WorldWideScience

Sample records for gene deletion mutants

  1. A Population of Deletion Mutants and an Integrated Mapping and Exome-seq Pipeline for Gene Discovery in Maize

    Science.gov (United States)

    Jia, Shangang; Li, Aixia; Morton, Kyla; Avoles-Kianian, Penny; Kianian, Shahryar F.; Zhang, Chi; Holding, David

    2016-01-01

    To better understand maize endosperm filling and maturation, we used γ-irradiation of the B73 maize reference line to generate mutants with opaque endosperm and reduced kernel fill phenotypes, and created a population of 1788 lines including 39 Mo17 × F2s showing stable, segregating, and viable kernel phenotypes. For molecular characterization of the mutants, we developed a novel functional genomics platform that combined bulked segregant RNA and exome sequencing (BSREx-seq) to map causative mutations and identify candidate genes within mapping intervals. To exemplify the utility of the mutants and provide proof-of-concept for the bioinformatics platform, we present detailed characterization of line 937, an opaque mutant harboring a 6203 bp in-frame deletion covering six exons within the Opaque-1 gene. In addition, we describe mutant line 146 which contains a 4.8 kb intragene deletion within the Sugary-1 gene and line 916 in which an 8.6 kb deletion knocks out a Cyclin A2 gene. The publically available algorithm developed in this work improves the identification of causative deletions and its corresponding gaps within mapping peaks. This study demonstrates the utility of γ-irradiation for forward genetics in large nondense genomes such as maize since deletions often affect single genes. Furthermore, we show how this classical mutagenesis method becomes applicable for functional genomics when combined with state-of-the-art genomics tools. PMID:27261000

  2. Parallel analysis of tagged deletion mutants efficiently identifies genes involved in endoplasmic reticulum biogenesis.

    Science.gov (United States)

    Wright, Robin; Parrish, Mark L; Cadera, Emily; Larson, Lynnelle; Matson, Clinton K; Garrett-Engele, Philip; Armour, Chris; Lum, Pek Yee; Shoemaker, Daniel D

    2003-07-30

    Increased levels of HMG-CoA reductase induce cell type- and isozyme-specific proliferation of the endoplasmic reticulum. In yeast, the ER proliferations induced by Hmg1p consist of nuclear-associated stacks of smooth ER membranes known as karmellae. To identify genes required for karmellae assembly, we compared the composition of populations of homozygous diploid S. cerevisiae deletion mutants following 20 generations of growth with and without karmellae. Using an initial population of 1,557 deletion mutants, 120 potential mutants were identified as a result of three independent experiments. Each experiment produced a largely non-overlapping set of potential mutants, suggesting that differences in specific growth conditions could be used to maximize the comprehensiveness of similar parallel analysis screens. Only two genes, UBC7 and YAL011W, were identified in all three experiments. Subsequent analysis of individual mutant strains confirmed that each experiment was identifying valid mutations, based on the mutant's sensitivity to elevated HMG-CoA reductase and inability to assemble normal karmellae. The largest class of HMG-CoA reductase-sensitive mutations was a subset of genes that are involved in chromatin structure and transcriptional regulation, suggesting that karmellae assembly requires changes in transcription or that the presence of karmellae may interfere with normal transcriptional regulation. Copyright 2003 John Wiley & Sons, Ltd.

  3. An efficient deletion mutant packaging system for defective herpes simplex virus vectors: Potential applications to human gene therapy and neuronal physiology

    International Nuclear Information System (INIS)

    Geller, A.I.; Keyomarsi, K.; Bryan, J.; Pardee, A.B.

    1990-01-01

    The authors have previously described a defective herpes simplex virus (HSV-1) vector system that permits that introduction of virtually any gene into nonmitotic cells. pHSVlac, the prototype vector, stably expresses Escherichia coli β-galactosidase from a constitutive promoter in many human cell lines, in cultured rat neurons from throughout the nervous system, and in cells in the adult rat brain. HSV-1 vectors expressing other genes may prove useful for studying neuronal physiology or performing human gene therapy for neurological diseases, such as Parkinson disease or brain tumors. A HSV-1 temperature-sensitive (ts) mutant, ts K, has been used as helper virus; ts mutants revert to wild type. In contrast, HSV-1 deletion mutants essentially cannot revert to wild type; therefore, use of a deletion mutant as helper virus might permit human gene therapy with HSV-1 vectors. They now report an efficient packaging system for HSV-1 VECTORS USING A DELETION MUTANT, d30EBA, as helper virus; virus is grown on the complementing cell line M64A. pHSVlac virus prepared using the deletion mutant packaging system stably expresses β-galactosidase in cultured rat sympathetic neurons and glia. Both D30EBA and ts K contain a mutation in the IE3 gene of HSV-1 strain 17 and have the same phenotype; therefore, changing the helper virus from ts K to D30EBA does not alter the host range or other properties of the HSV-1 vector system

  4. Antibodies with higher bactericidal activity induced by a Neisseria gonorrhoeae Rmp deletion mutant strain.

    Directory of Open Access Journals (Sweden)

    Guocai Li

    Full Text Available Neisseria gonorrhoeae (N. gonorrhoeae outer membrane protein reduction modifiable protein (Rmp has strong immunogenicity. However, anti-Rmp antibodies block rather than preserve the antibacterial effects of protective antibodies, which hampers the development of vaccines for gonococcal infections. We herein constructed an Rmp deletion mutant strain of N. gonorrhoeae by gene homologous recombination. The 261-460 nucleotide residues of Rmp gene amplified from N. gonorrhoeae WHO-A strain were replaced with a kanamycin-resistant Kan gene amplified from pET-28a. The resultant hybridized DNA was transformed into N. gonorrhoeae WHO-A strain. PCR was used to screen the colonies in which wild-type Rmp gene was replaced with a mutant gene fragment. Western blotting revealed that the Rmp deletion mutant strain did not express Rmp protein. Rmp deletion did not alter the morphological and Gram staining properties of the mutant strain that grew slightly more slowly than the wild-type one. Rmp gene mutated stably throughout 25 generations of passage. Antibody-mediated complement-dependent cytotoxicity assay indicated that the antibodies induced by the mutant strain had evidently higher bactericidal activities than those induced by the wild-type strain. Further modification of the Rmp deletion mutant strain is still required in the development of novel live attenuated vaccines for gonorrhea by Opa genes deletion or screening of phenotypic variant strains that do not express Opa proteins.

  5. Construction of brewing-wine Aspergillus oryzae pyrG- mutant by pyrG gene deletion and its application in homology transformation.

    Science.gov (United States)

    Du, Yu; Xie, Guizhen; Yang, Chunfa; Fang, Baishan; Chen, Hongwen

    2014-06-01

    pyrG(-) host cells are indispensable for pyrG(-) based transformation system. Isolations of pyrG(-) host cells by random mutations are limited by time-consuming, unclear genetic background and potential interferences of homogenous recombination. The purpose of this study was to construct brewing-wine Aspergillus oryzae pyrG(-) mutant by site-directed mutation of pyrG gene deletion which would be used as a host for further transformation. pMD-pyrGAB, a vector carrying pyrG deletion cassette, was used to construct pyrG(-) mutant of A. oryzae. Three stable pyrG deletion mutants of A. oryzae were isolated by resistant to 5-fluoroorotic acid and confirmed by polymerase chain reaction analysis, indicating that pyrG was completely excised. The ΔpyrG mutants were applied as pyrG(-) host cells to disrupt xdh gene encoding xylitol dehydrogenase, which involves in xylitol production of A. oryzae. The xdh disruption mutants were efficiently constructed by transforming a pMD-pyrG-xdh disruption plasmid carrying pyrG, and the produced xylitol concentration of the Δxdh mutant was three times as much as that of the ΔpyrG recipient. Site-directed pyrG gene deletion is thus an effective way for the isolation of pyrG(-) host cells, and the established host-vector system could be applied in further functional genomics analysis and molecular breeding of A. oryzae. © The Author 2014. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

  6. Nature of mutants induced by ionizing radiation in cultured hamster cells. III. Molecular characterization of HPRT-deficient mutants induced by. gamma. -rays or. cap alpha. -particles showing that the majority have deletions of all or part of the hprt gene

    Energy Technology Data Exchange (ETDEWEB)

    Thacker, J

    1986-05-01

    DNA from 58 independent HPRT-deficient mutants of V79 hamster cells induced by ionizing radiation was analysed by Southern blot hybridization to a full-length hamster hprt cDNA. About half of the ..gamma..-ray-induced mutants (20/43) were apparently total gene deletions, because they lacked all functional hprt gene sequences hybridizing to the cDNA probe. Another 10 mutants showed various partial deletions and/or rearrangements of the hprt gene. The remaining 13 mutants showed no detectable change in comparison to the structure of the normal gene, which correlated well with previous characterization of these mutants indicating that most carry point mutations in the hprt gene. Thus, 70% or more of radiation-induced HPRT-deficient mutants arise through large genetic changes, especially deletions of all or part of the hprt gene. 16 references, 4 figures, 1 table.

  7. Analysis of pools of targeted Salmonella deletion mutants identifies novel genes affecting fitness during competitive infection in mice.

    Directory of Open Access Journals (Sweden)

    Carlos A Santiviago

    2009-07-01

    Full Text Available Pools of mutants of minimal complexity but maximal coverage of genes of interest facilitate screening for genes under selection in a particular environment. We constructed individual deletion mutants in 1,023 Salmonella enterica serovar Typhimurium genes, including almost all genes found in Salmonella but not in related genera. All mutations were confirmed simultaneously using a novel amplification strategy to produce labeled RNA from a T7 RNA polymerase promoter, introduced during the construction of each mutant, followed by hybridization of this labeled RNA to a Typhimurium genome tiling array. To demonstrate the ability to identify fitness phenotypes using our pool of mutants, the pool was subjected to selection by intraperitoneal injection into BALB/c mice and subsequent recovery from spleens. Changes in the representation of each mutant were monitored using T7 transcripts hybridized to a novel inexpensive minimal microarray. Among the top 120 statistically significant spleen colonization phenotypes, more than 40 were mutations in genes with no previously known role in this model. Fifteen phenotypes were tested using individual mutants in competitive assays of intraperitoneal infection in mice and eleven were confirmed, including the first two examples of attenuation for sRNA mutants in Salmonella. We refer to the method as Array-based analysis of cistrons under selection (ABACUS.

  8. Deletion map of CYC1 mutants and its correspondence to mutationally altered iso-1-cytochromes c of yeast

    International Nuclear Information System (INIS)

    Sherman, F.; Jackson, M.; Liebman, S.W.; Schweingruber, A.M.; Stewart, J.W.

    1975-01-01

    Mutants arising spontaneously from sporulated cultures of certain strains of yeast, Saccharomyces cerevisiae, contained deletions of the CYC1 gene which controls the primary structure of iso-1-cytochrome c. At least 60 different kinds of deletions were uncovered among the 104 deletions examined and these ranged in length from those encompassing only two adjacent point mutants to those encompassing at least the entire CYC1 gene. X-ray-induced recombination rates of crosses involving these deletions and cyc1 point mutants resulted in the assignment of 211 point mutants to 47 mutational sites and made it possible to unambiguously order 40 of these 47 sites. Except for one mutant, cyc1-15, there was a strict colinear relationship between the deletion map and the positions of 13 sites that were previously determined by amino acid alterations in iso-1-cytochromes c from intragenic revertants

  9. X-ray survival characteristics and genetic analysis for nine saccharomyces deletion mutants that show altered radiation sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Game, John C.; Williamson, Marsha S.; Baccari, Clelia

    2004-01-07

    The availability of a genome-wide set of Saccharomyces deletion mutants provides a chance to identify all the yeast genes involved in DNA repair. Using X-rays, we are screening these mutants to identify additional genes that show increased sensitivity to the lethal effects of ionizing radiation. For each mutant identified as sensitive, we are confirming that the sensitivity phenotype co-segregates with the deletion allele and are obtaining multipoint survival-versus-dose assays in at least two haploid and one homozygous diploid strains. We present data for deletion mutants involving the genes DOT1, MDM20, NAT3, SPT7, SPT20, GCN5, HFI1, DCC1 and VID21/EAF1, and discuss their potential roles in repair. Eight of these genes have a clear radiation-sensitive phenotype when deleted, but the ninth, GCN5, has at most a borderline phenotype. None of the deletions confer substantial sensitivity to ultra-violet radiation, although one or two may confer marginal sensitivity. The DOT1 gene is of interest because its only known function is to methylate one lysine residue in the core of the histone H3 protein. We find that histone H3 mutants (supplied by K. Struhl) in which this residue is replaced by other amino-acids are also X-ray sensitive, seeming to confirm that methylation of the lysine-79 residue is required for effective repair of radiation damage.

  10. [Gene deletion and functional analysis of the heptyl glycosyltransferase (waaF) gene in Vibrio parahemolyticus O-antigen cluster].

    Science.gov (United States)

    Zhao, Feng; Meng, Songsong; Zhou, Deqing

    2016-02-04

    To construct heptyl glycosyltransferase gene II (waaF) gene deletion mutant of Vibrio parahaemolyticus, and explore the function of the waaF gene in Vibrio parahaemolyticus. The waaF gene deletion mutant was constructed by chitin-based transformation technology using clinical isolates, and then the growth rate, morphology and serotypes were identified. The different sources (O3, O5 and O10) waaF gene complementations were constructed through E. coli S17λpir strains conjugative transferring with Vibrio parahaemolyticus, and the function of the waaF gene was further verified by serotypes. The waaF gene deletion mutant strain was successfully constructed and it grew normally. The growth rate and morphology of mutant were similar with the wild type strains (WT), but the mutant could not occurred agglutination reaction with O antisera. The O3 and O5 sources waaF gene complementations occurred agglutination reaction with O antisera, but the O10 sources waaF gene complementations was not. The waaF gene was related with O-antigen synthesis and it was the key gene of O-antigen synthesis pathway in Vibrio parahaemolyticus. The function of different sources waaF gene were not the same.

  11. Analysis of human HPRT- deletion mutants by the microarray-CGH (comparative genomic hybridization)

    International Nuclear Information System (INIS)

    Kodaira, M.; Sasaki, K.; Tagawa, H.; Omine, H.; Kushiro, J.; Takahashi, N.; Katayama, H.

    2003-01-01

    We are trying to evaluate genetic effects of radiation on human using mutation frequency as an indicator. For the efficient detection of mutations, it is important to understand the mechanism and the characteristics of radiation-induced mutations. We have started the analysis of hypoxanthine-guanine phosphoribosyl transferase (HPRT) mutants induced by X-ray in order to clarify the deletion size and the mutation-distribution. We analyzed 39 human X-ray induced HPRT-deletion mutants by using the microarray-CGH. The array for this analysis contains 57 BAC clones covering as much as possible of the 4Mb of the 5' side and 10Mb of the 3' side of the HPRT gene based on the NCBI genome database. DNA from parent strain and each HPRT-mutant strain are labeled with Cy5 and Cy3 respectively, and were mixed and hybridized on the array. Fluorescent intensity ratio of the obtained spots was analyzed using software we developed to identify clones corresponding to the deletion region. The deletion in these strains ranged up to 3.5 Mb on the 5' side and 6 Mb on the 3' side of the HPRT gene. Deletions in 13 strains ended around BAC clones located at about 3 Mb on the 5' side. On the 3' side, deletions extended up to the specific clones located at 1.5 Mb in 11 strains. The mutations seem to be complex on the 3' end of deletion; some accompanied duplications with deletions and others could not be explained by one mutation event. We need to confirm these results, taking into account the experimental reproducibility and the accuracy of the published genetic map. The results of the research using the microarray-CGH help us to search the regions where deletions are easily induced and to identify the factors affecting the range of deletions

  12. Self-excising Cre/mutant lox marker recycling system for multiple gene integrations and consecutive gene deletions in Aspergillus oryzae.

    Science.gov (United States)

    Zhang, Silai; Ban, Akihiko; Ebara, Naoki; Mizutani, Osamu; Tanaka, Mizuki; Shintani, Takahiro; Gomi, Katsuya

    2017-04-01

    In this study, we developed a self-excising Cre/loxP-mediated marker recycling system with mutated lox sequences to introduce a number of biosynthetic genes into Aspergillus oryzae. To construct the self-excising marker cassette, both the selectable marker, the Aspergillus nidulans adeA gene, and the Cre recombinase gene (cre), conditionally expressed by the xylanase-encoding gene promoter, were designed to be located between the mutant lox sequences, lox66 and lox71. However, construction of the plasmid failed, possibly owing to a slight expression of cre downstream of the fungal gene promoter in Escherichia coli. Hence, to avoid the excision of the cassette in E. coli, a 71-bp intron of the A. oryzae xynG2 gene was inserted into the cre gene. The A. oryzae adeA deletion mutant was transformed with the resulting plasmid in the presence of glucose, and the transformants were cultured in medium containing xylose as the sole carbon source. PCR analysis of genomic DNA from resultant colonies revealed the excision of both the marker and Cre expression construct, indicating that the self-excising marker cassette was efficient at removing the selectable marker. Using the marker recycling system, hyperproduction of kojic acid could be achieved in A. oryzae by the introduction of two genes that encode oxidoreductase and transporter. Furthermore, we also constructed an alternative marker recycling cassette bearing the A. nidulans pyrithiamine resistant gene (ptrA) as a dominant selectable marker. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection.

    Science.gov (United States)

    Baba, Tomoya; Ara, Takeshi; Hasegawa, Miki; Takai, Yuki; Okumura, Yoshiko; Baba, Miki; Datsenko, Kirill A; Tomita, Masaru; Wanner, Barry L; Mori, Hirotada

    2006-01-01

    We have systematically made a set of precisely defined, single-gene deletions of all nonessential genes in Escherichia coli K-12. Open-reading frame coding regions were replaced with a kanamycin cassette flanked by FLP recognition target sites by using a one-step method for inactivation of chromosomal genes and primers designed to create in-frame deletions upon excision of the resistance cassette. Of 4288 genes targeted, mutants were obtained for 3985. To alleviate problems encountered in high-throughput studies, two independent mutants were saved for every deleted gene. These mutants-the 'Keio collection'-provide a new resource not only for systematic analyses of unknown gene functions and gene regulatory networks but also for genome-wide testing of mutational effects in a common strain background, E. coli K-12 BW25113. We were unable to disrupt 303 genes, including 37 of unknown function, which are candidates for essential genes. Distribution is being handled via GenoBase (http://ecoli.aist-nara.ac.jp/).

  14. Deletion analysis of the expression of rRNA genes and associated tRNA genes carried by a lambda transducing bacteriophage

    International Nuclear Information System (INIS)

    Morgan, E.A.; Nomura, M.

    1979-01-01

    Transducing phage lambda ilv5 carries genes for rRNA's, spacer tRNA's (tRNA 1 /sup Ile/ and tRNA/sub 1B//sup Ala/), and two other tRNA's (tRNA 1 /sup Asp/ and tRNA/sup Trp/). We have isolated a mutant of lambda ilv5, lambda ilv5su7, which carries an amber suppressor mutation in the tRNA/sup Trp/ gene. A series of deletion mutants were isolated from the lambda ilv5su7 phage. Genetic and biochemical analyses of these deletion mutants have confirmed our previous conclusion that the genes for tRNA 1 /sup Asp/ and tRNA/sup Trp/ located at the distal end of the rRNA operon (rrnC) are cotranscribed with other rRNA genes in that operon. In addition, these deletions were used to define roughly the physical location of the promoter(s) of the rRNA operon carried by the lambda ilv5su7 transducing phage

  15. [Changes of biological behavioral of E. coli K1 after ppk1 gene deletion].

    Science.gov (United States)

    Peng, Liang; Pan, Jiayun; Luo, Su; Yang, Zhenghui; Huang, Mufang; Cao, Hong

    2014-06-01

    To study the changes in biological behaviors of meningitis E. coli K1 strain E44 after deletion of polyphosphate kinase 1 (ppk1) gene and explore the role of ppk1 in the pathogenesis of E. coli K1-induced meningitis. The wild-type strain E. coli K1 and ppk1 deletion mutant were exposed to heat at 56 degrees celsius; for 6 min, and their survival rates were determined. The adhesion and invasion of the bacteria to human brain microvascular endothelial cells (HBMECs) were observed using electron microscopy and quantitative tests. HBMECs were co-incubated with wild-type strain or ppk1 deletion mutant, and the cytoskeleton rearrangement was observed under laser scanning confocal microscope. The survival rate of the ppk1 deletion mutant was significantly lower than that of the wild-type strain after heat exposure. The ppk1 deletion mutant also showed lowered cell adhesion and invasion abilities and weakened ability to induce cytoskeleton rearrangement in HBMECs. ppk1 gene is important for E.coli K1 for heat resistance, cell adhesion and invasion, and for inducing cytoskeletal rearrangement in HBMECs.

  16. Properties of the simian virus 40 (SV40) large T antigens encoded by SV40 mutants with deletions in gene A.

    Science.gov (United States)

    Cole, C N; Tornow, J; Clark, R; Tjian, R

    1986-01-01

    The biochemical properties of the large T antigens encoded by simian virus 40 (SV40) mutants with deletions at DdeI sites in the SV40 A gene were determined. Mutant large T antigens containing only the first 138 to 140 amino acids were unable to bind to the SV40 origin of DNA replication as were large T antigens containing at their COOH termini 96 or 97 amino acids encoded by the long open reading frame located between 0.22 and 0.165 map units (m.u.). All other mutant large T antigens were able to bind to the SV40 origin of replication. Mutants with in-phase deletions at 0.288 and 0.243 m.u. lacked ATPase activity, but ATPase activity was normal in mutants lacking origin-binding activity. The 627-amino acid large T antigen encoded by dlA2465, with a deletion at 0.219 m.u., was the smallest large T antigen displaying ATPase activity. Mutant large T antigens with the alternate 96- or 97-amino acid COOH terminus also lacked ATPase activity. All mutant large T antigens were found in the nuclei of infected cells; a small amount of large T with the alternate COOH terminus was also located in the cytoplasm. Mutant dlA2465 belonged to the same class of mutants as dlA2459. It was unable to form plaques on CV-1p cells at 37 or 32 degrees C but could form plaques on BSC-1 monolayers at 37 degrees C but not at 32 degrees C. It was positive for viral DNA replication and showed intracistronic complementation with any group A mutant whose large T antigen contained a normal carboxyl terminus. These findings and those of others suggest that both DNA binding and ATPase activity are required for the viral DNA replication function of large T antigen, that these two activities must be located on the same T antigen monomer, and that these two activities are performed by distinct domains of the polypeptide. These domains are distinct and separable from the domain affected by the mutation of dlA2465 and indicate that SV40 large T antigen is made up of at least three separate functional

  17. Whole genome HBV deletion profiles and the accumulation of preS deletion mutant during antiviral treatment

    Science.gov (United States)

    2012-01-01

    Background Hepatitis B virus (HBV), because of its error-prone viral polymerase, has a high mutation rate leading to widespread substitutions, deletions, and insertions in the HBV genome. Deletions may significantly change viral biological features complicating the progression of liver diseases. However, the clinical conditions correlating to the accumulation of deleted mutants remain unclear. In this study, we explored HBV deletion patterns and their association with disease status and antiviral treatment by performing whole genome sequencing on samples from 51 hepatitis B patients and by monitoring changes in deletion variants during treatment. Clone sequencing was used to analyze preS regions in another cohort of 52 patients. Results Among the core, preS, and basic core promoter (BCP) deletion hotspots, we identified preS to have the highest frequency and the most complex deletion pattern using whole genome sequencing. Further clone sequencing analysis on preS identified 70 deletions which were classified into 4 types, the most common being preS2. Also, in contrast to the core and BCP regions, most preS deletions were in-frame. Most deletions interrupted viral surface epitopes, and are possibly involved in evading immuno-surveillance. Among various clinical factors examined, logistic regression showed that antiviral medication affected the accumulation of deletion mutants (OR = 6.81, 95% CI = 1.296 ~ 35.817, P = 0.023). In chronic carriers of the virus, and individuals with chronic hepatitis, the deletion rate was significantly higher in the antiviral treatment group (Fisher exact test, P = 0.007). Particularly, preS2 deletions were associated with the usage of nucleos(t)ide analog therapy (Fisher exact test, P = 0.023). Dynamic increases in preS1 or preS2 deletions were also observed in quasispecies from samples taken from patients before and after three months of ADV therapy. In vitro experiments demonstrated that preS2 deletions alone

  18. Identification of a basic helix-loop-helix-type transcription regulator gene in Aspergillus oryzae by systematically deleting large chromosomal segments.

    Science.gov (United States)

    Jin, Feng Jie; Takahashi, Tadashi; Machida, Masayuki; Koyama, Yasuji

    2009-09-01

    We previously developed two methods (loop-out and replacement-type recombination) for generating large-scale chromosomal deletions that can be applied to more effective chromosomal engineering in Aspergillus oryzae. In this study, the replacement-type method is used to systematically delete large chromosomal DNA segments to identify essential and nonessential regions in chromosome 7 (2.93 Mb), which is the smallest A. oryzae chromosome and contains a large number of nonsyntenic blocks. We constructed 12 mutants harboring deletions that spanned 16- to 150-kb segments of chromosome 7 and scored phenotypic changes in the resulting mutants. Among the deletion mutants, strains designated Delta5 and Delta7 displayed clear phenotypic changes involving growth and conidiation. In particular, the Delta5 mutant exhibited vigorous growth and conidiation, potentially beneficial characteristics for certain industrial applications. Further deletion analysis allowed identification of the AO090011000215 gene as the gene responsible for the Delta5 mutant phenotype. The AO090011000215 gene was predicted to encode a helix-loop-helix binding protein belonging to the bHLH family of transcription factors. These results illustrate the potential of the approach for identifying novel functional genes.

  19. The einkorn wheat (Triticum monococcum) mutant, maintained vegetative phase, is caused by a deletion in the VRN1 gene

    International Nuclear Information System (INIS)

    Shitsukawa, N.; Ikari, C.; Shimada, S.; Kitagawa, S.; Sakamoto, K.; Saito, H.; Ryuto, H.; Fukunishi, N.; Abe, T.; Takumi, S.; Nasuda, S.; Murai, K.

    2007-01-01

    The einkorn wheat (Triticum monococcum) mutant, maintained vegetative phase (mvp), was induced by nitrogen ion-beam treatment and was identified by its inability to transit from the vegetative to reproductive phase. In our previous study, we showed that WAP1 (wheat APETALA1) is a key gene in the regulatory pathway that controls phase transition from vegetative to reproductive growth in common wheat. WAP1 is an ortholog of the VRN1 gene that is responsible for vernalization insensitivity in einkorn wheat. The mvp mutation resulted from deletion of the VRN1 coding and promoter regions, demonstrating that WAP1/VRN1 is an indispensable gene for phase transition in wheat. Expression analysis of flowering-related genes in mvp plants indicated that wheat GIGANTIA (GI), CONSTANS (CO) and SUPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) genes either act upstream of or in a different pathway to WAP1/VRN1

  20. Potential complications when developing gene deletion clones in Xylella fastidiosa.

    Science.gov (United States)

    Johnson, Kameka L; Cursino, Luciana; Athinuwat, Dusit; Burr, Thomas J; Mowery, Patricia

    2015-04-16

    The Gram-negative xylem-limited bacterium, Xylella fastidiosa, is an important plant pathogen that infects a number of high value crops. The Temecula 1 strain infects grapevines and induces Pierce's disease, which causes symptoms such as scorching on leaves, cluster collapse, and eventual plant death. In order to understand the pathogenesis of X. fastidiosa, researchers routinely perform gene deletion studies and select mutants via antibiotic markers. Site-directed pilJ mutant of X. fastidiosa were generated and selected on antibiotic media. Mutant cultures were assessed by PCR to determine if they were composed of purely transformant cells or included mixtures of non-transformants cells. Then pure pilJ mutant and wildtype cells were mixed in PD2 medium and following incubation and exposure to kanamycin were assessed by PCR for presence of mutant and wildtype populations. We have discovered that when creating clones of targeted mutants of X. fastidiosa Temecula 1 with selection on antibiotic plates, X. fastidiosa lacking the gene deletion often persist in association with targeted mutant cells. We believe this phenomenon is due to spontaneous antibiotic resistance and/or X. fastidiosa characteristically forming aggregates that can be comprised of transformed and non-transformed cells. A combined population was confirmed by PCR, which showed that targeted mutant clones were mixed with non-transformed cells. After repeated transfer and storage the non-transformed cells became the dominant clone present. We have discovered that special precautions are warranted when developing a targeted gene mutation in X. fastidiosa because colonies that arise following transformation and selection are often comprised of transformed and non-transformed cells. Following transfer and storage the cells can consist primarily of the non-transformed strain. As a result, careful monitoring of targeted mutant strains must be performed to avoid mixed populations and confounding results.

  1. Reduction of Aspergillus niger Virulence in Apple Fruits by Deletion of the Catalase Gene cpeB.

    Science.gov (United States)

    Zhang, Meng-Ke; Tang, Jun; Huang, Zhong-Qin; Hu, Kang-Di; Li, Yan-Hong; Han, Zhuo; Chen, Xiao-Yan; Hu, Lan-Ying; Yao, Gai-Fang; Zhang, Hua

    2018-05-30

    Aspergillus niger, a common saprophytic fungus, causes rot in many fruits. We studied the role of a putative catalase-peroxidase-encoding gene, cpeB, in oxidative stress and virulence in fruit. The cpeB gene was deleted in A. niger by homologous recombination, and the Δ cpeB mutant showed decreased CAT activity compared with that of the wild type. The cpeB gene deletion caused increased sensitivity to H 2 O 2 stress, and spore germination was significantly reduced; in addition, the reactive-oxygen-species (ROS) metabolites superoxide anions (·O 2 - ), hydrogen peroxide (H 2 O 2 ), and malondialdehyde (MDA) accumulated in the Δ cpeB mutant during H 2 O 2 stress. Furthermore, ROS metabolism in A. niger infected apples was determined, and our results showed that the Δ cpeB mutant induced an attenuated response in apple fruit during the fruit-pathogen interaction; the cpeB gene deletion significantly reduced the development of lesions, suggesting that the cpeB gene in A. niger is essential for full virulence in apples.

  2. Radiation susceptibility of the mouse smalleye mutants, Del(2)Sey3Hpax6 and Del(2)Sey4Hpax6, which delete the chromosome 2 middle regions

    International Nuclear Information System (INIS)

    Nitta, Y.; Hoshi, M.; Yoshida, K.; Yamate, J.; Peters, J.; Cattanach, B.M.

    2003-01-01

    Full text: LOH at the chromosome 2 middle regions is common in the radiation-induced mouse acute myeloid leukemia (AML). To identify the suppressor or the modifier gene of AML at this region, the mouse deletion mutants, Del(2)Sey3H pax6 and Del(2)Sey3H pax6 could be the good models, as they deleted the chromosome 2 middle regions hemizygously. The allele of the partially deleted chromosome 2 was paternally generated and maintained hemizygously. The exact deleted regions of the two mutants were mapped by the PCR-based detection of polymorphism of the STS markers. The length of the deletions was 3.01Mb and 10.11MB for Del(2)Sey3H pax6 and Del(2)Sey3H pax6 , respectively. For the induction of tumors, a radiation, 3.0Gy of Co-60 and a chemical carcinogen, N-methyl-N-nitrosourea were applied to the mutants. Their tumorigenicity was compared with those of control as well as normal sibs by the Kaplan-Meier analysis. Both mutants were found to predispose to small intestinal tumors. Intestinal tumors developed spontaneously with the incidence of 30%. The radiation and the chemical accelerated the malignancy and increased the incidence of the intestinal tumors. Radiation shortened the latency of AML development in the Del(2)Sey3H pax6 mutant but not in the Del(2)Sey3H pax6 . Spontaneous AML has not been observed, nor any increase in the incidence of induced AMLs. The commonly deleted region of the two mutants, the 3.01Mb region, must be critical for the development of tumors and the high susceptibility to radiation. The role of Pax6 gene should be considered in the intestinal tumorigenesis, as the Pax6 gene plays an important role in the pancreas development during the embryogenesis. The Wt1, a tumor suppressor gene, which is deleted hemizygously in these mutants as well. The screening of homozygous deletion has been started using the induced as well as spontaneously developed tumors

  3. Multi-exon deletions of the FBN1 gene in Marfan syndrome

    Directory of Open Access Journals (Sweden)

    Schrijver Iris

    2001-10-01

    Full Text Available Abstract Background Mutations in the fibrillin -1 gene (FBN1 cause Marfan syndrome (MFS, an autosomal dominant multi-system connective tissue disorder. The 200 different mutations reported in the 235 kb, 65 exon-containing gene include only one family with a genomic multi-exon deletion. Methods We used long-range RT-PCR for mutation detection and long-range genomic PCR and DNA sequencing for identification of deletion breakpoints, allele-specific transcript analyses to determine stability of the mutant RNA, and pulse-chase studies to quantitate fibrillin synthesis and extracellular matrix deposition in cultured fibroblasts. Southern blots of genomic DNA were probed with three overlapping fragments covering the FBN1 coding exons Results Two novel multi-exon FBN1 deletions were discovered. Identical nucleotide pentamers were found at or near the intronic breakpoints. In a Case with classic MFS, an in-frame deletion of exons 42 and 43 removed the C-terminal 24 amino acids of the 5th LTBP (8-cysteine domain and the adjacent 25th calcium-binding EGF-like (6-cysteine domain. The mutant mRNA was stable, but fibrillin synthesis and matrix deposition were significantly reduced. A Case with severe childhood-onset MFS has a de novo deletion of exons 44–46 that removed three EGF-like domains. Fibrillin protein synthesis was normal, but matrix deposition was strikingly reduced. No genomic rearrangements were detected by Southern analysis of 18 unrelated MFS samples negative for FBN1 mutation screening. Conclusions Two novel deletion cases expand knowledge of mutational mechanisms and genotype/phenotype correlations of fibrillinopathies. Deletions or mutations affecting an LTBP domain may result in unstable mutant protein cleavage products that interfere with microfibril assembly.

  4. Sequence characterisation of deletion breakpoints in the dystrophin gene by PCR

    Energy Technology Data Exchange (ETDEWEB)

    Abbs, S.; Sandhu, S.; Bobrow, M. [Guy`s Hospital, London (United Kingdom)

    1994-09-01

    Partial deletions of the dystrophin gene account for 65% of cases of Duchenne muscular dystrophy. A high proportion of these structural changes are generated by new mutational events, and lie predominantly within two `hotspot` regions, yet the underlying reasons for this are not known. We are characterizing and sequencing the regions surrounding deletion breakpoints in order to: (i) investigate the mechanisms of deletion mutation, and (ii) enable the design of PCR assays to specifically amplify mutant and normal sequences, allowing us to search for the presence of somatic mosaicism in appropriate family members. Using this approach we have been able to demonstrate the presence of somatic mosaicism in a maternal grandfather of a DMD-affected male, deleted for exons 49-50. Three deletions, namely of exons 48-49, 49-50, and 50, have been characterized using a PCR approach that avoids any cloning procedures. Breakpoints were initially localized to within regions of a few kilobases using Southern blot restriction analyses with exon-specific probes and PCR amplification of exonic and intronic loci. Sequencing was performed directly on PCR products: (i) mutant sequences were obtained from long-range or inverse-PCR across the deletion junction fragments, and (ii) normal sequences were obtained from the products of standard PCR, vectorette PCR, or inverse-PCR performed on YACs. Further characterization of intronic sequences will allow us to amplify and sequence across other deletion breakpoints and increase our knowledge of the mechanisms of mutation in the dystophin gene.

  5. Detection of genomic deletions in rice using oligonucleotide microarrays

    Directory of Open Access Journals (Sweden)

    Bordeos Alicia

    2009-03-01

    Full Text Available Abstract Background The induction of genomic deletions by physical- or chemical- agents is an easy and inexpensive means to generate a genome-saturating collection of mutations. Different mutagens can be selected to ensure a mutant collection with a range of deletion sizes. This would allow identification of mutations in single genes or, alternatively, a deleted group of genes that might collectively govern a trait (e.g., quantitative trait loci, QTL. However, deletion mutants have not been widely used in functional genomics, because the mutated genes are not tagged and therefore, difficult to identify. Here, we present a microarray-based approach to identify deleted genomic regions in rice mutants selected from a large collection generated by gamma ray or fast neutron treatment. Our study focuses not only on the utility of this method for forward genetics, but also its potential as a reverse genetics tool through accumulation of hybridization data for a collection of deletion mutants harboring multiple genetic lesions. Results We demonstrate that hybridization of labeled genomic DNA directly onto the Affymetrix Rice GeneChip® allows rapid localization of deleted regions in rice mutants. Deletions ranged in size from one gene model to ~500 kb and were predicted on all 12 rice chromosomes. The utility of the technique as a tool in forward genetics was demonstrated in combination with an allelic series of mutants to rapidly narrow the genomic region, and eventually identify a candidate gene responsible for a lesion mimic phenotype. Finally, the positions of mutations in 14 mutants were aligned onto the rice pseudomolecules in a user-friendly genome browser to allow for rapid identification of untagged mutations http://irfgc.irri.org/cgi-bin/gbrowse/IR64_deletion_mutants/. Conclusion We demonstrate the utility of oligonucleotide arrays to discover deleted genes in rice. The density and distribution of deletions suggests the feasibility of a

  6. Intrachromosomal amplification, locus deletion and point mutation in the aquaglyceroporin AQP1 gene in antimony resistant Leishmania (Viannia guyanensis.

    Directory of Open Access Journals (Sweden)

    Rubens Monte-Neto

    2015-02-01

    Full Text Available Antimony resistance complicates the treatment of infections caused by the parasite Leishmania.Using next generation sequencing, we sequenced the genome of four independent Leishmania guyanensis antimony-resistant (SbR mutants and found different chromosomal alterations including aneuploidy, intrachromosomal gene amplification and gene deletion. A segment covering 30 genes on chromosome 19 was amplified intrachromosomally in three of the four mutants. The gene coding for the multidrug resistance associated protein A involved in antimony resistance was also amplified in the four mutants, most likely through chromosomal translocation. All mutants also displayed a reduced accumulation of antimony mainly due to genomic alterations at the level of the subtelomeric region of chromosome 31 harboring the gene coding for the aquaglyceroporin 1 (LgAQP1. Resistance involved the loss of LgAQP1 through subtelomeric deletions in three mutants. Interestingly, the fourth mutant harbored a single G133D point mutation in LgAQP1 whose role in resistance was functionality confirmed through drug sensitivity and antimony accumulation assays. In contrast to the Leishmania subspecies that resort to extrachromosomal amplification, the Viannia strains studied here used intrachromosomal amplification and locus deletion.This is the first report of a naturally occurred point mutation in AQP1 in antimony resistant parasites.

  7. Whole-Genome Sequencing of Sordaria macrospora Mutants Identifies Developmental Genes.

    Science.gov (United States)

    Nowrousian, Minou; Teichert, Ines; Masloff, Sandra; Kück, Ulrich

    2012-02-01

    The study of mutants to elucidate gene functions has a long and successful history; however, to discover causative mutations in mutants that were generated by random mutagenesis often takes years of laboratory work and requires previously generated genetic and/or physical markers, or resources like DNA libraries for complementation. Here, we present an alternative method to identify defective genes in developmental mutants of the filamentous fungus Sordaria macrospora through Illumina/Solexa whole-genome sequencing. We sequenced pooled DNA from progeny of crosses of three mutants and the wild type and were able to pinpoint the causative mutations in the mutant strains through bioinformatics analysis. One mutant is a spore color mutant, and the mutated gene encodes a melanin biosynthesis enzyme. The causative mutation is a G to A change in the first base of an intron, leading to a splice defect. The second mutant carries an allelic mutation in the pro41 gene encoding a protein essential for sexual development. In the mutant, we detected a complex pattern of deletion/rearrangements at the pro41 locus. In the third mutant, a point mutation in the stop codon of a transcription factor-encoding gene leads to the production of immature fruiting bodies. For all mutants, transformation with a wild type-copy of the affected gene restored the wild-type phenotype. Our data demonstrate that whole-genome sequencing of mutant strains is a rapid method to identify developmental genes in an organism that can be genetically crossed and where a reference genome sequence is available, even without prior mapping information.

  8. Systematic deletion of homeobox genes in Podospora anserina uncovers their roles in shaping the fruiting body.

    Directory of Open Access Journals (Sweden)

    Evelyne Coppin

    Full Text Available Higher fungi, which comprise ascomycetes and basidiomycetes, play major roles in the biosphere. Their evolutionary success may be due to the extended dikaryotic stage of their life cycle, which is the basis for their scientific name: the Dikarya. Dikaryosis is maintained by similar structures, the clamp in basidiomycetes and the crozier in ascomycetes. Homeodomain transcription factors are required for clamp formation in all basidiomycetes studied. We identified all the homeobox genes in the filamentous ascomycete fungus Podospora anserina and constructed deletion mutants for each of these genes and for a number of gene combinations. Croziers developed normally in these mutants, including those with up to six deleted homeogenes. However, some mutants had defects in maturation of the fruiting body, an effect that could be rescued by providing wild-type maternal hyphae. Analysis of mutants deficient in multiple homeogenes revealed interactions between the genes, suggesting that they operate as a complex network. Similar to their role in animals and plants, homeodomain transcription factors in ascomycetes are involved in shaping multicellular structures.

  9. Systematic deletion of homeobox genes in Podospora anserina uncovers their roles in shaping the fruiting body.

    Science.gov (United States)

    Coppin, Evelyne; Berteaux-Lecellier, Véronique; Bidard, Frédérique; Brun, Sylvain; Ruprich-Robert, Gwenaël; Espagne, Eric; Aït-Benkhali, Jinane; Goarin, Anne; Nesseir, Audrey; Planamente, Sara; Debuchy, Robert; Silar, Philippe

    2012-01-01

    Higher fungi, which comprise ascomycetes and basidiomycetes, play major roles in the biosphere. Their evolutionary success may be due to the extended dikaryotic stage of their life cycle, which is the basis for their scientific name: the Dikarya. Dikaryosis is maintained by similar structures, the clamp in basidiomycetes and the crozier in ascomycetes. Homeodomain transcription factors are required for clamp formation in all basidiomycetes studied. We identified all the homeobox genes in the filamentous ascomycete fungus Podospora anserina and constructed deletion mutants for each of these genes and for a number of gene combinations. Croziers developed normally in these mutants, including those with up to six deleted homeogenes. However, some mutants had defects in maturation of the fruiting body, an effect that could be rescued by providing wild-type maternal hyphae. Analysis of mutants deficient in multiple homeogenes revealed interactions between the genes, suggesting that they operate as a complex network. Similar to their role in animals and plants, homeodomain transcription factors in ascomycetes are involved in shaping multicellular structures.

  10. Directed mutagenesis in Candida albicans: one-step gene disruption to isolate ura3 mutants

    International Nuclear Information System (INIS)

    Kelly, R.; Miller, S.M.; Kurtz, M.B.; Kirsch, D.R.

    1987-01-01

    A method for introducing specific mutations into the diploid Candida albicans by one-step gene disruption and subsequent UV-induced recombination was developed. The cloned C. albicans URA3 gene was disrupted with the C. albicans ADE2 gene, and the linearized DNA was used for transformation of two ade2 mutants, SGY-129 and A81-Pu. Both an insertional inactivation of the URA3 gene and a disruption which results in a 4.0-kilobase deletion were made. Southern hybridization analyses demonstrated that the URA3 gene was disrupted on one of the chromosomal homologs in 15 of the 18 transformants analyzed. These analyses also revealed restriction site dimorphism of EcoRI at the URA3 locus which provides a unique marker to distinguish between chromosomal homologs. This enabled us to show that either homolog could be disrupted and that disrupted transformants of SGY-129 contained more than two copies of the URA3 locus. The A81-Pu transformants heterozygous for the ura3 mutations were rendered homozygous and Ura- by UV-induced recombination. The homozygosity of a deletion mutant and an insertion mutant was confirmed by Southern hybridization. Both mutants were transformed to Ura+ with plasmids containing the URA3 gene and in addition, were resistant to 5-fluoro-orotic acid, a characteristic of Saccharomyces cerevisiae ura3 mutants as well as of orotidine-5'-phosphate decarboxylase mutants of other organisms

  11. Delayed chromosomal instability caused by large deletion

    International Nuclear Information System (INIS)

    Ojima, M.; Suzuki, K.; Kodama, S.; Watanabe, M.

    2003-01-01

    Full text: There is accumulating evidence that genomic instability, manifested by the expression of delayed phenotypes, is induced by X-irradiation but not by ultraviolet (UV) light. It is well known that ionizing radiation, such as X-rays, induces DNA double strand breaks, but UV-light mainly causes base damage like pyrimidine dimers and (6-4) photoproducts. Although the mechanism of radiation-induced genomic instability has not been thoroughly explained, it is suggested that DNA double strand breaks contribute the induction of genomic instability. We examined here whether X-ray induced gene deletion at the hprt locus induces delayed instability in chromosome X. SV40-immortalized normal human fibroblasts, GM638, were irradiated with X-rays (3, 6 Gy), and the hprt mutants were isolated in the presence of 6-thioguanine (6-TG). A 2-fold and a 60-fold increase in mutation frequency were found by 3 Gy and 6 Gy irradiation, respectively. The molecular structure of the hprt mutations was determined by multiplex polymerase chain reaction of nine exons. Approximately 60% of 3 Gy mutants lost a part or the entire hprt gene, and the other mutants showed point mutations like spontaneous mutants. All 6 Gy mutants show total gene deletion. The chromosomes of the hprt mutants were analyzed by Whole Human Chromosome X Paint FISH or Xq telomere FISH. None of the point or partial gene deletion mutants showed aberrations of X-chromosome, however total gene deletion mutants induced translocations and dicentrics involving chromosome X. These results suggest that large deletion caused by DNA double strand breaks destabilizes chromosome structure, which may be involved in an induction of radiation-induced genomic instability

  12. First report of a deletion encompassing an entire exon in the homogentisate 1,2-dioxygenase gene causing alkaptonuria.

    Science.gov (United States)

    Zouheir Habbal, Mohammad; Bou-Assi, Tarek; Zhu, Jun; Owen, Renius; Chehab, Farid F

    2014-01-01

    Alkaptonuria is often diagnosed clinically with episodes of dark urine, biochemically by the accumulation of peripheral homogentisic acid and molecularly by the presence of mutations in the homogentisate 1,2-dioxygenase gene (HGD). Alkaptonuria is invariably associated with HGD mutations, which consist of single nucleotide variants and small insertions/deletions. Surprisingly, the presence of deletions beyond a few nucleotides among over 150 reported deleterious mutations has not been described, raising the suspicion that this gene might be protected against the detrimental mechanisms of gene rearrangements. The quest for an HGD mutation in a proband with AKU revealed with a SNP array five large regions of homozygosity (5-16 Mb), one of which includes the HGD gene. A homozygous deletion of 649 bp deletion that encompasses the 72 nucleotides of exon 2 and surrounding DNA sequences in flanking introns of the HGD gene was unveiled in a proband with AKU. The nature of this deletion suggests that this in-frame deletion could generate a protein without exon 2. Thus, we modeled the tertiary structure of the mutant protein structure to determine the effect of exon 2 deletion. While the two β-pleated sheets encoded by exon 2 were missing in the mutant structure, other β-pleated sheets are largely unaffected by the deletion. However, nine novel α-helical coils substituted the eight coils present in the native HGD crystal structure. Thus, this deletion results in a deleterious enzyme, which is consistent with the proband's phenotype. Screening for mutations in the HGD gene, particularly in the Middle East, ought to include this exon 2 deletion in order to determine its frequency and uncover its origin.

  13. First report of a deletion encompassing an entire exon in the homogentisate 1,2-dioxygenase gene causing alkaptonuria.

    Directory of Open Access Journals (Sweden)

    Mohammad Zouheir Habbal

    Full Text Available Alkaptonuria is often diagnosed clinically with episodes of dark urine, biochemically by the accumulation of peripheral homogentisic acid and molecularly by the presence of mutations in the homogentisate 1,2-dioxygenase gene (HGD. Alkaptonuria is invariably associated with HGD mutations, which consist of single nucleotide variants and small insertions/deletions. Surprisingly, the presence of deletions beyond a few nucleotides among over 150 reported deleterious mutations has not been described, raising the suspicion that this gene might be protected against the detrimental mechanisms of gene rearrangements. The quest for an HGD mutation in a proband with AKU revealed with a SNP array five large regions of homozygosity (5-16 Mb, one of which includes the HGD gene. A homozygous deletion of 649 bp deletion that encompasses the 72 nucleotides of exon 2 and surrounding DNA sequences in flanking introns of the HGD gene was unveiled in a proband with AKU. The nature of this deletion suggests that this in-frame deletion could generate a protein without exon 2. Thus, we modeled the tertiary structure of the mutant protein structure to determine the effect of exon 2 deletion. While the two β-pleated sheets encoded by exon 2 were missing in the mutant structure, other β-pleated sheets are largely unaffected by the deletion. However, nine novel α-helical coils substituted the eight coils present in the native HGD crystal structure. Thus, this deletion results in a deleterious enzyme, which is consistent with the proband's phenotype. Screening for mutations in the HGD gene, particularly in the Middle East, ought to include this exon 2 deletion in order to determine its frequency and uncover its origin.

  14. Absence of mutation at the 5'-upstream promoter region of the TPM4 gene from cardiac mutant axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    Denz, Christopher R; Zhang, Chi; Jia, Pingping; Du, Jianfeng; Huang, Xupei; Dube, Syamalima; Thomas, Anish; Poiesz, Bernard J; Dube, Dipak K

    2011-09-01

    Tropomyosins are a family of actin-binding proteins that show cell-specific diversity by a combination of multiple genes and alternative RNA splicing. Of the 4 different tropomyosin genes, TPM4 plays a pivotal role in myofibrillogenesis as well as cardiac contractility in amphibians. In this study, we amplified and sequenced the upstream regulatory region of the TPM4 gene from both normal and mutant axolotl hearts. To identify the cis-elements that are essential for the expression of the TPM4, we created various deletion mutants of the TPM4 promoter DNA, inserted the deleted segments into PGL3 vector, and performed promoter-reporter assay using luciferase as the reporter gene. Comparison of sequences of the promoter region of the TPM4 gene from normal and mutant axolotl revealed no mutations in the promoter sequence of the mutant TPM4 gene. CArG box elements that are generally involved in controlling the expression of several other muscle-specific gene promoters were not found in the upstream regulatory region of the TPM4 gene. In deletion experiments, loss of activity of the reporter gene was noted upon deletion which was then restored upon further deletion suggesting the presence of both positive and negative cis-elements in the upstream regulatory region of the TPM4 gene. We believe that this is the first axolotl promoter that has ever been cloned and studied with clear evidence that it functions in mammalian cell lines. Although striated muscle-specific cis-acting elements are absent from the promoter region of TPM4 gene, our results suggest the presence of positive and negative cis-elements in the promoter region, which in conjunction with positive and negative trans-elements may be involved in regulating the expression of TPM4 gene in a tissue-specific manner.

  15. Effect of gamma rays at the dihydrofolate reductase locus: deletions and inversions

    International Nuclear Information System (INIS)

    Urlaub, G.; Mitchell, P.J.; Kas, E.; Chasin, L.A.; Funanage, V.L.; Myoda, T.T.; Hamlin, J.

    1986-01-01

    A series 11 gamma-ray-induced mutants at the dihydrofolate reductase (dhfr) locus in Chinese hamster ovary cells has been examined for the types of DNA sequence change brought about by this form of ionizing radiation. All 11 mutants were found to have suffered major structural changes affecting the dhfr gene. In eight of the mutants, all or part of the dhfr gene has been deleted. The extent of these deletions was examined in seven of these mutants and, for comparison, in two deletion mutants that were induced by UV irradiation. For this purpose, probes from an overlapping set of cosmids that span 210 kb of DNA in this region were used. Three of seven gamma-ray-induced mutants and one UV-induced mutant were shown to have deleted the entire 210-kb region. In the remaining mutants, endpoints ranging from within the dhfr gene to 100 kb downstream were observed. No upstream endpoints were detected, so that an upper limit on the size of these large deletions could not be assigned. Three of the 11 gamma-ray-induced mutants contained an interruption in the dhfr gene without any detectable loss of sequence. Restriction analysis of these interrupted mutants showed that at least 8-14 kb of foreign DNA sequence became joined to the gene at the point of disruption. Cytogenetic analysis of these mutants showed that in two cases an inversion of the banding pattern on chromosome Z-2 had taken place. The inverted dhfr mutants contain very low amounts of dhfr RNA sequences, and the 5' end of an inversion mutant gene exhibits the same pattern of DNA methylation and DNase I-hypersensitivity as the wild-type gene. Our results suggest that ionizing radiation causes primarily, if not exclusively, large deletions and inversions in mammalian cells

  16. Deletion Mutagenesis and Identification of Causative Mutations in Maize.

    Science.gov (United States)

    Jia, Shangang; Li, Aixia; Zhang, Chi; Holding, David

    2018-01-01

    We describe a method for gamma-irradiation of mature maize seeds to generate mutants with opaque endosperm and reduced kernel fill phenotypes. We also describe methods for mapping mutants and identifying causal gene mutations. Using this method, a population of 1788M2 families and 47 Mo17 × F2s showing stable, segregating, and viable kernel phenotypes was developed. For molecular characterization of the mutants, we utilized a novel functional genomics platform that combines separate Bulked Segregant RNA and exome sequencing data sets (BSREx-seq) to map causative mutations and identify candidate genes within mapping intervals. We also describe the use of exome capture sequencing of F2 mutant and normal pools to perform mapping and candidate gene identification without the need for separate RNA-seq (BSEx-seq). To exemplify the utility of the deletion mutants for functional genomics and provide proof-of-concept for the bioinformatics platform, we summarize the identification of the causative deletion in two mutants. Mutant 937, which was characterized by BSREx-seq, harbors a 6203-bp in-frame deletion covering six exons within the Opaque-1 gene on chromosome 4. Preliminary investigation of opaque mutant 1486 with BSEx-seq shows a tight mapping interval and associated deletion on chromosome 10.

  17. Increased production of biomass-degrading enzymes by double deletion of creA and creB genes involved in carbon catabolite repression in Aspergillus oryzae.

    Science.gov (United States)

    Ichinose, Sakurako; Tanaka, Mizuki; Shintani, Takahiro; Gomi, Katsuya

    2018-02-01

    In a previous study, we reported that a double gene deletion mutant for CreA and CreB, which constitute the regulatory machinery involved in carbon catabolite repression, exhibited improved production of α-amylase compared with the wild-type strain and single creA or creB deletion mutants in Aspergillus oryzae. Because A. oryzae can also produce biomass-degrading enzymes, such as xylolytic and cellulolytic enzymes, we examined the production levels of those enzymes in deletion mutants in this study. Xylanase and β-glucosidase activities in the wild-type were hardly detected in submerged culture containing xylose as the carbon source, whereas those enzyme activities were significantly increased in the single creA deletion (ΔcreA) and double creA and creB deletion (ΔcreAΔcreB) mutants. In particular, the ΔcreAΔcreB mutant exhibited >100-fold higher xylanase and β-glucosidase activities than the wild-type. Moreover, in solid-state culture, the β-glucosidase activity of the double deletion mutant was >7-fold higher than in the wild-type. These results suggested that deletion of both creA and creB genes could also efficiently improve the production levels of biomass-degrading enzymes in A. oryzae. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Meiotic UV-sensitive mutant that causes deletion of duplications in neurospora

    International Nuclear Information System (INIS)

    Newmeyer, D.; Galeazzi, D.R.

    1978-01-01

    The meiotic-3 (mei-3) mutant of Neurospora crassa has several effects: (1) when homozygous, it almost completely blocks meiosis and ascospore formation, (2) it is sensitive to uv, (3) its growth is inhibited by histidine, and (4) it increases the instability of nontandem duplications. This was shown for duplications produced by five different rearrangements and was demonstrated by two different criteria. The effects on meiosis and duplication instability are expressed strongly at 25 0 ; the effects on sensitivity to uv and to histidine are expressed strongly at 38.5 0 but only slightly at 25 0 . Nevertheless, all four effects were shown to be due to a single gene. Mei-3 is not allelic with previously reported uv-sensitive mutants. Two other results were obtained that are not necessarily due to mei-3: (1) a cross involving mei-3 produced a new unlinked meiotic mutant, mei-4, which is not sensitive to uv or histidine, and (2) a burst of several new mutants occurred in a different mei-3 stock, including a partial revertant to mei-3. Mei-3 has previously been shown to cause frequent complete loss of a terminal duplicate segment, beginning exactly at the original rearrangement breakpoint. Possible mechanisms are discussed by which a uv-sensitive mutant could cause such precise deletions

  19. Deletions of the hypervariable region (HVR) in open reading frame 1 of hepatitis E virus do not abolish virus infectivity: evidence for attenuation of HVR deletion mutants in vivo.

    Science.gov (United States)

    Pudupakam, R S; Huang, Y W; Opriessnig, T; Halbur, P G; Pierson, F W; Meng, X J

    2009-01-01

    Hepatitis E virus (HEV) is an important human pathogen, although little is known about its biology and replication. Comparative sequence analysis revealed a hypervariable region (HVR) with extensive sequence variations in open reading frame 1 of HEV. To elucidate the role of the HVR in HEV replication, we first constructed two HVR deletion mutants, hHVRd1 and hHVRd2, with in-frame deletion of amino acids (aa) 711 to 777 and 747 to 761 in the HVR of a genotype 1 human HEV replicon. Evidence of HEV replication was detected in Huh7 cells transfected with RNA transcripts from mutant hHVRd2, as evidenced by expression of enhanced green fluorescent protein. To confirm the in vitro results, we constructed three avian HEV mutants with various HVR deletions: mutants aHVRd1, with deletion of aa 557 to 585 (Delta557-585); aHVRd2 (Delta612-641); and aHVRd3 (Delta557-641). Chickens intrahepatically inoculated with capped RNA transcripts from mutants aHVRd1 and aHVRd2 developed active viral infection, as evidenced by seroconversion, viremia, and fecal virus shedding, although mutant aHVRd3, with complete HVR deletion, was apparently attenuated in chickens. To further verify the results, we constructed four additional HVR deletion mutants using the genotype 3 swine HEV as the backbone. Mutants sHVRd2 (Delta722-781), sHVRd3 (Delta735-765), and sHVRd4 (Delta712-765) were shown to tolerate deletions and were infectious in pigs intrahepatically inoculated with capped RNA transcripts from the mutants, whereas mutant sHVRd1 (Delta712-790), with a nearly complete HVR deletion, exhibited an attenuation phenotype in infected pigs. The data from these studies indicate that deletions in HVR do not abolish HEV infectivity in vitro or in vivo, although evidence for attenuation was observed for HEV mutants with a larger or nearly complete HVR deletion.

  20. Complex mosaic CDKL5 deletion with two distinct mutant alleles in a 4-year-old girl.

    Science.gov (United States)

    Boutry-Kryza, Nadia; Ville, Dorothée; Labalme, Audrey; Calender, Alain; Dupont, Jean-Michel; Touraine, Renaud; Edery, Patrick; des Portes, Vincent; Sanlaville, Damien; Lesca, Gaetan

    2014-08-01

    Mutations of the CDKL5 gene cause early epileptic encephalopathy. Patients manifest refractory epilepsy, beginning before the age of 3 months, which is associated with severe psychomotor delay and features that overlap with Rett syndrome. We report here a patient with mosaicism for CDKL5 exonic deletion, with the presence of two mutant alleles. The affected 4-year-old girl presented with infantile spasms, beginning at the age of 9 months, but subsequent progression of the disease was consistent with the classical CDKL5-related phenotype. A deletion of exons 17 and 18 was suspected on the basis of Multiplex Ligation Probe Amplification analysis, but unexpected results for cDNA analysis, which showed the presence of an abnormal transcript with the deletion of exon 18 only, led us to suspect that two distinct events might have occurred. We used custom array-CGH to determine the size and breakpoints of these deletions. Exon 18 was deleted from one of the abnormal alleles, and exon 17 was deleted from the other. A Fork Stalling and Template Switching (FoSTeS) mechanism was proposed to explain the two events, given the presence of regions of microhomology at the breakpoints. We propose here an original involvement of the FoSTeS mechanism to explain the co-occurrence of these two events in the CDKL5 gene in a single patient. This patient highlights the difficulties involved in the detection of such abnormalities, particularly when they occur in a mosaic state and involve two distinct mutational events in a single gene. © 2014 Wiley Periodicals, Inc.

  1. Selection of Mycoplasma hominis PG21 deletion mutants by cultivation in the presence of monoclonal antibody 552

    DEFF Research Database (Denmark)

    Jensen, L T; Ladefoged, S; Birkelund, S

    1995-01-01

    characterized. The mutants showed deletions of a various number of repeats. The deletions were accompanied by a decrease in size of the proteins. With increasing size of deletions, agglutination and growth inhibition by MAb 552 became less pronounced. Spontaneous aggregation of the mutant M. hominis cells...

  2. Construction of upp deletion mutant strains of Lactobacillus casei and Lactococcus lactis based on counterselective system using temperature-sensitive plasmid.

    Science.gov (United States)

    Song, Li; Cui, Hongyu; Tang, Lijie; Qiao, Xinyuan; Liu, Min; Jiang, Yanping; Cui, Wen; Li, Yijing

    2014-07-01

    Integration plasmids are often used in constructing chromosomal mutations, as it enables the alternation of genes at any location by integration or replacement. Food-grade integration vectors can integrate into the host genome without introducing any selectable markers or residual bases, and the recombination often happens in non-coding region. In this study we used the temperature-sensitive pWV01 replicon to construct 2 chloramphenicol-resistant integration plasmids (pGBHC32-upp) containing the uracil phosphoribosyl transferase (upp) gene as a counterselective marker for Lactobacillus casei (L. casei) ATCC393 and Lactococcus lactis (L. lactis) MG1363. We then ligated the designed homologous arms to the pGBHC32-upp plasmids to allow their integration to the bacterial chromosome, and selected upp deletion mutants of L. casei ATCC393 and L. lactis MG1363 in the presence of 5-fluorouracil (5-FU). Analysis of genetic stability, growth curve, carbon utilization and scanning electronic microscopy showed that, except for 5-FU resistance, there were no significant differences between the wild type and mutant lactic acid bacteria. The integration system and the upp deletion strains could be used in the insertion or deletion of genes at any location of the chromosome of both L. casei ATCC 393 and L. lactis MG1363, and the homologous recombination would not introduce any selectable markers or residual bases. These mutant strains can be further investigated for heterologous protein expression and construction of a live mucosal vaccine carrier. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Rapid genotyping assays for the 4-base pair deletion of canine MDR1/ABCB1 gene and low frequency of the mutant allele in Border Collie dogs.

    Science.gov (United States)

    Mizukami, Keijiro; Chang, Hye-Sook; Yabuki, Akira; Kawamichi, Takuji; Hossain, Mohammad A; Rahman, Mohammad M; Uddin, Mohammad M; Yamato, Osamu

    2012-01-01

    P-glycoprotein, encoded by the MDR1 or ABCB1 gene, is an integral component of the blood-brain barrier as an efflux pump for xenobiotics crucial in limiting drug uptake into the central nervous system. Dogs homozygous for a 4-base pair deletion of the canine MDR1 gene show altered expression or function of P-glycoprotein, resulting in neurotoxicosis after administration of the substrate drugs. In the present study, the usefulness of microchip electrophoresis for genotyping assays detecting this deletion mutation was evaluated. Mutagenically separated polymerase chain reaction (MS-PCR) and real-time PCR assays were newly developed and evaluated. Furthermore, a genotyping survey was carried out in a population of Border Collies dogs in Japan to determine the allele frequency in this breed. Microchip electrophoresis showed advantages in detection sensitivity and time saving over other modes of electrophoresis. The MS-PCR assay clearly discriminated all genotypes. Real-time PCR assay was most suitable for a large-scale survey due to its high throughput and rapidity. The genotyping survey demonstrated that the carrier and mutant allele frequencies were 0.49% and 0.25%, respectively, suggesting that the mutant allele frequency in Border Collies is markedly low compared to that in the susceptible dog breeds such as rough and smooth Collies.

  4. Role of the CipA Scaffoldin Protein in Cellulose Solubilization, as Determined by Targeted Gene Deletion and Complementation in Clostridium thermocellum

    Science.gov (United States)

    Olson, Daniel G.; Giannone, Richard J.; Hettich, Robert L.

    2013-01-01

    The CipA scaffoldin protein plays a key role in the Clostridium thermocellum cellulosome. Previous studies have revealed that mutants deficient in binding or solubilizing cellulose also exhibit reduced expression of CipA. To confirm that CipA is, in fact, necessary for rapid solubilization of crystalline cellulose, the gene was deleted from the chromosome using targeted gene deletion technologies. The CipA deletion mutant exhibited a 100-fold reduction in cellulose solubilization rate, although it was eventually able to solubilize 80% of the 5 g/liter cellulose initially present. The deletion mutant was complemented by a copy of cipA expressed from a replicating plasmid. In this strain, Avicelase activity was restored, although the rate was 2-fold lower than that in the wild type and the duration of the lag phase was increased. The cipA coding sequence is located at the beginning of a gene cluster containing several other genes thought to be responsible for the structural organization of the cellulosome, including olpB, orf2p, and olpA. Tandem mass spectrometry revealed a 10-fold reduction in the expression of olpB, which may explain the lower growth rate. This deletion experiment adds further evidence that CipA plays a key role in cellulose solubilization by C. thermocellum, and it raises interesting questions about the differential roles of the anchor scaffoldin proteins OlpB, Orf2p, and SdbA. PMID:23204466

  5. The mouse small eye mutant, Del(2)Sey3H, which deletes the putative tumor suppressor region of the radiation-induced acute myeloid leukemia is susceptible to radiation

    International Nuclear Information System (INIS)

    Nitta, Yumiko; Yoshida, Kazuko; Tanaka, Kimio; Peters, Jo; Cattanach, Bruce M.

    2003-01-01

    Radiation-induced murine acute myeloid leukemia (AML) is characterized by the chromosome 2 deletions. Standing on the hypothesis that an AML suppressor gene would locate on the chromosome 2, a deletion-wide screen was performed on radiation-induced AMLs by the fluorescence in situ hybridization (FISH) method. The hemizugous deletion of the D2Mit15, a marker DNA at the 49.0cM region from the centromere, associated with the AMLs in 97 out of the 105 cases (92.4%). As the deletion region was close to the region of human WAGR syndrome (MIM194072), the mouse small eye mutants could be the animal model for radiation-induced AMLs. The mutant, Del(2)Sey3H (Sey3H) was found to delete around the 49.0cM region by the allelic loss mapping. The Sey3H showed high susceptibility to radiation to develop tumors including the myeloid leukemia with shorter latency. These finding support the existence of a putative tumor suppressor gene responsible for the radiation-leukemogenesis near the D2Mit15 region. (author)

  6. Improved α-amylase production by Aspergillus oryzae after a double deletion of genes involved in carbon catabolite repression.

    Science.gov (United States)

    Ichinose, Sakurako; Tanaka, Mizuki; Shintani, Takahiro; Gomi, Katsuya

    2014-01-01

    In filamentous fungi, the expression of secretory glycoside hydrolase encoding genes, such as those for amylases, cellulases, and xylanases, is generally repressed in the presence of glucose. CreA and CreB have been observed to be regulating factors for carbon catabolite repression. In this study, we generated single and double deletion creA and/or creB mutants in Aspergillus oryzae. The α-amylase activities of each strain were compared under various culture conditions. For the wild-type strain, mRNA levels of α-amylase were markedly decreased in the later stage of submerged culture under inducing conditions, whereas this reduced expression was not observed for single creA and double creA/creB deletion mutants. In addition, α-amylase activity of the wild-type strain was reduced in submerged culture containing high concentrations of inducing sugars, whereas all constructed mutants showed higher α-amylase activities. In particular, the α-amylase activity of the double deletion mutant in a medium containing 5% starch was >10-fold higher than that of the wild-type strain under the same culture conditions. In solid-state cultures using wheat bran as a substrate, the α-amylase activities of single creA and double deletion mutants were >2-fold higher than that of the wild-type strain. These results suggested that deleting both creA and creB resulted in dramatic improvements in the production of secretory glycoside hydrolases in filamentous fungi.

  7. VH gene expression and regulation in the mutant Alicia rabbit. Rescue of VHa2 allotype expression.

    Science.gov (United States)

    Chen, H T; Alexander, C B; Young-Cooper, G O; Mage, R G

    1993-04-01

    Rabbits of the Alicia strain, derived from rabbits expressing the VHa2 allotype, have a mutation in the H chain locus that has a cis effect upon the expression of VHa2 and VHa- genes. A small deletion at the most J-proximal (3') end of the VH locus leads to low expression of all the genes on the entire chromosome in heterozygous ali mutants and altered relative expression of VH genes in homozygotes. To study VH gene expression and regulation, we used the polymerase chain reaction to amplify the VH genes expressed in spleens of young and adult wild-type and mutant Alicia rabbits. The cDNA from reverse transcription of splenic mRNA was amplified and polymerase chain reaction libraries were constructed and screened with oligonucleotides from framework regions 1 and 3, as well as JH. Thirty-three VH-positive clones were sequenced and analyzed. We found that in mutant Alicia rabbits, products of the first functional VH gene (VH4a2), (or VH4a2-like genes) were expressed in 2- to 8-wk-olds. Expression of both the VHx and VHy types of VHa- genes was also elevated but the relative proportions of VHx and VHy, especially VHx, decreased whereas the relative levels of expression of VH4a2 or VH4a2-like genes increased with age. Our results suggest that the appearance of sequences resembling that of the VH1a2, which is deleted in the mutant ali rabbits, could be caused by alterations of the sequences of the rearranged VH4a2 genes by gene conversions and/or rearrangement of upstream VH1a2-like genes later in development.

  8. Transcriptome profiling of TDC cluster deletion mutant of Enterococcus faecalis V583

    Directory of Open Access Journals (Sweden)

    Marta Perez

    2016-09-01

    Full Text Available The species Enterococcus faecalis is able to catabolise the amino acid tyrosine into the biogenic amine tyramine by the tyrosine decarboxilase (TDC pathway Ladero et al. (2012 [1]. The TDC cluster comprises four genes: tyrS, an aminoacyl-tRNA synthetase-like gene; tdcA, which encodes the tyrosine decarboxylase; tyrP, a tyrosine/tyramine exchanger gene and nhaC-2, which encodes an Na+/H+ antiporter and whose role in the tyramine biosynthesis remains unknown [2]. In E. faecalis V583 the last three genes are co-transcribed as a single polycistronic mRNA forming the catabolic operon, while tyrS is transcribed independently of the catabolic genes as a monocistronic mRNA [2]. The catabolic operon is transcriptionally induced by tyrosine and acidic pH. On the opposite, the tyrS expression is repressed by tyrosine concentrations [2]. In this work we report the transcriptional profiling of the TDC cluster deletion mutant (E. faecalis V583 ΔTDC [2] compared to the wild-type strain, both grown in M17 medium supplemented with tyrosine. The transcriptional profile data of TDC cluster-regulated genes were deposited in the Gene Expression Omnibus (GEO database under accession no. GSE77864.

  9. Deletion of the Candida glabrata ERG3 and ERG11 genes: effect on cell viability, cell growth, sterol composition, and antifungal susceptibility.

    Science.gov (United States)

    Geber, A; Hitchcock, C A; Swartz, J E; Pullen, F S; Marsden, K E; Kwon-Chung, K J; Bennett, J E

    1995-01-01

    We have cloned and sequenced the structural genes encoding the delta 5,6 sterol desaturase (ERG3 gene) and the 14 alpha-methyl sterol demethylase (ERG11 gene) from Candida glabrata L5 (leu2). Single and double mutants of these genes were created by gene deletion. The phenotypes of these mutants, including sterol profiles, aerobic viabilities, antifungal susceptibilities, and generation times, were studied. Strain L5D (erg3 delta::LEU2) accumulated mainly ergosta-7,22-dien-3 beta-ol, was aerobically viable, and remained susceptible to antifungal agents but had a slower generation time than its parent strain. L5LUD (LEU2 erg11 delta::URA3) strains required medium supplemented with ergosterol and an anaerobic environment for growth. A spontaneous aerobically viable mutant, L5LUD40R (LEU erg11 delta::URA3), obtained from L5LUD (LEU2 erg11 delta::URA3), was found to accumulate lanosterol and obtusifoliol, was resistant to azole antifungal agents, demonstrated some increase in resistance to amphotericin B, and exhibited a 1.86-fold increase in generation time in comparison with L5 (leu2). The double-deletion mutant L5DUD61 (erg3 delta::LEU2 erg11 delta::URA3) was aerobically viable, produced mainly 14 alpha-methyl fecosterol, and had the same antifungal susceptibility pattern as L5LUD40R (LEU2 erg11 delta::URA3), and its generation time was threefold greater than that of L5 (leu2). Northern (RNA) analysis revealed that the single-deletion mutants had a marked increase in message for the undeleted ERG3 and ERG11 genes. These results indicate that differences in antifungal susceptibilities and the restoration of aerobic viability exist between the C. glabrata ergosterol mutants created in this study and those sterol mutants with similar genetic lesions previously reported for Saccharomyces cerevisiae. PMID:8593007

  10. Deletion mutants of region E1 a of AD12 E1 plasmids: Effect on oncogenic transformation

    NARCIS (Netherlands)

    Bos, J.L.; Jochemsen, A.G.; Bernards, R.A.; Schrier, P.I.; Ormondt, H. van; Eb, A.J. van der

    1983-01-01

    Plasmids containing the El region of Ad12 DNA can transform certain rodent cells into oncogenic cells. To study the role of the Ela subregion in the process of oncogenic transformation, Ad12 region El mutants carrying deletions in the Ela region were constructed. Deletion mutants pR7 and pR8 affect

  11. Establishment of screening technique for mutant cell and analysis of base sequence in the mutation

    International Nuclear Information System (INIS)

    Sofuni, Toshio; Nomi, Takehiko; Yamada, Masami; Masumura, Kenichi

    2000-01-01

    This research project aimed to establish an easy and quick detection method for radiation-induced mutation using molecular-biological techniques and an effective analyzing method for the molecular changes in base sequence. In this year, Spi mutants derived from γ-radiation exposed mouse were analyzed by PCR method and DNA sequence method. Male transgenic mice were exposed to γ-ray at 5,10, 50 Gy and the transgene was taken out from the genome DNA from the spleen in vivo packaging method. Spi mutant plaques were obtained by infecting the recovered phage to E. coli. Sequence analysis for the mutants was made using ALFred DNA sequencer and SequiTherm TM Long-Red Cycle sequencing kit. Sequence analysis was carried out for 41 of 50 independent Spi mutants obtained. The deletions were classified into 4 groups; Group 1 included 15 mutants that were characterized with a large deletion (43 bp-10 kb) with a short homologous sequence. Group 2 included 11 mutants of a large deletion having no homologous sequence at the connecting region. Group 3 included 11 mutants having a short deletion of less than 20 bp, which occurred in the non-repetitive sequence of gam gene and possibly caused by oxidative breakage of DNA or recombination of DNA fragment produced by the breakage. Group 4 included 4 mutants having deletions as short as 20 bp or less in the repetitive sequence of gam gene, resulting in an alteration of the reading frame. Thus, the synthesis of Gam protein was terminated by the appearance of TGA between code 13 and 14 of redB gene, leading to inactivation of gam gene and redBA gene. These results indicated that most of Spi mutants had a deletion in red/gam region and the deletions in more than half mutants occurred in homologous sequences as short as 8 bp. (M.N.)

  12. The Multiple Localized Glyceraldehyde-3-Phosphate Dehydrogenase Contributes to the Attenuation of the Francisella tularensis dsbA Deletion Mutant

    Directory of Open Access Journals (Sweden)

    Ivona Pavkova

    2017-12-01

    Full Text Available The DsbA homolog of Francisella tularensis was previously demonstrated to be required for intracellular replication and animal death. Disruption of the dsbA gene leads to a pleiotropic phenotype that could indirectly affect a number of different cellular pathways. To reveal the broad effects of DsbA, we compared fractions enriched in membrane proteins of the wild-type FSC200 strain with the dsbA deletion strain using a SILAC-based quantitative proteomic analysis. This analysis enabled identification of 63 proteins with significantly altered amounts in the dsbA mutant strain compared to the wild-type strain. These proteins comprise a quite heterogeneous group including hypothetical proteins, proteins associated with membrane structures, and potential secreted proteins. Many of them are known to be associated with F. tularensis virulence. Several proteins were selected for further studies focused on their potential role in tularemia's pathogenesis. Of them, only the gene encoding glyceraldehyde-3-phosphate dehydrogenase, an enzyme of glycolytic pathway, was found to be important for full virulence manifestations both in vivo and in vitro. We next created a viable mutant strain with deleted gapA gene and analyzed its phenotype. The gapA mutant is characterized by reduced virulence in mice, defective replication inside macrophages, and its ability to induce a protective immune response against systemic challenge with parental wild-type strain. We also demonstrate the multiple localization sites of this protein: In addition to within the cytosol, it was found on the cell surface, outside the cells, and in the culture medium. Recombinant GapA was successfully obtained, and it was shown that it binds host extracellular serum proteins like plasminogen, fibrinogen, and fibronectin.

  13. A strong deletion bias in nonallelic gene conversion.

    Directory of Open Access Journals (Sweden)

    Raquel Assis

    Full Text Available Gene conversion is the unidirectional transfer of genetic information between orthologous (allelic or paralogous (nonallelic genomic segments. Though a number of studies have examined nucleotide replacements, little is known about length difference mutations produced by gene conversion. Here, we investigate insertions and deletions produced by nonallelic gene conversion in 338 Drosophila and 10,149 primate paralogs. Using a direct phylogenetic approach, we identify 179 insertions and 614 deletions in Drosophila paralogs, and 132 insertions and 455 deletions in primate paralogs. Thus, nonallelic gene conversion is strongly deletion-biased in both lineages, with almost 3.5 times as many conversion-induced deletions as insertions. In primates, the deletion bias is considerably stronger for long indels and, in both lineages, the per-site rate of gene conversion is orders of magnitudes higher than that of ordinary mutation. Due to this high rate, deletion-biased nonallelic gene conversion plays a key role in genome size evolution, leading to the cooperative shrinkage and eventual disappearance of selectively neutral paralogs.

  14. Iron metabolism mutant hbd mice have a deletion in Sec15l1, which has homology to a yeast gene for vesicle docking.

    Science.gov (United States)

    White, Robert A; Boydston, Leigh A; Brookshier, Terri R; McNulty, Steven G; Nsumu, Ndona N; Brewer, Brandon P; Blackmore, Krista

    2005-12-01

    Defects in iron absorption and utilization lead to iron deficiency and anemia. While iron transport by transferrin receptor-mediated endocytosis is well understood, it is not completely clear how iron is transported from the endosome to the mitochondria where heme is synthesized. We undertook a positional cloning project to identify the causative mutation for the hemoglobin-deficit (hbd) mouse mutant, which suffers from a microcytic, hypochromic anemia apparently due to defective iron transport in the endocytosis cycle. As shown by previous studies, reticulocyte iron accumulation in homozygous hbd/hbd mice is deficient despite normal binding of transferrin to its receptor and normal transferrin uptake in the cell. We have identified a strong candidate gene for hbd, Sec15l1, a homologue to yeast SEC15, which encodes a key protein in vesicle docking. The hbd mice have an exon deletion in Sec15l1, which is the first known mutation of a SEC gene homologue in mammals.

  15. Characterization of a rabbit germ-line VH gene that is a candidate donor for VH gene conversion in mutant Alicia rabbits.

    Science.gov (United States)

    Chen, H T; Alexander, C B; Mage, R G

    1995-06-15

    Normal rabbits preferentially rearrange the 3'-most VH gene, VH1, to encode Igs with VHa allotypes, which constitute the majority of rabbit serum Igs. A gene conversion-like mechanism is employed to diversify the primary Ab repertoire. In mutant Alicia rabbits that derived from a rabbit with VHa2 allotype, the VH1 gene was deleted. Our previous studies showed that the first functional gene (VH4) or VH4-like genes were rearranged in 2- to 8-wk-old homozygous Alicia. The VH1a2-like sequences that were found in splenic mRNA from 6-wk and older Alicia rabbits still had some residues that were typical of VH4. The appearances of sequences resembling that of VH1a2 may have been caused by gene conversions that altered the sequences of the rearranged VH or there may have been rearrangement of upstream VH1a2-like genes later in development. To investigate this further, we constructed a cosmid library and isolated a VH1a2-like gene, VH12-1-6, with a sequence almost identical to VH1a2. This gene had a deleted base in the heptamer of its recombination signal sequence. However, even if this defect diminished or eliminated its ability to rearrange, the a2-like gene could have acted as a donor for gene-conversion-like alteration of rearranged VH genes. Sequence comparisons suggested that this gene or a gene like it could have acted as a donor for gene conversion in mutant Alicia and in normal rabbits.

  16. Identification of the second mutation of BADH2 gene derived from rice mutant lines induced by gamma rays

    International Nuclear Information System (INIS)

    I Ishak

    2016-01-01

    The BADH2 gene acts as suppressor of 2-acetyl-1-pyrolline (2AP) biosynthesis in plants. 2AP is the volatile compound which provides fragrance in rice. Biosynthesis of 2AP occurs when BADH2 loses its function as suppressor gene. Aromatic rice cultivars naturally incur mutation of BADH2 gene at 8 bp. In this experiment, aromatic mutant rice lines derived from irradiation of Sintanur cultivar by gamma rays with dose of 100 Gy were studied in molecular level. These mutant lines were characterized at the M10 plantgeneration under the assumption that genetically these aromatic mutant rice lines were homozygotic. Several primers related to aroma in rice have been used for polymerase chain reaction (PCR) in a thermal cycler instrument. Gel electrophoreses were carried out using 1.5% agarose in TAE buffer. DNA fragments at 254 bp and 355 bp (base pair) were taken and amplified by primer for nucleotide sequencing of these fragments. Molecular identification and characterization after electrophoresis showed that the mutant line from AR1020 can be differentiated from AR.1080 at 254 bp. Nucleotide sequence data from of these DNA fragments showed that point mutations (deletions and substitutions) occurred at the BADH2 gene in exon 7; those are called second mutation and were caused by gamma rays effects. The Sintanur variety was used as check cultivar and its DNA sequence was compared to that of the AR.1020 mutant line. The results from both DNA sequences (from cv. Sintanur and AR.1020) derived from fragments at 254 bp show that point mutations occurred within exon 7 and earlier stop codon occurred in the AR.1020 mutant rice line. Further, the use of EA primer in PCR resulted in detection of deletion and substitution of nucleotides in the AR.1020 mutant line. (author)

  17. Isolation of a novel mutant gene for soil-surface rooting in rice (Oryza sativa L.).

    Science.gov (United States)

    Hanzawa, Eiko; Sasaki, Kazuhiro; Nagai, Shinsei; Obara, Mitsuhiro; Fukuta, Yoshimichi; Uga, Yusaku; Miyao, Akio; Hirochika, Hirohiko; Higashitani, Atsushi; Maekawa, Masahiko; Sato, Tadashi

    2013-11-20

    Root system architecture is an important trait affecting the uptake of nutrients and water by crops. Shallower root systems preferentially take up nutrients from the topsoil and help avoid unfavorable environments in deeper soil layers. We have found a soil-surface rooting mutant from an M2 population that was regenerated from seed calli of a japonica rice cultivar, Nipponbare. In this study, we examined the genetic and physiological characteristics of this mutant. The primary roots of the mutant showed no gravitropic response from the seedling stage on, whereas the gravitropic response of the shoots was normal. Segregation analyses by using an F2 population derived from a cross between the soil-surface rooting mutant and wild-type Nipponbare indicated that the trait was controlled by a single recessive gene, designated as sor1. Fine mapping by using an F2 population derived from a cross between the mutant and an indica rice cultivar, Kasalath, revealed that sor1 was located within a 136-kb region between the simple sequence repeat markers RM16254 and 2935-6 on the terminal region of the short arm of chromosome 4, where 13 putative open reading frames (ORFs) were found. We sequenced these ORFs and detected a 33-bp deletion in one of them, Os04g0101800. Transgenic plants of the mutant transformed with the genomic fragment carrying the Os04g0101800 sequence from Nipponbare showed normal gravitropic responses and no soil-surface rooting. These results suggest that sor1, a rice mutant causing soil-surface rooting and altered root gravitropic response, is allelic to Os04g0101800, and that a 33-bp deletion in the coding region of this gene causes the mutant phenotypes.

  18. Deletion analysis of Streptococcus pneumoniae late competence genes distinguishes virulence determinants that are dependent or independent of competence induction.

    Science.gov (United States)

    Zhu, Luchang; Lin, Jingjun; Kuang, Zhizhou; Vidal, Jorge E; Lau, Gee W

    2015-07-01

    The competence regulon of Streptococcus pneumoniae (pneumococcus) is crucial for genetic transformation. During competence development, the alternative sigma factor ComX is activated, which in turn, initiates transcription of 80 'late' competence genes. Interestingly, only 16 late genes are essential for genetic transformation. We hypothesized that these late genes that are dispensable for competence are beneficial to pneumococcal fitness during infection. These late genes were systematically deleted, and the resulting mutants were examined for their fitness during mouse models of bacteremia and acute pneumonia. Among these, 14 late genes were important for fitness in mice. Significantly, deletion of some late genes attenuated pneumococcal fitness to the same level in both wild-type and ComX-null genetic backgrounds, suggesting that the constitutive baseline expression of these genes was important for bacterial fitness. In contrast, some mutants were attenuated only in the wild-type genetic background but not in the ComX-null background, suggesting that specific expression of these genes during competence state contributed to pneumococcal fitness. Increased virulence during competence state was partially caused by the induction of allolytic enzymes that enhanced pneumolysin release. These results distinguish the role of basal expression versus competence induction in virulence functions encoded by ComX-regulated late competence genes. © 2015 John Wiley & Sons Ltd.

  19. Novel phenotype of mouse spermatozoa following deletion of nine β-defensin genes.

    Science.gov (United States)

    Dorin, Julia R

    2015-01-01

    β-defensin peptides are a large family of antimicrobial peptides. Although they kill microbes in vitro and interact with immune cells, the precise role of these genes in vivo remains uncertain. Despite their inducible presence at mucosal surfaces, their main site of expression is the epididymis. Recent evidence suggests that a major function of these peptides is in sperm maturation. In addition to previous work suggesting this, work at the MRC Human Genetics Unit, Edinburgh, has shown that homozygous deletion of a cluster of nine β-defensin genes in the mouse results in profound male sterility. The spermatozoa derived from the mutants had reduced motility and increased fragility. Epididymal spermatozoa isolated from the cauda region of the homozygous mutants demonstrated precocious capacitation and increased spontaneous acrosome reactions compared with those from wild-types. Despite this, these mutant spermatozoa had reduced ability to bind to the zona pellucida of oocytes. Ultrastructural examination revealed a disintegration of the microtubule structure of mutant-derived spermatozoa isolated from the epididymal cauda region, but not from the caput. Consistent with premature acrosome reaction and hyperactivation, spermatozoa from mutant animals had significantly increased intracellular calcium content. This work demonstrates that in vivo β-defensins are essential for successful sperm maturation, and that their disruption alters intracellular calcium levels, which most likely leads to premature activation and spontaneous acrosome reactions that result in hyperactivation and loss of microtubule structure of the axoneme. Determining which of the nine genes are responsible for the phenotype and the relevance to human sperm function is important for future work on male infertility.

  20. Identification of Mutant Genes and Introgressed Tiger Salamander DNA in the Laboratory Axolotl, Ambystoma mexicanum.

    Science.gov (United States)

    Woodcock, M Ryan; Vaughn-Wolfe, Jennifer; Elias, Alexandra; Kump, D Kevin; Kendall, Katharina Denise; Timoshevskaya, Nataliya; Timoshevskiy, Vladimir; Perry, Dustin W; Smith, Jeramiah J; Spiewak, Jessica E; Parichy, David M; Voss, S Randal

    2017-01-31

    The molecular genetic toolkit of the Mexican axolotl, a classic model organism, has matured to the point where it is now possible to identify genes for mutant phenotypes. We used a positional cloning-candidate gene approach to identify molecular bases for two historic axolotl pigment phenotypes: white and albino. White (d/d) mutants have defects in pigment cell morphogenesis and differentiation, whereas albino (a/a) mutants lack melanin. We identified in white mutants a transcriptional defect in endothelin 3 (edn3), encoding a peptide factor that promotes pigment cell migration and differentiation in other vertebrates. Transgenic restoration of Edn3 expression rescued the homozygous white mutant phenotype. We mapped the albino locus to tyrosinase (tyr) and identified polymorphisms shared between the albino allele (tyr a ) and tyr alleles in a Minnesota population of tiger salamanders from which the albino trait was introgressed. tyr a has a 142 bp deletion and similar engineered alleles recapitulated the albino phenotype. Finally, we show that historical introgression of tyr a significantly altered genomic composition of the laboratory axolotl, yielding a distinct, hybrid strain of ambystomatid salamander. Our results demonstrate the feasibility of identifying genes for traits in the laboratory Mexican axolotl.

