WorldWideScience

Sample records for gene functional analysis

  1. Function analysis of unknown genes

    DEFF Research Database (Denmark)

    Rogowska-Wrzesinska, A.

    2002-01-01

      This thesis entitled "Function analysis of unknown genes" presents the use of proteome analysis for the characterisation of yeast (Saccharomyces cerevisiae) genes and their products (proteins especially those of unknown function). This study illustrates that proteome analysis can be used...... be obtained using proteome analysis. Chapter 1 and 2 provide the basic theoretical aspects of proteome analysis, its principles, the main techniques involved and their use in the studies of the molecular biology of yeast cells. Chapter 3 presents the methods and tools involved in proteome analysis and used...... presents a comparison of the proteomes of three yeast wild type strains CEN.PK2, FY1679 and W303 that are widely used in function analysis projects and proves that FY1679 and W303 strains are more similar to each other than to the CEN.PK2 strain. This study identifies 62 proteins that are differentially...

  2. Inferring gene expression dynamics via functional regression analysis

    Directory of Open Access Journals (Sweden)

    Leng Xiaoyan

    2008-01-01

    Full Text Available Abstract Background Temporal gene expression profiles characterize the time-dynamics of expression of specific genes and are increasingly collected in current gene expression experiments. In the analysis of experiments where gene expression is obtained over the life cycle, it is of interest to relate temporal patterns of gene expression associated with different developmental stages to each other to study patterns of long-term developmental gene regulation. We use tools from functional data analysis to study dynamic changes by relating temporal gene expression profiles of different developmental stages to each other. Results We demonstrate that functional regression methodology can pinpoint relationships that exist between temporary gene expression profiles for different life cycle phases and incorporates dimension reduction as needed for these high-dimensional data. By applying these tools, gene expression profiles for pupa and adult phases are found to be strongly related to the profiles of the same genes obtained during the embryo phase. Moreover, one can distinguish between gene groups that exhibit relationships with positive and others with negative associations between later life and embryonal expression profiles. Specifically, we find a positive relationship in expression for muscle development related genes, and a negative relationship for strictly maternal genes for Drosophila, using temporal gene expression profiles. Conclusion Our findings point to specific reactivation patterns of gene expression during the Drosophila life cycle which differ in characteristic ways between various gene groups. Functional regression emerges as a useful tool for relating gene expression patterns from different developmental stages, and avoids the problems with large numbers of parameters and multiple testing that affect alternative approaches.

  3. Gene coexpression network analysis as a source of functional annotation for rice genes.

    Directory of Open Access Journals (Sweden)

    Kevin L Childs

    Full Text Available With the existence of large publicly available plant gene expression data sets, many groups have undertaken data analyses to construct gene coexpression networks and functionally annotate genes. Often, a large compendium of unrelated or condition-independent expression data is used to construct gene networks. Condition-dependent expression experiments consisting of well-defined conditions/treatments have also been used to create coexpression networks to help examine particular biological processes. Gene networks derived from either condition-dependent or condition-independent data can be difficult to interpret if a large number of genes and connections are present. However, algorithms exist to identify modules of highly connected and biologically relevant genes within coexpression networks. In this study, we have used publicly available rice (Oryza sativa gene expression data to create gene coexpression networks using both condition-dependent and condition-independent data and have identified gene modules within these networks using the Weighted Gene Coexpression Network Analysis method. We compared the number of genes assigned to modules and the biological interpretability of gene coexpression modules to assess the utility of condition-dependent and condition-independent gene coexpression networks. For the purpose of providing functional annotation to rice genes, we found that gene modules identified by coexpression analysis of condition-dependent gene expression experiments to be more useful than gene modules identified by analysis of a condition-independent data set. We have incorporated our results into the MSU Rice Genome Annotation Project database as additional expression-based annotation for 13,537 genes, 2,980 of which lack a functional annotation description. These results provide two new types of functional annotation for our database. Genes in modules are now associated with groups of genes that constitute a collective functional

  4. Functional analysis of prognostic gene expression network genes in metastatic breast cancer models.

    Directory of Open Access Journals (Sweden)

    Thomas R Geiger

    Full Text Available Identification of conserved co-expression networks is a useful tool for clustering groups of genes enriched for common molecular or cellular functions [1]. The relative importance of genes within networks can frequently be inferred by the degree of connectivity, with those displaying high connectivity being significantly more likely to be associated with specific molecular functions [2]. Previously we utilized cross-species network analysis to identify two network modules that were significantly associated with distant metastasis free survival in breast cancer. Here, we validate one of the highly connected genes as a metastasis associated gene. Tpx2, the most highly connected gene within a proliferation network specifically prognostic for estrogen receptor positive (ER+ breast cancers, enhances metastatic disease, but in a tumor autonomous, proliferation-independent manner. Histologic analysis suggests instead that variation of TPX2 levels within disseminated tumor cells may influence the transition between dormant to actively proliferating cells in the secondary site. These results support the co-expression network approach for identification of new metastasis-associated genes to provide new information regarding the etiology of breast cancer progression and metastatic disease.

  5. DAVID Knowledgebase: a gene-centered database integrating heterogeneous gene annotation resources to facilitate high-throughput gene functional analysis

    Directory of Open Access Journals (Sweden)

    Baseler Michael W

    2007-11-01

    Full Text Available Abstract Background Due to the complex and distributed nature of biological research, our current biological knowledge is spread over many redundant annotation databases maintained by many independent groups. Analysts usually need to visit many of these bioinformatics databases in order to integrate comprehensive annotation information for their genes, which becomes one of the bottlenecks, particularly for the analytic task associated with a large gene list. Thus, a highly centralized and ready-to-use gene-annotation knowledgebase is in demand for high throughput gene functional analysis. Description The DAVID Knowledgebase is built around the DAVID Gene Concept, a single-linkage method to agglomerate tens of millions of gene/protein identifiers from a variety of public genomic resources into DAVID gene clusters. The grouping of such identifiers improves the cross-reference capability, particularly across NCBI and UniProt systems, enabling more than 40 publicly available functional annotation sources to be comprehensively integrated and centralized by the DAVID gene clusters. The simple, pair-wise, text format files which make up the DAVID Knowledgebase are freely downloadable for various data analysis uses. In addition, a well organized web interface allows users to query different types of heterogeneous annotations in a high-throughput manner. Conclusion The DAVID Knowledgebase is designed to facilitate high throughput gene functional analysis. For a given gene list, it not only provides the quick accessibility to a wide range of heterogeneous annotation data in a centralized location, but also enriches the level of biological information for an individual gene. Moreover, the entire DAVID Knowledgebase is freely downloadable or searchable at http://david.abcc.ncifcrf.gov/knowledgebase/.

  6. Functional analysis helps importance of unclassified mismatch repair genes

    NARCIS (Netherlands)

    Ou, Jianghua; Niessen, Renee C.; L tzen, Anne; Sijmons, Rolf H.; Kleibeuker, Jan. H.; De Wind, Niels; Rasmussen, Lene Juel; Hofstra, Robert M. W.

    2007-01-01

    Hereditary nonpolyposis colorectal cancer (HNPCC) or Lynch syndrome is caused by DNA variations in the DNA mismatch repair (MMR) genes MSH2, MLH1, MSH6, and PMS2. Many of the mutations identified result in premature termination of translation and thus in loss-of-function of the encoded mutated

  7. Analysis of gene functions in Maize chlorotic mottle virus.

    Science.gov (United States)

    Scheets, Kay

    2016-08-15

    Gene functions of strains of Maize chlorotic mottle virus, which comprises the monotypic genus Machlomovirus, have not been previously identified. In this study mutagenesis of the seven genes encoded in maize chlorotic mottle virus (MCMV) showed that the genes with positional and sequence similarity to their homologs in viruses of related tombusvirid genera had similar functions. p50 and its readthrough protein p111 are the only proteins required for replication in maize protoplasts, and they function at a low level in trans. Two movement proteins, p7a and p7b, and coat protein, encoded on subgenomic RNA1, are required for cell-to-cell movement in maize, and p7a and p7b function in trans. A unique protein, p31, expressed as a readthrough extension of p7a, is required for efficient systemic infection. The 5' proximal MCMV gene encodes a unique 32kDa protein that is not required for replication or movement. Transcripts lacking p32 expression accumulate to about 1/3 the level of wild type transcripts in protoplasts and produce delayed, mild infections in maize plants. Additional studies on p32, p31 and the unique amino-terminal region of p50 are needed to further characterize the life cycle of this unique tombusvirid. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Functional Analysis of the FZF1 Genes of Saccharomyces uvarum

    Directory of Open Access Journals (Sweden)

    Xiaozhen Liu

    2018-02-01

    Full Text Available Being a sister species of Saccharomyces cerevisiae, Saccharomyces uvarum shows great potential regarding the future of the wine industry. The sulfite tolerance of most S. uvarum strains is poor, however. This is a major flaw that limits its utility in the wine industry. In S. cerevisiae, FZF1 plays a positive role in the transcription of SSU1, which encodes a sulfite efflux transport protein that is critical for sulfite tolerance. Although FZF1 has previously been shown to play a role in sulfite tolerance in S. uvarum, there is little information about its action mechanism. To assess the function of FZF1, two over-expression vectors that contained different FZF1 genes, and one FZF1 silencing vector, were constructed and introduced into a sulfite-tolerant S. uvarum strain using electroporation. In addition, an FZF1-deletion strain was constructed. Both of the FZF1-over-expressing strains showed an elevated tolerance to sulfite, and the FZF1-deletion strain showed the opposite effect. Repression of FZF1 transcription failed, however, presumably due to the lack of alleles of DCR1 and AGO. The qRT-PCR analysis was used to examine changes in transcription in the strains. Surprisingly, neither over-expressing strain promoted SSU1 transcription, although MET4 and HAL4 transcripts significantly increased in both sulfite-tolerance increased strains. We conclude that FZF1 plays a different role in the sulfite tolerance of S. uvarum compared to its role in S. cerevisiae.

  9. Functional analysis of the molecular interactions of TATA box-containing genes and essential genes.

    Science.gov (United States)

    Bae, Sang-Hun; Han, Hyun Wook; Moon, Jisook

    2015-01-01

    Genes can be divided into TATA-containing genes and TATA-less genes according to the presence of TATA box elements at promoter regions. TATA-containing genes tend to be stress-responsive, whereas many TATA-less genes are known to be related to cell growth or "housekeeping" functions. In a previous study, we demonstrated that there are striking differences among four gene sets defined by the presence of TATA box (TATA-containing) and essentiality (TATA-less) with respect to number of associated transcription factors, amino acid usage, and functional annotation. Extending this research in yeast, we identified KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways that are statistically enriched in TATA-containing or TATA-less genes and evaluated the possibility that the enriched pathways are related to stress or growth as reflected by the individual functions of the genes involved. According to their enrichment for either of these two gene sets, we sorted KEGG pathways into TATA-containing-gene-enriched pathways (TEPs) and essential-gene-enriched pathways (EEPs). As expected, genes in TEPs and EEPs exhibited opposite results in terms of functional category, transcriptional regulation, codon adaptation index, and network properties, suggesting the possibility that the bipolar patterns in these pathways also contribute to the regulation of the stress response and to cell survival. Our findings provide the novel insight that significant enrichment of TATA-binding or TATA-less genes defines pathways as stress-responsive or growth-related.

  10. Functional Analysis of an ATP-Binding Cassette Transporter Gene in Botrytis cinerea by Gene Disruption

    OpenAIRE

    Masami, NAKAJIMA; Junko, SUZUKI; Takehiko, HOSAKA; Tadaaki, HIBI; Katsumi, AKUTSU; School of Agriculture, Ibaraki University; School of Agriculture, Ibaraki University; School of Agriculture, Ibaraki University; Department of Agriculture and Environmental Biology, The University of Tokyo; School of Agriculture, Ibaraki University

    2001-01-01

    The BMR1 gene encoding an ABC transporter was cloned from Botrytis cinerea. To examine the function of BMR1 in B.cinerea, we isolated BMR1-deficient mutants after gene disruption. Disruption vector pBcDF4 was constructed by replacing the BMR1-coding region with a hygromycin B phosphotransferase gene(hph)cassette. The BMR1 disruptants had an increased sensitivity to polyoxin and iprobenfos. Polyoxin and iprobenfos, structurally unrelated compounds, may therefore be substrates of BMR1.

  11. Functional analysis of mating type genes and transcriptome analysis during fruiting body development of botrytis cinerea

    NARCIS (Netherlands)

    Rodenburg, Sander Y.A.; Terhem, Razak B.; Veloso, Javier; Stassen, Joost H.M.; Kan, van Jan A.L.

    2018-01-01

    Botrytis cinerea is a plant-pathogenic fungus producing apothecia as sexual fruiting bodies. To study the function of mating type (MAT) genes, single-gene deletion mutants were generated in both genes of the MAT1-1 locus and both genes of the MAT1-2 locus. Deletion mutants in two MAT genes were

  12. Molecular cloning and functional analysis of the gene encoding ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-06-07

    Jun 7, 2010 ... synthase (crtB), phytoene desaturase (crtL) and lycopene cyclase. (crtY). It also retains a chloramphenicol resistance gene. Cells of E. coli containing this plasmid produce and accumulate β-carotene, resulting in yellow colonies. The plasmid, pTrc-ATIPI, retains an ampicillin resistance gene and an IPI gene ...

  13. Gene prediction validation and functional analysis of redundant pathways

    DEFF Research Database (Denmark)

    Sønderkær, Mads

    2011-01-01

    have employed a large mRNA-seq data set to improve and validate ab initio predicted gene models. This direct experimental evidence also provides reliable determinations of UTR regions and polyadenylation sites, which are not easily predicted in plants. Furthermore, once an annotated genome sequence...... pathway is transcriptionally active in DM, this is virtually non-existing in RH, possible reflecting the selection for high yield in European breeding programs.......Gene expression by mRNA-Seq In silico gene prediction in eukaryotic genomes is a complicated and error prone process. Nonetheless, a high-quality gene annotation is very important for the usefulness of a genome sequence to the scientific community. In the potato genome sequencing consortium, we...

  14. Characterization and Functional Analysis of PEBP Family Genes in Upland Cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Zhang, Xiaohong; Wang, Congcong; Pang, Chaoyou; Wei, Hengling; Wang, Hantao; Song, Meizhen; Fan, Shuli; Yu, Shuxun

    2016-01-01

    Upland cotton (Gossypium hirsutum L.) is a naturally occurring photoperiod-sensitive perennial plant species. However, sensitivity to the day length was lost during domestication. The phosphatidylethanolamine-binding protein (PEBP) gene family, of which three subclades have been identified in angiosperms, functions to promote and suppress flowering in photoperiod pathway. Recent evidence indicates that PEBP family genes play an important role in generating mobile flowering signals. We isolated homologues of the PEBP gene family in upland cotton and examined their regulation and function. Nine PEBP-like genes were cloned and phylogenetic analysis indicated the genes belonged to four subclades (FT, MFT, TFL1 and PEBP). Cotton PEBP-like genes showed distinct expression patterns in relation to different cotton genotypes, photoperiod responsive and cultivar maturity. The GhFT gene expression of a semi-wild race of upland cotton were strongly induced under short day condition, whereas the GhPEBP2 gene expression was induced under long days. We also elucidated that GhFT but not GhPEBP2 interacted with FD-like bZIP transcription factor GhFD and promote flowering under both long- and short-day conditions. The present result indicated that GhPEBP-like genes may perform different functions. This work corroborates the involvement of PEBP-like genes in photoperiod response and regulation of flowering time in different cotton genotypes, and contributes to an improved understanding of the function of PEBP-like genes in cotton.

  15. Analysis of phylogenetic and functional diverge in plant nine-cis epoxycarotenoid dioxygenase gene family.

    Science.gov (United States)

    Priya, R; Siva, Ramamoorthy

    2015-07-01

    During different environmental stress conditions, plant growth is regulated by the hormone abscisic acid (an apocarotenoid). In the biosynthesis of abscisic acid, the oxidative cleavage of cis-epoxycarotenoid catalyzed by 9-cis-epoxycarotenoid dioxygenase (NCED) is the crucial step. The NCED genes were isolated in numerous plant species and those genes were phylogenetically investigated to understand the evolution of NCED genes in various plant lineages comprising lycophyte, gymnosperm, dicot and monocot. A total of 93 genes were obtained from 48 plant species to statistically estimate their sequence conservation and functional divergence. Selaginella moellendorffii appeared to be evolutionarily distinct from those of the angiosperms, insisting the substantial influence of natural selection pressure on NCED genes. Further, using exon-intron structure analysis, the gene structures of NCED were found to be conserved across some species. In addition, the substitution rate ratio of non-synonymous (Ka) versus synonymous (Ks) mutations using the Bayesian inference approach, depicted the critical amino acid residues for functional divergence. A significant functional divergence was found between some subgroups through the co-efficient of type-I functional divergence. Our results suggest that the evolution of NCED genes occurred by duplication, diversification and exon intron loss events. The site-specific profile and functional diverge analysis revealed NCED genes might facilitate the tissue-specific functional divergence in NCED sub-families, that could combat different environmental stress conditions aiding plant survival.

  16. Molecular characterization and functional analysis of elite genes in ...

    Indian Academy of Sciences (India)

    The tribe Triticeae includes major cereal crops (bread wheat, durum wheat, triticale, barley and rye), as well as abundant forage and lawn grasses. Wheat and its wild related species possess numerous favourable genes for yield improvement, grain quality enhancement, biotic and abiotic stress resistance, and constitute a ...

  17. Expression and functional analysis of apoptosis-related gene ...

    African Journals Online (AJOL)

    The BmICAD gene was obtained from the fifth instar larvae of the silkworm by RTPCR and over-expressed in Escherichia coli as His-tagged fusion proteins. Subcellular localization of the protein indicated that BmICAD was found in the cytoplasm near the nucleus. RNAi assay indicated that the apoptosis rate of Bm5 cells ...

  18. Molecular characterization and functional analysis of elite genes in ...

    Indian Academy of Sciences (India)

    quality enhancement, biotic and abiotic stress resistance, and constitute a giant gene pool for wheat improvement. In recent years, significant .... baking quality, and might be relevant to their participation as gluten elastomers in the .... Further, modifications in. Agp-L can lead to measurable changes in starch biosynthesis.

  19. Functional Analysis of the Fusarielin Biosynthetic Gene Cluster

    Directory of Open Access Journals (Sweden)

    Aida Droce

    2016-12-01

    Full Text Available Fusarielins are polyketides with a decalin core produced by various species of Aspergillus and Fusarium. Although the responsible gene cluster has been identified, the biosynthetic pathway remains to be elucidated. In the present study, members of the gene cluster were deleted individually in a Fusarium graminearum strain overexpressing the local transcription factor. The results suggest that a trans-acting enoyl reductase (FSL5 assists the polyketide synthase FSL1 in biosynthesis of a polyketide product, which is released by hydrolysis by a trans-acting thioesterase (FSL2. Deletion of the epimerase (FSL3 resulted in accumulation of an unstable compound, which could be the released product. A novel compound, named prefusarielin, accumulated in the deletion mutant of the cytochrome P450 monooxygenase FSL4. Unlike the known fusarielins from Fusarium, this compound does not contain oxygenized decalin rings, suggesting that FSL4 is responsible for the oxygenation.

  20. A comprehensive functional analysis of tissue specificity of human gene expression

    Directory of Open Access Journals (Sweden)

    Guryanov Alexey

    2008-11-01

    Full Text Available Abstract Background In recent years, the maturation of microarray technology has allowed the genome-wide analysis of gene expression patterns to identify tissue-specific and ubiquitously expressed ('housekeeping' genes. We have performed a functional and topological analysis of housekeeping and tissue-specific networks to identify universally necessary biological processes, and those unique to or characteristic of particular tissues. Results We measured whole genome expression in 31 human tissues, identifying 2374 housekeeping genes expressed in all tissues, and genes uniquely expressed in each tissue. Comprehensive functional analysis showed that the housekeeping set is substantially larger than previously thought, and is enriched with vital processes such as oxidative phosphorylation, ubiquitin-dependent proteolysis, translation and energy metabolism. Network topology of the housekeeping network was characterized by higher connectivity and shorter paths between the proteins than the global network. Ontology enrichment scoring and network topology of tissue-specific genes were consistent with each tissue's function and expression patterns clustered together in accordance with tissue origin. Tissue-specific genes were twice as likely as housekeeping genes to be drug targets, allowing the identification of tissue 'signature networks' that will facilitate the discovery of new therapeutic targets and biomarkers of tissue-targeted diseases. Conclusion A comprehensive functional analysis of housekeeping and tissue-specific genes showed that the biological function of housekeeping and tissue-specific genes was consistent with tissue origin. Network analysis revealed that tissue-specific networks have distinct network properties related to each tissue's function. Tissue 'signature networks' promise to be a rich source of targets and biomarkers for disease treatment and diagnosis.

  1. Identification and functional analysis of ‘hypothetical’ genes expressed in Haemophilus influenzae

    Science.gov (United States)

    Kolker, Eugene; Makarova, Kira S.; Shabalina, Svetlana; Picone, Alex F.; Purvine, Samuel; Holzman, Ted; Cherny, Tim; Armbruster, David; Munson, Robert S.; Kolesov, Grigory; Frishman, Dmitrij; Galperin, Michael Y.

    2004-01-01

    The progress in genome sequencing has led to a rapid accumulation in GenBank submissions of uncharacterized ‘hypothetical’ genes. These genes, which have not been experimentally characterized and whose functions cannot be deduced from simple sequence comparisons alone, now comprise a significant fraction of the public databases. Expression analyses of Haemophilus influenzae cells using a combination of transcriptomic and proteomic approaches resulted in confident identification of 54 ‘hypothetical’ genes that were expressed in cells under normal growth conditions. In an attempt to understand the functions of these proteins, we used a variety of publicly available analysis tools. Close homologs in other species were detected for each of the 54 ‘hypothetical’ genes. For 16 of them, exact functional assignments could be found in one or more public databases. Additionally, we were able to suggest general functional characterization for 27 more genes (comprising ∼80% total). Findings from this analysis include the identification of a pyruvate-formate lyase-like operon, likely to be expressed not only in H.influenzae but also in several other bacteria. Further, we also observed three genes that are likely to participate in the transport and/or metabolism of sialic acid, an important component of the H.influenzae lipo-oligosaccharide. Accurate functional annotation of uncharacterized genes calls for an integrative approach, combining expression studies with extensive computational analysis and curation, followed by eventual experimental verification of the computational predictions. PMID:15121896

  2. Molecular cloning and functional analysis of the gene encoding ...

    African Journals Online (AJOL)

    Here we report for the first time the cloning of a full-length cDNA encoding GGPPS (Jc-GGPPS) from Jatropha curcas L. The full-length cDNA was 1414 base pair (bp), with an 1110-bp open reading frame (ORF) encoding a 370- amino-acids polypeptide. Bioinformatic analysis revealed that Jc-GGPPS is a member of the ...

  3. Functional Analysis of Mating Type Genes and Transcriptome Analysis during Fruiting Body Development of Botrytis cinerea

    Science.gov (United States)

    2018-01-01

    ABSTRACT Botrytis cinerea is a plant-pathogenic fungus producing apothecia as sexual fruiting bodies. To study the function of mating type (MAT) genes, single-gene deletion mutants were generated in both genes of the MAT1-1 locus and both genes of the MAT1-2 locus. Deletion mutants in two MAT genes were entirely sterile, while mutants in the other two MAT genes were able to develop stipes but never formed an apothecial disk. Little was known about the reprogramming of gene expression during apothecium development. We analyzed transcriptomes of sclerotia, three stages of apothecium development (primordia, stipes, and apothecial disks), and ascospores by RNA sequencing. Ten secondary metabolite gene clusters were upregulated at the onset of sexual development and downregulated in ascospores released from apothecia. Notably, more than 3,900 genes were differentially expressed in ascospores compared to mature apothecial disks. Among the genes that were upregulated in ascospores were numerous genes encoding virulence factors, which reveals that ascospores are transcriptionally primed for infection prior to their arrival on a host plant. Strikingly, the massive transcriptional changes at the initiation and completion of the sexual cycle often affected clusters of genes, rather than randomly dispersed genes. Thirty-five clusters of genes were jointly upregulated during the onset of sexual reproduction, while 99 clusters of genes (comprising >900 genes) were jointly downregulated in ascospores. These transcriptional changes coincided with changes in expression of genes encoding enzymes participating in chromatin organization, hinting at the occurrence of massive epigenetic regulation of gene expression during sexual reproduction. PMID:29440571

  4. Functional network analysis of genes differentially expressed during xylogenesis in soc1ful woody Arabidopsis plants.

    Science.gov (United States)

    Davin, Nicolas; Edger, Patrick P; Hefer, Charles A; Mizrachi, Eshchar; Schuetz, Mathias; Smets, Erik; Myburg, Alexander A; Douglas, Carl J; Schranz, Michael E; Lens, Frederic

    2016-06-01

    Many plant genes are known to be involved in the development of cambium and wood, but how the expression and functional interaction of these genes determine the unique biology of wood remains largely unknown. We used the soc1ful loss of function mutant - the woodiest genotype known in the otherwise herbaceous model plant Arabidopsis - to investigate the expression and interactions of genes involved in secondary growth (wood formation). Detailed anatomical observations of the stem in combination with mRNA sequencing were used to assess transcriptome remodeling during xylogenesis in wild-type and woody soc1ful plants. To interpret the transcriptome changes, we constructed functional gene association networks of differentially expressed genes using the STRING database. This analysis revealed functionally enriched gene association hubs that are differentially expressed in herbaceous and woody tissues. In particular, we observed the differential expression of genes related to mechanical stress and jasmonate biosynthesis/signaling during wood formation in soc1ful plants that may be an effect of greater tension within woody tissues. Our results suggest that habit shifts from herbaceous to woody life forms observed in many angiosperm lineages could have evolved convergently by genetic changes that modulate the gene expression and interaction network, and thereby redeploy the conserved wood developmental program. © 2016 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  5. Phenotype Analysis Method for Identification of Gene Functions Involved in Asymmetric Division of Caenorhabditis elegans.

    Science.gov (United States)

    Yang, Sihai; Han, Xianhua; Tohsato, Yukako; Kyoda, Koji; Onami, Shuichi; Nishikawa, Ikuko; Chen, Yenwei

    2017-05-01

    In gene function analysis, it is arduous to identify gene function individually, and the way to screen out all involved genes according to a particular phenotype or disease usually shows us little information for a specific problem. We present a data-driven analysis system based on wild type (WT) embryos to study the concrete function of each gene associated with certain category of abnormal phenotypes. It can be applied to genes with very few RNAi embryos. Instead of presupposing the particular function of a gene, its function is confirmed by the statistical testing of built models. The scheme includes the following five: first, verify the to be detected genes and determine related recognized features according to the given category; second, compute the value of each feature based on WT embryos and merge them by principal component analysis (PCA); third, for each of the selected components of PCA, build a normal distribution and verify its normality; fourth, project the RNAi embryos to each component and probe them; and finally, analyze the more detailed functions of each gene based on the physical or biological meaning of each component. Choosing the first-round asymmetric division process of Caenorhabditis elegans as the phenotype, experimental results show that on the different aspects of the asymmetric division process, par-2, par-3, and let-754 are related to scalar differences; dcn-1 and mcm-5 are associated with the divergences of scalar variation, which may reflect the disaccord in development; and dcn-1, par-2, and par-3 are involved with morphological discrepancies.

  6. Analysis of mammalian gene function through broad based phenotypic screens across a consortium of mouse clinics

    Science.gov (United States)

    Adams, David J; Adams, Niels C; Adler, Thure; Aguilar-Pimentel, Antonio; Ali-Hadji, Dalila; Amann, Gregory; André, Philippe; Atkins, Sarah; Auburtin, Aurelie; Ayadi, Abdel; Becker, Julien; Becker, Lore; Bedu, Elodie; Bekeredjian, Raffi; Birling, Marie-Christine; Blake, Andrew; Bottomley, Joanna; Bowl, Mike; Brault, Véronique; Busch, Dirk H; Bussell, James N; Calzada-Wack, Julia; Cater, Heather; Champy, Marie-France; Charles, Philippe; Chevalier, Claire; Chiani, Francesco; Codner, Gemma F; Combe, Roy; Cox, Roger; Dalloneau, Emilie; Dierich, André; Di Fenza, Armida; Doe, Brendan; Duchon, Arnaud; Eickelberg, Oliver; Esapa, Chris T; El Fertak, Lahcen; Feigel, Tanja; Emelyanova, Irina; Estabel, Jeanne; Favor, Jack; Flenniken, Ann; Gambadoro, Alessia; Garrett, Lilian; Gates, Hilary; Gerdin, Anna-Karin; Gkoutos, George; Greenaway, Simon; Glasl, Lisa; Goetz, Patrice; Da Cruz, Isabelle Goncalves; Götz, Alexander; Graw, Jochen; Guimond, Alain; Hans, Wolfgang; Hicks, Geoff; Hölter, Sabine M; Höfler, Heinz; Hancock, John M; Hoehndorf, Robert; Hough, Tertius; Houghton, Richard; Hurt, Anja; Ivandic, Boris; Jacobs, Hughes; Jacquot, Sylvie; Jones, Nora; Karp, Natasha A; Katus, Hugo A; Kitchen, Sharon; Klein-Rodewald, Tanja; Klingenspor, Martin; Klopstock, Thomas; Lalanne, Valerie; Leblanc, Sophie; Lengger, Christoph; le Marchand, Elise; Ludwig, Tonia; Lux, Aline; McKerlie, Colin; Maier, Holger; Mandel, Jean-Louis; Marschall, Susan; Mark, Manuel; Melvin, David G; Meziane, Hamid; Micklich, Kateryna; Mittelhauser, Christophe; Monassier, Laurent; Moulaert, David; Muller, Stéphanie; Naton, Beatrix; Neff, Frauke; Nolan, Patrick M; Nutter, Lauryl MJ; Ollert, Markus; Pavlovic, Guillaume; Pellegata, Natalia S; Peter, Emilie; Petit-Demoulière, Benoit; Pickard, Amanda; Podrini, Christine; Potter, Paul; Pouilly, Laurent; Puk, Oliver; Richardson, David; Rousseau, Stephane; Quintanilla-Fend, Leticia; Quwailid, Mohamed M; Racz, Ildiko; Rathkolb, Birgit; Riet, Fabrice; Rossant, Janet; Roux, Michel; Rozman, Jan; Ryder, Ed; Salisbury, Jennifer; Santos, Luis; Schäble, Karl-Heinz; Schiller, Evelyn; Schrewe, Anja; Schulz, Holger; Steinkamp, Ralf; Simon, Michelle; Stewart, Michelle; Stöger, Claudia; Stöger, Tobias; Sun, Minxuan; Sunter, David; Teboul, Lydia; Tilly, Isabelle; Tocchini-Valentini, Glauco P; Tost, Monica; Treise, Irina; Vasseur, Laurent; Velot, Emilie; Vogt-Weisenhorn, Daniela; Wagner, Christelle; Walling, Alison; Weber, Bruno; Wendling, Olivia; Westerberg, Henrik; Willershäuser, Monja; Wolf, Eckhard; Wolter, Anne; Wood, Joe; Wurst, Wolfgang; Yildirim, Ali Önder; Zeh, Ramona; Zimmer, Andreas; Zimprich, Annemarie

    2015-01-01

    The function of the majority of genes in the mouse and human genomes remains unknown. The mouse ES cell knockout resource provides a basis for characterisation of relationships between gene and phenotype. The EUMODIC consortium developed and validated robust methodologies for broad-based phenotyping of knockouts through a pipeline comprising 20 disease-orientated platforms. We developed novel statistical methods for pipeline design and data analysis aimed at detecting reproducible phenotypes with high power. We acquired phenotype data from 449 mutant alleles, representing 320 unique genes, of which half had no prior functional annotation. We captured data from over 27,000 mice finding that 83% of the mutant lines are phenodeviant, with 65% demonstrating pleiotropy. Surprisingly, we found significant differences in phenotype annotation according to zygosity. Novel phenotypes were uncovered for many genes with unknown function providing a powerful basis for hypothesis generation and further investigation in diverse systems. PMID:26214591

  7. Characterization and functional analysis of Calmodulin and Calmodulin-like genes in Fragaria vesca

    Directory of Open Access Journals (Sweden)

    Kai Zhang

    2016-12-01

    Full Text Available Calcium is a universal messenger that is involved in the modulation of diverse developmental and adaptive processes in response to various stimuli. Calmodulin (CaM and calmodulin-like (CML proteins are major calcium sensors in all eukaryotes, and they have been extensively investigated for many years in plants and animals. However, little is known about CaMs and CMLs in woodland strawberry (Fragaria vesca. In this study, we performed a genome-wide analysis of the strawberry genome and identified 4 CaM and 36 CML genes. Bioinformatics analyses, including gene structure, phylogenetic tree, synteny and three-dimensional model assessments, revealed the conservation and divergence of FvCaMs and FvCMLs, thus providing insight regarding their functions. In addition, the transcript abundance of four FvCaM genes and the four most related FvCML genes were examined in different tissues and in response to multiple stress and hormone treatments. Moreover, we investigated the subcellular localization of several FvCaMs and FvCMLs, revealing their potential interactions based on the localizations and potential functions. Furthermore, overexpression of five FvCaM and FvCML genes could not induce a hypersensitive response, but four of the five genes could increase resistance to Agrobacterium tumefaciens in Nicotiana benthamiana leaves. This study provides evidence for the biological roles of FvCaM and CML genes, and the results lay the foundation for future functional studies of these genes.

  8. Gene function analysis by artificial microRNAs in Physcomitrella patens.

    KAUST Repository

    Khraiwesh, Basel

    2011-01-01

    MicroRNAs (miRNAs) are ~21 nt long small RNAs transcribed from endogenous MIR genes which form precursor RNAs with a characteristic hairpin structure. miRNAs control the expression of cognate target genes by binding to reverse complementary sequences resulting in cleavage or translational inhibition of the target RNA. Artificial miRNAs (amiRNAs) can be generated by exchanging the miRNA/miRNA sequence of endogenous MIR precursor genes, while maintaining the general pattern of matches and mismatches in the foldback. Thus, for functional gene analysis amiRNAs can be designed to target any gene of interest. During the last decade the moss Physcomitrella patens emerged as a model plant for functional gene analysis based on its unique ability to integrate DNA into the nuclear genome by homologous recombination which allows for the generation of targeted gene knockout mutants. In addition to this, we developed a protocol to express amiRNAs in P. patens that has particular advantages over the generation of knockout mutants and might be used to speed up reverse genetics approaches in this model species.

  9. More powerful significant testing for time course gene expression data using functional principal component analysis approaches.

    Science.gov (United States)

    Wu, Shuang; Wu, Hulin

    2013-01-16

    One of the fundamental problems in time course gene expression data analysis is to identify genes associated with a biological process or a particular stimulus of interest, like a treatment or virus infection. Most of the existing methods for this problem are designed for data with longitudinal replicates. But in reality, many time course gene experiments have no replicates or only have a small number of independent replicates. We focus on the case without replicates and propose a new method for identifying differentially expressed genes by incorporating the functional principal component analysis (FPCA) into a hypothesis testing framework. The data-driven eigenfunctions allow a flexible and parsimonious representation of time course gene expression trajectories, leaving more degrees of freedom for the inference compared to that using a prespecified basis. Moreover, the information of all genes is borrowed for individual gene inferences. The proposed approach turns out to be more powerful in identifying time course differentially expressed genes compared to the existing methods. The improved performance is demonstrated through simulation studies and a real data application to the Saccharomyces cerevisiae cell cycle data.

  10. ERC analysis: web-based inference of gene function via evolutionary rate covariation.

    Science.gov (United States)

    Wolfe, Nicholas W; Clark, Nathan L

    2015-12-01

    The recent explosion of comparative genomics data presents an unprecedented opportunity to construct gene networks via the evolutionary rate covariation (ERC) signature. ERC is used to identify genes that experienced similar evolutionary histories, and thereby draws functional associations between them. The ERC Analysis website allows researchers to exploit genome-wide datasets to infer novel genes in any biological function and to explore deep evolutionary connections between distinct pathways and complexes. The website provides five analytical methods, graphical output, statistical support and access to an increasing number of taxonomic groups. Analyses and data at http://csb.pitt.edu/erc_analysis/ nclark@pitt.edu. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. An efficient transient expression system for gene function analysis in rose.

    Science.gov (United States)

    Lu, Jun; Bai, Mengjuan; Ren, Haoran; Liu, Jinyi; Wang, Changquan

    2017-01-01

    Roses are widely used as garden ornamental plants and cut flowers. Rosa chinensis cv 'Old Blush' has been used as a model genotype in rose studies due to its contribution to recurrent flowering and tea scent traits of modern roses. The deficiency of efficient genetic transformation systems is a handicap limiting functional genetics studies of roses. Agrobacterium -mediated transient transformation offers a powerful tool for the characterization of gene function in plants. A convenient and highly efficient Agrobacterium mediated genetic transformation protocol using R. chinensis cv 'Old Blush' seedlings in vitro as an expression system is described in this paper. The most important factor affecting transformation efficiency in this system is seedling age; 3/4-week-old rose shoots with or without roots from sub-culturing are optimal for transformation, requiring no complicated inoculation media, supplements, or carefully tuned plant growth conditions. This transient expression system was successfully applied to analysis of the gene promoter activities, DNA binding capacity of transcription factors, protein-protein interaction in physiological contexts using luciferase as a reporter gene. This transient transformation system was validated as a robust and efficient platform, thus providing a new option for gene function and signaling pathway investigation in roses and further extending the utility of R. chinensis cv 'Old Blush' as a model plant to study diverse gene function and signaling pathways in Rosaceae.

  12. Gene-disease network analysis reveals functional modules in mendelian, complex and environmental diseases.

    Science.gov (United States)

    Bauer-Mehren, Anna; Bundschus, Markus; Rautschka, Michael; Mayer, Miguel A; Sanz, Ferran; Furlong, Laura I

    2011-01-01

    Scientists have been trying to understand the molecular mechanisms of diseases to design preventive and therapeutic strategies for a long time. For some diseases, it has become evident that it is not enough to obtain a catalogue of the disease-related genes but to uncover how disruptions of molecular networks in the cell give rise to disease phenotypes. Moreover, with the unprecedented wealth of information available, even obtaining such catalogue is extremely difficult. We developed a comprehensive gene-disease association database by integrating associations from several sources that cover different biomedical aspects of diseases. In particular, we focus on the current knowledge of human genetic diseases including mendelian, complex and environmental diseases. To assess the concept of modularity of human diseases, we performed a systematic study of the emergent properties of human gene-disease networks by means of network topology and functional annotation analysis. The results indicate a highly shared genetic origin of human diseases and show that for most diseases, including mendelian, complex and environmental diseases, functional modules exist. Moreover, a core set of biological pathways is found to be associated with most human diseases. We obtained similar results when studying clusters of diseases, suggesting that related diseases might arise due to dysfunction of common biological processes in the cell. For the first time, we include mendelian, complex and environmental diseases in an integrated gene-disease association database and show that the concept of modularity applies for all of them. We furthermore provide a functional analysis of disease-related modules providing important new biological insights, which might not be discovered when considering each of the gene-disease association repositories independently. Hence, we present a suitable framework for the study of how genetic and environmental factors, such as drugs, contribute to diseases. The

  13. High throughput functional analysis of HIV-1 env genes without cloning.

    Science.gov (United States)

    Kirchherr, Jennifer L; Lu, Xiaozhi; Kasongo, Webster; Chalwe, Victor; Mwananyanda, Lawrence; Musonda, Rosemary M; Xia, Shi-Mao; Scearce, Richard M; Liao, Hua-Xin; Montefiori, David C; Haynes, Barton F; Gao, Feng

    2007-07-01

    Functional human immunodeficiency virus type 1 (HIV-1) env genes have been widely used for vaccine design, neutralization assays, and pathogenesis studies. However, obtaining bona fide functional env clones is a time consuming and labor intensive process. A new high throughput method has been developed to characterize HIV-1 env genes. Multiple rev/env gene cassettes were obtained from each of seven HIV-1 strains using single genome amplification (SGA) PCR. The cytomegalovirus (CMV) promoter was amplified separately by PCR. A promoter PCR (pPCR) method was developed to link both PCR products using an overlapping PCR method. Pseudovirions were generated by cotransfection of pPCR products and pSG3 Delta env backbone into 293T cells. After infecting TZM-bl cells, 75 out of 87 (86%) of the rev/env gene cassettes were functional. Pseudoviruses generated with pPCR products or corresponding plasmid DNA showed similar sensitivity to six HIV-1 positive sera and three monoclonal antibodies, suggesting neutralization properties are not altered in pPCR pseudovirions. Furthermore, sufficient amounts of pseudovirions can be obtained for a large number of neutralization assays. The new pPCR method eliminates cloning, transformation, and plasmid DNA preparation steps in the generation of HIV-1 pseudovirions. This allows for quick analysis of multiple env genes from HIV-1 infected individuals.

  14. Functional conservation analysis and expression modes of grape anthocyanin synthesis genes responsive to low temperature stress.

    Science.gov (United States)

    Zhang, Cheng; Jia, Haifeng; Wu, Weimin; Wang, Xicheng; Fang, Jinggui; Wang, Chen

    2015-12-10

    In grape cultivation, low temperature generally increases the expression of genes involved in synthesis of anthocyanin. In this study, multi-type structural analysis of the proteins encoded by five anthocyanin biosynthesis genes VvF3H, VvPAL, VvCHS3, VvCHS2 and VvLDOX, in addition to nine of their homologous genes revealed that proteins in grapevine shared a high similarity with that in kiwi, red orange and some other species in which the biosynthesis of anthocyanin significantly influenced by low temperature as proved by previous studies. Low temperature regulatory elements were also found in the promoter region of the grapevine genes VvCHS2, VvPAL and VvF3H. These findings indicate that the functions of anthocyanin biosynthesis genes in grapevine are conservative and might be sensitive to low temperature. In order to identify the specific expression patterns of the five anthocyanin biosynthesis genes and the changes of polyphenols, anthocyanins and flavonoids under low temperature stress. The transcription analysis of the five genes and the content of polyphenols, anthocyanins and flavonoids in grape skins were examined, by using Vitis vinifera L. cv. 'Yongyou 1' and 'Juxing' berries as experimental material and treated at 4°C and 25°C for 24h, 48 h, 72 h and 96 h. The results showed that low temperature greatly enhanced the expression of the five anthocyanin biosynthesis genes. Low temperature greatly slowed down the decomposition of polyphenol, anthocyanin, and flavonoid in grape skins. Our study also found that cv. 'Juxing' responded more sensitively to low temperature than cv. 'Yongyou 1'. All the findings would provide a basis for further study on the mechanism of anthocyanin biosynthesis under environmental stress. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Genome-scale analysis of gene function in the hydrogenotrophic methanogenic archaeon Methanococcus maripaludis.

    Science.gov (United States)

    Sarmiento, Felipe; Mrázek, Jan; Whitman, William B

    2013-03-19

    A comprehensive whole-genome analysis of gene function by transposon mutagenesis and deep sequencing methodology has been implemented successfully in a representative of the Archaea domain. Libraries of transposon mutants were generated for the hydrogenotrophic, methanogenic archaeon Methanococcus maripaludis S2 using a derivative of the Tn5 transposon. About 89,000 unique insertions were mapped to the genome, which allowed for the classification of 526 genes or about 30% of the genome as possibly essential or strongly advantageous for growth in rich medium. Many of these genes were homologous to eukaryotic genes that encode fundamental processes in replication, transcription, and translation, providing direct evidence for their importance in Archaea. Some genes classified as possibly essential were unique to the archaeal or methanococcal lineages, such as that encoding DNA polymerase PolD. In contrast, the archaeal homolog to the gene encoding DNA polymerase B was not essential for growth, a conclusion confirmed by construction of an independent deletion mutation. Thus PolD, and not PolB, likely plays a fundamental role in DNA replication in methanococci. Similarly, 121 hypothetical ORFs were classified as possibly essential and likely play fundamental roles in methanococcal information processing or metabolism that are not established outside this group of prokaryotes.

  16. Type 1 plaminogen activator inhibitor gene: Functional analysis and glucocorticoid regulation of its promoter

    Energy Technology Data Exchange (ETDEWEB)

    Van Zonneveld, A.J.; Curriden, S.A.; Loskutoff, D.J. (Scripps Clinic and Research Foundation, La Jolla, CA (USA))

    1988-08-01

    Plasminogen activator inhibitor type 1 is an important component of the fibrinolytic system and its biosynthesis is subject to complex regulation. To study this regulation at the level of transcription, the authors have identified and sequenced the promoter of the human plasminogen activator inhibitor type 1 gene. Nuclease protection experiments were performed by using endothelial cell mRNA and the transcription initiation (cap) site was established. Sequence analysis of the 5{prime} flanking region of the gene revealed a perfect TATA box at position {minus}28 to position {minus}23, the conserved distance from the cap site. Comparative functional studies with the firefly luciferase gene as a reporter gene showed that fragments derived from this 5{prime} flanking region exhibited high promoter activity when transfected into bovine aortic endothelial cells and mouse Ltk{sup {minus}} fibroblasts but were inactive when introduced into HeLa cells. These studies indicate that the fragments contain the plasminogen activator inhibitor type 1 promoter and that it is expressed in a tissue-specific manner. Although the fragments were also silent in rat FTO2B hepatoma cells, their promoter activity could be induced up to 40-fold with the synthetic glucocorticoid dexamethasone. Promoter deletion mapping experiments and studies involving the fusion of promoter fragments to a heterologous gene indicated that dexamethasone induction is mediated by a glucocorticoid responsive element with enhancer-like properties located within the region between nucleotides {minus}305 and +75 of the plasminogen activator inhibitor type 1 gene.

  17. Analysis of breast cancer metastasis candidate genes from next generation-sequencing via systematic functional genomics

    DEFF Research Database (Denmark)

    Blomstrøm, Monica Marie

    2016-01-01

    Metastatic breast cancer remains an incurable disease accounting for the vast majority of deaths from breast cancer. Understanding the molecular mechanisms for metastatic spread is important to improve diagnosis and for generating starting points for novel treatment strategies. Inhibition...... advantage of mutations is that they are most likely stable in the metastatic cancer cell population, whereas miRNA, mRNA and protein expression profiles may change substantially prior to, throughout, or after the complex metastatic process as well as between subpopulations such as cancer stem cells (CSCs......) and non-CSCs. The main goal of this project was to functionally characterize a set of candidate genes recovered from next-generation sequencing analysis for their role in breast cancer metastasis formation. The starting gene set comprised 104 gene variants; i.e. 57 wildtype and 47 mutated variants. During...

  18. Analysis of functional importance of binding sites in the Drosophila gap gene network model.

    Science.gov (United States)

    Kozlov, Konstantin; Gursky, Vitaly V; Kulakovskiy, Ivan V; Dymova, Arina; Samsonova, Maria

    2015-01-01

    The statistical thermodynamics based approach provides a promising framework for construction of the genotype-phenotype map in many biological systems. Among important aspects of a good model connecting the DNA sequence information with that of a molecular phenotype (gene expression) is the selection of regulatory interactions and relevant transcription factor bindings sites. As the model may predict different levels of the functional importance of specific binding sites in different genomic and regulatory contexts, it is essential to formulate and study such models under different modeling assumptions. We elaborate a two-layer model for the Drosophila gap gene network and include in the model a combined set of transcription factor binding sites and concentration dependent regulatory interaction between gap genes hunchback and Kruppel. We show that the new variants of the model are more consistent in terms of gene expression predictions for various genetic constructs in comparison to previous work. We quantify the functional importance of binding sites by calculating their impact on gene expression in the model and calculate how these impacts correlate across all sites under different modeling assumptions. The assumption about the dual interaction between hb and Kr leads to the most consistent modeling results, but, on the other hand, may obscure existence of indirect interactions between binding sites in regulatory regions of distinct genes. The analysis confirms the previously formulated regulation concept of many weak binding sites working in concert. The model predicts a more or less uniform distribution of functionally important binding sites over the sets of experimentally characterized regulatory modules and other open chromatin domains.

  19. Gene-Disease Network Analysis Reveals Functional Modules in Mendelian, Complex and Environmental Diseases

    Science.gov (United States)

    Bauer-Mehren, Anna; Bundschus, Markus; Rautschka, Michael; Mayer, Miguel A.; Sanz, Ferran; Furlong, Laura I.

    2011-01-01

    Background Scientists have been trying to understand the molecular mechanisms of diseases to design preventive and therapeutic strategies for a long time. For some diseases, it has become evident that it is not enough to obtain a catalogue of the disease-related genes but to uncover how disruptions of molecular networks in the cell give rise to disease phenotypes. Moreover, with the unprecedented wealth of information available, even obtaining such catalogue is extremely difficult. Principal Findings We developed a comprehensive gene-disease association database by integrating associations from several sources that cover different biomedical aspects of diseases. In particular, we focus on the current knowledge of human genetic diseases including mendelian, complex and environmental diseases. To assess the concept of modularity of human diseases, we performed a systematic study of the emergent properties of human gene-disease networks by means of network topology and functional annotation analysis. The results indicate a highly shared genetic origin of human diseases and show that for most diseases, including mendelian, complex and environmental diseases, functional modules exist. Moreover, a core set of biological pathways is found to be associated with most human diseases. We obtained similar results when studying clusters of diseases, suggesting that related diseases might arise due to dysfunction of common biological processes in the cell. Conclusions For the first time, we include mendelian, complex and environmental diseases in an integrated gene-disease association database and show that the concept of modularity applies for all of them. We furthermore provide a functional analysis of disease-related modules providing important new biological insights, which might not be discovered when considering each of the gene-disease association repositories independently. Hence, we present a suitable framework for the study of how genetic and environmental factors

  20. Gene-disease network analysis reveals functional modules in mendelian, complex and environmental diseases.

    Directory of Open Access Journals (Sweden)

    Anna Bauer-Mehren

    Full Text Available BACKGROUND: Scientists have been trying to understand the molecular mechanisms of diseases to design preventive and therapeutic strategies for a long time. For some diseases, it has become evident that it is not enough to obtain a catalogue of the disease-related genes but to uncover how disruptions of molecular networks in the cell give rise to disease phenotypes. Moreover, with the unprecedented wealth of information available, even obtaining such catalogue is extremely difficult. PRINCIPAL FINDINGS: We developed a comprehensive gene-disease association database by integrating associations from several sources that cover different biomedical aspects of diseases. In particular, we focus on the current knowledge of human genetic diseases including mendelian, complex and environmental diseases. To assess the concept of modularity of human diseases, we performed a systematic study of the emergent properties of human gene-disease networks by means of network topology and functional annotation analysis. The results indicate a highly shared genetic origin of human diseases and show that for most diseases, including mendelian, complex and environmental diseases, functional modules exist. Moreover, a core set of biological pathways is found to be associated with most human diseases. We obtained similar results when studying clusters of diseases, suggesting that related diseases might arise due to dysfunction of common biological processes in the cell. CONCLUSIONS: For the first time, we include mendelian, complex and environmental diseases in an integrated gene-disease association database and show that the concept of modularity applies for all of them. We furthermore provide a functional analysis of disease-related modules providing important new biological insights, which might not be discovered when considering each of the gene-disease association repositories independently. Hence, we present a suitable framework for the study of how genetic and

  1. Key Microbiota Identification Using Functional Gene Analysis during Pepper (Piper nigrum L. Peeling.

    Directory of Open Access Journals (Sweden)

    Jiachao Zhang

    Full Text Available Pepper pericarp microbiota plays an important role in the pepper peeling process for the production of white pepper. We collected pepper samples at different peeling time points from Hainan Province, China, and used a metagenomic approach to identify changes in the pericarp microbiota based on functional gene analysis. UniFrac distance-based principal coordinates analysis revealed significant changes in the pericarp microbiota structure during peeling, which were attributed to increases in bacteria from the genera Selenomonas and Prevotella. We identified 28 core operational taxonomic units at each time point, mainly belonging to Selenomonas, Prevotella, Megasphaera, Anaerovibrio, and Clostridium genera. The results were confirmed by quantitative polymerase chain reaction. At the functional level, we observed significant increases in microbial features related to acetyl xylan esterase and pectinesterase for pericarp degradation during peeling. These findings offer a new insight into biodegradation for pepper peeling and will promote the development of the white pepper industry.

  2. Key Microbiota Identification Using Functional Gene Analysis during Pepper (Piper nigrum L.) Peeling.

    Science.gov (United States)

    Zhang, Jiachao; Hu, Qisong; Xu, Chuanbiao; Liu, Sixin; Li, Congfa

    2016-01-01

    Pepper pericarp microbiota plays an important role in the pepper peeling process for the production of white pepper. We collected pepper samples at different peeling time points from Hainan Province, China, and used a metagenomic approach to identify changes in the pericarp microbiota based on functional gene analysis. UniFrac distance-based principal coordinates analysis revealed significant changes in the pericarp microbiota structure during peeling, which were attributed to increases in bacteria from the genera Selenomonas and Prevotella. We identified 28 core operational taxonomic units at each time point, mainly belonging to Selenomonas, Prevotella, Megasphaera, Anaerovibrio, and Clostridium genera. The results were confirmed by quantitative polymerase chain reaction. At the functional level, we observed significant increases in microbial features related to acetyl xylan esterase and pectinesterase for pericarp degradation during peeling. These findings offer a new insight into biodegradation for pepper peeling and will promote the development of the white pepper industry.

  3. Saponin determination, expression analysis and functional characterization of saponin biosynthetic genes in Chenopodium quinoa leaves.

    Science.gov (United States)

    Fiallos-Jurado, Jennifer; Pollier, Jacob; Moses, Tessa; Arendt, Philipp; Barriga-Medina, Noelia; Morillo, Eduardo; Arahana, Venancio; de Lourdes Torres, Maria; Goossens, Alain; Leon-Reyes, Antonio

    2016-09-01

    Quinoa (Chenopodium quinoa Willd.) is a highly nutritious pseudocereal with an outstanding protein, vitamin, mineral and nutraceutical content. The leaves, flowers and seed coat of quinoa contain triterpenoid saponins, which impart bitterness to the grain and make them unpalatable without postharvest removal of the saponins. In this study, we quantified saponin content in quinoa leaves from Ecuadorian sweet and bitter genotypes and assessed the expression of saponin biosynthetic genes in leaf samples elicited with methyl jasmonate. We found saponin accumulation in leaves after MeJA treatment in both ecotypes tested. As no reference genes were available to perform qPCR in quinoa, we mined publicly available RNA-Seq data for orthologs of 22 genes known to be stably expressed in Arabidopsis thaliana using geNorm, NormFinder and BestKeeper algorithms. The quinoa ortholog of At2g28390 (Monensin Sensitivity 1, MON1) was stably expressed and chosen as a suitable reference gene for qPCR analysis. Candidate saponin biosynthesis genes were screened in the quinoa RNA-Seq data and subsequent functional characterization in yeast led to the identification of CqbAS1, CqCYP716A78 and CqCYP716A79. These genes were found to be induced by MeJA, suggesting this phytohormone might also modulate saponin biosynthesis in quinoa leaves. Knowledge of the saponin biosynthesis and its regulation in quinoa may aid the further development of sweet cultivars that do not require postharvest processing. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Functional microarray analysis of nitrogen and carbon cycling genes across an Antarctic latitudinal transect.

    NARCIS (Netherlands)

    Yergeau, E.; Kang, S.; He, Z.; Zhou, J.; Kowalchuk, G.A.

    2007-01-01

    Soil-borne microbial communities were examined via a functional gene microarray approach across a southern polar latitudinal gradient to gain insight into the environmental factors steering soil N- and C-cycling in terrestrial Antarctic ecosystems. The abundance and diversity of functional gene

  5. Genome-wide analysis of the expansin gene superfamily reveals grapevine-specific structural and functional characteristics.

    Directory of Open Access Journals (Sweden)

    Silvia Dal Santo

    Full Text Available BACKGROUND: Expansins are proteins that loosen plant cell walls in a pH-dependent manner, probably by increasing the relative movement among polymers thus causing irreversible expansion. The expansin superfamily (EXP comprises four distinct families: expansin A (EXPA, expansin B (EXPB, expansin-like A (EXLA and expansin-like B (EXLB. There is experimental evidence that EXPA and EXPB proteins are required for cell expansion and developmental processes involving cell wall modification, whereas the exact functions of EXLA and EXLB remain unclear. The complete grapevine (Vitis vinifera genome sequence has allowed the characterization of many gene families, but an exhaustive genome-wide analysis of expansin gene expression has not been attempted thus far. METHODOLOGY/PRINCIPAL FINDINGS: We identified 29 EXP superfamily genes in the grapevine genome, representing all four EXP families. Members of the same EXP family shared the same exon-intron structure, and phylogenetic analysis confirmed a closer relationship between EXP genes from woody species, i.e. grapevine and poplar (Populus trichocarpa, compared to those from Arabidopsis thaliana and rice (Oryza sativa. We also identified grapevine-specific duplication events involving the EXLB family. Global gene expression analysis confirmed a strong correlation among EXP genes expressed in mature and green/vegetative samples, respectively, as reported for other gene families in the recently-published grapevine gene expression atlas. We also observed the specific co-expression of EXLB genes in woody organs, and the involvement of certain grapevine EXP genes in berry development and post-harvest withering. CONCLUSION: Our comprehensive analysis of the grapevine EXP superfamily confirmed and extended current knowledge about the structural and functional characteristics of this gene family, and also identified properties that are currently unique to grapevine expansin genes. Our data provide a model for the

  6. Functional characterization of putative cilia genes by high-content analysis

    Science.gov (United States)

    Lai, Cary K.; Gupta, Nidhi; Wen, Xiaohui; Rangell, Linda; Chih, Ben; Peterson, Andrew S.; Bazan, J. Fernando; Li, Li; Scales, Suzie J.

    2011-01-01

    Cilia are microtubule-based protrusions from the cell surface that are involved in a number of essential signaling pathways, yet little is known about many of the proteins that regulate their structure and function. A number of putative cilia genes have been identified by proteomics and comparative sequence analyses, but functional data are lacking for the vast majority. We therefore monitored the effects in three cell lines of small interfering RNA (siRNA) knockdown of 40 of these genes by high-content analysis. We assayed cilia number, length, and transport of two different cargoes (membranous serotonin receptor 6-green fluorescent protein [HTR6-GFP] and the endogenous Hedgehog [Hh] pathway transcription factor Gli3) by immunofluorescence microscopy; and cilia function using a Gli-luciferase Hh signaling assay. Hh signaling was most sensitive to perturbations, with or without visible structural cilia defects. Validated hits include Ssa2 and mC21orf2 with ciliation defects; Ift46 with short cilia; Ptpdc1 and Iqub with elongated cilia; and Arl3, Nme7, and Ssna1 with distinct ciliary transport but not length defects. Our data confirm various ciliary roles for several ciliome proteins and show it is possible to uncouple ciliary cargo transport from cilia formation in vertebrates. PMID:21289087

  7. Hunting down frame shifts: Ecological analysis of diverse functional gene sequences

    Directory of Open Access Journals (Sweden)

    Michal eStrejcek

    2015-11-01

    Full Text Available Functional gene ecological analyses using amplicon sequencing can be challenging as translated sequences are often burdened with shifted reading frames. The aim of this work was to evaluate several bioinformatics tools designed to correct errors which arise during sequencing in an effort to reduce the number of frame-shifts (FS. Genes encoding for alpha subunits of biphenyl (bphA and benzoate (benA dioxygenases were used as model sequences. FrameBot, a FS correction tool, was able to reduce the number of detected FS to zero. However, up to 43.1% of sequences were discarded by FrameBot as non-specific targets. Therefore, we proposed a de novo mode of FrameBot for FS correction, which works on a similar basis as common chimera identifying platforms and is not dependent on reference sequences. By nature of FrameBot de novo design, it is crucial to provide it with data as error free as possible. We tested the ability of several publicly available correction tools to decrease the number of errors in the data sets. The combination of Maximum Expected Error (MEE filtering and single linkage pre-clustering (SLP proved the most efficient read procession. Applying FrameBot de novo on the processed data enabled analysis of BphA sequences with minimal losses of potentially functional sequences not homologous to those previously known. This experiment also demonstrated the extensive diversity of dioxygenases in soil. A script which performs FrameBot de novo is presented in the supplementary material to the study and the tool was implemented into FunGene Pipeline available at http://fungene.cme.msu.edu/FunGenePipeline/ and https://github.com/rdpstaff/Framebot.

  8. Text analysis of MEDLINE for discovering functional relationships among genes: evaluation of keyword extraction weighting schemes.

    Science.gov (United States)

    Liu, Ying; Navathe, Shamkant B; Pivoshenko, Alex; Dasigi, Venu G; Dingledine, Ray; Ciliax, Brian J

    2006-01-01

    One of the key challenges of microarray studies is to derive biological insights from the gene-expression patterns. Clustering genes by functional keyword association can provide direct information about the functional links among genes. However, the quality of the keyword lists significantly affects the clustering results. We compared two keyword weighting schemes: normalised z-score and term frequency-inverse document frequency (TFIDF). Two gene sets were tested to evaluate the effectiveness of the weighting schemes for keyword extraction for gene clustering. Using established measures of cluster quality, the results produced from TFIDF-weighted keywords outperformed those produced from normalised z-score weighted keywords. The optimised algorithms should be useful for partitioning genes from microarray lists into functionally discrete clusters.

  9. Genome-wide analysis of the Dof transcription factor gene family reveals soybean-specific duplicable and functional characteristics.

    Directory of Open Access Journals (Sweden)

    Yong Guo

    Full Text Available The Dof domain protein family is a classic plant-specific zinc-finger transcription factor family involved in a variety of biological processes. There is great diversity in the number of Dof genes in different plants. However, there are only very limited reports on the characterization of Dof transcription factors in soybean (Glycine max. In the present study, 78 putative Dof genes were identified from the whole-genome sequence of soybean. The predicted GmDof genes were non-randomly distributed within and across 19 out of 20 chromosomes and 97.4% (38 pairs were preferentially retained duplicate paralogous genes located in duplicated regions of the genome. Soybean-specific segmental duplications contributed significantly to the expansion of the soybean Dof gene family. These Dof proteins were phylogenetically clustered into nine distinct subgroups among which the gene structure and motif compositions were considerably conserved. Comparative phylogenetic analysis of these Dof proteins revealed four major groups, similar to those reported for Arabidopsis and rice. Most of the GmDofs showed specific expression patterns based on RNA-seq data analyses. The expression patterns of some duplicate genes were partially redundant while others showed functional diversity, suggesting the occurrence of sub-functionalization during subsequent evolution. Comprehensive expression profile analysis also provided insights into the soybean-specific functional divergence among members of the Dof gene family. Cis-regulatory element analysis of these GmDof genes suggested diverse functions associated with different processes. Taken together, our results provide useful information for the functional characterization of soybean Dof genes by combining phylogenetic analysis with global gene-expression profiling.

  10. Genome-wide analysis of the Dof transcription factor gene family reveals soybean-specific duplicable and functional characteristics.

    Science.gov (United States)

    Guo, Yong; Qiu, Li-Juan

    2013-01-01

    The Dof domain protein family is a classic plant-specific zinc-finger transcription factor family involved in a variety of biological processes. There is great diversity in the number of Dof genes in different plants. However, there are only very limited reports on the characterization of Dof transcription factors in soybean (Glycine max). In the present study, 78 putative Dof genes were identified from the whole-genome sequence of soybean. The predicted GmDof genes were non-randomly distributed within and across 19 out of 20 chromosomes and 97.4% (38 pairs) were preferentially retained duplicate paralogous genes located in duplicated regions of the genome. Soybean-specific segmental duplications contributed significantly to the expansion of the soybean Dof gene family. These Dof proteins were phylogenetically clustered into nine distinct subgroups among which the gene structure and motif compositions were considerably conserved. Comparative phylogenetic analysis of these Dof proteins revealed four major groups, similar to those reported for Arabidopsis and rice. Most of the GmDofs showed specific expression patterns based on RNA-seq data analyses. The expression patterns of some duplicate genes were partially redundant while others showed functional diversity, suggesting the occurrence of sub-functionalization during subsequent evolution. Comprehensive expression profile analysis also provided insights into the soybean-specific functional divergence among members of the Dof gene family. Cis-regulatory element analysis of these GmDof genes suggested diverse functions associated with different processes. Taken together, our results provide useful information for the functional characterization of soybean Dof genes by combining phylogenetic analysis with global gene-expression profiling.

  11. Characterization, expression patterns and functional analysis of the MAPK and MAPKK genes in watermelon (Citrullus lanatus).

    Science.gov (United States)

    Song, Qiuming; Li, Dayong; Dai, Yi; Liu, Shixia; Huang, Lei; Hong, Yongbo; Zhang, Huijuan; Song, Fengming

    2015-12-23

    Mitogen-activated protein kinase (MAPK) cascades, which consist of three functionally associated protein kinases, namely MEKKs, MKKs and MPKs, are universal signaling modules in all eukaryotes and have been shown to play critical roles in many physiological and biochemical processes in plants. However, little or nothing is known about the MPK and MKK families in watermelon. In the present study, we performed a systematic characterization of the ClMPK and ClMKK families including the identification and nomenclature, chromosomal localization, phylogenetic relationships, ClMPK-ClMKK interactions, expression patterns in different tissues and in response to abiotic and biotic stress and transient expression-based functional analysis for their roles in disease resistance. Genome-wide survey identified fifteen ClMPK and six ClMKK genes in watermelon genome and phylogenetic analysis revealed that both of the ClMPK and ClMKK families can be classified into four distinct groups. Yeast two-hybrid assays demonstrated significant interactions between members of the ClMPK and ClMKK families, defining putative ClMKK2-1/ClMKK6-ClMPK4-1/ClMPK4-2/ClMPK13 and ClMKK5-ClMPK6 cascades. Most of the members in the ClMPK and ClMKK families showed differential expression patterns in different tissues and in response to abiotic (e.g. drought, salt, cold and heat treatments) and biotic (e.g. infection of Fusarium oxysporum f. sp. niveum) stresses. Transient expression of ClMPK1, ClMPK4-2 and ClMPK7 in Nicotiana benthamiana resulted in enhanced resistance to Botrytis cinerea and upregulated expression of defense genes while transient expression of ClMPK6 and ClMKK2-2 led to increased susceptibility to B. cinerea. Furthermore, transient expression of ClMPK7 also led to hypersensitive response (HR)-like cell death and significant accumulation of H2O2 in N. benthamiana. We identified fifteen ClMPK and six ClMKK genes from watermelon and analyzed their phylogenetic relationships, expression

  12. Gateway Compatible Vectors for Analysis of Gene Function in the Zebrafish

    Science.gov (United States)

    Villefranc, Jacques A.; Amigo, Julio; Lawson, Nathan D.

    2014-01-01

    The recent establishment of recombination-based cloning systems has greatly facilitated the analysis of gene function by allowing rapid and high-efficiency generation of plasmid constructs. However, the use of such an approach in zebrafish requires the availability of recombination-compatible plasmids that are appropriate for functional studies in zebrafish embryos. In this work, we describe the construction and validation of Gateway compatible vectors based on commonly used zebrafish plasmids. We have generated pCS-based plasmids that allow rapid generation of both N-terminal and C-terminal fusion proteins, and we demonstrate that mRNA synthesized from these plasmids encodes functional native or fusion proteins in injected zebrafish embryos. In parallel, we have established similar Gateway plasmids containing Tol2 cis elements that promote efficient integration into the zebrafish genome and allow expression of native or fusion proteins in a tissue-specific manner in the zebrafish embryo. Finally, we demonstrate the use of this system to rapidly identify tissue-specific cis elements to aid the establishment of blood vessel-specific transgenic constructs. Taken together, this work provides an important platform for the rapid functional analyses of open reading frames in zebrafish embryos. PMID:17948311

  13. Mosaic zebrafish transgenesis for functional genomic analysis of candidate cooperative genes in tumor pathogenesis.

    Science.gov (United States)

    Ung, Choong Yong; Guo, Feng; Zhang, Xiaoling; Zhu, Zhihui; Zhu, Shizhen

    2015-03-31

    Comprehensive genomic analysis has uncovered surprisingly large numbers of genetic alterations in various types of cancers. To robustly and efficiently identify oncogenic "drivers" among these tumors and define their complex relationships with concurrent genetic alterations during tumor pathogenesis remains a daunting task. Recently, zebrafish have emerged as an important animal model for studying human diseases, largely because of their ease of maintenance, high fecundity, obvious advantages for in vivo imaging, high conservation of oncogenes and their molecular pathways, susceptibility to tumorigenesis and, most importantly, the availability of transgenic techniques suitable for use in the fish. Transgenic zebrafish models of cancer have been widely used to dissect oncogenic pathways in diverse tumor types. However, developing a stable transgenic fish model is both tedious and time-consuming, and it is even more difficult and more time-consuming to dissect the cooperation of multiple genes in disease pathogenesis using this approach, which requires the generation of multiple transgenic lines with overexpression of the individual genes of interest followed by complicated breeding of these stable transgenic lines. Hence, use of a mosaic transient transgenic approach in zebrafish offers unique advantages for functional genomic analysis in vivo. Briefly, candidate transgenes can be coinjected into one-cell-stage wild-type or transgenic zebrafish embryos and allowed to integrate together into each somatic cell in a mosaic pattern that leads to mixed genotypes in the same primarily injected animal. This permits one to investigate in a faster and less expensive manner whether and how the candidate genes can collaborate with each other to drive tumorigenesis. By transient overexpression of activated ALK in the transgenic fish overexpressing MYCN, we demonstrate here the cooperation of these two oncogenes in the pathogenesis of a pediatric cancer, neuroblastoma that has

  14. Pleiotropy analysis of quantitative traits at gene level by multivariate functional linear models.

    Science.gov (United States)

    Wang, Yifan; Liu, Aiyi; Mills, James L; Boehnke, Michael; Wilson, Alexander F; Bailey-Wilson, Joan E; Xiong, Momiao; Wu, Colin O; Fan, Ruzong

    2015-05-01

    In genetics, pleiotropy describes the genetic effect of a single gene on multiple phenotypic traits. A common approach is to analyze the phenotypic traits separately using univariate analyses and combine the test results through multiple comparisons. This approach may lead to low power. Multivariate functional linear models are developed to connect genetic variant data to multiple quantitative traits adjusting for covariates for a unified analysis. Three types of approximate F-distribution tests based on Pillai-Bartlett trace, Hotelling-Lawley trace, and Wilks's Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants in one genetic region. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and optimal sequence kernel association test (SKAT-O). Extensive simulations were performed to evaluate the false positive rates and power performance of the proposed models and tests. We show that the approximate F-distribution tests control the type I error rates very well. Overall, simultaneous analysis of multiple traits can increase power performance compared to an individual test of each trait. The proposed methods were applied to analyze (1) four lipid traits in eight European cohorts, and (2) three biochemical traits in the Trinity Students Study. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and SKAT-O for the three biochemical traits. The approximate F-distribution tests of the proposed functional linear models are more sensitive than those of the traditional multivariate linear models that in turn are more sensitive than SKAT-O in the univariate case. The analysis of the four lipid traits and the three biochemical traits detects more association than SKAT-O in the univariate case. © 2015 WILEY PERIODICALS, INC.

  15. Functional Analysis of the Nitrogen Metabolite Repression Regulator Gene nmrA in Aspergillus flavus

    Directory of Open Access Journals (Sweden)

    Xiaoyun Han

    2016-11-01

    Full Text Available In Aspergillus nidulans, the nitrogen metabolite repression regulator NmrA plays a major role in regulating the activity of the GATA transcription factor AreA during nitrogen metabolism. However, the function of nmrA in Aspergillus flavus has notbeen previously studied. Here, we report the identification and functional analysis of nmrA in A. flavus. Our work showed that the amino acid sequences of NmrA are highly conserved among Aspergillus species and that A. flavus NmrA protein contains a canonical Rossmann fold motif. Deletion of nmrA slowed the growth of A. flavus but significantly increased conidiation and sclerotia production. Moreover, seed infection experiments indicated that nmrA is required for the invasive virulence of A. flavus. In addition, the ΔnmrA mutant showed increased sensitivity to rapamycin and methyl methanesulfonate, suggesting that nmrA could be responsive to target of rapamycin signaling and DNA damage. Furthermore, quantitative real-time reverse transcription polymerase chain reaction analysis suggested that nmrA might interact with other nitrogen regulatory and catabolic genes. Our study provides a better understanding of nitrogen metabolite repression and the nitrogen metabolism network in fungi.

  16. Identification, Expression, and Functional Analysis of the Fructokinase Gene Family in Cassava

    Directory of Open Access Journals (Sweden)

    Yuan Yao

    2017-11-01

    Full Text Available Fructokinase (FRK proteins play important roles in catalyzing fructose phosphorylation and participate in the carbohydrate metabolism of storage organs in plants. To investigate the roles of FRKs in cassava tuber root development, seven FRK genes (MeFRK1–7 were identified, and MeFRK1–6 were isolated. Phylogenetic analysis revealed that the MeFRK family genes can be divided into α (MeFRK 1, 2, 6, 7 and β (MeFRK 3, 4, 5 groups. All the MeFRK proteins have typical conserved regions and substrate binding residues similar to those of the FRKs. The overall predicted three-dimensional structures of MeFRK1–6 were similar, folding into a catalytic domain and a β-sheet ‘‘lid” region, forming a substrate binding cleft, which contains many residues involved in the binding to fructose. The gene and the predicted three-dimensional structures of MeFRK3 and MeFRK4 were the most similar. MeFRK1–6 displayed different expression patterns across different tissues, including leaves, stems, tuber roots, flowers, and fruits. In tuber roots, the expressions of MeFRK3 and MeFRK4 were much higher compared to those of the other genes. Notably, the expression of MeFRK3 and MeFRK4 as well as the enzymatic activity of FRK were higher at the initial and early expanding tuber stages and were lower at the later expanding and mature tuber stages. The FRK activity of MeFRK3 and MeFRK4 was identified by the functional complementation of triple mutant yeast cells that were unable to phosphorylate either glucose or fructose. The gene expression and enzymatic activity of MeFRK3 and MeFRK4 suggest that they might be the main enzymes in fructose phosphorylation for regulating the formation of tuber roots and starch accumulation at the tuber root initial and expanding stages.

