WorldWideScience

Sample records for gel electrolytes based

  1. Effect of conductive additives to gel electrolytes on activated carbon-based supercapacitors

    Science.gov (United States)

    Barzegar, Farshad; Dangbegnon, Julien K.; Bello, Abdulhakeem; Momodu, Damilola Y.; Johnson, A. T. Charlie; Manyala, Ncholu

    2015-09-01

    This article is focused on polymer based gel electrolyte due to the fact that polymers are cheap and can be used to achieve extended potential window for improved energy density of the supercapacitor devices when compared to aqueous electrolytes. Electrochemical characterization of a symmetric supercapacitor devices based on activated carbon in different polyvinyl alcohol (PVA) based gel electrolytes was carried out. The device exhibited a maximum energy density of 24 Wh kg-1 when carbon black was added to the gel electrolyte as conductive additive. The good energy density was correlated with the improved conductivity of the electrolyte medium which is favorable for fast ion transport in this relatively viscous environment. Most importantly, the device remained stable with no capacitance lost after 10,000 cycles.

  2. Effect of conductive additives to gel electrolytes on activated carbon-based supercapacitors

    Directory of Open Access Journals (Sweden)

    Farshad Barzegar

    2015-09-01

    Full Text Available This article is focused on polymer based gel electrolyte due to the fact that polymers are cheap and can be used to achieve extended potential window for improved energy density of the supercapacitor devices when compared to aqueous electrolytes. Electrochemical characterization of a symmetric supercapacitor devices based on activated carbon in different polyvinyl alcohol (PVA based gel electrolytes was carried out. The device exhibited a maximum energy density of 24 Wh kg−1 when carbon black was added to the gel electrolyte as conductive additive. The good energy density was correlated with the improved conductivity of the electrolyte medium which is favorable for fast ion transport in this relatively viscous environment. Most importantly, the device remained stable with no capacitance lost after 10,000 cycles.

  3. Solid-state supercapacitors with ionic liquid based gel polymer electrolyte: Effect of lithium salt addition

    Science.gov (United States)

    Pandey, G. P.; Hashmi, S. A.

    2013-12-01

    Performance characteristics of the solid-state supercapacitors fabricated with ionic liquid (IL) incorporated gel polymer electrolyte and acid treated multiwalled carbon nanotube (MWCNT) electrodes have been studied. The effect of Li-salt (LiPF6) addition in the IL (1-ethyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate, EMImFAP) based gel electrolyte on the performance of supercapacitors has been specifically investigated. The LiPF6/IL/poly(vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP) gel electrolyte film possesses excellent electrochemical window of 4 V (from -2.0 to 2.0 V), high ionic conductivity ∼2.6 × 10-3 S cm-1 at 20 °C and high enough thermal stability. The comparative performance of supercapacitors employing electrolytes with and without lithium salt has been evaluated by impedance spectroscopy and cyclic voltammetric studies. The acid-treated MWCNT electrodes show specific capacitance of ∼127 F g-1 with IL/LiPF6 containing gel polymer electrolyte as compared to that with the gel polymer electrolyte without Li-salt, showing the value of ∼76 F g-1. The long cycling stability of the solid state supercapacitor based on the Li-salt containing gel polymer electrolyte confirms the electrochemical stability of the electrolyte.

  4. Gel polymer electrolytes for batteries

    Science.gov (United States)

    Balsara, Nitash Pervez; Eitouni, Hany Basam; Gur, Ilan; Singh, Mohit; Hudson, William

    2014-11-18

    Nanostructured gel polymer electrolytes that have both high ionic conductivity and high mechanical strength are disclosed. The electrolytes have at least two domains--one domain contains an ionically-conductive gel polymer and the other domain contains a rigid polymer that provides structure for the electrolyte. The domains are formed by block copolymers. The first block provides a polymer matrix that may or may not be conductive on by itself, but that can soak up a liquid electrolyte, thereby making a gel. An exemplary nanostructured gel polymer electrolyte has an ionic conductivity of at least 1.times.10.sup.-4 S cm.sup.-1 at 25.degree. C.

  5. A zwitterionic gel electrolyte for efficient solid-state supercapacitors

    Science.gov (United States)

    Peng, Xu; Liu, Huili; Yin, Qin; Wu, Junchi; Chen, Pengzuo; Zhang, Guangzhao; Liu, Guangming; Wu, Changzheng; Xie, Yi

    2016-01-01

    Gel electrolytes have attracted increasing attention for solid-state supercapacitors. An ideal gel electrolyte usually requires a combination of advantages of high ion migration rate, reasonable mechanical strength and robust water retention ability at the solid state for ensuring excellent work durability. Here we report a zwitterionic gel electrolyte that successfully brings the synergic advantages of robust water retention ability and ion migration channels, manifesting in superior electrochemical performance. When applying the zwitterionic gel electrolyte, our graphene-based solid-state supercapacitor reaches a volume capacitance of 300.8 F cm−3 at 0.8 A cm−3 with a rate capacity of only 14.9% capacitance loss as the current density increases from 0.8 to 20 A cm−3, representing the best value among the previously reported graphene-based solid-state supercapacitors, to the best of our knowledge. We anticipate that zwitterionic gel electrolyte may be developed as a gel electrolyte in solid-state supercapacitors. PMID:27225484

  6. Solid-state electric double layer capacitors fabricated with plastic crystal based flexible gel polymer electrolytes: Effective role of electrolyte anions

    International Nuclear Information System (INIS)

    Suleman, Mohd; Kumar, Yogesh; Hashmi, S.A.

    2015-01-01

    Flexible gel polymer electrolyte (GPE) thick films incorporated with solutions of lithium trifluoromethanesulfonate (Li-triflate or LiTf) and lithium bis trifluoromethane-sulfonimide (LiTFSI) in a plastic crystal succinonitrile (SN), entrapped in poly(vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP) have been prepared and characterized. The films have been used as electrolytes in the electrical double layer capacitors (EDLCs). Coconut-shell derived activated carbon with high specific surface area (∼2100 m 2 g −1 ) and mixed (micro- and meso-) porosity has been used as EDLC electrodes. The structural, thermal, and electrochemical characterization of the GPEs have been performed using scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), impedance measurements and cyclic voltammetry. The high ionic conductivity (∼10 −3 S cm −1 at 25 °C), good electrochemical stability window (>4.0 V) and flexible nature of the free-standing films of GPEs show their competence in the fabrication of EDLCs. The EDLCs have been tested using electrochemical impedance spectroscopy, cyclic voltammetry, and charge–discharge studies. The EDLCs using LiTf based electrolyte have been found to give higher values of specific capacitance, specific energy, power density (240–280 F g −1 , ∼39 Wh kg −1 and ∼19 kW kg −1 , respectively) than the EDLC cell with LiTFSI based gel electrolyte. EDLCs have been found to show stable performance for ∼10 4 charge–discharge cycles. The comparative studies indicate the effective role of electrolyte anions on the capacitive performance of the solid-state EDLCs. - Graphical abstract: Display Omitted - Highlights: • Flexible EDLCs with succinonitrile based gel electrolyte membranes are reported. • Anionic size of salts in gel electrolytes plays important role on capacitive performance. • Li-triflate incorporated gel electrolyte shows better performance over LiTFSI-based gel.

  7. Solid-state electric double layer capacitors fabricated with plastic crystal based flexible gel polymer electrolytes: Effective role of electrolyte anions

    Energy Technology Data Exchange (ETDEWEB)

    Suleman, Mohd; Kumar, Yogesh; Hashmi, S.A., E-mail: sahashmi@physics.du.ac.in

    2015-08-01

    Flexible gel polymer electrolyte (GPE) thick films incorporated with solutions of lithium trifluoromethanesulfonate (Li-triflate or LiTf) and lithium bis trifluoromethane-sulfonimide (LiTFSI) in a plastic crystal succinonitrile (SN), entrapped in poly(vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP) have been prepared and characterized. The films have been used as electrolytes in the electrical double layer capacitors (EDLCs). Coconut-shell derived activated carbon with high specific surface area (∼2100 m{sup 2} g{sup −1}) and mixed (micro- and meso-) porosity has been used as EDLC electrodes. The structural, thermal, and electrochemical characterization of the GPEs have been performed using scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), impedance measurements and cyclic voltammetry. The high ionic conductivity (∼10{sup −3} S cm{sup −1} at 25 °C), good electrochemical stability window (>4.0 V) and flexible nature of the free-standing films of GPEs show their competence in the fabrication of EDLCs. The EDLCs have been tested using electrochemical impedance spectroscopy, cyclic voltammetry, and charge–discharge studies. The EDLCs using LiTf based electrolyte have been found to give higher values of specific capacitance, specific energy, power density (240–280 F g{sup −1}, ∼39 Wh kg{sup −1} and ∼19 kW kg{sup −1}, respectively) than the EDLC cell with LiTFSI based gel electrolyte. EDLCs have been found to show stable performance for ∼10{sup 4} charge–discharge cycles. The comparative studies indicate the effective role of electrolyte anions on the capacitive performance of the solid-state EDLCs. - Graphical abstract: Display Omitted - Highlights: • Flexible EDLCs with succinonitrile based gel electrolyte membranes are reported. • Anionic size of salts in gel electrolytes plays important role on capacitive performance. • Li-triflate incorporated gel electrolyte shows better

  8. A NOVEL GEL ELECTROLYTE FOR VALVE-REGULATED LEAD ACID BATTERY

    Directory of Open Access Journals (Sweden)

    Metin GENÇTEN

    2017-03-01

    Full Text Available A novel gel electrolyte system used in lead-acid batteries was investigated in this work. The gel systems were prepared by addition different amount of Al2O3, TiO2 and B2O3 into the gelled system consisting of 6 wt% fumed silica and 30 wt% sulfuric acid solution. The anodic peak currents and peak redox capacities of the gel electrolytes were characterized by cyclic voltammetric method. They decreased by the time B2O3 and Al2O3 were used as additives in fumed silica based gel electrolyte system. However, these values increased by the adding 3.0 wt% of TiO2. The solution and charge transfer resistances of the gel electrolytes were investigated by electrochemical impedance spectroscopy. While the solution resistances were lower in gel systems having different amount additives than pure fumed silica based gel, the charge transfer resistance was the lowest in gel electrolytes consisting fumed silica and fumed silica-TiO2. The battery performances were studied by obtaining discharge curves of prepared gel electrolytes. The performance of gelled systems were higher than that of non-gelled electrolyte at room temperature. The mixture of fumed silica-TiO2 was suggested an alternative gel formulation for gel VRLA batteries.

  9. A novel CuI-based iodine-free gel electrolyte for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Chen Junnian; Xia Jiangbin; Fan Ke; Peng Tianyou

    2011-01-01

    Highlights: → A novel CuI-based iodine-free gel electrolyte for DSSC is firstly prepared. → Such CuI-based electrolyte has relative high conductivity and stability. → Addition amount of LiClO 4 and PEO in the electrolyte is optimized. → Cell performance is improved by 116.2% compared with the cell without LiClO 4 . - Abstract: A novel CuI-based iodine-free gel electrolyte using polyethylene oxide (PEO, MW = 100,000) as plasticizer and lithium perchlorate (LiClO 4 ) as salt additive was developed for dye-sensitized solar cells (DSSCs). Such CuI-based gel electrolyte can avoid the problems caused by liquid iodine electrolyte and has relative high conductivity and stability. The effects of PEO and LiClO 4 concentrations on the viscosity and ionic conductivity of the mentioned iodine-free electrolyte, as well as the performance of the corresponding quasi solid-state DSSCs were investigated comparatively. Experimental results indicate that the performance of DSSCs can be dramatically improved by adding LiClO 4 and PEO, and there are interactions (Li + -O coordination) between LiClO 4 and PEO, these Li + -O coordination interactions have important influence on the structure, morphology and ionic conductivity of the present CuI-based electrolyte. Addition of PEO into the electrolyte can inhibit the rapid crystal growth of CuI, and enhance the ion and hole transportation property owing to its long helix chain structure. The optimal efficiency (2.81%) was obtained for the quasi solid-state DSSC fabricated with CuI-based electrolyte containing 3 wt% LiClO 4 and 20 wt% PEO under AM 1.5 G (1 sun) light illumination, with a 116.2% improvement in the efficiency compared with the cell without addition of LiClO 4 , indicating the promising application in solar cells of the present CuI-based iodine-free electrolyte.

  10. Outstanding features of alginate-based gel electrolyte with ionic liquid for electric double layer capacitors

    Science.gov (United States)

    Soeda, Kazunari; Yamagata, Masaki; Ishikawa, Masashi

    2015-04-01

    An alginate-based gel electrolyte with an ionic liquid (Alg/IL) is investigated for electric double-layer capacitors (EDLCs) by using physicochemical and electrochemical measurements. The Alg/EMImBF4 (EMImBF4 = 1-ethyl-3-methylimidazolium tetrafluoroborate) gel electrolyte is thermally stable up to 280 °C, where EMImBF4 decomposes. Furthermore, the EDLC with the gel electrolyte can be operated even at high temperature. The cell containing Alg/EMImBF4 is also electrochemically stable even under high voltage (∼3.5 V) operation. Thus, the alginate is a suitable host polymer for the gel electrolyte for EDLCs. According to the result of charge-discharge characteristics, the voltage drop in the charge-discharge curve for the cell with Alg/EMImBF4 gel electrolyte is considerably smaller than that with liquid-phase EMImBF4 electrolyte. To clarify the effect of Alg in contact with the activated carbon electrode, we also prepared an Alg-containing ACFC electrode (Alg + ACFC), and evaluated its EDLC characteristics in liquid EMImBF4. The results prove that the presence of Alg close to the active materials significantly reduces the internal resistance of the EDLC cell, which may be attributed to the high affinity of Alg to activated carbon.

  11. All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes

    International Nuclear Information System (INIS)

    Kang, Yu Jin; Kim, Woong; Chung, Haegeun; Han, Chi-Hwan

    2012-01-01

    All-solid-state flexible supercapacitors were fabricated using carbon nanotubes (CNTs), regular office papers, and ionic-liquid-based gel electrolytes. Flexible electrodes were made by coating CNTs on office papers by a drop-dry method. The gel electrolyte was prepared by mixing fumed silica nanopowders with ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][NTf 2 ]). This supercapacitor showed high power and energy performance as a solid-state flexible supercapacitor. The specific capacitance of the CNT electrodes was 135 F g −1 at a current density of 2 A g −1 , when considering the mass of active materials only. The maximum power and energy density of the supercapacitors were 164 kW kg −1 and 41 Wh kg −1 , respectively. Interestingly, the solid-state supercapacitor with the gel electrolyte showed comparable performance to the supercapacitors with ionic-liquid electrolyte. Moreover, the supercapacitor showed excellent stability and flexibility. The CNT/paper- and gel-based supercapacitors may hold great potential for low-cost and high-performance flexible energy storage applications. (paper)

  12. Gel electrolytes and electrodes

    Science.gov (United States)

    Fleischmann, Sven; Bunte, Christine; Mikhaylik, Yuriy V.; Viner, Veronika G.

    2017-09-05

    Gel electrolytes, especially gel electrolytes for electrochemical cells, are generally described. In some embodiments, the gel electrolyte layers comprise components a) to c). Component a) may be at least one layer of at least one polymer comprising polymerized units of: a1) at least one monomer containing an ethylenically unsaturated unit and an amido group and a2) at least one crosslinker. Component b) may be at least one conducting salt and component c) may be at least one solvent. Electrodes may comprise the components a), d) and e), wherein component a) may be at least one layer of at least one polymer as described herein. Component d) may be at least one electroactive layer and component e) may be at least one ceramic layer. Furthermore, electrochemical cells comprising component a) which may be at least one layer of at least one polymer as described herein, are also provided.

  13. Phthaloylchitosan-Based Gel Polymer Electrolytes for Efficient Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    S. N. F. Yusuf

    2014-01-01

    Full Text Available Phthaloylchitosan-based gel polymer electrolytes were prepared with tetrapropylammonium iodide, Pr4NI, as the salt and optimized for conductivity. The electrolyte with the composition of 15.7 wt.% phthaloylchitosan, 31.7 wt.% ethylene carbonate (EC, 3.17 wt.% propylene carbonate (PC, 19.0 wt.% of Pr4NI, and 1.9 wt.% iodine exhibits the highest room temperature ionic conductivity of 5.27 × 10−3 S cm−1. The dye-sensitized solar cell (DSSC fabricated with this electrolyte exhibits an efficiency of 3.5% with JSC of 7.38 mA cm−2, VOC of 0.72 V, and fill factor of 0.66. When various amounts of lithium iodide (LiI were added to the optimized gel electrolyte, the overall conductivity is observed to decrease. However, the efficiency of the DSSC increases to a maximum value of 3.71% when salt ratio of Pr4NI : LiI is 2 : 1. This cell has JSC, VOC and fill factor of 7.25 mA cm−2, 0.77 V and 0.67, respectively.

  14. Electrochemical behavior of ionically crosslinked polyampholytic gel electrolytes

    International Nuclear Information System (INIS)

    Chen Wanyu; Tang Haitao; Ou Ziwei; Wang Hong; Yang Yajiang

    2007-01-01

    An ionic complex of anionic and cationic monomers was obtained by protonation of (N,N-diethylamino)ethylmethacrylate (DEA) with acrylic acid (AAc). Free radical copolymerization of the ionic complex and acrylamide (AAm), yielded the ionically crosslinked polyampholytic gel electrolytes [poly(AAc-DEA-AAm), designated as PADA] using two types of organic solvents containing a lithium salt. The PADA gel electrolyte exhibited good thermal stability shown by the DSC thermogram. The impedance analysis at temperatures ranging from -30 to 75 deg. C indicated that the ionic conductivities of the PADA gel electrolytes were rather close to those of liquid electrolytes. The temperature dependence of the ionic conductivities was found to be in accord with the Arrhenius equation. Moreover, the ionic conductivities of PADA gel electrolytes increased with an increase of the molar ratios of cationic/anionic monomers. The ionic conductivities of PADA gels prepared in solvent mixtures of propylene carbonate, ethyl methyl ether and dioxolane (3:1:1, v/v) were higher than those of PADA gels prepared in propylene carbonate only. Significantly, the ionic conductivities of two kinds of PADA gel electrolytes were in the range of 10 -3 and 10 -4 S cm -1 even at -30 deg. C. The electrochemical windows of PADA gel electrolytes measured by cyclic voltammetry were in the range from -1 V to 4.5 V

  15. Thermostable gel polymer electrolyte based on succinonitrile and ionic liquid for high-performance solid-state supercapacitors

    Science.gov (United States)

    Pandey, Gaind P.; Liu, Tao; Hancock, Cody; Li, Yonghui; Sun, Xiuzhi Susan; Li, Jun

    2016-10-01

    A flexible, free-standing, thermostable gel polymer electrolyte based on plastic crystalline succinonitrile (SN) and ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (BMImBF4) entrapped in copolymer poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) is prepared and optimized for application in solvent-free solid-state supercapacitors. The synthesized gel polymer electrolyte exhibits a high ionic conductivity over a wide temperature range (from ∼5 × 10-4 S cm-1 at -30 °C up to ∼1.5 × 10-2 S cm-1 at 80 °C) with good electrochemical stability window (-2.9 to 2.5 V). Thermal studies confirm that the SN containing gel polymer electrolyte remains stable in the same gel phase over a wide temperature range from -30 to 90 °C. The electric double layer capacitors (EDLCs) have been fabricated using activated carbon as active materials and new gel polymer electrolytes. Electrochemical performance of the EDLCs is assessed through cyclic voltammetry, galvanostatic charge-discharge cycling and impedance spectroscopy. The EDLC cells with the proper SN-containing gel polymer electrolyte has been found to give high specific capacitance 176 F g-1 at 0.18 A g-1 and 138 F g-1 at 8 A g-1. These solid-state EDLC cells show good cycling stability and the capability to retain ∼80% of the initial capacitance after 10,000 cycles.

  16. Novel polymeric systems for lithium-ion batteries gel electrolytes

    International Nuclear Information System (INIS)

    Appetecchi, G.B.; Alessandrini, F.; Passerini, S.; Caporiccio, G.; Boutevin, B.; Guida-Pietrasanta, F.

    2004-01-01

    The investigation of chemically cross-linked, self-supporting gel-type electrolyte membranes, based on hybrid polyfluorosilicone polymers reinforced with nanosized silica, for lithium-ion battery systems is reported. The polyfluorosilicone materials were selected on the basis of their high chemical and thermal stabilities. The precursors were synthesized with functional groups capable to form inter-molecular cross-linking, thus obtaining three-dimensional polymer matrices. The latter were undergone to swelling processes in (non-aqueous, lithium salt containing) electrolytic solutions to obtain gel-type polymer electrolytes. Several kinds of membranes, based on different types of polyfluorosilicone precursor, were prepared and characterized in terms of swelling behavior, ionic conductivity and electrochemical stability. The properties of the swelled matrices were evaluated as a function of dipping time, temperature, kind of electrolytic solution and cross-linking initiator content

  17. Novel thixotropic gel electrolytes based on dicationic bis-imidazolium salts for quasi-solid-state dye-sensitized solar cells

    Science.gov (United States)

    Kim, Jun Young; Kim, Tae Ho; Kim, Dong Young; Park, Nam-Gyu; Ahn, Kwang-Duk

    Novel thixotropic gel electrolytes have been successfully prepared by utilizing oligomeric poly(ethylene oxide) (PEO)-based bis-imidazolium diiodide salts and hydrophilic silica nanoparticles for application in quasi-solid-state dye-sensitized solar cells (DSSCs). The thixotropic gel-state of the ionic liquid-based composite electrolytes is confirmed by observing the typical hysteresis loop and temporary hydrogen bonding. On using the PEO-based composite electrolyte, a quasi-solid-state DSSC exhibited highly improved properties such as easy penetration of the electrolyte into the cell without leakage, long-term stability, high open-circuit voltage without the use of 4- tert-butylpyridine, and a high energy-conversion efficiency of 5.25% under AM 1.5 illumination (100 mW cm -2).