  1. Effect of the deletion of qmoABC and the promoter distal gene encoding a hypothetical protein on sulfate-reduction in Desulfovibrio vulgaris Hildenborough

    Energy Technology Data Exchange (ETDEWEB)

    Zane, Grant M.; Yen, Huei-chi Bill; Wall, Judy D.

    2010-03-18

    The pathway of electrons required for the reduction of sulfate in sulfate-reducing bacteria (SRB) is not yet fully characterized. In order to determine the role of a transmembrane protein complex suggested to be involved in this process, a deletion of Desulfovibrio vulgaris Hildenborough was created by marker exchange mutagenesis that eliminated four genes putatively encoding the QmoABC complex and a hypothetical protein (DVU0851). The Qmo complex (quinone-interacting membrane-bound oxidoreductase) is proposed to be responsible for transporting electrons to the dissimilatory adenosine-5?phosphosulfate (APS) reductase in SRB. In support of the predicted role of this complex, the deletion mutant was unable to grow using sulfate as its sole electron acceptor with a range of electron donors. To explore a possible role for the hypothetical protein in sulfate reduction, a second mutant was constructed that had lost only the gene that codes for DVU0851. The second constructed mutant grew with sulfate as the sole electron acceptor; however, there was a lag that was not present with the wild-type or complemented strain. Neither deletion strain was significantly impaired for growth with sulfite or thiosulfate as terminal electron acceptor. Complementation of the D(qmoABC-DVU0851) mutant with all four genes or only the qmoABC genes restored its ability to grow by sulfate respiration. These results confirmed the prediction that the Qmo complex is in the electron pathway for sulfate-reduction and revealed that no other transmembrane complex could compensate when Qmo was lacking.

  2. Deletion mutant defines DQ beta variants with DR4 positive DQw3 positive haplotypes

    International Nuclear Information System (INIS)

    Nepom, B.S.; Kim, S.J.; Nepom, G.T.

    1986-01-01

    We describe the production of an HLA deletion mutation by radiation mutagenesis of a DR4- and DQw3-homozygous, Dw4- and Dw14-heterozygous cell line designed to analyze polymorphisms associated with DR4 and DQw3. Southern blot analysis confirms a deletion of class I and class II genes on one haplotype. Variation in DQ beta alleles associated with DQw3 was previously described by characteristic RFLP patterns for a DQ beta bene. One pattern, which correlated precisely with A-10-83 monoclonal antibody reactivity (TA10), defined an allele which we call DQ''3.1''. The mutant cell line has lost the polymorphic bands on Southern blots corresponding to the DQ''3.1'' allele, while the intact Dw14 haplotype retains the alternate allele at DQ beta which is DQw-3 positive. TA10-negative. These data demonstrate the segregation of two DQw3 positive DQ beta allelic variants, both associated with DR4, which can be distinguished on the basis of both RFLP and monoclonal antibody reactivity

  3. The effect of waaL genes deletion from Yersinia enterocolitica O:3 genome on bacteria LPS’ phenotype

    Directory of Open Access Journals (Sweden)

    Shevchenko J. I.

    2014-11-01

    Full Text Available Aim. To estimate WaaL ligase contribution in the lipopolysaccharide (LPS phenotype profile formation of Y. enterocolitica O:3 (YeO3 bacteria. Methods. The waaL-knock-out mutants were created by an allelic exchange strategy. The LPS phenotypes of created mutants were visualized by silver-stained DOC-PAGE and immunoblotting with specific outer core (core oligosaccharide, hexasaccharide, OC and O-polysaccharide (OPS or O-Ag monoclonal antibodies. Results. Deletion of waaLOS gene from YeO3 genome has a marked effect on OC ligation in either single or double mutants. The waaLPS deletion has an opposite effect on the OPS ligation – barely detected increasing of OPS bands. Conclusions. The LPS ligases of YeO3 exhibit relaxed donor substrate specificity. Under given conditions the effect of WaaLOS ligase is more significant for OC and OPS ligation onto lipid A than that of WaaLPS.

  4. Combinational deletion of three membrane protein-encoding genes highly attenuates yersinia pestis while retaining immunogenicity in a mouse model of pneumonic plague.

    Science.gov (United States)

    Tiner, Bethany L; Sha, Jian; Kirtley, Michelle L; Erova, Tatiana E; Popov, Vsevolod L; Baze, Wallace B; van Lier, Christina J; Ponnusamy, Duraisamy; Andersson, Jourdan A; Motin, Vladimir L; Chauhan, Sadhana; Chopra, Ashok K

    2015-04-01

    Previously, we showed that deletion of genes encoding Braun lipoprotein (Lpp) and MsbB attenuated Yersinia pestis CO92 in mouse and rat models of bubonic and pneumonic plague. While Lpp activates Toll-like receptor 2, the MsbB acyltransferase modifies lipopolysaccharide. Here, we deleted the ail gene (encoding the attachment-invasion locus) from wild-type (WT) strain CO92 or its lpp single and Δlpp ΔmsbB double mutants. While the Δail single mutant was minimally attenuated compared to the WT bacterium in a mouse model of pneumonic plague, the Δlpp Δail double mutant and the Δlpp ΔmsbB Δail triple mutant were increasingly attenuated, with the latter being unable to kill mice at a 50% lethal dose (LD50) equivalent to 6,800 LD50s of WT CO92. The mutant-infected animals developed balanced TH1- and TH2-based immune responses based on antibody isotyping. The triple mutant was cleared from mouse organs rapidly, with concurrent decreases in the production of various cytokines and histopathological lesions. When surviving animals infected with increasing doses of the triple mutant were subsequently challenged on day 24 with the bioluminescent WT CO92 strain (20 to 28 LD50s), 40 to 70% of the mice survived, with efficient clearing of the invading pathogen, as visualized in real time by in vivo imaging. The rapid clearance of the triple mutant, compared to that of WT CO92, from animals was related to the decreased adherence and invasion of human-derived HeLa and A549 alveolar epithelial cells and to its inability to survive intracellularly in these cells as well as in MH-S murine alveolar and primary human macrophages. An early burst of cytokine production in macrophages elicited by the triple mutant compared to WT CO92 and the mutant's sensitivity to the bactericidal effect of human serum would further augment bacterial clearance. Together, deletion of the ail gene from the Δlpp ΔmsbB double mutant severely attenuated Y. pestis CO92 to evoke pneumonic plague in a

  5. Further characterization of a highly attenuated Yersinia pestis CO92 mutant deleted for the genes encoding Braun lipoprotein and plasminogen activator protease in murine alveolar and primary human macrophages.

    Science.gov (United States)

    van Lier, Christina J; Tiner, Bethany L; Chauhan, Sadhana; Motin, Vladimir L; Fitts, Eric C; Huante, Matthew B; Endsley, Janice J; Ponnusamy, Duraisamy; Sha, Jian; Chopra, Ashok K

    2015-03-01

    We recently characterized the Δlpp Δpla double in-frame deletion mutant of Yersinia pestis CO92 molecularly, biologically, and immunologically. While Braun lipoprotein (Lpp) activates toll-like receptor-2 to initiate an inflammatory cascade, plasminogen activator (Pla) protease facilitates bacterial dissemination in the host. The Δlpp Δpla double mutant was highly attenuated in evoking bubonic and pneumonic plague, was rapidly cleared from mouse organs, and generated humoral and cell-mediated immune responses to provide subsequent protection to mice against a lethal challenge dose of wild-type (WT) CO92. Here, we further characterized the Δlpp Δpla double mutant in two murine macrophage cell lines as well as in primary human monocyte-derived macrophages to gauge its potential as a live-attenuated vaccine candidate. We first demonstrated that the Δpla single and the Δlpp Δpla double mutant were unable to survive efficiently in murine and human macrophages, unlike WT CO92. We observed that the levels of Pla and its associated protease activity were not affected in the Δlpp single mutant, and, likewise, deletion of the pla gene from WT CO92 did not alter Lpp levels. Further, our study revealed that both Lpp and Pla contributed to the intracellular survival of WT CO92 via different mechanisms. Importantly, the ability of the Δlpp Δpla double mutant to be phagocytized by macrophages, to stimulate production of tumor necrosis factor-α and interleukin-6, and to activate the nitric oxide killing pathways of the host cells remained unaltered when compared to the WT CO92-infected macrophages. Finally, macrophages infected with either the WT CO92 or the Δlpp Δpla double mutant were equally efficient in their uptake of zymosan particles as determined by flow cytometric analysis. Overall, our data indicated that although the Δlpp Δpla double mutant of Y. pestis CO92 was highly attenuated, it retained the ability to elicit innate and subsequent acquired immune

  6. Construction of a psb C deletion strain in Synechocystis 6803.

    Science.gov (United States)

    Goldfarb, N; Knoepfle, N; Putnam-Evans, C

    1997-01-01

    Synechocystis 6803 is a cyanobacterium that carries out-oxygenic photosynthesis. We are interested in the introduction of mutations in the large extrinsic loop region of the CP43 protein of Photosystem II (PSII). CP43 appears to be required for the stable assembly of the PSII complex and also appears to play a role in photosynthetic oxygen evolution. Deletion of short segments of the large extrinsic loop results in mutants incapable of evolving oxygen. Alterations in psbC, the gene encoding CP43, are introduced into Synechocystis 6803 by transformation and homologous recombination. Specifically, plasmid constructs bearing the site-directed mutations are introduced into a deletion strain where the portion of the gene encoding the area of mutation has been deleted and replaced by a gene conferring antibiotic resistance. We have constructed a deletion strain of Synechocystis appropriate for the introduction of mutations in the large extrinsic loop of CP43 and have used it successfully to produce site-directed mutants.

  7. [Construction of enterohemorrhagic Escherichia coli O157:H7 strains with espF gene deletion and complementation].

    Science.gov (United States)

    Hua, Ying; Sun, Qi; Wang, Xiangyu; DU, Yanli; Shao, Na; Zhang, Qiwei; Zhao, Wei; Wan, Chengsong

    2015-11-01

    To construct enterohemorrhagic Escherichia coli (EHEC) O157:H7 strains with delection espF gene and its nucleotide fragment and with espF gene complementation. A pair of homologous arm primers was designed to amplify the gene fragment of kanamycin resistance, which was transformed into EHEC O157:H7 EDL933w strain via the PKD46 plasmid by electroporation. The replacement of the espF gene by kanamycin resistance gene through the PKD46-mediated red recombination system was confirmed by PCR and sequencing. The entire coding region of espF along with its nucleotide fragment was amplified by PCR and cloned into pBAD33 plasmid, which was transformed into a mutant strain to construct the strain with espF complementation. RT-PCR was used to verify the transcription of espF and its nucleotide fragment in the complemented mutant strain. We established EHEC O157:H7 EDL933w strains with espF gene deletion and with espF gene complementation. Both espF and its nucleotide fragment were transcribed in the complemented mutant strain. The two strains provide a basis for further study of the regulatory mechanism of espF.

  8. Fine Mapping and Cloning of Leafy Head Mutant Gene pla1-5 in Rice

    Directory of Open Access Journals (Sweden)

    Gong-neng FENG

    2013-09-01

    Full Text Available We identified a leafy head mutant pla1-5 (plastochron 1-5 from the progeny of japonica rice cultivar Taipei 309 treated with 60Co-γ ray irradiation. The pla1-5 mutant has a dwarf phenotype and small leaves. Compared with its wild type, pla1-5 has more leaves and fewer tillers, and it fails to produce normal panicles at the maturity stage. Genetic analysis showed that the pla1-5 phenotype is controlled by a single recessive nuclear gene. Using the map-based cloning strategy, we narrowed down the location of the target gene to a 58-kb region between simple sequence repeat markers CHR1027 and CHR1030 on the long arm of chromosome 10. The target gene cosegregated with molecular markers CHR1028 and CHR1029. There were five predicted genes in the mapped region. The results from sequencing analysis revealed that there was one base deletion in the first exon of LOC_Os10g26340 encoding cytochrome P450 CYP78A11 in the pla1-5 mutant, which might result in a downstream frame shift and premature termination. These results suggest that the P450 CYP78A11 gene is the candidate gene of PLA1-5.

  9. Genome-wide screening for genes whose deletions confer sensitivity to mutagenic purine base analogs in yeast

    Directory of Open Access Journals (Sweden)

    Kozmin Stanislav G

    2005-06-01

    Full Text Available Abstract Background N-hydroxylated base analogs, such as 6-hydroxylaminopurine (HAP and 2-amino-6-hydroxylaminopurine (AHA, are strong mutagens in various organisms due to their ambiguous base-pairing properties. The systems protecting cells from HAP and related noncanonical purines in Escherichia coli include specialized deoxyribonucleoside triphosphatase RdgB, DNA repair endonuclease V, and a molybdenum cofactor-dependent system. Fewer HAP-detoxification systems have been identified in yeast Saccharomyces cerevisiae and other eukaryotes. Cellular systems protecting from AHA are unknown. In the present study, we performed a genome-wide search for genes whose deletions confer sensitivity to HAP and AHA in yeast. Results We screened the library of yeast deletion mutants for sensitivity to the toxic and mutagenic action of HAP and AHA. We identified novel genes involved in the genetic control of base analogs sensitivity, including genes controlling purine metabolism, cytoskeleton organization, and amino acid metabolism. Conclusion We developed a method for screening the yeast deletion library for sensitivity to the mutagenic and toxic action of base analogs and identified 16 novel genes controlling pathways of protection from HAP. Three of them also protect from AHA.

  10. Gain-of-function mutant p53 but not p53 deletion promotes head and neck cancer progression in response to oncogenic K-ras

    Science.gov (United States)

    Acin, Sergio; Li, Zhongyou; Mejia, Olga; Roop, Dennis R; El-Naggar, Adel K; Caulin, Carlos

    2015-01-01

    Mutations in p53 occur in over 50% of the human head and neck squamous cell carcinomas (SCCHN). The majority of these mutations result in the expression of mutant forms of p53, rather than deletions in the p53 gene. Some p53 mutants are associated with poor prognosis in SCCHN patients. However, the molecular mechanisms that determine the poor outcome of cancers carrying p53 mutations are unknown. Here, we generated a mouse model for SCCHN and found that activation of the endogenous p53 gain-of-function mutation p53R172H, but not deletion of p53, cooperates with oncogenic K-ras during SCCHN initiation, accelerates oral tumour growth, and promotes progression to carcinoma. Mechanistically, expression profiling of the tumours that developed in these mice and studies using cell lines derived from these tumours determined that mutant p53 induces the expression of genes involved in mitosis, including cyclin B1 and cyclin A, and accelerates entry in mitosis. Additionally, we discovered that this oncogenic function of mutant p53 was dependent on K-ras because the expression of cyclin B1 and cyclin A decreased, and entry in mitosis was delayed, after suppressing K-ras expression in oral tumour cells that express p53R172H. The presence of double-strand breaks in the tumours suggests that oncogene-dependent DNA damage resulting from K-ras activation promotes the oncogenic function of mutant p53. Accordingly, DNA damage induced by doxorubicin also induced increased expression of cyclin B1 and cyclin A in cells that express p53R172H. These findings represent strong in vivo evidence for an oncogenic function of endogenous p53 gain-of-function mutations in SCCHN and provide a mechanistic explanation for the genetic interaction between oncogenic K-ras and mutant p53. PMID:21952947

  11. Novel phenotype of mouse spermatozoa following deletion of nine β-defensin genes

    Directory of Open Access Journals (Sweden)

    Julia R Dorin

    2015-01-01

    Full Text Available β-defensin peptides are a large family of antimicrobial peptides. Although they kill microbes in vitro and interact with immune cells, the precise role of these genes in vivo remains uncertain. Despite their inducible presence at mucosal surfaces, their main site of expression is the epididymis. Recent evidence suggests that a major function of these peptides is in sperm maturation. In addition to previous work suggesting this, work at the MRC Human Genetics Unit, Edinburgh, has shown that homozygous deletion of a cluster of nine β-defensin genes in the mouse results in profound male sterility. The spermatozoa derived from the mutants had reduced motility and increased fragility. Epididymal spermatozoa isolated from the cauda region of the homozygous mutants demonstrated precocious capacitation and increased spontaneous acrosome reactions compared with those from wild-types. Despite this, these mutant spermatozoa had reduced ability to bind to the zona pellucida of oocytes. Ultrastructural examination revealed a disintegration of the microtubule structure of mutant-derived spermatozoa isolated from the epididymal cauda region, but not from the caput. Consistent with premature acrosome reaction and hyperactivation, spermatozoa from mutant animals had significantly increased intracellular calcium content. This work demonstrates that in vivo β-defensins are essential for successful sperm maturation, and that their disruption alters intracellular calcium levels, which most likely leads to premature activation and spontaneous acrosome reactions that result in hyperactivation and loss of microtubule structure of the axoneme. Determining which of the nine genes are responsible for the phenotype and the relevance to human sperm function is important for future work on male infertility.

  12. Deletion of a malaria invasion gene reduces death and anemia, in model hosts.

    Directory of Open Access Journals (Sweden)

    Noé D Gómez

    Full Text Available Malaria parasites induce complex cellular and clinical phenotypes, including anemia, cerebral malaria and death in a wide range of mammalian hosts. Host genes and parasite 'toxins' have been implicated in malarial disease, but the contribution of parasite genes remains to be fully defined. Here we assess disease in BALB/c mice and Wistar rats infected by the rodent malaria parasite Plasmodium berghei with a gene knock out for merozoite surface protein (MSP 7. MSP7 is not essential for infection but in P. falciparum, it enhances erythrocyte invasion by 20%. In vivo, as compared to wild type, the P. berghei Δmsp7 mutant is associated with an abrogation of death and a decrease from 3% to 2% in peak, circulating parasitemia. The Δmsp7 mutant is also associated with less anemia and modest increase in the size of follicles in the spleen. Together these data show that deletion of a single parasite invasion ligand modulates blood stage disease, as measured by death and anemia. This work is the first to assess the contribution of a gene present in all plasmodial species in severe disease.

  13. Chemical Genomic Screening of a Saccharomyces cerevisiae Genomewide Mutant Collection Reveals Genes Required for Defense against Four Antimicrobial Peptides Derived from Proteins Found in Human Saliva

    Science.gov (United States)

    Bhatt, Sanjay; Schoenly, Nathan E.; Lee, Anna Y.; Nislow, Corey; Bobek, Libuse A.

    2013-01-01

    To compare the effects of four antimicrobial peptides (MUC7 12-mer, histatin 12-mer, cathelicidin KR20, and a peptide containing lactoferricin amino acids 1 to 11) on the yeast Saccharomyces cerevisiae, we employed a genomewide fitness screen of combined collections of mutants with homozygous deletions of nonessential genes and heterozygous deletions of essential genes. When an arbitrary fitness score cutoffs of 1 (indicating a fitness defect, or hypersensitivity) and −1 (indicating a fitness gain, or resistance) was used, 425 of the 5,902 mutants tested exhibited altered fitness when treated with at least one peptide. Functional analysis of the 425 strains revealed enrichment among the identified deletions in gene groups associated with the Gene Ontology (GO) terms “ribosomal subunit,” “ribosome biogenesis,” “protein glycosylation,” “vacuolar transport,” “Golgi vesicle transport,” “negative regulation of transcription,” and others. Fitness profiles of all four tested peptides were highly similar, particularly among mutant strains exhibiting the greatest fitness defects. The latter group included deletions in several genes involved in induction of the RIM101 signaling pathway, including several components of the ESCRT sorting machinery. The RIM101 signaling regulates response of yeasts to alkaline and neutral pH and high salts, and our data indicate that this pathway also plays a prominent role in regulating protective measures against all four tested peptides. In summary, the results of the chemical genomic screens of S. cerevisiae mutant collection suggest that the four antimicrobial peptides, despite their differences in structure and physical properties, share many interactions with S. cerevisiae cells and consequently a high degree of similarity between their modes of action. PMID:23208710

  14. Transcriptomic profile of aguR deletion mutant of Lactococcus lactis subsp. cremoris CECT 8666

    Science.gov (United States)

    del Rio, Beatriz; Linares, Daniel M.; Redruello, Begoña; Martin, Maria Cruz; Fernandez, Maria; de Jong, Anne; Kuipers, Oscar P.; Ladero, Victor; Alvarez, Miguel A.

    2015-01-01

    Lactococcus lactis subsp. cremoris CECT 8666 (formerly GE2-14) is a dairy strain that catabolizes agmatine (a decarboxylated derivative of arginine) into the biogenic amine putrescine by the agmatine deiminase (AGDI) pathway [1]. The AGDI cluster of L. lactis is composed by five genes aguR, aguB, aguD, aguA and aguC. The last four genes are responsible for the deamination of agmatine to putrescine and are co-transcribed as a single policistronic mRNA forming the catabolic operon aguBDAC[1]. aguR encodes a transmembrane protein that functions as a one-component signal transduction system that senses the agmatine concentration of the medium and accordingly regulates the transcription of aguBDAC[2], which is also transcriptionally regulated by carbon catabolic repression (CCR) via glucose, but not by other sugars such as lactose and galactose [1], [3]. Here we report the transcriptional profiling of the aguR gene deletion mutant (L. lactis subsp. cremoris CECT 8666 ∆aguR) [2] compared to the wild type strain, both grown in M17 medium with galactose as carbon source and supplemented with agmatine. The transcriptional profiling data of AguR-regulated genes were deposited in the Gene Expression Omnibus (GEO) database under accession no. GSE59514. PMID:26697381

  15. Transcriptomic profile of aguR deletion mutant of Lactococcus lactis subsp. cremoris CECT 8666

    Directory of Open Access Journals (Sweden)

    Beatriz del Rio

    2015-12-01

    Full Text Available Lactococcus lactis subsp. cremoris CECT 8666 (formerly GE2-14 is a dairy strain that catabolizes agmatine (a decarboxylated derivative of arginine into the biogenic amine putrescine by the agmatine deiminase (AGDI pathway [1]. The AGDI cluster of L. lactis is composed by five genes aguR, aguB, aguD, aguA and aguC. The last four genes are responsible for the deamination of agmatine to putrescine and are co-transcribed as a single policistronic mRNA forming the catabolic operon aguBDAC [1]. aguR encodes a transmembrane protein that functions as a one-component signal transduction system that senses the agmatine concentration of the medium and accordingly regulates the transcription of aguBDAC [2], which is also transcriptionally regulated by carbon catabolic repression (CCR via glucose, but not by other sugars such as lactose and galactose [1,3]. Here we report the transcriptional profiling of the aguR gene deletion mutant (L. lactis subsp. cremoris CECT 8666 ∆aguR [2] compared to the wild type strain, both grown in M17 medium with galactose as carbon source and supplemented with agmatine. The transcriptional profiling data of AguR-regulated genes were deposited in the Gene Expression Omnibus (GEO database under accession no. GSE59514.

  16. Deletion of HAPS_2096 Increases Sensitivity to Cecropin B in Haemophilus parasuis.

    Science.gov (United States)

    Chen, Fanjie; Hu, Han; Li, Zhonghua; Huang, Jiacheng; Cai, Xuwang; Wang, Chunmei; He, Qigai; Cao, Jiyue

    2015-01-01

    Cecropin B (CB) is a very effective natural antimicrobial peptide that has shown great potential for future antimicrobial drug development. HAPS_2096 is a Haemophilus parasuis gene that encodes the periplasmic substrate-binding protein of an ATP-binding cassette-type amino acid transporter. In this research, we constructed and verified an HAPS_2096 deletion mutant and a complementary HAPS_2096 mutant of H. parasuis JS0135. A bactericidal assay revealed that the HAPS_2096 deletion mutant was significantly more sensitive than the wild-type strain to 0.25-0.5 µg/ml CB. However, the gene complementation alleviated the CB sensitivity of the mutant. Immunoelectron microscopy observation following a 30-min treatment with a sublethal concentration of CB (0.25 μg/ml) revealed more extensive morphological damage in the mutant strain than in the wild-type strain. Hence, our results suggest that the HAPS_2096 gene contributes to H. parasuis resistance to CB. © 2015 S. Karger AG, Basel.

  17. Widely Used Herpes Simplex Virus 1 ICP0 Deletion Mutant Strain dl1403 and Its Derivative Viruses Do Not Express Glycoprotein C Due to a Secondary Mutation in the gC Gene.

    Directory of Open Access Journals (Sweden)

    Cristina W Cunha

    Full Text Available Herpes simplex virus 1 (HSV-1 ICP0 is a multi-functional phosphoprotein expressed with immediate early kinetics. An ICP0 deletion mutant, HSV-1 dl1403, has been widely used to study the roles of ICP0 in the HSV-1 replication cycle including gene expression, latency, entry and assembly. We show that HSV-1 dl1403 virions lack detectable levels of envelope protein gC, and that gC is not synthesized in infected cells. Sequencing of the gC gene from HSV-1 dl1403 revealed a single amino acid deletion that results in a frameshift mutation. The HSV-1 dl1403 gC gene is predicted to encode a polypeptide consisting of the original 62 N-terminal amino acids of the gC protein followed by 112 irrelevant, non-gC residues. The mutation was also present in a rescuant virus and in two dl1403-derived viruses, D8 and FXE, but absent from the parental 17+, suggesting that the mutation was introduced during the construction of the dl1403 virus, and not as a result of passage in culture.

  18. A re-sequencing based assessment of genomic heterogeneity and fast neutron-induced deletions in a common bean cultivar

    Directory of Open Access Journals (Sweden)

    Jamie A. O'Rourke

    2013-06-01

    Full Text Available A small fast neutron mutant population has been established from Phaseolus vulgaris cv. Red Hawk. We leveraged the available P. vulgaris genome sequence and high throughput next generation DNA sequencing to examine the genomic structure of five Phaseolus vulgaris cv. Red Hawk fast neutron mutants with striking visual phenotypes. Analysis of these genomes identified three classes of structural variation; between cultivar variation, natural variation within the fast neutron mutant population, and fast neutron induced mutagenesis. Our analyses focused on the latter two classes. We identified 23 large deletions (>40 bp common to multiple individuals, illustrating residual heterogeneity and regions of structural variation within the common bean cv. Red Hawk. An additional 18 large deletions were identified in individual mutant plants. These deletions, ranging in size from 40 bp to 43,000 bp, are potentially the result of fast neutron mutagenesis. Six of the 18 deletions lie near or within gene coding regions, identifying potential candidate genes causing the mutant phenotype.

  19. Mapping the end points of large deletions affecting the hprt locus in human peripheral blood cells and cell lines

    International Nuclear Information System (INIS)

    Nelson, S.L.; Grosovsky, A.J.; Jones, I.M.; Burkhart-Schultz, K.; Fuscoe, J.C.

    1995-01-01

    We have examined the extent of of HPRT - total gene deletions in three mutant collections: spontaneous and X-ray-induced deletions in TK6 human B lymphoblasts, and HPRT - deletions arising in vivo in T cells. A set of 13 Xq26 STS markers surrounding hprt and spanning approximately 3.3 Mb was used. Each marker used was observed to be missing in at least one of the hprt deletion mutants analyzed. The largest deletion observed encompassed at least 3 Mb. Nine deletions extended outside of the mapped region in the centromeric direction (>1.7 Mb). In contrast, only two telomeric deletions extended to marker 342R (1.26 Mb), and both exhibited slowed or limited cell growth. These data suggest the existence of a gene, within the vicinity of 342R, which establishes the telomeric limit of recoverable deletions. Most (25/41) X-ray-induced total gene deletion mutants exhibited marker loss, but only 1/8 of the spontaneous deletions encompassed any Xq26 markers (P = 0.0187). Furthermore, nearly half (3/8) of the spontaneous 3' total deletion breakpoints were within 14 kb of the hprt coding sequence. In contrast, 40/41 X-ray-induced HPRT - total deletions extended beyond this point (P = 0.011). Although the overall representation of total gene deletions in the in vivo spectrum is low, 4/5 encompass Xq26 markers flanking hprt. This pattern differs significantly from spontaneous HPRT - large deletions occurring in vitro (P = 0.032) but resembles the spectrum of X-ray-induced deletions. 24 refs., 6 figs., 1 tab

  20. Crystal structure of a C-terminal deletion mutant of human protein kinase CK2 catalytic subunit

    DEFF Research Database (Denmark)

    Ermakova, Inessa; Boldyreff, Brigitte; Issinger, Olaf-Georg

    2003-01-01

    structure of a C-terminal deletion mutant of human CK2alpha was solved and refined to 2.5A resolution. In the crystal the CK2alpha mutant exists as a monomer in agreement with the organization of the subunits in the CK2 holoenzyme. The refined structure shows the helix alphaC and the activation segment, two...

  1. Truncating PREX2 mutations activate its GEF activity and alter gene expression regulation in NRAS-mutant melanoma

    KAUST Repository

    Lissanu Deribe, Yonathan

    2016-03-01

    PREX2 (phosphatidylinositol-3,4,5-triphosphate-dependent Rac-exchange factor 2) is a PTEN (phosphatase and tensin homolog deleted on chromosome 10) binding protein that is significantly mutated in cutaneous melanoma and pancreatic ductal adenocarcinoma. Here, genetic and biochemical analyses were conducted to elucidate the nature and mechanistic basis of PREX2 mutation in melanoma development. By generating an inducible transgenic mouse model we showed an oncogenic role for a truncating PREX2 mutation (PREX2E824*) in vivo in the context of mutant NRAS. Using integrative cross-species gene expression analysis, we identified deregulated cell cycle and cytoskeleton organization as significantly perturbed biological pathways in PREX2 mutant tumors. Mechanistically, truncation of PREX2 activated its Rac1 guanine nucleotide exchange factor activity, abolished binding to PTEN and activated the PI3K (phosphatidyl inositol 3 kinase)/Akt signaling pathway. We further showed that PREX2 truncating mutations or PTEN deletion induces down-regulation of the tumor suppressor and cell cycle regulator CDKN1C (also known as p57KIP2). This down-regulation occurs, at least partially, through DNA hypomethylation of a differentially methylated region in chromosome 11 that is a known regulatory region for expression of the CDKN1C gene. Together, these findings identify PREX2 as a mediator of NRAS-mutant melanoma development that acts through the PI3K/PTEN/Akt pathway to regulate gene expression of a cell cycle regulator.

  2. Truncating PREX2 mutations activate its GEF activity and alter gene expression regulation in NRAS-mutant melanoma.

    Science.gov (United States)

    Lissanu Deribe, Yonathan; Shi, Yanxia; Rai, Kunal; Nezi, Luigi; Amin, Samir B; Wu, Chia-Chin; Akdemir, Kadir C; Mahdavi, Mozhdeh; Peng, Qian; Chang, Qing Edward; Hornigold, Kirsti; Arold, Stefan T; Welch, Heidi C E; Garraway, Levi A; Chin, Lynda

    2016-03-01

    PREX2 (phosphatidylinositol-3,4,5-triphosphate-dependent Rac-exchange factor 2) is a PTEN (phosphatase and tensin homolog deleted on chromosome 10) binding protein that is significantly mutated in cutaneous melanoma and pancreatic ductal adenocarcinoma. Here, genetic and biochemical analyses were conducted to elucidate the nature and mechanistic basis of PREX2 mutation in melanoma development. By generating an inducible transgenic mouse model we showed an oncogenic role for a truncating PREX2 mutation (PREX2(E824)*) in vivo in the context of mutant NRAS. Using integrative cross-species gene expression analysis, we identified deregulated cell cycle and cytoskeleton organization as significantly perturbed biological pathways in PREX2 mutant tumors. Mechanistically, truncation of PREX2 activated its Rac1 guanine nucleotide exchange factor activity, abolished binding to PTEN and activated the PI3K (phosphatidyl inositol 3 kinase)/Akt signaling pathway. We further showed that PREX2 truncating mutations or PTEN deletion induces down-regulation of the tumor suppressor and cell cycle regulator CDKN1C (also known as p57(KIP2)). This down-regulation occurs, at least partially, through DNA hypomethylation of a differentially methylated region in chromosome 11 that is a known regulatory region for expression of the CDKN1C gene. Together, these findings identify PREX2 as a mediator of NRAS-mutant melanoma development that acts through the PI3K/PTEN/Akt pathway to regulate gene expression of a cell cycle regulator.

  3. Truncating PREX2 mutations activate its GEF activity and alter gene expression regulation in NRAS-mutant melanoma

    KAUST Repository

    Lissanu Deribe, Yonathan; Shi, Yanxia; Rai, Kunal; Nezi, Luigi; Amin, Samir B.; Wu, Chia-Chin; Akdemir, Kadir C.; Mahdavi, Mozhdeh; Peng, Qian; Chang, Qing Edward; Hornigold, Kirsti; Arold, Stefan T.; Welch, Heidi C. E.; Garraway, Levi A.; Chin, Lynda

    2016-01-01

    PREX2 (phosphatidylinositol-3,4,5-triphosphate-dependent Rac-exchange factor 2) is a PTEN (phosphatase and tensin homolog deleted on chromosome 10) binding protein that is significantly mutated in cutaneous melanoma and pancreatic ductal adenocarcinoma. Here, genetic and biochemical analyses were conducted to elucidate the nature and mechanistic basis of PREX2 mutation in melanoma development. By generating an inducible transgenic mouse model we showed an oncogenic role for a truncating PREX2 mutation (PREX2E824*) in vivo in the context of mutant NRAS. Using integrative cross-species gene expression analysis, we identified deregulated cell cycle and cytoskeleton organization as significantly perturbed biological pathways in PREX2 mutant tumors. Mechanistically, truncation of PREX2 activated its Rac1 guanine nucleotide exchange factor activity, abolished binding to PTEN and activated the PI3K (phosphatidyl inositol 3 kinase)/Akt signaling pathway. We further showed that PREX2 truncating mutations or PTEN deletion induces down-regulation of the tumor suppressor and cell cycle regulator CDKN1C (also known as p57KIP2). This down-regulation occurs, at least partially, through DNA hypomethylation of a differentially methylated region in chromosome 11 that is a known regulatory region for expression of the CDKN1C gene. Together, these findings identify PREX2 as a mediator of NRAS-mutant melanoma development that acts through the PI3K/PTEN/Akt pathway to regulate gene expression of a cell cycle regulator.

  4. Microclones derived from the mouse chromosome 7 D-E bands map within the proximal region of the c14CoS deletion in albino mutant mice

    International Nuclear Information System (INIS)

    Toenjes, R.R.W.; Weith, A.; Rinchik, E.M.; Winking, H.; Carnwath, J.W.; Kaliner, B.; Paul, D.

    1991-01-01

    A group of radiation-induced perinatal-lethal deletions that include the albino (c) locus on mouse chromosome 7 causes failure of expression of various hepatocyte-specific genes when homozygous. The transcription of such genes could be controlled in trans by a regulatory gene(s) located within the proximal region of the C14CoS deletion. To identify this potential regulatory gene, a microclone library was established from microdissected D and E bands of chromosome 7. Three nonoverlapping microclones (E305, E336B, and E453B) hybridizing with wildtype but not with C14CoS/C14CoS DNA were isolated. E336B represents a single-copy DNA fragment, whereas E305 and E453B hybridized with 3 and 10 EcoRI DNA restriction fragments, respectively. All fragments map exclusively within the deletion. The microclones hybridized to DNA of viable C6H/C14CoS deletion heterozygotes but not to DNA of homozygotes for the lethal mutation c10R75M, which belongs to the same complementation group as c14CoS. DNA of viable homozygous mutant C62DSD, which carries a deletion breakpoint proximal to that of c6H, hybridized only with E453B. This microclone identified 6 EcoRI restriction fragments in C62DSD/C62DSD DNA. The results demonstrate that of the isolated microclones, E453B identifies a locus (D7RT453B) that maps closest to the hsdr-1 (hepatocyte-specific developmental regulation) locus, which maps between the proximal breakpoints of deletions c10R75M and c62DSD

  5. Mutation induction in γ-irradiated primary human bronchial epithelial cells and molecular analysis of the HPRT- mutants

    International Nuclear Information System (INIS)

    Suzuki, Keiji; Hei, Tom K.

    1996-01-01

    We have examined various radiobiological parameters using commercially-available primary normal human bronchial epithelial (NHBE) cells, which can be subcultured more than 20 population doublings, and have established the mutation system in order to characterize the molecular changes in γ-irradiated primary cells. The survival curve, obtained after irradiation of cells with 137 Cs γ-rays, indicates that the D 0 , D q , and n values are 1.34 Gy, 1.12 Gy, and 2.3, respectively. The induction of HPRT - mutation was dose-dependent and the mutant fraction increased in a non-linear fashion. Since the doubling number of NHBE cells is limited, DNA was extracted directly from the single mutant colonies and alteration in the HPRT gene locus was analyzed using multiplex PCR technique. Among spontaneous mutants, the proportion with total and partial deletions of the gene was 10.0% (2/20) and 60.0% (12/20), respectively, while 30.0% (6/20) did not have any detectable changes in the nine exons examined. On the other hand, the fraction of total deletion increased by more than 2-fold among mutants induced by γ-rays in that 26.3% (10/38) of them showed the total gene deletions. Twenty-five out of 38 γ-induced mutants (65.8%) had partial deletions and 3 mutants (7.9%) had no detectable alteration. The present results showed that γ-irradiation efficiently induced HPRT gene mutation in primary human epithelial cells and that most of the induced mutants suffered larger deletions compared to that observed in spontaneous mutants. This system provides a useful tool for determination of mutagenicity and understanding the molecular mechanisms of environmental carcinogens in primary human bronchial cells

  6. Markerless deletion of putative alanine dehydrogenase genes in Bacillus licheniformis using a codBA-based counterselection technique.

    Science.gov (United States)

    Kostner, David; Rachinger, Michael; Liebl, Wolfgang; Ehrenreich, Armin

    2017-11-01

    Bacillus licheniformis strains are used for the large-scale production of industrial exoenzymes from proteinaceous substrates, but details of the amino acid metabolism involved are largely unknown. In this study, two chromosomal genes putatively involved in amino acid metabolism of B. licheniformis were deleted to clarify their role. For this, a convenient counterselection system for markerless in-frame deletions was developed for B. licheniformis. A deletion plasmid containing up- and downstream DNA segments of the chromosomal deletion target was conjugated to B. licheniformis and integrated into the genome by homologous recombination. Thereafter, the counterselection was done by using a codBA cassette. The presence of cytosine deaminase and cytosine permease exerted a conditionally lethal phenotype on B. licheniformis cells in the presence of the cytosine analogue 5-fluorocytosine. Thereby clones were selected that lost the integrated vector sequence and the anticipated deletion target after a second recombination step. This method allows the construction of markerless mutants in Bacillus strains in iterative cycles. B. licheniformis MW3 derivatives lacking either one of the ORFs BL03009 or BL00190, encoding a putative alanine dehydrogenase and a similar putative enzyme, respectively, retained the ability to grow in minimal medium supplemented with alanine as the carbon source. In the double deletion mutant MW3 ΔBL03009 ΔBL00190, however, growth on alanine was completely abolished. These data indicate that the two encoded enzymes are paralogues fulfilling mutually replaceable functions in alanine utilization, and suggest that in B. licheniformis MW3 alanine utilization is initiated by direct oxidative transamination to pyruvate and ammonium.

  7. Characterization of five partial deletions of the factor VIII gene

    International Nuclear Information System (INIS)

    Youssoufian, H.; Antonarakis, S.E.; Aronis, S.; Tsiftis, G.; Phillips, D.G.; Kazazian, H.H. Jr.

    1987-01-01

    Hemophilia A is an X-linked disorder of coagulation caused by a deficiency of factor VIII. By using cloned DNA probes, the authors have characterized the following five different partial deletions of the factor VIII gene from a panel of 83 patients with hemophilia A: (i) a 7-kilobase (kb) deletion that eliminates exon 6; (ii) a 2.5-kb deletion that eliminates 5' sequences of exon 14; (iii) a deletion of at least 7 kb that eliminates exons 24 and 25; (iv) a deletion of at least 16 kb that eliminates exons 23-25; and (v) a 5.5-kb deletion that eliminates exon 22. The first four deletions are associated with severe hemophilia A. By contrast, the last deletion is associated with moderate disease, possibly because of in-frame splicing from adjacent exons. None of those patients with partial gene deletions had circulating inhibitors to factor VIII. One deletion occurred de novo in a germ cell of the maternal grandmother, while a second deletion occurred in a germ cell of the maternal grandfather. These observations demonstrate that de novo deletions of X-linked genes can occur in either male or female gametes

  8. E4orf1 Limits the Oncolytic Potential of the E1B-55K Deletion Mutant Adenovirus▿

    Science.gov (United States)

    Thomas, Michael A.; Broughton, Robin S.; Goodrum, Felicia D.; Ornelles, David A.

    2009-01-01

    Clinical trials have shown oncolytic adenoviruses to be tumor selective with minimal toxicity toward normal tissue. The virus ONYX-015, in which the gene encoding the early region 1B 55-kDa (E1B-55K) protein is deleted, has been most effective when used in combination with either chemotherapy or radiation therapy. Therefore, improving the oncolytic nature of tumor-selective adenoviruses remains an important objective for improving this form of cancer therapy. Cells infected during the G1 phase of the cell cycle with the E1B-55K deletion mutant virus exhibit a reduced rate of viral late protein synthesis, produce fewer viral progeny, and are less efficiently killed than cells infected during the S phase. Here we demonstrate that the G1 restriction imposed on the E1B-55K deletion mutant virus is due to the viral oncogene encoded by open reading frame 1 of early region 4 (E4orf1). E4orf1 has been reported to signal through the phosphatidylinositol 3′-kinase pathway leading to the activation of Akt, mTOR, and p70 S6K. Evidence presented here shows that E4orf1 may also induce the phosphorylation of Akt and p70 S6K in a manner that depends on Rac1 and its guanine nucleotide exchange factor Tiam1. Accordingly, agents that have been reported to disrupt the Tiam1-Rac1 interaction or to prevent phosphorylation of the ribosomal S6 kinase partially alleviated the E4orf1 restriction to late viral protein synthesis and enhanced tumor cell killing by the E1B-55K mutant virus. These results demonstrate that E4orf1 limits the oncolytic nature of a conditionally replicating adenovirus such as ONYX-015. The therapeutic value of similar oncolytic adenoviruses may be improved by abrogating E4orf1 function. PMID:19129452

  9. E4orf1 limits the oncolytic potential of the E1B-55K deletion mutant adenovirus.

    Science.gov (United States)

    Thomas, Michael A; Broughton, Robin S; Goodrum, Felicia D; Ornelles, David A

    2009-03-01

    Clinical trials have shown oncolytic adenoviruses to be tumor selective with minimal toxicity toward normal tissue. The virus ONYX-015, in which the gene encoding the early region 1B 55-kDa (E1B-55K) protein is deleted, has been most effective when used in combination with either chemotherapy or radiation therapy. Therefore, improving the oncolytic nature of tumor-selective adenoviruses remains an important objective for improving this form of cancer therapy. Cells infected during the G(1) phase of the cell cycle with the E1B-55K deletion mutant virus exhibit a reduced rate of viral late protein synthesis, produce fewer viral progeny, and are less efficiently killed than cells infected during the S phase. Here we demonstrate that the G(1) restriction imposed on the E1B-55K deletion mutant virus is due to the viral oncogene encoded by open reading frame 1 of early region 4 (E4orf1). E4orf1 has been reported to signal through the phosphatidylinositol 3'-kinase pathway leading to the activation of Akt, mTOR, and p70 S6K. Evidence presented here shows that E4orf1 may also induce the phosphorylation of Akt and p70 S6K in a manner that depends on Rac1 and its guanine nucleotide exchange factor Tiam1. Accordingly, agents that have been reported to disrupt the Tiam1-Rac1 interaction or to prevent phosphorylation of the ribosomal S6 kinase partially alleviated the E4orf1 restriction to late viral protein synthesis and enhanced tumor cell killing by the E1B-55K mutant virus. These results demonstrate that E4orf1 limits the oncolytic nature of a conditionally replicating adenovirus such as ONYX-015. The therapeutic value of similar oncolytic adenoviruses may be improved by abrogating E4orf1 function.

  10. Mutant genes in pea breeding

    International Nuclear Information System (INIS)

    Swiecicki, W.K.

    1990-01-01

    Full text: Mutations of genes Dpo (dehiscing pods) and A (anthocyanin synthesis) played a role in pea domestication. A number of other genes were important in cultivar development for 3 types of usage (dry seeds, green vegetable types, fodder), e.g. fn, fna, le, p, v, fas and af. New genes (induced and spontaneous), are important for present ideotypes and are registered by the Pisum Genetics Association (PGA). Comparison of a pea variety ideotype with the variation available in gene banks shows that breeders need 'new' features. In mutation induction experiments, genotype, mutagen and method of treatment (e.g. combined or fractionated doses) are varied for broadening the mutation spectrum and selecting more genes of agronomic value. New genes are genetically analysed. In Poland, some mutant varieties with the gene afila were registered, controlling lodging by a shorter stem and a higher number of internodes. Really non-lodging pea varieties could strongly increase seed yield. But the probability of detecting a major gene for lodging resistance is low. Therefore, mutant genes with smaller influence on plant architecture are sought, to combine their effect by crossing. Promising seem to be the genes rogue, reductus and arthritic as well as a number of mutant genes not yet genetically identified. The gene det for terminal inflorescence - similarly to Vicia faba - changes plant development. Utilisation of assimilates and ripening should be better. Improvement of harvest index should give higher seed yield. A number of genes controlling disease resistance are well known (eg. Fw, Fnw, En, mo and sbm). Important in mass screening of resistance are closely linked gene markers. Pea gene banks collect respective lines, but mutants induced in highly productive cultivars would be better. Inducing gene markers sometimes seems to be easier than transfer by crossing. Mutation induction in pea breeding is probably more important because a high number of monogenic features are

  11. Highly efficient gene targeting in Aspergillus oryzae industrial strains under ligD mutation introduced by genome editing: Strain-specific differences in the effects of deleting EcdR, the negative regulator of sclerotia formation.

    Science.gov (United States)

    Nakamura, Hidetoshi; Katayama, Takuya; Okabe, Tomoya; Iwashita, Kazuhiro; Fujii, Wataru; Kitamoto, Katsuhiko; Maruyama, Jun-Ichi

    2017-07-11

    Numerous strains of Aspergillus oryzae are industrially used for Japanese traditional fermentation and for the production of enzymes and heterologous proteins. In A. oryzae, deletion of the ku70 or ligD genes involved in non-homologous end joining (NHEJ) has allowed high gene targeting efficiency. However, this strategy has been mainly applied under the genetic background of the A. oryzae wild strain RIB40, and it would be laborious to delete the NHEJ genes in many A. oryzae industrial strains, probably due to their low gene targeting efficiency. In the present study, we generated ligD mutants from the A. oryzae industrial strains by employing the CRISPR/Cas9 system, which we previously developed as a genome editing method. Uridine/uracil auxotrophic strains were generated by deletion of the pyrG gene, which was subsequently used as a selective marker. We examined the gene targeting efficiency with the ecdR gene, of which deletion was reported to induce sclerotia formation under the genetic background of the strain RIB40. As expected, the deletion efficiencies were high, around 60~80%, in the ligD mutants of industrial strains. Intriguingly, the effects of the ecdR deletion on sclerotia formation varied depending on the strains, and we found sclerotia-like structures under the background of the industrial strains, which have never been reported to form sclerotia. The present study demonstrates that introducing ligD mutation by genome editing is an effective method allowing high gene targeting efficiency in A. oryzae industrial strains.

  12. Deletion of the Sm1 encoding motif in the lsm gene results in distinct changes in the transcriptome and enhanced swarming activity of Haloferax cells.

    Science.gov (United States)

    Maier, Lisa-Katharina; Benz, Juliane; Fischer, Susan; Alstetter, Martina; Jaschinski, Katharina; Hilker, Rolf; Becker, Anke; Allers, Thorsten; Soppa, Jörg; Marchfelder, Anita

    2015-10-01

    Members of the Sm protein family are important for the cellular RNA metabolism in all three domains of life. The family includes archaeal and eukaryotic Lsm proteins, eukaryotic Sm proteins and archaeal and bacterial Hfq proteins. While several studies concerning the bacterial and eukaryotic family members have been published, little is known about the archaeal Lsm proteins. Although structures for several archaeal Lsm proteins have been solved already more than ten years ago, we still do not know much about their biological function, however one can confidently propose that the archaeal Lsm proteins will also be involved in RNA metabolism. Therefore, we investigated this protein in the halophilic archaeon Haloferax volcanii. The Haloferax genome encodes a single Lsm protein, the lsm gene overlaps and is co-transcribed with the gene for the ribosomal L37.eR protein. Here, we show that the reading frame of the lsm gene contains a promoter which regulates expression of the overlapping rpl37R gene. This rpl37R specific promoter ensures high expression of the rpl37R gene in exponential growth phase. To investigate the biological function of the Lsm protein we generated a lsm deletion mutant that had the coding sequence for the Sm1 motif removed but still contained the internal promoter for the downstream rpl37R gene. The transcriptome of this deletion mutant was compared to the wild type transcriptome, revealing that several genes are down-regulated and many genes are up-regulated in the deletion strain. Northern blot analyses confirmed down-regulation of two genes. In addition, the deletion strain showed a gain of function in swarming, in congruence with the up-regulation of transcripts encoding proteins required for motility. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Targeted gene deletion of miRNAs in mice by TALEN system.

    Science.gov (United States)

    Takada, Shuji; Sato, Tempei; Ito, Yoshiaki; Yamashita, Satoshi; Kato, Tomoko; Kawasumi, Miyuri; Kanai-Azuma, Masami; Igarashi, Arisa; Kato, Tomomi; Tamano, Moe; Asahara, Hiroshi

    2013-01-01

    Mice are among the most valuable model animal species with an enormous amount of heritage in genetic modification studies. However, targeting genes in mice is sometimes difficult, especially for small genes, such as microRNAs (miRNAs) and targeting genes in repeat sequences. Here we optimized the application of TALEN system for mice and successfully obtained gene targeting technique in mice for intergenic region and series of microRNAs. Microinjection of synthesized RNA of TALEN targeting each gene in one cell stage of embryo was carried out and injected oocytes were transferred into pseudopregnant ICR female mice, producing a high success rate of the targeted deletion of miRNA genes. In our condition, TALEN RNA without poly(A) tail worked better than that of with poly(A) tail. This mutated allele in miRNA was transmitted to the next generation, suggesting the successful germ line transmission of this targeting method. Consistent with our notion of miRNAs maturation mechanism, in homozygous mutant mice of miR-10a, the non- mutated strand of miRNAs expression was completely diminished. This method will lead us to expand and accelerate our genetic research using mice in a high throughput way.

  14. Chromosomal deletion unmasking a recessive disease: 22q13 deletion syndrome and metachromatic leukodystrophy

    DEFF Research Database (Denmark)

    Bisgaard, A-M; Kirchhoff, M; Nielsen, J E

    2008-01-01

    A deletion on one chromosome and a mutant allele on the other may cause an autosomal recessive disease. We report on two patients with mental retardation, dysmorphic features and low catalytic activity of arylsulfatase A. One patient had a pathogenic mutation in the arylsulfatase A gene (ARSA......) and succumbed to metachromatic leukodystrophy (MLD). The other patient had a pseudoallele, which does not lead to MLD. The presenting clinical features and low arylsulfatase A activity were explained, in each patients, by a deletion of 22q13 and, thereby, of one allele of ARSA....

  15. Immune Modulation of NYVAC-Based HIV Vaccines by Combined Deletion of Viral Genes that Act on Several Signalling Pathways

    Directory of Open Access Journals (Sweden)

    Carmen Elena Gómez

    2017-12-01

    Full Text Available An HIV-1 vaccine continues to be a major target to halt the AIDS pandemic. The limited efficacy of the RV144 phase III clinical trial with the canarypox virus-based vector ALVAC and a gp120 protein component led to the conclusion that improved immune responses to HIV antigens are needed for a more effective vaccine. In non-human primates, the New York vaccinia virus (NYVAC poxvirus vector has a broader immunogenicity profile than ALVAC and has been tested in clinical trials. We therefore analysed the HIV immune advantage of NYVAC after removing viral genes that act on several signalling pathways (Toll-like receptors—TLR—interferon, cytokines/chemokines, as well as genes of unknown immune function. We generated a series of NYVAC deletion mutants and studied immune behaviour (T and B cell to HIV antigens and to the NYVAC vector in mice. Our results showed that combined deletion of selected vaccinia virus (VACV genes is a valuable strategy for improving the immunogenicity of NYVAC-based vaccine candidates. These immune responses were differentially modulated, positive or negative, depending on the combination of gene deletions. The deletions also led to enhanced antigen- or vector-specific cellular and humoral responses. These findings will facilitate the development of optimal NYVAC-based vaccines for HIV and other diseases.

  16. Deletion of the topoisomerase III gene in the hyperthermophilic archaeon Sulfolobus islandicus results in slow growth and defects in cell cycle control

    DEFF Research Database (Denmark)

    Li, Xiyang; Guo, Li; Deng, Ling

    2011-01-01

    Topoisomerase III (topo III), a type IA topoisomerase, is widespread in hyperthermophilic archaea. In order to interrogate the in vivo role of archaeal topo III, we constructed and characterized a topo III gene deletion mutant of Sulfolobus islandicus. The mutant was viable but grew more slowly...... results suggest that the enzyme may serve roles in chromosomal segregation and control of the level of supercoiling in the cell....

  17. The Immature Fiber Mutant Phenotype of Cotton (Gossypium hirsutum Is Linked to a 22-bp Frame-Shift Deletion in a Mitochondria Targeted Pentatricopeptide Repeat Gene

    Directory of Open Access Journals (Sweden)

    Gregory N. Thyssen

    2016-06-01

    Full Text Available Cotton seed trichomes are the most important source of natural fibers globally. The major fiber thickness properties influence the price of the raw material, and the quality of the finished product. The recessive immature fiber (im gene reduces the degree of fiber cell wall thickening by a process that was previously shown to involve mitochondrial function in allotetraploid Gossypium hirsutum. Here, we present the fine genetic mapping of the im locus, gene expression analysis of annotated proteins near the locus, and association analysis of the linked markers. Mapping-by-sequencing identified a 22-bp deletion in a pentatricopeptide repeat (PPR gene that is completely linked to the immature fiber phenotype in 2837 F2 plants, and is absent from all 163 cultivated varieties tested, although other closely linked marker polymorphisms are prevalent in the diversity panel. This frame-shift mutation results in a transcript with two long open reading frames: one containing the N-terminal transit peptide that targets mitochondria, the other containing only the RNA-binding PPR domains, suggesting that a functional PPR protein cannot be targeted to mitochondria in the im mutant. Taken together, these results suggest that PPR gene Gh_A03G0489 is involved in the cotton fiber wall thickening process, and is a promising candidate gene at the im locus. Our findings expand our understanding of the molecular mechanisms that modulate cotton fiber fineness and maturity, and may facilitate the development of cotton varieties with superior fiber attributes.

  18. Construction of insertion and deletion mxa mutants of Methylobacterium extorquens AM1 by electroporation.

    Science.gov (United States)

    Toyama, H; Anthony, C; Lidstrom, M E

    1998-09-01

    Methylobacterium extorquens AM1 is a pink-pigmented facultative methylotroph which is widely used for analyzing pathways of C1 metabolism with biochemical and molecular biological techniques. To facilitate this approach, we have applied a new method to construct insertion or disruption mutants with drug resistance genes by electroporation. By using this method, mutants were obtained in four genes present in the mxa methylotrophy gene cluster for which the functions were unknown, mxaR, mxaS, mxaC and mxaD. These mutants were unable to grow on methanol except the mutant of mxaD, which showed reduced growth on methanol.

  19. Analysis of Dystrophin Gene Deletions by Multiplex PCR in Moroccan Patients

    Directory of Open Access Journals (Sweden)

    Aziza Sbiti

    2002-01-01

    Full Text Available Duchenne and Becker muscular dystrophy (DMD and BMD are X-linked diseases resulting from a defect in the dystrophin gene located on Xp21. DMD is the most frequent neuromuscular disease in humans (1/3500 male newborn. Deletions in the dystrophin gene represent 65% of mutations in DMD/BMD patients. We have analyzed DNA from 72 Moroccan patients with DMD/BMD using the multiplex polymerase chain reaction (PCR to screen for exon deletions within the dystrophin gene, and to estimate the frequency of these abnormalities. We found dystrophin gene deletions in 37 cases. Therefore the frequency in Moroccan DMD/BMD patients is about 51.3%. All deletions were clustered in the two known hot-spots regions, and in 81% of cases deletions were detected in the region from exon 43 to exon 52. These findings are comparable to those reported in other studies. It is important to note that in our population, we can first search for deletions of DMD gene in the most frequently deleted exons determined by this study. This may facilitate the molecular diagnosis of DMD and BMD in our country.

  20. Deletion of Braun lipoprotein and plasminogen-activating protease-encoding genes attenuates Yersinia pestis in mouse models of bubonic and pneumonic plague.

    Science.gov (United States)

    van Lier, Christina J; Sha, Jian; Kirtley, Michelle L; Cao, Anthony; Tiner, Bethany L; Erova, Tatiana E; Cong, Yingzi; Kozlova, Elena V; Popov, Vsevolod L; Baze, Wallace B; Chopra, Ashok K

    2014-06-01

    Currently, there is no FDA-approved vaccine against Yersinia pestis, the causative agent of bubonic and pneumonic plague. Since both humoral immunity and cell-mediated immunity are essential in providing the host with protection against plague, we developed a live-attenuated vaccine strain by deleting the Braun lipoprotein (lpp) and plasminogen-activating protease (pla) genes from Y. pestis CO92. The Δlpp Δpla double isogenic mutant was highly attenuated in evoking both bubonic and pneumonic plague in a mouse model. Further, animals immunized with the mutant by either the intranasal or the subcutaneous route were significantly protected from developing subsequent pneumonic plague. In mice, the mutant poorly disseminated to peripheral organs and the production of proinflammatory cytokines concurrently decreased. Histopathologically, reduced damage to the lungs and livers of mice infected with the Δlpp Δpla double mutant compared to the level of damage in wild-type (WT) CO92-challenged animals was observed. The Δlpp Δpla mutant-immunized mice elicited a humoral immune response to the WT bacterium, as well as to CO92-specific antigens. Moreover, T cells from mutant-immunized animals exhibited significantly higher proliferative responses, when stimulated ex vivo with heat-killed WT CO92 antigens, than mice immunized with the same sublethal dose of WT CO92. Likewise, T cells from the mutant-immunized mice produced more gamma interferon (IFN-γ) and interleukin-4. These animals had an increasing number of tumor necrosis factor alpha (TNF-α)-producing CD4(+) and CD8(+) T cells than WT CO92-infected mice. These data emphasize the role of TNF-α and IFN-γ in protecting mice against pneumonic plague. Overall, our studies provide evidence that deletion of the lpp and pla genes acts synergistically in protecting animals against pneumonic plague, and we have demonstrated an immunological basis for this protection.

  1. Discrimination of Deletion and Duplication Subtypes of the Deleted in Azoospermia Gene Family in the Context of Frequent Interloci Gene Conversion

    Science.gov (United States)

    Vaszkó, Tibor; Papp, János; Krausz, Csilla; Casamonti, Elena; Géczi, Lajos; Olah, Edith

    2016-01-01

    Due to its palindromic setup, AZFc (Azoospermia Factor c) region of chromosome Y is one of the most unstable regions of the human genome. It contains eight gene families expressed mainly in the testes. Several types of rearrangement resulting in changes in the cumulative copy number of the gene families were reported to be associated with diseases such as male infertility and testicular germ cell tumors. The best studied AZFc rearrangement is gr/gr deletion. Its carriers show widespread phenotypic variation from azoospermia to normospermia. This phenomenon was initially attributed to different gr/gr subtypes that would eliminate distinct members of the affected gene families. However, studies conducted to confirm this hypothesis have brought controversial results, perhaps, in part, due to the shortcomings of the utilized subtyping methodology. This proof-of-concept paper is meant to introduce here a novel method aimed at subtyping AZFc rearrangements. It is able to differentiate the partial deletion and partial duplication subtypes of the Deleted in Azoospermia (DAZ) gene family. The keystone of the method is the determination of the copy number of the gene family member-specific variant(s) in a series of sequence family variant (SFV) positions. Most importantly, we present a novel approach for the correct interpretation of the variant copy number data to determine the copy number of the individual DAZ family members in the context of frequent interloci gene conversion.Besides DAZ1/DAZ2 and DAZ3/DAZ4 deletions, not yet described rearrangements such as DAZ2/DAZ4 deletion and three duplication subtypes were also found by the utilization of the novel approach. A striking feature is the extremely high concordance among the individual data pointing to a certain type of rearrangement. In addition to being able to identify DAZ deletion subtypes more reliably than the methods used previously, this approach is the first that can discriminate DAZ duplication subtypes as well

  2. Comprehensive analysis of pathogenic deletion variants in Fanconi anemia genes.

    Science.gov (United States)

    Flynn, Elizabeth K; Kamat, Aparna; Lach, Francis P; Donovan, Frank X; Kimble, Danielle C; Narisu, Narisu; Sanborn, Erica; Boulad, Farid; Davies, Stella M; Gillio, Alfred P; Harris, Richard E; MacMillan, Margaret L; Wagner, John E; Smogorzewska, Agata; Auerbach, Arleen D; Ostrander, Elaine A; Chandrasekharappa, Settara C

    2014-11-01

    Fanconi anemia (FA) is a rare recessive disease resulting from mutations in one of at least 16 different genes. Mutation types and phenotypic manifestations of FA are highly heterogeneous and influence the clinical management of the disease. We analyzed 202 FA families for large deletions, using high-resolution comparative genome hybridization arrays, single-nucleotide polymorphism arrays, and DNA sequencing. We found pathogenic deletions in 88 FANCA, seven FANCC, two FANCD2, and one FANCB families. We find 35% of FA families carry large deletions, accounting for 18% of all FA pathogenic variants. Cloning and sequencing across the deletion breakpoints revealed that 52 FANCA deletion ends, and one FANCC deletion end extended beyond the gene boundaries, potentially affecting neighboring genes with phenotypic consequences. Seventy-five percent of the FANCA deletions are Alu-Alu mediated, predominantly by AluY elements, and appear to be caused by nonallelic homologous recombination. Individual Alu hotspots were identified. Defining the haplotypes of four FANCA deletions shared by multiple families revealed that three share a common ancestry. Knowing the exact molecular changes that lead to the disease may be critical for a better understanding of the FA phenotype, and to gain insight into the mechanisms driving these pathogenic deletion variants. © 2014 WILEY PERIODICALS, INC.

  3. The rates and patterns of deletions in the human factor IX gene

    Energy Technology Data Exchange (ETDEWEB)

    Ketterling, R.P.; Vielhaber, E.L.; Lind, T.J.; Thorland, E.C.; Sommer S.S. (Mayo Clinic/Foundation, Rochester, MN (United States))

    1994-02-01

    Deletions are commonly observed in genes with either segments of highly homologous sequences or excessive gene length. However, in the factor IX gene and in most genes, deletions (of [ge]21 bp) are uncommon. The authors have analyzed DNA from 290 families with hemophilia B (203 independent mutations) and have found 12 deletions >20 bp. Eleven of these are >2 kb (range >3-163 kb), and one is 1.1 kb. The junctions of the four deletions that are completely contained within the factor IX gene have been determined. A novel mutation occurred in patient HB128: the data suggest that a 26.8-kb deletion occurred between two segments of alternating purines and pyrimidines and that a 2.3-kb sense strand segment derived from the deleted region was inserted. For a sample of 203 independent mutations, the authors estimate the [open quotes]baseline[close quotes] rates of deletional mutation per base pair per generation as a function of size. The rate for large (>2 kb)I deletions is exceedingly low. For every mutational event in which a given base is at the junction of a large deletion, there are an estimated 58 microdeletions (<20 bp) and 985 single-base substitutions at that base. Analysis of the nine reported deletion junctions in the factor IX gene literature reveals that (i) five are associated with inversion, orphan sequences, or sense strand insertions; (ii) four are simple deletions that display an excess of short direct repeats at their junctions; (iii) there is no dramatic clustering of junctions within the gene; and (iv) with the exception of alternating purines and pyrimidines, deletion junctions are not preferentially associated with repetitive DNA. 58 refs., 5 figs., 5 tabs.

  4. Angiotensin-converting enzyme (ACE) gene insertion/deletion polymorphism is not a risk factor for hypertension in SLE nephritis.

    Science.gov (United States)

    Negi, Vir S; Devaraju, Panneer; Gulati, Reena

    2015-09-01

    SLE is a systemic autoimmune disease with high prevalence of hypertension. Around 40-75 % of SLE patients develop nephritis, a major cause of hypertension and mortality. Angiotensin-converting enzyme (ACE) maintains the blood pressure and blood volume homeostasis. An insertion/deletion (I/D) polymorphism in intron 16 of ACE gene was reported to influence the development of hypertension, nephritis, and cardiovascular diseases in different ethnic populations. Despite compelling evidence for the high prevalence of hypertension in individuals with SLE, underlying factors for its development are not well studied. With this background, we analyzed the influence of ACE insertion/deletion polymorphism on susceptibility to SLE, development of nephritis and hypertension, other clinical features and autoantibody phenotype in South Indian SLE patients. Three hundred patients with SLE and 460 age and sex similar ethnicity matched individuals were included as patients and healthy controls, respectively. The ACE gene insertion/deletion polymorphism was analyzed by PCR. Insertion (I) and deletion (D) alleles were observed to be equally distributed among patients (57 and 43 %) and controls (59 and 41 %), respectively. The mutant (D) allele did not confer significant risk for SLE (II vs. ID: p = 0.4, OR 1.15, 95 % CI 0.8-1.6; II vs. DD: p = 0.34, OR 1.22, 95 % CI 0.8-1.85). There was no association of the ACE genotype or the allele with development of lupus nephritis (II vs. ID: p = 0.19, OR 1.41, 95 % CI 0.84-2.36; II vs. DD: p = 0.41, OR 0.74, 95 % CI 0.38-1.41) or hypertension (II vs. ID: p = 0.85, OR 0.9, 95 % CI 0.43-1.8; II vs. DD: p = 0.66, OR 1.217, 95 % CI 0.5-2.8). The presence of mutant allele (D) was not found to influence any clinical features or autoantibody phenotype. The insertion/deletion polymorphism of the ACE gene is not a genetic risk factor for SLE and does not influence development of hypertension or lupus nephritis in South Indian

  5. BRED: a simple and powerful tool for constructing mutant and recombinant bacteriophage genomes.

    Directory of Open Access Journals (Sweden)

    Laura J Marinelli

    Full Text Available Advances in DNA sequencing technology have facilitated the determination of hundreds of complete genome sequences both for bacteria and their bacteriophages. Some of these bacteria have well-developed and facile genetic systems for constructing mutants to determine gene function, and recombineering is a particularly effective tool. However, generally applicable methods for constructing defined mutants of bacteriophages are poorly developed, in part because of the inability to use selectable markers such as drug resistance genes during viral lytic growth. Here we describe a method for simple and effective directed mutagenesis of bacteriophage genomes using Bacteriophage Recombineering of Electroporated DNA (BRED, in which a highly efficient recombineering system is utilized directly on electroporated phage DNA; no selection is required and mutants can be readily detected by PCR. We describe the use of BRED to construct unmarked gene deletions, in-frame internal deletions, base substitutions, precise gene replacements, and the addition of gene tags.

  6. Hypomutability in Fanconi anemia cells is associated with increased deletion frequency at the HPRT locus

    International Nuclear Information System (INIS)

    Papadopoulo, D.; Guillouf, C.; Moustacchi, E.; Mohrenweiser, H.

    1990-01-01

    Fanconi anemia (FA) is an inherited human disorder associated with a predisposition to cancer and characterized by anomalies in the processing of DNA cross-links and certain monoadducts. The authors reported previously that the frequency of psoralen-photoinduced mutations at the HPRT locus is lower in FA cells than in normal cells. This hypomutability is shown here to be associated with an increased frequency of deletions in the HPRT gene when either a mixture of cross-links and monoadducts or monoadducts alone are induced. Molecular analysis of mutants in the HPRT gene was carried out. In normal cells the majority of spontaneous and induced mutants are point mutations whereas in FA deletion mutations predominate. In that case a majority of mutants were found to lack individual exons or small clusters of exons whereas in normal cells large (complete or major gene loss) and small deletions are almost equally represented. Thus they propose that the FA defect lies in a mutagenic pathway that, in normal cells, involves by passing lesions and subsequent gap filling by a recombinational process during replication

  7. Transcriptional response to deletion of the phosphatidylserine decarboxylase Psd1p in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Gsell, Martina; Mascher, Gerald; Schuiki, Irmgard; Ploier, Birgit; Hrastnik, Claudia; Daum, Günther

    2013-01-01

    In the yeast, Saccharomyces cerevisiae, the synthesis of the essential phospholipid phosphatidylethanolamine (PE) is accomplished by a network of reactions which comprises four different pathways. The enzyme contributing most to PE formation is the mitochondrial phosphatidylserine decarboxylase 1 (Psd1p) which catalyzes conversion of phosphatidylserine (PS) to PE. To study the genome wide effect of an unbalanced cellular and mitochondrial PE level and in particular the contribution of Psd1p to this depletion we performed a DNA microarray analysis with a ∆psd1 deletion mutant. This approach revealed that 54 yeast genes were significantly up-regulated in the absence of PSD1 compared to wild type. Surprisingly, marked down-regulation of genes was not observed. A number of different cellular processes in different subcellular compartments were affected in a ∆psd1 mutant. Deletion mutants bearing defects in all 54 candidate genes, respectively, were analyzed for their growth phenotype and their phospholipid profile. Only three mutants, namely ∆gpm2, ∆gph1 and ∆rsb1, were affected in one of these parameters. The possible link of these mutations to PE deficiency and PSD1 deletion is discussed.

  8. Kinetic characterization of tissue-type plasminogen activator (t-PA) and t-PA deletion mutants

    NARCIS (Netherlands)

    de Vries, C. [=Carlie J. M.; Veerman, H.; Nesheim, M. E.; Pannekoek, H.

    1991-01-01

    The binding of t-PA to fibrin is mediated both by its "finger" (F) and its "kringle 2" (K2) domain. In addition, these domains are involved in the stimulation of t-PA activity by fibrin. We analyzed the kinetic characteristics of Glu-plasminogen activation by t-PA and a set of t-PA deletion mutants

  9. Targeted gene deletion of miRNAs in mice by TALEN system.

    Directory of Open Access Journals (Sweden)

    Shuji Takada

    Full Text Available Mice are among the most valuable model animal species with an enormous amount of heritage in genetic modification studies. However, targeting genes in mice is sometimes difficult, especially for small genes, such as microRNAs (miRNAs and targeting genes in repeat sequences. Here we optimized the application of TALEN system for mice and successfully obtained gene targeting technique in mice for intergenic region and series of microRNAs. Microinjection of synthesized RNA of TALEN targeting each gene in one cell stage of embryo was carried out and injected oocytes were transferred into pseudopregnant ICR female mice, producing a high success rate of the targeted deletion of miRNA genes. In our condition, TALEN RNA without poly(A tail worked better than that of with poly(A tail. This mutated allele in miRNA was transmitted to the next generation, suggesting the successful germ line transmission of this targeting method. Consistent with our notion of miRNAs maturation mechanism, in homozygous mutant mice of miR-10a, the non- mutated strand of miRNAs expression was completely diminished. This method will lead us to expand and accelerate our genetic research using mice in a high throughput way.

  10. Replacement of the folC gene, encoding folylpolyglutamate synthetase-dihydrofolate synthetase in Escherichia coli, with genes mutagenized in vitro.

    Science.gov (United States)

    Pyne, C; Bognar, A L

    1992-03-01

    The folylpolyglutamate synthetase-dihydrofolate synthetase gene (folC) in Escherichia coli was deleted from the bacterial chromosome and replaced by a selectable Kmr marker. The deletion strain required a complementing gene expressing folylpolyglutamate synthetase encoded on a plasmid for viability, indicating that folC is an essential gene in E. coli. The complementing folC gene was cloned into the vector pPM103 (pSC101, temperature sensitive for replication), which segregated spontaneously at 42 degrees C in the absence of selection. This complementing plasmid was replaced in the folC deletion strain by compatible pUC plasmids containing folC genes with mutations generated in vitro, producing strains which express only mutant folylpolyglutamate synthetase. Mutant folC genes expressing insufficient enzyme activity could not complement the chromosomal deletion, resulting in retention of the pPM103 plasmid. Some mutant genes expressing low levels of enzyme activity replaced the complementing plasmid, but the strains produced were auxotrophic for products of folate-dependent pathways. The folylpolyglutamate synthetase gene from Lactobacillus casei, which may lack dihydrofolate synthetase activity, replaced the complementing plasmid, but the strain was auxotrophic for all folate end products.

  11. Establishment of a recessive mutant small-eye rat with lens involution and retinal detachment associated with partial deletion and rearrangement of the Cryba1 gene.

    Science.gov (United States)

    Yamada, Toshiyuki; Nanashima, Naoki; Shimizu, Takeshi; Nakazawa, Yosuke; Nakazawa, Mitsuru; Tsuchida, Shigeki

    2015-10-15

    From our stock of SDRs (Sprague-Dawley rats), we established a mutant strain having small opaque eyes and named it HiSER (Hirosaki small-eye rat). The HiSER phenotype is progressive and autosomal recessive. In HiSER eyes, disruption and involution of the lens, thickening of the inner nuclear layer, detachment and aggregation of the retina, rudimentary muscle in the ciliary body and cell infiltration in the vitreous humour were observed. Genetic linkage analysis using crossing with Brown Norway rat suggested that the causative gene(s) is located on chromosome 10. Microarray analysis showed that the expression level of the Cryba1 gene encoding βA3/A1-crystallin on chromosome 10 was markedly decreased in HiSER eyes. Genomic PCR revealed deletion of a 3.6-kb DNA region encompassing exons 4-6 of the gene in HiSERs. In HiSER eyes, a chimaeric transcript of the gene containing exons 1-3 and an approximately 250-bp sequence originating from the 3'-UTR of the Nufip2 gene, located downstream of the breakpoint in the opposite direction, was present. Whereas the chimaeric transcript was expressed in HiSER eyes, neither normal nor chimaeric βA3/A1-crystallin proteins were detected by Western blot analysis. Real-time RT (reverse transcription)-PCR analysis revealed that expression level of the Nufip2 gene in the HiSER eye was 40% of that in the SDR eye. These results suggest that the disappearance of the βA3/A1-crystallin protein and, in addition, down-regulation of the Nufip2 gene as a consequence of gene rearrangement causes the HiSER phenotype. © 2015 Authors; published by Portland Press Limited.

  12. Analysis of fast neutron-generated mutants at the Arabidopsis thaliana HY4 locus

    International Nuclear Information System (INIS)

    Bruggemann, E.; Handwerger, K.; Essex, C.; Storz, G.

    1996-01-01

    Ionizing radiation is expected to produce mutants with deletions or other chromosomal rearrangements. These mutants are useful for a variety of purposes, such as creating null alleles and cloning genes whose existence is known only from their mutant phenotype; however, only a few mutations generated by ionizing radiation have been characterized at the molecular level in Arabidopsis thaliana. Twenty fast neutron-generated alleles of the Arabidopsis HY4 locus, which encodes a blue light receptor, CRY1, were isolated and characterized. Nine of the mutant alleles displayed normal genetic behavior. The other 11 mutant alleles were poorly transmitted through the male gametophyte and were lethal in homozygous plants. Southern blot analysis demonstrated that alleles of the first group generally contain small or moderate-sized deletions at HY4, while alleles of the second group contain large deletions at this locus. These results demonstrate that fast neutrons can produce a range of deletions at a single locus in Arabidopsis. Many of these deletions would be suitable for cloning by genomic subtraction or representational difference analysis. The results also suggest the presence of an essential locus adjacent to HY4. (author)

  13. Clinical and molecuar characterization of Brazilian patients with growth hormone gene deletions

    Directory of Open Access Journals (Sweden)

    I.J.P. Arnhold

    1998-04-01

    Full Text Available Genomic DNA from 23 patients with isolated growth hormone (GH deficiency (12 males and 11 females: heights -4.9 ± 1.4 SDS was screened for GH gene deletions by restriction endonuclease analysis of polymerase chain reaction amplification products. Three unrelated patients had typical features of severe GH deficiency and deletions (6.7 kb in two and 7.6 kb in one of the GH gene. The two patients with 6.7-kb deletions developed growth-attenuating anti-GH antibodies whereas the patient with the 7.6-kb deletion continued to grow with GH replacement therapy. Our finding that 3/23 (~13% Brazilian subjects had GH gene deletions agrees with previous studies of severe isolated GH deficiency subjects in other populations. Two of three subjects (67% with deletions developed blocking antibodies despite administration of exogenous GH at low doses. Interestingly, only 1/10 of cases with affected relatives or parental consanguinity had GH-1 gene deletions

  14. Multiple Patterns of FHIT Gene Homozygous Deletion in Egyptian Breast Cancer Patients

    International Nuclear Information System (INIS)

    Ismail, H.M.S.; Zakhary, N.I.; Medhat, A.M.; Karim, A.M.

    2011-01-01

    Fragile histidine triad (FHIT) gene encodes a putative tumour suppressor protein. Loss of Fhit protein in cancer is attributed to different genetic alterations that affect the FHIT gene structure. In this study, we investigated the pattern of homozygous deletion that target the FHIT gene exons 3 to 9 genomic structure in Egyptian breast cancer patients. We have found that 65% (40 out of 62) of the cases exhibited homozygous deletion in at least one FHIT exon. The incidence of homozygous deletion was not associated with patients clinico pathological parameters including patients age, tumour grade, tumour type, and lymph node involvement. Using correlation analysis, we have observed a strong correlation between homozygous deletions of exon 3 and exon 4 (P<0.0001). Deletions in exon 5 were positively correlated with deletions in exon 7 (P<0.0001), Exon 8 (P<0.027), and exon 9 (P=0.04). Additionally, a strong correlation was observed between exons 8 and exon 9 (P<0.0001).We conclude that FHIT gene exons are homozygously deleted at high frequency in Egyptian women population diagnosed with breast cancer. Three different patterns of homozygous deletion were observed in this population indicating different mechanisms of targeting FHIT gene genomic structure.

  15. Phenotypic effects of repeated psychosocial stress during adolescence in mice mutant for the schizophrenia risk gene neuregulin-1: a putative model of gene × environment interaction.

    Science.gov (United States)

    Desbonnet, Lieve; O'Tuathaigh, Colm; Clarke, Gerard; O'Leary, Claire; Petit, Emilie; Clarke, Niamh; Tighe, Orna; Lai, Donna; Harvey, Richard; Cryan, John F; Dinan, Timothy G; Waddington, John L

    2012-05-01

    There is a paucity of animal models by which the contributions of environmental and genetic factors to the pathobiology of psychosis can be investigated. This study examined the individual and combined effects of chronic social stress during adolescence and deletion of the schizophrenia risk gene neuregulin-1 (NRG1) on adult mouse phenotype. Mice were exposed to repeated social defeat stress during adolescence and assessed for exploratory behaviour, working memory, sucrose preference, social behaviour and prepulse inhibition in adulthood. Thereafter, in vitro cytokine responses to mitogen stimulation and corticosterone inhibition were assayed in spleen cells, with measurement of cytokine and brain-derived neurotrophic factor (BDNF) mRNA in frontal cortex, hippocampus and striatum. NRG1 mutants exhibited hyperactivity, decreased anxiety, impaired sensorimotor gating and reduced preference for social novelty. The effects of stress on exploratory/anxiety-related parameters, spatial working memory, sucrose preference and basal cytokine levels were modified by NRG1 deletion. Stress also exerted varied effect on spleen cytokine response to concanavalin A and brain cytokine and BDNF mRNA expression in NRG1 mutants. The experience of psychosocial stress during adolescence may trigger further pathobiological features that contribute to the development of schizophrenia, particularly in those with underlying NRG1 gene abnormalities. This model elaborates the importance of gene × environment interactions in the etiology of schizophrenia. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Deletion of genes involved in glutamate metabolism to improve poly-gamma-glutamic acid production in B. amyloliquefaciens LL3.

    Science.gov (United States)

    Zhang, Wei; He, Yulian; Gao, Weixia; Feng, Jun; Cao, Mingfeng; Yang, Chao; Song, Cunjiang; Wang, Shufang

    2015-02-01

    Here, we attempted to elevate poly-gamma-glutamic acid (γ-PGA) production by modifying genes involved in glutamate metabolism in Bacillus amyloliquefaciens LL3. Products of rocR, rocG and gudB facilitate the conversion from glutamate to 2-oxoglutarate in Bacillus subtillis. The gene odhA is responsible for the synthesis of a component of the 2-oxoglutarate dehydrogenase complex that catalyzes the oxidative decarboxylation of 2-oxoglutarate to succinyl coenzyme A. In-frame deletions of these four genes were performed. In shake flask experiments the gudB/rocG double mutant presented enhanced production of γ-PGA, a 38 % increase compared with wild type. When fermented in a 5-L fermenter with pH control, the γ-PGA yield of the rocR mutant was increased to 5.83 g/L from 4.55 g/L for shake flask experiments. The gudB/rocG double mutant produced 5.68 g/L γ-PGA compared with that of 4.03 g/L for the wild type, a 40 % increase. Those results indicated the possibility of improving γ-PGA production by modifying glutamate metabolism, and identified potential genetic targets to improve γ-PGA production.

  17. Functional analysis of mating type genes and transcriptome analysis during fruiting body development of botrytis cinerea

    NARCIS (Netherlands)

    Rodenburg, Sander Y.A.; Terhem, Razak B.; Veloso, Javier; Stassen, Joost H.M.; Kan, van Jan A.L.

    2018-01-01

    Botrytis cinerea is a plant-pathogenic fungus producing apothecia as sexual fruiting bodies. To study the function of mating type (MAT) genes, single-gene deletion mutants were generated in both genes of the MAT1-1 locus and both genes of the MAT1-2 locus. Deletion mutants in two MAT genes were

  18. Inflammatory response of TLR4 deficient spleen macrophages (CRL 2471) to Brucella abortus S19 and an isogenic ΔmglA deletion mutant.

    Science.gov (United States)

    Jacob, Jens; Makou, Patricia; Finke, Antje; Mielke, Martin

    2016-05-01

    Brucellosis is a worldwide distributed zoonosis caused by members of the genus Brucella. One of them, Brucella abortus, is the etiological agent of bovine brucellosis. With the attenuated strain B. abortus S19 a vaccine is available. However, both, virulence (safety) and the ability to induce a protective B and T cell response (efficacy) have to be tested in suitable assays before successful use in the field. For this purpose, several macrophage cell lines of various origins have been used while splenic macrophages are the preferred host cells in vivo. We here characterized the in vitro response of the murine splenic macrophage cell line CRL 2471(I-13.35) to B. abortus. This cell line still depends on the presence of colony-stimulating factor 1 (CSF1) and is derived from LPS resistant (TLR4 deficient) C3H/HeJ mice. For infection the vaccine strain B. abortus S19A as well as the formerly described isogenic deletion mutant B. abortus S19A ΔmglA 3.14 were used. While numbers of viable bacteria did not differ significantly between the vaccine strain and the deletion mutant at 6h post infection, a higher bacterial load was measured in case of the mutant at 24h and 48h after infection. This was also true, when IFNγ was used for macrophage activation. A comprehensive gene expression profile of macrophages was analysed 6 and 24h after infection by means of an RT-PCR based gene expression array. The mutant strain B. abortus S19A ΔmglA 3.14 elicited a stronger cellular response of the splenic macrophages as compared to the parental vaccine strain. This was most prominent for the pro-inflammatory cytokines IL-1α, IL-1β, TNF-α and IL6 as well as for the chemokine ligands CXCL1, CXCL2, CXCL10, CCL2, CCL5, CCL7, CCL17 and the co-stimulatory molecules CD40 and ICAM1. While these differences were also present in IFNγ-stimulated macrophages, an addition of IFNγ after infection not only resulted in a dramatic increase of the translation of the afore mentioned genes but also

  19. Mutant power: using mutant allele collections for yeast functional genomics.

    Science.gov (United States)

    Norman, Kaitlyn L; Kumar, Anuj

    2016-03-01

    The budding yeast has long served as a model eukaryote for the functional genomic analysis of highly conserved signaling pathways, cellular processes and mechanisms underlying human disease. The collection of reagents available for genomics in yeast is extensive, encompassing a growing diversity of mutant collections beyond gene deletion sets in the standard wild-type S288C genetic background. We review here three main types of mutant allele collections: transposon mutagen collections, essential gene collections and overexpression libraries. Each collection provides unique and identifiable alleles that can be utilized in genome-wide, high-throughput studies. These genomic reagents are particularly informative in identifying synthetic phenotypes and functions associated with essential genes, including those modeled most effectively in complex genetic backgrounds. Several examples of genomic studies in filamentous/pseudohyphal backgrounds are provided here to illustrate this point. Additionally, the limitations of each approach are examined. Collectively, these mutant allele collections in Saccharomyces cerevisiae and the related pathogenic yeast Candida albicans promise insights toward an advanced understanding of eukaryotic molecular and cellular biology. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Neurophysiological defects and neuronal gene deregulation in Drosophila mir-124 mutants.

    Directory of Open Access Journals (Sweden)

    Kailiang Sun

    2012-02-01

    Full Text Available miR-124 is conserved in sequence and neuronal expression across the animal kingdom and is predicted to have hundreds of mRNA targets. Diverse defects in neural development and function were reported from miR-124 antisense studies in vertebrates, but a nematode knockout of mir-124 surprisingly lacked detectable phenotypes. To provide genetic insight from Drosophila, we deleted its single mir-124 locus and found that it is dispensable for gross aspects of neural specification and differentiation. On the other hand, we detected a variety of mutant phenotypes that were rescuable by a mir-124 genomic transgene, including short lifespan, increased dendrite variation, impaired larval locomotion, and aberrant synaptic release at the NMJ. These phenotypes reflect extensive requirements of miR-124 even under optimal culture conditions. Comparison of the transcriptomes of cells from wild-type and mir-124 mutant animals, purified on the basis of mir-124 promoter activity, revealed broad upregulation of direct miR-124 targets. However, in contrast to the proposed mutual exclusion model for miR-124 function, its functional targets were relatively highly expressed in miR-124-expressing cells and were not enriched in genes annotated with epidermal expression. A notable aspect of the direct miR-124 network was coordinate targeting of five positive components in the retrograde BMP signaling pathway, whose activation in neurons increases synaptic release at the NMJ, similar to mir-124 mutants. Derepression of the direct miR-124 target network also had many secondary effects, including over-activity of other post-transcriptional repressors and a net incomplete transition from a neuroblast to a neuronal gene expression signature. Altogether, these studies demonstrate complex consequences of miR-124 loss on neural gene expression and neurophysiology.

  1. An unusual insertion/deletion in the gene encoding the β-subunit of propionyl-CoA carboxylase is a frequent mutation in Caucasian propionic acidemia

    International Nuclear Information System (INIS)

    Tahara, T.; Kraus, J.P.; Rosenberg, L.E.

    1990-01-01

    Propionic acidemia is an inherited disorder of organic acid metabolism that is caused by deficiency of propionly-CoA carboxylase. Affected patients fall into two complementation groups, pccA and pccBC (subgroups B, C, and BC), resulting from deficiency of the nonidentical α and β subunits of PCC, respectively. The authors have detected an unusual insertion/deletion in the DNA of patients from the pccBC and pccC subgroups that replaces 14 nucleotides in the coding sequence of the β subunit with 12 nucleotides unrelated to this region of the gene. Among 14 unrelated Caucasian patients in the pccBc complementation group, this unique mutation was found in 8 of 28 mutant alleles examined. Mutant allele-specific oligonucleotide hybridization to amplified genomic DNAs revealed that the inserted 12 nucleotides do not originate in an ∼1000-bp region around the mutation. In the course of the investigation, they identified another mutation in the same exon: a 3-bp in-frame deletion that eliminates one of two isoleucine codons immediately preceding the Msp I site. Two unrelated patients were compound heterozygotes for this single-codon deletion and for the insertion/deletion described above. They conclude that either there is a propensity for the PCC β-subunit gene to undergo mutations of this sort at this position or, more likely, the mutations in all of the involved Caucasian patients have a common origin in preceding generations

  2. Gene expression patterns of chicken neuregulin 3 in association with copy number variation and frameshift deletion.

    Science.gov (United States)

    Abe, Hideaki; Aoya, Daiki; Takeuchi, Hiro-Aki; Inoue-Murayama, Miho

    2017-07-21

    Neuregulin 3 (NRG3) plays a key role in central nervous system development and is a strong candidate for human mental disorders. Thus, genetic variation in NRG3 may have some impact on a variety of phenotypes in non-mammalian vertebrates. Recently, genome-wide screening for short insertions and deletions in chicken (Gallus gallus) genomes has provided useful information about structural variation in functionally important genes. NRG3 is one such gene that has a putative frameshift deletion in exon 2, resulting in premature termination of translation. Our aims were to characterize the structure of chicken NRG3 and to compare expression patterns between NRG3 isoforms. Depending on the presence or absence of the 2-bp deletion in chicken NRG3, 3 breeds (red junglefowl [RJF], Boris Brown [BB], and Hinai-jidori [HJ]) were genotyped using flanking primers. In the commercial breeds (BB and HJ), approximately 45% of individuals had at least one exon 2 allele with the 2-bp deletion, whereas there was no deletion allele in RJF. The lack of a homozygous mutant indicated the existence of duplicated NRG3 segments in the chicken genome. Indeed, highly conserved elements consisting of exon 1, intron 1, exon 2, and part of intron 2 were found in the reference RJF genome, and quantitative PCR detected copy number variation (CNV) between breeds as well as between individuals. The copy number of conserved elements was significantly higher in chicks harboring the 2-bp deletion in exon 2. We identified 7 novel transcript variants using total mRNA isolated from the amygdala. Novel isoforms were found to lack the exon 2 cassette, which probably harbored the premature termination codon. The relative transcription levels of the newly identified isoforms were almost the same between chick groups with and without the 2-bp deletion, while chicks with the deletion showed significant suppression of the expression of previously reported isoforms. A putative frameshift deletion and CNV in chicken

  3. Systematic screen for mutants resistant to TORC1 inhibition in fission yeast reveals genes involved in cellular ageing and growth

    Directory of Open Access Journals (Sweden)

    Charalampos Rallis

    2014-01-01

    Target of rapamycin complex 1 (TORC1, which controls growth in response to nutrients, promotes ageing in multiple organisms. The fission yeast Schizosaccharomyces pombe emerges as a valuable genetic model system to study TORC1 function and cellular ageing. Here we exploited the combinatorial action of rapamycin and caffeine, which inhibit fission yeast growth in a TORC1-dependent manner. We screened a deletion library, comprising ∼84% of all non-essential fission yeast genes, for drug-resistant mutants. This screen identified 33 genes encoding functions such as transcription, kinases, mitochondrial respiration, biosynthesis, intra-cellular trafficking, and stress response. Among the corresponding mutants, 5 showed shortened and 21 showed increased maximal chronological lifespans; 15 of the latter mutants showed no further lifespan increase with rapamycin and might thus represent key targets downstream of TORC1. We pursued the long-lived sck2 mutant with additional functional analyses, revealing that the Sck2p kinase functions within the TORC1 network and is required for normal cell growth, global protein translation, and ribosomal S6 protein phosphorylation in a nutrient-dependent manner. Notably, slow cell growth was associated with all long-lived mutants while oxidative-stress resistance was not.

