2014-10-01

    Serial Analysis of Gene Expression (SAGE) was used to quantify transcriptional changes in Giardia intestinalis during its interaction with human intestinal epithelial cells (IECs, HT-29) in serum free M199 medium. Transcriptional changes were compared to those in trophozoites alone in M199 and in TYI-S-33 Giardia growth medium. In total, 90 genes were differentially expressed, mainly those involved in cellular redox homeostasis, metabolism and small molecule transport but also cysteine proteases and structural proteins of the giardin family. Only 29 genes changed their expression due to IEC interaction and the rest were due to M199 medium. Although our findings generated a small dataset, it was consistent with our earlier microarray studies performed under different interaction conditions. This study has confined the number of genes in Giardia to a small subset that specifically change their expression due to interaction with IECs.

  16. Gene by Environment Interaction and Resilience: Effects of Child Maltreatment and Serotonin, Corticotropin Releasing Hormone, Dopamine, and Oxytocin Genes

    Science.gov (United States)

    Cicchetti, Dante; Rogosch, Fred A.

    2013-01-01

    In this investigation, gene-environment interaction effects in predicting resilience in adaptive functioning among maltreated and nonmaltreated low-income children (N = 595) were examined. A multi-component index of resilient functioning was derived and levels of resilient functioning were identified. Variants in four genes, 5-HTTLPR, CRHR1, DRD4 -521C/T, and OXTR, were investigated. In a series of ANCOVAs, child maltreatment demonstrated a strong negative main effect on children’s resilient functioning, whereas no main effects for any of the genotypes of the respective genes were found. However, gene-environment interactions involving genotypes of each of the respective genes and maltreatment status were obtained. For each respective gene, among children with a specific genotype, the relative advantage in resilient functioning of nonmaltreated compared to maltreated children was stronger than was the case for nonmaltreated and maltreated children with other genotypes of the respective gene. Across the four genes, a composite of the genotypes that more strongly differentiated resilient functioning between nonmaltreated and maltreated children provided further evidence of genetic variations influencing resilient functioning in nonmaltreated children, whereas genetic variation had a negligible effect on promoting resilience among maltreated children. Additional effects were observed for children based on the number of subtypes of maltreatment children experienced, as well as for abuse and neglect subgroups. Finally, maltreated and nonmaltreated children with high levels of resilience differed in their average number of differentiating genotypes. These results suggest that differential resilient outcomes are based on the interaction between genes and developmental experiences. PMID:22559122

  17. Gene × Environment interaction and resilience: effects of child maltreatment and serotonin, corticotropin releasing hormone, dopamine, and oxytocin genes.

    Science.gov (United States)

    Cicchetti, Dante; Rogosch, Fred A

    2012-05-01

    In this investigation, gene-environment interaction effects in predicting resilience in adaptive functioning among maltreated and nonmaltreated low-income children (N = 595) were examined. A multicomponent index of resilient functioning was derived and levels of resilient functioning were identified. Variants in four genes (serotonin transporter linked polymorphic region, corticotropin releasing hormone receptor 1, dopamine receptor D4-521C/T, and oxytocin receptor) were investigated. In a series of analyses of covariance, child maltreatment demonstrated a strong negative main effect on children's resilient functioning, whereas no main effects for any of the genotypes of the respective genes were found. However, gene-environment interactions involving genotypes of each of the respective genes and maltreatment status were obtained. For each respective gene, among children with a specific genotype, the relative advantage in resilient functioning of nonmaltreated compared to maltreated children was stronger than was the case for nonmaltreated and maltreated children with other genotypes of the respective gene. Across the four genes, a composite of the genotypes that more strongly differentiated resilient functioning between nonmaltreated and maltreated children provided further evidence of genetic variations influencing resilient functioning in nonmaltreated children, whereas genetic variation had a negligible effect on promoting resilience among maltreated children. Additional effects were observed for children based on the number of subtypes of maltreatment children experienced, as well as for abuse and neglect subgroups. Finally, maltreated and nonmaltreated children with high levels of resilience differed in their average number of differentiating genotypes. These results suggest that differential resilient outcomes are based on the interaction between genes and developmental experiences.