  17. PageRank analysis reveals topologically expressed genes correspond to psoriasis and their functions are associated with apoptosis resistance.

    Science.gov (United States)

    Zeng, Xue; Zhao, Jingjing; Wu, Xiaohong; Shi, Hongbo; Liu, Wali; Cui, Bingnan; Yang, Li; Ding, Xu; Song, Ping

    2016-05-01

    Psoriasis is an inflammatory skin disease. Deceleration in keratinocyte apoptosis is the most significant pathological change observed in psoriasis. To detect a meaningful correlation between the genes and gene functions associated with the mechanism underlying psoriasis, 927 differentially expressed genes (DEGs) were identified using the Gene Expression Omnibus database, GSE13355 [false discovery rate (FDR) 1] with the package in R langue. The selected DEGs were further constructed using the search tool for the retrieval of interacting genes, in order to analyze the interaction network between the DEGs. Subsequent to PageRank analysis, 14 topological hub genes were identified, and the functions and pathways in the hub genes network were analyzed. The top‑ranked hub gene, estrogen receptor‑1 (ESR1) is downregulated in psoriasis, exhibited binding sites enriched with genes possessing anti‑apoptotic functions. The ESR1 gene encodes estrogen receptor α (ERα); a reduced level of ERα expression provides a crucial foundation in response to the anti‑apoptotic activity of psoriatic keratinocytes by activating the expression of anti‑apoptotic genes. Furthermore, it was detected that the pathway that is associated most significantly with psoriasis is the pathways in cancer. Pathways in cancer may protect psoriatic cells from apoptosis by inhibition of ESR1 expression. The present study provides support towards the investigation of ESR1 gene function and elucidates that the interaction with anti‑apoptotic genes is involved in the underlying biological mechanisms of resistance to apoptosis in psoriasis. However, further investigation is required to confirm the present results.

  18. Phylogenetic Analysis, Lineage-Specific Expansion and Functional Divergence of seed dormancy 4-Like Genes in Plants.

    Directory of Open Access Journals (Sweden)

    Saminathan Subburaj

    Full Text Available The rice gene seed dormancy 4 (OsSdr4 functions in seed dormancy and is a major factor associated with pre-harvest sprouting (PHS. Although previous studies of this protein family were reported for rice and other species, knowledge of the evolution of genes homologous to OsSdr4 in plants remains inadequate. Fifty four Sdr4-like (hereafter designated Sdr4L genes were identified in nine plant lineages including 36 species. Phylogenetic analysis placed these genes in eight subfamilies (I-VIII. Genes from the same lineage clustered together, supported by analysis of conserved motifs and exon-intron patterns. Segmental duplications were present in both dicot and monocot clusters, while tandemly duplicated genes occurred only in monocot clusters indicating that both tandem and segmental duplications contributed to expansion of the grass I and II subfamilies. Estimation of the approximate ages of the duplication events indicated that ancestral Sdr4 genes evolved from a common angiosperm ancestor, about 160 million years ago (MYA. Moreover, diversification of Sdr4L genes in mono and dicot plants was mainly associated with genome-wide duplication and speciation events. Functional divergence was observed in all subfamily pairs, except IV/VIIIa. Further analysis indicated that functional constraints between subfamily pairs I/II, I/VIIIb, II/VI, II/VIIIb, II/IV, and VI/VIIIb were statistically significant. Site and branch-site model analyses of positive selection suggested that these genes were under strong adaptive selection pressure. Critical amino acids detected for both functional divergence and positive selection were mostly located in the loops, pointing to functional importance of these regions in this protein family. In addition, differential expression studies by transcriptome atlas of 11 Sdr4L genes showed that the duplicated genes may have undergone divergence in expression between plant species. Our findings showed that Sdr4L genes are

  19. Identification and functional analysis of an alternative promoter of human intersectin 1 gene

    Directory of Open Access Journals (Sweden)

    Rynditch A. V.

    2010-04-01

    Full Text Available Aim. Intersectin 1 (ITSN1 gene encodes an evolutionarily conserved adaptor protein that functions in clathrin-mediated endocytosis, cell signalling, apoptosis and cytoskeleton rearrangements. Its expression is characterized by multiple alternative splicing. Alternative promoter usage is an additional way to create diversity and flexibility in the regulation of gene expression. The aim of this study was to identify possible alternative promoters of ITSN1 gene. Methods. In silico prediction, 5' RACE, RT-PCR and reporter gene expression assay were used for identification and functional characterization of alternative promoter region. Results. We detected an alternative promoter of human ITSN1 gene which is located in intron 5 and generates 5' truncated transcripts containing in-frame ATG codon with strong Kozak sequence and could encode an N-terminally truncated isoforms lacking first EH domain. The region located 246–190 bp upstream of exon 6 is required for alternative promoter activity. ITSN1 transcripts generated from an alternative promoter were detected in human kidney, liver, lung and brain tissues. However, the level of their expression was significantly lower than that of major ITSN1 isoforms. Conclusion. The results obtained suggest that alternative promoter region located in intron 5 of ITSN1 gene functions as a weak promoter. Further experiments are required to clarify the role of 5' truncated ITSN1 transcripts.

  20. Comparative structural and functional analysis of genes encoding pectin methylesterases in Phytophthora spp.

    Science.gov (United States)

    Mingora, Christina; Ewer, Jason; Ospina-Giraldo, Manuel

    2014-03-15

    We have scanned the Phytophthora infestans, P. ramorum, and P. sojae genomes for the presence of putative pectin methylesterase genes and conducted a sequence analysis of all gene models found. We also searched for potential regulatory motifs in the promoter region of the proposed P. infestans models, and investigated the gene expression levels throughout the course of P. infestans infection on potato plants, using in planta and detached leaf assays. We found that genes located on contiguous chromosomal regions contain similar motifs in the promoter region, indicating the possibility of a shared regulatory mechanism. Results of our investigations also suggest that, during the pathogenicity process, the expression levels of some of the analyzed genes vary considerably when compared to basal expression observed in in vitro cultures of non-sporulating mycelium. These results were observed both in planta and in detached leaf assays. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Analysis of mammalian gene function through broad-based phenotypic screens across a consortium of mouse clinics.

    Science.gov (United States)

    de Angelis, Martin Hrabě; Nicholson, George; Selloum, Mohammed; White, Jacqui; Morgan, Hugh; Ramirez-Solis, Ramiro; Sorg, Tania; Wells, Sara; Fuchs, Helmut; Fray, Martin; Adams, David J; Adams, Niels C; Adler, Thure; Aguilar-Pimentel, Antonio; Ali-Hadji, Dalila; Amann, Gregory; André, Philippe; Atkins, Sarah; Auburtin, Aurelie; Ayadi, Abdel; Becker, Julien; Becker, Lore; Bedu, Elodie; Bekeredjian, Raffi; Birling, Marie-Christine; Blake, Andrew; Bottomley, Joanna; Bowl, Mike; Brault, Véronique; Busch, Dirk H; Bussell, James N; Calzada-Wack, Julia; Cater, Heather; Champy, Marie-France; Charles, Philippe; Chevalier, Claire; Chiani, Francesco; Codner, Gemma F; Combe, Roy; Cox, Roger; Dalloneau, Emilie; Dierich, André; Di Fenza, Armida; Doe, Brendan; Duchon, Arnaud; Eickelberg, Oliver; Esapa, Chris T; El Fertak, Lahcen; Feigel, Tanja; Emelyanova, Irina; Estabel, Jeanne; Favor, Jack; Flenniken, Ann; Gambadoro, Alessia; Garrett, Lilian; Gates, Hilary; Gerdin, Anna-Karin; Gkoutos, George; Greenaway, Simon; Glasl, Lisa; Goetz, Patrice; Da Cruz, Isabelle Goncalves; Götz, Alexander; Graw, Jochen; Guimond, Alain; Hans, Wolfgang; Hicks, Geoff; Hölter, Sabine M; Höfler, Heinz; Hancock, John M; Hoehndorf, Robert; Hough, Tertius; Houghton, Richard; Hurt, Anja; Ivandic, Boris; Jacobs, Hughes; Jacquot, Sylvie; Jones, Nora; Karp, Natasha A; Katus, Hugo A; Kitchen, Sharon; Klein-Rodewald, Tanja; Klingenspor, Martin; Klopstock, Thomas; Lalanne, Valerie; Leblanc, Sophie; Lengger, Christoph; le Marchand, Elise; Ludwig, Tonia; Lux, Aline; McKerlie, Colin; Maier, Holger; Mandel, Jean-Louis; Marschall, Susan; Mark, Manuel; Melvin, David G; Meziane, Hamid; Micklich, Kateryna; Mittelhauser, Christophe; Monassier, Laurent; Moulaert, David; Muller, Stéphanie; Naton, Beatrix; Neff, Frauke; Nolan, Patrick M; Nutter, Lauryl Mj; Ollert, Markus; Pavlovic, Guillaume; Pellegata, Natalia S; Peter, Emilie; Petit-Demoulière, Benoit; Pickard, Amanda; Podrini, Christine; Potter, Paul; Pouilly, Laurent; Puk, Oliver; Richardson, David; Rousseau, Stephane; Quintanilla-Fend, Leticia; Quwailid, Mohamed M; Racz, Ildiko; Rathkolb, Birgit; Riet, Fabrice; Rossant, Janet; Roux, Michel; Rozman, Jan; Ryder, Ed; Salisbury, Jennifer; Santos, Luis; Schäble, Karl-Heinz; Schiller, Evelyn; Schrewe, Anja; Schulz, Holger; Steinkamp, Ralf; Simon, Michelle; Stewart, Michelle; Stöger, Claudia; Stöger, Tobias; Sun, Minxuan; Sunter, David; Teboul, Lydia; Tilly, Isabelle; Tocchini-Valentini, Glauco P; Tost, Monica; Treise, Irina; Vasseur, Laurent; Velot, Emilie; Vogt-Weisenhorn, Daniela; Wagner, Christelle; Walling, Alison; Weber, Bruno; Wendling, Olivia; Westerberg, Henrik; Willershäuser, Monja; Wolf, Eckhard; Wolter, Anne; Wood, Joe; Wurst, Wolfgang; Yildirim, Ali Önder; Zeh, Ramona; Zimmer, Andreas; Zimprich, Annemarie; Holmes, Chris; Steel, Karen P; Herault, Yann; Gailus-Durner, Valérie; Mallon, Ann-Marie; Brown, Steve Dm

    2015-09-01

    The function of the majority of genes in the mouse and human genomes remains unknown. The mouse embryonic stem cell knockout resource provides a basis for the characterization of relationships between genes and phenotypes. The EUMODIC consortium developed and validated robust methodologies for the broad-based phenotyping of knockouts through a pipeline comprising 20 disease-oriented platforms. We developed new statistical methods for pipeline design and data analysis aimed at detecting reproducible phenotypes with high power. We acquired phenotype data from 449 mutant alleles, representing 320 unique genes, of which half had no previous functional annotation. We captured data from over 27,000 mice, finding that 83% of the mutant lines are phenodeviant, with 65% demonstrating pleiotropy. Surprisingly, we found significant differences in phenotype annotation according to zygosity. New phenotypes were uncovered for many genes with previously unknown function, providing a powerful basis for hypothesis generation and further investigation in diverse systems.

  2. FUNNEL-GSEA: FUNctioNal ELastic-net regression in time-course gene set enrichment analysis.

    Science.gov (United States)

    Zhang, Yun; Topham, David J; Thakar, Juilee; Qiu, Xing

    2017-07-01

    Gene set enrichment analyses (GSEAs) are widely used in genomic research to identify underlying biological mechanisms (defined by the gene sets), such as Gene Ontology terms and molecular pathways. There are two caveats in the currently available methods: (i) they are typically designed for group comparisons or regression analyses, which do not utilize temporal information efficiently in time-series of transcriptomics measurements; and (ii) genes overlapping in multiple molecular pathways are considered multiple times in hypothesis testing. We propose an inferential framework for GSEA based on functional data analysis, which utilizes the temporal information based on functional principal component analysis, and disentangles the effects of overlapping genes by a functional extension of the elastic-net regression. Furthermore, the hypothesis testing for the gene sets is performed by an extension of Mann-Whitney U test which is based on weighted rank sums computed from correlated observations. By using both simulated datasets and a large-scale time-course gene expression data on human influenza infection, we demonstrate that our method has uniformly better receiver operating characteristic curves, and identifies more pathways relevant to immune-response to human influenza infection than the competing approaches. The methods are implemented in R package FUNNEL, freely and publicly available at: https://github.com/yunzhang813/FUNNEL-GSEA-R-Package . xing_qiu@urmc.rochester.edu or juilee_thakar@urmc.rochester.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.

  3. Functional analysis of the two Brassica AP3 genes involved in apetalous and stamen carpelloid phenotypes.

    Directory of Open Access Journals (Sweden)

    Yanfeng Zhang

    Full Text Available The Arabidopsis homeotic genes APETALA3 (AP3 and PISTILLATA (PI are B genes which encode MADS-box transcription factors and specify petal and stamen identities. In the current study, the stamen carpelloid (SC mutants, HGMS and AMS, of B. rapa and B. napus were investigated and two types of AP3 genes, B.AP3.a and B.AP3.b, were functional characterized. B.AP3.a and B.AP3.b share high similarity in amino acid sequences except for 8 residues difference located at the C-terminus. Loss of this 8 residues in B.AP3.b led to the change of PI-derived motifs. Meanwhile, B.AP3.a specified petal and stamen development, whereas B.AP3.b only specified stamen development. In B. rapa, the mutations of both genes generated the SC mutant HGMS. In B. napus that contained two B.AP3.a and two B.AP3.b, loss of the two B.AP3.a functions was the key reason for the apetalous mutation, however, the loss-of-function in all four AP3 was related to the SC mutant AMS. We inferred that the 8 residues or the PI-derived motif in AP3 gene probably relates to petal formation.

  4. Functional Analysis of Genes in the rfb Locus of Leptospira borgpetersenii Serovar Hardjo Subtype Hardjobovis

    OpenAIRE

    Bulach, Dieter M.; Kalambaheti, Thareerat; de la Peña-Moctezuma, Alejandro; Adler, Ben

    2000-01-01

    Lipopolysaccharide (LPS) is a key antigen in immunity to leptospirosis. Its biosynthesis requires enzymes for the biosynthesis and polymerization of nucleotide sugars and the transport through and attachment to the bacterial membrane. The genes encoding these functions are commonly clustered into loci; for Leptospira borgpetersenii serovar Hardjo subtype Hardjobovis, this locus, named rfb, spans 36.7 kb and contains 31 open reading frames, of which 28 have been assigned putative functions on ...

  5. Gene Function Analysis in the Ubiquitous Human Commensal and Pathogen Malassezia Genus.

    Science.gov (United States)

    Ianiri, Giuseppe; Averette, Anna F; Kingsbury, Joanne M; Heitman, Joseph; Idnurm, Alexander

    2016-11-29

    The genus Malassezia includes 14 species that are found on the skin of humans and animals and are associated with a number of diseases. Recent genome sequencing projects have defined the gene content of all 14 species; however, to date, genetic manipulation has not been possible for any species within this genus. Here, we develop and then optimize molecular tools for the transformation of Malassezia furfur and Malassezia sympodialis using Agrobacterium tumefaciens delivery of transfer DNA (T-DNA) molecules. These T-DNAs can insert randomly into the genome. In the case of M. furfur, targeted gene replacements were also achieved via homologous recombination, enabling deletion of the ADE2 gene for purine biosynthesis and of the LAC2 gene predicted to be involved in melanin biosynthesis. Hence, the introduction of exogenous DNA and direct gene manipulation are feasible in Malassezia species. Species in the genus Malassezia are a defining component of the microbiome of the surface of mammals. They are also associated with a wide range of skin disease symptoms. Many species are difficult to culture in vitro, and although genome sequences are available for the species in this genus, it has not been possible to assess gene function to date. In this study, we pursued a series of possible transformation methods and identified one that allows the introduction of DNA into two species of Malassezia, including the ability to make targeted integrations into the genome such that genes can be deleted. This research opens a new direction in terms of now being able to analyze gene functions in this little understood genus. These tools will contribute to define the mechanisms that lead to the commensalism and pathogenicity in this group of obligate fungi that are predominant on the skin of mammals. Copyright © 2016 Ianiri et al.

  6. Construction Of A Novel Functional Bacterial Luciferase By Gene Fusion And Its Use As A Gene Marker In Low Light Video Image Analysis.

    Science.gov (United States)

    Escher, Alan P.; O'Kane, Dennis J.; Lee, John W.; Langridge, W. H.; Szalay, A. A.

    1989-12-01

    We have engineered a two subunit luciferase enzyme into a single functional polypeptide chain using site specific mutagenesis. We have determined, using low light video imaging, that the activity of this novel enzyme is similar to wild type luciferase when synthesized at low temperatures (15-20°C), but that it is sensitive in vivo to higher temperatures. We have used the gene encoding the monomeric bacterial luciferase as a gene marker in prokaryotic and eukaryotic organisms. Combined with low light video image analysis, it is a practical and powerful tool for quantitatively monitoring gene expression in vivo.

  7. Functional analysis

    CERN Document Server

    Kantorovich, L V

    1982-01-01

    Functional Analysis examines trends in functional analysis as a mathematical discipline and the ever-increasing role played by its techniques in applications. The theory of topological vector spaces is emphasized, along with the applications of functional analysis to applied analysis. Some topics of functional analysis connected with applications to mathematical economics and control theory are also discussed. Comprised of 18 chapters, this book begins with an introduction to the elements of the theory of topological spaces, the theory of metric spaces, and the theory of abstract measure space

  8. Cloning of noggin gene from hydra and analysis of its functional conservation using Xenopus laevis embryos.

    Science.gov (United States)

    Chandramore, Kalpana; Ito, Yuzuro; Takahashi, Shuji; Asashima, Makoto; Ghaskadbi, Surendra

    2010-01-01

    Hydra, a member of phylum Cnidaria that arose early in evolution, is endowed with a defined axis, organized nervous system, and active behavior. It is a powerful model system for the elucidation of evolution of developmental mechanisms in animals. Here, we describe the identification and cloning of noggin-like gene from hydra. Noggin is a secreted protein involved at multiple stages of vertebrate embryonic development including neural induction and is known to exert its effects by inhibiting the bone morphogenetic protein (BMP)-signaling pathway. Sequence analysis revealed that hydra Noggin shows considerable similarity with its orthologs at the amino acid level. When microinjected in the early Xenopus embryos, hydra noggin mRNA induced a secondary axis in 100% of the injected embryos, demonstrating functional conservation of hydra noggin in vertebrates. This was further confirmed by the partial rescue of Xenopus embryos by hydra noggin mRNA from UV-induced ventralization. By using animal cap assay in Xenopus embryos, we demonstrate that these effects of hydra noggin in Xenopus embryos are because of inhibition of BMP signaling by Noggin. Our data indicate that BMP/Noggin antagonism predates the bilaterian divergence and is conserved during the evolution.

  9. Cloning and functional analysis of 5'-upstream region of the Pokemon gene.

    Science.gov (United States)

    Yang, Yutao; Zhou, Xiaowei; Zhu, Xudong; Zhang, Chuanfu; Yang, Zhixin; Xu, Long; Huang, Peitang

    2008-04-01

    Pokemon, the POK erythroid myeloid ontogenic factor, not only regulates the expression of many genes, but also plays an important role in cell tumorigenesis. To investigate the molecular mechanism regulating expression of the Pokemon gene in humans, its 5'-upstream region was cloned and analyzed. Transient analysis revealed that the Pokemon promoter is constitutive. Deletion analysis and a DNA decoy assay indicated that the NEG-U and NEG-D elements were involved in negative regulation of the Pokemon promoter, whereas the POS-D element was mainly responsible for its strong activity. Electrophoretic mobility shift assays suggested that the NEG-U, NEG-D and POS-D elements were specifically bound by the nuclear extract from A549 cells in vitro. Mutation analysis demonstrated that cooperation of the NEG-U and NEG-D elements led to negative regulation of the Pokemon promoter. Moreover, the NEG-U and NEG-D elements needed to be an appropriate distance apart in the Pokemon promoter in order to cooperate. Taken together, our results elucidate the mechanism underlying the regulation of Pokemon gene transcription, and also define a novel regulatory sequence that may be used to decrease expression of the Pokemon gene in cancer gene therapy.

  10. Functional Analysis of the Brassica napus L. Phytoene Synthase (PSY) Gene Family

    Science.gov (United States)

    López-Emparán, Ada; Quezada-Martinez, Daniela; Zúñiga-Bustos, Matías; Cifuentes, Víctor; Iñiguez-Luy, Federico; Federico, María Laura

    2014-01-01

    Phytoene synthase (PSY) has been shown to catalyze the first committed and rate-limiting step of carotenogenesis in several crop species, including Brassica napus L. Due to its pivotal role, PSY has been a prime target for breeding and metabolic engineering the carotenoid content of seeds, tubers, fruits and flowers. In Arabidopsis thaliana, PSY is encoded by a single copy gene but small PSY gene families have been described in monocot and dicotyledonous species. We have recently shown that PSY genes have been retained in a triplicated state in the A- and C-Brassica genomes, with each paralogue mapping to syntenic locations in each of the three “Arabidopsis-like” subgenomes. Most importantly, we have shown that in B. napus all six members are expressed, exhibiting overlapping redundancy and signs of subfunctionalization among photosynthetic and non photosynthetic tissues. The question of whether this large PSY family actually encodes six functional enzymes remained to be answered. Therefore, the objectives of this study were to: (i) isolate, characterize and compare the complete protein coding sequences (CDS) of the six B. napus PSY genes; (ii) model their predicted tridimensional enzyme structures; (iii) test their phytoene synthase activity in a heterologous complementation system and (iv) evaluate their individual expression patterns during seed development. This study further confirmed that the six B. napus PSY genes encode proteins with high sequence identity, which have evolved under functional constraint. Structural modeling demonstrated that they share similar tridimensional protein structures with a putative PSY active site. Significantly, all six B. napus PSY enzymes were found to be functional. Taking into account the specific patterns of expression exhibited by these PSY genes during seed development and recent knowledge of PSY suborganellar localization, the selection of transgene candidates for metabolic engineering the carotenoid content of

  11. Functional analysis of genes in the rfb locus of Leptospira borgpetersenii serovar Hardjo subtype Hardjobovis.

    Science.gov (United States)

    Bulach, D M; Kalambaheti, T; de la Peña-Moctezuma, A; Adler, B

    2000-07-01

    Lipopolysaccharide (LPS) is a key antigen in immunity to leptospirosis. Its biosynthesis requires enzymes for the biosynthesis and polymerization of nucleotide sugars and the transport through and attachment to the bacterial membrane. The genes encoding these functions are commonly clustered into loci; for Leptospira borgpetersenii serovar Hardjo subtype Hardjobovis, this locus, named rfb, spans 36.7 kb and contains 31 open reading frames, of which 28 have been assigned putative functions on the basis of sequence similarity. Characterization of the function of these genes is hindered by the fact that it is not possible to construct isogenic mutant strains in Leptospira. We used two approaches to circumvent this problem. The first was to clone the entire locus into a heterologous host system and determine if a "recombinant" LPS or polysaccharide was synthesized in the new host. The second approach used putative functions to identify mutants in other bacterial species whose mutations might be complemented by genes on the leptospiral rfb locus. This approach was used to investigate the function of three genes in the leptospiral rfb locus and demonstrated function for orfH10, which complemented a wbpM strain of Pseudomonas aeruginosa, and orfH13, which complemented an rfbW strain of Vibrio cholerae. However, despite the similarity of OrfH11 to WecC, a wecC strain of E. coli was not complemented by orfH11. The predicted protein encoded by orfH8 is similar to GalE from a number of organisms. A Salmonella enterica serovar Typhimurium strain producing no GalE was used as a background in which orfH8 produced detectable GalE enzyme activity.

  12. Expression and functional analysis of genes encoding cytokinin receptor-like histidine kinase in maize (Zea mays L.).

    Science.gov (United States)

    Wang, Bo; Chen, Yanhong; Guo, Baojian; Kabir, Muhammad Rezaul; Yao, Yingyin; Peng, Huiru; Xie, Chaojie; Zhang, Yirong; Sun, Qixin; Ni, Zhongfu

    2014-08-01

    Cytokinin signaling is vital for plant growth and development which function via the two-component system (TCS). As one of the key component of TCS, transmembrane histidine kinases (HK) are encoded by a small gene family in plants. In this study, we focused on expression and functional analysis of cytokinin receptor-like HK genes (ZmHK) in maize. Firstly, bioinformatics analysis revealed that seven cloned ZmHK genes have different expression patterns during maize development. Secondly, ectopic expression by CaMV35S promoter in Arabidopsis further revealed that functional differentiation exists among these seven members. Among them, the ZmHK1a2-OX transgenic line has the lowest germination rate in the dark, ZmHK1-OX and ZmHK2a2-OX can delay leaf senescence, and seed size of ZmHK1-OX, ZmHK1a2-OX, ZmHK2-OX, ZmHK3b-OX and ZmHK2a2-OX was obviously reduced as compared to wild type. Additionally, ZmHK genes play opposite roles in shoot and root development; all ZmHK-OX transgenic lines display obvious shorter root length and reduced number of lateral roots, but enhanced shoot development compared with the wild type. Most notably, Arabidopsis response regulator ARR5 gene was up-regulated in ZmHK1-OX, ZmHK1a2-OX, ZmHK2-OX, ZmHK3b-OX and ZmHK2a2-OX as compared to wild type. Although the causal link between ZmHK genes and cytokinin signaling pathway is still an area to be further elucidated, these findings reflected that the diversification of ZmHK genes expression patterns and functions occurred in the course of maize evolution, indicating that some ZmHK genes might play different roles during maize development.

  13. Phosphomannosylation and the Functional Analysis of the Extended Candida albicans MNN4-Like Gene Family

    Directory of Open Access Journals (Sweden)

    Roberto J. González-Hernández

    2017-11-01

    Full Text Available Phosphomannosylation is a modification of cell wall proteins that occurs in some species of yeast-like organisms, including the human pathogen Candida albicans. These modified mannans confer a negative charge to the wall, which is important for the interactions with phagocytic cells of the immune systems and cationic antimicrobial peptides. In Saccharomyces cerevisiae, the synthesis of phosphomannan relies on two enzymes, the phosphomannosyltransferase Ktr6 and its positive regulator Mnn4. However, in C. albicans, at least three phosphomannosyltransferases, Mnn4, Mnt3 and Mnt5, participate in the addition of phosphomannan. In addition to MNN4, C. albicans has a MNN4-like gene family composed of seven other homologous members that have no known function. Here, using the classical mini-Ura-blaster approach and the new gene knockout CRISPR-Cas9 system for gene disruption, we generated mutants lacking single and multiple genes of the MNN4 family; and demonstrate that, although Mnn4 has a major impact on the phosphomannan content, MNN42 was also required for full protein phosphomannosylation. The reintroduction of MNN41, MNN42, MNN46, or MNN47 in a genetic background lacking MNN4 partially restored the phenotype associated with the mnn4Δ null mutant, suggesting that there is partial redundancy of function between some family members and that the dominant effect of MNN4 over other genes could be due to its relative abundance within the cell. We observed that additional copies of alleles number of any of the other family members, with the exception of MNN46, restored the phosphomannan content in cells lacking both MNT3 and MNT5. We, therefore, suggest that phosphomannosylation is achieved by three groups of proteins: [i] enzymes solely activated by Mnn4, [ii] enzymes activated by the dual action of Mnn4 and any of the products of other MNN4-like genes, with exception of MNN46, and [iii] activation of Mnt3 and Mnt5 by Mnn4 and Mnn46. Therefore

  14. Functional analysis of human hematopoietic stem cell gene expression using zebrafish.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available Although several reports have characterized the hematopoietic stem cell (HSC transcriptome, the roles of HSC-specific genes in hematopoiesis remain elusive. To identify candidate regulators of HSC fate decisions, we compared the transcriptome of human umbilical cord blood and bone marrow (CD34+(CD33-(CD38-Rho(lo(c-kit+ cells, enriched for hematopoietic stem/progenitor cells with (CD34+(CD33-(CD38-Rho(hi cells, enriched in committed progenitors. We identified 277 differentially expressed transcripts conserved in these ontogenically distinct cell sources. We next performed a morpholino antisense oligonucleotide (MO-based functional screen in zebrafish to determine the hematopoietic function of 61 genes that had no previously known function in HSC biology and for which a likely zebrafish ortholog could be identified. MO knock down of 14/61 (23% of the differentially expressed transcripts resulted in hematopoietic defects in developing zebrafish embryos, as demonstrated by altered levels of circulating blood cells at 30 and 48 h postfertilization and subsequently confirmed by quantitative RT-PCR for erythroid-specific hbae1 and myeloid-specific lcp1 transcripts. Recapitulating the knockdown phenotype using a second MO of independent sequence, absence of the phenotype using a mismatched MO sequence, and rescue of the phenotype by cDNA-based overexpression of the targeted transcript for zebrafish spry4 confirmed the specificity of MO targeting in this system. Further characterization of the spry4-deficient zebrafish embryos demonstrated that hematopoietic defects were not due to more widespread defects in the mesodermal development, and therefore represented primary defects in HSC specification, proliferation, and/or differentiation. Overall, this high-throughput screen for the functional validation of differentially expressed genes using a zebrafish model of hematopoiesis represents a major step toward obtaining meaningful information from global

  15. X-linked adrenoleukodystrophy: molecular and functional analysis of the ABCD1 gene in Argentinean patients.

    Directory of Open Access Journals (Sweden)

    Cyntia Anabel Amorosi

    Full Text Available X-linked adrenoleukodystrophy (X-ALD is an inherited metabolic disease associated with mutations in the ABCD1 gene that encodes an ATP-binding cassette transporter protein, ALDP. The disease is characterized by increased concentrations of very long-chain fatty acids (VLCFAs in plasma and in adrenal, testicular and nervous tissues, due to a defect in peroxisomal VLCFA β-oxidation. In the present study, we analyzed 10 male patients and 17 female carriers from 10 unrelated pedigrees with X-ALD from Argentina. By sequencing the ABCD1 we detected 9 different mutations, 8 of which were novel. These new mutations were verified by a combination of methods that included both functional (western blot and peroxisomal VLCFA β-oxidation and bioinformatics analysis. The spectrum of novel mutations consists of 3 frameshift (p.Ser284fs*16, p.Glu380Argfs*21 and p.Thr254Argfs*82; a deletion (p.Ser572_Asp575del; a splicing mutation (c.1081+5G>C and 3 missense mutations (p.Ala341Asp, p.His420Pro and p.Tyr547Cys. In one patient 2 changes were found: a known missense (p.His669Arg and an unpublished amino acid substitution (p.Ala19Ser. In vitro studies suggest that p.Ala19Ser is a polymorphism. Moreover, we identified two novel intronic polymorphisms and two amino acid polymorphisms. In conclusion, this study extends the spectrum of mutation in X-ALD and facilitates the identification of heterozygous females.

  16. X-linked adrenoleukodystrophy: molecular and functional analysis of the ABCD1 gene in Argentinean patients.

    Science.gov (United States)

    Amorosi, Cyntia Anabel; Myskóva, Helena; Monti, Mariela Roxana; Argaraña, Carlos Enrique; Morita, Masashi; Kemp, Stephan; Dodelson de Kremer, Raquel; Dvoráková, Lenka; Oller de Ramírez, Ana María

    2012-01-01

    X-linked adrenoleukodystrophy (X-ALD) is an inherited metabolic disease associated with mutations in the ABCD1 gene that encodes an ATP-binding cassette transporter protein, ALDP. The disease is characterized by increased concentrations of very long-chain fatty acids (VLCFAs) in plasma and in adrenal, testicular and nervous tissues, due to a defect in peroxisomal VLCFA β-oxidation. In the present study, we analyzed 10 male patients and 17 female carriers from 10 unrelated pedigrees with X-ALD from Argentina. By sequencing the ABCD1 we detected 9 different mutations, 8 of which were novel. These new mutations were verified by a combination of methods that included both functional (western blot and peroxisomal VLCFA β-oxidation) and bioinformatics analysis. The spectrum of novel mutations consists of 3 frameshift (p.Ser284fs*16, p.Glu380Argfs*21 and p.Thr254Argfs*82); a deletion (p.Ser572_Asp575del); a splicing mutation (c.1081+5G>C) and 3 missense mutations (p.Ala341Asp, p.His420Pro and p.Tyr547Cys). In one patient 2 changes were found: a known missense (p.His669Arg) and an unpublished amino acid substitution (p.Ala19Ser). In vitro studies suggest that p.Ala19Ser is a polymorphism. Moreover, we identified two novel intronic polymorphisms and two amino acid polymorphisms. In conclusion, this study extends the spectrum of mutation in X-ALD and facilitates the identification of heterozygous females.

  17. X-Linked Adrenoleukodystrophy: Molecular and Functional Analysis of the ABCD1 Gene in Argentinean Patients

    Science.gov (United States)

    Amorosi, Cyntia Anabel; Myskóva, Helena; Monti, Mariela Roxana; Argaraña, Carlos Enrique; Morita, Masashi; Kemp, Stephan; de Kremer, Raquel Dodelson; Dvoráková, Lenka; de Ramírez, Ana María Oller

    2012-01-01

    X-linked adrenoleukodystrophy (X-ALD) is an inherited metabolic disease associated with mutations in the ABCD1 gene that encodes an ATP-binding cassette transporter protein, ALDP. The disease is characterized by increased concentrations of very long-chain fatty acids (VLCFAs) in plasma and in adrenal, testicular and nervous tissues, due to a defect in peroxisomal VLCFA β-oxidation. In the present study, we analyzed 10 male patients and 17 female carriers from 10 unrelated pedigrees with X-ALD from Argentina. By sequencing the ABCD1 we detected 9 different mutations, 8 of which were novel. These new mutations were verified by a combination of methods that included both functional (western blot and peroxisomal VLCFA β-oxidation) and bioinformatics analysis. The spectrum of novel mutations consists of 3 frameshift (p.Ser284fs*16, p.Glu380Argfs*21 and p.Thr254Argfs*82); a deletion (p.Ser572_Asp575del); a splicing mutation (c.1081+5G>C) and 3 missense mutations (p.Ala341Asp, p.His420Pro and p.Tyr547Cys). In one patient 2 changes were found: a known missense (p.His669Arg) and an unpublished amino acid substitution (p.Ala19Ser). In vitro studies suggest that p.Ala19Ser is a polymorphism. Moreover, we identified two novel intronic polymorphisms and two amino acid polymorphisms. In conclusion, this study extends the spectrum of mutation in X-ALD and facilitates the identification of heterozygous females. PMID:23300730

  18. Molecular Characterization and Functional Analysis of Three Pathogenesis-Related Cytochrome P450 Genes from Bursaphelenchus xylophilus (Tylenchida: Aphelenchoidoidea

    Directory of Open Access Journals (Sweden)

    Xiao-Lu Xu

    2015-03-01

    Full Text Available Bursaphelenchus xylophilus, the causal agent of pine wilt disease, causes huge economic losses in pine forests. The high expression of cytochrome P450 genes in B. xylophilus during infection in P. thunbergii indicated that these genes had a certain relationship with the pathogenic process of B. xylophilus. Thus, we attempted to identify the molecular characterization and functions of cytochrome P450 genes in B. xylophilus. In this study, full-length cDNA of three cytochrome P450 genes, BxCYP33C9, BxCYP33C4 and BxCYP33D3 were first cloned from B. xylophilus using 3' and 5' RACE PCR amplification. Sequence analysis showed that all of them contained a highly-conserved cytochrome P450 domain. The characteristics of the three putative proteins were analyzed with bioinformatic methods. RNA interference (RNAi was used to assess the functions of BxCYP33C9, BxCYP33C4 and BxCYP33D3. The results revealed that these cytochrome P450 genes were likely to be associated with the vitality, dispersal ability, reproduction, pathogenicity and pesticide metabolism of B. xylophilus. This discovery confirmed the molecular characterization and functions of three cytochrome P450 genes from B. xylophilus and provided fundamental information in elucidating the molecular interaction mechanism between B. xylophilus and its host plant.

  19. In vivo analysis of Lrig genes reveals redundant and independent functions in the inner ear.

    Science.gov (United States)

    Del Rio, Tony; Nishitani, Allison M; Yu, Wei-Ming; Goodrich, Lisa V

    2013-01-01

    Lrig proteins are conserved transmembrane proteins that modulate a variety of signaling pathways from worm to humans. In mammals, there are three family members - Lrig1, Lrig2, and Lrig3--that are defined by closely related extracellular domains with a similar arrangement of leucine rich repeats and immunoglobulin domains. However, the intracellular domains show little homology. Lrig1 inhibits EGF signaling through internalization and degradation of ErbB receptors. Although Lrig3 can also bind ErbB receptors in vitro, it is unclear whether Lrig2 and Lrig3 exhibit similar functions to Lrig1. To gain insights into Lrig gene functions in vivo, we compared the expression and function of the Lrigs in the inner ear, which offers a sensitive system for detecting effects on morphogenesis and function. We find that all three family members are expressed in the inner ear throughout development, with Lrig1 and Lrig3 restricted to subsets of cells and Lrig2 expressed more broadly. Lrig1 and Lrig3 overlap prominently in the developing vestibular apparatus and simultaneous removal of both genes disrupts inner ear morphogenesis. This suggests that these two family members act redundantly in the otic epithelium. In contrast, although Lrig1 and Lrig2 are frequently co-expressed, Lrig1(-/-);Lrig2(-/-) double mutant ears show no enhanced structural abnormalities. At later stages, Lrig1 expression is sustained in non-sensory tissues, whereas Lrig2 levels are enhanced in neurons and sensory epithelia. Consistent with these distinct expression patterns, Lrig1 and Lrig2 mutant mice exhibit different forms of impaired auditory responsiveness. Notably, Lrig1(-/-);Lrig2(-/-) double mutant mice display vestibular deficits and suffer from a more severe auditory defect that is accompanied by a cochlear innervation phenotype not present in single mutants. Thus, Lrig genes appear to act both redundantly and independently, with Lrig2 emerging as the most functionally distinct family member.

  20. In vivo analysis of Lrig genes reveals redundant and independent functions in the inner ear.

    Directory of Open Access Journals (Sweden)

    Tony Del Rio

    Full Text Available Lrig proteins are conserved transmembrane proteins that modulate a variety of signaling pathways from worm to humans. In mammals, there are three family members - Lrig1, Lrig2, and Lrig3--that are defined by closely related extracellular domains with a similar arrangement of leucine rich repeats and immunoglobulin domains. However, the intracellular domains show little homology. Lrig1 inhibits EGF signaling through internalization and degradation of ErbB receptors. Although Lrig3 can also bind ErbB receptors in vitro, it is unclear whether Lrig2 and Lrig3 exhibit similar functions to Lrig1. To gain insights into Lrig gene functions in vivo, we compared the expression and function of the Lrigs in the inner ear, which offers a sensitive system for detecting effects on morphogenesis and function. We find that all three family members are expressed in the inner ear throughout development, with Lrig1 and Lrig3 restricted to subsets of cells and Lrig2 expressed more broadly. Lrig1 and Lrig3 overlap prominently in the developing vestibular apparatus and simultaneous removal of both genes disrupts inner ear morphogenesis. This suggests that these two family members act redundantly in the otic epithelium. In contrast, although Lrig1 and Lrig2 are frequently co-expressed, Lrig1(-/-;Lrig2(-/- double mutant ears show no enhanced structural abnormalities. At later stages, Lrig1 expression is sustained in non-sensory tissues, whereas Lrig2 levels are enhanced in neurons and sensory epithelia. Consistent with these distinct expression patterns, Lrig1 and Lrig2 mutant mice exhibit different forms of impaired auditory responsiveness. Notably, Lrig1(-/-;Lrig2(-/- double mutant mice display vestibular deficits and suffer from a more severe auditory defect that is accompanied by a cochlear innervation phenotype not present in single mutants. Thus, Lrig genes appear to act both redundantly and independently, with Lrig2 emerging as the most functionally distinct

  1. Functional analysis of the Theobroma cacao NPR1 gene in Arabidopsis.

    Science.gov (United States)

    Shi, Zi; Maximova, Siela N; Liu, Yi; Verica, Joseph; Guiltinan, Mark J

    2010-11-15

    The Arabidopsis thaliana NPR1 gene encodes a transcription coactivator (NPR1) that plays a major role in the mechanisms regulating plant defense response. After pathogen infection and in response to salicylic acid (SA) accumulation, NPR1 translocates from the cytoplasm into the nucleus where it interacts with other transcription factors resulting in increased expression of over 2000 plant defense genes contributing to a pathogen resistance response. A putative Theobroma cacao NPR1 cDNA was isolated by RT-PCR using degenerate primers based on homologous sequences from Brassica, Arabidopsis and Carica papaya. The cDNA was used to isolate a genomic clone from Theobroma cacao containing a putative TcNPR1 gene. DNA sequencing revealed the presence of a 4.5 kb coding region containing three introns and encoding a polypeptide of 591 amino acids. The predicted TcNPR1 protein shares 55% identity and 78% similarity to Arabidopsis NPR1, and contains each of the highly conserved functional domains indicative of this class of transcription factors (BTB/POZ and ankyrin repeat protein-protein interaction domains and a nuclear localization sequence (NLS)). To functionally define the TcNPR1 gene, we transferred TcNPR1 into an Arabidopsis npr1 mutant that is highly susceptible to infection by the plant pathogen Pseudomonas syringae pv. tomato DC3000. Driven by the constitutive CaMV35S promoter, the cacao TcNPR1 gene partially complemented the npr1 mutation in transgenic Arabidopsis plants, resulting in 100 fold less bacterial growth in a leaf infection assay. Upon induction with SA, TcNPR1 was shown to translocate into the nucleus of leaf and root cells in a manner identical to Arabidopsis NPR1. Cacao NPR1 was also capable of participating in SA-JA signaling crosstalk, as evidenced by the suppression of JA responsive gene expression in TcNPR1 overexpressing transgenic plants. Our data indicate that the TcNPR1 is a functional ortholog of Arabidopsis NPR1, and is likely to play a

  2. Functional analysis of the theobroma cacao NPR1 gene in arabidopsis

    Directory of Open Access Journals (Sweden)

    Verica Joseph

    2010-11-01

    Full Text Available Abstract Background The Arabidopsis thaliana NPR1 gene encodes a transcription coactivator (NPR1 that plays a major role in the mechanisms regulating plant defense response. After pathogen infection and in response to salicylic acid (SA accumulation, NPR1 translocates from the cytoplasm into the nucleus where it interacts with other transcription factors resulting in increased expression of over 2000 plant defense genes contributing to a pathogen resistance response. Results A putative Theobroma cacao NPR1 cDNA was isolated by RT-PCR using degenerate primers based on homologous sequences from Brassica, Arabidopsis and Carica papaya. The cDNA was used to isolate a genomic clone from Theobroma cacao containing a putative TcNPR1 gene. DNA sequencing revealed the presence of a 4.5 kb coding region containing three introns and encoding a polypeptide of 591 amino acids. The predicted TcNPR1 protein shares 55% identity and 78% similarity to Arabidopsis NPR1, and contains each of the highly conserved functional domains indicative of this class of transcription factors (BTB/POZ and ankyrin repeat protein-protein interaction domains and a nuclear localization sequence (NLS. To functionally define the TcNPR1 gene, we transferred TcNPR1 into an Arabidopsis npr1 mutant that is highly susceptible to infection by the plant pathogen Pseudomonas syringae pv. tomato DC3000. Driven by the constitutive CaMV35S promoter, the cacao TcNPR1 gene partially complemented the npr1 mutation in transgenic Arabidopsis plants, resulting in 100 fold less bacterial growth in a leaf infection assay. Upon induction with SA, TcNPR1 was shown to translocate into the nucleus of leaf and root cells in a manner identical to Arabidopsis NPR1. Cacao NPR1 was also capable of participating in SA-JA signaling crosstalk, as evidenced by the suppression of JA responsive gene expression in TcNPR1 overexpressing transgenic plants. Conclusion Our data indicate that the TcNPR1 is a functional

  3. Analysis of the robustness of network-based disease-gene prioritization methods reveals redundancy in the human interactome and functional diversity of disease-genes.

    Directory of Open Access Journals (Sweden)

    Emre Guney

    Full Text Available Complex biological systems usually pose a trade-off between robustness and fragility where a small number of perturbations can substantially disrupt the system. Although biological systems are robust against changes in many external and internal conditions, even a single mutation can perturb the system substantially, giving rise to a pathophenotype. Recent advances in identifying and analyzing the sequential variations beneath human disorders help to comprehend a systemic view of the mechanisms underlying various disease phenotypes. Network-based disease-gene prioritization methods rank the relevance of genes in a disease under the hypothesis that genes whose proteins interact with each other tend to exhibit similar phenotypes. In this study, we have tested the robustness of several network-based disease-gene prioritization methods with respect to the perturbations of the system using various disease phenotypes from the Online Mendelian Inheritance in Man database. These perturbations have been introduced either in the protein-protein interaction network or in the set of known disease-gene associations. As the network-based disease-gene prioritization methods are based on the connectivity between known disease-gene associations, we have further used these methods to categorize the pathophenotypes with respect to the recoverability of hidden disease-genes. Our results have suggested that, in general, disease-genes are connected through multiple paths in the human interactome. Moreover, even when these paths are disturbed, network-based prioritization can reveal hidden disease-gene associations in some pathophenotypes such as breast cancer, cardiomyopathy, diabetes, leukemia, parkinson disease and obesity to a greater extend compared to the rest of the pathophenotypes tested in this study. Gene Ontology (GO analysis highlighted the role of functional diversity for such diseases.

  4. Molecular cloning and functional analysis of two FAD2 genes from American grape (Vitis labrusca L.).

    Science.gov (United States)

    Lee, Kyeong-Ryeol; Kim, Sun Hee; Go, Young-Sam; Jung, Sung Min; Roh, Kyung Hee; Kim, Jong-Bum; Suh, Mi-Chung; Lee, Sukchan; Kim, Hyun Uk

    2012-11-10

    The synthesis of polyunsaturated fatty acids (PUFAs), the most abundant fatty acids in plants, begins with a reaction catalyzed by fatty acid desaturase 2 (FAD2; EC 1.3.1.35), also called microsomal oleate Δ12-desaturase. Since the FAD2 gene was first identified in Arabidopsis thaliana, FAD2 research has gained wide interest as the essential enzyme for synthesizing PUFA. Grapes are one of the most frequently cultivated fruits in the world, with most commercial growers cultivating Vitis vinifera and V. labrusca. Grapeseed oil contains a high proportion, 60-70% of linoleic acid (18:2). We cloned two putative FAD2 genes from V. labrusca cv. Campbell Early based on V. vinifera genome sequences. Deduced amino acid sequences of two putative genes showed that VlFAD2s show high similarity to Arabidopsis FAD2 and commonly contain six transmembrane domain, three histidine boxes and endoplasmic reticulum (ER) retrieval motif representing the characteristics of fatty acid desaturase. Phylogenetic analyses of various plant FAD2s showed that VlFAD2-1 and VlFAD2-2 are separately grouped with constitutive and seed-type FAD2s, respectively. Southern blot showed that one or two bands are found in each lane. Because Campbell Early is a hybrid cultivar, FAD2-1 and FAD2-2 genes may exist as one copy in V. labrusca. Expression analysis in different tissues indicated that VlFAD2-1 is a constitutive gene but VlFAD2-2 is a seed-type gene. Complementation experiments of fad2-1 mutant Arabidopsis with VlFAD2-1 or VlFAD2-2 demonstrated that VlFAD2-1 and VlFAD2-2 can restore low PUFA proportion of fad2 to normal PUFA proportion. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Gene family structure, expression and functional analysis of HD-Zip III genes in angiosperm and gymnosperm forest trees.

    Science.gov (United States)

    Côté, Caroline L; Boileau, Francis; Roy, Vicky; Ouellet, Mario; Levasseur, Caroline; Morency, Marie-Josée; Cooke, Janice E K; Séguin, Armand; MacKay, John J

    2010-12-11

    Class III Homeodomain Leucine Zipper (HD-Zip III) proteins have been implicated in the regulation of cambium identity, as well as primary and secondary vascular differentiation and patterning in herbaceous plants. They have been proposed to regulate wood formation but relatively little evidence is available to validate such a role. We characterised and compared HD-Zip III gene family in an angiosperm tree, Populus spp. (poplar), and the gymnosperm Picea glauca (white spruce), representing two highly evolutionarily divergent groups. Full-length cDNA sequences were isolated from poplar and white spruce. Phylogenetic reconstruction indicated that some of the gymnosperm sequences were derived from lineages that diverged earlier than angiosperm sequences, and seem to have been lost in angiosperm lineages. Transcript accumulation profiles were assessed by RT-qPCR on tissue panels from both species and in poplar trees in response to an inhibitor of polar auxin transport. The overall transcript profiles HD-Zip III complexes in white spruce and poplar exhibited substantial differences, reflecting their evolutionary history. Furthermore, two poplar sequences homologous to HD-Zip III genes involved in xylem development in Arabidopsis and Zinnia were over-expressed in poplar plants. PtaHB1 over-expression produced noticeable effects on petiole and primary shoot fibre development, suggesting that PtaHB1 is involved in primary xylem development. We also obtained evidence indicating that expression of PtaHB1 affected the transcriptome by altering the accumulation of 48 distinct transcripts, many of which are predicted to be involved in growth and cell wall synthesis. Most of them were down-regulated, as was the case for several of the poplar HD-Zip III sequences. No visible physiological effect of over-expression was observed on PtaHB7 transgenic trees, suggesting that PtaHB1 and PtaHB7 likely have distinct roles in tree development, which is in agreement with the functions that

  6. Gene family structure, expression and functional analysis of HD-Zip III genes in angiosperm and gymnosperm forest trees

    Directory of Open Access Journals (Sweden)

    Cooke Janice EK

    2010-12-01

    , which is in agreement with the functions that have been assigned to close homologs in herbaceous plants. Conclusions This study provides an overview of HD-zip III genes related to woody plant development and identifies sequences putatively involved in secondary vascular growth in angiosperms and in gymnosperms. These gene sequences are candidate regulators of wood formation and could be a source of molecular markers for tree breeding related to wood properties.

  7. Gain-of-function analysis of poplar CLE genes in Arabidopsis by exogenous application and over-expression assays.

    Science.gov (United States)

    Liu, Yisen; Yang, Shaohui; Song, Yingjin; Men, Shuzhen; Wang, Jiehua

    2016-04-01

    Among 50 CLE gene family members in the Populus trichocarpa genome, three and six PtCLE genes encode a CLE motif sequence highly homologous to Arabidopsis CLV3 and TDIF peptides, respectively, which potentially make them functional equivalents. To test and compare their biological activity, we first chemically synthesized each dodecapeptide and analysed itsi n vitro bioactivity on Arabidopsis seedlings. Similarly, but to a different extent, three types of poplar CLV3-related peptides caused root meristem consumption, phyllotaxis disorder, anthocyanin accumulation and failure to enter the bolting stage. In comparison, application of two poplar TDIF-related peptides led to root length promotion in a dose-dependent manner with an even stronger effect observed for poplar TDIF-like peptide than TDIF. Next, we constructed CaMV35S:PtCLE transgenic plants for each of the nine PtCLE genes. Phenotypic abnormalities exemplified by arrested shoot apical meristem and abnormal flower structure were found to be more dominant and severe in 35S:PtCLV3 and 35S:PtCLV3-like2 lines than in the 35S:PtCLV3-like line. Disordered vasculature was detected in both stem and hypocotyl cross-sections in Arabidopsis plants over-expressing poplar TDIF-related genes with the most defective vascular patterning observed for TDIF2 and two TDIF-like genes. Phenotypic difference consistently observed in peptide application assay and transgenic analysis indicated the functional diversity of nine poplar PtCLE genes under investigation. This work represents the first report on the functional analysis of CLE genes in a tree species and constitutes a basis for further study of the CLE peptide signalling pathway in tree development. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Functional analysis of a novel hydrogen peroxide resistance gene in Lactobacillus casei strain Shirota.

    Science.gov (United States)

    Serata, Masaki; Kiwaki, Mayumi; Iino, Tohru

    2016-11-01

    Lactic acid bacteria have a variety of mechanisms for tolerance to oxygen and reactive oxygen species, and these mechanisms differ among species. Lactobacillus casei strain Shirota grows well under aerobic conditions, indicating that the various systems involved in oxidative stress resistance function in this strain. To elucidate the mechanism of oxidative stress resistance in L. casei strain Shirota, we examined the transcriptome response to oxygen or hydrogen peroxide exposure. We then focused on an uncharacterized gene that was found to be up-regulated by both oxygen and hydrogen peroxide stress; we named the gene hprA1 (hydrogen peroxide resistance gene). This gene is widely distributed among lactobacilli. We investigated the involvement of this gene in oxidative stress resistance, as well as the mechanism of tolerance to hydrogen peroxide. Growth of L. casei MS105, an hprA1-disrupted mutant, was not affected by oxygen stress, whereas the survival rate of MS105 after hydrogen peroxide treatment was markedly reduced compared to that of the wild-type. However, the activity of MS105 in eliminating hydrogen peroxide was similar to that of the wild-type. We cloned hprA1 from L. caseiShirota and purified recombinant HprA1 protein from Escherichia coli. We demonstrated that the recombinant HprA1 protein bound to iron and prevented the formation of a hydroxyl radical in vitro. Thus, HprA1 protein probably contributes to hydrogen peroxide tolerance in L. casei strain Shirota by binding to iron in the cells and preventing the formation of a hydroxyl radical.

  9. Evolution and functional analysis of the Pif97 gene of the Pacific oyster Crassostrea gigas

    Directory of Open Access Journals (Sweden)

    Xiaotong WANG, Xiaorui SONG, Tong WANG, Qihui ZHU, Guoying MIAO, Yuanxin CHEN, Xiaodong FANG, Huayong QUE, Li LI, Guofan ZHANG

    2013-02-01

    Full Text Available Mollusc shell matrix proteins (SMPs are important functional components embedded in the shell and play a role in shell formation. A SMP (Pif177 was identified previously from the nacreous layer of the Japanese pearl oyster Pinctada fucata, and its cleavage products (named pfPif97 and pfPif80 proteins were found to bind to the chitin framework and induce aragonite crystal formation and orient the c axis. In this study, a homologue of pfPif177 was cloned from the mantle of the Pacific oyster Crassostrea gigas, containing the homologue of pfPif97 only and not pfPif80. This finding hints at the large divergence in gene structure between the two species. This homologue (cgPif97 shares characteristics with pfPif97, and suggests that the biological functions of these two proteins may be similar. The expression pattern of cgPif97 in different tissues and development stages indicates that it may play an important role in shell formation of the adult oyster. The morphology of the inner shell surface was affected by injected siRNA of cgPif97 and the calcite laths of the shell became thinner and narrower when the siRNA dose increased, suggesting that the cgPif97 gene plays an important role in calcite shell formation in C. gigas. In conclusion, we found evidence that the Pif177 gene evolved very fast but still retains a similar function among species [Current Zoology 59 (1: 109–115, 2013].

  10. Identification and functional analysis of the gene cluster for fructan utilization in Prevotella intermedia.

    Science.gov (United States)

    Fuse, Haruka; Fukamachi, Haruka; Inoue, Mitsuko; Igarashi, Takeshi

    2013-02-25

    Fructanase enzymes hydrolyze the β-2,6 and β-2,1 linkages of levan and inulin fructans, respectively. We analyzed the influence of fructan on the growth of Prevotella intermedia. The growth of P. intermedia was enhanced by addition of inulin, implying that P. intermedia could also use inulin. Based on this finding, we identified and analyzed the genes encoding a putative fructanase (FruA), sugar transporter (FruB), and fructokinase (FruK) in the genome of strain ATCC25611. Transcript analysis by RT-PCR showed that the fruABK genes were co-transcribed as a single mRNA and semi-quantitative analysis confirmed that the fruA gene was induced in response to fructose and inulin. Recombinant FruA and FruK were purified and characterized biochemically. FruA strongly hydrolyzed inulin, with slight degradation of levan via an exo-type mechanism, revealing that FruA is an exo-β-d-fructanase. FruK converted fructose to fructose-6-phosphate in the presence of ATP, confirming that FruK is an ATP-dependent fructokinase. These results suggest that P. intermedia can utilize fructan as a carbon source for growth, and that the fructanase, sugar transporter, and fructokinase proteins we identified are involved in this fructan utilization. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Functional Analysis of Genes Comprising the Locus of Heat Resistance in Escherichia coli.

    Science.gov (United States)

    Mercer, Ryan; Nguyen, Oanh; Ou, Qixing; McMullen, Lynn; Gänzle, Michael G

    2017-10-15

    control of pathogens by current food processing and preparation techniques. The function of LHR-comprising genes and their regulation, however, remain largely unknown. This study defines a core complement of LHR-encoded proteins that are necessary for heat resistance and demonstrates that regulation of the LHR in E. coli requires a chromosomal copy of the gene encoding EvgA. This study provides insight into the function of a transmissible genomic island that allows otherwise heat-sensitive enteric bacteria, including pathogens, to lead a thermoduric lifestyle and thus contributes to the detection and control of heat-resistant enteric bacteria in food. Copyright © 2017 American Society for Microbiology.

  12. GeoChip-based analysis of microbial functional gene diversity in a landfill leachate-contaminated aquifer

    Science.gov (United States)

    Lu, Zhenmei; He, Zhili; Parisi, Victoria A.; Kang, Sanghoon; Deng, Ye; Van Nostrand, Joy D.; Masoner, Jason R.; Cozzarelli, Isabelle M.; Suflita, Joseph M.; Zhou, Jizhong

    2012-01-01

    The functional gene diversity and structure of microbial communities in a shallow landfill leachate-contaminated aquifer were assessed using a comprehensive functional gene array (GeoChip 3.0). Water samples were obtained from eight wells at the same aquifer depth immediately below a municipal landfill or along the predominant downgradient groundwater flowpath. Functional gene richness and diversity immediately below the landfill and the closest well were considerably lower than those in downgradient wells. Mantel tests and canonical correspondence analysis (CCA) suggested that various geochemical parameters had a significant impact on the subsurface microbial community structure. That is, leachate from the unlined landfill impacted the diversity, composition, structure, and functional potential of groundwater microbial communities as a function of groundwater pH, and concentrations of sulfate, ammonia, and dissolved organic carbon (DOC). Historical geochemical records indicate that all sampled wells chronically received leachate, and the increase in microbial diversity as a function of distance from the landfill is consistent with mitigation of the impact of leachate on the groundwater system by natural attenuation mechanisms.

  13. cDNA cloning and transcriptional controlling of a novel low dose radiation-induced gene and its function analysis

    International Nuclear Information System (INIS)

    Zhou Pingkun; Sui Jianli

    2002-01-01

    Objective: To clone a novel low dose radiation-induced gene (LRIGx) and study its function as well as its transcriptional changes after irradiation. Methods: Its cDNA was obtained by DDRT-PCR and RACE techniques. Northern blot hybridization was used to investigate the gene transcription. Bioinformatics was employed to analysis structure and function of this gene. Results: LRIGx cDNA was cloned. The sequence of LRIGx was identical to a DNA clone located in human chromosome 20 q 11.2-12 Bioinformatics analysis predicted an encoded protein with a conserved helicase domain. Northern analysis revealed a ∼8.5 kb transcript which was induced after 0.2 Gy as well as 0.02 Gy irradiation, and the transcript level was increased 5 times at 4 h after 0.2 Gy irradiation. The induced level of LRIGx transcript by 2.0 Gy high dose was lower than by 0.2 Gy. Conclusion: A novel low dose radiation-induced gene has been cloned. It encodes a protein with a conserved helicase domain that could involve in DNA metabolism in the cellular process of radiation response

  14. Functional analysis of the epidermal-specific MYB genes CAPRICE and WEREWOLF in Arabidopsis.

    Science.gov (United States)

    Tominaga, Rumi; Iwata, Mineko; Okada, Kiyotaka; Wada, Takuji

    2007-07-01

    Epidermis cell differentiation in Arabidopsis thaliana is a model system for understanding the developmental end state of plant cells. Two types of MYB transcription factors, R2R3-MYB and R3-MYB, are involved in cell fate determination. To examine the molecular basis of this process, we analyzed the functional relationship of the R2R3-type MYB gene WEREWOLF (WER) and the R3-type MYB gene CAPRICE (CPC). Chimeric constructs made from the R3 MYB regions of WER and CPC used in reciprocal complementation experiments showed that the CPC R3 region cannot functionally substitute for the WER R3 region in the differentiation of hairless cells. However, WER R3 can substantially substitute for CPC R3. There are no differences in yeast interaction assays of WER or WER chimera proteins with GLABRA3 (GL3) or ENHANCER OF GLABRA3 (EGL3). CPC and CPC chimera proteins also have similar activity in preventing GL3 WER and EGL3 WER interactions. Furthermore, we showed by gel mobility shift assays that WER chimera proteins do not bind to the GL2 promoter region. However, a CPC chimera protein, which harbors the WER R3 motif, still binds to the GL2 promoter region.

  15. Functional Analysis of the Epidermal-Specific MYB Genes CAPRICE and WEREWOLF in Arabidopsis[W

    Science.gov (United States)

    Tominaga, Rumi; Iwata, Mineko; Okada, Kiyotaka; Wada, Takuji

    2007-01-01

    Epidermis cell differentiation in Arabidopsis thaliana is a model system for understanding the developmental end state of plant cells. Two types of MYB transcription factors, R2R3-MYB and R3-MYB, are involved in cell fate determination. To examine the molecular basis of this process, we analyzed the functional relationship of the R2R3-type MYB gene WEREWOLF (WER) and the R3-type MYB gene CAPRICE (CPC). Chimeric constructs made from the R3 MYB regions of WER and CPC used in reciprocal complementation experiments showed that the CPC R3 region cannot functionally substitute for the WER R3 region in the differentiation of hairless cells. However, WER R3 can substantially substitute for CPC R3. There are no differences in yeast interaction assays of WER or WER chimera proteins with GLABRA3 (GL3) or ENHANCER OF GLABRA3 (EGL3). CPC and CPC chimera proteins also have similar activity in preventing GL3 WER and EGL3 WER interactions. Furthermore, we showed by gel mobility shift assays that WER chimera proteins do not bind to the GL2 promoter region. However, a CPC chimera protein, which harbors the WER R3 motif, still binds to the GL2 promoter region. PMID:17644729

  16. Molecular cloning and functional analysis of the Populus deltoides remorin gene PdREM.

    Science.gov (United States)

    Li, Shaofeng; Su, Xiaohua; Zhang, Bingyu; Huang, Qinjun; Hu, Zanmin; Lu, Mengzhu

    2013-10-01

    Remorins play vital roles in signal transduction, energy transformation, ion flow and transport in plants. Upregulation of remorins correlates with dehiscence and cell maturation; however, no studies have been performed to elucidate the function of remorins in tree species. In this study, a Populus deltoides (Marsh.) plasma membrane-binding protein remorin gene (PdREM) was cloned and characterized by investigating its expression pattern and creating transgenic hybrid poplar (P. davidiana Dode × P. bolleana Lauche) lines expressing sense or antisense PdREM. PdREM was specifically expressed in leaf buds, and immature and mature phloem in P. deltoides. Downregulation of PdREM increased plant height, stem diameter, number of leaves, size of the xylem and phloem zones and induced expression of cell wall biosynthesis- and microfibril angle (MFA)-related genes. Overexpression of PdREM retarded vegetative growth. PdREM may negatively regulate vascular growth by inhibiting secondary cell wall expansion in poplar. In addition, antisense PdREM transgenic poplar had a lower MFA, suggesting that PdREM might contribute to sheet strength and wood properties in poplar. This study sheds light on the molecular mechanism of PdREM in P. deltoides growth and development, and lays the foundation for future functional genomics research into wood formation and the genetic engineering of forest trees with improved wood quality traits.

  17. Functional and gene expression analysis of hTERT overexpressed endothelial cells

    Directory of Open Access Journals (Sweden)

    Haruna Takano

    2008-09-01

    Full Text Available Haruna Takano1, Satoshi Murasawa1,2, Takayuki Asahara1,2,31Institute of Biomedical Research and Innovation, Kobe, Japan; 2RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; 3Tokai University of School of Medicine, Tokai, JapanAbstract: Telomerase dysfunction contributes to cellular senescence. Recent advances indicate the importance of senescence in maintaining vascular cell function in vitro. Human telomerase reverse transcriptase (hTERT overexpression is thought to lead to resistance to apoptosis and oxidative stress. However, the mechanism in endothelial lineage cells is unclear. We tried to generate an immortal endothelial cell line from human umbilical vein endothelial cells using a no-virus system and examine the functional mechanisms of hTERT overexpressed endothelial cell senescence in vitro. High levels of hTERT genes and endothelial cell-specific markers were expressed during long-term culture. Also, angiogenic responses were observed in hTERT overexpressed endothelial cell. These cells showed a delay in senescence and appeared more resistant to stressed conditions. PI3K/Akt-related gene levels were enhanced in hTERT overexpressed endothelial cells. An up-regulated PI3K/Akt pathway caused by hTERT overexpression might contribute to anti-apoptosis and survival effects in endothelial lineage cells.Keywords: endothelial, telomerase, senescence, oxidative stress, anti-apoptosis, PI3K/Akt pathway

  18. Identification and functional analysis of mitogen-activated protein kinase kinase kinase (MAPKKK) genes in canola (Brassica napus L.).

    Science.gov (United States)

    Sun, Yun; Wang, Chen; Yang, Bo; Wu, Feifei; Hao, Xueyu; Liang, Wanwan; Niu, Fangfang; Yan, Jingli; Zhang, Hanfeng; Wang, Boya; Deyholos, Michael K; Jiang, Yuan-Qing

    2014-05-01

    Mitogen-activated protein kinase (MAPK) signalling cascades, consisting of three types of reversibly phosphorylated kinases (MAPKKK, MAPKK, and MAPK), are involved in important processes including plant immunity and hormone responses. The MAPKKKs comprise the largest family in the MAPK cascades, yet only a few of these genes have been associated with physiological functions, even in the model plant Arabidopsis thaliana. Canola (Brassica napus L.) is one of the most important oilseed crops in China and worldwide. To explore MAPKKK functions in biotic and abiotic stress responses in canola, 66 MAPKKK genes were identified and 28 of them were cloned. Phylogenetic analysis of these canola MAPKKKs with homologous genes from representative species classified them into three groups (A-C), comprising four MAPKKKs, seven ZIKs, and 17 Raf genes. A further 15 interaction pairs between these MAPKKKs and the downstream BnaMKKs were identified through a yeast two-hybrid assay. The interactions were further validated through bimolecular fluorescence complementation (BiFC) analysis. In addition, by quantitative real-time reverse transcription-PCR, it was further observed that some of these BnaMAPKKK genes were regulated by different hormone stimuli, abiotic stresses, or fungal pathogen treatments. Interestingly, two novel BnaMAPKKK genes, BnaMAPKKK18 and BnaMAPKKK19, which could elicit hypersensitive response (HR)-like cell death when transiently expressed in Nicotiana benthamiana leaves, were successfully identified. Moreover, it was found that BnaMAPKKK19 probably mediated cell death through BnaMKK9. Overall, the present work has laid the foundation for further characterization of this important MAPKKK gene family in canola.

  19. Functional analysis of the Phycomyces carRA gene encoding the enzymes phytoene synthase and lycopene cyclase.

    Directory of Open Access Journals (Sweden)

    Catalina Sanz

    Full Text Available Phycomyces carRA gene encodes a protein with two domains. Domain R is characterized by red carR mutants that accumulate lycopene. Domain A is characterized by white carA mutants that do not accumulate significant amounts of carotenoids. The carRA-encoded protein was identified as the lycopene cyclase and phytoene synthase enzyme by sequence homology with other proteins. However, no direct data showing the function of this protein have been reported so far. Different Mucor circinelloides mutants altered at the phytoene synthase, the lycopene cyclase or both activities were transformed with the Phycomyces carRA gene. Fully transcribed carRA mRNA molecules were detected by Northern assays in the transformants and the correct processing of the carRA messenger was verified by RT-PCR. These results showed that Phycomyces carRA gene was correctly expressed in Mucor. Carotenoids analysis in these transformants showed the presence of ß-carotene, absent in the untransformed strains, providing functional evidence that the Phycomyces carRA gene complements the M. circinelloides mutations. Co-transformation of the carRA cDNA in E. coli with different combinations of the carotenoid structural genes from Erwinia uredovora was also performed. Newly formed carotenoids were accumulated showing that the Phycomyces CarRA protein does contain lycopene cyclase and phytoene synthase activities. The heterologous expression of the carRA gene and the functional complementation of the mentioned activities are not very efficient in E. coli. However, the simultaneous presence of both carRA and carB gene products from Phycomyces increases the efficiency of these enzymes, presumably due to an interaction mechanism.

  20. Analysis of the function of the agouti gene in obesity and diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Mynatt, R.L.; Miltenberger, R.J.; Klebig, M.L. [and others

    1996-09-01

    This chapter discusses the agouti gene and dominant mutations in that gene that lead to agouti-induced obesity, and recent work with transgenic mice to elucidate the role of agouti in obesity. Agouti was cloned in 1992 by the lab of Rick Woychik at Oak Ridge National Laboratory, making it the first of many recently cloned mouse obesity genes. Sequence analysis predicted that mouse agouti is a secreted protein of 131 amino acids. The mature protein has a basic central region (lys57-arg85), a proline-rich domain (pro86-pro91) and a C-terminal region (cys 92-cys 13 1) containing 10 cysteine residues which form 5 disulfide bonds. The human homologue of agouti has also been cloned by the Woychik lab and maps to human chromosome 20q 11.2. Human agouti is 132 amino acids long and is 85% similar to the mouse agouti protein and is normally expressed in adipose tissue. The researchers have been able to recapitulate obesity, hyperinsulinemia, and hyperglycemia with the ubiquitous expression of agouti. Agouti expression in either liver and adipose tissue alone does not cause obesity, and there`s a dose-dependent effect of agouti on body weight, food efficiency, body temperature, and insulin and glucose levels.

  1. Functional analysis of Dof transcription factors controlling heading date and PPDK gene expression in rice

    NARCIS (Netherlands)

    Zhang, Yu

    2015-01-01

    Chapter 1 presents a general introduction to the factors involved in crop domestication and the specific role of transcription factors in this process. Chapter 2 describes the functional analysis of a Dof-type transcription factor, named OsDof24, from rice.chapter 3 describes the role of OsDof25 in

  2. Genetic and functional analysis of the cytK family of genes in Bacillus cereus.

    Science.gov (United States)

    Fagerlund, Annette; Ween, Ola; Lund, Terje; Hardy, Simon P; Granum, Per E

    2004-08-01

    CytK is a pore-forming toxin of Bacillus cereus that has been linked to a case of necrotic enteritis. PCR products of the expected size were generated with cytK primers in 13 of 29 strains. Six strains were PCR-positive for the related gene hly-II, which encodes haemolysin II, a protein that is 37 % identical to the original CytK. Five of the strains were positive for both genes. The DNA sequences of putative cytK genes from three positive strains were determined, and the deduced amino acid sequences were 89 % identical to that of the original CytK. The authors have designated this new cytK variant cytK-2, and refer to the original cytK as cytK-1. The CytK-2 proteins from these three strains were isolated, and their identity was verified by N-terminal sequencing. blast analysis using the cytK-2 gene sequences revealed very high homology with two cytK-2 sequences in the genomes of B. cereus strains ATCC 14579 and ATCC 10987. The differences between CytK-1 and the CytK-2 proteins were clustered to certain regions of the proteins. The isolated CytK-2 proteins were haemolytic and toxic towards human intestinal Caco-2 cells and Vero cells, although their toxicity was about 20 % of that of CytK-1. Both native and recombinant CytK-2 proteins from B. cereus 1230-88 were able to form pores in planar lipid bilayers, but the majority of the channels observed were of lower conductance than those created by CytK-1. It is likely that CytK-2 toxins contribute to the enterotoxicity of several strains of B. cereus, although not all of the CytK-2 toxins may be as harmful as the CytK-1 originally isolated.

  3. Discovery of genes related to insecticide resistance in Bactrocera dorsalis by functional genomic analysis of a de novo assembled transcriptome.