  4. Seven gene deletions in seven days

    DEFF Research Database (Denmark)

    Ingemann Jensen, Sheila; Lennen, Rebecca; Herrgard, Markus

    2015-01-01

    Generation of multiple genomic alterations is currently a time consuming process. Here, a method was established that enables highly efficient and simultaneous deletion of multiple genes in Escherichia coli. A temperature sensitive plasmid containing arabinose inducible lambda Red recombineering ...

  5. Systematic gene deletions evidences that laccases are involved in several stages of wood degradation in the filamentous fungus Podospora anserina.

    Science.gov (United States)

    Xie, Ning; Chapeland-Leclerc, Florence; Silar, Philippe; Ruprich-Robert, Gwenaël

    2014-01-01

    Transformation of plant biomass into biofuels may supply environmentally friendly alternative biological sources of energy. Laccases are supposed to be involved in the lysis of lignin, a prerequisite step for efficient breakdown of cellulose into fermentable sugars. The role in development and plant biomass degradation of the nine canonical laccases belonging to three different subfamilies and one related multicopper oxidase of the Ascomycota fungus Podospora anserina was investigated by targeted gene deletion. The 10 genes were inactivated singly, and multiple mutants were constructed by genetic crosses. lac6(Δ), lac8(Δ) and mco(Δ) mutants were significantly reduced in their ability to grow on lignin-containing materials, but also on cellulose and plastic. Furthermore, lac8(Δ), lac7(Δ), mco(Δ) and lac6(Δ) mutants were defective towards resistance to phenolic substrates and H2 O2 , which may also impact lignocellulose breakdown. Double and multiple mutants were generally more affected than single mutants, evidencing redundancy of function among laccases. Our study provides the first genetic evidences that laccases are major actors of wood utilization in a fungus and that they have multiple roles during this process apart from participation in lignin lysis. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. PBP deletion mutants of Escherichia coli exhibit irregular distribution of MreB at the deformed zones.

    Science.gov (United States)

    Vijayan, Saptha; Mallick, Sathi; Dutta, Mouparna; Narayani, M; Ghosh, Anindya S

    2014-02-01

    MreB is a cytoskeletal protein, which is responsible for maintaining proper cellular morphology and is essential for cell survival. Likewise, penicillin-binding protein 5 (PBP5) helps in maintaining cell shape, though non-essential for survival. The contradicting feature of these two proteins paves the way for this study, wherein we attempt to draw a relation on the nature of distribution of MreB in PBP deletion mutants. The study revealed that the uniform MreB helices/patches were destabilized/disturbed at the zone of deformities of the PBP mutants, whereas the helical patterns were retained at the regions maintaining a rod shape. We interpret that MreB remains functional irrespective of its distribution being misguided by the aberrant shapes of PBP mutants.

  7. The effect of miR-338-3p on HBx deletion-mutant (HBx-d382 mediated liver-cell proliferation through CyclinD1 regulation.

    Directory of Open Access Journals (Sweden)

    Xiaoyu Fu

    Full Text Available Hepatitis B Virus (HBV DNA integration and HBV X (HBx deletion mutation occurs in HBV-positive liver cancer patients, and C-terminal deletion in HBx gene mutants are highly associated with hepatocarcinogenesis. Our previous study found that the HBx-d382 deletion mutant (deleted at nt 382-400 can down-regulate miR-338-3p expression in HBx-expressing cells. The aim of the present study is to examine the role of miR-338-3p in the HBx-d382-mediated liver-cell proliferation.We established HBx-expressing LO2 cells by Lipofectamine 2000 transfection. A miR-338-3p mimics or inhibitor was transfected into LO2/HBx-d382 and LO2/HBx cells using miR-NC as a control miRNA. In silico analysis of potential miR-338-3p targets revealed that miR-338-3p could target the cell cycle regulatory protein CyclinD1. To confirm that CyclinD1 is negatively regulated by miR-338-3p, we constructed luciferase reporters with wild-type and mutated CyclinD1-3'UTR target sites for miR-338-3p binding. We examined the CyclinD1 expression by real-time PCR and western blot, and proliferation activity by flow cytometric cell cycle analysis, Edu incorporation, and soft agar colony.HBx-d382 exhibited enhanced proliferation and CyclinD1 expression in LO2 cells. miR-338-3p expression inhibited cell proliferation in LO2/HBx-d382 cells (and LO2/HBx cells, and also negatively regulated CyclinD1 protein expression. Of the two putative miR-338-3p binding sites in the CyclinD1-3'UTR region, the effect of miR-338-3p on the second binding site (nt 2397-2403 was required for the inhibition.miR-338-3p can directly regulate CyclinD1 expression through binding to the CyclinD1-3'UTR region, mainly at nt 2397-2403. Down-regulation of miR-338-3p expression is required for liver cell proliferation in both LO2/HBx and LO2/HBx-d382 mutant cells, although the effect is more pronounced in LO2/HBx-d382 cells. Our study elucidated a novel mechanism, from a new miRNA-regulation perspective, underlying the

  8. Angiotensin-converting enzyme insertion/deletion gene ...

    Indian Academy of Sciences (India)

    Angiotensin-converting enzyme insertion/deletion gene polymorphism in cystic fibrosis patients. Sabrine Oueslati Sondess Hadj Fredj Hajer Siala Amina Bibi Hajer Aloulou Lamia Boughamoura Khadija Boussetta Sihem Barsaoui Taieb Messaoud. Research Note Volume 95 Issue 1 March 2016 pp 193-196 ...

  9. Angiotensin Converting Enzyme Insertion/Deletion Gene ...

    African Journals Online (AJOL)

    Angiotensin Converting Enzyme Insertion/Deletion Gene Polymorphism: An Observational Study among Diabetic Hypertensive Subjects in Malaysia. ... Methods: The pharmacological effect of ACE inhibition on mean arterial pressure (MAP) and glomerular filtration rate (GFR) were observed among a total of 62 subjects for ...

  10. HOXA genes cluster: clinical implications of the smallest deletion

    OpenAIRE

    Pezzani, Lidia; Milani, Donatella; Manzoni, Francesca; Baccarin, Marco; Silipigni, Rosamaria; Guerneri, Silvana; Esposito, Susanna

    2015-01-01

    Background HOXA genes cluster plays a fundamental role in embryologic development. Deletion of the entire cluster is known to cause a clinically recognizable syndrome with mild developmental delay, characteristic facies, small feet with unusually short and big halluces, abnormal thumbs, and urogenital malformations. The clinical manifestations may vary with different ranges of deletions of HOXA cluster and flanking regions. Case presentation We report a girl with the smallest deletion reporte...

  11. Delimitation of the Earliness per se D1 (Eps-D1) flowering gene to a subtelomeric chromosomal deletion in bread wheat (Triticum aestivum)

    Science.gov (United States)

    Zikhali, Meluleki; Wingen, Luzie U.; Griffiths, Simon

    2016-01-01

    Earliness per se (Eps) genes account for the variation in flowering time when vernalization and photoperiod requirements are satisfied. Genomics and bioinformatics approaches were used to describe allelic variation for 40 Triticum aestivum genes predicted, by synteny with Brachypodium distachyon, to be in the 1DL Eps region. Re-sequencing 1DL genes revealed that varieties carrying early heading alleles at this locus, Spark and Cadenza, carry a subtelomeric deletion including several genes. The equivalent region in Rialto and Avalon is intact. A bimodal distribution in the segregating Spark X Rialto single seed descent (SSD) populations enabled the 1DL QTL to be defined as a discrete Mendelian factor, which we named Eps-D1. Near isogenic lines (NILs) and NIL derived key recombinants between markers flanking Eps-D1 suggest that the 1DL deletion contains the gene(s) underlying Eps-D1. The deletion spans the equivalent of the Triticum monoccocum Eps-A m 1 locus, and hence includes MODIFIER OF TRANSCRIPTION 1 (MOT1) and FTSH PROTEASE 4 (FTSH4), the candidates for Eps-A m 1. The deletion also contains T. aestivum EARLY FLOWERING 3-D1 (TaELF3-D1) a homologue of the Arabidopsis thaliana circadian clock gene EARLY FLOWERING 3. Eps-D1 is possibly a homologue of Eps-B1 on chromosome 1BL. NILs carrying the Eps-D1 deletion have significantly reduced total TaELF3 expression and altered TaGIGANTEA (TaGI) expression compared with wild type. Altered TaGI expression is consistent with an ELF3 mutant, hence we propose TaELF3-D1 as the more likely candidate for Eps-D1. This is the first direct fine mapping of Eps effect in bread wheat. PMID:26476691

  12. Delimitation of the Earliness per se D1 (Eps-D1) flowering gene to a subtelomeric chromosomal deletion in bread wheat (Triticum aestivum).

    Science.gov (United States)

    Zikhali, Meluleki; Wingen, Luzie U; Griffiths, Simon

    2016-01-01

    Earliness per se (Eps) genes account for the variation in flowering time when vernalization and photoperiod requirements are satisfied. Genomics and bioinformatics approaches were used to describe allelic variation for 40 Triticum aestivum genes predicted, by synteny with Brachypodium distachyon, to be in the 1DL Eps region. Re-sequencing 1DL genes revealed that varieties carrying early heading alleles at this locus, Spark and Cadenza, carry a subtelomeric deletion including several genes. The equivalent region in Rialto and Avalon is intact. A bimodal distribution in the segregating Spark X Rialto single seed descent (SSD) populations enabled the 1DL QTL to be defined as a discrete Mendelian factor, which we named Eps-D1. Near isogenic lines (NILs) and NIL derived key recombinants between markers flanking Eps-D1 suggest that the 1DL deletion contains the gene(s) underlying Eps-D1. The deletion spans the equivalent of the Triticum monoccocum Eps-A (m) 1 locus, and hence includes MODIFIER OF TRANSCRIPTION 1 (MOT1) and FTSH PROTEASE 4 (FTSH4), the candidates for Eps-A (m) 1. The deletion also contains T. aestivum EARLY FLOWERING 3-D1 (TaELF3-D1) a homologue of the Arabidopsis thaliana circadian clock gene EARLY FLOWERING 3. Eps-D1 is possibly a homologue of Eps-B1 on chromosome 1BL. NILs carrying the Eps-D1 deletion have significantly reduced total TaELF3 expression and altered TaGIGANTEA (TaGI) expression compared with wild type. Altered TaGI expression is consistent with an ELF3 mutant, hence we propose TaELF3-D1 as the more likely candidate for Eps-D1. This is the first direct fine mapping of Eps effect in bread wheat. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  13. Two novel partial deletions of LDL-receptor gene in Italian patients with familial hypercholesterolemia (FH Siracusa and FH Reggio Emilia).

    Science.gov (United States)

    Garuti, R; Lelli, N; Barozzini, M; Tiozzo, R; Ghisellini, M; Simone, M L; Li Volti, S; Garozzo, R; Mollica, F; Vergoni, W; Bertolini, S; Calandra, S

    1996-03-01

    In the present study we report two novel partial deletions of the LDL-R gene. The first (FH Siracusa), found in an FH-heterozygote, consists of a 20 kb deletion spanning from the 5' flanking region to the intron 2 of the LDL-receptor gene. The elimination of the promoter and the first two exons prevents the transcription of the deleted allele, as shown by Northern blot analysis of LDL-R mRNA isolated from the proband's fibroblasts. The second deletion (FH Reggio Emilia), which eliminates 11 nucleotides of exon 10, was also found in an FH heterozygote. The characterization of this deletion was made possible by a combination of techniques such as single strand conformation polymorphism (SSCP) analysis, direct sequence of exon 10 and cloning of the normal and deleted exon 10 from the proband's DNA. The 11 nt deletion occurs in a region of exon 10 which contains three triplets (CTG) and two four-nucleotides (CTGG) direct repeats. This structural feature might render this region more susceptible to a slipped mispairing during DNA duplication. Since this deletion causes a shift of the BamHI site at the 5' end of exon 10, a method has been devised for its rapid screening which is based on the PCR amplification of exon 10 followed by BamHI digestion. FH Reggio Emilia deletion produces a shift in the reading frame downstream from Lys458, leading to a sequence of 51 novel amino acids before the occurrence of a premature stop codon (truncated receptor). However, since RT-PCR failed to demonstrate the presence of the mutant LDL-R mRNA in proband fibroblasts, it is likely that the amount of truncated receptor produced in these cells is negligible.

  14. PCR detection of retinoblastoma gene deletions in radiation-induced mouse lung adenocarcinomas

    International Nuclear Information System (INIS)

    Churchill, M.E.; Gemmell, M.A.; Woloschak, G.E.

    1994-01-01

    From 1971--1986, Argonne National Laboratory conducted a series of large-scale studies of tumor incidence in 40,000 BCF 1 mice irradiated with 60 Co γ-rays or JANUS fission-spectrum neutrons. Polymerase chain reaction (PCR) technique was used to detect deletions in the mouse retinoblastoma (mRb) gene. Six mRb gene exon fragments were amplified in a 40-cycle, 3-temperature PCR protocol. Absence of any of these fragments on a Southern blot indicated a deletion of that portion of the mRb gene. Tumors chosen for analysis were lung adenocarcinomas that were judged to be the cause of death in post-mortem analyses. Spontaneous tumors as well as those from irradiated mice were analyzed for mRb deletions. In all normal mouse tissues studies all six mRb exon fragments were present on Southern blots. Tumors in six neutron-irradiated mice also had no mRb deletions. However, 1 of 6 tumors from γ-irradiated mice and 6 of 18 spontaneous tumors from unirradiated mice showed a deletion in one or both mRb alleles. All deletions detected were in the 5' region of the mRb gene

  15. Large-scale deletions of the ABCA1 gene in patients with hypoalphalipoproteinemia.

    Science.gov (United States)

    Dron, Jacqueline S; Wang, Jian; Berberich, Amanda J; Iacocca, Michael A; Cao, Henian; Yang, Ping; Knoll, Joan; Tremblay, Karine; Brisson, Diane; Netzer, Christian; Gouni-Berthold, Ioanna; Gaudet, Daniel; Hegele, Robert A

    2018-06-04

    Copy-number variations (CNVs) have been studied in the context of familial hypercholesterolemia but have not yet been evaluated in patients with extremes of high-density lipoprotein (HDL) cholesterol levels. We evaluated targeted next-generation sequencing data from patients with very low HDL cholesterol (i.e. hypoalphalipoproteinemia) using the VarSeq-CNV caller algorithm to screen for CNVs disrupting the ABCA1, LCAT or APOA1 genes. In four individuals, we found three unique deletions in ABCA1: a heterozygous deletion of exon 4, a heterozygous deletion spanning exons 8 to 31, and a heterozygous deletion of the entire ABCA1 gene. Breakpoints were identified using Sanger sequencing, and the full-gene deletion was also confirmed using exome sequencing and the Affymetrix CytoScanTM HD Array. Before now, large-scale deletions in candidate HDL genes have not been associated with hypoalphalipoproteinemia; our findings indicate that CNVs in ABCA1 may be a previously unappreciated genetic determinant of low HDL cholesterol levels. By coupling bioinformatic analyses with next-generation sequencing data, we can successfully assess the spectrum of genetic determinants of many dyslipidemias, now including hypoalphalipoproteinemia. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Herpes simplex virus type 1 gene UL14: phenotype of a null mutant and identification of the encoded protein.

    Science.gov (United States)

    Cunningham, C; Davison, A J; MacLean, A R; Taus, N S; Baines, J D

    2000-01-01

    Herpes simplex virus type 1 (HSV-1) gene UL14 is located between divergently transcribed genes UL13 and UL15 and overlaps the promoters for both of these genes. UL14 also exhibits a substantial overlap of its coding region with that of UL13. It is one of the few HSV-1 genes for which a phenotype and protein product have not been described. Using mass spectrometric and immunological approaches, we demonstrated that the UL14 protein is a minor component of the virion tegument of 32 kDa which is expressed late in infection. In infected cells, the UL14 protein was detected in the nucleus at discrete sites within electron-dense nuclear bodies and in the cytoplasm initially in a diffuse distribution and then at discrete sites. Some of the UL14 protein was phosphorylated. A mutant with a 4-bp deletion in the central region of UL14 failed to produce the UL14 protein and generated small plaques. The mutant exhibited an extended growth cycle at low multiplicity of infection and appeared to be compromised in efficient transit of virus particles from the infected cell. In mice injected intracranially, the 50% lethal dose of the mutant was reduced more than 30,000-fold. Recovery of the mutant from the latently infected sacral ganglia of mice injected peripherally was significantly less than that of wild-type virus, suggesting a marked defect in the establishment of, or reactivation from, latent infection.

  17. TTY2 genes deletions as genetic risk factor of male infertility.

    Science.gov (United States)

    Shaveisi-Zadeh, F; Alibakhshi, R; Asgari, R; Rostami-Far, Z; Bakhtiari, M; Abdi, H; Movafagh, A; Mirfakhraie, R

    2017-02-28

    Y chromosome has a number of genes that are expressed in testis and have a role in spermatogenesis. TTY2L12A and TTY2L2A are the members of testis transcript Y2 (TTY2) that are Y linked multi-copy gene families, located on Yp11 and Yq11 loci respectively. The aim of this study was to investigate frequency of TTY2L12A and TTY2L2A deletions in azoospermic patients compared with fertile males. This study was performed on 45 infertile males with idiopathic azoospermia without any AZF micro deletions (group A), 33 infertile males with azoospermia which do not screened for AZF micro deletions (group B) and 65 fertile males (group C), from October 2013 to April 2015 in west of Iran. Polymerase chain reaction (PCR) method was used for detection of TTY2L12A and TTY2L2A gene deletions in studied groups. No deletions were detected in normal fertile males of group C. 1 out of 45 azoospermic males of group A (2.22%) and 3 out of 33 azoospermic males of group B (9.09%) had TTY2L2A deletion (p= 0.409 and p= 0.036 respectively), also 1 out of 45 azoospermic males of group A (2.22%) and 4 out of 33 azoospermic males of group B (12.12%) had TTY2L12A deletion (p= 0.409 and p= 0.011 respectively).  None of azoospermic males in Group A and B had deletions in both genes. Our data showed significant correlation between non-obstructive azoospermia and TTY2L12A and TTY2L2A deletions. Thus, it seems that TTY2L12A and TTY2L2A deletions can consider as one of the genetic risk factors for non-obstructive azoospermia.

  18. Pathogenetical Characterization of MHV-76: a Spontaneous 9.5-Kilobase-Deletion Mutant of Murine Lymphotropic Gammaherpesvirus 68

    Directory of Open Access Journals (Sweden)

    A. Chalupková

    2008-01-01

    Full Text Available Murid gammaherpesvirus 4 (MuHV-4 provides a small animal model for the study of animal gammaherpesviruses. MHV-76 is a spontaneous deletion mutant as compared to the prototype strain of MuHV-4 (MHV-68. The MHV-76 genome lacks at least 12 ORFs at the 5'-end including the M1, M2, M3 and M4 genes and the eight viral t-RNA-like genes. During 27 months of experimental infection of BALB/c mice we followed their pathogenesis, immunology and oncogenic properties. After intranasal infection with MHV-76, the infectious virus was detected in the blood, thymus, lungs, heart, liver, spleen, bone marrow, peritoneal macrophages, lymph nodes, kidneys, mammary glands, brain and small intestine. The acute phase of infection was attenuated, but the chronic phase of infection was accompanied with long persistence of virus not only in the lymphatic, but in the neural and glandular tissue, as well. In comparison with the prototype strain, splenomegaly and lymphocytosis was very low. Surprisingly, during 27 months the BALB/c mice infected with MHV-76 did not develop lymphoproliferative disorders like infectious mononucleosis, leukaemia or lymphomas. We hypothesize that the M4 gene, present in all oncogenic MHV isolates, might be related (directly or indirectly to their transforming properties.

  19. Global Proteome Response to Deletion of Genes Related to Mercury Methylation and Dissimilatory Metal Reduction Reveals Changes in Respiratory Metabolism in Geobacter sulfurreducens PCA.

    Science.gov (United States)

    Qian, Chen; Johs, Alexander; Chen, Hongmei; Mann, Benjamin F; Lu, Xia; Abraham, Paul E; Hettich, Robert L; Gu, Baohua

    2016-10-07

    Geobacter sulfurreducens PCA can reduce, sorb, and methylate mercury (Hg); however, the underlying biochemical mechanisms of these processes and interdependent metabolic pathways remain unknown. In this study, shotgun proteomics was used to compare global proteome profiles between wild-type G. sulfurreducens PCA and two mutant strains: a ΔhgcAB mutant, which is deficient in two genes known to be essential for Hg methylation and a ΔomcBESTZ mutant, which is deficient in five outer membrane c-type cytochromes and thus impaired in its ability for dissimilatory metal ion reduction. We were able to delineate the global response of G. sulfurreducens PCA in both mutants and identify cellular networks and metabolic pathways that were affected by the loss of these genes. Deletion of hgcAB increased the relative abundances of proteins implicated in extracellular electron transfer, including most of the c-type cytochromes, PilA-C, and OmpB, and is consistent with a previously observed increase in Hg reduction in the ΔhgcAB mutant. Deletion of omcBESTZ was found to significantly increase relative abundances of various methyltransferases, suggesting that a loss of dissimilatory reduction capacity results in elevated activity among one-carbon (C1) metabolic pathways and thus increased methylation. We show that G. sulfurreducens PCA encodes only the folate branch of the acetyl-CoA pathway, and proteins associated with the folate branch were found at lower abundance in the ΔhgcAB mutant strain than the wild type. This observation supports the hypothesis that the function of HgcA and HgcB is linked to C1 metabolism through the folate branch of the acetyl-CoA pathway by providing methyl groups required for Hg methylation.

  20. Construction of a Recyclable Genetic Marker and Serial Gene Deletions in the Human Pathogenic Mucorales Mucor circinelloides.

    Science.gov (United States)

    Garcia, Alexis; Adedoyin, Gloria; Heitman, Joseph; Lee, Soo Chan

    2017-07-05

    Mucor circinelloides is a human pathogen, biofuel producer, and model system that belongs to a basal fungal lineage; however, the genetics of this fungus are limited. In contrast to ascomycetes and basidiomycetes, basal fungal lineages have been understudied. This may be caused by a lack of attention given to these fungi, as well as limited tools for genetic analysis. Nonetheless, the importance of these fungi as pathogens and model systems has increased. M. circinelloides is one of a few genetically tractable organisms in the basal fungi, but it is far from a robust genetic system when compared to model fungi in the subkingdom Dikarya. One problem is the organism is resistant to drugs utilized to select for dominant markers in other fungal transformation systems. Thus, we developed a blaster recyclable marker system by using the pyrG gene (encoding an orotidine-5'-phosphate decarboxylase, ortholog of URA3 in Saccharomyces cerevisiae ). A 237-bp fragment downstream of the pyrG gene was tandemly incorporated into the upstream region of the gene, resulting in construction of a pyrG-dpl237 marker. To test the functionality of the pyrG-dpl237 marker, we disrupted the carRP gene that is involved in carotenoid synthesis in pyrG - mutant background. The resulting carRP :: pyrG-dpl237 mutants exhibit a white colony phenotype due to lack of carotene, whereas wild type displays yellowish colonies. The pyrG marker was then successfully excised, generating carRP-dpl237 on 5-FOA medium. The mutants became auxotrophic and required uridine for growth. We then disrupted the calcineurin B regulatory subunit cnbR gene in the carRP :: dpl237 strain, generating mutants with the alleles carRP :: dpl237 and cnbR :: pyrG These results demonstrate that the recyclable marker system is fully functional, and therefore the pyrG-dpl237 marker can be used for sequential gene deletions in M. circinelloides . Copyright © 2017 Garcia et al.

  1. Construction of a Recyclable Genetic Marker and Serial Gene Deletions in the Human Pathogenic Mucorales Mucor circinelloides

    Directory of Open Access Journals (Sweden)

    Alexis Garcia

    2017-07-01

    Full Text Available Mucor circinelloides is a human pathogen, biofuel producer, and model system that belongs to a basal fungal lineage; however, the genetics of this fungus are limited. In contrast to ascomycetes and basidiomycetes, basal fungal lineages have been understudied. This may be caused by a lack of attention given to these fungi, as well as limited tools for genetic analysis. Nonetheless, the importance of these fungi as pathogens and model systems has increased. M. circinelloides is one of a few genetically tractable organisms in the basal fungi, but it is far from a robust genetic system when compared to model fungi in the subkingdom Dikarya. One problem is the organism is resistant to drugs utilized to select for dominant markers in other fungal transformation systems. Thus, we developed a blaster recyclable marker system by using the pyrG gene (encoding an orotidine-5′-phosphate decarboxylase, ortholog of URA3 in Saccharomyces cerevisiae. A 237-bp fragment downstream of the pyrG gene was tandemly incorporated into the upstream region of the gene, resulting in construction of a pyrG-dpl237 marker. To test the functionality of the pyrG-dpl237 marker, we disrupted the carRP gene that is involved in carotenoid synthesis in pyrG− mutant background. The resulting carRP::pyrG-dpl237 mutants exhibit a white colony phenotype due to lack of carotene, whereas wild type displays yellowish colonies. The pyrG marker was then successfully excised, generating carRP-dpl237 on 5-FOA medium. The mutants became auxotrophic and required uridine for growth. We then disrupted the calcineurin B regulatory subunit cnbR gene in the carRP::dpl237 strain, generating mutants with the alleles carRP::dpl237 and cnbR::pyrG. These results demonstrate that the recyclable marker system is fully functional, and therefore the pyrG-dpl237 marker can be used for sequential gene deletions in M. circinelloides.

  2. Deletion analysis of susy-sl promoter for the identification of optimal promoter sequence

    International Nuclear Information System (INIS)

    Bacha, S.; Khatoon, A.; Asif, M.; Bshir, A.

    2015-01-01

    The promoter region of sucrose synthase (susy-Sl) was identified and isolated from tomato. The 5? deletion analysis was carried out for the identification of minimum optimal promoter. Transgenic lines of Arabidopsis thaliana were developed by floral dip method incorporating various promoter deletion cassettes controlling GUS reporter gene. GUS assay of transgenic tissues indicated that full length susy-Sl promoter and its deletion mutants were constitutively expressed in vegetative and floral tissues of A. thaliana. The expression was observed in roots, shoots and flowers of A. thaliana. Analysis of 5? deletion series of susy-Sl promoter showed that a minimum of 679 bp fragment of the promoter was sufficient to drive expression of GUS reporter gene in the major tissues of transgenic A. thaliana. (author)

  3. Properties of a herpes simplex virus multiple immediate-early gene-deleted recombinant as a vaccine vector

    International Nuclear Information System (INIS)

    Watanabe, Daisuke; Brockman, Mark A.; Ndung'u, Thumbi; Mathews, Lydia; Lucas, William T.; Murphy, Cynthia G.; Felber, Barbara K.; Pavlakis, George N.; Deluca, Neal A.; Knipe, David M.

    2007-01-01

    Herpes simplex virus (HSV) recombinants induce durable immune responses in rhesus macaques and mice and have induced partial protection in rhesus macaques against mucosal challenge with virulent simian immunodeficiency virus (SIV). In this study, we evaluated the properties of a new generation HSV vaccine vector, an HSV-1 multiple immediate-early (IE) gene deletion mutant virus, d106, which contains deletions in the ICP4, ICP27, ICP22, and ICP47 genes. Because several of the HSV IE genes have been implicated in immune evasion, inactivation of the genes encoding these proteins was expected to result in enhanced immunogenicity. The d106 virus expresses few HSV gene products and shows minimal cytopathic effect in cultured cells. When d106 was inoculated into mice, viral DNA accumulated at high levels in draining lymph nodes, consistent with an ability to transduce dendritic cells and activate their maturation and movement to lymph nodes. A d106 recombinant expressing Escherichia coli β-galactosidase induced durable β-gal-specific IgG and CD8 + T cell responses in naive and HSV-immune mice. Finally, d106-based recombinants have been constructed that express simian immunodeficiency virus (SIV) gag, env, or a rev-tat-nef fusion protein for several days in cultured cells. Thus, d106 shows many of the properties desirable in a vaccine vector: limited expression of HSV gene products and cytopathogenicity, high level expression of transgenes, ability to induce durable immune responses, and an ability to transduce dendritic cells and induce their maturation and migration to lymph nodes

  4. DELETION AND 5'CPG ISLAND METHYLATION OF p15 GENE IN BRAIN GLIOMA

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective: To investigate the abnormality of p15 gene in brain glioma and the correlation of it with occurrence or malignant progression of brain glioma. Methods: Deletion and 5'CPG island methylation of p15 gene were detected by the methods of PCR and PCR-based methylation in 56 cases of brain glioma. Results: Out of 43 cases of high grade glioma, 14 cases were found to have homozygous deletion of p15E1, while none of the 13 cases of low grade glioma was found to have deletion of p15E1 (P<0.05). Methylation of 5'CPG Island of p15 gene was found only in four cases of glioma. Conclusion: Abnormality of p15 gene may involved in the occurrence and malignant progression of brain glioma. Homozygous deletion of gene is the major mechanism of inactivation for p15 gene in brain glioma.

  5. VIP Gene Deletion in Mice Causes Cardiomyopathy Associated with Upregulation of Heart Failure Genes

    Energy Technology Data Exchange (ETDEWEB)

    Szema, Anthony M.; Hamidi, Sayyed A.; Smith, S. David; Benveniste, Helene; Katare, Rajesh Gopalrao

    2013-05-20

    Vasoactive Intestinal Peptide (VIP), a pulmonary vasodilator and inhibitor of vascular smooth muscle proliferation, is absent in pulmonary arteries of patients with idiopathic pulmonary arterial hypertension (PAH). We previously determined that targeted deletion of the VIP gene in mice leads to PAH with pulmonary vascular remodeling and right ventricular (RV) dilatation. Whether the left ventricle is also affected by VIP gene deletion is unknown. In the current study, we examined if VIP knockout mice (VIP-/-) develop both right (RV) and left ventricular (LV) cardiomyopathy, manifested by LV dilatation and systolic dysfunction, as well as overexpression of genes conducive to heart failure.

  6. Sporulation-specific cell division defects in ylmE mutants of Streptomyces coelicolor are rescued by additional deletion of ylmD.

    Science.gov (United States)

    Zhang, Le; Willemse, Joost; Hoskisson, Paul A; van Wezel, Gilles P

    2018-05-09

    Cell division during the reproductive phase of the Streptomyces life-cycle requires tight coordination between synchronous formation of multiple septa and DNA segregation. One remarkable difference with most other bacterial systems is that cell division in Streptomyces is positively controlled by the recruitment of FtsZ by SsgB. Here we show that deletion of ylmD (SCO2081) or ylmE (SCO2080), which lie in operon with ftsZ in the dcw cluster of actinomycetes, has major consequences for sporulation-specific cell division in Streptomyces coelicolor. Electron and fluorescence microscopy demonstrated that ylmE mutants have a highly aberrant phenotype with defective septum synthesis, and produce very few spores with low viability and high heat sensitivity. FtsZ-ring formation was also highly disturbed in ylmE mutants. Deletion of ylmD had a far less severe effect on sporulation. Interestingly, the additional deletion of ylmD restored sporulation to the ylmE null mutant. YlmD and YlmE are not part of the divisome, but instead localize diffusely in aerial hyphae, with differential intensity throughout the sporogenic part of the hyphae. Taken together, our work reveals a function for YlmD and YlmE in the control of sporulation-specific cell division in S. coelicolor, whereby the presence of YlmD alone results in major developmental defects.

  7. Are there ethnic differences in deletions in the dystrophin gene?

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, M.; Verma, I.C. [All India Inst. of Medical Sciences, New Delhi (India)

    1997-01-20

    We studied 160 cases of Duchenne muscular dystrophy (DMD) drawn from all parts of India, using multiplex PCR of 27 exons. Of these, 103 (64.4%) showed intragenic deletions. Most (69.7%) of the deletions involved exons 45-51. The phenotype of cases with deletion of single exons did not differ significantly from those with deletion of multiple exons. The distribution of deletions in studies from different countries was variable, but this was accounted for either by the small number of cases studied, or by fewer exons analyzed. It is concluded that there is likely to be no ethnic difference with respect to deletions in the DMD gene. 38 refs., 2 figs., 3 tabs.

  8. Transcriptomic profiling-based mutant screen reveals three new transcription factors mediating menadione resistance in Neurospora crassa.

    Science.gov (United States)

    Zhu, Jufen; Yu, Xinxu; Xie, Baogui; Gu, Xiaokui; Zhang, Zhenying; Li, Shaojie

    2013-06-01

    To gain insight into the regulatory mechanisms of oxidative stress responses in filamentous fungi, the genome-wide transcriptional response of Neurospora crassa to menadione was analysed by digital gene expression (DGE) profiling, which identified 779 upregulated genes and 576 downregulated genes. Knockout mutants affecting 130 highly-upregulated genes were tested for menadione sensitivity, which revealed that loss of the transcription factor siderophore regulation (SRE) (a transcriptional repressor for siderophore biosynthesis), catatase-3, cytochrome c peroxidase or superoxide dismutase 1 copper chaperone causes hypersensitivity to menadione. Deletion of sre dramatically increased transcription of the siderophore biosynthesis gene ono and the siderophore iron transporter gene sit during menadione stress, suggesting that SRE is required for repression of iron uptake under oxidative stress conditions. Contrary to its phenotype, the sre deletion mutant showed higher transcriptional levels of genes encoding reactive oxygen species (ROS) scavengers than wild type during menadione stress, which implies that the mutant suffers a higher level of oxidative stress than wild type. Uncontrolled iron uptake in the sre mutant might exacerbate cellular oxidative stress. This is the first report of a negative regulator of iron assimilation participating in the fungal oxidative stress response. In addition to SRE, eight other transcription factor genes were also menadione-responsive but their single gene knockout mutants showed wild-type menadione sensitivity. Two of them, named as mit-2 (menadione induced transcription factor-2) and mit-4 (menadione induced transcription factor-4), were selected for double mutant analysis. The double mutant was hypersensitive to menadione. Similarly, the double mutation of mit-2 and sre also had additive effects on menadione sensitivity, suggesting multiple transcription factors mediate oxidative stress resistance in an additive manner

  9. Function analysis of unknown genes

    DEFF Research Database (Denmark)

    Rogowska-Wrzesinska, A.

    2002-01-01

      This thesis entitled "Function analysis of unknown genes" presents the use of proteome analysis for the characterisation of yeast (Saccharomyces cerevisiae) genes and their products (proteins especially those of unknown function). This study illustrates that proteome analysis can be used...... to describe different aspects of molecular biology of the cell, to study changes that occur in the cell due to overexpression or deletion of a gene and to identify various protein modifications. The biological questions and the results of the described studies show the diversity of the information that can...... genes and proteins. It reports the first global proteome database collecting 36 yeast single gene deletion mutants and selecting over 650 differences between analysed mutants and the wild type strain. The obtained results show that two-dimensional gel electrophoresis and mass spectrometry based proteome...

  10. A Yeast Mutant Deleted of GPH1 Bears Defects in Lipid Metabolism.

    Directory of Open Access Journals (Sweden)

    Martina Gsell

    Full Text Available In a previous study we demonstrated up-regulation of the yeast GPH1 gene under conditions of phosphatidylethanolamine (PE depletion caused by deletion of the mitochondrial (M phosphatidylserine decarboxylase 1 (PSD1 (Gsell et al., 2013, PLoS One. 8(10:e77380. doi: 10.1371/journal.pone.0077380. Gph1p has originally been identified as a glycogen phosphorylase catalyzing degradation of glycogen to glucose in the stationary growth phase of the yeast. Here we show that deletion of this gene also causes decreased levels of phosphatidylcholine (PC, triacylglycerols and steryl esters. Depletion of the two non-polar lipids in a Δgph1 strain leads to lack of lipid droplets, and decrease of the PC level results in instability of the plasma membrane. In vivo labeling experiments revealed that formation of PC via both pathways of biosynthesis, the cytidine diphosphate (CDP-choline and the methylation route, is negatively affected by a Δgph1 mutation, although expression of genes involved is not down regulated. Altogether, Gph1p besides its function as a glycogen mobilizing enzyme appears to play a regulatory role in yeast lipid metabolism.

  11. Genetic manipulation in Sulfolobus islandicus and functional analysis of DNA repair genes

    DEFF Research Database (Denmark)

    Zhang, Changyi; Tian, Bin; Li, Suming

    2013-01-01

    Recently, a novel gene-deletion method was developed for the crenarchaeal model Sulfolobus islandicus, which is a suitable tool for addressing gene essentiality in depth. Using this technique, we have investigated functions of putative DNA repair genes by constructing deletion mutants and studying...

  12. Bivalent vaccination against pneumonic pasteurellosis in domestic sheep and goats with modified-live in-frame lktA deletion mutants of Mannheimia haemolytica.

    Science.gov (United States)

    Briggs, Robert E; Hauglund, Melissa J; Maheswaran, Samuel K; Tatum, Fred M

    2013-11-01

    A temperature-sensitive shuttle vector, pBB80C, was utilized to generate in-frame deletion mutants of the leukotoxin structural gene (lktA) of Mannheimia haemolytica serotypes 1, 2, 5, 6, 7, 8, 9, and 12. Culture supernatants from the mutants contained a truncated protein with an approximate molecular weight of 66 kDa which was reactive to anti-leukotoxin monoclonal antibody. No protein reactive to anti-LktA monoclonal antibody was detected at the molecular weight 100-105 kDa of native LktA. Sheep and goats vaccinated intramuscularly with a mixture of serotypes 5 and 6 mutants were resistant to virulent challenge with a mixture of the wild-type parent strains. These vaccinates responded serologically to both vaccine serotypes and exhibited markedly-reduced lung lesion volume and pulmonary infectious load compared to control animals. Control animals yielded a mixture of serotypes from lung lobes, but the proportion even within an individual animal varied widely from 95% serotype 5-95% serotype 6. Cultures recovered from liver were homogeneous, but two animals yielded serotype 5 and the other two yielded serotype 6 in pure culture. Published by Elsevier Ltd.

  13. Altered ultrasonic vocalization and impaired learning and memory in Angelman syndrome mouse model with a large maternal deletion from Ube3a to Gabrb3.

    Directory of Open Access Journals (Sweden)

    Yong-Hui Jiang

    2010-08-01

    Full Text Available Angelman syndrome (AS is a neurobehavioral disorder associated with mental retardation, absence of language development, characteristic electroencephalography (EEG abnormalities and epilepsy, happy disposition, movement or balance disorders, and autistic behaviors. The molecular defects underlying AS are heterogeneous, including large maternal deletions of chromosome 15q11-q13 (70%, paternal uniparental disomy (UPD of chromosome 15 (5%, imprinting mutations (rare, and mutations in the E6-AP ubiquitin ligase gene UBE3A (15%. Although patients with UBE3A mutations have a wide spectrum of neurological phenotypes, their features are usually milder than AS patients with deletions of 15q11-q13. Using a chromosomal engineering strategy, we generated mutant mice with a 1.6-Mb chromosomal deletion from Ube3a to Gabrb3, which inactivated the Ube3a and Gabrb3 genes and deleted the Atp10a gene. Homozygous deletion mutant mice died in the perinatal period due to a cleft palate resulting from the null mutation in Gabrb3 gene. Mice with a maternal deletion (m-/p+ were viable and did not have any obvious developmental defects. Expression analysis of the maternal and paternal deletion mice confirmed that the Ube3a gene is maternally expressed in brain, and showed that the Atp10a and Gabrb3 genes are biallelically expressed in all brain sub-regions studied. Maternal (m-/p+, but not paternal (m+/p-, deletion mice had increased spontaneous seizure activity and abnormal EEG. Extensive behavioral analyses revealed significant impairment in motor function, learning and memory tasks, and anxiety-related measures assayed in the light-dark box in maternal deletion but not paternal deletion mice. Ultrasonic vocalization (USV recording in newborns revealed that maternal deletion pups emitted significantly more USVs than wild-type littermates. The increased USV in maternal deletion mice suggests abnormal signaling behavior between mothers and pups that may reflect abnormal

  14. Whole genome-wide transcript profiling to identify differentially expressed genes associated with seed field emergence in two soybean low phytate mutants.

    Science.gov (United States)

    Yuan, Fengjie; Yu, Xiaomin; Dong, Dekun; Yang, Qinghua; Fu, Xujun; Zhu, Shenlong; Zhu, Danhua

    2017-01-18

    Seed germination is important to soybean (Glycine max) growth and development, ultimately affecting soybean yield. A lower seed field emergence has been the main hindrance for breeding soybeans low in phytate. Although this reduction could be overcome by additional breeding and selection, the mechanisms of seed germination in different low phytate mutants remain unknown. In this study, we performed a comparative transcript analysis of two low phytate soybean mutants (TW-1 and TW-1-M), which have the same mutation, a 2 bp deletion in GmMIPS1, but show a significant difference in seed field emergence, TW-1-M was higher than that of TW-1 . Numerous genes analyzed by RNA-Seq showed markedly different expression levels between TW-1-M and TW-1 mutants. Approximately 30,000-35,000 read-mapped genes and ~21000-25000 expressed genes were identified for each library. There were ~3900-9200 differentially expressed genes (DEGs) in each contrast library, the number of up-regulated genes was similar with down-regulated genes in the mutant TW-1and TW-1-M. Gene ontology functional categories of DEGs indicated that the ethylene-mediated signaling pathway, the abscisic acid-mediated signaling pathway, response to hormone, ethylene biosynthetic process, ethylene metabolic process, regulation of hormone levels, and oxidation-reduction process, regulation of flavonoid biosynthetic process and regulation of abscisic acid-activated signaling pathway had high correlations with seed germination. In total, 2457 DEGs involved in the above functional categories were identified. Twenty-two genes with 20 biological functions were the most highly up/down- regulated (absolute value Log2FC >5) in the high field emergence mutant TW-1-M and were related to metabolic or signaling pathways. Fifty-seven genes with 36 biological functions had the greatest expression abundance (FRPM >100) in germination-related pathways. Seed germination in the soybean low phytate mutants is a very complex process

  15. Characterization of a null allelic mutant of the rice NAL1 gene reveals its role in regulating cell division.

    Directory of Open Access Journals (Sweden)

    Dan Jiang

    Full Text Available Leaf morphology is closely associated with cell division. In rice, mutations in Narrow leaf 1 (NAL1 show narrow leaf phenotypes. Previous studies have shown that NAL1 plays a role in regulating vein patterning and increasing grain yield in indica cultivars, but its role in leaf growth and development remains unknown. In this report, we characterized two allelic mutants of NARROW LEAF1 (NAL1, nal1-2 and nal1-3, both of which showed a 50% reduction in leaf width and length, as well as a dwarf culm. Longitudinal and transverse histological analyses of leaves and internodes revealed that cell division was suppressed in the anticlinal orientation but enhanced in the periclinal orientation in the mutants, while cell size remained unaltered. In addition to defects in cell proliferation, the mutants showed abnormal midrib in leaves. Map-based cloning revealed that nal1-2 is a null allelic mutant of NAL1 since both the whole promoter and a 404-bp fragment in the first exon of NAL1 were deleted, and that a 6-bp fragment was deleted in the mutant nal1-3. We demonstrated that NAL1 functions in the regulation of cell division as early as during leaf primordia initiation. The altered transcript level of G1- and S-phase-specific genes suggested that NAL1 affects cell cycle regulation. Heterogeneous expression of NAL1 in fission yeast (Schizosaccharomyces pombe further supported that NAL1 affects cell division. These results suggest that NAL1 controls leaf width and plant height through its effects on cell division.

  16. Induction of endoplasmic reticulum stress by deletion of Grp78 depletes Apc mutant intestinal epithelial stem cells.

    Science.gov (United States)

    van Lidth de Jeude, J F; Meijer, B J; Wielenga, M C B; Spaan, C N; Baan, B; Rosekrans, S L; Meisner, S; Shen, Y H; Lee, A S; Paton, J C; Paton, A W; Muncan, V; van den Brink, G R; Heijmans, J

    2017-06-15

    Intestinal epithelial stem cells are highly sensitive to differentiation induced by endoplasmic reticulum (ER) stress. Colorectal cancer develops from mutated intestinal epithelial stem cells. The most frequent initiating mutation occurs in Apc, which results in hyperactivated Wnt signalling. This causes hyperproliferation and reduced sensitivity to chemotherapy, but whether these mutated stem cells are sensitive to ER stress induced differentiation remains unknown. Here we examined this by generating mice in which both Apc and ER stress repressor chaperone Grp78 can be conditionally deleted from the intestinal epithelium. For molecular studies, we used intestinal organoids derived from these mice. Homozygous loss of Apc alone resulted in crypt elongation, activation of the Wnt signature and accumulation of intestinal epithelial stem cells, as expected. This phenotype was however completely rescued on activation of ER stress by additional deletion of Grp78. In these Apc-Grp78 double mutant animals, stem cells were rapidly lost and repopulation occurred by non-mutant cells that had escaped recombination, suggesting that Apc-Grp78 double mutant stem cells had lost self-renewal capacity. Although in Apc-Grp78 double mutant mice the Wnt signature was lost, these intestines exhibited ubiquitous epithelial presence of nuclear β-catenin. This suggests that ER stress interferes with Wnt signalling downstream of nuclear β-catenin. In conclusion, our findings indicate that ER stress signalling results in loss of Apc mutated intestinal epithelial stem cells by interference with the Wnt signature. In contrast to many known inhibitors of Wnt signalling, ER stress acts downstream of β-catenin. Therefore, ER stress poses a promising target in colorectal cancers, which develop as a result of Wnt activating mutations.

  17. Clinical and molecular consequences of exon 78 deletion in DMD gene.

    Science.gov (United States)

    Traverso, Monica; Assereto, Stefania; Baratto, Serena; Iacomino, Michele; Pedemonte, Marina; Diana, Maria Cristina; Ferretti, Marta; Broda, Paolo; Minetti, Carlo; Gazzerro, Elisabetta; Madia, Francesca; Bruno, Claudio; Zara, Federico; Fiorillo, Chiara

    2018-03-19

    We present a 13-year-old patient with persistent increase of serum Creatine Kinase (CK) and myalgia after exertion. Skeletal muscle biopsy showed marked reduction of dystrophin expression leading to genetic analysis of DMD gene by MLPA, which detected a single deletion of exon 78. To the best of our knowledge, DMD exon 78 deletion has never been described in literature and, according to prediction, it should lead to loss of reading frame in the dystrophin gene. To further assess the actual effect of exon 78 deletion, we analysed cDNA from muscle mRNA. This analysis confirmed the absence of 32 bp of exon 78. Exclusion of exon 78 changes the open reading frame of exon 79 and generate a downstream stop codon, producing a dystrophin protein of 3703 amino acids instead of 3685 amino acids. Albeit loss of reading frame usually leads to protein degradation and severe phenotype, in this case, we demonstrated that deletion of DMD exon 78 can be associated with a functional protein able to bind DGC complex and a very mild phenotype. This study adds a novel deletion in DMD gene in human and helps to define the compliance between maintaining/disrupting the reading frame and clinical form of the disease.

  18. Catalytic properties of ADAM12 and its domain deletion mutants

    DEFF Research Database (Denmark)

    Jacobsen, Jonas; Visse, Robert; Sørensen, Hans Peter

    2008-01-01

    of pro, catalytic, disintegrin, cysteine-rich, and EGF domains. Here we present a novel activity of recombinant ADAM12-S and its domain deletion mutants on S-carboxymethylated transferrin (Cm-Tf). Cleavage of Cm-Tf occurred at multiple sites, and N-terminal sequencing showed that the enzyme exhibits...... restricted specificity but a consensus sequence could not be defined as its subsite requirements are promiscuous. Kinetic analysis revealed that the noncatalytic C-terminal domains are important regulators of Cm-Tf activity and that ADAM12-PC consisting of the pro domain and catalytic domain is the most...... active on this substrate. It was also observed that NaCl inhibits ADAM12. Among the tissue inhibitors of metalloproteinases (TIMP) examined, the N-terminal domain of TIMP-3 (N-TIMP-3) inhibits ADAM12-S and ADAM12-PC with low nanomolar Ki(app) values while TIMP-2 inhibits them with a slightly lower...

  19. Intracistronic complementation in the simian virus 40 A gene.

    Science.gov (United States)

    Tornow, J; Cole, C N

    1983-01-01

    A set of eight simian virus 40 mutants was constructed with lesions in the A gene, which encodes the large tumor (T) antigen. These mutants have small deletions (3-20 base pairs) at either 0.497, 0.288, or 0.243 map units. Mutants having both in-phase and frameshift mutations at each site were isolated. Neither plaque formation nor replication of the mutant DNAs could be detected after transfection of monkey kidney cells. Another nonviable mutant, dlA2459, had a 14-base-pair deletion at 0.193 map unit and was positive for viral DNA replication. Each of the eight mutants were tested for ability to form plaques after cotransfection with dlA2459 DNA. The four mutants that had in-phase deletions were able to complement dlA2459. The other four, which had frameshift deletions, did not. No plaques were formed after cotransfection of cells with any other pair of group A mutants. This suggests that the defect in dlA2459 defines a distinct functional domain of simian virus 40 T antigen. Images PMID:6312452

  20. Marfan syndrome with a complex chromosomal rearrangement including deletion of the FBN1 gene

    Directory of Open Access Journals (Sweden)

    Colovati Mileny ES

    2012-01-01

    Full Text Available Abstract Background The majority of Marfan syndrome (MFS cases is caused by mutations in the fibrillin-1 gene (FBN1, mapped to chromosome 15q21.1. Only few reports on deletions including the whole FBN1 gene, detected by molecular cytogenetic techniques, were found in literature. Results We report here on a female patient with clinical symptoms of the MFS spectrum plus craniostenosis, hypothyroidism and intellectual deficiency who presents a 1.9 Mb deletion, including the FBN1 gene and a complex rearrangement with eight breakpoints involving chromosomes 6, 12 and 15. Discussion This is the first report of MFS with a complex chromosome rearrangement involving a deletion of FBN1 and contiguous genes. In addition to the typical clinical findings of the Marfan syndrome due to FBN1 gene haploinsufficiency, the patient presents features which may be due to the other gene deletions and possibly to the complex chromosome rearrangement.

  1. Spontaneous and radiation-induced leukemogenesis of the mouse small eye mutant, Pax6Sey3H

    International Nuclear Information System (INIS)

    Nitta, Yumiko; Satoh, Kenichi; Yoshida, Kazuko; Senba, Kei; Nakagata, Naomi; Peters, J.; Cattanach, B.M.

    2004-01-01

    Allelic loss on the chromosome 2 is associated with radiation-induced murine acute myeloid leukemia. However, the gene, which contributes mainly to the leukemogenesis has not yet been identified. Expecting any predisposition to acute myeloid leukemia, we performed a radiation leukemogenesis experiment with Pax6 SeY3H , one of the small eye mutants carrying a congenital hemizygosity of the chromosome 2 middle region. A deletion mapping of Pax6 SeY3H with 50 sequence-tagged site (STS) markers indicated that the deleted segment extended between the 106.00 and 111.47 Mb site from the centromere with a length of 5.47 Mb. In the deleted segment, 6 known and 17 novel genes were located. Pax6 SeY3H mutants that crossed back into C3H/He did not develop myeloid leukemia spontaneously, but they did when exposed to gamma-rays. The final incidence of myeloid leukemia in mutants (25.8%) was as high as that in normal sibs (21.4%). Survival curves of leukemia-bearing mutants shifted toward the left (p=0.043 by the Log rank test). F1 hybrids of Pax6 SeY3H with JF1 were less susceptible to radiation than Pax6 SeY3H onto C3H/He in regard to survival (p=0.003 and p<0.00001 for mutants and normal sibs, respectively, by a test of the difference between two proportions). Congenital deletion of the 5.47 Mb segment at the middle region on chromosome 2 alone did not trigger myeloid stem cells to expand clonally in vivo; however, the deletion shortcut the latency of radiation-induced myeloid leukemia. (author)

  2. Purification, crystallization and preliminary X-ray analysis of a deletion mutant of a major buckwheat allergen

    International Nuclear Information System (INIS)

    Kezuka, Yuichiro; Itagaki, Takashi; Satoh, Rie; Teshima, Reiko; Nonaka, Takamasa

    2009-01-01

    A 16 kDa buckwheat protein (BWp16) is a major allergen responsible for immediate hypersensitivity reactions including anaphylaxis. An immunologically active mutant of BWp16 was prepared and a three-wavelength MAD data set was collected from a crystal of selenomethionine-labelled mutant protein. A 16 kDa buckwheat protein (BWp16) is a major allergen responsible for immediate hypersensitivity reactions including anaphylaxis. A deletion mutant of BWp16 (rBWp16ΔN) was overproduced and purified and was shown to be immunologically active. A three-wavelength MAD data set was collected from a crystal of selenomethionine-labelled rBWp16ΔN. The crystal belonged to the triclinic space group P1, with unit-cell parameters a = 28.39, b = 31.54, c = 32.20 Å, α = 111.92, β = 108.91, γ = 98.74°. One monomer was expected to be present in the asymmetric unit based on the calculated Matthews coefficient of 1.76 Å 3 Da −1

  3. Hepatocyte-specific deletion of the keap1 gene activates Nrf2 and confers potent resistance against acute drug toxicity

    International Nuclear Information System (INIS)

    Okawa, Hiromi; Motohashi, Hozumi; Kobayashi, Akira; Aburatani, Hiroyuki; Kensler, Thomas W.; Yamamoto, Masayuki

    2006-01-01

    Nrf2 is a key regulator of many detoxifying enzyme genes, and cytoplasmic protein Keap1 represses the Nrf2 activity under quiescent conditions. Germ line deletion of the keap1 gene results in constitutive activation of Nrf2, but the pups unexpectedly died before weaning. To investigate how constitutive activation of Nrf2 influences the detoxification system in adult mice, we generated mice bearing a hepatocyte-specific disruption of the keap1 gene. Homozygous mice were viable and their livers displayed no apparent abnormalities, but nuclear accumulation of Nrf2 is elevated. Microarray analysis revealed that, while many detoxifying enzyme genes are highly expressed, some of the typical Nrf2-dependent genes are only marginally increased in the Keap1-deficient liver. The mutant mice were significantly more resistant to toxic doses of acetaminophen than control animals. These results demonstrate that chronic activation of Nrf2 confers animals with resistance to xenobiotics without affecting the morphological and physiological integrity of hepatocytes

  4. PCR detection of retinoblastoma gene deletions in radiation-induced mouse lung adenocarcinomas

    International Nuclear Information System (INIS)

    Churchill, M.E.; Gemmell, M.A.; Woloschak, G.E.

    1993-01-01

    From 1971 to 1986, Argonne National Laboratory conducted a series of large-scale studies of tumor incidence in 40,000 BCF 1 mice irradiated with 60 Co γ rays or JANUS fission-spectrum neutrons; normal and tumor tissues from mice in these studies were preserved in paraffin blocks. A polymerase chain reaction (PCR) technique has been developed to detect deletions in the mouse retinoblastoma (mRb) gene in the paraffin-embedded tissues. Microtomed sections were used as the DNA source in PCR reaction mixtures. Six mRb gene exon fragments were amplified in a 40-cycle, 3-temperature PCR protocol. The absence of any of these fragments (relative to control PCR products) on a Southern blot indicated a deletion of that portion of the mRb gene. The tumors chosen for analysis were lung adenocarcinomas that were judged to be the cause of death in post-mortem analyses. Spontaneous tumors as well as those from irradiated mice (569 cGy of 60 Co γ rays or 60 cGy of JANUS neutrons, doses that have been found to have approximately equal biological effectiveness in the BCF, mouse) were analyzed for mRb deletions. In all normal mouse tissues studies, all six mRb exon fragments were present on Southem blots. Tumors in six neutron-irradiated mice also had no mRb deletions. However, I of 6 tumors from γ-irradiated mice and 6 of 18 spontaneous tumors from unirradiated mice had a deletion in one or both mRb alleles. All deletions detected were in the 5' region of the mRb gene

  5. A Large PROP1 Gene Deletion in a Turkish Pedigree

    Directory of Open Access Journals (Sweden)

    Suheyla Gorar

    2018-01-01

    Full Text Available Pituitary-specific paired-like homeodomain transcription factor, PROP1, is associated with multiple pituitary hormone deficiency. Alteration of the gene encoding the PROP1 may affect somatotropes, thyrotropes, and lactotropes, as well as gonadotropes and corticotropes. We performed genetic analysis of PROP1 gene in a Turkish pedigree with three siblings who presented with short stature. Parents were first degree cousins. Index case, a boy, had somatotrope, gonadotrope, thyrotrope, and corticotrope deficiency. However, two elder sisters had somatotroph, gonadotroph, and thyrotroph deficiency and no corticotroph deficiency. On pituitary magnetic resonance, partial empty sella was detected with normal bright spot in all siblings. In genetic analysis, we found a gross deletion involving PROP1 coding region. In conclusion, we report three Turkish siblings with a gross deletion in PROP1 gene. Interestingly, although little boy with combined pituitary hormone deficiency has adrenocorticotropic hormone (ACTH deficiency, his elder sisters with the same gross PROP1 deletion have no ACTH deficiency. This finding is in line with the fact that patients with PROP1 mutations may have different phenotype/genotype correlation.

  6. Reproducible gene targeting in recalcitrant Escherichia coli isolates

    Directory of Open Access Journals (Sweden)

    De Greve Henri

    2011-06-01

    Full Text Available Abstract Background A number of allele replacement methods can be used to mutate bacterial genes. For instance, the Red recombinase system of phage Lambda has been used very efficiently to inactivate chromosomal genes in E. coli K-12, through recombination between regions of homology. However, this method does not work reproducibly in some clinical E. coli isolates. Findings The procedure was modified by using longer homologous regions (85 bp and 500-600 bp, to inactivate genes in the uropathogenic E. coli strain UTI89. An lrhA regulator mutant, and deletions of the lac operon as well as the complete type 1 fimbrial gene cluster, were obtained reproducibly. The modified method is also functional in other recalcitrant E. coli, like the avian pathogenic E. coli strain APEC1. The lrhA regulator and lac operon deletion mutants of APEC1 were successfully constructed in the same way as the UTI89 mutants. In other avian pathogenic E. coli strains (APEC3E, APEC11A and APEC16A it was very difficult or impossible to construct these mutants, with the original Red recombinase-based method, with a Red recombinase-based method using longer (85 bp homologous regions or with our modified protocol, using 500 - 600 bp homologous regions. Conclusions The method using 500-600 bp homologous regions can be used reliably in some clinical isolates, to delete single genes or entire operons by homologous recombination. However, it does not invariably show a greater efficiency in obtaining mutants, when compared to the original Red-mediated gene targeting method or to the gene targeting method with 85 bp homologous regions. Therefore the length of the homology regions is not the only limiting factor for the construction of mutants in these recalcitrant strains.

  7. An Assessment of the Effects of Different Dose Levels of Gamma Rays on HPRT Gene of T-Cells from Human Peripheral Blood

    International Nuclear Information System (INIS)

    Bahreyni, M. T.; Rezaee, M.

    2004-01-01

    Ionizing radiation has been shown to produce a broad range of genetic aberrations in human and other species. Most of the genetic aberrations are deletions. To study genetic alterations, an assessment of somatic ell gene mutations induced by ionizing radiation is proper method. In this study, the intragenic and total gene deletions of 18 HPRT-mutants derived from T-lymphocytes and induced by gamma rays were analyzed. PCR amplification of individual HPRT exons and multiplex PCR. HPRT-mutants were isolated by treatment of irradiated samples with 6-thioguanine. MPCR and PCR of individual exons of HPRT demonstrated that the intragenic and total gene deletions were not significantly different. The samples including more than one deletion had non-random significantly higher frequency. Mapping of all intragenic deleltion exhibited a nonrandom distribution. Middle part of HPRT gene was more sensitive to gamma rays. The sensitivity was increased with radiation dose. This study showed that the size of deletions are dose dependent. Our results suggest that alterations in T- lymphocytes mutant genes, induced deletions, size of deletions and distribution of DNA breakpoints appeared to be dependent on low LET radiation dose. (Author) 11 refs

  8. Prevalence of pfhrp2 and pfhrp3 gene deletions in Puerto Lempira, Honduras.

    Science.gov (United States)

    Abdallah, Joseph F; Okoth, Sheila Akinyi; Fontecha, Gustavo A; Torres, Rosa Elena Mejia; Banegas, Engels I; Matute, María Luisa; Bucheli, Sandra Tamara Mancero; Goldman, Ira F; de Oliveira, Alexandre Macedo; Barnwell, John W; Udhayakumar, Venkatachalam

    2015-01-21

    Recent studies have demonstrated the deletion of the histidine-rich protein 2 (PfHRP2) gene (pfhrp2) in field isolates of Plasmodium falciparum, which could result in false negative test results when PfHRP2-based rapid diagnostic tests (RDTs) are used for malaria diagnosis. Although primary diagnosis of malaria in Honduras is determined based on microscopy, RDTs may be useful in remote areas. In this study, it was investigated whether there are deletions of the pfhrp2, pfhrp3 and their respective flanking genes in 68 P. falciparum parasite isolates collected from the city of Puerto Lempira, Honduras. In addition, further investigation considered the possible correlation between parasite population structure and the distribution of these gene deletions by genotyping seven neutral microsatellites. Sixty-eight samples used in this study, which were obtained from a previous chloroquine efficacy study, were utilized in the analysis. All samples were genotyped for pfhrp2, pfhrp3 and flanking genes by PCR. The samples were then genotyped for seven neutral microsatellites in order to determine the parasite population structure in Puerto Lempira at the time of sample collection. It was found that all samples were positive for pfhrp2 and its flanking genes on chromosome 8. However, only 50% of the samples were positive for pfhrp3 and its neighboring genes while the rest were either pfhrp3-negative only or had deleted a combination of pfhrp3 and its neighbouring genes on chromosome 13. Population structure analysis predicted that there are at least two distinct parasite population clusters in this sample population. It was also determined that a greater proportion of parasites with pfhrp3-(and flanking gene) deletions belonged to one cluster compared to the other. The findings indicate that the P. falciparum parasite population in the municipality of Puerto Lempira maintains the pfhrp2 gene and that PfHRP2-based RDTs could be considered for use in this region; however

  9. A Novel ‘Gene Insertion/Marker Out’ (GIMO) Method for Transgene Expression and Gene Complementation in Rodent Malaria Parasites

    Science.gov (United States)

    Sajid, Mohammed; Chevalley-Maurel, Séverine; Ramesar, Jai; Klop, Onny; Franke-Fayard, Blandine M. D.; Janse, Chris J.; Khan, Shahid M.

    2011-01-01

    Research on the biology of malaria parasites has greatly benefited from the application of reverse genetic technologies, in particular through the analysis of gene deletion mutants and studies on transgenic parasites that express heterologous or mutated proteins. However, transfection in Plasmodium is limited by the paucity of drug-selectable markers that hampers subsequent genetic modification of the same mutant. We report the development of a novel ‘gene insertion/marker out’ (GIMO) method for two rodent malaria parasites, which uses negative selection to rapidly generate transgenic mutants ready for subsequent modifications. We have created reference mother lines for both P. berghei ANKA and P. yoelii 17XNL that serve as recipient parasites for GIMO-transfection. Compared to existing protocols GIMO-transfection greatly simplifies and speeds up the generation of mutants expressing heterologous proteins, free of drug-resistance genes, and requires far fewer laboratory animals. In addition we demonstrate that GIMO-transfection is also a simple and fast method for genetic complementation of mutants with a gene deletion or mutation. The implementation of GIMO-transfection procedures should greatly enhance Plasmodium reverse-genetic research. PMID:22216235

  10. A Catalog of Genes Homozygously Deleted in Human Lung Cancer and the Candidacy of PTPRD as a Tumor Suppressor Gene

    Science.gov (United States)

    Kohno, Takashi; Otsuka, Ayaka; Girard, Luc; Sato, Masanori; Iwakawa, Reika; Ogiwara, Hideaki; Sanchez-Cespedes, Montse; Minna, John D.; Yokota, Jun

    2010-01-01

    A total of 176 genes homozygously deleted in human lung cancer were identified by DNA array-based whole genome scanning of 52 lung cancer cell lines and subsequent genomic PCR in 74 cell lines, including the 52 cell lines scanned. One or more exons of these genes were homozygously deleted in one (1%) to 20 (27%) cell lines. These genes included known tumor suppressor genes, e.g., CDKN2A/p16, RB1, and SMAD4, and candidate tumor suppressor genes whose hemizygous or homozygous deletions were reported in several types of human cancers, such as FHIT, KEAP1, and LRP1B/LRP-DIP. CDKN2A/p16 and p14ARF located in 9p21 were most frequently deleted (20/74, 27%). The PTPRD gene was most frequently deleted (8/74, 11%) among genes mapping to regions other than 9p21. Somatic mutations, including a nonsense mutation, of the PTPRD gene were detected in 8/74 (11%) of cell lines and 4/95 (4%) of surgical specimens of lung cancer. Reduced PTPRD expression was observed in the majority (>80%) of cell lines and surgical specimens of lung cancer. Therefore, PTPRD is a candidate tumor suppressor gene in lung cancer. Microarray-based expression profiling of 19 lung cancer cell lines also indicated that some of the 176 genes, such as KANK and ADAMTS1, are preferentially inactivated by epigenetic alterations. Genetic/epigenetic as well as functional studies of these 176 genes will increase our understanding of molecular mechanisms behind lung carcinogenesis. PMID:20073072

  11. Detection of three-base deletion by exciplex formation with perylene derivatives.

    Science.gov (United States)

    Kashida, Hiromu; Kondo, Nobuyo; Sekiguchi, Koji; Asanuma, Hiroyuki

    2011-06-14

    Here, we synthesized fluorescent DNA probes labeled with two perylene derivatives for the detection of a three-base deletion mutant. One such probe discriminated the three-base deletion mutant from the wild-type sequence by exciplex emission, and the deletion mutant was identifiable even by the naked eye. This journal is © The Royal Society of Chemistry 2011

  12. Polymerase chain reaction detection of retinoblastoma gene deletions in paraffin-embedded mouse lung adenocarcinomas

    International Nuclear Information System (INIS)

    Churchill, M.E.; Gemmell, M.A.; Woloschak, G.E.

    1991-01-01

    A Polymerase chain reaction (PCR) technique was used to detect deletions in the mouse retinoblastoma (mRb) gene using microtomed sections from paraffin-embedded radiation-induced and spontaneous tumors as the DNA source. Six mRb gene exon fragments were amplified in a 40-cycle, 3-temperature PCR protocol. Absence of any of these fragments relative to control PCR products on a Southern blot indicated a deletion of that portion of the mRb gene. Tumors chosen for analysis were lung adenocarcinomas that were judged to be the cause of death. Spontaneous tumors as well as those from irradiated mice (569 cGy of 60 Co γ rays or 60 cGy of JANUS neutrons) were analyzed. Tumors in six neutron-irradiated mice also had no mRb deletions. However, one of six tumors from γ-irradiated mice and 6 of 18 spontaneous tumors from unirradiated mice showed a deletion in one or both mRb alleles. All deletions detected were in the 5' region of the mRb gene

  13. Molecular and biochemical analyses of spontaneous and X-ray-induced mutants in human lymphoblastoid cells

    Energy Technology Data Exchange (ETDEWEB)

    Liber, H L; Call, K M; Little, J B

    1987-05-01

    The authors have isolated a series of 14 spontaneously arising and 28 X-ray-induced mutants at the hypoxanthine-guanine phosphoribosyltransferase (hgprt) locus in human lymphoblastoid cells. Among the spontaneous mutants, 5/14 (36%) had detectable alterations in their restriction fragment pattern after hybridization with a human cDNA probe for hgprt. Of the 10 remaining mutants, 4 had partial HGPRT enzyme activity, which suggested that they contained point mutations. Among the 28 mutants induced by 150 rad of X-rays, 15 (54%) had deletions of part or all of the hgprt gene. Of the remaining 13 (18% overall) 5 had partial HGPRT enzyme activity, which suggested that they contained point mutations. These data imply that in this human cell system, X-rays induce both point mutants which have residual enzyme activity as well as mutations involving relatively large deletions of DNA. 48 reference, 1 figure, 4 tables.

  14. Increased metabolite production by deletion of an HDA1-type histone deacetylase in the phytopathogenic fungi, Magnaporthe oryzae (Pyricularia oryzae) and Fusarium asiaticum.

    Science.gov (United States)

    Maeda, K; Izawa, M; Nakajima, Y; Jin, Q; Hirose, T; Nakamura, T; Koshino, H; Kanamaru, K; Ohsato, S; Kamakura, T; Kobayashi, T; Yoshida, M; Kimura, M

    2017-11-01

    Histone deacetylases (HDACs) play an important role in the regulation of chromatin structure and gene expression. We found that dark pigmentation of Magnaporthe oryzae (anamorph Pyricularia oryzae) ΔMohda1, a mutant strain in which an orthologue of the yeast HDA1 was disrupted by double cross-over homologous recombination, was significantly stimulated in liquid culture. Analysis of metabolites in a ΔMohda1 mutant culture revealed that the accumulation of shunt products of the 1,8-dihydroxynaphthalene melanin and ergosterol pathways were significantly enhanced compared to the wild-type strain. Northern blot analysis of the ΔMohda1 mutant revealed transcriptional activation of three melanin genes that are dispersed throughout the genome of M. oryzae. The effect of deletion of the yeast HDA1 orthologue was also observed in Fusarium asiaticum from the Fusarium graminearum species complex; the HDF2 deletion mutant produced increased levels of nivalenol-type trichothecenes. These results suggest that histone modification via HDA1-type HDAC regulates the production of natural products in filamentous fungi. Natural products of fungi have significant impacts on human welfare, in both detrimental and beneficial ways. Although HDA1-type histone deacetylase is not essential for vegetative growth, deletion of the gene affects the expression of clustered secondary metabolite genes in some fungi. Here, we report that such phenomena are also observed in physically unlinked genes required for melanin biosynthesis in the rice blast fungus. In addition, production of Fusarium trichothecenes, previously reported to be unaffected by HDA1 deletion, was significantly upregulated in another Fusarium species. Thus, the HDA1-inactivation strategy may be regarded as a general approach for overproduction and/or discovery of fungal metabolites. © 2017 The Society for Applied Microbiology.

  15. Transcriptional Responses of the Bdtf1-Deletion Mutant to the Phytoalexin Brassinin in the Necrotrophic Fungus Alternaria brassicicola

    Directory of Open Access Journals (Sweden)

    Yangrae Cho

    2014-07-01

    Full Text Available Brassica species produce the antifungal indolyl compounds brassinin and its derivatives, during microbial infection. The fungal pathogen Alternaria brassicicola detoxifies brassinin and possibly its derivatives. This ability is an important property for the successful infection of brassicaceous plants. Previously, we identified a transcription factor, Bdtf1, essential for the detoxification of brassinin and full virulence. To discover genes that encode putative brassinin-digesting enzymes, we compared gene expression profiles between a mutant strain of the transcription factor and wild-type A. brassicicola under two different experimental conditions. A total of 170 and 388 genes were expressed at higher levels in the mutants than the wild type during the infection of host plants and saprophytic growth in the presence of brassinin, respectively. In contrast, 93 and 560 genes were expressed, respectively, at lower levels in the mutant than the wild type under the two conditions. Fifteen of these genes were expressed at lower levels in the mutant than in the wild type under both conditions. These genes were assumed to be important for the detoxification of brassinin and included Bdtf1 and 10 putative enzymes. This list of genes provides a resource for the discovery of enzyme-coding genes important in the chemical modification of brassinin.

  16. Mutant INS-gene induced diabetes of youth: proinsulin cysteine residues impose dominant-negative inhibition on wild-type proinsulin transport.

    Directory of Open Access Journals (Sweden)

    Ming Liu

    2010-10-01

    Full Text Available Recently, a syndrome of Mutant INS-gene-induced Diabetes of Youth (MIDY, derived from one of 26 distinct mutations has been identified as a cause of insulin-deficient diabetes, resulting from expression of a misfolded mutant proinsulin protein in the endoplasmic reticulum (ER of insulin-producing pancreatic beta cells. Genetic deletion of one, two, or even three alleles encoding insulin in mice does not necessarily lead to diabetes. Yet MIDY patients are INS-gene heterozygotes; inheritance of even one MIDY allele, causes diabetes. Although a favored explanation for the onset of diabetes is that insurmountable ER stress and ER stress response from the mutant proinsulin causes a net loss of beta cells, in this report we present three surprising and interlinked discoveries. First, in the presence of MIDY mutants, an increased fraction of wild-type proinsulin becomes recruited into nonnative disulfide-linked protein complexes. Second, regardless of whether MIDY mutations result in the loss, or creation, of an extra unpaired cysteine within proinsulin, Cys residues in the mutant protein are nevertheless essential in causing intracellular entrapment of co-expressed wild-type proinsulin, blocking insulin production. Third, while each of the MIDY mutants induces ER stress and ER stress response; ER stress and ER stress response alone appear insufficient to account for blockade of wild-type proinsulin. While there is general agreement that ultimately, as diabetes progresses, a significant loss of beta cell mass occurs, the early events described herein precede cell death and loss of beta cell mass. We conclude that the molecular pathogenesis of MIDY is initiated by perturbation of the disulfide-coupled folding pathway of wild-type proinsulin.

  17. Characterization of Lactococcus lactis mutants with improved performance at high temperatures and potential dairy applications

    DEFF Research Database (Denmark)

    Chen, Jun

    microarray analysis revealed apparent differences in the transcriptional response to heat between the mutant and parent. It was found that SNPs preceding gene groESL and ribU resulted in over-expression of chaperone proteins GroES-GroEL, and membrane associated riboflavin transporter protein RibU in TM29......, respectively. Moreover, a large deletion in TM29 caused the inactivation of 10 genes (llmg_1349-llmg_1358). Through allelic replacement and gene knockout followed by fitness assessment, four main positive mutations were eventually discovered. The SNP preceding groESL and deletion of llmg_1349-llmg_1358...

  18. Deletion of a Chitin Synthase Gene in a Citric Acid Producing Strain of Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Rinker, Torri E.; Baker, Scott E.

    2007-01-29

    Citric acid production by the filamentous fungus Aspergillus niger is carried out in a process that causes the organism to drastically alter its morphology. This altered morphology includes hyphal swelling and highly limited polar growth resulting in clumps of swollen cells that eventually aggregate into pellets of approximately 100 microns in diameter. In this pelleted form, A. niger has increased citric acid production as compared to growth in filamentous form. Chitin is a crucial component of the cell wall of filamentous fungi. Alterations in the deposition or production of chitin may have profound effects on the morphology of the organism. In order to study the role of chitin synthesis in pellet formation we have deleted a chitin synthase gene (csmA) in Aspergillus niger strain ATCC 11414 using a PCR based deletion construct. This class of chitin synthases is only found in filamentous fungi and is not present in yeasts. The csmA genes contain a myosin motor domain at the N-terminus and a chitin synthesis domain at the C-terminus. They are believed to contribute to the specialized polar growth observed in filamentous fungi that is lacking in yeasts. The csmA deletion strain (csmAΔ) was subjected to minimal media with and without osmotic stabilizers as well as tested in citric acid production media. Without osmotic stabilizers, the mutant germlings were abnormally swollen, primarily in the subapical regions, and contained large vacuoles. However, this swelling is ultimately not inhibitory to growth as the germlings are able to recover and undergo polar growth. Colony formation was largely unaffected in the absence of osmotic stabilizers. In citric acid production media csmAΔ was observed to have a 2.5 fold increase in citric acid production. The controlled expression of this class of chitin synthases may be useful for improving production of organic acids in filamentous fungi.

  19. Deleting multiple lytic genes enhances biomass yield and production of recombinant proteins by Bacillus subtilis.

    Science.gov (United States)

    Wang, Yi; Chen, Zhenmin; Zhao, Ruili; Jin, Tingting; Zhang, Xiaoming; Chen, Xiangdong

    2014-08-31

    Bacillus subtilis is widely used in agriculture and industrial biotechnology; however, cell autolysis significantly decreases its yield in liquid cultures. Numerous factors mediate the lysis of B. subtilis, such as cannibalism factors, prophages, and peptidoglycan (PG) hydrolases. The aim of this work was to use molecular genetic techniques to develop a new strategy to prevent cell lysis and enhance biomass as well as the production of recombinant proteins. Five genes or genetic elements representing three different functional categories were studied as follows: lytC encoding PG hydrolases, the prophage genes xpf and yqxG-yqxH-cwlA (yGlA), and skfA and sdpC that encode cannibalism factors. Cell lysis was reduced and biomass was enhanced by deleting individually skfA, sdpC, xpf, and lytC. We constructed the multiple deletion mutant LM2531 (skfA sdpC lytC xpf) and found that after 4 h of culture, its biomass yield was significantly increased compared with that of prototypical B. subtilis 168 (wild-type) strain and that 15% and 92% of the cells were lysed in cultures of LM2531 and wild-type, respectively. Moreover, two expression vectors were constructed for producing recombinant proteins (β-galactosidase and nattokinase) under the control of the P43 promoter. Cultures of LM2531 and wild-type transformants produced 13741 U/ml and 7991 U/ml of intracellular β-galactosidase, respectively (1.72-fold increase). Further, the level of secreted nattokinase produced by strain LM2531 increased by 2.6-fold compared with wild-type (5226 IU/ml vs. 2028 IU/ml, respectively). Our novel, systematic multigene deletion approach designed to inhibit cell lysis significantly increased the biomass yield and the production of recombinant proteins by B. subtilis. These findings show promise for guiding efforts to manipulate the genomes of other B. subtilis strains that are used for industrial purposes.

  20. Construction and characterization of a glycoprotein E deletion mutant of bovine herpesvirus type 1.2 strain isolated in Brazil

    NARCIS (Netherlands)

    Franco, A.C.; Rijsewijk, F.A.M.; Flores, E.F.; Weiblen, R.; Roehe, P.M.

    2002-01-01

    This paper describes the construction and characterization of a Brazilian strain of bovine herpesvirus type 1.2a (BoHV-1.2a) with a deletion of the glycoprotein E (gE) gene. The deletion was introduced by co-transfection of a deletion fragment containing the 5´and 3´gE flanking regions and genomic

  1. Copy Number Deletion Has Little Impact on Gene Expression Levels in Racehorses

    Directory of Open Access Journals (Sweden)

    Kyung-Do Park

    2014-09-01

    Full Text Available Copy number variations (CNVs, important genetic factors for study of human diseases, may have as large of an effect on phenotype as do single nucleotide polymorphisms. Indeed, it is widely accepted that CNVs are associated with differential disease susceptibility. However, the relationships between CNVs and gene expression have not been characterized in the horse. In this study, we investigated the effects of copy number deletion in the blood and muscle transcriptomes of Thoroughbred racing horses. We identified a total of 1,246 CNVs of deletion polymorphisms using DNA re-sequencing data from 18 Thoroughbred racing horses. To discover the tendencies between CNV status and gene expression levels, we extracted CNVs of four Thoroughbred racing horses of which RNA sequencing was available. We found that 252 pairs of CNVs and genes were associated in the four horse samples. We did not observe a clear and consistent relationship between the deletion status of CNVs and gene expression levels before and after exercise in blood and muscle. However, we found some pairs of CNVs and associated genes that indicated relationships with gene expression levels: a positive relationship with genes responsible for membrane structure or cytoskeleton and a negative relationship with genes involved in disease. This study will lead to conceptual advances in understanding the relationship between CNVs and global gene expression in the horse.

  2. IDH mutant and 1p/19q co-deleted oligodendrogliomas: tumor grade stratification using diffusion-, susceptibility-, and perfusion-weighted MRI

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yu; Xing, Zhen; She, Dejun; Yang, Xiefeng; Zheng, Yingyan; Xiao, Zebin; Cao, Dairong [First Affiliated Hospital of Fujian Medical University, Department of Radiology, Fuzhou, Fujian (China); Wang, Xingfu [First Affiliated Hospital of Fujian Medical University, Department of Pathology, Fuzhou (China)

    2017-06-15

    Currently, isocitrate dehydrogenase (IDH) mutation and 1p/19q co-deletion are proven diagnostic biomarkers for both grade II and III oligodendrogliomas (ODs). Non-invasive diffusion-weighted imaging (DWI), susceptibility-weighted imaging (SWI), and dynamic susceptibility contrast perfusion-weighted imaging (DSC-PWI) are widely used to provide physiological information (cellularity, hemorrhage, calcifications, and angiogenesis) of neoplastic histology and tumor grade. However, it is unclear whether DWI, SWI, and DSC-PWI are able to stratify grades of IDH-mutant and 1p/19q co-deleted ODs. We retrospectively reviewed the conventional MRI (cMRI), DWI, SWI, and DSC-PWI obtained on 33 patients with IDH-mutated and 1p/19q co-deleted ODs. Features of cMRI, normalized ADC (nADC), intratumoral susceptibility signals (ITSSs), normalized maxim CBV (nCBV), and normalized maximum CBF (nCBF) were compared between low-grade ODs (LGOs) and high-grade ODs (HGOs). Receiver operating characteristic curve and logistic regression were applied to determine diagnostic performances. HGOs tended to present with prominent edema and enhancement. nADC, ITSSs, nCBV, and nCBF were significantly different between groups (all P < 0.05). The combination of SWI and DSC-PWI for grading resulted in sensitivity and specificity of 100.00 and 93.33%, respectively. IDH-mutant and 1p/19q co-deleted ODs can be stratified by grades using cMRI and advanced magnetic resonance imaging techniques including DWI, SWI, and DSC-PWI. Combined ITSSs with nCBV appear to be a promising option for grading molecularly defined ODs in clinical practice. (orig.)

  3. Screening of Dystrophin Gene Deletions in Egyptian Patients with DMD/BMD Muscular Dystrophies

    Directory of Open Access Journals (Sweden)

    Laila K. Effat

    2000-01-01

    Full Text Available Duchenne muscular dystrophy (DMD and Becker muscular dystrophy (BMD are allelic disorders caused by mutations within the dystrophin gene. Our study has identified 100 Egyptian families collected from the Human Genetics Clinic, National Research Center, Cairo. All cases were subjected to complete clinical evaluation pedigree analysis, electromyography studies, estimation of serum creatine phosphokinase enzyme (CPK levels and DNA analysis. Multiplex PCR using 18 pairs of specific primers were used for screening of deletion mutations within the dystrophin gene. A frequency of 55% among the families. Sixty per cent of detected deletions involved multiple exons spanning the major or the minor hot spot of the dystrophin gene. The remainder 40% which mainly involved exon 45. Comparing these findings with frequencies of other countries it was found that our figures fall within the reported range of 40%– for deletions. The distribution of deletions in our study and other different studies was variable and specific ethnic differences do not apparently account for specific deletions. In addition this study concluded that employment of the 18 exon analysis is a cost effective and a highly accurate (97% to launch a nationwide program.

  4. Genes and Alcohol Consumption: Studies with Mutant Mice

    Science.gov (United States)

    Mayfield, Jody; Arends, Michael A.; Harris, R. Adron; Blednov, Yuri A.

    2017-01-01

    In this chapter, we review the effects of global null mutant and overexpressing transgenic mouse lines on voluntary self-administration of alcohol. We examine approximately 200 publications pertaining to the effects of 155 mouse genes on alcohol consumption in different drinking models. The targeted genes vary in function and include neurotransmitter, ion channel, neuroimmune, and neuropeptide signaling systems. The alcohol self-administration models include operant conditioning, two- and four-bottle choice continuous and intermittent access, drinking in the dark limited access, chronic intermittent ethanol, and scheduled high alcohol consumption tests. Comparisons of different drinking models using the same mutant mice are potentially the most informative, and we will highlight those examples. More mutants have been tested for continuous two-bottle choice consumption than any other test; of the 137 mouse genes examined using this model, 97 (72%) altered drinking in at least one sex. Overall, the effects of genetic manipulations on alcohol drinking often depend on the sex of the mice, alcohol concentration and time of access, genetic background, as well as the drinking test. PMID:27055617

  5. Metabolic flux balance analysis and the in silico analysis of Escherichia coli K-12 gene deletions

    Directory of Open Access Journals (Sweden)

    Edwards Jeremy S

    2000-07-01

    Full Text Available Abstract Background Genome sequencing and bioinformatics are producing detailed lists of the molecular components contained in many prokaryotic organisms. From this 'parts catalogue' of a microbial cell, in silico representations of integrated metabolic functions can be constructed and analyzed using flux balance analysis (FBA. FBA is particularly well-suited to study metabolic networks based on genomic, biochemical, and strain specific information. Results Herein, we have utilized FBA to interpret and analyze the metabolic capabilities of Escherichia coli. We have computationally mapped the metabolic capabilities of E. coli using FBA and examined the optimal utilization of the E. coli metabolic pathways as a function of environmental variables. We have used an in silico analysis to identify seven gene products of central metabolism (glycolysis, pentose phosphate pathway, TCA cycle, electron transport system essential for aerobic growth of E. coli on glucose minimal media, and 15 gene products essential for anaerobic growth on glucose minimal media. The in silico tpi-, zwf, and pta- mutant strains were examined in more detail by mapping the capabilities of these in silico isogenic strains. Conclusions We found that computational models of E. coli metabolism based on physicochemical constraints can be used to interpret mutant behavior. These in silica results lead to a further understanding of the complex genotype-phenotype relation. Supplementary information: http://gcrg.ucsd.edu/supplementary_data/DeletionAnalysis/main.htm

  6. Decreased production of higher alcohols by Saccharomyces cerevisiae for Chinese rice wine fermentation by deletion of Bat aminotransferases.

    Science.gov (United States)

    Zhang, Cui-Ying; Qi, Ya-Nan; Ma, Hong-Xia; Li, Wei; Dai, Long-Hai; Xiao, Dong-Guang

    2015-04-01

    An appropriate level of higher alcohols produced by yeast during the fermentation is one of the most important factors influencing Chinese rice wine quality. In this study, BAT1 and BAT2 single- and double-gene-deletion mutant strains were constructed from an industrial yeast strain RY1 to decrease higher alcohols during Chinese rice wine fermentation. The results showed that the BAT2 single-gene-deletion mutant strain produced best improvement in the production of higher alcohols while remaining showed normal growth and fermentation characteristics. Furthermore, a BAT2 single-gene-deletion diploid engineered strain RY1-Δbat2 was constructed and produced low levels of isobutanol and isoamylol (isoamyl alcohol and active amyl alcohol) in simulated fermentation of Chinese rice wine, 92.40 and 303.31 mg/L, respectively, which were 33.00 and 14.20 % lower than those of the parental strain RY1. The differences in fermentation performance between RY1-Δbat2 and RY1 were minor. Therefore, construction of this yeast strain is important in future development in Chinese wine industry and provides insights on generating yeast strains for other fermented alcoholic beverages.

  7. BRAF Gene Copy Number and Mutant Allele Frequency Correlate with Time to Progression in Metastatic Melanoma Patients Treated with MAPK Inhibitors.