  18. CYP1A1, GCLC, AGT, AGTR1 gene-gene interactions in community-acquired pneumonia pulmonary complications.

    Science.gov (United States)

    Salnikova, Lyubov E; Smelaya, Tamara V; Golubev, Arkadiy M; Rubanovich, Alexander V; Moroz, Viktor V

    2013-11-01

    This study was conducted to establish the possible contribution of functional gene polymorphisms in detoxification/oxidative stress and vascular remodeling pathways to community-acquired pneumonia (CAP) susceptibility in the case-control study (350 CAP patients, 432 control subjects) and to predisposition to the development of CAP complications in the prospective study. All subjects were genotyped for 16 polymorphic variants in the 14 genes of xenobiotics detoxification CYP1A1, AhR, GSTM1, GSTT1, ABCB1, redox-status SOD2, CAT, GCLC, and vascular homeostasis ACE, AGT, AGTR1, NOS3, MTHFR, VEGFα. Risk of pulmonary complications (PC) in the single locus analysis was associated with CYP1A1, GCLC and AGTR1 genes. Extra PC (toxic shock syndrome and myocarditis) were not associated with these genes. We evaluated gene-gene interactions using multi-factor dimensionality reduction, and cumulative gene risk score approaches. The final model which included >5 risk alleles in the CYP1A1 (rs2606345, rs4646903, rs1048943), GCLC, AGT, and AGTR1 genes was associated with pleuritis, empyema, acute respiratory distress syndrome, all PC and acute respiratory failure (ARF). We considered CYP1A1, GCLC, AGT, AGTR1 gene set using Set Distiller mode implemented in GeneDecks for discovering gene-set relations via the degree of sharing descriptors within a given gene set. N-acetylcysteine and oxygen were defined by Set Distiller as the best descriptors for the gene set associated in the present study with PC and ARF. Results of the study are in line with literature data and suggest that genetically determined oxidative stress exacerbation may contribute to the progression of lung inflammation.

  19. Gene-gene interaction and functional impact of polymorphisms on innate immune genes in controlling Plasmodium falciparum blood infection level.

    Directory of Open Access Journals (Sweden)

    Madhumita Basu

    Full Text Available Genetic variations in toll-like receptors and cytokine genes of the innate immune pathways have been implicated in controlling parasite growth and the pathogenesis of Plasmodium falciparum mediated malaria. We previously published genetic association of TLR4 non-synonymous and TNF-α promoter polymorphisms with P.falciparum blood infection level and here we extend the study considerably by (i investigating genetic dependence of parasite-load on interleukin-12B polymorphisms, (ii reconstructing gene-gene interactions among candidate TLRs and cytokine loci, (iii exploring genetic and functional impact of epistatic models and (iv providing mechanistic insights into functionality of disease-associated regulatory polymorphisms. Our data revealed that carriage of AA (P = 0.0001 and AC (P = 0.01 genotypes of IL12B 3'UTR polymorphism was associated with a significant increase of mean log-parasitemia relative to rare homozygous genotype CC. Presence of IL12B+1188 polymorphism in five of six multifactor models reinforced its strong genetic impact on malaria phenotype. Elevation of genetic risk in two-component models compared to the corresponding single locus and reduction of IL12B (2.2 fold and lymphotoxin-α (1.7 fold expressions in patients'peripheral-blood-mononuclear-cells under TLR4Thr399Ile risk genotype background substantiated the role of Multifactor Dimensionality Reduction derived models. Marked reduction of promoter activity of TNF-α risk haplotype (C-C-G-G compared to wild-type haplotype (T-C-G-G with (84% and without (78% LPS stimulation and the loss of binding of transcription factors detected in-silico supported a causal role of TNF-1031. Significantly lower expression of IL12B+1188 AA (5 fold and AC (9 fold genotypes compared to CC and under-representation (P = 0.0048 of allele A in transcripts of patients' PBMCs suggested an Allele-Expression-Imbalance. Allele (A+1188C dependent differential stability (2 fold of IL12B-transcripts upon

  20. Gene transcription analysis during interaction between potato and Ralstonia solanacearum

    NARCIS (Netherlands)

    Li, G.C.; Jin, L.P.; Wang, X.W.; Xie, K.Y.; Yang, Y.; Vossen, van der E.A.G.; Huang, S.W.; Qu, D.Y.