  18. Structural and Electrochemical Analysis of PMMA Based Gel Electrolyte Membranes

    Directory of Open Access Journals (Sweden)

    Chithra M. Mathew

    2015-01-01

    Full Text Available New gel polymer electrolytes containing poly(vinylidene chloride-co-acrylonitrile and poly(methyl methacrylate are prepared by solution casting method. With the addition of 60 wt.% of EC to PVdC-AN/PMMA blend, ionic conductivity value 0.398×10-6 S cm−1 has been achieved. XRD and FT-IR studies have been conducted to investigate the structure and complexation in the polymer gel electrolytes. The FT-IR spectra show that the functional groups C=O and C≡N play major role in ion conduction. Thermal stability of the prepared membranes is found to be about 180°C.

  19. Novel thixotropic gel electrolytes based on dicationic bis-imidazolium salts for quasi-solid-state dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jun Young [Department of Polymer Science and Engineering, SungKyunKwan University, Suwon, Kyunggi-do 440-746 (Korea); Functional Polymer Lab., Korea Institute of Science and Technology, Seoul 136-791 (Korea); Kim, Tae Ho [Department of Polymer Science and Engineering, SungKyunKwan University, Suwon, Kyunggi-do 440-746 (Korea); Kim, Dong Young; Park, Nam-Gyu [Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea); Ahn, Kwang-Duk [Functional Polymer Lab., Korea Institute of Science and Technology, Seoul 136-791 (Korea)

    2008-01-03

    Novel thixotropic gel electrolytes have been successfully prepared by utilizing oligomeric poly(ethylene oxide) (PEO)-based bis-imidazolium diiodide salts and hydrophilic silica nanoparticles for application in quasi-solid-state dye-sensitized solar cells (DSSCs). The thixotropic gel-state of the ionic liquid-based composite electrolytes is confirmed by observing the typical hysteresis loop and temporary hydrogen bonding. On using the PEO-based composite electrolyte, a quasi-solid-state DSSC exhibited highly improved properties such as easy penetration of the electrolyte into the cell without leakage, long-term stability, high open-circuit voltage without the use of 4-tert-butylpyridine, and a high energy-conversion efficiency of 5.25% under AM 1.5 illumination (100 mW cm{sup -2}). (author)

  20. Gel electrolytes based on poly(acrylonitrile)/sulpholane with hybrid TiO2/SiO2 filler for advanced lithium polymer batteries

    International Nuclear Information System (INIS)

    Kurc, Beata

    2014-01-01

    Highlights: • Paper describes properties of gel electrolyte based on PAN with TMS and TiO 2 -SiO 2 . • The TiO 2 -SiO 2 oxide composite was precipitated in the emulsion system and used as the fillers. • The capacity of the graphite anode depends on the current rate and the amount of TiO 2 -SiO 2 . • For PE3 electrolyte was obtained practical capacity more than 90% of the theoretical capacity. - Abstract: This paper describes the synthesis and properties of a new type of ceramic fillers for composite polymer gel electrolytes. Hybrid TiO 2 -SiO 2 ceramic powders have been obtained by co-precipitation from titanium(IV) sulfate solution using sodium silicate as the precipitating agent. The resulting submicron-size powders have been applied as fillers for composite polymer gel electrolytes for Li-ion batteries based on polyacrylonitrile (PAN) membranes. The powders and gel electrolytes have been examined structurally and electrochemically, showing favorable properties in terms of electrolyte uptake and electrochemical characteristics in Li-ion cells

  1. Cycling Performance of Li4Ti5O12 Electrodes in Ionic Liquid-Based Gel Polymer Electrolytes

    International Nuclear Information System (INIS)

    Kim, Jin Hee; Kim, Dong Won; Kang, Yong Ku

    2012-01-01

    We investigated the cycling behavior of Li 4 Ti 5 O 12 electrode in a cross-linked gel polymer electrolyte based on non-flammable ionic liquid consisting of 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide and vinylene carbonate. The Li 4 Ti 5 O 12 electrodes in ionic liquid-based gel polymer electrolytes exhibited reversible cycling behavior with good capacity retention. Cycling data and electrochemical impedance spectroscopy analyses revealed that the optimum content of the cross-linking agent necessary to ensure both acceptable initial discharge capacity and good capacity retention was about 8 wt %

  2. Enhancing the performance of dye-sensitized solar cells by incorporating nanosilicate platelets in gel electrolyte

    KAUST Repository

    Lai, Yi-Hsuan; Chiu, Chih-Wei; Chen, Jian-Ging; Wang, Chun-Chieh; Lin, Jiang-Jen; Lin, King-Fu; Ho, Kuo-Chuan

    2009-01-01

    Two kinds of gel-type dye-sensitized solar cells (DSSCs), composed of two types of electrolytes, were constructed and the respective cell performance was evaluated in this study. One electrolyte, TEOS-Triton X-100 gel, was based on a hybrid organic/inorganic gel electrolyte made by the sol-gel method and the other was based on poly(vinyidene fluoride-co-hexafluoro propylene) (PVDF-HFP) copolymer. TEOS-Triton X-100 gel was based on the reticulate structure of silica, formed by hydrolysis, and condensation of tetraethoxysilane (TEOS), while its organic subphase was a mixture of surfactant (Triton X-100) and ionic liquid electrolytes. Both DSSC gel-type electrolytes were composed of iodine, 1-propy-3-methyl-imidazolium iodide, and 3-methoxypropionitrile to create the redox couple of I3 -/I-. Based on the results obtained from the I-V characteristics, it was found that the optimal iodine concentrations for the TEOS-Triton X-100 gel electrolyte and PVDF-HFP gel electrolyte are 0.05 M and 0.1 M, respectively. Although the increase in the iodine concentration could enhance the short-circuit current density (JSC), a further increase in the iodine concentration would reduce the JSC due to increased dark current. Therefore, the concentration of I2 is a significant factor in determining the performance of DSSCs. In order to enhance cell performance, the addition of nanosilicate platelets (NSPs) in the above-mentioned gel electrolytes was investigated. By incorporating NSP-Triton X-100 into the electrolytes, the JSC of the cells increased due to the decrease of diffusion resistance, while the open circuit voltage (VOC) remained almost the same. As the loading of the NSP-Triton X-100 in the TEOS-Triton X-100 gel electrolyte increased to 0.5 wt%, the JSC and the conversion efficiency increased from 8.5 to 12 mA/cm2 and from 3.6% to 4.7%, respectively. However, the JSC decreased as the loading of NSP-Triton X-100 exceeded 0.5 wt%. At higher NSP-Triton X-100 loading, NSPs acted as

  3. Enhancing the performance of dye-sensitized solar cells by incorporating nanosilicate platelets in gel electrolyte

    KAUST Repository

    Lai, Yi-Hsuan

    2009-10-01

    Two kinds of gel-type dye-sensitized solar cells (DSSCs), composed of two types of electrolytes, were constructed and the respective cell performance was evaluated in this study. One electrolyte, TEOS-Triton X-100 gel, was based on a hybrid organic/inorganic gel electrolyte made by the sol-gel method and the other was based on poly(vinyidene fluoride-co-hexafluoro propylene) (PVDF-HFP) copolymer. TEOS-Triton X-100 gel was based on the reticulate structure of silica, formed by hydrolysis, and condensation of tetraethoxysilane (TEOS), while its organic subphase was a mixture of surfactant (Triton X-100) and ionic liquid electrolytes. Both DSSC gel-type electrolytes were composed of iodine, 1-propy-3-methyl-imidazolium iodide, and 3-methoxypropionitrile to create the redox couple of I3 -/I-. Based on the results obtained from the I-V characteristics, it was found that the optimal iodine concentrations for the TEOS-Triton X-100 gel electrolyte and PVDF-HFP gel electrolyte are 0.05 M and 0.1 M, respectively. Although the increase in the iodine concentration could enhance the short-circuit current density (JSC), a further increase in the iodine concentration would reduce the JSC due to increased dark current. Therefore, the concentration of I2 is a significant factor in determining the performance of DSSCs. In order to enhance cell performance, the addition of nanosilicate platelets (NSPs) in the above-mentioned gel electrolytes was investigated. By incorporating NSP-Triton X-100 into the electrolytes, the JSC of the cells increased due to the decrease of diffusion resistance, while the open circuit voltage (VOC) remained almost the same. As the loading of the NSP-Triton X-100 in the TEOS-Triton X-100 gel electrolyte increased to 0.5 wt%, the JSC and the conversion efficiency increased from 8.5 to 12 mA/cm2 and from 3.6% to 4.7%, respectively. However, the JSC decreased as the loading of NSP-Triton X-100 exceeded 0.5 wt%. At higher NSP-Triton X-100 loading, NSPs acted as

  4. Compliant gel polymer electrolyte based on poly(methyl acrylate-co-acrylonitrile)/poly(vinyl alcohol) for flexible lithium-ion batteries

    International Nuclear Information System (INIS)

    Ma, Xianguo; Huang, Xinglan; Gao, Jiandong; Zhang, Shu; Deng, Zhenghua; Suo, Jishuan

    2014-01-01

    Highlights: •Compliant gel polymer electrolyte based on P(MA-co-AN)/PVA is facilely prepared for flexible lithium-ion batteries. •The compliant gel polymer electrolyte displays high ionic conductivity, self-standing and mechanical flexible. •The compliant gel polymer electrolyte exhibits excellent chemical and electrochemical performances. -- Abstract: In this report, mechanically compliant gel polymer electrolyte (GPE) for flexible lithium-ion batteries is facilely fabricated. The GPE that based on the poly(methyl acrylate-co-acrylonitrile)/poly(vinyl alcohol) (P(MA-co-AN)/PVA) was prepared via emulsion polymerization. Herein, the P(MA-co-AN) copolymer is anticipated to exert beneficial for the bendability of the GPE, as well as swollen with the liquid electrolyte to provide a facile pathway for ion movement. The PVA serves as a stabilizer during the emulsion polymerization and a mechanical framework for the compliant polymer membrane. Performance benefits of the mechanically compliant membrane are elucidated in terms of mechanical behavior, thermostability and ionic conductivity. The GPE is still self-standing and mechanical flexible after swollen with liquid electrolyte. The GPE displays a conductivity of 0.98 mS cm −1 with the uptake electrolyte up to 150% of its own weight at 30 °C, excellent electrochemical stability window (5.2 V vs. Li/Li + ) and favorable interfacial characteristics. When used in flexible lithium-ion batteries, such a GPE demonstrates satisfactory compatibility with LiCoO 2 and graphite electrodes

  5. Polymer Gel Electrolytes Based on 49 % Methyl-Grafted Natural Rubber

    International Nuclear Information System (INIS)

    Kamisan, A.S.; Kudin, T.I.T.; Ali, A.M.M.; Yahya, M.Z.A.; Yahya, M.Z.A.

    2011-01-01

    Polymer gel electrolytes (PGEs) based on 49 % methyl-grafted natural rubber (MG49) were first prepared by dissolving ammonium triflate (NH 4 CF 3 SO 3 ) in propylene carbonate (PC) by various molar concentrations of NH 4 CF 3 SO 3 to obtain liquid electrolytes and were characterized by AC electrical impedance spectroscopy (EIS) measurements to study their conducting behaviour. The liquid electrolyte with optimum conductivity (0.7 M) was then gelled with MG49 and their conductivity was also studied. The highest conductivity of liquid electrolyte was 3.6 x 10 -3 Scm -1 and 2.9x10 -2 Scm -1 for PGEs. The molecular interactions between components of NH 4 CF 3 SO 3 , PC, and MG49 have been observed by ATR-FTIR spectroscopy study. The downshifting of C=O stretching frequency of PC from 1785 cm -1 to 1780 cm -1 and NH 4+ band from 1634 cm -1 to 1626 cm -1 that has been obtained by spectroscopic data in addition of NH 4 CF 3 SO 3 confirmed the complexation occurrence. Interaction between NH 4 CF 3 SO 3 and MG49 has also been investigated. This study is focused on the interactions between components in the PGE system and relates them with their conducting behavior. (author)

  6. Poly(vinylpyridine-co-styrene) based in situ cross-linked gel polymer electrolyte for lithium-ion polymer batteries

    International Nuclear Information System (INIS)

    Oh, Sijin; Kim, Dong Wook; Lee, Changjin; Lee, Myong-Hoon; Kang, Yongku

    2011-01-01

    A gel polymer electrolyte (GPE) was successfully prepared by means of an in situ cross-linking reaction of poly(2-vinylpyridine-co-styrene) and oligo(ethylene oxide) with epoxide functional groups at 65 °C without using a polymerization initiator. A stable gel polymer electrolyte could be obtained by adding only 1% of a polymer gelator. The ionic conductivity of the GPE containing 99 wt% of liquid electrolyte was measured to be ca. 10 −2 S/cm at the ambient temperature. The ionic conductivity of the resulting GPE was comparable to that of a pure liquid electrolyte. The electrochemical stability window of the prepared gel polymer electrolytes was measured to be 5.2 V. The test cell carried a discharge capacity of 133.2 mAh/g at 0.1 C and showed good cycling performance with negligible capacity fading after the 200th cycle, maintaining 99.5% coulombic efficiency throughout 200 cycles. The resulting gel polymer electrolyte prepared by in situ thermal cross-linking without a polymerization initiator holds promise for application to on the high power lithium-ion polymer batteries.

  7. Effect of Cross-Linking on the Performances of Starch-Based Biopolymer as Gel Electrolyte for Dye-Sensitized Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Pavithra Nagaraj

    2017-12-01

    Full Text Available Dye-sensitized solar cells (DSSCs have become a validated and economically credible competitor to the traditional solid-state junction photovoltaic devices. DSSCs based on biopolymer gel electrolyte systems offer the perspective of competitive conversion efficiencies with a very low-cost fabrication. In this paper, a new starch-based biopolymer gel electrolyte system is prepared by mixing lithium iodide and iodine with bare and citric acid cross-linked potato starches with glycerol as the plasticizing agent. The effect of the preparation methods on the starch cross-linking degree as well as the photoconversion efficiency of the resulting DSSC cells is carefully analyzed. Fourier transform spectroscopy, X-ray diffraction, and scanning electron microscopy were used to characterize the morphology and conformational changes of starch in the electrolytes. The conductivity of the biopolymer electrolytes was determined by electrochemical impedance spectroscopy. DSSC based on the starch-gel polymer electrolytes were characterized by photovoltaic measurements and electrochemical impedance spectroscopy. Results clearly show that the cross-linking increases the recombination resistance and open circuit voltage (VOC of the DSSC, and thereby the photoconversion efficiency of the cell. In particular, electrolytes containing 1.4 g bare and cross-linked starches showed ionic conductivities of σ = 1.61, 0.59, 0.38, and 0.35 S cm−1, and the corresponding DSSCs showed efficiencies of 1.2, 1.4, 0.93, and 1.11%, respectively.

  8. Supercapacitors based on two dimensional VO2 nanosheet electrodes in organic gel electrolyte

    KAUST Repository

    Rakhi, R.B.

    2016-10-16

    VO2 is a low band-gap semiconductor with relatively high conductivity among transition metal oxides, which makes it an interesting material for supercapacitor electrode applications. The performance of VO2 as supercapacitor electrode in organic electrolytes has never been reported before. Herein, two-dimensional nanosheets of VO2 are prepared by the simultaneous solution reduction and exfoliation from bulk V2O5 powder by hydrothermal method. A specific capacitance of 405 Fg−1 is achieved for VO2 based supercapacitor in an organic electrolyte, in three electrode configuration. The symmetric capacitor based on VO2 nanosheet electrodes and the liquid organic electrolyte exhibits an energy density of 46 Wh kg−1 at a power density of 1.4 kW kg−1 at a constant current density of 1 Ag−1. Furthermore, flexible solid-state supercapacitors are fabricated using same electrode material and Alumina-silica based gel electrolyte. The solid-state device delivers a specific capacitance of 145 Fg−1 and a device capacitance of 36 Fg−1 at a discharge current density of 1 Ag−1. Series combination of three solid state capacitors is capable of lighting up a red LED for more than 1 minute.

  9. Effect of a novel amphipathic ionic liquid on lithium deposition in gel polymer electrolytes

    International Nuclear Information System (INIS)

    Choi, Nam-Soon; Koo, Bonjae; Yeon, Jin-Tak; Lee, Kyu Tae; Kim, Dong-Won

    2011-01-01

    Highlights: · Synthesis of a dimeric ionic liquid. · Gel polymer electrolytes providing uniform lithium deposit pathway. · An amphipathic ionic liquid locates at the interface between an electrolyte-rich phase and a polymer matrix in a gel polymer electrolyte. · The presence of PDMITFSI ionic liquid leads to the suppression of dendritic lithium formation on a lithium metal electrode. - Abstract: A novel dimeric ionic liquid based on imidazolium cation and bis(trifluoromethanesulfonyl) imide (TFSI) anion has been synthesized through a metathesis reaction. Its chemical shift values and thermal properties are identified via 1 H nuclear magnetic resonance (NMR) imaging and differential scanning calorimetry (DSC). The effect of the synthesized dimeric ionic liquid on the interfacial resistance of gel polymer electrolytes is described. Differences in the SEM images of lithium electrodes after lithium deposition with and without the 1,1'-pentyl-bis(2,3-dimethylimidazolium) bis(trifluoromethane-sulfonyl)imide (PDMITFSI) ionic liquid in gel polymer electrolytes are clearly discernible. This occurs because the PDMITFSI ionic liquid with hydrophobic moieties and polar groups modulates lithium deposit pathways onto the lithium metal anode. Moreover, high anodic stability for a gel polymer electrolyte with the PDMITFSI ionic liquid was clearly observed.

  10. All-solid-state Al-air batteries with polymer alkaline gel electrolyte

    Science.gov (United States)

    Zhang, Zhao; Zuo, Chuncheng; Liu, Zihui; Yu, Ying; Zuo, Yuxin; Song, Yu

    2014-04-01

    Aluminum-air (Al-air) battery is one of the most promising candidates for next-generation energy storage systems because of its high capacity and energy density, and abundance. The polyacrylic acid (PAA)-based alkaline gel electrolyte is used in all-solid-state Al-air batteries instead of aqueous electrolytes to prevent leakage. The optimal gel electrolyte exhibits an ionic conductivity of 460 mS cm-1, which is close to that of aqueous electrolytes. The Al-air battery peak capacity and energy density considering only Al can reach 1166 mAh g-1-Al and 1230 mWh g-1-Al, respectively, during constant current discharge. The battery prototype also exhibits a high power density of 91.13 mW cm-2. For the battery is a laminated structure, area densities of 29.2 mAh cm-2 and 30.8 mWh cm-2 are presented to appraise the performance of the whole cell. A novel design to inhibit anodic corrosion is proposed by separating the Al anode from the gel electrolyte when not in use, thereby effectively maintaining the available capacity of the battery.

  11. Ionogel Electrolytes through Sol-Gel Processing

    Science.gov (United States)

    Horowitz, Ariel I.

    Electrical energy needs have intensified due to the ubiquity of personal electronics, the decarbonization of energy services through electrification, and the use of intermittent renewable energy sources. Despite developments in mechanical and thermal methods, electrochemical technologies are the most convenient and effective means of storing electrical energy. These technologies include both electrochemical cells, commonly called batteries, and electrochemical double-layer capacitors, or "supercapacitors", which store energy electrostatically. Both device types require an ion-conducting electrolyte. Current devices use solutions of complex salts in organic solvents, leading to both toxicity and flammability concerns. These drawbacks can be avoided by replacing conventional electrolytes with room-temperature molten salts, known as ionic liquids (ILs). ILs are non-volatile, non-flammable, and offer high conductivity and good electrochemical stability. Device mass can be reduced by combining ILs with a solid scaffold material to form an "ionogel," further improving performance metrics. In this work, sol-gel chemistry is explored as a means of forming ionogel electrolytes. Sol-gel chemistry is a solution-based, industrially-relevant, well-studied technique by which solids such as silica can be formed in situ. Previous works used a simple acid-catalyzed sol-gel reaction to create brittle, glassy ionogels. Here, both the range of products that can be accomplished through sol-gel processing and the understanding of interactions between ILs and the sol-gel reaction network are greatly expanded. This work introduces novel ionogel materials, including soft and compliant silica-supported ionogels and PDMS-supported ionogels. The impacts of the reactive formulation, IL identity, and casting time are detailed. It is demonstrated that variations in formulation can lead to rapid gelation and open pore structures in the silica scaffold or slow gelation and more dense silica

  12. Formation of physical-gel redox electrolytes through self-assembly of discotic liquid crystals: Applications in dye sensitized solar cells

    International Nuclear Information System (INIS)

    Khan, Ammar A.; Kamarudin, Muhammad A.; Qasim, Malik M.; Wilkinson, Timothy D.