    Science.gov (United States)

    Stagni, Camilla; Zamuner, Carolina; Elefanti, Lisa; Zanin, Tiziana; Bianco, Paola Del; Sommariva, Antonio; Fabozzi, Alessio; Pigozzo, Jacopo; Mocellin, Simone; Montesco, Maria Cristina; Chiarion-Sileni, Vanna; De Nicolo, Arcangela; Menin, Chiara

    2018-06-01

    Metastatic melanoma is characterized by complex genomic alterations, including a high rate of mutations in driver genes and widespread deletions and amplifications encompassing various chromosome regions. Among them, chromosome 7 is frequently gained in BRAF -mutant melanoma, inducing a mutant allele-specific imbalance. Although BRAF amplification is a known mechanism of acquired resistance to therapy with MAPK inhibitors, it is still unclear if BRAF copy-number variation and BRAF mutant allele imbalance at baseline can be associated with response to treatment. In this study, we used a multimodal approach to assess BRAF copy number and mutant allele frequency in pretreatment melanoma samples from 46 patients who received MAPK inhibitor-based therapy, and we analyzed the association with progression-free survival. We found that 65% patients displayed BRAF gains, often supported by chromosome 7 polysomy. In addition, we observed that 64% patients had a balanced BRAF -mutant/wild-type allele ratio, whereas 14% and 23% patients had low and high BRAF mutant allele frequency, respectively. Notably, a significantly higher risk of progression was observed in patients with a diploid BRAF status versus those with BRAF gains [HR, 2.86; 95% confidence interval (CI), 1.29-6.35; P = 0.01] and in patients with low percentage versus those with a balanced BRAF mutant allele percentage (HR, 4.54; 95% CI, 1.33-15.53; P = 0.016). Our data suggest that quantitative analysis of the BRAF gene could be useful to select the melanoma patients who are most likely to benefit from therapy with MAPK inhibitors. Mol Cancer Ther; 17(6); 1332-40. ©2018 AACR . ©2018 American Association for Cancer Research.

  8. The frequency of previously undetectable deletions involving 3' Exons of the PMS2 gene.

    Science.gov (United States)

    Vaughn, Cecily P; Baker, Christine L; Samowitz, Wade S; Swensen, Jeffrey J

    2013-01-01

    Lynch syndrome is characterized by mutations in one of four mismatch repair genes, MLH1, MSH2, MSH6, or PMS2. Clinical mutation analysis of these genes includes sequencing of exonic regions and deletion/duplication analysis. However, detection of deletions and duplications in PMS2 has previously been confined to Exons 1-11 due to gene conversion between PMS2 and the pseudogene PMS2CL in the remaining 3' exons (Exons 12-15). We have recently described an MLPA-based method that permits detection of deletions of PMS2 Exons 12-15; however, the frequency of such deletions has not yet been determined. To address this question, we tested for 3' deletions in 58 samples that were reported to be negative for PMS2 mutations using previously available methods. All samples were from individuals whose tumors exhibited loss of PMS2 immunohistochemical staining without concomitant loss of MLH1 immunostaining. We identified seven samples in this cohort with deletions in the 3' region of PMS2, including three previously reported samples with deletions of Exons 13-15 (two samples) and Exons 14-15. Also detected were deletions of Exons 12-15, Exon 13, and Exon 14 (two samples). Breakpoint analysis of the intragenic deletions suggests they occurred through Alu-mediated recombination. Our results indicate that ∼12% of samples suspected of harboring a PMS2 mutation based on immunohistochemical staining, for which mutations have not yet been identified, would benefit from testing using the new methodology. Copyright © 2012 Wiley Periodicals, Inc.

  9. Characterization of the largest effector gene cluster of Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Thomas Brefort

    2014-07-01

    Full Text Available In the genome of the biotrophic plant pathogen Ustilago maydis, many of the genes coding for secreted protein effectors modulating virulence are arranged in gene clusters. The vast majority of these genes encode novel proteins whose expression is coupled to plant colonization. The largest of these gene clusters, cluster 19A, encodes 24 secreted effectors. Deletion of the entire cluster results in severe attenuation of virulence. Here we present the functional analysis of this genomic region. We show that a 19A deletion mutant behaves like an endophyte, i.e. is still able to colonize plants and complete the infection cycle. However, tumors, the most conspicuous symptoms of maize smut disease, are only rarely formed and fungal biomass in infected tissue is significantly reduced. The generation and analysis of strains carrying sub-deletions identified several genes significantly contributing to tumor formation after seedling infection. Another of the effectors could be linked specifically to anthocyanin induction in the infected tissue. As the individual contributions of these genes to tumor formation were small, we studied the response of maize plants to the whole cluster mutant as well as to several individual mutants by array analysis. This revealed distinct plant responses, demonstrating that the respective effectors have discrete plant targets. We propose that the analysis of plant responses to effector mutant strains that lack a strong virulence phenotype may be a general way to visualize differences in effector function.

  10. Relatively low proportion of dystrophin gene deletions in Israeili Duchenne and Becker muscular dystrophy patients

    Energy Technology Data Exchange (ETDEWEB)

    Shomrat, R.; Gluck, E.; Legum, C.; Shiloh, Y. [Tel Aviv Univ. (Israel)

    1994-02-15

    Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are allelic disorders caused by mutations in the X-linked dystrophin gene. The most common mutations in western populations are deletions that are spread non-randomly throughout the gene. Molecular analysis of the dystrophin gene structure by hybridization of the full length cDNA to Southern blots and by PCR in 62 unrelated Israeli male DMD/BMD patients showed deletions in 23 (37%). This proportion is significantly lower than that found in European and North American populations (55-65%). Seventy-eight percent of the deletions were confined to exons 44-52, half of these exons 44-45, and the remaining 22% to exons 1 and 19. There was no correlation between the size of the deletion and the severity of the disease. All the deletions causing frameshift resulted in the DMD phenotypes. 43 refs., 1 fig., 1 tab.

  11. Homozygous deletion of the α- and β1-interferon genes in human leukemia and derived cell lines

    International Nuclear Information System (INIS)

    Diaz, M.O.; Ziemin, S.; Le Beau, M.M.; Pitha, P.; Smith, S.D.; Chilcote, R.R.; Rowley, J.D.

    1988-01-01

    The loss of bands p21-22 from one chromosome 9 homologue as a consequence of a deletion of the short arm [del(9p)], unbalanced translocation, or monosomy 9 is frequently observed in the malignant cells of patients with lymphoid neoplasias, including acute lymphoblastic leukemia and non-Hodgkin lymphoma. The α- and β 1 -interferon genes have been assigned to this chromosome region (9p21-22). The authors now present evidence of the homozygous deletion of the interferon genes in neoplastic hematopoietic cell lines and primary leukemia cells in the presence or absence of chromosomal deletions that are detectable at the level of the light microscope. In these cell lines, the deletion of the interferon genes is accompanied by a deficiency of 5'-methylthioadenosine phosphorylase, an enzyme of purine metabolism. These homozygous deletions may be associated with the loss of a tumor-suppressor gene that is involved in the development of these neoplasias. The relevant genes may be either the interferon genes themselves or a gene that has a tumor-suppressor function and is closely linked to them

  12. Study on radiation-inducible genes

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sang Yong; Kim, Dong Ho; Joe, Min Ho; Song, Hyu Npa

    2012-01-15

    Transcription of previously identified radiation-inducible genes, uscA and cyoA, was examined responding to radiation. The putative promoter regions of both genes were cloned into pRS415 vector containing lacZ, and the core promoter region necessary for radiation response were determined through promoter deletion method. To investigate the role of uscA, which is assumed to be small RNA related with radiation response, a deletion mutant strain of uscA was constructed. However, uscA deletion did not affect bacterial survival against radiation exposure. The use of bacteria as anticancer agents has attracted interest. In this study, we tried to develop tumor targeting bacteria in which the radiation-inducible promoter activate a transgene encoding a cytotoxic protein. For outward secretion of anticancer protein produced inside bacteria, the N-terminal 140 amino acid of SspH1 was found to function as a secretion signal peptide. To create an attenuated tumor-targeting bacteria, Salmonella ptsI mutant strain was constructed, and we found that its virulence decreased. Finally, the tumor-targeting ability of ptsI mutant was verified by the use of in-vivo imaging analysis.

  13. Study on radiation-inducible genes

    International Nuclear Information System (INIS)

    Lim, Sang Yong; Kim, Dong Ho; Joe, Min Ho; Song, Hyu Npa

    2012-01-01

    Transcription of previously identified radiation-inducible genes, uscA and cyoA, was examined responding to radiation. The putative promoter regions of both genes were cloned into pRS415 vector containing lacZ, and the core promoter region necessary for radiation response were determined through promoter deletion method. To investigate the role of uscA, which is assumed to be small RNA related with radiation response, a deletion mutant strain of uscA was constructed. However, uscA deletion did not affect bacterial survival against radiation exposure. The use of bacteria as anticancer agents has attracted interest. In this study, we tried to develop tumor targeting bacteria in which the radiation-inducible promoter activate a transgene encoding a cytotoxic protein. For outward secretion of anticancer protein produced inside bacteria, the N-terminal 140 amino acid of SspH1 was found to function as a secretion signal peptide. To create an attenuated tumor-targeting bacteria, Salmonella ptsI mutant strain was constructed, and we found that its virulence decreased. Finally, the tumor-targeting ability of ptsI mutant was verified by the use of in-vivo imaging analysis

  14. Deletion mutagenesis identifies a haploinsufficient role for gamma-zein in opaque-2 endosperm modification

    Science.gov (United States)

    Quality Protein Maize (QPM) is a hard kernel variant of the high-lysine mutant, opaque-2. Using gamma irradiation, we created opaque QPM variants to identify opaque-2 modifier genes and to investigate deletion mutagenesis combined with Illumina sequencing as a maize functional genomics tool. A K0326...

  15. The deletion of bacterial dynamin and flotillin genes results in pleiotrophic effects on cell division, cell growth and in cell shape maintenance

    Directory of Open Access Journals (Sweden)

    Dempwolff Felix

    2012-12-01

    Full Text Available Abstract Background In eukaryotic cells, dynamin and flotillin are involved in processes such as endocytosis and lipid raft formation, respectively. Dynamin is a GTPase that exerts motor-like activity during the pinching off of vesicles, while flotillins are coiled coil rich membrane proteins with no known enzymatic activity. Bacteria also possess orthologs of both classes of proteins, but their function has been unclear. Results We show that deletion of the single dynA or floT genes lead to no phenotype or a mild defect in septum formation in the case of the dynA gene, while dynA floT double mutant cells were highly elongated and irregularly shaped, although the MreB cytoskeleton appeared to be normal. DynA colocalizes with FtsZ, and the dynA deletion strain shows aberrant FtsZ rings in a subpopulation of cells. The mild division defect of the dynA deletion is exacerbated by an additional deletion in ezrA, which affects FtsZ ring formation, and also by the deletion of a late division gene (divIB, indicating that DynA affects several steps in cell division. DynA and mreB deletions generated a synthetic defect in cell shape maintenance, showing that MreB and DynA play non-epistatic functions in cell shape maintenance. TIRF microscopy revealed that FloT forms many dynamic membrane assemblies that frequently colocalize with the division septum. The deletion of dynA did not change the pattern of localization of FloT, and vice versa, showing that the two proteins play non redundant roles in a variety of cellular processes. Expression of dynamin or flotillin T in eukaryotic S2 cells revealed that both proteins assemble at the cell membrane. While FloT formed patch structures, DynA built up tubulated structures extending away from the cells. Conclusions Bacillus subtilis dynamin ortholog DynA plays a role during cell division and in cell shape maintenance. It shows a genetic link with flotillin T, with both proteins playing non-redundant functions at

  16. New recurrent deletions in the PPARgamma and TP53 genes are associated with childhood myelodysplastic syndrome

    DEFF Research Database (Denmark)

    Silveira, Cássia G T; Oliveira, Fábio M; Valera, Elvis T

    2009-01-01

    Myelodysplastic syndrome (MDS) is a rare hematological malignancy in children. It was performed FISH analysis in 19 pediatric MDS patients to investigate deletions involving the PPARgamma and TP53 genes. Significant losses in the PPARgamma gene and deletions in the tumor suppressor gene TP53 were...

  17. Inactivation of human α-globin gene expression by a de novo deletion located upstream of the α-globin gene cluster

    International Nuclear Information System (INIS)

    Liebhaber, S.A.; Weiss, I.; Cash, F.E.; Griese, E.U.; Horst, J.; Ayyub, H.; Higgs, D.R.

    1990-01-01

    Synthesis of normal human hemoglobin A, α 2 β 2 , is based upon balanced expression of genes in the α-globin gene cluster on chromosome 15 and the β-globin gene cluster on chromosome 11. Full levels of erythroid-specific activation of the β-globin cluster depend on sequences located at a considerable distance 5' to the β-globin gene, referred to as the locus-activating or dominant control region. The existence of an analogous element(s) upstream of the α-globin cluster has been suggested from observations on naturally occurring deletions and experimental studies. The authors have identified an individual with α-thalassemia in whom structurally normal α-globin genes have been inactivated in cis by a discrete de novo 35-kilobase deletion located ∼30 kilobases 5' from the α-globin gene cluster. They conclude that this deletion inactivates expression of the α-globin genes by removing one or more of the previously identified upstream regulatory sequences that are critical to expression of the α-globin genes

  18. High proportion of 22q13 deletions and SHANK3 mutations in Chinese patients with intellectual disability.

    Directory of Open Access Journals (Sweden)

    Xiaohong Gong

    Full Text Available Intellectual disability (ID is a heterogeneous disorder caused by chromosomal abnormalities, monogenic factors and environmental factors. 22q13 deletion syndrome is a genetic disorder characterized by severe ID. Although the frequency of 22q13 deletions in ID is unclear, it is believed to be largely underestimated. To address this issue, we used Affymetrix Human SNP 6.0 array to detect the 22q13 deletions in 234 Chinese unexplained ID patients and 103 controls. After the Quality Control (QC test of raw data, 22q13 deletions were found in four out of 230 cases (1.7%, while absent in parents of the cases and 101 controls. A review of genome-wide microarray studies in ID was performed and the frequency of 22q13 deletions from the literatures was 0.24%, much lower than our report. The overlapping region shared by all 4 cases encompasses the gene SHANK3. A heterozygous de novo nonsense mutation Y1015X of SHANK3 was identified in one ID patient. Cortical neurons were prepared from embryonic mice and were transfected with a control plasmid, shank3 wild-type (WT or mutant plasmids. Overexpression of the Y1015 mutant in neurons significantly affected neurite outgrowth compared with shank3 WT. These findings suggest that 22q13 deletions may be a more frequent cause for Chinese ID patients than previously thought, and the SHANK3 gene is involved in the neurite development.

  19. Transcriptome analysis of an mvp mutant reveals important changes in global gene expression and a role for methyl jasmonate in vernalization and flowering in wheat.

    Science.gov (United States)

    Diallo, Amadou Oury; Agharbaoui, Zahra; Badawi, Mohamed A; Ali-Benali, Mohamed Ali; Moheb, Amira; Houde, Mario; Sarhan, Fathey

    2014-06-01

    The einkorn wheat mutant mvp-1 (maintained vegetative phase 1) has a non-flowering phenotype caused by deletions including, but not limited to, the genes CYS, PHYC, and VRN1. However, the impact of these deletions on global gene expression is still unknown. Transcriptome analysis showed that these deletions caused the upregulation of several pathogenesis-related (PR) and jasmonate-responsive genes. These results suggest that jasmonates may be involved in flowering and vernalization in wheat. To test this hypothesis, jasmonic acid (JA) and methyl jasmonate (MeJA) content in mvp and wild-type plants was measured. The content of JA was comparable in all plants, whereas the content of MeJA was higher by more than 6-fold in mvp plants. The accumulation of MeJA was also observed in vernalization-sensitive hexaploid winter wheat during cold exposure. This accumulation declined rapidly once plants were deacclimated under floral-inductive growth conditions. This suggests that MeJA may have a role in floral transition. To confirm this result, we treated vernalization-insensitive spring wheat with MeJA. The treatment delayed flowering with significant downregulation of both TaVRN1 and TaFT1 genes. These data suggest a role for MeJA in modulating vernalization and flowering time in wheat. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  20. KV4.3 N-terminal deletion mutant Δ2–39

    Science.gov (United States)

    Hovind, Laura J; Skerritt, Matthew R

    2011-01-01

    Gating transitions in the KV4.3 N-terminal deletion mutant Δ2–39 were characterized in the absence and presence of KChIP2b. We particularly focused on gating characteristics of macroscopic (open state) versus closed state inactivation (CSI) and recovery. In the absence of KChIP2b Δ2–39 did not significantly alter the steady-state activation “a4” relationship or general CSI characteristics, but it did slow the kinetics of deactivation, macroscopic inactivation and macroscopic recovery. Recovery kinetics (for both WT KV4.3 and Δ2–39) were complicated and displayed sigmoidicity, a process which was enhanced by Δ2–39. Deletion of the proximal N-terminal domain therefore appeared to specifically slow mechanisms involved in regulating gating transitions occurring after the channel open state(s) had been reached. In the presence of KChIP2b Δ2–39 recovery kinetics (from both macroscopic and CSI) were accelerated, with an apparent reduction in initial sigmoidicity. Hyperpolarizing shifts in both “a4” and isochronal inactivation “i” were also produced. KChIP2b-mediated remodeling of KV4.3 gating transitions was therefore not obligatorily dependent upon an intact N-terminus. To account for these effects we propose that KChIP2 regulatory domains exist in KV4.3 α subunit regions outside of the proximal N-terminal. In addition to regulating macroscopic inactivation, we also propose that the KV4.3 N-terminus may act as a novel regulator of deactivation-recovery coupling. PMID:21057209

  1. Studies on the Nucleotide Sequence, Transcription and Deletion Analysis of the BmNPV Protein Kinase Gene.

    Science.gov (United States)

    Zhang, Chuan-Xi; Hu, Cui; Wu, Xiang-Fu

    1998-01-01

    The coding region of BmvPK-1 gene of Bombyx mori NPV (Strain ZJ8) is 828 nt long and encodes a 276 aa polypeptide with predicted molecular mass of 32 kD. Dot blot analysis showed its mRNA to be gene is first detectable at 18 h p.i. and reaching the highest transcriptional level at 48 h p.i. The result suggested that BmvPK-1 gene is a late or very late gene. The most conserved 365 bp of the BmvPK-1 gene was deleted in a transfer vector (pUCPK-lac), and a report gene (lacZ) was inserted in the deleted position. Cotransfection of BmN cells with pUCPK-lac DNA and BmNPV DNA resulted in the recombinant virus which expressed detectable product of lacZ gene. But the virus with the deleted BmvPK-1 gene could not be isolated from the wild BmNPV by plaque purification method. The result showed that the BmvPK-1 gene deleted virus can multiply only with the help of the product of this gene from the wild type virus, and the gene is necessary for the virus to finish its life cycle in the cultured cells.

  2. [Construction and characterization of enterohemorrhagic Escherichia coli O157:H7 ppk- deleted strain].

    Science.gov (United States)

    Han, Peng; Sun, Qi; Zhao, Suhui; Zhang, Qiwei; Wan, Chengsong

    2014-06-01

    To construct enterohemorrhagic Escherichia coli (EHEC) O157: H7 ppk gene deletion strains and study its biological characteristics. The gene fragment of kanamycin resistance was amplified using a pair of homologous arm primers whose 5' and 3' ends were homologous with ppk gene and kanamycin resistance gene, respectively. EHEC O157: H7 EDL933w competent strains were prepared and transformed via electroporation with the amplification products. The ppk gene was replaced by kanamycin resistance gene using pKD46-mediated Red recombination system. The recombinant strain was confirmed by PCR and sequencing, and its morphology, growth ability and adhesion were assessed using Gram staining, OD600 value and Giemsa staining. We established a ppk-deleted EHEC O157:H7 EDL933w strain with kanamycin resistance and compared the biological characteristics of the wild-type and mutant strains, which may facilitate further study of the regulatory mechanism of ppk gene.

  3. Conditions for gene disruption by homologous recombination of exogenous DNA into the Sulfolobus solfataricus genome

    NARCIS (Netherlands)

    Albers, Sonja-Verena; Driessen, Arnold J.M.

    2008-01-01

    The construction of directed gene deletion mutants is an essential tool in molecular biology that allows functional studies on the role of genes in their natural environment. For hyperthermophilic archaea, it has been difficult to obtain a reliable system to construct such mutants. However, during

  4. Amino-acid composition after loop deletion drives domain swapping.

    Science.gov (United States)

    Nandwani, Neha; Surana, Parag; Udgaonkar, Jayant B; Das, Ranabir; Gosavi, Shachi

    2017-10-01

    Rational engineering of a protein to enable domain swapping requires an understanding of the sequence, structural and energetic factors that favor the domain-swapped oligomer over the monomer. While it is known that the deletion of loops between β-strands can promote domain swapping, the spliced sequence at the position of the loop deletion is thought to have a minimal role to play in such domain swapping. Here, two loop-deletion mutants of the non-domain-swapping protein monellin, frame-shifted by a single residue, were designed. Although the spliced sequence in the two mutants differed by only one residue at the site of the deletion, only one of them (YEIKG) promoted domain swapping. The mutant containing the spliced sequence YENKG was entirely monomeric. This new understanding that the domain swapping propensity after loop deletion may depend critically on the chemical composition of the shortened loop will facilitate the rational design of domain swapping. © 2017 The Protein Society.

  5. Rescue of infectious rift valley fever virus entirely from cDNA, analysis of virus lacking the NSs gene, and expression of a foreign gene.

    Science.gov (United States)

    Ikegami, Tetsuro; Won, Sungyong; Peters, C J; Makino, Shinji

    2006-03-01

    Rift Valley fever virus (RVFV) (genus Phlebovirus, family Bunyaviridae) has a tripartite negative-strand genome, causes a mosquito-borne disease that is endemic in sub-Saharan African countries and that also causes large epidemics among humans and livestock. Furthermore, it is a bioterrorist threat and poses a risk for introduction to other areas. In spite of its danger, neither veterinary nor human vaccines are available. We established a T7 RNA polymerase-driven reverse genetics system to rescue infectious clones of RVFV MP-12 strain entirely from cDNA, the first for any phlebovirus. Expression of viral structural proteins from the protein expression plasmids was not required for virus rescue, whereas NSs protein expression abolished virus rescue. Mutants of MP-12 partially or completely lacking the NSs open reading frame were viable. These NSs deletion mutants replicated efficiently in Vero and 293 cells, but not in MRC-5 cells. In the latter cell line, accumulation of beta interferon mRNA occurred after infection by these NSs deletion mutants, but not after infection by MP-12. The NSs deletion mutants formed larger plaques than MP-12 did in Vero E6 cells and failed to shut off host protein synthesis in Vero cells. An MP-12 mutant carrying a luciferase gene in place of the NSs gene replicated as efficiently as MP-12 did, produced enzymatically active luciferase during replication, and stably retained the luciferase gene after 10 virus passages, representing the first demonstration of foreign gene expression in any bunyavirus. This reverse genetics system can be used to study the molecular virology of RVFV, assess current vaccine candidates, produce new vaccines, and incorporate marker genes into animal vaccines.

  6. Systematic Identification of Determinants for Single-Strand Annealing-Mediated Deletion Formation in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Maia Segura-Wang

    2017-10-01

    Full Text Available To ensure genomic integrity, living organisms have evolved diverse molecular processes for sensing and repairing damaged DNA. If improperly repaired, DNA damage can give rise to different types of mutations, an important class of which are genomic structural variants (SVs. In spite of their importance for phenotypic variation and genome evolution, potential contributors to SV formation in Saccharomyces cerevisiae (budding yeast, a highly tractable model organism, are not fully recognized. Here, we developed and applied a genome-wide assay to identify yeast gene knockout mutants associated with de novo deletion formation, in particular single-strand annealing (SSA-mediated deletion formation, in a systematic manner. In addition to genes previously linked to genome instability, our approach implicates novel genes involved in chromatin remodeling and meiosis in affecting the rate of SSA-mediated deletion formation in the presence or absence of stress conditions induced by DNA-damaging agents. We closely examined two candidate genes, the chromatin remodeling gene IOC4 and the meiosis-related gene MSH4, which when knocked-out resulted in gene expression alterations affecting genes involved in cell division and chromosome organization, as well as DNA repair and recombination, respectively. Our high-throughput approach facilitates the systematic identification of processes linked to the formation of a major class of genetic variation.

  7. Reduced host cell invasiveness and oxidative stress tolerance in double and triple csp gene family deletion mutants of Listeria monocytogenes.

    Science.gov (United States)

    Loepfe, Chantal; Raimann, Eveline; Stephan, Roger; Tasara, Taurai

    2010-07-01

    The cold shock protein (Csp) family comprises small, highly conserved proteins that bind nucleic acids to modulate various bacterial gene expressions. In addition to cold adaptation functions, this group of proteins is thought to facilitate various cellular processes to promote normal growth and stress adaptation responses. Three proteins making up the Listeria monocytogenes Csp family (CspA, CspB, and CspD) promote both cold and osmotic stress adaptation functions in this bacterium. The contribution of these three Csps in the host cell invasion processes of L. monocytogenes was investigated based on human Caco-2 and murine macrophage in vitro cell infection models. The DeltacspB, DeltacspD, DeltacspAB, DeltacspAD, DeltacspBD, and DeltacspABD strains were all significantly impaired in Caco-2 cell invasion compared with the wild-type strain, whereas in the murine macrophage infection assay only, the double (DeltacspBD) and triple (DeltacspABD) csp mutants were also significantly impaired in cell invasion compared with the wild-type strain. The DeltacspBD and DeltacspABD mutants displayed the most severely impaired invasion phenotypes. The invasion ability of these two mutant strains was also further analyzed using cold-stress-exposed organisms. In both cell infection models a significant reduction in invasiveness was observed after cold stress exposure of Listeria organisms. The negative impact of cold stress on subsequent cell invasion ability was, however, more severe in cold-sensitive csp mutants (DeltacspBD and DeltacspABD) compared with the wild type. The impaired macrophage invasion and intracellular growth of DeltacspBD and DeltacspABD also led us to examine oxidative stress resistance capacity in these two mutant strains. Both strains also displayed higher oxidative stress sensitivity relative to the wild-type strain. Our data indicate that besides cold and osmotic stress adaptation roles, Csp family proteins also promote efficient host cell invasion and

  8. Contiguous gene deletion of chromosome 2p16.3-p21 as a cause of Lynch syndrome.

    Science.gov (United States)

    Salo-Mullen, Erin E; Lynn, Patricio B; Wang, Lu; Walsh, Michael; Gopalan, Anuradha; Shia, Jinru; Tran, Christina; Man, Fung Ying; McBride, Sean; Schattner, Mark; Zhang, Liying; Weiser, Martin R; Stadler, Zsofia K

    2018-01-01

    Lynch syndrome is an autosomal dominant condition caused by pathogenic mutations in the DNA mismatch repair (MMR) genes. Although commonly associated with clinical features such as intellectual disability and congenital anomalies, contiguous gene deletions may also result in cancer predisposition syndromes. We report on a 52-year-old male with Lynch syndrome caused by deletion of chromosome 2p16.3-p21. The patient had intellectual disability and presented with a prostatic adenocarcinoma with an incidentally identified synchronous sigmoid adenocarcinoma that exhibited deficient MMR with an absence of MSH2 and MSH6 protein expression. Family history was unrevealing. Physical exam revealed short stature, brachycephaly with a narrow forehead and short philtrum, brachydactyly of the hands, palmar transverse crease, broad and small feet with hyperpigmentation of the soles. The patient underwent total colectomy with ileorectal anastomosis for a pT3N1 sigmoid adenocarcinoma. Germline genetic testing of the MSH2, MSH6, and EPCAM genes revealed full gene deletions. SNP-array based DNA copy number analysis identified a deletion of 4.8 Mb at 2p16.3-p21. In addition to the three Lynch syndrome associated genes, the deleted chromosomal section encompassed genes including NRXN1, CRIPT, CALM2, FBXO11, LHCGR, MCFD2, TTC7A, EPAS1, PRKCE, and 15 others. Contiguous gene deletions have been described in other inherited cancer predisposition syndromes, such as Familial Adenomatous Polyposis. Our report and review of the literature suggests that contiguous gene deletion within the 2p16-p21 chromosomal region is a rare cause of Lynch syndrome, but presents with distinct phenotypic features, highlighting the need for recognition and awareness of this syndromic entity.

  9. A monoallelic deletion of the TcCRT gene increases the attenuation of a cultured Trypanosoma cruzi strain, protecting against an in vivo virulent challenge.

    Directory of Open Access Journals (Sweden)

    Fernando J Sánchez-Valdéz

    2014-02-01

    Full Text Available Trypanosoma cruzi calreticulin (TcCRT is a virulence factor that binds complement C1, thus inhibiting the activation of the classical complement pathway and generating pro-phagocytic signals that increase parasite infectivity. In a previous work, we characterized a clonal cell line lacking one TcCRT allele (TcCRT+/- and another overexpressing it (TcCRT+, both derived from the attenuated TCC T. cruzi strain. The TcCRT+/- mutant was highly susceptible to killing by the complement machinery and presented a remarkable reduced propagation and differentiation rate both in vitro and in vivo. In this report, we have extended these studies to assess, in a mouse model of disease, the virulence, immunogenicity and safety of the mutant as an experimental vaccine. Balb/c mice were inoculated with TcCRT+/- parasites and followed-up during a 6-month period. Mutant parasites were not detected by sensitive techniques, even after mice immune suppression. Total anti-T. cruzi IgG levels were undetectable in TcCRT+/- inoculated mice and the genetic alteration was stable after long-term infection and it did not revert back to wild type form. Most importantly, immunization with TcCRT+/- parasites induces a highly protective response after challenge with a virulent T. cruzi strain, as evidenced by lower parasite density, mortality, spleen index and tissue inflammatory response. TcCRT+/- clones are restricted in two important properties conferred by TcCRT and indirectly by C1q: their ability to evade the host immune response and their virulence. Therefore, deletion of one copy of the TcCRT gene in the attenuated TCC strain generated a safe and irreversibly gene-deleted live attenuated parasite with high immunoprotective properties. Our results also contribute to endorse the important role of TcCRT as a T. cruzi virulence factor.

  10. Deletion and reduced expression of the Fanconi anemia FANCA gene in sporadic acute myeloid leukemia.

    Science.gov (United States)

    Tischkowitz, M D; Morgan, N V; Grimwade, D; Eddy, C; Ball, S; Vorechovsky, I; Langabeer, S; Stöger, R; Hodgson, S V; Mathew, C G

    2004-03-01

    Fanconi anemia (FA) is an autosomal recessive chromosomal instability disorder caused by mutations in one of seven known genes (FANCA,C,D2,E,F,G and BRCA2). Mutations in the FANCA gene are the most prevalent, accounting for two-thirds of FA cases. Affected individuals have greatly increased risks of acute myeloid leukemia (AML). This raises the question as to whether inherited or acquired mutations in FA genes might be involved in the development of sporadic AML. Quantitative fluorescent PCR was used to screen archival DNA from sporadic AML cases for FANCA deletions, which account for 40% of FANCA mutations in FA homozygotes. Four heterozygous deletions were found in 101 samples screened, which is 35-fold higher than the expected population frequency for germline FANCA deletions (PFANCA in the AML samples with FANCA deletions did not detect mutations in the second allele and there was no evidence of epigenetic silencing by hypermethylation. However, real-time quantitative PCR analysis in these samples showed reduced expression of FANCA compared to nondeleted AML samples and to controls. These findings suggest that gene deletions and reduced expression of FANCA may be involved in the promotion of genetic instability in a subset of cases of sporadic AML.

  11. The entire β-globin gene cluster is deleted in a form of τδβ-thalassemia.

    NARCIS (Netherlands)

    E.R. Fearon; H.H.Jr. Kazazian; P.G. Waber (Pamela); J.I. Lee (Joseph); S.E. Antonarakis; S.H. Orkin (Stuart); E.F. Vanin; P.S. Henthorn; F.G. Grosveld (Frank); A.F. Scott; G.R. Buchanan

    1983-01-01

    textabstractWe have used restriction endonuclease mapping to study a deletion involving the beta-globin gene cluster in a Mexican-American family with gamma delta beta-thalassemia. Analysis of DNA polymorphisms demonstrated deletion of the beta-globin gene from the affected chromosome. Using a DNA

  12. Deletion analysis of SMN1 and NAIP genes in southern Chinese children with spinal muscular atrophy

    Institute of Scientific and Technical Information of China (English)

    Yu-hua LIANG; Xiao-ling CHEN; Zhong-sheng YU; Chun-yue CHEN; Sheng BI; Lian-gen MAO; Bo-lin ZHOU; Xian-ning ZHANG

    2009-01-01

    Spinal muscular atrophy (SMA) is a disorder characterized by degeneration of lower motor neurons and occasionally bulbar motor neurons leading to progressive limb and trunk paralysis as well as muscular atrophy. Three types of SMA are rec-ognized depending on the age of onset, the maximum muscular activity achieved, and survivorship: SMA1, SMA2, and SMA3. The survival of motor neuron (SMN) gene has been identified as an SMA determining gene, whereas the neuronal apoptosis inhibitory protein (NAIP) gene is considered to be a modifying factor of the severity of SMA. The main objective of this study was to analyze the deletion of SMN1 and NAIP genes in southern Chinese children with SMA. Here, polymerase chain reaction (PCR) combined with restriction fragment length polymorphism (RFLP) was performed to detect the deletion of both exon 7 and exon 8 of SMNI and exon 5 of NAIP in 62 southern Chinese children with strongly suspected clinical symptoms of SMA. All the 32 SMAI patients and 76% (13/17) of SMA2 patients showed homozygous deletions for exon 7 and exon 8, and all the 13 SMA3 patients showed single deletion of SMN1 exon 7 along with 24% (4/17) of SMA2 patients. Eleven out of 32 (34%) SMA1 patients showed NAIP deletion, and none of SMA2 and SMA3 patients was found to have NAIP deletion. The findings of homozygous deletions of exon 7 and/or exon 8 of SMN1 gene confirmed the diagnosis of SMA, and suggested that the deletion of SMN1 exon 7 is a major cause of SMA in southern Chinese children, and that the NA1P gene may be a modifying factor for disease severity of SMA 1. The molecular diagnosis system based on PCR-RFLP analysis can conveniently be applied in the clinical testing, genetic counseling, prenatal diagnosis and preimplantation genetic diagnosis of SMA.

  13. Rb and p53 gene deletions in lung adenocarcinomas from irradiated and control mice

    International Nuclear Information System (INIS)

    Zhang, Y.; Woloschak, G.E.

    1997-01-01

    This study was conducted on mouse lung adenocarcinoma tissues that were formalin-treated and paraffin-embedded 25 years ago to investigate the large gene deletions of mRb and p53 in B6CF 1 male mice. A total of 80 lung tissue samples from irradiated mice and 40 lung samples from nonirradiated controls were randomly selected and examined in the mRb portion of this study. The results showed a significant (P 0.05) from that for spontaneous lung adenocarcinomas or lung adenocarcinomas from mice exposed to single-dose γ irradiation at a similar total dose. mRb fragments 3 (71%) and 5 (67%), the parts of the gene that encoded the pocket binding region of Rb protein to adenovirus E1A and SV40 T-antigen, were the most frequently deleted fragments. p53 gene deletion analysis was carried out on normal lungs and lung adenocarcinomas that were initially found to bear mRb deletions. Exons 1,4,5,6, and 9 were chosen to be analyzed

  14. Construction of an Unmarked Zymomonas mobilis Mutant Using a Site-Specific FLP Recombinase

    Directory of Open Access Journals (Sweden)

    Shao-Lan Zou

    2012-01-01

    Full Text Available Flippase expression was carried out in Zymomonas mobilis strain ZM4. The FRT-flanked selection marker gene was first integrated into the ZM4 chromosome by homologous recombination. The Saccharomyces cerevisiae flp gene was then introduced under the control of the ZM4 gap gene promoter (Pgap, encoding glyceraldehyde-3-phosphate dehydrogenase or the λ bacteriophage cI857-pR contained in the broad-host-range cloning vector pBBR1-MCS-2. This study demonstrated that flp was expressed and that the deletion frequency of the FRT-flanked marker gene was very high (approx. 100 %. In addition, the flp gene expression vector could be conveniently removed from the resulting unmarked Z. mobilis mutants by serially transferring the cells three times into antibiotic-free medium, thereby establishing an efficient method for constructing unmarked Z. mobilis mutants.

  15. Detection of retinoblastoma gene deletions in spontaneous and radiation-induced mouse lung adenocarcinomas by polymerase chain reaction

    International Nuclear Information System (INIS)

    Churchill, M.E.; Gemmell, M.A.; Woloschak, G.E.

    1994-01-01

    A polymerase chain reaction (PCR) technique has been developed to detect deletions in the mouse retinoblastoma gene using histological sections from radiation-induced and spontaneous tumors as the DNA source. Six mouse Rb gene exon fragments were amplified in a 40-cycle, 3-temperature PCR protocol. The absence of any of these fragments relative to control PCR products on a Southern blot indicated a deletion of that portion of the mouse Rb gene. Tumors chosen for analysis were lung adenocarcinomas that were judged to be the cause of death. Spontaneous tumors as well as those from irradiated mice (5.69 Gy 60 Co γ rays or 0.6 Gy JANUS neutrons, which have been found to have approximately equal radiobiological effectiveness) were analyzed for mouse Rb deletions. Tumors in 6 neutron-irradiated mice had no mouse Rb deletions. However, 1 of 6 tumors from γ-irradiated mice (17%) and 6 of 18 spontaneous tumors from unirradiated mice (33%) showed a deletion in one or both mouse Rb alleles. All deletions detected were in the 5' region of the mouse Rb gene. 36 refs., 2 figs., 2 tabs

  16. The capacity of Listeria monocytogenes mutants with in-frame deletions in putative ATP-binding cassette transporters to form biofilms and comparison with the wild type

    Directory of Open Access Journals (Sweden)

    Marina Ceruso

    2014-02-01

    Full Text Available Listeria monocytogenes (Lm is a food-borne pathogen responsible for human listeriosis, an invasive infection with high mortality rates. Lm has developed efficient strategies for survival under stress conditions such as starvation and wide variations in temperature, pH, and osmolarity. Therefore, Lm can survive in food under multiple stress conditions. Detailed studies to determine the mode of action of this pathogen for survival under stress conditions are important to control Lm in food. It has been shown that genes encoding for ATP-binding cassette (ABC transporters are induced in Lm in food, in particular under stress conditions. Previous studies showed that these genes are involved in sensitivity to nisin, acids, and salt. The aim of this study was to determine the involvement of some ABC transporters in biofilm formation. Therefore, deletion mutants of ABC transporter genes (LMOf2365_1875 and LMOf2365_1877 were created in Lm F2365, and then were compared to the wild type for their capacity to form biofilms. Lm strain F2365 was chosen as reference since the genome is fully sequenced and furthermore this strain is particularly involved in food-borne outbreaks of listeriosis. Our results showed that DLMOf2365_1875 had an increased capacity to form biofilms compared to the wild type, indicating that LMOf2365_1875 negatively regulates biofilm formation. A deeper knowledge on the ability to form biofilms in these mutants may help in the development of intervention strategies to control Lm in food and in the environment.

  17. Whole-genome analysis of herbicide-tolerant mutant rice generated by Agrobacterium-mediated gene targeting.

    Science.gov (United States)

    Endo, Masaki; Kumagai, Masahiko; Motoyama, Ritsuko; Sasaki-Yamagata, Harumi; Mori-Hosokawa, Satomi; Hamada, Masao; Kanamori, Hiroyuki; Nagamura, Yoshiaki; Katayose, Yuichi; Itoh, Takeshi; Toki, Seiichi

    2015-01-01

    Gene targeting (GT) is a technique used to modify endogenous genes in target genomes precisely via homologous recombination (HR). Although GT plants are produced using genetic transformation techniques, if the difference between the endogenous and the modified gene is limited to point mutations, GT crops can be considered equivalent to non-genetically modified mutant crops generated by conventional mutagenesis techniques. However, it is difficult to guarantee the non-incorporation of DNA fragments from Agrobacterium in GT plants created by Agrobacterium-mediated GT despite screening with conventional Southern blot and/or PCR techniques. Here, we report a comprehensive analysis of herbicide-tolerant rice plants generated by inducing point mutations in the rice ALS gene via Agrobacterium-mediated GT. We performed genome comparative genomic hybridization (CGH) array analysis and whole-genome sequencing to evaluate the molecular composition of GT rice plants. Thus far, no integration of Agrobacterium-derived DNA fragments has been detected in GT rice plants. However, >1,000 single nucleotide polymorphisms (SNPs) and insertion/deletion (InDels) were found in GT plants. Among these mutations, 20-100 variants might have some effect on expression levels and/or protein function. Information about additive mutations should be useful in clearing out unwanted mutations by backcrossing. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  18. Interleukin 3 gene is located on human chromosome 5 and is deleted in myeloid leukemias with a deletion of 5q

    International Nuclear Information System (INIS)

    Le Beau, M.M.; Epstein, N.D.; O'Brien, S.J.; Nienhuis, A.W.; Yang, Y.C.; Clark, S.C.; Rowley, J.D.

    1987-01-01

    The gene IL-3 encodes interleukin 3, a hematopoietic colony-stimulating factor (CSF) that is capable of supporting the proliferation of a broad range of hematopoietic cell types. By using somatic cell hybrids and in situ chromosomal hybridization, the authors localized this gene to human chromosome 5 at bands q23-31, a chromosomal region that is frequently deleted [del(5q)] in patients with myeloid disorders. By in situ hybridization, IL-3 was found to be deleted in the 5q-chromosome of one patient with refractory anemia who had a del(5)(q15q33.3), of three patients with refractory anemia (two patients) or acute nonlymphocytic leukemia (ANLL) de novo who had a similar distal breakpoint [del(5)(q13q33.3)], and of a fifth patient, with therapy-related ANLL, who had a similar distal breakpoint in band q33[del(5)(q14q33.3)]. Southern blot analysis of somatic cell hybrids retaining the normal or the deleted chromosome 5 from two patients with the refractory anemia 5q- syndrome indicated that IL-3 sequences were absent from the hybrids retaining the deleted chromosome 5 but not from hybrids that had a cytologically normal chromosome 5. Thus, a small segment of chromosome 5 contains IL-3, GM-CSF, CSF-1, and FMS. The findings and earlier results indicating that GM-CSF, CSF-1, and FMS were deleted in the 5q- chromosome, suggest that loss of IL-3 or of other CSF genes may play an important role in the pathogenesis of hematologic disorders associated with a del(5q)

  19. Effects of deletion of the Streptococcus pneumoniae lipoprotein diacylglyceryl transferase gene lgt on ABC transporter function and on growth in vivo.

    Directory of Open Access Journals (Sweden)

    Suneeta Chimalapati

    Full Text Available Lipoproteins are an important class of surface associated proteins that have diverse roles and frequently are involved in the virulence of bacterial pathogens. As prolipoproteins are attached to the cell membrane by a single enzyme, prolipoprotein diacylglyceryl transferase (Lgt, deletion of the corresponding gene potentially allows the characterisation of the overall importance of lipoproteins for specific bacterial functions. We have used a Δlgt mutant strain of Streptococcus pneumoniae to investigate the effects of loss of lipoprotein attachment on cation acquisition, growth in media containing specific carbon sources, and virulence in different infection models. Immunoblots of triton X-114 extracts, flow cytometry and immuno-fluorescence microscopy confirmed the Δlgt mutant had markedly reduced lipoprotein expression on the cell surface. The Δlgt mutant had reduced growth in cation depleted medium, increased sensitivity to oxidative stress, reduced zinc uptake, and reduced intracellular levels of several cations. Doubling time of the Δlgt mutant was also increased slightly when grown in medium with glucose, raffinose and maltotriose as sole carbon sources. These multiple defects in cation and sugar ABC transporter function for the Δlgt mutant were associated with only slightly delayed growth in complete medium. However the Δlgt mutant had significantly reduced growth in blood or bronchoalveolar lavage fluid and a marked impairment in virulence in mouse models of nasopharyngeal colonisation, sepsis and pneumonia. These data suggest that for S. pneumoniae loss of surface localisation of lipoproteins has widespread effects on ABC transporter functions that collectively prevent the Δlgt mutant from establishing invasive infection.

  20. Altered Actions of Memantine and NMDA-Induced Currents in a New Grid2-Deleted Mouse Line

    Directory of Open Access Journals (Sweden)

    Ayako Kumagai

    2014-12-01

    Full Text Available Memantine is a non-competitive antagonist of the N-methyl-D-aspartate (NMDA receptor, and is an approved drug for the treatment of moderate-to-severe Alzheimer’s disease. We identified a mouse strain with a naturally occurring mutation and an ataxic phenotype that presents with severe leg cramps. To investigate the phenotypes of these mutant mice, we screened several phenotype-modulating drugs and found that memantine (10 mg/kg disrupted the sense of balance in the mutants. Moreover, the mutant mice showed an attenuated optokinetic response (OKR and impaired OKR learning, which was also observed in wild-type mice treated with memantine. Microsatellite analyses indicated that the Grid2 gene-deletion is responsible for these phenotypes. Patch-clamp analysis showed a relatively small change in NMDA-dependent current in cultured granule cells from Grid2 gene-deleted mice, suggesting that GRID2 is important for correct NMDA receptor function. In general, NMDA receptors are activated after the activation of non-NMDA receptors, such as AMPA receptors, and AMPA receptor dysregulation also occurs in Grid2 mutant mice. Indeed, the AMPA treatment enhanced memantine susceptibility in wild-type mice, which was indicated by balance sense and OKR impairments. The present study explores a new role for GRID2 and highlights the adverse effects of memantine in different genetic backgrounds.

  1. Altered Actions of Memantine and NMDA-Induced Currents in a New Grid2-Deleted Mouse Line

    Science.gov (United States)

    Kumagai, Ayako; Fujita, Akira; Yokoyama, Tomoki; Nonobe, Yuki; Hasaba, Yasuhiro; Sasaki, Tsutomu; Itoh, Yumi; Koura, Minako; Suzuki, Osamu; Adachi, Shigeki; Ryo, Haruko; Kohara, Arihiro; Tripathi, Lokesh P.; Sanosaka, Masato; Fukushima, Toshiki; Takahashi, Hiroyuki; Kitagawa, Kazuo; Nagaoka, Yasuo; Kawahara, Hidehisa; Mizuguchi, Kenji; Nomura, Taisei; Matsuda, Junichiro; Tabata, Toshihide; Takemori, Hiroshi

    2014-01-01

    Memantine is a non-competitive antagonist of the N-methyl-d-aspartate (NMDA) receptor, and is an approved drug for the treatment of moderate-to-severe Alzheimer’s disease. We identified a mouse strain with a naturally occurring mutation and an ataxic phenotype that presents with severe leg cramps. To investigate the phenotypes of these mutant mice, we screened several phenotype-modulating drugs and found that memantine (10 mg/kg) disrupted the sense of balance in the mutants. Moreover, the mutant mice showed an attenuated optokinetic response (OKR) and impaired OKR learning, which was also observed in wild-type mice treated with memantine. Microsatellite analyses indicated that the Grid2 gene-deletion is responsible for these phenotypes. Patch-clamp analysis showed a relatively small change in NMDA-dependent current in cultured granule cells from Grid2 gene-deleted mice, suggesting that GRID2 is important for correct NMDA receptor function. In general, NMDA receptors are activated after the activation of non-NMDA receptors, such as AMPA receptors, and AMPA receptor dysregulation also occurs in Grid2 mutant mice. Indeed, the AMPA treatment enhanced memantine susceptibility in wild-type mice, which was indicated by balance sense and OKR impairments. The present study explores a new role for GRID2 and highlights the adverse effects of memantine in different genetic backgrounds. PMID:25513882

  2. Comparative proteomics of a tor inducible Aspergillus fumigatus mutant reveals involvement of the Tor kinase in iron regulation.

    Science.gov (United States)

    Baldin, Clara; Valiante, Vito; Krüger, Thomas; Schafferer, Lukas; Haas, Hubertus; Kniemeyer, Olaf; Brakhage, Axel A

    2015-07-01

    The Tor (target of rapamycin) kinase is one of the major regulatory nodes in eukaryotes. Here, we analyzed the Tor kinase in Aspergillus fumigatus, which is the most important airborne fungal pathogen of humans. Because deletion of the single tor gene was apparently lethal, we generated a conditional lethal tor mutant by replacing the endogenous tor gene by the inducible xylp-tor gene cassette. By both 2DE and gel-free LC-MS/MS, we found that Tor controls a variety of proteins involved in nutrient sensing, stress response, cell cycle progression, protein biosynthesis and degradation, but also processes in mitochondria, such as respiration and ornithine metabolism, which is required for siderophore formation. qRT-PCR analyses indicated that mRNA levels of ornithine biosynthesis genes were increased under iron limitation. When tor was repressed, iron regulation was lost. In a deletion mutant of the iron regulator HapX also carrying the xylp-tor cassette, the regulation upon iron deprivation was similar to that of the single tor inducible mutant strain. In line, hapX expression was significantly reduced when tor was repressed. Thus, Tor acts either upstream of HapX or independently of HapX as a repressor of the ornithine biosynthesis genes and thereby regulates the production of siderophores. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A double-mutant collection targeting MAP kinase related genes in Arabidopsis for studying genetic interactions.

    Science.gov (United States)

    Su, Shih-Heng; Krysan, Patrick J

    2016-12-01

    Mitogen-activated protein kinase cascades are conserved in all eukaryotes. In Arabidopsis thaliana there are approximately 80 genes encoding MAP kinase kinase kinases (MAP3K), 10 genes encoding MAP kinase kinases (MAP2K), and 20 genes encoding MAP kinases (MAPK). Reverse genetic analysis has failed to reveal abnormal phenotypes for a majority of these genes. One strategy for uncovering gene function when single-mutant lines do not produce an informative phenotype is to perform a systematic genetic interaction screen whereby double-mutants are created from a large library of single-mutant lines. Here we describe a new collection of 275 double-mutant lines derived from a library of single-mutants targeting genes related to MAP kinase signaling. To facilitate this study, we developed a high-throughput double-mutant generating pipeline using a system for growing Arabidopsis seedlings in 96-well plates. A quantitative root growth assay was used to screen for evidence of genetic interactions in this double-mutant collection. Our screen revealed four genetic interactions, all of which caused synthetic enhancement of the root growth defects observed in a MAP kinase 4 (MPK4) single-mutant line. Seeds for this double-mutant collection are publicly available through the Arabidopsis Biological Resource Center. Scientists interested in diverse biological processes can now screen this double-mutant collection under a wide range of growth conditions in order to search for additional genetic interactions that may provide new insights into MAP kinase signaling. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  4. Chassis organism from Corynebacterium glutamicum--a top-down approach to identify and delete irrelevant gene clusters.

    Science.gov (United States)

    Unthan, Simon; Baumgart, Meike; Radek, Andreas; Herbst, Marius; Siebert, Daniel; Brühl, Natalie; Bartsch, Anna; Bott, Michael; Wiechert, Wolfgang; Marin, Kay; Hans, Stephan; Krämer, Reinhard; Seibold, Gerd; Frunzke, Julia; Kalinowski, Jörn; Rückert, Christian; Wendisch, Volker F; Noack, Stephan

    2015-02-01

    For synthetic biology applications, a robust structural basis is required, which can be constructed either from scratch or in a top-down approach starting from any existing organism. In this study, we initiated the top-down construction of a chassis organism from Corynebacterium glutamicum ATCC 13032, aiming for the relevant gene set to maintain its fast growth on defined medium. We evaluated each native gene for its essentiality considering expression levels, phylogenetic conservation, and knockout data. Based on this classification, we determined 41 gene clusters ranging from 3.7 to 49.7 kbp as target sites for deletion. 36 deletions were successful and 10 genome-reduced strains showed impaired growth rates, indicating that genes were hit, which are relevant to maintain biological fitness at wild-type level. In contrast, 26 deleted clusters were found to include exclusively irrelevant genes for growth on defined medium. A combinatory deletion of all irrelevant gene clusters would, in a prophage-free strain, decrease the size of the native genome by about 722 kbp (22%) to 2561 kbp. Finally, five combinatory deletions of irrelevant gene clusters were investigated. The study introduces the novel concept of relevant genes and demonstrates general strategies to construct a chassis suitable for biotechnological application. © 2014 The Authors. Biotechnology Journal published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the Creative Commons Attribution-Non-Commercial-NoDerivs Licence, which permits use and distribution in any medium, provided the original work is properly cited, the use is non- commercial and no modifications or adaptations are made.

  5. Selection of Mycoplasma hominis PG21 deletion mutants by cultivation in the presence of monoclonal antibody 552

    DEFF Research Database (Denmark)

    Jensen, Lise Torp; Ladefoged, Søren; Birkelund, Svend

    1995-01-01

    monoclonal antibody (MAb) 552. The epitope for MAb 552 was localized at the repeated part of the protein. The gene encoding Lmp1 is part of a transcriptional complex that contains 9.5 direct repeats of 471 bp each. Pure cultures of mutant strains were obtained by subcloning, and three mutants were...

  6. Boosting Anaplerotic Reactions by Pyruvate Kinase Gene Deletion and Phosphoenolpyruvate Carboxylase Desensitization for Glutamic Acid and Lysine Production in Corynebacterium glutamicum.

    Science.gov (United States)

    Yokota, Atsushi; Sawada, Kazunori; Wada, Masaru

    In the 1980s, Shiio and coworkers demonstrated using random mutagenesis that the following three phenotypes were effective for boosting lysine production by Corynebacterium glutamicum: (1) low-activity-level citrate synthase (CS L ), (2) phosphoenolpyruvate carboxylase (PEPC) resistant to feedback inhibition by aspartic acid (PEPC R ), and (3) pyruvate kinase (PYK) deficiency. Here, we reevaluated these phenotypes and their interrelationship in lysine production using recombinant DNA techniques.The pyk deletion and PEPC R (D299N in ppc) independently showed marginal effects on lysine production, but both phenotypes synergistically increased lysine yield, demonstrating the importance of PEPC as an anaplerotic enzyme in lysine production. Similar effects were also found for glutamic acid production. CS L (S252C in gltA) further increased lysine yield. Thus, using molecular techniques, the combination of these three phenotypes was reconfirmed to be effective for lysine production. However, a simple CS L mutant showed instabilities in growth and lysine yield.Surprisingly, the pyk deletion was found to increase biomass production in wild-type C. glutamicum ATCC13032 under biotin-sufficient conditions. The mutant showed a 37% increase in growth (based on OD 660 ) compared with the ATCC13032 strain in a complex medium containing 100 g/L glucose. Metabolome analysis revealed the intracellular accumulation of excess precursor metabolites. Thus, their conversion into biomass was considered to relieve the metabolic distortion in the pyk-deleted mutant. Detailed physiological studies of various pyk-deleted mutants also suggested that malate:quinone oxidoreductase (MQO) is important to control both the intracellular oxaloacetic acid (OAA) level and respiration rate. These findings may facilitate the rational use of C. glutamicum in fermentation industries.

  7. Deletions induced by gamma rays in the genome of Escherichia coli

    International Nuclear Information System (INIS)

    Raha, Manidipa; Hutchinson, Franklin

    1991-01-01

    An Escherichia coli lysogen was constructed with a lambda phage bearing a lacZ gene surrounded by about 100 x 10 3 base-pairs of dispensable DNA. The lacZ mutants induced by gamma rays in this lysogen were more than 10% large deletions, ranging in size from 0.6 x 10 -3 to 70 x 10 3 base-pairs. These deletions were centered, not on lacZ, but on a ColE1 origin of DNA replication located 1.2 x 10 3 bases downstream from lacZ, suggesting that this origin of replication was involved in the process by which deletions were formed. In agreement with this hypothesis, a lysogen of the same phage without the ColE1 origin showed a very much lower percentage of radiation-induced deletions, as did a second lysogen of a lambda phage without any known plasmid origin of replication. Indirect evidence is presented for radiation-induced deletions centered on the lambda origin of DNA replication in a lysogen. (author)

  8. [Construction and Function Verification of a Novel Shuttle Vector Containing a Marker Gene Self-deletion System].

    Science.gov (United States)

    Li, Lili; Wang, Zhan; Zhou, Yubai; Zhang, Fang; Shen, Sisi; Li, Zelin; Zeng, Yi

    2015-09-01

    For rapid and accurate screening of recombinant modified vaccinia virus Ankara (rMVA) that satisfied the quality standards of clinical trials, a novel shuttle vector that can delete the marker gene automatically during virus propagation was construted: pZL-EGFP. To construct the pZL-EGFP, the original shuttle vector pSC11 was modified by replacing the LacZ marker gene with enhanced green fluorescent protein (EGFP) and then inserting homologous sequences of TKL into the flank regions of EGFP. Baby hamster kidney (BHK)-21 cells were cotransfected with pZL-EGFP and MVA, and underwent ten passages and one plaque screening to obtain the EGFP-free rMVA carrying the exogenous gene. Resulting rMVA was tested by polymerase chain reaction and western blotting to verify pZL-EGFP function. A novel shuttle vector pZL-EGFP containing an EGFP marker gene which could be deleted automatically was constructed. This gene deletion had no effect on the activities of rMVA, and the exogenous gene could be expressed stably. These results suggest that rMVA can be packaged efficiently by homologous recombination between pZL-EGFP and MVA in BHK-21 cells, and that the carried EGFP gene can be removed automatically by intramolecular homologous recombination during virus passage. Meanwhile, the gene deletion had no influence on the activities of rMVA and the expression of exogenous target gene. This study lays a solid foundation for the future research.

  9. Comprehensive identification of Salmonella enterica serovar typhimurium genes required for infection of BALB/c mice.

    Directory of Open Access Journals (Sweden)

    Roy R Chaudhuri

    2009-07-01

    Full Text Available Genes required for infection of mice by Salmonella Typhimurium can be identified by the interrogation of random transposon mutant libraries for mutants that cannot survive in vivo. Inactivation of such genes produces attenuated S. Typhimurium strains that have potential for use as live attenuated vaccines. A quantitative screen, Transposon Mediated Differential Hybridisation (TMDH, has been developed that identifies those members of a large library of transposon mutants that are attenuated. TMDH employs custom transposons with outward-facing T7 and SP6 promoters. Fluorescently-labelled transcripts from the promoters are hybridised to whole-genome tiling microarrays, to allow the position of the transposon insertions to be determined. Comparison of microarray data from the mutant library grown in vitro (input with equivalent data produced after passage of the library through mice (output enables an attenuation score to be determined for each transposon mutant. These scores are significantly correlated with bacterial counts obtained during infection of mice using mutants with individual defined deletions of the same genes. Defined deletion mutants of several novel targets identified in the TMDH screen are effective live vaccines.

  10. Transgenic mice display hair loss and regrowth overexpressing mutant Hr gene.

    Science.gov (United States)

    Zhu, Kuicheng; Xu, Cunshuan; Zhang, Jintao; Chen, Yingying; Liu, Mengduan

    2017-10-30

    Mutations in the hairless (Hr) gene in both mice and humans have been implicated in the development of congenital atrichia, but the role of Hr in skin and hair follicle (HF) biology remains unknown. Here, we established transgenic mice (TG) overexpressing mutant Hr to investigate its specific role in the development of HF. Three transgenic lines were successfully constructed, and two of them (TG3 and TG8) displayed a pattern of hair loss and regrowth with alternation in the expression of HR protein. The mutant Hr gene inhibited the expression of the endogenous gene in transgenic individuals, which led to the development of alopecia. Interestingly, the hair regrew with the increase in the endogenous expression levels resulting from decreased mutant Hr expression. The findings of our study indicate that the changes in the expression of Hr result in hair loss or regrowth.

  11. Gene deletion of cytosolic ATP: citrate lyase leads to altered organic acid production in Aspergillus niger

    DEFF Research Database (Denmark)

    Meijer, Susan Lisette; Nielsen, Michael Lynge; Olsson, Lisbeth

    2009-01-01

    With the availability of the genome sequence of the filamentous fungus Aspergillus niger, the use of targeted genetic modifications has become feasible. This, together with the fact that A. niger is well established industrially, makes this fungus an attractive micro-organism for creating a cell...... factory platform for production of chemicals. Using molecular biology techniques, this study focused on metabolic engineering of A. niger to manipulate its organic acid production in the direction of succinic acid. The gene target for complete gene deletion was cytosolic ATP: citrate lyase (acl), which...... the acl gene. Additionally, the total amount of organic acids produced in the deletion strain was significantly increased. Genome-scale stoichiometric metabolic model predictions can be used for identifying gene targets. Deletion of the acl led to increased succinic acid production by A. niger....

  12. Deletion of P2 promoter of GJB1 gene a cause of Charcot-Marie-Tooth disease.

    Science.gov (United States)

    Kulshrestha, R; Burton-Jones, S; Antoniadi, T; Rogers, M; Jaunmuktane, Z; Brandner, S; Kiely, N; Manuel, R; Willis, T

    2017-08-01

    X-linked Charcot-Marie-Tooth disease (CMT) is the second most common cause of CMT, and is usually caused by mutations in the gap junction protein beta 1 (GJB1) gene. This gene has nerve specific P2 promoter that work synergistically with SOX10 and EGR2 genes to initiate transcription. Mutation in this region is known to cause Schwann cell dysfunction. A single large family of X linked peripheral neuropathy was identified in our practice. Next generation sequencing for targeted panel assay identified an upstream exon-splicing deletion identified extending from nucleotide c.-5413 to approximately - c.-49. This matches the sequence of 32 nucleotides at positions c.*218-*249 in the 3'UTR downstream of the GJB1 gene. The deleted fragment included the entire P2 promoter region. The deletion segregated with the disease. To our knowledge a deletion of the P2 promoter alone as a cause of CMT has not been reported previously. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Exon skipping and translation in patients with frameshift deletions in the dystrophin gene

    Energy Technology Data Exchange (ETDEWEB)

    Sherratt, T.G.; Dubowitz, V.; Sewry, C.A.; Strong, P.N. (Royal Postgraduate Medical School, London (United Kingdom)); Vulliamy, T. (Hammersmith Hospital, London (United Kingdom))

    1993-11-01

    Although many Duchenne muscular dystrophy patients have a deletion in the dystrophin gene which disrupts the translational reading frame, they express dystrophin in a small proportion of skeletal muscle fibers ([open quotes]revertant fibers[close quotes]). Antibody studies have shown, indirectly, that dystrophin synthesis in revertant fibers is facilitated by a frame-restoring mechanism; in the present study, the feasibility of mRNA splicing was investigated. Dystrophin transcripts were analyzed in skeletal muscle from individuals possessing revertant fibers and a frameshift deletion in the dystrophin gene. In each case a minor in-frame transcript was detected, in which exons adjacent to those deleted from the genome had been skipped. There appeared to be some correlation between the levels of in-frame transcripts and the predicted translation products. Low levels of alternatively spliced transcripts were also present in normal muscle. The results provide further evidence of exon skipping in the dystrophin gene and indicate that this may be involved in the synthesis of dystrophin by revertant fibers. 44 refs., 12 figs.

  14. A new type of gene-disruption cassette with a rescue gene for Pichia pastoris.

    Science.gov (United States)

    Shibui, Tatsuro; Hara, Hiroyoshi

    2017-09-01

    Pichia pastoris has been used for the production of many recombinant proteins, and many useful mutant strains have been created. However, the efficiency of mutant isolation by gene-targeting is usually low and the procedure is difficult for those inexperienced in yeast genetics. In order to overcome these issues, we developed a new gene-disruption system with a rescue gene using an inducible Cre/mutant-loxP system. With only short homology regions, the gene-disruption cassette of the system replaces its target-gene locus containing a mutation with a compensatory rescue gene. As the cassette contains the AOX1 promoter-driven Cre gene, when targeted strains are grown on media containing methanol, the DNA fragment, i.e., the marker, rescue and Cre genes, between the mutant-loxP sequences in the cassette is excised, leaving only the remaining mutant-loxP sequence in the genome, and consequently a target gene-disrupted mutant can be isolated. The system was initially validated on ADE2 gene disruption, where the disruption can easily be detected by color-change of the colonies. Then, the system was applied for knocking-out URA3 and OCH1 genes, reported to be difficult to accomplish by conventional gene-targeting methods. All three gene-disruption cassettes with their rescue genes replaced their target genes, and the Cre/mutant-loxP system worked well to successfully isolate their knock-out mutants. This study identified a new gene-disruption system that could be used to effectively and strategically knock out genes of interest, especially whose deletion is detrimental to growth, without using special strains, e.g., deficient in nonhomologous end-joining, in P. pastoris. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1201-1208, 2017. © 2017 American Institute of Chemical Engineers.

  15. Genetic Analysis and Molecular Mapping of a Novel Chlorophyll-Deficit Mutant Gene in Rice

    Directory of Open Access Journals (Sweden)

    Xiao-qun HUANG

    2008-03-01

    Full Text Available A rice etiolation mutant 824ys featured with chlorophyll deficiency was identified from a normal green rice variety 824B. It showed whole green-yellow plant from the seedling stage, reduced number of tillers and longer growth duration. The contents of chlorophyll, chlorophyll a, chlorophyll b and net photosynthetic rate in leaves of the mutant obviously decreased, as well as the number of spikelets per panicle, seed setting rate and 1000-grain weight compared with its wild-type parent. Genetic analyses on F1 and F2 generations of 824ys crossed with three normal green varieties showed that the chlorophyll-deficit mutant character was controlled by a pair of recessive nuclear gene. Genetic mapping of the mutant gene was conducted by using microsatellite markers and F2 mapping population of 495R/824ys, and the mutant gene of 824ys was mapped on the short arm of rice chromosome 3. The genetic distances from the target gene to the markers RM218, RM282 and RM6959 were 25.6 cM, 5.2 cM and 21.8 cM, respectively. It was considered to be a new chlorophyll-deficit mutant gene and tentatively named as chl11(t.

  16. Deletions in the fifth alpha helix of HIV-1 matrix block virus release

    International Nuclear Information System (INIS)

    Sanford, Bridget; Li, Yan; Maly, Connor J.; Madson, Christian J.; Chen, Han; Zhou, You; Belshan, Michael

    2014-01-01

    The matrix (MA) protein of HIV-1 is the N-terminal component of the Gag structural protein and is critical for the early and late stages of viral replication. MA contains five α-helices (α1–α5). Deletions in the N-terminus of α5 as small as three amino acids impaired virus release. Electron microscopy of one deletion mutant (MA∆96-120) showed that its particles were tethered to the surface of cells by membranous stalks. Immunoblots indicated all mutants were processed completely, but mutants with large deletions had alternative processing intermediates. Consistent with the EM data, MA∆96-120 retained membrane association and multimerization capability. Co-expression of this mutant inhibited wild type particle release. Alanine scanning mutation in this region did not affect virus release, although the progeny virions were poorly infectious. Combined, these data demonstrate that structural ablation of the α5 of MA inhibits virus release. - Highlights: • Deletions were identified in the C-terminus of matrix that block virus release. • These deletion mutants still multimerized and associated with membranes. • TEM showed the mutant particles were tethered to the cell surface. • Amino acid mutagenesis of the region did not affect release. • The data suggests that disruption of matrix structure blocks virus release

  17. Deletions in the fifth alpha helix of HIV-1 matrix block virus release

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, Bridget; Li, Yan; Maly, Connor J.; Madson, Christian J. [Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178 (United States); Chen, Han [Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE (United States); Zhou, You [Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE (United States); Nebraska Center for Virology, Lincoln, NE (United States); Belshan, Michael, E-mail: michaelbelshan@creighton.edu [Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178 (United States); Nebraska Center for Virology, Lincoln, NE (United States)

    2014-11-15

    The matrix (MA) protein of HIV-1 is the N-terminal component of the Gag structural protein and is critical for the early and late stages of viral replication. MA contains five α-helices (α1–α5). Deletions in the N-terminus of α5 as small as three amino acids impaired virus release. Electron microscopy of one deletion mutant (MA∆96-120) showed that its particles were tethered to the surface of cells by membranous stalks. Immunoblots indicated all mutants were processed completely, but mutants with large deletions had alternative processing intermediates. Consistent with the EM data, MA∆96-120 retained membrane association and multimerization capability. Co-expression of this mutant inhibited wild type particle release. Alanine scanning mutation in this region did not affect virus release, although the progeny virions were poorly infectious. Combined, these data demonstrate that structural ablation of the α5 of MA inhibits virus release. - Highlights: • Deletions were identified in the C-terminus of matrix that block virus release. • These deletion mutants still multimerized and associated with membranes. • TEM showed the mutant particles were tethered to the cell surface. • Amino acid mutagenesis of the region did not affect release. • The data suggests that disruption of matrix structure blocks virus release.

  18. Characterization of a large deletion in the {beta}-globin gene cluster in a newborn with hemoglobin FE

    Energy Technology Data Exchange (ETDEWEB)

    Louie, E.; Dietz, L.; Shafer, F. [Children`s Hosptial, Oakland, CA (United States)] [and others

    1994-09-01

    A sample on a newborn with hemoglobin FE screen results was obtained to investigate whether E/E or B/{beta}{degrees} thalassemia was present using polymerase chain reaction (PCR) methodology. The newborn appeared homozygous for the hemoglobin E mutation in our initial study, but the parents` genotypes did not support this diagnosis. The father is homozygous for the absence of the hemoglobin E mutation (non E/non E) and the mother is heterozygous (E/non E) for this mutation. The limitation of PCR analysis is an assumption that the amplification of the two {beta}-globin alleles is equivalent. A large deletion on one {beta}-globin gene, which would produce E/{beta}{degrees} thalassemia, would be missed if it included part or the entire region subjected to amplification. The family results were consistent with either non-paternity, sample mix-up or such a deletion of the {beta}-globin gene in the father and child. To rule out the possibility of non-paternity, two polymorphic loci (HLA on chromosome 6 and a VNTR system of chromosome 17) that are outside of the {beta}-globin gene were analyzed and show that inheritance is consistent and the likelihood of a sample mix-up is then reduced. We therefore believe there is a gene deletion in this family. At the present time, analyses of the RFLPs that are 5{prime} of the {beta}-globin gene cluster show that the polymorphisms most distal from the 5{prime} {beta}-globin gene are not being inherited as expected. These results support our interpretation that a deletion exists in the father and was inherited by the child. The father`s clinical picture of possible HPFH (the father has 12% hemoglobin F) also supports the interpretation of a deletion in this family. Deletions of the {beta}-globin gene within this ethnic group are rare. Currently, Southern blots on the family are being probed to determine the extent of the putative deletion.

  19. Use of a wine yeast deletion collection reveals genes that influence fermentation performance under low-nitrogen conditions.

    Science.gov (United States)

    Peter, Josephine J; Watson, Tommaso L; Walker, Michelle E; Gardner, Jennifer M; Lang, Tom A; Borneman, Anthony; Forgan, Angus; Tran, Tina; Jiranek, Vladimir

    2018-05-01

    A deficiency of nitrogenous nutrients in grape juice can cause stuck and sluggish alcoholic fermentation, which has long been a problem in winemaking. Nitrogen requirements vary between wine yeast strains, and the ability of yeast to assimilate nitrogen depends on the nature and concentration of nitrogen present in the medium. In this study, a wine yeast gene deletion collection (1844 deletants in the haploid AWRI1631 background) was screened to identify genes whose deletion resulted in a reduction in the time taken to utilise all sugars when grown in a chemically defined grape juice medium supplemented with limited nitrogen (75 mg L-1 as a free amino acid mixture). Through micro-scale and laboratory-scale fermentations, 15 deletants were identified that completed fermentation in a shorter time than the wildtype (c.a. 15%-59% time reduction). This group of genes was annotated to biological processes including protein modification, transport, metabolism and ubiquitination (UBC13, MMS2, UBP7, UBI4, BRO1, TPK2, EAR1, MRP17, MFA2 and MVB12), signalling (MFA2) and amino acid metabolism (AAT2). Deletion of MFA2, encoding mating factor-a, resulted in a 55% decrease in fermentation duration. Mfa2Δ was chosen for further investigation to understand how this gene deletion conferred fermentation efficiency in limited nitrogen conditions.

  20. R3-R4 deletion in the PRNP gene is associated with Creutzfeldt-Jakob disease (CJD)

    Energy Technology Data Exchange (ETDEWEB)

    Cervenakova, L.; Brown, P.; Nagle, J. [and others

    1994-09-01

    There are conflicting reports on the association of deletions in the PRNP gene on chromosome 20 with CJD, a rapidly progressive fatal spongiform encephalopathy. We accumulated data suggesting that a deletion of R3-R4 type (parts of the third and fourth repeats are deleted from the area of four repeating 24 bp sequences in the 5{prime} region of the gene) is causing CJD. Screening of 129 unaffected control individuals demonstrated presence of a deletion of R2 type in four (1.55% of the studied chromosomes), but none of them had the R3-R4 type. Of 181 screened patients with spongiform encephalopathies, two had a deletion of R3-R4 type with no other mutations in the coding sequence. Both patients had a classical rapidly progressive dementing disease and diffuse spongiform degeneration, and both cases were apparently sporadic. The same R3-R4 type of deletion was detected in three additional neuropathologically confirmed spongiform encephalopathy patients, of which two had other known pathogenic mutations in the PRNP gene: at codon 178 on the methionine allele exhibiting the phenotype of fatal familial insomnia, and codon 200 causing CJD with severe dementia; the third was a patient with iatrogenic CJD who developed the disease after treatment with growth hormone extracted from cadaveric human pituitary glands. In all cases the deletion coincided with a variant sequence at position 129 coding for methionine.

  1. A recessive contiguous gene deletion causing infantile hyperinsulinism, enteropathy and deafness identifies the Usher type 1C gene.

    Science.gov (United States)

    Bitner-Glindzicz, M; Lindley, K J; Rutland, P; Blaydon, D; Smith, V V; Milla, P J; Hussain, K; Furth-Lavi, J; Cosgrove, K E; Shepherd, R M; Barnes, P D; O'Brien, R E; Farndon, P A; Sowden, J; Liu, X Z; Scanlan, M J; Malcolm, S; Dunne, M J; Aynsley-Green, A; Glaser, B

    2000-09-01

    Usher syndrome type 1 describes the association of profound, congenital sensorineural deafness, vestibular hypofunction and childhood onset retinitis pigmentosa. It is an autosomal recessive condition and is subdivided on the basis of linkage analysis into types 1A through 1E. Usher type 1C maps to the region containing the genes ABCC8 and KCNJ11 (encoding components of ATP-sensitive K + (KATP) channels), which may be mutated in patients with hyperinsulinism. We identified three individuals from two consanguineous families with severe hyperinsulinism, profound congenital sensorineural deafness, enteropathy and renal tubular dysfunction. The molecular basis of the disorder is a homozygous 122-kb deletion of 11p14-15, which includes part of ABCC8 and overlaps with the locus for Usher syndrome type 1C and DFNB18. The centromeric boundary of this deletion includes part of a gene shown to be mutated in families with type 1C Usher syndrome, and is hence assigned the name USH1C. The pattern of expression of the USH1C protein is consistent with the clinical features exhibited by individuals with the contiguous gene deletion and with isolated Usher type 1C.

  2. Impact of alg3 gene deletion on growth, development, pigment production, protein secretion, and functions of recombinant Trichoderma reesei cellobiohydrolases in Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Ziyu; Aryal, Uma K.; Shukla, Anil; Qian, Wei-Jun; Smith, Richard D.; Magnuson, Jon K.; Adney, William S.; Beckham, Gregg T.; Brunecky, Roman; Himmel, Michael E.; Decker, Stephen R.; Ju, Xiaohui; Zhang, Xiao; Baker, Scott E.

    2013-12-01

    ALG3 is a Family 58 glycosyltransferase enzyme involved in early N-linked glycan synthesis. Here, we investigated the effect of the alg3 gene disruption on growth, development, metabolism, and protein secretion in Aspergillus niger. The alg3 gene deletion resulted in a significant reduction of growth on complete (CM) and potato dextrose agar (PDA) media and a substantial reduction of spore production on CM. It also delayed spore germination in the liquid cultures of both CM and PDA media, but led to a significant accumulation of red pigment on both CM and liquid modified minimal medium (MM) supplemented with yeast extract. The relative abundance of 55 proteins of the total 190 proteins identified in the secretome was significantly different as a result of alg3 gene deletion. Comparison of a Trichoderma reesei cellobiohydrolase (Cel7A) heterologously expressed in A. niger parental and Δalg3 strains showed that the recombinant Cel7A expressed in the mutant background was smaller in size than that from the parental strains. This study suggests that ALG3 is critical for growth and development, pigment production, and protein secretion in A. niger. Functional analysis of recombinant Cel7A with aberrant glycosylation demonstrates the feasibility of this alternative approach to evaluate the role of N-linked glycosylation in glycoprotein secretion and function.

  3. Purification, gene cloning, gene expression, and mutants of Dps from the obligate anaerobe Porphyromonas gingivalis.

    Science.gov (United States)

    Ueshima, Junichi; Shoji, Mikio; Ratnayake, Dinath B; Abe, Kihachiro; Yoshida, Shinichi; Yamamoto, Kenji; Nakayama, Koji

    2003-03-01

    The periodontopathogen Porphyromonas gingivalis is an obligate anaerobe that is devoid of catalase but exhibits a relatively high degree of resistance to peroxide stress. In the present study, we demonstrate that P. gingivalis contains a Dps homologue that plays an important role in the protection of cells from peroxide stress. The Dps protein isolated from P. gingivalis displayed a ferritin-like spherical polymer consisting of 19-kDa subunits. Molecular cloning and sequencing of the gene encoding this protein revealed that it had a high similarity in nucleotide and amino acid sequences to Dps proteins from other species. The expression of Dps was significantly increased by exposure of P. gingivalis to atmospheric oxygen in an OxyR-dependent manner, indicating that it is regulated by the reactive oxygen species-regulating gene oxyR. The Dps-deficient mutants, including the dps single mutant and the ftn dps double mutant, showed no viability loss upon exposure to atmospheric oxygen for 6 h. In contrast to the wild type, however, these mutants exhibited the high susceptibility to hydrogen peroxide, thereby disrupting the viability. On the other hand, no significant difference in sensitivity to mitomycin C and metronidazole was observed between the wild type and the mutants. Furthermore, the dps single mutant, compared with the wild type, showed a lower viability in infected human umbilical vein endothelial cells.

  4. Deletion mutants of the Escherichia coli K-12 mannitol permease: dissection of transport-phosphorylation, phospho-exchange, and mannitol-binding activities.

    Science.gov (United States)

    Grisafi, P L; Scholle, A; Sugiyama, J; Briggs, C; Jacobson, G R; Lengeler, J W

    1989-05-01

    We have constructed a series of deletion mutations of the cloned Escherichia coli K-12 mtlA gene, which encodes the mannitol-specific enzyme II of the phosphoenolpyruvate (PEP)-dependent carbohydrate phosphotransferase system. This membrane-bound permease consists of 637 amino acid residues and is responsible for the concomitant transport and phosphorylation of D-mannitol in E. coli. Deletions into the 3' end of mtlA were constructed by exonuclease III digestion. Restriction mapping of the resultant plasmids identified several classes of deletions that lacked approximately 5% to more than 75% of the gene. Immunoblotting experiments revealed that many of these plasmids expressed proteins within the size range predicted by the restriction analyses, and all of these proteins were membrane localized, which demonstrated that none of the C-terminal half of the permease is required for membrane insertion. Functional analyses of the deletion proteins, expressed in an E. coli strain deleted for the chromosomal copy of mtlA, showed that all but one of the strains containing confirmed deletions were inactive in transport and PEP-dependent phosphorylation of mannitol, but deletions removing up to at least 117 amino acid residues from the C terminus of the permease were still active in catalyzing phospho exchange between mannitol 1-phosphate and mannitol. A deletion protein that lacked 240 residues from the C terminus of the permease was inactive in phospho exchange but still bound mannitol with high affinity. These experiments localize sites important for transport and PEP-dependent phosphorylation to the extreme C terminus of the mannitol permease, sites important for phospho exchange to between residues 377 and 519, and sites necessary for mannitol binding to the N-terminal 60% of the molecule. The results are discussed with respect to the fact that the mannitol permease consists of structurally independent N- and C-terminal domains.

  5. Genomic analysis and pathogenic characteristics of Type 2 porcine reproductive and respiratory syndrome virus nsp2 deletion strains isolated in Korea.

    Science.gov (United States)

    Choi, Hwan-Won; Nam, Eeuri; Lee, Yoo Jin; Noh, Yun-Hee; Lee, Seung-Chul; Yoon, In-Joong; Kim, Hyun-Soo; Kang, Shien-Young; Choi, Young-Ki; Lee, Changhee

    2014-06-04

    Porcine reproductive and respiratory syndrome virus (PRRSV) is a globally ubiquitous swine virus that exhibits genetic and pathogenic heterogeneity among isolates. The present study was conducted to determine the complete genome sequence and pathogenicity of two Korean type 2 PRRSV nonstructural protein 2 (nsp2) deletion mutants, CA-2 and KNU-12-KJ4. The full-length genomes of CA-2 and KNU-12-KJ4 were determined to be 15,018 and 15,019 nucleotides in length, excluding the poly(A) tail, respectively, which were 393- or 392-nucleotide shorter than that of the type 2 NA prototype strain VR-2332 due to the presence of notable large deletions within the nsp2 gene. The genomes of CA-2 and KNU-12-KJ4 consisted of a 189- or 190-nucleotide 5' untranslated region (UTR), a 14,677-nucleotide protein-coding region, and a 151-nucleotide 3' UTR. Whole genome evaluation revealed that the nucleotide sequences of CA-2 and KNU-12-KJ4 are most similar to each other (10.7% sequence divergence), and then to the Korean strain CA-1 (11.3% sequence divergence) and the US strain MN184C (13.1% sequence divergence), respectively. To evaluate the in vitro immunity of nsp2 deletion variants, we sought to explore alteration of inflammatory cytokine and chemokine expression in PAM-pCD163 cells infected with each virus strain using quantitative real-time RT-PCR. Cytokine genes including IL-8, IL-10, and TNF-α, and chemokines such as MCP-1 and RANTES were found to be significantly elevated in nsp2 deletion virus-infected PAM cells. In contrast, expression of interferons (IFN-β, γ, and λ) and antiviral genes including ISG-15, -54, and -56 were unchanged or down-regulated in PAM cells infected with the nsp2 deletion mutants. Animal studies to assess the pathogenicity of nsp2 deletion PRRSVs demonstrated that both CA-2 and KNU-12-KJ4 strains notably produce weight loss in infected pigs. Furthermore, the nsp2 deletion mutants replicated well in pigs with significantly increased and prolonged

  6. Brucella ovis PA mutants for outer membrane proteins Omp10, Omp19, SP41, and BepC are not altered in their virulence and outer membrane properties.

    Science.gov (United States)

    Sidhu-Muñoz, Rebeca S; Sancho, Pilar; Vizcaíno, Nieves

    2016-04-15

    Mutants in several genes have been obtained on the genetic background of virulent rough (lacking O-polysaccharide) Brucella ovis PA. The target genes encode outer membrane proteins previously associated with the virulence of smooth (bearing O-polysaccharide chains in the lipopolysaccharide) Brucella strains. Multiple attempts to delete omp16, coding for a homologue to peptidoglycan-associated lipoproteins, were unsuccessful, which suggests that Omp16 is probably essential for in vitro survival of B. ovis PA. Single deletion of omp10 or omp19-that encode two other outer membrane lipoproteins--was achieved, but the simultaneous removal of both genes failed, suggesting an essential complementary function between both proteins. Two other deletion mutants, defective in the Tol-C-homologue BepC or in the SP41 adhesin, were also obtained. Surprisingly when compared to previous results obtained with smooth Brucella, none of the B. ovis mutants showed attenuation in the virulence, either in the mouse model or in cellular models of professional and non-professional phagocytes. Additionally, and in contrast to the observations reported with smooth Brucella strains, several properties related to the outer membrane remained almost unaltered. These results evidence new distinctive traits between naturally rough B. ovis and smooth brucellae. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. P450XXI (steroid 21-hydroxylase) gene deletions are not found in family studies of congenital adrenal hyperplasia

    International Nuclear Information System (INIS)

    Matteson, K.J.; Phillips, J.A. III; Miller, W.L.; Chung, B.C.; Orlando, P.J.; Frisch, H.; Ferrandez, A.; Burr, I.M.

    1987-01-01

    Congenital adrenal hyperplasia (CAH) is a common genetic disorder due to defective 21-hydroxylation of steroid hormones. The human P450XXIA2 gene encodes cytochrome P450c21 [steroid 21-monooxygenase (steroid 21-hydroxylase)], which mediates 21-hydroxylation. The P450XXIA2 gene may be distinguished from the duplicated P450XXIA1 pseudogene by cleavage with the restriction endonuclease Taq I, with the XXIA2 gene characterized by a 3.7-kilobase (kb) fragment and the XXIA1 pseudogene characterized by a 3.2-kb fragment. Restriction endonuclease mapping by several laboratories has suggested that deletion of the P450XXIA2 gene occurs in about 25% of patients with CAH, as their genomic DNA lacks detectable 3.7-kb Taq I fragments. The authors have cloned human P450c21 cDNA and used it to study genomic DNA prepared from 51 persons in 10 families, each of which includes 2 or more persons with CAH. After Taq I digestion, apparent deletions are seen in 7 of the 20 alleles of the probands; using EcoRI, apparent deletions are seen in 9 of the 20 alleles. However, the apparently deleted alleles seen with Taq I do not coincide with those seen with EcoRI. Furthermore, studies with Bgl II, EcoRI, Kpn I, and Xba I yield normal patterns with at least two enzymes in all cases. Since all probands yielded normal patterns with at least two of the five enzymes used, they conclude that the P450XXIA2 gene deletions widely reported in CAH patients probably represent gene conversions, unequal crossovers,or polymorphisms rather than simple gene deletions

  8. Mutations in the Schmallenberg Virus Gc Glycoprotein Facilitate Cellular Protein Synthesis Shutoff and Restore Pathogenicity of NSs Deletion Mutants in Mice.

    Science.gov (United States)

    Varela, Mariana; Pinto, Rute Maria; Caporale, Marco; Piras, Ilaria M; Taggart, Aislynn; Seehusen, Frauke; Hahn, Kerstin; Janowicz, Anna; de Souza, William Marciel; Baumgärtner, Wolfgang; Shi, Xiaohong; Palmarini, Massimo

    2016-06-01

    Serial passage of viruses in cell culture has been traditionally used to attenuate virulence and identify determinants of viral pathogenesis. In a previous study, we found that a strain of Schmallenberg virus (SBV) serially passaged in tissue culture (termed SBVp32) unexpectedly displayed increased pathogenicity in suckling mice compared to wild-type SBV. In this study, we mapped the determinants of SBVp32 virulence to the viral genome M segment. SBVp32 virulence is associated with the capacity of this virus to reach high titers in the brains of experimentally infected suckling mice. We also found that the Gc glycoprotein, encoded by the M segment of SBVp32, facilitates host cell protein shutoff in vitro Interestingly, while the M segment of SBVp32 is a virulence factor, we found that the S segment of the same virus confers by itself an attenuated phenotype to wild-type SBV, as it has lost the ability to block the innate immune system of the host. Single mutations present in the Gc glycoprotein of SBVp32 are sufficient to compensate for both the attenuated phenotype of the SBVp32 S segment and the attenuated phenotype of NSs deletion mutants. Our data also indicate that the SBVp32 M segment does not act as an interferon (IFN) antagonist. Therefore, SBV mutants can retain pathogenicity even when they are unable to fully control the production of IFN by infected cells. Overall, this study suggests that the viral glycoprotein of orthobunyaviruses can compensate, at least in part, for the function of NSs. In addition, we also provide evidence that the induction of total cellular protein shutoff by SBV is determined by multiple viral proteins, while the ability to control the production of IFN maps to the NSs protein. The identification of viral determinants of pathogenesis is key to the development of prophylactic and intervention measures. In this study, we found that the bunyavirus Gc glycoprotein is a virulence factor. Importantly, we show that mutations in the Gc

  9. Polygalacturonase gene pgxB in Aspergillus niger is a virulence factor in apple fruit.

    Science.gov (United States)

    Liu, Cheng-Qian; Hu, Kang-Di; Li, Ting-Ting; Yang, Ying; Yang, Feng; Li, Yan-Hong; Liu, He-Ping; Chen, Xiao-Yan; Zhang, Hua

    2017-01-01

    Aspergillus niger, a saprophytic fungus, is widely distributed in soil, air and cereals, and can cause postharvest diseases in fruit. Polygalacturonase (PG) is one of the main enzymes in fungal pathogens to degrade plant cell wall. To evaluate whether the deletion of an exo-polygalacturonase gene pgxB would influence fungal pathogenicity to fruit, pgxB gene was deleted in Aspergillus niger MA 70.15 (wild type) via homologous recombination. The ΔpgxB mutant showed similar growth behavior compared with the wild type. Pectin medium induced significant higher expression of all pectinase genes in both wild type and ΔpgxB in comparison to potato dextrose agar medium. However, the ΔpgxB mutant was less virulent on apple fruits as the necrosis diameter caused by ΔpgxB mutant was significantly smaller than that of wild type. Results of quantitive-PCR showed that, in the process of infection in apple fruit, gene expressions of polygalacturonase genes pgaI, pgaII, pgaA, pgaC, pgaD and pgaE were enhanced in ΔpgxB mutant in comparison to wild type. These results prove that, despite the increased gene expression of other polygalacturonase genes in ΔpgxB mutant, the lack of pgxB gene significantly reduced the virulence of A. niger on apple fruit, suggesting that pgxB plays an important role in the infection process on the apple fruit.