    Directory of Open Access Journals (Sweden)

    Ju-Chun Hsu

    Full Text Available Insecticide resistance has recently become a critical concern for control of many insect pest species. Genome sequencing and global quantization of gene expression through analysis of the transcriptome can provide useful information relevant to this challenging problem. The oriental fruit fly, Bactrocera dorsalis, is one of the world's most destructive agricultural pests, and recently it has been used as a target for studies of genetic mechanisms related to insecticide resistance. However, prior to this study, the molecular data available for this species was largely limited to genes identified through homology. To provide a broader pool of gene sequences of potential interest with regard to insecticide resistance, this study uses whole transcriptome analysis developed through de novo assembly of short reads generated by next-generation sequencing (NGS. The transcriptome of B. dorsalis was initially constructed using Illumina's Solexa sequencing technology. Qualified reads were assembled into contigs and potential splicing variants (isotigs. A total of 29,067 isotigs have putative homologues in the non-redundant (nr protein database from NCBI, and 11,073 of these correspond to distinct D. melanogaster proteins in the RefSeq database. Approximately 5,546 isotigs contain coding sequences that are at least 80% complete and appear to represent B. dorsalis genes. We observed a strong correlation between the completeness of the assembled sequences and the expression intensity of the transcripts. The assembled sequences were also used to identify large numbers of genes potentially belonging to families related to insecticide resistance. A total of 90 P450-, 42 GST-and 37 COE-related genes, representing three major enzyme families involved in insecticide metabolism and resistance, were identified. In addition, 36 isotigs were discovered to contain target site sequences related to four classes of resistance genes. Identified sequence motifs were also

  4. Functional Analysis of Deep Intronic SNP rs13438494 in Intron 24 of PCLO Gene

    Science.gov (United States)

    Seo, Seunghee; Takayama, Kanako; Uno, Kyosuke; Ohi, Kazutaka; Hashimoto, Ryota; Nishizawa, Daisuke; Ikeda, Kazutaka; Ozaki, Norio; Nabeshima, Toshitaka; Miyamoto, Yoshiaki; Nitta, Atsumi

    2013-01-01

    The single nucleotide polymorphism (SNP) rs13438494 in intron 24 of PCLO was significantly associated with bipolar disorder in a meta-analysis of genome-wide association studies. In this study, we performed functional minigene analysis and bioinformatics prediction of splicing regulatory sequences to characterize the deep intronic SNP rs13438494. We constructed minigenes with A and C alleles containing exon 24, intron 24, and exon 25 of PCLO to assess the genetic effect of rs13438494 on splicing. We found that the C allele of rs13438494 reduces the splicing efficiency of the PCLO minigene. In addition, prediction analysis of enhancer/silencer motifs using the Human Splice Finder web tool indicated that rs13438494 induces the abrogation or creation of such binding sites. Our results indicate that rs13438494 alters splicing efficiency by creating or disrupting a splicing motif, which functions by binding of splicing regulatory proteins, and may ultimately result in bipolar disorder in affected people. PMID:24167553

  5. Identification and functional analysis of a new glyphosate resistance gene from a fungus cDNA library.

    Science.gov (United States)

    Tao, Bo; Shao, Bai-Hui; Qiao, Yu-Xin; Wang, Xiao-Qin; Chang, Shu-Jun; Qiu, Li-Juan

    2017-08-01

    Glyphosate is a widely used broad spectrum herbicide; however, this limits its use once crops are planted. If glyphosate-resistant crops are grown, glyphosate can be used for weed control in crops. While several glyphosate resistance genes are used in commercial glyphosate tolerant crops, there is interest in identifying additional genes for glyphosate tolerance. This research constructed a high-quality cDNA library form the glyphosate-resistant fungus Aspergillus oryzae RIB40 to identify genes that may confer resistance to glyphosate. Using a medium containing glyphosate (120mM), we screened several clones from the library. Based on a nucleotide sequence analysis, we identified a gene of unknown function (GenBank accession number: XM_001826835.2) that encoded a hypothetical 344-amino acid protein. The gene was named MFS40. Its ORF was amplified to construct an expression vector, pGEX-4T-1-MFS40, to express the protein in Escherichia coli BL21. The gene conferred glyphosate tolerance to E. coli ER2799 cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Expression and function analysis of mitotic checkpoint genes identifies TTK as a potential therapeutic target for human hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Xiao-Dong Liang

    Full Text Available The mitotic spindle checkpoint (SAC genes have been considered targets of anticancer therapies. Here, we sought to identify the attractive mitotic spindle checkpoint genes appropriate for human hepatocellular carcinoma (HCC therapies. Through expression profile analysis of 137 selected mitotic spindle checkpoint genes in the publicly available microarray datasets, we showed that 13 genes were dramatically up-regulated in HCC tissues compared to normal livers and adjacent non-tumor tissues. A role of the 13 genes in proliferation was evaluated by knocking them down via small interfering RNA (siRNA in HCC cells. As a result, several mitotic spindle checkpoint genes were required for maintaining the proliferation of HCC cells, demonstrated by cell viability assay and soft agar colony formation assay. Then we established sorafenib-resistant sublines of HCC cell lines Huh7 and HepG2. Intriguingly, increased TTK expression was significantly associated with acquired sorafenib-resistance in Huh7, HepG2 cells. More importantly, TTK was observably up-regulated in 46 (86.8% of 53 HCC specimens. A series of in vitro and in vivo functional experiment assays showed that TTK overexpression promoted cell proliferation, anchor-dependent colony formation and resistance to sorafenib of HCC cells; TTK knockdown restrained cell growth, soft agar colony formation and resistance to sorafenib of HCC cells. Collectively, TTK plays an important role in proliferation and sorafenib resistance and could act as a potential therapeutic target for human hepatocellular carcinoma.

  7. Functional annotation of rheumatoid arthritis and osteoarthritis associated genes by integrative genome-wide gene expression profiling analysis.

    Directory of Open Access Journals (Sweden)

    Zhan-Chun Li

    Full Text Available BACKGROUND: Rheumatoid arthritis (RA and osteoarthritis (OA are two major types of joint diseases that share multiple common symptoms. However, their pathological mechanism remains largely unknown. The aim of our study is to identify RA and OA related-genes and gain an insight into the underlying genetic basis of these diseases. METHODS: We collected 11 whole genome-wide expression profiling datasets from RA and OA cohorts and performed a meta-analysis to comprehensively investigate their expression signatures. This method can avoid some pitfalls of single dataset analyses. RESULTS AND CONCLUSION: We found that several biological pathways (i.e., the immunity, inflammation and apoptosis related pathways are commonly involved in the development of both RA and OA. Whereas several other pathways (i.e., vasopressin-related pathway, regulation of autophagy, endocytosis, calcium transport and endoplasmic reticulum stress related pathways present significant difference between RA and OA. This study provides novel insights into the molecular mechanisms underlying this disease, thereby aiding the diagnosis and treatment of the disease.

  8. Functional gene array-based analysis of microbial community structure in groundwaters with a gradient of contaminant levels

    Energy Technology Data Exchange (ETDEWEB)

    Waldron, P.J.; Wu, L.; Van Nostrand, J.D.; Schadt, C.W.; Watson, D.B.; Jardine, P.M.; Palumbo, A.V.; Hazen, T.C.; Zhou, J.

    2009-06-15

    To understand how contaminants affect microbial community diversity, heterogeneity, and functional structure, six groundwater monitoring wells from the Field Research Center of the U.S. Department of Energy Environmental Remediation Science Program (ERSP; Oak Ridge, TN), with a wide range of pH, nitrate, and heavy metal contamination were investigated. DNA from the groundwater community was analyzed with a functional gene array containing 2006 probes to detect genes involved in metal resistance, sulfate reduction, organic contaminant degradation, and carbon and nitrogen cycling. Microbial diversity decreased in relation to the contamination levels of the wells. Highly contaminated wells had lower gene diversity but greater signal intensity than the pristine well. The microbial composition was heterogeneous, with 17-70% overlap between different wells. Metal-resistant and metal-reducing microorganisms were detected in both contaminated and pristine wells, suggesting the potential for successful bioremediation of metal-contaminated groundwaters. In addition, results of Mantel tests and canonical correspondence analysis indicate that nitrate, sulfate, pH, uranium, and technetium have a significant (p < 0.05) effect on microbial community structure. This study provides an overall picture of microbial community structure in contaminated environments with functional gene arrays by showing that diversity and heterogeneity can vary greatly in relation to contamination.

  9. Functional analysis of the Borrelia burgdorferi bba64 gene product in murine infection via tick infestation.

    Directory of Open Access Journals (Sweden)

    Toni G Patton

    Full Text Available Borrelia burgdorferi, the causative agent of Lyme borreliosis, is transmitted to humans from the bite of Ixodes spp. ticks. During the borrelial tick-to-mammal life cycle, B. burgdorferi must adapt to many environmental changes by regulating several genes, including bba64. Our laboratory recently demonstrated that the bba64 gene product is necessary for mouse infectivity when B. burgdorferi is transmitted by an infected tick bite, but not via needle inoculation. In this study we investigated the phenotypic properties of a bba64 mutant strain, including 1 replication during tick engorgement, 2 migration into the nymphal salivary glands, 3 host transmission, and 4 susceptibility to the MyD88-dependent innate immune response. Results revealed that the bba64 mutant's attenuated infectivity by tick bite was not due to a growth defect inside an actively feeding nymphal tick, or failure to invade the salivary glands. These findings suggested there was either a lack of spirochete transmission to the host dermis or increased susceptibility to the host's innate immune response. Further experiments showed the bba64 mutant was not culturable from mouse skin taken at the nymphal bite site and was unable to establish infection in MyD88-deficient mice via tick infestation. Collectively, the results of this study indicate that BBA64 functions at the salivary gland-to-host delivery interface of vector transmission and is not involved in resistance to MyD88-mediated innate immunity.

  10. Functional analysis of the genetic variability in the F7 gene promoter.

    Science.gov (United States)

    Sabater-Lleal, Maria; Chillón, Miguel; Howard, Tom E; Gil, Estel; Almasy, Laura; Blangero, John; Fontcuberta, Jordi; Soria, José Manuel

    2007-12-01

    The FVII level is considered a risk factor for cardiovascular disease. Some of the polymorphic differences in the promoter of the F7 gene have been associated with variations in FVII levels. However, linkage disequilibrium among those polymorphisms has made it difficult to pinpoint the true functional variants, so contradictory results have often appeared among various studies. We provide new findings of the effect of the polymorphisms in the promoter region of F7. In vitro transfection of 15 plasmids containing different combinations of F7 promoter polymorphisms was performed in HepG2 cells. We found that allelic variants -323ins10 and -122C strongly reduced promoter activity and that allelic variant -402A significantly increased promoter activity. We report the effect of a novel variant (-2989A) that significantly increases F7 expression levels. However, this novel allelic variant is in strong linkage disequilibrium with the -323ins10 variant in our Spanish population, which has a clear dominant effect over the -2989A variant and completely masks its effect. Our results have important implications for mapping genes affecting complex diseases using association studies. That is, they imply that true functional variants should be chosen to confirm the analyses and to ensure that the results can be reproduced in other populations. In addition, our results suggest that it would be informative to screen for the -2989A variant in other populations, since it may well be a risk factor for cardiovascular disease in populations where it does not appear with the decanucleotide insertion.

  11. Functional analysis of promoter variants in the microsomal triglyceride transfer protein (MTTP) gene.

    Science.gov (United States)

    Rubin, Diana; Schneider-Muntau, Alexandra; Klapper, Maja; Nitz, Inke; Helwig, Ulf; Fölsch, Ulrich R; Schrezenmeir, Jürgen; Döring, Frank

    2008-01-01

    The microsomal triglyceride transfer protein (MTTP) is required for the assembly and secretion of apolipoprotein B (apoB)-containing lipoproteins from the intestine and liver. According to this function, polymorphic sites in the MTTP gene showed associations to low-density lipoprotein (LDL) cholesterol and related traits of the metabolic syndrome. Here we studied the functional impact of common MTTP promoter polymorphisms rs1800804:T>C (-164T>C), rs1800803:A>T (-400A>T), and rs1800591:G>T (-493G>T) using gene-reporter assays in intestinal Caco-2 and liver Huh-7 cells. Significant results were obtained in Huh-7 cells. The common MTTP promoter haplotype -164T/-400A/-493G showed about two-fold lower activity than the rare haplotype -164C/-400T/-493T. MTTP promoter mutant constructs -164T/-400A/-493T and -164T/-400T/-493T exhibited similar activity than the common haplotype. Activities of mutants -164C/-400A/-493G and -164C/-400A/-493T resembled the rare MTTP promoter haplotype. Electrophoretic mobility shift assays (EMSAs) revealed higher binding capacity of the transcriptional factor Sterol regulatory element binding protein1a (SREBP1a) to the -164T probe in comparison to the -164C probe. In conclusion, our study indicates that the polymorphism -164T>C mediates different activities of common MTTP promoter haplotypes via SREBP1a. This suggested that the already described SREBP-dependent modulation of MTTP expression by diet is more effective in -164T than in -164C carriers. (c) 2007 Wiley-Liss, Inc.

  12. Functional genomic analysis supports conservation of function among cellulose synthase-like a gene family members and suggests diverse roles of mannans in plants

    DEFF Research Database (Denmark)

    Liepman, Aaron H; Nairn, C Joseph; Willats, William G T

    2007-01-01

    in insect cells, and each CslA protein catalyzed mannan and glucomannan synthase reactions in vitro. Microarray mining and quantitative real-time reverse transcription-polymerase chain reaction analysis demonstrated that transcripts of Arabidopsis and loblolly pine (Pinus taeda) CslA genes display tissue...... they are prevalent at cell junctions and in buds. Taken together, these results demonstrate that members of the CslA gene family from diverse plant species encode glucomannan synthases and support the hypothesis that mannans function in metabolic networks devoted to other cellular processes in addition to cell wall...

  13. Gene Level Meta-Analysis of Quantitative Traits by Functional Linear Models.

    Science.gov (United States)

    Fan, Ruzong; Wang, Yifan; Boehnke, Michael; Chen, Wei; Li, Yun; Ren, Haobo; Lobach, Iryna; Xiong, Momiao

    2015-08-01

    Meta-analysis of genetic data must account for differences among studies including study designs, markers genotyped, and covariates. The effects of genetic variants may differ from population to population, i.e., heterogeneity. Thus, meta-analysis of combining data of multiple studies is difficult. Novel statistical methods for meta-analysis are needed. In this article, functional linear models are developed for meta-analyses that connect genetic data to quantitative traits, adjusting for covariates. The models can be used to analyze rare variants, common variants, or a combination of the two. Both likelihood-ratio test (LRT) and F-distributed statistics are introduced to test association between quantitative traits and multiple variants in one genetic region. Extensive simulations are performed to evaluate empirical type I error rates and power performance of the proposed tests. The proposed LRT and F-distributed statistics control the type I error very well and have higher power than the existing methods of the meta-analysis sequence kernel association test (MetaSKAT). We analyze four blood lipid levels in data from a meta-analysis of eight European studies. The proposed methods detect more significant associations than MetaSKAT and the P-values of the proposed LRT and F-distributed statistics are usually much smaller than those of MetaSKAT. The functional linear models and related test statistics can be useful in whole-genome and whole-exome association studies. Copyright © 2015 by the Genetics Society of America.

  14. Gene expression analysis of zebrafish melanocytes, iridophores, and retinal pigmented epithelium reveals indicators of biological function and developmental origin.

    Directory of Open Access Journals (Sweden)

    Charles W Higdon

    Full Text Available In order to facilitate understanding of pigment cell biology, we developed a method to concomitantly purify melanocytes, iridophores, and retinal pigmented epithelium from zebrafish, and analyzed their transcriptomes. Comparing expression data from these cell types and whole embryos allowed us to reveal gene expression co-enrichment in melanocytes and retinal pigmented epithelium, as well as in melanocytes and iridophores. We found 214 genes co-enriched in melanocytes and retinal pigmented epithelium, indicating the shared functions of melanin-producing cells. We found 62 genes significantly co-enriched in melanocytes and iridophores, illustrative of their shared developmental origins from the neural crest. This is also the first analysis of the iridophore transcriptome. Gene expression analysis for iridophores revealed extensive enrichment of specific enzymes to coordinate production of their guanine-based reflective pigment. We speculate the coordinated upregulation of specific enzymes from several metabolic pathways recycles the rate-limiting substrate for purine synthesis, phosphoribosyl pyrophosphate, thus constituting a guanine cycle. The purification procedure and expression analysis described here, along with the accompanying transcriptome-wide expression data, provide the first mRNA sequencing data for multiple purified zebrafish pigment cell types, and will be a useful resource for further studies of pigment cell biology.

  15. Heterologous expression and transcript analysis of gibberellin biosynthetic genes of grasses reveals novel functionality in the GA3ox family.

    Science.gov (United States)

    Pearce, Stephen; Huttly, Alison K; Prosser, Ian M; Li, Yi-dan; Vaughan, Simon P; Gallova, Barbora; Patil, Archana; Coghill, Jane A; Dubcovsky, Jorge; Hedden, Peter; Phillips, Andrew L

    2015-06-05

    The gibberellin (GA) pathway plays a central role in the regulation of plant development, with the 2-oxoglutarate-dependent dioxygenases (2-ODDs: GA20ox, GA3ox, GA2ox) that catalyse the later steps in the biosynthetic pathway of particularly importance in regulating bioactive GA levels. Although GA has important impacts on crop yield and quality, our understanding of the regulation of GA biosynthesis during wheat and barley development remains limited. In this study we identified or assembled genes encoding the GA 2-ODDs of wheat, barley and Brachypodium distachyon and characterised the wheat genes by heterologous expression and transcript analysis. The wheat, barley and Brachypodium genomes each contain orthologous copies of the GA20ox, GA3ox and GA2ox genes identified in rice, with the exception of OsGA3ox1 and OsGA2ox5 which are absent in these species. Some additional paralogs of 2-ODD genes were identified: notably, a novel gene in the wheat B genome related to GA3ox2 was shown to encode a GA 1-oxidase, named as TaGA1ox-B1. This enzyme is likely to be responsible for the abundant 1β-hydroxylated GAs present in developing wheat grains. We also identified a related gene in barley, located in a syntenic position to TaGA1ox-B1, that encodes a GA 3,18-dihydroxylase which similarly accounts for the accumulation of unusual GAs in barley grains. Transcript analysis showed that some paralogs of the different classes of 2-ODD were expressed mainly in a single tissue or at specific developmental stages. In particular, TaGA20ox3, TaGA1ox1, TaGA3ox3 and TaGA2ox7 were predominantly expressed in developing grain. More detailed analysis of grain-specific gene expression showed that while the transcripts of biosynthetic genes were most abundant in the endosperm, genes encoding inactivation and signalling components were more highly expressed in the seed coat and pericarp. The comprehensive expression and functional characterisation of the multigene families encoding the 2-ODD

  16. Discovery, Annotation, and Functional Analysis of Long Noncoding RNAs Controlling Cell Cycle Gene Expression and Proliferation in Breast Cancer Cells

    Science.gov (United States)

    Sun, Miao; Gadad, Shrikanth S.; Kim, Dae-Seok; Kraus, W. Lee

    2015-01-01

    SUMMARY We describe a computational approach that integrates GRO-seq and RNA-seq data to annotate long noncoding RNAs (lncRNAs), with increased sensitivity for low abundance lncRNAs. We used this approach to characterize the lncRNA transcriptome in MCF-7 human breast cancer cells, including >700 previously unannotated lncRNAs. We then used information about the (1) transcription of lncRNA genes from GRO-seq, (2) steady-state levels of lncRNA transcripts in cell lines and patient samples from RNA-seq, and (3) histone modifications and factor binding at lncRNA gene promoters from ChIP-seq to explore lncRNA gene structure and regulation, as well as lncRNA transcript stability, regulation, and function. Functional analysis of selected lncRNAs with altered expression in breast cancers revealed roles in cell proliferation, regulation of an E2F-dependent cell cycle gene expression program, and estrogen-dependent mitogenic growth. Collectively, our studies demonstrate the use of an integrated genomic and molecular approach to identify and characterize growth-regulating lncRNAs in cancers. PMID:26236012

  17. Cloning and Expression Analysis of Vvlcc3, a Novel and Functional Laccase Gene Possibly Involved in Stipe Elongation

    Directory of Open Access Journals (Sweden)

    Yuanping Lu

    2015-12-01

    Full Text Available Volvariella volvacea, usually harvested in its egg stage, is one of the most popular mushrooms in Asia. The rapid transition from the egg stage to elongation stage, during which the stipe stretches to almost full length leads to the opening of the cap and rupture of the universal veil, and is considered to be one of the main factors that negatively impacts the yield and value of V. volvacea. Stipe elongation is a common phenomenon in mushrooms; however, the mechanisms, genes and regulation involved in stipe elongation are still poorly understood. In order to study the genes related to the stipe elongation, we analyzed the transcription of laccase genes in stipe tissue of V. volvacea, as some laccases have been suggested to be involved in stipe elongation in Flammulina velutipes. Based on transcription patterns, the expression of Vvlcc3 was found to be the highest among the 11 laccase genes. Moreover, phylogenetic analysis showed that VvLCC3 has a high degree of identity with other basidiomycete laccases. Therefore, we selected and cloned a laccase gene, named Vvlcc3, a cDNA from V. volvacea, and expressed the cDNA in Pichia pastoris. The presence of the laccase signature L1-L4 on the deduced protein sequence indicates that the gene encodes a laccase. Phylogenetic analysis showed that VvLCC3 clusters with Coprinopsis cinerea laccases. The ability to catalyze ABTS (2,2’-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid oxidation proved that the product of the Vvlcc3 gene was a functional laccase. We also found that the expression of the Vvlcc3 gene in V. volvacea increased during button stage to the elongation stage; it reached its peak in the elongation stage, and then decreased in the maturation stage, which was similar to the trend in the expression of Fv-lac3 and Fv-lac5 in F. velutipes stipe tissue. The similar trend in expression level of these laccase genes of F. velutipes suggested that this gene could be involved in stipe elongation in V

  18. Identification of a tyrosinase gene and its functional analysis in melanin synthesis of Pteria penguin.

    Science.gov (United States)

    Yu, Feifei; Pan, Zhenni; Qu, Bingliang; Yu, Xiangyong; Xu, Kaihang; Deng, Yuewen; Liang, Feilong

    2018-02-26

    Tyrosinase is a key rate-limiting enzyme in melanin synthesis. In this study, a new tyrosinase gene (Tyr) was identified from Pteria penguin and its effect on melanin synthesis was deliberated by RNA interference (RNAi). The cDNA of PpTyr was 1728 bp long, containing a 5'untranslated region (UTR) of 11 bp, a 3'UTR of 295 bp, and an open reading fragment of 1422 bp encoding 473 amino acids. Amino acid alignment showed PpTyr had the highest (50%) identity to tyrosinase-like protein 1 from Pinctada fucata. Phylogenetic tree analysis classified PpTyr into α-subclass of type-3 copper protein. Tissue expression analysis indicated that PpTyr was highly expressed in mantle, a nacre formation related tissue. After PpTyr RNA interference, PpTyr mRNA was significantly inhibited by 71.0% (P PDCA (pyrrole-2, 3-dicarboxylic acid) and PTCA (pyrrole-2,3,5-tricarboxylic acid), as main markers for eumelanin, was sharply decreased by 66.6% after PpTyr RNAi (P PDCA was also obviously decreased from 20.1% to 13.9%. This indicated that tyrosinase played a key role in melanin synthesis and color formation of P. penguin. Copyright © 2017. Published by Elsevier B.V.

  19. Fine mapping and functional analysis of the multiple sclerosis risk gene CD6.

    Directory of Open Access Journals (Sweden)

    Bhairavi Swaminathan

    Full Text Available CD6 has recently been identified and validated as risk gene for multiple sclerosis (MS, based on the association of a single nucleotide polymorphism (SNP, rs17824933, located in intron 1. CD6 is a cell surface scavenger receptor involved in T-cell activation and proliferation, as well as in thymocyte differentiation. In this study, we performed a haptag SNP screen of the CD6 gene locus using a total of thirteen tagging SNPs, of which three were non-synonymous SNPs, and replicated the recently reported GWAS SNP rs650258 in a Spanish-Basque collection of 814 controls and 823 cases. Validation of the six most strongly associated SNPs was performed in an independent collection of 2265 MS patients and 2600 healthy controls. We identified association of haplotypes composed of two non-synonymous SNPs [rs11230563 (R225W and rs2074225 (A257V] in the 2(nd SRCR domain with susceptibility to MS (P max(T permutation = 1×10(-4. The effect of these haplotypes on CD6 surface expression and cytokine secretion was also tested. The analysis showed significantly different CD6 expression patterns in the distinct cell subsets, i.e. - CD4(+ naïve cells, P = 0.0001; CD8(+ naïve cells, P<0.0001; CD4(+ and CD8(+ central memory cells, P = 0.01 and 0.05, respectively; and natural killer T (NKT cells, P = 0.02; with the protective haplotype (RA showing higher expression of CD6. However, no significant changes were observed in natural killer (NK cells, effector memory and terminally differentiated effector memory T cells. Our findings reveal that this new MS-associated CD6 risk haplotype significantly modifies expression of CD6 on CD4(+ and CD8(+ T cells.

  20. Fine Mapping and Functional Analysis of the Multiple Sclerosis Risk Gene CD6

    Science.gov (United States)

    Swaminathan, Bhairavi; Cuapio, Angélica; Alloza, Iraide; Matesanz, Fuencisla; Alcina, Antonio; García-Barcina, Maria; Fedetz, Maria; Fernández, Óscar; Lucas, Miguel; Órpez, Teresa; Pinto-Medel, Mª Jesus; Otaegui, David; Olascoaga, Javier; Urcelay, Elena; Ortiz, Miguel A.; Arroyo, Rafael; Oksenberg, Jorge R.; Antigüedad, Alfredo; Tolosa, Eva; Vandenbroeck, Koen

    2013-01-01

    CD6 has recently been identified and validated as risk gene for multiple sclerosis (MS), based on the association of a single nucleotide polymorphism (SNP), rs17824933, located in intron 1. CD6 is a cell surface scavenger receptor involved in T-cell activation and proliferation, as well as in thymocyte differentiation. In this study, we performed a haptag SNP screen of the CD6 gene locus using a total of thirteen tagging SNPs, of which three were non-synonymous SNPs, and replicated the recently reported GWAS SNP rs650258 in a Spanish-Basque collection of 814 controls and 823 cases. Validation of the six most strongly associated SNPs was performed in an independent collection of 2265 MS patients and 2600 healthy controls. We identified association of haplotypes composed of two non-synonymous SNPs [rs11230563 (R225W) and rs2074225 (A257V)] in the 2nd SRCR domain with susceptibility to MS (P max(T) permutation = 1×10−4). The effect of these haplotypes on CD6 surface expression and cytokine secretion was also tested. The analysis showed significantly different CD6 expression patterns in the distinct cell subsets, i.e. – CD4+ naïve cells, P = 0.0001; CD8+ naïve cells, P<0.0001; CD4+ and CD8+ central memory cells, P = 0.01 and 0.05, respectively; and natural killer T (NKT) cells, P = 0.02; with the protective haplotype (RA) showing higher expression of CD6. However, no significant changes were observed in natural killer (NK) cells, effector memory and terminally differentiated effector memory T cells. Our findings reveal that this new MS-associated CD6 risk haplotype significantly modifies expression of CD6 on CD4+ and CD8+ T cells. PMID:23638056

  1. Meiotic Interactors of a Mitotic Gene TAO3 Revealed by Functional Analysis of its Rare Variant.

    Science.gov (United States)

    Gupta, Saumya; Radhakrishnan, Aparna; Nitin, Rachana; Raharja-Liu, Pandu; Lin, Gen; Steinmetz, Lars M; Gagneur, Julien; Sinha, Himanshu

    2016-08-09

    Studying the molecular consequences of rare genetic variants has the potential to identify novel and hitherto uncharacterized pathways causally contributing to phenotypic variation. Here, we characterize the functional consequences of a rare coding variant of TAO3, previously reported to contribute significantly to sporulation efficiency variation in Saccharomyces cerevisiae During mitosis, the common TAO3 allele interacts with CBK1-a conserved NDR kinase. Both TAO3 and CBK1 are components of the RAM signaling network that regulates cell separation and polarization during mitosis. We demonstrate that the role of the rare allele TAO3(4477C) in meiosis is distinct from its role in mitosis by being independent of ACE2-a RAM network target gene. By quantitatively measuring cell morphological dynamics, and expressing the TAO3(4477C) allele conditionally during sporulation, we show that TAO3 has an early role in meiosis. This early role of TAO3 coincides with entry of cells into meiotic division. Time-resolved transcriptome analyses during early sporulation identified regulators of carbon and lipid metabolic pathways as candidate mediators. We show experimentally that, during sporulation, the TAO3(4477C) allele interacts genetically with ERT1 and PIP2, regulators of the tricarboxylic acid cycle and gluconeogenesis metabolic pathways, respectively. We thus uncover a meiotic functional role for TAO3, and identify ERT1 and PIP2 as novel regulators of sporulation efficiency. Our results demonstrate that studying the causal effects of genetic variation on the underlying molecular network has the potential to provide a more extensive understanding of the pathways driving a complex trait. Copyright © 2016 Gupta et al.

  2. Cloning and functional analysis of succinate dehydrogenase gene PsSDHA in Phytophthora sojae.

    Science.gov (United States)

    Pan, Yuemin; Ye, Tao; Gao, Zhimou

    2017-07-01

    Succinate dehydrogenase (SDH) is one of the key enzymes of the tricarboxylic acid cycle (TCA cycle) and a proven target of fungicides for true fungi. To explore the roles of the SDHA gene in Phytophthora sojae, we first cloned PsSDHA to construct the PsSDHA silenced expression vector pHAM34-PsSDHA, and then utilized PEG to mediate the P. sojae protoplast transformation experiment. Through transformation screening, we obtained the silenced mutants A1 and A3, which have significant suppressive effect. Further study showed that the hyphae of the silenced mutant strains were shorter and more bifurcated; the growth of the silenced mutants was clearly inhibited in 10% V8 agar medium containing sodium chloride (NaCl), hydrogen peroxide (H 2 O 2 ) or Congo Red, respectively. The pathogenicity of the silenced mutants was significantly reduced compared with the wild-type strain and the mock. The results could help us better to understand the position and function of SDH in P. sojae and provide a proven target of fungicides for the oomycete. Copyright © 2017. Published by Elsevier Ltd.

  3. Genome-Wide Analysis of Soybean LATERAL ORGAN BOUNDARIES Domain-Containing Genes: A Functional Investigation of GmLBD12

    Directory of Open Access Journals (Sweden)

    Hui Yang

    2017-03-01

    Full Text Available Plant-specific ( genes play critical roles in various plant growth and development processes. However, the number and characteristics of genes in soybean [ (L. Merr.] remain unknown. Here, we identified 90 homologous genes in the soybean genome that phylogenetically clustered into two classes (I and II. The majority of the genes were evenly distributed across all 20 soybean chromosomes, and 77 (81.11% of them were detected in segmental duplicated regions. Furthermore, the exon–intron organization and motif composition for each were analyzed. A close phylogenetic relationship was identified between the soybean genes and 41 previously reported genes of different plants in the same group, providing insights into their putative functions. Expression analysis indicated that more than half of the genes were expressed, with the two gene classes showing differential tissue expression characteristics; in addition, they were differentially induced by biotic and abiotic stresses. To further explore the functions of genes in soybean, was selected for functional characterization. GmLBD12 was mainly localized to the nucleus and showed high expression in root and seed tissues. Overexpressing in (L. Heynh resulted in increases in lateral root (LR number and plant height. Quantitative real-time polymerase chain reaction (qRT-PCR analysis demonstrated that was induced by drought, salt, cold, indole acetic acid (IAA, abscisic acid (ABA, and salicylic acid SA treatments. This study provides the first comprehensive analysis of the soybean gene family and a valuable foundation for future functional studies of genes.

  4. Gene family structure, expression and functional analysis of HD-Zip III genes in angiosperm and gymnosperm forest trees

    OpenAIRE

    C?t?, Caroline L; Boileau, Francis; Roy, Vicky; Ouellet, Mario; Levasseur, Caroline; Morency, Marie-Jos?e; Cooke, Janice EK; S?guin, Armand; MacKay, John J

    2010-01-01

    Abstract Background Class III Homeodomain Leucine Zipper (HD-Zip III) proteins have been implicated in the regulation of cambium identity, as well as primary and secondary vascular differentiation and patterning in herbaceous plants. They have been proposed to regulate wood formation but relatively little evidence is available to validate such a role. We characterised and compared HD-Zip III gene family in an angiosperm tree, Populus spp. (poplar), and the gymnosperm Picea glauca (white spruc...

  5. Comparative gene expression analysis between coronary arteries and internal mammary arteries identifies a role for the TES gene in endothelial cell functions relevant to coronary artery disease.

    Science.gov (United States)

    Archacki, Stephen R; Angheloiu, George; Moravec, Christine S; Liu, Hui; Topol, Eric J; Wang, Qing Kenneth

    2012-03-15

    Coronary artery disease (CAD) is the leading cause of death worldwide. It has been established that internal mammary arteries (IMA) are resistant to the development of atherosclerosis, whereas left anterior descending (LAD) coronary arteries are athero-prone. The contrasting properties of these two arteries provide an innovative strategy to identify the genes that play important roles in the development of atherosclerosis. We carried out microarray analysis to identify genes differentially expressed between IMA and LAD. Twenty-nine genes showed significant differences in their expression levels between IMA and LAD, which included the TES gene encoding Testin. The role of TES in the cardiovascular system is unknown. Here we show that TES is involved in endothelial cell (EC) functions relevant to atherosclerosis. Western blot analysis showed higher TES expression in IMA than in LAD. Reverse transcription polymerase chain reaction and western blot analyses showed that TES was consistently and markedly down-regulated by more than 6-fold at both mRNA and protein levels in patients with CAD compared with controls without CAD (P= 0.000049). The data suggest that reduced TES expression is associated with the development of CAD. Knockdown of TES expression by small-interfering RNA promoted oxidized-LDL-mediated monocyte adhesion to ECs, EC migration and the transendothelial migration of monocytes, while the over-expression of TES in ECs blunted these processes. These results demonstrate association between reduced TES expression and CAD, establish a novel role for TES in EC functions and raise the possibility that reduced TES expression increases susceptibility to the development of CAD.

  6. Gene Function Analysis in the Ubiquitous Human Commensal and Pathogen Malassezia Genus

    Directory of Open Access Journals (Sweden)

    Giuseppe Ianiri

    2016-11-01

    Full Text Available The genus Malassezia includes 14 species that are found on the skin of humans and animals and are associated with a number of diseases. Recent genome sequencing projects have defined the gene content of all 14 species; however, to date, genetic manipulation has not been possible for any species within this genus. Here, we develop and then optimize molecular tools for the transformation of Malassezia furfur and Malassezia sympodialis using Agrobacterium tumefaciens delivery of transfer DNA (T-DNA molecules. These T-DNAs can insert randomly into the genome. In the case of M. furfur, targeted gene replacements were also achieved via homologous recombination, enabling deletion of the ADE2 gene for purine biosynthesis and of the LAC2 gene predicted to be involved in melanin biosynthesis. Hence, the introduction of exogenous DNA and direct gene manipulation are feasible in Malassezia species.

  7. Association between the Functional Polymorphism of Vascular Endothelial Growth Factor Gene and Breast Cancer: A Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Juan Li

    2015-01-01

    Full Text Available The vascular endothelial growth factor (VEGF gene single-nucleotide polymorphism involved in the regulation of the protein levels has been implicated in breast cancer. However, the published studies have produced contentious and controversial results. Herein, we performed a meta-analysis (from January to October 2013; to further evaluate the association between +936 C/T polymorphism and the risk of breast cancer. By searching the EMBASE, PubMed, and Web of Science databases, we identified a total of 12 case-control studies with 8,979 cancer patients and 9,180 healthy controls. The strength of the association was assessed using Odds Ratios (ORs with 95% Confidence Intervals (CI. We found no evidence indicating that the allelic model or the genotype models of +936 C/T polymorphism were associated with the risk of breast cancer in total population (ORCC vs. TT=1.01, 95% CI=0.96-1.06, Ph=1.00; ORCC+CT vs. TT=1.00, 95% CI=0.96-1.05, Ph=1.00; ORCC vs. CT+TT=1.02, 95% CI=0.98-1.07, Ph=0.94; OR allele C vs. allele T=1.01, 95% CI=0.98-1.04, Ph=0.99; ORCT vs. TT=1.01, 95% CI=0.93-1.09, Ph=1.00. Such lack of association with breast cancer was also observed in subgroup analyses according to ethnicity as well as in the analysis by source of controls. In conclusion, this meta-analysis suggests that the functionally important +936 C/T polymorphism may not be associated with breast cancer risk. Larger well-designed studies with gene-to-gene and gene-to-environment interactions are clearly required to validate the results further.

  8. Functional classification of genes using semantic distance and fuzzy clustering approach: evaluation with reference sets and overlap analysis.

    Science.gov (United States)

    Devignes, Marie-Dominique; Benabderrahmane, Sidahmed; Smaïl-Tabbone, Malika; Napoli, Amedeo; Poch, Olivier

    2012-01-01

    Functional classification aims at grouping genes according to their molecular function or the biological process they participate in. Evaluating the validity of such unsupervised gene classification remains a challenge given the variety of distance measures and classification algorithms that can be used. We evaluate here functional classification of genes with the help of reference sets: KEGG (Kyoto Encyclopaedia of Genes and Genomes) pathways and Pfam clans. These sets represent ground truth for any distance based on GO (Gene Ontology) biological process and molecular function annotations respectively. Overlaps between clusters and reference sets are estimated by the F-score method. We test our previously described IntelliGO semantic distance with hierarchical and fuzzy C-means clustering and we compare results with the state-of-the-art DAVID (Database for Annotation Visualisation and Integrated Discovery) functional classification method. Finally, study of best matching clusters to reference sets leads us to propose a set-difference method for discovering missing information.

  9. Whole exome sequencing coupled with unbiased functional analysis reveals new Hirschsprung disease genes

    NARCIS (Netherlands)

    Gui, H. (Hongsheng); Schriemer, D. (Duco); Cheng, W.W. (William W.); R.K. Chauhan (Rajendra); G. Antinolo; Berrios, C. (Courtney); Bleda, M. (Marta); A.S. Brooks (Alice); R.W.W. Brouwer (Rutger); A.J. Burns (Alan); Cherny, S.S. (Stacey S.); Dopazo, J. (Joaquin); B.J. Eggen (Bart); P. Griseri; Jalloh, B. (Binta); Le, T.-L. (Thuy-Linh); V.C.H. Lui (Vincent); Luzón-Toro, B. (Berta); I. Matera (Ivana); E. Ngan (Elly); A. Pelet (Anna); M. Ruiz-Ferrer (Macarena); P.C. Sham (Pak Chung); I.T. Shepherd (Iain); So, M.-T. (Man-Ting); Y. Sribudiani (Yunia); Tang, C.S.M. (Clara S.M.); M.C.G.N. van den hout (Mirjam); H.C. van der Linde (Herma); T.J. van Ham (Tjakko); van IJcken, W.F.J. (Wilfred F.J.); J.B. Verheij (Joke); J. Amiel (Jeanne); S. Borrego (Salud); I. Ceccherini (Isabella); A. Chakravarti (Aravinda); S. Lyonnet (Stanislas); Tam, P.K.H. (Paul K.H.); M. Garcia-Barcelo; R.M.W. Hofstra (Robert)

    2017-01-01

    textabstractBackground: Hirschsprung disease (HSCR), which is congenital obstruction of the bowel, results from a failure of enteric nervous system (ENS) progenitors to migrate, proliferate, differentiate, or survive within the distal intestine. Previous studies that have searched for genes

  10. Identification and functional analysis of Botrytis cinerea genes induced during infection of tomato

    NARCIS (Netherlands)

    Prins, T.

    2001-01-01

    Keyword(s): Botryotinia fuckeliana , grey mould, pathogenesis, tomato, differential gene expression, glutathione S-transferase, aspartic protease, ubiquitin

    In

  11. Molecular cloning and functional analysis of a blue light receptor gene MdCRY2 from apple (Malus domestica).

    Science.gov (United States)

    Li, Yuan-Yuan; Mao, Ke; Zhao, Cheng; Zhao, Xian-Yan; Zhang, Rui-Fen; Zhang, Hua-Lei; Shu, Huai-Rui; Hao, Yu-Jin

    2013-04-01

    MdCRY2 was isolated from apple fruit skin, and its function was analyzed in MdCRY2 transgenic Arabidopsis. The interaction between MdCRY2 and AtCOP1 was found by yeast two-hybrid and BiFC assays. Cryptochromes are blue/ultraviolet-A (UV-A) light receptors involved in regulating various aspects of plant growth and development. Investigations of the structure and functions of cryptochromes in plants have largely focused on Arabidopsis (Arabidopsis thaliana), tomato (Solanum lycopersicum), pea (Pisum sativum), and rice (Oryza sativa). However, no data on the function of CRY2 are available in woody plants. In this study, we isolated a cryptochrome gene, MdCRY2, from apple (Malus domestica). The deduced amino acid sequences of MdCRY2 contain the conserved N-terminal photolyase-related domain and the flavin adenine dinucleotide (FAD) binding domain, as well as the C-terminal DQXVP-acidic-STAES (DAS) domain. Relationship analysis indicates that MdCRY2 shows the highest similarity to the strawberry FvCRY protein. The expression of MdCRY2 is induced by blue/UV-A light, which represents a 48-h circadian rhythm. To investigate the function of MdCRY2, we overexpressed the MdCRY2 gene in a cry2 mutant and wild type (WT) Arabidopsis, assessed the phenotypes of the resulting transgenic plants, and found that MdCRY2 functions to regulate hypocotyl elongation, root growth, flower initiation, and anthocyanin accumulation. Furthermore, we examined the interaction between MdCRY2 and AtCOP1 using a yeast two-hybrid assay and a bimolecular fluorescence complementation assay. These data provide functional evidence for a role of blue/UV-A light-induced MdCRY2 in controlling photomorphogenesis in apple.

  12. Comprehensive analysis of transcript start sites in ly49 genes reveals an unexpected relationship with gene function and a lack of upstream promoters.

    Science.gov (United States)

    Gays, Frances; Koh, Alan S C; Mickiewicz, Katarzyna M; Aust, Jonathan G; Brooks, Colin G

    2011-03-31

    Comprehensive analysis of the transcription start sites of the Ly49 genes of C57BL/6 mice using the oligo-capping 5'-RACE technique revealed that the genes encoding the "missing self" inhibitory receptors, Ly49A, C, G, and I, were transcribed from multiple broad regions in exon 1, in the intron1/exon2 region, and upstream of exon -1b. Ly49E was also transcribed in this manner, and uniquely showed a transcriptional shift from exon1 to exon 2 when NK cells were activated in vitro with IL2. Remarkably, a large proportion of Ly49E transcripts was then initiated from downstream of the translational start codon. By contrast, the genes encoding Ly49B and Q in myeloid cells, the activating Ly49D and H receptors in NK cells, and Ly49F in activated T cells, were predominantly transcribed from a conserved site in a pyrimidine-rich region upstream of exon 1. An ∼200 bp fragment from upstream of the Ly49B start site displayed tissue-specific promoter activity in dendritic cell lines, but the corresponding upstream fragments from all other Ly49 genes lacked detectable tissue-specific promoter activity. In particular, none displayed any significant activity in a newly developed adult NK cell line that expressed multiple Ly49 receptors. Similarly, no promoter activity could be found in fragments upstream of intron1/exon2. Collectively, these findings reveal a previously unrecognized relationship between the pattern of transcription and the expression/function of Ly49 receptors, and indicate that transcription of the Ly49 genes expressed in lymphoid cells is achieved in a manner that does not require classical upstream promoters.

  13. Functional analysis of lipid metabolism genes in wine yeasts during alcoholic fermentation at low temperature

    Directory of Open Access Journals (Sweden)

    María López-Malo

    2014-10-01

    Full Text Available Wine produced by low-temperature fermentation is mostly considered to have improved sensory qualities. However few commercial wine strains available on the market are well-adapted to ferment at low temperature (10 – 15°C. The lipid metabolism of Saccharomyces cerevisiae plays a central role in low temperature adaptation. One strategy to modify lipid composition is to alter transcriptional activity by deleting or overexpressing the key genes of lipid metabolism. In a previous study, we identified the genes of the phospholipid, sterol and sphingolipid pathways, which impacted on growth capacity at low temperature. In the present study, we aimed to determine the influence of these genes on fermentation performance and growth during low-temperature wine fermentations. We analyzed the phenotype during fermentation at the low and optimal temperature of the lipid mutant and overexpressing strains in the background of a derivative commercial wine strain. The increase in the gene dosage of some of these lipid genes, e.g., PSD1, LCB3, DPL1 and OLE1, improved fermentation activity during low-temperature fermentations, thus confirming their positive role during wine yeast adaptation to cold. Genes whose overexpression improved fermentation activity at 12°C were overexpressed by chromosomal integration into commercial wine yeast QA23. Fermentations in synthetic and natural grape must were carried out by this new set of overexpressing strains. The strains overexpressing OLE1 and DPL1 were able to finish fermentation before commercial wine yeast QA23. Only the OLE1 gene overexpression produced a specific aroma profile in the wines produced with natural grape must.

  14. Insights into the Function of Long Noncoding RNAs in Sepsis Revealed by Gene Co-Expression Network Analysis

    Directory of Open Access Journals (Sweden)

    Diogo Vieira da Silva Pellegrina

    2017-01-01

    Full Text Available Sepsis is a major cause of death and its incidence and mortality increase exponentially with age. Most gene expression studies in sepsis have focused in protein-coding genes and the expression patterns, and potential roles of long noncoding RNAs (lncRNAs have not been investigated yet. In this study, we performed co-expression network analysis of protein-coding and lncRNAs measured in neutrophil granulocytes from adult and elderly septic patients, along with age-matched healthy controls. We found that the genes displaying highest network similarity are predominantly differently expressed in sepsis and are enriched in loci encoding proteins with structural or regulatory functions related to protein translation and mitochondrial energetic metabolism. A number of lncRNAs are strongly connected to genes from these pathways and may take part in regulatory loops that are perturbed in sepsis. Among those, the ribosomal pseudogenes RP11-302F12.1 and RPL13AP7 are differentially expressed and appear to have a regulatory role on protein translation in both the elderly and adults, and lncRNAs MALAT1, LINC00355, MYCNOS, and AC010970.2 display variable connection strength and inverted expression patterns between adult and elderly networks, suggesting that they are the best candidates to be further studied to understand the mechanisms by which the immune response is impaired by age. In summary, we report the expression of lncRNAs that are deregulated in patients with sepsis, including subsets that display hub properties in molecular pathways relevant to the disease pathogenesis and that may participate in gene expression regulatory circuits related to the poorer disease outcome observed in elderly subjects.

  15. Functional analysis of the ASTE11 gene from the dimorphic yeast Arxula adeninivorans

    International Nuclear Information System (INIS)

    El Fiki, A.; El Metabteb, G.; Boer, E.; Kunze, G.

    2010-01-01

    Arxula adeninivorans is dimorphic yeast with unusual biochemical and physiological characteristic. It is thermo- and osmo- resistance and it can use a wide range of carbon sources for growth. One kinase of the HOG pathway, the MAPKKK is encoded by ASTE11 gene which was isolated from A. adeninivorans. The aste11 mutant was achieved by gene disruption procedure. The Sck1p gene encoding MAPKKK in S. cerevisiae can complement with aste11 mutation. Growth rate of G1211/pAL-ALEU2m, G1211/pAL-ALEU2m-ASTE11 (over-expression transformants) and IS1 [aleu2 aste11 ALEU2] (aste11 mutant), the ASTE11 expression level dose not correlates with salt resistance. However, the growth rate of G1211/pAL-ALEU2m, G1211/pAL-ALEU2m-ASTE11 (over-expression transformants) and IS1 [aleu2 aste11::ALEU2] (aste11 mutant) and the response to thermo stress were affected in the deleted mutant, the Aste11p influenced the thermo resistance of A. adeninivorans. The MAPKKK encoding by STE11 gene from various yeast species is involved in the mating process. The mutant strains and their transformants were lost the capacity to mate. Assessment of the ASTE11 promoter activity with lacZ reporter gene confirmed its inducibility by osmolaytes.

  16. Identification of Personalized Chemoresistance Genes in Subtypes of Basal-Like Breast Cancer Based on Functional Differences Using Pathway Analysis.

    Directory of Open Access Journals (Sweden)

    Tong Wu

    Full Text Available Breast cancer is a highly heterogeneous disease that is clinically classified into several subtypes. Among these subtypes, basal-like breast cancer largely overlaps with triple-negative breast cancer (TNBC, and these two groups are generally studied together as a single entity. Differences in the molecular makeup of breast cancers can result in different treatment strategies and prognoses for patients with different breast cancer subtypes. Compared with other subtypes, basal-like and other ER+ breast cancer subtypes exhibit marked differences in etiologic factors, clinical characteristics and therapeutic potential. Anthracycline drugs are typically used as the first-line clinical treatment for basal-like breast cancer subtypes. However, certain patients develop drug resistance following chemotherapy, which can lead to disease relapse and death. Even among patients with basal-like breast cancer, there can be significant molecular differences, and it is difficult to identify specific drug resistance proteins in any given patient using conventional variance testing methods. Therefore, we designed a new method for identifying drug resistance genes. Subgroups, personalized biomarkers, and therapy targets were identified using cluster analysis of differentially expressed genes. We found that basal-like breast cancer could be further divided into at least four distinct subgroups, including two groups at risk for drug resistance and two groups characterized by sensitivity to pharmacotherapy. Based on functional differences among these subgroups, we identified nine biomarkers related to drug resistance: SYK, LCK, GAB2, PAWR, PPARG, MDFI, ZAP70, CIITA and ACTA1. Finally, based on the deviation scores of the examined pathways, 16 pathways were shown to exhibit varying degrees of abnormality in the various subgroups, indicating that patients with different subtypes of basal-like breast cancer can be characterized by differences in the functional status of

  17. Functional and evolutionary analysis of alternatively spliced genes is consistent with an early eukaryotic origin of alternative splicing

    DEFF Research Database (Denmark)

    Irimia, Manuel; Rukov, Jakob Lewin; Penny, David

    2007-01-01

    , and may therefore predate multicellularity, is still unknown. To better understand the origin and evolution of alternative splicing and its usage in diverse organisms, we studied alternative splicing in 12 eukaryotic species, comparing rates of alternative splicing across genes of different functional...... classes, cellular locations, intron/exon structures and evolutionary origins. RESULTS: For each species, we find that genes from most functional categories are alternatively spliced. Ancient genes (shared between animals, fungi and plants) show high levels of alternative splicing. Genes with products...

  18. Functional analysis of a novel human serotonin transporter gene promoter in immortalized raphe cells

    DEFF Research Database (Denmark)

    Mortensen, O V; Thomassen, M; Larsen, M B

    1999-01-01

    were found to possess the additional 379 bp fragment. The integrity of the promoter was furthermore confirmed by genomic Southern blotting. The promoter activity was analyzed by reporter gene assays in neuronal and non-neuronal serotonergic cell lines. In immortalized serotonergic raphe neurons, RN46A...

  19. Whole exome sequencing coupled with unbiased functional analysis reveals new Hirschsprung disease genes

    NARCIS (Netherlands)

    Gui, Hongsheng; Schriemer, Duco; Cheng, William W.; Chauhan, Rajendra K.; Antinolo, Guillermo; Berrios, Courtney; Bleda, Marta; Brooks, Alice S.; Brouwer, Rutger W. W.; Burns, Alan J.; Cherny, Stacey S.; Dopazo, Joaquin; Eggen, Bart J. L.; Griseri, Paola; Jalloh, Binta; Thuy-Linh Le,; Lui, Vincent C. H.; Luzon-Toro, Berta; Matera, Ivana; Ngan, Elly S. W.; Pelet, Anna; Ruiz-Ferrer, Macarena; Sham, Pak C.; Shepherd, Iain T.; So, Man-Ting; Sribudiani, Yunia; Tang, Clara S. M.; van den Hout, Mirjam C. G. N.; van der Linde, Herma C.; van Ham, Tjakko J.; van IJcken, Wilfred F. J.; Verheij, Joke B. G. M.; Amiel, Jeanne; Borrego, Salud; Ceccherini, Isabella; Chakravarti, Aravinda; Lyonnet, Stanislas; Tam, Paul K. H.; Garcia-Barcelo, Maria-Merce; Hofstra, Robert M. W.

    2017-01-01

    Background: Hirschsprung disease (HSCR), which is congenital obstruction of the bowel, results from a failure of enteric nervous system (ENS) progenitors to migrate, proliferate, differentiate, or survive within the distal intestine. Previous studies that have searched for genes underlying HSCR have

  20. X-Linked Adrenoleukodystrophy: Molecular and Functional Analysis of the ABCD1 Gene in Argentinean Patients

    NARCIS (Netherlands)

    Amorosi, Cyntia Anabel; Myskóva, Helena; Monti, Mariela Roxana; Argaraña, Carlos Enrique; Morita, Masashi; Kemp, Stephan; Dodelson de Kremer, Raquel; Dvoráková, Lenka; Oller de Ramírez, Ana María

    2012-01-01

    X-linked adrenoleukodystrophy (X-ALD) is an inherited metabolic disease associated with mutations in the ABCD1 gene that encodes an ATP-binding cassette transporter protein, ALDP. The disease is characterized by increased concentrations of very long-chain fatty acids (VLCFAs) in plasma and in

  1. Copy number variation analysis identifies novel CAKUT candidate genes in children with a solitary functioning kidney

    NARCIS (Netherlands)

    Westland, R.; Verbitsky, M.; Vukojevic, K.; Perry, B.J.; Fasel, D.A.; Zwijnenburg, P.J.; Bokenkamp, A.; Gille, J.J.P.; Saraga-Babic, M.; Ghiggeri, G.M.; D'Agati, V.D.; Schreuder, M.F.; Gharavi, A.G.; Wijk, J.A. van; Sanna-Cherchi, S.

    2015-01-01

    Copy number variations associate with different developmental phenotypes and represent a major cause of congenital anomalies of the kidney and urinary tract (CAKUT). Because rare pathogenic copy number variations are often large and contain multiple genes, identification of the underlying genetic

  2. Analysis of functional germline variants in APOBEC3 and driver genes on breast cancer risk in Moroccan study population

    International Nuclear Information System (INIS)

    Marouf, Chaymaa; Göhler, Stella; Filho, Miguel Inacio Da Silva; Hajji, Omar; Hemminki, Kari; Nadifi, Sellama; Försti, Asta

    2016-01-01

    Breast cancer (BC) is the most prevalent cancer in women and a major public health problem in Morocco. Several Moroccan studies have focused on studying this disease, but more are needed, especially at the genetic and molecular levels. Therefore, we investigated the potential association of several functional germline variants in the genes commonly mutated in sporadic breast cancer. In this case–control study, we examined 36 single nucleotide polymorphisms (SNPs) in 13 genes (APOBEC3A, APOBEC3B, ARID1B, ATR, MAP3K1, MLL2, MLL3, NCOR1, RUNX1, SF3B1, SMAD4, TBX3, TTN), which were located in the core promoter, 5’-and 3’UTR or which were nonsynonymous SNPs to assess their potential association with inherited predisposition to breast cancer development. Additionally, we identified a ~29.5-kb deletion polymorphism between APOBEC3A and APOBEC3B and explored possible associations with BC. A total of 226 Moroccan breast cancer cases and 200 matched healthy controls were included in this study. The analysis showed that12 SNPs in 8 driver genes, 4 SNPs in APOBEC3B gene and 1 SNP in APOBEC3A gene were associated with BC risk and/or clinical outcome at P ≤ 0.05 level. RUNX1-rs8130963 (odds ratio (OR) = 2.25; 95 % CI 1.42-3.56; P = 0.0005; dominant model), TBX3-rs8853 (OR = 2.04; 95 % CI 1.38-3.01; P = 0.0003; dominant model), TBX3-rs1061651 (OR = 2.14; 95 % CI1.43-3.18; P = 0.0002; dominant model), TTN-rs12465459 (OR = 2.02; 95 % confidence interval 1.33-3.07; P = 0.0009; dominant model), were the most significantly associated SNPs with BC risk. A strong association with clinical outcome were detected for the genes SMAD4 -rs3819122 with tumor size (OR = 0.45; 95 % CI 0.25-0.82; P = 0.009) and TTN-rs2244492 with estrogen receptor (OR = 0.45; 95 % CI 0.25-0.82; P = 0.009). Our results suggest that genetic variations in driver and APOBEC3 genes were associated with the risk of BC and may have impact on clinical outcome. However, the reported association between the

  3. [Gene deletion and functional analysis of the EAL domain protein vieAxoo in Xanthomonas oryzae pv. oryzae].

    Science.gov (United States)

    Liang, Shimin; Yang, Fenghuan; Guan, Wenjing; Wu, Maosen; Chen, Huamin; Tian, Fang; Xu, Yanli; He, Chenyang

    2011-01-01

    To better reveal the functions of key members involved in cyclic di-GMP signal metabolism pathways in the bacterial blight pathogen of rice Xanthomonas oryzae pv. oryzae (Xoo). vieAxoo (PXO 04753), a gene putatively encoding the EAL domain proteins was investigated by gene deletion mutation using the marker exchange, complementation and phenotypic analysis. The sequence of vieAxoo cloned from genomic DNA of the wild-type strain PXO99(A) was found to be highly conserved in plant-pathogenic Xanthomonas spp. VieAxoo was structurally featured with EAL and REC domains. No significant changes in virulence to rice, EPS production and flagellar motility were found in deltavieAxoo compared to PXO99(A), whereas remarkable changes in induction of hypersensitive responses (HR) in tobacco and biofilm formation were observed. VieAxoo might function as an important reponse regulator in cyclic di-GMP signaling and regulation of bacterial induction of HR and biofilm formation of Xoo.

  4. Functional analysis of lipid metabolism genes in wine yeasts during alcoholic fermentation at low temperature

    OpenAIRE

    L?pez-Malo, Mar?a; Garc?a-R?os, Est?fani; Chiva, Rosana; Guillamon, Jos? M.

    2014-01-01

    Wine produced by low-temperature fermentation is mostly considered to have improved sensory qualities. However few commercial wine strains available on the market are well-adapted to ferment at low temperature (10 – 15°C). The lipid metabolism of Saccharomyces cerevisiae plays a central role in low temperature adaptation. One strategy to modify lipid composition is to alter transcriptional activity by deleting or overexpressing the key genes of lipid metabolism. In a previous study, we identi...

  5. Analysis of two lysozyme genes and antimicrobial functions of their recombinant proteins in Asian seabass.

    Directory of Open Access Journals (Sweden)

    Gui Hong Fu

    Full Text Available Lysozymes are important proteins of the innate immune system for the defense against bacterial infection. We cloned and analyzed chicken-type (c-type and goose-type (g-type lysozymes from Asian seabass (Lates calcarifer. The deduced amino acid sequence of the c-type lysozyme contained 144 residues and possessed typical structure residues, conserved catalytic residues (Glu(50 and Asp(67 and a "GSTDYGIFQINS" motif. The deduced g-type lysozyme contained 187 residues and possessed a goose egg white lysozyme (GEWL domain containing three conserved catalytic residues (Glu(71, Asp(84, Asp(95 essential for catalytic activity. Real time quantitative PCR (qRT-PCR revealed that the two lysozyme genes were constitutively expressed in all the examined tissues. The c-type lysozyme was most abundant in liver, while the g-type lysozyme was predominantly expressed in intestine and weakly expressed in muscle. The c-type and g-type transcripts were up-regulated in the kidney, spleen and liver in response to a challenge with Vibrio harveyi. The up-regulation of the c-type lysozyme was much stronger than that of the g-type lysozyme in kidney and spleen. The recombinant proteins of the c-type and g-type lysozymes showed lytic activities against the bacterial pathogens Vibrio harveyi and Photobacterium damselae in a dosage-dependent manner. We identified single nucleotide polymorphisms (SNPs in the two lysozyme genes. There were significant associations of these polymorphisms with resistance to the big belly disease. These results suggest that the c- and g-type genes play an important role in resistance to bacterial pathogens in fish. The SNP markers in the two genes associated with the resistance to bacterial pathogens may facilitate the selection of Asian seabass resistant to bacterial diseases.

  6. Analysis of two lysozyme genes and antimicrobial functions of their recombinant proteins in Asian seabass.

    Science.gov (United States)

    Fu, Gui Hong; Bai, Zhi Yi; Xia, Jun Hong; Liu, Feng; Liu, Peng; Yue, Gen Hua

    2013-01-01

    Lysozymes are important proteins of the innate immune system for the defense against bacterial infection. We cloned and analyzed chicken-type (c-type) and goose-type (g-type) lysozymes from Asian seabass (Lates calcarifer). The deduced amino acid sequence of the c-type lysozyme contained 144 residues and possessed typical structure residues, conserved catalytic residues (Glu(50) and Asp(67)) and a "GSTDYGIFQINS" motif. The deduced g-type lysozyme contained 187 residues and possessed a goose egg white lysozyme (GEWL) domain containing three conserved catalytic residues (Glu(71), Asp(84), Asp(95)) essential for catalytic activity. Real time quantitative PCR (qRT-PCR) revealed that the two lysozyme genes were constitutively expressed in all the examined tissues. The c-type lysozyme was most abundant in liver, while the g-type lysozyme was predominantly expressed in intestine and weakly expressed in muscle. The c-type and g-type transcripts were up-regulated in the kidney, spleen and liver in response to a challenge with Vibrio harveyi. The up-regulation of the c-type lysozyme was much stronger than that of the g-type lysozyme in kidney and spleen. The recombinant proteins of the c-type and g-type lysozymes showed lytic activities against the bacterial pathogens Vibrio harveyi and Photobacterium damselae in a dosage-dependent manner. We identified single nucleotide polymorphisms (SNPs) in the two lysozyme genes. There were significant associations of these polymorphisms with resistance to the big belly disease. These results suggest that the c- and g-type genes play an important role in resistance to bacterial pathogens in fish. The SNP markers in the two genes associated with the resistance to bacterial pathogens may facilitate the selection of Asian seabass resistant to bacterial diseases.

  7. Analysis of Two Lysozyme Genes and Antimicrobial Functions of Their Recombinant Proteins in Asian Seabass

    Science.gov (United States)

    Fu, Gui Hong; Bai, Zhi Yi; Xia, Jun Hong; Liu, Feng; Liu, Peng; Yue, Gen Hua

    2013-01-01

    Lysozymes are important proteins of the innate immune system for the defense against bacterial infection. We cloned and analyzed chicken-type (c-type) and goose-type (g-type) lysozymes from Asian seabass (Lates calcarifer). The deduced amino acid sequence of the c-type lysozyme contained 144 residues and possessed typical structure residues, conserved catalytic residues (Glu50 and Asp67) and a “GSTDYGIFQINS” motif. The deduced g-type lysozyme contained 187 residues and possessed a goose egg white lysozyme (GEWL) domain containing three conserved catalytic residues (Glu71, Asp84, Asp95) essential for catalytic activity. Real time quantitative PCR (qRT-PCR) revealed that the two lysozyme genes were constitutively expressed in all the examined tissues. The c-type lysozyme was most abundant in liver, while the g-type lysozyme was predominantly expressed in intestine and weakly expressed in muscle. The c-type and g-type transcripts were up-regulated in the kidney, spleen and liver in response to a challenge with Vibrio harveyi. The up-regulation of the c-type lysozyme was much stronger than that of the g-type lysozyme in kidney and spleen. The recombinant proteins of the c-type and g-type lysozymes showed lytic activities against the bacterial pathogens Vibrio harveyi and Photobacterium damselae in a dosage-dependent manner. We identified single nucleotide polymorphisms (SNPs) in the two lysozyme genes. There were significant associations of these polymorphisms with resistance to the big belly disease. These results suggest that the c- and g-type genes play an important role in resistance to bacterial pathogens in fish. The SNP markers in the two genes associated with the resistance to bacterial pathogens may facilitate the selection of Asian seabass resistant to bacterial diseases. PMID:24244553

  8. Functional Analysis of Thyroid Peroxidase Gene Mutations Detected in Patients with Thyroid Dyshormonogenesis

    Directory of Open Access Journals (Sweden)

    Srikanta Guria

    2014-01-01

    Full Text Available Thyroid peroxidase (TPO is the key enzyme in the biosynthesis of thyroid hormones. We aimed to identify the spectrum of mutations in the TPO gene leading to hypothyroidism in the population of West Bengal to establish the genetic etiology of the disease. 200 hypothyroid patients (case and their corresponding sex and age matched 200 normal individuals (control were screened depending on their clinical manifestations. Genomic DNA was isolated from peripheral blood samples and TPO gene (Exon 7 to Exon 14 was amplified by PCR. The PCR products were subjected to sequencing to identify mutations. Single nucleotide changes such as Glu 641 Lys, Asp 668 Asn, Thr 725 Pro, Asp 620 Asn, Ser 398 Thr, and Ala 373 Ser were found. Changes in the TPO were assayed in vitro to compare mutant and wild-type activities. Five mutants were enzymatically inactive in the guaiacol and iodide assays. This is a strong indication that the mutations are present at crucial positions of the TPO gene, resulting in inactivated TPO. The results of this study may help to develop a genetic screening protocol for goiter and hypothyroidism in the population of West Bengal.

  9. Does an increased body mass index affect endometrial gene expression patterns in infertile patients? A functional genomics analysis.

    Science.gov (United States)

    Comstock, Ioanna A; Diaz-Gimeno, Patricia; Cabanillas, Sergio; Bellver, Jose; Sebastian-Leon, Patricia; Shah, Meera; Schutt, Amy; Valdes, Cecilia T; Ruiz-Alonso, Maria; Valbuena, Diana; Simon, Carlos; Lathi, Ruth B

    2017-03-01

    To analyze the transcriptomic profile of endometrial gene alterations during the window of implantation in infertile obese patients. Multicenter, prospective, case-control study. Three academic medical centers for reproductive medicine. Infertile patients, stratified into body mass index (BMI) categories according to the World Health Organization guidelines, were included in the study. Endometrial samples were obtained from women undergoing standardized estrogen and P replacement cycles after 5 days of vaginal P supplementation. To identify endometrial gene expression alterations that occur during the window of implantation in infertile obese patients as compared with infertile normal-weight controls using a microarray analysis. XCL1, XCL2, HMHA1, S100A1, KLRC1, COTL1, COL16A1, KRT7, and MFAP5 are significantly dysregulated during the window of implantation in the receptive endometrium of obese patients. COL16A1, COTL1, HMHA1, KRCL1, XCL1, and XCL2 were down-regulated and KRT7, MFAP5, and S100A1 were up-regulated in the endometrium of obese patients. These genes are mainly involved in chemokine, cytokine, and immune system activity and in the structural extracellular matrix and protein-binding molecular functions. Obesity is associated with significant endometrial transcriptomic differences as compared with non-obese subjects. Altered endometrial gene expression in obese patients may contribute to the lower implantation rates and increased miscarriage rates seen in obese infertile patients. NCT02205866. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  10. Comparative genomic analysis of SET domain family reveals the origin, expansion, and putative function of the arthropod-specific SmydA genes as histone modifiers in insects

    Science.gov (United States)

    Jiang, Feng; Liu, Qing; Wang, Yanli; Zhang, Jie; Wang, Huimin; Song, Tianqi; Yang, Meiling

    2017-01-01

    Abstract The SET domain is an evolutionarily conserved motif present in histone lysine methyltransferases, which are important in the regulation of chromatin and gene expression in animals. In this study, we searched for SET domain–containing genes (SET genes) in all of the 147 arthropod genomes sequenced at the time of carrying out this experiment to understand the evolutionary history by which SET domains have evolved in insects. Phylogenetic and ancestral state reconstruction analysis revealed an arthropod-specific SET gene family, named SmydA, that is ancestral to arthropod animals and specifically diversified during insect evolution. Considering that pseudogenization is the most probable fate of the new emerging gene copies, we provided experimental and evolutionary evidence to demonstrate their essential functions. Fluorescence in situ hybridization analysis and in vitro methyltransferase activity assays showed that the SmydA-2 gene was transcriptionally active and retained the original histone methylation activity. Expression knockdown by RNA interference significantly increased mortality, implying that the SmydA genes may be essential for insect survival. We further showed predominantly strong purifying selection on the SmydA gene family and a potential association between the regulation of gene expression and insect phenotypic plasticity by transcriptome analysis. Overall, these data suggest that the SmydA gene family retains essential functions that may possibly define novel regulatory pathways in insects. This work provides insights into the roles of lineage-specific domain duplication in insect evolution. PMID:28444351

  11. Functional analysis

    CERN Document Server

    Kesavan, S

    2009-01-01

    The material presented in this book is suited for a first course in Functional Analysis which can be followed by Masters students. While covering all the standard material expected of such a course, efforts have been made to illustrate the use of various theorems via examples taken from differential equations and the calculus of variations, either through brief sections or through exercises. In fact, this book will be particularly useful for students who would like to pursue a research career in the applications of mathematics. The book includes a chapter on weak and weak topologies and their applications to the notions of reflexivity, separability and uniform convexity. The chapter on the Lebesgue spaces also presents the theory of one of the simplest classes of Sobolev spaces. The book includes a chapter on compact operators and the spectral theory for compact self-adjoint operators on a Hilbert space. Each chapter has large collection of exercises at the end. These illustrate the results of the text, show ...

  12. Functional Analysis of Chromosome 18 in Pancreatic Cancer: Strong Evidence for New Tumour Suppressor Genes

    Directory of Open Access Journals (Sweden)

    Liviu P. Lefter

    2004-04-01

    Conclusion: These data represent strong functional evidence that chromosome 18q encodes strong tumour and metastasis suppressor activity that is able to switch human pancreatic cancer cells to a dormant phenotype.

  13. Genome-Wide Function, Evolutionary Characterization and Expression Analysis of Sugar Transporter Family Genes in Pear (Pyrus bretschneideri Rehd).

    Science.gov (United States)

    Li, Jia-Ming; Zheng, Dan-man; Li, Lei-ting; Qiao, Xin; Wei, Shu-wei; Bai, Bin; Zhang, Shao-ling; Wu, Jun

    2015-09-01

    The sugar transporter (ST) plays an important role in plant growth, development and fruit quality. In this study, a total of 75 ST genes were identified in the pear (Pyrus bretschneideri Rehd) genome based on systematic analysis. Furthermore, all ST genes identified were grouped into eight subfamilies according to conserved domains and phylogenetic analysis. Analysis of cis-regulatory element sequences of all ST genes identified the MYBCOREATCYCB1 promoter in sucrose transporter (SUT) and monosaccharide transporter (MST) genes of pear, while in grape it is exclusively found in SUT subfamily members, indicating divergent transcriptional regulation in different species. Gene duplication event analysis indicated that whole-genome duplication (WGD) and segmental duplication play key roles in ST gene amplification, followed by tandem duplication. Estimation of positive selection at codon sites of ST paralog pairs indicated that all plastidic glucose translocator (pGlcT) subfamily members have evolved under positive selection. In addition, the evolutionary history of ST gene duplications indicated that the ST genes have experienced significant expansion in the whole ST gene family after the second WGD, especially after apple and pear divergence. According to the global RNA sequencing results of pear fruit development, gene expression profiling showed the expression of 53 STs. Combined with quantitative real-time PCR (qRT-PCR) analysis, two polyol/monosaccharide transporter (PLT) and three tonoplast monosaccharide transporter (tMT) members were identified as candidate genes, which may play important roles in sugar accumulation during pear fruit development and ripening. Identification of highly expressed STs in fruit is important for finding novel genes contributing to enhanced levels of sugar content in pear fruit. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please

  14. Identification and functional analysis of the Saccharomyces cerevisiae nicotinamidase gene, PNC1.

    Science.gov (United States)

    Ghislain, Michel; Talla, Emmanuel; François, Jean M

    2002-02-01

    Nicotinamidase (NAMase) from the budding yeast, Saccharomyces cerevisiae, was purified by Ni(2+) affinity chromatography and gel filtration. N-terminal microsequencing revealed sequence identity with a hypothetical polypeptide encoded by the yeast YGL037C open reading frame sharing 30% sequence identity with Escherichia coli pyrazinamidase/nicotinamidase. A yeast strain in which the NAMase gene, hereafter named PNC1, was deleted shows a decreased intracellular NAD(+) concentration, consistent with the loss of NAMase activity in the null mutant. In wild-type strains, NAMase activity is stimulated during the stationary phase of growth, by various hyperosmotic shocks or by ethanol treatment. Using a P(PNC1)::lacZ gene fusion, we have shown that this stimulation of NAMase activity results from increased levels of the protein and requires stress response elements in the 5'non-coding region of PNC1. These results suggest that NAMase helps yeast cells to adapt to various stress conditions and nutrient depletion, most likely via the activation of NAD-dependent biological processes. Copyright 2002 John Wiley & Sons, Ltd.

  15. Discovery of Metastatic Breast Cancer Suppressor Genes Using Functional Genome Analysis

    Science.gov (United States)

    2012-07-01

    al., 2008; Cheung,H.W., et al., 2011; Barbie ,D.A., et al., 2009]. To identify genes whose essentiality could be associated specifically with...Reference Barbie ,D.A., Tamayo,P., Boehm,J.S., Kim,S.Y., Moody,S.E., Dunn,I.F., Schinzel,A.C., Sandy,P., Meylan,E., Scholl,C., Frohling,S., Chan,E.M... Barbie ,D.A., Awad,T., Zhou,X., Nguyen,T., Piqani,B., Li,C., Golub,T.R., Meyerson,M., Hacohen,N., Hahn,W.C., Lander,E.S., Sabatini,D.M., and Root

  16. Functional analysis of PI-like gene in relation to flower development ...

    Indian Academy of Sciences (India)

    35S::BoPI fully rescued the defective petal forma- tion in the pi-1 mutant. ... PI homologue function in regulating perianth organ forma- tion in lily (Chen et al. 2012). ..... transgenic Arabidopsis flower, petal-like sepals (ps) and normal petals (p) were produced in the first and second whorls of the flowers, respectively. Bar = 0.2 ...

  17. Transcriptome analysis during somatic embryogenesis of the tropical monocot Elaeis guineensis: evidence for conserved gene functions in early development.

    Science.gov (United States)

    Lin, Hsiang-Chun; Morcillo, Fabienne; Dussert, Stéphane; Tranchant-Dubreuil, Christine; Tregear, James W; Tranbarger, Timothy John

    2009-05-01

    With the aim of understanding the molecular mechanisms underlying somatic embryogenesis (SE) in oil palm, we examined transcriptome changes that occur when embryogenic suspension cells are initiated to develop somatic embryos. Two reciprocal suppression subtractive hybridization (SSH) libraries were constructed from oil palm embryogenic cell suspensions: one in which embryo development was blocked by the presence of the synthetic auxin analogue 2,4-dichlorophenoxyacetic acid (2,4-D: ) in the medium (proliferation library); and another in which cells were stimulated to form embryos by the removal of 2,4-D: from the medium (initiation library). A total of 1867 Expressed Sequence Tags (ESTs) consisting of 1567 potential unigenes were assembled from the two libraries. Functional annotation indicated that 928 of the ESTs correspond to proteins that have either no similarity to sequences in public databases or are of unknown function. Gene Ontology (GO) terms assigned to the two EST populations give clues to the underlying molecular functions, biological processes and cellular components involved in the initiation of embryo development. Macroarrays were used for transcript profiling the ESTs during SE. Hierarchical cluster analysis of differential transcript accumulation revealed 4 distinct profiles containing a total of 192 statistically significant developmentally regulated transcripts. Similarities and differences between the global results obtained with in vitro systems from dicots, monocots and gymnosperms will be discussed.

  18. Functional analysis of ABC transporter genes from Botrytis cinerea identifies BcatrB as a transporter of eugenol

    NARCIS (Netherlands)

    Schoonbeek, H.; Nistelrooy, van J.G.M.; Waard, de M.A.