    2010-01-01

    Bacterial wilt (BW) caused by Ralstonia solanacearum (Rs) is an important quarantine disease that spreads worldwide and infects hundreds of plant species. The BW defense response of potato is a complicated continuous process, which involves transcription of a battery of genes. The molecular mechanis

  1. An empirical fuzzy multifactor dimensionality reduction method for detecting gene-gene interactions.

    Science.gov (United States)

    Leem, Sangseob; Park, Taesung

    2017-03-14

    Detection of gene-gene interaction (GGI) is a key challenge towards solving the problem of missing heritability in genetics. The multifactor dimensionality reduction (MDR) method has been widely studied for detecting GGIs. MDR reduces the dimensionality of multi-factor by means of binary classification into high-risk (H) or low-risk (L) groups. Unfortunately, this simple binary classification does not reflect the uncertainty of H/L classification. Thus, we proposed Fuzzy MDR to overcome limitations of binary classification by introducing the degree of membership of two fuzzy sets H/L. While Fuzzy MDR demonstrated higher power than that of MDR, its performance is highly dependent on the several tuning parameters. In real applications, it is not easy to choose appropriate tuning parameter values. In this work, we propose an empirical fuzzy MDR (EF-MDR) which does not require specifying tuning parameters values. Here, we propose an empirical approach to estimating the membership degree that can be directly estimated from the data. In EF-MDR, the membership degree is estimated by the maximum likelihood estimator of the proportion of cases(controls) in each genotype combination. We also show that the balanced accuracy measure derived from this new membership function is a linear function of the standard chi-square statistics. This relationship allows us to perform the standard significance test using p-values in the MDR framework without permutation. Through two simulation studies, the power of the proposed EF-MDR is shown to be higher than those of MDR and Fuzzy MDR. We illustrate the proposed EF-MDR by analyzing Crohn's disease (CD) and bipolar disorder (BD) in the Wellcome Trust Case Control Consortium (WTCCC) dataset. We propose an empirical Fuzzy MDR for detecting GGI using the maximum likelihood of the proportion of cases(controls) as the membership degree of the genotype combination. The program written in R for EF-MDR is available at http://statgen.snu.ac.kr/software/EF-MDR .

  2. Methylobacterium-plant interaction genes regulated by plant exudate and quorum sensing molecules

    Directory of Open Access Journals (Sweden)

    Manuella Nóbrega Dourado

    2013-12-01

    Full Text Available Bacteria from the genus Methylobacterium interact symbiotically (endophytically and epiphytically with different plant species. These interactions can promote plant growth or induce systemic resistance, increasing plant fitness. The plant colonization is guided by molecular communication between bacteria-bacteria and bacteria-plants, where the bacteria recognize specific exuded compounds by other bacteria (e.g. homoserine molecules and/or by the plant roots (e.g. flavonoids, ethanol and methanol, respectively. In this context, the aim of this study was to evaluate the effect of quorum sensing molecules (N-acyl-homoserine lactones and plant exudates (including ethanol in the expression of a series of bacterial genes involved in Methylobacterium-plant interaction. The selected genes are related to bacterial metabolism (mxaF, adaptation to stressful environment (crtI, phoU and sss, to interactions with plant metabolism compounds (acdS and pathogenicity (patatin and phoU. Under in vitro conditions, our results showed the differential expression of some important genes related to metabolism, stress and pathogenesis, thereby AHL molecules up-regulate all tested genes, except phoU, while plant exudates induce only mxaF gene expression. In the presence of plant exudates there is a lower bacterial density (due the endophytic and epiphytic colonization, which produce less AHL, leading to down regulation of genes when compared to the control. Therefore, bacterial density, more than plant exudate, influences the expression of genes related to plant-bacteria interaction.

  3. Population genetics of fungal and oomycete effectors involved in gene-for-gene interactions.

    Science.gov (United States)

    Stukenbrock, Eva H; McDonald, Bruce A

    2009-04-01

    Antagonistic coevolution between plants and pathogens has generated a broad array of attack and defense mechanisms. In the classical avirulence (Avr) gene-for-gene model, the pathogen gene evolves to escape host recognition while the host resistance (R) gene evolves to track the evolving pathogen elicitor. In the case of host-specific toxins (HST), the evolutionary arms race may be inverted, with the gene encoding the pathogen toxin evolving to maintain recognition of the host sensitivity target while the host sensitivity gene evolves to escape binding with the toxin. Pathogen effector genes, including those encoding Avr elicitors and HST, often show elevated levels of polymorphism reflecting the coevolutionary arms race between host and pathogen. However, selection can also eliminate variation in the coevolved gene and its neighboring regions when advantageous alleles are swept to fixation. The distribution and diversity of corresponding host genes will have a major impact on the distribution and diversity of effectors in the pathogen population. Population genetic analyses including both hosts and their pathogens provide an essential tool to understand the diversity and dynamics of effector genes. Here, we summarize current knowledge about the population genetics of fungal and oomycete effector genes, focusing on recent studies that have used both spatial and temporal collections to assess the diversity and distribution of alleles and to monitor changes in allele frequencies over time. These studies illustrate that effector genes exhibit a significant degree of diversity at both small and large sampling scales, suggesting that local selection plays an important role in their evolution. They also illustrate that Avr elicitors and HST may be recognizing the same R genes in plants, leading to evolutionary outcomes that differ for necrotrophs and biotrophs while affecting the evolution of the corresponding R genes. Under this scenario, the optimal number of R genes