  10. Sensitivity to Lovastatin of Saccharomyces cerevisiae Strains Deleted for Pleiotropic Drug Resistance (PDR) Genes

    DEFF Research Database (Denmark)

    Formenti, Luca Riccardo; Kielland-Brandt, Morten

    2011-01-01

    The use of statins is well established in human therapy, and model organisms such as Saccharomyces cerevisiae are commonly used in studies of drug action at molecular and cellular levels. The investigation of the resistance mechanisms towards statins may suggest new approaches to improve therapy...... based on the use of statins. We investigated the susceptibility to lovastatin of S. cerevisiae strains deleted for PDR genes, responsible for exporting hydrophobic and amphi-philic drugs, such as lovastatin. Strains deleted for the genes tested, PDR1, PDR3, PDR5 and SNQ2, exhibited remarkably different...

  11. Deletion of Indian hedgehog gene causes dominant semi-lethal Creeper trait in chicken

    Science.gov (United States)

    Jin, Sihua; Zhu, Feng; Wang, Yanyun; Yi, Guoqiang; Li, Junying; Lian, Ling; Zheng, Jiangxia; Xu, Guiyun; Jiao, Rengang; Gong, Yu; Hou, Zhuocheng; Yang, Ning

    2016-01-01

    The Creeper trait, a classical monogenic phenotype of chicken, is controlled by a dominant semi-lethal gene. This trait has been widely cited in the genetics and molecular biology textbooks for illustrating autosomal dominant semi-lethal inheritance over decades. However, the genetic basis of the Creeper trait remains unknown. Here we have utilized ultra-deep sequencing and extensive analysis for targeting causative mutation controlling the Creeper trait. Our results indicated that the deletion of Indian hedgehog (IHH) gene was only found in the whole-genome sequencing data of lethal embryos and Creeper chickens. Large scale segregation analysis demonstrated that the deletion of IHH was fully linked with early embryonic death and the Creeper trait. Expression analysis showed a much lower expression of IHH in Creeper than wild-type chickens. We therefore suggest the deletion of IHH to be the causative mutation for the Creeper trait in chicken. Our findings unravel the genetic basis of the longstanding Creeper phenotype mystery in chicken as the same gene also underlies bone dysplasia in human and mouse, and thus highlight the significance of IHH in animal development and human haploinsufficiency disorders. PMID:27439785

  12. Kallmann syndrome and ichthyosis: a case of contiguous gene deletion syndrome

    Directory of Open Access Journals (Sweden)

    Irene Berges-Raso

    2017-09-01

    Full Text Available Kallmann syndrome is a genetically heterogeneous form of hypogonadotropic hypogonadism caused by gonadotropin-releasing hormone deficiency and characterized by anosmia or hyposmia due to hypoplasia of the olfactory bulbs; osteoporosis and metabolic syndrome can develop due to longstanding untreated hypogonadism. Kallmann syndrome affects 1 in 10 000 men and 1 in 50 000 women. Defects in 17 genes, including KAL1, have been implicated. Kallmann syndrome can be associated with X-linked ichthyosis, a skin disorder characterized by early onset dark, dry, irregular scales affecting the limb and trunk, caused by a defect of the steroid sulfatase gene (STS. Both KAL1 and STS are located in the Xp22.3 region; therefore, deletions in this region cause a contiguous gene syndrome. We report the case of a 32-year-old man with ichthyosis referred for evaluation of excessive height (2.07 m and weight (BMI: 29.6 kg/m2, microgenitalia and absence of secondary sex characteristics. We diagnosed Kallmann syndrome with ichthyosis due to a deletion in Xp22.3, a rare phenomenon.

  13. Sleeping Beauty transposon mutagenesis identifies genes that cooperate with mutant Smad4 in gastric cancer development.

    Science.gov (United States)

    Takeda, Haruna; Rust, Alistair G; Ward, Jerrold M; Yew, Christopher Chin Kuan; Jenkins, Nancy A; Copeland, Neal G

    2016-04-05

    Mutations in SMAD4 predispose to the development of gastrointestinal cancer, which is the third leading cause of cancer-related deaths. To identify genes driving gastric cancer (GC) development, we performed a Sleeping Beauty (SB) transposon mutagenesis screen in the stomach of Smad4(+/-) mutant mice. This screen identified 59 candidate GC trunk drivers and a much larger number of candidate GC progression genes. Strikingly, 22 SB-identified trunk drivers are known or candidate cancer genes, whereas four SB-identified trunk drivers, including PTEN, SMAD4, RNF43, and NF1, are known human GC trunk drivers. Similar to human GC, pathway analyses identified WNT, TGF-β, and PI3K-PTEN signaling, ubiquitin-mediated proteolysis, adherens junctions, and RNA degradation in addition to genes involved in chromatin modification and organization as highly deregulated pathways in GC. Comparative oncogenomic filtering of the complete list of SB-identified genes showed that they are highly enriched for genes mutated in human GC and identified many candidate human GC genes. Finally, by comparing our complete list of SB-identified genes against the list of mutated genes identified in five large-scale human GC sequencing studies, we identified LDL receptor-related protein 1B (LRP1B) as a previously unidentified human candidate GC tumor suppressor gene. In LRP1B, 129 mutations were found in 462 human GC samples sequenced, and LRP1B is one of the top 10 most deleted genes identified in a panel of 3,312 human cancers. SB mutagenesis has, thus, helped to catalog the cooperative molecular mechanisms driving SMAD4-induced GC growth and discover genes with potential clinical importance in human GC.

  14. Isolation and characterisation of a dwarf rice mutant exhibiting defective gibberellins biosynthesis.

    Science.gov (United States)

    Ji, S H; Gururani, M A; Lee, J W; Ahn, B-O; Chun, S-C

    2014-03-01

    We have isolated a severe dwarf mutant derived from a Ds (Dissociation) insertion mutant rice (Oryza sativa var. japonica c.v. Dongjin). This severe dwarf phenotype, has short and dark green leaves, reduced shoot growth early in the seedling stage, and later severe dwarfism with failure to initiate flowering. When treated with bioactive GA3 , mutants are restored to the normal wild-type phenotype. Reverse transcription PCR analyses of 22 candidate genes related to the gibberellin (GA) biosynthesis pathway revealed that among 22 candidate genes tested, a dwarf mutant transcript was not expressed only in one OsKS2 gene. Genetic analysis revealed that the severe dwarf phenotype was controlled by recessive mutation of a single nuclear gene. The putative OsKS2 gene was a chromosome 4-located ent-kaurene synthase (KS), encoding the enzyme that catalyses an early step of the GA biosynthesis pathway. Sequence analysis revealed that osks2 carried a 1-bp deletion in the ORF region of OsKS2, which led to a loss-of-function mutation. The expression pattern of OsKS2 in wild-type cv Dongjin, showed that it is expressed in all organs, most prominently in the stem and floral organs. Morphological characteristics of the dwarf mutant showed dramatic modifications in internal structure and external morphology. We propose that dwarfism in this mutant is caused by a point mutation in OsKS2, which plays a significant role in growth and development of higher plants. Further investigation on OsKS2 and other OsKS-like proteins is underway and may yield better understanding of the putative role of OsKS in severe dwarf mutants. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  15. A Yersinia pestis tat mutant is attenuated in bubonic and small-aerosol pneumonic challenge models of infection but not as attenuated by intranasal challenge.

    Directory of Open Access Journals (Sweden)

    Joel Bozue

    Full Text Available Bacterial proteins destined for the Tat pathway are folded before crossing the inner membrane and are typically identified by an N-terminal signal peptide containing a twin arginine motif. Translocation by the Tat pathway is dependent on the products of genes which encode proteins possessing the binding site of the signal peptide and mediating the actual translocation event. In the fully virulent CO92 strain of Yersinia pestis, the tatA gene was deleted. The mutant was assayed for loss of virulence through various in vitro and in vivo assays. Deletion of the tatA gene resulted in several consequences for the mutant as compared to wild-type. Cell morphology of the mutant bacteria was altered and demonstrated a more elongated form. In addition, while cultures of the mutant strain were able to produce a biofilm, we observed a loss of adhesion of the mutant biofilm structure compared to the biofilm produced by the wild-type strain. Immuno-electron microscopy revealed a partial disruption of the F1 antigen on the surface of the mutant. The virulence of the ΔtatA mutant was assessed in various murine models of plague. The mutant was severely attenuated in the bubonic model with full virulence restored by complementation with the native gene. After small-particle aerosol challenge in a pneumonic model of infection, the mutant was also shown to be attenuated. In contrast, when mice were challenged intranasally with the mutant, very little difference in the LD50 was observed between wild-type and mutant strains. However, an increased time-to-death and delay in bacterial dissemination was observed in mice infected with the ΔtatA mutant as compared to the parent strain. Collectively, these findings demonstrate an essential role for the Tat pathway in the virulence of Y. pestis in bubonic and small-aerosol pneumonic infection but less important role for intranasal challenge.

  16. Study the Molecular Association between a Deletion Mutation in CHEK2 gene (5395 bp and Breast Cancer

    Directory of Open Access Journals (Sweden)

    Manijeh Jalilvand

    2015-07-01

    Full Text Available Background & Objectives: Breast cancer is the most common cancer among women and the second most common cause of cancer death. Genetic factors play an important role in the development of breast cancer. Among these genetic factors, CHEk2 (checkpoint kinase 2 gene, as a tumor suppressor gene, plays a critical role in DNA repair. Germline mutations in CEHK2 result in the loss of this feature. One of the mutations in CHEK2 gene is a 5395 bp deletion mutation which has been associated with the increasing risk of Breast Cancer in some populations in the world.  In the present study, we investigated the association between a 5395 bp deletion mutation in CHEK2 gene and the risk of Breast Cancer in the women of an Iranian population. Methods: Pathologic information of 38 cases under the age of 45 and 62 cases over the age of 45 referring to surgery ward of Milad Hospital in Tehran were extracted. 100 healthy controls were included in the study as well. After obtaining informed consent, 5 mL whole blood was taken DNA was successfully isolated. Multiplex PCR was used to investigate the association between a 5395bp deletion mutation in CHEK2 gene and increasing risk of Breast Cancer among patients. Results: The 5395bp deletion mutation in CHEK2 gene was not found in any of the participating groups of patients or heathy controls. Conclusion: The present study revealed that there is no significant relation between increasing the risk of Breast Cancer and bearing large deletion mutation in exon 9 and exon 10 of CHECK2 gene.

  17. Characterization of Brucella abortus mutant strain Δ22915, a potential vaccine candidate.

    Science.gov (United States)

    Bao, Yanqing; Tian, Mingxing; Li, Peng; Liu, Jiameng; Ding, Chan; Yu, Shengqing

    2017-04-04

    Brucellosis, caused by Brucella spp., is an important zoonosis worldwide. Vaccination is an effective strategy for protection against Brucella infection in livestock in developing countries and in wildlife in developed countries. However, current vaccine strains including S19 and RB51 are pathogenic to humans and pregnant animals, limiting their use. In this study, we constructed the Brucella abortus (B. abortus) S2308 mutant strain Δ22915, in which the putative lytic transglycosylase gene BAB_RS22915 was deleted. The biological properties of mutant strain Δ22915 were characterized and protection of mice against virulent S2308 challenge was evaluated. The mutant strain Δ22915 showed reduced survival within RAW264.7 cells and survival in vivo in mice. In addition, the mutant strain Δ22915 failed to escape fusion with lysosomes within host cells, and caused no observable pathological damage. RNA-seq analysis indicated that four genes associated with amino acid/nucleotide transport and metabolism were significantly upregulated in mutant strain Δ22915. Furthermore, inoculation of ∆22915 at 10 5 colony forming units induced effective host immune responses and long-term protection of BALB/c mice. Therefore, mutant strain ∆22915 could be used as a novel vaccine candidate in the future to protect animals against B. abortus infection.

  18. Osteopathia striata congenita with cranial sclerosis and intellectual disability due to contiguous gene deletions involving the WTX locus

    DEFF Research Database (Denmark)

    Holman, Sk; Morgan, T; Baujat, G

    2013-01-01

    Osteopathia striata congenita with cranial sclerosis (OSCS) is a skeletal dysplasia caused by germline deletions of or truncating point mutations in the X-linked gene WTX (FAM123B, AMER1). Females present with longitudinal striations of sclerotic bone along the long axis of long bones and cranial...... sclerosis, with a high prevalence of cleft palate and hearing loss. Intellectual disability or neurodevelopmental delay is not observed in females with point mutations in WTX leading to OSCS. One female has been described with a deletion spanning multiple neighbouring genes suggesting that deletion of some...... neighbouring loci may result in abnormal neurodevelopment. In this cohort of 13 females with OSCS resulting from deletions of WTX, a relationship is observed where deletion of ARHGEF9 and/or MTMR8 in conjunction with WTX results in an additional neurodevelopmental phenotype whereas deletion of ASB12 along...

  19. Deletion of Smgpi1 encoding a GPI-anchored protein suppresses sterility of the STRIPAK mutant ΔSmmob3 in the filamentous ascomycete Sordaria macrospora.

    Science.gov (United States)

    Frey, Stefan; Lahmann, Yasmine; Hartmann, Thomas; Seiler, Stephan; Pöggeler, Stefanie

    2015-08-01

    The striatin interacting phosphatase and kinase (STRIPAK) complex, which is composed of striatin, protein phosphatase PP2A and kinases, is required for fruiting-body development and cell fusion in the filamentous ascomycete Sordaria macrospora. Here, we report on the interplay of the glycosylphosphatidylinositol (GPI)-anchored protein SmGPI1 with the kinase activator SmMOB3, a core component of human and fungal STRIPAK complexes. SmGPI1 is conserved among filamentous ascomycetes and was first identified in a yeast two-hybrid screen using SmMOB3 as bait. The physical interaction of SmMOB3 and SmGPI1 was verified by co-immunoprecipitation. In vivo localization and differential centrifugation revealed that SmGPI1 is predominantly secreted and attached to the cell wall but is also associated with mitochondria and appears to be a dual-targeted protein. Deletion of Smgpi1 led to an increased number of fruiting bodies that were normally shaped but reduced in size. In addition, Smmob3 and Smgpi1 genetically interact. In the sterile ΔSmmob3 background deletion of Smgpi1 restores fertility, vegetative growth as well as hyphal-fusion defects. The suppression effect was specific for the ΔSmmob3 mutant as deletion of Smgpi1 in other STRIPAK mutants does not restore fertility. © 2015 John Wiley & Sons Ltd.

  20. Stress tolerances of nullmutants of function-unknown genes encoding menadione stress-responsive proteins in Aspergillus nidulans.

    Science.gov (United States)

    Leiter, Éva; Bálint, Mihály; Miskei, Márton; Orosz, Erzsébet; Szabó, Zsuzsa; Pócsi, István

    2016-07-01

    A group of menadione stress-responsive function-unkown genes of Aspergillus nidulans (Locus IDs ANID_03987.1, ANID_06058.1, ANID_10219.1, and ANID_10260.1) was deleted and phenotypically characterized. Importantly, comparative and phylogenetic analyses of the tested A. nidulans genes and their orthologs shed light only on the presence of a TANGO2 domain with NRDE protein motif in the translated ANID_06058.1 gene but did not reveal any recognizable protein-encoding domains in other protein sequences. The gene deletion strains were subjected to oxidative, osmotic, and metal ion stress and, surprisingly, only the ΔANID_10219.1 mutant showed an increased sensitivity to 0.12 mmol l(-1) menadione sodium bisulfite. The gene deletions affected the stress sensitivities (tolerances) irregularly, for example, some strains grew more slowly when exposed to various oxidants and/or osmotic stress generating agents, meanwhile the ΔANID_10260.1 mutant possessed a wild-type tolerance to all stressors tested. Our results are in line with earlier studies demonstrating that the deletions of stress-responsive genes do not confer necessarily any stress-sensitivity phenotypes, which can be attributed to compensatory mechanisms based on other elements of the stress response system with overlapping functions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Blue ghosts: a new method for isolating amber mutants defective in essential genes of Escherichia coli

    DEFF Research Database (Denmark)

    Brown, S; Brickman, E R; Beckwith, J

    1981-01-01

    We describe a technique which permits an easy screening for amber mutants defective in essential genes of Escherichia coli. Using this approach, we have isolated three amber mutants defective in the rho gene. An extension of the technique allows the detection of ochre mutants and transposon inser...

  2. Molecular evidence for the induction of large interstitial deletions on mouse chromosome 8 by ionizing radiation

    International Nuclear Information System (INIS)

    Turker, Mitchell S.; Pieretti, Maura; Kumar, Sudha

    1997-01-01

    The P19H22 mouse embryonal carcinoma cell line is characterized by a hemizygous deficiency for the chromosome 8 encoded aprt (adenine phosphoribosyltransferase) gene and heterozygosity for many chromosome 8 loci. We have previously demonstrated that this cell line is suitable for mutational studies because it is permissive of events ranging in size from base-pair substitutions at the aprt locus to apparent loss of chromosome 8. Large mutational events, defined by loss of the remaining aprt allele, were found to predominate in spontaneous mutants and those induced by ionizing radiation. In this study we have used a PCR based assay to screen for loss of heterozygosity at microsatellite loci both proximal and distal to aprt in 137 Cs-induced and spontaneous aprt mutants. This approach allowed us to distinguish apparent interstitial deletional events from apparent recombinational events. Significantly, 32.5% (26 of 80) of the mutational events induced by 137 Cs appeared to be interstitial deletions as compared with 7.7% (6 of 78) in the spontaneous group. This difference was statistically significant (p 137 Cs caused a significant number of deletion mutations. Most 137 Cs-induced interstitial deletions were larger than 6 cM, whereas none of the spontaneous deletions were larger than 6 cM. These results provide further support for the notion that ionizing radiation induces deletion mutations and validate the use of the P19H22 cell line for the study of events induced by ionizing radiation

  3. aroA-Deficient Salmonella enterica Serovar Typhimurium Is More Than a Metabolically Attenuated Mutant

    Science.gov (United States)

    Frahm, Michael; Kocijancic, Dino; Rohde, Manfred; Eckweiler, Denitsa; Bielecka, Agata; Bueno, Emilio; Cava, Felipe; Abraham, Wolf-Rainer; Curtiss, Roy; Häussler, Susanne; Erhardt, Marc; Weiss, Siegfried

    2016-01-01

    ABSTRACT Recombinant attenuated Salmonella enterica serovar Typhimurium strains are believed to act as powerful live vaccine carriers that are able to elicit protection against various pathogens. Auxotrophic mutations, such as a deletion of aroA, are commonly introduced into such bacteria for attenuation without incapacitating immunostimulation. In this study, we describe the surprising finding that deletion of aroA dramatically increased the virulence of attenuated Salmonella in mouse models. Mutant bacteria lacking aroA elicited increased levels of the proinflammatory cytokine tumor necrosis factor alpha (TNF-α) after systemic application. A detailed genetic and phenotypic characterization in combination with transcriptomic and metabolic profiling demonstrated that ΔaroA mutants display pleiotropic alterations in cellular physiology and lipid and amino acid metabolism, as well as increased sensitivity to penicillin, complement, and phagocytic uptake. In concert with other immunomodulating mutations, deletion of aroA affected flagellin phase variation and gene expression of the virulence-associated genes arnT and ansB. Finally, ΔaroA strains displayed significantly improved tumor therapeutic activity. These results highlight the importance of a functional shikimate pathway to control homeostatic bacterial physiology. They further highlight the great potential of ΔaroA-attenuated Salmonella for the development of vaccines and cancer therapies with important implications for host-pathogen interactions and translational medicine. PMID:27601574

  4. Conditions for gene disruption by homologous recombination of exogenous DNA into the Sulfolobus solfataricus genome

    OpenAIRE

    Albers, Sonja-Verena; Driessen, Arnold J. M.

    2008-01-01

    The construction of directed gene deletion mutants is an essential tool in molecular biology that allows functional studies on the role of genes in their natural environment. For hyperthermophilic archaea, it has been difficult to obtain a reliable system to construct such mutants. However, during the past years, systems have been developed for Thermococcus kodakarensis and two Sulfolobus species, S. ac...

  5. Gene expression profile analysis of Ligon lintless-1 (Li1) mutant reveals important genes and pathways in cotton leaf and fiber development.

    Science.gov (United States)

    Ding, Mingquan; Jiang, Yurong; Cao, Yuefen; Lin, Lifeng; He, Shae; Zhou, Wei; Rong, Junkang

    2014-02-10

    Ligon lintless-1 (Li1) is a monogenic dominant mutant of Gossypium hirsutum (upland cotton) with a phenotype of impaired vegetative growth and short lint fibers. Despite years of research involving genetic mapping and gene expression profile analysis of Li1 mutant ovule tissues, the gene remains uncloned and the underlying pathway of cotton fiber elongation is still unclear. In this study, we report the whole genome-level deep-sequencing analysis of leaf tissues of the Li1 mutant. Differentially expressed genes in leaf tissues of mutant versus wild-type (WT) plants are identified, and the underlying pathways and potential genes that control leaf and fiber development are inferred. The results show that transcription factors AS2, YABBY5, and KANDI-like are significantly differentially expressed in mutant tissues compared with WT ones. Interestingly, several fiber development-related genes are found in the downregulated gene list of the mutant leaf transcriptome. These genes include heat shock protein family, cytoskeleton arrangement, cell wall synthesis, energy, H2O2 metabolism-related genes, and WRKY transcription factors. This finding suggests that the genes are involved in leaf morphology determination and fiber elongation. The expression data are also compared with the previously published microarray data of Li1 ovule tissues. Comparative analysis of the ovule transcriptomes of Li1 and WT reveals that a number of pathways important for fiber elongation are enriched in the downregulated gene list at different fiber development stages (0, 6, 9, 12, 15, 18dpa). Differentially expressed genes identified in both leaf and fiber samples are aligned with cotton whole genome sequences and combined with the genetic fine mapping results to identify a list of candidate genes for Li1. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. The effect of the CCR5-delta32 deletion on global gene expression considering immune response and inflammation

    Directory of Open Access Journals (Sweden)

    Hütter Gero

    2011-10-01

    Full Text Available Abstract Background The natural function of the C-C chemokine receptor type 5 (CCR5 is poorly understood. A 32 base pair deletion in the CCR5 gene (CCR5-delta32 located on chromosome 3 results in a non-functional protein. It is supposed that this deletion causes an alteration in T-cell response to inflammation. For example, the presence of the CCR5-delta32 allele in recipients of allografts constitutes as an independent and protective factor associated with a decreased risk of graft-versus-host disease (GVHD and graft rejection. However, the mechanism of this beneficial effect of the deletion regarding GVHD is unknown. In this survey we searched for a CCR5-delta32 associated regulation of critical genes involved in the immune response and the development of GVHD. Methods We examined CD34+ hematopoietic progenitor cells derived from bone marrow samples from 19 healthy volunteers for the CCR5-delta32 deletion with a genomic PCR using primers flanking the site of the deletion. Results 12 individuals were found to be homozygous for CCR5 WT and 7 carried the CCR5-delta32 deletion heterozygously. Global gene expression analysis led to the identification of 11 differentially regulated genes. Six of them are connected with mechanisms of immune response and control: LRG1, CXCR2, CCRL2, CD6, CD7, WD repeat domain, and CD30L. Conclusions Our data indicate that the CCR5-delta32 mutation may be associated with differential gene expression. Some of these genes are critical for immune response, in the case of CD30L probably protective in terms of GVHD.

  7. Alu-mediated large deletion of the CDSN gene as a cause of peeling skin disease.

    Science.gov (United States)

    Wada, T; Matsuda, Y; Muraoka, M; Toma, T; Takehara, K; Fujimoto, M; Yachie, A

    2014-10-01

    Peeling skin disease (PSD) is an autosomal recessive skin disorder caused by mutations in CDSN and is characterized by superficial peeling of the upper epidermis. Corneodesmosin (CDSN) is a major component of corneodesmosomes that plays an important role in maintaining epidermis integrity. Herein, we report a patient with PSD caused by a novel homozygous large deletion in the 6p21.3 region encompassing the CDSN gene, which abrogates CDSN expression. Several genes including C6orf15, PSORS1C1, PSORS1C2, CCHCR1, and TCF19 were also deleted, however, the patient showed only clinical features typical of PSD. The deletion size was 59.1 kb. Analysis of the sequence surrounding the breakpoint showed that both telomeric and centromeric breakpoints existed within Alu-S sequences that were oriented in opposite directions. These results suggest an Alu-mediated recombination event as the mechanism underlying the deletion in our patient. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. De novo deletion of HOXB gene cluster in a patient with failure to thrive, developmental delay, gastroesophageal reflux and bronchiectasis.

    Science.gov (United States)

    Pajusalu, Sander; Reimand, Tiia; Uibo, Oivi; Vasar, Maire; Talvik, Inga; Zilina, Olga; Tammur, Pille; Õunap, Katrin

    2015-01-01

    We report a female patient with a complex phenotype consisting of failure to thrive, developmental delay, congenital bronchiectasis, gastroesophageal reflux and bilateral inguinal hernias. Chromosomal microarray analysis revealed a 230 kilobase deletion in chromosomal region 17q21.32 (arr[hg19] 17q21.32(46 550 362-46 784 039)×1) encompassing only 9 genes - HOXB1 to HOXB9. The deletion was not found in her mother or father. This is the first report of a patient with a HOXB gene cluster deletion involving only HOXB1 to HOXB9 genes. By comparing our case to previously reported five patients with larger chromosomal aberrations involving the HOXB gene cluster, we can suppose that HOXB gene cluster deletions are responsible for growth retardation, developmental delay, and specific facial dysmorphic features. Also, we suppose that bilateral inguinal hernias, tracheo-esophageal abnormalities, and lung malformations represent features with incomplete penetrance. Interestingly, previously published knock-out mice with targeted heterozygous deletion comparable to our patient did not show phenotypic alterations. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  9. Deletions at the SOX10 gene locus cause Waardenburg syndrome types 2 and 4.

    Science.gov (United States)

    Bondurand, Nadege; Dastot-Le Moal, Florence; Stanchina, Laure; Collot, Nathalie; Baral, Viviane; Marlin, Sandrine; Attie-Bitach, Tania; Giurgea, Irina; Skopinski, Laurent; Reardon, William; Toutain, Annick; Sarda, Pierre; Echaieb, Anis; Lackmy-Port-Lis, Marilyn; Touraine, Renaud; Amiel, Jeanne; Goossens, Michel; Pingault, Veronique

    2007-12-01

    Waardenburg syndrome (WS) is an auditory-pigmentary disorder that exhibits varying combinations of sensorineural hearing loss and abnormal pigmentation of the hair and skin. Depending on additional symptoms, WS is classified into four subtypes, WS1-WS4. Absence of additional features characterizes WS2. The association of facial dysmorphic features defines WS1 and WS3, whereas the association with Hirschsprung disease (aganglionic megacolon) characterizes WS4, also called "Waardenburg-Hirschsprung disease." Mutations within the genes MITF and SNAI2 have been identified in WS2, whereas mutations of EDN3, EDNRB, and SOX10 have been observed in patients with WS4. However, not all cases are explained at the molecular level, which raises the possibility that other genes are involved or that some mutations within the known genes are not detected by commonly used genotyping methods. We used a combination of semiquantitative fluorescent multiplex polymerase chain reaction and fluorescent in situ hybridization to search for SOX10 heterozygous deletions. We describe the first characterization of SOX10 deletions in patients presenting with WS4. We also found SOX10 deletions in WS2 cases, making SOX10 a new gene of WS2. Interestingly, neurological phenotypes reminiscent of that observed in WS4 (PCWH syndrome [peripheral demyelinating neuropathy, central dysmyelinating leukodystrophy, WS, and Hirschsprung disease]) were observed in some WS2-affected patients with SOX10 deletions. This study further characterizes the molecular complexity and the close relationship that links the different subtypes of WS.

  10. Deletion Analysis Of The Duchenne/Becker Muscular Dystrophy Gene Using Multiplex Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Dastur R

    2003-01-01

    Full Text Available The diagnosis of Duchenne Muscular Dystrophy (DMD and Becker Muscular Dystrophy (BMD is mainly based on clinical profile, serum CPK values, muscle biopsy and immunostaining for dystrophin. Most recent and accurate method for diagnosing DMD/BMD is by detection of mutations in the DMD gene. This was done in 100 unrelated patients using 19 exons including the promoter region in two sets of multiplex polymerase chain reaction (PCR. These primers amplify most of the exons in the deletion prone ′hotspot′ regions allowing determination of deletion end point. Intragenic deletions were detected in 74 patients indicating that the use of PCR-based assays will allow deletion detection help in prenatal diagnosis for most of the DMD/BMD patients. The frequency of deletions observed in the present study was 74%.

  11. Establishment of a Conditionally Immortalized Wilms Tumor Cell Line with a Homozygous WT1 Deletion within a Heterozygous 11p13 Deletion and UPD Limited to 11p15.

    Directory of Open Access Journals (Sweden)

    Artur Brandt

    Full Text Available We describe a stromal predominant Wilms tumor with focal anaplasia and a complex, tumor specific chromosome 11 aberration: a homozygous deletion of the entire WT1 gene within a heterozygous 11p13 deletion and an additional region of uniparental disomy (UPD limited to 11p15.5-p15.2 including the IGF2 gene. The tumor carried a heterozygous p.T41A mutation in CTNNB1. Cells established from the tumor carried the same chromosome 11 aberration, but a different, homozygous p.S45Δ CTNNB1 mutation. Uniparental disomy (UPD 3p21.3pter lead to the homozygous CTNNB1 mutation. The tumor cell line was immortalized using the catalytic subunit of human telomerase (hTERT in conjunction with a novel thermolabile mutant (U19dl89-97tsA58 of SV40 large T antigen (LT. This cell line is cytogenetically stable and can be grown indefinitely representing a valuable tool to study the effect of a complete lack of WT1 in tumor cells. The origin/fate of Wilms tumors with WT1 mutations is currently poorly defined. Here we studied the expression of several genes expressed in early kidney development, e.g. FOXD1, PAX3, SIX1, OSR1, OSR2 and MEIS1 and show that these are expressed at similar levels in the parental and the immortalized Wilms10 cells. In addition the limited potential for muscle/ osteogenic/ adipogenic differentiation similar to all other WT1 mutant cell lines is also observed in the Wilms10 tumor cell line and this is retained in the immortalized cells. In summary these Wilms10 cells are a valuable model system for functional studies of WT1 mutant cells.

  12. Establishment of a Conditionally Immortalized Wilms Tumor Cell Line with a Homozygous WT1 Deletion within a Heterozygous 11p13 Deletion and UPD Limited to 11p15

    Science.gov (United States)

    Brandt, Artur; Löhers, Katharina; Beier, Manfred; Leube, Barbara; de Torres, Carmen; Mora, Jaume; Arora, Parineeta; Jat, Parmjit S.; Royer-Pokora, Brigitte

    2016-01-01

    We describe a stromal predominant Wilms tumor with focal anaplasia and a complex, tumor specific chromosome 11 aberration: a homozygous deletion of the entire WT1 gene within a heterozygous 11p13 deletion and an additional region of uniparental disomy (UPD) limited to 11p15.5-p15.2 including the IGF2 gene. The tumor carried a heterozygous p.T41A mutation in CTNNB1. Cells established from the tumor carried the same chromosome 11 aberration, but a different, homozygous p.S45Δ CTNNB1 mutation. Uniparental disomy (UPD) 3p21.3pter lead to the homozygous CTNNB1 mutation. The tumor cell line was immortalized using the catalytic subunit of human telomerase (hTERT) in conjunction with a novel thermolabile mutant (U19dl89-97tsA58) of SV40 large T antigen (LT). This cell line is cytogenetically stable and can be grown indefinitely representing a valuable tool to study the effect of a complete lack of WT1 in tumor cells. The origin/fate of Wilms tumors with WT1 mutations is currently poorly defined. Here we studied the expression of several genes expressed in early kidney development, e.g. FOXD1, PAX3, SIX1, OSR1, OSR2 and MEIS1 and show that these are expressed at similar levels in the parental and the immortalized Wilms10 cells. In addition the limited potential for muscle/ osteogenic/ adipogenic differentiation similar to all other WT1 mutant cell lines is also observed in the Wilms10 tumor cell line and this is retained in the immortalized cells. In summary these Wilms10 cells are a valuable model system for functional studies of WT1 mutant cells. PMID:27213811

  13. The Sequences of 1504 Mutants in the Model Rice Variety Kitaake Facilitate Rapid Functional Genomic Studies.

    Science.gov (United States)

    Li, Guotian; Jain, Rashmi; Chern, Mawsheng; Pham, Nikki T; Martin, Joel A; Wei, Tong; Schackwitz, Wendy S; Lipzen, Anna M; Duong, Phat Q; Jones, Kyle C; Jiang, Liangrong; Ruan, Deling; Bauer, Diane; Peng, Yi; Barry, Kerrie W; Schmutz, Jeremy; Ronald, Pamela C

    2017-06-01

    The availability of a whole-genome sequenced mutant population and the cataloging of mutations of each line at a single-nucleotide resolution facilitate functional genomic analysis. To this end, we generated and sequenced a fast-neutron-induced mutant population in the model rice cultivar Kitaake ( Oryza sativa ssp japonica ), which completes its life cycle in 9 weeks. We sequenced 1504 mutant lines at 45-fold coverage and identified 91,513 mutations affecting 32,307 genes, i.e., 58% of all rice genes. We detected an average of 61 mutations per line. Mutation types include single-base substitutions, deletions, insertions, inversions, translocations, and tandem duplications. We observed a high proportion of loss-of-function mutations. We identified an inversion affecting a single gene as the causative mutation for the short-grain phenotype in one mutant line. This result reveals the usefulness of the resource for efficient, cost-effective identification of genes conferring specific phenotypes. To facilitate public access to this genetic resource, we established an open access database called KitBase that provides access to sequence data and seed stocks. This population complements other available mutant collections and gene-editing technologies. This work demonstrates how inexpensive next-generation sequencing can be applied to generate a high-density catalog of mutations. © 2017 American Society of Plant Biologists. All rights reserved.

  14. Effects of ion beam irradiation on size of mutant sector and genetic damage in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Hase, Yoshihiro, E-mail: hase.yoshihiro@qst.go.jp [Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Nozawa, Shigeki [Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Narumi, Issay [Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193 (Japan); Oono, Yutaka [Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2017-01-15

    Size of mutant sector and genetic damage were evaluated in Arabidopsis to further our understanding of effective ion beam use in plant mutation breeding. Arabidopsis seeds, heterozygous for the GLABRA1 (GL1) gene (GL1/gl1-1), were irradiated with 15.8 MeV/u neon ions (mean linear energy transfer (LET): 352 keV/μm), 17.3 MeV/u carbon ions (113 keV/μm), or {sup 60}Co gamma rays. The frequency and size of glabrous sectors generated because of inactivation of the GL1 allele were examined. The frequency and overall size of large deletions were evaluated based on the loss of heterozygosity of DNA markers using DNA isolated from glabrous tissue. Irrespective of the radiation properties, plants with mutant sectors were obtained at similar frequencies at the same effective dosage necessary for survival reduction. Ion beams tended to induce larger mutant sectors than gamma rays. The frequency of large deletions (>several kbp) increased as the LET value increased, with chromosome regions larger than 100 kbp lost in most large deletions. The distorted segregation ratio of glabrous plants in the progenies of irradiated GL1/gl1-1 plants suggested frequent occurrence of chromosome rearrangement, especially those subjected to neon ions. Exposure to ion beams with moderate LET values (30–110 keV/μm) is thought effective for inducing mutant sectors without causing extensive genetic damage.

  15. Inheritance and gene expression of a root-growth inhibiting mutant in rice (Oryza sativa L.)

    International Nuclear Information System (INIS)

    Kitano, H.; Futsuhara, Y.

    1990-01-01

    Full text: A root-growth inhibiting mutant was induced in the dwarf mutant line, 'Fukei 71', through ethylene-imine. The mutant is characterised by the excessive inhibition of both seminal and crown roots elongation just after germination, although its shoots grow nearly normal. To study the genetics, the mutant was crossed with its original line 'Fukei 71' and some other normal cultivars. Results show that the root-growth inhibition is controlled by a recessive gene (rt), independent of the dwarf gene, d-50(t) locus in Fukei 71. For elucidating the gene action on root morphogenesis, histological and cytological experiments were carried out using a longitudinal and transverse thin section of seminal and/or crown root tips. Observations suggest that the rt gene affects the normal formation of the epidermal system which is differentiated from the protoderm of the root apical meristem. (author)

  16. Encephalopathy and bilateral cataract in a boy with an interstitial deletion of Xp22 comprising the CDKL5 and NHS genes.

    Science.gov (United States)

    Van Esch, Hilde; Jansen, Anna; Bauters, Marijke; Froyen, Guy; Fryns, Jean-Pierre

    2007-02-15

    We describe a male patient with a deletion at Xp22, detected by high resolution X-array CGH. The clinical phenotype present in this infant boy, consists of severe encephalopathy, congenital cataracts and tetralogy of Fallot and can be attributed to the deletion of the genes within the interval. Among these deleted genes are the gene for Nance-Horan syndrome and the cyclin-dependent kinase-like 5 gene (CDKL5), responsible for the early seizure variant of Rett syndrome. This is the first description of a male patient with a deletion of these genes, showing the involvement of CDKL5 in severe epileptic encephalopathy in males. Moreover it illustrates the added value of high resolution array-CGH in molecular diagnosis of mental retardation-multiple congenital anomaly cases. (c) 2007 Wiley-Liss, Inc.

  17. A new and efficient approach for construction of uridine/uracil auxotrophic mutants in the filamentous fungus Aspergillus oryzae using Agrobacterium tumefaciens-mediated transformation.

    Science.gov (United States)

    Nguyen, Khuyen Thi; Ho, Quynh Ngoc; Do, Loc Thi Binh Xuan; Mai, Linh Thi Dam; Pham, Duc-Ngoc; Tran, Huyen Thi Thanh; Le, Diep Hong; Nguyen, Huy Quang; Tran, Van-Tuan

    2017-06-01

    Aspergillus oryzae is a filamentous fungus widely used in food industry and as a microbial cell factory for recombinant protein production. Due to the inherent resistance of A. oryzae to common antifungal compounds, genetic transformation of this mold usually requires auxotrophic mutants. In this study, we show that Agrobacterium tumefaciens-mediated transformation (ATMT) method is very efficient for deletion of the pyrG gene in different Aspergillus oryzae wild-type strains to generate uridine/uracil auxotrophic mutants. Our data indicated that all the obtained uridine/uracil auxotrophic transformants, which are 5- fluoroorotic acid (5-FOA) resistant, exist as the pyrG deletion mutants. Using these auxotrophic mutants and the pyrG selectable marker for genetic transformation via A. tumefaciens, we could get about 1060 transformants per 10 6 fungal spores. In addition, these A. oryzae mutants were also used successfully for expression of the DsRed fluorescent reporter gene under control of the A. oryzae amyB promoter by the ATMT method, which resulted in obvious red transformants on agar plates. Our work provides a new and effective approach for constructing the uridine/uracil auxotrophic mutants in the importantly industrial fungus A. oryzae. This strategy appears to be applicable to other filamentous fungi to develop similar genetic transformation systems based on auxotrophic/nutritional markers for food-grade recombinant applications.

  18. A markerless protocol for genetic analysis of Aggregatibacter actinomycetemcomitans

    Science.gov (United States)

    Cheng, Ya-An; Jee, Jason; Hsu, Genie; Huang, Yanyan; Chen, Casey; Lin, Chun-Pin

    2015-01-01

    Background/Purpose The genomes of different Aggregatibacter actinomycetemcomitans strains contain many strain-specific genes and genomic islands (defined as DNA found in some but not all strains) of unknown functions. Genetic analysis for the functions of these islands will be constrained by the limited availability of genetic markers and vectors for A. actinomycetemcomitans. In this study we tested a novel genetic approach of gene deletion and restoration in a naturally competent A. actinomycetemcomitans strain D7S-1. Methods Specific genes’ deletion mutants and mutants restored with the deleted genes were constructed by a markerless loxP/Cre system. In mutants with sequential deletion of multiple genes loxP with different spacer regions were used to avoid unwanted recombinations between loxP sites. Results Eight single-gene deletion mutants, four multiple-gene deletion mutants, and two mutants with restored genes were constructed. No unintended non-specific deletion mutants were generated by this protocol. The protocol did not negatively affect the growth and biofilm formation of A. actinomycetemcomitans. Conclusion The protocol described in this study is efficient and specific for genetic manipulation of A. actinomycetemcomitans, and will be amenable for functional analysis of multiple genes in A. actinomycetemcomitans. PMID:24530245

  19. Screening for large genomic rearrangements in the FANCA gene reveals extensive deletion in a Finnish breast cancer family.

    Science.gov (United States)

    Solyom, Szilvia; Winqvist, Robert; Nikkilä, Jenni; Rapakko, Katrin; Hirvikoski, Pasi; Kokkonen, Hannaleena; Pylkäs, Katri

    2011-03-28

    A portion of familial breast cancer cases are caused by mutations in the same genes that are inactivated in the downstream part of Fanconi anemia (FA) signaling pathway. Here we have assessed the FANCA gene for breast cancer susceptibility by examining blood DNA for aberrations from 100 Northern Finnish breast cancer families using the MLPA method. We identified a novel heterozygous deletion, removing the promoter and 12 exons of the gene in one family. This allele was absent from 124 controls. We conclude that FANCA deletions might contribute to breast cancer susceptibility, potentially in combination with other germline mutations. To our knowledge, this is the first study reporting a large deletion in an upstream FA gene in familial breast cancer. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  20. Xp21 contiguous gene syndromes: Deletion quantitation with bivariate flow karyotyping allows mapping of patient breakpoints

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, E.R.B.; Towbin, J.A. (Baylor College of Medicine, Houston, TX (United States)); Engh, G. van den; Trask, B.J. (Lawrence Livermore National Lab., CA (United States))

    1992-12-01

    Bivariate flow karyotyping was used to estimate the deletion sizes for a series of patients with Xp21 contiguous gene syndromes. The deletion estimates were used to develop an approximate scale for the genomic map in Xp21. The bivariate flow karyotype results were compared with clinical and molecular genetic information on the extent of the patients' deletions, and these various types of data were consistent. The resulting map spans >15 Mb, from the telomeric interval between DXS41 (99-6) and DXS68 (1-4) to a position centromeric to the ornithine transcarbamylase locus. The deletion sizing was considered to be accurate to [plus minus]1 Mb. The map provides information on the relative localization of genes and markers within this region. For example, the map suggests that the adrenal hypoplasia congenita and glycerol kinase genes are physically close to each other, are within 1-2 Mb of the telomeric end of the Duchenne muscular dystrophy (DMD) gene, and are nearer to the DMD locus than to the more distal marker DXS28 (C7). Information of this type is useful in developing genomic strategies for positional cloning in Xp21. These investigations demonstrate that the DNA from patients with Xp21 contiguous gene syndromes can be valuable reagents, not only for ordering loci and markers but also for providing an approximate scale to the map of the Xp21 region surrounding DMD. 44 refs., 3 figs.

  1. A nine-nucleotide deletion and splice variation in the coding region of the interferon induced ISG12 gene

    DEFF Research Database (Denmark)

    Smidt, Kamille; Hansen, Lise Lotte; Søgaard, T Max M

    2003-01-01

    distributed between ISG12 and ISG12-S in breast carcinoma cells, in cancer cell lines and in cervical cytobrush material with neoplastic lesions. In addition, we have found a nine-nucleotide deletion situated in exon 4 of the ISG12 gene. This deletion leads to a three-amino-acid deletion (AMA) in the putative...... ISG12 gene products, ISG12Δ and ISG12-SΔ. We have determined the prevalence of the deletion ISG12Δ in normal and neoplastic cells. Homozygosity ISG12(0/0) and ISG12(Δ/Δ), and heterozygosity ISG12(0/Δ) were found, although the ISG12(Δ/Δ) genotype was rare. In heterozygous cells from cytobrush material...

  2. HU participates in expression of a specific set of genes required for growth and survival at acidic pH in Escherichia coli.

    Science.gov (United States)

    Bi, Hongkai; Sun, Lianle; Fukamachi, Toshihiko; Saito, Hiromi; Kobayashi, Hiroshi

    2009-05-01

    The major histone-like Escherichia coli protein, HU, is composed of alpha and beta subunits respectively encoded by hupA and hupB in Escherichia coli. A mutant deficient in both hupA and hupB grew at a slightly slower rate than the wild type at pH 7.5. Growth of the mutant diminished with a decrease in pH, and no growth was observed at pH 4.6. Mutants of either hupA or hupB grew at all pH levels tested. The arginine-dependent survival at pH 2.5 was diminished approximately 60-fold by the deletion of both hupA and hupB, whereas the survival was slightly affected by the deletion of either hupA or hupB. The mRNA levels of adiA and adiC, which respectively encode arginine decarboxylase and arginine/agmatine antiporter, were low in the mutant deficient in both hupA and hupB. The deletion of both hupA and hupB had little effect on survival at pH 2.5 in the presence of glutamate or lysine, and expression of the genes for glutamate and lysine decarboxylases was not impaired by the deletion of the HU genes. These results suggest that HU regulates expression of the specific set of genes required for growth and survival in acidic environments.

  3. Deletion mutations of bacteriophage

    International Nuclear Information System (INIS)

    Ryo, Yeikou

    1975-01-01

    Resolution of mutation mechanism with structural changes of DNA was discussed through the studies using bacteriophage lambda. One of deletion mutations inductions of phage lambda is the irradiation of ultraviolet ray. It is not clear if the inductions are caused by errors in reparation of ultraviolet-induced damage or by the activation of int gene. Because the effective site of int gene lies within the regions unnecessary for existing, it is considered that int gene is connected to deletion mutations induction. A certain system using prophage complementarity enables to detect deletion mutations at essential hereditary sites and to solve the relations of deletion mutations with other recombination system, DNA reproduction and repairment system. Duplication and multiplication of hereditary elements were discussed. If lambda deletion mutations of the system, which can control recombination, reproduction and repairment of added DNA, are constructed, mutations mechanism with great changes of DNA structure can be solved by phage lambda. (Ichikawa, K.)

  4. A novel contiguous deletion involving NDP, MAOB and EFHC2 gene ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 96; Issue 6. A novel contiguous deletion involving NDP, MAOBand EFHC2gene in a patient with familial Norrie disease: bilateral blindness and leucocoria without other deficits. BEI JIA LIPING HUANG YAOYU CHEN SIPING LIU CUIHUA CHEN KE XIONG LANLIN SONG YULAI ...

  5. A novel contiguous deletion involving NDP, MAOB and EFHC2 gene ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 96; Issue 6. A novel contiguous deletion involving NDP, MAOBitalic> and EFHC2italic> gene in a patient with familial Norrie disease: bilateral blindness and leucocoria without other deficits. BEI JIA LIPING HUANG YAOYU CHEN SIPING LIU CUIHUA CHEN KE XIONG LANLIN ...

  6. Overexpression of SOS genes in ciprofloxacin resistant Escherichia coli mutants.

    Science.gov (United States)

    Pourahmad Jaktaji, Razieh; Pasand, Shirin

    2016-01-15

    Fluoroquinolones are important antibiotics for the treatment of urinary tract infections caused by Escherichia coli. Mutational studies have shown that ciprofloxacin, a member of fluoroquinolones induces SOS response and mutagenesis in pathogenic bacteria which in turn develop antibiotic resistance. However, inhibition of SOS response can increase recombination activity which in turn leads to genetic variation. The aim of this study was to measure 5 SOS genes expressions in nine E. coli mutants with different MICs for ciprofloxacin following exposure to ciprofloxacin. Gene expression was assessed by quantitative real time PCR. Gene alteration assessment was conducted by PCR amplification and DNA sequencing. Results showed that the expression of recA was increased in 5 mutants. This overexpression is not related to gene alteration, and enhances the expression of polB and umuCD genes encoding nonmutagenic and mutagenic polymerases, respectively. The direct relationship between the level of SOS expression and the level of resistance to ciprofloxacin was also indicated. It was concluded that novel therapeutic strategy that inhibits RecA activity would enhance the efficiency of common antibiotics against pathogenic bacteria. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. PAX3 gene deletion detected by microarray analysis in a girl with hearing loss.

    Science.gov (United States)

    Drozniewska, Malgorzata; Haus, Olga

    2014-01-01

    Deletions of the PAX3 gene have been rarely reported in the literature. Mutations of this gene are a common cause of Waardenburg syndrome type 1 and 3. We report a 16 year old female presenting hearing loss and normal intellectual development, without major features of Waardenburg syndrome type 1, and without family history of the syndrome. Her phenotype, however, overlaps with features of craniofacial-deafness-hand syndrome. Microarray analysis showed ~862 kb de novo deletion at 2q36.1 including PAX3. The above findings suggest that the rearrangement found in our patient appeared de novo and with high probability is a cause of her phenotype.

  8. Multiplex Ligation-dependent Probe Amplification Identification of Deletions and Duplications of the Duchenne Muscular Dystrophy Gene in Taiwanese Subjects

    Directory of Open Access Journals (Sweden)

    Hsiao-Lin Hwa

    2007-05-01

    Conclusion: MLPA was proven to be a powerful tool for the detection of DMD gene deletions and duplications in male patients and female carriers. There was a relatively lower frequency of deletion and a higher frequency of duplication of DMD gene in this population compared to previous reports.

  9. Xp22.3 genomic deletions involving the CDKL5 gene in girls with early onset epileptic encephalopathy.

    Science.gov (United States)

    Mei, Davide; Marini, Carla; Novara, Francesca; Bernardina, Bernardo D; Granata, Tiziana; Fontana, Elena; Parrini, Elena; Ferrari, Anna R; Murgia, Alessandra; Zuffardi, Orsetta; Guerrini, Renzo

    2010-04-01

    Mutations of the X-linked gene cyclin-dependent kinase-like 5 (CDKL5) cause an X-linked encephalopathy with early onset intractable epilepsy, including infantile spasms and other seizure types, and a Rett syndrome (RTT)-like phenotype. Very limited information is available on the frequency and phenotypic spectrum associated with CDKL5 deletions/duplications. We investigated the role of CDKL5 deletions/duplications in causing early onset intractable epilepsy of unknown etiology in girls. We studied 49 girls with early onset intractable epilepsy, with or without infantile spasms, and developmental impairment, for whom no etiologic factors were obvious after clinical examination, brain magnetic resonance imaging (MRI) and expanded screening for inborn errors of metabolism. We performed CDKL5 gene mutation analysis in all and multiplex ligation dependent probe amplification assay (MLPA) in those who were mutation negative. Custom Array-comparative genomic hybridization (CGH), breakpoint polymerase chain reaction (PCR) analysis, and X-inactivation studies were performed in patients in whom MLPA uncovered a genomic alteration. We found CDKL5 mutations in 8.2% (4 of 49) of patients and genomic deletions in 8.2% (4 of 49). Overall, abnormalities of the CDKL5 gene accounted for 16.3% (8 of 49) of patients. CDKL5 gene deletions are an under-ascertained cause of early onset intractable epilepsy in girls. Genetic testing of CDKL5, including both mutation and deletion/duplication analysis, should be considered in this clinical subgroup.

  10. The YJR127C/ZMS1 gene product is involved in glycerol-based respiratory growth of the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Lu, Lin; Roberts, George G; Oszust, Cynthia; Hudson, Alan P

    2005-10-01

    A putative yeast mitochondrial upstream activating sequence (UAS) was used in a one-hybrid screening procedure that identified the YJR127C ORF on chromosome X. This gene was previously designated ZMS1 and is listed as a transcription factor on the SGD website. Real time RT-PCR assays showed that expression of YJR127C/ZMS1 was glucose-repressible, and a deletion mutant for the gene showed a growth defect on glycerol-based but not on glucose- or ethanol-based medium. Real time RT-PCR analyses identified severely attenuated transcript levels from GUT1 and GUT2 to be the source of that growth defect, the products of GUT1 and GUT2 are required for glycerol utilization. mRNA levels from a large group of mitochondria- and respiration-related nuclear genes also were shown to be attenuated in the deletion mutant. Importantly, transcript levels from the mitochondrial OLI1 gene, which has an associated organellar UAS, were attenuated in the DeltaYJR127C mutant during glycerol-based growth, but those from COX3 (OXI2), which lacks an associated mitochondrial UAS, were not. Transcriptome analysis of the glycerol-grown deletion mutant showed that genes in several metabolic and other categories are affected by loss of this gene product, including protein transport, signal transduction, and others. Thus, the product of YJR127C/ZMS1 is involved in transcriptional control for genes in both cellular genetic compartments, many of which specify products required for glycerol-based growth, respiration, and other functions.

  11. Deletion of exons 9 and 10 of the Presenilin 1 gene in a patient with Early-onset Alzheimer Disease generates longer amyloid seeds.

    Science.gov (United States)

    Le Guennec, Kilan; Veugelen, Sarah; Quenez, Olivier; Szaruga, Maria; Rousseau, Stéphane; Nicolas, Gaël; Wallon, David; Fluchere, Frédérique; Frébourg, Thierry; De Strooper, Bart; Campion, Dominique; Chávez-Gutiérrez, Lucía; Rovelet-Lecrux, Anne

    2017-08-01

    Presenilin 1 (PSEN1) mutations are the main cause of autosomal dominant Early-onset Alzheimer Disease (EOAD). Among them, deletions of exon 9 have been reported to be associated with a phenotype of spastic paraparesis. Using exome data from a large sample of 522 EOAD cases and 584 controls to search for genomic copy-number variations (CNVs), we report here a novel partial, in-frame deletion of PSEN1, removing both exons 9 and 10. The patient presented with memory impairment associated with spastic paraparesis, both starting from the age of 56years. He presented a positive family history of EOAD. We performed functional analysis to elucidate the impact of this novel deletion on PSEN1 activity as part of the γ-secretase complex. The deletion does not affect the assembly of a mature protease complex but has an extreme impact on its global endopeptidase activity. The mutant carboxypeptidase-like activity is also strongly impaired and the deleterious mutant effect leads to an incomplete digestion of long Aβ peptides and enhances the production of Aβ43, which has been shown to be potently amyloidogenic and neurotoxic in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Genetic Analysis and Mapping of TWH Gene in Rice Twisted Hull Mutant

    Directory of Open Access Journals (Sweden)

    Jin-bo LI

    2009-03-01

    Full Text Available A mutant with twisted hulls was found in a breeding population of rice (Oryza sativa L.. The mutant shows less grain weight and inferior grain quality in addition to twisted hulls. Genetic analysis indicated that the phenotype of mutant was controlled by a single recessive gene (temporarily designated as TWH. To map the TWH gene, an F2 population was generated by crossing the twh mutant to R725, an indica rice variety with normal hulls. For bulked segregant analysis, the bulk of mutant plants was prepared by mixing equal amount of plant tissue from 10 twisted-hull plants and the bulk of normal plants was obtained by pooling equal amount tissue of 10 normal-hull plants. Two hundred and seven pairs of simple sequence repeat (SSR primers, which are distributed on 12 rice chromosomes, were used for polymorphism analysis of the parents and the two bulks. The TWH locus was initially mapped close to the SSR marker RM526 on chromosome 2. Therefore, further mapping was performed using 50 pairs of SSR primers around the marker RM526. The TWH was delimited between the SSR markers RM14128 and RM208 on the long arm of chromosome 2 at the genetic distances of 1.4 cM and 2.7 cM, respectively. These results provide the foundation for further fine mapping, cloning and functional analysis of the TWH gene.

  13. Expression profiling of S. pombe acetyltransferase mutants identifies redundant pathways of gene regulation

    Directory of Open Access Journals (Sweden)

    Wright Anthony PH

    2010-01-01

    Full Text Available Abstract Background Histone acetyltransferase enzymes (HATs are implicated in regulation of transcription. HATs from different families may overlap in target and substrate specificity. Results We isolated the elp3+ gene encoding the histone acetyltransferase subunit of the Elongator complex in fission yeast and characterized the phenotype of an Δelp3 mutant. We examined genetic interactions between Δelp3 and two other HAT mutants, Δmst2 and Δgcn5 and used whole genome microarray analysis to analyze their effects on gene expression. Conclusions Comparison of phenotypes and expression profiles in single, double and triple mutants indicate that these HAT enzymes have overlapping functions. Consistent with this, overlapping specificity in histone H3 acetylation is observed. However, there is no evidence for overlap with another HAT enzyme, encoded by the essential mst1+ gene.

  14. The Homolog of the Gene bstA of the BTP1 Phage from Salmonella enterica Serovar Typhimurium ST313 Is an Antivirulence Gene in Salmonella enterica Serovar Dublin

    DEFF Research Database (Denmark)

    Herrero-Fresno, Ana; Espinel, Irene Cartas; Spiegelhauer, Malene Roed

    2018-01-01

    -pathogen interaction in S. Dublin, a mutant where this gene was deleted (S. Dublin ΔbstA) and a mutant which was further genetically complemented with bstA (S. Dublin 3246-C) were constructed and tested in models of in vitro and in vivo infection as well as during growth competition assays in M9 medium, Luria...... macrophages and higher net replication within human THP-1 cells. Furthermore, during mouse infections, S. Dublin ΔbstA was more virulent than the wild type following a single intraperitoneal infection and showed an increased competitive index during competitive infection assays. Deletion of bstA did...... not affect either the amount of cytokines released by THP-1 macrophages or the cytotoxicity toward these cells. The histology of the livers and spleens of mice infected with the wild-type strain and the S. Dublin ΔbstA mutant revealed similar levels of inflammation between the two groups. The gene...

  15. Molecular cytogenetics of radiation-induced gene mutations in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Aleksandrov, I.D.; Aleksandrova, M.V.; Lapidus, I.L.; Karpovskij, A.L.

    1996-01-01

    The classical paradigm of spatially unrelated lesions for gene mutations and chromosomal exchange breakpoints induced by ionizing radiations in eukaryotic cells was re-examined in the experiments on the mapping of gamma-ray- or neutron-induced breakpoints in and outside of white (w) and vestigial (vg) genes of Drosophila melanogaster using the in situ hybridization of the large fragments of the genes under study with the polythene chromosomes of the relevant mutants. The results for the random sample of 60 inversion and translocation breakpoints analysed to date have shown that (i) 50% of them are mapped as the hot spots within big introns of both the genes, and (ii) 21 of 60 breaks (35%) are located outside of genes. It is important to note that 26% (16/60) of the breakpoints analysed are flanked by the deletions, the sizes of which vary from the quarter to a whole of the gene. It was found that the deletions flank both the inversion and translocation breakpoints and arise more often after action of neutrons than photons. An unexpectedly high frequency of the multiple-damaged w and vg mutants that have the gene/point mutation and additional, but separate, chromosome exchange (the so-called double- or triple-site mutants) has shown that the genetic danger of ionizing radiation is higher than usually accepted on the base of single gene/point mutation assessments. 11 refs., 3 figs

  16. Rapid deletion production in fungi via Agrobacterium mediated transformation of OSCAR deletion contructs.

    Science.gov (United States)

    Precise deletion of gene(s) of interest, while leaving the rest of the genome unchanged, provides the ideal product to determine that particular gene’s function in the living organism. In this protocol we describe the OSCAR method of precise and rapid deletion plasmid construction. OSCAR relies on t...

  17. The effects of disruption of phosphoglucose isomerase gene on carbon utilisation and cellulase production in Trichoderma reesei Rut-C30

    Science.gov (United States)

    2011-01-01

    Background Cellulase and hemicellulase genes in the fungus Trichoderma reesei are repressed by glucose and induced by lactose. Regulation of the cellulase genes is mediated by the repressor CRE1 and the activator XYR1. T. reesei strain Rut-C30 is a hypercellulolytic mutant, obtained from the natural strain QM6a, that has a truncated version of the catabolite repressor gene, cre1. It has been previously shown that bacterial mutants lacking phosphoglucose isomerase (PGI) produce more nucleotide precursors and amino acids. PGI catalyzes the second step of glycolysis, the formation of fructose-6-P from glucose-6-P. Results We deleted the gene pgi1, encoding PGI, in the T. reesei strain Rut-C30 and we introduced the cre1 gene in a Δpgi1 mutant. Both Δpgi1 and cre1+Δpgi1 mutants showed a pellet-like and growth as well as morphological alterations compared with Rut-C30. None of the mutants grew in media with fructose, galactose, xylose, glycerol or lactose but they grew in media with glucose, with fructose and glucose, with galactose and fructose or with lactose and fructose. No growth was observed in media with xylose and glucose. On glucose, Δpgi1 and cre1+Δpgi1 mutants showed higher cellulase activity than Rut-C30 and QM6a, respectively. But in media with lactose, none of the mutants improved the production of the reference strains. The increase in the activity did not correlate with the expression of mRNA of the xylanase regulator gene, xyr1. Δpgi1 mutants were also affected in the extracellular β-galactosidase activity. Levels of mRNA of the glucose 6-phosphate dehydrogenase did not increase in Δpgi1 during growth on glucose. Conclusions The ability to grow in media with glucose as the sole carbon source indicated that Trichoderma Δpgi1 mutants were able to use the pentose phosphate pathway. But, they did not increase the expression of gpdh. Morphological characteristics were the result of the pgi1 deletion. Deletion of pgi1 in Rut-C30 increased cellulase

  18. SOX2 anophthalmia syndrome: 12 new cases demonstrating broader phenotype and high frequency of large gene deletions.

    Science.gov (United States)

    Bakrania, P; Robinson, D O; Bunyan, D J; Salt, A; Martin, A; Crolla, J A; Wyatt, A; Fielder, A; Ainsworth, J; Moore, A; Read, S; Uddin, J; Laws, D; Pascuel-Salcedo, D; Ayuso, C; Allen, L; Collin, J R O; Ragge, N K

    2007-11-01

    Developmental eye anomalies, which include anophthalmia (absent eye) or microphthalmia (small eye) are an important cause of severe visual impairment in infants and young children. Heterozygous mutations in SOX2, a SOX1B-HMG box transcription factor, have been found in up to 10% of individuals with severe microphthalmia or anophthalmia and such mutations could also be associated with a range of non-ocular abnormalities. We performed mutation analysis on a new cohort of 120 patients with congenital eye abnormalities, mainly anophthalmia, microphthalmia and coloboma. Multiplex ligation-dependent probe amplification (MLPA) and fluorescence in situ hybridisation (FISH) were used to detect whole gene deletion. We identified four novel intragenic SOX2 mutations (one single base deletion, one single base duplication and two point mutations generating premature translational termination codons) and two further cases with the previously reported c.70del20 mutation. Of 52 patients with severe microphthalmia or anophthalmia analysed by MLPA, 5 were found to be deleted for the whole SOX2 gene and 1 had a partial deletion. In two of these, FISH studies identified sub-microscopic deletions involving a minimum of 328 Kb and 550 Kb. The SOX2 phenotypes include a patient with anophthalmia, oesophageal abnormalities and horseshoe kidney, and a patient with a retinal dystrophy implicating SOX2 in retinal development. Our results provide further evidence that SOX2 haploinsufficiency is a common cause of severe developmental ocular malformations and that background genetic variation determines the varying phenotypes. Given the high incidence of whole gene deletion we recommend that all patients with severe microphthalmia or anophthalmia, including unilateral cases be screened by MLPA and FISH for SOX2 deletions.

  19. First contiguous gene deletion causing biotinidase deficiency: The enzyme deficiency in three Sri Lankan children

    Directory of Open Access Journals (Sweden)

    Danika Nadeen Senanayake

    2015-03-01

    Full Text Available We report three symptomatic children with profound biotinidase deficiency from Sri Lanka. All three children presented with typical clinical features of the disorder. The first is homozygous for a missense mutation in the BTD gene (c.98_104 del7insTCC; p.Cys33PhefsX36 that is commonly seen in the western countries, the second is homozygous for a novel missense mutation (p.Ala439Asp, and the third is the first reported instance of a contiguous gene deletion causing the enzyme deficiency. In addition, this latter finding exemplifies the importance of considering a deletion within the BTD gene for reconciling enzymatic activity with genotype, which can occur in asymptomatic children who are identified by newborn screening.

  20. Genome-wide screen in Saccharomyces cerevisiae identifies vacuolar protein sorting, autophagy, biosynthetic, and tRNA methylation genes involved in life span regulation.

    Science.gov (United States)

    Fabrizio, Paola; Hoon, Shawn; Shamalnasab, Mehrnaz; Galbani, Abdulaye; Wei, Min; Giaever, Guri; Nislow, Corey; Longo, Valter D

    2010-07-15

    The study of the chronological life span of Saccharomyces cerevisiae, which measures the survival of populations of non-dividing yeast, has resulted in the identification of homologous genes and pathways that promote aging in organisms ranging from yeast to mammals. Using a competitive genome-wide approach, we performed a screen of a complete set of approximately 4,800 viable deletion mutants to identify genes that either increase or decrease chronological life span. Half of the putative short-/long-lived mutants retested from the primary screen were confirmed, demonstrating the utility of our approach. Deletion of genes involved in vacuolar protein sorting, autophagy, and mitochondrial function shortened life span, confirming that respiration and degradation processes are essential for long-term survival. Among the genes whose deletion significantly extended life span are ACB1, CKA2, and TRM9, implicated in fatty acid transport and biosynthesis, cell signaling, and tRNA methylation, respectively. Deletion of these genes conferred heat-shock resistance, supporting the link between life span extension and cellular protection observed in several model organisms. The high degree of conservation of these novel yeast longevity determinants in other species raises the possibility that their role in senescence might be conserved.

  1. Genome-Wide Analysis of Syntenic Gene Deletion in the Grasses

    Science.gov (United States)

    Schnable, James C.; Freeling, Michael; Lyons, Eric

    2012-01-01

    The grasses, Poaceae, are one of the largest and most successful angiosperm families. Like many radiations of flowering plants, the divergence of the major grass lineages was preceded by a whole-genome duplication (WGD), although these events are not rare for flowering plants. By combining identification of syntenic gene blocks with measures of gene pair divergence and different frequencies of ancient gene loss, we have separated the two subgenomes present in modern grasses. Reciprocal loss of duplicated genes or genomic regions has been hypothesized to reproductively isolate populations and, thus, speciation. However, in contrast to previous studies in yeast and teleost fishes, we found very little evidence of reciprocal loss of homeologous genes between the grasses, suggesting that post-WGD gene loss may not be the cause of the grass radiation. The sets of homeologous and orthologous genes and predicted locations of deleted genes identified in this study, as well as links to the CoGe comparative genomics web platform for analyzing pan-grass syntenic regions, are provided along with this paper as a resource for the grass genetics community. PMID:22275519

  2. Mutant spectra of irradiated CHO AL cells determined with multiple markers analyzed by flow cytometry

    International Nuclear Information System (INIS)

    Ross, Carley D.; French, C. Tenley; Keysar, Stephen B.; Fox, Michael H.

    2007-01-01

    We have previously developed a sensitive and rapid mammalian cell mutation assay which is based on a Chinese hamster ovary cell line that stably incorporates human chromosome 11 (CHO A L ) and uses flow cytometry to measure mutations in CD59. We now show that multiparameter flow cytometry may be used to simultaneously analyze irradiated CHO A L cells for mutations in five CD genes along chromosome 11 (CD59, CD44, CD90, CD98, CD151) and also a GPI-anchor gene. Using this approach, 19 different mutant clones derived from individual sorted mutant cells were analyzed to determine the mutant spectrum induced by ionizing radiation. All clones analyzed were negative for CD59 expression and PCR confirmed that at least CD59 exon 4 was also absent. As expected, ionizing radiation frequently caused large deletions along chromosome 11. This technology can readily be used to rapidly analyze the mutant yield as well as the spectrum of mutations caused by a variety of genotoxic agents and provide greater insight into the mechanisms of mutagenesis

  3. Pre-thymic somatic mutation leads to high mutant frequency at hypoxanthine-guanine phosphoribosyltransferase gene

    Energy Technology Data Exchange (ETDEWEB)

    Jett, J. [Lawrence Livermore National Lab., CA (United States)

    1994-12-01

    While characterizing the background mutation spectrum of the Hypoxathine-guanine phosphoribosyltransferase (HPRT) gene in a healthy population, an outlier with a high mutant frequency of thioguanine resistant lymphocytes was found. When studied at the age of 46, this individual had been smoking 60 cigarettes per day for 38 years. His mutant frequency was calculated at 3.6 and 4.2x10{sup {minus}4} for two sampling periods eight months apart. Sequencing analysis of the HPRT gene in his mutant thioguanine resistant T lymphocytes was done to find whether the cells had a high rate of mutation, or if the mutation was due to a single occurrence of mutation and, if so, when in the T lymphocyte development the mutation occurred. By T-cell receptor analysis it has been found that out of 35 thioguanine resistant clones there was no dominant gamma T cell receptor gene rearrangement. During my appointment in the Science & Engineering Research Semester, I found that 34 of those clones have the same base substitution of G{yields}T at cDNA position 197. Due to the consistent mutant frequency from both sampling periods and the varying T cell receptors, the high mutant frequency cannot be due to recent proliferation of a mature mutant T lymphocyte. From the TCR and DNA sequence analysis we conclude that the G{yields}T mutation must have occurred in a T lymphocyte precursor before thymic differentiation so that the thioguanine resistant clones share the same base substitution but not the same gamma T cell receptor gene.

  4. A VNTR element associated with steroid sulfatase gene deletions stimulates recombination in cultured cells

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Y.; Li, X.M.; Shapiro, L.J. [UCSF School of Medicine, San Francisco, CA (United States)] [and others

    1994-09-01

    Steroid sulfatase deficiency is a common genetic disorder, with a prevalence of approximately one in every 3500 males world wide. About 90% of these patients have complete gene deletions, which appear to result from recombination between members of a low-copy repeat family (CRI-232 is the prototype) that flank the gene. RU1 and RU2 are two VNTR elements found within each of these family members. RU1 consists of 30 bp repeating units and its length shows minimal variation among individuals. The RU2 element consists of repeating sequences which are highly asymmetric, with about 90% purines and no C`s on one strand, and range from 0.6 kb to over 23 kb among different individuals. We conducted a study to determine if the RU1 or RU2 elements can promote recombination in an in vivo test system. We inserted these elements adjacent to the neo gene in each of two pSV2neo derivatives, one of which has a deletion in the 5{prime} portion of the neo gene and the other having a deletion in the 3{prime} portion. These plasmids were combined and used to transfect EJ cells. Survival of cells in G418 indicates restoration of a functional neo gene by recombination between two deletion constructs. Thus counting G418 resistant colonies gives a quantitative measure of the enhancement of recombination by the inserted VNTR elements. The results showed no effect on recombination by the inserted RU1 element (compared to the insertion of a nonspecific sequence), while the RU2 element stimulated recombination by 3.5-fold (P<0.01). A separate set of constructs placed RU1 or RU2 within the intron of an exon trapping vector. Following tranfection of cells, recombination events were monitored by a PCR assay that detected the approximation of primer binding sites (as a result of recombination). These studies showed that, as in the first set of experiments, the highly variable RU2 element is capable of stimulating somatic recombination in mammalian cells.

  5. Brucella abortusΔcydCΔcydD and ΔcydCΔpurD double-mutants are highly attenuated and confer long-term protective immunity against virulent Brucella abortus.

    Science.gov (United States)

    Truong, Quang Lam; Cho, Youngjae; Park, Soyeon; Kim, Kiju; Hahn, Tae-Wook

    2016-01-04

    We constructed double deletion (ΔcydCΔcydD and ΔcydCΔpurD) mutants from virulent Brucella abortus biovar 1 field isolate (BA15) by deleting the genes encoding an ATP-binding cassette-type transporter (cydC and cydD genes) and a phosphoribosylamine-glycine ligase (purD). Both BA15ΔcydCΔcydD and BA15ΔcydCΔpurD double-mutants exhibited significant attenuation of virulence when assayed in murine macrophages or in BALB/c mice. Both double-mutants were readily cleared from spleens by 4 weeks post-inoculation even when inoculated at the dose of 10(8) CFU per mouse. Moreover, the inoculated mice showed no splenomegaly, which indicates that the mutants are highly attenuated. Importantly, the attenuation of in vitro and in vivo growth did not impair the ability of these mutants to confer long-term protective immunity in mice against challenge with B. abortus strain 2308. Vaccination of mice with either mutant induced humoral and cell-mediated immune responses, and provided significantly better protection than commercial B. abortus strain RB51 vaccine. These results suggest that highly attenuated BA15ΔcydCΔcydD and BA15ΔcydCΔpurD mutants can be used effectively as potential live vaccine candidates against bovine brucellosis. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Tackling the issue of environmental survival of live Salmonella Typhimurium vaccines: deletion of the lon gene.

    Science.gov (United States)

    Leyman, Bregje; Boyen, Filip; Van Parys, Alexander; Verbrugghe, Elin; Haesebrouck, Freddy; Pasmans, Frank

    2012-12-01

    Vaccination is an important measure to control Salmonella contamination in the meat production chain. A previous study showed that both the ΔrfaJ and ΔrfaL strains are suitable markers and allow serological differentiation of infected and vaccinated animals. The aim of this study was to verify whether deletion of the lon gene in a Salmonella Typhimurium ΔrfaJ marker strain resulted in decreased environmental survival. Our results indicate that deletion of the lon gene in the ΔrfaJ strain did not affect invasiveness in IPEC-J2 cells and resulted in an increased susceptibility to UV, disinfectants (such as hydrogen peroxide and tosylchloramide sodium) and citric acid. Immunization of pigs with inactivated ΔrfaJ or ΔlonΔrfaJ vaccines allowed differentiation of infected and vaccinated pigs. Furthermore, deletion of the lon gene did not reduce the protection conferred by live wild type or ΔrfaJ vaccines against subsequent challenge with a virulent Salmonella Typhimurium strain in BALB/c mice. Based on our results in mice, we conclude that deletion of lon in ΔrfaJ contributes to environmental safety of the ΔrfaJ DIVA strain. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Improvement of erythrose reductase activity, deletion of by-products and statistical media optimization for enhanced erythritol production from Yarrowia lipolytica mutant 49.

    Science.gov (United States)

    Ghezelbash, Gholam Reza; Nahvi, Iraj; Emamzadeh, Rahman

    2014-08-01

    The purpose of the present investigation was to produce erythritol by Yarrowia lipolytica mutant without any by-products. Mutants of Y. lipolytica were generated by ultra-violet for enhancing erythrose reductase (ER) activity and erythritol production. The mutants showing the highest ER activity were screened by triphenyl tetrazolium chloride agar plate assay. Productivity of samples was analyzed by thin-layer chromatography and high-performance liquid chromatography equipped with the refractive index detector. One of the mutants named as mutant 49 gave maximum erythritol production without any other by-products (particularly glycerol). Erythritol production and specific ER activity in mutant 49 increased to 1.65 and 1.47 times, respectively, in comparison with wild-type strain. The ER gene of wild and mutant strains was sequenced and analyzed. A general comparison of wild and mutant gene sequences showed the replacement of Asp(270) with Glu(270) in ER protein. In order to enhance erythritol production, we used a three component-three level-one response Box-Behnken of response surface methodology model. The optimum medium composition for erythritol production was found to be (g/l) glucose 279.49, ammonium sulfate 9.28, and pH 5.41 with 39.76 erythritol production.

  8. A new physical mapping approach refines the sex-determining gene positions on the Silene latifolia Y-chromosome

    Science.gov (United States)

    Kazama, Yusuke; Ishii, Kotaro; Aonuma, Wataru; Ikeda, Tokihiro; Kawamoto, Hiroki; Koizumi, Ayako; Filatov, Dmitry A.; Chibalina, Margarita; Bergero, Roberta; Charlesworth, Deborah; Abe, Tomoko; Kawano, Shigeyuki

    2016-01-01

    Sex chromosomes are particularly interesting regions of the genome for both molecular genetics and evolutionary studies; yet, for most species, we lack basic information, such as the gene order along the chromosome. Because they lack recombination, Y-linked genes cannot be mapped genetically, leaving physical mapping as the only option for establishing the extent of synteny and homology with the X chromosome. Here, we developed a novel and general method for deletion mapping of non-recombining regions by solving “the travelling salesman problem”, and evaluate its accuracy using simulated datasets. Unlike the existing radiation hybrid approach, this method allows us to combine deletion mutants from different experiments and sources. We applied our method to a set of newly generated deletion mutants in the dioecious plant Silene latifolia and refined the locations of the sex-determining loci on its Y chromosome map.

  9. Gene editing by co-transformation of TALEN and chimeric RNA/DNA oligonucleotides on the rice OsEPSPS gene and the inheritance of mutations.

    Directory of Open Access Journals (Sweden)

    Mugui Wang

    Full Text Available Although several site-specific nucleases (SSNs, such as zinc-finger nucleases (ZFNs, transcription activator-like effector nucleases (TALENs, and the clustered regularly interspaced short palindromic repeat (CRISPR/Cas, have emerged as powerful tools for targeted gene editing in many organisms, to date, gene targeting (GT in plants remains a formidable challenge. In the present study, we attempted to substitute a single base in situ on the rice OsEPSPS gene by co-transformation of TALEN with chimeric RNA/DNA oligonucleotides (COs, including different strand composition such as RNA/DNA (C1 or DNA/RNA (C2 but contained the same target base to be substituted. In contrast to zero GT event obtained by the co-transformation of TALEN with homologous recombination plasmid (HRP, we obtained one mutant showing target base substitution although accompanied by undesired deletion of 12 bases downstream the target site from the co-transformation of TALEN and C1. In addition to this typical event, we also obtained 16 mutants with different length of base deletions around the target site among 105 calli lines derived from transformation of TALEN alone (4/19 as well as co-transformation of TELAN with either HRP (5/30 or C1 (2/25 or C2 (5/31. Further analysis demonstrated that the homozygous gene-edited mutants without foreign gene insertion could be obtained in one generation. The induced mutations in transgenic generation were also capable to pass to the next generation stably. However, the genotypes of mutants did not segregate normally in T1 population, probably due to lethal mutations. Phenotypic assessments in T1 generation showed that the heterozygous plants with either one or three bases deletion on target sequence, called d1 and d3, were more sensitive to glyphosate and the heterozygous d1 plants had significantly lower seed-setting rate than wild-type.

  10. Nonalcoholic fatty liver in patients with Laron syndrome and GH gene deletion - preliminary report.

    Science.gov (United States)

    Laron, Zvi; Ginsberg, Shira; Webb, Muriel

    2008-10-01

    There is little information on the relationship between growth hormone/insulin-like growth factor-I (GH/IGF-I) deficiency or IGF-I treatment on nonalcoholic fatty liver disease (NAFLD) a disorder linked to obesity and insulin resistance. To find out whether the markedly obese patients with Laron syndrome (LS) and GH gene deletion have fatty livers. We studied 11 untreated adult patients with LS (5M, 6F), five girls with LS treated by IGF-I and five adult patients with GH gene deletion (3M, 3F), four previously treated by hGH in childhood. Fatty liver was quantitatively evaluated by ultrasonography using a phase array US system (HITACHI 6500, Japan). Body adiposity was determined by DEXA, and insulin resistance was estimated by HOMA-IR using the fasting serum glucose and insulin values. Six out of 11 adult patients with LS, two out of the five IGF-I treated girls with LS and three out of five adult hGH gene deletion patients were found to have NAFLD (nonalcoholic fatty liver disease). NAFLD is a frequent complication in untreated and treated congenital IGF-I deficiency. No correlation between NAFLD and age, sex, degree of obesity, blood lipids, or degree of insulin resistance was observed.

  11. Characterization of three Agrobacterium tumefaciens avirulent mutants with chromosomal mutations that affect induction of vir genes.

    Science.gov (United States)

    Metts, J; West, J; Doares, S H; Matthysse, A G

    1991-02-01

    Three Agrobacterium tumefaciens mutants with chromosomal mutations that affect bacterial virulence were isolated by transposon mutagenesis. Two of the mutants were avirulent on all hosts tested. The third mutant, Ivr-211, was a host range mutant which was avirulent on Bryophyllum diagremontiana, Nicotiana tabacum, N. debneyi, N. glauca, and Daucus carota but was virulent on Zinnia elegans and Lycopersicon esculentum (tomato). That the mutant phenotype was due to the transposon insertion was determined by cloning the DNA containing the transposon insertion and using the cloned DNA to replace the wild-type DNA in the parent bacterial strain by marker exchange. The transposon insertions in the three mutants mapped at three widely separated locations on the bacterial chromosome. The effects of the mutations on various steps in tumor formation were examined. All three mutants showed no alteration in binding to carrot cells. However, none of the mutants showed any induction of vir genes by acetosyringone under conditions in which the parent strain showed vir gene induction. When the mutant bacteria were examined for changes in surface components, it was found that all three of the mutants showed a similar alteration in lipopolysaccharide (LPS). LPS from the mutants was larger in size and more heavily saccharide substituted than LPS from the parent strain. Two of the mutants showed no detectable alteration in outer membrane and periplasmic space proteins. The third mutant, Ivr-225, was missing a 79-kDa surface peptide. The reason(s) for the failure of vir gene induction in these mutants and its relationship, if any, to the observed alteration in LPS are unknown.

  12. Dipeptidyl peptidase IV is involved in the cellulose-responsive induction of cellulose biomass-degrading enzyme genes in Aspergillus aculeatus.

    Science.gov (United States)

    Tani, Shuji; Yuki, Shota; Kunitake, Emi; Sumitani, Jun-Ichi; Kawaguchi, Takashi

    2017-06-01

    We screened for factors involved in the cellulose-responsive induction of cellulose biomass-degrading enzyme genes from approximately 12,000 Aspergillus aculeatus T-DNA insertion mutants harboring a transcriptional fusion between the FIII-avicelase gene (cbhI) promoter and the orotidine 5'-monophosphate decarboxylase gene. Analysis of 5-fluoroorodic acid (5-FOA) sensitivity, cellulose utilization, and cbhI expression of the mutants revealed that a mutant harboring T-DNA at the dipeptidyl peptidase IV (dppIV) locus had acquired 5-FOA resistance and was deficient in cellulose utilization and cbhI expression. The deletion of dppIV resulted in a significant reduction in the cellulose-responsive expression of both cbhI as well as genes controlled by XlnR-independent and XlnR-dependent signaling pathways at an early phase in A. aculeatus. In contrast, the dppIV deletion did not affect the xylose-responsive expression of genes under the control of XlnR. These results demonstrate that DppIV participates in cellulose-responsive induction in A. aculeatus.

  13. Generation and analysis of a barcode-tagged insertion mutant library in the fission yeast Schizosaccharomyces pombe

    Science.gov (United States)

    2012-01-01

    Background Barcodes are unique DNA sequence tags that can be used to specifically label individual mutants. The barcode-tagged open reading frame (ORF) haploid deletion mutant collections in the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe allow for high-throughput mutant phenotyping because the relative growth of mutants in a population can be determined by monitoring the proportions of their associated barcodes. While these mutant collections have greatly facilitated genome-wide studies, mutations in essential genes are not present, and the roles of these genes are not as easily studied. To further support genome-scale research in S. pombe, we generated a barcode-tagged fission yeast insertion mutant library that has the potential of generating viable mutations in both essential and non-essential genes and can be easily analyzed using standard molecular biological techniques. Results An insertion vector containing a selectable ura4+ marker and a random barcode was used to generate a collection of 10,000 fission yeast insertion mutants stored individually in 384-well plates and as six pools of mixed mutants. Individual barcodes are flanked by Sfi I recognition sites and can be oligomerized in a unique orientation to facilitate barcode sequencing. Independent genetic screens on a subset of mutants suggest that this library contains a diverse collection of single insertion mutations. We present several approaches to determine insertion sites. Conclusions This collection of S. pombe barcode-tagged insertion mutants is well-suited for genome-wide studies. Because insertion mutations may eliminate, reduce or alter the function of essential and non-essential genes, this library will contain strains with a wide range of phenotypes that can be assayed by their associated barcodes. The design of the barcodes in this library allows for barcode sequencing using next generation or standard benchtop cloning approaches. PMID:22554201

  14. Generation and analysis of a barcode-tagged insertion mutant library in the fission yeast Schizosaccharomyces pombe

    Directory of Open Access Journals (Sweden)

    Chen Bo-Ruei

    2012-05-01

    Full Text Available Abstract Background Barcodes are unique DNA sequence tags that can be used to specifically label individual mutants. The barcode-tagged open reading frame (ORF haploid deletion mutant collections in the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe allow for high-throughput mutant phenotyping because the relative growth of mutants in a population can be determined by monitoring the proportions of their associated barcodes. While these mutant collections have greatly facilitated genome-wide studies, mutations in essential genes are not present, and the roles of these genes are not as easily studied. To further support genome-scale research in S. pombe, we generated a barcode-tagged fission yeast insertion mutant library that has the potential of generating viable mutations in both essential and non-essential genes and can be easily analyzed using standard molecular biological techniques. Results An insertion vector containing a selectable ura4+ marker and a random barcode was used to generate a collection of 10,000 fission yeast insertion mutants stored individually in 384-well plates and as six pools of mixed mutants. Individual barcodes are flanked by Sfi I recognition sites and can be oligomerized in a unique orientation to facilitate barcode sequencing. Independent genetic screens on a subset of mutants suggest that this library contains a diverse collection of single insertion mutations. We present several approaches to determine insertion sites. Conclusions This collection of S. pombe barcode-tagged insertion mutants is well-suited for genome-wide studies. Because insertion mutations may eliminate, reduce or alter the function of essential and non-essential genes, this library will contain strains with a wide range of phenotypes that can be assayed by their associated barcodes. The design of the barcodes in this library allows for barcode sequencing using next generation or standard benchtop cloning

  15. Deletion of the MBII-85 snoRNA gene cluster in mice results in postnatal growth retardation.

    Directory of Open Access Journals (Sweden)

    Boris V Skryabin

    2007-12-01

    Full Text Available Prader-Willi syndrome (PWS [MIM 176270] is a neurogenetic disorder characterized by decreased fetal activity, muscular hypotonia, failure to thrive, short stature, obesity, mental retardation, and hypogonadotropic hypogonadism. It is caused by the loss of function of one or more imprinted, paternally expressed genes on the proximal long arm of chromosome 15. Several potential PWS mouse models involving the orthologous region on chromosome 7C exist. Based on the analysis of deletions in the mouse and gene expression in PWS patients with chromosomal translocations, a critical region (PWScr for neonatal lethality, failure to thrive, and growth retardation was narrowed to the locus containing a cluster of neuronally expressed MBII-85 small nucleolar RNA (snoRNA genes. Here, we report the deletion of PWScr. Mice carrying the maternally inherited allele (PWScr(m-/p+ are indistinguishable from wild-type littermates. All those with the paternally inherited allele (PWScr(m+/p- consistently display postnatal growth retardation, with about 15% postnatal lethality in C57BL/6, but not FVB/N crosses. This is the first example in a multicellular organism of genetic deletion of a C/D box snoRNA gene resulting in a pronounced phenotype.

  16. Clinical implications of cytosine deletion of exon 5 of P53 gene in non small cell lung cancer patients

    Directory of Open Access Journals (Sweden)

    Rashid Mir

    2016-01-01

    Full Text Available Aim: Lung cancer is considered to be the most common cancer in the world. In humans, about 50% or more cancers have a mutated tumor suppressor p53 gene thereby resulting in accumulation of p53 protein and losing its function to activate the target genes that regulate the cell cycle and apoptosis. Extensive research conducted in murine cancer models with activated p53, loss of p53, or p53 missense mutations have facilitated researchers to understand the role of this key protein. Our study was aimed to evaluate the frequency of cytosine deletion in nonsmall cell lung cancer (NSCLC patients. Methods: One hundred NSCLC patients were genotyped for P53 (exon5, codon168 cytosine deletion leading to loss of its function and activate the target genes by allele-specific polymerase chain reaction. The P53 cytosine deletion was correlated with all the clinicopathological parameters of the patients. Results and Analysis: 59% cases were carrying P53 cytosine deletion. Similarly, the significantly higher incidence of cytosine deletion was reported in current smokers (75% in comparison to exsmoker and nonsmoker. Significantly higher frequency of cytosine deletion was reported in adenocarcinoma (68.08% than squamous cell carcinoma (52.83%. Also, a significant difference was reported between p53 cytosine deletion and metastasis (64.28%. Further, the majority of the cases assessed for response carrying P53 cytosine deletion were found to show faster disease progression. Conclusion: The data suggests that there is a significant association of the P53 exon 5 deletion of cytosine in codon 168 with metastasis and staging of the disease.

  17. Heterozygous deletion at the SOX10 gene locus in two patients from a Chinese family with Waardenburg syndrome type II.

    Science.gov (United States)

    Wenzhi, He; Ruijin, Wen; Jieliang, Li; Xiaoyan, Ma; Haibo, Liu; Xiaoman, Wang; Jiajia, Xian; Shaoying, Li; Shuanglin, Li; Qing, Li

    2015-10-01

    Waardenburg syndrome (WS) is a rare disease characterized by sensorineural deafness and pigment disturbance. To date, almost 100 mutations have been reported, but few reports on cases with SOX10 gene deletion. The inheritance pattern of SOX10 gene deletion is still unclear. Our objective was to identify the genetic causes of Waardenburg syndrome type II in a two-generation Chinese family. Clinical evaluations were conducted in both of the patients. Microarray analysis and multiplex ligation-dependent probe amplification (MLPA) were performed to identify disease-related copy number variants (CNVs). DNA sequencing of the SOX10, MITF and SNAI2 genes was performed to identify the pathogenic mutation responsible for WS2. A 280kb heterozygous deletion at the 22q13.1 chromosome region (including SOX10) was detected in both of the patients. No mutation was found in the patients, unaffected family members and 30 unrelated healthy controls. This report is the first to describe SOX10 heterozygous deletions in Chinese WS2 patients. Our result conform the thesis that heterozygous deletions at SOX10 is an important pathogenicity for WS, and present as autosomal dominant inheritance. Nevertheless, heterozygous deletion of the SOX10 gene would be worth investigating to understand their functions and contributions to neurologic phenotypes. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. A comprehensive dataset of genes with a loss-of-function mutant phenotype in Arabidopsis.