    2003-01-01

    The role of multiple ATP-binding cassette (ABC) and major facilitator superfamily (MFS) transporter genes from the plant pathogenic fungus Botrytis cinerea in protection against natural fungitoxic compounds was studied by expression analysis and phenotyping of gene-replacement mutants. The

  19. A Δ-9 Fatty Acid Desaturase Gene in the Microalga Myrmecia incisa Reisigl: Cloning and Functional Analysis

    Directory of Open Access Journals (Sweden)

    Wen-Bin Xue

    2016-07-01

    Full Text Available The green alga Myrmecia incisa is one of the richest natural sources of arachidonic acid (ArA. To better understand the regulation of ArA biosynthesis in M. incisa, a novel gene putatively encoding the Δ9 fatty acid desaturase (FAD was cloned and characterized for the first time. Rapid-amplification of cDNA ends (RACE was employed to yield a full length cDNA designated as MiΔ9FAD, which is 2442 bp long in sequence. Comparing cDNA open reading frame (ORF sequence to genomic sequence indicated that there are 8 introns interrupting the coding region. The deduced MiΔ9FAD protein is composed of 432 amino acids. It is soluble and localized in the chloroplast, as evidenced by the absence of transmembrane domains as well as the presence of a 61-amino acid chloroplast transit peptide. Multiple sequence alignment of amino acids revealed two conserved histidine-rich motifs, typical for Δ9 acyl-acyl carrier protein (ACP desaturases. To determine the function of MiΔ9FAD, the gene was heterologously expressed in a Saccharomyces cerevisiae mutant strain with impaired desaturase activity. Results of GC-MS analysis indicated that MiΔ9FAD was able to restore the synthesis of monounsaturated fatty acids, generating palmitoleic acid and oleic acid through the addition of a double bond in the Δ9 position of palmitic acid and stearic acid, respectively.

  20. From model to crop: functional analysis of a STAY-GREEN gene in the model legume Medicago truncatula and effective use of the gene for alfalfa improvement.

    Science.gov (United States)

    Zhou, Chuanen; Han, Lu; Pislariu, Catalina; Nakashima, Jin; Fu, Chunxiang; Jiang, Qingzhen; Quan, Li; Blancaflor, Elison B; Tang, Yuhong; Bouton, Joseph H; Udvardi, Michael; Xia, Guangmin; Wang, Zeng-Yu

    2011-11-01

    Medicago truncatula has been developed into a model legume. Its close relative alfalfa (Medicago sativa) is the most widely grown forage legume crop in the United States. By screening a large population of M. truncatula mutants tagged with the transposable element of tobacco (Nicotiana tabacum) cell type1 (Tnt1), we identified a mutant line (NF2089) that maintained green leaves and showed green anthers, central carpels, mature pods, and seeds during senescence. Genetic and molecular analyses revealed that the mutation was caused by Tnt1 insertion in a STAY-GREEN (MtSGR) gene. Transcript profiling analysis of the mutant showed that loss of the MtSGR function affected the expression of a large number of genes involved in different biological processes. Further analyses revealed that SGR is implicated in nodule development and senescence. MtSGR expression was detected across all nodule developmental zones and was higher in the senescence zone. The number of young nodules on the mutant roots was higher than in the wild type. Expression levels of several nodule senescence markers were reduced in the sgr mutant. Based on the MtSGR sequence, an alfalfa SGR gene (MsSGR) was cloned, and transgenic alfalfa lines were produced by RNA interference. Silencing of MsSGR led to the production of stay-green transgenic alfalfa. This beneficial trait offers the opportunity to produce premium alfalfa hay with a more greenish appearance. In addition, most of the transgenic alfalfa lines retained more than 50% of chlorophylls during senescence and had increased crude protein content. This study illustrates the effective use of knowledge gained from a model system for the genetic improvement of an important commercial crop.

  1. Using Phenomic Analysis of Photosynthetic Function for Abiotic Stress Response Gene Discovery.

    Science.gov (United States)

    Rungrat, Tepsuda; Awlia, Mariam; Brown, Tim; Cheng, Riyan; Sirault, Xavier; Fajkus, Jiri; Trtilek, Martin; Furbank, Bob; Badger, Murray; Tester, Mark; Pogson, Barry J; Borevitz, Justin O; Wilson, Pip

    2016-01-01

    Monitoring the photosynthetic performance of plants is a major key to understanding how plants adapt to their growth conditions. Stress tolerance traits have a high genetic complexity as plants are constantly, and unavoidably, exposed to numerous stress factors, which limits their growth rates in the natural environment. Arabidopsis thaliana , with its broad genetic diversity and wide climatic range, has been shown to successfully adapt to stressful conditions to ensure the completion of its life cycle. As a result, A. thaliana has become a robust and renowned plant model system for studying natural variation and conducting gene discovery studies. Genome wide association studies (GWAS) in restructured populations combining natural and recombinant lines is a particularly effective way to identify the genetic basis of complex traits. As most abiotic stresses affect photosynthetic activity, chlorophyll fluorescence measurements are a potential phenotyping technique for monitoring plant performance under stress conditions. This review focuses on the use of chlorophyll fluorescence as a tool to study genetic variation underlying the stress tolerance responses to abiotic stress in A. thaliana .

  2. Using Phenomic Analysis of Photosynthetic Function for Abiotic Stress Response Gene Discovery

    KAUST Repository

    Rungrat, Tepsuda

    2016-09-09

    Monitoring the photosynthetic performance of plants is a major key to understanding how plants adapt to their growth conditions. Stress tolerance traits have a high genetic complexity as plants are constantly, and unavoidably, exposed to numerous stress factors, which limits their growth rates in the natural environment. Arabidopsis thaliana, with its broad genetic diversity and wide climatic range, has been shown to successfully adapt to stressful conditions to ensure the completion of its life cycle. As a result, A. thaliana has become a robust and renowned plant model system for studying natural variation and conducting gene discovery studies. Genome wide association studies (GWAS) in restructured populations combining natural and recombinant lines is a particularly effective way to identify the genetic basis of complex traits. As most abiotic stresses affect photosynthetic activity, chlorophyll fluorescence measurements are a potential phenotyping technique for monitoring plant performance under stress conditions. This review focuses on the use of chlorophyll fluorescence as a tool to study genetic variation underlying the stress tolerance responses to abiotic stress in A. thaliana.

  3. Heterologous gene expression and functional analysis of a type III polyketide synthase from Aspergillus niger NRRL 328

    Energy Technology Data Exchange (ETDEWEB)

    Kirimura, Kohtaro, E-mail: kkohtaro@waseda.jp; Watanabe, Shotaro; Kobayashi, Keiichi

    2016-05-13

    Type III polyketide synthases (PKSs) catalyze the formation of pyrone- and resorcinol-types aromatic polyketides. The genomic analysis of the filamentous fungus Aspergillus niger NRRL 328 revealed that this strain has a putative gene (chr-8-2: 2978617–2979847) encoding a type III PKS, although its functions are unknown. In this study, for functional analysis of this putative type III PKS designated as An-CsyA, cloning and heterologous expression of the An-CsyA gene (An-csyA) in Escherichia coli were performed. Recombinant His-tagged An-CsyA was successfully expressed in E. coli BL21 (DE3), purified by Ni{sup 2+}-affinity chromatography, and used for in vitro assay. Tests on the substrate specificity of the His-tagged An-CsyA with myriad acyl-CoAs as starter substrates and malonyl-CoA as extender substrate showed that His-tagged An-CsyA accepted fatty acyl-CoAs (C2-C14) and produced triketide pyrones (C2-C14), tetraketide pyrones (C2-C10), and pentaketide resorcinols (C10-C14). Furthermore, acetoacetyl-CoA, malonyl-CoA, isobutyryl-CoA, and benzoyl-CoA were also accepted as starter substrates, and both of triketide pyrones and tetraketide pyrones were produced. It is noteworthy that the His-tagged An-CsyA produced polyketides from malonyl-CoA as starter and extender substrates and produced tetraketide pyrones from short-chain fatty acyl-CoAs as starter substrates. Therefore, this is the first report showing the functional properties of An-CsyA different from those of other fungal type III PKSs. -- Highlights: •Type III PKS from Aspergillus niger NRRL 328, An-CsyA, was cloned and characterized. •An-CsyA produced triketide pyrones, tetraketide pyrones and pentaketide resorcinols. •Functional properties of An-CsyA differs from those of other fungal type III PKSs.

  4. Data in support of a functional analysis of splicing mutations in the IDS gene and the use of antisense oligonucleotides to exploit an alternative therapy for MPS II

    Directory of Open Access Journals (Sweden)

    Liliana Matos

    2015-12-01

    The interpretation of these data and further extensive experiments into the analysis of these three mutations and also into the methodology applied to correct one of them can be found in “Functional analysis of splicing mutations in the IDS gene and the use of antisense oligonucleotides to exploit an alternative therapy for MPS II” Matos et al. (2015 [1].

  5. Functional analysis of a SOX10 gene mutation associated with Waardenburg syndrome II.

    Science.gov (United States)

    Wang, Xue-Ping; Hao, Zi-Qi; Liu, Ya-Lan; Mei, Ling-Yun; He, Chu-Feng; Niu, Zhi-Jie; Sun, Jie; Zhao, Yu-Lin; Feng, Yong

    2017-11-04

    Waardenburg syndrome (WS) is an autosomal dominant inherited non-syndromic type of hereditary hearing loss characterized by varying combinations of sensorineural hearing loss and abnormal pigmentation of the hair, skin, and inner ear. WS is classified into four subtypes (WS1-WS4) based on additional symptoms. WS2 is characterized by the absence of additional symptoms. Recently, we identified a SOX10 missense mutation c.422T > C (p.L141P) associated with WS2. We performed functional assays and found the mutant loses DNA-binding capacity, shows aberrant cytoplasmic and nuclear localization, and fails to interact with PAX3. Therefore, the mutant cannot transactivate the MITF promoter effectively, inhibiting melanin synthesis and leading to WS2. Our study confirmed haploinsufficiency as the underlying pathogenesis for WS2. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. In silico analysis of functional nsSNPs in human TRPC6 gene associated with steroid resistant nephrotic syndrome.

    Science.gov (United States)

    Joshi, Bhoomi B; Koringa, Prakash G; Mistry, Kinnari N; Patel, Amrut K; Gang, Sishir; Joshi, Chaitanya G

    2015-11-01

    The aim of the present study is to identify functional non-synonymous SNPs of TRPC6 gene using various in silico approaches. These SNPs are believed to have a direct impact on protein stability through conformation changes. Transient receptor potential cation channel-6 (TRPC6) is one of the proteins that plays a key role causing focal segmental glomerulosclerosis (FSGS) associated with the steroid-resistant nephritic syndrome (SRNS). Data of TRPC6 was collected from dbSNP and further used to investigate a damaging effect using SIFT, PolyPhen, PROVEAN, and PANTHER. The comparative analysis predicted that two functional SNPs "rs35857503 at position N157T and rs36111323 at position A404V" showed a damaging effect (score of 0.096-1.00).We modeled the 3D structure of TRPC6 using a SWISS-MODEL workspace and validated it via PROCHECK to get a Ramachandran plot (83.0% residues in the most favored region, 12.7% in additionally allowed regions, 2.3% in a generously allowed region and 2.0% were in a disallowed region). QMEAN (0.311) and MUSTER (10.06) scores were under acceptable limits. Putative functional SNPs that may possibly undergo post-translation modifications were also identified in TRPC6 protein. It was found that mutation at N157T can lead to alteration in glycation whereas mutation at A404V was present at a ligand binding site. Additionally, I-Mutant showed a decrease in stability for these nsSNPs upon mutation, thus suggesting that the N157T and A404V variants of TRPC6 could directly or indirectly destabilize the amino acid interactions causing functional deviations of protein to some extent. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Characterization and Functional Analysis of Five MADS-Box B Class Genes Related to Floral Organ Identification in Tagetes erecta.

    Directory of Open Access Journals (Sweden)

    Ye Ai

    Full Text Available According to the floral organ development ABC model, B class genes specify petal and stamen identification. In order to study the function of B class genes in flower development of Tagetes erecta, five MADS-box B class genes were identified and their expression and putative functions were studied. Sequence comparisons and phylogenetic analyses indicated that there were one PI-like gene-TePI, two euAP3-like genes-TeAP3-1 and TeAP3-2, and two TM6-like genes-TeTM6-1 and TeTM6-2 in T. erecta. Strong expression levels of these genes were detected in stamens of the disk florets, but little or no expression was detected in bracts, receptacles or vegetative organs. Yeast hybrid experiments of the B class proteins showed that TePI protein could form a homodimer and heterodimers with all the other four B class proteins TeAP3-1, TeAP3-2, TeTM6-1 and TeTM6-2. No homodimer or interaction was observed between the euAP3 and TM6 clade members. Over-expression of five B class genes of T. erecta in Nicotiana rotundifolia showed that only the transgenic plants of 35S::TePI showed altered floral morphology compared with the non-transgenic line. This study could contribute to the understanding of the function of B class genes in flower development of T. erecta, and provide a theoretical basis for further research to change floral organ structures and create new materials for plant breeding.

  8. Bayesian uncertainty analysis for complex systems biology models: emulation, global parameter searches and evaluation of gene functions.

    Science.gov (United States)

    Vernon, Ian; Liu, Junli; Goldstein, Michael; Rowe, James; Topping, Jen; Lindsey, Keith

    2018-01-02

    Many mathematical models have now been employed across every area of systems biology. These models increasingly involve large numbers of unknown parameters, have complex structure which can result in substantial evaluation time relative to the needs of the analysis, and need to be compared to observed data of various forms. The correct analysis of such models usually requires a global parameter search, over a high dimensional parameter space, that incorporates and respects the most important sources of uncertainty. This can be an extremely difficult task, but it is essential for any meaningful inference or prediction to be made about any biological system. It hence represents a fundamental challenge for the whole of systems biology. Bayesian statistical methodology for the uncertainty analysis of complex models is introduced, which is designed to address the high dimensional global parameter search problem. Bayesian emulators that mimic the systems biology model but which are extremely fast to evaluate are embeded within an iterative history match: an efficient method to search high dimensional spaces within a more formal statistical setting, while incorporating major sources of uncertainty. The approach is demonstrated via application to a model of hormonal crosstalk in Arabidopsis root development, which has 32 rate parameters, for which we identify the sets of rate parameter values that lead to acceptable matches between model output and observed trend data. The multiple insights into the model's structure that this analysis provides are discussed. The methodology is applied to a second related model, and the biological consequences of the resulting comparison, including the evaluation of gene functions, are described. Bayesian uncertainty analysis for complex models using both emulators and history matching is shown to be a powerful technique that can greatly aid the study of a large class of systems biology models. It both provides insight into model behaviour

  9. Cloning of the cryptochrome-encoding PeCRY1 gene from Populus euphratica and functional analysis in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Ke Mao

    Full Text Available Cryptochromes are photolyase-like blue/UV-A light receptors that evolved from photolyases. In plants, cryptochromes regulate various aspects of plant growth and development. Despite of their involvement in the control of important plant traits, however, most studies on cryptochromes have focused on lower plants and herbaceous crops, and no data on cryptochrome function are available for forest trees. In this study, we isolated a cryptochrome gene, PeCRY1, from Euphrates poplar (Populus euphratica, and analyzed its structure and function in detail. The deduced PeCRY1 amino acid sequence contained a conserved N-terminal photolyase-homologous region (PHR domain as well as a C-terminal DQXVP-acidic-STAES (DAS domain. Secondary and tertiary structure analysis showed that PeCRY1 shares high similarity with AtCRY1 from Arabidopsis thaliana. PeCRY1 expression was upregulated at the mRNA level by light. Using heterologous expression in Arabidopsis, we showed that PeCRY1 overexpression rescued the cry1 mutant phenotype. In addition, PeCRY1 overexpression inhibited hypocotyl elongation, promoted root growth, and enhanced anthocyanin accumulation in wild-type background seedlings grown under blue light. Furthermore, we examined the interaction between PeCRY1 and AtCOP1 using a bimolecular fluorescence complementation (BiFc assay. Our data provide evidence for the involvement of PeCRY1 in the control of photomorphogenesis in poplar.

  10. Identification and functional analysis of the geranylgeranyl pyrophosphate synthase gene (crtE) and phytoene synthase gene (crtB) for carotenoid biosynthesis in Euglena gracilis.

    Science.gov (United States)

    Kato, Shota; Takaichi, Shinichi; Ishikawa, Takahiro; Asahina, Masashi; Takahashi, Senji; Shinomura, Tomoko

    2016-01-05

    encoding CrtE and CrtB in E. gracilis and found that their protein products catalyze the early steps of carotenoid biosynthesis. Further, we found that the response of the carotenoid biosynthetic pathway to light stress in E. gracilis is controlled, at least in part, by the level of crtB transcription. This is the first functional analysis of crtE and crtB in Euglena.

  11. Identification and functional analysis of gene cluster involvement in biosynthesis of the cyclic lipopeptide antibiotic pelgipeptin produced by Paenibacillus elgii

    Directory of Open Access Journals (Sweden)

    Qian Chao-Dong

    2012-09-01

    Full Text Available Abstract Background Pelgipeptin, a potent antibacterial and antifungal agent, is a non-ribosomally synthesised lipopeptide antibiotic. This compound consists of a β-hydroxy fatty acid and nine amino acids. To date, there is no information about its biosynthetic pathway. Results A potential pelgipeptin synthetase gene cluster (plp was identified from Paenibacillus elgii B69 through genome analysis. The gene cluster spans 40.8 kb with eight open reading frames. Among the genes in this cluster, three large genes, plpD, plpE, and plpF, were shown to encode non-ribosomal peptide synthetases (NRPSs, with one, seven, and one module(s, respectively. Bioinformatic analysis of the substrate specificity of all nine adenylation domains indicated that the sequence of the NRPS modules is well collinear with the order of amino acids in pelgipeptin. Additional biochemical analysis of four recombinant adenylation domains (PlpD A1, PlpE A1, PlpE A3, and PlpF A1 provided further evidence that the plp gene cluster involved in pelgipeptin biosynthesis. Conclusions In this study, a gene cluster (plp responsible for the biosynthesis of pelgipeptin was identified from the genome sequence of Paenibacillus elgii B69. The identification of the plp gene cluster provides an opportunity to develop novel lipopeptide antibiotics by genetic engineering.

  12. Using marker gene analysis instead of mixed lymphocyte reaction assay for identification of functional CD4+FOXP3+ regulatory T cells.

    Science.gov (United States)

    Chu, Sin-Tak; Chien, Kuo-Hsuan; Lin, Hsiu-Hsia; Wu, Wei-Hao; Jian, Jhih-Yun; Tzeng, Woan-Fang; Chiou, Tzeon-Jye

    2018-03-01

    To establish a quick analytical method using quantitative PCR for marker gene analysis to identify the functions of iTreg cells and subsequently curtail the harvest time for iTreg cells. The data from the marker gene analysis indicated that varying proportions of iTreg cells could reveal the various expression levels of these genes. FoxP3 expression increased to a considerable degree. By using the same iTreg population, the mixed lymphocyte reaction assay was conducted for 5 days. The suppression percentage of T-cells was dependent on the proportion of iTreg cells, indicating that gene expression levels can represent the biological functions of iTreg cells. By using human peripheral blood mononuclear cells for Treg cell induction, the marker gene expression analysis showed a difference between iTreg cells and uninduced T cells. Marker gene analysis requires only 1 day to identify the functions of human iTreg cells can save time in clinical application and might prevent graft-versus-host disease occurrence effectively.

  13. Transcriptome analysis by GeneTrail revealed regulation of functional categories in response to alterations of iron homeostasis in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Lenhof Hans-Peter

    2011-05-01

    Full Text Available Abstract Background High-throughput technologies have opened new avenues to study biological processes and pathways. The interpretation of the immense amount of data sets generated nowadays needs to be facilitated in order to enable biologists to identify complex gene networks and functional pathways. To cope with this task multiple computer-based programs have been developed. GeneTrail is a freely available online tool that screens comparative transcriptomic data for differentially regulated functional categories and biological pathways extracted from common data bases like KEGG, Gene Ontology (GO, TRANSPATH and TRANSFAC. Additionally, GeneTrail offers a feature that allows screening of individually defined biological categories that are relevant for the respective research topic. Results We have set up GeneTrail for the use of Arabidopsis thaliana. To test the functionality of this tool for plant analysis, we generated transcriptome data of root and leaf responses to Fe deficiency and the Arabidopsis metal homeostasis mutant nas4x-1. We performed Gene Set Enrichment Analysis (GSEA with eight meaningful pairwise comparisons of transcriptome data sets. We were able to uncover several functional pathways including metal homeostasis that were affected in our experimental situations. Representation of the differentially regulated functional categories in Venn diagrams uncovered regulatory networks at the level of whole functional pathways. Over-Representation Analysis (ORA of differentially regulated genes identified in pairwise comparisons revealed specific functional plant physiological categories as major targets upon Fe deficiency and in nas4x-1. Conclusion Here, we obtained supporting evidence, that the nas4x-1 mutant was defective in metal homeostasis. It was confirmed that nas4x-1 showed Fe deficiency in roots and signs of Fe deficiency and Fe sufficiency in leaves. Besides metal homeostasis, biotic stress, root carbohydrate, leaf

  14. Functional analysis of novel sonic hedgehog gene mutations identified in basal cell carcinomas from xeroderma pigmentosum patients.

    Science.gov (United States)

    Couvé-Privat, Sophie; Le Bret, Marc; Traiffort, Elisabeth; Queille, Sophie; Coulombe, Josée; Bouadjar, Bakar; Avril, Marie Françoise; Ruat, Martial; Sarasin, Alain; Daya-Grosjean, Leela

    2004-05-15

    Altered sonic hedgehog (SHH) signaling is crucial in the development of basal cell carcinomas (BCC), the most common human cancer. Mutations in SHH signal transducers, PATCHED and SMOOTHENED, have already been identified, but SHH mutations are extremely rare; only 1 was detected in 74 sporadic BCCs. We present data showing unique SHH mutations in BCCs from repair-deficient, skin cancer-prone xeroderma pigmentosum (XP) patients, which are characterized by high levels of UV-specific mutations in key genes involved in skin carcinogenesis, including PATCHED and SMOOTHENED. Thus, 6 UV-specific SHH mutations were detected in 5 of 33 XP BCCs. These missense SHH alterations are not activating mutations for its postulated proto-oncogene function, as the mutant SHH proteins do not show transforming activity and induce differentiation or stimulate proliferation to the same level as the wild-type protein. Structural modeling studies of the 4 proteins altered at the surface residues, G57S, G64K, D147N, and R155C, show that they do not effect the protein conformation. Interestingly, they are all located on one face of the compact SHH protein suggesting that they may have altered affinity for different partners, which may be important in altering other functions. Additional functional analysis of the SHH mutations found in vivo in XP BCCs will help shed light on the role of SHH in skin carcinogenesis. In conclusion, we report for the first time, significant levels of SHH mutations found only in XP BCCs and none in squamous cell carcinomas, indicating their importance in the specific development of BCCs.

  15. Transcriptome Sequencing Analysis and Functional Identification of Sex Differentiation Genes from the Mosquito Parasitic Nematode, Romanomermis wuchangensis.

    Directory of Open Access Journals (Sweden)

    Mingyue Duan

    Full Text Available Mosquito-transmitted diseases like malaria and dengue fever are global problem and an estimated 50-100 million of dengue or dengue hemorrhagic fever cases are reported worldwide every year. The mermithid nematode Romanomermis wuchangensis has been successfully used as an ecosystem-friendly biocontrol agent for mosquito prevention in laboratory studies. However, this nematode can not undergo sex differentiation in vitro culture, which has seriously affected their application of biocontrol in the field. In this study, based on transcriptome sequencing analysis of R. wuchangensis, Rwucmab-3, Rwuclaf-1 and Rwuctra-2 were cloned and used to investigate molecular regulatory function of sex differentiation. qRT-PCR results demonstrated that the expression level of Rwucmab-3 between male and female displayed obvious difference on the 3rd day of parasitic stage, which was earlier than Rwuclaf-1 and Rwuctra-2, highlighting sex differentiation process may start on the 3rd day of parasitic stage. Besides, FITC was used as a marker to test dsRNA uptake efficiency of R. wuchangensis, which fluorescence intensity increased with FITC concentration after 16 h incubation, indicating this nematode can successfully ingest soaking solution via its cuticle. RNAi results revealed the sex ratio of R. wuchangensis from RNAi treated groups soaked in dsRNA of Rwucmab-3 was significantly higher than gfp dsRNA treated groups and control groups, highlighting RNAi of Rwumab-3 may hinder the development of male nematodes. These results suggest that Rwucmab-3 mainly involves in the initiation of sex differentiation and the development of male sexual dimorphism. Rwuclaf-1 and Rwuctra-2 may play vital role in nematode reproductive and developmental system. In conclusion, transcript sequences presented in this study could provide more bioinformatics resources for future studies on gene cloning and other molecular regulatory mechanism in R. wuchangensis. Moreover, identification

  16. Gene function analysis in environmental isolates: The nif regulon of the strict iron oxidizing bacterium Leptospirillum ferrooxidans

    Science.gov (United States)

    Parro, Víctor; Moreno-Paz, Mercedes

    2003-01-01

    A random genomic library from an environmental isolate of the Gram-negative bacterium Leptospirillum ferrooxidans has been printed on a microarray. Gene expression analysis was carried out with total RNA extracted from L. ferrooxidans cultures in the presence or absence of ammonium as nitrogen source under aerobic conditions. Although practically nothing is known about the genome sequence of this bacterium, this approach allowed us the selection and sequencing of only those clones bearing genes that showed an altered expression pattern. By sequence comparison, we have identified most of the genes of nitrogen fixation regulon in L. ferrooxidans, like the nifHDKENX operon, encoding the structural components of Mo-Fe nitrogenase; nifSU-hesB-hscBA-fdx operon, for Fe-S cluster assembly; the amtB gene (ammonium transporter); modA (molybdenum ABC type transporter); some regulatory genes like ntrC, nifA (the specific activator of nif genes); or two glnB-like genes (encoding the PII regulatory protein). Our results show that shotgun DNA microarrays are very powerful tools to accomplish gene expression studies with environmental bacteria whose genome sequence is still unknown, avoiding the time and effort necessary for whole genome sequencing projects. PMID:12808145

  17. A MultiSite GatewayTM vector set for the functional analysis of genes in the model Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Nagels Durand Astrid

    2012-09-01

    Full Text Available Abstract Background Recombinatorial cloning using the GatewayTM technology has been the method of choice for high-throughput omics projects, resulting in the availability of entire ORFeomes in GatewayTM compatible vectors. The MultiSite GatewayTM system allows combining multiple genetic fragments such as promoter, ORF and epitope tag in one single reaction. To date, this technology has not been accessible in the yeast Saccharomyces cerevisiae, one of the most widely used experimental systems in molecular biology, due to the lack of appropriate destination vectors. Results Here, we present a set of three-fragment MultiSite GatewayTM destination vectors that have been developed for gene expression in S. cerevisiae and that allow the assembly of any promoter, open reading frame, epitope tag arrangement in combination with any of four auxotrophic markers and three distinct replication mechanisms. As an example of its applicability, we used yeast three-hybrid to provide evidence for the assembly of a ternary complex of plant proteins involved in jasmonate signalling and consisting of the JAZ, NINJA and TOPLESS proteins. Conclusion Our vectors make MultiSite GatewayTM cloning accessible in S. cerevisiae and implement a fast and versatile cloning method for the high-throughput functional analysis of (heterologous proteins in one of the most widely used model organisms for molecular biology research.

  18. Molecular cloning and functional analysis of the drought tolerance gene MsHSP70 from alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Li, Zhenyi; Long, Ruicai; Zhang, Tiejun; Wang, Zhen; Zhang, Fan; Yang, Qingchuan; Kang, Junmei; Sun, Yan

    2017-03-01

    Heat shock proteins (HSPs) are a ubiquitously expressed class of protective proteins that play a key role in plant response to stressful conditions. This study aimed to characterize and investigate the function of an HSP gene in alfalfa (Medicago sativa). MsHSP70, which contains a 2028-bp open reading frame, was identified through homology cloning. MsHSP70 shares high sequence identity (94.47%) with HSP70 from Medicago truncatula. Expression analysis of MsHSP70 in alfalfa organs revealed a relatively higher expression level in aerial organs such as flowers, stems and leaves than in roots. MsHSP70 was induced by heat shock, abscisic acid (ABA) and hydrogen peroxide. Transgenic Arabidopsis seedlings overexpressing MsHSP70 were hyposensitive to polyethylene glycol (PEG) and ABA treatments, suggesting that exogenous expression of MsHSP70 enhanced Arabidopsis tolerance to these stresses. Examination of physiological indexes related to drought and ABA stress demonstrated that in comparison with non-transgenic plants, T3 transgenic Arabidopsis plants had an increased proline content, higher superoxide dismutase (SOD) activity, and decreased malondialdehyde (MDA) content. Furthermore, higher relative water content (RWC) was detected in transgenic plants compared with non-transgenic plants under drought stress. These findings clearly indicate that molecular manipulation of MsHSP70 in plants can have substantial effects on stress tolerance.

  19. Genome-wide analysis of pectate-induced gene expression in Botrytis cinerea: identification and functional analysis of putative d-galacturonate transporters.

    Science.gov (United States)

    Zhang, Lisha; Hua, Chenlei; Stassen, Joost H M; Chatterjee, Sayantani; Cornelissen, Maxim; van Kan, Jan A L

    2014-11-01

    The fungal plant pathogen Botrytis cinerea produces a spectrum of cell wall degrading enzymes for the decomposition of host cell wall polysaccharides and the consumption of the monosaccharides that are released. Especially pectin is an abundant cell wall component, and the decomposition of pectin by B. cinerea has been extensively studied. An effective concerted action of the appropriate pectin depolymerising enzymes, monosaccharide transporters and catabolic enzymes is important for complete d-galacturonic acid utilization by B. cinerea. In this study, we performed RNA sequencing to compare genome-wide transcriptional profiles between B. cinerea cultures grown in media containing pectate or glucose as sole carbon source. Transcript levels of 32 genes that are induced by pectate were further examined in cultures grown on six different monosaccharides, by means of quantitative RT-PCR, leading to the identification of 8 genes that are exclusively induced by d-galacturonic acid. Among these, the hexose transporter encoding genes Bchxt15 and Bchxt19 were functionally characterised. The subcellular location was studied of BcHXT15-GFP and BcHXT19-GFP fusion proteins expressed under control of their native promoter, in a B. cinerea wild-type strain. Both genes are expressed during growth on d-galacturonic acid and the fusion proteins are localized in plasma membranes and intracellular vesicles. Target gene knockout analysis revealed that BcHXT15 contributes to d-galacturonic acid uptake at pH 5∼5.6. The virulence of all B. cinerea hexose transporter mutants tested was unaltered on tomato and Nicotiana benthamiana leaves. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Melanoma risk associated with MC1R gene variants in Latvia and the functional analysis of rare variants.

    Science.gov (United States)

    Ozola, Aija; Azarjana, Kristīne; Doniņa, Simona; Proboka, Guna; Mandrika, Ilona; Petrovska, Ramona; Cēma, Ingrīda; Heisele, Olita; Eņģele, Ludmila; Streinerte, Baiba; Pjanova, Dace

    2013-03-01

    To evaluate the association of melanocortin 1 receptor gene (MC1R) variants with melanoma risk in a Latvian population, the MC1R gene was sequenced in 200 melanoma patients and 200 control persons. A functional study of previously uncharacterized, rare MC1R variants was also performed. In total, 26 different MC1R variants, including two novel variants Val165Ile and Val188Ile, were detected. The highest risk of melanoma was associated with the Arg151Cys variant (odds ratio (OR) 4.47, 95% confidence interval (CI) 2.19-9.14, PLatvia. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Sugarcane genes related to mitochondrial function

    Directory of Open Access Journals (Sweden)

    Fonseca Ghislaine V.

    2001-01-01

    Full Text Available Mitochondria function as metabolic powerhouses by generating energy through oxidative phosphorylation and have become the focus of renewed interest due to progress in understanding the subtleties of their biogenesis and the discovery of the important roles which these organelles play in senescence, cell death and the assembly of iron-sulfur (Fe/S centers. Using proteins from the yeast Saccharomyces cerevisiae, Homo sapiens and Arabidopsis thaliana we searched the sugarcane expressed sequence tag (SUCEST database for the presence of expressed sequence tags (ESTs with similarity to nuclear genes related to mitochondrial functions. Starting with 869 protein sequences, we searched for sugarcane EST counterparts to these proteins using the basic local alignment search tool TBLASTN similarity searching program run against 260,781 sugarcane ESTs contained in 81,223 clusters. We were able to recover 367 clusters likely to represent sugarcane orthologues of the corresponding genes from S. cerevisiae, H. sapiens and A. thaliana with E-value <= 10-10. Gene products belonging to all functional categories related to mitochondrial functions were found and this allowed us to produce an overview of the nuclear genes required for sugarcane mitochondrial biogenesis and function as well as providing a starting point for detailed analysis of sugarcane gene structure and physiology.

  2. Rotavirus gene structure and function.

    OpenAIRE

    Estes, M K; Cohen, J

    1989-01-01

    Knowledge of the structure and function of the genes and proteins of the rotaviruses has expanded rapidly. Information obtained in the last 5 years has revealed unexpected and unique molecular properties of rotavirus proteins of general interest to virologists, biochemists, and cell biologists. Rotaviruses share some features of replication with reoviruses, yet antigenic and molecular properties of the outer capsid proteins, VP4 (a protein whose cleavage is required for infectivity, possibly ...

  3. Carotenoid analysis of sweetpotato Ipomoea batatas and functional identification of its lycopene β- and ε-cyclase genes.

    Science.gov (United States)

    Khan, Muhammad Zubair; Takemura, Miho; Maoka, Takashi; Otani, Motoyasu; Misawa, Norihiko

    2016-09-01

    Sweetpotato Ipomoea batatas is known as a hexaploid species. Here, we analyzed carotenoids contained in the leaves and tubers of sweetpotato cultivars 'White Star' (WS) and W71. These cultivars were found to contain several carotenoids unique to sweetpotato tubers such as β-carotene-5,6,5',8'-diepoxide and β-carotene-5,8-epoxide. Next, we isolated two kinds of carotene cyclase genes that encode lycopene β- and ε-cyclases from the WS and W71 leaves, by RT-PCR and subsequent RACE. Two and three lycopene β-cyclase gene sequences were, respectively, isolated from WS, named IbLCYb1, 2, and from W71, IbLCYb3, 4, 5. Meanwhile, only a single lycopene ε-cyclase gene sequence, designated IbLCYe, was isolated from both WS and W71. These genes were separately introduced into a lycopene-synthesizing Escherichia coli transformed with the Pantoea ananatis crtE, crtB and crtI genes, followed by HPLC analysis. β-Carotene was detected in E. coli cells that carried IbLCYb1-4, indicating that the IbLCYb1-4 genes encode lycopene β-cyclase. Meanwhile, the introduction of IbLCYe into the lycopene-synthesizing E. coli led to efficient production of δ-carotene with a monocyclic ε-ring, providing evidence that the IbLCYe gene codes for lycopene ε-(mono)cyclase. Expression of the β- and ε-cyclase genes was analyzed as well.

  4. Genome-wide identification and functional analysis of the TIFY gene family in response to drought in cotton.

    Science.gov (United States)

    Zhao, Ge; Song, Yun; Wang, Caixiang; Butt, Hamama Islam; Wang, Qianhua; Zhang, Chaojun; Yang, Zuoren; Liu, Zhao; Chen, Eryong; Zhang, Xueyan; Li, Fuguang

    2016-12-01

    Jasmonates control many aspects of plant biological processes. They are important for regulating plant responses to various biotic and abiotic stresses, including drought, which is one of the most serious threats to sustainable agricultural production. However, little is known regarding how jasmonate ZIM-domain (JAZ) proteins mediate jasmonic acid signals to improve stress tolerance in cotton. This represents the first comprehensive comparative study of TIFY transcription factors in both diploid A, D and tetraploid AD cotton species. In this study, we identified 21 TIFY family members in the genome of Gossypium arboretum, 28 members from Gossypium raimondii and 50 TIFY genes in Gossypium hirsutum. The phylogenetic analyses indicated the TIFY gene family could be divided into the following four subfamilies: TIFY, PPD, ZML, and JAZ subfamilies. The cotton TIFY genes have expanded through tandem duplications and segmental duplications compared with other plant species. Gene expression profile revealed temporal and tissue specificities for TIFY genes under simulated drought conditions in Gossypium arboretum. The JAZ subfamily members were the most highly expressed genes, suggesting that they have a vital role in responses to drought stress. Over-expression of GaJAZ5 gene decreased water loss, stomatal openings, and the accumulation of H 2 O 2 in Arabidopsis thaliana. Additionally, the results of drought tolerance assays suggested that this subfamily might be involved in increasing drought tolerance. Our study provides new data regarding the genome-wide analysis of TIFY gene families and their important roles in drought tolerance in cotton species. These data may form the basis of future studies regarding the relationship between drought and jasmonic acid.

  5. Identification and functional analysis of a novel mutation in the SOX10 gene associated with Waardenburg syndrome type IV.

    Science.gov (United States)

    Wang, Hong-Han; Chen, Hong-Sheng; Li, Hai-Bo; Zhang, Hua; Mei, Ling-Yun; He, Chu-Feng; Wang, Xing-Wei; Men, Mei-Chao; Jiang, Lu; Liao, Xin-Bin; Wu, Hong; Feng, Yong

    2014-03-15

    Waardenburg syndrome type IV (WS4) is a rare genetic disorder, characterized by auditory-pigmentary abnormalities and Hirschsprung disease. Mutations of the EDNRB gene, EDN3 gene, or SOX10 gene are responsible for WS4. In the present study, we reported a case of a Chinese patient with clinical features of WS4. In addition, the three genes mentioned above were sequenced in order to identify whether mutations are responsible for the case. We revealed a novel nonsense mutation, c.1063C>T (p.Q355*), in the last coding exon of SOX10. The same mutation was not found in three unaffected family members or 100 unrelated controls. Then, the function and mechanism of the mutation were investigated in vitro. We found both wild-type (WT) and mutant SOX10 p.Q355* were detected at the expected size and their expression levels are equivalent. The mutant protein also localized in the nucleus and retained the DNA-binding activity as WT counterpart; however, it lost its transactivation capability on the MITF promoter and acted as a dominant-negative repressor impairing function of the WT SOX10. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Functional analysis of five trypsin-like protease genes in the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae).

    Science.gov (United States)

    Li, Ya-Li; Hou, Ming-Zhe; Shen, Guang-Mao; Lu, Xue-Ping; Wang, Zhe; Jia, Fu-Xian; Wang, Jin-Jun; Dou, Wei

    2017-03-01

    Insect midgut proteases catalyze the release of free amino acids from dietary proteins and are essential for insect normal development. To date, digestive proteases as potential candidates have made great progress in pest control. To clarify the function of trypsin-like protease genes in the digestive system of Bactrocera dorsalis, a serious pest of a wide range of tropical and subtropical fruit and vegetable crops, five trypsin genes (BdTry1, BdTry2, BdTry3, BdTry4 and BdTry5) were identified from transcriptome dataset, and the effects of feeding condition on their expression levels were examined subsequently. RNA interference (RNAi) was applied to further explore their function on the growth of B. dorsalis. The results showed that all the BdTrys in starving midgut expressed at a minimal level but up-regulated upon feeding (except BdTry3). Besides, RNAi by feeding dsRNAs to larvae proved to be an effective method to cause gene silencing and the mixed dsRNAs of the five BdTrys slowed larvae growth of B. dorsalis. The current data suggest that trypsin genes are actively involved in digestion process of B. dorsalis larvae and thereafter play crucial roles in their development. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. [Functional analysis of Grp and Iris, the gag and env domesticated errantivirus genes, in the Drosophila melanogaster genome].

    Science.gov (United States)

    Makhnovskii, P A; Kuzmin, I V; Nefedova, L N; Kima, A I

    2016-01-01

    Drosophila melanogaster is the only invertebrate that contains endogenous retroviruses, which are called errantiviruses. Two domesticated genes, Grp and Iris, which originate from errantivirus gag and env, respectively, have been found in the D. melanogaster genome. The functions performed by the genes in Drosophila are still unclear. To identify the functions of domesticated gag and env in the D. melanogaster genome, expression of Iris and Grp was studied in strains differing by the presence or absence of the functional gypsy errantivirus. In addition, the expression levels were measured after injection of gram-positive and gram-negative bacteria, which activate different immune response pathways, and exposure to various abiotic stress factors. The presence of functional D. melanogaster retrovirus gypsy was found to increase the Grp expression level in somatic tissues of the carcass, while exerting no effect on the Iris expression level. Activation of the immune response in D. melanogaster by bacteria Bacillus cereus increased the Grp expression level and did not affect Iris expression. As for the effects of abiotic stress factors (oxidative stress, starvation, and heat and cold stress), the Grp expression level increased in response to starvation in D. melanogaster females, and the Iris expression level was downregulated in heat shock and oxidative stress. Based on the findings, Grp was assumed to play a direct role in the immune response in D. melanogaster; Iris is not involved in immune responses, but and apparently performs a cell function that is inhibited in stress.

  8. Multilevel functional clustering analysis.

    Science.gov (United States)

    Serban, Nicoleta; Jiang, Huijing

    2012-09-01

    In this article, we investigate clustering methods for multilevel functional data, which consist of repeated random functions observed for a large number of units (e.g., genes) at multiple subunits (e.g., bacteria types). To describe the within- and between variability induced by the hierarchical structure in the data, we take a multilevel functional principal component analysis (MFPCA) approach. We develop and compare a hard clustering method applied to the scores derived from the MFPCA and a soft clustering method using an MFPCA decomposition. In a simulation study, we assess the estimation accuracy of the clustering membership and the cluster patterns under a series of settings: small versus moderate number of time points; various noise levels; and varying number of subunits per unit. We demonstrate the applicability of the clustering analysis to a real data set consisting of expression profiles from genes activated by immunity system cells. Prevalent response patterns are identified by clustering the expression profiles using our multilevel clustering analysis. © 2012, The International Biometric Society.

  9. Functional analysis and tissue-differential expression of four FAD2 genes in amphidiploid Brassica napus derived from Brassica rapa and Brassica oleracea.

    Science.gov (United States)

    Lee, Kyeong-Ryeol; In Sohn, Soo; Jung, Jin Hee; Kim, Sun Hee; Roh, Kyung Hee; Kim, Jong-Bum; Suh, Mi Chung; Kim, Hyun Uk

    2013-12-01

    Fatty acid desaturase 2 (FAD2), which resides in the endoplasmic reticulum (ER), plays a crucial role in producing linoleic acid (18:2) through catalyzing the desaturation of oleic acid (18:1) by double bond formation at the delta 12 position. FAD2 catalyzes the first step needed for the production of polyunsaturated fatty acids found in the glycerolipids of cell membranes and the triacylglycerols in seeds. In this study, four FAD2 genes from amphidiploid Brassica napus genome were isolated by PCR amplification, with their enzymatic functions predicted by sequence analysis of the cDNAs. Fatty acid analysis of budding yeast transformed with each of the FAD2 genes showed that whereas BnFAD2-1, BnFAD2-2, and BnFAD2-4 are functional enzymes, and BnFAD2-3 is nonfunctional. The four FAD2 genes of B. napus originated from synthetic hybridization of its diploid progenitors Brassica rapa and Brassica oleracea, each of which has two FAD2 genes identical to those of B. napus. The BnFAD2-3 gene of B. napus, a nonfunctional pseudogene mutated by multiple nucleotide deletions and insertions, was inherited from B. rapa. All BnFAD2 isozymes except BnFAD2-3 localized to the ER. Nonfunctional BnFAD2-3 localized to the nucleus and chloroplasts. Four BnFAD2 genes can be classified on the basis of their expression patterns. © 2013.

  10. Suppression subtractive hybridization (SSH) combined with bioinformatics method: an integrated functional annotation approach for analysis of differentially expressed immune-genes in insects.

    Science.gov (United States)

    Badapanda, Chandan

    2013-01-01

    The suppression subtractive hybridization (SSH) approach, a PCR based approach which amplifies differentially expressed cDNAs (complementary DNAs), while simultaneously suppressing amplification of common cDNAs, was employed to identify immuneinducible genes in insects. This technique has been used as a suitable tool for experimental identification of novel genes in eukaryotes as well as prokaryotes; whose genomes have been sequenced, or the species whose genomes have yet to be sequenced. In this article, I have proposed a method for in silico functional characterization of immune-inducible genes from insects. Apart from immune-inducible genes from insects, this method can be applied for the analysis of genes from other species, starting from bacteria to plants and animals. This article is provided with a background of SSH-based method taking specific examples from innate immune-inducible genes in insects, and subsequently a bioinformatics pipeline is proposed for functional characterization of newly sequenced genes. The proposed workflow presented here, can also be applied for any newly sequenced species generated from Next Generation Sequencing (NGS) platforms.

  11. Cross disease analysis of co-functional microRNA pairs on a reconstructed network of disease-gene-microRNA tripartite.

    Science.gov (United States)

    Peng, Hui; Lan, Chaowang; Zheng, Yi; Hutvagner, Gyorgy; Tao, Dacheng; Li, Jinyan

    2017-03-24

    MicroRNAs always function cooperatively in their regulation of gene expression. Dysfunctions of these co-functional microRNAs can play significant roles in disease development. We are interested in those multi-disease associated co-functional microRNAs that regulate their common dysfunctional target genes cooperatively in the development of multiple diseases. The research is potentially useful for human disease studies at the transcriptional level and for the study of multi-purpose microRNA therapeutics. We designed a computational method to detect multi-disease associated co-functional microRNA pairs and conducted cross disease analysis on a reconstructed disease-gene-microRNA (DGR) tripartite network. The construction of the DGR tripartite network is by the integration of newly predicted disease-microRNA associations with those relationships of diseases, microRNAs and genes maintained by existing databases. The prediction method uses a set of reliable negative samples of disease-microRNA association and a pre-computed kernel matrix instead of kernel functions. From this reconstructed DGR tripartite network, multi-disease associated co-functional microRNA pairs are detected together with their common dysfunctional target genes and ranked by a novel scoring method. We also conducted proof-of-concept case studies on cancer-related co-functional microRNA pairs as well as on non-cancer disease-related microRNA pairs. With the prioritization of the co-functional microRNAs that relate to a series of diseases, we found that the co-function phenomenon is not unusual. We also confirmed that the regulation of the microRNAs for the development of cancers is more complex and have more unique properties than those of non-cancer diseases.

  12. A functional analysis of the formyl-coenzyme A (frc) gene from Lactobacillus reuteri 100-23C.

    Science.gov (United States)

    Kullin, B; Tannock, G W; Loach, D M; Kimura, K; Abratt, V R; Reid, S J

    2014-06-01

    To examine the role of the Lactobacillus reuteri 100-23C frc gene product in oxalate metabolism, host colonization and the acid stress response. Genes encoding putative formyl-CoA transferase (frc) and oxalyl-CoA decarboxylase (oxc) enzymes are present in the genome sequences of Lact. reuteri strains. Two strains isolated from humans harboured an IS200 insertion sequence in the frc ORF and a group 2 intron-associated transposase downstream of the frc gene, both of which were lacking in two strains of animal origin, which contained intact frc and oxc genes. An frc(-) insertional mutant of Lact. reuteri 100-23C was compared with the parent strain with respect to oxalate degradation, colonization of an RLF-mouse host model and growth in the presence of acids. Neither parent nor mutant degraded oxalate in vitro or in vivo. However, the parent outcompeted the frc(-) mutant in the mouse intestine during co-colonization and the frc(-) mutant showed a reduced growth rate in the presence of hydrochloric acid. Intact oxc and frc genes do not ensure oxalate degradation under the conditions tested. The frc gene product is important during host colonization and survival of acid stress by Lact. reuteri 100-23C. Oxalate metabolism by oxalate-degrading intestinal bacterial strains may be important in preventing urolithiasis and might lead to the derivation of probiotic products. To produce safe and efficacious probiotics, however, an understanding of the genetic characteristics of potential oxalate degraders must be obtained, together with knowledge of their functional ramifications. © 2014 The Society for Applied Microbiology.

  13. Functional coupling analysis suggests link between the obesity gene FTO and the BDNF-NTRK2 signaling pathway

    Directory of Open Access Journals (Sweden)

    Rask-Andersen Mathias

    2011-11-01

    Full Text Available Abstract Background The Fat mass and obesity gene (FTO has been identified through genome wide association studies as an important genetic factor contributing to a higher body mass index (BMI. However, the molecular context in which this effect is mediated has yet to be determined. We investigated the potential molecular network for FTO by analyzing co-expression and protein-protein interaction databases, Coxpresdb and IntAct, as well as the functional coupling predicting multi-source database, FunCoup. Hypothalamic expression of FTO-linked genes defined with this bioinformatics approach was subsequently studied using quantitative real time-PCR in mouse feeding models known to affect FTO expression. Results We identified several candidate genes for functional coupling to FTO through database studies and selected nine for further study in animal models. We observed hypothalamic expression of Profilin 2 (Pfn2, cAMP-dependent protein kinase catalytic subunit beta (Prkacb, Brain derived neurotrophic factor (Bdnf, neurotrophic tyrosine kinase, receptor, type 2 (Ntrk2, Signal transducer and activator of transcription 3 (Stat3, and Btbd12 to be co-regulated in concert with Fto. Pfn2 and Prkacb have previously not been linked to feeding regulation. Conclusions Gene expression studies validate several candidates generated through database studies of possible FTO-interactors. We speculate about a wider functional role for FTO in the context of current and recent findings, such as in extracellular ligand-induced neuronal plasticity via NTRK2/BDNF, possibly via interaction with the transcription factor CCAAT/enhancer binding protein β (C/EBPβ.

  14. Cis-eQTL analysis and functional validation of candidate susceptibility genes for high-grade serous ovarian cancer

    Science.gov (United States)

    Lawrenson, Kate; Li, Qiyuan; Kar, Siddhartha; Seo, Ji-Heui; Tyrer, Jonathan; Spindler, Tassja J.; Lee, Janet; Chen, Yibu; Karst, Alison; Drapkin, Ronny; Aben, Katja K. H.; Anton-Culver, Hoda; Antonenkova, Natalia; Bowtell, David; Webb, Penelope M.; deFazio, Anna; Baker, Helen; Bandera, Elisa V.; Bean, Yukie; Beckmann, Matthias W.; Berchuck, Andrew; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A.; Brooks-Wilson, Angela; Bruinsma, Fiona; Butzow, Ralf; Campbell, Ian G.; Carty, Karen; Chang-Claude, Jenny; Chenevix-Trench, Georgia; Chen, Anne; Chen, Zhihua; Cook, Linda S.; Cramer, Daniel W.; Cunningham, Julie M.; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; Dennis, Joe; Dicks, Ed; Doherty, Jennifer A.; Dörk, Thilo; du Bois, Andreas; Dürst, Matthias; Eccles, Diana; Easton, Douglas T.; Edwards, Robert P.; Eilber, Ursula; Ekici, Arif B.; Fasching, Peter A.; Fridley, Brooke L.; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G.; Glasspool, Rosalind; Goode, Ellen L.; Goodman, Marc T.; Grownwald, Jacek; Harrington, Patricia; Harter, Philipp; Hasmad, Hanis Nazihah; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A. T.; Hillemanns, Peter; Hogdall, Estrid; Hogdall, Claus; Hosono, Satoyo; Iversen, Edwin S.; Jakubowska, Anna; James, Paul; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y.; Kruger Kjaer, Susanne; Kelemen, Linda E.; Kellar, Melissa; Kelley, Joseph L.; Kiemeney, Lambertus A.; Krakstad, Camilla; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D.; Lee, Alice W.; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A.; Liang, Dong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F. A. G.; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R.; Nevanlinna, Heli; McNeish, Ian; Menon, Usha; Modugno, Francesmary; Moysich, Kirsten B.; Narod, Steven A.; Nedergaard, Lotte; Ness, Roberta B.; Azmi, Mat Adenan Noor; Odunsi, Kunle; Olson, Sara H.; Orlow, Irene; Orsulic, Sandra; Weber, Rachel Palmieri; Pearce, Celeste L.; Pejovic, Tanja; Pelttari, Liisa M.; Permuth-Wey, Jennifer; Phelan, Catherine M.; Pike, Malcolm C.; Poole, Elizabeth M.; Ramus, Susan J.; Risch, Harvey A.; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H.; Rudolph, Anja; Runnebaum, Ingo B.; Rzepecka, Iwona K.; Salvesen, Helga B.; Schildkraut, Joellen M.; Schwaab, Ira; Sellers, Thomas A.; Shu, Xiao-Ou; Shvetsov, Yurii B.; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C.; Sucheston, Lara; Tangen, Ingvild L.; Teo, Soo-Hwang; Terry, Kathryn L.; Thompson, Pamela J.; Timorek, Agnieszka; Tsai, Ya-Yu; Tworoger, Shelley S.; van Altena, Anne M.; Van Nieuwenhuysen, Els; Vergote, Ignace; Vierkant, Robert A.; Wang-Gohrke, Shan; Walsh, Christine; Wentzensen, Nicolas; Whittemore, Alice S.; Wicklund, Kristine G.; Wilkens, Lynne R.; Woo, Yin-Ling; Wu, Xifeng; Wu, Anna H.; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Monteiro, Alvaro; Pharoah, Paul D.; Gayther, Simon A.; Freedman, Matthew L.

    2015-01-01

    Genome-wide association studies have reported 11 regions conferring risk of high-grade serous epithelial ovarian cancer (HGSOC). Expression quantitative trait locus (eQTL) analyses can identify candidate susceptibility genes at risk loci. Here we evaluate cis-eQTL associations at 47 regions associated with HGSOC risk (P≤10−5). For three cis-eQTL associations (P<1.4 × 10−3, FDR<0.05) at 1p36 (CDC42), 1p34 (CDCA8) and 2q31 (HOXD9), we evaluate the functional role of each candidate by perturbing expression of each gene in HGSOC precursor cells. Overexpression of HOXD9 increases anchorage-independent growth, shortens population-doubling time and reduces contact inhibition. Chromosome conformation capture identifies an interaction between rs2857532 and the HOXD9 promoter, suggesting this SNP is a leading causal variant. Transcriptomic profiling after HOXD9 overexpression reveals enrichment of HGSOC risk variants within HOXD9 target genes (P=6 × 10−10 for risk variants (P<10−4) within 10 kb of a HOXD9 target gene in ovarian cells), suggesting a broader role for this network in genetic susceptibility to HGSOC. PMID:26391404

  15. Analysis of TIR- and non-TIR-NBS-LRR disease resistance gene analogous in pepper: characterization, genetic variation, functional divergence and expression patterns

    Directory of Open Access Journals (Sweden)

    Wan Hongjian

    2012-09-01

    Full Text Available Abstract Background Pepper (Capsicum annuum L. is one of the most important vegetable crops worldwide. However, its yield and fruit quality can be severely threatened by several pathogens. The plant nucleotide-binding site (NBS-leucine-rich repeat (LRR gene family is the largest class of known disease resistance genes (R genes effective against such pathogens. Therefore, the isolation and identification of such R gene homologues from pepper will provide a critical foundation for improving disease resistance breeding programs. Results A total of 78 R gene analogues (CaRGAs were identified in pepper by degenerate PCR amplification and database mining. Phylogenetic tree analysis of the deduced amino acid sequences for 51 of these CaRGAs with typically conserved motifs ( P-loop, kinase-2 and GLPL along with some known R genes from Arabidopsis and tomato grouped these CaRGAs into the non-Toll interleukin-1 receptor (TIR-NBS-LRR (CaRGAs I to IV and TIR-NBS-LRR (CaRGAs V to VII subfamilies. The presence of consensus motifs (i.e. P-loop, kinase-2 and hydrophobic domain is typical of the non-TIR- and TIR-NBS-LRR gene subfamilies. This finding further supports the view that both subfamilies are widely distributed in dicot species. Functional divergence analysis provided strong statistical evidence of altered selective constraints during protein evolution between the two subfamilies. Thirteen critical amino acid sites involved in this divergence were also identified using DIVERGE version 2 software. Analyses of non-synonymous and synonymous substitutions per site showed that purifying selection can play a critical role in the evolutionary processes of non-TIR- and TIR-NBS-LRR RGAs in pepper. In addition, four specificity-determining positions were predicted to be responsible for functional specificity. qRT-PCR analysis showed that both salicylic and abscisic acids induce the expression of CaRGA genes, suggesting that they may primarily be involved in

  16. Diverse gene functions in a soil mobilome

    DEFF Research Database (Denmark)

    Luo, Wenting; Xu, Zhuofei; Riber, Leise

    2016-01-01

    , the soil mobilome sampled from a well-characterized field in Hygum, Denmark. Soil bacterial cells were obtained by Nycodenz extraction, total DNA was purified by removing sheared chromosomal DNA using exonuclease digestion, and the remaining circular DNA was amplified with the phi29 polymerase and finally...... sequenced. The soil mobilome represented a wide range of known bacterial gene functions and highlighted the enrichment of plasmids, transposable elements and phages when compared to a well-characterized soil metagenome that, on the other hand, was dominated by basic biosynthesis and metabolism functions....... Approximately one eighth of the gene set was of plasmid-intrinsic traits, including replication, conjugation, mobilization and stability based on Pfam database analysis. Resistance determinants toward aminoglycosides, beta-lactams and glycopeptides as well as multi-drug functions indicated that a substantial...

  17. Mining Association Rules among Gene Functions in Clusters of Similar Gene Expression Maps.

    Science.gov (United States)

    An, Li; Obradovic, Zoran; Smith, Desmond; Bodenreider, Olivier; Megalooikonomou, Vasileios

    2009-11-01

    Association rules mining methods have been recently applied to gene expression data analysis to reveal relationships between genes and different conditions and features. However, not much effort has focused on detecting the relation between gene expression maps and related gene functions. Here we describe such an approach to mine association rules among gene functions in clusters of similar gene expression maps on mouse brain. The experimental results show that the detected association rules make sense biologically. By inspecting the obtained clusters and the genes having the gene functions of frequent itemsets, interesting clues were discovered that provide valuable insight to biological scientists. Moreover, discovered association rules can be potentially used to predict gene functions based on similarity of gene expression maps.

  18. Genome-wide Analysis of Gene Regulation

    DEFF Research Database (Denmark)

    Chen, Yun

    cells are capable of regulating their gene expression, so that each cell can only express a particular set of genes yielding limited numbers of proteins with specialized functions. Therefore a rigid control of differential gene expression is necessary for cellular diversity. On the other hand, aberrant...... gene regulation will disrupt the cell’s fundamental processes, which in turn can cause disease. Hence, understanding gene regulation is essential for deciphering the code of life. Along with the development of high throughput sequencing (HTS) technology and the subsequent large-scale data analysis......, genome-wide assays have increased our understanding of gene regulation significantly. This thesis describes the integration and analysis of HTS data across different important aspects of gene regulation. Gene expression can be regulated at different stages when the genetic information is passed from gene...

  19. Gene set analysis for longitudinal gene expression data

    Directory of Open Access Journals (Sweden)

    Piepho Hans-Peter

    2011-07-01

    Full Text Available Abstract Background Gene set analysis (GSA has become a successful tool to interpret gene expression profiles in terms of biological functions, molecular pathways, or genomic locations. GSA performs statistical tests for independent microarray samples at the level of gene sets rather than individual genes. Nowadays, an increasing number of microarray studies are conducted to explore the dynamic changes of gene expression in a variety of species and biological scenarios. In these longitudinal studies, gene expression is repeatedly measured over time such that a GSA needs to take into account the within-gene correlations in addition to possible between-gene correlations. Results We provide a robust nonparametric approach to compare the expressions of longitudinally measured sets of genes under multiple treatments or experimental conditions. The limiting distributions of our statistics are derived when the number of genes goes to infinity while the number of replications can be small. When the number of genes in a gene set is small, we recommend permutation tests based on our nonparametric test statistics to achieve reliable type I error and better power while incorporating unknown correlations between and within-genes. Simulation results demonstrate that the proposed method has a greater power than other methods for various data distributions and heteroscedastic correlation structures. This method was used for an IL-2 stimulation study and significantly altered gene sets were identified. Conclusions The simulation study and the real data application showed that the proposed gene set analysis provides a promising tool for longitudinal microarray analysis. R scripts for simulating longitudinal data and calculating the nonparametric statistics are posted on the North Dakota INBRE website http://ndinbre.org/programs/bioinformatics.php. Raw microarray data is available in Gene Expression Omnibus (National Center for Biotechnology Information with

  20. Analysis of Microbial Communities in the Oil Reservoir Subjected to CO2-Flooding by Using Functional Genes as Molecular Biomarkers for Microbial CO2 Sequestration

    Directory of Open Access Journals (Sweden)

    Jin-Feng eLiu

    2015-03-01

    Full Text Available Sequestration of CO2 in oil reservoirs is considered to be one of the feasible options for mitigating atmospheric CO2 building up and also for the in situ potential bioconversion of stored CO2 to methane. However, the information on these functional microbial communities and the impact of CO2 storage on them is hardly available. In this paper a comprehensive molecular survey was performed on microbial communities in production water samples from oil reservoirs experienced CO2-flooding by analysis of functional genes involved in the process, including cbbM, cbbL, fthfs, [FeFe]-hydrogenase and mcrA. As a comparison, these functional genes in the production water samples from oil reservoir only experienced water-flooding in areas of the same oil bearing bed were also analyzed. It showed that these functional genes were all of rich diversity in these samples, and the functional microbial communities and their diversity were strongly affected by a long-term exposure to injected CO2. More interestingly, microorganisms affiliated with members of the genera Methanothemobacter, Acetobacterium and Halothiobacillus as well as hydrogen producers in CO2 injected area either increased or remained unchanged in relative abundance compared to that in water-flooded area, which implied that these microorganisms could adapt to CO2 injection and, if so, demonstrated the potential for microbial fixation and conversion of CO2 into methane in subsurface oil reservoirs.

  1. Identification of key genes implicated in the suppressive function of human FOXP3+CD25+CD4+ regulatory T cells through the analysis of time‑series data.

    Science.gov (United States)

    Bai, Xiaofeng; Shi, Hua; Yang, Mingxi; Wang, Yuanlin; Sun, Zhaolin; Xu, Shuxiong

    2018-03-01

    Human forkhead box P3 (FOXP3)+ cluster of differentiation (CD)25+CD4+ regulatory T cells (Tregs) are a type of T cell that express CD4, CD25 and FOXP3, which are critical for maintaining immune homeostasis. The present study aimed to determine the mechanisms underlying Treg function. The GSE11292 dataset was downloaded from the Gene Expression Omnibus, which included data from Treg cells at 19 time points (0‑360 min) with an equal interval of 20 min, and corresponding repeated samples. However, data for Treg cells at time point 120 min were missing. Using the Mfuzz package, the key genes were identified by clustering analysis. Subsequently, regulatory networks and protein‑protein interaction (PPI) networks were constructed and merged into integrated networks using Cytoscape software. Using Database for Annotation, Visualization and Integrated Discover software, enrichment analyses were performed for the genes involved in the PPI networks. Cluster 1 (including 292 genes), cluster 2 (including 111 genes), cluster 3 (including 194 genes) and cluster 4 (including 103 genes) were obtained from the clustering analysis. GAPDH (degree, 40) in cluster 1, Janus kinase 2 (JAK2) (degree, 10) and signal transducer and activator of transcription 5A (STAT5A) (degree, 9) in cluster 3, and tumor necrosis factor (TNF) (degree, 26) and interleukin 2 (IL2) (degree, 22) in cluster 4 had higher degrees in the PPI networks. In addition, it was indicated that several genes may have a role in Treg function by targeting other genes [e.g. microRNA (miR)‑146b‑3p→TNF, miR‑146b‑5p→TNF, miR‑142‑5p→TNF and tripartite motif containing 28 (TRIM28)→GAPDH]. Enrichment analyses indicated that IL2 and TNF were enriched in the immune response and T cell receptor signaling pathway. In conclusion, GAPDH targeted by TRIM28, TNF targeted by miR‑146b‑3p, miR‑146b‑5p and miR‑142‑5p, in addition to JAK2, IL2, and STAT5A may serve important roles in Treg function.

  2. Characterization, Expression, and Functional Analysis of a Novel NAC Gene Associated with Resistance to Verticillium Wilt and Abiotic Stress in Cotton.

    Science.gov (United States)

    Wang, Weina; Yuan, Youlu; Yang, Can; Geng, Shuaipeng; Sun, Quan; Long, Lu; Cai, Chaowei; Chu, Zongyan; Liu, Xin; Wang, Guanghao; Du, Xiongming; Miao, Chen; Zhang, Xiao; Cai, Yingfan

    2016-12-07

    Elucidating the mechanism of resistance to biotic and abiotic stress is of great importance in cotton. In this study, a gene containing the NAC domain, designated GbNAC1, was identified from Gossypium barbadense L. Homologous sequence alignment indicated that GbNAC1 belongs to the TERN subgroup. GbNAC1 protein localized to the cell nucleus. GbNAC1 was expressed in roots, stems, and leaves, and was especially highly expressed in vascular bundles. Functional analysis showed that cotton resistance to Verticillium wilt was reduced when the GbNAC1 gene was silenced using the virus-induced gene silencing (VIGS) method. GbNAC1-overexpressing Arabidopsis showed enhanced resistance to Verticillium dahliae compared to wild-type. Thus, GbNAC1 is involved in the positive regulation of resistance to Verticillium wilt. In addition, analysis of GbNAC1-overexpressing Arabidopsis under different stress treatments indicated that it is involved in plant growth, development, and response to various abiotic stresses (ABA, mannitol, and NaCl). This suggests that GbNAC1 plays an important role in resistance to biotic and abiotic stresses in cotton. This study provides a foundation for further study of the function of NAC genes in cotton and other plants. Copyright © 2016 Wang et al.

  3. Characterization, Expression, and Functional Analysis of a Novel NAC Gene Associated with Resistance to Verticillium Wilt and Abiotic Stress in Cotton

    Directory of Open Access Journals (Sweden)

    Weina Wang

    2016-12-01

    Full Text Available Elucidating the mechanism of resistance to biotic and abiotic stress is of great importance in cotton. In this study, a gene containing the NAC domain, designated GbNAC1, was identified from Gossypium barbadense L. Homologous sequence alignment indicated that GbNAC1 belongs to the TERN subgroup. GbNAC1 protein localized to the cell nucleus. GbNAC1 was expressed in roots, stems, and leaves, and was especially highly expressed in vascular bundles. Functional analysis showed that cotton resistance to Verticillium wilt was reduced when the GbNAC1 gene was silenced using the virus-induced gene silencing (VIGS method. GbNAC1-overexpressing Arabidopsis showed enhanced resistance to Verticillium dahliae compared to wild-type. Thus, GbNAC1 is involved in the positive regulation of resistance to Verticillium wilt. In addition, analysis of GbNAC1-overexpressing Arabidopsis under different stress treatments indicated that it is involved in plant growth, development, and response to various abiotic stresses (ABA, mannitol, and NaCl. This suggests that GbNAC1 plays an important role in resistance to biotic and abiotic stresses in cotton. This study provides a foundation for further study of the function of NAC genes in cotton and other plants.

  4. Identification of bovine leukemia virus tax function associated with host cell transcription, signaling, stress response and immune response pathway by microarray-based gene expression analysis

    Directory of Open Access Journals (Sweden)

    Arainga Mariluz

    2012-03-01

    Full Text Available Abstract Background Bovine leukemia virus (BLV is associated with enzootic bovine leukosis and is closely related to human T-cell leukemia virus type I. The Tax protein of BLV is a transcriptional activator of viral replication and a key contributor to oncogenic potential. We previously identified interesting mutant forms of Tax with elevated (TaxD247G or reduced (TaxS240P transactivation effects on BLV replication and propagation. However, the effects of these mutations on functions other than transcriptional activation are unknown. In this study, to identify genes that play a role in the cascade of signal events regulated by wild-type and mutant Tax proteins, we used a large-scale host cell gene-profiling approach. Results Using a microarray containing approximately 18,400 human mRNA transcripts, we found several alterations after the expression of Tax proteins in genes involved in many cellular functions such as transcription, signal transduction, cell growth, apoptosis, stress response, and immune response, indicating that Tax protein has multiple biological effects on various cellular environments. We also found that TaxD247G strongly regulated more genes involved in transcription, signal transduction, and cell growth functions, contrary to TaxS240P, which regulated fewer genes. In addition, the expression of genes related to stress response significantly increased in the presence of TaxS240P as compared to wild-type Tax and TaxD247G. By contrast, the largest group of downregulated genes was related to immune response, and the majority of these genes belonged to the interferon family. However, no significant difference in the expression level of downregulated genes was observed among the Tax proteins. Finally, the expression of important cellular factors obtained from the human microarray results were validated at the RNA and protein levels by real-time quantitative reverse transcription-polymerase chain reaction and western blotting

  5. Identification and functional analysis of the erh1(+ gene encoding enhancer of rudimentary homolog from the fission yeast Schizosaccharomyces pombe.

    Directory of Open Access Journals (Sweden)

    Marek K Krzyzanowski

    Full Text Available The ERH gene encodes a highly conserved small nuclear protein with a unique amino acid sequence and three-dimensional structure but unknown function. The gene is present in animals, plants, and protists but to date has only been found in few fungi. Here we report that ERH homologs are also present in all four species from the genus Schizosaccharomyces, S. pombe, S. octosporus, S. cryophilus, and S. japonicus, which, however, are an exception in this respect among Ascomycota and Basidiomycota. The ERH protein sequence is moderately conserved within the genus (58% identity between S. pombe and S.japonicus, but the intron-rich genes have almost identical intron-exon organizations in all four species. In S. pombe, erh1(+ is expressed at a roughly constant level during vegetative growth and adaptation to unfavorable conditions such as nutrient limitation and hyperosmotic stress caused by sorbitol. Erh1p localizes preferentially to the nucleus with the exception of the nucleolus, but is also present in the cytoplasm. Cells lacking erh1(+ have an aberrant cell morphology and a comma-like shape when cultured to the stationary phase, and exhibit a delayed recovery from this phase followed by slower growth. Loss of erh1(+ in an auxotrophic background results in enhanced arrest in the G1 phase following nutritional stress, and also leads to hypersensitivity to agents inducing hyperosmotic stress (sorbitol, inhibiting DNA replication (hydroxyurea, and destabilizing the plasma membrane (SDS; this hypersensitivity can be abolished by expression of S. pombe erh1(+ and, to a lesser extent, S. japonicus erh1(+ or human ERH. Erh1p fails to interact with the human Ciz1 and PDIP46/SKAR proteins, known molecular partners of human ERH. Our data suggest that in Schizosaccharomyces sp. erh1(+ is non-essential for normal growth and Erh1p could play a role in response to adverse environmental conditions and in cell cycle regulation.

  6. Isolation and functional analysis of a homolog of flavonoid 3',5'-hydroxylase gene from Pericallis × hybrida.

    Science.gov (United States)

    Sun, Yi; Huang, He; Meng, Li; Hu, Ke; Dai, Si-Lan

    2013-10-01

    As the key enzyme in the biosynthesis of blue flower color pigments, flavonoid 3',5'-hydroxylase (F3'5'H) can catalyze the conversion of its major substrates, 2-S naringenin and dihydrokaempferol, into 3',4',5'-hydroxylated pentahydroxyflavanone and dihydromyricetin, respectively. Unlike other F3'5'Hs belonging to the CYP75A subfamily, Asteraceae-specific F3'5'Hs belong to the CYP75B subfamily. Furthermore, cineraria F3'5'H expressed in yeast exhibited not only F3'H (flavonoid 3'-hydroxylase) activity but also F3'5'H activity in vitro. In this study, Southern blotting showed that there was only one copy of a homolog of the F3'5'H gene PCFH in the Pericallis × hybrida genome. This gene could be detected by Northern blot in the primary developmental stages of ligulate florets of the purple- and blue-flowered cultivars, and its transcripts also accumulated in the leaves. Heterologous expression of PCFH could produce new delphinidin derivatives in the corollas of transgenic tobacco plants, increased the content of cyanidin derivatives and lead to the blue- and red-shifting of flower color in T₀ generation plants. These results indicate that cineraria F3'5'H exhibited both F3'5'H- and F3'H-activity in vivo. The types and contents of anthocyanins and flower color phenotypes of the T₁ generation were similar to those of T₀ generation plants. PCFH exhibited stable inheritance and normal functions between generations. This study supplies new evidence to understand Asteraceae-specific F3'5'Hs and provides important references for the further study of molecular breeding of blue-flowered chrysanthemums using the PCFH gene. © 2013 Scandinavian Plant Physiology Society.

  7. Identification and functional analysis of a novel mutation in the PAX3 gene associated with Waardenburg syndrome type I.

    Science.gov (United States)

    Niu, Zhijie; Li, Jiada; Tang, Fen; Sun, Jie; Wang, Xueping; Jiang, Lu; Mei, Lingyun; Chen, Hongsheng; Liu, Yalan; Cai, Xinzhang; Feng, Yong; He, Chufeng

    2018-02-05

    Waardenburg syndrome type 1 (WS1) is a rare autosomal dominant genetic disorder of neural crest cells (NCC) characterized by congenital sensorineural hearing loss, dystopia canthorum, and abnormal iris pigmentation. WS1 is due to loss-of-function mutations in paired box gene 3 (PAX3). Here, we identified a novel PAX3 mutation (c.808C>G, p.R270G) in a three-generation Chinese family with WS1, and then analyzed its in vitro activities. The R270G PAX3 retained nuclear distribution and normal DNA-binding ability; however, it failed to activate MITF promoter, suggesting that haploinsufficiency may be the underlying mechanism for the mild WS1 phenotype of the study family. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. First Comprehensive In Silico Analysis of the Functional and Structural Consequences of SNPs in Human GalNAc-T1 Gene

    Directory of Open Access Journals (Sweden)

    Hussein Sheikh Ali Mohamoud

    2014-01-01

    Full Text Available GalNAc-T1, a key candidate of GalNac-transferases genes family that is involved in mucin-type O-linked glycosylation pathway, is expressed in most biological tissues and cell types. Despite the reported association of GalNAc-T1 gene mutations with human disease susceptibility, the comprehensive computational analysis of coding, noncoding and regulatory SNPs, and their functional impacts on protein level, still remains unknown. Therefore, sequence- and structure-based computational tools were employed to screen the entire listed coding SNPs of GalNAc-T1 gene in order to identify and characterize them. Our concordant in silico analysis by SIFT, PolyPhen-2, PANTHER-cSNP, and SNPeffect tools, identified the potential nsSNPs (S143P, G258V, and Y414D variants from 18 nsSNPs of GalNAc-T1. Additionally, 2 regulatory SNPs (rs72964406 and #x26; rs34304568 were also identified in GalNAc-T1 by using FastSNP tool. Using multiple computational approaches, we have systematically classified the functional mutations in regulatory and coding regions that can modify expression and function of GalNAc-T1 enzyme. These genetic variants can further assist in better understanding the wide range of disease susceptibility associated with the mucin-based cell signalling and pathogenic binding, and may help to develop novel therapeutic elements for associated diseases.