    2017-01-01

    The self-assembly of small molecules into ordered structures is of significant interest in electronic applications due to simpler device fabrication and better performance. Here we present work on the development of self-assembled fibrous networks of thermotropic triphenylene discotic liquid crystals, where 2,3,6,7,10,11-Hexakishexyloxytriphenylene (HAT6) is studied. The formation of interconnected molecular fibres in acetonitrile-based solvents facilitates thermally-reversible physical-gel (non-covalent) preparation, with the HAT6 network providing mechanical support and containment of the solvent. Furthermore, gel formation is also achieved using an acetonitrile-based iodide/tri-iodide redox liquid electrolyte, and the resulting gel mixture is utilised as an electrolyte in dye-sensitized solar cells (DSSCs). Our results show that it is indeed possible to achieve in situ gel formation in DSSCs, allowing for easy cell fabrication and electrolyte filling. In addition, the gel phase is found to increase device lifetime by limiting solvent evaporation. Differential scanning calorimetry (DSC) and polarising optical microscopy (POM) are used to study gel formation, and it is identified that the thermally reversible gels are stable up to working temperatures of 40 °C. It is found that DSSCs filled with gel electrolyte exhibit longer electron lifetime in the TiO 2 photo-anode (≈8.4 ms in the liquid electrolyte to ≈11.4 ms in the gel electrolytes), most likely due to electron screening from the electrolyte by HAT6. Current-Voltage (I–V) and electrochemical impedance spectroscopy (EIS) are used to study the effect of gel formation on conductivity and electrochemical properties, and it is found that confinement of the liquid electrolyte into a gel phase does not significantly reduce ionic conductivity, a problem common with solid-state polymer electrolytes. A 3.8 mM HAT6 gel electrolyte DSSC exhibited a PCE of 6.19% vs. a 5.86% liquid electrolyte reference. Extended

  13. Electrochemical performance of trimethylolpropane trimethylacrylate-based gel polymer electrolyte prepared by in situ thermal polymerization

    International Nuclear Information System (INIS)

    Zhou, Dong; Fan, Li-Zhen; Fan, Huanhuan; Shi, Qiao

    2013-01-01

    Cross-linked trimethylolpropane trimethylacrylate-based gel polymer electrolytes (GPE) were prepared by in situ thermal polymerization. The ionic conductivity of the GPEs are >10 −3 S cm −1 at 25 °C, and continuously increased with the increase of liquid electrolyte content. The GPEs have excellent electrochemical stability up to 5.0 V versus Li/Li + . The LiCoO 2 |TMPTMA-based GPE|graphite cells exhibit an initial discharge capacity of 129 mAh g −1 at the 0.2C, and good cycling stability with around 83% capacity retention after 100 cycles. Both the simple fabricating process of polymer cell and outstanding electrochemical performance of such new GPE make it potentially one of the most promising electrolyte materials for next generation lithium ion batteries

  14. Efficient and Stable Photovoltaic Characteristics of Quasi-Solid State DSSC using Polymer Gel Electrolyte Based on Ionic Liquid in Organosiloxane Polymer Gels

    Science.gov (United States)

    Pujiarti, H.; Arsyad, W. S.; Shobih; Muliani, L.; Hidayat, R.

    2018-04-01

    Dye-Sensitized Solar Cell (DSSC) is still one of the promising solar cell types among the third generation of solar cells because of easiness of fabrication and variety of available materials. In this type of solar cell, the electrolyte is one of the important components for regenerating excited dyes and transporting electric charge carriers to the counter electrode. Indeed, the power conversion efficiency of DSSC can be then significantly affected by the chemical and physical properties of the electrolyte. The simplest electrolyte system of an I-/I3 - redox couple in an organic solvent, however, has some drawbacks due to corrosive properties, volatile and leakage problem. Use of solid phase or gel phase electrolyte may overcome those problems, but it is often considered to suppress the efficiency due to low ion diffusion. Here, we report the photovoltaic characteristics of DSSC using polymer gel electrolyte (PGE), which is composed of ionic liquid and an organosiloxane polymer gel. The better cell performance with power conversion efficiency of about 6% has been obtained by optimizing the mesoporous size of the TiO2 layer and the PGE viscosity.

  15. Experimental studies on poly methyl methacrylate based gel polymer electrolytes for application in electrical double layer capacitors

    International Nuclear Information System (INIS)

    Hashmi, S A; Kumar, Ashok; Tripathi, S K

    2007-01-01

    Studies have been carried out on gel polymer electrolytes comprising poly methyl methacrylate (PMMA)-ethylene carbonate (EC)-propylene carbonate (PC)-salts, LiClO 4 , NaClO 4 and (C 2 H 5 ) 4 NClO 4 (TEAClO 4 ) with a view to using them as electrolytes in electrical double layer capacitors (EDLCs) based on activated charcoal powder electrodes. The optimum composition of gel electrolytes, PMMA (20 wt%)-EC : PC (1 : 1 v/v)-1.0 M salts exhibit high ionic conductivity of the order of ∼10 -3 S cm -1 at room temperature with good mechanical/dimensional stability, suitable for their application in EDLCs. The EDLCs have been characterized using linear sweep cyclic voltammetry, galvanostatic charge-discharge tests and ac impedance spectroscopy. The values of capacitance of 68-151 mF cm -2 (equivalent to single electrode specific capacitance of 38-78 Fg -1 of activated charcoal powder) have been observed. These values correspond to a specific energy of 5.3-10.8 Wh kg -1 and a power density of 0.19-0.22 kW kg -1 . The capacitance values have been observed to be stable up to 5000 voltammetric cycles or even more. A comparison of studies shows the predominant role of anions of the gel electrolytes in the capacitive behaviour of EDLCs

  16. Amperometric detector for gas chromatography based on a silica sol-gel solid electrolyte.

    Science.gov (United States)

    Steinecker, William H; Miecznikowski, Krzysztof; Kulesza, Pawel J; Sandlin, Zechariah D; Cox, James A

    2017-11-01

    An electrochemical cell comprising a silica sol-gel solid electrolyte, a working electrode that protrudes into a gas phase, and reference and counter electrodes that contact the solid electrolyte comprises an amperometric detector for gas chromatography. Under potentiostatic conditions, a current related to the concentration of an analyte in the gas phase is produced by its oxidation at the three-phase boundary among the sol-gel, working electrode, and the gas phase. The sol-gel is processed to contain an electrolyte that also serves as a humidistat to maintain a constant water activity even in the presence the gas chromatographic mobile phase. Response was demonstrated toward a diverse set of analytes, namely hydrogen, 1,2-ethandithiol, phenol, p-cresol, and thioanisole. Using flow injection amperometry of hydrogen with He as the carrier gas, 90% of the steady-state current was achieved in < 1s at a flow rate of 20mLmin -1 . A separation of 1,2-ethandithiol, phenol, p-cresol, and thioanisole at a 2.2mLmin -1 flow rate was achieved with respective detection limits (k = 3 criterion) of 4, 1, 3, and 70 ppmv when the working electrode potential was 800mV. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Preparation of poly(acrylonitrile-butyl acrylate) gel electrolyte for lithium-ion batteries

    International Nuclear Information System (INIS)

    Tian Zheng; He Xiangming; Pu Weihua; Wan Chunrong; Jiang Changyin

    2006-01-01

    Poly(acrylonitrile-butyl acrylate) gel polymer electrolyte was prepared for lithium ion batteries. The preparation started with synthesis of poly(acrylonitrile-butyl acrylate) by radical emulsion polymerization, followed by phase inversion to produce microporous membrane. Then, the microporous gel polymer electrolytes (MGPEs) was prepared with the microporous membrane and LiPF 6 in ethylene carbonate/diethyl carbonate. The dry microporous membrane showed a fracture strength as high as 18.98 MPa. As-prepared gel polymer electrolytes presented ionic conductivity in excess of 3.0 x 10 -3 S cm -1 at ambient temperature and a decomposition voltage over 6.6 V. The results showed that the as-prepared gel polymer electrolytes were promising materials for Li-ion batteries

  18. The polymer gel electrolyte based on poly(methyl methacrylate) and its application in quasi-solid-state dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Yang Hongxun; Huang Miaoliang; Wu Jihuai; Lan Zhang; Hao Sancun; Lin Jianming

    2008-01-01

    Using poly(methyl methacrylate) as polymer host, ethylene carbonate, 1,2-propanediol carbonate and dimethyl carbonate as organic mixture solvents, sodium iodide and iodine as source of I - /I 3 - , a polymer gel electrolyte PMMA-EC/PC/DMC-NaI/I 2 with ionic conductivity of 6.89 mS cm -1 was prepared. Based on the polymer gel electrolyte, a quasi-solid-state dye-sensitized solar cell (DSSC) was fabricated. The quasi-solid-state DSSC possessed a good long-term stability and a light-to-electrical energy conversion efficiency of 4.78% under irradiation of 100 mW cm -2 simulated sunlight, which is almost equal to that of DSSC with a liquid electrolyte

  19. Preparation of poly(acrylonitrile-butyl acrylate) gel electrolyte for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Tian Zheng [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); He Xiangming [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)]. E-mail: hexm@tsinghua.edu.cn; Pu Weihua [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Wan Chunrong [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Jiang Changyin [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)

    2006-10-25

    Poly(acrylonitrile-butyl acrylate) gel polymer electrolyte was prepared for lithium ion batteries. The preparation started with synthesis of poly(acrylonitrile-butyl acrylate) by radical emulsion polymerization, followed by phase inversion to produce microporous membrane. Then, the microporous gel polymer electrolytes (MGPEs) was prepared with the microporous membrane and LiPF{sub 6} in ethylene carbonate/diethyl carbonate. The dry microporous membrane showed a fracture strength as high as 18.98 MPa. As-prepared gel polymer electrolytes presented ionic conductivity in excess of 3.0 x 10{sup -3} S cm{sup -1} at ambient temperature and a decomposition voltage over 6.6 V. The results showed that the as-prepared gel polymer electrolytes were promising materials for Li-ion batteries.

  20. Dye-Sensitized Solar Cells with Optimal Gel Electrolyte Using the Taguchi Design Method

    Directory of Open Access Journals (Sweden)

    Jenn-Kai Tsai

    2013-01-01

    Full Text Available The Taguchi method was adopted to determine the optimal gel electrolyte used in dye-sensitized solar cells (DSSCs. Since electrolyte is a very important factor in fabrication of high performance and long-term stability DSSCs, to find the optimal composition of gel electrolyte is desired. In this paper, the common ingredients used in the liquid electrolyte were chosen. The ingredients then mixed with cheap ionic liquids and poly(vinylidenefluoride-co-hexafluoropropylene (PVDF-HFP were added to form colloidal electrolyte (gel. The optimal composition of each materials in the gel electrolyte determined by Taguchi method consists of 0.03 M I2, 0.15 M KI, 0.6 M LiI, 0.5 M 4-tertbutylpyridine (TBP, and 10% PVDF-HFP dissolved in the acetonitrile and 3-methoxypropionitrile (MPN solution with volume ratio of 2 : 1. The short circuit current density of 14.11 mA/cm2, the conversion efficiency (η of 5.52%, and the lifetime of over 110 days were observed for the dye-sensitized solar cell assembled with optimal gel electrolyte. The lifetime increases 10 times when compared with the conventional dye-sensitized solar cell assembled with liquid electrolyte.

  1. A novel and high-effective redox-mediated gel polymer electrolyte for supercapacitor

    International Nuclear Information System (INIS)

    Ma, Guofu; Feng, Enke; Sun, Kanjun; Peng, Hui; Li, Jiajia; Lei, Ziqiang

    2014-01-01

    Graphical abstract: - Highlights: • Alkali and P-phenylenediamine doped polyvinyl alcohol gel electrolyte is prepared. • The PVA-KOH-PPD gel electrolyte can also be used as separator. • The introduction of PPD increases the ionic conductivity of electrolyte. • The supercapacitor exhibits flexible and high energy density. - Abstract: A supercapacitor utilize a novel redox-mediated gel polymer (PVA-KOH-PPD) as electrolyte and separator, and activated carbon as electrodes is assembled. The PVA-KOH-PPD gel polymer as potential electrolyte for supercapacitor is investigated by cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy techniques. It is found that the supercapacitor exhibits high ionic conductivity (25 mS cm −1 ), large electrode specific capacitance (611 F g −1 ) and high energy density (82.56 Wh kg −1 ). The high performance is attributed to the addition of quick redox reactions at the electrolyte|electrode interface as PPD undergoes a two-proton/two-electron reduction and oxidation during cycling. Furthermore, the supercapacitor with PVA-KOH-PPD gel polymer shows excellent charge-discharge stability, after 1000 charge-discharge cycles, the supercapacitor still retains a high electrode specific capacitance of 470 F g −1 . It is believed that the idea using redox mediator has a good prospect for improving the performances of supercapacitors

  2. Fabrication of WO3-based electrochromic displays using solid or gel-like organic electrolytes

    International Nuclear Information System (INIS)

    Vasilopoulou, M; Aspiotis, G; Kostis, I; Argitis, P; Davazoglou, D

    2005-01-01

    New all solid-state electrochromic displays were fabricated by chemically vapor depositing and patterning a tungsten oxide film on SnO 2 :F covered glass substrates. Aluminum sheets were used as counter electrodes to form electrochromic displays using solid or gel-like organic electrolytes. These ionically conductive and electronically insulating electrolytes were based on poly(methyl methacrylate) (PMMA) and poly(2-hydrohyethyl methacrylate) (PHEMA) into which phospho-tungstic acid was added at various concentrations. In some devices the electrolyte was formed by addition of photoacid generator into the polymeric matrix and exposure at deep UV light. It was found that displays exhibit an intense, reversible electrochromic effect with reflectivity varying by a factor of five between the uncolored to the colored state. The coloring voltage depends strongly on the polymeric matrix, the thickness of the electrolyte and post-apply baking conditions and is of the order of 6-9 V. The response time was found to be of the order of 500 ms; coloration and bleaching times were comparable

  3. Preparation and characterization of core-shell electrodes for application in gel electrolyte-based dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Avellaneda, Cesar O.; Goncalves, Agnaldo D.; Benedetti, Joao E.; Nogueira, Ana F.

    2010-01-01

    Core-shell electrodes based on TiO 2 covered with different oxides were prepared and characterized. These electrodes were applied in gel electrolyte-based dye-sensitized solar cells (DSSC). The TiO 2 electrodes were prepared from TiO 2 powder (P25 Degussa) and coated with thin layers of Al 2 O 3 , MgO, Nb 2 O 5 , and SrTiO 3 prepared by the sol-gel method. The core-shell electrodes were characterized by X-ray diffraction, scanning electron microscopy and atomic force microscopy measurements. J-V curves in the dark and under standard AM 1.5 conditions and photovoltage decay measurements under open-circuit conditions were carried out in order to evaluate the influence of the oxide layer on the charge recombination dynamics and on the device's performance. The results indicated an improvement in the conversion efficiency as a result of an increase in the open circuit voltage. The photovoltage decay curves under open-circuit conditions showed that the core-shell electrodes provide longer electron lifetime values compared to uncoated TiO 2 electrodes, corroborating with a minimization in the recombination losses at the nanoparticle surface/electrolyte interface. This is the first time that a study has been applied to DSSC based on gel polymer electrolyte. The optimum performance was achieved by solar cells based on TiO 2 /MgO core-shell electrodes: fill factor of ∼0.60, short-circuit current density J sc of 12 mA cm -2 , open-circuit voltage V oc of 0.78 V and overall energy conversion efficiency of ∼5% (under illumination of 100 mW cm -2 ).

  4. Incorporating allylated lignin-derivatives in thiol-ene gel-polymer electrolytes.

    Science.gov (United States)

    Baroncini, Elyse A; Stanzione, Joseph F

    2018-07-01

    Growing environmental and economic concerns as well as the uncertainty that accompanies finite petrochemical resources contributes to the increase in research and development of bio-based, renewable polymers. Concurrently, industrial and consumer demand for smaller, safer, and more flexible technologies motivates a global research effort to improve electrolytic polymer separators in lithium-ion batteries. To incorporate the aromatic structural advantages of lignin, a highly abundant and renewable resource, into gel-polymer electrolytes, lignin-derived molecules, vanillyl alcohol and gastrodigenin are functionalized and UV-polymerized with multi-functional thiol monomers. The resulting thin, flexible, polymer films possess glass transition temperatures ranging from -42.1°C to 0.3°C and storage moduli at 25°C ranging from 1.90MPa to 10.08MPa. The crosslinked polymer films swollen with electrolyte solution impart conductivities in the range of 7.04×10 -7 to 102.73×10 -7 Scm -1 . Thiol molecular weight has the most impact on the thermo-mechanical properties of the resulting films while polymer crosslink density has the largest effect on conductivity. The conducting abilities of the bio-based gel-polymer electrolytes in this study prove the viability of lignin-derived feedstock for use in lithium-ion battery applications and reveal structurally and thermally desirable traits for future work. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Ionic liquids in a poly ethylene oxide cross-linked gel polymer as an electrolyte for electrical double layer capacitor

    Science.gov (United States)

    Chaudoy, V.; Tran Van, F.; Deschamps, M.; Ghamouss, F.

    2017-02-01

    In the present work, we developed a gel polymer electrolyte via the incorporation of a room temperature ionic liquid into a cross-linked polymer matrix. The cross-linked gel electrolyte was prepared using a free radical polymerization of methacrylate and dimethacrylate oligomers dissolved in 1-propyl-1-methylpyrrolidinium bis(fluorosulfonyl)imide. Combining the advantages of the ionic liquids and of conventional polymers, the cross-linked gel polymer electrolyte was used both as a separator and as an electrolyte for a leakage-free and non-flammable EDLC supercapacitor. The quasi-all solid-state supercapacitors showed rather good capacitance, power and energy densities by comparison to a liquid electrolyte-based EDLC.

  6. Ion-conductive polymethylmethacrylate gel electrolytes for lithium batteries

    Czech Academy of Sciences Publication Activity Database

    Vondrák, Jiří; Reiter, Jakub; Velická, Jana; Klápště, Břetislav; Sedlaříková, M.; Dvorak, J.

    2005-01-01

    Roč. 146, 1-2 (2005), s. 436-440 ISSN 0378-7753 R&D Projects: GA MŽP SN/3/171/05; GA ČR GA104/02/0731 Institutional research plan: CEZ:AV0Z40320502 Keywords : polymethylmethacrylate * gel electrolytes * polymer electrolytes Subject RIV: CA - Inorganic Chemistry Impact factor: 2.770, year: 2005

  7. Comparison of chitosan and chitosan nanoparticles on the performance and charge recombination of water-based gel electrolyte in dye sensitized solar cells.

    Science.gov (United States)

    Khalili, Malihe; Abedi, Mohammad; Amoli, Hossein Salar; Mozaffari, Seyed Ahmad

    2017-11-01

    In commercialization of liquid dye-sensitized solar cells (DSSCs), whose leakage, evaporation and toxicity of organic solvents are limiting factors, replacement of organic solvents with water-based gel electrolyte is recommended. This work reports on utilizing and comparison of chitosan and chitosan nanoparticle as different gelling agents in preparation of water-based gel electrolyte in fabrication of dye sensitized solar cells. All photovoltaic parameters such as open circuit voltage (V oc ), fill factor (FF), short circuit current density (J sc ) and conversion efficiency (η) were measured. For further characterization, electrochemical impedance spectroscopy (EIS) was used to study the charge transfer at Pt/electrolyte interface and charge recombination and electron transport at TiO 2 /dye/electrolyte interface. Significant improvements in conversion efficiency and short circuit current density of DSSCs fabricated by chitosan nanoparticle were observed that can be attributed to the higher mobility of I 3 - due to the lower viscosity and smaller size of chitosan nanoparticles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Hydroponics gel as a new electrolyte gelling agent for alkaline zinc-air cells

    Science.gov (United States)

    Othman, R.; Basirun, W. J.; Yahaya, A. H.; Arof, A. K.

    The viability of hydroponics gel as a new alkaline electrolyte gelling agent is investigated. Zinc-air cells are fabricated employing 12 wt.% KOH electrolyte immobilised with hydroponics gel. The cells are discharged at constant currents of 5, 50 and 100 mA. XRD and SEM analysis of the anode plates after discharge show that the failure mode is due to the formation of zinc oxide insulating layers and not due to any side reactions between the gel and the plate or the electrolyte.

  9. Novel polymeric systems for lithium ion batteries gel electrolytes

    International Nuclear Information System (INIS)

    Appetecchi, G.B.; Alessandrini, F.; Passerini, S.; Caporiccio, G.; Boutevin, B.; Guida-PietraSanta, F.