    Science.gov (United States)

    Lloyd, Johnny; Meinke, David

    2012-03-01

    Despite the widespread use of Arabidopsis (Arabidopsis thaliana) as a model plant, a curated dataset of Arabidopsis genes with mutant phenotypes remains to be established. A preliminary list published nine years ago in Plant Physiology is outdated, and genome-wide phenotype information remains difficult to obtain. We describe here a comprehensive dataset of 2,400 genes with a loss-of-function mutant phenotype in Arabidopsis. Phenotype descriptions were gathered primarily from manual curation of the scientific literature. Genes were placed into prioritized groups (essential, morphological, cellular-biochemical, and conditional) based on the documented phenotypes of putative knockout alleles. Phenotype classes (e.g. vegetative, reproductive, and timing, for the morphological group) and subsets (e.g. flowering time, senescence, circadian rhythms, and miscellaneous, for the timing class) were also established. Gene identities were classified as confirmed (through molecular complementation or multiple alleles) or not confirmed. Relationships between mutant phenotype and protein function, genetic redundancy, protein connectivity, and subcellular protein localization were explored. A complementary dataset of 401 genes that exhibit a mutant phenotype only when disrupted in combination with a putative paralog was also compiled. The importance of these genes in confirming functional redundancy and enhancing the value of single gene datasets is discussed. With further input and curation from the Arabidopsis community, these datasets should help to address a variety of important biological questions, provide a foundation for exploring the relationship between genotype and phenotype in angiosperms, enhance the utility of Arabidopsis as a reference plant, and facilitate comparative studies with model genetic organisms.

  19. Inflammatory peeling skin syndrome caused by homozygous genomic deletion in the PSORS1 region encompassing the CDSN gene.

    Science.gov (United States)

    Ishida-Yamamoto, Akemi; Furio, Laetitia; Igawa, Satomi; Honma, Masaru; Tron, Elodie; Malan, Valerie; Murakami, Masamoto; Hovnanian, Alain

    2014-01-01

    Peeling skin syndrome (PSS) type B is a rare recessive genodermatosis characterized by lifelong widespread, reddish peeling of the skin with pruritus. The disease is caused by small-scale mutations in the Corneodesmosin gene (CDSN) leading to premature termination codons. We report for the first time a Japanese case resulting from complete deletion of CDSN. Corneodesmosin was undetectable in the epidermis, and CDSN was unamplifiable by PCR. QMPSF analysis demonstrated deletion of CDSN exons inherited from each parent. Deletion mapping using microsatellite haplotyping, CGH array and PCR analysis established that the genomic deletion spanned 49-72 kb between HCG22 and TCF19, removing CDSN as well as five other genes within the psoriasis susceptibility region 1 (PSORS1) on 6p21.33. This observation widens the spectrum of molecular defects underlying PSS type B and shows that loss of these five genes from the PSORS1 region does not result in an additional cutaneous phenotype. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Insertion/deletion polymorphism of the ACE gene and adherence to ACE inhibitors

    NARCIS (Netherlands)

    Schelleman, H; Klungel, O H; van Duijn, C M; Witteman, J C M; Hofman, A; de Boer, A; Stricker, B H Ch

    AIMS: We investigated whether the insertion/deletion (I/D) polymorphism of the ACE gene modified the adherence to ACE inhibitors as measured by the discontinuation of an ACE inhibitor, or addition of another antihypertensive drug. METHODS: This was a cohort study among 239 subjects who started ACE

  1. Insertion/deletion polymorphism of the ACE gene and adherence to ACE inhibitors

    NARCIS (Netherlands)

    H. Schelleman (Hedi); O.H. Klungel (Olaf); C.M. van Duijn (Cornelia); J.C.M. Witteman (Jacqueline); A. Hofman (Albert); A.C. de Boer (Anton); B.H.Ch. Stricker (Bruno)

    2005-01-01

    textabstractAims: We investigated whether the insertion/deletion (I/D) polymorphism of the ACE gene modified the adherence to ACE inhibitors as measured by the discontinuation of an ACE inhibitor, or addition of another antihypertensive drug. Methods: This was a cohort study among 239 subjects who

  2. In-Frame and Unmarked Gene Deletions in Burkholderia cenocepacia via an Allelic Exchange System Compatible with Gateway Technology.

    Science.gov (United States)

    Fazli, Mustafa; Harrison, Joe J; Gambino, Michela; Givskov, Michael; Tolker-Nielsen, Tim

    2015-06-01

    Burkholderia cenocepacia is an emerging opportunistic pathogen causing life-threatening infections in immunocompromised individuals and in patients with cystic fibrosis, which are often difficult, if not impossible, to treat. Understanding the genetic basis of virulence in this emerging pathogen is important for the development of novel treatment regimes. Generation of deletion mutations in genes predicted to encode virulence determinants is fundamental to investigating the mechanisms of pathogenesis. However, there is a lack of appropriate selectable and counterselectable markers for use in B. cenocepacia, making its genetic manipulation problematic. Here we describe a Gateway-compatible allelic exchange system based on the counterselectable pheS gene and the I-SceI homing endonuclease. This system provides efficiency in cloning homology regions of target genes and allows the generation of precise and unmarked gene deletions in B. cenocepacia. As a proof of concept, we demonstrate its utility by deleting the Bcam1349 gene, encoding a cyclic di-GMP (c-di-GMP)-responsive regulator protein important for biofilm formation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Saccharomyces cerevisiae mutants with enhanced induced mutation and altered mitotic gene conversion.

    Science.gov (United States)

    Ivanov, E L; Kovaltzova, S V; Korolev, V G

    1989-08-01

    We have developed a method to isolate yeast (Saccharomyces cerevisiae) mutants with enhanced induced mutagenesis based on nitrous acid-induced reversion of the ade2-42 allele. Six mutants have been isolated and designated him (high induced mutagenesis), and 4 of them were studied in more detail. The him mutants displayed enhanced reversion of the ade2-42 allele, either spontaneous or induced by nitrous acid, UV light, and the base analog 6-N-hydroxylaminopurine, but not by gamma-irradiation. It is worth noting that the him mutants turned out not to be sensitive to the lethal effects of the mutagens used. The enhancement in mutation induced by nitrous acid, UV light, and 6-N-hydroxylaminopurine has been confirmed in a forward-mutation assay (induction of mutations in the ADE1, ADE2 genes). The latter agent revealed the most apparent differences between the him mutants and the wild-type strain and was, therefore, chosen for the genetic analysis of mutants, him mutations analyzed behaved as a single Mendelian trait; complementation tests indicated 3 complementation groups (HIM1, HIM2, and HIM3), each containing 1 mutant allele. Uracil-DNA glycosylase activity was determined in crude cell extracts, and no significant differences between the wild-type and him strains were detected. Spontaneous mitotic gene conversion at the ADE2 locus is altered in him1 strains, either increased or decreased, depending on the particular heteroallelic combination. Genetic evidence strongly suggests him mutations to be involved in a process of mismatch correction of molecular heteroduplexes.

  4. EMS mutant spectra generated by multi-parameter flow cytometry

    Energy Technology Data Exchange (ETDEWEB)

    Keysar, Stephen B. [Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO (United States); Fox, Michael H., E-mail: michael.fox@colostate.edu [Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO (United States); Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO (United States)

    2009-12-01

    The CHO A{sub L} cell line contains a single copy of human chromosome 11 that encodes several cell surface proteins including glycosyl phosphatidylinositol (GPI) linked CD59 and CD90, as well as CD98, CD44 and CD151 which are not GPI-linked. The flow cytometry mutation assay (FCMA) measures mutations of the CD59 gene by the absence of fluorescence when stained with antibodies against the CD59 cell surface protein. We have measured simultaneous mutations in CD59, CD44, CD90, CD98 and CD151 to generate a mutant spectrum for ionizing radiation. After treatment with ethyl methanesulfonate (EMS) many cells have an intermediate level of CD59 staining. Single cells were sorted from CD59{sup -} regions with varying levels of fluorescence and the resulting clonal populations had a stable phenotype for CD59 expression. Mutant spectra were generated by flow cytometry using the isolated clones and nearly all clones were mutated in CD59 only. Interestingly, about 60% of the CD59 negative clones were actually GPI mutants determined by staining with the GPI specific fluorescently labeled bacterial toxin aerolysin (FLAER). The GPI negative cells are most likely caused by mutations in the X-linked pigA gene important in GPI biosynthesis. Small mutations of pigA and CD59 were expected for the alkylating agent EMS and the resulting spectra are significantly different than the large deletions found when analyzing radiation mutants. After analyzing the CD59{sup -} clonal populations we have adjusted the FCMA mutant regions from 1% to 10% of the mean of the CD59 positive peak to include the majority of CD59 mutants.

  5. Characterization of D-myo-inositol 3-phosphate synthase gene expression in two soybean low phytate mutants

    International Nuclear Information System (INIS)

    Yuan Fengjie; Dong Dekun; Li Baiquan; Yu Xiaomin; Fu Xujun; Zhu Danhua; Zhu Shenlong; Yang Qinghua

    2013-01-01

    1D-myo-inositol 3-phosphate synthase (MIPS) gene plays a significant role in phytic acid biosynthesis. In this study, we used two low phytic acid mutants Gm-lpa-TW-1, Gm-lpa-ZC-2 and their respective wild type parents Taiwan75 and Zhechun No.3 to analyze the expression pattern and characterization of MIPS1 gene. The results showed that there was a common expression pattern of MIPS1 in soybean developing seeds. Expression was weak as detected by RT-PCR in initial stage, increased in the following stages, and the peak expression was appeared in 22 day after flowering (DAF). The expression of MIPS1 gene of non-seed tissues in mutant Gm-lpa-TW-1 and its wildtype Taiwan75 was very weak. In the developing seeds, the MIPS1 expression by qRT-PCR revealed a significant reduction in 22 DAF in mutant Gm-lpa-TW-1 as compared with the wildtype. Similarly, the expression of MIPS1 gene in non-seed tissue of Zhenchun No.3 and Gm-lpa-ZC-2 was very weak. However, stronger expression in developing seeds of the mutant Gm-lpa-ZC-2 than Zhechun No.3 was found. We concluded that the MIPS1 gene expression in the developing seed exhibited an up-regulation pattern in mutant Gm-lpa-ZC-2, but a down-regulation pattern in the mutant Gm-lpa-TW-1. (authors)

  6. Combinations of mutant FAD2 and FAD3 genes to produce high oleic acid and low linolenic acid soybean oil.

    Science.gov (United States)

    Pham, Anh-Tung; Shannon, J Grover; Bilyeu, Kristin D

    2012-08-01

    High oleic acid soybeans were produced by combining mutant FAD2-1A and FAD2-1B genes. Despite having a high oleic acid content, the linolenic acid content of these soybeans was in the range of 4-6 %, which may be high enough to cause oxidative instability of the oil. Therefore, a study was conducted to incorporate one or two mutant FAD3 genes into the high oleic acid background to further reduce the linolenic acid content. As a result, soybean lines with high oleic acid and low linolenic acid (HOLL) content were produced using different sources of mutant FAD2-1A genes. While oleic acid content of these HOLL lines was stable across two testing environments, the reduction of linolenic acid content varied depending on the number of mutant FAD3 genes combined with mutant FAD2-1 genes, on the severity of mutation in the FAD2-1A gene, and on the testing environment. Combination of two mutant FAD2-1 genes and one mutant FAD3 gene resulted in less than 2 % linolenic acid content in Portageville, Missouri (MO) while four mutant genes were needed to achieve the same linolenic acid in Columbia, MO. This study generated non-transgenic soybeans with the highest oleic acid content and lowest linolenic acid content reported to date, offering a unique alternative to produce a fatty acid profile similar to olive oil.

  7. [Clinical features of patients with Becker muscular dystrophy and deletions of the rod domain of dystrophin gene].

    Science.gov (United States)

    Wang, Yanyun; Zhu, Yuling; Yang, Juan; Li, Yaqin; Sun, Jiangwen; Zhan, Yixin; Zhang, Cheng

    2018-02-10

    OBJECTIVE To explore the clinical features of patients carrying deletions of the rod domain of the dystrophin gene. METHODS Clinical data of 12 Chinese patients with Becker muscular dystrophy (BMD) and such deletions was reviewed. RESULTS Most patients complained of muscle weakness of lower limbs. Two patients had muscle cramps, one had increased creatine kinase (CK) level, and one had dilated cardiomyopathy. CONCLUSION Compared with DMD, the clinical features of BMD are much more variable, particularly for those carrying deletions of the rod domain of the dystrophin gene. Muscular weakness may not be the sole complaint of BMD. The diagnosis of BMD cannot be excluded by moderately elevated CK. For male patients with dilated cardiomyopathy, the possibility of BMD should be considered.

  8. Partial Gene Deletions of PMP22 Causing Hereditary Neuropathy with Liability to Pressure Palsies

    Directory of Open Access Journals (Sweden)

    Sun-Mi Cho

    2014-01-01

    Full Text Available Hereditary neuropathy with liability to pressure palsies (HNPP is an autosomal neuropathy that is commonly caused by a reciprocal 1.5 Mb deletion on chromosome 17p11.2, at the site of the peripheral myelin protein 22 (PMP22 gene. Other patients with similar phenotypes have been shown to harbor point mutations or small deletions, although there is some clinical variation across these patients. In this report, we describe a case of HNPP with copy number changes in exon or promoter regions of PMP22. Multiplex ligation-dependent probe analysis revealed an exon 1b deletion in the patient, who had been diagnosed with HNPP in the first decade of life using molecular analysis.

  9. Novel mutations in β-tubulin gene in Trichoderma harzianum mutants resistant to methyl benzimidazol-2-yl carbamate.

    Science.gov (United States)

    Li, M; Zhang, H Y; Liang, B

    2013-01-01

    Twelve-low resistant (LR) mutants of Trichoderma harzianum with the capability of grow fast at 0.8 μg/mL methyl benzimidazol-2-yl carbamate (MBC) were obtained using UV mutagenesis. MR and HR mutants which could grow fast at 10 and 100 μg/mL MBC, respectively, were isolated by step-up selection protocols in which UV-treated mutants were induced and mycelial sector screening was made in plates with growth medium. Subsequently, β-tubulin genes of 14 mutants were cloned to describe-the molecular lesion likely to be responsible-for MBC resistance. Comparison of the β-tubulin sequences of the mutant and sensitive strains of T. harzianum revealed 2 new MBC-binding sites differed from those in other plant pathogens. A single mutation at-amino acid 168, having Phe (TTC) instead of Ser (TCC)', was demonstrated for the HR mutant; a double mutation in amino acid 13 resulting in the substitution of Gly (GGC) by Val (GTG) was observed in β-tubulin gene of MR mutant. On the other hand, no substitutions were identified in the β-tubulin gene and its 5'-flanking regions in 12 LR mutants of T. harzianum.

  10. GABA metabolism pathway genes, UGA1 and GAD1, regulate replicative lifespan in Saccharomycescerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Kamei, Yuka; Tamura, Takayuki [Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829 (Japan); Yoshida, Ryo [Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Ohta, Shinji [Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829 (Japan); Fukusaki, Eiichiro [Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Mukai, Yukio, E-mail: y_mukai@nagahama-i-bio.ac.jp [Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829 (Japan)

    2011-04-01

    Highlights: {yields}We demonstrate that two genes in the yeast GABA metabolism pathway affect aging. {yields} Deletion of the UGA1 or GAD1 genes extends replicative lifespan. {yields} Addition of GABA to wild-type cultures has no effect on lifespan. {yields} Intracellular GABA levels do not differ in longevity mutants and wild-type cells. {yields} Levels of tricarboxylic acid cycle intermediates positively correlate with lifespan. -- Abstract: Many of the genes involved in aging have been identified in organisms ranging from yeast to human. Our previous study showed that deletion of the UGA3 gene-which encodes a zinc-finger transcription factor necessary for {gamma}-aminobutyric acid (GABA)-dependent induction of the UGA1 (GABA aminotransferase), UGA2 (succinate semialdehyde dehydrogenase), and UGA4 (GABA permease) genes-extends replicative lifespan in the budding yeast Saccharomycescerevisiae. Here, we found that deletion of UGA1 lengthened the lifespan, as did deletion of UGA3; in contrast, strains with UGA2 or UGA4 deletions exhibited no lifespan extension. The {Delta}uga1 strain cannot deaminate GABA to succinate semialdehyde. Deletion of GAD1, which encodes the glutamate decarboxylase that converts glutamate into GABA, also increased lifespan. Therefore, two genes in the GABA metabolism pathway, UGA1 and GAD1, were identified as aging genes. Unexpectedly, intracellular GABA levels in mutant cells (except for {Delta}uga2 cells) did not differ from those in wild-type cells. Addition of GABA to culture media, which induces transcription of the UGA structural genes, had no effect on replicative lifespan of wild-type cells. Multivariate analysis of {sup 1}H nuclear magnetic resonance spectra for the whole-cell metabolite levels demonstrated a separation between long-lived and normal-lived strains. Gas chromatography-mass spectrometry analysis of identified metabolites showed that levels of tricarboxylic acid cycle intermediates positively correlated with lifespan

  11. GABA metabolism pathway genes, UGA1 and GAD1, regulate replicative lifespan in Saccharomycescerevisiae

    International Nuclear Information System (INIS)

    Kamei, Yuka; Tamura, Takayuki; Yoshida, Ryo; Ohta, Shinji; Fukusaki, Eiichiro; Mukai, Yukio

    2011-01-01

    Highlights: →We demonstrate that two genes in the yeast GABA metabolism pathway affect aging. → Deletion of the UGA1 or GAD1 genes extends replicative lifespan. → Addition of GABA to wild-type cultures has no effect on lifespan. → Intracellular GABA levels do not differ in longevity mutants and wild-type cells. → Levels of tricarboxylic acid cycle intermediates positively correlate with lifespan. -- Abstract: Many of the genes involved in aging have been identified in organisms ranging from yeast to human. Our previous study showed that deletion of the UGA3 gene-which encodes a zinc-finger transcription factor necessary for γ-aminobutyric acid (GABA)-dependent induction of the UGA1 (GABA aminotransferase), UGA2 (succinate semialdehyde dehydrogenase), and UGA4 (GABA permease) genes-extends replicative lifespan in the budding yeast Saccharomycescerevisiae. Here, we found that deletion of UGA1 lengthened the lifespan, as did deletion of UGA3; in contrast, strains with UGA2 or UGA4 deletions exhibited no lifespan extension. The Δuga1 strain cannot deaminate GABA to succinate semialdehyde. Deletion of GAD1, which encodes the glutamate decarboxylase that converts glutamate into GABA, also increased lifespan. Therefore, two genes in the GABA metabolism pathway, UGA1 and GAD1, were identified as aging genes. Unexpectedly, intracellular GABA levels in mutant cells (except for Δuga2 cells) did not differ from those in wild-type cells. Addition of GABA to culture media, which induces transcription of the UGA structural genes, had no effect on replicative lifespan of wild-type cells. Multivariate analysis of 1 H nuclear magnetic resonance spectra for the whole-cell metabolite levels demonstrated a separation between long-lived and normal-lived strains. Gas chromatography-mass spectrometry analysis of identified metabolites showed that levels of tricarboxylic acid cycle intermediates positively correlated with lifespan extension. These results strongly suggest

  12. Techniques for Large-Scale Bacterial Genome Manipulation and Characterization of the Mutants with Respect to In Silico Metabolic Reconstructions.

    Science.gov (United States)

    diCenzo, George C; Finan, Turlough M

    2018-01-01

    The rate at which all genes within a bacterial genome can be identified far exceeds the ability to characterize these genes. To assist in associating genes with cellular functions, a large-scale bacterial genome deletion approach can be employed to rapidly screen tens to thousands of genes for desired phenotypes. Here, we provide a detailed protocol for the generation of deletions of large segments of bacterial genomes that relies on the activity of a site-specific recombinase. In this procedure, two recombinase recognition target sequences are introduced into known positions of a bacterial genome through single cross-over plasmid integration. Subsequent expression of the site-specific recombinase mediates recombination between the two target sequences, resulting in the excision of the intervening region and its loss from the genome. We further illustrate how this deletion system can be readily adapted to function as a large-scale in vivo cloning procedure, in which the region excised from the genome is captured as a replicative plasmid. We next provide a procedure for the metabolic analysis of bacterial large-scale genome deletion mutants using the Biolog Phenotype MicroArray™ system. Finally, a pipeline is described, and a sample Matlab script is provided, for the integration of the obtained data with a draft metabolic reconstruction for the refinement of the reactions and gene-protein-reaction relationships in a metabolic reconstruction.

  13. Construction and growth properties of bovine herpesvirus type 5 recombinants defective in the glycoprotein E or thymidine kinase gene or both

    Directory of Open Access Journals (Sweden)

    M.C.S. Brum

    2010-02-01

    Full Text Available Bovine herpesvirus type 5 (BoHV-5 is an important pathogen of cattle in South America. We describe here the construction and characterization of deletion mutants defective in the glycoprotein E (gE or thymidine kinase (TK gene or both (gE/TK from a highly neurovirulent and well-characterized Brazilian BoHV-5 strain (SV507/99. A gE-deleted recombinant virus (BoHV-5 gE∆ was first generated in which the entire gE open reading frame was replaced with a chimeric green fluorescent protein gene. A TK-deleted recombinant virus (BoHV-5 TK∆ was then generated in which most of the TK open reading frame sequences were deleted and replaced with a chimeric β-galactosidase gene. Subsequently, using the BoHV-5 gE∆ virus as backbone, a double gene-deleted (TK plus gE BoHV-5 recombinant (BoHV-5 gE/TK∆ was generated. The deletion of the gE and TK genes was confirmed by immunoblotting and PCR, respectively. In Madin Darby bovine kidney (MDBK cells, the mutants lacking gE (BoHV-5 gE∆ and TK + gE (BoHV-5 gE/TK∆ produced small plaques while the TK-deleted BoHV-5 produced wild-type-sized plaques. The growth kinetics and virus yields in MDBK cells for all three recombinants (BoHV-5 gE∆, BoHV-5 TK∆ and BoHV-5 gE/TK∆ were similar to those of the parental virus. It is our belief that the dual gene-deleted recombinant (BoHV-5 gE/TK∆ produced on the background of a highly neurovirulent Brazilian BoHV-5 strain may have potential application in a vaccine against BoHV-5.

  14. A Herpes Simplex Virus Type 1 Mutant Expressing a Baculovirus Inhibitor of Apoptosis Gene in Place of Latency-Associated Transcript Has a Wild-Type Reactivation Phenotype in the Mouse

    Science.gov (United States)

    Jin, Ling; Perng, Guey-Chuen; Mott, Kevin R.; Osorio, Nelson; Naito, Julia; Brick, David J.; Carpenter, Dale; Jones, Clinton; Wechsler, Steven L.

    2005-01-01

    The latency-associated transcript (LAT) is essential for the wild-type herpes simplex virus type 1 (HSV-1) high-reactivation phenotype since LAT− mutants have a low-reactivation phenotype. We previously reported that LAT can decrease apoptosis and proposed that this activity is involved in LAT's ability to enhance the HSV-1 reactivation phenotype. The first 20% of the primary 8.3-kb LAT transcript is sufficient for enhancing the reactivation phenotype and for decreasing apoptosis, supporting this proposal. For this study, we constructed an HSV-1 LAT− mutant that expresses the baculovirus antiapoptosis gene product cpIAP under control of the LAT promoter and in place of the LAT region mentioned above. Mice were ocularly infected with this mutant, designated dLAT-cpIAP, and the reactivation phenotype was determined using the trigeminal ganglion explant model. dLAT-cpIAP had a reactivation phenotype similar to that of wild-type virus and significantly higher than that of (i) the LAT− mutant dLAT2903; (ii) dLAT1.5, a control virus containing the same LAT deletion as dLAT-cpIAP, but with no insertion of foreign DNA, thereby controlling for potential readthrough transcription past the cpIAP insert; and (iii) dLAT-EGFP, a control virus identical to dLAT-cpIAP except that it contained the enhanced green fluorescent protein open reading frame (ORF) in place of the cpIAP ORF, thereby controlling for expression of a random foreign gene instead of the cpIAP gene. These results show that an antiapoptosis gene with no sequence similarity to LAT can efficiently substitute for the LAT function involved in enhancing the in vitro-induced HSV-1 reactivation phenotype in the mouse. PMID:16160155

  15. Isolation of a novel UVB-tolerant rice mutant obtained by exposure to carbon-ion beams.

    Science.gov (United States)

    Takano, Nao; Takahashi, Yuko; Yamamoto, Mitsuru; Teranishi, Mika; Yamaguchi, Hiroko; Sakamoto, Ayako N; Hase, Yoshihiro; Fujisawa, Hiroko; Wu, Jianzhong; Matsumoto, Takashi; Toki, Seiichi; Hidema, Jun

    2013-07-01

    UVB radiation suppresses photosynthesis and protein biosynthesis in plants, which in turn decreases growth and productivity. Here, an ultraviolet-B (UVB)-tolerant rice mutant, utr319 (UV Tolerant Rice 319), was isolated from a mutagenized population derived from 2500 M1 seeds (of the UVB-resistant cultivar 'Sasanishiki') that were exposed to carbon ions. The utr319 mutant was more tolerant to UVB than the wild type. Neither the levels of UVB-induced cyclobutane pyrimidine dimers (CPDs) or (6-4) pyrimidine-pyrimidone photodimers [(6-4) photoproducts], nor the repair of CPDs or (6-4) photoproducts, was altered in the utr319 mutant. Thus, the utr319 mutant may be impaired in the production of a previously unidentified factor that confers UVB tolerance. To identify the mutated region in the utr319 mutant, microarray-based comparative genomic hybridization analysis was performed. Two adjacent genes on chromosome 7, Os07g0264900 and Os07g0265100, were predicted to represent the mutant allele. Sequence analysis of the chromosome region in utr319 revealed a deletion of 45 419 bp. RNAi analysis indicated that Os07g0265100 is most likely the mutated gene. Database analysis indicated that the Os07g0265100 gene, UTR319, encodes a putative protein with unknown characteristics or function. In addition, the homologs of UTR319 are conserved only among land plants. Therefore, utr319 is a novel UVB-tolerant rice mutant and UTR319 may be crucial for the determination of UVB sensitivity in rice, although the function of UTR319 has not yet been determined.

  16. Isolation of a novel UVB-tolerant rice mutant obtained by exposure to carbon-ion beams

    International Nuclear Information System (INIS)

    Takano, Nao; Takahashi, Yuko; Yamamoto, Mitsuru; Teranishi, Mika; Yamaguchi, Hiroko; Sakamoto, Ayako N.; Hase, Yoshihiro; Fujisawa, Hiroko; Wu, Jianzhong; Matsumoto, Takashi; Toki, Seiichi; Hidema, Jun

    2013-01-01

    UVB radiation suppresses photosynthesis and protein biosynthesis in plants, which in turn decreases growth and productivity. Here, an ultraviolet-B (UVB)-tolerant rice mutant, utr319 (UVTolerantRice319), was isolated from a mutagenized population derived from 2500 M 1 seeds (of the UVB-resistant cultivar ‘Sasanishiki’) that were exposed to carbon ions. The utr319 mutant was more tolerant to UVB than the wild type. Neither the levels of UVB-induced cyclobutane pyrimidine dimers (CPDs) or (6-4) pyrimidine-pyrimidone photodimers [(6-4) photoproducts], nor the repair of CPDs or (6-4) photoproducts, was altered in the utr319 mutant. Thus, the utr319 mutant may be impaired in the production of a previously unidentified factor that confers UVB tolerance. To identify the mutated region in the utr319 mutant, microarray-based comparative genomic hybridization analysis was performed. Two adjacent genes on chromosome 7, Os07g0264900 and Os07g0265100, were predicted to represent the mutant allele. Sequence analysis of the chromosome region in utr319 revealed a deletion of 45 419 bp. RNAi analysis indicated that Os07g0265100 is most likely the mutated gene. Database analysis indicated that the Os07g0265100 gene, UTR319, encodes a putative protein with unknown characteristics or function. In addition, the homologs of UTR319 are conserved only among land plants. Therefore, utr319 is a novel UVB-tolerant rice mutant and UTR319 may be crucial for the determination of UVB sensitivity in rice, although the function of UTR319 has not yet been determined

  17. Methylmethane-sulphonate and X-ray-induced mutations in the Chinese hamster hprt gene: mRNA phenotyping using polymerase chain reactions

    International Nuclear Information System (INIS)

    Chaudhry, M.A.; Fox, Margaret

    1990-01-01

    Alterations in the hprt gene of Chinese hamster cells were determined in 71 spontaneous, methylmethane sulphonate (MMS)-and X-ray induced mutants, using the Southern blot hybridization technique. To investigate the possibility of small deletions, MMS-induced mutants were studied with proves derived from exons 3 and 9 but no evidence of specific deletion of these two exons was found. The polymerase chain reaction (PCR) was used to phenotype hprt transcripts in 48 MMS, X-ray and spontaneous Chinese hamster mutants by amplifying the coding region of their cDNA. Among 22 MMS-induced mutants the message was present in 16 instances. An analysis of 20 X-ray-induced mutants showed the presence of hprt mRNA in 11 of them with five having low levels of transcription. Among six spontaneous mutants, four were negative for mRNA on standard Northern blots and in one the message was only detected after PCR amplification. Direct DNA sequencing of 10 mutants revealed the presence of base substitutions in five of them while a 7 bp deletion was found in another. No mutations were found in another four mutants, suggesting the presence of mutation outside the coding region. (author)

  18. Cyclin dependent kinase inhibitor 2A/B gene deletions are markers of poor prognosis in Indian children with acute lymphoblastic leukemia.

    Science.gov (United States)

    Agarwal, Manisha; Bakhshi, Sameer; Dwivedi, Sadanand N; Kabra, Madhulika; Shukla, Rashmi; Seth, Rachna

    2018-06-01

    Cyclin dependent kinase inhibitor 2A/B (CDKN2A/B) genes are implicated in many malignancies including acute lymphoblastic leukemia (ALL). These tumor suppressor genes, with a key regulatory role in cell cycle are located on chromosome 9p21.3. Previous studies involving CDKN2A/B gene deletions have shown mixed associations with survival outcome in childhood ALL. Hundred and four newly diagnosed children with ALL (1-14 years) were enrolled in this study. Genomic DNA from pretreatment bone marrow/peripheral blood samples of these children was investigated for copy number alterations in CDKN2A/B genes using multiplex ligation dependent probe amplification assay. Immunophenotype subtyping and cytogenetic and molecular analysis of ALL was performed at start of induction chemotherapy in all children. Children were monitored for response to prednisolone (Day 8), complete morphological remission, and minimal residual disease at the end of induction. The minimum postinduction follow-up period was 6 months. CDKN2A/B deletions were seen in 19.8% (18/91) of B lineage acute lymphoblastic leukemia (B-ALL) and 38.5% (5/13) of T lineage acute lymphoblastic leukemia (T-ALL). Monoallelic CDKN2A/B deletions were found in 61.1% of total deletions in B-ALL while all the children with T-ALL harbored biallelic deletions. The prevalence of CDKN2A/B gene deletions was found to be significantly higher in older children (P = 0.002), in those with higher leukocyte count (P = 0.037), and in National Cancer Institute high risk group patients (P = 0.001) in the B-ALL subgroup. Hazard ratio was significantly high for children with CDKN2A/B deletions in total cohort (P = 0.004). Children with CDKN2A/B deletion had significantly lesser event free survival (P = 0.03). CDKN2A/B deletions were significantly more prevalent in T-ALL subgroup and were found to have higher hazard ratio and lesser event free survival in total cohort in our study. © 2018 Wiley Periodicals, Inc.

  19. Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae.

    Science.gov (United States)

    Endo, Ayako; Nakamura, Toshihide; Ando, Akira; Tokuyasu, Ken; Shima, Jun

    2008-04-15

    Lignocellulosic materials are abundant and among the most important potential sources for bioethanol production. Although the pretreatment of lignocellulose is necessary for efficient saccharification and fermentation, numerous by-products, including furan derivatives, weak acids, and phenolic compounds, are generated in the pretreatment step. Many of these components inhibit the growth and fermentation of yeast. In particular, vanillin is one of the most effective inhibitors in lignocellulose hydrolysates because it inhibits fermentation at very low concentrations. To identify the genes required for tolerance to vanillin, we screened a set of diploid yeast deletion mutants, which are powerful tools for clarifying the function of particular genes. Seventy-six deletion mutants were identified as vanillin-sensitive mutants. The numerous deleted genes in the vanillin-sensitive mutants were classified under the functional categories for 'chromatin remodeling' and 'vesicle transport', suggesting that these functions are important for vanillin tolerance. The cross-sensitivity of the vanillin-sensitive mutants to furan derivatives, weak acids, and phenolic compounds was also examined. Genes for ergosterol biosynthesis were required for tolerance to all inhibitory compounds tested, suggesting that ergosterol is a key component of tolerance to various inhibitors. Our analysis predicts that vanillin tolerance in Saccharomyces cerevisiae is affected by various complicated processes that take place on both the molecular and the cellular level. In addition, the ergosterol biosynthetic process is important for achieving a tolerance to various inhibitors. Our findings provide a biotechnological basis for the molecular engineering as well as for screening of more robust yeast strains that may potentially be useful in bioethanol fermentation.

  20. Schizophrenia and chromosomal deletions

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, E.A.; Baldini, A. [Baylor College of Medicine, Houston, TX (United States); Morris, M. A. [Univ. of Geneva School of Medicine, NY (United States)] [and others

    1995-06-01

    Recent genetic linkage analysis studies have suggested the presence of a schizophrenia locus on the chromosomal region 22q11-q13. Schizophrenia has also been frequently observed in patients affected with velo-cardio-facial syndrome (VCFS), a disorder frequently associated with deletions within 22q11.1. It has been hypothesized that psychosis in VCFS may be due to deletion of the catechol-o-methyl transferase gene. Prompted by these observations, we screened for 22q11 deletions in a population of 100 schizophrenics selected from the Maryland Epidemiological Sample. Our results show that there are schizophrenic patients carrying a deletion of 22q11.1 and a mild VCFS phenotype that might remain unrecognized. These findings should encourage a search for a schizophrenia-susceptibility gene within the deleted region and alert those in clinical practice to the possible presence of a mild VCFS phenotype associated with schizophrenia. 9 refs.

  1. Synergistic interactions between RAD5, RAD16, and RAD54, three partially homologous yeast DNA repair genes each in a different repair pathway

    International Nuclear Information System (INIS)

    Glassner, B.J.; Mortimer, R.K.

    1994-01-01

    Considerable homology has recently been noted between the proteins encoded by the RAD5, RAD16 and RAD54 genes of Saccharomyces cerevisiae. These genes are members of the RAD6, RAD3 and RAD50 epistasis groups, respectively, which correspond to the three major DNA repair pathways in yeast. These proteins also share homology with other eucaryotic proteins, including those encoded by SNF2 and MO1 of yeast, brahma and lodestar of Drosophila and the human ERCC6 gene. The homology shares features with known helicases, suggesting a newly identified helicase subfamily. We have constructed a series of congenic single-, double- and triple-deletion mutants involving RAD5, RAD16 and RAD54 to examine the interactions between these genes. Each deletion mutation alone has only a moderate effect on survival after exposure to UV radiation. Each pairwise-double mutant exhibits marked synergism. The triple-deletion mutant displays further synergism. These results confirm the assignment of the RAD54 gene to the RAD50 epistasis group and suggest that the RAD16 gene plays a larger role in DNA repair after exposure to UV radiation than has been suggested previously. Additionally, the proteins encoded by RAD5, RAD16, and RAD54 may compete for the same substrate after damage induced by UV radiation, possibly at an early step in their respective pathways. 49 refs., 6 figs., 2 tabs

  2. Dopaminergic Neuron-Specific Deletion of p53 Gene Attenuates Methamphetamine Neurotoxicity.

    Science.gov (United States)

    Lu, Tao; Kim, Paul P; Greig, Nigel H; Luo, Yu

    2017-08-01

    p53 plays an essential role in the regulation of cell death in dopaminergic (DA) neurons and its activation has been implicated in the neurotoxic effects of methamphetamine (MA). However, how p53 mediates MA neurotoxicity remains largely unknown. In this study, we examined the effect of DA-specific p53 gene deletion in DAT-p53KO mice. Whereas in vivo MA binge exposure reduced locomotor activity in wild-type (WT) mice, this was significantly attenuated in DAT-p53KO mice and associated with significant differences in the levels of the p53 target genes BAX and p21 between WT and DAT-p53KO. Notably, DA-specific deletion of p53 provided protection of substantia nigra pars reticulata (SNpr) tyrosine hydroxylase (TH) positive fibers following binge MA, with DAT-p53KO mice having less decline of TH protein levels in striatum versus WT mice. Whereas DAT-p53KO mice demonstrated a consistently higher density of TH fibers in striatum compared to WT mice at 10 days after MA exposure, DA neuron counts within the substantia nigra pars compacta (SNpc) were similar. Finally, supportive of these results, administration of a p53-specific inhibitor (PFT-α) provided a similarly protective effect on MA binge-induced behavioral deficits. Neither DA specific p53 deletion nor p53 pharmacological inhibition affected hyperthermia induced by MA binge. These findings demonstrate a specific contribution of p53 activation in behavioral deficits and DA neuronal terminal loss by MA binge exposure.

  3. Characterization of a family of gamma-ray-induced CHO mutants demonstrates that the ldlA locus is diploid and encodes the low-density lipoprotein receptor

    International Nuclear Information System (INIS)

    Sege, R.D.; Kozarsky, K.F.; Krieger, M.

    1986-01-01

    The ldlA locus is one of four Chinese hamster ovary (CHO) cell loci which are known to be required for the synthesis of functional low-density lipoprotein (LDL) receptors. Previous studies have suggested that the ldlA locus is diploid and encodes the LDL receptor. To confirm this assignment, we have isolated a partial genomic clone of the Chinese hamster LDL receptor gene and used this and other nucleic acid and antibody probes to study a family of ldlA mutants isolated after gamma-irradiation. Our analysis suggests that there are two LDL receptor alleles in wild-type CHO cells. Each of the three mutants isolated after gamma-irradiation had detectable deletions affecting one of the two LDL receptor alleles. One of the mutants also had a disruption of the remaining allele, resulting in the synthesis of an abnormal receptor precursor which was not subject to Golgi-associated posttranslational glycoprotein processing. The correlation of changes in the expression, structure, and function of LDL receptors with deletions in the LDL receptor genes in these mutants directly demonstrated that the ldlA locus in CHO cells is diploid and encodes the LDL receptor. In addition, our analysis suggests that CHO cells in culture may contain a partial LDL receptor pseudogene

  4. Lipid composition of cAMP-dependent protein kinase mutants of Aspergillus niger.

    Science.gov (United States)

    Jernejc, Katarina; Bencina, Mojca

    2003-08-29

    Lipid composition of cAMP-dependent protein kinase (PKA) Aspergillus niger mutants with overexpressed or deleted genes for either regulatory and/or the catalytic subunit of PKA was analyzed. Disruption of the gene encoding the PKA regulatory subunit resulted in 20% less total lipids, 30% less neutral lipids, four times more glycolipids and two-fold higher triacylglycerol lipase activity compared to the control strain. Concomitantly a five-fold decrease in phosphatidylcholine, accompanied with 1.5-, 1.8- and 2.8-fold increases in phosphatidylethanolamine, lysophosphatidylethanolamine and phosphatidylinositol, was determined, respectively. The lack of PKA activity, due to the disruption of a gene encoding the PKA catalytic subunit, resulted in a 1.6-times increase in total lipids with two times more neutral lipids associated with lower triacylglycerol lipase activity and a decrease in phospholipids. The mutants with unrestricted PKA activity synthesized twice as much citric acid as the control strain and three times more than strains lacking PKA activity. The results indicate the involvement of cAMP-mediated PKA activity in regulation of lipid biosynthesis as well as citric acid synthesis.

  5. Haemophilia A: Database of nucleotide substitutions, deletions, insertions and rearrangements of the factor VIII gene

    Energy Technology Data Exchange (ETDEWEB)

    Tuddenham, E.G.D. (Clinical Research Centre, Harrow (United Kingdom)); Cooper, D.N. (Thrombosis Research Inst., London (United Kingdom)); Gitschier, J. (Univ. of California, San Francisco (United States)); Higuchi, M.; Kazazian, H.H.; Antonarakis, S.E. (Johns Hopkins Univ., Baltimore (United States)); Hoyer, L.W. (American Red Cross, Rockville (United States)); Yoshioka, A. (Nara Medical Coll., Kashihara City (Japan)); Peake, I.R. (Royal Hallamshire Hospital, Sheffield (United Kingdom)); Schwaab, R. (Inst. fuer Klinische Biochemie der Univ. Bonn (West Germany)); Lavergne, J.M. (Hopital de Bicetre (France)); Giannelli, F. (Guy' s Hospital, London (United Kingdom))

    1991-09-25

    Mutations at the factor VIII gene locus causing Haemophilia A have now been identified in many patients from a many ethnic groups. Earlier studies used biased methods which detected repetitive mutations at a few CG dinucleotides. More recently rapid gene scanning methods have uncovered an extreme diversity of mutations. Over 80 different point mutations, 6 insertions, 7 small deletions, and 60 large deletions have been characterized. Repetitive mutation has been proved for at least 16 CpG sites. All nonsense mutations cause severe disease. Most missense mutations appear to cause instability of the protein, but some are associated with production of dysfunctional factor VIII molecules, thereby localizing functionally critical regions of the cofactor. Variable phenotype has been observed in association with three of the latter class of genotype. This catalogue of gene lesions in Haemophilia A will be updated annually.

  6. Enhanced oxygen consumption in Herbaspirillum seropedicae fnr mutants leads to increased NifA mediated transcriptional activation.

    Science.gov (United States)

    Batista, Marcelo Bueno; Wassem, Roseli; Pedrosa, Fábio de Oliveira; de Souza, Emanuel Maltempi; Dixon, Ray; Monteiro, Rose Adele

    2015-05-07

    Orthologous proteins of the Crp/Fnr family have been previously implicated in controlling expression and/or activity of the NifA transcriptional activator in some diazotrophs. This study aimed to address the role of three Fnr-like proteins from H. seropedicae SmR1 in controlling NifA activity and consequent NifA-mediated transcription activation. The activity of NifA-dependent transcriptional fusions (nifA::lacZ and nifB::lacZ) was analysed in a series of H. seropedicae fnr deletion mutant backgrounds. We found that combined deletions in both the fnr1 and fnr3 genes lead to higher expression of both the nifA and nifB genes and also an increased level of nifH transcripts. Expression profiles of nifB under different oxygen concentrations, together with oxygen consumption measurements suggest that the triple fnr mutant has higher respiratory activity when compared to the wild type, which we believe to be responsible for greater stability of the oxygen sensitive NifA protein. This conclusion was further substantiated by measuring the levels of NifA protein and its activity in fnr deletion strains in comparison with the wild-type. Fnr proteins are indirectly involved in controlling the activity of NifA in H. seropedicae, probably as a consequence of their influence on respiratory activity in relation to oxygen availability. Additionally we can suggest that there is some redundancy in the physiological function of the three Fnr paralogs in this organism, since altered respiration and effects on NifA activity are only observed in deletion strains lacking both fnr1 and fnr3.

  7. Construction and symbiotic competence of a luxA-deletion mutant of Vibrio fischeri.

    Science.gov (United States)

    Visick, K G; Ruby, E G

    1996-10-10

    Bioluminescence by the squid Euprymna scolopes requires colonization of its light organ by the symbiotic luminous bacterium Vibrio fischeri. Investigation of the genetic determinants underlying bacterial symbiotic competence in this system has necessitated the continuing establishment and application of molecular genetic techniques in V. fischeri. We developed a procedure for the introduction of plasmid DNA into V. fischeri by electroporation, and isolated a mutant strain that overcame the apparent restriction barrier between V. fischeri and Escherichia coli. Using the technique of electroporation in combination with that of gene replacement, we constructed a non-luminous strain of V. fischeri (delta luxA::erm). In addition, we used the transducing phage rp-1 for the first time to transfer a chromosomal antibiotic resistance marker to another strain of V. fischeri. The luxA mutant was able to colonize E. scolopes as quickly and to the same extent as wild type. This result suggested that, at least during the initial stages of colonization, luminescence per se is not an essential factor for the symbiotic infection.

  8. A new gene deletion in the alpha-like globin gene cluster as the molecular basis for the rare alpha-thalassemia-1(--/alpha alpha) in blacks: HbH disease in sickle cell trait.

    Science.gov (United States)

    Steinberg, M H; Coleman, M B; Adams, J G; Hartmann, R C; Saba, H; Anagnou, N P

    1986-02-01

    A novel deletion of at least 26 kilobase of DNA, including both alpha-globin genes, the psi alpha- and psi zeta-globin genes, but sparing the functional zeta-gene was found in a 10-year-old black boy with HbH disease and sickle cell trait. This particular deletion has not previously been described in blacks. Its existence makes it likely that the absence of Hb Barts hydrops fetalis in blacks is due to the rarity of the chromosome lacking two alpha-globin genes rather than a result of early embryonic death due to the failure to synthesize embryonic hemoglobins because of deletion of functional zeta-globin genes.

  9. Nonsense mutants in the bacteriophage T4D v gene

    Energy Technology Data Exchange (ETDEWEB)

    Minderhout, L van; Grimbergen, J; Groot, B de [Rijksuniversiteit Leiden (Netherlands). Lab. voor Stralengenetica en Chemische Mutagenese; Cohen (J.A.) Instituut voor Radiopathologie en Stralenbescherming, Leiden (Netherlands))

    1975-09-01

    Ten UV-sensitive mutants of T4D with the v phenotype were isolated. Of these ten mutants, two are amber and two opal. In UV curves and in photoreactivation and multiplicity reactivation experiments the nonsense mutants show the v phenotype in su/sup -/ hosts and almost the T4/sup +/ phenotype in su/sup +/ hosts. The mutations are located between rl and e and are alleles of v/sub 1/. In crosses with irradiated and non-irradiated phages the recombinant frequency is not reduced by uvs5. Amber uvs5 propagated in CR63 su/sup +/ is with B su/sup -/ just as sensitive to UV as uvs5 propagated in B su/sup -/, which permits the conclusion that the capsid of T4 phage particles does not contain the v gene product.

  10. highroad Is a Carboxypetidase Induced by Retinoids to Clear Mutant Rhodopsin-1 in Drosophila Retinitis Pigmentosa Models

    Directory of Open Access Journals (Sweden)

    Huai-Wei Huang

    2018-02-01

    Full Text Available Rhodopsins require retinoid chromophores for their function. In vertebrates, retinoids also serve as signaling molecules, but whether these molecules similarly regulate gene expression in Drosophila remains unclear. Here, we report the identification of a retinoid-inducible gene in Drosophila, highroad, which is required for photoreceptors to clear folding-defective mutant Rhodopsin-1 proteins. Specifically, knockdown or genetic deletion of highroad blocks the degradation of folding-defective Rhodopsin-1 mutant, ninaEG69D. Moreover, loss of highroad accelerates the age-related retinal degeneration phenotype of ninaEG69D mutants. Elevated highroad transcript levels are detected in ninaEG69D flies, and interestingly, deprivation of retinoids in the fly diet blocks this effect. Consistently, mutations in the retinoid transporter, santa maria, impairs the induction of highroad in ninaEG69D flies. In cultured S2 cells, highroad expression is induced by retinoic acid treatment. These results indicate that cellular quality-control mechanisms against misfolded Rhodopsin-1 involve regulation of gene expression by retinoids.

  11. Deletion/duplication mutation screening of TP53 gene in patients with transitional cell carcinoma of urinary bladder using multiplex ligation-dependent probe amplification.

    Science.gov (United States)

    Bazrafshani, Mohammad Reza R; Nowshadi, Pouriaali A; Shirian, Sadegh; Daneshbod, Yahya; Nabipour, Fatemeh; Mokhtari, Maral; Hosseini, Fatemehsadat; Dehghan, Somayeh; Saeedzadeh, Abolfazl; Mosayebi, Ziba

    2016-02-01

    Bladder cancer is a molecular disease driven by the accumulation of genetic, epigenetic, and environmental factors. The aim of this study was to detect the deletions/duplication mutations in TP53 gene exons using multiplex ligation-dependent probe amplification (MLPA) method in the patients with transitional cell carcinoma (TCC). The achieved formalin-fixed paraffin-embedded tissues from 60 patients with TCC of bladder were screened for exonal deletions or duplications of every 12 TP53 gene exons using MLPA. The pathological sections were examined by three pathologists and categorized according to the WHO scoring guideline as 18 (30%) grade I, 22 (37%) grade II, 13 (22%) grade III, and 7 (11%) grade IV cases of TCC. None mutation changes of TP53 gene were detected in 24 (40%) of the patients. Furthermore, mutation changes including, 15 (25%) deletion, 17 (28%) duplication, and 4 (7%) both deletion and duplication cases were observed among 60 samples. From 12 exons of TP53 gene, exon 1 was more subjected to exonal deletion. Deletion of exon 1 of TP53 gene has occurred in 11 (35.4%) patients with TCC. In general, most mutations of TP53, either deletion or duplication, were found in exon 1, which was statistically significant. In addition, no relation between the TCC tumor grade and any type of mutation were observed in this research. MLPA is a simple and efficient method to analyze genomic deletions and duplications of all 12 exons of TP53 gene. The finding of this report that most of the mutations of TP53 occur in exon 1 is in contrast to that of the other reports suggesting that exons 5-8 are the most (frequently) mutated exons of TP53 gene. The mutations of exon 1 of TP53 gene may play an important role in the tumorogenesis of TCC. © 2015 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  12. Genome-wide screen in Saccharomyces cerevisiae identifies vacuolar protein sorting, autophagy, biosynthetic, and tRNA methylation genes involved in life span regulation.

    Directory of Open Access Journals (Sweden)

    Paola Fabrizio

    2010-07-01

    Full Text Available The study of the chronological life span of Saccharomyces cerevisiae, which measures the survival of populations of non-dividing yeast, has resulted in the identification of homologous genes and pathways that promote aging in organisms ranging from yeast to mammals. Using a competitive genome-wide approach, we performed a screen of a complete set of approximately 4,800 viable deletion mutants to identify genes that either increase or decrease chronological life span. Half of the putative short-/long-lived mutants retested from the primary screen were confirmed, demonstrating the utility of our approach. Deletion of genes involved in vacuolar protein sorting, autophagy, and mitochondrial function shortened life span, confirming that respiration and degradation processes are essential for long-term survival. Among the genes whose deletion significantly extended life span are ACB1, CKA2, and TRM9, implicated in fatty acid transport and biosynthesis, cell signaling, and tRNA methylation, respectively. Deletion of these genes conferred heat-shock resistance, supporting the link between life span extension and cellular protection observed in several model organisms. The high degree of conservation of these novel yeast longevity determinants in other species raises the possibility that their role in senescence might be conserved.

  13. Genomic profiling in Down syndrome acute lymphoblastic leukemia identifies histone gene deletions associated with altered methylation profiles

    Science.gov (United States)

    Loudin, Michael G.; Wang, Jinhua; Leung, Hon-Chiu Eastwood; Gurusiddappa, Sivashankarappa; Meyer, Julia; Condos, Gregory; Morrison, Debra; Tsimelzon, Anna; Devidas, Meenakshi; Heerema, Nyla A.; Carroll, Andrew J.; Plon, Sharon E.; Hunger, Stephen P.; Basso, Giuseppe; Pession, Andrea; Bhojwani, Deepa; Carroll, William L.; Rabin, Karen R.

    2014-01-01

    Patients with Down syndrome (DS) and acute lymphoblastic leukemia (ALL) have distinct clinical and biological features. Whereas most DS-ALL cases lack the sentinel cytogenetic lesions that guide risk assignment in childhood ALL, JAK2 mutations and CRLF2 overexpression are highly enriched. To further characterize the unique biology of DS-ALL, we performed genome-wide profiling of 58 DS-ALL and 68 non-Down syndrome (NDS) ALL cases by DNA copy number, loss of heterozygosity, gene expression, and methylation analyses. We report a novel deletion within the 6p22 histone gene cluster as significantly more frequent in DS-ALL, occurring in 11 DS (22%) and only two NDS cases (3.1%) (Fisher’s exact p = 0.002). Homozygous deletions yielded significantly lower histone expression levels, and were associated with higher methylation levels, distinct spatial localization of methylated promoters, and enrichment of highly methylated genes for specific pathways and transcription factor binding motifs. Gene expression profiling demonstrated heterogeneity of DS-ALL cases overall, with supervised analysis defining a 45-transcript signature associated with CRLF2 overexpression. Further characterization of pathways associated with histone deletions may identify opportunities for novel targeted interventions. PMID:21647151

  14. Food-grade host/vector expression system for Lactobacillus casei based on complementation of plasmid-associated phospho-beta-galactosidase gene lacG.

    Science.gov (United States)

    Takala, T M; Saris, P E J; Tynkkynen, S S H

    2003-01-01

    A new food-grade host/vector system for Lactobacillus casei based on lactose selection was constructed. The wild-type non-starter host Lb. casei strain E utilizes lactose via a plasmid-encoded phosphotransferase system. For food-grade cloning, a stable lactose-deficient mutant was constructed by deleting a 141-bp fragment from the phospho-beta-galactosidase gene lacG via gene replacement. The deletion resulted in an inactive phospho-beta-galactosidase enzyme with an internal in-frame deletion of 47 amino acids. A complementation plasmid was constructed containing a replicon from Lactococcus lactis, the lacG gene from Lb. casei, and the constitutive promoter of pepR for lacG expression from Lb. rhamnosus. The expression of the lacG gene from the resulting food-grade plasmid pLEB600 restored the ability of the lactose-negative mutant strain to grow on lactose to the wild-type level. The vector pLEB600 was used for expression of the proline iminopeptidase gene pepI from Lb. helveticus in Lb. casei. The results show that the food-grade expression system reported in this paper can be used for expression of foreign genes in Lb. casei.

  15. Novel deletion alleles carrying CYP21A1P/A2 chimeric genes in Brazilian patients with 21-hydroxylase deficiency

    Directory of Open Access Journals (Sweden)

    Guerra-Júnior Gil

    2010-06-01

    Full Text Available Abstract Background Congenital adrenal hyperplasia due to 21-hydroxylase deficiency is caused by deletions, large gene conversions or mutations in CYP21A2 gene. The human gene is located at 6p21.3 within a locus containing the genes for putative serine/threonine Kinase RP, complement C4, steroid 21-hydroxylase CYP21 tenascin TNX, normally, in a duplicated cluster known as RCCX module. The CYP21 extra copy is a pseudogene (CYP21A1P. In Brazil, 30-kb deletion forming monomodular alleles that carry chimeric CYP21A1P/A2 genes corresponds to ~9% of disease-causing alleles. Such alleles are considered to result from unequal crossovers within the bimodular C4/CYP21 locus. Depending on the localization of recombination breakpoint, different alleles can be generated conferring the locus high degree of allelic variability. The purpose of the study was to investigate the variability of deleted alleles in patients with 21-hydroxylase deficiency. Methods We used different techniques to investigate the variability of 30-kb deletion alleles in patients with 21-hydroxylase deficiency. Alleles were first selected after Southern blotting. The composition of CYP21A1P/A2 chimeric genes was investigated by ASO-PCR and MLPA analyses followed by sequencing to refine the location of recombination breakpoints. Twenty patients carrying at least one allele with C4/CYP21 30-kb deletion were included in the study. Results An allele carrying a CYP21A1P/A2 chimeric gene was found unusually associated to a C4B/C4A Taq I 6.4-kb fragment, generally associated to C4B and CYP21A1P deletions. A novel haplotype bearing both p.P34L and p.H62L, novel and rare mutations, respectively, was identified in exon 1, however p.P30L, the most frequent pseudogene-derived mutation in this exon, was absent. Four unrelated patients showed this haplotype. Absence of p.P34L in CYP21A1P of normal controls indicated that it is not derived from pseudogene. In addition, the combination of different

  16. Deletion of C7L and K1L genes leads to significantly decreased virulence of recombinant vaccinia virus TianTan.

    Directory of Open Access Journals (Sweden)

    Zheng Liu

    Full Text Available The vaccinia virus TianTan (VTT has been modified as an HIV vaccine vector in China and has shown excellent performance in immunogenicity and safety. However, its adverse effects in immunosuppressed individuals warrant the search for a safer vector in the following clinic trails. In this study, we deleted the C7L and K1L genes of VTT and constructed six recombinant vaccinia strains VTT△C7L, VTT△K1L, VTT△C7LK1L, VTKgpe△C7L, VTKgpe△K1L and VTT△C7LK1L-gag. The pathogenicity and immunogenicity of these recombinants were evaluated in mouse and rabbit models. Comparing to parental VTT, VTT△C7L and VTT△K1L showed significantly decreased replication capability in CEF, Vero, BHK-21 and HeLa cell lines. In particular, replication of VTT△C7LK1L decreased more than 10-fold in all four cell lines. The virulence of all these mutants were decreased in BALB/c mouse and rabbit models; VTT△C7LK1L once again showed the greatest attenuation, having resulted in no evident damage in mice and erythema of only 0.4 cm diameter in rabbits, compared to 1.48 cm for VTT. VTKgpe△C7L, VTKgpe△K1L and VTT△C7LK1L-gag elicited as strong cellular and humoral responses against HIV genes as did VTKgpe, while humoral immune response against the vaccinia itself was reduced by 4-8-fold. These data show that deletion of C7L and K1L genes leads to significantly decreased virulence without compromising animal host immunogenicity, and may thus be key to creating a more safe and effective HIV vaccine vector.

  17. A new mutant gene su-1 in corn obtained by irradiation with low doses of gamma rays

    International Nuclear Information System (INIS)

    Diaconu, P.

    1993-01-01

    This paper provides a description of a sugar corn mutant obtained by irradiation of wetted kernels of Romanesc de Studina variety with low doses of gamma rays (300 R). This mutant influences the structure of the endosperm similarly to the su-1 genes developed spontaneously which resulted in the corn variety Zea mays saccharata thousands of years ago. Although the mutant is a multiple allele of the su-1 locus in chromosome IV it differs widely from the spontaneous mutant. The length of the ears is much reduced, varying between 4 and 6 cm, with numbers of kernels per ear varying between 45 and 72. Attempts to improve the cob size and the number of kernels by breeding and propagation in an insulated area led to no result. Crossing the mutants with the sugar hybrid Delicious resulted in sugar type progeny which confirms the common position of the mutant gene induced by irradiation and the spontaneous su-1 gene. The progenies of sugar mutant x Delicious are 38-43 % lower in cob vigor and 36-46% lower in kernel number. (author). 2 figs, 2 tab., 16 refs

  18. Splice, insertion-deletion and nonsense mutations that perturb the phenylalanine hydroxylase transcript cause phenylketonuria in India.

    Science.gov (United States)

    Bashyam, Murali D; Chaudhary, Ajay K; Kiran, Manjari; Nagarajaram, Hampapathalu A; Devi, Radha Rama; Ranganath, Prajnya; Dalal, Ashwin; Bashyam, Leena; Gupta, Neerja; Kabra, Madhulika; Muranjan, Mamta; Puri, Ratna D; Verma, Ishwar C; Nampoothiri, Sheela; Kadandale, Jayarama S

    2014-03-01

    Phenylketonuria (PKU) is an autosomal recessive metabolic disorder caused by mutational inactivation of the phenylalanine hydroxylase (PAH) gene. Missense mutations are the most common PAH mutation type detected in PKU patients worldwide. We performed PAH mutation analysis in 27 suspected Indian PKU families (including 7 from our previous study) followed by structure and function analysis of specific missense and splice/insertion-deletion/nonsense mutations, respectively. Of the 27 families, disease-causing mutations were detected in 25. A total of 20 different mutations were identified of which 7 "unique" mutations accounted for 13 of 25 mutation positive families. The unique mutations detected exclusively in Indian PKU patients included three recurrent mutations detected in three families each. The 20 mutations included only 5 missense mutations in addition to 5 splice, 4 each nonsense and insertion-deletion mutations, a silent variant in coding region and a 3'UTR mutation. One deletion and two nonsense mutations were characterized to confirm significant reduction in mutant transcript levels possibly through activation of nonsense mediated decay. All missense mutations affected conserved amino acid residues and sequence and structure analysis suggested significant perturbations in the enzyme activity of respective mutant proteins. This is probably the first report of identification of a significantly low proportion of missense PAH mutations from PKU families and together with the presence of a high proportion of splice, insertion-deletion, and nonsense mutations, points to a unique PAH mutation profile in Indian PKU patients. © 2013 Wiley Periodicals, Inc.

  19. Acetylcholinesterase (AChE) gene modification in transgenic animals: functional consequences of selected exon and regulatory region deletion.

    Science.gov (United States)

    Camp, Shelley; Zhang, Limin; Marquez, Michael; de la Torre, Brian; Long, Jeffery M; Bucht, Goran; Taylor, Palmer

    2005-12-15

    AChE is an alternatively spliced gene. Exons 2, 3 and 4 are invariantly spliced, and this sequence is responsible for catalytic function. The 3' alternatively spliced exons, 5 and 6, are responsible for AChE disposition in tissue [J. Massoulie, The origin of the molecular diversity and functional anchoring of cholinesterases. Neurosignals 11 (3) (2002) 130-143; Y. Li, S. Camp, P. Taylor, Tissue-specific expression and alternative mRNA processing of the mammalian acetylcholinesterase gene. J. Biol. Chem. 268 (8) (1993) 5790-5797]. The splice to exon 5 produces the GPI anchored form of AChE found in the hematopoietic system, whereas the splice to exon 6 produces a sequence that binds to the structural subunits PRiMA and ColQ, producing AChE expression in brain and muscle. A third alternative RNA species is present that is not spliced at the 3' end; the intron 3' of exon 4 is used as coding sequence and produces the read-through, unanchored form of AChE. In order to further understand the role of alternative splicing in the expression of the AChE gene, we have used homologous recombination in stem cells to produce gene specific deletions in mice. Alternatively and together exon 5 and exon 6 were deleted. A cassette containing the neomycin gene flanked by loxP sites was used to replace the exon(s) of interest. Tissue analysis of mice with exon 5 deleted and the neomycin cassette retained showed very low levels of AChE expression, far less than would have been anticipated. Only the read-through species of the enzyme was produced; clearly the inclusion of the selection cassette disrupted splicing of exon 4 to exon 6. The selection cassette was then deleted in exon 5, exon 6 and exons 5 + 6 deleted mice by breeding to Ella-cre transgenic mice. AChE expression in serum, brain and muscle has been analyzed. Another AChE gene targeted mouse strain involving a region in the first intron, found to be critical for AChE expression in muscle cells [S. Camp, L. Zhang, M. Marquez, B

  20. Deletion of zmp1 improves Mycobacterium bovis BCG-mediated protection in a guinea pig model of tuberculosis.

    Science.gov (United States)

    Sander, Peter; Clark, Simon; Petrera, Agnese; Vilaplana, Cristina; Meuli, Michael; Selchow, Petra; Zelmer, Andrea; Mohanan, Deepa; Andreu, Nuria; Rayner, Emma; Dal Molin, Michael; Bancroft, Gregory J; Johansen, Pål; Cardona, Pere-Joan; Williams, Ann; Böttger, Erik C

    2015-03-10

    Having demonstrated previously that deletion of zinc metalloprotease zmp1 in Mycobacterium bovis BCG increased immunogenicity of BCG vaccines, we here investigated the protective efficacy of BCG zmp1 deletion mutants in a guinea pig model of tuberculosis infection. zmp1 deletion mutants of BCG provided enhanced protection by reducing the bacterial load of tubercle bacilli in the lungs of infected guinea pigs. The increased efficacy of BCG due to zmp1 deletion was demonstrated in both BCG Pasteur and BCG Denmark indicating that the improved protection by zmp1 deletion is independent from the BCG sub-strain. In addition, unmarked BCG Δzmp1 mutant strains showed a better safety profile in a CB-17 SCID mouse survival model than the parental BCG strains. Together, these results support the further development of BCG Δzmp1 for use in clinical trials. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Naturally occurring mutations in the human 5-lipoxygenase gene promoter that modify transcription factor binding and reporter gene transcription.

    Science.gov (United States)

    In, K H; Asano, K; Beier, D; Grobholz, J; Finn, P W; Silverman, E K; Silverman, E S; Collins, T; Fischer, A R; Keith, T P; Serino, K; Kim, S W; De Sanctis, G T; Yandava, C; Pillari, A; Rubin, P; Kemp, J; Israel, E; Busse, W; Ledford, D; Murray, J J; Segal, A; Tinkleman, D; Drazen, J M

    1997-03-01

    Five lipoxygenase (5-LO) is the first committed enzyme in the metabolic pathway leading to the synthesis of the leukotrienes. We examined genomic DNA isolated from 25 normal subjects and 31 patients with asthma (6 of whom had aspirin-sensitive asthma) for mutations in the known transcription factor binding regions and the protein encoding region of the 5-LO gene. A family of mutations in the G + C-rich transcription factor binding region was identified consisting of the deletion of one, deletion of two, or addition of one zinc finger (Sp1/Egr-1) binding sites in the region 176 to 147 bp upstream from the ATG translation start site where there are normally 5 Sp1 binding motifs in tandem. Reporter gene activity directed by any of the mutant forms of the transcription factor binding region was significantly (P < 0.05) less effective than the activity driven by the wild type transcription factor binding region. Electrophoretic mobility shift assays (EMSAs) demonstrated the capacity of wild type and mutant transcription factor binding regions to bind nuclear extracts from human umbilical vein endothelial cells (HUVECs). These data are consistent with a family of mutations in the 5-LO gene that can modify reporter gene transcription possibly through differences in Sp1 and Egr-1 transactivation.

  2. Deletion of vanilloid receptor (TRPV1) in mice alters behavioral effects of ethanol

    Science.gov (United States)

    Blednov, Y.A.; Harris, R.A.

    2009-01-01

    The vanilloid receptor TRPV1 is activated by ethanol and this may be important for some of the central and peripheral actions of ethanol. To determine if this receptor has a role in ethanol-mediated behaviors, we studied null mutant mice in which the Trpv1 gene was deleted. Mice lacking this gene showed significantly higher preference for ethanol and consumed more ethanol in a two-bottle choice test as compared with wild type littermates. Null mutant mice showed shorter duration of loss of righting reflex induced by low doses of ethanol (3.2 and 3.4 g/kg) and faster recovery from motor incoordination induced by ethanol (2 g/kg). However, there were no differences between null mutant and wild type mice in severity of ethanol-induced acute withdrawal (4 g/kg) or conditioned taste aversion to ethanol (2.5 g/kg). Two behavioral phenotypes (decreased sensitivity to ethanol-induced sedation and faster recovery from ethanol-induced motor incoordination) seen in null mutant mice were reproduced in wild type mice by injection of a TRPV1 antagonist, capsazepine (10 mg/kg). These two ethanol behaviors were changed in the opposite direction after injection of capsaicin, a selective TRPV1 agonist, in wild type mice. The studies provide the first evidence that TRPV1 is important for specific behavioral actions of ethanol. PMID:19705551

  3. Establishment of Homozygote Mutant Human Embryonic Stem Cells by Parthenogenesis.

    Science.gov (United States)

    Epsztejn-Litman, Silvina; Cohen-Hadad, Yaara; Aharoni, Shira; Altarescu, Gheona; Renbaum, Paul; Levy-Lahad, Ephrat; Schonberger, Oshrat; Eldar-Geva, Talia; Zeligson, Sharon; Eiges, Rachel

    2015-01-01

    We report on the derivation of a diploid 46(XX) human embryonic stem cell (HESC) line that is homozygous for the common deletion associated with Spinal muscular atrophy type 1 (SMA) from a pathenogenetic embryo. By characterizing the methylation status of three different imprinted loci (MEST, SNRPN and H19), monitoring the expression of two parentally imprinted genes (SNRPN and H19) and carrying out genome-wide SNP analysis, we provide evidence that this cell line was established from the activation of a mutant oocyte by diploidization of the entire genome. Therefore, our SMA parthenogenetic HESC (pHESC) line provides a proof-of-principle for the establishment of diseased HESC lines without the need for gene manipulation. As mutant oocytes are easily obtained and readily available during preimplantation genetic diagnosis (PGD) cycles, this approach should provide a powerful tool for disease modelling and is especially advantageous since it can be used to induce large or complex mutations in HESCs, including gross DNA alterations and chromosomal rearrangements, which are otherwise hard to achieve.

  4. Establishment of Homozygote Mutant Human Embryonic Stem Cells by Parthenogenesis.

    Directory of Open Access Journals (Sweden)

    Silvina Epsztejn-Litman

    Full Text Available We report on the derivation of a diploid 46(XX human embryonic stem cell (HESC line that is homozygous for the common deletion associated with Spinal muscular atrophy type 1 (SMA from a pathenogenetic embryo. By characterizing the methylation status of three different imprinted loci (MEST, SNRPN and H19, monitoring the expression of two parentally imprinted genes (SNRPN and H19 and carrying out genome-wide SNP analysis, we provide evidence that this cell line was established from the activation of a mutant oocyte by diploidization of the entire genome. Therefore, our SMA parthenogenetic HESC (pHESC line provides a proof-of-principle for the establishment of diseased HESC lines without the need for gene manipulation. As mutant oocytes are easily obtained and readily available during preimplantation genetic diagnosis (PGD cycles, this approach should provide a powerful tool for disease modelling and is especially advantageous since it can be used to induce large or complex mutations in HESCs, including gross DNA alterations and chromosomal rearrangements, which are otherwise hard to achieve.

  5. The gene for replication factor C subunit 2 (RFC2) is within the 7q11.23 Williams syndrome deletion

    Energy Technology Data Exchange (ETDEWEB)

    Peoples, R.; Perez-Jurado, L.; Francke, U.; Yu-Ker Wang [Stanford Univ. Medical Center, CA (United States); Kaplan, P. [Children`s Hospital of Philadelphia, PA (United States)

    1996-06-01

    Williams syndrome (WS) is a developmental disorder with multiple system manifestations, including supraval var aortic stenosis (SVAS), peripheral pulmonic stenosis, connective tissue abnormalities, short stature, characteristic personality profile and cognitive deficits, and variable hypercalcemia in infancy. It is caused by heterozygosity for a chromosomal deletion of part of band 7q11.23 including the elastin locus (ELN). Since disruption of the ELN gene causes autosomal dominant SVAS, it is assumed that ELN haploinsufficiency is responsible for the cardiovascular features of WS. The deletion that extends from the ELN locus in both directions is {ge}200 kb in size, although estimates of {ge}2 Mb are suggested by high-resolution chromosome banding and physical mapping studies. We have searched for additional dosage-sensitive genes within the deletion that may be responsible for the noncardiovascular features. We report here that the gene for replication factor C subunit 2 (RFC2) maps within the WS deletion region and was found to be deleted in all of 18 WS patients studied. The protein product of RFC2 is part of a multimeric complex involved in DNA elongation during replication. 14 refs., 3 figs.

  6. Deletion of the Glucose-6-Phosphate Dehydrogenase Gene KlZWF1 Affects both Fermentative and Respiratory Metabolism in Kluyveromyces lactis▿

    Science.gov (United States)

    Saliola, Michele; Scappucci, Gina; De Maria, Ilaria; Lodi, Tiziana; Mancini, Patrizia; Falcone, Claudio

    2007-01-01

    In Kluyveromyces lactis, the pentose phosphate pathway is an alternative route for the dissimilation of glucose. The first enzyme of the pathway is the glucose-6-phosphate dehydrogenase (G6PDH), encoded by KlZWF1. We isolated this gene and examined its role. Like ZWF1 of Saccharomyces cerevisiae, KlZWF1 was constitutively expressed, and its deletion led to increased sensitivity to hydrogen peroxide on glucose, but unlike the case for S. cerevisiae, the Klzwf1Δ strain had a reduced biomass yield on fermentative carbon sources as well as on lactate and glycerol. In addition, the reduced yield on glucose was associated with low ethanol production and decreased oxygen consumption, indicating that this gene is required for both fermentation and respiration. On ethanol, however, the mutant showed an increased biomass yield. Moreover, on this substrate, wild-type cells showed an additional band of activity that might correspond to a dimeric form of G6PDH. The partial dimerization of the G6PDH tetramer on ethanol suggested the production of an NADPH excess that was negative for biomass yield. PMID:17085636

  7. Genes commonly deleted in childhood B-cell precursor acute lymphoblastic leukemia: association with cytogenetics and clinical features

    Science.gov (United States)

    Schwab, Claire J.; Chilton, Lucy; Morrison, Heather; Jones, Lisa; Al-Shehhi, Halima; Erhorn, Amy; Russell, Lisa J.; Moorman, Anthony V.; Harrison, Christine J.

    2013-01-01

    In childhood B-cell precursor acute lymphoblastic leukemia, cytogenetics is important in diagnosis and as an indicator of response to therapy, thus playing a key role in risk stratification of patients for treatment. Little is known of the relationship between different cytogenetic subtypes in B-cell precursor acute lymphoblastic leukemia and the recently reported copy number abnormalities affecting significant leukemia associated genes. In a consecutive series of 1427 childhood B-cell precursor acute lymphoblastic leukemia patients, we have determined the incidence and type of copy number abnormalities using multiplex ligation-dependent probe amplification. We have shown strong links between certain deletions and cytogenetic subtypes, including the novel association between RB1 deletions and intrachromosomal amplification of chromosome 21. In this study, we characterized the different copy number abnormalities and show heterogeneity of PAX5 and IKZF1 deletions and the recurrent nature of RB1 deletions. Whole gene losses are often indicative of larger deletions, visible by conventional cytogenetics. An increased number of copy number abnormalities is associated with NCI high risk, specifically deletions of IKZF1 and CDKN2A/B, which occur more frequently among these patients. IKZF1 deletions and rearrangements of CRLF2 among patients with undefined karyotypes may point to the poor risk BCR-ABL1-like group. In conclusion, this study has demonstrated in a large representative cohort of children with B-cell precursor acute lymphoblastic leukemia that the pattern of copy number abnormalities is highly variable according to the primary genetic abnormality. PMID:23508010

  8. [Construction of Corynebacterium crenatum AS 1.542 δ argR and analysis of transcriptional levels of the related genes of arginine biosynthetic pathway].

    Science.gov (United States)

    Chen, Xuelan; Tang, Li; Jiao, Haitao; Xu, Feng; Xiong, Yonghua

    2013-01-04

    ArgR, coded by the argR gene from Corynebacterium crenatum AS 1.542, acts as a negative regulator in arginine biosynthetic pathway. However, the effect of argR on transcriptional levels of the related biosynthetic genes has not been reported. Here, we constructed a deletion mutant of argR gene: C. crenatum AS 1.542 Delta argR using marker-less knockout technology, and compared the changes of transcriptional levels of the arginine biosynthetic genes between the mutant strain and the wild-type strain. We used marker-less knockout technology to construct C. crenatum AS 1.542 Delta argR and analyzed the changes of the relate genes at the transcriptional level using real-time fluorescence quantitative PCR. C. crenatum AS 1.542 Delta argR was successfully obtained and the transcriptional level of arginine biosynthetic genes in this mutant increased significantly with an average of about 162.1 folds. The arginine biosynthetic genes in C. crenatum are clearly controlled by the negative regulator ArgR. However, the deletion of this regulator does not result in a clear change in arginine production in the bacteria.

  9. Whole-Genome Microarray and Gene Deletion Studies Reveal Regulation of the Polyhydroxyalkanoate Production Cycle by the Stringent Response in Ralstonia eutropha H16

    Energy Technology Data Exchange (ETDEWEB)

    Brigham, CJ; Speth, DR; Rha, C; Sinskey, AJ

    2012-10-22

    Poly(3-hydroxybutyrate) (PHB) production and mobilization in Ralstonia eutropha are well studied, but in only a few instances has PHB production been explored in relation to other cellular processes. We examined the global gene expression of wild-type R. eutropha throughout the PHB cycle: growth on fructose, PHB production using fructose following ammonium depletion, and PHB utilization in the absence of exogenous carbon after ammonium was resupplied. Our results confirm or lend support to previously reported results regarding the expression of PHB-related genes and enzymes. Additionally, genes for many different cellular processes, such as DNA replication, cell division, and translation, are selectively repressed during PHB production. In contrast, the expression levels of genes under the control of the alternative sigma factor sigma(54) increase sharply during PHB production and are repressed again during PHB utilization. Global gene regulation during PHB production is strongly reminiscent of the gene expression pattern observed during the stringent response in other species. Furthermore, a ppGpp synthase deletion mutant did not show an accumulation of PHB, and the chemical induction of the stringent response with DL-norvaline caused an increased accumulation of PHB in the presence of ammonium. These results indicate that the stringent response is required for PHB accumulation in R. eutropha, helping to elucidate a thus-far-unknown physiological basis for this process.

  10. Homozygous deletion of six genes including corneodesmosin on chromosome 6p21.3 is associated with generalized peeling skin disease.

    Science.gov (United States)

    Teye, Kwesi; Hamada, Takahiro; Krol, Rafal P; Numata, Sanae; Ishii, Norito; Matsuda, Mitsuhiro; Ohata, Chika; Furumura, Minao; Hashimoto, Takashi

    2014-07-01

    Peeling skin syndrome (PSS) is a rare autosomal recessive form of ichthyosis showing skin exfoliation. PSS is divided into acral and generalized PSS, and the latter is further classified into non-inflammatory type (PSS type A) and inflammatory type (PSS type B). PSS type B is now called peeling skin disease (PSD). Different loss-of-function mutations in the corneodesmosin (CDSN) gene have been reported to cause PSD. The aim of this study was to determine genetic basis of disease in a 14-year-old Japanese patient with PSD. Immunohistochemical study showed lack of corneodesmosin (CDSN) in the skin, and standard PCR for genomic DNA failed to amplify CDSN product, suggesting CDSN defect. Multiplex ligation-dependent probe amplification and genomic quantitative real-time PCR analyses detected large homozygous deletion of 59,184bp extending from 40.6kb upstream to 13.2kb downstream of CDSN, which included 6 genes (TCF19, CCHCR1, PSORS1C2, PSORS1C1, CDSN and C6orf15). The continuous gene lost did not result in additional clinical features. Inverted repeats with 85% similarity flanking the deletion breakpoint were considered to mediate the deletion by non-homologous end joining or fork stalling and template switching/microhomology-mediated break-induced replication. Parents were clinically unaffected and were heterozygote carriers of the same deletion, which was absent in 284 ethnically matched control alleles. We also developed simple PCR method, which is useful for detection of this deletion. Although 5 other genes were also deleted, homozygous deletion of CDSN was considered to be responsible for this PSD. Copyright © 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  11. Histidine-rich protein 2 (pfhrp2) and pfhrp3 gene deletions in Plasmodium falciparum isolates from select sites in Brazil and Bolivia.

    Science.gov (United States)

    Rachid Viana, Giselle Maria; Akinyi Okoth, Sheila; Silva-Flannery, Luciana; Lima Barbosa, Danielle Regina; Macedo de Oliveira, Alexandre; Goldman, Ira F; Morton, Lindsay C; Huber, Curtis; Anez, Arletta; Dantas Machado, Ricardo Luiz; Aranha Camargo, Luís Marcelo; Costa Negreiros do Valle, Suiane; Marins Póvoa, Marinete; Udhayakumar, Venkatachalam; Barnwell, John W

    2017-01-01

    More than 80% of available malaria rapid diagnostic tests (RDTs) are based on the detection of histidine-rich protein-2 (PfHRP2) for diagnosis of Plasmodium falciparum malaria. Recent studies have shown the genes that code for this protein and its paralog, histidine-rich protein-3 (PfHRP3), are absent in parasites from the Peruvian Amazon Basin. Lack of PfHRP2 protein through deletion of the pfhrp2 gene leads to false-negative RDT results for P. falciparum. We have evaluated the extent of pfhrp2 and pfhrp3 gene deletions in a convenience sample of 198 isolates from six sites in three states across the Brazilian Amazon Basin (Acre, Rondonia and Para) and 25 isolates from two sites in Bolivia collected at different times between 2010 and 2012. Pfhrp2 and pfhrp3 gene and their flanking genes on chromosomes 7 and 13, respectively, were amplified from 198 blood specimens collected in Brazil. In Brazil, the isolates collected in Acre state, located in the western part of the Brazilian Amazon, had the highest percentage of deletions for pfhrp2 25 (31.2%) of 79, while among those collected in Rondonia, the prevalence of pfhrp2 gene deletion was only 3.3% (2 out of 60 patients). In isolates from Para state, all parasites were pfhrp2-positive. In contrast, we detected high proportions of isolates from all 3 states that were pfhrp3-negative ranging from 18.3% (11 out of 60 samples) to 50.9% (30 out of 59 samples). In Bolivia, only one of 25 samples (4%) tested had deleted pfhrp2 gene, while 68% (17 out of 25 samples) were pfhrp3-negative. Among the isolates tested, P. falciparum pfhrp2 gene deletions were present mainly in those from Acre State in the Brazilian Amazon. These results indicate it is important to reconsider the use of PfHRP2-based RDTs in the western region of the Brazilian Amazon and to implement appropriate surveillance systems to monitor pfhrp2 gene deletions in this and other parts of the Amazon region.

  12. MicroRNA Dysregulation, Gene Networks, and Risk for Schizophrenia in 22q11.2 Deletion Syndrome

    Science.gov (United States)

    Merico, Daniele; Costain, Gregory; Butcher, Nancy J.; Warnica, William; Ogura, Lucas; Alfred, Simon E.; Brzustowicz, Linda M.; Bassett, Anne S.

    2014-01-01

    The role of microRNAs (miRNAs) in the etiology of schizophrenia is increasingly recognized. Microdeletions at chromosome 22q11.2 are recurrent structural variants that impart a high risk for schizophrenia and are found in up to 1% of all patients with schizophrenia. The 22q11.2 deletion region overlaps gene DGCR8, encoding a subunit of the miRNA microprocessor complex. We identified miRNAs overlapped by the 22q11.2 microdeletion and for the first time investigated their predicted target genes, and those implicated by DGCR8, to identify targets that may be involved in the risk for schizophrenia. The 22q11.2 region encompasses seven validated or putative miRNA genes. Employing two standard prediction tools, we generated sets of predicted target genes. Functional enrichment profiles of the 22q11.2 region miRNA target genes suggested a role in neuronal processes and broader developmental pathways. We then constructed a protein interaction network of schizophrenia candidate genes and interaction partners relevant to brain function, independent of the 22q11.2 region miRNA mechanisms. We found that the predicted gene targets of the 22q11.2 deletion miRNAs, and targets of the genome-wide miRNAs predicted to be dysregulated by DGCR8 hemizygosity, were significantly represented in this schizophrenia network. The findings provide new insights into the pathway from 22q11.2 deletion to expression of schizophrenia, and suggest that hemizygosity of the 22q11.2 region may have downstream effects implicating genes elsewhere in the genome that are relevant to the general schizophrenia population. These data also provide further support for the notion that robust genetic findings in schizophrenia may converge on a reasonable number of final pathways. PMID:25484875

  13. A novel whole exon deletion in WWOX gene causes early epilepsy, intellectual disability and optic atrophy.

    Science.gov (United States)

    Ben-Salem, Salma; Al-Shamsi, Aisha M; John, Anne; Ali, Bassam R; Al-Gazali, Lihadh

    2015-05-01

    Recent studies have implicated the WW domain-containing oxidoreductase encoding gene (WWOX) in a severe form of autosomal recessive neurological disorder. This condition showed an overlapping spectrum of clinical features including spinocerebellar ataxia associated with generalized seizures and delayed psychomotor development to growth retardation, spasticity, and microcephaly. We evaluated a child from a consanguineous Emirati family that presented at birth with growth retardation, microcephaly, epileptic seizures, and later developed spasticity and delayed psychomotor development. Screening for deletions and duplications using whole-chromosomal microarray analysis identified a novel homozygous microdeletion encompassing exon 5 of the WWOX gene. Analysis of parental DNA indicated that this deletion was inherited from both parents and lies within a large region of homozygosity. Sanger sequencing of the cDNA showed that the deletion resulted in exon 5 skipping leading to a frame-shift and creating a premature stop codon at amino acid position 212. Quantification of mRNA revealed striking low level of WWOX expression in the child and moderate level of expression in the mother compared to a healthy control. To the best of our knowledge, this is the first homozygous germline structural variation in WWOX gene resulting in truncated transcripts that were presumably subject to NMD pathway. Our findings extend the clinical and genetic spectrum of WWOX mutations and support a crucial role of this gene in neurological development.

  14. Functional Analysis of Developmentally Regulated Genes chs7 and sec22 in the Ascomycete Sordaria macrospora.

    Science.gov (United States)

    Traeger, Stefanie; Nowrousian, Minou

    2015-04-14

    During sexual development, filamentous ascomycetes form complex, three-dimensional fruiting bodies for the generation and dispersal of spores. In previous studies, we identified genes with evolutionary conserved expression patterns during fruiting body formation in several fungal species. Here, we present the functional analysis of two developmentally up-regulated genes, chs7 and sec22, in the ascomycete Sordaria macrospora. The genes encode a class VII (division III) chitin synthase and a soluble N-ethylmaleimide-sensitive-factor attachment protein receptor (SNARE) protein, respectively. Deletion mutants of chs7 had normal vegetative growth and were fully fertile but showed sensitivity toward cell wall stress. Deletion of sec22 resulted in a reduced number of ascospores and in defects in ascospore pigmentation and germination, whereas vegetative growth was normal in the mutant. A SEC22-EGFP fusion construct under control of the native sec22 promoter and terminator regions was expressed during different stages of sexual development. Expression of several development-related genes was deregulated in the sec22 mutant, including three genes involved in melanin biosynthesis. Our data indicate that chs7 is dispensable for fruiting body formation in S. macrospora, whereas sec22 is required for ascospore maturation and germination and thus involved in late stages of sexual development. Copyright © 2015 Traeger and Nowrousian.

  15. Deletion of creB in Aspergillus oryzae increases secreted hydrolytic enzyme activity.

    Science.gov (United States)

    Hunter, A J; Morris, T A; Jin, B; Saint, C P; Kelly, J M

    2013-09-01

    Aspergillus oryzae has been used in the food and beverage industry for centuries, and industrial strains have been produced by multiple rounds of selection. Targeted gene deletion technology is particularly useful for strain improvement in such strains, particularly when they do not have a well-characterized meiotic cycle. Phenotypes of an Aspergillus nidulans strain null for the CreB deubiquitinating enzyme include effects on growth and repression, including increased activity levels of various enzymes. We show that Aspergillus oryzae contains a functional homologue of the CreB deubiquitinating enzyme and that a null strain shows increased activity levels of industrially important secreted enzymes, including cellulases, xylanases, amylases, and proteases, as well as alleviated inhibition of spore germination on glucose medium. Reverse transcription-quantitative PCR (RT-qPCR) analysis showed that the increased levels of enzyme activity in both Aspergillus nidulans and Aspergillus oryzae are mirrored at the transcript level, indicating transcriptional regulation. We report that Aspergillus oryzae DAR3699, originally isolated from soy fermentation, has a similar phenotype to that of a creB deletion mutant of the RIB40 strain, and it contains a mutation in the creB gene. Collectively, the results for Aspergillus oryzae, Aspergillus nidulans, Trichoderma reesei, and Penicillium decumbens show that deletion of creB may be broadly useful in diverse fungi for increasing production of a variety of enzymes.

  16. RCSD1-ABL1 Translocation Associated with IKZF1 Gene Deletion in B-Cell Acute Lymphoblastic Leukemia

    Directory of Open Access Journals (Sweden)

    Shawana Kamran

    2015-01-01

    Full Text Available The RCSD1 gene has recently been identified as a novel gene fusion partner of the ABL1 gene in cases of B-cell Acute Lymphoblastic Leukemia (B-ALL. The RCSD1 gene is located at 1q23 and ABL1 is located at 9q34, so that the RCSD1-ABL1 fusion typically arises through a rare reciprocal translocation t(1;9(q23;q34. Only a small number of RCSD1-ABL1 positive cases of B-ALL have been described in the literature, and the full spectrum of clinical, morphological, immunophenotypic, and molecular features associated with this genetic abnormality has not been defined. We describe extensive genetic characterization of a case of B-ALL with RCSD1-ABL1 fusion, by using conventional cytogenetic analysis, Fluorescence In Situ Hybridization (FISH studies, and Chromosomal Microarray Analysis (CMA. The use of CMA resulted in detection of an approximately 70 kb deletion at 7p12.2, which caused a disruption of the IKZF1 gene. Deletions and mutations of IKZF1 are recurring abnormalities in B-ALL and are associated with a poor prognosis. Our findings highlight the association of the deletion of IKZF1 gene with the t(1;9(q24;q34 and illustrate the importance of comprehensive cytogenetic and molecular evaluation for accurate prediction of prognosis in patients with B-cell ALL.