  9. Identification and functional analysis of variant haplotypes in the 5'-flanking region of protein phosphatase 2A-Bδ gene.

    Directory of Open Access Journals (Sweden)

    Hui-Feng Chen

    Full Text Available Serine-threonine protein phosphatase 2A (PP2A is a trimeric holoenzyme that plays an integral role in the regulation of cell growth, differentiation, and apoptosis. The substrate specificity and (subcellular localization of the PP2A holoenzymes are highly regulated by interaction with a family of regulatory B subunits (PP2A-Bs. The regulatory subunit PP2A-B/PR55δ (PP2A-Bδ is involving in the dephosphorylation of PP2A substrates and is crucial for controlling entry into and exit from mitosis. The molecular mechanisms involved in the regulation of expression of PP2A-Bδ gene (PPP2R2D remain largely unknown. To explore genetic variations in the 5'-flanking region of PPP2R2D gene as well as their frequent haplotypes in the Han Chinese population and determine whether such variations have an impact on transcriptional activity, DNA samples were collected from 70 healthy Chinese donors and sequenced for identifying genetic variants in the 5'-flanking region of PPP2R2D. Four genetic variants were identified in the 1836 bp 5'-flanking region of PPP2R2D. Linkage disequilibrium (LD patterns and haplotype profiles were constructed for the genetic variants. Using serially truncated human PPP2R2D promoter luciferase constructs, we found that a 601 bp (-540 nt to +61 nt fragment constitutes the core promoter region. The subcloning of individual 5'-flanking fragment revealed the existence of three haplotypes in the distal promoter of PPP2R2D. The luciferase reporter assay showed that different haplotypes exhibited distinct promoter activities. The EMSA revealed that the -462 G>A variant influences DNA-protein interactions involving the nuclear factor 1 (NF1. In vitro reporter gene assay indicated that cotransfection of NF1/B expression plasmid could positively regulate the activity of PPP2R2D proximal promoter. Introduction of exogenous NF1/B expression plasmid further confirmed that the NF1 involves in the regulation of PPP2R2D gene expression. Our findings

  10. Genome-wide analysis of Glycine soja ubiquitin (UBQ) genes and functional analysis of GsUBQ10 in response to alkaline stress.

    Science.gov (United States)

    Chen, Chao; Chen, Ranran; Wu, Shengyang; Zhu, Dan; Sun, Xiaoli; Liu, Beidong; Li, Qiang; Zhu, Yanming

    2018-03-26

    Ubiquitin is a highly conserved protein with multiple essential regulation functions through the ubiquitin-proteasome system. Even though its functions in the ubiquitin-mediated protein degradation pathway were very well characterized. The functions of ubiquitin genes in regulating alkaline stress response are not fully established. In this study, we identified 12 potential UBQ genes in Glycine soja genome, and analyzed their evolutionary relationship, conserved domains and promoter cis-elements. We also explored the expression profiles of G. soja UBQ genes under alkaline stress, based on the transcriptome sequencing. We found that the expression of GsUBQ10 was significantly induced by alkaline stress, and function of GsUBQ10 was characterized using overexpression transgenic alfalfa (Medicago sativa). Our results suggested that GsUBQ10 transgenic lines significantly improved the alkaline tolerance in alfalfa. The GsUBQ10 transgenic lines showed lower relative membrane permeability, lower malon dialdehyde content and higher catalase activity than in the wild-type plants. This indicates that GsUBQ10 is involved in regulating the reactive oxygen species accumulation under alkaline stress. Taken together, we identified an ubiquitin gene GsUBQ10 from G. soja, which plays a positive role in responses to alkaline stress in alfalfa. This article is protected by copyright. All rights reserved.

  11. MicroScope-an integrated resource for community expertise of gene functions and comparative analysis of microbial genomic and metabolic data.

    Science.gov (United States)

    Médigue, Claudine; Calteau, Alexandra; Cruveiller, Stéphane; Gachet, Mathieu; Gautreau, Guillaume; Josso, Adrien; Lajus, Aurélie; Langlois, Jordan; Pereira, Hugo; Planel, Rémi; Roche, David; Rollin, Johan; Rouy, Zoe; Vallenet, David

    2017-09-12

    The overwhelming list of new bacterial genomes becoming available on a daily basis makes accurate genome annotation an essential step that ultimately determines the relevance of thousands of genomes stored in public databanks. The MicroScope platform (http://www.genoscope.cns.fr/agc/microscope) is an integrative resource that supports systematic and efficient revision of microbial genome annotation, data management and comparative analysis. Starting from the results of our syntactic, functional and relational annotation pipelines, MicroScope provides an integrated environment for the expert annotation and comparative analysis of prokaryotic genomes. It combines tools and graphical interfaces to analyze genomes and to perform the manual curation of gene function in a comparative genomics and metabolic context. In this article, we describe the free-of-charge MicroScope services for the annotation and analysis of microbial (meta)genomes, transcriptomic and re-sequencing data. Then, the functionalities of the platform are presented in a way providing practical guidance and help to the nonspecialists in bioinformatics. Newly integrated analysis tools (i.e. prediction of virulence and resistance genes in bacterial genomes) and original method recently developed (the pan-genome graph representation) are also described. Integrated environments such as MicroScope clearly contribute, through the user community, to help maintaining accurate resources. © The Author 2017. Published by Oxford University Press.

  12. Establishment of Relational Model of Congenital Heart Disease Markers and GO Functional Analysis of the Association between Its Serum Markers and Susceptibility Genes.

    Science.gov (United States)

    Liu, Min; Zhao, Luosha; Yuan, Jiaying

    2016-01-01

    The purpose of present study was to construct the best screening model of congenital heart disease serum markers and to provide reference for further prevention and treatment of the disease. Documents from 2006 to 2014 were collected and meta-analysis was used for screening susceptibility genes and serum markers closely related to the diagnosis of congenital heart disease. Data of serum markers were extracted from 80 congenital heart disease patients and 80 healthy controls, respectively, and then logistic regression analysis and support vector machine were utilized to establish prediction models of serum markers and Gene Ontology (GO) functional annotation. Results showed that NKX2.5, GATA4, and FOG2 were susceptibility genes of congenital heart disease. CRP, BNP, and cTnI were risk factors of congenital heart disease (p heart disease (p markers' relational model established by support vector machine was only 85%. GO analysis suggested that NKX2.5, GATA4, and FOG2 were functionally related to Lp(a) and BNP. The combined markers model of BNP and cTnI had the highest accuracy rate, providing a theoretical basis for the diagnosis of congenital heart disease.

  13. Isolation, expression and functional analysis of a putative RNA-dependent RNA polymerase gene from maize (Zea mays L.).

    Science.gov (United States)

    He, Junguang; Dong, Zhigang; Jia, Zhiwei; Wang, Jianhua; Wang, Guoying

    2010-02-01

    RNA-dependent RNA polymerases (RdRPs) in plants have been reported to be involved in post-transcriptional gene silencing (PTGS) and antiviral defense. In this report, an RdRP gene from maize (ZmRdRP1) was obtained by rapid amplification of cDNA ends (RACE) and RT-PCR. The mRNA of ZmRdRP1 was composed of 3785 nucleotides, including a 167 nt 5' untranslated region (UTR), a 291 nt 3'UTR and a 3327 nt open reading frame (ORF), which encodes a putative protein of 1108 amino acids with an estimated molecular mass of 126.9 kDa and a predicated isoelectric point (pI) of 8.37. Real-time quantitative RT-PCR analysis showed that ZmRdRP1 was elicited by salicylic acid (SA) treatment, methyl jasmonate (MeJA) treatment and sugarcane mosaic virus (SCMV) infection. We silenced ZmRdRP1 by constitutively expressing an inverted-repeat fragment of ZmRdRP1 (ir-RdRP1) in transgenic maize plants. Further studies revealed that the ir-RdRP1 transgenic plants were more susceptible to SCMV infection than wild type plants. Virus-infected transgenic maize plants developed more serious disease symptoms and accumulated more virus than wild type plants. These findings suggested that ZmRdRP1 was involved in antiviral defense in maize.

  14. Characterization and functional analysis of GhRDR6, a novel RDR6 gene from cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Wang, Mian; Li, Shanwei; Yang, Haifang; Gao, Zheng; Wu, Changai; Guo, Xingqi

    2012-04-01

    RDR6 (RNA-dependent RNA polymerase 6) is not only involved in virus resistance but also plays an important role in natural plant development. In the present study, a novel RDR gene, named GhRDR6 (Gossypium hirsutum RDR6), was isolated from cotton (G. hirsutum L.). Alignment and evolutionary relationship analyses showed that GhRDR6 was more closely related to RDR6 than to other RDRs. Expression analysis indicated that this single-copy gene is constitutively expressed in the roots, stems and leaves. Semi-quantitative RT-PCR (reverse transcription-PCR) showed that GhRDR6 was up-regulated by the application of various phytohormones, including MeJA [methyl JA (jasmonate)], ABA (abscisic acid), JA, α-naphthylacetic acid, gibberellins and ET (ethylene). In addition, GhRDR6 expression increased in response to wounding, cold (4°C) and NaCl treatments, but not by drought. Furthermore, overexpression of GhRDR6 in transgenic Nicotiana benthamiana plants resulted in root lengths longer than the wide-type during the seeding stage. Interestingly, the GhRDR6-overexpressing plants displayed reduced tolerance to oxidative damage, resulting in reduced ABA-sensitivity, but they tolerated freezing. Moreover, resistance to potato virus Y was enhanced in transgenic N. benthamiana plants. These results suggest that GhRDR6 may play an important role in plant defence responses and a pivotal role in plant development.

  15. High-throughput analysis of ammonia oxidiser community composition via a novel, amoA-based functional gene array.

    Directory of Open Access Journals (Sweden)

    Guy C J Abell

    Full Text Available Advances in microbial ecology research are more often than not limited by the capabilities of available methodologies. Aerobic autotrophic nitrification is one of the most important and well studied microbiological processes in terrestrial and aquatic ecosystems. We have developed and validated a microbial diagnostic microarray based on the ammonia-monooxygenase subunit A (amoA gene, enabling the in-depth analysis of the community structure of bacterial and archaeal ammonia oxidisers. The amoA microarray has been successfully applied to analyse nitrifier diversity in marine, estuarine, soil and wastewater treatment plant environments. The microarray has moderate costs for labour and consumables and enables the analysis of hundreds of environmental DNA or RNA samples per week per person. The array has been thoroughly validated with a range of individual and complex targets (amoA clones and environmental samples, respectively, combined with parallel analysis using traditional sequencing methods. The moderate cost and high throughput of the microarray makes it possible to adequately address broader questions of the ecology of microbial ammonia oxidation requiring high sample numbers and high resolution of the community composition.

  16. Genes2FANs: connecting genes through functional association networks

    Science.gov (United States)

    2012-01-01

    Background Protein-protein, cell signaling, metabolic, and transcriptional interaction networks are useful for identifying connections between lists of experimentally identified genes/proteins. However, besides physical or co-expression interactions there are many ways in which pairs of genes, or their protein products, can be associated. By systematically incorporating knowledge on shared properties of genes from diverse sources to build functional association networks (FANs), researchers may be able to identify additional functional interactions between groups of genes that are not readily apparent. Results Genes2FANs is a web based tool and a database that utilizes 14 carefully constructed FANs and a large-scale protein-protein interaction (PPI) network to build subnetworks that connect lists of human and mouse genes. The FANs are created from mammalian gene set libraries where mouse genes are converted to their human orthologs. The tool takes as input a list of human or mouse Entrez gene symbols to produce a subnetwork and a ranked list of intermediate genes that are used to connect the query input list. In addition, users can enter any PubMed search term and then the system automatically converts the returned results to gene lists using GeneRIF. This gene list is then used as input to generate a subnetwork from the user’s PubMed query. As a case study, we applied Genes2FANs to connect disease genes from 90 well-studied disorders. We find an inverse correlation between the counts of links connecting disease genes through PPI and links connecting diseases genes through FANs, separating diseases into two categories. Conclusions Genes2FANs is a useful tool for interpreting the relationships between gene/protein lists in the context of their various functions and networks. Combining functional association interactions with physical PPIs can be useful for revealing new biology and help form hypotheses for further experimentation. Our finding that disease genes in

  17. Discovery, Annotation, and Functional Analysis of Long Noncoding RNAs Controlling Cell-Cycle Gene Expression and Proliferation in Breast Cancer Cells.

    Science.gov (United States)

    Sun, Miao; Gadad, Shrikanth S; Kim, Dae-Seok; Kraus, W Lee

    2015-08-20

    We describe a computational approach that integrates GRO-seq and RNA-seq data to annotate long noncoding RNAs (lncRNAs), with increased sensitivity for low-abundance lncRNAs. We used this approach to characterize the lncRNA transcriptome in MCF-7 human breast cancer cells, including >700 previously unannotated lncRNAs. We then used information about the (1) transcription of lncRNA genes from GRO-seq, (2) steady-state levels of lncRNA transcripts in cell lines and patient samples from RNA-seq, and (3) histone modifications and factor binding at lncRNA gene promoters from ChIP-seq to explore lncRNA gene structure and regulation, as well as lncRNA transcript stability, regulation, and function. Functional analysis of selected lncRNAs with altered expression in breast cancers revealed roles in cell proliferation, regulation of an E2F-dependent cell-cycle gene expression program, and estrogen-dependent mitogenic growth. Collectively, our studies demonstrate the use of an integrated genomic and molecular approach to identify and characterize growth-regulating lncRNAs in cancers. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Cloning, Expression Profiling and Functional Analysis of CnHMGS, a Gene Encoding 3-hydroxy-3-Methylglutaryl Coenzyme A Synthase from Chamaemelum nobile.

    Science.gov (United States)

    Cheng, Shuiyuan; Wang, Xiaohui; Xu, Feng; Chen, Qiangwen; Tao, Tingting; Lei, Jing; Zhang, Weiwei; Liao, Yongling; Chang, Jie; Li, Xingxiang

    2016-03-08

    Roman chamomile (Chamaemelum nobile L.) is renowned for its production of essential oils, which major components are sesquiterpenoids. As the important enzyme in the sesquiterpenoid biosynthesis pathway, 3-hydroxy-3-methylglutaryl coenzyme A synthase (HMGS) catalyze the crucial step in the mevalonate pathway in plants. To isolate and identify the functional genes involved in the sesquiterpene biosynthesis of C. nobile L., a HMGS gene designated as CnHMGS (GenBank Accession No. KU529969) was cloned from C. nobile. The cDNA sequence of CnHMGS contained a 1377 bp open reading frame encoding a 458-amino-acid protein. The sequence of the CnHMGS protein was highly homologous to those of HMGS proteins from other plant species. Phylogenetic tree analysis revealed that CnHMGS clustered with the HMGS of Asteraceae in the dicotyledon clade. Further functional complementation of CnHMGS in the mutant yeast strain YSC6274 lacking HMGS activity demonstrated that the cloned CnHMGS cDNA encodes a functional HMGS. Transcript profile analysis indicated that CnHMGS was preferentially expressed in flowers and roots of C. nobile. The expression of CnHMGS could be upregulated by exogenous elicitors, including methyl jasmonate and salicylic acid, suggesting that CnHMGS was elicitor-responsive. The characterization and expression analysis of CnHMGS is helpful to understand the biosynthesis of sesquiterpenoid in C. nobile at the molecular level and also provides molecular wealth for the biotechnological improvement of this important medicinal plant.

  19. Phylogenetic and comparative gene expression analysis of barley (Hordeum vulgare)WRKY transcription factor family reveals putatively retained functions betweenmonocots and dicots

    Energy Technology Data Exchange (ETDEWEB)

    Mangelsen, Elke; Kilian, Joachim; Berendzen, Kenneth W.; Kolukisaoglu, Uner; Harter, Klaus; Jansson, Christer; Wanke, Dierk

    2008-02-01

    WRKY proteins belong to the WRKY-GCM1 superfamily of zinc finger transcription factors that have been subject to a large plant-specific diversification. For the cereal crop barley (Hordeum vulgare), three different WRKY proteins have been characterized so far, as regulators in sucrose signaling, in pathogen defense, and in response to cold and drought, respectively. However, their phylogenetic relationship remained unresolved. In this study, we used the available sequence information to identify a minimum number of 45 barley WRKY transcription factor (HvWRKY) genes. According to their structural features the HvWRKY factors were classified into the previously defined polyphyletic WRKY subgroups 1 to 3. Furthermore, we could assign putative orthologs of the HvWRKY proteins in Arabidopsis and rice. While in most cases clades of orthologous proteins were formed within each group or subgroup, other clades were composed of paralogous proteins for the grasses and Arabidopsis only, which is indicative of specific gene radiation events. To gain insight into their putative functions, we examined expression profiles of WRKY genes from publicly available microarray data resources and found group specific expression patterns. While putative orthologs of the HvWRKY transcription factors have been inferred from phylogenetic sequence analysis, we performed a comparative expression analysis of WRKY genes in Arabidopsis and barley. Indeed, highly correlative expression profiles were found between some of the putative orthologs. HvWRKY genes have not only undergone radiation in monocot or dicot species, but exhibit evolutionary traits specific to grasses. HvWRKY proteins exhibited not only sequence similarities between orthologs with Arabidopsis, but also relatedness in their expression patterns. This correlative expression is indicative for a putative conserved function of related WRKY proteins in mono- and dicot species.

  20. Identification of the CAD gene from Eucalyptus urophylla GLU4 and its functional analysis in transgenic tobacco.

    Science.gov (United States)

    Chen, B W; Xiao, Y F; Li, J J; Liu, H L; Qin, Z H; Gai, Y; Jiang, X N

    2016-12-02

    Cinnamyl alcohol dehydrogenase (CAD) catalyzes the final step in lignin biosynthesis. The genus Eucalyptus belongs to the family Myrtaceae, which is the main cultivated species in China. Eucalyptus urophylla GLU4 (GLU4) is widely grown in Guangxi. It is preferred for pulping because of its excellent cellulose content and fiber length. Based on GLU4 and CAD gene expression, a Eucalyptus variety low in lignin content should be obtained using transgenic technology, which could reduce the cost of pulp and improve the pulping rate, and have favorable prospects for application. However, the role and function of CAD in GLU4 is still unclear. In the present study, EuCAD was cloned from GLU4 and identified using bioinformatic tools. Subsequently, in order to evaluate its impact on lignin synthesis, a full-length EuCAD RNAi vector was constructed, and transgenic tobacco was obtained via Agrobacterium-mediated transformation. A significant decrease in CAD expression and lignin content in transgenic tobacco demonstrated a key role for EuCAD in lignin biosynthesis and established a regulatory role for RNAi. In our study, the direct molecular basis of EuCAD expression was determined, and the potential regulatory effects of this RNAi vector on lignin biosynthesis in E. urophylla GLU4 were demonstrated. Our results provide a theoretical basis for the study of lignin biosynthesis in Eucalyptus.

  1. Microbial Functional Gene Diversity Predicts Groundwater Contamination and Ecosystem Functioning.

    Science.gov (United States)

    He, Zhili; Zhang, Ping; Wu, Linwei; Rocha, Andrea M; Tu, Qichao; Shi, Zhou; Wu, Bo; Qin, Yujia; Wang, Jianjun; Yan, Qingyun; Curtis, Daniel; Ning, Daliang; Van Nostrand, Joy D; Wu, Liyou; Yang, Yunfeng; Elias, Dwayne A; Watson, David B; Adams, Michael W W; Fields, Matthew W; Alm, Eric J; Hazen, Terry C; Adams, Paul D; Arkin, Adam P; Zhou, Jizhong

    2018-02-20

    Contamination from anthropogenic activities has significantly impacted Earth's biosphere. However, knowledge about how environmental contamination affects the biodiversity of groundwater microbiomes and ecosystem functioning remains very limited. Here, we used a comprehensive functional gene array to analyze groundwater microbiomes from 69 wells at the Oak Ridge Field Research Center (Oak Ridge, TN), representing a wide pH range and uranium, nitrate, and other contaminants. We hypothesized that the functional diversity of groundwater microbiomes would decrease as environmental contamination (e.g., uranium or nitrate) increased or at low or high pH, while some specific populations capable of utilizing or resistant to those contaminants would increase, and thus, such key microbial functional genes and/or populations could be used to predict groundwater contamination and ecosystem functioning. Our results indicated that functional richness/diversity decreased as uranium (but not nitrate) increased in groundwater. In addition, about 5.9% of specific key functional populations targeted by a comprehensive functional gene array (GeoChip 5) increased significantly ( P contamination and ecosystem functioning. This study indicates great potential for using microbial functional genes to predict environmental contamination and ecosystem functioning. IMPORTANCE Disentangling the relationships between biodiversity and ecosystem functioning is an important but poorly understood topic in ecology. Predicting ecosystem functioning on the basis of biodiversity is even more difficult, particularly with microbial biomarkers. As an exploratory effort, this study used key microbial functional genes as biomarkers to provide predictive understanding of environmental contamination and ecosystem functioning. The results indicated that the overall functional gene richness/diversity decreased as uranium increased in groundwater, while specific key microbial guilds increased significantly as

  2. Projection of gene-protein networks to the functional space of the proteome and its application to analysis of organism complexity

    Directory of Open Access Journals (Sweden)

    Mulder Nicola

    2010-02-01

    level of biological complexity (nematode, fruit fly, vertebrata reveals that the parameters describing SFN correlate with the complexity of a given organism. Using statistical analysis of the links of the functional networks, we propose new features of evolution of protein function acquisition. We reveal a group of genes and corresponding functions, which could be attributed to an early conservative part of the cellular machinery essential for cell viability and survival. We identify and provide characteristics of functional switches in the polyform group of TUs in different organisms. Based on comparison of mouse and human SFNs, a role of alternative splicing as a necessary source of evolution towards more complex organisms is demonstrated. The entire set of FL across many organisms could be used as a draft of the catalogue of the functional space of the proteome world.

  3. Characterization and functional analysis of seven flagellin genes in Rhizobium leguminosarum bv. viciae. Characterization of R. leguminosarum flagellins

    Directory of Open Access Journals (Sweden)

    Tambalo Dinah D

    2010-08-01

    Full Text Available Abstract Background Rhizobium leguminosarum bv. viciae establishes symbiotic nitrogen fixing partnerships with plant species belonging to the Tribe Vicieae, which includes the genera Vicia, Lathyrus, Pisum and Lens. Motility and chemotaxis are important in the ecology of R. leguminosarum to provide a competitive advantage during the early steps of nodulation, but the mechanisms of motility and flagellar assembly remain poorly studied. This paper addresses the role of the seven flagellin genes in producing a functional flagellum. Results R. leguminosarum strains 3841 and VF39SM have seven flagellin genes (flaA, flaB, flaC, flaD, flaE, flaH, and flaG, which are transcribed separately. The predicted flagellins of 3841 are highly similar or identical to the corresponding flagellins in VF39SM. flaA, flaB, flaC, and flaD are in tandem array and are located in the main flagellar gene cluster. flaH and flaG are located outside of the flagellar/motility region while flaE is plasmid-borne. Five flagellin subunits (FlaA, FlaB, FlaC, FlaE, and FlaG are highly similar to each other, whereas FlaD and FlaH are more distantly related. All flagellins exhibit conserved amino acid residues at the N- and C-terminal ends and are variable in the central regions. Strain 3841 has 1-3 plain subpolar flagella while strain VF39SM exhibits 4-7 plain peritrichous flagella. Three flagellins (FlaA/B/C and five flagellins (FlaA/B/C/E/G were detected by mass spectrometry in the flagellar filaments of strains 3841 and VF39SM, respectively. Mutation of flaA resulted in non-motile VF39SM and extremely reduced motility in 3841. Individual mutations of flaB and flaC resulted in shorter flagellar filaments and consequently reduced swimming and swarming motility for both strains. Mutant VF39SM strains carrying individual mutations in flaD, flaE, flaH, and flaG were not significantly affected in motility and filament morphology. The flagellar filament and the motility of 3841 strains

  4. Pineal function: impact of microarray analysis

    DEFF Research Database (Denmark)

    Klein, David C; Bailey, Michael J; Carter, David A

    2009-01-01

    Microarray analysis has provided a new understanding of pineal function by identifying genes that are highly expressed in this tissue relative to other tissues and also by identifying over 600 genes that are expressed on a 24-h schedule. This effort has highlighted surprising similarity to the re......Microarray analysis has provided a new understanding of pineal function by identifying genes that are highly expressed in this tissue relative to other tissues and also by identifying over 600 genes that are expressed on a 24-h schedule. This effort has highlighted surprising similarity...... foundation that microarray analysis has provided will broadly support future research on pineal function....

  5. Molecular cloning and expression analysis of the MaASR1 gene in banana and functional characterization under salt stress

    Directory of Open Access Journals (Sweden)

    Hongxia Miao

    2014-11-01

    Conclusions: This study demonstrated that overexpression of MaASR1 in Arabidopsis confers salt stress tolerance by reducing the expression of ABA/stress-responsive genes, but does not affect the expression of the ABA-independent pathway and biosynthesis pathway genes.

  6. Structural and functional characterization of the exonuclease I (sbcB) gene and gene product from Escherichia coli and a Markov chain analysis of DNA sequences

    International Nuclear Information System (INIS)

    Phillips, G.J.

    1987-01-01

    The nucleotide sequence for the structural gene for exonuclease I (sbcB) from Escherichia coli was determined. Two putative promotes for this gene were identified and were predicted to have weak transcription initiation activity. In addition, the sbcB coding region contains many non-optimal codons. These observations are consistent with the suggestions that sbcB is a poorly expressed gene. Several mutant exonuclease I genes were cloned onto pBR322 plasmids. These genes represented both sbcB and xonA mutation. One of the xonA mutation (xonA6) was associated with a 1.2-kb insertion of an IS-30 related mobile genetic element in the 3'-region of the gene. Two of the mutations (xonA2 and xonA6) encode unstable polypeptides. Determination of exonucleolytic activity on single-stranded DNA from cell extracts containing each of the cloned mutant genes revealed no correlation between residual exonucleolytic activity and the pheno-types of sbcB and xonA mutants. A proposal that the exonuclease I protein contains an additional activity besides its ability to degrade single-stranded DNA is presented. Characterization of E. coli strains which overproduce exonuclease I showed increased sensitivity to UV irradiation

  7. Comparative Analysis of PvPAP Gene Family and Their Functions in Response to Phosphorus Deficiency in Common Bean

    Science.gov (United States)

    Liang, Cuiyue; Sun, Lili; Yao, Zhufang; Liao, Hong; Tian, Jiang

    2012-01-01

    Background Purple acid phosphatases (PAPs) play a vital role in adaptive strategies of plants to phosphorus (P) deficiency. However, their functions in relation to P efficiency are fragmentary in common bean. Principal Findings Five PvPAPs were isolated and sequenced in common bean. Phylogenetic analysis showed that PvPAPs could be classified into two groups, including a small group with low molecular mass, and a large group with high molecular mass. Among them, PvPAP3, PvPAP4 and PvPAP5 belong to the small group, while the other two belong to the large group. Transient expression of 35S:PvPAPs-GFP on onion epidermal cells verified the variations of subcellular localization among PvPAPs, suggesting functional diversities of PvPAPs in common bean. Quantitative PCR results showed that most PvPAPs were up-regulated by phosphate (Pi) starvation. Among them, the expression of the small group PvPAPs responded more to Pi starvation, especially in the roots of G19833, the P-efficient genotype. However, only overexpressing PvPAP1 and PvPAP3 could result in significantly increased utilization of extracellular dNTPs in the transgenic bean hairy roots. Furthermore, overexpressing PvPAP3 in Arabidopsis enhanced both plant growth and total P content when dNTPs were supplied as the sole external P source. Conclusions The results suggest that PvPAPs in bean varied in protein structure, response to P deficiency and subcellular localization. Among them, both PvPAP1 and PvPAP3 might function as utilization of extracellular dNTPs. PMID:22662274

  8. Central auditory function of deafness genes.

    Science.gov (United States)

    Willaredt, Marc A; Ebbers, Lena; Nothwang, Hans Gerd

    2014-06-01

    The highly variable benefit of hearing devices is a serious challenge in auditory rehabilitation. Various factors contribute to this phenomenon such as the diversity in ear defects, the different extent of auditory nerve hypoplasia, the age of intervention, and cognitive abilities. Recent analyses indicate that, in addition, central auditory functions of deafness genes have to be considered in this context. Since reduced neuronal activity acts as the common denominator in deafness, it is widely assumed that peripheral deafness influences development and function of the central auditory system in a stereotypical manner. However, functional characterization of transgenic mice with mutated deafness genes demonstrated gene-specific abnormalities in the central auditory system as well. A frequent function of deafness genes in the central auditory system is supported by a genome-wide expression study that revealed significant enrichment of these genes in the transcriptome of the auditory brainstem compared to the entire brain. Here, we will summarize current knowledge of the diverse central auditory functions of deafness genes. We furthermore propose the intimately interwoven gene regulatory networks governing development of the otic placode and the hindbrain as a mechanistic explanation for the widespread expression of these genes beyond the cochlea. We conclude that better knowledge of central auditory dysfunction caused by genetic alterations in deafness genes is required. In combination with improved genetic diagnostics becoming currently available through novel sequencing technologies, this information will likely contribute to better outcome prediction of hearing devices. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Gene circuit analysis of the terminal gap gene huckebein.

    Directory of Open Access Journals (Sweden)

    Maksat Ashyraliyev

    2009-10-01

    Full Text Available The early embryo of Drosophila melanogaster provides a powerful model system to study the role of genes in pattern formation. The gap gene network constitutes the first zygotic regulatory tier in the hierarchy of the segmentation genes involved in specifying the position of body segments. Here, we use an integrative, systems-level approach to investigate the regulatory effect of the terminal gap gene huckebein (hkb on gap gene expression. We present quantitative expression data for the Hkb protein, which enable us to include hkb in gap gene circuit models. Gap gene circuits are mathematical models of gene networks used as computational tools to extract regulatory information from spatial expression data. This is achieved by fitting the model to gap gene expression patterns, in order to obtain estimates for regulatory parameters which predict a specific network topology. We show how considering variability in the data combined with analysis of parameter determinability significantly improves the biological relevance and consistency of the approach. Our models are in agreement with earlier results, which they extend in two important respects: First, we show that Hkb is involved in the regulation of the posterior hunchback (hb domain, but does not have any other essential function. Specifically, Hkb is required for the anterior shift in the posterior border of this domain, which is now reproduced correctly in our models. Second, gap gene circuits presented here are able to reproduce mutants of terminal gap genes, while previously published models were unable to reproduce any null mutants correctly. As a consequence, our models now capture the expression dynamics of all posterior gap genes and some variational properties of the system correctly. This is an important step towards a better, quantitative understanding of the developmental and evolutionary dynamics of the gap gene network.

  10. Functional Object Analysis

    DEFF Research Database (Denmark)

    Raket, Lars Lau

    -effect formulations, where the observed functional signal is assumed to consist of both fixed and random functional effects. This thesis takes the initial steps toward the development of likelihood-based methodology for functional objects. We first consider analysis of functional data defined on high...

  11. Functional genomics and expression analysis of the Corynebacterium glutamicum fpr2-cysIXHDNYZ gene cluster involved in assimilatory sulphate reduction

    Directory of Open Access Journals (Sweden)

    Albersmeier Andreas

    2005-09-01

    Full Text Available Abstract Background Corynebacterium glutamicum is a high-GC Gram-positive soil bacterium of great biotechnological importance for the production of amino acids. To facilitate the rational design of sulphur amino acid-producing strains, the pathway for assimilatory sulphate reduction providing the necessary reduced sulfur moieties has to be known. Although this pathway has been well studied in Gram-negative bacteria like Escherichia coli and low-GC Gram-positives like Bacillus subtilis, little is known for the Actinomycetales and other high-GC Gram-positive bacteria. Results The genome sequence of C. glutamicum was searched for genes involved in the assimilatory reduction of inorganic sulphur compounds. A cluster of eight candidate genes could be identified by combining sequence similarity searches with a subsequent synteny analysis between C. glutamicum and the closely related C. efficiens. Using mutational analysis, seven of the eight candidate genes, namely cysZ, cysY, cysN, cysD, cysH, cysX, and cysI, were demonstrated to be involved in the reduction of inorganic sulphur compounds. For three of the up to now unknown genes possible functions could be proposed: CysZ is likely to be the sulphate permease, while CysX and CysY are possibly involved in electron transfer and cofactor biosynthesis, respectively. Finally, the candidate gene designated fpr2 influences sulphur utilisation only weakly and might be involved in electron transport for the reduction of sulphite. Real-time RT-PCR experiments revealed that cysIXHDNYZ form an operon and that transcription of the extended cluster fpr2 cysIXHDNYZ is strongly influenced by the availability of inorganic sulphur, as well as L-cysteine. Mapping of the fpr2 and cysIXHDNYZ promoters using RACE-PCR indicated that both promoters overlap with binding-sites of the transcriptional repressor McbR, suggesting an involvement of McbR in the observed regulation. Comparative genomics revealed that large parts of

  12. Agrobacterium rhizogenes-dependent production of transformed roots from foliar explants of pepper (Capsicum annuum): a new and efficient tool for functional analysis of genes.

    Science.gov (United States)

    Aarrouf, J; Castro-Quezada, P; Mallard, S; Caromel, B; Lizzi, Y; Lefebvre, V

    2012-02-01

    Pepper is known to be a recalcitrant species to genetic transformation via Agrobacterium tumefaciens. A. rhizogenes-mediated transformation offers an alternative and rapid possibility to study gene functions in roots. In our study, we developed a new and efficient system for A. rhizogenes transformation of the cultivated species Capsicum annuum. Hypocotyls and foliar organs (true leaves and cotyledons) of Yolo Wonder (YW) and Criollo de Morelos 334 (CM334) pepper cultivars were inoculated with the two constructs pBIN-gus and pHKN29-gfp of A. rhizogenes strain A4RS. Foliar explants of both pepper genotypes infected by A4RS-pBIN-gus or A4RS-pHKN29-gfp produced transformed roots. Optimal results were obtained using the combination of the foliar explants with A4RS-pHKN29-gfp. 20.5% of YW foliar explants and 14.6% of CM334 foliar explants inoculated with A4RS-pHKN29-gfp produced at least one root expressing uniform green fluorescent protein. We confirmed by polymerase chain reaction the presence of the rolB and gfp genes in the co-transformed roots ensuring that they integrated both the T-DNA from the Ri plasmid and the reporter gene. We also demonstrated that co-transformed roots of YW and CM334 displayed the same resistance response to Phytophthora capsici than the corresponding untransformed roots. Our novel procedure to produce C. annuum hairy roots will thus support the functional analysis of potential resistance genes involved in pepper P. capsici interaction.

  13. Growth arrest specific gene 2 in tilapia (Oreochromis niloticus): molecular characterization and functional analysis under low-temperature stress.

    Science.gov (United States)

    Yang, ChangGeng; Wu, Fan; Lu, Xing; Jiang, Ming; Liu, Wei; Yu, Lijuan; Tian, Juan; Wen, Hua

    2017-07-17

    Growth arrest specific 2 (gas2) gene is a component of the microfilament system that plays a major role in the cell cycle, regulation of microfilaments, and cell morphology during apoptotic processes. However, little information is available on fish gas2. In this study, the tilapia (Oreochromis niloticus) gas2 gene was cloned and characterized for the first time. The open reading frame was 1020 bp, encoding 340 amino acids; the 5'-untranslated region (UTR) was 140 bp and the 3'-UTR was 70 bp, with a poly (A) tail. The highest promoter activity occurred in the regulatory region (-3000 to -2400 bp). The Gas2-GFP fusion protein was distributed within the cytoplasm. Quantitative reverse transcription-polymerase chain reaction and western blot analyses revealed that gas2 gene expression levels in the liver, muscle, and brain were clearly affected by low temperature stress. The results of gas2 RNAi showed decreased expression of the gas2 and P53 genes. These results suggest that the tilapia gas2 gene may be involved in low temperature stress-induced apoptosis.

  14. Cloning, Expression Profiling and Functional Analysis of CnHMGS, a Gene Encoding 3-hydroxy-3-Methylglutaryl Coenzyme A Synthase from Chamaemelum nobile

    Directory of Open Access Journals (Sweden)

    Shuiyuan Cheng

    2016-03-01

    Full Text Available Roman chamomile (Chamaemelum nobile L. is renowned for its production of essential oils, which major components are sesquiterpenoids. As the important enzyme in the sesquiterpenoid biosynthesis pathway, 3-hydroxy-3-methylglutaryl coenzyme A synthase (HMGS catalyze the crucial step in the mevalonate pathway in plants. To isolate and identify the functional genes involved in the sesquiterpene biosynthesis of C. nobile L., a HMGS gene designated as CnHMGS (GenBank Accession No. KU529969 was cloned from C. nobile. The cDNA sequence of CnHMGS contained a 1377 bp open reading frame encoding a 458-amino-acid protein. The sequence of the CnHMGS protein was highly homologous to those of HMGS proteins from other plant species. Phylogenetic tree analysis revealed that CnHMGS clustered with the HMGS of Asteraceae in the dicotyledon clade. Further functional complementation of CnHMGS in the mutant yeast strain YSC6274 lacking HMGS activity demonstrated that the cloned CnHMGS cDNA encodes a functional HMGS. Transcript profile analysis indicated that CnHMGS was preferentially expressed in flowers and roots of C. nobile. The expression of CnHMGS could be upregulated by exogenous elicitors, including methyl jasmonate and salicylic acid, suggesting that CnHMGS was elicitor-responsive. The characterization and expression analysis of CnHMGS is helpful to understand the biosynthesis of sesquiterpenoid in C. nobile at the molecular level and also provides molecular wealth for the biotechnological improvement of this important medicinal plant.

  15. Methods for transient assay of gene function in floral tissues

    Directory of Open Access Journals (Sweden)

    Pathirana Nilangani N

    2007-01-01

    Full Text Available Abstract Background There is considerable interest in rapid assays or screening systems for assigning gene function. However, analysis of gene function in the flowers of some species is restricted due to the difficulty of producing stably transformed transgenic plants. As a result, experimental approaches based on transient gene expression assays are frequently used. Biolistics has long been used for transient over-expression of genes of interest, but has not been exploited for gene silencing studies. Agrobacterium-infiltration has also been used, but the focus primarily has been on the transient transformation of leaf tissue. Results Two constructs, one expressing an inverted repeat of the Antirrhinum majus (Antirrhinum chalcone synthase gene (CHS and the other an inverted repeat of the Antirrhinum transcription factor gene Rosea1, were shown to effectively induce CHS and Rosea1 gene silencing, respectively, when introduced biolistically into petal tissue of Antirrhinum flowers developing in vitro. A high-throughput vector expressing the Antirrhinum CHS gene attached to an inverted repeat of the nos terminator was also shown to be effective. Silencing spread systemically to create large zones of petal tissue lacking pigmentation, with transmission of the silenced state spreading both laterally within the affected epidermal cell layer and into lower cell layers, including the epidermis of the other petal surface. Transient Agrobacterium-mediated transformation of petal tissue of tobacco and petunia flowers in situ or detached was also achieved, using expression of the reporter genes GUS and GFP to visualise transgene expression. Conclusion We demonstrate the feasibility of using biolistics-based transient RNAi, and transient transformation of petal tissue via Agrobacterium infiltration to study gene function in petals. We have also produced a vector for high throughput gene silencing studies, incorporating the option of using T-A cloning to

  16. Fuzzy clustering analysis of osteosarcoma related genes.

    Science.gov (United States)

    Chen, Kai; Wu, Dajiang; Bai, Yushu; Zhu, Xiaodong; Chen, Ziqiang; Wang, Chuanfeng; Zhao, Yingchuan; Li, Ming

    2014-07-01

    Osteosarcoma is the most common malignant bone-tumor with a peak manifestation during the second and third decade of life. In order to explore the influence of genetic factors on the mechanism of osteosarcoma by analyzing the inter relationship between osteosarcoma and its related genes, and then provide potential genetic references for the prevention, diagnosis and treatment of osteosarcoma, we collected osteosarcoma related gene sequences in Genebank of National Center for Biotechnology Information (NCBI) and local alignment analysis for a pair of sequences was carried out to identify the measurement association among related sequences. Then fuzzy clustering method was used for clustering analysis so as to contact the unknown genes through the consistent osteosarcoma related genes in one class. From the result of fuzzy clustering analysis, we could classify the osteosarcoma related genes into two groups and deduced that the genes clustered into one group had similar function. Based on this knowledge, we found more genes related to the pathogenesis of osteosarcoma and these genes could exert similar function as Runx2, a risk factor confirmed in osteosarcoma, this study may help better understand the genetic mechanism and provide new molecular markers and therapies for osteosarcoma.

  17. Cis-eQTL analysis and functional validation of candidate susceptibility genes for high-grade serous ovarian cancer

    NARCIS (Netherlands)

    Lawrenson, K.; Li, Q.; Kar, S.; Seo, J.H.; Tyrer, J.; Spindler, T.J.; Lee, J. van der; Chen, Y; Karst, A.; Drapkin, R.; Aben, K.K.H.; Anton-Culver, H.; Antonenkova, N.; Baker, H.; Bandera, E.V.; Bean, Y.; Beckmann, M.W.; Berchuck, A.; Bisogna, M.; Bjorge, L.; Bogdanova, N.; Brinton, L.A.; Brooks-Wilson, A.; Bruinsma, F.; Butzow, R.; Campbell, I.G.; Carty, K.; Chang-Claude, J.; Chenevix-Trench, G.; Chen, A; Chen, Z.; Cook, L.S.; Cramer, D.W; Cunningham, J.M.; Cybulski, C.; Dansonka-Mieszkowska, A.; Dennis, J.; Dicks, E.; Doherty, J.A.; Dork, T.; Bois, A. du; Durst, M.; Eccles, D.; Easton, D.T.; Edwards, R.P.; Eilber, U.; Ekici, A.B.; Fasching, P.A.; Fridley, B.L.; Gao, Y.T.; Gentry-Maharaj, A.; Giles, G.G.; Glasspool, R.; Goode, E.L.; Goodman, M.T.; Grownwald, J.; Harrington, P.; Harter, P.; Hasmad, H.N.; Hein, A.; Heitz, F.; Hildebrandt, M.A.; Hillemanns, P.; Hogdall, E.; Hogdall, C.; Hosono, S.; Iversen, E.S.; Jakubowska, A.; James, P.; Jensen, A.; Ji, B.T.; Karlan, B.Y.; Kjaer, S. Kruger; Kelemen, L.E.; Kellar, M.; Kelley, J.L.; Kiemeney, L.A.; Krakstad, C.; Kupryjanczyk, J.; Lambrechts, D.; Lambrechts, S.; Le, N.D.; Lee, A.W.; Lele, S.; Leminen, A.; Lester, J.; Levine, D.A.; Liang, D.; Lissowska, J.; Lu, K.; Lubinski, J.; Lundvall, L.; Massuger, L.F.; Matsuo, K.; McGuire, V.; McLaughlin, J.R.; Nevanlinna, H.; McNeish, I.; Menon, U.; Modugno, F.; et al.,

    2015-01-01

    Genome-wide association studies have reported 11 regions conferring risk of high-grade serous epithelial ovarian cancer (HGSOC). Expression quantitative trait locus (eQTL) analyses can identify candidate susceptibility genes at risk loci. Here we evaluate cis-eQTL associations at 47 regions

  18. Molecular Genetic Analysis of the PLP1 Gene in 38 Families with PLP1-related disorders: Identification and Functional Characterization of 11 Novel PLP1 Mutations

    Directory of Open Access Journals (Sweden)

    Marchiani Valentina

    2011-06-01

    Full Text Available Abstract Background The breadth of the clinical spectrum underlying Pelizaeus-Merzbacher disease and spastic paraplegia type 2 is due to the extensive allelic heterogeneity in the X-linked PLP1 gene encoding myelin proteolipid protein (PLP. PLP1 mutations range from gene duplications of variable size found in 60-70% of patients to intragenic lesions present in 15-20% of patients. Methods Forty-eight male patients from 38 unrelated families with a PLP1-related disorder were studied. All DNA samples were screened for PLP1 gene duplications using real-time PCR. PLP1 gene sequencing analysis was performed on patients negative for the duplication. The mutational status of all 14 potential carrier mothers of the familial PLP1 gene mutation was determined as well as 15/24 potential carrier mothers of the PLP1 duplication. Results and Conclusions PLP1 gene duplications were identified in 24 of the unrelated patients whereas a variety of intragenic PLP1 mutations were found in the remaining 14 patients. Of the 14 different intragenic lesions, 11 were novel; these included one nonsense and 7 missense mutations, a 657-bp deletion, a microdeletion and a microduplication. The functional significance of the novel PLP1 missense mutations, all occurring at evolutionarily conserved residues, was analysed by the MutPred tool whereas their potential effect on splicing was ascertained using the Skippy algorithm and a neural network. Although MutPred predicted that all 7 novel missense mutations would be likely to be deleterious, in silico analysis indicated that four of them (p.Leu146Val, p.Leu159Pro, p.Thr230Ile, p.Ala247Asp might cause exon skipping by altering exonic splicing elements. These predictions were then investigated in vitro for both p.Leu146Val and p.Thr230Ile by means of RNA or minigene studies and were subsequently confirmed in the case of p.Leu146Val. Peripheral neuropathy was noted in four patients harbouring intragenic mutations that altered RNA

  19. Molecular Cloning, Characterization, and Functional Analysis of Acetyl-CoA C-Acetyltransferase and Mevalonate Kinase Genes Involved in Terpene Trilactone Biosynthesis from Ginkgo biloba

    Directory of Open Access Journals (Sweden)

    Qiangwen Chen

    2017-01-01

    Full Text Available Ginkgolides and bilobalide, collectively termed terpene trilactones (TTLs, are terpenoids that form the main active substance of Ginkgo biloba. Terpenoids in the mevalonate (MVA biosynthetic pathway include acetyl-CoA C-acetyltransferase (AACT and mevalonate kinase (MVK as core enzymes. In this study, two full-length (cDNAs encoding AACT (GbAACT, GenBank Accession No. KX904942 and MVK (GbMVK, GenBank Accession No. KX904944 were cloned from G. biloba. The deduced GbAACT and GbMVK proteins contain 404 and 396 amino acids with the corresponding open-reading frame (ORF sizes of 1215 bp and 1194 bp, respectively. Tissue expression pattern analysis revealed that GbAACT was highly expressed in ginkgo fruits and leaves, and GbMVK was highly expressed in leaves and roots. The functional complementation of GbAACT in AACT-deficient Saccharomyces cerevisiae strain Δerg10 and GbMVK in MVK-deficient strain Δerg12 confirmed that GbAACT mediated the conversion of mevalonate acetyl-CoA to acetoacetyl-CoA and GbMVK mediated the conversion of mevalonate to mevalonate phosphate. This observation indicated that GbAACT and GbMVK are functional genes in the cytosolic mevalonate (MVA biosynthesis pathway. After G. biloba seedlings were treated with methyl jasmonate and salicylic acid, the expression levels of GbAACT and GbMVK increased, and TTL production was enhanced. The cloning, characterization, expression and functional analysis of GbAACT and GbMVK will be helpful to understand more about the role of these two genes involved in TTL biosynthesis.

  20. Molecular Cloning, Characterization, and Functional Analysis of Acetyl-CoA C-Acetyltransferase and Mevalonate Kinase Genes Involved in Terpene Trilactone Biosynthesis from Ginkgo biloba.

    Science.gov (United States)

    Chen, Qiangwen; Yan, Jiaping; Meng, Xiangxiang; Xu, Feng; Zhang, Weiwei; Liao, Yongling; Qu, Jinwang

    2017-01-02

    Ginkgolides and bilobalide, collectively termed terpene trilactones (TTLs), are terpenoids that form the main active substance of Ginkgo biloba . Terpenoids in the mevalonate (MVA) biosynthetic pathway include acetyl-CoA C -acetyltransferase (AACT) and mevalonate kinase (MVK) as core enzymes. In this study, two full-length (cDNAs) encoding AACT ( GbAACT , GenBank Accession No. KX904942) and MVK ( GbMVK , GenBank Accession No. KX904944) were cloned from G. biloba . The deduced GbAACT and GbMVK proteins contain 404 and 396 amino acids with the corresponding open-reading frame (ORF) sizes of 1215 bp and 1194 bp, respectively. Tissue expression pattern analysis revealed that GbAACT was highly expressed in ginkgo fruits and leaves, and GbMVK was highly expressed in leaves and roots. The functional complementation of GbAACT in AACT-deficient Saccharomyces cerevisiae strain Δerg10 and GbMVK in MVK-deficient strain Δerg12 confirmed that GbAACT mediated the conversion of mevalonate acetyl-CoA to acetoacetyl-CoA and GbMVK mediated the conversion of mevalonate to mevalonate phosphate. This observation indicated that GbAACT and GbMVK are functional genes in the cytosolic mevalonate (MVA) biosynthesis pathway. After G. biloba seedlings were treated with methyl jasmonate and salicylic acid, the expression levels of GbAACT and GbMVK increased, and TTL production was enhanced. The cloning, characterization, expression and functional analysis of GbAACT and GbMVK will be helpful to understand more about the role of these two genes involved in TTL biosynthesis.

  1. Complementation of the Magnaporthe grisea deltacpkA mutation by the Blumeria graminis PKA-c gene: functional genetic analysis of an obligate plant pathogen.

    Science.gov (United States)

    Bindslev, L; Kershaw, M J; Talbot, N J; Oliver, R P

    2001-12-01

    Obligate plant-pathogenic fungi have proved extremely difficult to characterize with molecular genetics because they cannot be cultured away from host plants and only can be manipulated experimentally in limited circumstances. Previously, in order to characterize signal transduction processes during infection-related development of the powdery mildew fungus Blumeria graminis (syn. Erysiphe graminis) f. sp. hordei, we described a gene similar to the catalytic subunit of cyclic AMP-dependent protein kinase A (here renamed Bka1). Functional characterization of this gene has been achieved by expression in a deltacpkA mutant of the nonobligate pathogen Magnaporthe grisea. This nonpathogenic M. grisea deltacpkA mutant displays delayed and incomplete appressorium development, suggesting a role for PKA-c in the signal transduction processes that control the maturation of infection cells. Transformation of the deltacpkA mutant with the mildew Bka1 open reading frame, controlled by the M. grisea MPG1 promoter, restored pathogenicity and appressorium maturation kinetics. The results provide, to our knowledge, the first functional genetic analysis of pathogenicity in an obligate pathogen and highlight the remarkable conservation of signaling components regulating infection-related development in pathogenic fungi.

  2. Functional data analysis

    CERN Document Server

    Ramsay, J O

    1997-01-01

    Scientists today collect samples of curves and other functional observations. This monograph presents many ideas and techniques for such data. Included are expressions in the functional domain of such classics as linear regression, principal components analysis, linear modelling, and canonical correlation analysis, as well as specifically functional techniques such as curve registration and principal differential analysis. Data arising in real applications are used throughout for both motivation and illustration, showing how functional approaches allow us to see new things, especially by exploiting the smoothness of the processes generating the data. The data sets exemplify the wide scope of functional data analysis; they are drwan from growth analysis, meterology, biomechanics, equine science, economics, and medicine. The book presents novel statistical technology while keeping the mathematical level widely accessible. It is designed to appeal to students, to applied data analysts, and to experienced researc...

  3. Human Intellectual Disability Genes Form Conserved Functional Modules in Drosophila

    Science.gov (United States)

    Oortveld, Merel A. W.; Keerthikumar, Shivakumar; Oti, Martin; Nijhof, Bonnie; Fernandes, Ana Clara; Kochinke, Korinna; Castells-Nobau, Anna; van Engelen, Eva; Ellenkamp, Thijs; Eshuis, Lilian; Galy, Anne; van Bokhoven, Hans; Habermann, Bianca; Brunner, Han G.; Zweier, Christiane; Verstreken, Patrik; Huynen, Martijn A.; Schenck, Annette

    2013-01-01

    Intellectual Disability (ID) disorders, defined by an IQ below 70, are genetically and phenotypically highly heterogeneous. Identification of common molecular pathways underlying these disorders is crucial for understanding the molecular basis of cognition and for the development of therapeutic intervention strategies. To systematically establish their functional connectivity, we used transgenic RNAi to target 270 ID gene orthologs in the Drosophila eye. Assessment of neuronal function in behavioral and electrophysiological assays and multiparametric morphological analysis identified phenotypes associated with knockdown of 180 ID gene orthologs. Most of these genotype-phenotype associations were novel. For example, we uncovered 16 genes that are required for basal neurotransmission and have not previously been implicated in this process in any system or organism. ID gene orthologs with morphological eye phenotypes, in contrast to genes without phenotypes, are relatively highly expressed in the human nervous system and are enriched for neuronal functions, suggesting that eye phenotyping can distinguish different classes of ID genes. Indeed, grouping genes by Drosophila phenotype uncovered 26 connected functional modules. Novel links between ID genes successfully predicted that MYCN, PIGV and UPF3B regulate synapse development. Drosophila phenotype groups show, in addition to ID, significant phenotypic similarity also in humans, indicating that functional modules are conserved. The combined data indicate that ID disorders, despite their extreme genetic diversity, are caused by disruption of a limited number of highly connected functional modules. PMID:24204314

  4. Meta-analysis confirms a functional polymorphism (5-HTTLPR) in the serotonin transporter gene conferring risk of bipolar disorder in European populations.

    Science.gov (United States)

    Jiang, Hong-Yan; Qiao, Fei; Xu, Xiu-Feng; Yang, Yuan; Bai, Yan; Jiang, Ling-Ling

    2013-08-09

    The serotonin transporter (5-HTT) is a candidate risk gene for bipolar disorder, and a functional polymorphism of 44-bp insertion/deletion (5-HTTLPR) located in the promoter region of this gene has been investigated for the association with the illness extensively among worldwide populations, but overall results were inconsistent and its role in the disorder remains unclear. The present study attempts to find its potential association with bipolar disorder using meta-analyzes that maximize the statistical power. We applied meta-analysis techniques by combining all available case-control studies of 5-HTTLPR and bipolar disorder in samples of European ancestry (with a total of 3778 cases and 4997 controls), and we assessed the evidence for allelic associations, heterogeneity among different studies, influence of each single study, and potential publication bias. The short allele (S allele) of 5-HTTLPR showed a significant association with bipolar disorder in our meta-analysis (odds ratio=1.10, p-value=0.005), suggesting it is likely a risk polymorphism for the illness, and the observed OR is consistent with other susceptibility loci identified through recent large-scale genetic association studies on bipolar disorder, which could be regarded simply as a small but detectable effects. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Gene, environment and cognitive function

    DEFF Research Database (Denmark)

    Xu, Chunsheng; Sun, Jianping; Duan, Haiping

    2015-01-01

    population living under distinct environmental condition as the Western populations. OBJECTIVE: this study aims to explore the genetic and environmental impact on normal cognitive ageing in the Chinese twins. DESIGN/SETTING: cognitive function was measured on 384 complete twin pairs with median age of 50...... factors accounting for 23-33% of the total variances. In contrast, all cognitive performances showed moderate to high influences by the unique environmental factors. CONCLUSIONS: genetic factor and common family environment have a limited contribution to cognitive function in the Chinese adults......BACKGROUND: the genetic and environmental contributions to cognitive function in the old people have been well addressed for the Western populations using twin modelling showing moderate to high heritability. No similar study has been conducted in the world largest and rapidly ageing Chinese...

  6. Fundamentals of functional analysis

    CERN Document Server

    Farenick, Douglas

    2016-01-01

    This book provides a unique path for graduate or advanced undergraduate students to begin studying the rich subject of functional analysis with fewer prerequisites than is normally required. The text begins with a self-contained and highly efficient introduction to topology and measure theory, which focuses on the essential notions required for the study of functional analysis, and which are often buried within full-length overviews of the subjects. This is particularly useful for those in applied mathematics, engineering, or physics who need to have a firm grasp of functional analysis, but not necessarily some of the more abstruse aspects of topology and measure theory normally encountered. The reader is assumed to only have knowledge of basic real analysis, complex analysis, and algebra. The latter part of the text provides an outstanding treatment of Banach space theory and operator theory, covering topics not usually found together in other books on functional analysis. Written in a clear, concise manner,...

  7. Microbial Functional Gene Diversity Predicts Groundwater Contamination and Ecosystem Functioning

    Science.gov (United States)

    Zhang, Ping; Wu, Linwei; Rocha, Andrea M.; Shi, Zhou; Wu, Bo; Qin, Yujia; Wang, Jianjun; Yan, Qingyun; Curtis, Daniel; Ning, Daliang; Van Nostrand, Joy D.; Wu, Liyou; Watson, David B.; Adams, Michael W. W.; Alm, Eric J.; Adams, Paul D.; Arkin, Adam P.

    2018-01-01

    ABSTRACT Contamination from anthropogenic activities has significantly impacted Earth’s biosphere. However, knowledge about how environmental contamination affects the biodiversity of groundwater microbiomes and ecosystem functioning remains very limited. Here, we used a comprehensive functional gene array to analyze groundwater microbiomes from 69 wells at the Oak Ridge Field Research Center (Oak Ridge, TN), representing a wide pH range and uranium, nitrate, and other contaminants. We hypothesized that the functional diversity of groundwater microbiomes would decrease as environmental contamination (e.g., uranium or nitrate) increased or at low or high pH, while some specific populations capable of utilizing or resistant to those contaminants would increase, and thus, such key microbial functional genes and/or populations could be used to predict groundwater contamination and ecosystem functioning. Our results indicated that functional richness/diversity decreased as uranium (but not nitrate) increased in groundwater. In addition, about 5.9% of specific key functional populations targeted by a comprehensive functional gene array (GeoChip 5) increased significantly (P contamination and ecosystem functioning. This study indicates great potential for using microbial functional genes to predict environmental contamination and ecosystem functioning. PMID:29463661

  8. Site-specific mutagenesis in Enterobacter agglomerans: construction of nif B mutants and analysis of the gene's structure and function.

    Science.gov (United States)

    Siddavattam, D; Nickles, A; Herterich, S; Steibl, H D; Kreutzer, R; Klingmüller, W

    1995-12-15

    A novel technique was developed which may be generally well suited to the site-specific construction of mutations in Enterobacter agglomerans. The method is based on the observation that E. agglomerans can be cured of a plasmid of the incompatibility group IncQ by cultivation on citrate-containing medium. To test the applicability of this technique, we inserted a kanamycin cassette into the cloned nifB gene, transferred it into E. agglomerans, and selected for recombinants in which the wild-type nifB was replaced by the mutated gene by growing transformants on citrate medium with kanamycin. The nifB- mutants with the kanamycin cassette inserted in either orientation showed a nif- phenotype. Further, we determined the nucleotide sequence of nifB. A typical sigma 54-dependent promoter and a consensus NifA binding site were found upstream of nifB. Activation of this promoter by both heterologous and homologous NifA proteins was observed in vivo. The predicted amino acid sequence of the NifB protein showed strong similarity to the NifB sequences of other diazotrophic bacteria. The typical clustering of cysteine residues at the N-terminal end indicates its involvement in Fe-Mo cofactor biosynthesis.

  9. Molecular characterization and functional analysis of BdFoxO gene in the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae).

    Science.gov (United States)

    Wu, Yi-Bei; Yang, Wen-Jia; Xie, Yi-Fei; Xu, Kang-Kang; Tian, Yi; Yuan, Guo-Rui; Wang, Jin-Jun

    2016-03-10

    The forkhead box O transcription factor (FoxO) is an important downstream transcription factor in the well-conserved insulin signaling pathway, which regulates the body size and development of insects. In this study, the FoxO gene (BdFoxO) was identified from the oriental fruit fly, Bactrocera dorsalis (Hendel). The open reading frame of BdFoxO (2732 bp) encoded a 910 amino acid protein, and the sequence was well conserved with other insect species. The BdFoxO was highly expressed in larvae and pupae among different development stages, and the highest tissue-specific expression level was found in the fat bodies compared to the testis, ovary, head, thorax, midgut, and Malpighian tubules of adults. Interestingly, we found BdFoxO expression was also up-regulated by starvation, but down-regulated when re-fed. Moreover, the injection of BdFoxO double-stranded RNAs into third-instar larvae significantly reduced BdFoxO transcript levels, which in turn down-regulated the expression of other four genes in the insulin signaling pathway. The silencing of BdFoxO resulted in delayed pupation, and the insect body weight increased significantly compared with that of the control. These results suggested that BdFoxO plays an important role in body size and development in B. dorsalis. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants.

    Science.gov (United States)

    Robson, F; Costa, M M; Hepworth, S R; Vizir, I; Piñeiro, M; Reeves, P H; Putterill, J; Coupland, G

    2001-12-01

    CONSTANS promotes flowering of Arabidopsis in response to long-day conditions. We show that CONSTANS is a member of an Arabidopsis gene family that comprises 16 other members. The CO-Like proteins encoded by these genes contain two segments of homology: a zinc finger containing region near their amino terminus and a CCT (CO, CO-Like, TOC1) domain near their carboxy terminus. Analysis of seven classical co mutant alleles demonstrated that the mutations all occur within either the zinc finger region or the CCT domain, confirming that the two regions of homology are important for CO function. The zinc fingers are most similar to those of B-boxes, which act as protein-protein interaction domains in several transcription factors described in animals. Segments of CO protein containing the CCT domain localize GFP to the nucleus, but one mutation that affects the CCT domain delays flowering without affecting the nuclear localization function, suggesting that this domain has additional functions. All eight co alleles, including one recovered by pollen irradiation in which DNA encoding both B-boxes is deleted, are shown to be semidominant. This dominance appears to be largely due to a reduction in CO dosage in the heterozygous plants. However, some alleles may also actively delay flowering, because overexpression from the CaMV 35S promoter of the co-3 allele, that has a mutation in the second B-box, delayed flowering of wild-type plants. The significance of these observations for the role of CO in the control of flowering time is discussed.

  11. Elucidating gene function and function evolution through comparison of co-expression networks in plants

    Directory of Open Access Journals (Sweden)

    Marek eMutwil

    2014-08-01

    Full Text Available The analysis of gene expression data has shown that transcriptionally coordinated (co-expressed genes are often functionally related, enabling scientists to use expression data in gene function prediction. This Focused Review discusses our original paper (Large-scale co-expression approach to dissect secondary cell wall formation across plant species, Frontiers in Plant Science 2:23. In this paper we applied cross-species analysis to co-expression networks of genes involved in cellulose biosynthesis. We show that the co-expression networks from different species are highly similar, indicating that whole biological pathways are conserved across species. This finding has two important implications. First, the analysis can transfer gene function annotation from well-studied plants, such as Arabidopsis, to other, uncharacterized plant species. As the analysis finds genes that have similar sequence and similar expression pattern across different organisms, functionally equivalent genes can be identified. Second, since co-expression analyses are often noisy, a comparative analysis should have higher performance, as parts of co-expression networks that are conserved are more likely to be functionally relevant. In this Focused Review, we outline the comparative analysis done in the original paper and comment on the recent advances and approaches that allow comparative analyses of co-function networks. We hypothesize that, in comparison to simple co-expression analysis, comparative analysis would yield more accurate gene function predictions. Finally, by combining comparative analysis with genomic information of green plants, we propose a possible composition of cellulose biosynthesis machinery during earlier stages of plant evolution.

  12. Functional analysis of 14 genes that constitute the purine catabolic pathway in Bacillus subtilis and evidence for a novel regulon controlled by the PucR transcription activator

    DEFF Research Database (Denmark)

    Schultz, Anna Charlotte; Nygaard, P.; Saxild, Hans Henrik

    2001-01-01

    expression of five genes (pucA, pucB, pucC, pucD, and pucE). Uricase activity is encoded by the pucL and pucM genes, and a uric acid transport system is encoded by pucJ and pucK. Allantoinase is encoded by the pucH gene, and allantoin permease is encoded by the pucI gene. Allantoate amidohydrolase is encoded...... acid, allantoin, and uric acid were all found to function as effector molecules for PucR-dependent regulation of puc gene expression. When cells were grown in the presence of glutamate plus allantoin, a 3- to 10-fold increase in expression was seen for most of the genes. However, expression of the puc...

  13. Lectures on Functional Analysis

    CERN Document Server

    Kurepa, Svetozar; Kraljević, Hrvoje

    1987-01-01

    This volume consists of a long monographic paper by J. Hoffmann-Jorgensen and a number of shorter research papers and survey articles covering different aspects of functional analysis and its application to probability theory and differential equations.

  14. ( Euphausia superba ) transcriptome to identify function genes and ...

    Indian Academy of Sciences (India)

    MA

    Further analysis produced 106,250 unigenes, of which. 31,683 were annotated based on protein homology searches against protein databases. Gene. Ontology (GO) analysis showed that Ion binding, organic substance metabolic process, and cell part were the most abundant terms in molecular function, biological process ...

  15. Applied functional analysis

    CERN Document Server

    Griffel, DH

    2002-01-01

    A stimulating introductory text, this volume examines many important applications of functional analysis to mechanics, fluid mechanics, diffusive growth, and approximation. Detailed enough to impart a thorough understanding, the text is also sufficiently straightforward for those unfamiliar with abstract analysis. Its four-part treatment begins with distribution theory and discussions of Green's functions. Essentially independent of the preceding material, the second and third parts deal with Banach spaces, Hilbert space, spectral theory, and variational techniques. The final part outlines the

  16. Functional analysis of a nonstop mutation in MITF gene identified in a patient with Waardenburg syndrome type 2.

    Science.gov (United States)

    Sun, Jie; Hao, Ziqi; Luo, Hunjin; He, Chufeng; Mei, Lingyun; Liu, Yalan; Wang, Xueping; Niu, Zhijie; Chen, Hongsheng; Li, Jia-Da; Feng, Yong

    2017-07-01

    Waardenburg syndrome (WS) is an autosomal dominant inherited neurogenic disorder with the combination of various degrees of sensorineural deafness and pigmentary abnormalities affecting the skin, hair and eye. The four subtypes of WS were defined on the basis of the presence or absence of additional symptoms. Mutation of human microphthalmia-associated transcription factor (MITF) gene gives rise to WS2. Here, we identified a novel WS-associated mutation at the stop codon of MITF (p.X420Y) in a Chinese WS2 patient. This mutation resulted in an extension of extra 33 amino-acid residues in MITF. The mutant MITF appeared in both the nucleus and the cytoplasm, whereas the wild-type MITF was localized in the nucleus exclusively. The mutation led to a reduction in the transcriptional activities, whereas the DNA-binding activity was not altered. We show that the foremost mechanism was haploinsufficiency for the mild phenotypes of WS2 induced in X420Y MITF.

  17. Analysis of mammalian gene function through broad-based phenotypic screens across a consortium of mouse clinics

    DEFF Research Database (Denmark)

    de Angelis, Martin Hrabě; Nicholson, George; Selloum, Mohammed

    2015-01-01

    for the broad-based phenotyping of knockouts through a pipeline comprising 20 disease-oriented platforms. We developed new statistical methods for pipeline design and data analysis aimed at detecting reproducible phenotypes with high power. We acquired phenotype data from 449 mutant alleles, representing 320...

  18. Regulatory Mechanisms of a Highly Pectinolytic Mutant of Penicillium occitanis and Functional Analysis of a Candidate Gene in the Plant Pathogen Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Gustavo Bravo-Ruiz

    2017-09-01

    Full Text Available Penicillium occitanis is a model system for enzymatic regulation. A mutant strain exhibiting constitutive overproduction of different pectinolytic enzymes both under inducing (pectin or repressing conditions (glucose was previously isolated after chemical mutagenesis. In order to identify the molecular basis of this regulatory mechanism, the genomes of the wild type and the derived mutant strain were sequenced and compared, providing the first reference genome for this species. We used a phylogenomic approach to compare P. occitanis with other pectinolytic fungi and to trace expansions of gene families involved in carbohydrate degradation. Genome comparison between wild type and mutant identified seven mutations associated with predicted proteins. The most likely candidate was a mutation in a highly conserved serine residue of a conserved fungal protein containing a GAL4-like Zn2Cys6 binuclear cluster DNA-binding domain and a fungus-specific transcription factor regulatory middle homology region. To functionally characterize the role of this candidate gene, the mutation was recapitulated in the predicted orthologue Fusarium oxysporum, a vascular wilt pathogen which secretes a wide array of plant cell wall degrading enzymes, including polygalacturonases, pectate lyases, xylanases and proteases, all of which contribute to infection. However, neither the null mutant nor a mutant carrying the analogous point mutation exhibited a deregulation of pectinolytic enzymes. The availability, annotation and phylogenomic analysis of the P. occitanis genome sequence represents an important resource for understanding the evolution and biology of this species, and sets the basis for the discovery of new genes of biotechnological interest for the degradation of complex polysaccharides.

  19. Regulatory Mechanisms of a Highly Pectinolytic Mutant ofPenicillium occitanisand Functional Analysis of a Candidate Gene in the Plant PathogenFusarium oxysporum.

    Science.gov (United States)

    Bravo-Ruiz, Gustavo; Sassi, Azza Hadj; Marcet-Houben, Marina; Di Pietro, Antonio; Gargouri, Ali; Gabaldon, Toni; Roncero, M Isabel G

    2017-01-01

    Penicillium occitanis is a model system for enzymatic regulation. A mutant strain exhibiting constitutive overproduction of different pectinolytic enzymes both under inducing (pectin) or repressing conditions (glucose) was previously isolated after chemical mutagenesis. In order to identify the molecular basis of this regulatory mechanism, the genomes of the wild type and the derived mutant strain were sequenced and compared, providing the first reference genome for this species. We used a phylogenomic approach to compare P. occitanis with other pectinolytic fungi and to trace expansions of gene families involved in carbohydrate degradation. Genome comparison between wild type and mutant identified seven mutations associated with predicted proteins. The most likely candidate was a mutation in a highly conserved serine residue of a conserved fungal protein containing a GAL4-like Zn 2 Cys 6 binuclear cluster DNA-binding domain and a fungus-specific transcription factor regulatory middle homology region. To functionally characterize the role of this candidate gene, the mutation was recapitulated in the predicted orthologue Fusarium oxysporum , a vascular wilt pathogen which secretes a wide array of plant cell wall degrading enzymes, including polygalacturonases, pectate lyases, xylanases and proteases, all of which contribute to infection. However, neither the null mutant nor a mutant carrying the analogous point mutation exhibited a deregulation of pectinolytic enzymes. The availability, annotation and phylogenomic analysis of the P. occitanis genome sequence represents an important resource for understanding the evolution and biology of this species, and sets the basis for the discovery of new genes of biotechnological interest for the degradation of complex polysaccharides.

  20. Functionally enigmatic genes: a case study of the brain ignorome.

    Directory of Open Access Journals (Sweden)

    Ashutosh K Pandey

    Full Text Available What proportion of genes with intense and selective expression in specific tissues, cells, or systems are still almost completely uncharacterized with respect to biological function? In what ways do these functionally enigmatic genes differ from well-studied genes? To address these two questions, we devised a computational approach that defines so-called ignoromes. As proof of principle, we extracted and analyzed a large subset of genes with intense and selective expression in brain. We find that publications associated with this set are highly skewed--the top 5% of genes absorb 70% of the relevant literature. In contrast, approximately 20% of genes have essentially no neuroscience literature. Analysis of the ignorome over the past decade demonstrates that it is stubbornly persistent, and the rapid expansion of the neuroscience literature has not had the expected effect on numbers of these genes. Surprisingly, ignorome genes do not differ from well-studied genes in terms of connectivity in coexpression networks. Nor do they differ with respect to numbers of orthologs, paralogs, or protein domains. The major distinguishing characteristic between these sets of genes is date of discovery, early discovery being associated with greater research momentum--a genomic bandwagon effect. Finally we ask to what extent massive genomic, imaging, and phenotype data sets can be used to provide high-throughput functional annotation for an entire ignorome. In a majority of cases we have been able to extract and add significant information for these neglected genes. In several cases--ELMOD1, TMEM88B, and DZANK1--we have exploited sequence polymorphisms, large phenome data sets, and reverse genetic methods to evaluate the function of ignorome genes.

  1. Functionally Enigmatic Genes: A Case Study of the Brain Ignorome

    Science.gov (United States)

    Pandey, Ashutosh K.; Lu, Lu; Wang, Xusheng; Homayouni, Ramin; Williams, Robert W.