    2005-01-01

    Cross-linked, self-supporting, membranes for lithium ion battery gel electrolytes were obtained by cross-linking a mixture of polyfluorosilicone (PFSi) and polysilicone containing ethylene oxide (EO) units [P(Si-EO)]. The membranes were also reinforced with nanosized silica. The two polymer precursors were synthesized with functional groups capable to form inter-molecular cross-linking, thus obtaining three-dimensional, polymer matrices. The precursors were dissolved in a common solvent and cross-linked to obtain free-standing PFSi/P(Si-EO):SiO 2 composite films. The latter were undergone to swelling processes in (non-aqueous, aprotic, lithium salt containing) electrolytic solutions to obtain gel-type polymer electrolytes. The properties of the swelled PFSi/P(Si-EO):SiO 2 samples were evaluated as a function of the electrolytic solutions and the dipping time. The PFSi/P(Si-EO):SiO 2 membranes exhibited large swelling properties, high ionic conductivity and good electrochemical stability

  10. Novel Stable Gel Polymer Electrolyte: Toward a High Safety and Long Life Li-Air Battery.

    Science.gov (United States)

    Yi, Jin; Liu, Xizheng; Guo, Shaohua; Zhu, Kai; Xue, Hailong; Zhou, Haoshen

    2015-10-28

    Nonaqueous Li-air battery, as a promising electrochemical energy storage device, has attracted substantial interest, while the safety issues derived from the intrinsic instability of organic liquid electrolytes may become a possible bottleneck for the future application of Li-air battery. Herein, through elaborate design, a novel stable composite gel polymer electrolyte is first proposed and explored for Li-air battery. By use of the composite gel polymer electrolyte, the Li-air polymer batteries composed of a lithium foil anode and Super P cathode are assembled and operated in ambient air and their cycling performance is evaluated. The batteries exhibit enhanced cycling stability and safety, where 100 cycles are achieved in ambient air at room temperature. The feasibility study demonstrates that the gel polymer electrolyte-based polymer Li-air battery is highly advantageous and could be used as a useful alternative strategy for the development of Li-air battery upon further application.

  11. Improvement of ionic conductivity and performance of quasi-solid-state dye sensitized solar cell using PEO/PMMA gel electrolyte

    International Nuclear Information System (INIS)

    Aram, E.; Ehsani, M.; Khonakdar, H.A.

    2015-01-01

    Graphical abstract: Reduced interfacial resistance of a quasi-solid-state dye sensitized solar cell with PEO/PMMA blend gel electrolytes. - Highlights: • A new polymer gel electrolyte containing PEO/PMMA was developed for DSSCs. • Optimization of polymer gel electrolyte was done for dye sensitized solar cell. • The best ionic conductivity was found in PEO/PMMA blend with 10/90 w/w composition. • The DSSC with the PEO/PMMA based electrolyte showed good photovoltaic performance. • Significant stability improvement for quasi-solid state DSSC was obtained. - Abstract: Polymer blend gel electrolytes based on polyethylene oxide (PEO) and poly(methyl methacrylate) (PMMA) as host polymers with various weight ratios, LiI/I 2 as redox couple in electrolyte and 4-tert-butyl pyridine as additive were prepared by solution method. The introduction of PMMA in the PEO gel electrolyte reduced the degree of crystallinity of PEO, which was confirmed by differential scanning calorimetry (DSC). Complexation and ionic conductivity as a function of temperature were investigated with Fourier transform infrared and ionic conductometry, respectively. A good correlation was found between the degree of crystallinity and ionic conductivity. The reduction in crystallinity, governed by blending ratio, led to improvement of ionic conductivity. The best ionic conductivity was attained in PEO/PMMA blend with 10/90 w/w composition. The performance of a quasi-solid-state dye sensitized solar cell using the optimized polymer gel electrolyte was investigated. The optimized system of high ionic conductivity of 7 mS cm −1 , with fill factor of 0.59, short-circuit density of 11.11 mA cm −2 , open-circuit voltage of 0.75 V and the conversion efficiency of 4.9% under air mass 1.5 irradiation (100 mW cm −2 ) was obtained. The long-term stability of the dye-sensitized solar cell (DSSC) during 600 h was improved by using PEO/PMMA gel electrolyte relative to a liquid type electrolyte

  12. Improvement of ionic conductivity and performance of quasi-solid-state dye sensitized solar cell using PEO/PMMA gel electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Aram, E. [Iran Polymer and Petrochemical Institute, 14965/115 Tehran (Iran, Islamic Republic of); Ehsani, M., E-mail: m.ehsani@ippi.ac.ir [Iran Polymer and Petrochemical Institute, 14965/115 Tehran (Iran, Islamic Republic of); Khonakdar, H.A. [Iran Polymer and Petrochemical Institute, 14965/115 Tehran (Iran, Islamic Republic of); Leibniz Institute of Polymer Research, D-01067 Dresden (Germany)

    2015-09-10

    Graphical abstract: Reduced interfacial resistance of a quasi-solid-state dye sensitized solar cell with PEO/PMMA blend gel electrolytes. - Highlights: • A new polymer gel electrolyte containing PEO/PMMA was developed for DSSCs. • Optimization of polymer gel electrolyte was done for dye sensitized solar cell. • The best ionic conductivity was found in PEO/PMMA blend with 10/90 w/w composition. • The DSSC with the PEO/PMMA based electrolyte showed good photovoltaic performance. • Significant stability improvement for quasi-solid state DSSC was obtained. - Abstract: Polymer blend gel electrolytes based on polyethylene oxide (PEO) and poly(methyl methacrylate) (PMMA) as host polymers with various weight ratios, LiI/I{sub 2} as redox couple in electrolyte and 4-tert-butyl pyridine as additive were prepared by solution method. The introduction of PMMA in the PEO gel electrolyte reduced the degree of crystallinity of PEO, which was confirmed by differential scanning calorimetry (DSC). Complexation and ionic conductivity as a function of temperature were investigated with Fourier transform infrared and ionic conductometry, respectively. A good correlation was found between the degree of crystallinity and ionic conductivity. The reduction in crystallinity, governed by blending ratio, led to improvement of ionic conductivity. The best ionic conductivity was attained in PEO/PMMA blend with 10/90 w/w composition. The performance of a quasi-solid-state dye sensitized solar cell using the optimized polymer gel electrolyte was investigated. The optimized system of high ionic conductivity of 7 mS cm{sup −1}, with fill factor of 0.59, short-circuit density of 11.11 mA cm{sup −2}, open-circuit voltage of 0.75 V and the conversion efficiency of 4.9% under air mass 1.5 irradiation (100 mW cm{sup −2}) was obtained. The long-term stability of the dye-sensitized solar cell (DSSC) during 600 h was improved by using PEO/PMMA gel electrolyte relative to a liquid type

  13. Development of Gel Polymer Electrolytes Using Radiation for Lithium Secondary Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung Ki; Lee, Jun Young; Lee, Dong Jin [KAIST, Daejeon (Korea, Republic of)

    2010-05-15

    Recently, demands of high performance lithium battery are increased. Development of battery materials for high power, high capacity, high safety are also needed. This project deals with the new gel polymer electrolyte based on the microporous matrix with specific functions using radiation techniques.

  14. Synthesis of polymer gel electrolyte with high molecular weight poly(methyl methacrylate)-clay nanocomposite

    International Nuclear Information System (INIS)

    Meneghetti, Paulo; Qutubuddin, Syed; Webber, Andrew

    2004-01-01

    Polymer nanocomposite gel electrolytes consisting of high molecular weight poly(methyl methacrylate) PMMA-clay nanocomposite, ethylene carbonate (EC)/propylene carbonate (PC) as plasticizer, and LiClO 4 electrolyte are reported. Montmorillonite clay was ion exchanged with a zwitterionic surfactant (octadecyl dimethyl betaine) and dispersed in methyl methacrylate, which was then polymerized to synthesize PMMA-clay nanocomposites. The nanocomposite was dissolved in a mixture of EC/PC with LiClO 4 , heated and pressed to obtain polymer gel electrolyte. X-ray diffraction (XRD) of the gels indicated intercalated clay structure with d-spacings of 2.85 and 1.40 nm. In the gel containing plasticizer, the clay galleries shrink suggesting intercalation rather than partial exfoliation observed in the PMMA-clay nanocomposite. Ionic conductivity varied slightly and exhibited a maximum value of 8 x 10 -4 S/cm at clay content of 1.5 wt.%. The activation energy was determined by modeling the conductivity with a Vogel-Tamman-Fulcher expression. The clay layers are primarily trapped inside the polymer matrix. Consequently, the polymer does not interact significantly with LiClO 4 electrolyte as shown by FTIR. The presence of the clay increased the glass transition temperature (Tg) of the gel as determined by differential scanning calorimetry. The PMMA nanocomposite gel electrolyte shows a stable lithium interfacial resistance over time, which is a key factor for use in electrochemical applications

  15. Gel polymer electrolyte lithium-ion cells with improved low temperature performance

    Energy Technology Data Exchange (ETDEWEB)

    Smart, M.C.; Ratnakumar, B.V.; Behar, A.; Whitcanack, L.D. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Yu, J.-S. [LG Chem/Research Park, P.O. Box 61Yu Song, Science Town, Daejon (Korea); Alamgir, M. [Compact Power, Inc., 1857 Technology Drive, Troy, MI 48083 (United States)

    2007-03-20

    For a number of NASA's future planetary and terrestrial applications, high energy density rechargeable lithium batteries that can operate at very low temperature are desired. In the pursuit of developing Li-ion batteries with improved low temperature performance, we have also focused on assessing the viability of using gel polymer systems, due to their desirable form factor and enhanced safety characteristics. In the present study we have evaluated three classes of promising liquid low-temperature electrolytes that have been impregnated into gel polymer electrolyte carbon-LiMn{sub 2}O{sub 4}-based Li-ion cells (manufactured by LG Chem. Inc.), consisting of: (a) binary EC + EMC mixtures with very low EC-content (10%), (b) quaternary carbonate mixtures with low EC-content (16-20%), and (c) ternary electrolytes with very low EC-content (10%) and high proportions of ester co-solvents (i.e., 80%). These electrolytes have been compared with a baseline formulation (i.e., 1.0 M LiPF{sub 6} in EC + DEC + DMC (1:1:1%, v/v/v), where EC, ethylene carbonate, DEC, diethyl carbonate, and DMC, dimethyl carbonate). We have performed a number of characterization tests on these cells, including: determining the rate capacity as a function of temperature (with preceding charge at room temperature and also at low temperature), the cycle life performance (both 100% DOD and 30% DOD low earth orbit cycling), the pulse capability, and the impedance characteristics at different temperatures. We have obtained excellent performance at low temperatures with ester-based electrolytes, including the demonstration of >80% of the room temperature capacity at -60 C using a C/20 discharge rate with cells containing 1.0 M LiPF{sub 6} in EC + EMC + MB (1:1:8%, v/v/v) (MB, methyl butyrate) and 1.0 M LiPF{sub 6} in EC + EMC + EB (1:1:8%, v/v/v) (EB, ethyl butyrate) electrolytes. In addition, cells containing the ester-based electrolytes were observed to support 5C pulses at -40 C, while still

  16. How a gel polymer electrolyte affects performance of lithium/sulfur batteries

    International Nuclear Information System (INIS)

    Zhang, Sheng S.; Tran, Dat T.

    2013-01-01

    Highlights: •Conventional separator is coated with a 50PEO-50SiO 2 (wt.%) composite layer. •Composite coating increases tensile strength and electrolyte wettability. •Coated separator offers an alternative approach for making gel polymer Li/S battery. •Li/S battery takes benefits of gel polymer electrolyte at the expense of capacity. -- Abstract: Gel polymer electrolyte (GPE) and composite gel polymer electrolyte (CGPE) have been widely employed to improve the safety and cycling performance of rechargeable lithium and lithium-ion batteries. In order to determine whether this approach is applicable to lithium/sulfur (Li/S) battery, we examine the effect of CGPE on the cycling and storage performances of Li/S cells by comparing a 50PEO-50SiO 2 (wt.%) composite coated separator (C-separator) with a pristine separator (P-separator). Results show that the composite coating significantly enhances the wettability of liquid electrolyte on the separator and that resulting CGPE can tightly glue the separator and electrode together. In comparison with the P-separator, the C-separator offers Li/S cells similar capacity retention and rate capability; however it greatly affects the specific capacity of sulfur. The analysis on the impedance spectrum of a lithium polysulfide (PS) solution reveal that the reduction of sulfur specific capacity is due to the high viscosity of the CGPE and the strong adsorption of SiO 2 filler to the PS species, which trap PS species in the separator and hence reduce the utilization of sulfur active material. Therefore, the benefits of the GPE and CGPE to the Li/S batteries can be taken only at the expense of sulfur specific capacity

  17. Poly(vinylidene fluoride-hexafluoropropylene polymer electrolyte for paper-based and flexible battery applications

    Directory of Open Access Journals (Sweden)

    Nojan Aliahmad

    2016-06-01

    Full Text Available Paper-based batteries represent a new frontier in battery technology. However, low-flexibility and poor ionic conductivity of solid electrolytes have been major impediments in achieving practical mechanically flexible batteries. This work discuss new highly ionic conductive polymer gel electrolytes for paper-based battery applications. In this paper, we present a poly(vinylidene fluoride-hexafluoropropylene (PVDH-HFP porous membrane electrolyte enhanced with lithium bis(trifluoromethane sulphoneimide (LiTFSI and lithium aluminum titanium phosphate (LATP, with an ionic conductivity of 2.1 × 10−3 S cm−1. Combining ceramic (LATP with the gel structure of PVDF-HFP and LiTFSI ionic liquid harnesses benefits of ceramic and gel electrolytes in providing flexible electrolytes with a high ionic conductivity. In a flexibility test experiment, bending the polymer electrolyte at 90° for 20 times resulted in 14% decrease in ionic conductivity. Efforts to further improving the flexibility of the presented electrolyte are ongoing. Using this electrolyte, full-cell batteries with lithium titanium oxide (LTO and lithium cobalt oxide (LCO electrodes and (i standard metallic current collectors and (ii paper-based current collectors were fabricated and tested. The achieved specific capacities were (i 123 mAh g−1 for standard metallic current collectors and (ii 99.5 mAh g−1 for paper-based current collectors. Thus, the presented electrolyte has potential to become a viable candidate in paper-based and flexible battery applications. Fabrication methods, experimental procedures, and test results for the polymer gel electrolyte and batteries are presented and discussed.

  18. Poly(vinylidene fluoride-hexafluoropropylene) polymer electrolyte for paper-based and flexible battery applications

    Science.gov (United States)

    Aliahmad, Nojan; Shrestha, Sudhir; Varahramyan, Kody; Agarwal, Mangilal

    2016-06-01

    Paper-based batteries represent a new frontier in battery technology. However, low-flexibility and poor ionic conductivity of solid electrolytes have been major impediments in achieving practical mechanically flexible batteries. This work discuss new highly ionic conductive polymer gel electrolytes for paper-based battery applications. In this paper, we present a poly(vinylidene fluoride-hexafluoropropylene) (PVDH-HFP) porous membrane electrolyte enhanced with lithium bis(trifluoromethane sulphone)imide (LiTFSI) and lithium aluminum titanium phosphate (LATP), with an ionic conductivity of 2.1 × 10-3 S cm-1. Combining ceramic (LATP) with the gel structure of PVDF-HFP and LiTFSI ionic liquid harnesses benefits of ceramic and gel electrolytes in providing flexible electrolytes with a high ionic conductivity. In a flexibility test experiment, bending the polymer electrolyte at 90° for 20 times resulted in 14% decrease in ionic conductivity. Efforts to further improving the flexibility of the presented electrolyte are ongoing. Using this electrolyte, full-cell batteries with lithium titanium oxide (LTO) and lithium cobalt oxide (LCO) electrodes and (i) standard metallic current collectors and (ii) paper-based current collectors were fabricated and tested. The achieved specific capacities were (i) 123 mAh g-1 for standard metallic current collectors and (ii) 99.5 mAh g-1 for paper-based current collectors. Thus, the presented electrolyte has potential to become a viable candidate in paper-based and flexible battery applications. Fabrication methods, experimental procedures, and test results for the polymer gel electrolyte and batteries are presented and discussed.

  19. Poly(vinylidene fluoride-hexafluoropropylene) polymer electrolyte for paper-based and flexible battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Aliahmad, Nojan; Shrestha, Sudhir; Varahramyan, Kody [Department of Electrical & Computer Engineering, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, IN, 46202 (United States); Integrated Nanosystems Development Institute (INDI), Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, IN, 46202 (United States); Agarwal, Mangilal, E-mail: agarwal@iupui.edu [Department of Electrical & Computer Engineering, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, IN, 46202 (United States); Integrated Nanosystems Development Institute (INDI), Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, IN, 46202 (United States); Department of Mechanical Engineering, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, IN, 46202 (United States)

    2016-06-15

    Paper-based batteries represent a new frontier in battery technology. However, low-flexibility and poor ionic conductivity of solid electrolytes have been major impediments in achieving practical mechanically flexible batteries. This work discuss new highly ionic conductive polymer gel electrolytes for paper-based battery applications. In this paper, we present a poly(vinylidene fluoride-hexafluoropropylene) (PVDH-HFP) porous membrane electrolyte enhanced with lithium bis(trifluoromethane sulphone)imide (LiTFSI) and lithium aluminum titanium phosphate (LATP), with an ionic conductivity of 2.1 × 10{sup −3} S cm{sup −1}. Combining ceramic (LATP) with the gel structure of PVDF-HFP and LiTFSI ionic liquid harnesses benefits of ceramic and gel electrolytes in providing flexible electrolytes with a high ionic conductivity. In a flexibility test experiment, bending the polymer electrolyte at 90° for 20 times resulted in 14% decrease in ionic conductivity. Efforts to further improving the flexibility of the presented electrolyte are ongoing. Using this electrolyte, full-cell batteries with lithium titanium oxide (LTO) and lithium cobalt oxide (LCO) electrodes and (i) standard metallic current collectors and (ii) paper-based current collectors were fabricated and tested. The achieved specific capacities were (i) 123 mAh g{sup −1} for standard metallic current collectors and (ii) 99.5 mAh g{sup −1} for paper-based current collectors. Thus, the presented electrolyte has potential to become a viable candidate in paper-based and flexible battery applications. Fabrication methods, experimental procedures, and test results for the polymer gel electrolyte and batteries are presented and discussed.

  20. A novel thermosetting gel electrolyte for stable quasi-solid-state dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Z.; Lin, J.M.; Huang, M.L.; Hao, S.C. [Institute of Materials Physical Chemistry, Huaqiao University, Quanzhou, 362021 (China); Sato, T.; Yin, S. [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 1-1 Katahira 2-Chome, Aoba-ku, Sendai 980-8577 (Japan); Wu, J.H.

    2007-11-19

    Using poly(acrylic acid)-poly(ethylene glycol) hybrid-absorbing liquid electrolyte, we prepare a novel thermosetting gel electrolyte (TSGE) with ionic conductivity of 6.12 mS cm{sup -1}. Based on the TSGE, a quasi-solid-state dye-sensitized solar cell with a good long-term stability and light-to-electricity conversion efficiency of 6.10 % is attained under AM 1.5 irradiation. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  1. Fabrication of Cost-Effective Dye-Sensitized Solar Cells Using Sheet-Like CoS2 Films and Phthaloylchitosan-Based Gel-Polymer Electrolyte

    Directory of Open Access Journals (Sweden)

    Saradh Prasad

    2018-01-01

    Full Text Available Platinum-free counter electrodes (CE were developed for use in efficient and cost-effective energy conversion devices, such as dye-sensitized solar cells (DSSCs. Electrochemical deposition of CoS2 on fluorine-doped tin oxide (FTO formed a hierarchical sheet-like structured CoS2 thin film. This film was engaged as a cost-effective platinum-free and high-efficiency CE for DSSCs. High stability was achieved using a phthaloychitosan-based gel-polymer electrolyte as the redox electrolyte. The electrocatalytic performance of the sheet-like CoS2 film was analyzed by electrochemical impedance spectroscopy and cyclic voltammetry. The film displayed improved electrocatalytic behavior that can be credited to a low charge-transfer resistance at the CE/electrolyte boundary and improved exchange between triiodide and iodide ions. The fabricated DSSCs with a phthaloychitosan-based gel-polymer electrolyte and sheet-like CoS2 CE had a power conversion efficiency (PCE, η of 7.29% with a fill factor (FF of 0.64, Jsc of 17.51 mA/cm2, and a Voc of 0.65 V, which was analogous to that of Pt CE (η = 7.82%. The high PCE of the sheet-like CoS2 CE arises from the enhanced FF and Jsc, which can be attributed to the abundant active electrocatalytic sites and enhanced interfacial charge-transfer by the well-organized surface structure.

  2. based gel polymer electrolytes

    Indian Academy of Sciences (India)

    (PVdF) as a host polymer, lithium perchlorate (LiClO4), lithium triflate ... TG/DTA studies showed the thermal stability of the polymer electrolytes. .... are observed while comparing pure XRD spectra with .... batteries as its operating temperature is normally in the .... chain ion movements and the conductivity of the polymer.