  17. Mapping of polyketide biosynthesis pathways in Aspergillus nidulans using a genome wide PKS gene deletion library

    DEFF Research Database (Denmark)

    Larsen, Thomas Ostenfeld; Rank, Christian; Klejnstrup, Marie Louise

    In order to map new links between PKS genes and their products in Aspergillus nidulans we have systematically deleted all thirty-two individual genes predicted to encode polyketide synthases in this model organism. This number greatly exceeds the number of currently known PKs calling for new appr...

  18. Unusual presentation of Kallmannn syndrome with contiguous gene deletion in three siblings of a family

    Directory of Open Access Journals (Sweden)

    Sri Venkat Madhu

    2012-01-01

    Full Text Available We report the case of 3 brothers aged 34, 24, and 22 years, unmarried, who presented to our endocrinology clinic with absence of secondary sexual characters. There was no such history in other siblings, but their maternal uncle had similar complaints. On examination, all 3 had pre-pubertal appearance, voice, and genitalia along with anosmia and bimanual synkinesia. Cryptorchidism was noticed in 2 while third person had small hypoplastic testes. It was also noted that all 3 patients had icthyosis mainly involving trunk, back, and limbs. The hormonal assays were consistent with isolated hypogonadotrophic hypogonadism. IQ testing revealed mental retardation in the 2 patients. Ultrasound showed ectopic right kidney in one patient, atrophic right kidney in the second patient while the third patient had normal kidneys. MRI brain of all the patients showed poorly visualized olfactory tract and bulb. Kallmann syndrome (KS was diagnosed based on hormonal evaluation and MRI results. Of the four types of KS: Synkinesia, renal anomaly, and X-linked pedigree pattern in our patients pointed towards X-linked type 1 KS as the possible cause. But, icthyosis and mental retardation are not usual presentation of type 1 KS. They are usually seen as a result of contiguous gene deletion of KAL1, steroid sulfatase (STS, and mental retardation (MRX gene on X chromosome. Hence, the possible gene defect in our cases is inherited defect in contiguous gene deletion. The contiguous gene deletion as the cause of KS in 3 patients of same family is very rare and worth reporting. Also, the significance of phenotype-genotypic association in Kallmann syndrome is discussed

  19. Prevalence of pfhrp2 and/or pfhrp3 Gene Deletion in Plasmodium falciparum Population in Eight Highly Endemic States in India.

    Directory of Open Access Journals (Sweden)

    Praveen Kumar Bharti

    Full Text Available Plasmodium falciparum encoded histidine rich protein (HRP2 based malaria rapid diagnostic tests (RDTs are used in India. Deletion of pfhrp2 and pfhrp3 genes contributes to false negative test results, and large numbers of such deletions have been reported from South America, highlighting the importance of surveillance to detect such deletions.This is the first prospective field study carried out at 16 sites located in eight endemic states of India to assess the performance of PfHRP2 based RDT kits used in the national malaria control programme. In this study, microscopically confirmed P. falciparum but RDT negative samples were assessed for presence of pfhrp2, pfhrp3, and their flanking genes using PCR.Among 1521 microscopically positive P. falciparum samples screened, 50 were negative by HRP2 based RDT test. Molecular testing was carried out using these 50 RDT negative samples by assuming that 1471 RDT positive samples carried pfhrp2 gene. It was found that 2.4% (36/1521 and 1.8% (27/1521 of samples were negative for pfhrp2 and pfhrp3 genes, respectively. However, the frequency of pfhrp2 deletions varied between the sites ranging from 0-25% (2.4, 95% CI; 1.6-3.3. The frequency of both pfhrp2 and pfhrp3 gene deletion varied from 0-8% (1.6, 95% CI; 1.0-2.4.This study provides evidence for low level presence of pfhrp2 and pfhrp3 deleted P. falciparum parasites in different endemic regions of India, and periodic surveillance is warranted for reliable use of PfHRP2 based RDTs.

  20. Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Tokuyasu Ken

    2008-04-01

    Full Text Available Abstract Background Lignocellulosic materials are abundant and among the most important potential sources for bioethanol production. Although the pretreatment of lignocellulose is necessary for efficient saccharification and fermentation, numerous by-products, including furan derivatives, weak acids, and phenolic compounds, are generated in the pretreatment step. Many of these components inhibit the growth and fermentation of yeast. In particular, vanillin is one of the most effective inhibitors in lignocellulose hydrolysates because it inhibits fermentation at very low concentrations. To identify the genes required for tolerance to vanillin, we screened a set of diploid yeast deletion mutants, which are powerful tools for clarifying the function of particular genes. Results Seventy-six deletion mutants were identified as vanillin-sensitive mutants. The numerous deleted genes in the vanillin-sensitive mutants were classified under the functional categories for 'chromatin remodeling' and 'vesicle transport', suggesting that these functions are important for vanillin tolerance. The cross-sensitivity of the vanillin-sensitive mutants to furan derivatives, weak acids, and phenolic compounds was also examined. Genes for ergosterol biosynthesis were required for tolerance to all inhibitory compounds tested, suggesting that ergosterol is a key component of tolerance to various inhibitors. Conclusion Our analysis predicts that vanillin tolerance in Saccharomyces cerevisiae is affected by various complicated processes that take place on both the molecular and the cellular level. In addition, the ergosterol biosynthetic process is important for achieving a tolerance to various inhibitors. Our findings provide a biotechnological basis for the molecular engineering as well as for screening of more robust yeast strains that may potentially be useful in bioethanol fermentation.

  1. Utility of in vivo transcription profiling for identifying Pseudomonas aeruginosa genes needed for gastrointestinal colonization and dissemination

    DEFF Research Database (Denmark)

    Koh, Andrew Y; Mikkelsen, Per J; Smith, Roger S

    2010-01-01

    these mutants and WT P. aeruginosa PA14. To evaluate T3SS factors, we tested GI colonization and neutropenia-induced dissemination of both deletional (PAO1 and PAK) and insertional (PA14) mutants in four genes in the P. aeruginosa T3SS, exoS or exoU, exoT, and popB. There were no significant differences in GI......, increased transcription of genes during in vivo murine GI colonization is not predictive of an essential role for the gene product in either colonization or overall survival following induction of neutropenia....

  2. Novel contiguous gene deletion in peruvian girl with Trichothiodystrophy type 4 and glutaric aciduria type 3.

    Science.gov (United States)

    La Serna-Infantes, Jorge; Pastor, Miguel Chávez; Trubnykova, Milana; Velásquez, Félix Chavesta; Sotomayor, Flor Vásquez; Barriga, Hugo Abarca

    2018-02-05

    Trichothiodystrophy type 4 is a rare autosomal recessive and ectodermal disorder, characterized by dry, brittle, sparse and sulfur-deficient hair and other features like intellectual disability, ichthyotic skin and short stature, caused by a homozygous mutation in MPLKIP gene. Glutaric aciduria type 3 is caused by a homozygous mutation in SUGCT gene with no distinctive phenotype. Both genes are localized on chromosome 7 (7p14). We report an 8-year-old female with short stature, microcephaly, development delay, intellectual disability and hair characterized for dark, short, coarse, sparse and brittle associated to classical trichorrhexis microscopy pattern. Chromosome microarray analysis showed a 125 kb homozygous pathogenic deletion, which includes genes MPLKIP and SUGCT, not described before. This is the first case described in Peru of a novel contiguous gene deletion of Trichothiodystrophy type 4 and Glutaric aciduria type 3 performed by chromosome microarray analysis, highlighting the contribution and importance of molecular technologies on diagnosis of rare genetic conditions. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  3. Quantitative PCR analysis reveals a high incidence of large intragenic deletions in the FANCA gene in Spanish Fanconi anemia patients.

    Science.gov (United States)

    Callén, E; Tischkowitz, M D; Creus, A; Marcos, R; Bueren, J A; Casado, J A; Mathew, C G; Surrallés, J

    2004-01-01

    Fanconi anaemia is an autosomal recessive disease characterized by chromosome fragility, multiple congenital abnormalities, progressive bone marrow failure and a high predisposition to develop malignancies. Most of the Fanconi anaemia patients belong to complementation group FA-A due to mutations in the FANCA gene. This gene contains 43 exons along a 4.3-kb coding sequence with a very heterogeneous mutational spectrum that makes the mutation screening of FANCA a difficult task. In addition, as the FANCA gene is rich in Alu sequences, it was reported that Alu-mediated recombination led to large intragenic deletions that cannot be detected in heterozygous state by conventional PCR, SSCP analysis, or DNA sequencing. To overcome this problem, a method based on quantitative fluorescent multiplex PCR was proposed to detect intragenic deletions in FANCA involving the most frequently deleted exons (exons 5, 11, 17, 21 and 31). Here we apply the proposed method to detect intragenic deletions in 25 Spanish FA-A patients previously assigned to complementation group FA-A by FANCA cDNA retroviral transduction. A total of eight heterozygous deletions involving from one to more than 26 exons were detected. Thus, one third of the patients carried a large intragenic deletion that would have not been detected by conventional methods. These results are in agreement with previously published data and indicate that large intragenic deletions are one of the most frequent mutations leading to Fanconi anaemia. Consequently, this technology should be applied in future studies on FANCA to improve the mutation detection rate. Copyright 2003 S. Karger AG, Basel

  4. Backup Expression of the PhaP2 Phasin Compensates for phaP1 Deletion in Herbaspirillum seropedicae, Maintaining Fitness and PHB Accumulation.

    Science.gov (United States)

    Alves, Luis P S; Teixeira, Cícero S; Tirapelle, Evandro F; Donatti, Lucélia; Tadra-Sfeir, Michelle Z; Steffens, Maria B R; de Souza, Emanuel M; de Oliveira Pedrosa, Fabio; Chubatsu, Leda S; Müller-Santos, Marcelo

    2016-01-01

    Phasins are important proteins controlling poly-3-hydroxybutyrate (PHB) granules formation, their number into the cell and stability. The genome sequencing of the endophytic and diazotrophic bacterium Herbaspirillum seropedicae SmR1 revealed two homologous phasin genes. To verify the role of the phasins on PHB accumulation in the parental strain H. seropedicae SmR1, isogenic strains defective in the expression of phaP1, phaP2 or both genes were obtained by gene deletion and characterized in this work. Despite of the high sequence similarity between PhaP1 and PhaP2, PhaP1 is the major phasin in H. seropedicae, since its deletion reduced PHB accumulation by ≈50% in comparison to the parental and ΔphaP2. Upon deletion of phaP1, the expression of phaP2 was sixfold enhanced in the ΔphaP1 strain. The responsive backup expression of phaP2 partially rescued the ΔphaP1 mutant, maintaining about 50% of the parental PHB level. The double mutant ΔphaP1.2 did not accumulate PHB in any growth stage and showed a severe reduction of growth when glucose was the carbon source, a clear demonstration of negative impact in the fitness. The co-occurrence of phaP1 and phaP2 homologous in bacteria relatives of H. seropedicae, including other endophytes, indicates that the mechanism of phasin compensation by phaP2 expression may be operating in other organisms, showing that PHB metabolism is a key factor to adaptation and efficiency of endophytic bacteria.

  5. Ku80-deleted cells are defective at base excision repair

    International Nuclear Information System (INIS)

    Li, Han; Marple, Teresa; Hasty, Paul

    2013-01-01

    Graphical abstract: - Highlights: • Ku80-deleted cells are hypersensitive to ROS and alkylating agents. • Cells deleted for Ku80, but not Ku70 or Lig4, have reduced BER capacity. • OGG1 rescues hypersensitivity to H 2 O 2 and paraquat in Ku80-mutant cells. • Cells deleted for Ku80, but not Lig4, are defective at repairing AP sites. • Cells deleted for Ku80, but not Lig4 or Brca2 exon 27, exhibit increased PAR. - Abstract: Ku80 forms a heterodimer with Ku70, called Ku, that repairs DNA double-strand breaks (DSBs) via the nonhomologous end joining (NHEJ) pathway. As a consequence of deleting NHEJ, Ku80-mutant cells are hypersensitive to agents that cause DNA DSBs like ionizing radiation. Here we show that Ku80 deletion also decreased resistance to ROS and alkylating agents that typically cause base lesions and single-strand breaks (SSBs). This is unusual since base excision repair (BER), not NHEJ, typically repairs these types of lesions. However, we show that deletion of another NHEJ protein, DNA ligase IV (Lig4), did not cause hypersensitivity to these agents. In addition, the ROS and alkylating agents did not induce γ-H2AX foci that are diagnostic of DSBs. Furthermore, deletion of Ku80, but not Lig4 or Ku70, reduced BER capacity. Ku80 deletion also impaired BER at the initial lesion recognition/strand scission step; thus, involvement of a DSB is unlikely. Therefore, our data suggests that Ku80 deletion impairs BER via a mechanism that does not repair DSBs

  6. Ku80-deleted cells are defective at base excision repair

    Energy Technology Data Exchange (ETDEWEB)

    Li, Han [The University of Texas Health Science Center at San Antonio, The Institute of Biotechnology, The Department of Molecular Medicine, 15355 Lambda Drive, San Antonio, TX 78245-3207 (United States); Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029 (Spain); Marple, Teresa [The University of Texas Health Science Center at San Antonio, The Institute of Biotechnology, The Department of Molecular Medicine, 15355 Lambda Drive, San Antonio, TX 78245-3207 (United States); Hasty, Paul, E-mail: hastye@uthscsa.edu [The University of Texas Health Science Center at San Antonio, The Institute of Biotechnology, The Department of Molecular Medicine, 15355 Lambda Drive, San Antonio, TX 78245-3207 (United States); Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029 (Spain)

    2013-05-15

    Graphical abstract: - Highlights: • Ku80-deleted cells are hypersensitive to ROS and alkylating agents. • Cells deleted for Ku80, but not Ku70 or Lig4, have reduced BER capacity. • OGG1 rescues hypersensitivity to H{sub 2}O{sub 2} and paraquat in Ku80-mutant cells. • Cells deleted for Ku80, but not Lig4, are defective at repairing AP sites. • Cells deleted for Ku80, but not Lig4 or Brca2 exon 27, exhibit increased PAR. - Abstract: Ku80 forms a heterodimer with Ku70, called Ku, that repairs DNA double-strand breaks (DSBs) via the nonhomologous end joining (NHEJ) pathway. As a consequence of deleting NHEJ, Ku80-mutant cells are hypersensitive to agents that cause DNA DSBs like ionizing radiation. Here we show that Ku80 deletion also decreased resistance to ROS and alkylating agents that typically cause base lesions and single-strand breaks (SSBs). This is unusual since base excision repair (BER), not NHEJ, typically repairs these types of lesions. However, we show that deletion of another NHEJ protein, DNA ligase IV (Lig4), did not cause hypersensitivity to these agents. In addition, the ROS and alkylating agents did not induce γ-H2AX foci that are diagnostic of DSBs. Furthermore, deletion of Ku80, but not Lig4 or Ku70, reduced BER capacity. Ku80 deletion also impaired BER at the initial lesion recognition/strand scission step; thus, involvement of a DSB is unlikely. Therefore, our data suggests that Ku80 deletion impairs BER via a mechanism that does not repair DSBs.

  7. Agrobacterium tumefaciens T-DNA Integration and Gene Targeting in Arabidopsis thaliana Non-Homologous End-Joining Mutants

    Directory of Open Access Journals (Sweden)

    Qi Jia

    2012-01-01

    Full Text Available In order to study the role of AtKu70 and AtKu80 in Agrobacterium-mediated transformation and gene targeting, plant lines with a T-DNA insertion in AtKu80 or AtKu70 genes were functionally characterized. Such plant lines lacked both subunits, indicating that heterodimer formation between AtKu70 and AtKu80 is needed for the stability of the proteins. Homozygous mutants were phenotypically indistinguishable from wild-type plants and were fertile. However, they were hypersensitive to the genotoxic agent bleomycin, resulting in more DSBs as quantified in comet assays. They had lower end-joining efficiency, suggesting that NHEJ is a critical pathway for DSB repair in plants. Both Atku mutants and a previously isolated Atmre11 mutant were impaired in Agrobacterium T-DNA integration via floral dip transformation, indicating that AtKu70, AtKu80, and AtMre11 play an important role in T-DNA integration in Arabidopsis. The frequency of gene targeting was not significantly increased in the Atku80 and Atku70 mutants, but it was increased at least 10-fold in the Atmre11 mutant compared with the wild type.

  8. Identification of a Novel Deletion in AVP-NPII Gene in a Patient with Central Diabetes Insipidus.

    Science.gov (United States)

    Deniz, Ferhat; Acar, Ceren; Saglar, Emel; Erdem, Beril; Karaduman, Tugce; Yonem, Arif; Cagiltay, Eylem; Ay, Seyit Ahmet; Mergen, Hatice

    2015-01-01

    Central Diabetes Insipidus (CDI) is caused by a deficiency of antidiuretic hormone and characterized by polyuria, polydipsia and inability to concentrate urine. Our objective was to present the results of the molecular analyses of AVP-neurophysin II (AVP-NPII) gene in a large familial neurohypophyseal (central) DI pedigree. A male patient and his family members were analyzed and the prospective clinical data were collected. The proband applied to hospital for eligibility to be a recruit in Armed Forces. The patient had severe polyuria (20 L/day), polydipsia (20.5 L/day), fatique, and deep thirstiness. CDI was confirmed with the water deprivation-desmopressin test according to an increase in urine osmolality from 162 mOsm/kg to 432 mOsm/kg after desmopressin acetate injection. To evaluate the coding regions of AVP-NPII gene, polymerase chain reactions were performed and amplified regions were submitted to direct sequence analysis. We detected a heterozygous three base pair deletion at codon 69-70 (207_209delGGC) in exon 2, which lead to a deletion of the amino acid alanine. A three-dimensional protein structure prediction was shown for the deleted AVP-NPII and compared with the wild type. The three base pair deletion may yield an abnormal AVP precursor in neurophysin moiety, but further functional analyses are needed to understand the function of the deleted protein. © 2015 by the Association of Clinical Scientists, Inc.

  9. Deletion of circadian gene Per1 alleviates acute ethanol-induced hepatotoxicity in mice

    International Nuclear Information System (INIS)

    Wang, Tao; Yang, Ping; Zhan, Yibei; Xia, Lin; Hua, Zichun; Zhang, Jianfa

    2013-01-01

    The severity of ethanol-induced liver injury is associated with oxidative stress and lipid accumulation in the liver. Core circadian clock is known to mediate antioxidative enzyme activity and lipid metabolism. However, the link between circadian clock and ethanol-induced hepatotoxicity remains unclear. Here we showed that extents of acute ethanol-induced liver injury and steatosis in mice exhibit circadian variations consistent with hepatic expression of Period (Per) genes. Mice lacking clock gene Per1 displayed less susceptible to ethanol-induced liver injury, as evidenced by lower serum transaminase activity and less severe histopathological changes. Ethanol-induced lipid peroxidation was alleviated in Per1−/− mice. However, Per1 deletion had no effect on antioxidants depletion caused by ethanol administration. Ethanol-induced triglycerides (TG) accumulation in the serum and liver was significantly decreased in Per1−/− mice compared with that in wild-type (WT) mice. Analysis of gene expression in the liver revealed peroxisome proliferators activated receptor-gamma (PPARγ) and its target genes related to TG synthesis are remarkably down-regulated in Per1−/− mice. HepG2 cells were treated with ethanol at 150 mM for 3 days. Per1 overexpression augmented lipid accumulation after treatment with ethanol in HepG2 cells, but had no effect on ethanol-induced oxidative stress. Expression of genes related to lipogenesis, including PPARγ and its target genes, was up-regulated in cells overexpressing Per1. In conclusion, these results indicated that circadian rhythms of ethanol-induced hepatotoxicity are controlled by clock gene Per1, and deletion of Per1 protected mice from ethanol-induced liver injury by decreasing hepatic lipid accumulation

  10. Localization of the endpoints of deletions in the 5' region of the Duchenne gene using a sequence isolated by chromosome jumping

    Energy Technology Data Exchange (ETDEWEB)

    Kenwrick, S J; Smith, T J; England, S; Collins, F; Davies, K E

    1988-02-25

    The authors have used chromosome jumping technology to move from within a large intron sequence in the Duchenne muscular dystrophy (DMD) gene to a region adjacent to exons of the gene. The single copy jump clone, HH1, was used to characterize deletions in patients previously shown to be deleted for DNA markers in the 5' end of the gene. 12 out of 15 such patients have breakpoints which lie between HH1 and the genomic locus J-47. Thus the vast majority of the deletions in these patients have proximal breakpoints in a similar region distal to the 5'end of the gene. HH1 was mapped with respect to the X;1 translocation in a DMD female and was shown to lie at least 80 kb from the starting point of the chromosome jump, HIP25.

  11. Partial deletion of chromosome 8 β-defensin cluster confers sperm dysfunction and infertility in male mice.

    Directory of Open Access Journals (Sweden)

    Yu S Zhou

    2013-10-01

    Full Text Available β-defensin peptides are a family of antimicrobial peptides present at mucosal surfaces, with the main site of expression under normal conditions in the male reproductive tract. Although they kill microbes in vitro and interact with immune cells, the precise role of these genes in vivo remains uncertain. We show here that homozygous deletion of a cluster of nine β-defensin genes (DefbΔ9 in the mouse results in male sterility. The sperm derived from the mutants have reduced motility and increased fragility. Epididymal sperm isolated from the cauda should require capacitation to induce the acrosome reaction but sperm from the mutants demonstrate precocious capacitation and increased spontaneous acrosome reaction compared to wild-types but have reduced ability to bind the zona pellucida of oocytes. Ultrastructural examination reveals a defect in microtubule structure of the axoneme with increased disintegration in mutant derived sperm present in the epididymis cauda region, but not in caput region or testes. Consistent with premature acrosome reaction, sperm from mutant animals have significantly increased intracellular calcium content. Thus we demonstrate in vivo that β-defensins are essential for successful sperm maturation, and their disruption leads to alteration in intracellular calcium, inappropriate spontaneous acrosome reaction and profound male infertility.

  12. Use of bioreporters and deletion mutants reveals ionic silver and ROS to be equally important in silver nanotoxicity.

    Science.gov (United States)

    Joshi, Nimisha; Ngwenya, Bryne T; Butler, Ian B; French, Chris E

    2015-04-28

    The mechanism of antibacterial action of silver nanoparticles (AgNp) was investigated by employing a combination of microbiology and geochemical approaches to contribute to the realistic assessment of nanotoxicity. Our studies showed that suspending AgNp in media with different levels of chloride relevant to environmental conditions produced low levels of ionic silver thereby suggesting that dissolution of silver ions from nanoparticulate surface could not be the sole mechanism of toxicity. An Escherichia coli based bioreporter strain responsive to silver ions together with mutant strains of E. coli lacking specific protective systems were tested against AgNp. Deletion mutants lacking silver ion efflux systems and resistance mechanisms against oxidative stress showed an increased sensitivity to AgNp. However, the bioreporter did not respond to silver nanoparticles. Our results suggest that oxidative stress is a major toxicity mechanism and that this is at least partially associated with ionic silver, but that bulk dissolution of silver into the medium is not sufficient to account for the observed effects. Chloride ions do not appear to offer significant protection, indicating that chloride in receiving waters will not necessarily protect environmental bacteria from the toxic effects of nanoparticles in effluents. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Gene replacement in Penicillium roqueforti.

    Science.gov (United States)

    Goarin, Anne; Silar, Philippe; Malagnac, Fabienne

    2015-05-01

    Most cheese-making filamentous fungi lack suitable molecular tools to improve their biotechnology potential. Penicillium roqueforti, a species of high industrial importance, would benefit from functional data yielded by molecular genetic approaches. This work provides the first example of gene replacement by homologous recombination in P. roqueforti, demonstrating that knockout experiments can be performed in this fungus. To do so, we improved the existing transformation method to integrate transgenes into P. roqueforti genome. In the meantime, we cloned the PrNiaD gene, which encodes a NADPH-dependent nitrate reductase that reduces nitrate to nitrite. Then, we performed a deletion of the PrNiaD gene from P. roqueforti strain AGO. The ΔPrNiaD mutant strain is more resistant to chlorate-containing medium than the wild-type strain, but did not grow on nitrate-containing medium. Because genomic data are now available, we believe that generating selective deletions of candidate genes will be a key step to open the way for a comprehensive exploration of gene function in P. roqueforti.

  14. Oncogenic activation of v-kit involves deletion of a putative tyrosine-substrate interaction site.

    Science.gov (United States)

    Herbst, R; Munemitsu, S; Ullrich, A

    1995-01-19

    The transforming gene of the Hardy-Zuckerman-4 strain of feline sarcoma virus, v-kit, arose by transduction of the cellular c-kit gene, which encodes the receptor tyrosine kinase (RTK) p145c-kit. To gain insight into the molecular basis of the v-kit transforming potential, we characterized the feline c-kit by cDNA cloning. Comparison of the feline v-kit and c-kit sequences revealed, in addition to deletions of the extracellular and transmembrane domains, three additional mutations in the v-kit oncogene product: deletion of tyrosine-569 and valine-570, the exchange of aspartate at position 761 to glycine, and replacement of the C-terminal 50 amino acids by five unrelated residues. Examinations of individual v-kit mutations in the context of chimeric receptors yielded inhibitory effects for some mutants on both autophosphorylation and substrate phosphorylation functions. In contrast, deletion of tyrosine-569 and valine-570 significantly enhanced transforming and mitogenic activities of p145c-kit, while the other mutations had no significant effects. Conservation in subclass III RTKs and the identification of the corresponding residue in beta PDGF-R, Y579, as a binding site for src family tyrosine kinases suggests an important role for Y568 in kit signal regulation and the definition of its oncogenic potential. Repositioning of Y571 by an inframe two codon deletion may be the crucial alteration resulting in enhancement of v-kit oncogenic activity.

  15. Elevated expression of ribosomal protein genes L37, RPP-1, and S2 in the presence of mutant p53.

    Science.gov (United States)

    Loging, W T; Reisman, D

    1999-11-01

    The wild-type p53 protein is a DNA-binding transcription factor that activates genes such as p21, MDM2, GADD45, and Bax that are required for the regulation of cell cycle progression or apoptosis in response to DNA damage. Mutant forms of p53, which are transforming oncogenes and are expressed at high levels in tumor cells, generally have a reduced binding affinity for the consensus DNA sequence. Interestingly, some p53 mutants that are no longer effective at binding to the consensus DNA sequence and transactivating promoters containing this target site have acquired the ability to transform cells in culture, in part through their ability to transactivate promoters of a number of genes that are not targets of the wild-type protein. Certain p53 mutants are therefore considered to be gain-of-function mutants and appear to be promoting proliferation or transforming cells through their ability to alter the expression of novel sets of genes. Our goal is to identify genes that have altered expression in the presence of a specific mutant p53 (Arg to Trp mutation at codon 248) protein. Through examining differential gene expression in cells devoid of p53 expression and in cells that express high levels of mutant p53 protein, we have identified three ribosomal protein genes that have elevated expression in response to mutant p53. Consistent with these findings, the overexpression of a number of ribosomal protein genes in human tumors and evidence for their contribution to oncogenic transformation have been reported previously, although the mechanism leading to this overexpression has remained elusive. We show results that indicate that expression of these specific ribosomal protein genes is increased in the presence of the R248W p53 mutant, which provides a mechanism for their overexpression in human tumors.

  16. Conditions for gene disruption by homologous recombination of exogenous DNA into the Sulfolobus solfataricus genome.

    Science.gov (United States)

    Albers, Sonja-Verena; Driessen, Arnold J M

    2008-12-01

    The construction of directed gene deletion mutants is an essential tool in molecular biology that allows functional studies on the role of genes in their natural environment. For hyperthermophilic archaea, it has been difficult to obtain a reliable system to construct such mutants. However, during the past years, systems have been developed for Thermococcus kodakarensis and two Sulfolobus species, S. acidocaldarius and derivatives of S. solfataricus 98/2. Here we describe an optimization of the method for integration of exogenous DNA into S. solfataricus PBL 2025, an S. solfataricus 98/2 derivative, based on lactose auxotrophy that now allows for routine gene inactivation.

  17. The multiple roles of hypothetical gene BPSS1356 in Burkholderia pseudomallei.

    Directory of Open Access Journals (Sweden)

    Hokchai Yam

    Full Text Available Burkholderia pseudomallei is an opportunistic pathogen and the causative agent of melioidosis. It is able to adapt to harsh environments and can live intracellularly in its infected hosts. In this study, identification of transcriptional factors that associate with the β' subunit (RpoC of RNA polymerase was performed. The N-terminal region of this subunit is known to trigger promoter melting when associated with a sigma factor. A pull-down assay using histidine-tagged B. pseudomallei RpoC N-terminal region as bait showed that a hypothetical protein BPSS1356 was one of the proteins bound. This hypothetical protein is conserved in all B. pseudomallei strains and present only in the Burkholderia genus. A BPSS1356 deletion mutant was generated to investigate its biological function. The mutant strain exhibited reduced biofilm formation and a lower cell density during the stationary phase of growth in LB medium. Electron microscopic analysis revealed that the ΔBPSS1356 mutant cells had a shrunken cytoplasm indicative of cell plasmolysis and a rougher surface when compared to the wild type. An RNA microarray result showed that a total of 63 genes were transcriptionally affected by the BPSS1356 deletion with fold change values of higher than 4. The expression of a group of genes encoding membrane located transporters was concurrently down-regulated in ΔBPSS1356 mutant. Amongst the affected genes, the putative ion transportation genes were the most severely suppressed. Deprivation of BPSS1356 also down-regulated the transcriptions of genes for the arginine deiminase system, glycerol metabolism, type III secretion system cluster 2, cytochrome bd oxidase and arsenic resistance. It is therefore obvious that BPSS1356 plays a multiple regulatory roles on many genes.

  18. Study on the generation technology of Li brocade pattern mutant genes based on the AI and Java technology

    Science.gov (United States)

    Zhou, Yuping; Zhang, Qi

    2018-04-01

    In the information environment, digital and information processing to Li brocade patterns reveals an important means of Li ethnic style and inheriting the national culture. Adobe Illustrator CS3 and Java language were used in the paper to make "variation" processing to Li brocade patterns, and generate "Li brocade pattern mutant genes". The generation of pattern mutant genes includes color mutation, shape mutation, adding and missing transform, and twisted transform, etc. Research shows that Li brocade pattern mutant genes can be generated by using the Adobe Illustrator CS3 and the image processing tools of Java language edit, etc.

  19. 9q22 Deletion - First Familial Case

    Directory of Open Access Journals (Sweden)

    Yamamoto Toshiyuki

    2011-06-01

    Full Text Available Abstract Background Only 29 cases of constitutional 9q22 deletions have been published and all have been sporadic. Most associate with Gorlin syndrome or nevoid basal cell carcinoma syndrome (NBCCS, MIM #109400 due to haploinsufficiency of the PTCH1 gene (MIM *601309. Methods and Results We report two mentally retarded female siblings and their cognitively normal father, all carrying a similar 5.3 Mb microdeletion at 9q22.2q22.32, detected by array CGH (244 K. The deletion does not involve the PTCH1 gene, but instead 30 other gene,s including the ROR2 gene (MIM *602337 which causing both brachydactyly type 1 (MIM #113000 and Robinow syndrome (MIM #268310, and the immunologically active SYK gene (MIM *600085. The deletion in the father was de novo and FISH analysis of blood lymphocytes did not suggest mosaicism. All three patients share similar mild dysmorphic features with downslanting palpebral fissures, narrow, high bridged nose with small nares, long, deeply grooved philtrum, ears with broad helix and uplifted lobuli, and small toenails. All have significant dysarthria and suffer from continuous middle ear and upper respiratory infections. The father also has a funnel chest and unilateral hypoplastic kidney but the daughters have no malformations. Conclusions This is the first report of a familial constitutional 9q22 deletion and the first deletion studied by array-CGH which does not involve the PTCH1 gene. The phenotype and penetrance are variable and the deletion found in the cognitively normal normal father poses a challenge in genetic counseling.

  20. Genetic analysis of tachyzoite to bradyzoite differentiation mutants in Toxoplasma gondii reveals a hierarchy of gene induction.

    Science.gov (United States)

    Singh, Upinder; Brewer, Jeremy L; Boothroyd, John C

    2002-05-01

    Developmental switching in Toxoplasma gondii, from the virulent tachyzoite to the relatively quiescent bradyzoite stage, is responsible for disease propagation and reactivation. We have generated tachyzoite to bradyzoite differentiation (Tbd-) mutants in T. gondii and used these in combination with a cDNA microarray to identify developmental pathways in bradyzoite formation. Four independently generated Tbd- mutants were analysed and had defects in bradyzoite development in response to multiple bradyzoite-inducing conditions, a stable phenotype after in vivo passages and a markedly reduced brain cyst burden in a murine model of chronic infection. Transcriptional profiles of mutant and wild-type parasites, growing under bradyzoite conditions, revealed a hierarchy of developmentally regulated genes, including many bradyzoite-induced genes whose transcripts were reduced in all mutants. A set of non-developmentally regulated genes whose transcripts were less abundant in Tbd- mutants were also identified. These may represent genes that mediate downstream effects and/or whose expression is dependent on the same transcription factors as the bradyzoite-induced set. Using these data, we have generated a model of transcription regulation during bradyzoite development in T. gondii. Our approach shows the utility of this system as a model to study developmental biology in single-celled eukaryotes including protozoa and fungi.

  1. Intraspecific bovine herpesvirus 1 recombinants carrying glycoprotein E deletion as a vaccine marker are virulent in cattle.

    Science.gov (United States)

    Muylkens, Benoît; Meurens, François; Schynts, Frédéric; Farnir, Frédéric; Pourchet, Aldo; Bardiau, Marjorie; Gogev, Sacha; Thiry, Julien; Cuisenaire, Adeline; Vanderplasschen, Alain; Thiry, Etienne

    2006-08-01

    Vaccines used in control programmes of Bovine herpesvirus 1 (BoHV-1) utilize highly attenuated BoHV-1 strains marked by a deletion of the glycoprotein E (gE) gene. Since BoHV-1 recombinants are obtained at high frequency in experimentally coinfected cattle, the consequences of recombination on the virulence of gE-negative BoHV-1 were investigated. Thus, gE-negative BoHV-1 recombinants were generated in vitro from several virulent BoHV-1 and one mutant BoHV-1 deleted in the gC and gE genes. Four gE-negative recombinants were tested in the natural host. All the recombinants were more virulent than the gE-negative BoHV-1 vaccine and the gC- and gE-negative parental BoHV-1. The gE-negative recombinant isolated from a BoHV-1 field strain induced the highest severe clinical score. Latency and reactivation studies showed that three of the recombinants were reexcreted. Recombination can therefore restore virulence of gE-negative BoHV-1 by introducing the gE deletion into a different virulence background.

  2. Salmonella enterica serovar Typhimurium lacking hfq gene confers protective immunity against murine typhoid.

    Directory of Open Access Journals (Sweden)

    Uday Shankar Allam

    Full Text Available Salmonella enterica is an important enteric pathogen and its various serovars are involved in causing both systemic and intestinal diseases in humans and domestic animals. The emergence of multidrug-resistant strains of Salmonella leading to increased morbidity and mortality has further complicated its management. Live attenuated vaccines have been proven superior over killed or subunit vaccines due to their ability to induce protective immunity. Of the various strategies used for the generation of live attenuated vaccine strains, focus has gradually shifted towards manipulation of virulence regulator genes. Hfq is a RNA chaperon which mediates the binding of small RNAs to the mRNA and assists in post-transcriptional gene regulation in bacteria. In this study, we evaluated the efficacy of the Salmonella Typhimurium Δhfq strain as a candidate for live oral vaccine in murine model of typhoid fever. Salmonella hfq deletion mutant is highly attenuated in cell culture and animal model implying a significant role of Hfq in bacterial virulence. Oral immunization with the Salmonella hfq deletion mutant efficiently protects mice against subsequent oral challenge with virulent strain of Salmonella Typhimurium. Moreover, protection was induced upon both multiple as well as single dose of immunizations. The vaccine strain appears to be safe for use in pregnant mice and the protection is mediated by the increase in the number of CD4(+ T lymphocytes upon vaccination. The levels of serum IgG and secretory-IgA in intestinal washes specific to lipopolysaccharide and outer membrane protein were significantly increased upon vaccination. Furthermore, hfq deletion mutant showed enhanced antigen presentation by dendritic cells compared to the wild type strain. Taken together, the studies in murine immunization model suggest that the Salmonella hfq deletion mutant can be a novel live oral vaccine candidate.

  3. Identification of Atg2 and ArfGAP1 as Candidate Genetic Modifiers of the Eye Pigmentation Phenotype of Adaptor Protein-3 (AP-3) Mutants in Drosophila melanogaster.

    Science.gov (United States)

    Rodriguez-Fernandez, Imilce A; Dell'Angelica, Esteban C

    2015-01-01

    The Adaptor Protein (AP)-3 complex is an evolutionary conserved, molecular sorting device that mediates the intracellular trafficking of proteins to lysosomes and related organelles. Genetic defects in AP-3 subunits lead to impaired biogenesis of lysosome-related organelles (LROs) such as mammalian melanosomes and insect eye pigment granules. In this work, we have performed a forward screening for genetic modifiers of AP-3 function in the fruit fly, Drosophila melanogaster. Specifically, we have tested collections of large multi-gene deletions--which together covered most of the autosomal chromosomes-to identify chromosomal regions that, when deleted in single copy, enhanced or ameliorated the eye pigmentation phenotype of two independent AP-3 subunit mutants. Fine-mapping led us to define two non-overlapping, relatively small critical regions within fly chromosome 3. The first critical region included the Atg2 gene, which encodes a conserved protein involved in autophagy. Loss of one functional copy of Atg2 ameliorated the pigmentation defects of mutants in AP-3 subunits as well as in two other genes previously implicated in LRO biogenesis, namely Blos1 and lightoid, and even increased the eye pigment content of wild-type flies. The second critical region included the ArfGAP1 gene, which encodes a conserved GTPase-activating protein with specificity towards GTPases of the Arf family. Loss of a single functional copy of the ArfGAP1 gene ameliorated the pigmentation phenotype of AP-3 mutants but did not to modify the eye pigmentation of wild-type flies or mutants in Blos1 or lightoid. Strikingly, loss of the second functional copy of the gene did not modify the phenotype of AP-3 mutants any further but elicited early lethality in males and abnormal eye morphology when combined with mutations in Blos1 and lightoid, respectively. These results provide genetic evidence for new functional links connecting the machinery for biogenesis of LROs with molecules implicated in

  4. Identification of Atg2 and ArfGAP1 as Candidate Genetic Modifiers of the Eye Pigmentation Phenotype of Adaptor Protein-3 (AP-3 Mutants in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Imilce A Rodriguez-Fernandez

    Full Text Available The Adaptor Protein (AP-3 complex is an evolutionary conserved, molecular sorting device that mediates the intracellular trafficking of proteins to lysosomes and related organelles. Genetic defects in AP-3 subunits lead to impaired biogenesis of lysosome-related organelles (LROs such as mammalian melanosomes and insect eye pigment granules. In this work, we have performed a forward screening for genetic modifiers of AP-3 function in the fruit fly, Drosophila melanogaster. Specifically, we have tested collections of large multi-gene deletions--which together covered most of the autosomal chromosomes-to identify chromosomal regions that, when deleted in single copy, enhanced or ameliorated the eye pigmentation phenotype of two independent AP-3 subunit mutants. Fine-mapping led us to define two non-overlapping, relatively small critical regions within fly chromosome 3. The first critical region included the Atg2 gene, which encodes a conserved protein involved in autophagy. Loss of one functional copy of Atg2 ameliorated the pigmentation defects of mutants in AP-3 subunits as well as in two other genes previously implicated in LRO biogenesis, namely Blos1 and lightoid, and even increased the eye pigment content of wild-type flies. The second critical region included the ArfGAP1 gene, which encodes a conserved GTPase-activating protein with specificity towards GTPases of the Arf family. Loss of a single functional copy of the ArfGAP1 gene ameliorated the pigmentation phenotype of AP-3 mutants but did not to modify the eye pigmentation of wild-type flies or mutants in Blos1 or lightoid. Strikingly, loss of the second functional copy of the gene did not modify the phenotype of AP-3 mutants any further but elicited early lethality in males and abnormal eye morphology when combined with mutations in Blos1 and lightoid, respectively. These results provide genetic evidence for new functional links connecting the machinery for biogenesis of LROs with

  5. Enamel-free teeth: Tbx1 deletion affects amelogenesis in rodent incisors.

    Science.gov (United States)

    Catón, Javier; Luder, Hans-Ulrich; Zoupa, Maria; Bradman, Matthew; Bluteau, Gilles; Tucker, Abigail S; Klein, Ophir; Mitsiadis, Thimios A

    2009-04-15

    TBX1 is a principal candidate gene for DiGeorge syndrome, a developmental anomaly that affects the heart, thymus, parathyroid, face, and teeth. A mouse model carrying a deletion in a functional region of the Tbx1 gene has been extensively used to study anomalies related to this syndrome. We have used the Tbx1 null mouse to understand the tooth phenotype reported in patients afflicted by DiGeorge syndrome. Because of the early lethality of the Tbx1-/- mice, we used long-term culture techniques that allow the unharmed growth of incisors until their full maturity. All cultured incisors of Tbx1-/- mice were hypoplastic and lacked enamel, while thorough histological examinations demonstrated the complete absence of ameloblasts. The absence of enamel is preceded by a decrease in proliferation of the ameloblast precursor cells and a reduction in amelogenin gene expression. The cervical loop area of the incisor, which contains the niche for the epithelial stem cells, was either severely reduced or completely missing in mutant incisors. In contrast, ectopic expression of Tbx1 was observed in incisors from mice with upregulated Fibroblast Growth Factor signalling and was closely linked to ectopic enamel formation and deposition in these incisors. These results demonstrate that Tbx1 is essential for the maintenance of ameloblast progenitor cells in rodent incisors and that its deletion results in the absence of enamel formation.

  6. Mcm2 deficiency results in short deletions allowing high resolution identification of genes contributing to lymphoblastic lymphoma

    Science.gov (United States)

    Rusiniak, Michael E.; Kunnev, Dimiter; Freeland, Amy; Cady, Gillian K.; Pruitt, Steven C.

    2011-01-01

    Mini-chromosome maintenance (Mcm) proteins are part of the replication licensing complex that is loaded onto chromatin during the G1-phase of the cell cycle and required for initiation of DNA replication in the subsequent S-phase. Mcm proteins are typically loaded in excess of the number of locations that are utilized during S-phase. Nonetheless, partial depletion of Mcm proteins leads to cancers and stem cell deficiencies. Mcm2 deficient mice, on a 129Sv genetic background, display a high rate of thymic lymphoblastic lymphoma. Here array comparative genomic hybridization (aCGH) is utilized to characterize the genetic damage accruing in these tumors. The predominant events are deletions averaging less than 0.5 Mb, considerably shorter than observed in prior studies using alternative mouse lymphoma models or human tumors. Such deletions facilitate identification of specific genes and pathways responsible for the tumors. Mutations in many genes that have been implicated in human lymphomas are recapitulated in this mouse model. These features, and the fact that the mutation underlying the accelerated genetic damage does not target a specific gene or pathway a priori, are valuable features of this mouse model for identification of tumor suppressor genes. Genes affected in all tumors include Pten, Tcfe2a, Mbd3 and Setd1b. Notch1 and additional genes are affected in subsets of tumors. The high frequency of relatively short deletions is consistent with elevated recombination between nearby stalled replication forks in Mcm2 deficient mice. PMID:22158038

  7. Development of gene diagnosis for diabetes and cholecystitis based on gene analysis of CCK-A receptor

    International Nuclear Information System (INIS)

    Kono, Akira

    1999-01-01

    Base sequence analysis of CCKAR gene (a gene of A-type receptor for cholecystokinin) from OLETF rat, a model rat for insulin-independent diabetes was made based on the base sequence of wild CCKAR gene, which had been clarified in the previous year. From the pancreas of OLETF rat, DNA was extracted and transduced into λphage after fragmentation to construct the gene library of OLETF. Then, λphage DNA clone bound with labelled cDNA of CCKAR gene was analyzed and the gene structure was compared with that of the wild gene. It was demonstrated that CCKAR gene of OLETF had a deletion (6800 b.p.) ranging from the promoter region to the Exon 2, suggesting that CCKAR gene is not functional in OLETF rat. The whole sequence of this mutant gene was registered into Japan DNA Bank (D 50610). Then, F 2 offspring rats were obtained through crossing OLETF (female) and F344 (male) and the time course-changes in the blood glucose level after glucose loading were compared among them. The blood glucose level after glucose loading was significantly higher in the homo-mutant F 2 (CCKAR,-/-) as well as the parent OLETF rat than hetero-mutant F 2 (CCKARm-/+) or the wild rat (CCKAR,+/+). This suggests that CCKAR gene might be involved in the control of blood glucose level and an alteration of the expression level or the functions of CCKAR gene might affect the blood glucose level. (M.N.)

  8. Identification of genes potentially involved in solute stress response in Sphingomonas wittichii RW1 by transposon mutant recovery

    Directory of Open Access Journals (Sweden)

    Edith eCoronado

    2014-11-01

    Full Text Available The term water stress refers to the effects of low water availability on microbial growth and physiology. Water availability has been proposed as a major constraint for the use of microorganisms in contaminated sites with the purpose of bioremediation. Sphingomonas wittichii RW1 is a bacterium capable of degrading the xenobiotic compounds dibenzofuran and dibenzo-p-dioxin, and has potential to be used for targeted bioremediation. The aim of the current work was to identify genes implicated in water stress in RW1 by means of transposon mutagenesis and mutant growth experiments. Conditions of low water potential were mimicked by adding NaCl to the growth media. Three different mutant selection or separation method were tested, which, however recovered different mutants. Recovered transposon mutants with poorer growth under salt-induced water stress carried insertions in genes involved in proline and glutamate biosynthesis, and further in a gene putatively involved in aromatic compound catabolism. Transposon mutants growing poorer on medium with lowered water potential also included ones that had insertions in genes involved in more general functions such as transcriptional regulation, elongation factor, cell division protein, RNA polymerase β or an aconitase.

  9. Enhanced genome editing tools for multi-gene deletion knock-out approaches using paired CRISPR sgRNAs in CHO cells

    DEFF Research Database (Denmark)

    Schmieder, Valerie; Bydlinski, Nina; Strasser, Richard

    2017-01-01

    (sgRNAs) for full gene deletions. This strategy also enables the targeting of regulatory regions, which would not respond to the conventional frameshift mutations, as shown by deleting the α-1,6-Fucosyltransferase 8 (FUT8) promoter resulting in a functional knock-out. Fut8 also served as model...

  10. Zebrafish homologs of genes within 16p11.2, a genomic region associated with brain disorders, are active during brain development, and include two deletion dosage sensor genes

    Directory of Open Access Journals (Sweden)

    Alicia Blaker-Lee

    2012-11-01

    Deletion or duplication of one copy of the human 16p11.2 interval is tightly associated with impaired brain function, including autism spectrum disorders (ASDs, intellectual disability disorder (IDD and other phenotypes, indicating the importance of gene dosage in this copy number variant region (CNV. The core of this CNV includes 25 genes; however, the number of genes that contribute to these phenotypes is not known. Furthermore, genes whose functional levels change with deletion or duplication (termed ‘dosage sensors’, which can associate the CNV with pathologies, have not been identified in this region. Using the zebrafish as a tool, a set of 16p11.2 homologs was identified, primarily on chromosomes 3 and 12. Use of 11 phenotypic assays, spanning the first 5 days of development, demonstrated that this set of genes is highly active, such that 21 out of the 22 homologs tested showed loss-of-function phenotypes. Most genes in this region were required for nervous system development – impacting brain morphology, eye development, axonal density or organization, and motor response. In general, human genes were able to substitute for the fish homolog, demonstrating orthology and suggesting conserved molecular pathways. In a screen for 16p11.2 genes whose function is sensitive to hemizygosity, the aldolase a (aldoaa and kinesin family member 22 (kif22 genes were identified as giving clear phenotypes when RNA levels were reduced by ∼50%, suggesting that these genes are deletion dosage sensors. This study leads to two major findings. The first is that the 16p11.2 region comprises a highly active set of genes, which could present a large genetic target and might explain why multiple brain function, and other, phenotypes are associated with this interval. The second major finding is that there are (at least two genes with deletion dosage sensor properties among the 16p11.2 set, and these could link this CNV to brain disorders such as ASD and IDD.

  11. Deletion of a regulatory gene within the cpk gene cluster reveals novel antibacterial activity in Streptomyces coelicolor A3(2)

    NARCIS (Netherlands)

    Gottelt, Marco; Kol, Stefan; Gomez-Escribano, Juan Pablo; Bibb, Mervyn; Takano, Eriko

    Genome sequencing of Streptomyces coelicolor A3(2) revealed an uncharacterized type I polyketide synthase gene cluster (cpk) Here we describe the discovery of a novel antibacterial activity (abCPK) and a yellow-pigmented secondary metabolite (yCPK) after deleting a presumed pathway-specific

  12. A persistent mitochondrial deletion reduces fitness and sperm performance in heteroplasmic populations of C. elegans

    Directory of Open Access Journals (Sweden)

    Chin Kara

    2007-03-01

    Full Text Available Abstract Background Mitochondrial DNA (mtDNA mutations are of increasing interest due to their involvement in aging, disease, fertility, and their role in the evolution of the mitochondrial genome. The presence of reactive oxygen species and the near lack of repair mechanisms cause mtDNA to mutate at a faster rate than nuclear DNA, and mtDNA deletions are not uncommon in the tissues of individuals, although germ-line mtDNA is largely lesion-free. Large-scale deletions in mtDNA may disrupt multiple genes, and curiously, some large-scale deletions persist over many generations in a heteroplasmic state. Here we examine the phenotypic effects of one such deletion, uaDf5, in Caenorhabditis elegans (C. elegans. Our study investigates the phenotypic effects of this 3 kbp deletion. Results The proportion of uaDf5 chromosomes in worms was highly heritable, although uaDf5 content varied from worm to worm and within tissues of individual worms. We also found an impact of the uaDf5 deletion on metabolism. The deletion significantly reduced egg laying rate, defecation rate, and lifespan. Examination of sperm bearing the uaDf5 deletion revealed that sperm crawled more slowly, both in vitro and in vivo. Conclusion Worms harboring uaDf5 are at a selective disadvantage compared to worms with wild-type mtDNA. These effects should lead to the rapid extinction of the deleted chromosome, but it persists indefinitely. We discuss both the implications of this phenomenon and the possible causes of a shortened lifespan for uaDf5 mutant worms.

  13. [Construction of FANCA mutant protein from Fanconi anemia patient and analysis of its function].

    Science.gov (United States)

    Chen, Fei; Zhang, Ke-Jian; Zuo, Xue-Lan; Zeng, Xian-Chang

    2007-11-01

    To study FANCA protein expression in Fanconi anemia patient's (FA) cells and explore its function. FANCA protein expression was analyzed in 3 lymphoblast cell lines derived from 3 cases of type A FA (FA-A) patients using Western blot. Nucleus and cytoplasm localization of FANCA protein was analyzed in one case of FA-A which contained a truncated FANCA (exon 5 deletion). The FANCA mutant was constructed from the same patient and its interaction with FANCG was evaluated by mammalian two-hybrid (M2H) assay. FANCA protein was not detected in the 3 FA-A patients by rabbit anti-human MoAb, but a truncated FANCA protein was detected in 1 of them by mouse anti-human MoAb. The truncated FANCA could not transport from cytoplasm into nucleus. The disease-associated FANCA mutant was defective in binding to FANCG in M2H system. FANCA proteins are defective in the 3 FA-A patients. Disfunction of disease-associated FANCA mutant proved to be the pathogenic mutations in FANCA gene. Exon 5 of FANCA gene was involved in the interaction between FANCA and FANCG.

  14. A defective mutant of Salmonella enterica Serovar Gallinarum in cobalamin biosynthesis is avirulent in chickens Mutante de Salmonella enterica serovar Gallinarum duplo defectivo na biossíntese de cobalamina é avirulento para aves

    Directory of Open Access Journals (Sweden)

    Jacqueline Boldrin de Paiva

    2009-09-01

    Full Text Available Salmonella enterica serovar Gallinarum (SG is a fowl typhoid agent in chickens and is a severe disease with worldwide economic impact as its mortality may reach up to 80%. It is one of a small group of serovars that typically produces typhoid-like infections in a narrow range of host species and which therefore represents a good model for human typhoid. The survival mechanisms are not considered to be virulent mechanisms but are essential for the life of the bacterium. Mutants of Salmonella Gallinarum containing defective genes, related to cobalamin biosynthesis and which Salmonella spp. has to be produced to survive when it is in an anaerobic environment, were produced in this study. Salmonella Gallinarum is an intracellular parasite. Therefore, this study could provide information about whether vitamin B12 biosynthesis might be essential to its survival in the host. The results showed that the singular deletion in cbiA or cobS genes did not interfere in the life of Salmonella Gallinarum in the host, perhaps because single deletion is not enough to impede vitamin B12 biosynthesis. It was noticed that diluted SG mutants with single deletion produced higher mortality than the wild strain of SG. When double mutation was carried out, the Salmonella Gallinarum mutant was unable to provoke mortality in susceptible chickens. This work showed that B12 biosynthesis is a very important step in the metabolism of Salmonella Gallinarum during the infection of the chickens. Further research on bacterium physiology should be carried out to elucidate the events described in this research and to assess the mutant as a vaccine strain.Salmonella enterica serovar Gallinarum (SG é o agente do tifo aviário, doença severa que provoca mortalidade em até 80% do plantel de aves. SG encontra-se entre os poucos sorotipos de Salmonella que são agentes etiológicos de enfermidade específica, à semelhança de Salmonella Typhi em seres humanos podendo, portanto, servir

  15. Localization of the endpoints of deletions in the 5' region of the Duchenne gene using a sequence isolated by chromosome jumping

    Energy Technology Data Exchange (ETDEWEB)

    Kenwrick, S.J.; Smith, T.J.; England, S.; Collins, F.; Davies, K.E.

    1988-02-25

    The authors have used chromosome jumping technology to move from within a large intron sequence in the Duchenne muscular dystrophy (DMD) gene to a region adjacent to exons of the gene. The single copy jump clone, HH1, was used to characterize deletions in patients previously shown to be deleted for DNA markers in the 5' end of the gene. 12 out of 15 such patients have breakpoints which lie between HH1 and the genomic locus J-47. Thus the vast majority of the deletions in these patients have proximal breakpoints in a similar region distal to the 5'end of the gene. HH1 was mapped with respect to the X;1 translocation in a DMD female and was shown to lie at least 80 kb from the starting point of the chromosome jump, HIP25.

  16. The First Report of a 290-bp Deletion in β-Globin Gene in the South of Iran

    Science.gov (United States)

    Hamid, Mohammad; Nejad, Ladan Dawoody; Shariati, Gholamreza; Galehdari, Hamid; Saberi, Alihossein; Mohammadi-Anaei, Marziye

    2017-01-01

    Background: β-thalassemia is one of the most widespread diseases in the world, including Iran. In this study, we reported, for the first time, a 290-bp β-globin gene deletion in the south of Iran. Methods: Four individuals from three unrelated families with Arabic ethnic background were studied in Khuzestan Province. Red blood cell indices and hemoglobin analysis were carried out according to the standard methods. Genomic DNA was obtained from peripheral blood cells by salting out procedures. β-globin gene amplification, multiplex ligation-dependent probe amplification (MLPA), and DNA sequencing were performed. Results: The PCR followed by sequencing and MLPA test of the β-globin gene confirmed the presence of a 290-bp deletion in the heterozygous form, along with -88C>A mutation. All the individuals had elevated hemoglobin A2 and normal fetal hemoglobin levels. Conclusions: This mutation causes β0-thalassemia and can be highly useful for prenatal diagnosis in compound heterozygous condition with different β-globin gene mutations. PMID:26948378

  17. Genome-wide analysis of the Pho regulon in a pstCA mutant of Citrobacter rodentium.

    Directory of Open Access Journals (Sweden)

    Catherine Cheng

    Full Text Available The phosphate-specific transport operon, pstSCAB-phoU, of Gram-negative bacteria is an essential part of the Pho regulon. Its key roles are to encode a high-affinity inorganic phosphate transport system and to prevent activation of PhoB in phosphate-rich environments. In general, mutations in pstSCAB-phoU lead to the constitutive expression of the Pho regulon. Previously, we constructed a pstCA deletion mutant of Citrobacter rodentium and found it to be attenuated for virulence in mice, its natural host. This attenuation was dependent on PhoB or PhoB-regulated gene(s because a phoB mutation restored virulence for mice to the pstCA mutant. To investigate how downstream genes may contribute to the virulence of C. rodentium, we used microarray analysis to investigate global gene expression of C. rodentium strain ICC169 and its isogenic pstCA mutant when grown in phosphate-rich medium. Overall 323 genes of the pstCA mutant were differentially expressed by at least 1.5-fold compared to the wild-type C. rodentium. Of these 145 were up-regulated and 178 were down-regulated. Differentially expressed genes included some involved in phosphate homoeostasis, cellular metabolism and protein metabolism. A large number of genes involved in stress responses and of unknown function were also differentially expressed, as were some virulence-associated genes. Up-regulated virulence-associated genes in the pstCA mutant included that for DegP, a serine protease, which appeared to be directly regulated by PhoB. Down-regulated genes included those for the production of the urease, flagella, NleG8 (a type III-secreted protein and the tad focus (which encodes type IVb pili in Yersinia enterocolitica. Infection studies using C57/BL6 mice showed that DegP and NleG8 play a role in bacterial virulence. Overall, our study provides evidence that Pho is a global regulator of gene expression in C. rodentium and indicates the presence of at least two previously unrecognized

  18. Genetic analysis and gene mapping of a low stigma exposed mutant gene by high-throughput sequencing.

    Directory of Open Access Journals (Sweden)

    Xiao Ma

    Full Text Available Rice is one of the main food crops and several studies have examined the molecular mechanism of the exposure of the rice plant stigma. The improvement in the exposure of the stigma in female parent hybrid combinations can enhance the efficiency of hybrid breeding. In the present study, a mutant plant with low exposed stigma (lesr was discovered among the descendants of the indica thermo-sensitive sterile line 115S. The ES% rate of the mutant decreased by 70.64% compared with the wild type variety. The F2 population was established by genetic analysis considering the mutant as the female parent and the restorer line 93S as the male parent. The results indicated a normal F1 population, while a clear division was noted for the high and low exposed stigma groups, respectively. This process was possible only by a ES of 25% in the F2 population. This was in agreement with the ratio of 3:1, which indicated that the mutant was controlled by a recessive main-effect QTL locus, temporarily named as LESR. Genome-wide comparison of the SNP profiles between the early, high and low production bulks were constructed from F2 plants using bulked segregant analysis in combination with high-throughput sequencing technology. The results demonstrated that the candidate loci was located on the chromosome 10 of the rice. Following screening of the recombinant rice plants with newly developed molecular markers, the genetic region was narrowed down to 0.25 Mb. This region was flanked by InDel-2 and InDel-2 at the physical location from 13.69 to 13.94 Mb. Within this region, 7 genes indicated base differences between parents. A total of 2 genes exhibited differences at the coding region and upstream of the coding region, respectively. The present study aimed to further clone the LESR gene, verify its function and identify the stigma variation.

  19. Isolation of Lactococcus lactis Mutants Simultaneously Resistant to the Cell Wall-Active Bacteriocin Lcn972, Lysozyme, Nisin, and Bacteriophage c2

    Science.gov (United States)

    Roces, Clara; Courtin, Pascal; Kulakauskas, Saulius; Rodríguez, Ana; Chapot-Chartier, Marie-Pierre

    2012-01-01

    Lactococcin 972 (Lcn972) is a nonlantibiotic bacteriocin that inhibits cell wall biosynthesis by binding to lipid II. In this work, two mutants resistant to Lcn972, Lactococcus lactis D1 and D1-20, with high (>320 arbitrary units [AU]/ml) and low (80 AU/ml) susceptibilities, respectively, have been isolated. Resistance to Lcn972 did not impose a burden to growth under laboratory conditions, nor did it substantially alter the physicochemical properties of the cell surface. However, the peptidoglycan of the mutants featured a higher content of muropeptides with tripeptide side chains than the wild-type strain, linking for the first time peptidoglycan remodelling to bacteriocin resistance. Moreover, L. lactis lacking a functional d,d-carboxypeptidase DacA (i.e., with a high content of pentapeptide side chain muropeptides) was shown to be more susceptible to Lcn972. Cross-resistance to lysozyme and nisin and enhanced susceptibility to penicillin G and bacitracin was also observed. Intriguingly, the Lcn972-resistant mutants were not infected by the lytic phage c2 and less efficiently infected by phage sk1. Lack of c2 infectivity was linked to a 22.6-kbp chromosomal deletion encompassing the phage receptor protein gene pip. The deletion also included maltose metabolic genes and the two-component system (TCS) F. However, a clear correlation between these genes and resistance to Lcn972 could not be clearly established, pointing to the presence of as-yet-unidentified mutations that account for Lcn972 resistance. PMID:22504807

  20. Deleting the Arntl clock gene in the granular layer of the mouse cerebellum

    DEFF Research Database (Denmark)

    Bering, Tenna; Carstensen, Mikkel Bloss; Rath, Martin Fredensborg

    2017-01-01

    nucleus. It has been suggested that the cerebellar circadian oscillator is involved in food anticipation, but direct molecular evidence of the role of the circadian oscillator of the cerebellar cortex is currently unavailable. To investigate the hypothesis that the circadian oscillator of the cerebellum...... is involved in circadian physiology and food anticipation, we therefore by use of Cre-LoxP technology generated a conditional knockout mouse with the core clock gene Arntl deleted specifically in granule cells of the cerebellum, since expression of clock genes in the cerebellar cortex is mainly located...

  1. Screening for spontaneous virulent mutants of barley powdery mildew (Erysiphe graminis DC)

    International Nuclear Information System (INIS)

    Torp, J.; Jensen, H.P.

    1989-01-01

    Full text: Seedlings of 4 barley lines possessing resistance genes M1-a6, M1-a12 or M1-g were inoculated with powdery mildew culture CR3, which is a-virulent to the 4 host lines. In total, 50 million conidia were screened for the occurrence of virulent mutants, 43 putative virulent mutants were found. They could be grouped into 5 genotypes according to the virulence spectrum. They might have originated by one of the following events: 1. admixture, 2. physiological events that allow a few conidia to establish colonies in spite of the presence of a functional gene for resistance, 3. mutation in a gene for specificity, 4. deletion or mutation in some kind of suppressing element in which case more than one virulence may be affected. Based upon the virulence spectra, mating type, biochemical tests and analysis of test crosses, 3 of the genotypes were clearly classified as not being of mutational origin. Of the two remaining genotypes one differed in 4 virulences, the other by two virulences and one avirulence. Based upon expectations from the gene-for-gene concept, it is concluded that both were not of mutational origin. If in fact there are derived from a mutation, the concept of gene-for-gene interactions would have to be revised. Assuming that no mutations for virulence were found in this experiment, the spontaneous mutation frequency from avirulence to virulence would be below 2x10 -8 . (author)

  2. Somatic VHL gene alterations in MEN2-associated medullary thyroid carcinoma

    International Nuclear Information System (INIS)

    Koch, Christian A; Brouwers, Frederieke M; Vortmeyer, Alexander O; Tannapfel, Andrea; Libutti, Steven K; Zhuang, Zhengping; Pacak, Karel; Neumann, Hartmut PH; Paschke, Ralf

    2006-01-01

    Germline mutations in RET are responsible for multiple endocrine neoplasia type 2 (MEN2), an autosomal dominantly inherited cancer syndrome that is characterized by medullary thyroid carcinoma (MTC), pheochromocytoma, and parathyroid hyperplasia/adenoma. Recent studies suggest a 'second hit' mechanism resulting in amplification of mutant RET. Somatic VHL gene alterations are implicated in the pathogenesis of MEN2 pheochromocytomas. We hypothesized that somatic VHL gene alterations are also important in the pathogenesis of MEN2-associated MTC. We analyzed 6 MTCs and 1 C-cell hyperplasia (CCH) specimen from 7 patients with MEN2A and RET germline mutations in codons 609, 618, 620, or 634, using microdissection, microsatellite analysis, phosphorimage densitometry, and VHL mutation analysis. First, we searched for allelic imbalance between mutant and wild-type RET by using the polymorphic markers D10S677, D10S1239, and RET on thyroid tissue from these patients. Evidence for RET amplification by this technique could be demonstrated in 3 of 6 MTCs. We then performed LOH analysis using D3S1038 and D3S1110 which map to the VHL gene locus at 3p25/26. VHL gene deletion was present in 3 MTCs. These 3 MTCs also had an allelic imbalance between mutant and wild-type RET. Mutation analysis of the VHL gene showed a somatic frameshift mutation in 1 MTC that also demonstrated LOH at 3p25/26. In the 2 other MTCs with allelic imbalance of RET and somatic VHL gene deletion, no somatic VHL mutation could be detected. The CCH specimen did neither reveal RET imbalance nor somatic VHL gene alterations. These data suggest that a RET germline mutation is necessary for development of CCH, that allelic imbalance between mutant and wild-type RET may set off tumorigenesis, and that somatic VHL gene alterations may not play a major role in tumorigenesis of MEN2A-associated MTC

  3. Molecular characterization of the porcine deleted in malignant brain tumors 1 gene (DMBT1)

    DEFF Research Database (Denmark)

    Haase, Bianca; Humphray, Sean J; Lyer, Stefan

    2006-01-01

    The human gene deleted in malignant brain tumors 1 (DMBT1) is considered to play a role in tumorigenesis and pathogen defense. It encodes a protein with multiple scavenger receptor cysteine-rich (SRCR) domains, which are involved in recognition and binding of a broad spectrum of bacterial pathogens...

  4. Transcriptome profiling identifies genes and pathways deregulated upon floxuridine treatment in colorectal cancer cells harboring GOF mutant p53

    Directory of Open Access Journals (Sweden)

    Arindam Datta

    2016-06-01

    Full Text Available Mutation in TP53 is a common genetic alteration in human cancers. Certain tumor associated p53 missense mutants acquire gain-of-function (GOF properties and confer oncogenic phenotypes including enhanced chemoresistance. The colorectal cancers (CRC harboring mutant p53 are generally aggressive in nature and difficult to treat. To identify a potential gene expression signature of GOF mutant p53-driven acquired chemoresistance in CRC, we performed transcriptome profiling of floxuridine (FUdR treated SW480 cells expressing mutant p53R273H (GEO#: GSE77533. We obtained several genes differentially regulated between FUdR treated and untreated cells. Further, functional characterization and pathway analysis revealed significant enrichment of crucial biological processes and pathways upon FUdR treatment in SW480 cells. Our data suggest that in response to chemotherapeutics treatment, cancer cells with GOF mutant p53 can modulate key cellular pathways to withstand the cytotoxic effect of the drugs. The genes and pathways identified in the present study can be further validated and targeted for better chemotherapy response in colorectal cancer patients harboring mutant p53.

  5. A Deletion in the Canine POMC Gene Is Associated with Weight and Appetite in Obesity-Prone Labrador Retriever Dogs

    OpenAIRE

    Raffan, Eleanor; Dennis, Rowena?J.; O?Donovan, Conor?J.; Becker, Julia?M.; Scott, Robert?A.; Smith, Stephen?P.; Withers, David?J.; Wood, Claire?J.; Conci, Elena; Clements, Dylan?N.; Summers, Kim?M.; German, Alexander?J.; Mellersh, Cathryn?S.; Arendt, Maja?L.; Iyemere, Valentine?P.

    2016-01-01

    Sequencing of candidate genes for obesity in Labrador retriever dogs identified a 14 bp deletion in pro-opiomelanocortin (POMC) with an allele frequency of 12%. The deletion disrupts the β-MSH and β-endorphin coding sequences and is associated with body weight (per allele effect of 0.33 SD), adiposity, and greater food motivation. Among other dog breeds, the deletion was only found in the closely related flat-coat retriever (FCR), where it is similarly associated with body weight and food mot...

  6. Functions of some capsular polysaccharide biosynthetic genes in Klebsiella pneumoniae NTUH K-2044.

    Directory of Open Access Journals (Sweden)

    Jin-Yuan Ho

    Full Text Available The growing number of Klebsiella pneumoniae infections, commonly acquired in hospitals, has drawn great concern. It has been shown that the K1 and K2 capsular serotypes are the most detrimental strains, particularly to those with diabetes. The K1 cps (capsular polysaccharide locus in the NTUH-2044 strain of the pyogenic liver abscess (PLA K. pneumoniae has been identified recently, but little is known about the functions of the genes therein. Here we report characterization of a group of cps genes and their roles in the pathogenesis of K1 K. pneumoniae. By sequential gene deletion, the cps gene cluster was first re-delimited between genes galF and ugd, which serve as up- and down-stream ends, respectively. Eight gene products were characterized in vitro and in vivo to be involved in the syntheses of UDP-glucose, UDP-glucuronic acid and GDP-fucose building units. Twelve genes were identified as virulence factors based on the observation that their deletion mutants became avirulent or lost K1 antigenicity. Furthermore, deletion of kp3706, kp3709 or kp3712 (ΔwcaI, ΔwcaG or Δatf, respectively, which are all involved in fucose biosynthesis, led to a broad range of transcriptional suppression for 52 upstream genes. The genes suppressed include those coding for unknown regulatory membrane proteins and six multidrug efflux system proteins, as well as proteins required for the K1 CPS biosynthesis. In support of the suppression of multidrug efflux genes, we showed that these three mutants became more sensitive to antibiotics. Taken together, the results suggest that kp3706, kp3709 or kp3712 genes are strongly related to the pathogenesis of K. pneumoniae K1.

  7. A novel mouse Fgfr2 mutant, hobbyhorse (hob, exhibits complete XY gonadal sex reversal.

    Directory of Open Access Journals (Sweden)

    Pam Siggers

    Full Text Available The secreted molecule fibroblast growth factor 9 (FGF9 plays a critical role in testis determination in the mouse. In embryonic gonadal somatic cells it is required for maintenance of SOX9 expression, a key determinant of Sertoli cell fate. Conditional gene targeting studies have identified FGFR2 as the main gonadal receptor for FGF9 during sex determination. However, such studies can be complicated by inefficient and variable deletion of floxed alleles, depending on the choice of Cre deleter strain. Here, we report a novel, constitutive allele of Fgfr2, hobbyhorse (hob, which was identified in an ENU-based forward genetic screen for novel testis-determining loci. Fgr2hob is caused by a C to T mutation in the invariant exon 7, resulting in a polypeptide with a mis-sense mutation at position 263 (Pro263Ser in the third extracellular immunoglobulin-like domain of FGFR2. Mutant homozygous embryos show severe limb and lung defects and, when on the sensitised C57BL/6J (B6 genetic background, undergo complete XY gonadal sex reversal associated with failure to maintain expression of Sox9. Genetic crosses employing a null mutant of Fgfr2 suggest that Fgr2hob is a hypomorphic allele, affecting both the FGFR2b and FGFR2c splice isoforms of the receptor. We exploited the consistent phenotype of this constitutive mutant by analysing MAPK signalling at the sex-determining stage of gonad development, but no significant abnormalities in mutant embryos were detected.

  8. Backup expression of the PhaP2 phasin compensates for phaP1 deletion in Herbaspirillum seropedicae, maintaining fitness and PHB accumulation

    Directory of Open Access Journals (Sweden)

    Luis Paulo Silveira Alves

    2016-05-01

    Full Text Available Phasins are important proteins controlling PHB granules formation, their number into the cell and stability. The genome sequencing of the endophytic and diazotrophic bacterium Herbaspirillum seropedicae SmR1 revealed two homologous phasin genes. To verify the role of the phasins on PHB accumulation in the parental strain H. seropedicae SmR1, isogenic strains defective in the expression of phaP1, phaP2 or both genes were obtained by gene deletion and characterized in this work. Despite of the high sequence similarity between PhaP1 and PhaP2, PhaP1 is the major phasin in H. seropedicae, since its deletion reduced PHB accumulation by ≈ 50 % in comparison to the parental and ΔphaP2. Upon deletion of phaP1, the expression of phaP2 was 6-fold enhanced in the ΔphaP1 strain. The responsive backup expression of phaP2 partially rescued the ΔphaP1 mutant, maintaining about 50% of the parental PHB level. The double mutant ΔphaP1.2 did not accumulate PHB in any growth stage and showed a severe reduction of growth when glucose was the carbon source, a clear demonstration of negative impact in the fitness. The co-occurrence of phaP1 and phaP2 homologous in bacteria relatives of H. seropedicae, including other endophytes, indicates that the mechanism of phasin compensation by phaP2 expression may be operating in other organisms, showing that PHB metabolism is a key factor to adaptation and efficiency of endophytic bacteria.

  9. A Sordaria macrospora mutant lacking the leu1 gene shows a developmental arrest during fruiting body formation.

    Science.gov (United States)

    Kück, Ulrich

    2005-10-01

    Developmental mutants with defects in fruiting body formation are excellent resources for the identification of genetic components that control cellular differentiation processes in filamentous fungi. The mutant pro4 of the ascomycete Sordaria macrospora is characterized by a developmental arrest during the sexual life cycle. This mutant generates only pre-fruiting bodies (protoperithecia), and is unable to form ascospores. Besides being sterile, pro4 is auxotrophic for leucine. Ascospore analysis revealed that the two phenotypes are genetically linked. After isolation of the wild-type leu1 gene from S. macrospora, complementation experiments demonstrated that the gene was able to restore both prototrophy and fertility in pro4. To investigate the control of leu1 expression, other genes involved in leucine biosynthesis specifically and in the general control of amino acid biosynthesis ("cross-pathway control") have been analysed using Northern hybridization and quantitative RT-PCR. These analyses demonstrated that genes of leucine biosynthesis are transcribed at higher levels under conditions of amino acid starvation. In addition, the expression data for the cpc1 and cpc2 genes indicate that cross-pathway control is superimposed on leucine-specific regulation of fruiting body development in the leu1 mutant. This was further substantiated by growth experiments in which the wild-type strain was found to show a sterile phenotype when grown on a medium containing the amino acid analogue 5-methyl-tryptophan. Taken together, these data show that pro4 represents a novel mutant type in S. macrospora, in which amino acid starvation acts as a signal that interrupts the development of the fruiting body.

  10. Sequence homology at the breakpoint and clinical phenotype of mitochondrial DNA deletion syndromes.

    Science.gov (United States)

    Sadikovic, Bekim; Wang, Jing; El-Hattab, Ayman W; Landsverk, Megan; Douglas, Ganka; Brundage, Ellen K; Craigen, William J; Schmitt, Eric S; Wong, Lee-Jun C

    2010-12-20

    Mitochondrial DNA (mtDNA) deletions are a common cause of mitochondrial disorders. Large mtDNA deletions can lead to a broad spectrum of clinical features with different age of onset, ranging from mild mitochondrial myopathies (MM), progressive external ophthalmoplegia (PEO), and Kearns-Sayre syndrome (KSS), to severe Pearson syndrome. The aim of this study is to investigate the molecular signatures surrounding the deletion breakpoints and their association with the clinical phenotype and age at onset. MtDNA deletions in 67 patients were characterized using array comparative genomic hybridization (aCGH) followed by PCR-sequencing of the deletion junctions. Sequence homology including both perfect and imperfect short repeats flanking the deletion regions were analyzed and correlated with clinical features and patients' age group. In all age groups, there was a significant increase in sequence homology flanking the deletion compared to mtDNA background. The youngest patient group (deletion distribution in size and locations, with a significantly lower sequence homology flanking the deletion, and the highest percentage of deletion mutant heteroplasmy. The older age groups showed rather discrete pattern of deletions with 44% of all patients over 6 years old carrying the most common 5 kb mtDNA deletion, which was found mostly in muscle specimens (22/41). Only 15% (3/20) of the young patients (deletion, which is usually present in blood rather than muscle. This group of patients predominantly (16 out of 17) exhibit multisystem disorder and/or Pearson syndrome, while older patients had predominantly neuromuscular manifestations including KSS, PEO, and MM. In conclusion, sequence homology at the deletion flanking regions is a consistent feature of mtDNA deletions. Decreased levels of sequence homology and increased levels of deletion mutant heteroplasmy appear to correlate with earlier onset and more severe disease with multisystem involvement.

  11. Isolating human DNA repair genes using rodent-cell mutants

    International Nuclear Information System (INIS)

    Thompson, L.H.; Weber, C.A.; Brookman, K.W.; Salazar, E.P.; Stewart, S.A.; Mitchell, D.L.

    1987-01-01

    The DNA repair systems of rodent and human cells appear to be at least as complex genetically as those in lower eukaryotes and bacteria. The use of mutant lines of rodent cells as a means of identifying human repair genes by functional complementation offers a new approach toward studying the role of repair in mutagenesis and carcinogenesis. In each of six cases examined using hybrid cells, specific human chromosomes have been identified that correct CHO cell mutations affecting repair of damage from uv or ionizing radiations. This finding suggests that both the repair genes and proteins may be virtually interchangeable between rodent and human cells. Using cosmid vectors, human repair genes that map to chromosome 19 have cloned as functional sequences: ERCC2 and XRCC1. ERCC1 was found to have homology with the yeast excision repair gene RAD10. Transformants of repair-deficient cell lines carrying the corresponding human gene show efficient correction of repair capacity by all criteria examined. 39 refs., 1 fig., 1 tab

  12. Non-linked inhibitory gene controls a disease mimicking mutant in rice [Oryza sativa L.

    International Nuclear Information System (INIS)

    Jambhulkar, S.J.; Joshua, D.C.; Goswamy, D.G.

    2001-01-01

    A gamma ray induced disease mimicking mutant called luchai lesion was isolated in the rice variety White Luchai 112. The appearance of small light red lesions and their development continued from seedling to flowering. The lesions appeared gradually on older leaves and their uncontrolled spread eventually lead to leaf senescence. They resembled the disease spots caused by Magnaporthe grisea. However, pathological studies ruled out the possibility of pathogen mediated disease symptoms. Genetic studies revealed that lesions were governed by a dominant gene; however, their expression was suppressed in presence of a non-linked inhibitory gene. It is hypothesised that the plant cells of the mutant are able to sense inbuilt spontaneous signals leading to lesion development, but in presence of an inhibitory gene the signals are suppressed by perturbation in the signal transduction pathway [it

  13. Analysis on expression of gene for flower shape in Dendrobium sonia mutants using differential display technique

    International Nuclear Information System (INIS)

    Affrida Abu Hassan; Ahmad Syazni Kamarudin; Nurul Nadia Aminuddin; Mohd Nazir Basiran

    2004-01-01

    In vitro mutagenesis on Dendrobium Sonia in MINT has produced mutants with wide range of flower form and colour variations. Among the mutants are plants with different flower size and shape. These changes could be caused by alterations to the expression level of the genes responsible for the characteristics. In this studies, Differential Display technique was used to identify and analyse altered gene expression at the mRNA level. Total RNA of the control and mutants were reversed transcribed using three anchored oligo-d T primers. Subsequently, these cDNAs were Pcr amplified in combination with 16 arbitrary primers. The amplified products were electrophoresed side by side on agarose gel. Differentially expressed bands are isolated for further analysis. (Author)

  14. Nance-Horan syndrome: a contiguous gene syndrome involving deletion of the amelogenin gene? A case report and molecular analysis.

    Science.gov (United States)

    Franco, E; Hodgson, S; Lench, N; Roberts, G J

    1995-03-01

    A case of Nance-Horan syndrome in a male is presented, with some features of the condition in his carrier mother and her mother. It is proposed that Nance-Horan syndrome might be a contiguous gene syndrome mapping to chromosome Xp21.2-p22.3. The proband had congenital cataract microphthalmia and dental abnormalities including screwdriver shaped incisors and evidence of enamel pitting hypoplasia. The region Xp21.2-p22.3 also contains the tooth enamel protein gene, amelogenin (AMGX). Using molecular genetic techniques, we have shown that there is no evidence that the AMGX gene is deleted in this case of the Nance-Horan syndrome.

  15. Conditions for gene disruption by homologous recombination of exogenous DNA into the Sulfolobus solfataricus genome

    Directory of Open Access Journals (Sweden)

    Sonja-Verena Albers

    2008-01-01

    Full Text Available The construction of directed gene deletion mutants is an essential tool in molecular biology that allows functional studies on the role of genes in their natural environment. For hyperthermophilic archaea, it has been difficult to obtain a reliable system to construct such mutants. However, during the past years, systems have been developed for Thermococcus kodakarensis and two Sulfolobus species, S. acidocaldarius and derivatives of S. solfataricus 98/2. Here we describe an optimization of the method for integration of exogenous DNA into S. solfataricus PBL 2025, an S. solfataricus 98/2 derivative, based on lactose auxotrophy that now allows for routine gene inactivation.

  16. Metabolic responses to pyruvate kinase deletion in lysine producing Corynebacterium glutamicum

    Directory of Open Access Journals (Sweden)

    Wittmann Christoph

    2008-03-01

    Full Text Available Abstract Background Pyruvate kinase is an important element in flux control of the intermediate metabolism. It catalyzes the irreversible conversion of phosphoenolpyruvate into pyruvate and is under allosteric control. In Corynebacterium glutamicum, this enzyme was regarded as promising target for improved production of lysine, one of the major amino acids in animal nutrition. In pyruvate kinase deficient strains the required equimolar ratio of the two lysine precursors oxaloacetate and pyruvate can be achieved through concerted action of the phosphotransferase system (PTS and phosphoenolpyruvate carboxylase (PEPC, whereby a reduced amount of carbon may be lost as CO2 due to reduced flux into the tricarboxylic acid (TCA cycle. In previous studies, deletion of pyruvate kinase in lysine-producing C. glutamicum, however, did not yield a clear picture and the exact metabolic consequences are not fully understood. Results In this work, deletion of the pyk gene, encoding pyruvate kinase, was carried out in the lysine-producing strain C. glutamicum lysCfbr, expressing a feedback resistant aspartokinase, to investigate the cellular response to deletion of this central glycolytic enzyme. Pyk deletion was achieved by allelic replacement, verified by PCR analysis and the lack of in vitro enzyme activity. The deletion mutant showed an overall growth behavior (specific growth rate, glucose uptake rate, biomass yield which was very similar to that of the parent strain, but differed in slightly reduced lysine formation, increased formation of the overflow metabolites dihydroxyacetone and glycerol and in metabolic fluxes around the pyruvate node. The latter involved a flux shift from pyruvate carboxylase (PC to PEPC, by which the cell maintained anaplerotic supply of the TCA cycle. This created a metabolic by-pass from PEP to pyruvate via malic enzyme demonstrating its contribution to metabolic flexibility of C. glutamicum on glucose. Conclusion The metabolic

  17. An Fgf8 Mouse Mutant Phenocopies Human 22q11 Deletion Syndrome

    OpenAIRE

    Frank, Deborah U.; Fotheringham, Lori K.; Brewer, Judson A.; Muglia, Louis J.; Tristani-Firouzi, Martin; Capecchi, Mario R.; Moon, Anne M.

    2002-01-01

    Deletion of chromosome 22q11, the most common microdeletion detected in humans, is associated with a life-threatening array of birth defects. Although 90% of affected individuals share the same three megabase deletion, their phenotype is highly variable and includes craniofacial and cardiovascular anomalies, hypoplasia or aplasia of the thymus with associated deficiency of T cells, hypocalcemia with hypoplasia or aplasia of the parathyroids, and a variety of central nervous system abnormaliti...

  18. Characterization of Bombyx mori nucleopolyhedrovirus orf68 gene that encodes a novel structural protein of budded virus.

    Science.gov (United States)

    Iwanaga, Masashi; Kurihara, Masaaki; Kobayashi, Masahiko; Kang, WonKyung

    2002-05-25

    All lepidopteran baculovirus genomes sequenced to date encode a homolog of the Bombyx mori nucleopolyhedrovirus (BmNPV) orf68 gene, suggesting that it performs an important role in the virus life cycle. In this article we describe the characterization of BmNPV orf68 gene. Northern and Western analyses demonstrated that orf68 gene was expressed as a late gene and encoded a structural protein of budded virus (BV). Immunohistochemical analysis by confocal microscopy showed that ORF68 protein was localized mainly in the nucleus of infected cells. To examine the function of orf68 gene, we constructed orf68 deletion mutant (BmD68) and characterized it in BmN cells and larvae of B. mori. BV production was delayed in BmD68-infected cells. The larval bioassays also demonstrated that deletion of orf68 did not reduce the infectivity, but mutant virus took 70 h longer to kill the host than wild-type BmNPV. In addition, dot-blot analysis showed viral DNA accumulated more slowly in mutant infected cells. Further examination suggested that BmD68 was less efficient in entry and budding from cells, although it seemed to possess normal attachment ability. These results suggest that ORF68 is a BV-associated protein involved in secondary infection from cell-to-cell. (c) 2002 Elsevier Science (USA).

  19. Recombination Phenotypes of Escherichia coli greA Mutants

    Directory of Open Access Journals (Sweden)

    Poteete Anthony R

    2011-03-01

    Full Text Available Abstract Background The elongation factor GreA binds to RNA polymerase and modulates transcriptional pausing. Some recent research suggests that the primary role of GreA may not be to regulate gene expression, but rather, to promote the progression of replication forks which collide with RNA polymerase, and which might otherwise collapse. Replication fork collapse is known to generate dsDNA breaks, which can be recombinogenic. It follows that GreA malfunction could have consequences affecting homologous recombination. Results Escherichia coli mutants bearing substitutions of the active site acidic residues of the transcription elongation factor GreA, D41N and E44K, were isolated as suppressors of growth inhibition by a toxic variant of the bacteriophage lambda Red-beta recombination protein. These mutants, as well as a D41A greA mutant and a greA deletion, were tested for proficiency in recombination events. The mutations were found to increase the efficiency of RecA-RecBCD-mediated and RecA-Red-mediated recombination, which are replication-independent, and to decrease the efficiency of replication-dependent Red-mediated recombination. Conclusion These observations provide new evidence for a role of GreA in resolving conflicts between replication and transcription.

  20. A Comprehensive Dataset of Genes with a Loss-of-Function Mutant Phenotype in Arabidopsis1[W][OA

    Science.gov (United States)

    Lloyd, Johnny; Meinke, David

    2012-01-01

    Despite the widespread use of Arabidopsis (Arabidopsis thaliana) as a model plant, a curated dataset of Arabidopsis genes with mutant phenotypes remains to be established. A preliminary list published nine years ago in Plant Physiology is outdated, and genome-wide phenotype information remains difficult to obtain. We describe here a comprehensive dataset of 2,400 genes with a loss-of-function mutant phenotype in Arabidopsis. Phenotype descriptions were gathered primarily from manual curation of the scientific literature. Genes were placed into prioritized groups (essential, morphological, cellular-biochemical, and conditional) based on the documented phenotypes of putative knockout alleles. Phenotype classes (e.g. vegetative, reproductive, and timing, for the morphological group) and subsets (e.g. flowering time, senescence, circadian rhythms, and miscellaneous, for the timing class) were also established. Gene identities were classified as confirmed (through molecular complementation or multiple alleles) or not confirmed. Relationships between mutant phenotype and protein function, genetic redundancy, protein connectivity, and subcellular protein localization were explored. A complementary dataset of 401 genes that exhibit a mutant phenotype only when disrupted in combination with a putative paralog was also compiled. The importance of these genes in confirming functional redundancy and enhancing the value of single gene datasets is discussed. With further input and curation from the Arabidopsis community, these datasets should help to address a variety of important biological questions, provide a foundation for exploring the relationship between genotype and phenotype in angiosperms, enhance the utility of Arabidopsis as a reference plant, and facilitate comparative studies with model genetic organisms. PMID:22247268

  1. A novel AAT-deletion mutation in the coding sequence of the BCO2 gene in yellow-fat rabbits.

    Science.gov (United States)

    Strychalski, Janusz; Brym, Paweł; Czarnik, Urszula; Gugołek, Andrzej

    2015-11-01

    The carcasses of yellow-fat rabbits may be attractive to modern consumers, because they have a relatively high content of biologically active compounds. One of the main candidate genes associated with the yellow-fat trait is β-carotene 9',10'-oxygenase (BCO2). This study is the first report of the novel AAT-deletion mutation at codon 248 of the BCO2 gene, which has been found in homozygous yellow-fat rabbits. The deletion mutation, located at the beginning of exon 6, results in the absence of asparagine in protein. We also developed a PCR-RFLP test that supports intravital genotyping of indel polymorphism based on genomic DNA.

  2. Reduced expression of APC-1B but not APC-1A by the deletion of promoter 1B is responsible for familial adenomatous polyposis.