  4. Influence of geology on groundwater-sediment interactions in arsenic enriched tectono-morphic aquifers of the Himalayan Brahmaputra river basin

    Science.gov (United States)

    Verma, Swati; Mukherjee, Abhijit; Mahanta, Chandan; Choudhury, Runti; Mitra, Kaushik

    2016-09-01

    those being major constituents in a gabbroic complex (ophiolite) and basalt terrain in S-region. The aquifers of S-region are severely contaminated with dissolved As compared to NW and N regions. Almost more than 92% of groundwater samples in the southern part (maximum 5.53 μM or 415 μg/L) are enriched with As, which draws a distinct difference from the NW and N parts of BRB aquifers. The redox-sensitive solutes (i.e., Fe, Mn, HCO3- and TOC) are positively correlated with As in NW and N-parts; whereas EH shows negative to very weak positive correlation which suggests that a redox-dependent mobilization plays important role in As liberation in NW and N parts of the basin. However, As in southern aquifers is not showing any correlation or weak negative correlation with redox-sensitive solutes; suggesting that multiple reactions and hydrogeochemical processes and their interaction control As mobilization and fate in the S-region of BRB. The occurrence of high concentrations of arsenic in groundwater of Brahmaputra basin is described through a crustal recycling model and tectonic movement between the Indian-Eurasian plates and Burmese micro-continents. As-enriched groundwater in Himalayan foreland basin in the BRB is probably a result of crustal evolution through which As is subsequently mobilized from aquifer matrix to solution in groundwater by water-sediment reaction under favorable biogeochemical conditions. The results of the study indicate geological control (i.e. change in lithofacies, tectonic set-up) on groundwater chemistry and distribution of redox-sensitive solutes such as As.

  5. Heritability of insulin sensitivity and lipid profile depend on BMI : evidence for gene-obesity interaction

    NARCIS (Netherlands)

    Wang, X.; Ding, X.; Su, S.; Spector, T. D.; Mangino, M.; Iliadou, A.; Snieder, H.

    2009-01-01

    Evidence from candidate gene studies suggests that obesity may modify genetic susceptibility to type 2 diabetes and dyslipidaemia. On an aggregate level, gene-obesity interactions are expected to result in different heritability estimates at different obesity levels. However, this hypothesis has nev

  6. Heritability of insulin sensitivity and lipid profile depend on BMI : evidence for gene-obesity interaction

    NARCIS (Netherlands)

    Wang, X.; Ding, X.; Su, S.; Spector, T. D.; Mangino, M.; Iliadou, A.; Snieder, H.

    2009-01-01

    Evidence from candidate gene studies suggests that obesity may modify genetic susceptibility to type 2 diabetes and dyslipidaemia. On an aggregate level, gene-obesity interactions are expected to result in different heritability estimates at different obesity levels. However, this hypothesis has

  7. Gene-Environment Interactions in Genome-Wide Association Studies: Current Approaches and New Directions

    Science.gov (United States)

    Winham, Stacey J.; Biernacka, Joanna M.

    2013-01-01

    Background: Complex psychiatric traits have long been thought to be the result of a combination of genetic and environmental factors, and gene-environment interactions are thought to play a crucial role in behavioral phenotypes and the susceptibility and progression of psychiatric disorders. Candidate gene studies to investigate hypothesized…

  8. Identification of new genetic susceptibility loci for breast cancer through consideration of gene-environment interactions

    DEFF Research Database (Denmark)

    Schoeps, Anja; Rudolph, Anja; Seibold, Petra

    2014-01-01

    Genes that alter disease risk only in combination with certain environmental exposures may not be detected in genetic association analysis. By using methods accounting for gene-environment (G × E) interaction, we aimed to identify novel genetic loci associated with breast cancer risk. Up to 34,47...