    2014-01-01

    What proportion of genes with intense and selective expression in specific tissues, cells, or systems are still almost completely uncharacterized with respect to biological function? In what ways do these functionally enigmatic genes differ from well-studied genes? To address these two questions, we devised a computational approach that defines so-called ignoromes. As proof of principle, we extracted and analyzed a large subset of genes with intense and selective expression in brain. We find that publications associated with this set are highly skewed—the top 5% of genes absorb 70% of the relevant literature. In contrast, approximately 20% of genes have essentially no neuroscience literature. Analysis of the ignorome over the past decade demonstrates that it is stubbornly persistent, and the rapid expansion of the neuroscience literature has not had the expected effect on numbers of these genes. Surprisingly, ignorome genes do not differ from well-studied genes in terms of connectivity in coexpression networks. Nor do they differ with respect to numbers of orthologs, paralogs, or protein domains. The major distinguishing characteristic between these sets of genes is date of discovery, early discovery being associated with greater research momentum—a genomic bandwagon effect. Finally we ask to what extent massive genomic, imaging, and phenotype data sets can be used to provide high-throughput functional annotation for an entire ignorome. In a majority of cases we have been able to extract and add significant information for these neglected genes. In several cases—ELMOD1, TMEM88B, and DZANK1—we have exploited sequence polymorphisms, large phenome data sets, and reverse genetic methods to evaluate the function of ignorome genes. PMID:24523945

  2. Separate enrichment analysis of pathways for up- and downregulated genes.

    Science.gov (United States)

    Hong, Guini; Zhang, Wenjing; Li, Hongdong; Shen, Xiaopei; Guo, Zheng

    2014-03-06

    Two strategies are often adopted for enrichment analysis of pathways: the analysis of all differentially expressed (DE) genes together or the analysis of up- and downregulated genes separately. However, few studies have examined the rationales of these enrichment analysis strategies. Using both microarray and RNA-seq data, we show that gene pairs with functional links in pathways tended to have positively correlated expression levels, which could result in an imbalance between the up- and downregulated genes in particular pathways. We then show that the imbalance could greatly reduce the statistical power for finding disease-associated pathways through the analysis of all-DE genes. Further, using gene expression profiles from five types of tumours, we illustrate that the separate analysis of up- and downregulated genes could identify more pathways that are really pertinent to phenotypic difference. In conclusion, analysing up- and downregulated genes separately is more powerful than analysing all of the DE genes together.

  3. Developmentally distinct MYB genes encode functionally equivalent proteins in Arabidopsis.

    Science.gov (United States)

    Lee, M M; Schiefelbein, J

    2001-05-01

    The duplication and divergence of developmental control genes is thought to have driven morphological diversification during the evolution of multicellular organisms. To examine the molecular basis of this process, we analyzed the functional relationship between two paralogous MYB transcription factor genes, WEREWOLF (WER) and GLABROUS1 (GL1), in Arabidopsis. The WER and GL1 genes specify distinct cell types and exhibit non-overlapping expression patterns during Arabidopsis development. Nevertheless, reciprocal complementation experiments with a series of gene fusions showed that WER and GL1 encode functionally equivalent proteins, and their unique roles in plant development are entirely due to differences in their cis-regulatory sequences. Similar experiments with a distantly related MYB gene (MYB2) showed that its product cannot functionally substitute for WER or GL1. Furthermore, an analysis of the WER and GL1 proteins shows that conserved sequences correspond to specific functional domains. These results provide new insights into the evolution of the MYB gene family in Arabidopsis, and, more generally, they demonstrate that novel developmental gene function may arise solely by the modification of cis-regulatory sequences.

  4. Metagenome cloning and functional analysis of Na⁺/H⁺ antiporter genes from Keke Salt Lake in China.

    Science.gov (United States)

    Gao, Maio; Wang, Lei; Chen, San-Feng

    2012-02-01

    Na⁺/H⁺ antiporters are ubiquitous membrane proteins and play a central role in cell homeostasis including pH regulation, osmoregulation, and Na⁺/Li⁺ tolerance in bacteria. The microbial communities in extremely hypersaline soil are an important resource for isolating Na⁺/H⁺ antiporter genes. A metagenomic library containing 35,700 clones was constructed by using genomic DNA obtained from the hypersaline soil samples of Keke Salt Lake in Northwest of China. Two Na⁺/H⁺ antiporters, K1-NhaD, and K2-NhaD belonging to NhaD family, were screened and cloned from this metagenome by complementing the triple mutant Escherichia coli strain KNabc (nhaA⁻, nhaB⁻, chaA⁻) in medium containing 0.2 M NaCl. K1-NhaD and K2-NhaD have 75.5% identity at the predicted amino acid sequence. K1-NhaD has 78% identity with Na⁺/H⁺ antiporter NhaD from Halomonas elongate at the predicted amino acid sequence. The predicted K1-NhaD is a 53.5 kDa protein (487 amino acids) with 13 transmembrane helices. K2-NhaD has 73% identity with Alkalimonas amylolytica NhaD. The predicted K2-NhaD is a 55 kDa protein (495 amino acids) with 12 transmembrane helices. Both K1-NhaD and K2-NhaD could make the triple mutant E. coli KNabc (nhaA⁻, nhaB⁻, chaA⁻) grow in the LBK medium containing 0.2-0.6 M Na⁺ or with 0.05-0.4 M Li⁺. Everted membrane vesicles prepared from E. coli KNabc cells carrying K1-NhaD or K2-NhaD exhibited Na⁺/H⁺ and Li⁺/H⁺ antiporter activities which were pH-dependent with the highest activity at pH 9.5. Little K⁺/H⁺ antiporter activity was also detected in vesicles form E. coli KNabc carrying K1-NhaD or K2-NhaD.

  5. Defining functional distances over Gene Ontology

    Directory of Open Access Journals (Sweden)

    del Pozo Angela

    2008-01-01

    Full Text Available Abstract Background A fundamental problem when trying to define the functional relationships between proteins is the difficulty in quantifying functional similarities, even when well-structured ontologies exist regarding the activity of proteins (i.e. 'gene ontology' -GO-. However, functional metrics can overcome the problems in the comparing and evaluating functional assignments and predictions. As a reference of proximity, previous approaches to compare GO terms considered linkage in terms of ontology weighted by a probability distribution that balances the non-uniform 'richness' of different parts of the Direct Acyclic Graph. Here, we have followed a different approach to quantify functional similarities between GO terms. Results We propose a new method to derive 'functional distances' between GO terms that is based on the simultaneous occurrence of terms in the same set of Interpro entries, instead of relying on the structure of the GO. The coincidence of GO terms reveals natural biological links between the GO functions and defines a distance model Df which fulfils the properties of a Metric Space. The distances obtained in this way can be represented as a hierarchical 'Functional Tree'. Conclusion The method proposed provides a new definition of distance that enables the similarity between GO terms to be quantified. Additionally, the 'Functional Tree' defines groups with biological meaning enhancing its utility for protein function comparison and prediction. Finally, this approach could be for function-based protein searches in databases, and for analysing the gene clusters produced by DNA array experiments.

  6. Cloning, Expression Profiling and Functional Analysis of CnHMGS, a Gene Encoding 3-hydroxy-3-Methylglutaryl Coenzyme A Synthase from Chamaemelum nobile

    OpenAIRE

    Shuiyuan Cheng; Xiaohui Wang; Feng Xu; Qiangwen Chen; Tingting Tao; Jing Lei; Weiwei Zhang; Yongling Liao; Jie Chang; Xingxiang Li

    2016-01-01

    Roman chamomile (Chamaemelum nobile L.) is renowned for its production of essential oils, which major components are sesquiterpenoids. As the important enzyme in the sesquiterpenoid biosynthesis pathway, 3-hydroxy-3-methylglutaryl coenzyme A synthase (HMGS) catalyze the crucial step in the mevalonate pathway in plants. To isolate and identify the functional genes involved in the sesquiterpene biosynthesis of C. nobile L., a HMGS gene designated as CnHMGS (GenBank Accession No. KU529969) was c...

  7. Functional and evolutionary analysis of the AP1/SEP/AGL6 superclade of MADS-box genes in the basal eudicot Epimedium sagittatum.

    Science.gov (United States)

    Sun, Wei; Huang, Wenjun; Li, Zhineng; Song, Chi; Liu, Di; Liu, Yongliang; Hayward, Alice; Liu, Yifei; Huang, Hongwen; Wang, Ying

    2014-03-01

    ) subfamily, and EsAGL6-like belongs to the AGL6 (AGL6 class) subfamily. Quantitative RT-PCR analyses revealed that the transcripts of the four genes are absent, or minimal, in vegetative tissues and are most highly expressed in floral organs. Yeast two-hybrid results revealed that of the eight MADS-box proteins tested, only EsAGL6-like, EsAGL2-1 and EsAGL2 were able to form strong homo- and heterodimers, with EsAGL6-like and EsAGL2-1 showing similar interaction patterns. Yeast three-hybrid analysis revealed that EsFUL1-like, EsAGL6-like and EsAGL2-1 (representing the three major lineages of the Epimedium AGL/SEP/ALG6 superclade) could act as bridging proteins in ternary complexes with both EsAP3-2 (B class) and EsPI (B class), which do not heterodimerize themselves. Syntenic analyses of sequenced basal eudicots, rosids and asterids showed that most AP1-like and SEP-like genes have been tightly associated as neighbours since the origin of basal eudicots. Ectopic expression of EsFUL-like in arabidopsis caused early flowering through endogenous high-level expression of AP1 and formation of secondary flowers between the first and second whorls. Tobacco plants with ectopic expression of EsAGL2-1 showed shortened pistils and styles, as well as axillary and extra petals in the initial flower. This study provides a description of EsFUL-like, EsAGL2-1, EsAGL2-2 and EsAGL6-like function divergence and conservation in comparison with a selection of model core eudicots. The study also highlights how organization in genomic segments containing A and E class genes in sequenced model species has resulted in similar topologies of AP1 and SEP-like gene trees.

  8. Molecular cloning and functional analysis of a H(+)-dependent phosphate transporter gene from the ectomycorrhizal fungus Boletus edulis in southwest China.

    Science.gov (United States)

    Wang, Junling; Li, Tao; Wu, Xiaogang; Zhao, Zhiwei

    2014-01-01

    Phosphate transporters (PTs), as entry points for phosphorus (P) in organisms, are involved in a number of P nutrition processes such as phosphate uptake, transport, and transfer. In the study, a PT gene 1632 bp long (named BePT) was cloned, identified, and functionally characterized from Boletus edulis. BePT was expected to encode a polypeptide with 543 amino acid residues. The BePT polypeptide belonged to the major facilitator superfamily and showed a high degree of sequence identity to the Pht1 family. A topology model revealed that BePT exhibited 12 transmembrane helices, divided into two halves, and connected by a large hydrophilic loop in the middle. A yeast mutant complementation analysis suggested that BePT was a functional PT which mediated orthophosphate uptake of yeast at micromolar concentrations. Green fluorescent protein-BePT fusion proteins expressed were extensively restricted to the plasma membrane in BePT transformed yeast, and its activity was dependent on electrochemical membrane potential. In vitro, quantitative PCR confirmed that the expression of BePT was significantly upregulated at lower phosphorus availability, which may enhance phosphate uptake and transport under phosphate starvation. Our results suggest that BePT plays a key role in phosphate acquisition in the ectomycorrhizal fungus B. edulis. Copyright © 2014 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  9. Network enrichment analysis: extension of gene-set enrichment analysis to gene networks

    Directory of Open Access Journals (Sweden)

    Alexeyenko Andrey

    2012-09-01

    Full Text Available Abstract Background Gene-set enrichment analyses (GEA or GSEA are commonly used for biological characterization of an experimental gene-set. This is done by finding known functional categories, such as pathways or Gene Ontology terms, that are over-represented in the experimental set; the assessment is based on an overlap statistic. Rich biological information in terms of gene interaction network is now widely available, but this topological information is not used by GEA, so there is a need for methods that exploit this type of information in high-throughput data analysis. Results We developed a method of network enrichment analysis (NEA that extends the overlap statistic in GEA to network links between genes in the experimental set and those in the functional categories. For the crucial step in statistical inference, we developed a fast network randomization algorithm in order to obtain the distribution of any network statistic under the null hypothesis of no association between an experimental gene-set and a functional category. We illustrate the NEA method using gene and protein expression data from a lung cancer study. Conclusions The results indicate that the NEA method is more powerful than the traditional GEA, primarily because the relationships between gene sets were more strongly captured by network connectivity rather than by simple overlaps.

  10. Applied functional analysis

    CERN Document Server

    Oden, J Tinsley

    2010-01-01

    The textbook is designed to drive a crash course for beginning graduate students majoring in something besides mathematics, introducing mathematical foundations that lead to classical results in functional analysis. More specifically, Oden and Demkowicz want to prepare students to learn the variational theory of partial differential equations, distributions, and Sobolev spaces and numerical analysis with an emphasis on finite element methods. The 1996 first edition has been used in a rather intensive two-semester course. -Book News, June 2010

  11. Sequence analysis, identification of evolutionary conserved motifs and expression analysis of murine tcof1 provide further evidence for a potential function for the gene and its human homologue, TCOF1.

    Science.gov (United States)

    Dixon, J; Hovanes, K; Shiang, R; Dixon, M J

    1997-05-01

    The gene mutated in Treacher Collins syndrome, an autosomal dominant disorder of facial development, has recently been cloned. While the function of the predicted protein, Treacle, is unknown, it has been shown to share a number of features with the highly phosphorylated nucleolar phosphoproteins, which play a role in nucleolar-cytoplasmic transport. In the current study, the murine homologue of the Treacher Collins syndrome gene has been isolated and shown to encode a low complexity, serine/alanine-rich protein of 133 kDa. Interspecies comparison indicates that the proteins display 61.5% identity, with the level of conservation being greatest in the regions of acidic/basic amino acid repeats and nuclear localization signals. These features are shared with the nucleolar phosphoproteins. Confirmation that the gene isolated in the current study is orthologous with the Treacher Collins syndrome gene was provided by the demonstration that it mapped to central mouse chromosome 18 in a conserved syntenic region with human chromosome 5q21-q33. Expression analysis in the mouse indicated that the gene was expressed in a wide variety of embryonic and adult tissues. Peak levels of expression in the developing embryo were observed at the edges of the neural folds immediately prior to fusion, and also in the developing branchial arches at the times of critical morphogenetic events. These observations support a role for the gene in the development of the craniofacial complex and provide further evidence that the gene encodes a protein which may be involved in nucleolar-cytoplasmic transport.

  12. Functional analysis of a tyrosinase gene involved in early larval shell biogenesis in Crassostrea angulata and its response to ocean acidification.

    Science.gov (United States)

    Yang, Bingye; Pu, Fei; Li, Lingling; You, Weiwei; Ke, Caihuan; Feng, Danqing

    2017-04-01

    The formation of the primary shell is a vital process in marine bivalves. Ocean acidification largely influences shell formation. It has been reported that enzymes involved in phenol oxidation, such as tyrosinase and phenoloxidases, participate in the formation of the periostracum. In the present study, we cloned a tyrosinase gene from Crassostrea angulata named Ca-tyrA1, and its potential function in early larval shell biogenesis was investigated. The Ca-tyrA1 gene has a full-length cDNA of 2430bp in size, with an open reading frame of 1896bp in size, which encodes a 631-amino acid protein that includes a 24-amino acid putative signal peptide. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis revealed that Ca-tyrA1 transcription mainly occurs at the trochophore stage, and the Ca-tyrA1 mRNA levels in the 3000ppm treatment group were significantly upregulated in the early D-veliger larvae. WMISH and electron scanning microscopy analyses showed that the expression of Ca-tyrA1 occurs at the gastrula stage, thereby sustaining the early D-veliger larvae, and the shape of its signal is saddle-like, similar to that observed under an electron scanning microscope. Furthermore, the RNA interference has shown that the treatment group has a higher deformity rate than that of the control, thereby indicating that Ca-tyrA1 participates in the biogenesis of the primary shell. In conclusion, and our results indicate that Ca-tyrA1 plays a vital role in the formation of the larval shell and participates in the response to larval shell damages in Crassostrea angulata that were induced by ocean acidification. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Ribosomal RNA gene functioning in avian oogenesis.

    Science.gov (United States)

    Koshel, Elena; Galkina, Svetlana; Saifitdinova, Alsu; Dyomin, Alexandr; Deryusheva, Svetlana; Gaginskaya, Elena

    2016-12-01

    Despite long-term exploration into ribosomal RNA gene functioning during the oogenesis of various organisms, many intriguing problems remain unsolved. In this review, we describe nucleolus organizer region (NOR) activity in avian oocytes. Whereas oocytes from an adult avian ovary never reveal the formation of the nucleolus in the germinal vesicle (GV), an ovary from juvenile birds possesses both nucleolus-containing and non-nucleolus-containing oocytes. The evolutionary diversity of oocyte NOR functioning and the potential non-rRNA-related functions of the nucleolus in oocytes are also discussed.

  14. Identification of Human Housekeeping Genes and Tissue-Selective Genes by Microarray Meta-Analysis

    Science.gov (United States)

    Chang, Cheng-Wei; Cheng, Wei-Chung; Chen, Chaang-Ray; Shu, Wun-Yi; Tsai, Min-Lung; Huang, Ching-Lung; Hsu, Ian C.

    2011-01-01

    Background Categorizing protein-encoding transcriptomes of normal tissues into housekeeping genes and tissue-selective genes is a fundamental step toward studies of genetic functions and genetic associations to tissue-specific diseases. Previous studies have been mainly based on a few data sets with limited samples in each tissue, which restrained the representativeness of their identified genes, and resulted in low consensus among them. Results This study compiled 1,431 samples in 43 normal human tissues from 104 microarray data sets. We developed a new method to improve gene expression assessment, and showed that more than ten samples are needed to robustly identify the protein-encoding transcriptome of a tissue. We identified 2,064 housekeeping genes and 2,293 tissue-selective genes, and analyzed gene lists by functional enrichment analysis. The housekeeping genes are mainly involved in fundamental cellular functions, and the tissue-selective genes are strikingly related to functions and diseases corresponding to tissue-origin. We also compared agreements and related functions among our housekeeping genes and those of previous studies, and pointed out some reasons for the low consensuses. Conclusions The results indicate that sufficient samples have improved the identification of protein-encoding transcriptome of a tissue. Comprehensive meta-analysis has proved the high quality of our identified HK and TS genes. These results could offer a useful resource for future research on functional and genomic features of HK and TS genes. PMID:21818400

  15. From Model to Crop: Functional Analysis of a STAY-GREEN Gene in the Model Legume Medicago truncatula and Effective Use of the Gene for Alfalfa Improvement1[W][OA

    Science.gov (United States)

    Zhou, Chuanen; Han, Lu; Pislariu, Catalina; Nakashima, Jin; Fu, Chunxiang; Jiang, Qingzhen; Quan, Li; Blancaflor, Elison B.; Tang, Yuhong; Bouton, Joseph H.; Udvardi, Michael; Xia, Guangmin; Wang, Zeng-Yu

    2011-01-01

    Medicago truncatula has been developed into a model legume. Its close relative alfalfa (Medicago sativa) is the most widely grown forage legume crop in the United States. By screening a large population of M. truncatula mutants tagged with the transposable element of tobacco (Nicotiana tabacum) cell type1 (Tnt1), we identified a mutant line (NF2089) that maintained green leaves and showed green anthers, central carpels, mature pods, and seeds during senescence. Genetic and molecular analyses revealed that the mutation was caused by Tnt1 insertion in a STAY-GREEN (MtSGR) gene. Transcript profiling analysis of the mutant showed that loss of the MtSGR function affected the expression of a large number of genes involved in different biological processes. Further analyses revealed that SGR is implicated in nodule development and senescence. MtSGR expression was detected across all nodule developmental zones and was higher in the senescence zone. The number of young nodules on the mutant roots was higher than in the wild type. Expression levels of several nodule senescence markers were reduced in the sgr mutant. Based on the MtSGR sequence, an alfalfa SGR gene (MsSGR) was cloned, and transgenic alfalfa lines were produced by RNA interference. Silencing of MsSGR led to the production of stay-green transgenic alfalfa. This beneficial trait offers the opportunity to produce premium alfalfa hay with a more greenish appearance. In addition, most of the transgenic alfalfa lines retained more than 50% of chlorophylls during senescence and had increased crude protein content. This study illustrates the effective use of knowledge gained from a model system for the genetic improvement of an important commercial crop. PMID:21957014

  16. Comparative network analysis reveals that tissue specificity and gene function are important factors influencing the mode of expression evolution in Arabidopsis and rice.

    Science.gov (United States)

    Movahedi, Sara; Van de Peer, Yves; Vandepoele, Klaas

    2011-07-01

    Microarray experiments have yielded massive amounts of expression information measured under various conditions for the model species Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). Expression compendia grouping multiple experiments make it possible to define correlated gene expression patterns within one species and to study how expression has evolved between species. We developed a robust framework to measure expression context conservation (ECC) and found, by analyzing 4,630 pairs of orthologous Arabidopsis and rice genes, that 77% showed conserved coexpression. Examples of nonconserved ECC categories suggested a link between regulatory evolution and environmental adaptations and included genes involved in signal transduction, response to different abiotic stresses, and hormone stimuli. To identify genomic features that influence expression evolution, we analyzed the relationship between ECC, tissue specificity, and protein evolution. Tissue-specific genes showed higher expression conservation compared with broadly expressed genes but were fast evolving at the protein level. No significant correlation was found between protein and expression evolution, implying that both modes of gene evolution are not strongly coupled in plants. By integration of cis-regulatory elements, many ECC conserved genes were significantly enriched for shared DNA motifs, hinting at the conservation of ancestral regulatory interactions in both model species. Surprisingly, for several tissue-specific genes, patterns of concerted network evolution were observed, unveiling conserved coexpression in the absence of conservation of tissue specificity. These findings demonstrate that orthologs inferred through sequence similarity in many cases do not share similar biological functions and highlight the importance of incorporating expression information when comparing genes across species.

  17. Construction of an in vivo system for functional analysis of the genes involved in sex pheromone production in the silkmoth, Bombyx mori.

    Directory of Open Access Journals (Sweden)

    Ken-Ichi eMoto

    2012-02-01

    Full Text Available Moths produce species-specific sex pheromones to attract conspecific mates. The biochemical processes that comprise sex pheromone biosynthesis are precisely regulated and a number of gene products are involved in this biosynthesis and regulation. In recent years, at least 300 EST clones have been isolated from Bombyx mori pheromone gland (PG specific cDNA libraries with some of those clones (i.e., B. mori PG-specific desaturase1 (Bmpgdesat1, PG-specific fatty-acyl reductase (pgFAR, PG-specific acyl-CoA-binding protein (pgACBP, B. mori fatty acid transport protein (BmFATP, B. mori lipid storage droplet protein-1 (BmLsd1 characterized and demonstrated to play a role in sex pheromone production. However, most of the EST clones have yet to be fully characterized and identified. To develop an efficient system for analyzing sex pheromone production-related genes, we investigated the feasibility of a novel gene analysis system using the upstream region of Bmpgdesat1 that should contain a PG-specific gene promoter in conjunction with piggyBac vector-mediated germ-line transformation. As a result, we have been able to obtain expression of our reporter gene (enhanced green fluorescent protein in the PG but not in other tissues of transgenic B. mori. Current results indicate that we have successfully constructed a novel in vivo gene analysis system for sex pheromone production in B. mori.

  18. Phylogenetic and functional analysis of gut microbiota of a fungus-growing higher termite: Bacteroidetes from higher termites are a rich source of β-glucosidase genes.

    Science.gov (United States)

    Zhang, Meiling; Liu, Ning; Qian, Changli; Wang, Qianfu; Wang, Qian; Long, Yanhua; Huang, Yongping; Zhou, Zhihua; Yan, Xing

    2014-08-01

    Fungus-growing termites, their symbiotic fungi, and microbiota inhibiting their intestinal tract comprise a highly efficient cellulose-hydrolyzing system; however, little is known about the role of gut microbiota in this system. Twelve fosmid clones with β-glucosidase activity were previously obtained by functionally screening a metagenomic library of a fungus-growing termite, Macrotermes annandalei. Ten contigs containing putative β-glucosidase genes (bgl1-10) were assembled by sequencing data of these fosmid clones. All these contigs were binned to Bacteroidetes, and all these β-glucosidase genes were phylogenetically closed to those from Bacteroides or Dysgonomonas. Six out of 10 β-glucosidase genes had predicted signal peptides, indicating a transmembrane capability of these enzymes to mediate cellulose hydrolysis within the gut of the termites. To confirm the activities of these β-glucosidase genes, three genes (bgl5, bgl7, and bgl9) were successfully expressed and purified. The optimal temperature and pH of these enzymes largely resembled the environment of the host's gut. The gut microbiota composition of the fungus-growing termite was also determined by 454 pyrosequencing, showing that Bacteroidetes was the most dominant phylum. The diversity and the enzyme properties of β-glucosidases revealed in this study suggested that Bacteroidetes as the major member in fungus-growing termites contributed to cello-oligomer degradation in cellulose-hydrolyzing process and represented a rich source for β-glucosidase genes.

  19. Automated discovery of functional generality of human gene expression programs.

    Directory of Open Access Journals (Sweden)

    Georg K Gerber

    2007-08-01

    Full Text Available An important research problem in computational biology is the identification of expression programs, sets of co-expressed genes orchestrating normal or pathological processes, and the characterization of the functional breadth of these programs. The use of human expression data compendia for discovery of such programs presents several challenges including cellular inhomogeneity within samples, genetic and environmental variation across samples, uncertainty in the numbers of programs and sample populations, and temporal behavior. We developed GeneProgram, a new unsupervised computational framework based on Hierarchical Dirichlet Processes that addresses each of the above challenges. GeneProgram uses expression data to simultaneously organize tissues into groups and genes into overlapping programs with consistent temporal behavior, to produce maps of expression programs, which are sorted by generality scores that exploit the automatically learned groupings. Using synthetic and real gene expression data, we showed that GeneProgram outperformed several popular expression analysis methods. We applied GeneProgram to a compendium of 62 short time-series gene expression datasets exploring the responses of human cells to infectious agents and immune-modulating molecules. GeneProgram produced a map of 104 expression programs, a substantial number of which were significantly enriched for genes involved in key signaling pathways and/or bound by NF-kappaB transcription factors in genome-wide experiments. Further, GeneProgram discovered expression programs that appear to implicate surprising signaling pathways or receptor types in the response to infection, including Wnt signaling and neurotransmitter receptors. We believe the discovered map of expression programs involved in the response to infection will be useful for guiding future biological experiments; genes from programs with low generality scores might serve as new drug targets that exhibit minimal

  20. PHYLOGENOMICS - GUIDED VALIDATION OF FUNCTION FOR CONSERVED UNKNOWN GENES

    Energy Technology Data Exchange (ETDEWEB)

    V, DE CRECY-LAGARD; D, HANSON A

    2012-01-03

    Identifying functions for all gene products in all sequenced organisms is a central challenge of the post-genomic era. However, at least 30-50% of the proteins encoded by any given genome are of unknown function, or wrongly or vaguely annotated. Many of these 'unknown' proteins are common to prokaryotes and plants. We accordingly set out to predict and experimentally test the functions of such proteins. Our approach to functional prediction is integrative, coupling the extensive post-genomic resources available for plants with comparative genomics based on hundreds of microbial genomes, and functional genomic datasets from model microorganisms. The early phase is computer-assisted; later phases incorporate intellectual input from expert plant and microbial biochemists. The approach thus bridges the gap between automated homology-based annotations and the classical gene discovery efforts of experimentalists, and is much more powerful than purely computational approaches to identifying gene-function associations. Among Arabidopsis genes, we focused on those (2,325 in total) that (i) are unique or belong to families with no more than three members, (ii) are conserved between plants and prokaryotes, and (iii) have unknown or poorly known functions. Computer-assisted selection of promising targets for deeper analysis was based on homology .. independent characteristics associated in the SEED database with the prokaryotic members of each family, specifically gene clustering and phyletic spread, as well as availability of functional genomics data, and publications that could link candidate families to general metabolic areas, or to specific functions. In-depth comparative genomic analysis was then performed for about 500 top candidate families, which connected ~55 of them to general areas of metabolism and led to specific functional predictions for a subset of ~25 more. Twenty predicted functions were experimentally tested in at least one prokaryotic organism

  1. Notes on functional analysis

    CERN Document Server

    Bhatia, Rajendra

    2009-01-01

    These notes are a record of a one semester course on Functional Analysis given by the author to second year Master of Statistics students at the Indian Statistical Institute, New Delhi. Students taking this course have a strong background in real analysis, linear algebra, measure theory and probability, and the course proceeds rapidly from the definition of a normed linear space to the spectral theorem for bounded selfadjoint operators in a Hilbert space. The book is organised as twenty six lectures, each corresponding to a ninety minute class session. This may be helpful to teachers planning a course on this topic. Well prepared students can read it on their own.

  2. Analysis of multiplex gene expression maps obtained by voxelation

    Directory of Open Access Journals (Sweden)

    Smith Desmond J

    2009-04-01

    Full Text Available Abstract Background Gene expression signatures in the mammalian brain hold the key to understanding neural development and neurological disease. Researchers have previously used voxelation in combination with microarrays for acquisition of genome-wide atlases of expression patterns in the mouse brain. On the other hand, some work has been performed on studying gene functions, without taking into account the location information of a gene's expression in a mouse brain. In this paper, we present an approach for identifying the relation between gene expression maps obtained by voxelation and gene functions. Results To analyze the dataset, we chose typical genes as queries and aimed at discovering similar gene groups. Gene similarity was determined by using the wavelet features extracted from the left and right hemispheres averaged gene expression maps, and by the Euclidean distance between each pair of feature vectors. We also performed a multiple clustering approach on the gene expression maps, combined with hierarchical clustering. Among each group of similar genes and clusters, the gene function similarity was measured by calculating the average gene function distances in the gene ontology structure. By applying our methodology to find similar genes to certain target genes we were able to improve our understanding of gene expression patterns and gene functions. By applying the clustering analysis method, we obtained significant clusters, which have both very similar gene expression maps and very similar gene functions respectively to their corresponding gene ontologies. The cellular component ontology resulted in prominent clusters expressed in cortex and corpus callosum. The molecular function ontology gave prominent clusters in cortex, corpus callosum and hypothalamus. The biological process ontology resulted in clusters in cortex, hypothalamus and choroid plexus. Clusters from all three ontologies combined were most prominently expressed in

  3. Nonlinear functional analysis

    CERN Document Server

    Deimling, Klaus

    1985-01-01

    topics. However, only a modest preliminary knowledge is needed. In the first chapter, where we introduce an important topological concept, the so-called topological degree for continuous maps from subsets ofRn into Rn, you need not know anything about functional analysis. Starting with Chapter 2, where infinite dimensions first appear, one should be familiar with the essential step of consider­ ing a sequence or a function of some sort as a point in the corresponding vector space of all such sequences or functions, whenever this abstraction is worthwhile. One should also work out the things which are proved in § 7 and accept certain basic principles of linear functional analysis quoted there for easier references, until they are applied in later chapters. In other words, even the 'completely linear' sections which we have included for your convenience serve only as a vehicle for progress in nonlinearity. Another point that makes the text introductory is the use of an essentially uniform mathematical languag...

  4. Evaluating the consistency of gene sets used in the analysis of bacterial gene expression data

    Directory of Open Access Journals (Sweden)

    Tintle Nathan L

    2012-08-01

    Full Text Available Abstract Background Statistical analyses of whole genome expression data require functional information about genes in order to yield meaningful biological conclusions. The Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG are common sources of functionally grouped gene sets. For bacteria, the SEED and MicrobesOnline provide alternative, complementary sources of gene sets. To date, no comprehensive evaluation of the data obtained from these resources has been performed. Results We define a series of gene set consistency metrics directly related to the most common classes of statistical analyses for gene expression data, and then perform a comprehensive analysis of 3581 Affymetrix® gene expression arrays across 17 diverse bacteria. We find that gene sets obtained from GO and KEGG demonstrate lower consistency than those obtained from the SEED and MicrobesOnline, regardless of gene set size. Conclusions Despite the widespread use of GO and KEGG gene sets in bacterial gene expression data analysis, the SEED and MicrobesOnline provide more consistent sets for a wide variety of statistical analyses. Increased use of the SEED and MicrobesOnline gene sets in the analysis of bacterial gene expression data may improve statistical power and utility of expression data.

  5. Agrobacterium rhizogenes-dependent production of transformed roots from foliar explants of pepper (Capsicum annuum): a new and efficient tool for functional analysis of genes

    OpenAIRE

    Aarrouf, Jawad; Mallard, Stephanie; Caromel, Bernard; Lizzi, Y.; Lefebvre, Véronique

    2012-01-01

    Pepper is known to be a recalcitrant species to genetic transformation via Agrobacterium tumefaciens. A. rhizogenes-mediated transformation offers an alternative and rapid possibility to study gene functions in roots. In our study, we developed a new and efficient system for A. rhizogenes transformation of the cultivated species Capsicum annuum. Hypocotyls and foliar organs (true leaves and cotyledons) of Yolo Wonder (YW) and Criollo de Morelos 334 (CM334) pepper cultivars were inoculated wit...

  6. Gene expression, telomere and cognitive deficit analysis as a function of Chornobyl radiation dose and age: from in utero to adulthood

    International Nuclear Information System (INIS)

    Bazika, D.A.; Loganovs'kij, K.M.; Yil'jenko, Yi.M.; Chumak, S.A.; Bomko, M.O.

    2015-01-01

    The possible effects of low dose ionizing radiation on human cognitive function in adult hood and in utero was estimated. Cognitive tests, telomere length and expression of genes regulating telomere function were studied in Chornobyl cleanup workers who were exposed to doses under 500 mSv (n = 326) and subjects exposed in utero during the first days after the accident Prypiat town (n = 104). The neuro cognitive assessment covered memory, attention, language, executive and visiospatial functions. In young adults after prenatal exposure a relation ship was analyzed between a cognitive function and radiation dose to foetus, brain and thyroid gland. Internal controls were used for both groups - the group of Chornobyl cleanup workers exposed in doses less than 20 mSv and an age- matched comparison group from radioactively contaminated areas for subjects exposed in utero . This study shows that cognitive deficit in humans at a late period after radiation exposure is influenced by dose, age at exposure and gene regulation of telomere function

  7. Transcriptome Profiling of Petal Abscission Zone and Functional Analysis of an Aux/IAA Family GeneRhIAA16Involved in Petal Shedding in Rose.

    Science.gov (United States)

    Gao, Yuerong; Liu, Chun; Li, Xiaodong; Xu, Haiqian; Liang, Yue; Ma, Nan; Fei, Zhangjun; Gao, Junping; Jiang, Cai-Zhong; Ma, Chao

    2016-01-01

    Roses are one of the most important cut flowers among ornamental plants. Rose flower longevity is largely dependent on the timing of petal shedding occurrence. To understand the molecular mechanism underlying petal abscission in rose, we performed transcriptome profiling of the petal abscission zone during petal shedding using Illumina technology. We identified a total of 2592 differentially transcribed genes (DTGs) during rose petal shedding. Gene ontology term enrichment and pathway analysis revealed that major biochemical pathways the DTGs were involved in included ethylene biosynthesis, starch degradation, superpathway of cytosolic glycolysis, pyruvate dehydrogenase and TCA cycle, photorespiration and the lactose degradation III pathway. This suggests that alterations in carbon metabolism are an important part of rose petal abscission. Among these DTGs, approximately 150 genes putatively encoding transcription factors were identified in rose abscission zone. These included zinc finger, WRKY, ERF, and Aux/IAA gene families, suggesting that petal abscission involves complex transcriptional reprogramming. Approximately 108 DTGs were related to hormone pathways, of which auxin and ethylene related DTGs were the largest groups including 52 and 41 genes, respectively. These also included 12 DTGs related to gibberellin and 6 DTGs in jasmonic acid pathway. Surprisingly, no DTGs involved in the biosynthesis/signaling of abscisic acid, cytokinin, brassinosteroid, and salicylic acid pathways were detected. Moreover, among DTGs related to auxin, we identified an Aux/IAA gene RhIAA16 that was up-regulated in response to petal shedding. Down-regulation of RhIAA16 by virus-induced gene silencing in rose promoted petal abscission, suggesting that RhIAA16 plays an important role in rose petal abscission.

  8. Transcriptome profiling of petal abscission zone and functional analysis of an Aux/IAA family gene RhIAA16 involved in petal shedding in rose

    Directory of Open Access Journals (Sweden)

    Yuerong Gao

    2016-09-01

    Full Text Available Roses are one of the most important cut flowers among ornamental plants. Rose flower longevity is largely dependent on the timing of petal shedding occurrence. To understand the molecular mechanism underlying petal abscission in rose, we performed transcriptome profiling of the petal abscission zone during petal shedding using Illumina technology. We identified a total of 2592 differentially transcribed genes (DTGs during rose petal shedding. Gene ontology term enrichment and pathway analysis revealed that major biochemical pathways the DTGs were involved in included ethylene biosynthesis, starch degradation, superpathway of cytosolic glycolysis, pyruvate dehydrogenase and TCA cycle, photorespiration and the lactose degradation III pathway. This suggests that alterations in carbon metabolism are an important part of rose petal abscission. Among these DTGs, approximately 150 genes putatively encoding transcription factors were identified in rose abscission zone. These included zinc finger, WRKY, ERF, and Aux/IAA gene families, suggesting that petal abscission involves complex transcriptional reprogramming. Approximately 108 DTGs were related to hormone pathways, of which auxin and ethylene related DTGs were the largest groups including 52 and 41 genes, respectively. These also included 12 DTGs related to gibberellin and 6 DTGs in jasmonic acid pathway. Surprisingly, no DTGs involved in the biosynthesis/signaling of abscisic acid, cytokinin, brassinosteroid, and salicylic acid pathways were detected. Moreover, among DTGs related to auxin, we identified an Aux/IAA gene RhIAA16 that was up-regulated in response to petal shedding. Down-regulation of RhIAA16 by virus-induced gene silencing in rose promoted petal abscission, suggesting that RhIAA16 plays an important role in rose petal abscission.

  9. Assessing the functional coherence of gene sets with metrics based on the Gene Ontology graph.

    Science.gov (United States)

    Richards, Adam J; Muller, Brian; Shotwell, Matthew; Cowart, L Ashley; Rohrer, Bäerbel; Lu, Xinghua

    2010-06-15

    The results of initial analyses for many high-throughput technologies commonly take the form of gene or protein sets, and one of the ensuing tasks is to evaluate the functional coherence of these sets. The study of gene set function most commonly makes use of controlled vocabulary in the form of ontology annotations. For a given gene set, the statistical significance of observing these annotations or 'enrichment' may be tested using a number of methods. Instead of testing for significance of individual terms, this study is concerned with the task of assessing the global functional coherence of gene sets, for which novel metrics and statistical methods have been devised. The metrics of this study are based on the topological properties of graphs comprised of genes and their Gene Ontology annotations. A novel aspect of these methods is that both the enrichment of annotations and the relationships among annotations are considered when determining the significance of functional coherence. We applied our methods to perform analyses on an existing database and on microarray experimental results. Here, we demonstrated that our approach is highly discriminative in terms of differentiating coherent gene sets from random ones and that it provides biologically sensible evaluations in microarray analysis. We further used examples to show the utility of graph visualization as a tool for studying the functional coherence of gene sets. The implementation is provided as a freely accessible web application at: http://projects.dbbe.musc.edu/gosteiner. Additionally, the source code written in the Python programming language, is available under the General Public License of the Free Software Foundation. Supplementary data are available at Bioinformatics online.

  10. The Use of Degenerate Primers in qPCR Analysis of Functional Genes Can Cause Dramatic Quantification Bias as Revealed by Investigation of nifH Primer Performance.

    Science.gov (United States)

    Gaby, John Christian; Buckley, Daniel H

    2017-10-01

    The measurement of functional gene abundance in diverse microbial communities often employs quantitative PCR (qPCR) with highly degenerate oligonucleotide primers. While degenerate PCR primers have been demonstrated to cause template-specific bias in PCR applications, the effect of such bias on qPCR has been less well explored. We used a set of diverse, full-length nifH gene standards to test the performance of several universal nifH primer sets in qPCR. We found significant template-specific bias in all but the PolF/PolR primer set. Template-specific bias caused more than 1000-fold mis-estimation of nifH gene copy number for three of the primer sets and one primer set resulted in more than 10,000-fold mis-estimation. Furthermore, such template-specific bias will cause qPCR estimates to vary in response to beta-diversity, thereby causing mis-estimation of changes in gene copy number. A reduction in bias was achieved by increasing the primer concentration. We conclude that degenerate primers should be evaluated across a range of templates, annealing temperatures, and primer concentrations to evaluate the potential for template-specific bias prior to their use in qPCR.

  11. A Genome-Wide mRNA Screen and Functional Analysis Reveal FOXO3 as a Candidate Gene for Chicken Growth

    Science.gov (United States)

    Chen, Biao; Xu, Jiguo; He, Xiaomei; Xu, Haiping; Li, Guihuan; Du, Hongli; Nie, Qinghua; Zhang, Xiquan

    2015-01-01

    Chicken growth performance provides direct economic benefits to the poultry industry. However, the underlying genetic mechanisms are unclear. The objective of this study was to identify candidate genes associated with chicken growth and investigate their potential mechanisms. We used RNA-Seq to study the breast muscle transcriptome in high and low tails of Recessive White Rock (WRRh, WRRl) and Xinghua chickens (XHh, XHl). A total of 60, 23, 153 and 359 differentially expressed genes were detected in WRRh vs. WRRl, XHh vs. XHl, WRRh vs. XHh and WRRl vs. XHl, respectively. GO, KEGG pathway and gene network analyses showed that CEBPB, FBXO32, FOXO3 and MYOD1 played key roles in growth. The functions of FBXO32 and FOXO3 were validated. FBXO32 was predominantly expressed in leg muscle, heart and breast muscle. After decreased FBXO32 expression, growth-related genes such as PDK4, IGF2R and IGF2BP3 were significantly down-regulated (P chickens with normal body weight (P chicken growth. Our observations provide new clues to understand the molecular basis of chicken growth. PMID:26366565

  12. Establishment of Relational Model of Congenital Heart Disease Markers and GO Functional Analysis of the Association between Its Serum Markers and Susceptibility Genes

    OpenAIRE

    Liu, Min; Zhao, Luosha; Yuan, Jiaying

    2016-01-01

    Purpose. The purpose of present study was to construct the best screening model of congenital heart disease serum markers and to provide reference for further prevention and treatment of the disease. Methods. Documents from 2006 to 2014 were collected and meta-analysis was used for screening susceptibility genes and serum markers closely related to the diagnosis of congenital heart disease. Data of serum markers were extracted from 80 congenital heart disease patients and 80 healthy controls,...

  13. Family expansion and gene rearrangements contributed to the functional specialization of PRDM genes in vertebrates

    Directory of Open Access Journals (Sweden)

    Alcalay Myriam

    2007-10-01

    Full Text Available Abstract Background Progressive diversification of paralogs after gene expansion is essential to increase their functional specialization. However, mode and tempo of this divergence remain mostly unclear. Here we report the comparative analysis of PRDM genes, a family of putative transcriptional regulators involved in human tumorigenesis. Results Our analysis assessed that the PRDM genes originated in metazoans, expanded in vertebrates and further duplicated in primates. We experimentally showed that fast-evolving paralogs are poorly expressed, and that the most recent duplicates, such as primate-specific PRDM7, acquire tissue-specificity. PRDM7 underwent major structural rearrangements that decreased the number of encoded Zn-Fingers and modified gene splicing. Through internal duplication and activation of a non-canonical splice site (GC-AG, PRDM7 can acquire a novel intron. We also detected an alternative isoform that can retain the intron in the mature transcript and that is predominantly expressed in human melanocytes. Conclusion Our findings show that (a molecular evolution of paralogs correlates with their expression pattern; (b gene diversification is obtained through massive genomic rearrangements; and (c splicing modification contributes to the functional specialization of novel genes.

  14. Drosha regulates gene expression independently of RNA cleavage function

    DEFF Research Database (Denmark)

    Gromak, Natalia; Dienstbier, Martin; Macias, Sara

    2013-01-01

    Drosha is the main RNase III-like enzyme involved in the process of microRNA (miRNA) biogenesis in the nucleus. Using whole-genome ChIP-on-chip analysis, we demonstrate that, in addition to miRNA sequences, Drosha specifically binds promoter-proximal regions of many human genes in a transcription......-terminal protein-interaction domain, which associates with the RNA-binding protein CBP80 and RNA Polymerase II. Consequently, we uncover a previously unsuspected RNA cleavage-independent function of Drosha in the regulation of human gene expression....

  15. Agrobacterium rhizogenes-mediated transformation of Prunus as an alternative for gene functional analysis in hairy-roots and composite plants.

    Science.gov (United States)

    Bosselut, Nathalie; Van Ghelder, Cyril; Claverie, Michel; Voisin, Roger; Onesto, Jean-Paul; Rosso, Marie-Noëlle; Esmenjaud, Daniel

    2011-07-01

    Resistant rootstocks offer an alternative to pesticides for the control of soil pests. In Prunus spp., resistance loci to root-knot nematodes (RKN) have been mapped and a transformation method is needed to validate candidate genes. Our efforts have focused on the generation of transformed hairy-roots and composite plants appropriate for nematode infection assays. An efficient and reliable method using the A4R strain of Agrobacterium rhizogenes for the transformation of Prunus roots with an Egfp reporter gene is given. The rooting efficiency, depending on the genotypes, was maximal for the interspecific hybrid 253 (Myrobalan plum × almond-peach), susceptible to RKN, that was retained for subsequent studies. From the agro-inoculated cuttings, 72% produced roots, mainly at the basal section of the stem. Transformed roots were screened by microscope detection of Egfp fluorescence and molecular analyses of the integration of the transgene. The absence of residual agrobacteria in the plants was checked by the non-amplification of the chromosomal gene chvH. Egfp was expressed visually in 76% of the rooted plants. Isolated hairy roots in Petri dishes and composite plants (transformed roots and non-transformed aerial part) in soil containers were inoculated with the RKN Meloidogyne incognita. In both cases, root transformation did not affect the ability of the nematodes to develop in the root tissues. Our results showed that isolated hairy-roots can be used to validate candidate genes and the conditions in which composite plants offer a complementary system for studying the function of root genes in physiological conditions of whole plants are discussed.

  16. De novo transcriptome assembly, functional annotation and differential gene expression analysis of juvenile and adult E. fetida, a model oligochaete used in ecotoxicological studies

    Directory of Open Access Journals (Sweden)

    Michelle Thunders

    Full Text Available Abstract Background Earthworms are sensitive to toxic chemicals present in the soil and so are useful indicator organisms for soil health. Eisenia fetida are commonly used in ecotoxicological studies; therefore the assembly of a baseline transcriptome is important for subsequent analyses exploring the impact of toxin exposure on genome wide gene expression. Results This paper reports on the de novo transcriptome assembly of E. fetida using Trinity, a freely available software tool. Trinotate was used to carry out functional annotation of the Trinity generated transcriptome file and the transdecoder generated peptide sequence file along with BLASTX, BLASTP and HMMER searches and were loaded into a Sqlite3 database. To identify differentially expressed transcripts; each of the original sequence files were aligned to the de novo assembled transcriptome using Bowtie and then RSEM was used to estimate expression values based on the alignment. EdgeR was used to calculate differential expression between the two conditions, with an FDR corrected P value cut off of 0.001, this returned six significantly differentially expressed genes. Initial BLASTX hits of these putative genes included hits with annelid ferritin and lysozyme proteins, as well as fungal NADH cytochrome b5 reductase and senescence associated proteins. At a cut off of P = 0.01 there were a further 26 differentially expressed genes. Conclusion These data have been made publicly available, and to our knowledge represent the most comprehensive available transcriptome for E. fetida assembled from RNA sequencing data. This provides important groundwork for subsequent ecotoxicogenomic studies exploring the impact of the environment on global gene expression in E. fetida and other earthworm species.

  17. Comparative analysis of the time-dependent functional and molecular changes in spinal cord degeneration induced by the G93A SOD1 gene mutation and by mechanical compression

    Directory of Open Access Journals (Sweden)

    Priestley John V

    2008-10-01

    Full Text Available Abstract Background Mutations of the superoxide dismutase 1 (SOD1 gene are linked to amyotrophic lateral sclerosis (ALS, an invariably fatal neurological condition involving cortico-spinal degeneration. Mechanical injury can also determine spinal cord degeneration and act as a risk factor for the development of ALS. Results We have performed a comparative ontological analysis of the gene expression profiles of thoracic cord samples from rats carrying the G93A SOD1 gene mutation and from wild-type littermates subjected to mechanical compression of the spinal cord. Common molecular responses and gene expression changes unique to each experimental paradigm were evaluated against the functional development of each animal model. Gene Ontology categories crucial to protein folding, extracellular matrix and axonal formation underwent early activation in both experimental paradigms, but decreased significantly in the spinal cord from animals recovering from injury after 7 days and from the G93A SOD1 mutant rats at end-stage disease. Functional improvement after compression coincided with a massive up-regulation of growth-promoting gene categories including factors involved in angiogenesis and transcription, overcoming the more transitory surge of pro-apoptotic components and cell-cycle genes. The cord from G93A SOD1 mutants showed persistent over-expression of apoptotic and stress molecules with fewer neurorestorative signals, while functional deterioration was ongoing. Conclusion this study illustrates how cytoskeletal protein metabolism is central to trauma and genetically-induced spinal cord degeneration and elucidates the main molecular events accompanying functional recovery or decline in two different animal models of spinal cord degeneration.

  18. Structure-function analysis of RBP-J-interacting and tubulin-associated (RITA) reveals regions critical for repression of Notch target genes.

    Science.gov (United States)

    Tabaja, Nassif; Yuan, Zhenyu; Oswald, Franz; Kovall, Rhett A

    2017-06-23

    The Notch pathway is a cell-to-cell signaling mechanism that is essential for tissue development and maintenance, and aberrant Notch signaling has been implicated in various cancers, congenital defects, and cardiovascular diseases. Notch signaling activates the expression of target genes, which are regulated by the transcription factor CSL (CBF1/RBP-J, Su(H), Lag-1). CSL interacts with both transcriptional corepressor and coactivator proteins, functioning as both a repressor and activator, respectively. Although Notch activation complexes are relatively well understood at the structural level, less is known about how CSL interacts with corepressors. Recently, a new RBP-J (mammalian CSL ortholog)-interacting protein termed RITA has been identified and shown to export RBP-J out of the nucleus, thereby leading to the down-regulation of Notch target gene expression. However, the molecular details of RBP-J/RITA interactions are unclear. Here, using a combination of biochemical/cellular, structural, and biophysical techniques, we demonstrate that endogenous RBP-J and RITA proteins interact in cells, map the binding regions necessary for RBP-J·RITA complex formation, and determine the X-ray structure of the RBP-J·RITA complex bound to DNA. To validate the structure and glean more insights into function, we tested structure-based RBP-J and RITA mutants with biochemical/cellular assays and isothermal titration calorimetry. Whereas our structural and biophysical studies demonstrate that RITA binds RBP-J similarly to the RAM (RBP-J-associated molecule) domain of Notch, our biochemical and cellular assays suggest that RITA interacts with additional regions in RBP-J. Taken together, these results provide molecular insights into the mechanism of RITA-mediated regulation of Notch signaling, contributing to our understanding of how CSL functions as a transcriptional repressor of Notch target genes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Genome-Wide Detection and Analysis of Multifunctional Genes

    Science.gov (United States)

    Pritykin, Yuri; Ghersi, Dario; Singh, Mona

    2015-01-01

    Many genes can play a role in multiple biological processes or molecular functions. Identifying multifunctional genes at the genome-wide level and studying their properties can shed light upon the complexity of molecular events that underpin cellular functioning, thereby leading to a better understanding of the functional landscape of the cell. However, to date, genome-wide analysis of multifunctional genes (and the proteins they encode) has been limited. Here we introduce a computational approach that uses known functional annotations to extract genes playing a role in at least two distinct biological processes. We leverage functional genomics data sets for three organisms—H. sapiens, D. melanogaster, and S. cerevisiae—and show that, as compared to other annotated genes, genes involved in multiple biological processes possess distinct physicochemical properties, are more broadly expressed, tend to be more central in protein interaction networks, tend to be more evolutionarily conserved, and are more likely to be essential. We also find that multifunctional genes are significantly more likely to be involved in human disorders. These same features also hold when multifunctionality is defined with respect to molecular functions instead of biological processes. Our analysis uncovers key features about multifunctional genes, and is a step towards a better genome-wide understanding of gene multifunctionality. PMID:26436655

  20. Functional conservation and divergence of four ginger AP1/AGL9 MADS-box genes revealed by analysis of their expression and protein-protein interaction, and ectopic expression of AhFUL gene in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Xiumei Li

    Full Text Available Alpinia genus are known generally as ginger-lilies for showy flowers in the ginger family, Zingiberaceae, and their floral morphology diverges from typical monocotyledon flowers. However, little is known about the functions of ginger MADS-box genes in floral identity. In this study, four AP1/AGL9 MADS-box genes were cloned from Alpinia hainanensis, and protein-protein interactions (PPIs and roles of the four genes in floral homeotic conversion and in floral evolution are surveyed for the first time. AhFUL is clustered to the AP1 lineage, AhSEP4 and AhSEP3b to the SEP lineage, and AhAGL6-like to the AGL6 lineage. The four genes showed conserved and divergent expression patterns, and their encoded proteins were localized in the nucleus. Seven combinations of PPI (AhFUL-AhSEP4, AhFUL-AhAGL6-like, AhFUL-AhSEP3b, AhSEP4-AhAGL6-like, AhSEP4-AhSEP3b, AhAGL6-like-AhSEP3b, and AhSEP3b-AhSEP3b were detected, and the PPI patterns in the AP1/AGL9 lineage revealed that five of the 10 possible combinations are conserved and three are variable, while conclusions cannot yet be made regarding the other two. Ectopic expression of AhFUL in Arabidopsis thaliana led to early flowering and floral organ homeotic conversion to sepal-like or leaf-like. Therefore, we conclude that the four A. hainanensis AP1/AGL9 genes show functional conservation and divergence in the floral identity from other MADS-box genes.

  1. Genome-wide functional analysis of CREB/long-term memory-dependent transcription reveals distinct basal and memory gene expression programs.

    Science.gov (United States)

    Lakhina, Vanisha; Arey, Rachel N; Kaletsky, Rachel; Kauffman, Amanda; Stein, Geneva; Keyes, William; Xu, Daniel; Murphy, Coleen T

    2015-01-21

    Induced CREB activity is a hallmark of long-term memory, but the full repertoire of CREB transcriptional targets required specifically for memory is not known in any system. To obtain a more complete picture of the mechanisms involved in memory, we combined memory training with genome-wide transcriptional analysis of C. elegans CREB mutants. This approach identified 757 significant CREB/memory-induced targets and confirmed the involvement of known memory genes from other organisms, but also suggested new mechanisms and novel components that may be conserved through mammals. CREB mediates distinct basal and memory transcriptional programs at least partially through spatial restriction of CREB activity: basal targets are regulated primarily in nonneuronal tissues, while memory targets are enriched for neuronal expression, emanating from CREB activity in AIM neurons. This suite of novel memory-associated genes will provide a platform for the discovery of orthologous mammalian long-term memory components. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. GIFtS: annotation landscape analysis with GeneCards

    Directory of Open Access Journals (Sweden)

    Dalah Irina

    2009-10-01

    Full Text Available Abstract Background Gene annotation is a pivotal component in computational genomics, encompassing prediction of gene function, expression analysis, and sequence scrutiny. Hence, quantitative measures of the annotation landscape constitute a pertinent bioinformatics tool. GeneCards® is a gene-centric compendium of rich annotative information for over 50,000 human gene entries, building upon 68 data sources, including Gene Ontology (GO, pathways, interactions, phenotypes, publications and many more. Results We present the GeneCards Inferred Functionality Score (GIFtS which allows a quantitative assessment of a gene's annotation status, by exploiting the unique wealth and diversity of GeneCards information. The GIFtS tool, linked from the GeneCards home page, facilitates browsing the human genome by searching for the annotation level of a specified gene, retrieving a list of genes within a specified range of GIFtS value, obtaining random genes with a specific GIFtS value, and experimenting with the GIFtS weighting algorithm for a variety of annotation categories. The bimodal shape of the GIFtS distribution suggests a division of the human gene repertoire into two main groups: the high-GIFtS peak consists almost entirely of protein-coding genes; the low-GIFtS peak consists of genes from all of the categories. Cluster analysis of GIFtS annotation vectors provides the classification of gene groups by detailed positioning in the annotation arena. GIFtS also provide measures which enable the evaluation of the databases that serve as GeneCards sources. An inverse correlation is found (for GIFtS>25 between the number of genes annotated by each source, and the average GIFtS value of genes associated with that source. Three typical source prototypes are revealed by their GIFtS distribution: genome-wide sources, sources comprising mainly highly annotated genes, and sources comprising mainly poorly annotated genes. The degree of accumulated knowledge for a

  3. A Genome-Wide mRNA Screen and Functional Analysis Reveal FOXO3 as a Candidate Gene for Chicken Growth.

    Directory of Open Access Journals (Sweden)

    Biao Chen

    Full Text Available Chicken growth performance provides direct economic benefits to the poultry industry. However, the underlying genetic mechanisms are unclear. The objective of this study was to identify candidate genes associated with chicken growth and investigate their potential mechanisms. We used RNA-Seq to study the breast muscle transcriptome in high and low tails of Recessive White Rock (WRRh, WRRl and Xinghua chickens (XHh, XHl. A total of 60, 23, 153 and 359 differentially expressed genes were detected in WRRh vs. WRRl, XHh vs. XHl, WRRh vs. XHh and WRRl vs. XHl, respectively. GO, KEGG pathway and gene network analyses showed that CEBPB, FBXO32, FOXO3 and MYOD1 played key roles in growth. The functions of FBXO32 and FOXO3 were validated. FBXO32 was predominantly expressed in leg muscle, heart and breast muscle. After decreased FBXO32 expression, growth-related genes such as PDK4, IGF2R and IGF2BP3 were significantly down-regulated (P < 0.05. FBXO32 was significantly (P < 0.05 associated with carcass and meat quality traits, but not growth traits. FOXO3 was predominantly expressed in breast and leg muscle. In both of these tissues, the FOXO3 mRNA level in XH was significantly higher than that in WRR chickens with normal body weight (P < 0.05. In DF-1 cells, siRNA knockdown of FOXO3 significantly (P < 0.01 inhibited the MYOD expression and significantly up-regulated (P < 0.01 or P < 0.05 the expression of growth-related genes including CEBPB, FBXO32, GH, GHR, IGF1R, IGF2R, IGF2BP1, IGF2BP3, INSR, PDK1 and PDK4. Moreover, 18 SNPs were identified in FOXO3. G66716193A was significantly (P < 0.05 associated with growth traits. The sites C66716002T, C66716195T and A66716179G were significantly (P < 0.05 associated with growth or carcass traits. These results demonstrated that FOXO3 is a candidate gene influencing chicken growth. Our observations provide new clues to understand the molecular basis of chicken growth.

  4. miRNA-mediated functional changes through co-regulating function related genes.

    Directory of Open Access Journals (Sweden)

    Jie He

    Full Text Available BACKGROUND: MicroRNAs play important roles in various biological processes involving fairly complex mechanism. Analysis of genome-wide miRNA microarray demonstrate that a single miRNA can regulate hundreds of genes, but the regulative extent on most individual genes is surprisingly mild so that it is difficult to understand how a miRNA provokes detectable functional changes with such mild regulation. RESULTS: To explore the internal mechanism of miRNA-mediated regulation, we re-analyzed the data collected from genome-wide miRNA microarray with bioinformatics assay, and found that the transfection of miR-181b and miR-34a in Hela and HCT-116 tumor cells regulated large numbers of genes, among which, the genes related to cell growth and cell death demonstrated high Enrichment scores, suggesting that these miRNAs may be important in cell growth and cell death. MiR-181b induced changes in protein expression of most genes that were seemingly related to enhancing cell growth and decreasing cell death, while miR-34a mediated contrary changes of gene expression. Cell growth assays further confirmed this finding. In further study on miR-20b-mediated osteogenesis in hMSCs, miR-20b was found to enhance osteogenesis by activating BMPs/Runx2 signaling pathway in several stages by co-repressing of PPARγ, Bambi and Crim1. CONCLUSIONS: With its multi-target characteristics, miR-181b, miR-34a and miR-20b provoked detectable functional changes by co-regulating functionally-related gene groups or several genes in the same signaling pathway, and thus mild regulation from individual miRNA targeting genes could have contributed to an additive effect. This might also be one of the modes of miRNA-mediated gene regulation.

  5. Molecular analysis of the diversity of sulfate-reducing and sulfur-oxidizing prokaryotes in the environment, using aprA as functional marker gene.

    Science.gov (United States)

    Meyer, Birte; Kuever, Jan

    2007-12-01

    The dissimilatory adenosine-5'-phosphosulfate reductase is a key enzyme of the microbial sulfate reduction and sulfur oxidation processes. Because the alpha- and beta-subunit-encoding genes, aprBA, are highly conserved among sulfate-reducing and sulfur-oxidizing prokaryotes, they are most suitable for molecular profiling of the microbial community structure of the sulfur cycle in environment. In this study, a new aprA gene-targeting assay using a combination of PCR and denaturing gradient gel electrophoresis is presented. The screening of sulfate-reducing and sulfur-oxidizing reference strains as well as the analyses of environmental DNA from diverse habitats (e.g., microbial mats, invertebrate tissue, marine and estuarine sediments, and filtered hydrothermal water) by the new primer pair revealed an improved microbial diversity coverage and less-pronounced template-to-PCR product bias in direct comparison to those of the previously published primer set (B. Deplancke, K. R. Hristova, H. A. Oakley, V. J. McCracken, R. Aminov, R. I. Mackie, and H. R. Gaskins, Appl. Environ. Microbiol. 66:2166-2174, 2000). The concomitant molecular detection of sulfate-reducing and sulfur-oxidizing prokaryotes was confirmed. The new assay was applied in comparison with the 16S rRNA gene-based analysis to investigate the microbial diversity of the sulfur cycle in sediment, seawater, and manganese crust samples from four study sites in the area of the Lesser Antilles volcanic arc, Caribbean Sea (Caribflux project). The aprA gene-based approach revealed putative sulfur-oxidizing Alphaproteobacteria of chemolithoheterotrophic lifestyle to have been abundant in the nonhydrothermal sediment and water column. In contrast, the sulfur-based microbial community that inhabited the surface of the volcanic manganese crust was more complex, consisting predominantly of putative chemolithoautotrophic sulfur oxidizers of the Betaproteobacteria and Gammaproteobacteria.

  6. Microarray analysis of the gene expression profile in triethylene ...

    African Journals Online (AJOL)

    Microarray analysis of the gene expression profile in triethylene glycol dimethacrylate-treated human dental pulp cells. ... Conclusions: Our results suggest that TEGDMA can change the many functions of hDPCs through large changes in gene expression levels and complex interactions with different signaling pathways.

  7. Genome-wide Analysis of Gene Regulation

    DEFF Research Database (Denmark)

    Chen, Yun

    gene regulation will disrupt the cell’s fundamental processes, which in turn can cause disease. Hence, understanding gene regulation is essential for deciphering the code of life. Along with the development of high throughput sequencing (HTS) technology and the subsequent large-scale data analysis...... and temporal alterations of histone modifications (Papers I and II). Coupling the data with machine learning approaches, we established a prediction framework to assess the most informative histone marks as well as their most influential nucleosome positions in predicting the promoter usages. (Papers I......). Focusing on the same promoter across the cell cycle, we observed that histone modification undergoes very distinct temporal lterations compared to their regulatory functions spatially at different promoters (Papers II). By aggregating different HTS methods including CAGE, 3’end-seq, GRO-seq, RNAPII Ch...

  8. Identification of Human HK Genes and Gene Expression Regulation Study in Cancer from Transcriptomics Data Analysis

    Science.gov (United States)

    Zhang, Zhang; Liu, Jingxing; Wu, Jiayan; Yu, Jun

    2013-01-01

    The regulation of gene expression is essential for eukaryotes, as it drives the processes of cellular differentiation and morphogenesis, leading to the creation of different cell types in multicellular organisms. RNA-Sequencing (RNA-Seq) provides researchers with a powerful toolbox for characterization and quantification of transcriptome. Many different human tissue/cell transcriptome datasets coming from RNA-Seq technology are available on public data resource. The fundamental issue here is how to develop an effective analysis method to estimate expression pattern similarities between different tumor tissues and their corresponding normal tissues. We define the gene expression pattern from three directions: 1) expression breadth, which reflects gene expression on/off status, and mainly concerns ubiquitously expressed genes; 2) low/high or constant/variable expression genes, based on gene expression level and variation; and 3) the regulation of gene expression at the gene structure level. The cluster analysis indicates that gene expression pattern is higher related to physiological condition rather than tissue spatial distance. Two sets of human housekeeping (HK) genes are defined according to cell/tissue types, respectively. To characterize the gene expression pattern in gene expression level and variation, we firstly apply improved K-means algorithm and a gene expression variance model. We find that cancer-associated HK genes (a HK gene is specific in cancer group, while not in normal group) are expressed higher and more variable in cancer condition than in normal condition. Cancer-associated HK genes prefer to AT-rich genes, and they are enriched in cell cycle regulation related functions and constitute some cancer signatures. The expression of large genes is also avoided in cancer group. These studies will help us understand which cell type-specific patterns of gene expression differ among different cell types, and particularly for cancer. PMID:23382867

  9. Function Point Analysis Depot

    Science.gov (United States)

    Muniz, R.; Martinez, El; Szafran, J.; Dalton, A.

    2011-01-01

    The Function Point Analysis (FPA) Depot is a web application originally designed by one of the NE-C3 branch's engineers, Jamie Szafran, and created specifically for the Software Development team of the Launch Control Systems (LCS) project. The application consists of evaluating the work of each developer to be able to get a real estimate of the hours that is going to be assigned to a specific task of development. The Architect Team had made design change requests for the depot to change the schema of the application's information; that information, changed in the database, needed to be changed in the graphical user interface (GUI) (written in Ruby on Rails (RoR and the web service/server side in Java to match the database changes. These changes were made by two interns from NE-C, Ricardo Muniz from NE-C3, who made all the schema changes for the GUI in RoR and Edwin Martinez, from NE-C2, who made all the changes in the Java side.

  10. Functional and evolutionary correlates of gene constellations in the Drosophila melanogaster genome that deviate from the stereotypical gene architecture.

    Science.gov (United States)

    Li, Shuwei; Shih, Ching-Hua; Kohn, Michael H

    2010-05-24

    The biological dimensions of genes are manifold. These include genomic properties, (e.g., X/autosomal linkage, recombination) and functional properties (e.g., expression level, tissue specificity). Multiple properties, each generally of subtle influence individually, may affect the evolution of genes or merely be (auto-)correlates. Results of multidimensional analyses may reveal the relative importance of these properties on the evolution of genes, and therefore help evaluate whether these properties should be considered during analyses. While numerous properties are now considered during studies, most work still assumes the stereotypical solitary gene as commonly depicted in textbooks. Here, we investigate the Drosophila melanogaster genome to determine whether deviations from the stereotypical gene architecture correlate with other properties of genes. Deviations from the stereotypical gene architecture were classified as the following gene constellations: Overlapping genes were defined as those that overlap in the 5-prime, exonic, or intronic regions. Chromatin co-clustering genes were defined as genes that co-clustered within 20 kb of transcriptional territories. If this scheme is applied the stereotypical gene emerges as a rare occurrence (7.5%), slightly varied schemes yielded between approximately 1%-50%. Moreover, when following our scheme, paired-overlapping genes and chromatin co-clustering genes accounted for 50.1 and 42.4% of the genes analyzed, respectively. Gene constellation was a correlate of a number of functional and evolutionary properties of genes, but its statistical effect was approximately 1-2 orders of magnitude lower than the effects of recombination, chromosome linkage and protein function. Analysis of datasets on male reproductive proteins showed these were biased in their representation of gene constellations and evolutionary rate Ka/Ks estimates, but these biases did not overwhelm the biologically meaningful observation of high

  11. Functional and evolutionary correlates of gene constellations in the Drosophila melanogaster genome that deviate from the stereotypical gene architecture

    Directory of Open Access Journals (Sweden)

    Kohn Michael H

    2010-05-01

    Full Text Available Abstract Background The biological dimensions of genes are manifold. These include genomic properties, (e.g., X/autosomal linkage, recombination and functional properties (e.g., expression level, tissue specificity. Multiple properties, each generally of subtle influence individually, may affect the evolution of genes or merely be (auto-correlates. Results of multidimensional analyses may reveal the relative importance of these properties on the evolution of genes, and therefore help evaluate whether these properties should be considered during analyses. While numerous properties are now considered during studies, most work still assumes the stereotypical solitary gene as commonly depicted in textbooks. Here, we investigate the Drosophila melanogaster genome to determine whether deviations from the stereotypical gene architecture correlate with other properties of genes. Results Deviations from the stereotypical gene architecture were classified as the following gene constellations: Overlapping genes were defined as those that overlap in the 5-prime, exonic, or intronic regions. Chromatin co-clustering genes were defined as genes that co-clustered within 20 kb of transcriptional territories. If this scheme is applied the stereotypical gene emerges as a rare occurrence (7.5%, slightly varied schemes yielded between ~1%-50%. Moreover, when following our scheme, paired-overlapping genes and chromatin co-clustering genes accounted for 50.1 and 42.4% of the genes analyzed, respectively. Gene constellation was a correlate of a number of functional and evolutionary properties of genes, but its statistical effect was ~1-2 orders of magnitude lower than the effects of recombination, chromosome linkage and protein function. Analysis of datasets on male reproductive proteins showed these were biased in their representation of gene constellations and evolutionary rate Ka/Ks estimates, but these biases did not overwhelm the biologically meaningful

  12. Strange functions in real analysis

    CERN Document Server

    Kharazishvili, AB

    2005-01-01

    Weierstrass and Blancmange nowhere differentiable functions, Lebesgue integrable functions with everywhere divergent Fourier series, and various nonintegrable Lebesgue measurable functions. While dubbed strange or "pathological," these functions are ubiquitous throughout mathematics and play an important role in analysis, not only as counterexamples of seemingly true and natural statements, but also to stimulate and inspire the further development of real analysis.Strange Functions in Real Analysis explores a number of important examples and constructions of pathological functions. After introducing the basic concepts, the author begins with Cantor and Peano-type functions, then moves to functions whose constructions require essentially noneffective methods. These include functions without the Baire property, functions associated with a Hamel basis of the real line, and Sierpinski-Zygmund functions that are discontinuous on each subset of the real line having the cardinality continuum. Finally, he considers e...

  13. Isolation of the endosperm-specific LPAAT gene promoter from coconut (Cocos nucifera L.) and its functional analysis in transgenic rice plants.

    Science.gov (United States)

    Xu, Li; Ye, Rongjian; Zheng, Yusheng; Wang, Zhekui; Zhou, Peng; Lin, Yongjun; Li, Dongdong

    2010-09-01

    As one of the key tropical crops, coconut (Cocos nucifera L.) is a member of the monocotyledonous family Aracaceae (Palmaceae). In this study, we amplified the upstream region of an endosperm-specific expression gene, Lysophosphatidyl acyltransferase (LPAAT), from the coconut genomic DNA by chromosome walking. In this sequence, we found several types of promoter-related elements including TATA-box, CAAT-box and Skn1-motif. In order to further examine its function, three different 5'-deletion fragments were inserted into pBI101.3, a plant expression vector harboring the LPAAT upstream sequence, leading to pBI101.3-L1, pBI101.3-L2 and pBI101.3-L3, respectively. We obtained transgenic plants of rice by Agrobacterium-mediated callus transformation and plant regeneration and detected the expression of gus gene by histochemical staining and fluorometric determination. We found that gus gene driven by the three deletion fragments was specifically expressed in the endosperm of rice seeds, but not in the empty vector of pBI101.3 and other tissues. The highest expression level of GUS was at 15 DAF in pBI101.3-L3 and pBI101.3-L2 transgenic lines, while the same level was detected at 10 DAF in pBI101.3-L1. The expression driven by the whole fragment was up to 1.76- and 2.8-fold higher than those driven by the -817 bp and -453 bp upstream fragments, and 10.7-fold higher than that driven by the vector without the promoter. Taken together, our results strongly suggest that these promoter fragments from coconut have a significant potential in genetically improving endosperm in main crops.

  14. Expression and functional analysis of two genes encoding transcription factors, VpWRKY1 and VpWRKY2, isolated from Chinese wild Vitis pseudoreticulata.

    Science.gov (United States)

    Li, Huie; Xu, Yan; Xiao, Yu; Zhu, Ziguo; Xie, Xiaoqing; Zhao, Heqing; Wang, Yuejin

    2010-11-01

    In this study, two WRKY genes were isolated from Erysiphe necator-resistant Chinese wild Vitis pseudoreticulata W. T. Wang 'Baihe-35-1', and designated as VpWRKY1 (GenBank accession no. GQ884198) and VpWRKY2 (GenBank accession no. GU565706). Nuclear localization of the two proteins was demonstrated in onion epidermal cells, while trans-activation function was confirmed in the leaves of 'Baihe-35-1'. Expression of VpWRKY1 and VpWRKY2 was induced rapidly by salicylic acid treatment in 'Baihe-35-1'. Expression of VpWRKY1 and VpWRKY2 was also induced rapidly by E. necator infection in 11 grapevine genotypes; the maximum induction of VpWRKY1 was greater in E. necator-resistant grapevine genotypes than in susceptible ones post E. necator inoculation. Furthermore, ectopic expression of VpWRKY1 or VpWRKY2 in Arabidopsis enhanced resistance to powdery mildew Erysiphe cichoracearum, and enhanced salt tolerance of transgenic plants. VpWRKY2 also enhanced cold tolerance of transgenic plants. In addition, the two proteins were shown to regulate the expression of some defense marker genes in Arabidopsis and grapevine. The data suggest that VpWRKY1 and VpWRKY2 may underlie the resistance in transgenic grapevine to E. necator and tolerance to salt and cold stresses.

  15. Iron homeostasis in Arabidopsis thaliana: transcriptomic analyses reveal novel FIT-regulated genes, iron deficiency marker genes and functional gene networks.