    Science.gov (United States)

    Yamaguchi, Kiyoshi; Nagayama, Satoshi; Shimizu, Eigo; Komura, Mitsuhiro; Yamaguchi, Rui; Shibuya, Tetsuo; Arai, Masami; Hatakeyama, Seira; Ikenoue, Tsuneo; Ueno, Masashi; Miyano, Satoru; Imoto, Seiya; Furukawa, Yoichi

    2016-05-24

    Germline mutations in the tumor suppressor gene APC are associated with familial adenomatous polyposis (FAP). Here we applied whole-genome sequencing (WGS) to the DNA of a sporadic FAP patient in which we did not find any pathological APC mutations by direct sequencing. WGS identified a promoter deletion of approximately 10 kb encompassing promoter 1B and exon1B of APC. Additional allele-specific expression analysis by deep cDNA sequencing revealed that the deletion reduced the expression of the mutated APC allele to as low as 11.2% in the total APC transcripts, suggesting that the residual mutant transcripts were driven by other promoter(s). Furthermore, cap analysis of gene expression (CAGE) demonstrated that the deleted promoter 1B region is responsible for the great majority of APC transcription in many tissues except the brain. The deletion decreased the transcripts of APC-1B to 39-45% in the patient compared to the healthy controls, but it did not decrease those of APC-1A. Different deletions including promoter 1B have been reported in FAP patients. Taken together, our results strengthen the evidence that analysis of structural variations in promoter 1B should be considered for the FAP patients whose pathological mutations are not identified by conventional direct sequencing.

  3. Constitutional von Hippel-Lindau (VHL) gene deletions detected in VHL families by fluorescence in situ hybridization.

    Science.gov (United States)

    Pack, S D; Zbar, B; Pak, E; Ault, D O; Humphrey, J S; Pham, T; Hurley, K; Weil, R J; Park, W S; Kuzmin, I; Stolle, C; Glenn, G; Liotta, L A; Lerman, M I; Klausner, R D; Linehan, W M; Zhuang, Z

    1999-11-01

    von Hippel-Lindau (VHL) disease is an autosomal dominantly inherited cancer syndrome predisposing to a variety of tumor types that include retinal hemangioblastomas, hemangioblastomas of the central nervous system, renal cell carcinomas, pancreatic cysts and tumors, pheochromocytomas, endolymphatic sac tumors, and epididymal cystadenomas [W. M. Linehan et al., J. Am. Med. Assoc., 273: 564-570, 1995; E. A. Maher and W. G. Kaelin, Jr., Medicine (Baltimore), 76: 381-391, 1997; W. M. Linehan and R. D. Klausner, In: B. Vogelstein and K. Kinzler (eds.), The Genetic Basis of Human Cancer, pp. 455-473, McGraw-Hill, 1998]. The VHL gene was localized to chromosome 3p25-26 and cloned [F. Latif et al., Science (Washington DC), 260: 1317-1320, 1993]. Germline mutations in the VHL gene have been detected in the majority of VHL kindreds. The reported frequency of detection of VHL germline mutations has varied from 39 to 80% (J. M. Whaley et al., Am. J. Hum. Genet., 55: 1092-1102, 1994; Clinical Research Group for Japan, Hum. Mol. Genet., 4: 2233-2237, 1995; F. Chen et al., Hum. Mutat., 5: 66-75, 1995; E. R. Maher et al., J. Med. Genet., 33: 328-332, 1996; B. Zbar, Cancer Surv., 25: 219-232, 1995). Recently a quantitative Southern blotting procedure was found to improve this frequency (C. Stolle et al., Hum. Mutat., 12: 417-423, 1998). In the present study, we report the use of fluorescence in situ hybridization (FISH) as a method to detect and characterize VHL germline deletions. We reexamined a group of VHL patients shown previously by single-strand conformation and sequencing analysis not to harbor point mutations in the VHL locus. We found constitutional deletions in 29 of 30 VHL patients in this group using cosmid and P1 probes that cover the VHL locus. We then tested six phenotypically normal offspring from four of these VHL families: two were found to carry the deletion and the other four were deletion-free. In addition, germline mosaicism of the VHL gene was identified in

  4. Novel deletions involving the USH2A gene in patients with Usher syndrome and retinitis pigmentosa.

    Science.gov (United States)

    García-García, Gema; Aller, Elena; Jaijo, Teresa; Aparisi, Maria J; Larrieu, Lise; Faugère, Valérie; Blanco-Kelly, Fiona; Ayuso, Carmen; Roux, Anne-Francoise; Millán, José M

    2014-01-01

    The aim of the present work was to identify and characterize large rearrangements involving the USH2A gene in patients with Usher syndrome and nonsyndromic retinitis pigmentosa. The multiplex ligation-dependent probe amplification (MLPA) technique combined with a customized array-based comparative genomic hybridization (aCGH) analysis was applied to 40 unrelated patients previously screened for point mutations in the USH2A gene in which none or only one pathologic mutation was identified. We detected six large deletions involving USH2A in six out of the 40 cases studied. Three of the patients were homozygous for the deletion, and the remaining three were compound heterozygous with a previously identified USH2A point mutation. In five of these cases, the patients displayed Usher type 2, and the remaining case displayed nonsyndromic retinitis pigmentosa. The exact breakpoint junctions of the deletions found in USH2A in four of these cases were characterized. Our study highlights the need to develop improved efficient strategies of mutation screening based upon next generation sequencing (NGS) that reduce cost, time, and complexity and allow simultaneous identification of all types of disease-causing mutations in diagnostic procedures.

  5. A novel deletion in the thyrotropin Beta-subunit gene identified by array comparative genomic hybridization analysis causes central congenital hypothyroidism in a boy originating from Turkey.

    Science.gov (United States)

    Hermanns, Pia; Couch, Robert; Leonard, Norma; Klotz, Cherise; Pohlenz, Joachim

    2014-01-01

    Isolated central congenital hypothyroidism (ICCH) is rare but important. Most ICCH patients are diagnosed later, which results in severe growth failure and intellectual disability. We describe a boy with ICCH due to a large homozygous TSHβ gene deletion. A 51-day-old male Turkish infant, whose parents were first cousins, was admitted for evaluation of prolonged jaundice. His clinical appearance was compatible with hypothyroidism. Venous thyrotropin (TSH) was undetectably low, with a subsequent low free T4 and a low free T3, suggestive of central hypothyroidism. Using different PCR protocols, we could not amplify both coding exons of the boy's TSHβ gene, which suggested a deletion. An array comparative genomic hybridization (aCGH) using specific probes around the TSHβ gene locus showed him to be homozygous for a 6-kb deletion spanning all exons and parts of the 5' untranslated region of the gene. Infants who are clinically suspected of having hypothyroidism should be evaluated thoroughly, even if their TSH-based screening result is normal. In cases with ICCH and undetectably low TSH serum concentrations, a TSHβ gene deletion should be considered; aCGH should be performed when gene deletions are suspected. In such cases, PCR-based sequencing techniques give negative results.

  6. Two novel types of contiguous gene deletion of the AVPR2 and ARHGAP4 genes in unrelated Japanese kindreds with nephrogenic diabetes insipidus.

    Science.gov (United States)

    Demura, Masashi; Takeda, Yoshiyu; Yoneda, Takashi; Furukawa, Kenji; Usukura, Mikiya; Itoh, Yuji; Mabuchi, Hiroshi

    2002-01-01

    Study of two families containing individuals with nephrogenic diabetes insipidus (NDI) indicated different types of 21.3 kb and 26.3 kb deletions involving the AVPR2 and ARHGAP4 (RhoGAP C1) genes. In the case of the 21.3 kb deletion, the deletion consensus motif (5'-TGAAGG-3') and polypurine runs, known as the arrest site of polymerase alpha, were detected in the vicinity of the deletion junction. Inverted repeats (7/8 matches), believed to potentiate DNA loop formation, flank the deletion breakpoint. We propose this deletion to be the result of slipped mispairing during DNA replication. In the case of the 26.3 kb deletion, the 12,945 bp inverted region with the 10,003 bp internal deletion was accompanied with the 2,509 bp deletion in the 5'-side and the 13,785 bp deletion in the 3'-side. We defined three deletion junctions in this rearrangement (DJ1, DJ2, and DJ3) from the 5'-side. The surrounding sequence of DJ1 (5'-CCC-3') closely resembled that of DJ3 (5'-AGGG-3') (DJ1; 5'-cCCCgaggg-3', DJ3; 5'-ccccAGGG-3'), and DJ1 was located in the 5'-side of DJ3 without any overlapping in sequence. The immunoglobulin class switch (ICS) motif (5'-TGGGG-3') was found around the complementary sequence of DJ3. There was a 10-base palindrome (5'-aGACAtgtct-3') in the alignment of the DJ2 (5'-GACA-3') region. From these findings, we propose a novel mutation process with the rearrangement probably resulting from stem-loop induced non-homologous recombination in an ICS-like fashion. Both patients, despite lacking ARHGAP4, had no morphological, clinical, or laboratory abnormalities except for those usually found in patients with NDI. Copyright 2001 Wiley-Liss, Inc.

  7. High Resolution Melt (HRM) analysis is an efficient tool to genotype EMS mutants in complex crop genomes.

    Science.gov (United States)

    Lochlainn, Seosamh Ó; Amoah, Stephen; Graham, Neil S; Alamer, Khalid; Rios, Juan J; Kurup, Smita; Stoute, Andrew; Hammond, John P; Østergaard, Lars; King, Graham J; White, Phillip J; Broadley, Martin R

    2011-12-08

    Targeted Induced Loci Lesions IN Genomes (TILLING) is increasingly being used to generate and identify mutations in target genes of crop genomes. TILLING populations of several thousand lines have been generated in a number of crop species including Brassica rapa. Genetic analysis of mutants identified by TILLING requires an efficient, high-throughput and cost effective genotyping method to track the mutations through numerous generations. High resolution melt (HRM) analysis has been used in a number of systems to identify single nucleotide polymorphisms (SNPs) and insertion/deletions (IN/DELs) enabling the genotyping of different types of samples. HRM is ideally suited to high-throughput genotyping of multiple TILLING mutants in complex crop genomes. To date it has been used to identify mutants and genotype single mutations. The aim of this study was to determine if HRM can facilitate downstream analysis of multiple mutant lines identified by TILLING in order to characterise allelic series of EMS induced mutations in target genes across a number of generations in complex crop genomes. We demonstrate that HRM can be used to genotype allelic series of mutations in two genes, BraA.CAX1a and BraA.MET1.a in Brassica rapa. We analysed 12 mutations in BraA.CAX1.a and five in BraA.MET1.a over two generations including a back-cross to the wild-type. Using a commercially available HRM kit and the Lightscanner™ system we were able to detect mutations in heterozygous and homozygous states for both genes. Using HRM genotyping on TILLING derived mutants, it is possible to generate an allelic series of mutations within multiple target genes rapidly. Lines suitable for phenotypic analysis can be isolated approximately 8-9 months (3 generations) from receiving M3 seed of Brassica rapa from the RevGenUK TILLING service.

  8. High Resolution Melt (HRM analysis is an efficient tool to genotype EMS mutants in complex crop genomes

    Directory of Open Access Journals (Sweden)

    Lochlainn Seosamh Ó

    2011-12-01

    Full Text Available Abstract Background Targeted Induced Loci Lesions IN Genomes (TILLING is increasingly being used to generate and identify mutations in target genes of crop genomes. TILLING populations of several thousand lines have been generated in a number of crop species including Brassica rapa. Genetic analysis of mutants identified by TILLING requires an efficient, high-throughput and cost effective genotyping method to track the mutations through numerous generations. High resolution melt (HRM analysis has been used in a number of systems to identify single nucleotide polymorphisms (SNPs and insertion/deletions (IN/DELs enabling the genotyping of different types of samples. HRM is ideally suited to high-throughput genotyping of multiple TILLING mutants in complex crop genomes. To date it has been used to identify mutants and genotype single mutations. The aim of this study was to determine if HRM can facilitate downstream analysis of multiple mutant lines identified by TILLING in order to characterise allelic series of EMS induced mutations in target genes across a number of generations in complex crop genomes. Results We demonstrate that HRM can be used to genotype allelic series of mutations in two genes, BraA.CAX1a and BraA.MET1.a in Brassica rapa. We analysed 12 mutations in BraA.CAX1.a and five in BraA.MET1.a over two generations including a back-cross to the wild-type. Using a commercially available HRM kit and the Lightscanner™ system we were able to detect mutations in heterozygous and homozygous states for both genes. Conclusions Using HRM genotyping on TILLING derived mutants, it is possible to generate an allelic series of mutations within multiple target genes rapidly. Lines suitable for phenotypic analysis can be isolated approximately 8-9 months (3 generations from receiving M3 seed of Brassica rapa from the RevGenUK TILLING service.

  9. Altered phenotypic expression of immunoglobulin heavy-chain variable-region (VH) genes in Alicia rabbits probably reflects a small deletion in the VH genes closest to the joining region.

    Science.gov (United States)

    Allegrucci, M; Newman, B A; Young-Cooper, G O; Alexander, C B; Meier, D; Kelus, A S; Mage, R G

    1990-07-01

    Rabbits of the Alicia strain have a mutation (ali) that segregates with the immunoglobulin heavy-chain (lgh) locus and has a cis effect upon the expression of heavy-chain variable-region (VH) genes encoding the a2 allotype. In heterozygous a1/ali or a3/ali rabbits, serum immunoglobulins are almost entirely the products of the normal a1 or a3 allele and only traces of a2 immunoglobulin are detectable. Adult homozygous ali/ali rabbits likewise have normal immunoglobulin levels resulting from increased production of a-negative immunoglobulins and some residual ability to produce the a2 allotype. By contrast, the majority of the immunoglobulins of wild-type a2 rabbits are a2-positive and only a small percentage are a-negative. Genomic DNAs from homozygous mutant and wild-type animals were indistinguishable by Southern analyses using a variety of restriction enzyme digests and lgh probes. However, when digests with infrequently cutting enzymes were analyzed by transverse alternating-field electrophoresis, the ali DNA fragments were 10-15 kilobases smaller than the wild type. These fragments hybridized to probes both for VH and for a region of DNA a few kilobases downstream of the VH genes nearest the joining region. We suggest that this relatively small deletion affects a segment containing 3' VH genes with important regulatory functions, the loss of which leads to the ali phenotype. These results, and the fact that the 3' VH genes rearrange early in B-cell development, indicate that the 3' end of the VH locus probably plays a key role in regulation of VH gene expression.

  10. Regulatory role of tetR gene in a novel gene cluster of Acidovorax avenae subsp. avenae RS-1 under oxidative stress

    OpenAIRE

    Liu, He; Yang, Chun-Lan; Ge, Meng-Yu; Ibrahim, Muhammad; Li, Bin; Zhao, Wen-Jun; Chen, Gong-You; Zhu, Bo; Xie, Guan-Lin

    2014-01-01

    Acidovorax avenae subsp. avenae is the causal agent of bacterial brown stripe disease in rice. In this study, we characterized a novel horizontal transfer of a gene cluster, including tetR, on the chromosome of A. avenae subsp. avenae RS-1 by genome-wide analysis. TetR acted as a repressor in this gene cluster and the oxidative stress resistance was enhanced in tetR-deletion mutant strain. Electrophoretic mobility shift assay demonstrated that TetR regulator bound directly to the promoter of ...

  11. Application of oligonucleotide array CGH to the simultaneous detection of a deletion in the nuclear TK2 gene and mtDNA depletion.

    Science.gov (United States)

    Zhang, Shulin; Li, Fang-Yuan; Bass, Harold N; Pursley, Amber; Schmitt, Eric S; Brown, Blaire L; Brundage, Ellen K; Mardach, Rebecca; Wong, Lee-Jun

    2010-01-01

    Thymidine kinase 2 (TK2), encoded by the TK2 gene on chromosome 16q22, is one of the deoxyribonucleoside kinases responsible for the maintenance of mitochondrial deoxyribonucleotide pools. Defects in TK2 mainly cause a myopathic form of the mitochondrial DNA depletion syndrome (MDDS). Currently, only point mutations and small insertions and deletions have been reported in TK2 gene; gross rearrangements of TK2 gene and possible hepatic involvement in patients with TK2 mutations have not been described. We report a non-consanguineous Jordanian family with three deceased siblings due to mtDNA depletion. Sequence analysis of the father detected a heterozygous c.761T>A (p.I254N) mutation in his TK2 gene; however, point mutations in the mother were not detected. Subsequent gene dosage analysis using oligonucleotide array CGH identified an intragenic approximately 5.8-kb deletion encompassing the 5'UTR to intron 2 of her TK2 gene. Sequence analysis confirmed that the deletion spans c.1-495 to c.283-2899 of the TK2 gene (nucleotide 65,136,256-65,142,086 of chromosome 16). Analysis of liver and muscle specimens from one of the deceased infants in this family revealed compound heterozygosity for the paternal point mutation and maternal intragenic deletion. In addition, a significant reduction of the mtDNA content in liver and muscle was detected (10% and 20% of age- and tissue-matched controls, respectively). Prenatal diagnosis was performed in the third pregnancy. The fetus was found to carry both the point mutation and the deletion. This child died 6months after birth due to myopathy. A serum specimen demonstrated elevated liver transaminases in two of the infants from whom results were available. This report expands the mutation spectrum associated with TK2 deficiency. While the myopathic form of MDDS appears to be the main phenotype of TK2 mutations, liver dysfunction may also be a part of the mitochondrial depletion syndrome caused by TK2 gene defects.

  12. In Vivo Differences in the Virulence, Pathogenicity, and Induced Protective Immunity of wboA Mutants from Genetically Different Parent Brucella spp.

    Science.gov (United States)

    Wang, Zhen; Niu, Jianrui; Wang, Shuangshan

    2013-01-01

    To explore the effects of the genetic background on the characteristics of wboA gene deletion rough mutants generated from different parent Brucella sp. strains, we constructed the rough-mutant strains Brucella melitensis 16 M-MB6, B. abortus 2308-SB6, B. abortus S19-RB6, and B. melitensis NI-NB6 and evaluated their survival, pathogenicity, and induced protective immunity in mice and sheep. In mice, the survival times of the four mutants were very different in the virulence assay, from less than 6 weeks for B. abortus S19-RB6 to 11 weeks for B. abortus 2308-SB6 and B. melitensis NI-NB6. However, B. abortus S19-RB6 and B. melitensis 16 M-MB6, with a shorter survival time in mice, offered better protection against challenges with B. abortus 2308 in protection tests than B. abortus 2308-SB6 and B. melitensis NI-NB6. It seems that the induced protective immunity of each mutant might not be associated with its survival time in vivo. In the cross-protection assay, both B. melitensis 16 M-MB6 and B. abortus S19-RB6 induced greater protection against homologous challenges than heterologous challenges. When pregnant sheep were inoculated with B. abortus S19-RB6 and B. melitensis 16 M-MB6, B. abortus S19-RB6 did not induce abortion, whereas B. melitensis 16 M-MB6 did. These results demonstrated the differences in virulence, pathogenicity, and protective immunity in vivo in the wboA deletion mutants from genetically different parent Brucella spp. and also indicated that future rough vaccine strain development could be promising if suitable parent Brucella strains and/or genes were selected. PMID:23239800

  13. Variants in linkage disequilibrium with the late cornified envelope gene cluster deletion are associated with susceptibility to psoriatic arthritis.

    LENUS (Irish Health Repository)

    Bowes, John

    2010-12-01

    A common deletion mapping to the psoriasis susceptibility locus 4 on chromosome 1q21, encompassing two genes of the late cornified envelope (LCE) gene cluster, has been associated with an increased risk of psoriasis vulgaris (PsV). One previous report found no association of the deletion with psoriatic arthritis (PsA), suggesting it may be a specific risk factor for PsV. Given the genetic overlap between PsA and PsV, a study was undertaken to investigate whether single nucleotide polymorphisms (SNPs) mapping to this locus are risk factors for PsA in a UK and Irish population.

  14. Analysis of large deletions in BRCA1, BRCA2 and PALB2 genes in Finnish breast and ovarian cancer families

    International Nuclear Information System (INIS)

    Pylkäs, Katri; Erkko, Hannele; Nikkilä, Jenni; Sólyom, Szilvia; Winqvist, Robert

    2008-01-01

    BRCA1 and BRCA2 are the two most important genes associated with familial breast and ovarian cancer susceptibility. In addition, PALB2 has recently been identified as a breast cancer susceptibility gene in several populations. Here we have evaluated whether large genomic rearrangement in these genes could explain some of Finnish breast and/or ovarian cancer families. Altogether 61 index patients of Northern Finnish breast and/or ovarian cancer families were analyzed by Multiplex ligation-dependent probe amplification (MLPA) method in order to identify exon deletions and duplications in BRCA1, BRCA2 and PALB2. The families have been comprehensively screened for germline mutation in these genes by conventional methods of mutation analysis and were found negative. We identified one large deletion in BRCA1, deleting the most part of the gene (exon 1A-13) in one family with family history of ovarian cancer. No large genomic rearrangements were identified in either BRCA2 or PALB2. In Finland, women eligible for BRCA1 or BRCA2 mutation screening, when found negative, could benefit from screening for large genomic rearrangements at least in BRCA1. On the contrary, the genomic rearrangements in PALB2 seem not to contribute to the hereditary breast cancer susceptibility

  15. DIA1R is an X-linked gene related to Deleted In Autism-1.

    Directory of Open Access Journals (Sweden)

    Azhari Aziz

    Full Text Available BACKGROUND: Autism spectrum disorders (ASDS are frequently occurring disorders diagnosed by deficits in three core functional areas: social skills, communication, and behaviours and/or interests. Mental retardation frequently accompanies the most severe forms of ASDs, while overall ASDs are more commonly diagnosed in males. Most ASDs have a genetic origin and one gene recently implicated in the etiology of autism is the Deleted-In-Autism-1 (DIA1 gene. METHODOLOGY/PRINCIPAL FINDINGS: Using a bioinformatics-based approach, we have identified a human gene closely related to DIA1, we term DIA1R (DIA1-Related. While DIA1 is autosomal (chromosome 3, position 3q24, DIA1R localizes to the X chromosome at position Xp11.3 and is known to escape X-inactivation. The gene products are of similar size, with DIA1 encoding 430, and DIA1R 433, residues. At the amino acid level, DIA1 and DIA1R are 62% similar overall (28% identical, and both encode signal peptides for targeting to the secretory pathway. Both genes are ubiquitously expressed, including in fetal and adult brain tissue. CONCLUSIONS/SIGNIFICANCE: Examination of published literature revealed point mutations in DIA1R are associated with X-linked mental retardation (XLMR and DIA1R deletion is associated with syndromes with ASD-like traits and/or XLMR. Together, these results support a model where the DIA1 and DIA1R gene products regulate molecular traffic through the cellular secretory pathway or affect the function of secreted factors, and functional deficits cause disorders with ASD-like symptoms and/or mental retardation.

  16. Cryptic intragenic deletion of the SHOX gene in a family with Léri-Weill dyschondrosteosis detected by Multiplex Ligation-Dependent Probe Amplification (MLPA).

    Science.gov (United States)

    Funari, Mariana F A; Jorge, Alexander A L; Pinto, Emilia M; Arnhold, Ivo J P; Mendonca, Berenice B; Nishi, Mirian Y

    2008-11-01

    LWD is associated to SHOX haploinsufficiency, in most cases, due to gene deletion. Generally FISH and microsatellite analysis are used to identify SHOX deletion. MLPA is a new method of detecting gene copy variation, allowing simultaneous analysis of several regions. Here we describe the presence of a SHOX intragenic deletion in a family with LWD, analyzed through different methodologies. Genomic DNA of 11 subjects from one family were studied by microsatellite analysis, direct sequencing and MLPA. FISH was performed in two affected individuals. Microsatellite analysis showed that all affected members shared the same haplotype suggesting the involvement of SHOX. MLPA detected an intragenic deletion involving exons IV-VIa, which was not detected by FISH and microsatellite analysis. In conclusion, the MLPA technique was proved to be the best solution on detecting this small deletion, it has the advantage of being less laborious also allowing the analysis of several regions simultaneously.

  17. Detection of large scale 3' deletions in the PMS2 gene amongst Colon-CFR participants: have we been missing anything?

    Science.gov (United States)

    Clendenning, Mark; Walsh, Michael D; Gelpi, Judith Balmana; Thibodeau, Stephen N; Lindor, Noralane; Potter, John D; Newcomb, Polly; LeMarchand, Loic; Haile, Robert; Gallinger, Steve; Hopper, John L; Jenkins, Mark A; Rosty, Christophe; Young, Joanne P; Buchanan, Daniel D

    2013-09-01

    Current screening practices have been able to identify PMS2 mutations in 78 % of cases of colorectal cancer from the Colorectal Cancer Family Registry (Colon CFR) which showed solitary loss of the PMS2 protein. However the detection of large-scale deletions in the 3' end of the PMS2 gene has not been possible due to technical difficulties associated with pseudogene sequences. Here, we utilised a recently described MLPA/long-range PCR-based approach to screen the remaining 22 % (n = 16) of CRC-affected probands for mutations in the 3' end of the PMS2 gene. No deletions encompassing any or all of exons 12 through 15 were identified; therefore, our results suggest that 3' deletions in PMS2 are not a frequent occurrence in such families.

  18. [Carcinogenesis and its mechanism of mutant-type[12Asp]K-ras4B gene].

    Science.gov (United States)

    Gui, Li-ming; Wei, Li-hui; Zhang, Ying-mei; Wang, Jian-liu; Wang, Ying; Chen, Ying; Ma, Da-long

    2002-01-01

    Ras gene plays an important role in the extra- and intra-cellular signal transduction pathway. It mediates series cascade reactions, and eventually actives transcriptional factors in nucleus. It is unknown on the mechanism of carcinogenesis of Ras gene in endometrial carcinoma, though K-ras mutant is very common in endometrial atypical hyperplasia and carcinoma. On basis of discovering the mutation in 12th codon of K-ras in endometrial carcinoma cell line, HEC-1A, we explored the carcinogenesis and molecular mechanism of mutant-type [12Asp] K-ras4B gene. (1) Full-length [12Asp]K-ras4B cDNA was amplified with RT-PCR, then inserted into pcDI eukaryotic expressive vector. (2) Morphological change, growth kinetics in vitro and tumorigencity in nude mice in vivo after-before transfection were observed. (3) To test the cell growth kinetics by methyl thiazolium tetrazolium (MTT) and [3H]thymidine incorporation method. (1) The authors have successfully constructed eukaryotic expression plasmid pcDI-[12Asp] K-ras4B; (2) To confirm that [12Asp] K-ras4B mutant can trigger the neoplastic transformation of NIH3T3 cells by test in vitro and in vivo. (3) After pMCV-RasN17 plasmid, a Ras mutant were transfected into pcDI-[12Asp] K-ras4B cells, the growth of this cell were restrained significantly in comparison with control group. (4) These findings indicate the expression of RafS621A resulted in remarkable inhibition in proliferation of pcDI-[12Asp]K-ras4B cell (P ras4B cell growth (P ras4B gene alone is able to cause neoplastic transformation in NIH3T3 cells in vitro and in vivo. (2) [12Asp]K-ras4B-induced NIH3T3 cells neoplastic transformation required Raf signaling pathway.

  19. Multiple organ gigantism caused by mutation in VmPPD gene in blackgram (Vigna mungo).

    Science.gov (United States)

    Naito, Ken; Takahashi, Yu; Chaitieng, Bubpa; Hirano, Kumi; Kaga, Akito; Takagi, Kyoko; Ogiso-Tanaka, Eri; Thavarasook, Charaspon; Ishimoto, Masao; Tomooka, Norihiko

    2017-03-01

    Seed size is one of the most important traits in leguminous crops. We obtained a recessive mutant of blackgram that had greatly enlarged leaves, stems and seeds. The mutant produced 100% bigger leaves, 50% more biomass and 70% larger seeds though it produced 40% less number of seeds. We designated the mutant as multiple-organ-gigantism ( mog ) and found the mog phenotype was due to increase in cell numbers but not in cell size. We also found the mog mutant showed a rippled leaf ( rl ) phenotype, which was probably caused by a pleiotropic effect of the mutation. We performed a map-based cloning and successfully identified an 8 bp deletion in the coding sequence of VmPPD gene, an orthologue of Arabidopsis PEAPOD ( PPD ) that regulates arrest of cell divisions in meristematic cells . We found no other mutations in the neighboring genes between the mutant and the wild type. We also knocked down GmPPD genes and reproduced both the mog and rl phenotypes in soybean. Controlling PPD genes to produce the mog phenotype is highly valuable for breeding since larger seed size could directly increase the commercial values of grain legumes.

  20. Altered expression of the caffeine synthase gene in a naturally caffeine-free mutant of Coffea arabica

    Directory of Open Access Journals (Sweden)

    Mirian Perez Maluf

    2009-01-01

    Full Text Available In this work, we studied the biosynthesis of caffeine by examining the expression of genes involved in this biosynthetic pathway in coffee fruits containing normal or low levels of this substance. The amplification of gene-specific transcripts during fruit development revealed that low-caffeine fruits had a lower expression of the theobromine synthase and caffeine synthase genes and also contained an extra transcript of the caffeine synthase gene. This extra transcript contained only part of exon 1 and all of exon 3. The sequence of the mutant caffeine synthase gene revealed the substitution of isoleucine for valine in the enzyme active site that probably interfered with enzymatic activity. These findings indicate that the absence of caffeine in these mutants probably resulted from a combination of transcriptional regulation and the presence of mutations in the caffeine synthase amino acid sequence.

  1. Deletion of Lytic Transglycosylases Increases Beta-Lactam Resistance in Shewanella oneidensis

    Science.gov (United States)

    Yin, Jianhua; Sun, Yiyang; Sun, Yijuan; Yu, Zhiliang; Qiu, Juanping; Gao, Haichun

    2018-01-01

    Production of chromosome-encoded β-lactamases confers resistance to β-lactams in many Gram-negative bacteria. Some inducible β-lactamases, especially the class C β-lactamase AmpC in Enterobacteriaceae, share a common regulatory mechanism, the ampR-ampC paradigm. Induction of ampC is intimately linked to peptidoglycan recycling, and the LysR-type transcriptional regulator AmpR plays a central role in the process. However, our previous studies have demonstrated that the expression of class D β-lactamase gene blaA in Shewanella oneidensis is distinct from the established paradigm since an AmpR homolog is absent and major peptidoglycan recycling enzymes play opposite roles in β-lactamase expression. Given that lytic transglycosylases (LTs), a class of peptidoglycan hydrolases cleaving the β-1,4 glycosidic linkage in glycan strands of peptidoglycan, can disturb peptidoglycan recycling, and thus may affect induction of blaA. In this study, we investigated impacts of such enzymes on susceptibility to β-lactams. Deletion of three LTs (SltY, MltB and MltB2) increased β-lactam resistance, while four other LTs (MltD, MltD2, MltF, and Slt2) seemed dispensable to β-lactam resistance. The double LT mutants ΔmltBΔmltB2 and ΔsltYΔmltB2 had β-lactam resistance stronger than any of the single mutants. Deletion of ampG (encoding permease AmpG) and mrcA (encoding penicillin binding protein 1a, PBP1a) from both double LT mutants further increased the resistance to β-lactams. Notably, all increased β-lactam resistance phenotypes were in accordance with enhanced blaA expression. Although significant, the increase in β-lactamase activity after inactivating LTs is much lower than that produced by PBP1a inactivation. Our data implicate that LTs play important roles in blaA expression in S. oneidensis. PMID:29403465

  2. Sorting genomes by reciprocal translocations, insertions, and deletions.

    Science.gov (United States)

    Qi, Xingqin; Li, Guojun; Li, Shuguang; Xu, Ying

    2010-01-01

    The problem of sorting by reciprocal translocations (abbreviated as SBT) arises from the field of comparative genomics, which is to find a shortest sequence of reciprocal translocations that transforms one genome Pi into another genome Gamma, with the restriction that Pi and Gamma contain the same genes. SBT has been proved to be polynomial-time solvable, and several polynomial algorithms have been developed. In this paper, we show how to extend Bergeron's SBT algorithm to include insertions and deletions, allowing to compare genomes containing different genes. In particular, if the gene set of Pi is a subset (or superset, respectively) of the gene set of Gamma, we present an approximation algorithm for transforming Pi into Gamma by reciprocal translocations and deletions (insertions, respectively), providing a sorting sequence with length at most OPT + 2, where OPT is the minimum number of translocations and deletions (insertions, respectively) needed to transform Pi into Gamma; if Pi and Gamma have different genes but not containing each other, we give a heuristic to transform Pi into Gamma by a shortest sequence of reciprocal translocations, insertions, and deletions, with bounds for the length of the sorting sequence it outputs. At a conceptual level, there is some similarity between our algorithm and the algorithm developed by El Mabrouk which is used to sort two chromosomes with different gene contents by reversals, insertions, and deletions.

  3. Guidelines for the naming of genes, gene products, and mutants in the opportunistic protists.

    Science.gov (United States)

    Limper, Andrew H; Weiss, Louis M

    2011-01-01

    The opportunistic protists encompass a wide diversity of organisms including Pneumocystis, Toxoplasma, cryptosporidia, microsporidia, and related genera. Recent advances in the molecular biology and cellular biochemistry of these organisms have led to the identification of an ever growing numbers of key genes and their cognate proteins. Until now, these molecules have not been designated using any consistent nomenclature system, leading to considerable confusion. The participants of the 11th International Workshop on Opportunistic Protists met on August 3, 2010 to reach consensus of a nomenclature system for genes, gene products, and mutants in the opportunistic protists. The following summary reports the consensus agreement to move toward a unified nomenclature system for these organisms. The system is adapted from that used for Saccharomyces cerevisiae. © 2011 The Author(s). Journal of Eukaryotic Microbiology © 2011 International Society of Protistologists.

  4. Molecular analysis of waxy mutants in rice

    International Nuclear Information System (INIS)

    Yatou, O.; Amano, E.

    1990-01-01

    Full text: The 'waxy' gene is a structural gene coding a glycosyl transferase which synthesises amylose in the endosperm tissue. 'Non-waxy' rice cultivars have an active gene and their amylose content is 18-25% depending upon gene performance and modifier genes. In 'waxy' rice, no amylose is found because the enzyme is absent. In mutants induced by gamma rays, neutrons, EI or EMS, amylose content ranged from 0 to 20%, i.e. there are intermediate phenotypes as well. Some of them had the same amount of the enzyme as a 'non-waxy' cultivar, even fully 'waxy' mutants showed a certain amount of the enzyme. This suggests that in mutants there may be no structural change in the enzyme gene but the enzyme produced might be less active. By molecular analysis of the mutants' genes it was found that only two mutants induced by thermal neutrons show structural alterations, the changes in other mutants are either too small to be detected by Southern analysis or are outside the structural gene in question. (author)

  5. Deletion of the Snord116/SNORD116 Alters Sleep in Mice and Patients with Prader-Willi Syndrome.

    Science.gov (United States)

    Lassi, Glenda; Priano, Lorenzo; Maggi, Silvia; Garcia-Garcia, Celina; Balzani, Edoardo; El-Assawy, Nadia; Pagani, Marco; Tinarelli, Federico; Giardino, Daniela; Mauro, Alessandro; Peters, Jo; Gozzi, Alessandro; Grugni, Graziano; Tucci, Valter

    2016-03-01

    Sleep-wake disturbances are often reported in Prader-Willi syndrome (PWS), a rare neurodevelopmental syndrome that is associated with paternally-expressed genomic imprinting defects within the human chromosome region 15q11-13. One of the candidate genes, prevalently expressed in the brain, is the small nucleolar ribonucleic acid-116 (SNORD116). Here we conducted a translational study into the sleep abnormalities of PWS, testing the hypothesis that SNORD116 is responsible for sleep defects that characterize the syndrome. We studied sleep in mutant mice that carry a deletion of Snord116 at the orthologous locus (mouse chromosome 7) of the human PWS critical region (PWScr). In particular, we assessed EEG and temperature profiles, across 24-h, in PWScr (m+/p-) heterozygous mutants compared to wild-type littermates. High-resolution magnetic resonance imaging (MRI) was performed to explore morphoanatomical differences according to the genotype. Moreover, we complemented the mouse work by presenting two patients with a diagnosis of PWS and characterized by atypical small deletions of SNORD116. We compared the individual EEG parameters of patients with healthy subjects and with a cohort of obese subjects. By studying the mouse mutant line PWScr(m+/p-), we observed specific rapid eye movement (REM) sleep alterations including abnormal electroencephalograph (EEG) theta waves. Remarkably, we observed identical sleep/EEG defects in the two PWS cases. We report brain morphological abnormalities that are associated with the EEG alterations. In particular, mouse mutants have a bilateral reduction of the gray matter volume in the ventral hippocampus and in the septum areas, which are pivotal structures for maintaining theta rhythms throughout the brain. In PWScr(m+/p-) mice we also observed increased body temperature that is coherent with REM sleep alterations in mice and human patients. Our study indicates that paternally expressed Snord116 is involved in the 24-h regulation of

  6. The diagnosis and molecular analysis of a novel 21.9kb deletion (Qinzhou type deletion) causing α+ thalassemia.

    Science.gov (United States)

    Long, Ju; Yan, Shanhuo; Lao, Kegan; Pang, Wanrong; Ye, Xuehe; Sun, Lei

    2014-04-01

    α-Thalassemia is a common single-gene genetic disease that can cause Hb Bart's hydrops fetalis and Hb H disease in tropical and subtropical regions. When examining conventional thalassemia genes, an only detected --(SEA) genotype sample needs further analysis. In doing so, we found a novel 21.9kb deletion (Qinzhou type deletion). The deletion position of the novel 21.9kb deletion is from 14373bp to 36299bp of the α-globin gene cluster (NG_000006.1); thus, there exists a 21927bp sequence deletion, into which a 29bp sequence is added. After sequence analysis, a group of Gap-PCR primers were synthesized to diagnose this novel thalassemia genotype. Through pedigree analysis, we deduced that the propositus obtained the novel alleles from her mother. The genotype of this propositus is --(SEA)/-α(21.9) and its phenotype conforms to the characteristics of Hb H disease, establishing that the combination between -α(21.9) genotype and α(0) genotype can lead to Hb H disease. By molecular analysis, we established that this case fits the characteristic of an α(+) thalassemia genotype. © 2013.

  7. Phosphoribosyl diphosphate synthetase-independent NAD de novo synthesis in Escherichia coli: a new phenotype of phosphate regulon mutants

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne

    1996-01-01

    Phosphoribosyl diphosphate-lacking (Δprs) mutant strains of Escherichia coli require NAD, guanosine, uridine, histidine, and tryptophan for growth. NAD is required by phosphoribosyl diphosphate-lacking mutants because of lack of one of the substrates for the quinolinate phosphoribosyltransferase...... reaction, an enzyme of the NAD de novo pathway. Several NAD-independent mutants of a host from which prs had been deleted were isolated; all of them were shown to have lesions in the pstSCAB-phoU operon, in which mutations lead to derepression of the Pho regulon. In addition NAD-independent growth...... was dependent on a functional quinolinate phosphoribosyltransferase. The prs suppressor mutations led to the synthesis of a new phosphoryl compound that may act as a precursor for a new NAD biosynthetic pathway. This compound may be synthesized by the product of an unknown phosphate starvation-inducible gene...

  8. Klf5 deletion promotes Pten deletion-initiated luminal-type mouse prostate tumors through multiple oncogenic signaling pathways.

    Science.gov (United States)

    Xing, Changsheng; Ci, Xinpei; Sun, Xiaodong; Fu, Xiaoying; Zhang, Zhiqian; Dong, Eric N; Hao, Zhao-Zhe; Dong, Jin-Tang

    2014-11-01

    Krüppel-like factor 5 (KLF5) regulates multiple biologic processes. Its function in tumorigenesis appears contradictory though, showing both tumor suppressor and tumor promoting activities. In this study, we examined whether and how Klf5 functions in prostatic tumorigenesis using mice with prostate-specific deletion of Klf5 and phosphatase and tensin homolog (Pten), both of which are frequently inactivated in human prostate cancer. Histologic analysis demonstrated that when one Pten allele was deleted, which causes mouse prostatic intraepithelial neoplasia (mPIN), Klf5 deletion accelerated the emergence and progression of mPIN. When both Pten alleles were deleted, which causes prostate cancer, Klf5 deletion promoted tumor growth, increased cell proliferation, and caused more severe morphologic and molecular alterations. Homozygous deletion of Klf5 was more effective than hemizygous deletion. Unexpectedly, while Pten deletion alone expanded basal cell population in a tumor as reported, Klf5 deletion in the Pten-null background clearly reduced basal cell population while expanding luminal cell population. Global gene expression profiling, pathway analysis, and experimental validation indicate that multiple mechanisms could mediate the tumor-promoting effect of Klf5 deletion, including the up-regulation of epidermal growth factor and its downstream signaling molecules AKT and ERK and the inactivation of the p15 cell cycle inhibitor. KLF5 also appears to cooperate with several transcription factors, including CREB1, Sp1, Myc, ER and AR, to regulate gene expression. These findings validate the tumor suppressor function of KLF5. They also yield a mouse model that shares two common genetic alterations with human prostate cancer-mutation/deletion of Pten and deletion of Klf5.

  9. Heterozygous Hfe gene deletion leads to impaired glucose homeostasis, but not liver injury in mice fed a high-calorie diet.

    Science.gov (United States)

    Britton, Laurence; Jaskowski, Lesley; Bridle, Kim; Santrampurwala, Nishreen; Reiling, Janske; Musgrave, Nick; Subramaniam, V Nathan; Crawford, Darrell

    2016-06-01

    Heterozygous mutations of the Hfe gene have been proposed as cofactors in the development and progression of nonalcoholic fatty liver disease (NAFLD). Homozygous Hfe deletion previously has been shown to lead to dysregulated hepatic lipid metabolism and accentuated liver injury in a dietary mouse model of NAFLD We sought to establish whether heterozygous deletion of Hfe is sufficient to promote liver injury when mice are exposed to a high-calorie diet (HCD). Eight-week-old wild-type and Hfe(+/-) mice received 8 weeks of a control diet or HCD Liver histology and pathways of lipid and iron metabolism were analyzed. Liver histology demonstrated that mice fed a HCD had increased NAFLD activity score (NAS), steatosis, and hepatocyte ballooning. However, liver injury was unaffected by Hfe genotype. Hepatic iron concentration (HIC) was increased in Hfe(+/-) mice of both dietary groups. HCD resulted in a hepcidin-independent reduction in HIC Hfe(+/-) mice demonstrated raised fasting serum glucose concentrations and HOMA-IR score, despite unaltered serum adiponectin concentrations. Downstream regulators of hepatic de novo lipogenesis (pAKT, SREBP-1, Fas, Scd1) and fatty acid oxidation (AdipoR2, Pparα, Cpt1) were largely unaffected by genotype. In summary, heterozygous Hfe gene deletion is associated with impaired iron and glucose metabolism. However, unlike homozygous Hfe deletion, heterozygous gene deletion did not affect lipid metabolism pathways or liver injury in this model. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  10. Characterization of a second physiologically relevant lactose permease gene (lacpB) in Aspergillus nidulans.

    Science.gov (United States)

    Fekete, Erzsébet; Orosz, Anita; Kulcsár, László; Kavalecz, Napsugár; Flipphi, Michel; Karaffa, Levente

    2016-05-01

    In Aspergillus nidulans, uptake rather than hydrolysis is the rate-limiting step of lactose catabolism. Deletion of the lactose permease A-encoding gene (lacpA) reduces the growth rate on lactose, while its overexpression enables faster growth than wild-type strains are capable of. We have identified a second physiologically relevant lactose transporter, LacpB. Glycerol-grown mycelia from mutants deleted for lacpB appear to take up only minute amounts of lactose during the first 60 h after a medium transfer, while mycelia of double lacpA/lacpB-deletant strains are unable to produce new biomass from lactose. Although transcription of both lacp genes was strongly induced by lactose, their inducer profiles differ markedly. lacpA but not lacpB expression was high in d-galactose cultures. However, lacpB responded strongly also to β-linked glucopyranose dimers cellobiose and sophorose, while these inducers of the cellulolytic system did not provoke any lacpA response. Nevertheless, lacpB transcript was induced to higher levels on cellobiose in strains that lack the lacpA gene than in a wild-type background. Indeed, cellobiose uptake was faster and biomass formation accelerated in lacpA deletants. In contrast, in lacpB knockout strains, growth rate and cellobiose uptake were considerably reduced relative to wild-type, indicating that the cellulose and lactose catabolic systems employ common elements. Nevertheless, our permease mutants still grew on cellobiose, which suggests that its uptake in A. nidulans prominently involves hitherto unknown transport systems.

  11. An intronic deletion in the PROM1 gene leads to autosomal recessive cone-rod dystrophy.

    Science.gov (United States)

    Eidinger, Osnat; Leibu, Rina; Newman, Hadas; Rizel, Leah; Perlman, Ido; Ben-Yosef, Tamar

    2015-01-01

    To investigate the genetic basis for autosomal recessive cone-rod dystrophy (CRD) in a consanguineous Israeli Jewish family. Patients underwent a detailed ophthalmic evaluation, including eye examination, visual field testing, optical coherence tomography (OCT), and electrophysiological tests, electroretinography (ERG) and visual evoked potential (VEP). Genome-wide homozygosity mapping using a single nucleotide polymorphism (SNP) array was performed to identify homozygous regions shared among two of the affected individuals. Mutation screening of the underlying gene was performed with direct sequencing. In silico and in vitro analyses were used to predict the effect of the identified mutation on splicing. The affected family members are three siblings who have various degrees of progressive visual deterioration, glare, color vision abnormalities, and night vision difficulties. Visual field tests revealed central scotomas of different extension. Cone and rod ERG responses were reduced, with cones more severely affected. Homozygosity mapping revealed several homozygous intervals shared among two of the affected individuals. One included the PROM1 gene. Sequence analysis of the 26 coding exons of PROM1 in one affected individual revealed no mutations in the coding sequence or in intronic splice sites. However, in intron 21, proximate to the intron-exon junction, we observed a homozygous 10 bp deletion between positions -26 and -17 (c.2281-26_-17del). The deletion was linked to a known SNP, c.2281-6C>G. The deletion cosegregated with the disease in the family, and was not detected in public databases or in 101 ethnically-matched control individuals. In silico analysis predicted that this deletion would lead to altered intron 21 splicing. Bioinformatic analysis predicted that a recognition site for the SRSF2 splicing factor is located within the deleted sequence. The in vitro splicing assay demonstrated that c.2281-26_-17del leads to complete exon 22 skipping. A novel

  12. E3L and F1L Gene Functions Modulate the Protective Capacity of Modified Vaccinia Virus Ankara Immunization in Murine Model of Human Smallpox

    Directory of Open Access Journals (Sweden)

    Asisa Volz

    2018-01-01

    Full Text Available The highly attenuated Modified Vaccinia virus Ankara (MVA lacks most of the known vaccinia virus (VACV virulence and immune evasion genes. Today MVA can serve as a safety-tested next-generation smallpox vaccine. Yet, we still need to learn about regulatory gene functions preserved in the MVA genome, such as the apoptosis inhibitor genes F1L and E3L. Here, we tested MVA vaccine preparations on the basis of the deletion mutant viruses MVA-ΔF1L and MVA-ΔE3L for efficacy against ectromelia virus (ECTV challenge infections in mice. In non-permissive human tissue culture the MVA deletion mutant viruses produced reduced levels of the VACV envelope antigen B5. Upon mousepox challenge at three weeks after vaccination, MVA-ΔF1L and MVA-ΔE3L exhibited reduced protective capacity in comparison to wildtype MVA. Surprisingly, however, all vaccines proved equally protective against a lethal ECTV infection at two days after vaccination. Accordingly, the deletion mutant MVA vaccines induced high levels of virus-specific CD8+ T cells previously shown to be essential for rapidly protective MVA vaccination. These results suggest that inactivation of the anti-apoptotic genes F1L or E3L modulates the protective capacity of MVA vaccination most likely through the induction of distinct orthopoxvirus specific immunity in the absence of these viral regulatory proteins.

  13. New genes of Xanthomonas citri subsp. citri involved in pathogenesis and adaptation revealed by a transposon-based mutant library.

    Science.gov (United States)

    Laia, Marcelo L; Moreira, Leandro M; Dezajacomo, Juliana; Brigati, Joice B; Ferreira, Cristiano B; Ferro, Maria I T; Silva, Ana C R; Ferro, Jesus A; Oliveira, Julio C F

    2009-01-16

    Citrus canker is a disease caused by the phytopathogens Xanthomonas citri subsp. citri, Xanthomonas fuscans subsp. aurantifolli and Xanthomonas alfalfae subsp. citrumelonis. The first of the three species, which causes citrus bacterial canker type A, is the most widely spread and severe, attacking all citrus species. In Brazil, this species is the most important, being found in practically all areas where citrus canker has been detected. Like most phytobacterioses, there is no efficient way to control citrus canker. Considering the importance of the disease worldwide, investigation is needed to accurately detect which genes are related to the pathogen-host adaptation process and which are associated with pathogenesis. Through transposon insertion mutagenesis, 10,000 mutants of Xanthomonas citri subsp. citri strain 306 (Xcc) were obtained, and 3,300 were inoculated in Rangpur lime (Citrus limonia) leaves. Their ability to cause citrus canker was analyzed every 3 days until 21 days after inoculation; a set of 44 mutants showed altered virulence, with 8 presenting a complete loss of causing citrus canker symptoms. Sequencing of the insertion site in all 44 mutants revealed that 35 different ORFs were hit, since some ORFs were hit in more than one mutant, with mutants for the same ORF presenting the same phenotype. An analysis of these ORFs showed that some encoded genes were previously known as related to pathogenicity in phytobacteria and, more interestingly, revealed new genes never implicated with Xanthomonas pathogenicity before, including hypothetical ORFs. Among the 8 mutants with no canker symptoms are the hrpB4 and hrpX genes, two genes that belong to type III secretion system (TTSS), two hypothetical ORFS and, surprisingly, the htrA gene, a gene reported as involved with the virulence process in animal-pathogenic bacteria but not described as involved in phytobacteria virulence. Nucleic acid hybridization using labeled cDNA probes showed that some of the

  14. Mapping of a rice thermosensitive genic male sterility gene from a TGMS mutant line

    Energy Technology Data Exchange (ETDEWEB)

    Vu Duc Quang; Nguyen Van Dong; Pham Ngoc Luong; Tran Duy Quy [Argicultural Genetics Institute, Hanoi (Viet Nam); Nguyen, Henry T. [Texas Tech Univ., Department of Plant and Soil Science, Lubbock TX (United States)

    2001-03-01

    At the Agricultural Genetics Institute (AGI), Hanoi, Vietnam, a number of thermo-sensitive genic male sterility (TGMS) homozygous rice lines have been developed by means of experimental mutagenesis followed by anther culture techniques. One of them (TGMS-1 indica mutant line) was used in this research. The critical temperature (at the period from pollen mother cell formation to the beginning of meiotic division) for TGMS-1 sterility was 24-25degC, below which the plants were fertile and above which the plants became sterile. Segregation analysis showed that the TGMS trait of the TGMS-1 mutant line was controlled by a single recessive gene. An F{sub 2} mapping population from a cross between TGMS-1 mutant line and CH1 (a fertile indica line) was developed for tagging and mapping the TGMS gene. From survey of 200 AFLP primer combinations in a bulked segregant analysis, 4 AFLP markers (E2/M5-200, E3/M16-400, E5/M12-600 and E5/M12-200) linked to TGMS-1 gene were identified and cloned. All except E2/M5-200 were found to be low-copy number sequences. The marker E5/M12-600 showed polymorphism in RFLP analysis and was closely linked to the TGMS gene at a distance of 3.3cM. This marker was subsequently mapped on chromosome 2 using doubled-haploid mapping populations derived from the crosses IR64xAzucena and CT9993xIR62666. Linkage of microsatellite marker RM27 with the TGMS gene further confirmed its location on chromosome 2. The closest marker, E5/M12-600, was sequenced so that a PCR marker can be developed for the use in marker-assisted breeding. The application of TGMS genes to the commercial two-line hybrid rice breeding system was discussed. (author)

  15. Mapping of a rice thermosensitive genic male sterility gene from a TGMS mutant line

    International Nuclear Information System (INIS)

    Vu Duc Quang; Nguyen Van Dong; Pham Ngoc Luong; Tran Duy Quy; Nguyen, Henry T.

    2001-01-01

    At the Agricultural Genetics Institute (AGI), Hanoi, Vietnam, a number of thermo-sensitive genic male sterility (TGMS) homozygous rice lines have been developed by means of experimental mutagenesis followed by anther culture techniques. One of them (TGMS-1 indica mutant line) was used in this research. The critical temperature (at the period from pollen mother cell formation to the beginning of meiotic division) for TGMS-1 sterility was 24-25degC, below which the plants were fertile and above which the plants became sterile. Segregation analysis showed that the TGMS trait of the TGMS-1 mutant line was controlled by a single recessive gene. An F 2 mapping population from a cross between TGMS-1 mutant line and CH1 (a fertile indica line) was developed for tagging and mapping the TGMS gene. From survey of 200 AFLP primer combinations in a bulked segregant analysis, 4 AFLP markers (E2/M5-200, E3/M16-400, E5/M12-600 and E5/M12-200) linked to TGMS-1 gene were identified and cloned. All except E2/M5-200 were found to be low-copy number sequences. The marker E5/M12-600 showed polymorphism in RFLP analysis and was closely linked to the TGMS gene at a distance of 3.3cM. This marker was subsequently mapped on chromosome 2 using doubled-haploid mapping populations derived from the crosses IR64xAzucena and CT9993xIR62666. Linkage of microsatellite marker RM27 with the TGMS gene further confirmed its location on chromosome 2. The closest marker, E5/M12-600, was sequenced so that a PCR marker can be developed for the use in marker-assisted breeding. The application of TGMS genes to the commercial two-line hybrid rice breeding system was discussed. (author)

  16. Associations between neurodevelopmental genes, neuroanatomy, and ultra high risk symptoms of psychosis in 22q11.2 deletion syndrome.

    Science.gov (United States)

    Thompson, Carlie A; Karelis, Jason; Middleton, Frank A; Gentile, Karen; Coman, Ioana L; Radoeva, Petya D; Mehta, Rashi; Fremont, Wanda P; Antshel, Kevin M; Faraone, Stephen V; Kates, Wendy R

    2017-04-01

    22q11.2 deletion syndrome is a neurogenetic disorder resulting in the deletion of over 40 genes. Up to 40% of individuals with 22q11.2DS develop schizophrenia, though little is known about the underlying mechanisms. We hypothesized that allelic variation in functional polymorphisms in seven genes unique to the deleted region would affect lobar brain volumes, which would predict risk for psychosis in youth with 22q11.2DS. Participants included 56 individuals (30 males) with 22q11.2DS. Anatomic MR images were collected and processed using Freesurfer. Participants were genotyped for 10 SNPs in the COMT, DGCR8, GNB1L, PIK4CA, PRODH, RTN4R, and ZDHHC8 genes. All subjects were assessed for ultra high risk symptoms of psychosis. Allelic variation of the rs701428 SNP of RTN4R was significantly associated with volumetric differences in gray matter of the lingual gyrus and cuneus of the occipital lobe. Moreover, occipital gray matter volumes were robustly associated with ultra high risk symptoms of psychosis in the presence of the G allele of rs701428. Our results suggest that RTN4R, a relatively under-studied gene at the 22q11 locus, constitutes a susceptibility gene for psychosis in individuals with this syndrome through its alteration of the architecture of the brain. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. MASTR: A Technique for Mosaic Mutant Analysis with Spatial and Temporal Control of Recombination Using Conditional Floxed Alleles in Mice

    Directory of Open Access Journals (Sweden)

    Zhimin Lao

    2012-08-01

    Full Text Available Mosaic mutant analysis, the study of cellular defects in scattered mutant cells in a wild-type environment, is a powerful approach for identifying critical functions of genes and has been applied extensively to invertebrate model organisms. A highly versatile technique has been developed in mouse: MASTR (mosaic mutant analysis with spatial and temporal control of recombination, which utilizes the increasing number of floxed alleles and simultaneously combines conditional gene mutagenesis and cell marking for fate analysis. A targeted allele (R26MASTR was engineered; the allele expresses a GFPcre fusion protein following FLP-mediated recombination, which serves the dual function of deleting floxed alleles and marking mutant cells with GFP. Within 24 hr of tamoxifen administration to R26MASTR mice carrying an inducible FlpoER transgene and a floxed allele, nearly all GFP-expressing cells have a mutant allele. The fate of single cells lacking FGF8 or SHH signaling in the developing hindbrain was analyzed using MASTR, and it was revealed that there is only a short time window when neural progenitors require FGFR1 for viability and that granule cell precursors differentiate rapidly when SMO is lost. MASTR is a powerful tool that provides cell-type-specific (spatial and temporal marking of mosaic mutant cells and is broadly applicable to developmental, cancer, and adult stem cell studies.

  18. Regulatory role of tetR gene in a novel gene cluster of Acidovorax avenae subsp. avenae RS-1 under oxidative stress

    Directory of Open Access Journals (Sweden)

    He eLiu

    2014-10-01

    Full Text Available Acidovorax avenae subsp. avenae is the causal agent of bacterial brown stripe disease in rice. In this study, we characterized a novel horizontal transfer of a gene cluster, including tetR, on the chromosome of A. avenae subsp. avenae RS-1 by genome-wide analysis. TetR acted as a repressor in this gene cluster and the oxidative stress resistance was enhanced in tetR-deletion mutant strain. Electrophoretic mobility shift assay (EMSA demonstrated that TetR regulator bound directly to the promoter of this gene cluster. Consistently, the results of quantitative real-time PCR also showed alterations in expression of associated genes. Moreover, the proteins affected by TetR under oxidative stress were revealed by comparing proteomic profiles of wild-type and mutant strains via 1D SDS-PAGE and LC-MS/MS analyses. Taken together, our results demonstrated that tetR gene in this novel gene cluster contributed to cell survival under oxidative stress, and TetR protein played an important regulatory role in growth kinetics, biofilm-forming capability, SOD and catalase activity, and oxide detoxicating ability.

  19. Regulatory role of tetR gene in a novel gene cluster of Acidovorax avenae subsp. avenae RS-1 under oxidative stress.

    Science.gov (United States)

    Liu, He; Yang, Chun-Lan; Ge, Meng-Yu; Ibrahim, Muhammad; Li, Bin; Zhao, Wen-Jun; Chen, Gong-You; Zhu, Bo; Xie, Guan-Lin

    2014-01-01

    Acidovorax avenae subsp. avenae is the causal agent of bacterial brown stripe disease in rice. In this study, we characterized a novel horizontal transfer of a gene cluster, including tetR, on the chromosome of A. avenae subsp. avenae RS-1 by genome-wide analysis. TetR acted as a repressor in this gene cluster and the oxidative stress resistance was enhanced in tetR-deletion mutant strain. Electrophoretic mobility shift assay demonstrated that TetR regulator bound directly to the promoter of this gene cluster. Consistently, the results of quantitative real-time PCR also showed alterations in expression of associated genes. Moreover, the proteins affected by TetR under oxidative stress were revealed by comparing proteomic profiles of wild-type and mutant strains via 1D SDS-PAGE and LC-MS/MS analyses. Taken together, our results demonstrated that tetR gene in this novel gene cluster contributed to cell survival under oxidative stress, and TetR protein played an important regulatory role in growth kinetics, biofilm-forming capability, superoxide dismutase and catalase activity, and oxide detoxicating ability.

  20. Differential accumulation of nif structural gene mRNA in Azotobacter vinelandii.

    Science.gov (United States)

    Hamilton, Trinity L; Jacobson, Marty; Ludwig, Marcus; Boyd, Eric S; Bryant, Donald A; Dean, Dennis R; Peters, John W

    2011-09-01

    Northern analysis was employed to investigate mRNA produced by mutant strains of Azotobacter vinelandii with defined deletions in the nif structural genes and in the intergenic noncoding regions. The results indicate that intergenic RNA secondary structures effect the differential accumulation of transcripts, supporting the high Fe protein-to-MoFe protein ratio required for optimal diazotrophic growth.

  1. Whole transcriptomic and proteomic analyses of an isogenic M. tuberculosis clinical strain with a naturally occurring 15 Kb genomic deletion.

    Directory of Open Access Journals (Sweden)

    Carla Duncan

    Full Text Available Tuberculosis remains one of the most difficult to control infectious diseases in the world. Many different factors contribute to the complexity of this disease. These include the ability of the host to control the infection which may directly relate to nutritional status, presence of co-morbidities and genetic predisposition. Pathogen factors, in particular the ability of different Mycobacterium tuberculosis strains to respond to the harsh environment of the host granuloma, which includes low oxygen and nutrient availability and the presence of damaging radical oxygen and nitrogen species, also play an important role in the success of different strains to cause disease. In this study we evaluated the impact of a naturally occurring 12 gene 15 Kb genomic deletion on the physiology and virulence of M. tuberculosis. The strains denominated ON-A WT (wild type and ON-A NM (natural mutant were isolated from a previously reported TB outbreak in an inner city under-housed population in Toronto, Canada. Here we subjected these isogenic strains to transcriptomic (via RNA-seq and proteomic analyses and identified several gene clusters with differential expression in the natural mutant, including the DosR regulon and the molybdenum cofactor biosynthesis genes, both of which were found in lower abundance in the natural mutant. We also demonstrated lesser virulence of the natural mutant in the guinea pig animal model. Overall, our findings suggest that the ON-A natural mutant is less fit to cause disease, but nevertheless has the potential to cause extended transmission in at-risk populations.

  2. denV gene of bacteriophage T4 restores DNA excision repair to mei-9 and mus201 mutants of Drosophila melanogaster

    International Nuclear Information System (INIS)

    Banga, S.S.; Boyd, J.B.; Valerie, K.; Harris, P.V.; Kurz, E.M.; de Riel, J.K.

    1989-01-01

    The denV gene of bacteriophage T4 was fused to a Drosophila hsp70 (70-kDa heat shock protein) promoter and introduced into the germ line of Drosophila by P-element-mediated transformation. The protein product of that gene (endonuclease V) was detected in extracts of heat-shocked transformants with both enzymological and immunoblotting procedures. That protein restores both excision repair and UV resistance to mei-9 and mus201 mutants of this organism. These results reveal that the denV gene can compensate for excision-repair defects in two very different eukayotic mutants, in that the mus201 mutants are typical of excision-deficient mutants in other organisms, whereas the mei-9 mutants exhibit a broad pleiotropism that includes a strong meiotic deficiency. This study permits an extension of the molecular analysis of DNA repair to the germ line of higher eukaryotes. It also provides a model system for future investigations of other well-characterized microbial repair genes on DNA damage in the germ line of this metazoan organism

  3. Impaired long-term memory retention and working memory in sdy mutant mice with a deletion in Dtnbp1, a susceptibility gene for schizophrenia

    Directory of Open Access Journals (Sweden)

    Takao Keizo

    2008-10-01

    Full Text Available Abstract Background Schizophrenia is a complex genetic disorder caused by multiple genetic and environmental factors. The dystrobrevin-binding protein 1 (DTNBP1: dysbindin-1 gene is a major susceptibility gene for schizophrenia. Genetic variations in DTNBP1 are associated with cognitive functions, general cognitive ability and memory function, and clinical features of patients with schizophrenia including negative symptoms and cognitive decline. Since reduced expression of dysbindin-1 has been observed in postmortem brains of patients with schizophrenia, the sandy (sdy mouse, which has a deletion in the Dtnbp1 gene and expresses no dysbindin-1 protein, could be an animal model of schizophrenia. To address this issue, we have carried out a comprehensive behavioral analysis of the sdy mouse in this study. Results In a rotarod test, sdy mice did not exhibit motor learning whilst the wild type mice did. In a Barnes circular maze test both sdy mice and wild type mice learned to selectively locate the escape hole during the course of the training period and in the probe trial conducted 24 hours after last training. However, sdy mice did not locate the correct hole in the retention probe tests 7 days after the last training trial, whereas wild type mice did, indicating impaired long-term memory retention. A T-maze forced alternation task, a task of working memory, revealed no effect of training in sdy mice despite the obvious effect of training in wild type mice, suggesting a working memory deficit. Conclusion Sdy mouse showed impaired long-term memory retention and working memory. Since genetic variation in DTNBP1 is associated with both schizophrenia and memory function, and memory function is compromised in patients with schizophrenia, the sdy mouse may represent a useful animal model to investigate the mechanisms of memory dysfunction in the disorder.

  4. Multiple genetic origins of histidine-rich protein 2 gene deletion in Plasmodium falciparum parasites from Peru

    Science.gov (United States)

    Akinyi, Sheila; Hayden, Tonya; Gamboa, Dionicia; Torres, Katherine; Bendezu, Jorge; Abdallah, Joseph F.; Griffing, Sean M.; Quezada, Wilmer Marquiño; Arrospide, Nancy; De Oliveira, Alexandre Macedo; Lucas, Carmen; Magill, Alan J.; Bacon, David J.; Barnwell, John W.; Udhayakumar, Venkatachalam

    2013-01-01

    The majority of malaria rapid diagnostic tests (RDTs) detect Plasmodium falciparum histidine-rich protein 2 (PfHRP2), encoded by the pfhrp2 gene. Recently, P. falciparum isolates from Peru were found to lack pfhrp2 leading to false-negative RDT results. We hypothesized that pfhrp2-deleted parasites in Peru derived from a single genetic event. We evaluated the parasite population structure and pfhrp2 haplotype of samples collected between 1998 and 2005 using seven neutral and seven chromosome 8 microsatellite markers, respectively. Five distinct pfhrp2 haplotypes, corresponding to five neutral microsatellite-based clonal lineages, were detected in 1998-2001; pfhrp2 deletions occurred within four haplotypes. In 2003-2005, outcrossing among the parasite lineages resulted in eight population clusters that inherited the five pfhrp2 haplotypes seen previously and a new haplotype; pfhrp2 deletions occurred within four of these haplotypes. These findings indicate that the genetic origin of pfhrp2 deletion in Peru was not a single event, but likely occurred multiple times. PMID:24077522

  5. Structural and Functional Consequences of Chaperone Site Deletion in αA-Crystallin

    Science.gov (United States)

    Santhoshkumar, Puttur; Karmakar, Srabani; Sharma, Krishna K.

    2016-01-01

    The chaperone-like activity of αA-crystallin has an important role in maintaining lens transparency. Previously we identified residues 70–88 as a chaperone site in αA-crystallin. In this study, we deleted the chaperone site residues to generate αAΔ70–76 and αAΔ70–88 mutants and investigated if there are additional substrate-binding sites in αA-crystallin. Both mutant proteins when expressed in E. coli formed inclusion bodies, and on solubilizing and refolding, they exhibited similar structural properties, with a 2- to 3-fold increase in molar mass compared to the molar mass of wild-type protein. The deletion mutants were less stable than the wild-type αA-crystallin. Functionally αAΔ70–88 was completely inactive as a chaperone, while αAΔ70–76 demonstrated a 40–50% reduction in anti-aggregation activity against alcohol dehydrogenase (ADH). Deletion of residues 70–88 abolished the ADH binding sites in αA-crystallin at physiological temperature. At 45 °C, cryptic ADH binding site(s) became exposed, which contributed subtly to the chaperone-like activity of αAΔ70–88. Both of the deletion mutants were completely inactive in suppressing aggregation of βL-crystallin at 53 °C. The mutants completely lost the anti-apoptotic property that αA-crystallin exhibits while they protected ARPE-19 (a human retinal pigment epithelial cell line) and primary human lens epithelial (HLE) cells from oxidative stress. Our studies demonstrate that residues 70–88 in αA-crystallin act as a primary substrate binding site and account for the bulk of the total chaperone activity. The β3 and β4 strands in αA-crystallin comprising 70–88 residues play an important role in maintenance of the structure and in preventing aggregation of denaturing proteins. PMID:27524665

  6. Mutant quantity and quality in mammalian cells (A{sub L}) exposed to cesium-137 gamma radiation: Effect of caffeine

    Energy Technology Data Exchange (ETDEWEB)

    McGuinness, S.M.; Shibuya, M.L.; Ueno, A.M. [Colorado State Univ., Fort Collins, CO (United States)] [and others

    1995-06-01

    We examined the effect of caffeine (1,3,7-trimethylxanthine) on the quantity and quality of mutations in cultured mammalian A{sub L} human-hamster hybrid cells exposed to {sup 137}Cs {gamma} radiation. At a dose (1.5 mg/ml for 16 h) that reduced the plating efficiency (PE) by 20%, caffeine was not itself a significant mutagen, but it increased by approximately twofold the slope of the dose-response curve for induction of S1{sup {minus}} mutants by {sup 137}Cs {gamma} radiation. Molecular analysis of 235 S1{sup {minus}} mutants using a series of DNA probes mapped to the human chromosome 11 in the A{sub L} hybrid cells revealed that 73 to 85% of the mutations in unexposed cells and in cells treated with caffeine alone, {sup 137}Cs {gamma} rays alone or {sup 137}Cs {gamma} rays plus caffeine were large deletions involving millions of base pairs of DNA. Most of these deletions were contiguous with the region of the MIC1 gene at 11p13 that encodes the S1 cell surface antigen. In other mutants that had suffered multiple marker loss, the deletions were intermittent along chromosome 11. These {open_quotes}complex{close_quotes} mutations were rare for {sup 137}Cs {gamma} irradiation (1/63 = 1.5%) but relatively prevalent (23-50%) for other exposure conditions. Thus caffeine appears to alter both the quantity and quality of mutations induced by {sup 137}Cs {gamma} irradiation. 62 refs., 3 figs., 3 tabs.

  7. Deletion and aberrant CpG island methylation of Caspase 8 gene in medulloblastoma.

    Science.gov (United States)

    Gonzalez-Gomez, Pilar; Bello, M Josefa; Inda, M Mar; Alonso, M Eva; Arjona, Dolores; Amiñoso, Cinthia; Lopez-Marin, Isabel; de Campos, Jose M; Sarasa, Jose L; Castresana, Javier S; Rey, Juan A

    2004-09-01

    Aberrant methylation of promoter CpG islands in human genes is an alternative genetic inactivation mechanism that contributes to the development of human tumors. Nevertheless, few studies have analyzed methylation in medulloblastomas. We determined the frequency of aberrant CpG island methylation for Caspase 8 (CASP8) in a group of 24 medulloblastomas arising in 8 adult and 16 pediatric patients. Complete methylation of CASP8 was found in 15 tumors (62%) and one case displayed hemimethylation. Three samples amplified neither of the two primer sets for methylated or unmethylated alleles, suggesting that genomic deletion occurred in the 5' flanking region of CASP8. Our findings suggest that methylation commonly contributes to CASP8 silencing in medulloblastomas and that homozygous deletion or severe sequence changes involving the promoter region may be another mechanism leading to CASP8 inactivation in this neoplasm.

  8. Contiguous deletion of the NDP, MAOA, MAOB, and EFHC2 genes in a patient with Norrie disease, severe psychomotor retardation and myoclonic epilepsy.

    Science.gov (United States)

    Rodriguez-Revenga, L; Madrigal, I; Alkhalidi, L S; Armengol, L; González, E; Badenas, C; Estivill, X; Milà, M

    2007-05-01

    Norrie disease (ND) is an X-linked disorder, inherited as a recessive trait that, therefore, mostly affects males. The gene responsible for ND, called NDP, maps to the short arm of chromosome X (Xp11.4-p11.3). We report here an atypical case of ND, consisting of a patient harboring a large submicroscopic deletion affecting not only the NDP gene but also the MAOA, MAOB, and EFHC2 genes. Microarray comparative genomic hybridization (CGH) analysis showed that 11 consecutive bacterial artificial chromosome (BAC) clones, mapping around the NDP gene, were deleted. These clones span a region of about 1 Mb on Xp11.3. The deletion was ascertained by fluorescent in situ hybridization (FISH) analysis with different BAC clones located within the region. Clinical features of the proband include bilateral retinal detachment, microcephaly, severe psychomotor retardation without verbal language skills acquired, and epilepsy. The identification and molecular characterization of this case reinforces the idea of a new contiguous gene syndrome that would explain the complex phenotype shared by atypical ND patients.

  9. Double gene deletion reveals the lack of cooperation between PPARα and PPARβ in skeletal muscle

    International Nuclear Information System (INIS)

    Bedu, E.; Desplanches, D.; Pequignot, J.; Bordier, B.; Desvergne, B.

    2007-01-01

    The peroxisome proliferator-activated receptors (PPARs) are involved in the regulation of most of the pathways linked to lipid metabolism. PPARα and PPARβ isotypes are known to regulate muscle fatty acid oxidation and a reciprocal compensation of their function has been proposed. Herein, we investigated muscle contractile and metabolic phenotypes in PPARα-/-, PPARβ-/-, and double PPARα-/- β-/- mice. Heart and soleus muscle analyses show that the deletion of PPARα induces a decrease of the HAD activity (β-oxidation) while soleus contractile phenotype remains unchanged. A PPARβ deletion alone has no effect. However, these mild phenotypes are not due to a reciprocal compensation of PPARβ and PPARα functions since double gene deletion PPARα-PPARβ mostly reproduces the null PPARα-mediated reduced β-oxidation, in addition to a shift from fast to slow fibers. In conclusion, PPARβ is not required for maintaining skeletal muscle metabolic activity and does not compensate the lack of PPARα in PPARα null mice

  10. Identification of genes associated with growth cessation and bud dormancy entrance using a dormancy-incapable tree mutant.

    Science.gov (United States)

    Jiménez, Sergio; Li, Zhigang; Reighard, Gregory L; Bielenberg, Douglas G

    2010-02-09

    In many tree species the perception of short days (SD) can trigger growth cessation, dormancy entrance, and the establishment of a chilling requirement for bud break. The molecular mechanisms connecting photoperiod perception, growth cessation and dormancy entrance in perennials are not clearly understood. The peach [Prunus persica (L.) Batsch] evergrowing (evg) mutant fails to cease growth and therefore cannot enter dormancy under SD. We used the evg mutant to filter gene expression associated with growth cessation after exposure to SD. Wild-type and evg plants were grown under controlled conditions of long days (16 h/8 h) followed by transfer to SD (8 h/16 h) for eight weeks. Apical tissues were sampled at zero, one, two, four, and eight weeks of SD and suppression subtractive hybridization was performed between genotypes at the same time points. We identified 23 up-regulated genes in the wild-type with respect to the mutant during SD exposure. We used quantitative real-time PCR to verify the expression of the differentially expressed genes in wild-type tissues following the transition to SD treatment. Three general expression patterns were evident: one group of genes decreased at the time of growth cessation (after 2 weeks in SD), another that increased immediately after the SD exposure and then remained steady, and another that increased throughout SD exposure. The use of the dormancy-incapable mutant evg has allowed us to reduce the number of genes typically detected by differential display techniques for SD experiments. These genes are candidates for involvement in the signalling pathway leading from photoperiod perception to growth cessation and dormancy entrance and will be the target of future investigations.

  11. Speckle-type POZ (pox virus and zinc finger protein) protein gene deletion in ovarian cancer: Fluorescence in situ hybridization analysis of a tissue microarray.

    Science.gov (United States)

    Hu, Xiaoyu; Yang, Zhu; Zeng, Manman; Liu, Y I; Yang, Xiaotao; Li, Yanan; Li, X U; Yu, Qiubo

    2016-07-01

    The aim of the present study was to investigate the status of speckle-type POZ (pox virus and zinc finger protein) protein (SPOP) gene located on chromosome 17q21 in ovarian cancer (OC). The present study evaluated a tissue microarray, which contained 90 samples of ovarian cancer and 10 samples of normal ovarian tissue, using fluorescence in situ hybridization (FISH). FISH is a method where a SPOP-specific DNA red fluorescence probe was used for the experimental group and a centromere-specific DNA green fluorescence probe for chromosome 17 was used for the control group. The present study demonstrated that a deletion of the SPOP gene was observed in 52.27% (46/88) of the ovarian cancer tissues, but was not identified in normal ovarian tissues. Simultaneously, monosomy 17 was frequently identified in the ovarian cancer tissues, but not in the normal ovarian tissues. Furthermore, the present data revealed that the ovarian cancer histological subtype and grade were significantly associated with a deletion of the SPOP gene, which was assessed by the appearance of monosomy 17 in the ovarian cancer samples; the deletion of the SPOP gene was observed in a large proportion of serous epithelial ovarian cancer (41/61; 67.21%), particularly in grade 3 (31/37; 83.78%). In conclusion, deletion of the SPOP gene on chromosome 17 in ovarian cancer samples, which results from monosomy 17, indicates that the SPOP gene may serve as a tumor suppressor gene in ovarian cancer.

  12. Mechanisms responsible for imipenem resistance among Pseudomonas aeruginosa clinical isolates exposed to imipenem concentrations within the mutant selection window.

    Science.gov (United States)

    Vassilara, Foula; Galani, Irene; Souli, Maria; Papanikolaou, Konstantinos; Giamarellou, Helen; Papadopoulos, Antonios

    2017-07-01

    The aim of this study was to determine the propensities of imipenem to select for resistant Pseudomonas aeruginosa mutants by determining the mutant prevention concentrations (MPCs) for 9 unrelated clinical isolates and the accession of any relationship with mechanisms of resistance development. The MPC/MIC ratios ranged from 4 to 16. Detection of resistance mechanisms in the mutant derivatives of the nine isolates mainly revealed inactivating mutations in the gene coding for outer membrane protein OprD. Point mutations leading to premature stop codons or amino acid substitution S278P, ≥1bp deletion leading to frameshift mutations and interruption of the oprD by an insertion sequence, were observed. MPC and mutant selection window (MSW) are unique parameters that may guide the implementation of antimicrobial treatment, providing useful information about the necessary imipenem concentration needed in the infection area, in order to avoid the emergence of resistance, especially in clinical situations with high bacterial load. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Homozygous Deletions and Recurrent Amplifications Implicate New Genes Involved in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Wennuan Liu

    2008-08-01

    Full Text Available Prostate cancer cell lines provide ideal in vitro systems for the identification and analysis of prostate tumor suppressors and oncogenes. A detailed characterization of the architecture of prostate cancer cell line genomes would facilitate the study of precise roles of various genes in prostate tumorigenesis in general. To contribute to such a characterization, we used the GeneChip 500K single nucleotide polymorphic (SNP array for analysis of genotypes and relative DNA copy number changes across the genome of 11 cell lines derived from both normal and cancerous prostate tissues. For comparison purposes, we also examined the alterations observed in the cell lines in tumor/normal pairs of clinical samples from 72 patients. Along with genome-wide maps of DNA copy number changes and loss of heterozygosity for these cell lines, we report previously unreported homozygous deletions and recurrent amplifications in prostate cancers in this study. The homozygous deletions affected a number of biologically important genes, including PPP2R2A and BNIP3L identified in this study and CDKN2A/CDKN2B reported previously. Although most amplified genomic regions tended to be large, amplifications at 8q24.21 were of particular interest because the affected regions are relatively small, are found in multiple cell lines, are located near MYC, an oncogene strongly implicated in prostate tumorigenesis, and are known to harbor SNPs that are associated with inherited susceptibility for prostate cancer. The genomic alterations revealed in this study provide an important catalog of positional information relevant to efforts aimed at deciphering the molecular genetic basis of prostate cancer.

  14. Careful with That Axe, Gene, Genome Perturbation after a PEG-Mediated Protoplast Transformation in Fusarium verticillioides.

    Science.gov (United States)

    Scala, Valeria; Grottoli, Alessandro; Aiese Cigliano, Riccardo; Anzar, Irantzu; Beccaccioli, Marzia; Fanelli, Corrado; Dall'Asta, Chiara; Battilani, Paola; Reverberi, Massimo; Sanseverino, Walter

    2017-05-31

    Fusarium verticillioides causes ear rot disease in maize and its contamination with fumonisins, mycotoxins harmful for humans and livestock. Lipids, and their oxidized forms, may drive the fate of this disease. In a previous study, we have explored the role of oxylipins in this interaction by deleting by standard transformation procedures a linoleate diol synthase-coding gene, lds1 , in F. verticillioides . A profound phenotypic diversity in the mutants generated has prompted us to investigate more deeply the whole genome of two lds1 -deleted strains. Bioinformatics analyses pinpoint significant differences in the genome sequences emerged between the wild type and the lds1 -mutants further than those trivially attributable to the deletion of the lds1 locus, such as single nucleotide polymorphisms, small deletion/insertion polymorphisms and structural variations. Results suggest that the effect of a (theoretically) punctual transformation event might have enhanced the natural mechanisms of genomic variability and that transformation practices, commonly used in the reverse genetics of fungi, may potentially be responsible for unexpected, stochastic and henceforth off-target rearrangements throughout the genome.

  15. Careful with That Axe, Gene, Genome Perturbation after a PEG-Mediated Protoplast Transformation in Fusarium verticillioides

    Directory of Open Access Journals (Sweden)

    Valeria Scala

    2017-05-01

    Full Text Available Fusarium verticillioides causes ear rot disease in maize and its contamination with fumonisins, mycotoxins harmful for humans and livestock. Lipids, and their oxidized forms, may drive the fate of this disease. In a previous study, we have explored the role of oxylipins in this interaction by deleting by standard transformation procedures a linoleate diol synthase-coding gene, lds1, in F. verticillioides. A profound phenotypic diversity in the mutants generated has prompted us to investigate more deeply the whole genome of two lds1-deleted strains. Bioinformatics analyses pinpoint significant differences in the genome sequences emerged between the wild type and the lds1-mutants further than those trivially attributable to the deletion of the lds1 locus, such as single nucleotide polymorphisms, small deletion/insertion polymorphisms and structural variations. Results suggest that the effect of a (theoretically punctual transformation event might have enhanced the natural mechanisms of genomic variability and that transformation practices, commonly used in the reverse genetics of fungi, may potentially be responsible for unexpected, stochastic and henceforth off-target rearrangements throughout the genome.

  16. Increasing on-target cleavage efficiency for CRISPR/Cas9-induced large fragment deletion in Myxococcus xanthus.

    Science.gov (United States)

    Yang, Ying-Jie; Wang, Ye; Li, Zhi-Feng; Gong, Ya; Zhang, Peng; Hu, Wen-Chao; Sheng, Duo-Hong; Li, Yue-Zhong

    2017-08-16

    The CRISPR/Cas9 system is a powerful tool for genome editing, in which the sgRNA binds and guides the Cas9 protein for the sequence-specific cleavage. The protocol is employable in different organisms, but is often limited by cell damage due to the endonuclease activity of the introduced Cas9 and the potential off-target DNA cleavage from incorrect guide by the 20 nt spacer. In this study, after resolving some critical limits, we have established an efficient CRISPR/Cas9 system for the deletion of large genome fragments related to the biosynthesis of secondary metabolites in Myxococcus xanthus cells. We revealed that the high expression of a codon-optimized cas9 gene in M. xanthus was cytotoxic, and developed a temporally high expression strategy to reduce the cell damage from high expressions of Cas9. We optimized the deletion protocol by using the tRNA-sgRNA-tRNA chimeric structure to ensure correct sgRNA sequence. We found that, in addition to the position-dependent nucleotide preference, the free energy of a 20 nt spacer was a key factor for the deletion efficiency. By using the developed protocol, we achieved the CRISPR/Cas9-induced deletion of large biosynthetic gene clusters for secondary metabolites in M. xanthus DK1622 and its epothilone-producing mutant. The findings and the proposals described in this paper were suggested to be workable in other organisms, for example, other Gram negative bacteria with high GC content.

  17. Prevalence of glutathione S-transferase gene deletions and their effect on sickle cell patients

    Directory of Open Access Journals (Sweden)

    Pandey Sanjay

    2012-01-01

    Full Text Available BACKGROUND: Glutathione S-transferase gene deletions are known detoxification agents and cause oxidative damage. Due to the different pathophysiology of anemia in thalassemia and sickle cell disease, there are significant differences in the pathophysiology of iron overload and iron-related complications in these disorders. OBJECTIVE: The aim of this study was to estimate the frequency of the GSTM1 and GSTT1 genotypes in sickle cell disease patients and their effect on iron status. METHODS: Forty sickle cell anemia and sixty sickle ß-thalassemia patients and 100 controls were evaluated to determine the frequency of GST gene deletions. Complete blood counts were performed by an automated cell analyzer. Hemoglobin F, hemoglobin A, hemoglobin A2 and hemoglobin S were measured and diagnosis of patients was achieved by high performance liquid chromatography with DNA extraction by the phenol-chloroform method. The GST null genotype was determined using multiplex polymerase chain reaction and serum ferritin was measured using an ELISA kit. Statistical analysis was by EpiInfo and GraphPad statistics software. RESULTS: An increased frequency of the GSTT1 null genotype (p-value = 0.05 was seen in the patients. The mean serum ferritin level was higher in patients with the GST genotypes than in controls; this was statistically significant for all genotypes except GSTM1, however the higher levels of serum ferritin were due to blood transfusions in patients. CONCLUSION: GST deletions do not play a direct role in iron overload of sickle cell patients.

  18. Functional characterization of a new p53 mutant generated by homozygous deletion in a neuroblastoma cell line

    International Nuclear Information System (INIS)

    Nakamura, Yohko; Ozaki, Toshinori; Niizuma, Hidetaka; Ohira, Miki; Kamijo, Takehiko; Nakagawara, Akira

    2007-01-01

    p53 is a key modulator of a variety of cellular stresses. In human neuroblastomas, p53 is rarely mutated and aberrantly expressed in cytoplasm. In this study, we have identified a novel p53 mutant lacking its COOH-terminal region in neuroblastoma SK-N-AS cells. p53 accumulated in response to cisplatin (CDDP) and thereby promoting apoptosis in neuroblastoma SH-SY5Y cells bearing wild-type p53, whereas SK-N-AS cells did not undergo apoptosis. We found another p53 (p53ΔC) lacking a part of oligomerization domain and nuclear localization signals in SK-N-AS cells. p53ΔC was expressed largely in cytoplasm and lost the transactivation function. Furthermore, a 3'-part of the p53 locus was homozygously deleted in SK-N-AS cells. Thus, our present findings suggest that p53 plays an important role in the DNA-damage response in certain neuroblastoma cells and it seems to be important to search for p53 mutations outside DNA-binding domain

  19. Insertion/Deletion Within the KDM6A Gene Is Significantly Associated With Litter Size in Goat

    Directory of Open Access Journals (Sweden)

    Yang Cui

    2018-03-01

    Full Text Available A previous whole-genome association analysis identified lysine demethylase 6A (KDM6A, which encodes a type of histone demethylase, as a candidate gene associated to goat fecundity. KDM6A gene knockout mouse disrupts gametophyte development, suggesting that it has a critical role in reproduction. In this study, goat KDM6A mRNA expression profiles were determined, insertion/deletion (indel variants in the gene identified, indel variants effect on KDM6A gene expression assessed, and their association with first-born litter size analyzed in 2326 healthy female Shaanbei white cashmere goats. KDM6A mRNA was expressed in all tissues tested (heart, liver, spleen, lung, kidney, muscle, brain, skin and testis; the expression levels in testes at different developmental stages [1-week-old (wk, 2, 3 wk, 1-month-old (mo, 1.5 and 2 mo] indicated a potential association with the mitosis-to-meiosis transition, implying that KDM6A may have an essential role in goat fertility. Meanwhile, two novel intronic indels of 16 bp and 5 bp were identified. Statistical analysis revealed that only the 16 bp indel was associated with first-born litter size (P < 0.01, and the average first-born litter size of individuals with an insertion/insertion genotype higher than that of those with the deletion/deletion genotype (P < 0.05. There was also a significant difference in genotype distributions of the 16 bp indel between mothers of single-lamb and multi-lamb litters in the studied goat population (P = 0.001. Consistently, the 16 bp indel also had a significant effect on KDM6A gene expression. Additionally, there was no significant linkage disequilibrium (LD between these two indel loci, consistent with the association analysis results. Together, these findings suggest that the 16 bp indel in KDM6A may be useful for marker-assisted selection (MAS of goats.

  20. Identification of candidate new cancer susceptibility genes using yeast genomics

    International Nuclear Information System (INIS)

    Brown, M.; Brown, J.A.; Game, J.C.

    2003-01-01

    A large proportion of cancer susceptibility syndromes are the result of mutations in genes in DNA repair or in cell-cycle checkpoints in response to DNA damage, such as ataxia telangiectasia (AT), Fanconi's anemia (FA), Bloom's syndrome (BS), Nijmegen breakage syndrome (NBS), and xeroderma pigmentosum (XP). Mutations in these genes often cause gross chromosomal instability leading to an increased mutation rate of all genes including those directly responsible for cancer. We have proposed that because the orthologs of these genes in budding yeast, S. cerevisiae, confer protection against killing by DNA damaging agents it should be possible to identify new cancer susceptibility genes by identifying yeast genes whose deletion causes sensitivity to DNA damage. We therefore screened the recently completed collection of individual gene deletion mutants to identify genes that affect sensitivity to DNA-damaging agents. Screening for sensitivity in this obtained up to now with the F98 glioma model othe fact that each deleted gene is replaced by a cassette containing two molecular 'barcodes', or 20-mers, that uniquely identify the strain when DNA from a pool of strains is hybridized to an oligonucleotide array containing the complementary sequences of the barcodes. We performed the screen with UV, IR, H 2 0 2 and other DNA damaging agents. In addition to identifying genes already known to confer resistance to DNA damaging agents we have identified, and individually confirmed, several genes not previously associated with resistance. Several of these are of unknown function. We have also examined the chromosomal stability of selected strains and found that IR sensitive strains often but not always exhibit genomic instability. We are presently constructing a yeast artificial chromosome to globally interrogate all the genes in the deletion pool for their involvement in genomic stability. This work shows that budding yeast is a valuable eukaryotic model organism to identify