  3. Dextran based highly conductive hydrogel polysulfide electrolyte for efficient quasi-solid-state quantum dot-sensitized solar cells

    International Nuclear Information System (INIS)

    Chen, Hong-Yan; Lin, Ling; Yu, Xiao-Yun; Qiu, Kang-Qiang; Lü, Xian-Yong; Kuang, Dai-Bin; Su, Cheng-Yong

    2013-01-01

    Highlights: ► Dextran based hydrogel is first used to prepare quasi-solid-state polysulfide electrolyte for quantum dot-sensitized solar cells. ► The ion conductivity of hydrogel electrolyte shows almost the same value as the liquid electrolyte. ► The liquid state at elevated temperature of hydrogel electrolyte allows for a good contact between electrolyte and CdS/CdSe co-sensitized TiO 2 photoanode. ► The hydrogel electrolyte based cell exhibits slightly lower power conversion efficiency than that of liquid electrolyte based cell. ► The dynamic electron transfer mechanism in hydrogel electrolyte based cell is examined in detail by EIS and CIMPS/IMVS. -- Abstract: Highly conductive hydrogel polysulfide electrolyte is first fabricated using dextran as gelator and used as quasi-solid-state electrolyte for quantum dot-sensitized solar cells (QDSSCs). The hydrogel electrolyte with gelator concentration of 15 wt% shows almost the same conductivity as the liquid one. Moreover, its liquid state at elevated temperature allow for the well penetration into the pores in electrodeposited CdS/CdSe co-sensitized TiO 2 photoanode. This gel electrolyte based QDSSC exhibits power conversion efficiency (η) of 3.23% under AG 1.5 G one sun (100 mW cm −2 ) illumination, slightly lower than that of liquid electrolyte based cell (3.69%). The dynamic electron transfer mechanism of the gel and liquid electrolyte based QDSSC are examined by electrochemical impedance spectroscopy (EIS) and controlled intensity modulated photocurrent/photovoltage spectroscopy (CIMPS/IMVS). It is found that the electron transport in gel electrolyte based cell is much faster than the liquid electrolyte based cell but it tends to recombine more easily than the latter. However, these differences fade away with increasing the light intensity, showing declining electron collection efficiency at higher light intensity illumination. As a result, a conversion efficiency of 4.58% is obtained for the gel

  4. Lithium polymer cell assembled by in situ chemical cross-linking of ionic liquid electrolyte with phosphazene-based cross-linking agent

    International Nuclear Information System (INIS)

    Choi, Ji-Ae; Kang, Yongku; Kim, Dong-Won

    2013-01-01

    Highlights: ► Ionic liquid-based cross-linked gel polymer electrolytes were synthesized and their electrochemical properties were investigated. ► Lithium polymer cells with in situ cross-linked gel polymer electrolytes exhibited reversible cycling behavior with good capacity retention. ► The use of ionic liquid-based cross-linked gel polymer electrolytes significantly improved the thermal stability of the cells. -- Abstract: Ionic liquid-based cross-linked gel polymer electrolytes were prepared with a phosphazene-based cross-linking agent, and their electrochemical properties were investigated. Lithium polymer cells composed of lithium anode and LiCoO 2 cathode were assembled with ionic liquid-based cross-linked gel polymer electrolyte and their cycling performance was evaluated. The interfacial adhesion between the electrodes and the electrolyte by in situ chemical cross-linking resulted in stable capacity retention of the cell. A reduction in the ionic mobility in both the electrolyte and the electrode adversely affected discharge capacity and high rate performance of the cell. DSC studies demonstrated that the use of ionic liquid-based cross-linked gel polymer electrolytes provided a significant improvement in the thermal stability of the cell

  5. A Highly Flexible Supercapacitor Based on MnO2/RGO Nanosheets and Bacterial Cellulose-Filled Gel Electrolyte

    Directory of Open Access Journals (Sweden)

    Haojie Fei

    2017-10-01

    Full Text Available The flexible supercapacitors (SCs of the conventional sandwich-type structure have poor flexibility due to the large thickness of the final entire device. Herein, we have fabricated a highly flexible asymmetric SC using manganese dioxide (MnO2 and reduced graphene oxide (RGO nanosheet-piled hydrogel films and a novel bacterial cellulose (BC-filled polyacrylic acid sodium salt-Na2SO4 (BC/PAAS-Na2SO4 neutral gel electrolyte. Apart from being environmentally friendly, this BC/PAAS-Na2SO4 gel electrolyte has high viscosity and a sticky property, which enables it to combine two electrodes together. Meanwhile, the intertangling of the filled BC in the gel electrolyte hinders the decrease of the viscosity with temperature, and forms a separator to prevent the two electrodes from short-circuiting. Using these materials, the total thickness of the fabricated device does not exceed 120 μm. This SC device demonstrates high flexibility, where bending and even rolling have no obvious effect on the electrochemical performance. In addition, owing to the asymmetric configuration, the cell voltage of this flexible SC has been extended to 1.8 V, and the energy density can reach up to 11.7 Wh kg−1 at the power density of 441 W kg−1. This SC also exhibits a good cycling stability, with a capacitance retention of 85.5% over 5000 cycles.

  6. 4.4 V lithium-ion polymer batteries with a chemical stable gel electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Takeru; Hara, Tomitaro; Akashi, Hiroyuki [Sony Corporation, Energy Business Group, R and D Division, 1-1 Aza, Shimosugishita, Takakura, Hiwada-machi, Koriyama-shi, Fukushima 963-0531 (Japan); Segawa, Ken; Honda, Kazuo [Sony Energy Device Corporation, PB Technology Center, 1-1 Aza, Shimosugishita, Takakura, Hiwada-machi, Koriyama-shi, Fukushima 963-0531 (Japan)

    2007-12-06

    We tested 4.2 V Li-ion polymer batteries (LIPB) with physical gel electrolyte, poly(vinylidene fluoride) (PVDF), 4.4 V LIPB and 4.4 V Li-ion batteries (LIB) with a liquid electrolyte. The discharge capacity of the 4.4 V LIPB reached 520 Wh l{sup -1} which was 9% higher than that of the 4.2 V LIPB. The 4.4 V LIPB had a high capacity retention ratio of 91.4% at 3 C because of the excellent ion conductivity of the PVDF gel. The capacity retention ratio of the 4.4 V LIPB was 82% after 500 cycles, which is comparable to those of some commercial LIBs. The 4.4 V LIPB retained its original thickness even after many cycles and after being stored at 90 C, whereas the 4.4 V LIB swelled by over 20%. Peaks in the FT-IR spectrum of the discolored separator in the 4.4 V LIB after storage were assigned to C=C double bonds, suggesting that the separator in direct contact with the 4.4 V cathode had been oxidized. The PVDF gel electrolyte not only had a high ionic conductivity but also completely suppressed oxidation. The 4.4 V LIPB with PVDF gel electrolyte has properties suitable for practical cells, namely, high energy density, high permanence and it is safe to use. (author)

  7. Conductivity behaviour of polymer gel electrolytes: Role of polymer

    Indian Academy of Sciences (India)

    Unknown

    of a container that can hold a large amount of solvent and as a result possesses the ... having high value of conductivity results in polymer gel electrolytes. They are ..... the availability of free ions provided by the acid. It gene- rally reaches a ...

  8. Electric double-layer capacitors with tea waste derived activated carbon electrodes and plastic crystal based flexible gel polymer electrolytes

    Science.gov (United States)

    Suleman, M.; Deraman, M.; Othman, M. A. R.; Omar, R.; Hashim, M. A.; Basri, N. H.; Nor, N. S. M.; Dolah, B. N. M.; Hanappi, M. F. Y. M.; Hamdan, E.; Sazali, N. E. S.; Tajuddin, N. S. M.; Jasni, M. R. M.

    2016-08-01

    We report a novel configuration of symmetrical electric double-layer capacitors (EDLCs) comprising a plastic crystalline succinonitrile (SN) based flexible polymer gel electrolyte, incorporated with sodium trifluoromethane sulfonate (NaTf) immobilised in a host polymer poly (vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP). The cost-effective activated carbon powder possessing a specific surface area (SSA) of ~ 1700 m2g-1 containing a large proportion of meso-porosity has been derived from tea waste to use as supercapacitor electrodes. The high ionic conductivity (~3.6×10-3 S cm-1 at room temperature) and good electrochemical stability render the gel polymer electrolyte film a suitable candidate for the fabrication of EDLCs. The performance of the EDLCs has been tested by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and galvanostatic charge-discharge studies. The performance of the EDLC cell is found to be promising in terms of high values of specific capacitance (~270 F g-1), specific energy (~ 36 Wh kg-1), and power density (~ 33 kW kg-1).

  9. Electric double-layer capacitors with tea waste derived activated carbon electrodes and plastic crystal based flexible gel polymer electrolytes

    International Nuclear Information System (INIS)

    Suleman, M; Deraman, M; Othman, M A R; Omar, R; Basri, N H; Nor, N S M; Dolah, B N M; Hanappi, M F Y M; Hamdan, E; Sazali, N E S; Tajuddin, N S M; Jasni, M R M; Hashim, M A

    2016-01-01

    We report a novel configuration of symmetrical electric double-layer capacitors (EDLCs) comprising a plastic crystalline succinonitrile (SN) based flexible polymer gel electrolyte, incorporated with sodium trifluoromethane sulfonate (NaTf) immobilised in a host polymer poly (vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP). The cost-effective activated carbon powder possessing a specific surface area (SSA) of ∼ 1700 m 2 g -1 containing a large proportion of meso-porosity has been derived from tea waste to use as supercapacitor electrodes. The high ionic conductivity (∼3.6×10 -3 S cm -1 at room temperature) and good electrochemical stability render the gel polymer electrolyte film a suitable candidate for the fabrication of EDLCs. The performance of the EDLCs has been tested by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and galvanostatic charge-discharge studies. The performance of the EDLC cell is found to be promising in terms of high values of specific capacitance (∼270 F g -1 ), specific energy (∼ 36 Wh kg -1 ), and power density (∼ 33 kW kg -1 ). (paper)

  10. Electrolyte transport in neutral polymer gels embedded with charged inclusions

    Science.gov (United States)

    Hill, Reghan

    2005-11-01

    Ion permeable membranes are the basis of a variety of molecular separation technologies, including ion exchange, gel electrophoresis and dialysis. This work presents a theoretical model of electrolyte transport in membranes comprised of a continuous polymer gel embedded with charged spherical inclusions, e.g., biological cells and synthetic colloids. The microstructure mimics immobilized cell cultures, where electric fields have been used to promote nutrient transport. Because several important characteristics can, in principle, be carefully controlled, the theory provides a quantitative framework to help tailor the bulk properties for enhanced molecular transport, microfluidic pumping, and physicochemical sensing applications. This talk focuses on the electroosmotic flow driven by weak electric fields and electrolyte concentration gradients. Also of importance is the influence of charge on the effective ion diffusion coefficients, bulk electrical conductivity, and membrane diffusion potential.

  11. ZnCl 2- and NH 4Cl-hydroponics gel electrolytes for zinc-carbon batteries

    Science.gov (United States)

    Khalid, N. H.; Ismail, Y. M. Baba; Mohamad, A. A.

    Absorbency testing is used to determine the percentage of ZnCl 2 or NH 4Cl solution absorbed by a hydroponics gel (HPG). It is found that the absorbency of ZnCl 2 or NH 4Cl solution decreases with increasing solution concentration. The conductivity of ZnCl 2- and NH 4Cl-HPG electrolytes is dependent on the solution concentration. A mixture of salt solution with HPG yields excellent gel polymer electrolytes with conductivities of 0.026 and 0.104 S cm -1 at 3 M ZnCl 2 and 7 M NH 4Cl, respectively. These gel electrolytes are then used to produce zinc-carbon cells. The fabricated cells give capacities of 8.8 and 10.0 mAh, have an internal resistance of 25.4 and 19.8 Ω, a maximum power density of 12.7 and 12.2 mW cm -2, and a short-circuit current density of 29.1 and 33.9 mA cm -2 for ZnCl 2- and NH 4Cl-HPG electrolytes, respectively.

  12. Stable quasi-solid-state dye-sensitized solar cell using ionic gel electrolyte with low molecular mass organogelator

    International Nuclear Information System (INIS)

    Tao, Li; Huo, Zhipeng; Dai, Songyuan; Zhu, Jun; Zhang, Changneng; Pan, Xu; Huang, Yang; Yang, Shangfeng; Zhang, Bing; Yao, Jianxi

    2015-01-01

    Long-term stability is essential for the application and commercialization of dye-sensitized solar cells (DSCs). A quasi-solid-state DSC (QS-DSC) with excellent long-term stability is fabricated using ionic gel electrolyte (IGE) with N,N′-methylenebisdodecanamide as low molecular mass organogelator (LMOG). The gel to solution transition temperature (T gel ) of this IGE is 127 °C, well above the working temperature of the device, which contributes to the thermal properties of the IGE and the device. The electrochemical properties of the IGE and the kinetic processes of electron transport and recombination of the QS-DSC are investigated by means of electrochemical impedance spectroscopy (EIS) and controlled intensity modulated photocurrent/photovoltage spectroscopy (IMPS/IMVS). Due to the obstructed diffusion of redox species caused by the network of IGE, the electron recombination at the TiO 2 photoelectrode/electrolyte interface in the QS-DSC is accelerated. More importantly, compared with the ionic liquid electrolyte (ILE) based DSC, the QS-DSC based on the IGE exhibits excellent thermal and light-soaking stabilities during the accelerated aging tests for 1000 h. Especially, there is almost no degradation in the short-circuit current density (J sc ) in the IGE based QS-DSC, while the J sc of the ILE based DSC decreased to 85–94% of their initial values. - Highlights: • A novel IGE with high T gel is obtained by using a diamide derivative as LMOG. • The IGE based QS-DSC is very stable during the accelerated aging tests. • The influences of gelation on the electron kinetic processes are investigated

  13. Stable quasi-solid-state dye-sensitized solar cell using ionic gel electrolyte with low molecular mass organogelator

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Li [Key Laboratory of Novel Thin Film Solar Cells, Division of Solar Energy Materials and Engineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Huo, Zhipeng, E-mail: zhipenghuo@163.com [Key Laboratory of Novel Thin Film Solar Cells, Division of Solar Energy Materials and Engineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Dai, Songyuan, E-mail: sydai@ncepu.edu.cn [Key Laboratory of Novel Thin Film Solar Cells, Division of Solar Energy Materials and Engineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Beijing Key Lab of Novel Thin Film Solar Cells, North China Electric Power University, Beijing 102206 (China); Zhu, Jun; Zhang, Changneng; Pan, Xu; Huang, Yang [Key Laboratory of Novel Thin Film Solar Cells, Division of Solar Energy Materials and Engineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Yang, Shangfeng [Hefei National Laboratory for Physical Sciences at Microscale, Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei 230026 (China); Zhang, Bing; Yao, Jianxi [Beijing Key Lab of Novel Thin Film Solar Cells, North China Electric Power University, Beijing 102206 (China)

    2015-02-15

    Long-term stability is essential for the application and commercialization of dye-sensitized solar cells (DSCs). A quasi-solid-state DSC (QS-DSC) with excellent long-term stability is fabricated using ionic gel electrolyte (IGE) with N,N′-methylenebisdodecanamide as low molecular mass organogelator (LMOG). The gel to solution transition temperature (T{sub gel}) of this IGE is 127 °C, well above the working temperature of the device, which contributes to the thermal properties of the IGE and the device. The electrochemical properties of the IGE and the kinetic processes of electron transport and recombination of the QS-DSC are investigated by means of electrochemical impedance spectroscopy (EIS) and controlled intensity modulated photocurrent/photovoltage spectroscopy (IMPS/IMVS). Due to the obstructed diffusion of redox species caused by the network of IGE, the electron recombination at the TiO{sub 2} photoelectrode/electrolyte interface in the QS-DSC is accelerated. More importantly, compared with the ionic liquid electrolyte (ILE) based DSC, the QS-DSC based on the IGE exhibits excellent thermal and light-soaking stabilities during the accelerated aging tests for 1000 h. Especially, there is almost no degradation in the short-circuit current density (J{sub sc}) in the IGE based QS-DSC, while the J{sub sc} of the ILE based DSC decreased to 85–94% of their initial values. - Highlights: • A novel IGE with high T{sub gel} is obtained by using a diamide derivative as LMOG. • The IGE based QS-DSC is very stable during the accelerated aging tests. • The influences of gelation on the electron kinetic processes are investigated.

  14. Preparation and performance of a novel gel polymer electrolyte based on poly(vinylidene fluoride)/graphene separator for lithium ion battery

    International Nuclear Information System (INIS)

    Liu, Jiuqing; Wu, Xiufeng; He, Junying; Li, Jie; Lai, Yanqing

    2017-01-01

    Poly(vinylidenefluoride)/graphene (PVDF/graphene) gel polymer electrolyte is prepared via non-solvent induced phase separation (NIPS) technique for lithium ion battery application. The effect of graphene on the ion conductivity is investigated by AC impedance measurement. The relationship among the chemical structure, PVDF crystallinity, the graphene on macroporous formation and the ion conductivity are investigated. The results indicate that the graphene disperses homogenously in PVDF, and it also increases the porosity and decreases the crystallinity of the PVDF. At the same time, the unique structure increases the liquid uptake capability of PVDF/graphene polymer electrolyte. The ionic conductivity of the PVDF/graphene polymer electrolyte increases significantly from 1.85 mS cm"−"1 in pristine PVDF to 3.61 mS cm"−"1 with 0.002 wt% graphene. It is found that graphene not only increases the ionic conductivity but also markedly enhances the rate capability and the cycling performances of coin cell. This study shows that PVDF/graphene gel polymer electrolyte is a very promising material for lithium ion batteries.

  15. Synthesis and Characterization of a Gel-Type Electrolyte with Ionic Liquid Added for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Le-Yan Shi

    2013-01-01

    Full Text Available This study intends to develop the electrolyte needed in dye-sensitized solar cells (DSSCs. Moreover, three different ionic liquids in different molalities are added to the gel-type electrolyte. Experimental results show that the DSSC composed of the gel-type electrolyte with no ionic liquid added can acquire 4.13% photoelectric conversion efficiency. However, the DSSC composed of the gel-type electrolyte with 0.4 M of 1-butyl-3-methylimidazolium chloride added has an open-circuit voltage of 810 mV, a short-circuit current density of 9.56 mA/cm2, and photoelectric conversion efficiency reaching 4.89%. Comparing this DSSC with the DSSC with no ionic liquid added, the photoelectric conversion efficiency can be enhanced by 18.4%. As to durability, the DSSC composed of the gel-type electrolyte with ionic liquid added still has a photoelectric conversion efficiency of 3.28% on the 7th day after it is stored in an enclosed space and maintains 0.72% efficiency on the 14th day. When the proposed DSSC is compared with the DSSC prepared by using a liquid-type electrolyte, the durability of its photoelectric conversion efficiency can be increased by 7 times.

  16. A rechargeable Li-CO{sub 2} battery with a gel polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chao; Guo, Ziyang; Yang, Bingchang; Liu, Yao; Wang, Yonggang; Xia, Yongyao [Dept. of Chemistry and Shanghai Key Lab. of Molecular Catalysis and Innovative Materials, Inst. of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan Univ. (China)

    2017-07-24

    The utilization of CO{sub 2} in Li-CO{sub 2} batteries is attracting extensive attention. However, the poor rechargeability and low applied current density have remained the Achilles' heel of this energy device. The gel polymer electrolyte (GPE), which is composed of a polymer matrix filled with tetraglyme-based liquid electrolyte, was used to fabricate a rechargeable Li-CO{sub 2} battery with a carbon nanotube-based gas electrode. The discharge product of Li{sub 2}CO{sub 3} formed in the GPE-based Li-CO{sub 2} battery exhibits a particle-shaped morphology with poor crystallinity, which is different from the contiguous polymer-like and crystalline discharge product in conventional Li-CO{sub 2} battery using a liquid electrolyte. Accordingly, the GPE-based battery shows much improved electrochemical performance. The achieved cycle life (60 cycles) and rate capability (maximum applied current density of 500 mA g{sup -1}) are much higher than most of previous reports, which points a new way to develop high-performance Li-CO{sub 2} batteries. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Electrochemistry of poly(3,4-ethylenedioxythiophene)-polyaniline/ Prussian blue electrochromic devices containing an ionic liquid based gel electrolyte film.

    Science.gov (United States)

    Deepa, Melepurath; Awadhia, Arvind; Bhandari, Shweta

    2009-07-21

    Electrochromic devices based on poly(3,4-ethylenedioxythiophene) (PEDOT) as the cathodic coloring electrode and polyaniline (PANI) or Prussian blue (PB) as the counter electrode containing a highly conductive, self-supporting, distensible and transparent polymer-gel electrolyte film encapsulating an ionic liquid, 1-butyl-1-methylpyrrolidiniumbis-(trifluoromethylsulfonyl)imide, have been fabricated. Polarization, charge transfer and diffusion processes control the electrochemistry of the functional electrodes during coloration and bleaching and these phenomena differ when PEDOT and PANI/PB were employed alternately as working electrodes. While the electrochemical impedance response shows good similitude for PEDOT and PANI electrodes, the responses of PEDOT and PB were significantly different in the PEDOT-PB device, especially during reduction of PB, wherein the overall amplitude of the impedance response is enormous. Large values of the coloration efficiency maxima of 281 cm2 C(-1) (lambda = 583 nm) and 274 cm2 C(-1) (lambda = 602 nm), achieved at -1.0 and -1.5 V for the PEDOT PANI and PEDOT-PB devices have been correlated to the particularly low magnitude of charge transfer resistance and high polarization capacitance operative at the PEDOT ionic liquid based electrolyte interface at these dc potentials, thus allowing facile ion-transport and consequently resulting in enhanced absorption modulation. Moderately fast switching kinetics and the ability of these devices to sustain about 2500 cycles of clear-to-dark and dark-to-clear without incurring major losses in the optical contrast, along with the ease of construction of these cells in terms of high scalability and reproducibility of the synthetic procedure for fabrication of the electrochromic films and the ionic liquid based gel electrolyte film, are indicators of the promise these devices hold for practical applications like electrochromic windows and displays.