    Science.gov (United States)

    Mai, Hans-Jörg; Pateyron, Stéphanie; Bauer, Petra

    2016-10-03

    FIT (FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR) is the central regulator of iron uptake in Arabidopsis thaliana roots. We performed transcriptome analyses of six day-old seedlings and roots of six week-old plants using wild type, a fit knock-out mutant and a FIT over-expression line grown under iron-sufficient or iron-deficient conditions. We compared genes regulated in a FIT-dependent manner depending on the developmental stage of the plants. We assembled a high likelihood dataset which we used to perform co-expression and functional analysis of the most stably iron deficiency-induced genes. 448 genes were found FIT-regulated. Out of these, 34 genes were robustly FIT-regulated in root and seedling samples and included 13 novel FIT-dependent genes. Three hundred thirty-one genes showed differential regulation in response to the presence and absence of FIT only in the root samples, while this was the case for 83 genes in the seedling samples. We assembled a virtual dataset of iron-regulated genes based on a total of 14 transcriptomic analyses of iron-deficient and iron-sufficient wild-type plants to pinpoint the best marker genes for iron deficiency and analyzed this dataset in depth. Co-expression analysis of this dataset revealed 13 distinct regulons part of which predominantly contained functionally related genes. We could enlarge the list of FIT-dependent genes and discriminate between genes that are robustly FIT-regulated in roots and seedlings or only in one of those. FIT-regulated genes were mostly induced, few of them were repressed by FIT. With the analysis of a virtual dataset we could filter out and pinpoint new candidates among the most reliable marker genes for iron deficiency. Moreover, co-expression and functional analysis of this virtual dataset revealed iron deficiency-induced and functionally distinct regulons.

  16. Gene structure, cDNA characterization and RNAi-based functional analysis of a myeloid differentiation factor 88 homolog in Tenebrio molitor larvae exposed to Staphylococcus aureus infection.

    Science.gov (United States)

    Patnaik, Bharat Bhusan; Patnaik, Hongray Howrelia; Seo, Gi Won; Jo, Yong Hun; Lee, Yong Seok; Lee, Bok Luel; Han, Yeon Soo

    2014-10-01

    Myeloid differentiation factor 88 (MyD88), an intracellular adaptor protein involved in Toll/Toll-like receptor (TLR) signal processing, triggers activation of nuclear factor-kappaB (NF-κB) transcription factors. In the present study, we analyzed the gene structure and biological function of MyD88 in a coleopteran insect, Tenebrio molitor (TmMyD88). The TmMyD88 gene was 1380 bp in length and consisted of five exons and four introns. The 5'-flanking sequence revealed several putative transcription factor binding sites, such as STAT-4, AP-1, cJun, cfos, NF-1 and many heat shock factor binding elements. The cDNA contained a typical death domain, a conservative Toll-like interleukin-1 receptor (TIR) domain, and a C-terminal extension (CTE). The TmMyD88 TIR domain showed three significantly conserved motifs for interacting with the TIR domain of TLRs. TmMyD88 was grouped within the invertebrate cluster of the phylogenetic tree and shared 75% sequence identity with the TIR domain of Tribolium castaneum MyD88. Homology modeling of the TmMyD88 TIR domain revealed five parallel β-strands surrounded by five α-helices that adopted loop conformations to function as an adaptor. TmMyD88 expression was upregulated 7.3- and 4.79-fold after 12 and 6h, respectively, of challenge with Staphylococcus aureus and fungal β-1,3 glucan. Silencing of the TmMyD88 transcript by RNA interference led to reduced resistance of the host to infection by S. aureus. These results indicate that TmMyD88 is required for survival against Staphylococcus infection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Bioinformatics tools for predicting GPCR gene functions.

    Science.gov (United States)

    Suwa, Makiko

    2014-01-01

    The automatic classification of GPCRs by bioinformatics methodology can provide functional information for new GPCRs in the whole 'GPCR proteome' and this information is important for the development of novel drugs. Since GPCR proteome is classified hierarchically, general ways for GPCR function prediction are based on hierarchical classification. Various computational tools have been developed to predict GPCR functions; those tools use not simple sequence searches but more powerful methods, such as alignment-free methods, statistical model methods, and machine learning methods used in protein sequence analysis, based on learning datasets. The first stage of hierarchical function prediction involves the discrimination of GPCRs from non-GPCRs and the second stage involves the classification of the predicted GPCR candidates into family, subfamily, and sub-subfamily levels. Then, further classification is performed according to their protein-protein interaction type: binding G-protein type, oligomerized partner type, etc. Those methods have achieved predictive accuracies of around 90 %. Finally, I described the future subject of research of the bioinformatics technique about functional prediction of GPCR.

  18. Differential transcriptional regulation of banana sucrose phosphate synthase gene in response to ethylene, auxin, wounding, low temperature and different photoperiods during fruit ripening and functional analysis of banana SPS gene promoter.

    Science.gov (United States)

    Roy Choudhury, Swarup; Roy, Sujit; Das, Ranjan; Sengupta, Dibyendu N

    2008-12-01

    Sucrose phosphate synthase (SPS) (EC 2.3.1.14) is the key regulatory component in sucrose formation in banana (Musa acuminata subgroup Cavendish, cv Giant governor) fruit during ripening. This report illustrates differential transcriptional responses of banana SPS gene following ethylene, auxin, wounding, low temperature and different photoperiods during ripening in banana fruit. Whereas ethylene strongly stimulated SPS transcript accumulation, auxin and cold treatment only marginally increased the abundance of SPS mRNA level, while wounding negatively regulated SPS gene expression. Conversely, SPS transcript level was distinctly increased by constant exposure to white light. Protein level, enzymatic activity of SPS and sucrose synthesis were substantially increased by ethylene and increased exposure to white light conditions as compared to other treatments. To further study the transcriptional regulation of SPS in banana fruit, the promoter region of SPS gene was cloned and some cis-acting regulatory elements such as a reverse GCC-box ERE, two ARE motifs (TGTCTC), one LTRE (CCGAA), a GAGA-box (GAGA...) and a GATA-box LRE (GATAAG) were identified along with the TATA and CAAT-box. DNA-protein interaction studies using these cis-elements indicated a highly specific cis-trans interaction in the banana nuclear extract. Furthermore, we specifically studied the light responsive characteristics of GATA-box containing synthetic as well as native banana SPS promoter. Transient expression assays using banana SPS promoter have also indicated the functional importance of the SPS promoter in regulating gene expression. Together, these results provide insights into the transcriptional regulation of banana SPS gene in response to phytohormones and other environmental factors during fruit ripening.

  19. Global Gene Expression Analysis for the Assessment of Nanobiomaterials.

    Science.gov (United States)

    Hanagata, Nobutaka

    2015-01-01

    Using global gene expression analysis, the effects of biomaterials and nanomaterials can be analyzed at the genetic level. Even though information obtained from global gene expression analysis can be useful for the evaluation and design of biomaterials and nanomaterials, its use for these purposes is not widespread. This is due to the difficulties involved in data analysis. Because the expression data of about 20,000 genes can be obtained at once with global gene expression analysis, the data must be analyzed using bioinformatics. A method of bioinformatic analysis called gene ontology can estimate the kinds of changes on cell functions caused by genes whose expression level is changed by biomaterials and nanomaterials. Also, by applying a statistical analysis technique called hierarchical clustering to global gene expression data between a variety of biomaterials, the effects of the properties of materials on cell functions can be estimated. In this chapter, these theories of analysis and examples of applications to nanomaterials and biomaterials are described. Furthermore, global microRNA analysis, a method that has gained attention in recent years, and its application to nanomaterials are introduced. © 2015 S. Karger AG, Basel.

  20. Functional Genomic Analysis of the Impact of Camelina (Camelina sativa) Meal on Atlantic Salmon (Salmo salar) Distal Intestine Gene Expression and Physiology.

    Science.gov (United States)

    Brown, Tyler D; Hori, Tiago S; Xue, Xi; Ye, Chang Lin; Anderson, Derek M; Rise, Matthew L

    2016-06-01

    The inclusion of plant meals in diets of farmed Atlantic salmon can elicit inflammatory responses in the distal intestine (DI). For the present work, fish were fed a standard fish meal (FM) diet or a diet with partial replacement of FM with solvent-extracted camelina meal (CM) (8, 16, or 24 % CM inclusion) during a 16-week feeding trial. A significant decrease in growth performance was seen in fish fed all CM inclusion diets (Hixson et al. in Aquacult Nutr 22:615-630, 2016). A 4x44K oligonucleotide microarray experiment was carried out and significance analysis of microarrays (SAM) and rank products (RP) methods were used to identify differentially expressed genes between the DIs of fish fed the 24 % CM diet and those fed the FM diet. Twelve features representing six known transcripts and two unknowns were identified as CM responsive by both SAM and RP. The six known transcripts (including thioredoxin and ependymin), in addition to tgfb, mmp13, and GILT, were studied using qPCR with RNA templates from all four experimental diet groups. All six microarray-identified genes were confirmed to be CM responsive, as was tgfb and mmp13. Histopathological analyses identified signs of inflammation in the DI of salmon fed CM-containing diets, including lamina propria and sub-epithelial mucosa thickening, infiltration of eosinophilic granule cells, increased goblet cells and decreased enterocyte vacuolization. All of these were significantly altered in 24 % CM compared to all other diets, with the latter two also altered in 16 % CM compared with 8 % CM and control diet groups. Significant correlation was seen between histological parameters as well as between five of the qPCR analyzed genes and histological parameters. These molecular biomarkers of inflammation arising from long-term dietary CM exposure will be useful in the development of CM-containing diets that do not have deleterious effects on salmon growth or physiology.

  1. Functional Genomic and Proteomic Analysis Reveals Disruption of Myelin-Related Genes and Translation in a Mouse Model of Early Life Neglect

    Science.gov (United States)

    Bordner, Kelly A.; George, Elizabeth D.; Carlyle, Becky C.; Duque, Alvaro; Kitchen, Robert R.; Lam, TuKiet T.; Colangelo, Christopher M.; Stone, Kathryn L.; Abbott, Thomas B.; Mane, Shrikant M.; Nairn, Angus C.; Simen, Arthur A.

    2011-01-01

    Early life neglect is an important public health problem which can lead to lasting psychological dysfunction. Good animal models are necessary to understand the mechanisms responsible for the behavioral and anatomical pathology that results. We recently described a novel model of early life neglect, maternal separation with early weaning (MSEW), that produces behavioral changes in the mouse that persist into adulthood. To begin to understand the mechanism by which MSEW leads to these changes we applied cDNA microarray, next-generation RNA-sequencing (RNA-seq), label-free proteomics, multiple reaction monitoring (MRM) proteomics, and methylation analysis to tissue samples obtained from medial prefrontal cortex to determine the molecular changes induced by MSEW that persist into adulthood. The results show that MSEW leads to dysregulation of markers of mature oligodendrocytes and genes involved in protein translation and other categories, an apparent downward biasing of translation, and methylation changes in the promoter regions of selected dysregulated genes. These findings are likely to prove useful in understanding the mechanism by which early life neglect affects brain structure, cognition, and behavior. PMID:21629843

  2. De Novo Assembly, Functional Annotation and Comparative Analysis of Withania somnifera Leaf and Root Transcriptomes to Identify Putative Genes Involved in the Withanolides Biosynthesis

    Science.gov (United States)

    Gupta, Parul; Goel, Ridhi; Pathak, Sumya; Srivastava, Apeksha; Singh, Surya Pratap; Sangwan, Rajender Singh; Asif, Mehar Hasan; Trivedi, Prabodh Kumar

    2013-01-01

    Withania somnifera is one of the most valuable medicinal plants used in Ayurvedic and other indigenous medicine systems due to bioactive molecules known as withanolides. As genomic information regarding this plant is very limited, little information is available about biosynthesis of withanolides. To facilitate the basic understanding about the withanolide biosynthesis pathways, we performed transcriptome sequencing for Withania leaf (101L) and root (101R) which specifically synthesize withaferin A and withanolide A, respectively. Pyrosequencing yielded 8,34,068 and 7,21,755 reads which got assembled into 89,548 and 1,14,814 unique sequences from 101L and 101R, respectively. A total of 47,885 (101L) and 54,123 (101R) could be annotated using TAIR10, NR, tomato and potato databases. Gene Ontology and KEGG analyses provided a detailed view of all the enzymes involved in withanolide backbone synthesis. Our analysis identified members of cytochrome P450, glycosyltransferase and methyltransferase gene families with unique presence or differential expression in leaf and root and might be involved in synthesis of tissue-specific withanolides. We also detected simple sequence repeats (SSRs) in transcriptome data for use in future genetic studies. Comprehensive sequence resource developed for Withania, in this study, will help to elucidate biosynthetic pathway for tissue-specific synthesis of secondary plant products in non-model plant organisms as well as will be helpful in developing strategies for enhanced biosynthesis of withanolides through biotechnological approaches. PMID:23667511

  3. De novo assembly, functional annotation and comparative analysis of Withania somnifera leaf and root transcriptomes to identify putative genes involved in the withanolides biosynthesis.

    Directory of Open Access Journals (Sweden)

    Parul Gupta

    Full Text Available Withania somnifera is one of the most valuable medicinal plants used in Ayurvedic and other indigenous medicine systems due to bioactive molecules known as withanolides. As genomic information regarding this plant is very limited, little information is available about biosynthesis of withanolides. To facilitate the basic understanding about the withanolide biosynthesis pathways, we performed transcriptome sequencing for Withania leaf (101L and root (101R which specifically synthesize withaferin A and withanolide A, respectively. Pyrosequencing yielded 8,34,068 and 7,21,755 reads which got assembled into 89,548 and 1,14,814 unique sequences from 101L and 101R, respectively. A total of 47,885 (101L and 54,123 (101R could be annotated using TAIR10, NR, tomato and potato databases. Gene Ontology and KEGG analyses provided a detailed view of all the enzymes involved in withanolide backbone synthesis. Our analysis identified members of cytochrome P450, glycosyltransferase and methyltransferase gene families with unique presence or differential expression in leaf and root and might be involved in synthesis of tissue-specific withanolides. We also detected simple sequence repeats (SSRs in transcriptome data for use in future genetic studies. Comprehensive sequence resource developed for Withania, in this study, will help to elucidate biosynthetic pathway for tissue-specific synthesis of secondary plant products in non-model plant organisms as well as will be helpful in developing strategies for enhanced biosynthesis of withanolides through biotechnological approaches.

  4. Function and evolution of the serotonin-synthetic bas-1 gene and other aromatic amino acid decarboxylase genes in Caenorhabditis

    Directory of Open Access Journals (Sweden)

    Hare Emily E

    2004-08-01

    Full Text Available Abstract Background Aromatic L-amino acid decarboxylase (AADC enzymes catalyze the synthesis of biogenic amines, including the neurotransmitters serotonin and dopamine, throughout the animal kingdom. These neurotransmitters typically perform important functions in both the nervous system and other tissues, as illustrated by the debilitating conditions that arise from their deficiency. Studying the regulation and evolution of AADC genes is therefore desirable to further our understanding of how nervous systems function and evolve. Results In the nematode C. elegans, the bas-1 gene is required for both serotonin and dopamine synthesis, and maps genetically near two AADC-homologous sequences. We show by transformation rescue and sequencing of mutant alleles that bas-1 encodes an AADC enzyme. Expression of a reporter construct in transgenics suggests that the bas-1 gene is expressed, as expected, in identified serotonergic and dopaminergic neurons. The bas-1 gene is one of six AADC-like sequences in the C. elegans genome, including a duplicate that is immediately downstream of the bas-1 gene. Some of the six AADC genes are quite similar to known serotonin- and dopamine-synthetic AADC's from other organisms whereas others are divergent, suggesting previously unidentified functions. In comparing the AADC genes of C. elegans with those of the congeneric C. briggsae, we find only four orthologous AADC genes in C. briggsae. Two C. elegans AADC genes – those most similar to bas-1 – are missing from C. briggsae. Phylogenetic analysis indicates that one or both of these bas-1-like genes were present in the common ancestor of C. elegans and C. briggsae, and were retained in the C. elegans line, but lost in the C. briggsae line. Further analysis of the two bas-1-like genes in C. elegans suggests that they are unlikely to encode functional enzymes, and may be expressed pseudogenes. Conclusions The bas-1 gene of C. elegans encodes a serotonin- and dopamine

  5. Molecular Cloning and Functional Analysis of Three FLOWERING LOCUS T (FT Homologous Genes from Chinese Cymbidium

    Directory of Open Access Journals (Sweden)

    Jaime A. Teixeira da Silva

    2012-09-01

    Full Text Available The FLOWERING LOCUS T (FT gene plays crucial roles in regulating the transition from the vegetative to reproductive phase. To understand the molecular mechanism of reproduction, three homologous FT genes were isolated and characterized from Cymbidium sinense “Qi Jian Bai Mo”, Cymbidium goeringii and Cymbidium ensifolium “Jin Si Ma Wei”. The three genes contained 618-bp nucleotides with a 531-bp open reading frame (ORF of encoding 176 amino acids (AAs. Alignment of the AA sequences revealed that CsFT, CgFT and CeFT contain a conserved domain, which is characteristic of the PEBP-RKIP superfamily, and which share high identity with FT of other plants in GenBank: 94% with OnFT from Oncidium Gower Ramsey, 79% with Hd3a from Oryza sativa, and 74% with FT from Arabidopsis thaliana. qRT-PCR analysis showed a diurnal expression pattern of CsFT, CgFT and CeFT following both long day (LD, 16-h light/8-h dark and short day (SD, 8-h light/16-h dark treatment. While the transcripts of both CsFT and CeFT under LD were significantly higher than under SD, those of CgFT were higher under SD. Ectopic expression of CgFT in transgenic Arabidopsis plants resulted in early flowering compared to wild-type plants and significant up-regulation of APETALA1 (AP1 expression. Our data indicates that CgFT is a putative phosphatidylethanolamine-binding protein gene in Cymbidium that may regulate the vegetative to reproductive transition in flowers, similar to its Arabidopsis ortholog.

  6. Functional Analysis in Interdisciplinary Applications

    CERN Document Server

    Nursultanov, Erlan; Ruzhansky, Michael; Sadybekov, Makhmud

    2017-01-01

    This volume presents current research in functional analysis and its applications to a variety of problems in mathematics and mathematical physics. The book contains over forty carefully refereed contributions to the conference “Functional Analysis in Interdisciplinary Applications” (Astana, Kazakhstan, October 2017). Topics covered include the theory of functions and functional spaces; differential equations and boundary value problems; the relationship between differential equations, integral operators and spectral theory; and mathematical methods in physical sciences. Presenting a wide range of topics and results, this book will appeal to anyone working in the subject area, including researchers and students interested to learn more about different aspects and applications of functional analysis.

  7. Trametes versicolor protein YZP activates regulatory B lymphocytes - gene identification through de novo assembly and function analysis in a murine acute colitis model.

    Science.gov (United States)

    Kuan, Yen-Chou; Wu, Ying-Jou; Hung, Chih-Liang; Sheu, Fuu

    2013-01-01

    Trametes versicolor (Yun-Zhi) is a medicinal fungus used as a chemotherapy co-treatment to enhance anti-tumor immunity. Although the efficacies of T. versicolor extracts have been documented, the active ingredients and mechanisms underlying the actions of these extracts remain uncharacterized. We purified a new protein, YZP, from the fruiting bodies of T. versicolor and identified the gene encoding YZP using RNA-seq and de novo assembly technologies. YZP is a 12-kDa non-glycosylated protein comprising 139 amino acids, including an 18-amino acids signal peptide. YZP induced a greater than 60-fold increase in IL-10 secretion in mice B lymphocytes; moreover, YZP specifically triggered the differentiation of CD1d(+) B cells into IL-10-producing regulatory B cells (Bregs) and enhanced the expression of CD1d. YZP-induced B cells suppressed approximately 40% of the LPS-activated macrophage production of inflammatory cytokines in a mixed leukocyte reaction and significantly alleviated the disease activity and colonic inflammation in a DSS-induced acute colitis murine model. Furthermore, YZP activated Breg function via interaction with TLR2 and TLR4 and up-regulation of the TLR-mediated signaling pathway. We purified a novel Breg-stimulating protein, YZP, from T. versicolor and developed an advanced approach combining RNA-seq and de novo assembly technologies.to clone its gene. We demonstrated that YZP activated CD1d(+) Breg differentiation through TLR2/4-mediated signaling pathway, and the YZP-stimulated B cells exhibited anti-inflammatory efficacies in vitro and in murine acute colitis models.

  8. Trametes versicolor protein YZP activates regulatory B lymphocytes - gene identification through de novo assembly and function analysis in a murine acute colitis model.

    Directory of Open Access Journals (Sweden)

    Yen-Chou Kuan

    Full Text Available BACKGROUND: Trametes versicolor (Yun-Zhi is a medicinal fungus used as a chemotherapy co-treatment to enhance anti-tumor immunity. Although the efficacies of T. versicolor extracts have been documented, the active ingredients and mechanisms underlying the actions of these extracts remain uncharacterized. RESULTS: We purified a new protein, YZP, from the fruiting bodies of T. versicolor and identified the gene encoding YZP using RNA-seq and de novo assembly technologies. YZP is a 12-kDa non-glycosylated protein comprising 139 amino acids, including an 18-amino acids signal peptide. YZP induced a greater than 60-fold increase in IL-10 secretion in mice B lymphocytes; moreover, YZP specifically triggered the differentiation of CD1d(+ B cells into IL-10-producing regulatory B cells (Bregs and enhanced the expression of CD1d. YZP-induced B cells suppressed approximately 40% of the LPS-activated macrophage production of inflammatory cytokines in a mixed leukocyte reaction and significantly alleviated the disease activity and colonic inflammation in a DSS-induced acute colitis murine model. Furthermore, YZP activated Breg function via interaction with TLR2 and TLR4 and up-regulation of the TLR-mediated signaling pathway. CONCLUSIONS: We purified a novel Breg-stimulating protein, YZP, from T. versicolor and developed an advanced approach combining RNA-seq and de novo assembly technologies.to clone its gene. We demonstrated that YZP activated CD1d(+ Breg differentiation through TLR2/4-mediated signaling pathway, and the YZP-stimulated B cells exhibited anti-inflammatory efficacies in vitro and in murine acute colitis models.

  9. Trametes versicolor Protein YZP Activates Regulatory B Lymphocytes – Gene Identification through De Novo Assembly and Function Analysis in a Murine Acute Colitis Model

    Science.gov (United States)

    Kuan, Yen-Chou; Wu, Ying-Jou; Hung, Chih-Liang; Sheu, Fuu

    2013-01-01

    Background Trametes versicolor (Yun-Zhi) is a medicinal fungus used as a chemotherapy co-treatment to enhance anti-tumor immunity. Although the efficacies of T. versicolor extracts have been documented, the active ingredients and mechanisms underlying the actions of these extracts remain uncharacterized. Results We purified a new protein, YZP, from the fruiting bodies of T. versicolor and identified the gene encoding YZP using RNA-seq and de novo assembly technologies. YZP is a 12-kDa non-glycosylated protein comprising 139 amino acids, including an 18-amino acids signal peptide. YZP induced a greater than 60-fold increase in IL-10 secretion in mice B lymphocytes; moreover, YZP specifically triggered the differentiation of CD1d+ B cells into IL-10-producing regulatory B cells (Bregs) and enhanced the expression of CD1d. YZP-induced B cells suppressed approximately 40% of the LPS-activated macrophage production of inflammatory cytokines in a mixed leukocyte reaction and significantly alleviated the disease activity and colonic inflammation in a DSS-induced acute colitis murine model. Furthermore, YZP activated Breg function via interaction with TLR2 and TLR4 and up-regulation of the TLR-mediated signaling pathway. Conclusions We purified a novel Breg-stimulating protein, YZP, from T. versicolor and developed an advanced approach combining RNA-seq and de novo assembly technologies.to clone its gene. We demonstrated that YZP activated CD1d+ Breg differentiation through TLR2/4-mediated signaling pathway, and the YZP-stimulated B cells exhibited anti-inflammatory efficacies in vitro and in murine acute colitis models. PMID:24019869

  10. Automatic Functional Harmonic Analysis

    NARCIS (Netherlands)

    de Haas, W.B.|info:eu-repo/dai/nl/304841250; Magalhães, J.P.; Wiering, F.|info:eu-repo/dai/nl/141928034; Veltkamp, R.C.|info:eu-repo/dai/nl/084742984

    2013-01-01

    Music scholars have been studying tonal harmony intensively for centuries, yielding numerous theories and models. Unfortunately, a large number of these theories are formulated in a rather informal fashion and lack mathematical precision. In this article we present HarmTrace, a functional model of

  11. Functional analysis of the cytochrome P450 monooxygenase gene bcbot1 of Botrytis cinerea indicates that botrydial is a strain-specific virulence factor.

    Science.gov (United States)

    Siewers, Verena; Viaud, Muriel; Jimenez-Teja, Daniel; Collado, Isidro G; Gronover, Christian Schulze; Pradier, Jean-Marc; Tudzynski, Bettina; Tudzynski, Paul

    2005-06-01

    The micrographic phytopathogen Botrytis cinerea causes gray mold diseases in a large number of dicotyledonous crop plants and ornamentals. Colonization of host tissue is accompanied by rapid killing of plant cells ahead of the growing hyphen, probably caused by secretion of nonspecific phytotoxins, e.g., the sesquiterpene botrydial. Although all pathogenic strains tested so far had been shown to secrete botrydial and although the toxin causes comparable necrotic lesions as infection by the fungus, the role of botrydial in the infection process has not been elucidated so far. Here, we describe the functional characterization of bcbot1, encoding a P450 monooxygenase and provide evidence that it is involved in the botrydial pathway, i.e., it represents the first botrydial biosynthetic gene identified. We show that bcbot1 is expressed in planta and that expression in vitro and in planta is controlled by an alpha-subunit of a heterotrimeric GTP-binding protein, BCG1. Deletion of bcbot1 in three standard strains of B. cinerea shows that the effect on virulence (on several host plants) is strain-dependent; only deletion in one of the strains (T4) led to reduced virulence.

  12. Functional cohesion of gene sets determined by latent semantic indexing of PubMed abstracts.

    Directory of Open Access Journals (Sweden)

    Lijing Xu

    2011-04-01

    Full Text Available High-throughput genomic technologies enable researchers to identify genes that are co-regulated with respect to specific experimental conditions. Numerous statistical approaches have been developed to identify differentially expressed genes. Because each approach can produce distinct gene sets, it is difficult for biologists to determine which statistical approach yields biologically relevant gene sets and is appropriate for their study. To address this issue, we implemented Latent Semantic Indexing (LSI to determine the functional coherence of gene sets. An LSI model was built using over 1 million Medline abstracts for over 20,000 mouse and human genes annotated in Entrez Gene. The gene-to-gene LSI-derived similarities were used to calculate a literature cohesion p-value (LPv for a given gene set using a Fisher's exact test. We tested this method against genes in more than 6,000 functional pathways annotated in Gene Ontology (GO and found that approximately 75% of gene sets in GO biological process category and 90% of the gene sets in GO molecular function and cellular component categories were functionally cohesive (LPv<0.05. These results indicate that the LPv methodology is both robust and accurate. Application of this method to previously published microarray datasets demonstrated that LPv can be helpful in selecting the appropriate feature extraction methods. To enable real-time calculation of LPv for mouse or human gene sets, we developed a web tool called Gene-set Cohesion Analysis Tool (GCAT. GCAT can complement other gene set enrichment approaches by determining the overall functional cohesion of data sets, taking into account both explicit and implicit gene interactions reported in the biomedical literature.GCAT is freely available at http://binf1.memphis.edu/gcat.

  13. Functional cohesion of gene sets determined by latent semantic indexing of PubMed abstracts.

    Science.gov (United States)

    Xu, Lijing; Furlotte, Nicholas; Lin, Yunyue; Heinrich, Kevin; Berry, Michael W; George, Ebenezer O; Homayouni, Ramin

    2011-04-14

    High-throughput genomic technologies enable researchers to identify genes that are co-regulated with respect to specific experimental conditions. Numerous statistical approaches have been developed to identify differentially expressed genes. Because each approach can produce distinct gene sets, it is difficult for biologists to determine which statistical approach yields biologically relevant gene sets and is appropriate for their study. To address this issue, we implemented Latent Semantic Indexing (LSI) to determine the functional coherence of gene sets. An LSI model was built using over 1 million Medline abstracts for over 20,000 mouse and human genes annotated in Entrez Gene. The gene-to-gene LSI-derived similarities were used to calculate a literature cohesion p-value (LPv) for a given gene set using a Fisher's exact test. We tested this method against genes in more than 6,000 functional pathways annotated in Gene Ontology (GO) and found that approximately 75% of gene sets in GO biological process category and 90% of the gene sets in GO molecular function and cellular component categories were functionally cohesive (LPvmethod to previously published microarray datasets demonstrated that LPv can be helpful in selecting the appropriate feature extraction methods. To enable real-time calculation of LPv for mouse or human gene sets, we developed a web tool called Gene-set Cohesion Analysis Tool (GCAT). GCAT can complement other gene set enrichment approaches by determining the overall functional cohesion of data sets, taking into account both explicit and implicit gene interactions reported in the biomedical literature. GCAT is freely available at http://binf1.memphis.edu/gcat.

  14. Available nitrogen is the key factor influencing soil microbial functional gene diversity in tropical rainforest.

    Science.gov (United States)

    Cong, Jing; Liu, Xueduan; Lu, Hui; Xu, Han; Li, Yide; Deng, Ye; Li, Diqiang; Zhang, Yuguang

    2015-08-20

    Tropical rainforests cover over 50% of all known plant and animal species and provide a variety of key resources and ecosystem services to humans, largely mediated by metabolic activities of soil microbial communities. A deep analysis of soil microbial communities and their roles in ecological processes would improve our understanding on biogeochemical elemental cycles. However, soil microbial functional gene diversity in tropical rainforests and causative factors remain unclear. GeoChip, contained almost all of the key functional genes related to biogeochemical cycles, could be used as a specific and sensitive tool for studying microbial gene diversity and metabolic potential. In this study, soil microbial functional gene diversity in tropical rainforest was analyzed by using GeoChip technology. Gene categories detected in the tropical rainforest soils were related to different biogeochemical processes, such as carbon (C), nitrogen (N) and phosphorus (P) cycling. The relative abundance of genes related to C and P cycling detected mostly derived from the cultured bacteria. C degradation gene categories for substrates ranging from labile C to recalcitrant C were all detected, and gene abundances involved in many recalcitrant C degradation gene categories were significantly (P The relative abundance of genes related to N cycling detected was significantly (P the uncultured bacteria. The gene categories related to ammonification had a high relative abundance. Both canonical correspondence analysis and multivariate regression tree analysis showed that soil available N was the most correlated with soil microbial functional gene structure. Overall high microbial functional gene diversity and different soil microbial metabolic potential for different biogeochemical processes were considered to exist in tropical rainforest. Soil available N could be the key factor in shaping the soil microbial functional gene structure and metabolic potential.

  15. Comparative Genomic Analysis of Soybean Flowering Genes

    Science.gov (United States)

    Jung, Chol-Hee; Wong, Chui E.; Singh, Mohan B.; Bhalla, Prem L.

    2012-01-01

    Flowering is an important agronomic trait that determines crop yield. Soybean is a major oilseed legume crop used for human and animal feed. Legumes have unique vegetative and floral complexities. Our understanding of the molecular basis of flower initiation and development in legumes is limited. Here, we address this by using a computational approach to examine flowering regulatory genes in the soybean genome in comparison to the most studied model plant, Arabidopsis. For this comparison, a genome-wide analysis of orthologue groups was performed, followed by an in silico gene expression analysis of the identified soybean flowering genes. Phylogenetic analyses of the gene families highlighted the evolutionary relationships among these candidates. Our study identified key flowering genes in soybean and indicates that the vernalisation and the ambient-temperature pathways seem to be the most variant in soybean. A comparison of the orthologue groups containing flowering genes indicated that, on average, each Arabidopsis flowering gene has 2-3 orthologous copies in soybean. Our analysis highlighted that the CDF3, VRN1, SVP, AP3 and PIF3 genes are paralogue-rich genes in soybean. Furthermore, the genome mapping of the soybean flowering genes showed that these genes are scattered randomly across the genome. A paralogue comparison indicated that the soybean genes comprising the largest orthologue group are clustered in a 1.4 Mb region on chromosome 16 of soybean. Furthermore, a comparison with the undomesticated soybean (Glycine soja) revealed that there are hundreds of SNPs that are associated with putative soybean flowering genes and that there are structural variants that may affect the genes of the light-signalling and ambient-temperature pathways in soybean. Our study provides a framework for the soybean flowering pathway and insights into the relationship and evolution of flowering genes between a short-day soybean and the long-day plant, Arabidopsis. PMID:22679494

  16. Annotating the Function of the Human Genome with Gene Ontology and Disease Ontology.

    Science.gov (United States)

    Hu, Yang; Zhou, Wenyang; Ren, Jun; Dong, Lixiang; Wang, Yadong; Jin, Shuilin; Cheng, Liang

    2016-01-01

    Increasing evidences indicated that function annotation of human genome in molecular level and phenotype level is very important for systematic analysis of genes. In this study, we presented a framework named Gene2Function to annotate Gene Reference into Functions (GeneRIFs), in which each functional description of GeneRIFs could be annotated by a text mining tool Open Biomedical Annotator (OBA), and each Entrez gene could be mapped to Human Genome Organisation Gene Nomenclature Committee (HGNC) gene symbol. After annotating all the records about human genes of GeneRIFs, 288,869 associations between 13,148 mRNAs and 7,182 terms, 9,496 associations between 948 microRNAs and 533 terms, and 901 associations between 139 long noncoding RNAs (lncRNAs) and 297 terms were obtained as a comprehensive annotation resource of human genome. High consistency of term frequency of individual gene (Pearson correlation = 0.6401, p = 2.2e - 16) and gene frequency of individual term (Pearson correlation = 0.1298, p = 3.686e - 14) in GeneRIFs and GOA shows our annotation resource is very reliable.

  17. Comparative mapping reveals similar linkage of functional genes to ...

    Indian Academy of Sciences (India)

    logous genes and QTL of yield-related traits by silico map- ping and population mapping in O. sativa. Our results revealed that B. napus and O. sativa shared homologous se- quences of genes with similar functions, as well as consistent linkage relationships between genes and agronomic traits. Materials and methods.

  18. Phylogenetic and functional gene structure shifts of the oral microbiomes in periodontitis patients

    Science.gov (United States)

    Li, Yan; He, Jinzhi; He, Zhili; Zhou, Yuan; Yuan, Mengting; Xu, Xin; Sun, Feifei; Liu, Chengcheng; Li, Jiyao; Xie, Wenbo; Deng, Ye; Qin, Yujia; VanNostrand, Joy D; Xiao, Liying; Wu, Liyou; Zhou, Jizhong; Shi, Wenyuan; Zhou, Xuedong

    2014-01-01

    Determining the composition and function of subgingival dental plaque is crucial to understanding human periodontal health and disease, but it is challenging because of the complexity of the interactions between human microbiomes and human body. Here, we examined the phylogenetic and functional gene differences between periodontal and healthy individuals using MiSeq sequencing of 16S rRNA gene amplicons and a specific functional gene array (a combination of GeoChip 4.0 for biogeochemical processes and HuMiChip 1.0 for human microbiomes). Our analyses indicated that the phylogenetic and functional gene structure of the oral microbiomes were distinctly different between periodontal and healthy groups. Also, 16S rRNA gene sequencing analysis indicated that 39 genera were significantly different between healthy and periodontitis groups, and Fusobacterium, Porphyromonas, Treponema, Filifactor, Eubacterium, Tannerella, Hallella, Parvimonas, Peptostreptococcus and Catonella showed higher relative abundances in the periodontitis group. In addition, functional gene array data showed that a lower gene number but higher signal intensity of major genes existed in periodontitis, and a variety of genes involved in virulence factors, amino acid metabolism and glycosaminoglycan and pyrimidine degradation were enriched in periodontitis, suggesting their potential importance in periodontal pathogenesis. However, the genes involved in amino acid synthesis and pyrimidine synthesis exhibited a significantly lower relative abundance compared with healthy group. Overall, this study provides new insights into our understanding of phylogenetic and functional gene structure of subgingival microbial communities of periodontal patients and their importance in pathogenesis of periodontitis. PMID:24671083

  19. GSMA: Gene Set Matrix Analysis, An Automated Method for Rapid Hypothesis Testing of Gene Expression Data

    Directory of Open Access Journals (Sweden)

    Chris Cheadle

    2007-01-01

    Full Text Available Background: Microarray technology has become highly valuable for identifying complex global changes in gene expression patterns. The assignment of functional information to these complex patterns remains a challenging task in effectively interpreting data and correlating results from across experiments, projects and laboratories. Methods which allow the rapid and robust evaluation of multiple functional hypotheses increase the power of individual researchers to data mine gene expression data more efficiently.Results: We have developed (gene set matrix analysis GSMA as a useful method for the rapid testing of group-wise up- or downregulation of gene expression simultaneously for multiple lists of genes (gene sets against entire distributions of gene expression changes (datasets for single or multiple experiments. The utility of GSMA lies in its flexibility to rapidly poll gene sets related by known biological function or as designated solely by the end-user against large numbers of datasets simultaneously.Conclusions: GSMA provides a simple and straightforward method for hypothesis testing in which genes are tested by groups across multiple datasets for patterns of expression enrichment.

  20. Aryl hydrocarbon receptor nuclear translocator (ARNT gene as a positional and functional candidate for type 2 diabetes and prediabetic intermediate traits: Mutation detection, case-control studies, and gene expression analysis

    Directory of Open Access Journals (Sweden)

    Chu Winston S

    2008-03-01

    Full Text Available Abstract Background ARNT, a member of the basic helix-loop-helix family of transcription factors, is located on human chromosome 1q21–q24, a region which showed well replicated linkage to type 2 diabetes. We hypothesized that common polymorphisms in the ARNT gene might increase the susceptibility to type 2 diabetes through impaired glucose-stimulated insulin secretion. Methods We selected 9 single nucleotide polymorphisms to tag common variation across the ARNT gene. Additionally we searched for novel variants in functional coding domains in European American and African American samples. Case-control studies were performed in 191 European American individuals with type 2 diabetes and 187 nondiabetic European American control individuals, and in 372 African American individuals with type 2 diabetes and 194 African American control individuals. Metabolic effects of ARNT variants were examined in 122 members of 26 European American families from Utah and in 225 unrelated individuals from Arkansas. Gene expression was tested in 8 sibling pairs discordant for type 2 diabetes. Results No nonsynonymous variants or novel polymorphisms were identified. No SNP was associated with type 2 diabetes in either African Americans or European Americans, but among nondiabetic European American individuals, ARNT SNPs rs188970 and rs11204735 were associated with acute insulin response (AIRg; p =ARNT mRNA levels was observed in transformed lymphocytes from sibling pairs discordant for type 2 diabetes. Conclusion Common ARNT variants are unlikely to explain the linkage signal on chromosome 1q, but may alter insulin secretion in nondiabetic subjects. Our studies cannot exclude a role for rare variants or variants of small (

  1. Cloning and functional characterization of carotenoid cleavage dioxygenase 4 genes.

    Science.gov (United States)

    Huang, Fong-Chin; Molnár, Péter; Schwab, Wilfried

    2009-01-01

    Although a number of plant carotenoid cleavage dioxygenase (CCD) genes have been functionally characterized in different plant species, little is known about the biochemical role and enzymatic activities of members of the subclass 4 (CCD4). To gain insight into their biological function, CCD4 genes were isolated from apple (Malus x domestica, MdCCD4), chrysanthemum (Chrysanthemum x morifolium, CmCCD4a), rose (Rosa x damascena, RdCCD4), and osmanthus (Osmanthus fragrans, OfCCD4), and were expressed, together with AtCCD4, in Escherichia coli. In vivo assays showed that CmCCD4a and MdCCD4 cleaved beta-carotene well to yield beta-ionone, while OfCCD4, RdCCD4, and AtCCD4 were almost inactive towards this substrate. No cleavage products were found for any of the five CCD4 genes when they were co-expressed in E. coli strains that accumulated cis-zeta-carotene and lycopene. In vitro assays, however, demonstrated the breakdown of 8'-apo-beta-caroten-8'-al by AtCCD4 and RdCCD4 to beta-ionone, while this apocarotenal was almost not degraded by OfCCD4, CmCCD4a, and MdCCD4. Sequence analysis of genomic clones of CCD4 genes revealed that RdCCD4, like AtCCD4, contains no intron, while MdCCD, OfCCD4, and CmCCD4a contain introns. These results indicate that plants produce at least two different forms of CCD4 proteins. Although CCD4 enzymes cleave their substrates at the same position (9,10 and 9',10'), they might have different biochemical functions as they accept different (apo)-carotenoid substrates, show various expression patterns, and are genomically differently organized.

  2. Association of lung function genes with chronic obstructive pulmonary disease.

    Science.gov (United States)

    Kim, Woo Jin; Lim, Myoung Nam; Hong, Yoonki; Silverman, Edwin K; Lee, Ji-Hyun; Jung, Bock Hyun; Ra, Seung Won; Choi, Hye Sook; Jung, Young Ju; Park, Yong Bum; Park, Myung Jae; Lee, Sei Won; Lee, Jae Seung; Oh, Yeon-Mok; Lee, Sang Do

    2014-08-01

    Spirometric measurements of pulmonary function are important in diagnosing and determining the severity of chronic obstructive pulmonary disease (COPD). We performed this study to determine whether candidate genes identified in genome-wide association studies of spirometric measurements were associated with COPD and if they interacted with smoking intensity. The current analysis included 1,000 COPD subjects and 1,000 controls recruited from 24 hospital-based pulmonary clinics. Thirteen SNPs, chosen based on genome-wide association studies of spirometric measurements in the Korean population cohorts, were genotyped. Genetic association tests were performed, adjusting for age, sex, and smoking intensity, using models including a SNP-by-smoking interaction term. PID1 and FAM13A were significantly associated with COPD susceptibility. There were also significant interactions between SNPs in ACN9 and FAM13A and smoking pack-years, and an association of ACN9 with COPD in the lowest smoking tertile. The risk allele of FAM13A was associated with increased expression of FAM13A in the lung. We have validated associations of FAM13A and PID1 with COPD. ACN9 showed significant interaction with smoking and is a potential candidate gene for COPD. Significant associations of genetic variants of FAM13A with gene expression levels suggest that the associated loci may act as genetic regulatory elements for FAM13A gene expression.

  3. Rice Multi-Gene Analysis

    Indian Academy of Sciences (India)

    gdyang

    Maps of all the intronic MIR genes analyzed using MPSS database in rice. Click here for a legend that explains the icons and colors in the image below. Click here to jump in the page below to the specific gene. osa-MIR159f osa-MIR399i osa-MIR418 osa-MIR437 osa-MIR439b osa-MIR439j osa-MIR440 osa-MIR442.

  4. Nonviral gene transfection nanoparticles: function and applications in the brain.

    Science.gov (United States)

    Roy, Indrajit; Stachowiak, Michal K; Bergey, Earl J

    2008-06-01

    In vivo transfer and expression of foreign genes allows for the elucidation of functions of genes in living organisms and generation of disease models in animals that more closely resemble the etiology of human diseases. Gene therapy holds promise for the cure of a number of diseases at the fundamental level. Synthetic "nonviral" materials are fast gaining popularity as safe and efficient vectors for delivering genes to target organs. Not only can nanoparticles function as efficient gene carriers, they also can simultaneously carry diagnostic probes for direct "real-time" visualization of gene transfer and downstream processes. This review has focused on the central nervous system (CNS) as the target for nonviral gene transfer, with special emphasis on organically modified silica (ORMOSIL) nanoparticles developed in our laboratory. These nanoparticles have shown robust gene transfer efficiency in brain cells in vivo and allowed to investigate mechanisms that control neurogenesis as well as neurodegenerative disorders.

  5. Chronic obstructive pulmonary disease candidate gene prioritization based on metabolic networks and functional information.

    Directory of Open Access Journals (Sweden)

    Xinyan Wang

    Full Text Available Chronic obstructive pulmonary disease (COPD is a multi-factor disease, in which metabolic disturbances played important roles. In this paper, functional information was integrated into a COPD-related metabolic network to assess similarity between genes. Then a gene prioritization method was applied to the COPD-related metabolic network to prioritize COPD candidate genes. The gene prioritization method was superior to ToppGene and ToppNet in both literature validation and functional enrichment analysis. Top-ranked genes prioritized from the metabolic perspective with functional information could promote the better understanding about the molecular mechanism of this disease. Top 100 genes might be potential markers for diagnostic and effective therapies.

  6. Microarray gene expression profiling and analysis in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Sadhukhan Provash

    2004-06-01

    Full Text Available Abstract Background Renal cell carcinoma (RCC is the most common cancer in adult kidney. The accuracy of current diagnosis and prognosis of the disease and the effectiveness of the treatment for the disease are limited by the poor understanding of the disease at the molecular level. To better understand the genetics and biology of RCC, we profiled the expression of 7,129 genes in both clear cell RCC tissue and cell lines using oligonucleotide arrays. Methods Total RNAs isolated from renal cell tumors, adjacent normal tissue and metastatic RCC cell lines were hybridized to affymatrix HuFL oligonucleotide arrays. Genes were categorized into different functional groups based on the description of the Gene Ontology Consortium and analyzed based on the gene expression levels. Gene expression profiles of the tissue and cell line samples were visualized and classified by singular value decomposition. Reverse transcription polymerase chain reaction was performed to confirm the expression alterations of selected genes in RCC. Results Selected genes were annotated based on biological processes and clustered into functional groups. The expression levels of genes in each group were also analyzed. Seventy-four commonly differentially expressed genes with more than five-fold changes in RCC tissues were identified. The expression alterations of selected genes from these seventy-four genes were further verified using reverse transcription polymerase chain reaction (RT-PCR. Detailed comparison of gene expression patterns in RCC tissue and RCC cell lines shows significant differences between the two types of samples, but many important expression patterns were preserved. Conclusions This is one of the initial studies that examine the functional ontology of a large number of genes in RCC. Extensive annotation, clustering and analysis of a large number of genes based on the gene functional ontology revealed many interesting gene expression patterns in RCC. Most

  7. In Silico Analysis of FMR1 Gene Missense SNPs.

    Science.gov (United States)

    Tekcan, Akin

    2016-06-01

    The FMR1 gene, a member of the fragile X-related gene family, is responsible for fragile X syndrome (FXS). Missense single-nucleotide polymorphisms (SNPs) are responsible for many complex diseases. The effect of FMR1 gene missense SNPs is unknown. The aim of this study, using in silico techniques, was to analyze all known missense mutations that can affect the functionality of the FMR1 gene, leading to mental retardation (MR) and FXS. Data on the human FMR1 gene were collected from the Ensembl database (release 81), National Centre for Biological Information dbSNP Short Genetic Variations database, 1000 Genomes Browser, and NHLBI Exome Sequencing Project Exome Variant Server. In silico analysis was then performed. One hundred-twenty different missense SNPs of the FMR1 gene were determined. Of these, 11.66 % of the FMR1 gene missense SNPs were in highly conserved domains, and 83.33 % were in domains with high variety. The results of the in silico prediction analysis showed that 31.66 % of the FMR1 gene SNPs were disease related and that 50 % of SNPs had a pathogenic effect. The results of the structural and functional analysis revealed that although the R138Q mutation did not seem to have a damaging effect on the protein, the G266E and I304N SNPs appeared to disturb the interaction between the domains and affect the function of the protein. This is the first study to analyze all missense SNPs of the FMR1 gene. The results indicate the applicability of a bioinformatics approach to FXS and other FMR1-related diseases. I think that the analysis of FMR1 gene missense SNPs using bioinformatics methods would help diagnosis of FXS and other FMR1-related diseases.

  8. Gene Ontology-Based Analysis of Zebrafish Omics Data Using the Web Tool Comparative Gene Ontology.

    Science.gov (United States)

    Ebrahimie, Esmaeil; Fruzangohar, Mario; Moussavi Nik, Seyyed Hani; Newman, Morgan

    2017-10-01

    Gene Ontology (GO) analysis is a powerful tool in systems biology, which uses a defined nomenclature to annotate genes/proteins within three categories: "Molecular Function," "Biological Process," and "Cellular Component." GO analysis can assist in revealing functional mechanisms underlying observed patterns in transcriptomic, genomic, and proteomic data. The already extensive and increasing use of zebrafish for modeling genetic and other diseases highlights the need to develop a GO analytical tool for this organism. The web tool Comparative GO was originally developed for GO analysis of bacterial data in 2013 ( www.comparativego.com ). We have now upgraded and elaborated this web tool for analysis of zebrafish genetic data using GOs and annotations from the Gene Ontology Consortium.

  9. (TG/CAn repeats in human gene families: abundance and selective patterns of distribution according to function and gene length

    Directory of Open Access Journals (Sweden)

    Ramachandran Srinivasan

    2005-06-01

    Full Text Available Abstract Background Creation of human gene families was facilitated significantly by gene duplication and diversification. The (TG/CAn repeats exhibit length variability, display genome-wide distribution, and are abundant in the human genome. Accumulation of evidences for their multiple functional roles including regulation of transcription and stimulation of recombination and splicing elect them as functional elements. Here, we report analysis of the distribution of (TG/CAn repeats in human gene families. Results The 1,317 human gene families were classified into six functional classes. Distribution of (TG/CAn repeats were analyzed both from a global perspective and from a stratified perspective based on their biological properties. The number of genes with repeats decreased with increasing repeat length and several genes (53% had repeats of multiple types in various combinations. Repeats were positively associated with the class of Signaling and communication whereas, they were negatively associated with the classes of Immune and related functions and of Information. The proportion of genes with (TG/CAn repeats in each class was proportional to the corresponding average gene length. The repeat distribution pattern in large gene families generally mirrored the global distribution pattern but differed particularly for Collagen gene family, which was rich in repeats. The position and flanking sequences of the repeats of Collagen genes showed high conservation in the Chimpanzee genome. However the majority of these repeats displayed length polymorphism. Conclusion Positive association of repeats with genes of Signaling and communication points to their role in modulation of transcription. Negative association of repeats in genes of Information relates to the smaller gene length, higher expression and fundamental role in cellular physiology. In genes of Immune and related functions negative association of repeats perhaps relates to the smaller gene

  10. Singular Perturbation Analysis and Gene Regulatory Networks with Delay

    Science.gov (United States)

    Shlykova, Irina; Ponosov, Arcady

    2009-09-01

    There are different ways of how to model gene regulatory networks. Differential equations allow for a detailed description of the network's dynamics and provide an explicit model of the gene concentration changes over time. Production and relative degradation rate functions used in such models depend on the vector of steeply sloped threshold functions which characterize the activity of genes. The most popular example of the threshold functions comes from the Boolean network approach, where the threshold functions are given by step functions. The system of differential equations becomes then piecewise linear. The dynamics of this system can be described very easily between the thresholds, but not in the switching domains. For instance this approach fails to analyze stationary points of the system and to define continuous solutions in the switching domains. These problems were studied in [2], [3], but the proposed model did not take into account a time delay in cellular systems. However, analysis of real gene expression data shows a considerable number of time-delayed interactions suggesting that time delay is essential in gene regulation. Therefore, delays may have a great effect on the dynamics of the system presenting one of the critical factors that should be considered in reconstruction of gene regulatory networks. The goal of this work is to apply the singular perturbation analysis to certain systems with delay and to obtain an analog of Tikhonov's theorem, which provides sufficient conditions for constracting the limit system in the delay case.

  11. GeneViTo: Visualizing gene-product functional and structural features in genomic datasets

    Directory of Open Access Journals (Sweden)

    Promponas Vasilis J

    2003-10-01

    Full Text Available Abstract Background The availability of increasing amounts of sequence data from completely sequenced genomes boosts the development of new computational methods for automated genome annotation and comparative genomics. Therefore, there is a need for tools that facilitate the visualization of raw data and results produced by bioinformatics analysis, providing new means for interactive genome exploration. Visual inspection can be used as a basis to assess the quality of various analysis algorithms and to aid in-depth genomic studies. Results GeneViTo is a JAVA-based computer application that serves as a workbench for genome-wide analysis through visual interaction. The application deals with various experimental information concerning both DNA and protein sequences (derived from public sequence databases or proprietary data sources and meta-data obtained by various prediction algorithms, classification schemes or user-defined features. Interaction with a Graphical User Interface (GUI allows easy extraction of genomic and proteomic data referring to the sequence itself, sequence features, or general structural and functional features. Emphasis is laid on the potential comparison between annotation and prediction data in order to offer a supplement to the provided information, especially in cases of "poor" annotation, or an evaluation of available predictions. Moreover, desired information can be output in high quality JPEG image files for further elaboration and scientific use. A compilation of properly formatted GeneViTo input data for demonstration is available to interested readers for two completely sequenced prokaryotes, Chlamydia trachomatis and Methanococcus jannaschii. Conclusions GeneViTo offers an inspectional view of genomic functional elements, concerning data stemming both from database annotation and analysis tools for an overall analysis of existing genomes. The application is compatible with Linux or Windows ME-2000-XP operating

  12. Gene Expression Profile Analysis is Directly Affected by the Selected Reference Gene: The Case of Leaf-Cutting Atta Sexdens

    Directory of Open Access Journals (Sweden)

    Kalynka G. do Livramento

    2018-02-01

    Full Text Available Although several ant species are important targets for the development of molecular control strategies, only a few studies focus on identifying and validating reference genes for quantitative reverse transcription polymerase chain reaction (RT-qPCR data normalization. We provide here an extensive study to identify and validate suitable reference genes for gene expression analysis in the ant Atta sexdens, a threatening agricultural pest in South America. The optimal number of reference genes varies according to each sample and the result generated by RefFinder differed about which is the most suitable reference gene. Results suggest that the RPS16, NADH and SDHB genes were the best reference genes in the sample pool according to stability values. The SNF7 gene expression pattern was stable in all evaluated sample set. In contrast, when using less stable reference genes for normalization a large variability in SNF7 gene expression was recorded. There is no universal reference gene suitable for all conditions under analysis, since these genes can also participate in different cellular functions, thus requiring a systematic validation of possible reference genes for each specific condition. The choice of reference genes on SNF7 gene normalization confirmed that unstable reference genes might drastically change the expression profile analysis of target candidate genes.

  13. Validation of suitable reference genes for quantitative gene expression analysis in Panax ginseng

    Directory of Open Access Journals (Sweden)

    Meizhen eWang

    2016-01-01

    Full Text Available Reverse transcription-qPCR (RT-qPCR has become a popular method for gene expression studies. Its results require data normalization by housekeeping genes. No single gene is proved to be stably expressed under all experimental conditions. Therefore, systematic evaluation of reference genes is necessary. With the aim to identify optimum reference genes for RT-qPCR analysis of gene expression in different tissues of Panax ginseng and the seedlings grown under heat stress, we investigated the expression stability of eight candidate reference genes, including elongation factor 1-beta (EF1-β, elongation factor 1-gamma (EF1-γ, eukaryotic translation initiation factor 3G (IF3G, eukaryotic translation initiation factor 3B (IF3B, actin (ACT, actin11 (ACT11, glyceraldehyde-3-phosphate dehydrogenase (GAPDH and cyclophilin ABH-like protein (CYC, using four widely used computational programs: geNorm, Normfinder, BestKeeper, and the comparative ΔCt method. The results were then integrated using the web-based tool RefFinder. As a result, EF1-γ, IF3G and EF1-β were the three most stable genes in different tissues of P. ginseng, while IF3G, ACT11 and GAPDH were the top three-ranked genes in seedlings treated with heat. Using three better reference genes alone or in combination as internal control, we examined the expression profiles of MAR, a multiple function-associated mRNA-like non-coding RNA (mlncRNA in P. ginseng. Taken together, we recommended EF1-γ/IF3G and IF3G/ACT11 as the suitable pair of reference genes for RT-qPCR analysis of gene expression in different tissues of P. ginseng and the seedlings grown under heat stress, respectively. The results serve as a foundation for future studies on P. ginseng functional genomics.

  14. Gene-network analysis identifies susceptibility genes related to glycobiology in autism.

    Directory of Open Access Journals (Sweden)

    Bert van der Zwaag

    Full Text Available The recent identification of copy-number variation in the human genome has opened up new avenues for the discovery of positional candidate genes underlying complex genetic disorders, especially in the field of psychiatric disease. One major challenge that remains is pinpointing the susceptibility genes in the multitude of disease-associated loci. This challenge may be tackled by reconstruction of functional gene-networks from the genes residing in these loci. We applied this approach to autism spectrum disorder (ASD, and identified the copy-number changes in the DNA of 105 ASD patients and 267 healthy individuals with Illumina Humanhap300 Beadchips. Subsequently, we used a human reconstructed gene-network, Prioritizer, to rank candidate genes in the segmental gains and losses in our autism cohort. This analysis highlighted several candidate genes already known to be mutated in cognitive and neuropsychiatric disorders, including RAI1, BRD1, and LARGE. In addition, the LARGE gene was part of a sub-network of seven genes functioning in glycobiology, present in seven copy-number changes specifically identified in autism patients with limited co-morbidity. Three of these seven copy-number changes were de novo in the patients. In autism patients with a complex phenotype and healthy controls no such sub-network was identified. An independent systematic analysis of 13 published autism susceptibility loci supports the involvement of genes related to glycobiology as we also identified the same or similar genes from those loci. Our findings suggest that the occurrence of genomic gains and losses of genes associated with glycobiology are important contributors to the development of ASD.

  15. A new measure for functional similarity of gene products based on Gene Ontology

    Directory of Open Access Journals (Sweden)

    Lengauer Thomas

    2006-06-01

    Full Text Available Abstract Background Gene Ontology (GO is a standard vocabulary of functional terms and allows for coherent annotation of gene products. These annotations provide a basis for new methods that compare gene products regarding their molecular function and biological role. Results We present a new method for comparing sets of GO terms and for assessing the functional similarity of gene products. The method relies on two semantic similarity measures; simRel and funSim. One measure (simRel is applied in the comparison of the biological processes found in different groups of organisms. The other measure (funSim is used to find functionally related gene products within the same or between different genomes. Results indicate that the method, in addition to being in good agreement with established sequence similarity approaches, also provides a means for the identification of functionally related proteins independent of evolutionary relationships. The method is also applied to estimating functional similarity between all proteins in Saccharomyces cerevisiae and to visualizing the molecular function space of yeast in a map of the functional space. A similar approach is used to visualize the functional relationships between protein families. Conclusion The approach enables the comparison of the underlying molecular biology of different taxonomic groups and provides a new comparative genomics tool identifying functionally related gene products independent of homology. The proposed map of the functional space provides a new global view on the functional relationships between gene products or protein families.

  16. Gene Co-expression Analysis to Characterize Genes Related to Marbling Trait in Hanwoo (Korean) Cattle.

    Science.gov (United States)

    Lim, Dajeong; Lee, Seung-Hwan; Kim, Nam-Kuk; Cho, Yong-Min; Chai, Han-Ha; Seong, Hwan-Hoo; Kim, Heebal

    2013-01-01

    Marbling (intramuscular fat) is an important trait that affects meat quality and is a casual factor determining the price of beef in the Korean beef market. It is a complex trait and has many biological pathways related to muscle and fat. There is a need to identify functional modules or genes related to marbling traits and investigate their relationships through a weighted gene co-expression network analysis based on the system level. Therefore, we investigated the co-expression relationships of genes related to the 'marbling score' trait and systemically analyzed the network topology in Hanwoo (Korean cattle). As a result, we determined 3 modules (gene groups) that showed statistically significant results for marbling score. In particular, one module (denoted as red) has a statistically significant result for marbling score (p = 0.008) and intramuscular fat (p = 0.02) and water capacity (p = 0.006). From functional enrichment and relationship analysis of the red module, the pathway hub genes (IL6, CHRNE, RB1, INHBA and NPPA) have a direct interaction relationship and share the biological functions related to fat or muscle, such as adipogenesis or muscle growth. This is the first gene network study with m.logissimus in Hanwoo to observe co-expression patterns in divergent marbling phenotypes. It may provide insights into the functional mechanisms of the marbling trait.

  17. Gene Co-expression Analysis to Characterize Genes Related to Marbling Trait in Hanwoo (Korean Cattle

    Directory of Open Access Journals (Sweden)

    Dajeong Lim

    2013-01-01

    Full Text Available Marbling (intramuscular fat is an important trait that affects meat quality and is a casual factor determining the price of beef in the Korean beef market. It is a complex trait and has many biological pathways related to muscle and fat. There is a need to identify functional modules or genes related to marbling traits and investigate their relationships through a weighted gene co-expression network analysis based on the system level. Therefore, we investigated the co-expression relationships of genes related to the ‘marbling score’ trait and systemically analyzed the network topology in Hanwoo (Korean cattle. As a result, we determined 3 modules (gene groups that showed statistically significant results for marbling score. In particular, one module (denoted as red has a statistically significant result for marbling score (p = 0.008 and intramuscular fat (p = 0.02 and water capacity (p = 0.006. From functional enrichment and relationship analysis of the red module, the pathway hub genes (IL6, CHRNE, RB1, INHBA and NPPA have a direct interaction relationship and share the biological functions related to fat or muscle, such as adipogenesis or muscle growth. This is the first gene network study with m.logissimus in Hanwoo to observe co-expression patterns in divergent marbling phenotypes. It may provide insights into the functional mechanisms of the marbling trait.

  18. Serial analysis of gene expression (SAGE)

    NARCIS (Netherlands)

    van Ruissen, Fred; Baas, Frank

    2007-01-01

    In 1995, serial analysis of gene expression (SAGE) was developed as a versatile tool for gene expression studies. SAGE technology does not require pre-existing knowledge of the genome that is being examined and therefore SAGE can be applied to many different model systems. In this chapter, the SAGE

  19. When natural selection gives gene function the cold shoulder.

    Science.gov (United States)

    Cutter, Asher D; Jovelin, Richard

    2015-11-01

    It is tempting to invoke organismal selection as perpetually optimizing the function of any given gene. However, natural selection can drive genic functional change without improvement of biochemical activity, even to the extinction of gene activity. Detrimental mutations can creep in owing to linkage with other selectively favored loci. Selection can promote functional degradation, irrespective of genetic drift, when adaptation occurs by loss of gene function. Even stabilizing selection on a trait can lead to divergence of the underlying molecular constituents. Selfish genetic elements can also proliferate independent of any functional benefits to the host genome. Here we review the logic and evidence for these diverse processes acting in genome evolution. This collection of distinct evolutionary phenomena - while operating through easily understandable mechanisms - all contribute to the seemingly counterintuitive notion that maintenance or improvement of a gene's biochemical function sometimes do not determine its evolutionary fate. © 2015 WILEY Periodicals, Inc.

  20. RNA amplification for successful gene profiling analysis

    Directory of Open Access Journals (Sweden)

    Wang Ena

    2005-07-01

    Full Text Available Abstract The study of clinical samples is often limited by the amount of material available to study. While proteins cannot be multiplied in their natural form, DNA and RNA can be amplified from small specimens and used for high-throughput analyses. Therefore, genetic studies offer the best opportunity to screen for novel insights of human pathology when little material is available. Precise estimates of DNA copy numbers in a given specimen are necessary. However, most studies investigate static variables such as the genetic background of patients or mutations within pathological specimens without a need to assess proportionality of expression among different genes throughout the genome. Comparative genomic hybridization of DNA samples represents a crude exception to this rule since genomic amplification or deletion is compared among different specimens directly. For gene expression analysis, however, it is critical to accurately estimate the proportional expression of distinct RNA transcripts since such proportions directly govern cell function by modulating protein expression. Furthermore, comparative estimates of relative RNA expression at different time points portray the response of cells to environmental stimuli, indirectly informing about broader biological events affecting a particular tissue in physiological or pathological conditions. This cognitive reaction of cells is similar to the detection of electroencephalographic patterns which inform about the status of the brain in response to external stimuli. As our need to understand human pathophysiology at the global level increases, the development and refinement of technologies for high fidelity messenger RNA amplification have become the focus of increasing interest during the past decade. The need to increase the abundance of RNA has been met not only for gene specific amplification, but, most importantly for global transcriptome wide, unbiased amplification. Now gene

  1. Exploiting ontology graph for predicting sparsely annotated gene function.

    Science.gov (United States)

    Wang, Sheng; Cho, Hyunghoon; Zhai, ChengXiang; Berger, Bonnie; Peng, Jian

    2015-06-15

    Systematically predicting gene (or protein) function based on molecular interaction networks has become an important tool in refining and enhancing the existing annotation catalogs, such as the Gene Ontology (GO) database. However, functional labels with only a few (algorithm that independently considers each label faces a paucity of information and thus is prone to capture non-generalizable patterns in the data, resulting in poor predictive performance. There exist a variety of algorithms for function prediction, but none properly address this 'overfitting' issue of sparsely annotated functions, or do so in a manner scalable to tens of thousands of functions in the human catalog. We propose a novel function prediction algorithm, clusDCA, which transfers information between similar functional labels to alleviate the overfitting problem for sparsely annotated functions. Our method is scalable to datasets with a large number of annotations. In a cross-validation experiment in yeast, mouse and human, our method greatly outperformed previous state-of-the-art function prediction algorithms in predicting sparsely annotated functions, without sacrificing the performance on labels with sufficient information. Furthermore, we show that our method can accurately predict genes that will be assigned a functional label that has no known annotations, based only on the ontology graph structure and genes associated with other labels, which further suggests that our method effectively utilizes the similarity between gene functions. https://github.com/wangshenguiuc/clusDCA. © The Author 2015. Published by Oxford University Press.

  2. Digital gene expression analysis of gene expression differences within Brassica diploids and allopolyploids.

    Science.gov (United States)

    Jiang, Jinjin; Wang, Yue; Zhu, Bao; Fang, Tingting; Fang, Yujie; Wang, Youping

    2015-01-27

    Brassica includes many successfully cultivated crop species of polyploid origin, either by ancestral genome triplication or by hybridization between two diploid progenitors, displaying complex repetitive sequences and transposons. The U's triangle, which consists of three diploids and three amphidiploids, is optimal for the analysis of complicated genomes after polyploidization. Next-generation sequencing enables the transcriptome profiling of polyploids on a global scale. We examined the gene expression patterns of three diploids (Brassica rapa, B. nigra, and B. oleracea) and three amphidiploids (B. napus, B. juncea, and B. carinata) via digital gene expression analysis. In total, the libraries generated between 5.7 and 6.1 million raw reads, and the clean tags of each library were mapped to 18547-21995 genes of B. rapa genome. The unambiguous tag-mapped genes in the libraries were compared. Moreover, the majority of differentially expressed genes (DEGs) were explored among diploids as well as between diploids and amphidiploids. Gene ontological analysis was performed to functionally categorize these DEGs into different classes. The Kyoto Encyclopedia of Genes and Genomes analysis was performed to assign these DEGs into approximately 120 pathways, among which the metabolic pathway, biosynthesis of secondary metabolites, and peroxisomal pathway were enriched. The non-additive genes in Brassica amphidiploids were analyzed, and the results indicated that orthologous genes in polyploids are frequently expressed in a non-additive pattern. Methyltransferase genes showed differential expression pattern in Brassica species. Our results provided an understanding of the transcriptome complexity of natural Brassica species. The gene expression changes in diploids and allopolyploids may help elucidate the morphological and physiological differences among Brassica species.

  3. Evolutionary Fates and Dynamic Functionalization of Young Duplicate Genes in Arabidopsis Genomes.

    Science.gov (United States)

    Wang, Jun; Tao, Feng; Marowsky, Nicholas C; Fan, Chuanzhu

    2016-09-01

    Gene duplication is a primary means to generate genomic novelties, playing an essential role in speciation and adaptation. Particularly in plants, a high abundance of duplicate genes has been maintained for significantly long periods of evolutionary time. To address the manner in which young duplicate genes were derived primarily from small-scale gene duplication and preserved in plant genomes and to determine the underlying driving mechanisms, we generated transcriptomes to produce the expression profiles of five tissues in Arabidopsis thaliana and the closely related species Arabidopsis lyrata and Capsella rubella Based on the quantitative analysis metrics, we investigated the evolutionary processes of young duplicate genes in Arabidopsis. We determined that conservation, neofunctionalization, and specialization are three main evolutionary processes for Arabidopsis young duplicate genes. We explicitly demonstrated the dynamic functionalization of duplicate genes along the evolutionary time scale. Upon origination, duplicates tend to maintain their ancestral functions; but as they survive longer, they might be likely to develop distinct and novel functions. The temporal evolutionary processes and functionalization of plant duplicate genes are associated with their ancestral functions, dynamic DNA methylation levels, and histone modification abundances. Furthermore, duplicate genes tend to be initially expressed in pollen and then to gain more interaction partners over time. Altogether, our study provides novel insights into the dynamic retention processes of young duplicate genes in plant genomes. © 2016 American Society of Plant Biologists. All rights reserved.

  4. Evolutionary Fates and Dynamic Functionalization of Young Duplicate Genes in Arabidopsis Genomes1[OPEN

    Science.gov (United States)

    Wang, Jun; Tao, Feng; Marowsky, Nicholas C.; Fan, Chuanzhu

    2016-01-01

    Gene duplication is a primary means to generate genomic novelties, playing an essential role in speciation and adaptation. Particularly in plants, a high abundance of duplicate genes has been maintained for significantly long periods of evolutionary time. To address the manner in which young duplicate genes were derived primarily from small-scale gene duplication and preserved in plant genomes and to determine the underlying driving mechanisms, we generated transcriptomes to produce the expression profiles of five tissues in Arabidopsis thaliana and the closely related species Arabidopsis lyrata and Capsella rubella. Based on the quantitative analysis metrics, we investigated the evolutionary processes of young duplicate genes in Arabidopsis. We determined that conservation, neofunctionalization, and specialization are three main evolutionary processes for Arabidopsis young duplicate genes. We explicitly demonstrated the dynamic functionalization of duplicate genes along the evolutionary time scale. Upon origination, duplicates tend to maintain their ancestral functions; but as they survive longer, they might be likely to develop distinct and novel functions. The temporal evolutionary processes and functionalization of plant duplicate genes are associated with their ancestral functions, dynamic DNA methylation levels, and histone modification abundances. Furthermore, duplicate genes tend to be initially expressed in pollen and then to gain more interaction partners over time. Altogether, our study provides novel insights into the dynamic retention processes of young duplicate genes in plant genomes. PMID:27485883

  5. Common Mechanisms Underlying Refractive Error Identified in Functional Analysis of Gene Lists From Genome-Wide Association Study Results in 2 European British Cohorts

    Science.gov (United States)

    Hysi, Pirro G.; Mahroo, Omar A.; Cumberland, Phillippa; Wojciechowski, Robert; Williams, Katie M.; Young, Terri L.; Mackey, David A.; Rahi, Jugnoo S.; Hammond, Christopher J.

    2014-01-01

    IMPORTANCE To date, relatively few genes responsible for a fraction of heritability have been identified by means of large genetic association studies of refractive error. OBJECTIVE To explore the genetic mechanisms that lead to refractive error in the general population. DESIGN, SETTING, AND PARTICIPANTS Genome-wide association studies were carried out in 2 British population-based independent cohorts (N = 5928 participants) to identify genes moderately associated with refractive error. MAIN OUTCOMES AND MEASURES Enrichment analyses were used to identify sets of genes overrepresented in both cohorts. Enriched groups of genes were compared between both participating cohorts as a further measure against random noise. RESULTS Groups of genes enriched at highly significant statistical levels were remarkably consistent in both cohorts. In particular, these results indicated that plasma membrane (P = 7.64 × 10−30), cell-cell adhesion (P = 2.42 × 10−18), synaptic transmission (P = 2.70 × 10−14), calcium ion binding (P = 3.55 × 10−15), and cation channel activity (P = 2.77 × 10−14) were significantly overrepresented in relation to refractive error. CONCLUSIONS AND RELEVANCE These findings provide evidence that development of refractive error in the general population is related to the intensity of photosignal transduced from the retina, which may have implications for future interventions to minimize this disorder. Pathways connected to the procession of the nerve impulse are major mechanisms involved in the development of refractive error in populations of European origin. PMID:24264139

  6. Combining many interaction networks to predict gene function and analyze gene lists.

    Science.gov (United States)

    Mostafavi, Sara; Morris, Quaid

    2012-05-01

    In this article, we review how interaction networks can be used alone or in combination in an automated fashion to provide insight into gene and protein function. We describe the concept of a "gene-recommender system" that can be applied to any large collection of interaction networks to make predictions about gene or protein function based on a query list of proteins that share a function of interest. We discuss these systems in general and focus on one specific system, GeneMANIA, that has unique features and uses different algorithms from the majority of other systems. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Barley Stem Rust Resistance Genes: Structure and Function

    Directory of Open Access Journals (Sweden)

    Andris Kleinhofs

    2009-07-01

    Full Text Available Rusts are biotrophic pathogens that attack many plant species but are particularly destructive on cereal crops. The stem rusts (caused by have historically caused severe crop losses and continue to threaten production today. Barley ( L. breeders have controlled major stem rust epidemics since the 1940s with a single durable resistance gene . As new epidemics have threatened, additional resistance genes were identified to counter new rust races, such as the complex locus against races QCCJ and TTKSK. To understand how these genes work, we initiated research to clone and characterize them. The gene encodes a unique protein kinase with dual kinase domains, an active kinase, and a pseudokinase. Function of both domains is essential to confer resistance. The and genes are closely linked and function coordinately to confer resistance to several wheat ( L. stem rust races, including the race TTKSK (also called Ug99 that threatens the world's barley and wheat crops. The gene encodes typical resistance gene domains NBS, LRR, and protein kinase but is unique in that all three domains reside in a single gene, a previously unknown structure among plant disease resistance genes. The gene encodes an actin depolymerizing factor that functions in cytoskeleton rearrangement.

  8. Investigating Gene Function in Cereal Rust Fungi by Plant-Mediated Virus-Induced Gene Silencing.

    Science.gov (United States)

    Panwar, Vinay; Bakkeren, Guus

    2017-01-01

    Cereal rust fungi are destructive pathogens, threatening grain production worldwide. Targeted breeding for resistance utilizing host resistance genes has been effective. However, breakdown of resistance occurs frequently and continued efforts are needed to understand how these fungi overcome resistance and to expand the range of available resistance genes. Whole genome sequencing, transcriptomic and proteomic studies followed by genome-wide computational and comparative analyses have identified large repertoire of genes in rust fungi among which are candidates predicted to code for pathogenicity and virulence factors. Some of these genes represent defence triggering avirulence effectors. However, functions of most genes still needs to be assessed to understand the biology of these obligate biotrophic pathogens. Since genetic manipulations such as gene deletion and genetic transformation are not yet feasible in rust fungi, performing functional gene studies is challenging. Recently, Host-induced gene silencing (HIGS) has emerged as a useful tool to characterize gene function in rust fungi while infecting and growing in host plants. We utilized Barley stripe mosaic virus-mediated virus induced gene silencing (BSMV-VIGS) to induce HIGS of candidate rust fungal genes in the wheat host to determine their role in plant-fungal interactions. Here, we describe the methods for using BSMV-VIGS in wheat for functional genomics study in cereal rust fungi.