  9. HvLUX1 is a candidate gene underlying the early maturity 10 locus in barley: phylogeny, diversity, and interactions with the circadian clock and photoperiodic pathways.

    Science.gov (United States)

    Campoli, Chiara; Pankin, Artem; Drosse, Benedikt; Casao, Cristina M; Davis, Seth J; von Korff, Maria

    2013-09-01

    Photoperiodic flowering is a major factor determining crop performance and is controlled by interactions between environmental signals and the circadian clock. We proposed Hvlux1, an ortholog of the Arabidopsis circadian gene LUX ARRHYTHMO, as a candidate underlying the early maturity 10 (eam10) locus in barley (Hordeum vulgare L.). The link between eam10 and Hvlux1 was discovered using high-throughput sequencing of enriched libraries and segregation analysis. We conducted functional, phylogenetic, and diversity studies of eam10 and HvLUX1 to understand the genetic control of photoperiod response in barley and to characterize the evolution of LUX-like genes within barley and across monocots and eudicots. We demonstrate that eam10 causes circadian defects and interacts with the photoperiod response gene Ppd-H1 to accelerate flowering under long and short days. The results of phylogenetic and diversity analyses indicate that HvLUX1 was under purifying selection, duplicated at the base of the grass clade, and diverged independently of LUX-like genes in other plant lineages. Taken together, these findings contribute to improved understanding of the barley circadian clock, its interaction with the photoperiod pathway, and evolution of circadian systems in barley and across monocots and eudicots.

  10. Effects of Long-Term Environmental Enrichment on Anxiety, Memory, Hippocampal Plasticity and Overall Brain Gene Expression in C57BL6 Mice

    Science.gov (United States)

    Hüttenrauch, Melanie; Salinas, Gabriela; Wirths, Oliver

    2016-01-01

    There is ample evidence that physical activity exerts positive effects on a variety of brain functions by facilitating neuroprotective processes and influencing neuroplasticity. Accordingly, numerous studies have shown that continuous exercise can successfully diminish or prevent the pathology of neurodegenerative diseases such as Alzheimer’s disease in transgenic mouse models. However, the long-term effect of physical activity on brain health of aging wild-type (WT) mice has not yet been studied in detail. Here, we show that prolonged physical and cognitive stimulation, mediated by an enriched environment (EE) paradigm for a duration of 11 months, leads to reduced anxiety and improved spatial reference memory in C57BL6 WT mice. While the number of CA1 pyramidal neurons remained unchanged between standard housed (SH) and EE mice, the number of dentate gyrus (DG) neurons, as well as the CA1 and DG volume were significantly increased in EE mice. A whole-brain deep sequencing transcriptome analysis, carried out to better understand the molecular mechanisms underlying the observed effects, revealed an up-regulation of a variety of genes upon EE, mainly associated with synaptic plasticity and transcription regulation. The present findings corroborate the impact of continuous physical activity as a potential prospective route in the prevention of age-related cognitive decline and neurodegenerative disorders. PMID:27536216

  11. Effects of long-term environmental enrichment on anxiety, memory, hippocampal plasticity and overall brain gene expression in C57BL6 mice

    Directory of Open Access Journals (Sweden)

    Melanie Hüttenrauch

    2016-08-01

    Full Text Available There is ample evidence that physical activity exerts positive effects on a variety of brain functions by facilitating neuroprotective processes and influencing neuroplasticity. Accordingly, numerous studies have shown that continuous exercise can successfully diminish or prevent the pathology of neurodegenerative diseases such as Alzheimer’s disease in transgenic mouse models. However, the long-term effect of physical activity on brain health of aging WT mice has not been studied in detail yet. Here, we show that prolonged physical and cognitive stimulation, mediated by an enriched environment (EE paradigm for a duration of eleven months, leads to reduced anxiety and improved spatial reference memory in C57BL6 wildtype (WT mice. While the number of CA1 pyramidal neurons remained unchanged between standard housed (SH and EE mice, the number of dentate gyrus (DG neurons, as well as the CA1 and DG volume were significantly increased in EE mice. A whole-brain deep sequencing transcriptome analysis, carried out to better understand the molecular mechanisms underlying the observed effects, revealed an up-regulation of a variety of genes upon EE, mainly associated with synaptic plasticity and transcription regulation. The present findings corroborate the impact of continuous physical activity as a potential prospective route in the prevention of age-related cognitive decline and neurodegenerative disorders.