  18. Cross-linked Composite Gel Polymer Electrolyte using Mesoporous Methacrylate-Functionalized SiO2 Nanoparticles for Lithium-Ion Polymer Batteries

    Science.gov (United States)

    Shin, Won-Kyung; Cho, Jinhyun; Kannan, Aravindaraj G.; Lee, Yoon-Sung; Kim, Dong-Won

    2016-01-01

    Liquid electrolytes composed of lithium salt in a mixture of organic solvents have been widely used for lithium-ion batteries. However, the high flammability of the organic solvents can lead to thermal runaway and explosions if the system is accidentally subjected to a short circuit or experiences local overheating. In this work, a cross-linked composite gel polymer electrolyte was prepared and applied to lithium-ion polymer cells as a safer and more reliable electrolyte. Mesoporous SiO2 nanoparticles containing reactive methacrylate groups as cross-linking sites were synthesized and dispersed into the fibrous polyacrylonitrile membrane. They directly reacted with gel electrolyte precursors containing tri(ethylene glycol) diacrylate, resulting in the formation of a cross-linked composite gel polymer electrolyte with high ionic conductivity and favorable interfacial characteristics. The mesoporous SiO2 particles also served as HF scavengers to reduce the HF content in the electrolyte at high temperature. As a result, the cycling performance of the lithium-ion polymer cells with cross-linked composite gel polymer electrolytes employing methacrylate-functionalized mesoporous SiO2 nanoparticles was remarkably improved at elevated temperatures. PMID:27189842

  19. Quasi-solid-state dye-sensitized solar cells from hydrophobic poly(hydroxyethyl methacrylate/glycerin)/polyaniline gel electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qinghua [National Defence Key Discipline Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, Nanchang 330063 (China); Tang, Qunwei, E-mail: tangqunwei@hotmail.com [Institute of Materials Science and Engineering, Ocean University of China, Shandong Province, Qingdao 266100 (China); Chen, Haiyan [Institute of Materials Science and Engineering, Ocean University of China, Shandong Province, Qingdao 266100 (China); Xu, Haitao; Qin, Yuancheng [National Defence Key Discipline Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, Nanchang 330063 (China); He, Benlin, E-mail: blhe@ouc.edu.cn [Institute of Materials Science and Engineering, Ocean University of China, Shandong Province, Qingdao 266100 (China); Liu, Zhichao; Jin, Suyue; Chu, Lei [Institute of Materials Science and Engineering, Ocean University of China, Shandong Province, Qingdao 266100 (China)

    2014-04-01

    Hydrophobic poly(hydroxyethyl methacrylate/glycerin) [poly(HEMA/GR)] gel with a three-dimensional (3D) framework was successfully fabricated and employed to integrate with polyaniline (PANi). The resultant poly(HEMA/GR)/PANi gel electrolyte exhibited interconnective porous structure for holding I{sup −}/I{sub 3}{sup −}, giving a similar conduction mechanism and ionic conductivity to that of liquid system but a much enhanced retention of I{sup −}/I{sub 3}{sup −} redox couple. Fourier transform infrared spectroscopy, X-ray diffraction patterns, cyclic voltammograms as well as electrochemical impedance spectroscopy were employed to evaluate the molecular structure, crystallinity, and the electrochemical behaviors, showing that the combination of PANi with poly(HEMA/GR) caused a lower charge-transfer resistance and higher electrocatalytic activity for the I{sub 3}{sup −}/I{sup −} redox reaction in the gel electrolyte. An efficiency of 6.63% was recorded from the quasi-solid-state DSSC assembled with the poly(HEMA/GR)/PANi gel electrolyte at 100 mW cm{sup −2}. - Graphical abstract: A poly(HEMA/GR)/PANi gel electrolyte is synthesized through in situ polymerization of PANi in 3D framework of poly(HEMA/GR) hydrophobic hydrogel. The recorded ionic conductivity and electrochemical performances are significantly enhanced by integrating with PANi The resultant overall photo-to-electric conversion efficiency is 6.63%. The high ionic conductivity, along with good electrolyte retention ability, reasonable DSSC performance, low cost, simple and scalable synthesis procedure, and competitive cost, promises the electrolyte to find applications in quasi-solid-state DSSCs. - Highlights: • Poly(HEMA/GR) was employed to combine with PANi in the 3D framework. • The conductivity and electrochemical performances were enhanced. • The conversion efficiency of the quasi-solid-state DSSC was 6.63%.

  20. Gel electrolytes with ionic liquid plasticiser for electrochromic devices

    International Nuclear Information System (INIS)

    Desai, S.; Shepherd, R.L.; Innis, P.C.; Murphy, P.; Hall, C.; Fabretto, R.; Wallace, G.G.

    2011-01-01

    The comparative performance of conducting polymer electrochromic devices (ECDs) utilising gel polymer electrolytes (GPEs) plasticised with ethylene carbonate/propylene carbonate or (N-butyl-3-methylpyridinium trifluoromethanesulphonylimide (P 14 TFSI) has been made. Lithium perchlorate and lithium trifluoromethanesulphonylimide salts were used in the GPEs to provide enhanced ionic conductivity and inhibit phase separation of the polyethyleneoxide (PEO) and plasticiser. ECDs were assembled from cathodically colouring, polyethylenedioxythiophene (PEDOT), and anodically colouring, polypyrrole (PPy), conducting polymer electrochromes deposited by vapour deposition. The photopic contrast switching over the visible light spectrum, switching speeds and device stability of the ECDs were obtained. These studies demonstrate that the ionic liquid (IL) plasticised GPEs are a suitable replacement for pure IL based devices and volatile organic solvent plasticisers based upon ethylene carbonate/propylene carbonate mixtures.

  1. Gel electrolytes with ionic liquid plasticiser for electrochromic devices

    Energy Technology Data Exchange (ETDEWEB)

    Desai, S.; Shepherd, R.L.; Innis, P.C. [ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 (Australia); Murphy, P. [Ian Wark Research Institute, University of South Australia, Mawson Lakes, SA 5095 (Australia); Mawson Institute, University of South Australia, Mawson Lakes, SA 5095 (Australia); Hall, C.; Fabretto, R. [Ian Wark Research Institute, University of South Australia, Mawson Lakes, SA 5095 (Australia); Wallace, G.G., E-mail: gwallace@uow.edu.a [ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 (Australia)

    2011-04-15

    The comparative performance of conducting polymer electrochromic devices (ECDs) utilising gel polymer electrolytes (GPEs) plasticised with ethylene carbonate/propylene carbonate or (N-butyl-3-methylpyridinium trifluoromethanesulphonylimide (P{sub 14}TFSI) has been made. Lithium perchlorate and lithium trifluoromethanesulphonylimide salts were used in the GPEs to provide enhanced ionic conductivity and inhibit phase separation of the polyethyleneoxide (PEO) and plasticiser. ECDs were assembled from cathodically colouring, polyethylenedioxythiophene (PEDOT), and anodically colouring, polypyrrole (PPy), conducting polymer electrochromes deposited by vapour deposition. The photopic contrast switching over the visible light spectrum, switching speeds and device stability of the ECDs were obtained. These studies demonstrate that the ionic liquid (IL) plasticised GPEs are a suitable replacement for pure IL based devices and volatile organic solvent plasticisers based upon ethylene carbonate/propylene carbonate mixtures.

  2. Tubular array, dielectric, conductivity and electrochemical properties of biodegradable gel polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Sudhakar, Y.N. [Department of Chemistry, Manipal Institute of Technology, Manipal, Karnataka (India); Selvakumar, M., E-mail: chemselva78@gmail.com [Department of Chemistry, Manipal Institute of Technology, Manipal, Karnataka (India); Bhat, D. Krishna [Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore (India)

    2014-02-15

    Highlights: • A new finding of tubular array of 10–20 μm in length and 1–2 μm in thickness of gel polymer electrolyte (GPE) having 2.2 × 10{sup −3} S cm{sup −1} conductivity is reported. • Thermal and electrochemical characterizations of GPEs show good interaction among the polymer, plasticizer and salt. • GPE based supercapacitor demonstrates high capacitance of 186 F g{sup −1}. • Low temperature studies did not influence much on capacitance values obtained from AC impedance studies. • Charge–discharge exhibits high capacity with excellent cyclic stability and energy density. -- Abstract: A supercapacitor based on a biodegradable gel polymer electrolyte (GPE) has been fabricated using guar gum (GG) as the polymer matrix, LiClO{sub 4} as the doping salt and glycerol as the plasticizer. The scanning electron microscopy (SEM) images of the gel polymer showed an unusual tubular array type surface morphology. FTIR, DSC and TGA results of the GPE indicated good interaction between the components used. Highest ionic conductivity and lowest activation energy values were 2.2 × 10{sup −3} S cm{sup −1} and 0.18 eV, respectively. Dielectric studies revealed ionic behavior and good capacitance with varying frequency of the GPE system. The fabricated supercapacitor showed a maximum specific capacitance value of 186 F g{sup −1} using cyclic voltammetry. Variation of temperature from 273 K to 293 K did not significantly influence the capacitance values obtained from AC impedance studies. Galvanostatic charge–discharge study of supercapacitor indicated that the device has good stability, high energy density and power density.

  3. Preparation of a microporous polymer electrolyte based on poly(vinyl chloride)/poly(acrylonitrile-butyl acrylate) blend for Li-ion batteries

    International Nuclear Information System (INIS)

    Tian, Zheng; Pu, Weihua; He, Xiangming; Wan, Chunrong; Jiang, Changyin

    2007-01-01

    Poly(acrylonitrile-co-butyl acrylate) (P(AN-co-BuA))/poly(vinyl chloride) (PVC) blend-based gel polymer electrolyte (BGPE) was prepared for lithium-ion batteries. The P(AN-co-BuA)/PVC BGPE consists of an electrolyte-rich phase, which is mainly composed of P(AN-co-BuA) and liquid electrolyte, acting as a conducting channel and a PVC-rich phase that provides mechanical strength. The dual phase was just simply developed by the difference of miscibility properties in solvent, PC, between P(AN-co-BuA) and PVC. The mechanical strength of this new blend electrolyte was found to be much higher, with a fracture stress as high as 29 MPa in dry membrane and 21 MPa in gel state, than that of a previously reported P(AN-co-BuA)-based gel polymer electrolyte. The blended gel polymer electrolyte showed ionic conductivity of higher than 1.5 x 10 -3 S cm -1 and electrochemical stability up to at least 4.8 V. The results showed that the as-prepared gel polymer electrolytes were promising materials for lithium-ion batteries

  4. Preparation of a microporous polymer electrolyte based on poly(vinyl chloride)/poly(acrylonitrile-butyl acrylate) blend for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Zheng; Pu, Weihua; He, Xiangming; Wan, Chunrong; Jiang, Changyin [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)

    2007-02-15

    Poly(acrylonitrile-co-butyl acrylate) (P(AN-co-BuA))/poly(vinyl chloride) (PVC) blend-based gel polymer electrolyte (BGPE) was prepared for lithium-ion batteries. The P(AN-co-BuA)/PVC BGPE consists of an electrolyte-rich phase, which is mainly composed of P(AN-co-BuA) and liquid electrolyte, acting as a conducting channel and a PVC-rich phase that provides mechanical strength. The dual phase was just simply developed by the difference of miscibility properties in solvent, PC, between P(AN-co-BuA) and PVC. The mechanical strength of this new blend electrolyte was found to be much higher, with a fracture stress as high as 29 MPa in dry membrane and 21 MPa in gel state, than that of a previously reported P(AN-co-BuA)-based gel polymer electrolyte. The blended gel polymer electrolyte showed ionic conductivity of higher than 1.5 x 10{sup -3} S cm{sup -1} and electrochemical stability up to at least 4.8 V. The results showed that the as-prepared gel polymer electrolytes were promising materials for lithium-ion batteries. (author)

  5. Boron cross-linked graphene oxide/polyvinyl alcohol nanocomposite gel electrolyte for flexible solid-state electric double layer capacitor with high performance

    International Nuclear Information System (INIS)

    Huang, Yi-Fu; Wu, Peng-Fei; Zhang, Ming-Qiu; Ruan, Wen-Hong; Giannelis, Emmanuel P.

    2014-01-01

    Highlights: • Gel electrolyte is prepared and used in electric double layer capacitor. • Insertion of boron crosslinks into GO agglomerates opens channels for ion migration. • Solid supercapacitors show excellent specific capacitance and cycle stability. • Nanocomposite electrolyte shows better thermal stability and mechanical properties. - Abstract: A new family of boron cross-linked graphene oxide/polyvinyl alcohol (GO-B-PVA) nanocomposite gels is prepared by freeze-thaw/boron cross-linking method. Then the gel electrolytes saturated with KOH solution are assembled into electric double layer capacitors (EDLCs). Structure, thermal and mechanical properties of GO-B-PVA are explored. The electrochemical properties of EDLCs using GO-B-PVA/KOH are investigated, and compared with those using GO-PVA/KOH gel or KOH solution electrolyte. FTIR shows that boron cross-links are introduced into GO-PVA, while the boronic structure inserted into agglomerated GO sheets is demonstrated by DMA analysis. The synergy effect of the GO and the boron crosslinking benefits for ionic conductivity due to unblocking ion channels, and for improvement of thermal stability and mechanical properties of the electrolytes. Higher specific capacitance and better cycle stability of EDLCs are obtained by using the GO-B-PVA/KOH electrolyte, especially the one at higher GO content. The nanocomposite gel electrolytes with excellent electrochemical properties and solid-like character are candidates for the industrial application in high-performance flexible solid-state EDLCs

  6. ZnCl{sub 2}- and NH{sub 4}Cl-hydroponics gel electrolytes for zinc-carbon batteries

    Energy Technology Data Exchange (ETDEWEB)

    Khalid, N.H.; Ismail, Y.M. Baba; Mohamad, A.A. [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2008-01-21

    Absorbency testing is used to determine the percentage of ZnCl{sub 2} or NH{sub 4}Cl solution absorbed by a hydroponics gel (HPG). It is found that the absorbency of ZnCl{sub 2} or NH{sub 4}Cl solution decreases with increasing solution concentration. The conductivity of ZnCl{sub 2}- and NH{sub 4}Cl-HPG electrolytes is dependent on the solution concentration. A mixture of salt solution with HPG yields excellent gel polymer electrolytes with conductivities of 0.026 and 0.104 S cm{sup -1} at 3 M ZnCl{sub 2} and 7 M NH{sub 4}Cl, respectively. These gel electrolytes are then used to produce zinc-carbon cells. The fabricated cells give capacities of 8.8 and 10.0 mAh, have an internal resistance of 25.4 and 19.8 {omega}, a maximum power density of 12.7 and 12.2 mW cm{sup -2}, and a short-circuit current density of 29.1 and 33.9 mA cm{sup -2} for ZnCl{sub 2}- and NH{sub 4}Cl-HPG electrolytes, respectively. (author)

  7. Effect of salt species on electrochemical properties of gel-type polymer electrolyte based on chemically crosslinking rubber

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kab Youl; Jo, Nam Ju [Pusan National Univ., Busan (Korea). Dept. of Polymer Science and Engineering; Chung, Won Sub [Pusan National Univ., Busan (Korea). School of Materials Science and Engineering

    2004-11-30

    In our study, for ion-polymer interaction in gel-type polymer electrolyte (GPE), two kinds of ions were used. GPE systems were composed of Mg or Li salt, organic solvent ({gamma}-BL), and polymer matrix prepared by chemical crosslinking of NBR with poly(ethylene glycol) methylethermethacrylate (PEGMEM) having polar group (--CH{sub 2}--CH{sub 2}--O--) in the side chain of monomer. GPE consisting of Li{sup +} ion had higher ionic conductivity than that of Mg{sup 2+} ion at below 100 wt.% of electrolyte content (1 M salt/{gamma}-BL). On the other hand, GPE consisting of Mg{sup 2+} ion had higher ionic conductivity than that consisting of Li{sup +} ion at over 120 wt.% of electrolyte content (1 M salt/{gamma}-BL). The maximum liquid electrolyte content was 200 wt.% for all GPE systems. And the highest ionic conductivity of 3.3 x 10{sup -2} S cm{sup -1} was achieved for the case of Mg{sup 2+}-GPE with 200 wt.% of liquid electrolyte contents at 20 C. The interaction between ionic species and polymer matrix in GPE was investigated by using Fourier transform infrared spectroscopy (FT-IR). Also, cyclic voltammogram of Mg{sup 2+}-GPE confirmed the electrochemical property of divalent cation with two electron-transfer reactions.

  8. Ionic conduction in 70-MeV C5+-ion-irradiated poly(vinylidenefluoride- co-hexafluoropropylene)-based gel polymer electrolytes

    International Nuclear Information System (INIS)

    Saikia, D.; Kumar, A.; Singh, F.; Avasthi, D.K.; Mishra, N.C.

    2005-01-01

    In an attempt to increase the Li + -ion diffusivity, poly(vinylidenefluoride-co-hexafluoropropylene)-(propylene carbonate+diethyl carbonate)-lithium perchlorate gel polymer electrolyte system has been irradiated with 70-MeV C 5+ -ion beam of nine different fluences. Swift heavy-ion irradiation shows enhancement in ionic conductivity at lower fluences and decrease in ionic conductivity at higher fluences with respect to unirradiated gel polymer electrolyte films. Maximum room-temperature (303 K) ionic conductivity is found to be 2x10 -2 S/cm after irradiation with a fluence of 10 11 ions/cm 2 . This interesting result could be attributed to the fact that for a particular ion beam with a given energy, a higher fluence provides critical activation energy for cross linking and crystallization to occur, which results in the decrease in ionic conductivity. X-ray-diffraction results show decrease in the degree of crystallinity upon ion irradiation at low fluences (≤10 11 ions/cm 2 ) and increase in crystallinity at higher fluences (>10 11 ions/cm 2 ). Analysis of Fourier-transform infrared spectroscopy results suggests the bond breaking at a fluence of 5x10 9 ions/cm 2 and cross linking at a fluence of 10 12 ions/cm 2 and corroborate conductivity and x-ray-diffraction results. Scanning electron micrographs exhibit increased porosity of the polymer electrolyte after ion irradiation

  9. Electrochemical investigation of LiMn2O4 cathodes in gel electrolyte at various temperatures

    International Nuclear Information System (INIS)

    Hjelm, Anna-Karin; Eriksson, Tom; Lindbergh, Goeran

    2002-01-01

    A composite lithium battery electrode of LiMn 2 O 4 in combination with a gel electrolyte (1 M LiBF 4 /24 wt% PMMA/1:1 EC:DEC) has been investigated by galvanostatic cycling experiments and electrochemical impedance spectroscopy (EIS) at various temperatures, i.e. -3 -1 ), the solid phase transfer (∼45 kJ mol -1 ) and of the ionic bulk and effective conductance in the gel phase (∼34 kJ mol -1 ), respectively, were also determined. The kinetic results related to ambient temperature were compared to those obtained in the corresponding liquid electrolyte. The incorporated PMMA was found to reduce the ionic conductivity of the free electrolyte, and it was concluded that the presence of 24 wt% PMMA does not have a significant influence on the kinetic properties of LiMn 2 O 4

  10. Study the effect of ion-complex on the properties of composite gel polymer electrolyte based on Electrospun PVdF nanofibrous membrane

    International Nuclear Information System (INIS)

    Li, Weili; Xing, Yujin; Wu, Yuhui; Wang, Jiawei; Chen, Lizhuang; Yang, Gang; Tang, Benzhong

    2015-01-01

    In this paper, nanofibrous membranes based on poly(vinylidene fluoride) (PVdF) doped with ion-complex (SiO 2 -PAALi) were prepared by electrospinning technique and the corresponding composite gel-polymer electrolytes (CGPEs) were obtained after being activated in liquid electrolyte. The microstructure, physical and electrochemical performances of the nanofibrous membranes and the corresponding CGPEs were studied by various measurements such as Fourier Transform Infrared Spectroscopy(FTIR), Scanning Electron Microscope (SEM), Differential Scanning Calorimetry (DSC), Thermal Gravimetric Analysis (TGA), Stress-strain test, Linear Sweep Voltammetry (LSV), AC impedance measurement and Charge/discharge cycle test. As to the ion-complex doped nanofibrous membranes, PVdF can provide mechanical support with network structure composed of fully interconnection; while the ion-complexes are absorbed onto the surface of the PVdF nanofibers evenly instead of being aggregated. With the help of doped ion-complex, the prepared nanofibrous membranes present good liquid electrolyte absorbability, excellent mechanical performance, and high decomposition temperature. For the corresponding CGPEs, they possess high ionic conductivity, wide electrochemical window, and good charge/discharge cycle performance

  11. Room-Temperature-Cured Copolymers for Lithium Battery Gel Electrolytes

    Science.gov (United States)

    Meador, Mary Ann B.; Tigelaar, Dean M.

    2009-01-01

    Polyimide-PEO copolymers (PEO signifies polyethylene oxide) that have branched rod-coil molecular structures and that can be cured into film form at room temperature have been invented for use as gel electrolytes for lithium-ion electric-power cells. These copolymers offer an alternative to previously patented branched rod-coil polyimides that have been considered for use as polymer electrolytes and that must be cured at a temperature of 200 C. In order to obtain sufficient conductivity for lithium ions in practical applications at and below room temperature, it is necessary to imbibe such a polymer with a suitable carbonate solvent or ionic liquid, but the high-temperature cure makes it impossible to incorporate and retain such a liquid within the polymer molecular framework. By eliminating the high-temperature cure, the present invention makes it possible to incorporate the required liquid.