  9. Proteome Profiling Outperforms Transcriptome Profiling for Coexpression Based Gene Function Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Ma, Zihao; Carr, Steven A.; Mertins, Philipp; Zhang, Hui; Zhang, Zhen; Chan, Daniel W.; Ellis, Matthew J. C.; Townsend, R. Reid; Smith, Richard D.; McDermott, Jason E.; Chen, Xian; Paulovich, Amanda G.; Boja, Emily S.; Mesri, Mehdi; Kinsinger, Christopher R.; Rodriguez, Henry; Rodland, Karin D.; Liebler, Daniel C.; Zhang, Bing

    2016-11-11

    Coexpression of mRNAs under multiple conditions is commonly used to infer cofunctionality of their gene products despite well-known limitations of this “guilt-by-association” (GBA) approach. Recent advancements in mass spectrometry-based proteomic technologies have enabled global expression profiling at the protein level; however, whether proteome profiling data can outperform transcriptome profiling data for coexpression based gene function prediction has not been systematically investigated. Here, we address this question by constructing and analyzing mRNA and protein coexpression networks for three cancer types with matched mRNA and protein profiling data from The Cancer Genome Atlas (TCGA) and the Clinical Proteomic Tumor Analysis Consortium (CPTAC). Our analyses revealed a marked difference in wiring between the mRNA and protein coexpression networks. Whereas protein coexpression was driven primarily by functional similarity between coexpressed genes, mRNA coexpression was driven by both cofunction and chromosomal colocalization of the genes. Functionally coherent mRNA modules were more likely to have their edges preserved in corresponding protein networks than functionally incoherent mRNA modules. Proteomic data strengthened the link between gene expression and function for at least 75% of Gene Ontology (GO) biological processes and 90% of KEGG pathways. A web application Gene2Net (http://cptac.gene2net.org) developed based on the three protein coexpression networks revealed novel gene-function relationships, such as linking ERBB2 (HER2) to lipid biosynthetic process in breast cancer, identifying PLG as a new gene involved in complement activation, and identifying AEBP1 as a new epithelial-mesenchymal transition (EMT) marker. Our results demonstrate that proteome profiling outperforms transcriptome profiling for coexpression based gene function prediction. Proteomics should be integrated if not preferred in gene function and human disease studies

  10. Functional characterization of cotton genes responsive to Verticillium dahliae through bioinformatics and reverse genetics strategies.

    Science.gov (United States)

    Xu, Lian; Zhang, Wenwen; He, Xin; Liu, Min; Zhang, Kun; Shaban, Muhammad; Sun, Longqing; Zhu, Jiachen; Luo, Yijing; Yuan, Daojun; Zhang, Xianlong; Zhu, Longfu

    2014-12-01

    Verticillium wilt causes dramatic cotton yield loss in China. Although some genes or biological processes involved in the interaction between cotton and Verticillium dahliae have been identified, the molecular mechanism of cotton resistance to this disease is still poorly understood. The basic innate immune response for defence is somewhat conserved among plant species to defend themselves in complex environments, which makes it possible to characterize genes involved in cotton immunity based on information from model plants. With the availability of Arabidopsis databases, a data-mining strategy accompanied by virus-induced gene silencing (VIGS) and heterologous expression were adopted in cotton and tobacco, respectively, for global screening and gene function characterization. A total of 232 Arabidopsis genes putatively involved in basic innate immunity were screened as candidate genes, and bioinformatic analysis suggested a role of these genes in the immune response. In total, 38 homologous genes from cotton were singled out to characterize their response to V. dahliae and methyl jasmonate treatment through quantitative real-time PCR. The results revealed that 24 genes were differentially regulated by pathogen inoculation, and most of these genes responded to both Verticillium infection and jasmonic acid stimuli. Furthermore, the efficiency of the strategy was illustrated by the functional identification of six candidate genes via heterologous expression in tobacco or a knock-down approach using VIGS in cotton. Functional categorization of these 24 differentially expressed genes as well as functional analysis suggest that reactive oxygen species, salicylic acid- and jasmonic acid-signalling pathways are involved in the cotton disease resistance response to V. dahliae. Our data demonstrate how information from model plants can allow the rapid translation of information into non-model species without complete genome sequencing, via high-throughput screening and

  11. PoplarGene: poplar gene network and resource for mining functional information for genes from woody plants

    OpenAIRE

    Qi Liu; Changjun Ding; Yanguang Chu; Jiafei Chen; Weixi Zhang; Bingyu Zhang; Qinjun Huang; Xiaohua Su

    2016-01-01

    Poplar is not only an important resource for the production of paper, timber and other wood-based products, but it has also emerged as an ideal model system for studying woody plants. To better understand the biological processes underlying various traits in poplar, e.g., wood development, a comprehensive functional gene interaction network is highly needed. Here, we constructed a genome-wide functional gene network for poplar (covering ~70% of the 41,335 poplar genes) and created the network...

  12. Molecular cloning, functional characterization and expression analysis of a novel monosaccharide transporter gene OsMST6 from rice (Oryza sativa L.)

    NARCIS (Netherlands)

    Wang, Y.; Xiao, Y.; Zhang, Y.; Chai, C.; Wei, G.; Wei, X.; Xu, H.; Wang, M.; Ouwerkerk, P.B.F.; Zhu, Z.

    2008-01-01

    Monosaccharides transporters play important roles in assimilate supply for sink tissue development. In this study, a new monosaccharide transporter gene OsMST6 was identified from rice (Oryza sativa L.). The predicted OsMST6 protein shows typical features of sugar transporters and shares 79.6%

  13. Integrated genome-wide analysis of transcription factor occupancy, RNA polymerase II binding and steady-state RNA levels identify differentially regulated functional gene classes

    NARCIS (Netherlands)

    Mokry, M.; Hatzis, P.; Schuijers, J.; Lansu, N.; Ruzius, F.P.; Clevers, H.; Cuppen, E.

    2012-01-01

    Routine methods for assaying steady-state mRNA levels such as RNA-seq and micro-arrays are commonly used as readouts to study the role of transcription factors (TFs) in gene expression regulation. However, cellular RNA levels do not solely depend on activity of TFs and subsequent transcription by

  14. Development of a cell-defined siRNA microarray for analysis of gene function in human bone marrow stromal cells

    Directory of Open Access Journals (Sweden)

    Hi Chul Kim

    2016-03-01

    The efficiency of this CDSM was verified using three siRNAs (targeting p65, Slug, and N-cadherin, with persistent gene silencing for 5 days. We obtained the significant and reliable data with effective knock-down in our condition, and suggested our method as the qualitatively improved siRNA microarray screening method for hBMSCs.

  15. Cis-eQTL analysis and functional validation of candidate susceptibility genes for high-grade serous ovarian cancer

    DEFF Research Database (Denmark)

    Lawrenson, Kate; Li, Qiyuan; Kar, Siddhartha

    2015-01-01

    Genome-wide association studies have reported 11 regions conferring risk of high-grade serous epithelial ovarian cancer (HGSOC). Expression quantitative trait locus (eQTL) analyses can identify candidate susceptibility genes at risk loci. Here we evaluate cis-eQTL associations at 47 regions assoc...

  16. Phylogeny-function analysis of (meta)genomic libraries: screening for expression of ribosomal RNA genes by large-insert library fluorescent in situ hybridization (LIL-FISH)

    NARCIS (Netherlands)

    Leveau, J.H.J.; Gerards, S.; De Boer, W.; Van Veen, J.A.

    2004-01-01

    We assessed the utility of fluorescent in situ hybridization (FISH) in the screening of clone libraries of (meta)genomic or environmental DNA for the presence and expression of bacterial ribosomal RNA (rRNA) genes. To establish proof-of-principle, we constructed a fosmid-based library in Escherichia

  17. Molecular network, pathway, and functional analysis of time-dependent gene changes associated with pancreatic cancer susceptibility to oncolytic vaccinia virotherapy

    Directory of Open Access Journals (Sweden)

    Dana Haddad

    2016-01-01

    Conclusions: Our study reveals the ability to assess time-dependent changes in gene expression patterns in pancreatic cancer cells associated with infection and susceptibility to vaccinia viruses. This suggests that molecular assays may be useful to develop safer and more efficacious oncolyticvirotherapies and support the idea that these treatments may target pathways implicated in pancreatic cancer resistance to conventional therapies.

  18. In silico prioritisation of candidate genes for prokaryotic gene function discovery: an application of phylogenetic profiles.

    Science.gov (United States)

    Lin, Frank P Y; Coiera, Enrico; Lan, Ruiting; Sintchenko, Vitali

    2009-03-17

    In silico candidate gene prioritisation (CGP) aids the discovery of gene functions by ranking genes according to an objective relevance score. While several CGP methods have been described for identifying human disease genes, corresponding methods for prokaryotic gene function discovery are lacking. Here we present two prokaryotic CGP methods, based on phylogenetic profiles, to assist with this task. Using gene occurrence patterns in sample genomes, we developed two CGP methods (statistical and inductive CGP) to assist with the discovery of bacterial gene functions. Statistical CGP exploits the differences in gene frequency against phenotypic groups, while inductive CGP applies supervised machine learning to identify gene occurrence pattern across genomes. Three rediscovery experiments were designed to evaluate the CGP frameworks. The first experiment attempted to rediscover peptidoglycan genes with 417 published genome sequences. Both CGP methods achieved best areas under receiver operating characteristic curve (AUC) of 0.911 in Escherichia coli K-12 (EC-K12) and 0.978 Streptococcus agalactiae 2603 (SA-2603) genomes, with an average improvement in precision of >3.2-fold and a maximum of >27-fold using statistical CGP. A median AUC of >0.95 could still be achieved with as few as 10 genome examples in each group of genome examples in the rediscovery of the peptidoglycan metabolism genes. In the second experiment, a maximum of 109-fold improvement in precision was achieved in the rediscovery of anaerobic fermentation genes in EC-K12. The last experiment attempted to rediscover genes from 31 metabolic pathways in SA-2603, where 14 pathways achieved AUC >0.9 and 28 pathways achieved AUC >0.8 with the best inductive CGP algorithms. Our results demonstrate that the two CGP methods can assist with the study of functionally uncategorised genomic regions and discovery of bacterial gene-function relationships. Our rediscovery experiments also provide a set of standard tasks

  19. In silico prioritisation of candidate genes for prokaryotic gene function discovery: an application of phylogenetic profiles

    Directory of Open Access Journals (Sweden)

    Lan Ruiting

    2009-03-01

    Full Text Available Abstract Background In silico candidate gene prioritisation (CGP aids the discovery of gene functions by ranking genes according to an objective relevance score. While several CGP methods have been described for identifying human disease genes, corresponding methods for prokaryotic gene function discovery are lacking. Here we present two prokaryotic CGP methods, based on phylogenetic profiles, to assist with this task. Results Using gene occurrence patterns in sample genomes, we developed two CGP methods (statistical and inductive CGP to assist with the discovery of bacterial gene functions. Statistical CGP exploits the differences in gene frequency against phenotypic groups, while inductive CGP applies supervised machine learning to identify gene occurrence pattern across genomes. Three rediscovery experiments were designed to evaluate the CGP frameworks. The first experiment attempted to rediscover peptidoglycan genes with 417 published genome sequences. Both CGP methods achieved best areas under receiver operating characteristic curve (AUC of 0.911 in Escherichia coli K-12 (EC-K12 and 0.978 Streptococcus agalactiae 2603 (SA-2603 genomes, with an average improvement in precision of >3.2-fold and a maximum of >27-fold using statistical CGP. A median AUC of >0.95 could still be achieved with as few as 10 genome examples in each group of genome examples in the rediscovery of the peptidoglycan metabolism genes. In the second experiment, a maximum of 109-fold improvement in precision was achieved in the rediscovery of anaerobic fermentation genes in EC-K12. The last experiment attempted to rediscover genes from 31 metabolic pathways in SA-2603, where 14 pathways achieved AUC >0.9 and 28 pathways achieved AUC >0.8 with the best inductive CGP algorithms. Conclusion Our results demonstrate that the two CGP methods can assist with the study of functionally uncategorised genomic regions and discovery of bacterial gene-function relationships. Our

  20. Gene expression profile analysis of human intervertebral disc degeneration

    Directory of Open Access Journals (Sweden)

    Kai Chen

    2013-01-01

    Full Text Available In this study, we used microarray analysis to investigate the biogenesis and progression of intervertebral disc degeneration. The gene expression profiles of 37 disc tissue samples obtained from patients with herniated discs and degenerative disc disease collected by the National Cancer Institute Cooperative Tissue Network were analyzed. Differentially expressed genes between more and less degenerated discs were identified by significant analysis of microarray. A total of 555 genes were significantly overexpressed in more degenerated discs with a false discovery rate of < 3%. Functional annotation showed that these genes were significantly associated with membrane-bound vesicles, calcium ion binding and extracellular matrix. Protein-protein interaction analysis showed that these genes, including previously reported genes such as fibronectin, COL2A1 and f-catenin, may play key roles in disc degeneration. Unsupervised clustering indicated that the widely used morphology-based Thompson grading system was only marginally associated with the molecular classification of intervertebral disc degeneration. These findings indicate that detailed, systematic gene analysis may be a useful way of studying the biology of intervertebral disc degeneration.

  1. Robustness Analysis of Gene Regulatory Networks

    Science.gov (United States)

    Kadelka, Claus T.

    Cells generally manage to maintain stable phenotypes in the face of widely varying environmental conditions. This fact is particularly surprising since the key step of gene expression is fundamentally a stochastic process. Many hypotheses have been suggested to explain this robustness. First, the special topology of gene regulatory networks (GRNs) seems to be an important factor as they possess feedforward loops and certain other topological features much more frequently than expected. Second, genes often regulate each other in a canalizing fashion: there exists a dominance order amidst the regulators of a gene, which in silico leads to very robust phenotypes. Lastly, an entirely novel gene regulatory mechanism, discovered and studied during the last two decades, which is believed to play an important role in cancer, is shedding some light on how canalization may in fact take place as part of a cell's gene regulatory program. Short segments of single-stranded RNA, so-called microRNAs, which are embedded in several different types of feedforward loops, help smooth out noise and generate canalizing effects in gene regulation by overriding the effect of certain genes on others. Boolean networks and their multi-state extensions have been successfully used to model GRNs for many years. In this dissertation, GRNs are represented in the time- and state-discrete framework of Stochastic Discrete Dynamical Systems (SDDS), which captures the cell-inherent stochasticity. Each gene has finitely many different concentration levels and its concentration at the next time step is determined by a gene-specific update rule that depends on the current concentration of the gene's regulators. The update rules in published gene regulatory networks are often nested canalizing functions. In Chapter 2, this class of functions is introduced, generalized and analyzed with respect to its potential to confer robustness. Chapter 3 describes a simulation study, which supports the hypothesis that

  2. Functional and shape data analysis

    CERN Document Server

    Srivastava, Anuj

    2016-01-01

    This textbook for courses on function data analysis and shape data analysis describes how to define, compare, and mathematically represent shapes, with a focus on statistical modeling and inference. It is aimed at graduate students in analysis in statistics, engineering, applied mathematics, neuroscience, biology, bioinformatics, and other related areas. The interdisciplinary nature of the broad range of ideas covered—from introductory theory to algorithmic implementations and some statistical case studies—is meant to familiarize graduate students with an array of tools that are relevant in developing computational solutions for shape and related analyses. These tools, gleaned from geometry, algebra, statistics, and computational science, are traditionally scattered across different courses, departments, and disciplines; Functional and Shape Data Analysis offers a unified, comprehensive solution by integrating the registration problem into shape analysis, better preparing graduate students for handling fu...

  3. Understanding doublecortin-like kinase gene function through transgenesis

    NARCIS (Netherlands)

    Schenk, Geert J.

    2010-01-01

    Doublecortin (DCX) and DCX-domain containing Doublecortin-Like Kinase (DCLK) gene splice variants function during embryonic development, where they play a role in microtubule binding. Although a role for the DCLK gene during embryogenesis is clearly established, it encodes multiple, different

  4. The ALMT Gene Family Performs Multiple Functions in Plants

    Directory of Open Access Journals (Sweden)

    Jie Liu

    2018-02-01

    Full Text Available The aluminium activated malate transporter (ALMT gene family is named after the first member of the family identified in wheat (Triticum aestivum L.. The product of this gene controls resistance to aluminium (Al toxicity. ALMT genes encode transmembrane proteins that function as anion channels and perform multiple functions involving the transport of organic anions (e.g., carboxylates and inorganic anions in cells. They share a PF11744 domain and are classified in the Fusaric acid resistance protein-like superfamily, CL0307. The proteins typically have five to seven transmembrane regions in the N-terminal half and a long hydrophillic C-terminal tail but predictions of secondary structure vary. Although widely spread in plants, relatively little information is available on the roles performed by other members of this family. In this review, we summarized functions of ALMT gene families, including Al resistance, stomatal function, mineral nutrition, microbe interactions, fruit acidity, light response and seed development.

  5. FunGeneNet: a web tool to estimate enrichment of functional interactions in experimental gene sets.

    Science.gov (United States)

    Tiys, Evgeny S; Ivanisenko, Timofey V; Demenkov, Pavel S; Ivanisenko, Vladimir A

    2018-02-09

    Estimation of functional connectivity in gene sets derived from genome-wide or other biological experiments is one of the essential tasks of bioinformatics. A promising approach for solving this problem is to compare gene networks built using experimental gene sets with random networks. One of the resources that make such an analysis possible is CrossTalkZ, which uses the FunCoup database. However, existing methods, including CrossTalkZ, do not take into account individual types of interactions, such as protein/protein interactions, expression regulation, transport regulation, catalytic reactions, etc., but rather work with generalized types characterizing the existence of any connection between network members. We developed the online tool FunGeneNet, which utilizes the ANDSystem and STRING to reconstruct gene networks using experimental gene sets and to estimate their difference from random networks. To compare the reconstructed networks with random ones, the node permutation algorithm implemented in CrossTalkZ was taken as a basis. To study the FunGeneNet applicability, the functional connectivity analysis of networks constructed for gene sets involved in the Gene Ontology biological processes was conducted. We showed that the method sensitivity exceeds 0.8 at a specificity of 0.95. We found that the significance level of the difference between gene networks of biological processes and random networks is determined by the type of connections considered between objects. At the same time, the highest reliability is achieved for the generalized form of connections that takes into account all the individual types of connections. By taking examples of the thyroid cancer networks and the apoptosis network, it is demonstrated that key participants in these processes are involved in the interactions of those types by which these networks differ from random ones. FunGeneNet is a web tool aimed at proving the functionality of networks in a wide range of sizes of

  6. Germacrene A synthase in yarrow (Achillea millefolium) is an enzyme with mixed substrate specificity: gene cloning, functional characterization and expression analysis

    OpenAIRE

    Pazouki, Leila; Memari, Hamid R.; Kännaste, Astrid; Bichele, Rudolf; Niinemets, Ülo

    2015-01-01

    Terpenoid synthases constitute a highly diverse gene family producing a wide range of cyclic and acyclic molecules consisting of isoprene (C5) residues. Often a single terpene synthase produces a spectrum of molecules of given chain length, but some terpene synthases can use multiple substrates, producing products of different chain length. Only a few such enzymes has been characterized, but the capacity for multiple-substrate use can be more widespread than previously thought. Here we focuse...

  7. Functional Analysis of Metabolomics Data.

    Science.gov (United States)

    Chagoyen, Mónica; López-Ibáñez, Javier; Pazos, Florencio

    2016-01-01

    Metabolomics aims at characterizing the repertory of small chemical compounds in a biological sample. As it becomes more massive and larger sets of compounds are detected, a functional analysis is required to convert these raw lists of compounds into biological knowledge. The most common way of performing such analysis is "annotation enrichment analysis," also used in transcriptomics and proteomics. This approach extracts the annotations overrepresented in the set of chemical compounds arisen in a given experiment. Here, we describe the protocols for performing such analysis as well as for visualizing a set of compounds in different representations of the metabolic networks, in both cases using free accessible web tools.

  8. From phenotype to gene: detecting disease-specific gene functional modules via a text-based human disease phenotype network construction.

    Science.gov (United States)

    Zhang, Shihua; Zhang, Shi-Hua; Wu, Chao; Li, Xia; Chen, Xi; Jiang, Wei; Gong, Bin-Sheng; Li, Jiang; Yan, Yu-Qing

    2010-08-20

    Currently, some efforts have been devoted to the text analysis of disease phenotype data, and their results indicated that similar disease phenotypes arise from functionally related genes. These related genes work together, as a functional module, to perform a desired cellular function. We constructed a text-based human disease phenotype network and detected 82 disease-specific gene functional modules, each corresponding to a different phenotype cluster, by means of graph-based clustering and mapping from disease phenotype to gene. Since genes in such gene functional modules are functionally related and cause clinically similar diseases, they may share common genetic origin of their associated disease phenotypes. We believe the investigation may facilitate the ultimate understanding of the common pathophysiologic basis of associated diseases. Copyright 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  9. Floral homeotic C function genes repress specific B function genes in the carpel whorl of the basal eudicot California poppy (Eschscholzia californica

    Directory of Open Access Journals (Sweden)

    Yellina Aravinda L

    2010-12-01

    Full Text Available Abstract Background The floral homeotic C function gene AGAMOUS (AG confers stamen and carpel identity and is involved in the regulation of floral meristem termination in Arabidopsis. Arabidopsis ag mutants show complete homeotic conversions of stamens into petals and carpels into sepals as well as indeterminacy of the floral meristem. Gene function analysis in model core eudicots and the monocots rice and maize suggest a conserved function for AG homologs in angiosperms. At the same time gene phylogenies reveal a complex history of gene duplications and repeated subfunctionalization of paralogs. Results EScaAG1 and EScaAG2, duplicate AG homologs in the basal eudicot Eschscholzia californica show a high degree of similarity in sequence and expression, although EScaAG2 expression is lower than EScaAG1 expression. Functional studies employing virus-induced gene silencing (VIGS demonstrate that knock down of EScaAG1 and 2 function leads to homeotic conversion of stamens into petaloid structures and defects in floral meristem termination. However, carpels are transformed into petaloid organs rather than sepaloid structures. We also show that a reduction of EScaAG1 and EScaAG2 expression leads to significantly increased expression of a subset of floral homeotic B genes. Conclusions This work presents expression and functional analysis of the two basal eudicot AG homologs. The reduction of EScaAG1 and 2 functions results in the change of stamen to petal identity and a transformation of the central whorl organ identity from carpel into petal identity. Petal identity requires the presence of the floral homeotic B function and our results show that the expression of a subset of B function genes extends into the central whorl when the C function is reduced. We propose a model for the evolution of B function regulation by C function suggesting that the mode of B function gene regulation found in Eschscholzia is ancestral and the C-independent regulation as

  10. Array2BIO: from microarray expression data to functional annotation of co-regulated genes

    Directory of Open Access Journals (Sweden)

    Rasley Amy

    2006-06-01

    Full Text Available Abstract Background There are several isolated tools for partial analysis of microarray expression data. To provide an integrative, easy-to-use and automated toolkit for the analysis of Affymetrix microarray expression data we have developed Array2BIO, an application that couples several analytical methods into a single web based utility. Results Array2BIO converts raw intensities into probe expression values, automatically maps those to genes, and subsequently identifies groups of co-expressed genes using two complementary approaches: (1 comparative analysis of signal versus control and (2 clustering analysis of gene expression across different conditions. The identified genes are assigned to functional categories based on Gene Ontology classification and KEGG protein interaction pathways. Array2BIO reliably handles low-expressor genes and provides a set of statistical methods for quantifying expression levels, including Benjamini-Hochberg and Bonferroni multiple testing corrections. An automated interface with the ECR Browser provides evolutionary conservation analysis for the identified gene loci while the interconnection with Crème allows prediction of gene regulatory elements that underlie observed expression patterns. Conclusion We have developed Array2BIO – a web based tool for rapid comprehensive analysis of Affymetrix microarray expression data, which also allows users to link expression data to Dcode.org comparative genomics tools and integrates a system for translating co-expression data into mechanisms of gene co-regulation. Array2BIO is publicly available at http://array2bio.dcode.org.

  11. Wavelets in functional data analysis

    CERN Document Server

    Morettin, Pedro A; Vidakovic, Brani

    2017-01-01

    Wavelet-based procedures are key in many areas of statistics, applied mathematics, engineering, and science. This book presents wavelets in functional data analysis, offering a glimpse of problems in which they can be applied, including tumor analysis, functional magnetic resonance and meteorological data. Starting with the Haar wavelet, the authors explore myriad families of wavelets and how they can be used. High-dimensional data visualization (using Andrews' plots), wavelet shrinkage (a simple, yet powerful, procedure for nonparametric models) and a selection of estimation and testing techniques (including a discussion on Stein’s Paradox) make this a highly valuable resource for graduate students and experienced researchers alike.

  12. Functional evolution of ADAMTS genes: Evidence from analyses of phylogeny and gene organization

    Directory of Open Access Journals (Sweden)

    Van Meir Erwin G

    2005-02-01

    Full Text Available Abstract Background The ADAMTS (A Disintegrin-like and Metalloprotease with Thrombospondin motifs proteins are a family of metalloproteases with sequence similarity to the ADAM proteases, that contain the thrombospondin type 1 sequence repeat motifs (TSRs common to extracellular matrix proteins. ADAMTS proteins have recently gained attention with the discovery of their role in a variety of diseases, including tissue and blood disorders, cancer, osteoarthritis, Alzheimer's and the genetic syndromes Weill-Marchesani syndrome (ADAMTS10, thrombotic thrombocytopenic purpura (ADAMTS13, and Ehlers-Danlos syndrome type VIIC (ADAMTS2 in humans and belted white-spotting mutation in mice (ADAMTS20. Results Phylogenetic analysis and comparison of the exon/intron organization of vertebrate (Homo, Mus, Fugu, chordate (Ciona and invertebrate (Drosophila and Caenorhabditis ADAMTS homologs has elucidated the evolutionary relationships of this important gene family, which comprises 19 members in humans. Conclusions The evolutionary history of ADAMTS genes in vertebrate genomes has been marked by rampant gene duplication, including a retrotransposition that gave rise to a distinct ADAMTS subfamily (ADAMTS1, -4, -5, -8, -15 that may have distinct aggrecanase and angiogenesis functions.

  13. Ranking, selecting, and prioritising genes with desirability functions

    Directory of Open Access Journals (Sweden)

    Stanley E. Lazic

    2015-11-01

    Full Text Available In functional genomics experiments, researchers often select genes to follow-up or validate from a long list of differentially expressed genes. Typically, sharp thresholds are used to bin genes into groups such as significant/non-significant or fold change above/below a cut-off value, and ad hoc criteria are also used such as favouring well-known genes. Binning, however, is inefficient and does not take the uncertainty of the measurements into account. Furthermore, p-values, fold-changes, and other outcomes are treated as equally important, and relevant genes may be overlooked with such an approach. Desirability functions are proposed as a way to integrate multiple selection criteria for ranking, selecting, and prioritising genes. These functions map any variable to a continuous 0–1 scale, where one is maximally desirable and zero is unacceptable. Multiple selection criteria are then combined to provide an overall desirability that is used to rank genes. In addition to p-values and fold-changes, further experimental results and information contained in databases can be easily included as criteria. The approach is demonstrated with a breast cancer microarray data set. The functions and an example data set can be found in the desiR package on CRAN (https://cran.r-project.org/web/packages/desiR/ and the development version is available on GitHub (https://github.com/stanlazic/desiR.

  14. Characterization, Function, and Transcriptional Profiling Analysis of 3-Hydroxy-3-methylglutaryl-CoA Synthase Gene (GbHMGS1 towards Stresses and Exogenous Hormone Treatments in Ginkgo biloba

    Directory of Open Access Journals (Sweden)

    Xiangxiang Meng

    2017-10-01

    Full Text Available 3-Hydroxy-3-methylglutaryl-CoA synthase (HMGS is one of the rate-limiting enzymes in the mevalonate pathway as it catalyzes the condensation of acetoacetyl-CoA to form 3-hydroxy-3-methylglutaryl-CoA. In this study, A HMGS gene (designated as GbHMGS1 was cloned from Ginkgo biloba for the first time. GbHMGS1 contained a 1422-bp open-reading frame encoding 474 amino acids. Comparative and bioinformatics analysis revealed that GbHMGS1 was extensively homologous to HMGSs from other plant species. Phylogenetic analysis indicated that the GbHMGS1 belonged to the plant HMGS superfamily, sharing a common evolutionary ancestor with other HMGSs, and had a further relationship with other gymnosperm species. The yeast complement assay of GbHMGS1 in HMGS-deficient Saccharomyces cerevisiae strain YSC6274 demonstrated that GbHMGS1 gene encodes a functional HMGS enzyme. The recombinant protein of GbHMGS1 was successfully expressed in E. coli. The in vitro enzyme activity assay showed that the kcat and Km values of GbHMGS1 were 195.4 min−1 and 689 μM, respectively. GbHMGS1 was constitutively expressed in all tested tissues, including the roots, stems, leaves, female flowers, male flowers and fruits. The transcript accumulation for GbHMGS1 was highest in the leaves. Expression profiling analyses revealed that GbHMGS1 expression was induced by abiotic stresses (ultraviolet B and cold and hormone treatments (salicylic acid, methyl jasmonate, and ethephon in G. biloba, indicating that GbHMGS1 gene was involved in the response to environmental stresses and plant hormones.

  15. [Prediction and bioinformatics analysis of human gene expression profiling regulated by amifostine].

    Science.gov (United States)

    Yang, Bo; Cai, Li-Li; Chi, Xiao-Hua; Lu, Xue-Chun; Zhang, Feng; Tuo, Shuai; Zhu, Hong-Li; Liu, Li-Hong; Yan, Jiang-Wei; Tuo, Chao-Wei

    2011-06-01

    Objective of this study was to perform bioinformatics analysis of the characteristics of gene expression profiling regulated by amifostine and predict its novel potential biological function to provide a direction for further exploring pharmacological actions of amifostine and study methods. Amifostine was used as a key word to search internet-based free gene expression database including GEO, affymetrix gene chip database, GenBank, SAGE, GeneCard, InterPro, ProtoNet, UniProt and BLOCKS and the sifted amifostine-regulated gene expression profiling data was subjected to validity testing, gene expression difference analysis and functional clustering and gene annotation. The results showed that only one data of gene expression profiling regulated by amifostine was sifted from GEO database (accession: GSE3212). Through validity testing and gene expression difference analysis, significant difference (p < 0.01) was only found in 2.14% of the whole genome (460/192000). Gene annotation analysis showed that 139 out of 460 genes were known genes, in which 77 genes were up-regulated and 62 genes were down-regulated. 13 out of 139 genes were newly expressed following amifostine treatment of K562 cells, however expression of 5 genes was completely inhibited. Functional clustering displayed that 139 genes were divided into 11 categories and their biological function was involved in hematopoietic and immunologic regulation, apoptosis and cell cycle. It is concluded that bioinformatics method can be applied to analysis of gene expression profiling regulated by amifostine. Amifostine has a regulatory effect on human gene expression profiling and this action is mainly presented in biological processes including hematopoiesis, immunologic regulation, apoptosis and cell cycle and so on. The effect of amifostine on human gene expression need to be further testified in experimental condition.

  16. Carotenoid biosynthetic genes in Brassica rapa: comparative genomic analysis, phylogenetic analysis, and expression profiling.

    Science.gov (United States)

    Li, Peirong; Zhang, Shujiang; Zhang, Shifan; Li, Fei; Zhang, Hui; Cheng, Feng; Wu, Jian; Wang, Xiaowu; Sun, Rifei

    2015-07-03

    Carotenoids are isoprenoid compounds synthesized by all photosynthetic organisms. Despite much research on carotenoid biosynthesis in the model plant Arabidopsis thaliana, there is a lack of information on the carotenoid pathway in Brassica rapa. To better understand its carotenoid biosynthetic pathway, we performed a systematic analysis of carotenoid biosynthetic genes at the genome level in B. rapa. We identified 67 carotenoid biosynthetic genes in B. rapa, which were orthologs of the 47 carotenoid genes in A. thaliana. A high level of synteny was observed for carotenoid biosynthetic genes between A. thaliana and B. rapa. Out of 47 carotenoid biosynthetic genes in A. thaliana, 46 were successfully mapped to the 10 B. rapa chromosomes, and most of the genes retained more than one copy in B. rapa. The gene expansion was caused by the whole-genome triplication (WGT) event experienced by Brassica species. An expression analysis of the carotenoid biosynthetic genes suggested that their expression levels differed in root, stem, leaf, flower, callus, and silique tissues. Additionally, the paralogs of each carotenoid biosynthetic gene, which were generated from the WGT in B. rapa, showed significantly different expression levels among tissues, suggesting differentiated functions for these multi-copy genes in the carotenoid pathway. This first systematic study of carotenoid biosynthetic genes in B. rapa provides insights into the carotenoid metabolic mechanisms of Brassica crops. In addition, a better understanding of carotenoid biosynthetic genes in B. rapa will contribute to the development of conventional and transgenic B. rapa cultivars with enriched carotenoid levels in the future.

  17. Analysis of gene expression in the nervous system identifies key genes and novel candidates for health and disease.

    Science.gov (United States)

    Carpanini, Sarah M; Wishart, Thomas M; Gillingwater, Thomas H; Manson, Jean C; Summers, Kim M

    2017-04-01

    The incidence of neurodegenerative diseases in the developed world has risen over the last century, concomitant with an increase in average human lifespan. A major challenge is therefore to identify genes that control neuronal health and viability with a view to enhancing neuronal health during ageing and reducing the burden of neurodegeneration. Analysis of gene expression data has recently been used to infer gene functions for a range of tissues from co-expression networks. We have now applied this approach to transcriptomic datasets from the mammalian nervous system available in the public domain. We have defined the genes critical for influencing neuronal health and disease in different neurological cell types and brain regions. The functional contribution of genes in each co-expression cluster was validated using human disease and knockout mouse phenotypes, pathways and gene ontology term annotation. Additionally a number of poorly annotated genes were implicated by this approach in nervous system function. Exploiting gene expression data available in the public domain allowed us to validate key nervous system genes and, importantly, to identify additional genes with minimal functional annotation but with the same expression pattern. These genes are thus novel candidates for a role in neurological health and disease and could now be further investigated to confirm their function and regulation during ageing and neurodegeneration.

  18. Genome Holography: Deciphering Function-Form Motifs from Gene Expression Data

    Science.gov (United States)

    Roth, Dalit; Regev, Tamar; Bransburg-Zabary, Sharron; Jacob, Eshel Ben

    2008-01-01

    Background DNA chips allow simultaneous measurements of genome-wide response of thousands of genes, i.e. system level monitoring of the gene-network activity. Advanced analysis methods have been developed to extract meaningful information from the vast amount of raw gene-expression data obtained from the microarray measurements. These methods usually aimed to distinguish between groups of subjects (e.g., cancer patients vs. healthy subjects) or identifying marker genes that help to distinguish between those groups. We assumed that motifs related to the internal structure of operons and gene-networks regulation are also embedded in microarray and can be deciphered by using proper analysis. Methodology/Principal Findings The analysis presented here is based on investigating the gene-gene correlations. We analyze a database of gene expression of Bacillus subtilis exposed to sub-lethal levels of 37 different antibiotics. Using unsupervised analysis (dendrogram) of the matrix of normalized gene-gene correlations, we identified the operons as they form distinct clusters of genes in the sorted correlation matrix. Applying dimension-reduction algorithm (Principal Component Analysis, PCA) to the matrices of normalized correlations reveals functional motifs. The genes are placed in a reduced 3-dimensional space of the three leading PCA eigen-vectors according to their corresponding eigen-values. We found that the organization of the genes in the reduced PCA space recovers motifs of the operon internal structure, such as the order of the genes along the genome, gene separation by non-coding segments, and translational start and end regions. In addition to the intra-operon structure, it is also possible to predict inter-operon relationships, operons sharing functional regulation factors, and more. In particular, we demonstrate the above in the context of the competence and sporulation pathways. Conclusions/Significance We demonstrated that by analyzing gene-gene correlation

  19. Biochemical mechanisms determine the functional compatibility of heterologous genes

    DEFF Research Database (Denmark)

    Porse, Andreas; Schou, Thea S.; Munck, Christian

    2018-01-01

    Elucidating the factors governing the functional compatibility of horizontally transferred genes is important to understand bacterial evolution, including the emergence and spread of antibiotic resistance, and to successfully engineer biological systems. In silico efforts and work using single-gene...... libraries have suggested that sequence composition is a strong barrier for the successful integration of heterologous genes. Here we sample 200 diverse genes, representing >80% of sequenced antibiotic resistance genes, to interrogate the factors governing genetic compatibility in new hosts. In contrast...... to previous work, we find that GC content, codon usage, and mRNA-folding energy are of minor importance for the compatibility of mechanistically diverse gene products at moderate expression. Instead, we identify the phylogenetic origin, and the dependence of a resistance mechanism on host physiology, as major...

  20. Fifteen papers on functional analysis

    CERN Document Server

    Allakhverdiev, B P; Fainshtein, A S; Khelemskii, AYa; Klenina, LI

    1984-01-01

    The papers in this volume cover topics on functional analysis. They have been selected, translated, and edited from publications not otherwise translated into English under the auspices of the AMS-ASL-IMS Committee on Translations from Russian and Other Foreign Languages.

  1. Special functions in Fuzzy Analysis

    OpenAIRE

    Angel Garrido

    2006-01-01

    In the treatment of Fuzzy Logic an useful tool appears: the membership function, with the information about the degree of completion of a condition which defines the respective Fuzzy Set or Fuzzy Relation. With their introduction, it is possible to prove some results on the foundations of Fuzzy Logic and open new ways in Fuzzy Analysis.

  2. Functional Analysis-Spectral Theoryl

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 4. Functional Analysis - Spectral Theory1. Cherian Varughese. Book Review Volume 6 Issue 4 April 2001 pp 91-92 ... Author Affiliations. Cherian Varughese1. Indian Statistical Institute, 8th Mile, Mysore Road, Bangalore 560 059, India.

  3. Special functions in Fuzzy Analysis

    Directory of Open Access Journals (Sweden)

    Angel Garrido

    2006-01-01

    Full Text Available In the treatment of Fuzzy Logic an useful tool appears: the membership function, with the information about the degree of completion of a condition which defines the respective Fuzzy Set or Fuzzy Relation. With their introduction, it is possible to prove some results on the foundations of Fuzzy Logic and open new ways in Fuzzy Analysis.

  4. A Systematic Analysis of Candidate Genes Associated with Nicotine Addiction.

    Science.gov (United States)

    Liu, Meng; Li, Xia; Fan, Rui; Liu, Xinhua; Wang, Ju

    2015-01-01

    Nicotine, as the major psychoactive component of tobacco, has broad physiological effects within the central nervous system, but our understanding of the molecular mechanism underlying its neuronal effects remains incomplete. In this study, we performed a systematic analysis on a set of nicotine addiction-related genes to explore their characteristics at network levels. We found that NAGenes tended to have a more moderate degree and weaker clustering coefficient and to be less central in the network compared to alcohol addiction-related genes or cancer genes. Further, clustering of these genes resulted in six clusters with themes in synaptic transmission, signal transduction, metabolic process, and apoptosis, which provided an intuitional view on the major molecular functions of the genes. Moreover, functional enrichment analysis revealed that neurodevelopment, neurotransmission activity, and metabolism related biological processes were involved in nicotine addiction. In summary, by analyzing the overall characteristics of the nicotine addiction related genes, this study provided valuable information for understanding the molecular mechanisms underlying nicotine addiction.

  5. Gene-environment interactions involving functional variants

    DEFF Research Database (Denmark)

    Barrdahl, Myrto; Rudolph, Anja; Hopper, John L

    2017-01-01

    epidemiological breast cancer risk factors in relation to breast cancer. Analyses were conducted on up to 58,573 subjects (26,968 cases and 31,605 controls) from the Breast Cancer Association Consortium, in one of the largest studies of its kind. Analyses were carried out separately for estrogen receptor (ER.......01. The strongest interaction result in relation to overall breast cancer risk was found between CFLAR-rs7558475 and current smoking (ORint  = 0.77, 95% CI: 0.67-0.88, pint  = 1.8 × 10(-4) ). The interaction with the strongest statistical evidence was found between 5q14-rs7707921 and alcohol consumption (ORint =1.......36, 95% CI: 1.16-1.59, pint  = 1.9 × 10(-5) ) in relation to ER- disease risk. The remaining two gene-environment interactions were also identified in relation to ER- breast cancer risk and were found between 3p21-rs6796502 and age at menarche (ORint  = 1.26, 95% CI: 1.12-1.43, pint =1.8 × 10...

  6. Analysis of pan-genome to identify the core genes and essential genes of Brucella spp.

    Science.gov (United States)

    Yang, Xiaowen; Li, Yajie; Zang, Juan; Li, Yexia; Bie, Pengfei; Lu, Yanli; Wu, Qingmin

    2016-04-01

    Brucella spp. are facultative intracellular pathogens, that cause a contagious zoonotic disease, that can result in such outcomes as abortion or sterility in susceptible animal hosts and grave, debilitating illness in humans. For deciphering the survival mechanism of Brucella spp. in vivo, 42 Brucella complete genomes from NCBI were analyzed for the pan-genome and core genome by identification of their composition and function of Brucella genomes. The results showed that the total 132,143 protein-coding genes in these genomes were divided into 5369 clusters. Among these, 1710 clusters were associated with the core genome, 1182 clusters with strain-specific genes and 2477 clusters with dispensable genomes. COG analysis indicated that 44 % of the core genes were devoted to metabolism, which were mainly responsible for energy production and conversion (COG category C), and amino acid transport and metabolism (COG category E). Meanwhile, approximately 35 % of the core genes were in positive selection. In addition, 1252 potential essential genes were predicted in the core genome by comparison with a prokaryote database of essential genes. The results suggested that the core genes in Brucella genomes are relatively conservation, and the energy and amino acid metabolism play a more important role in the process of growth and reproduction in Brucella spp. This study might help us to better understand the mechanisms of Brucella persistent infection and provide some clues for further exploring the gene modules of the intracellular survival in Brucella spp.

  7. The effect of functional compensation among duplicate genes can ...

    Indian Academy of Sciences (India)

    Gene duplicates have the inherent property of initially being functionally redundant. This means that they can compensate for the effect of deleterious variation occurring at one or more sister sites. Here, I present data bearing on evolutionary theory that illustrates the manner in which any functional adaptation in duplicate ...

  8. The effect of functional compensation among duplicate genes can ...

    Indian Academy of Sciences (India)

    Abstract. Gene duplicates have the inherent property of initially being functionally redundant. This means that they can compensate for the effect of deleterious variation occurring at one or more sister sites. Here, I present data bearing on evolutionary theory that illustrates the manner in which any functional adaptation in ...

  9. Integrative mining of traditional Chinese medicine literature and MEDLINE for functional gene networks.

    Science.gov (United States)

    Zhou, Xuezhong; Liu, Baoyan; Wu, Zhaohui; Feng, Yi

    2007-10-01

    The amount of biomedical data in different disciplines is growing at an exponential rate. Integrating these significant knowledge sources to generate novel hypotheses for systems biology research is difficult. Traditional Chinese medicine (TCM) is a completely different discipline, and is a complementary knowledge system to modern biomedical science. This paper uses a significant TCM bibliographic literature database in China, together with MEDLINE, to help discover novel gene functional knowledge. We present an integrative mining approach to uncover the functional gene relationships from MEDLINE and TCM bibliographic literature. This paper introduces TCM literature (about 50,000 records) as one knowledge source for constructing literature-based gene networks. We use the TCM diagnosis, TCM syndrome, to automatically congregate the related genes. The syndrome-gene relationships are discovered based on the syndrome-disease relationships extracted from TCM literature and the disease-gene relationships in MEDLINE. Based on the bubble-bootstrapping and relation weight computing methods, we have developed a prototype system called MeDisco/3S, which has name entity and relation extraction, and online analytical processing (OLAP) capabilities, to perform the integrative mining process. We have got about 200,000 syndrome-gene relations, which could help generate syndrome-based gene networks, and help analyze the functional knowledge of genes from syndrome perspective. We take the gene network of Kidney-Yang Deficiency syndrome (KYD syndrome) and the functional analysis of some genes, such as CRH (corticotropin releasing hormone), PTH (parathyroid hormone), PRL (prolactin), BRCA1 (breast cancer 1, early onset) and BRCA2 (breast cancer 2, early onset), to demonstrate the preliminary results. The underlying hypothesis is that the related genes of the same syndrome will have some biological functional relationships, and will constitute a functional network. This paper presents

  10. Genome-Wide Identification and Functional Analysis of the Calcineurin B-like Protein and Calcineurin B-like Protein-Interacting Protein Kinase Gene Families in Turnip (Brassica rapa var. rapa

    Directory of Open Access Journals (Sweden)

    Xin Yin

    2017-07-01

    Full Text Available The calcineurin B-like protein (CBL–CBL-interacting protein kinase (CIPK complex has been identified as a primary component in calcium sensors that perceives various stress signals. Turnip (Brassica rapa var. rapa has been widely cultivated in the Qinghai–Tibet Plateau for a century as a food crop of worldwide economic significance. These CBL–CIPK complexes have been demonstrated to play crucial roles in plant response to various environmental stresses. However, no report is available on the genome-wide characterization of these two gene families in turnip. In the present study, 19 and 51 members of the BrrCBL and BrrCIPK genes, respectively, are first identified in turnip and phylogenetically grouped into three and two distinct clusters, respectively. The expansion of these two gene families is mainly attributable to segmental duplication. Moreover, the differences in expression patterns in quantitative real-time PCR, as well as interaction profiles in the yeast two-hybrid assay, suggest the functional divergence of paralog genes during long-term evolution in turnip. Overexpressing and complement lines in Arabidopsis reveal that BrrCBL9.2 improves, but BrrCBL9.1 does not affect, salt tolerance in Arabidopsis. Thus, the expansion of the BrrCBL and BrrCIPK gene families enables the functional differentiation and evolution of some new gene functions of paralog genes. These paralog genes then play prominent roles in turnip's adaptation to the adverse environment of the Qinghai–Tibet Plateau. Overall, the study results contribute to our understanding of the functions of the CBL–CIPK complex and provide basis for selecting appropriate genes for the in-depth functional studies of BrrCBL–BrrCIPK in turnip.

  11. Bioinformatic Analysis of Strawberry GSTF12 Gene

    Science.gov (United States)

    Wang, Xiran; Jiang, Leiyu; Tang, Haoru

    2018-01-01

    GSTF12 has always been known as a key factor of proanthocyanins accumulate in plant testa. Through bioinformatics analysis of the nucleotide and encoded protein sequence of GSTF12, it is more advantageous to the study of genes related to anthocyanin biosynthesis accumulation pathway. Therefore, we chosen GSTF12 gene of 11 kinds species, downloaded their nucleotide and protein sequence from NCBI as the research object, found strawberry GSTF12 gene via bioinformation analyse, constructed phylogenetic tree. At the same time, we analysed the strawberry GSTF12 gene of physical and chemical properties and its protein structure and so on. The phylogenetic tree showed that Strawberry and petunia were closest relative. By the protein prediction, we found that the protein owed one proper signal peptide without obvious transmembrane regions.

  12. Bioinformatic prediction and functional characterization of human KIAA0100 gene

    Directory of Open Access Journals (Sweden)

    He Cui

    2017-02-01

    Full Text Available Our previous study demonstrated that human KIAA0100 gene was a novel acute monocytic leukemia-associated antigen (MLAA gene. But the functional characterization of human KIAA0100 gene has remained unknown to date. Here, firstly, bioinformatic prediction of human KIAA0100 gene was carried out using online softwares; Secondly, Human KIAA0100 gene expression was downregulated by the clustered regularly interspaced short palindromic repeats (CRISPR/CRISPR-associated (Cas 9 system in U937 cells. Cell proliferation and apoptosis were next evaluated in KIAA0100-knockdown U937 cells. The bioinformatic prediction showed that human KIAA0100 gene was located on 17q11.2, and human KIAA0100 protein was located in the secretory pathway. Besides, human KIAA0100 protein contained a signalpeptide, a transmembrane region, three types of secondary structures (alpha helix, extended strand, and random coil , and four domains from mitochondrial protein 27 (FMP27. The observation on functional characterization of human KIAA0100 gene revealed that its downregulation inhibited cell proliferation, and promoted cell apoptosis in U937 cells. To summarize, these results suggest human KIAA0100 gene possibly comes within mitochondrial genome; moreover, it is a novel anti-apoptotic factor related to carcinogenesis or progression in acute monocytic leukemia, and may be a potential target for immunotherapy against acute monocytic leukemia.

  13. Molecular and Functional Characterization of Broccoli EMBRYONIC FLOWER 2 Genes

    Science.gov (United States)

    Chen, Long-Fang O.; Lin, Chun-Hung; Lai, Ying-Mi; Huang, Jia-Yuan; Sung, Zinmay Renee

    2012-01-01

    Polycomb group (PcG) proteins regulate major developmental processes in Arabidopsis. EMBRYONIC FLOWER 2 (EMF2), the VEFS domain-containing PcG gene, regulates diverse genetic pathways and is required for vegetative development and plant survival. Despite widespread EMF2-like sequences in plants, little is known about their function other than in Arabidopsis and rice. To study the role of EMF2 in broccoli (Brassica oleracea var. italica cv. Elegance) development, we identified two broccoli EMF2 (BoEMF2) genes with sequence homology to and a similar gene expression pattern to that in Arabidopsis (AtEMF2). Reducing their expression in broccoli resulted in aberrant phenotypes and gene expression patterns. BoEMF2 regulates genes involved in diverse developmental and stress programs similar to AtEMF2 in Arabidopsis. However, BoEMF2 differs from AtEMF2 in the regulation of flower organ identity, cell proliferation and elongation, and death-related genes, which may explain the distinct phenotypes. The expression of BoEMF2.1 in the Arabidopsis emf2 mutant (Rescued emf2) partially rescued the mutant phenotype and restored the gene expression pattern to that of the wild type. Many EMF2-mediated molecular and developmental functions are conserved in broccoli and Arabidopsis. Furthermore, the restored gene expression pattern in Rescued emf2 provides insights into the molecular basis of PcG-mediated growth and development. PMID:22537758

  14. New Dimensions in Microbial Ecology—Functional Genes in Studies to Unravel the Biodiversity and Role of Functional Microbial Groups in the Environment

    Science.gov (United States)

    Imhoff, Johannes F.

    2016-01-01

    During the past decades, tremendous advances have been made in the possibilities to study the diversity of microbial communities in the environment. The development of methods to study these communities on the basis of 16S rRNA gene sequences analysis was a first step into the molecular analysis of environmental communities and the study of biodiversity in natural habitats. A new dimension in this field was reached with the introduction of functional genes of ecological importance and the establishment of genetic tools to study the diversity of functional microbial groups and their responses to environmental factors. Functional gene approaches are excellent tools to study the diversity of a particular function and to demonstrate changes in the composition of prokaryote communities contributing to this function. The phylogeny of many functional genes largely correlates with that of the 16S rRNA gene, and microbial species may be identified on the basis of functional gene sequences. Functional genes are perfectly suited to link culture-based microbiological work with environmental molecular genetic studies. In this review, the development of functional gene studies in environmental microbiology is highlighted with examples of genes relevant for important ecophysiological functions. Examples are presented for bacterial photosynthesis and two types of anoxygenic phototrophic bacteria, with genes of the Fenna-Matthews-Olson-protein (fmoA) as target for the green sulfur bacteria and of two reaction center proteins (pufLM) for the phototrophic purple bacteria, with genes of adenosine-5′phosphosulfate (APS) reductase (aprA), sulfate thioesterase (soxB) and dissimilatory sulfite reductase (dsrAB) for sulfur oxidizing and sulfate reducing bacteria, with genes of ammonia monooxygenase (amoA) for nitrifying/ammonia-oxidizing bacteria, with genes of particulate nitrate reductase and nitrite reductases (narH/G, nirS, nirK) for denitrifying bacteria and with genes of methane

  15. New Dimensions in Microbial Ecology—Functional Genes in Studies to Unravel the Biodiversity and Role of Functional Microbial Groups in the Environment

    Directory of Open Access Journals (Sweden)

    Johannes F. Imhoff

    2016-05-01

    Full Text Available During the past decades, tremendous advances have been made in the possibilities to study the diversity of microbial communities in the environment. The development of methods to study these communities on the basis of 16S rRNA gene sequences analysis was a first step into the molecular analysis of environmental communities and the study of biodiversity in natural habitats. A new dimension in this field was reached with the introduction of functional genes of ecological importance and the establishment of genetic tools to study the diversity of functional microbial groups and their responses to environmental factors. Functional gene approaches are excellent tools to study the diversity of a particular function and to demonstrate changes in the composition of prokaryote communities contributing to this function. The phylogeny of many functional genes largely correlates with that of the 16S rRNA gene, and microbial species may be identified on the basis of functional gene sequences. Functional genes are perfectly suited to link culture-based microbiological work with environmental molecular genetic studies. In this review, the development of functional gene studies in environmental microbiology is highlighted with examples of genes relevant for important ecophysiological functions. Examples are presented for bacterial photosynthesis and two types of anoxygenic phototrophic bacteria, with genes of the Fenna-Matthews-Olson-protein (fmoA as target for the green sulfur bacteria and of two reaction center proteins (pufLM for the phototrophic purple bacteria, with genes of adenosine-5′phosphosulfate (APS reductase (aprA, sulfate thioesterase (soxB and dissimilatory sulfite reductase (dsrAB for sulfur oxidizing and sulfate reducing bacteria, with genes of ammonia monooxygenase (amoA for nitrifying/ammonia-oxidizing bacteria, with genes of particulate nitrate reductase and nitrite reductases (narH/G, nirS, nirK for denitrifying bacteria and with genes

  16. New Dimensions in Microbial Ecology-Functional Genes in Studies to Unravel the Biodiversity and Role of Functional Microbial Groups in the Environment.

    Science.gov (United States)

    Imhoff, Johannes F

    2016-05-24

    During the past decades, tremendous advances have been made in the possibilities to study the diversity of microbial communities in the environment. The development of methods to study these communities on the basis of 16S rRNA gene sequences analysis was a first step into the molecular analysis of environmental communities and the study of biodiversity in natural habitats. A new dimension in this field was reached with the introduction of functional genes of ecological importance and the establishment of genetic tools to study the diversity of functional microbial groups and their responses to environmental factors. Functional gene approaches are excellent tools to study the diversity of a particular function and to demonstrate changes in the composition of prokaryote communities contributing to this function. The phylogeny of many functional genes largely correlates with that of the 16S rRNA gene, and microbial species may be identified on the basis of functional gene sequences. Functional genes are perfectly suited to link culture-based microbiological work with environmental molecular genetic studies. In this review, the development of functional gene studies in environmental microbiology is highlighted with examples of genes relevant for important ecophysiological functions. Examples are presented for bacterial photosynthesis and two types of anoxygenic phototrophic bacteria, with genes of the Fenna-Matthews-Olson-protein (fmoA) as target for the green sulfur bacteria and of two reaction center proteins (pufLM) for the phototrophic purple bacteria, with genes of adenosine-5'phosphosulfate (APS) reductase (aprA), sulfate thioesterase (soxB) and dissimilatory sulfite reductase (dsrAB) for sulfur oxidizing and sulfate reducing bacteria, with genes of ammonia monooxygenase (amoA) for nitrifying/ammonia-oxidizing bacteria, with genes of particulate nitrate reductase and nitrite reductases (narH/G, nirS, nirK) for denitrifying bacteria and with genes of methane

  17. Parametric functional principal component analysis.

    Science.gov (United States)

    Sang, Peijun; Wang, Liangliang; Cao, Jiguo

    2017-09-01

    Functional principal component analysis (FPCA) is a popular approach in functional data analysis to explore major sources of variation in a sample of random curves. These major sources of variation are represented by functional principal components (FPCs). Most existing FPCA approaches use a set of flexible basis functions such as B-spline basis to represent the FPCs, and control the smoothness of the FPCs by adding roughness penalties. However, the flexible representations pose difficulties for users to understand and interpret the FPCs. In this article, we consider a variety of applications of FPCA and find that, in many situations, the shapes of top FPCs are simple enough to be approximated using simple parametric functions. We propose a parametric approach to estimate the top FPCs to enhance their interpretability for users. Our parametric approach can also circumvent the smoothing parameter selecting process in conventional nonparametric FPCA methods. In addition, our simulation study shows that the proposed parametric FPCA is more robust when outlier curves exist. The parametric FPCA method is demonstrated by analyzing several datasets from a variety of applications. © 2017, The International Biometric Society.

  18. Gene- and evidence-based candidate gene selection for schizophrenia and gene feature analysis.

    Science.gov (United States)

    Sun, Jingchun; Han, Leng; Zhao, Zhongming

    2010-01-01

    Schizophrenia is a chronic psychiatric disorder that affects about 1% of the population globally. A tremendous amount of effort has been expended in the past decade, including more than 2400 association studies, to identify genes influencing susceptibility to the disorder. However, few genes or markers have been reliably replicated. The wealth of this information calls for an integration of gene association data, evidence-based gene ranking, and follow-up replication in large sample. The objective of this study is to develop and evaluate evidence-based gene ranking methods and to examine the features of top-ranking candidate genes for schizophrenia. We proposed a gene-based approach for selecting and prioritizing candidate genes by combining odds ratios (ORs) of multiple markers in each association study and then combining ORs in multiple studies of a gene. We named it combination-combination OR method (CCOR). CCOR is similar to our recently published method, which first selects the largest OR of the markers in each study and then combines these ORs in multiple studies (i.e., selection-combination OR method, SCOR), but differs in selecting representative OR in each study. Features of top-ranking genes were examined by Gene Ontology terms and gene expression in tissues. Our evaluation suggested that the SCOR method overall outperforms the CCOR method. Using the SCOR, a list of 75 top-ranking genes was selected for schizophrenia candidate genes (SZGenes). We found that SZGenes had strong correlation with neuro-related functional terms and were highly expressed in brain-related tissues. The scientific landscape for schizophrenia genetics and other complex disease studies is expected to change dramatically in the next a few years, thus, the gene-based combined OR method is useful in candidate gene selection for follow-up association studies and in further artificial intelligence in medicine. This method for prioritization of candidate genes can be applied to other

  19. Functional and RNA-sequencing analysis revealed expression of a novel stay-green gene from Zoysia japonica (ZjSGR caused chlorophyll degradation and accelerated senescence in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Ke Teng

    2016-12-01

    Full Text Available Senescence is not only an important developmental process, but also a responsive regulation to abiotic and biotic stress for plants. Stay-green protein plays crucial roles in plant senescence and chlorophyll degradation. However, the underlying mechanisms were not well studied, particularly in non-model plants. In this study, a novel stay-green gene, ZjSGR, was isolated from Zoysia japonica. Subcellular localization result demonstrated that ZjSGR was localized in the chloroplasts. Quantitative real-time PCR results together with promoter activity determination using transgenic Arabidopsis confirmed that ZjSGR could be induced by darkness, ABA and MeJA. Its expression levels could also be up-regulated by natural senescence, but suppressed by SA treatments. Overexpression of ZjSGR in Arabidopsis resulted in a rapid yellowing phenotype; complementary experiments proved that ZjSGR was a functional homologue of AtNYE1 from Arabidopsis thaliana. Overexpression of ZjSGR accelerated chlorophyll degradation and impaired photosynthesis in Arabidopsis. Transmission electron microscopy observation revealed that overexpression of ZjSGR decomposed the chloroplasts structure. RNA sequencing analysis showed that ZjSGR could play multiple roles in senescence and chlorophyll degradation by regulating hormone signal transduction and the expression of a large number of senescence and environmental stress related genes. Our study provides a better understanding of the roles of SGRs, and new insight into the senescence and chlorophyll degradation mechanisms in plants.

  20. EVENT PLANNING USING FUNCTION ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Lori Braase; Jodi Grgich

    2011-06-01

    Event planning is expensive and resource intensive. Function analysis provides a solid foundation for comprehensive event planning (e.g., workshops, conferences, symposiums, or meetings). It has been used at Idaho National Laboratory (INL) to successfully plan events and capture lessons learned, and played a significant role in the development and implementation of the “INL Guide for Hosting an Event.” Using a guide and a functional approach to planning utilizes resources more efficiently and reduces errors that could be distracting or detrimental to an event. This integrated approach to logistics and program planning – with the primary focus on the participant – gives us the edge.

  1. Bioinformatics Analysis of MAPKKK Family Genes in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Wei Li

    2016-04-01

    Full Text Available Mitogen‐activated protein kinase kinase kinase (MAPKKK is a component of the MAPK cascade pathway that plays an important role in plant growth, development, and response to abiotic stress, the functions of which have been well characterized in several plant species, such as Arabidopsis, rice, and maize. In this study, we performed genome‐wide and systemic bioinformatics analysis of MAPKKK family genes in Medicago truncatula. In total, there were 73 MAPKKK family members identified by search of homologs, and they were classified into three subfamilies, MEKK, ZIK, and RAF. Based on the genomic duplication function, 72 MtMAPKKK genes were located throughout all chromosomes, but they cluster in different chromosomes. Using microarray data and high‐throughput sequencing‐data, we assessed their expression profiles in growth and development processes; these results provided evidence for exploring their important functions in developmental regulation, especially in the nodulation process. Furthermore, we investigated their expression in abiotic stresses by RNA‐seq, which confirmed their critical roles in signal transduction and regulation processes under stress. In summary, our genome‐wide, systemic characterization and expressional analysis of MtMAPKKK genes will provide insights that will be useful for characterizing the molecular functions of these genes in M. truncatula.

  2. Identification and Functional Analysis of a Novel Cytochrome P450 Gene CYP9A105 Associated with Pyrethroid Detoxification in Spodoptera exigua Hübner

    Directory of Open Access Journals (Sweden)

    Rui-Long Wang

    2018-03-01

    Full Text Available In insects, cytochrome P450 monooxygenases (P450s or CYPs are known to be involved in the detoxification and metabolism of insecticides, leading to increased resistance in insect populations. Spodoptera exigua is a serious polyphagous insect pest worldwide and has developed resistance to various insecticides. In this study, a novel CYP3 clan P450 gene CYP9A105 was identified and characterized from S. exigua. The cDNAs of CYP9A105 encoded 530 amino acid proteins, respectively. Quantitative real-time PCR analyses showed that CYP9A105 was expressed at all developmental stages, with maximal expression observed in fifth instar stage larvae, and in dissected fifth instar larvae the highest transcript levels were found in midguts and fat bodies. The expression of CYP9A105 in midguts was upregulated by treatments with the insecticides α-cypermethrin, deltamethrin and fenvalerate at both LC15 concentrations (0.10, 0.20 and 5.0 mg/L, respectively and LC50 concentrations (0.25, 0.40 and 10.00 mg/L, respectively. RNA interference (RNAi mediated silencing of CYP9A105 led to increased mortalities of insecticide-treated 4th instar S. exigua larvae. Our results suggest that CYP9A105 might play an important role in α-cypermethrin, deltamethrin and fenvalerate detoxification in S. exigua.

  3. Cephalometric analysis for functional occlusion

    Directory of Open Access Journals (Sweden)

    Ashok Karad

    2016-01-01

    Full Text Available Background: Various elements contributing to good functional occlusion have not been clearly assessed with cephalometrics for the diagnosis of functional problems and their application in clinical practice. The aim of this study, therefore, was to analyze different components of functional occlusion to formulate concise functional cephalometric analysis. Materials and Methods: Eighty-two cases (38 males and 44 females, with class I occlusion and balanced facial profile, were examined based on the selection criteria, and cephalograms were taken in natural head position. All the radiographs were then analyzed using various functional parameters. Results: The mean values of condylar path angle and incisal path angle were 55.83° and 65.67°, respectively, with large deviations. However, both showed positive correlation. The value of the angle of long axis of mandibular incisor with respect to the line joining center of condyle and lower incisor tip was 88.04°. Moreover, the angle between the occlusal plane and horizontal plane was 12.88°. In vertical plane, lower face height (LFH was found to be slightly less than the upper face height. Maxilla contributed around 45% of the LFH while mandible formed about 60%. Furthermore, upper alveolar component (maxillary alveolar height formed more than half of the maxilla (53.79% whereas lower alveolar component (mandibular alveolar height was 74.8% of the mandible. Conclusion: This study has analyzed various components of functional occlusion and formulated a concise functional cephalometric analysis for diagnosis, treatment planning, and assessment of treatment results.

  4. Polyploidization altered gene functions in cotton (Gossypium spp.).

    Science.gov (United States)

    Xu, Zhanyou; Yu, John Z; Cho, Jaemin; Yu, Jing; Kohel, Russell J; Percy, Richard G

    2010-12-16

    Cotton (Gossypium spp.) is an important crop plant that is widely grown to produce both natural textile fibers and cottonseed oil. Cotton fibers, the economically more important product of the cotton plant, are seed trichomes derived from individual cells of the epidermal layer of the seed coat. It has been known for a long time that large numbers of genes determine the development of cotton fiber, and more recently it has been determined that these genes are distributed across At and Dt subgenomes of tetraploid AD cottons. In the present study, the organization and evolution of the fiber development genes were investigated through the construction of an integrated genetic and physical map of fiber development genes whose functions have been verified and confirmed. A total of 535 cotton fiber development genes, including 103 fiber transcription factors, 259 fiber development genes, and 173 SSR-contained fiber ESTs, were analyzed at the subgenome level. A total of 499 fiber related contigs were selected and assembled. Together these contigs covered about 151 Mb in physical length, or about 6.7% of the tetraploid cotton genome. Among the 499 contigs, 397 were anchored onto individual chromosomes. Results from our studies on the distribution patterns of the fiber development genes and transcription factors between the At and Dt subgenomes showed that more transcription factors were from Dt subgenome than At, whereas more fiber development genes were from At subgenome than Dt. Combining our mapping results with previous reports that more fiber QTLs were mapped in Dt subgenome than At subgenome, the results suggested a new functional hypothesis for tetraploid cotton. After the merging of the two diploid Gossypium genomes, the At subgenome has provided most of the genes for fiber development, because it continues to function similar to its fiber producing diploid A genome ancestor. On the other hand, the Dt subgenome, with its non-fiber producing D genome ancestor

  5. Molecular cloning and function analysis of ClCRY1a and ClCRY1b, two genes in Chrysanthemum lavandulifolium that play vital roles in promoting floral transition.

    Science.gov (United States)

    Yang, Liwen; Fu, Jianxin; Qi, Shuai; Hong, Yan; Huang, He; Dai, Silan

    2017-06-20

    Cryptochrome (CRY), a vital photoreceptor which mediates light signals, controls photomorphogenesis in higher plants. However, the function of CRY in mediating light to regulate growth and development of ornamental plants is still unclear. In this study, we identified two CRY1 homologous genes, ClCRY1a and ClCRY1b, from Chrysanthemum lavandulifolium, a diploid wild chrysanthemum species. Expression analysis demonstrated that these two ClCRY1 genes showed the highest expression levels in seedlings leaves that were transferred to short day (SD) conditions for eight days. ClCRY1a was expressed at a higher level in the dark phase of SD, while ClCRY1b was expressed more highly in SD than that in long day (LD) conditions. Overexpression of either ClCRY1a or ClCRY1b in wild-type (WT) Arabidopsis resulted in early flowering under both LD and SD. The expression levels of GIGANTEA (GI) and FLOWERING LOCUS T (FT) were significantly up-regulated in ClCRY1a overexpressors under both LD and SD. Moreover, the transcript levels of GI, CONSTANS (CO) and FT were markedly increased in ClCRY1b overexpressors under LD; nevertheless, only the expression levels of CO and FT were up-regulated under SD. Taken together, the above results indicated that these two ClCRY1 genes could regulate flowering time via different pathways in C. lavandulifolium under LD and SD conditions. Our results provided evidence for the role of ClCRY1s in controlling photomorphogenesis and laid a foundation for further study on the molecular mechanism of ClCRYs mediating light signals to control floral transition. Copyright © 2017. Published by Elsevier B.V.

  6. Histamine exerts multiple effects on expression of genes associated with epidermal barrier function.

    Science.gov (United States)

    Gutowska-Owsiak, D; Salimi, M; Selvakumar, T A; Wang, X; Taylor, S; Ogg, G S

    2014-01-01

    The role of epidermal barrier genes in the pathogenesis of atopic skin inflammation has recently been highlighted. Cytokines that are abundant in the skin during inflammation have been shown to exert various effects on the expression of barrier genes, although the role of histamine in this area of skin biology is not yet fully understood. To assess the effect of stimulation with histamine on keratinocytes by analysis of the pathways involved in epidermal barrier integrity. We performed a gene expression analysis of histamine-stimulated keratinocytes. Functional changes were tested using the dye penetration assay. Differential changes in filaggrin and the filaggrin-processing enzyme bleomycin hydrolase (BLMH) were validated at the protein level, and expression was also assessed in filaggrin knock-down keratinocytes. Histamine altered expression of multiple barrier genes. Expression of filaggrin was downregulated, as was that of other markers, thus suggesting the presence of delayed/aberrant keratinocyte differentiation. Expression of genes involved in cellular adhesiveness and genes of protease expression was dysregulated, but expression of protease inhibitors was increased. BLMH was upregulated in keratinocytes subjected to histamine and filaggrin knockdown. Histamine exerts a dual effect on epidermal barrier genes; it suppresses keratinocyte differentiation and dysregulates genes of cellular adhesiveness, although it induces genes contributing to stratum corneum function. Upregulation of BLMH and protease inhibitors could support maintenance of the permeability barrier by enhanced generation of moisturizing compounds and suppressed desquamation. In contrast, in the case of stratum corneum damage, histamine could enhance transcutaneous sensitization.

  7. Processes of fungal proteome evolution and gain of function: gene duplication and domain rearrangement

    International Nuclear Information System (INIS)

    Cohen-Gihon, Inbar; Nussinov, Ruth; Sharan, Roded

    2011-01-01

    During evolution, organisms have gained functional complexity mainly by modifying and improving existing functioning systems rather than creating new ones ab initio. Here we explore the interplay between two processes which during evolution have had major roles in the acquisition of new functions: gene duplication and protein domain rearrangements. We consider four possible evolutionary scenarios: gene families that have undergone none of these event types; only gene duplication; only domain rearrangement, or both events. We characterize each of the four evolutionary scenarios by functional attributes. Our analysis of ten fungal genomes indicates that at least for the fungi clade, species significantly appear to gain complexity by gene duplication accompanied by the expansion of existing domain architectures via rearrangements. We show that paralogs gaining new domain architectures via duplication tend to adopt new functions compared to paralogs that preserve their domain architectures. We conclude that evolution of protein families through gene duplication and domain rearrangement is correlated with their functional properties. We suggest that in general, new functions are acquired via the integration of gene duplication and domain rearrangements rather than each process acting independently

  8. Gene set analysis for interpreting genetic studies

    DEFF Research Database (Denmark)

    Pers, Tune H

    2016-01-01

    Interpretation of genome-wide association study (GWAS) results is lacking behind the discovery of new genetic associations. Consequently, there is an urgent need for data-driven methods for interpreting genetic association studies. Gene set analysis (GSA) can identify aetiologic pathways...

  9. Genomics analysis of genes expressed reveals differential ...

    African Journals Online (AJOL)

    Genomics analysis of genes expressed reveals differential responses to low chronic nitrogen stress in maize. ... Most induced clones were largely involved in various metabolism processes including physiological process, organelle regulation of biological process, nutrient reservoir activity, transcription regulator activity and ...

  10. Function and Diversification of MADS-Box Genes in Rice

    OpenAIRE

    Takahiro Yamaguchi; Hiro-Yuki Hirano

    2006-01-01

    MADS-box genes play critical roles in a number of developmental processes in flowering plants, such as specification of floral organ identity, control of flowering time, and regulation of fruit development. Because of their crucial functions in flower development, diversification of the MADS-box gene family has been suggested to be a major factor responsible for floral diversity during radiation of the flowering plants. Inflorescences and flowers in the grass species have unique structures th...

  11. Functional analysis theory and applications

    CERN Document Server

    Edwards, RE

    2011-01-01

    ""The book contains an enormous amount of information - mathematical, bibliographical and historical - interwoven with some outstanding heuristic discussions."" - Mathematical Reviews.In this massive graduate-level study, Emeritus Professor Edwards (Australian National University, Canberra) presents a balanced account of both the abstract theory and the applications of linear functional analysis. Written for readers with a basic knowledge of set theory, general topology, and vector spaces, the book includes an abundance of carefully chosen illustrative examples and excellent exercises at the

  12. Stably Expressed Genes Involved in Basic Cellular Functions.

    Directory of Open Access Journals (Sweden)

    Kejian Wang

    Full Text Available Stably Expressed Genes (SEGs whose expression varies within a narrow range may be involved in core cellular processes necessary for basic functions. To identify such genes, we re-analyzed existing RNA-Seq gene expression profiles across 11 organs at 4 developmental stages (from immature to old age in both sexes of F344 rats (n = 4/group; 320 samples. Expression changes (calculated as the maximum expression / minimum expression for each gene of >19000 genes across organs, ages, and sexes ranged from 2.35 to >109-fold, with a median of 165-fold. The expression of 278 SEGs was found to vary ≤4-fold and these genes were significantly involved in protein catabolism (proteasome and ubiquitination, RNA transport, protein processing, and the spliceosome. Such stability of expression was further validated in human samples where the expression variability of the homologous human SEGs was significantly lower than that of other genes in the human genome. It was also found that the homologous human SEGs were generally less subject to non-synonymous mutation than other genes, as would be expected of stably expressed genes. We also found that knockout of SEG homologs in mouse models was more likely to cause complete preweaning lethality than non-SEG homologs, corroborating the fundamental roles played by SEGs in biological development. Such stably expressed genes and pathways across life-stages suggest that tight control of these processes is important in basic cellular functions and that perturbation by endogenous (e.g., genetics or ex