  12. Preparation and properties of poly(ethylene oxide) gel filled polypropylene separators and their corresponding gel polymer electrolytes for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li Hao; Ma Xiaoting; Shi Junli; Yao Zhikan [Department of Polymer Science and Engineering, Engineering Center of Membrane and Water Treatment, Key Laboratory of Macromolecule Synthesis and Functionalization (EMC), Zhejiang University, Hangzhou 310027 (China); Zhu Baoku, E-mail: zhubk@zju.edu.c [Department of Polymer Science and Engineering, Engineering Center of Membrane and Water Treatment, Key Laboratory of Macromolecule Synthesis and Functionalization (EMC), Zhejiang University, Hangzhou 310027 (China); Zhu Liping [Department of Polymer Science and Engineering, Engineering Center of Membrane and Water Treatment, Key Laboratory of Macromolecule Synthesis and Functionalization (EMC), Zhejiang University, Hangzhou 310027 (China)

    2011-02-15

    Poly(ethylene oxide) (PEO) filled polypropylene separators (GFPSs) are designed by means of thermal cross-linking of entrapped poly(ethylene glycol) methyl ether acrylate (PEGMEA) and poly(ethylene glycol) diacrylate (PEGDA) as gel constituents. The intrinsic properties of GFPS and their corresponding gel polymer electrolytes (GPE) are characterized by DSC, SEM, contact angle and electrochemical methods. It is found the stability of liquid electrolyte uptake in GPE could be improved obviously. For the GPE prepared from GFPS with filled polyether content of 14.3 wt%, the ionic conductivity could reach 1.12 x 10{sup -3} S cm{sup -1} while the electrochemically stable window reach 5.0 V (vs. Li/Li{sup +}). These primary results show great promise of this simple method to prepare GPE for practical application in lithium ion batteries.

  13. Preparation and properties of poly(ethylene oxide) gel filled polypropylene separators and their corresponding gel polymer electrolytes for Li-ion batteries

    International Nuclear Information System (INIS)

    Li Hao; Ma Xiaoting; Shi Junli; Yao Zhikan; Zhu Baoku; Zhu Liping

    2011-01-01

    Poly(ethylene oxide) (PEO) filled polypropylene separators (GFPSs) are designed by means of thermal cross-linking of entrapped poly(ethylene glycol) methyl ether acrylate (PEGMEA) and poly(ethylene glycol) diacrylate (PEGDA) as gel constituents. The intrinsic properties of GFPS and their corresponding gel polymer electrolytes (GPE) are characterized by DSC, SEM, contact angle and electrochemical methods. It is found the stability of liquid electrolyte uptake in GPE could be improved obviously. For the GPE prepared from GFPS with filled polyether content of 14.3 wt%, the ionic conductivity could reach 1.12 x 10 -3 S cm -1 while the electrochemically stable window reach 5.0 V (vs. Li/Li + ). These primary results show great promise of this simple method to prepare GPE for practical application in lithium ion batteries.

  14. Boron cross-linked graphene oxide/polyvinyl alcohol nanocomposite gel electrolyte for flexible solid-state electric double layer capacitor with high performance

    KAUST Repository

    Huang, Yi-Fu; Wu, Peng-Fei; Zhang, Ming-Qiu; Ruan, Wen-Hong; Giannelis, Emmanuel P.

    2014-01-01

    A new family of boron cross-linked graphene oxide/polyvinyl alcohol (GO-B-PVA) nanocomposite gels is prepared by freeze-thaw/boron cross-linking method. Then the gel electrolytes saturated with KOH solution are assembled into electric double layer capacitors (EDLCs). Structure, thermal and mechanical properties of GO-B-PVA are explored. The electrochemical properties of EDLCs using GO-B-PVA/KOH are investigated, and compared with those using GO-PVA/KOH gel or KOH solution electrolyte. FTIR shows that boron cross-links are introduced into GO-PVA, while the boronic structure inserted into agglomerated GO sheets is demonstrated by DMA analysis. The synergy effect of the GO and the boron crosslinking benefits for ionic conductivity due to unblocking ion channels, and for improvement of thermal stability and mechanical properties of the electrolytes. Higher specific capacitance and better cycle stability of EDLCs are obtained by using the GO-B-PVA/KOH electrolyte, especially the one at higher GO content. The nanocomposite gel electrolytes with excellent electrochemical properties and solid-like character are candidates for the industrial application in high-performance flexible solid-state EDLCs. © 2014 Elsevier Ltd.

  15. Boron cross-linked graphene oxide/polyvinyl alcohol nanocomposite gel electrolyte for flexible solid-state electric double layer capacitor with high performance

    KAUST Repository

    Huang, Yi-Fu

    2014-06-01

    A new family of boron cross-linked graphene oxide/polyvinyl alcohol (GO-B-PVA) nanocomposite gels is prepared by freeze-thaw/boron cross-linking method. Then the gel electrolytes saturated with KOH solution are assembled into electric double layer capacitors (EDLCs). Structure, thermal and mechanical properties of GO-B-PVA are explored. The electrochemical properties of EDLCs using GO-B-PVA/KOH are investigated, and compared with those using GO-PVA/KOH gel or KOH solution electrolyte. FTIR shows that boron cross-links are introduced into GO-PVA, while the boronic structure inserted into agglomerated GO sheets is demonstrated by DMA analysis. The synergy effect of the GO and the boron crosslinking benefits for ionic conductivity due to unblocking ion channels, and for improvement of thermal stability and mechanical properties of the electrolytes. Higher specific capacitance and better cycle stability of EDLCs are obtained by using the GO-B-PVA/KOH electrolyte, especially the one at higher GO content. The nanocomposite gel electrolytes with excellent electrochemical properties and solid-like character are candidates for the industrial application in high-performance flexible solid-state EDLCs. © 2014 Elsevier Ltd.

  16. Electrospun PVdF-based fibrous polymer electrolytes for lithium ion polymer batteries

    International Nuclear Information System (INIS)

    Kim, Jeong Rae; Choi, Sung Won; Jo, Seong Mu; Lee, Wha Seop; Kim, Byung Chul

    2004-01-01

    This paper discusses the preparation of microporous fibrous membranes from PVdF solutions with different polymer contents, using the electrospinning technique. Electrospun PVdF-based fibrous membranes with average fiber diameters (AFD's) of 0.45-1.38 μm have an apparent porosity and a mean pore size (MPS) of 80-89% and 1.1-4.3 μm, respectively. They exhibited a high uptake of the electrolyte solution (320-350%) and a high ionic conductivity of above 1 x 10 -3 s/cm at room temperature. Their ionic conductivity increased with the decrease in the AFD of the fibrous membrane due to its high electrolyte uptake. The interaction between the electrolyte molecules and the PVdF with a high crystalline content may have had a minor effect on the lithium ion transfer in the fibrous polymer electrolyte, unlike in a nanoporous gel polymer electrolyte. The fibrous polymer electrolyte that contained a 1 M LiPF 6 -EC/DMC/DEC (1/1/1 by weight) solution showed a high electrochemical stability of above 5.0 V, which increased with the decrease in the AFD The interfacial resistance (R i ) between the polymer electrolyte and the lithium electrode slightly increased with the storage time, compared with the higher increase in the interfacial resistance of other gel polymer electrolytes. The prototype cell (MCMB/PVdF-based fibrous electrolyte/LiCoO 2 ) showed a very stable charge-discharge behavior with a slight capacity loss under constant current and voltage conditions at the C/2-rate of 20 and 60 deg. C

  17. Dye-sensitized solar cell with natural gel polymer electrolytes and f-MWCNT as counter-electrode

    Science.gov (United States)

    Nwanya, A. C.; Amaechi, C. I.; Ekwealor, A. B. C.; Osuji, R. U.; Maaza, M.; Ezema, F. I.

    2015-05-01

    Samples of DSSCs were made with gel polymer electrolytes using agar, gelatin and DNA as the polymer hosts. Anthocyanine dye from Hildegardia barteri flower is used to sensitize the TiO2 electrode, and the spectrum of the dye indicates strong absorptions in the blue region of the solar spectrum. The XRD pattern of the TiO2 shows that the adsorption of the dye did not affect the crystallinity of the electrode. The f-MWCNT indicates graphite structure of the MWCNTs were acid oxidized without significant damage. Efficiencies of 3.38 and 0.1% were obtained using gelatin and DNA gel polymer electrolytes, respectively, for the fabricated dye-sensitized solar cells.

  18. Effects of crown ethers in nanocomposite silica-gel electrolytes on the performance of quasi-solid-state dye-sensitized solar cells

    KAUST Repository

    Huang, Kuan-Chieh

    2010-04-01

    The effects of crown ethers (CEs) on the performance of quasi-solid-state dye-sensitized solar cells (DSSCs) have been investigated. Nanocomposite silica was used to form gel matrices in the electrolytes, which contained lithium iodide (LiI) and iodine (I2) in 3-methoxypropionitrile (MPN) solvent. Three types of CEs, 12-crown-4 (12-C-4), 15-crown-5 (15-C-5), and 18-crown-6 (18-C-6) were used as additives to the gel electrolytes. DSSCs containing CEs showed enhancements in solar-to-electricity conversion efficiencies (η), with reference to the one without them. The crown ether, 15-C-5, with a size of cavity matching with the size of Li+ in the electrolyte rendered for its DSSC the best performance with an η of 3.60%, under 100 mW/cm2 illumination, as compared to 2.44% for the cell without any CE. Enhancements in the photovoltaic parameters of the cells with the CEs were explained based on the binding abilities of the CEs with lithium ions (Li+) in the electrolyte. Linear sweep voltammetry (LSV) measurements and electrochemical impedance spectra were used to substantiate the explanations. © 2009 Elsevier B.V. All rights reserved.

  19. Cross-linking of polymer and ionic liquid as high-performance gel electrolyte for flexible solid-state supercapacitors

    International Nuclear Information System (INIS)

    Zhong, Xiongwei; Tang, Jun; Cao, Lujie; Kong, Weiguang; Sun, Zheng; Cheng, Hua; Lu, Zhouguang; Pan, Hui; Xu, Baomin

    2017-01-01

    Highlights: •A facile method to prepare gel polymer electrolyte with high conductivity is proposed. •A flexible symmetric capacitor based on the prepared GPE shows ultra-flexibility. •The capacitor with high voltage can power up a 3.0 V LED even bended to a angle of 180°. -- Abstract: It is highly desirable to develop flexible solid-state electrochemical double-layer capacitors (EDLCs) with non-liquid electrolyte. However, it is still a great challenge to prepare gel polymer electrolyte (GPE) possessing high ionic conductivity and good mechanical property. In this work, a simple and novel method to improve the conductivity and mechanical properties of GPE film for their applications as electrolyte and separator in EDLC is presented. The GPE film is prepared by cross-linking ionic liquid (IL) with poly (ethylene oxide) (PEO) and benzophenone (Bp) followed by ultraviolet (UV) irradiation. Then, a non-woven cellulose separator (FPC) is used to absorb the GPE. By tuning the mass ratio (n) between IL and PEO, the flexible EDLC cooperated with low-cost active carbon and the electrolyte film with n = 10 has a high capacitance of 70.84 F∙g −1 , a wide and stable electrochemical window of 3.5 V, an energy density of 30.13 Wh∙kg −1 and a power density of 874.8 W∙kg −1 at a current density of 1 A∙g −1 , which can drive a 3.0 V light-emitting diode (LED). Importantly, the excellent performance of the flexible and low-cost EDLC can be maintained at a bending angle up to 180°, indicating the ultra-flexibility. It is expected that the IL-PEO-FPC electrolyte film is a promising candidate of GPE for flexible devices and energy storage systems.

  20. Gel electrolytes with I-/I3- redox mediator based on methylcellulose for dye-sensitized solar cells

    Science.gov (United States)

    Yusof, S. Z.; Woo, H. J.; Careem, M. A.; Arof, A. K.

    2018-05-01

    A new gel electrolyte comprising methylcellulose (MC), LiBOB and succinonitrile (SN) has been prepared with dimethyl sulfoxide (DMSO) as solvent. The electrolyte with composition 8.73 wt % MC-2.92 wt % LiBOB-1.01 wt % SN-87.34 wt % DMSO exhibits the highest conductivity of 1.18 mS cm-1 at 25 °C. On partially substituting LiBOB with TMAI, the sample designated as TMAI 95 has the highest conducting composition of 8.70 wt % MC-0.14 wt % LiBOB-1.01 wt % SN-2.77 wt % TMAI-0.35 wt % I2-87.03 wt % DMSO. The conductivity is 1.96 mS cm-1. This sample is used to fabricate a dye sensitized photovoltaic cell that converts photons to electricity at an efficiency of 3.46%. The conductivity of this sample has been enhanced to 3.08 mS cm-1 on addition of 1.0 wt % butyl-methyl immidazolium iodide (BMII) ionic liquid and the efficiency of the cell fabricated is 4.63%. Total replacement of LiBOB component in the electrolyte with the same amount of LiI results in a conductivity increase of ∼23.5% and the DSSC exhibits a 5.72% efficiency.

  1. Influence of solvent on the poly (acrylic acid)-oligo-(ethylene glycol) polymer gel electrolyte and the performance of quasi-solid-state dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Wu, Jihuai; Lan, Zhang; Lin, Jianming; Huang, Miaoliang; Hao, Shancun; Fang, Leqing

    2007-01-01

    The influence of solvents on the property of poly (acrylic acid)-oligo-(ethylene glycol) polymer gel electrolyte and photovoltaic performance of quasi-solid-state dye-sensitized solar cells (DSSCs) were investigated. Solvents or mixed solvents with large donor number enhance the liquid electrolyte absorbency, which further influences the ionic conductivity of polymer gel electrolyte. A polymer gel electrolyte with ionic conductivity of 4.45 mS cm -1 was obtained by using poly (acrylic acid)-oligo-(ethylene glycol) as polymer matrix, and absorbing 30 vol.% N-methyl pyrrolidone and 70 vol.% γ-butyrolactone with 0.5 M NaI and 0.05 M I 2 . By using this polymer gel electrolyte coupling with 0.4 M pyridine additive, a quasi-solid-state dye-sensitized solar cell with conversion efficiency of 4.74% was obtained under irradiation of 100 mW cm -2 (AM 1.5)

  2. Preparation and characterization of a Polyacrylonitrile based gel polymer electrolyte for redox capacitors

    Directory of Open Access Journals (Sweden)

    C.M. Bandaranayake

    2016-06-01

    Full Text Available In this study, a gel polymer electrolyte (GPE consisting with polyacrylonitrile (PAN, ethylene carbonate (EC, propylene carbonate (PC and magnesium trifluromethane sulfonate (Mg(CF3SO32 was prepared using the hot pressed method. The starting materials were heated at 130 oC for 2 hours and the resulting hot viscous mixture was pressed in between two well cleaned glass plates. The composition was fine-tuned by varying the salt and the polymer concentration in order to obtain a mechanically stable, thin and flexible film with a high ionic conductivity. It was found that the composition, 105 PAN : 150 MgTF : 400 EC : 400 PC gives the maximum conductivity of 1.06 x 10-2 Scm-1. DC polarization test done with blocking electrodes confirmed the ionic nature of the sample while the results obtained with non-blocking electrodes proved that the anionic contribution for the conductivity is dominant. The sample was used in redox capacitors having two identical polypyrrole electrodes doped with dodecylbenzesulfonate. Cyclic Voltammetry, Galvanostatic Charge Discharge and Electrochemical Impedance Spectroscopy techniques were used to evaluate the performance of the redox capacitors. The specific capacitance was high at low scan rates. The electrolyte was quite stable when use in the redox capacitors. Further, redox capacitor was having a good cycleability which is one of the important key issues to be considered for practical applications.

  3. Enhanced performance of ultracapacitors using redox additive-based electrolytes

    Science.gov (United States)

    Jain, Dharmendra; Kanungo, Jitendra; Tripathi, S. K.

    2018-05-01

    Different concentrations of potassium iodide (KI) as redox additive had been added to 1 M sulfuric acid (H2SO4) electrolyte with an aim of enhancing the capacitance and energy density of ultracapacitors via redox reactions at the interfaces of electrode-electrolyte. Ultracapacitors were fabricated using chemically treated activated carbon as electrode with H2SO4 and H2SO4-KI as an electrolyte. The electrochemical performances of fabricated supercapacitors were investigated by impedance spectroscopy, cyclic voltammetry and charge-discharge techniques. The maximum capacitance ` C' was observed with redox additives-based electrolyte system comprising 1 M H2SO4-0.3 M KI (1072 F g- 1), which is very much higher than conventional 1 M H2SO4 (61.3 F g- 1) aqueous electrolyte-based ultracapacitors. It corresponds to an energy density of 20.49 Wh kg- 1 at 2.1 A g- 1 for redox additive-based electrolyte, which is six times higher as compared to that of pristine electrolyte (1 M H2SO4) having energy density of only 3.36 Wh kg- 1. The temperature dependence behavior of fabricated cell was also analyzed, which shows increasing pattern in its capacitance values in a temperature range of 5-70 °C. Under cyclic stability test, redox electrolyte-based system shows almost 100% capacitance retention up to 5000 cycles and even more. For comparison, ultracapacitors based on polymer gel electrolyte polyvinyl alcohol (PVA) (10 wt%)—{H2SO4 (1 M)-KI (0.3 M)} (90 wt%) have been fabricated and characterized with the same electrode materials.

  4. Experimental investigations of relaxation times of gel electrolytes during polymerization by MR methods

    Czech Academy of Sciences Publication Activity Database

    Kořínek, Radim; Vondrák, J.; Bartušek, Karel; Sedlaříková, M.

    2013-01-01

    Roč. 17, č. 8 (2013), s. 2109-2114 ISSN 1432-8488 R&D Projects: GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : Gel electrolyte * Relaxation times * Polarization * Nuclear magnetic resonance Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.234, year: 2013

  5. Preparation of SDC electrolyte thin films on dense and porous substrates by modified sol-gel route

    International Nuclear Information System (INIS)

    Lin Hongfei; Ding, Changsheng; Sato, Kazuhisa; Tsutai, Yoshifumi; Ohtaki, Hiromichi; Iguchi, Mabito; Wada, Chiharu; Hashida, Toshiyuki

    2008-01-01

    Nanocrystalline fluorite type samarium doped ceria (SDC) electrolyte thin film for intermediate temperature-solid oxide fuel cells (IT-SOFCs) application were prepared on the dense and porous substrates at low temperatures of 573-1373 K using a novel citrate sol-gel route combined with a sol suspension spray coating technique. Thermogravimetric analysis showed that the decomposition of the citrate gel film and the initial crystallization of the SDC occurred at a low temperature of about 590 K. XRD examination revealed that the annealing of the green film at temperatures of 573-1373 K provided cubic nanocrystalline SDC phase. The crystallite sizes were in the range of 9-19 nm. Microscopic observations indicated that the derived film was homogeneous, dense and crack-free without pinholes. The desired thickness for preparation of thin electrolyte films from hundreds of nm to several μm should be controllable and feasible by repeating the simple and inexpensive citrate sol-gel spray coating process

  6. Self-supported poly(methyl methacrylate-acrylonitrile-vinyl acetate)-based gel electrolyte for lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Y.H.; Zhou, D.Y.; Rao, M.M.; Cai, Z.P.; Liang, Y. [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Li, W.S.; Tan, C.L. [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Key Lab of Electrochemical Technology on Energy Storage and Power Generation in Guangdong Universities, Guangzhou 510006 (China)

    2009-04-01

    Self-supported gel polymer electrolyte (GPE) was prepared based on copolymer, poly(methyl methacrylate-acrylonitrile-vinyl acetate) (P(MMA-AN-VAc)). The copolymer P(MMA-AN-VAc) was synthesized by emulsion polymerization and the copolymer membrane was prepared through phase inversion. The structure and the performance of the copolymer, the membrane and the GPE were characterized by FTIR, NMR, SEM, XRD, DSC/TG, LSV, CA, and EIS. It is found that the copolymer was formed through the breaking of double bond C=C in each monomer. The membrane has low crystallinity and has low glass transition temperature, 39.1 C, its thermal stability is as high as 310 C, and its mechanical strength is improved compared with P(MMA-AN). The GPE is electrochemically stable up to 5.6 V (vs. Li/Li{sup +}) and its conductivity is 3.48 x 10{sup -3} S cm{sup -1} at ambient temperature. The lithium ion transference number in the GPE is 0.51 and the conductivity model of the GPE is found to obey the Vogel-Tamman-Fulcher (VTF) equation. (author)

  7. Manganese oxide electrochemical capacitor with potassium poly(acrylate) hydrogel electrolyte

    Science.gov (United States)

    Lee, Kuang-Tsin; Wu, Nae-Lih

    An aqueous gel electrolyte has for the first time been successfully applied to the MnO 2· nH 2O-based pseudocapacitive electrochemical capacitors (ECs). The gel electrolyte is made of potassium poly(acrylate) (PAAK) polymer and aqueous solution of KCl. With the selected composition, PAAK:KCl:H 2O = 9.0%:6.7%:84.3% by weight, the gel shows no fluidity, possessing an ionic conductivity in the order of 10 -1 S cm -1. The gel electrolyte has been found to give substantially higher specific capacitances than those in the liquid electrolyte with the same salt (KCl) composition (1 M) and high power capability (>10 kW/kg).

  8. Manganese oxide electrochemical capacitor with potassium poly(acrylate) hydrogel electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kuang-Tsin; Wu, Nae-Lih [Department of Chemical Engineering, National Taiwan University, Taipei 106 (China)

    2008-04-15

    An aqueous gel electrolyte has for the first time been successfully applied to the MnO{sub 2}.nH{sub 2}O-based pseudocapacitive electrochemical capacitors (ECs). The gel electrolyte is made of potassium poly(acrylate) (PAAK) polymer and aqueous solution of KCl. With the selected composition, PAAK:KCl:H{sub 2}O = 9.0%:6.7%:84.3% by weight, the gel shows no fluidity, possessing an ionic conductivity in the order of 10{sup -1} S cm{sup -1}. The gel electrolyte has been found to give substantially higher specific capacitances than those in the liquid electrolyte with the same salt (KCl) composition (1 M) and high power capability (>10 kW/kg). (author)

  9. Ionic Liquid-Doped Gel Polymer Electrolyte for Flexible Lithium-Ion Polymer Batteries

    Science.gov (United States)

    Zhang, Ruisi; Chen, Yuanfen; Montazami, Reza

    2015-01-01

    Application of gel polymer electrolytes (GPE) in lithium-ion polymer batteries can address many shortcomings associated with liquid electrolyte lithium-ion batteries. Due to their physical structure, GPEs exhibit lower ion conductivity compared to their liquid counterparts. In this work, we have investigated and report improved ion conductivity in GPEs doped with ionic liquid. Samples containing ionic liquid at a variety of volume percentages (vol %) were characterized for their electrochemical and ionic properties. It is concluded that excess ionic liquid can damage internal structure of the batteries and result in unwanted electrochemical reactions; however, samples containing 40–50 vol % ionic liquid exhibit superior ionic properties and lower internal resistance compared to those containing less or more ionic liquids.

  10. Stability of the Gel Electrolyte PAN : EC : PC : LICF3SO3 towards Lithium

    DEFF Research Database (Denmark)

    Perera, Kumudu; Dissanayake, M.A.K.L.; Skaarup, Steen

    2006-01-01

    The stability of the gel electrolyte consisting of polyacrylonitrile (PAN), ethylene carbonate (EC), propylene carbonate (PC) and lithium trifluoromethanesulfonate (LiCF3SO3 – LiTF) towards metallic lithium was investigated using the time evolution of impedance plots. Symmetric cells of the form Li...... / PAN : EC : PC: LiTF / Li were assembled and impedance data were collected at room temperature for one week. A clear indication of growth of a resistive layer could be seen. The electrolyte resistance remained constant. The growth of the passivation layer became constant after first two days...

  11. Development and manufacture of printable next-generation gel polymer ionic liquid electrolyte for Zn/MnO2 batteries

    International Nuclear Information System (INIS)

    Winslow, R; Wang, Z; Wright, P; Wu, C H; Kim, B; Evans, J; Keif, M

    2013-01-01

    While much energy storage research focuses on the performance of individual components, such as the electrolyte or a single electrode, few investigate the electrochemical system as a whole. This research reports on the design, composition, and performance of a Zn/MnO 2 battery as affected by the manufacturing method and next-generation gel polymer electrolyte composed of the ionic liquid [BMIM][Otf], ZnOtf salt, and PVDF-HFP polymer binder. Materials and manufacturing tests are discussed with a focus on water concentration, surface features as produced by printing processes, and the effect of including a gel polymer phase. Cells produced for this research generated open circuit voltages from 1.0 to 1.3 V. A dry [BMIM][Otf] electrolyte was found to have 87.3 ppm of H 2 O, while an electrolyte produced in ambient conditions contained 12400 ppm of H 2 O. Cells produced in a dry, Ar environment had an average discharge capacity of 0.0137 mAh/cm 2 , while one produced in an ambient environment exhibited a discharge capacity at 0.05 mAh/cm 2 . Surface features varied significantly by printing method, where a doctor blade produced the most consistent features. The preliminary results herein suggest that water, surface roughness, and the gel polymer play important roles in affecting the performance of printed energy storage

  12. Development and manufacture of printable next-generation gel polymer ionic liquid electrolyte for Zn/MnO2 batteries

    Science.gov (United States)

    Winslow, R.; Wu, C. H.; Wang, Z.; Kim, B.; Keif, M.; Evans, J.; Wright, P.

    2013-12-01

    While much energy storage research focuses on the performance of individual components, such as the electrolyte or a single electrode, few investigate the electrochemical system as a whole. This research reports on the design, composition, and performance of a Zn/MnO2 battery as affected by the manufacturing method and next-generation gel polymer electrolyte composed of the ionic liquid [BMIM][Otf], ZnOtf salt, and PVDF-HFP polymer binder. Materials and manufacturing tests are discussed with a focus on water concentration, surface features as produced by printing processes, and the effect of including a gel polymer phase. Cells produced for this research generated open circuit voltages from 1.0 to 1.3 V. A dry [BMIM][Otf] electrolyte was found to have 87.3 ppm of H2O, while an electrolyte produced in ambient conditions contained 12400 ppm of H2O. Cells produced in a dry, Ar environment had an average discharge capacity of 0.0137 mAh/cm2, while one produced in an ambient environment exhibited a discharge capacity at 0.05 mAh/cm2. Surface features varied significantly by printing method, where a doctor blade produced the most consistent features. The preliminary results herein suggest that water, surface roughness, and the gel polymer play important roles in affecting the performance of printed energy storage.

  13. Ionic Liquid-Doped Gel Polymer Electrolyte for Flexible Lithium-Ion Polymer Batteries

    Directory of Open Access Journals (Sweden)

    Ruisi Zhang

    2015-05-01

    Full Text Available Application of gel polymer electrolytes (GPE in lithium-ion polymer batteries can address many shortcomings associated with liquid electrolyte lithium-ion batteries. Due to their physical structure, GPEs exhibit lower ion conductivity compared to their liquid counterparts. In this work, we have investigated and report improved ion conductivity in GPEs doped with ionic liquid. Samples containing ionic liquid at a variety of volume percentages (vol % were characterized for their electrochemical and ionic properties. It is concluded that excess ionic liquid can damage internal structure of the batteries and result in unwanted electrochemical reactions; however, samples containing 40–50 vol % ionic liquid exhibit superior ionic properties and lower internal resistance compared to those containing less or more ionic liquids.

  14. Ionic properties of non-aqueous liquid and PVDF-based gel electrolytes containing a cesium thiolate/disulfide redox couple

    International Nuclear Information System (INIS)

    Renard, Ingrid; Li Hongmei; Marsan, Benoit

    2003-01-01

    Liquid electrolytes containing a cesium thiolate/disulfide redox couple, prepared from 5-mercapto-1-methyltetrazole cesium salt (CsT) and di-5-(1-methyltetrazole)disulfide (T 2 ) dissolved in several aprotic solvents and solvent mixtures, have been studied using various techniques. FTIR spectroscopy reveals that relatively strong interactions occur between the reduced species T - and DMSO or DMF while Cs + ions are very weakly coordinated to the S=O or C=O bond. It is shown that the electrolyte consisting of 1.55 mol kg -1 CsT in the solvent mixture DMSO/DMF (40/60%) exhibits the highest conductivity (1.1x10 -2 and 2.3x10 -2 S cm -1 at 23 and 80 deg. C, respectively), and that the presence of the oxidized species T 2 does not affect significantly its electrical properties up to a CsT:T 2 molar ratio of 5:1. Conductivity values as a function of salt concentration are discussed in terms of the effective number of charge carriers, taking into account the level of ionic association, and of the ionic mobility. Optically transparent gel electrolytes have been prepared by incorporation of the optimal liquid electrolyte into various amounts of poly(vinylidene fluoride) (PVDF). It is shown that ionic mobility is not much affected by the polymer concentration, suggesting that migration of ions occurs mainly through the solvent mixture surrounded by the PVDF matrix

  15. Polymer Electrolytes for Lithium/Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    The Nam Long Doan

    2012-08-01

    Full Text Available This review evaluates the characteristics and advantages of employing polymer electrolytes in lithium/sulfur (Li/S batteries. The main highlights of this study constitute detailed information on the advanced developments for solid polymer electrolytes and gel polymer electrolytes, used in the lithium/sulfur battery. This includes an in-depth analysis conducted on the preparation and electrochemical characteristics of the Li/S batteries based on these polymer electrolytes.

  16. Effect of an electrolyte salt dissolving in polysiloxane-based electrolyte on passive film formation on a graphite electrode

    Science.gov (United States)

    Nakahara, Hiroshi; Nutt, Steven

    Electrochemical impedance spectroscopy (EIS) was performed during the first charge of a graphite/lithium metal test cell to determine the effect of an electrolyte salt on passive film formation in a polysiloxane-based electrolyte. The graphite electrode was separated from the lithium metal electrode by a porous polyethylene membrane immersed in a polysiloxane-based electrolyte with the dissolved lithium bis(oxalato) borate (LiBOB) or lithium bis(trifluoromethanesulfonyl) imide (LiTFSI). In case of LiTFSI, the conductivity of system decreased at 1.2 V. In contrast, for the case of LiBOB, the conductivity decreased at 1.7 V. The magnitudes of charge transfer resistance and film resistance for LiTFSI were smaller than that for LiBOB. Passive films on highly oriented pyrolytic graphite (HOPG) after charging (lithiating) in polysiloxane-based electrolyte were inspected microscopically. Gel-like film and island-like films were observed for LiBOB [H. Nakahara, A. Masias, S.Y. Yoon, T. Koike, K. Takeya, Proceedings of the 41st Power Sources Conference, vol. 165, Philadelphia, June 14-17, 2004; H. Nakahara, S.Y. Yoon, T. Piao, S. Nutt, F. Mansfeld, J. Power Sources, in press; H. Nakahara, S.Y. Yoon, S. Nutt, J. Power Sources, in press]. However, for LiTFSI, there was sludge accumulation on the HOPG surface. Compositional analysis revealed the presence of silicon on both HOPG specimens with LiBOB and with LiTFSI. The electrolyte salt dissolved in the polysiloxane-based electrolyte changed the electrochemical and morphological nature of passive films on graphite electrode.

  17. Zinc-air cell with KOH-treated agar layer between electrode and electrolyte containing hydroponics gel

    Energy Technology Data Exchange (ETDEWEB)

    Otham, R. [International Islamic University, Kuala Lumpur (Malaysia); Yahaya, A. H. [University of Malaya, Dept. of Chemistry, Kuala Lumpur (Malaysia); Arof, A. K. [University of Malaya, Dept. of Physics, Kuala Lumpur (Malaysia)

    2002-07-01

    Zinc-air electrochemical power sources possess the highest density compared to other zinc anode batteries, due their free and unlimited supply from the ambient air. In this experiment zinc-air cells have been fabricated employing hydroponics gel as an alternative alkaline electrolyte gelling agent. Thin KOH-treated agar layer was applied between the electrode-electrolyte interfaces which produced significant enhancement of the cells' capacities, indicating that the application of thin agar layer will improve the electrode-gelled electrolyte interfaces. Promising results have been achieved with porous zinc anode prepared from dried zinc-graphite-gelatinized agar paste; e g. a zinc-air cell employing a porous zinc anode has demonstrated a capacity of 1470 mAh rated at 0.1 A continuous discharge. 32 refs., 9 figs.

  18. Composite gel polymer electrolyte for lithium ion batteries

    Science.gov (United States)

    Naderi, Roya

    Composite gel polymer electrolyte (CGPE) films, consisting of poly (vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) as the membrane, DMF and PC as solvent and plasticizing agent, mixture of charge modified TiO2 and SiO 2 nano particles as ionic conductors, and LiClO4+LiPF 6 as lithium salts were fabricated. Following the work done by Li et al., CGPE was coated on an O2-plasma treated trilayer polypropylene-polyethylene-polypropylene membrane separator using solution casting technique in order to improve the adhesive properties of gel polymer electrolyte to the separator membrane and its respective ionic conductivity due to decreasing the bulk resistance. In acidic CGPE with, the mixture of acid treated TiO2 and neutral SiO2 nano particles played the role of the charge modified nano fillers with enhanced hydroxyl groups. Likely, the mixture of neutral TiO 2 nano particles with basic SiO2 prepared through the hydrolization of tetraethyl orthosilicate (TEOS) provided a more basic environment due to the residues of NH4OH (Ammonium hydroxide) catalyst. The O2 plasma treated separator was coated with the solution of PVDF-HFP: modified nano fillers: Organic solvents with the mixture ratio of 0.1:0.01:1. After the evaporation of the organic solvents, the dried coated separator was soaked in PC-LiClO4+LiPF6 in EC: DMC:DEC (4:2:4 in volume) solution (300% wt. of PVDF-HFP) to form the final CGPE. Lim et al. has reported the enhanced ionic conductivity of 9.78*10-5 Scm-1 in an acidic composite polystyrene-Al2O3 solid electrolyte system with compared to that of basic and neutral in which the ionic conductivity undergoes an ion hopping process in solid interface rather than a segmental movement of ions through the plasticized polymer chain . Half-cells with graphite anode and Li metal as reference electrode were then assembled and the electrochemical measurements and morphology examinations were successfully carried out. Half cells demonstrated a considerable change in their

  19. Two Players Make a Formidable Combination: In Situ Generated Poly(acrylic anhydride-2-methyl-acrylic acid-2-oxirane-ethyl ester-methyl methacrylate) Cross-Linking Gel Polymer Electrolyte toward 5 V High-Voltage Batteries.

    Science.gov (United States)

    Ma, Yue; Ma, Jun; Chai, Jingchao; Liu, Zhihong; Ding, Guoliang; Xu, Gaojie; Liu, Haisheng; Chen, Bingbing; Zhou, Xinhong; Cui, Guanglei; Chen, Liquan

    2017-11-29

    Electrochemical performance of high-voltage lithium batteries with high energy density is limited because of the electrolyte instability and the electrode/electrolyte interfacial reactivity. Hence, a cross-linking polymer network of poly(acrylic anhydride-2-methyl-acrylic acid-2-oxirane-ethyl ester-methyl methacrylate) (PAMM)-based electrolyte was introduced via in situ polymerization inspired by "shuangjian hebi", which is a statement in a traditional Chinese Kungfu story similar to the synergetic effect of 1 + 1 > 2. A poly(acrylic anhydride) and poly(methyl methacrylate)-based system is very promising as electrolyte materials for lithium-ion batteries, in which the anhydride and acrylate groups can provide high voltage resistance and fast ionic conductivity, respectively. As a result, the cross-linking PAMM-based electrolyte possesses a significant comprehensive enhancement, including electrochemical stability window exceeding 5 V vs Li + /Li, an ionic conductivity of 6.79 × 10 -4 S cm -1 at room temperature, high mechanical strength (27.5 MPa), good flame resistance, and excellent interface compatibility with Li metal. It is also demonstrated that this gel polymer electrolyte suppresses the negative effect resulting from dissolution of Mn 2+ ions at 25 and 55 °C. Thus, the LiNi 0.5 Mn 1.5 O 4 /Li and LiNi 0.5 Mn 1.5 O 4 /Li 4 Ti 5 O 12 cells using the optimized in situ polymerized cross-linking PAMM-based gel polymer electrolyte deliver stable charging/discharging profiles and excellent rate performance at room temperature and even at 55 °C. These findings suggest that the cross-linking PAMM is an intriguing candidate for 5 V class high-voltage gel polymer electrolyte toward high-energy lithium-on batteries.

  20. A Polymer Electrolyte for Dye-Sensitized Solar Cells Based on a Poly(Polyvinylidenefluoride-Co-Hexafluoropropylene)/Hydroxypropyl Methyl Cellulose Blend

    Science.gov (United States)

    Won, Lee Ji; Kim, Jae Hong; Thogiti, Suresh

    2018-03-01

    A novel polymer blend electrolyte for dye-sensitized solar cells (DSSCs) was synthesized by quasi-solidifying a liquid-based electrolyte containing an iodide/triiodide redox couple and supporting salts with a mixture of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and indigenous hydroxypropyl methyl cellulose (HPMC). A high ionic conductivity of 8.8 × 10-4 S cm-1 was achieved after introducing 5 wt% of HPMC with respect to the weight of PVDH-HFP. DSSCs were fabricated using gel polymer blend electrolytes, and the J-V characteristics of the fabricated devices were analyzed. Under optimal conditions, the photovoltaic conversion efficiency of cells with the novel HPMC-blended gel electrolyte (5.34%) was significantly greater than that of cells without HPMC (3.97%).

  1. Flexible all-solid-state supercapacitors based on graphene/carbon black nanoparticle film electrodes and cross-linked poly(vinyl alcohol)-H2SO4 porous gel electrolytes

    Science.gov (United States)

    Fei, Haojie; Yang, Chongyang; Bao, Hua; Wang, Gengchao

    2014-11-01

    Flexible all-solid-state supercapacitors (SCs) are fabricated using graphene/carbon black nanoparticle (GCB) film electrodes and cross-linked poly(vinyl alcohol)-H2SO4 porous gel electrolytes (gPVAP-H2SO4). The GCB composite films, with carbon black (CB) nanoparticles uniformly distributed in the graphene nanosheets, greatly improve the active surface areas and ion transportation of pristine graphene film. The porous structure of as-prepared gPVAP-H2SO4 membrane improves the equilibrium swelling ratio in electrolyte and provides interconnected ion transport channels. The chemical crosslinking solves the fluidity problem of PVA-H2SO4 gel electrolyte at high temperature. As-fabricated GCB//gPVAP(20)-H2SO4//GCB flexible SC displays an increased specific capacitance (144.5 F g-1 at 0.5 A g-1) and a higher specific capacitance retention (67.9% from 0.2 to 4 A g-1). More importantly, the flexible SC possesses good electrochemical performance at high temperature (capacitance retention of 78.3% after 1000 cycles at 70 °C).

  2. Application of proton conducting polymeric electrolytes to electrochemical capacitors

    International Nuclear Information System (INIS)

    Morita, Masayuki; Qiao, Jin-Li; Yoshimoto, Nobuko; Ishikawa, Masashi

    2004-01-01

    Non-aqueous polymeric gel complexes composed of poly(ethylene oxide)-modified polymethacrylate (PEO-PMA) dissolving anhydrous H 3 PO 4 have been examined as solid electrolytes of electrochemical capacitors. High ionic conductivity of ∼10 -3 S cm -1 (at 70 deg. C) was obtained for non-aqueous gel systems based on PEO-PMA with proper amounts of organic plasticizers. The ionic conductivity depended on the composition of the gel, especially on the content of the dopant H 3 PO 4 . A test cell of the electric double layer capacitor (EDLC) was assembled using the present gel electrolyte with activated carbon fiber (ACF) cloth electrodes. It gave as high capacity as that obtained for the capacitor using an aqueous liquid electrolyte. High rate capability was obtained for the cell operating at 90 deg. C

  3. PEGDA/PVdF/F127 gel type polymer electrolyte membranes for lithium secondary batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan-Jie; Kim, Dukjoon [Department of Chemical Engineering, Polymer Technology Institute, Sungkyunkwan University, Suwon, Kyunggi 440-746 (Korea)

    2007-03-30

    A novel porous gel polymer electrolyte (GPE) membrane based on poly(ethylene glycol) diacrylate (PEGDA), poly(vinylidene fluoride) (PVdF), and polyethylene oxide-co-polypropylene oxide-co-polyethylene oxide (PEO-PPO-PEO, F127) was fabricated by a phase inversion technique. The PEGDA cross-linking oligomer could be randomly mixed with unraveled PVdF polymer chains to form the interpenetrating polymer network (IPN) structure. Several experimental techniques including infrared (IR) spectra, differential scanning calorimetry (DSC), thermogravimetric analyzer (TGA), scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and potentiostat/galvanostat were employed to investigate the characteristics of the polymer membranes. PEGDA and F127 influenced the porous size and structure. The mechanical strength and flexibility of the membrane were controlled by its composition. The membrane with the composition of PEGDA/PVdF/F127 (0/4/4) showed the highest electrolyte uptake of 152.6% and the maximum ionic conductivity of 2.0 x 10{sup -3} S cm{sup -1} at room temperature. All GPEs prepared in this study were electrochemically stable up to 4.5 V. (author)

  4. Improvement of N-phthaloylchitosan based gel polymer electrolyte in dye-sensitized solar cells using a binary salt system.

    Science.gov (United States)

    Yusuf, S N F; Azzahari, A D; Selvanathan, V; Yahya, R; Careem, M A; Arof, A K

    2017-02-10

    A binary salt system utilizing lithium iodide (LiI) as the auxiliary component has been introduced to the N-phthaloylchitosan (PhCh) based gel polymer electrolyte consisting of ethylene carbonate (EC), dimethylformamide (DMF), tetrapropylammonium iodide (TPAI), and iodine (I 2 ) in order to improve the performance of dye-sensitized solar cell (DSSC) with efficiency of 6.36%, photocurrent density, J SC of 17.29mAcm -2 , open circuit voltage, V OC of 0.59V and fill factor, FF of 0.62. This efficiency value is an improvement from the 5.00% performance obtained by the DSSC consisting of only TPAI single salt system. The presence of the LiI in addition to the TPAI improves the charge injection rates and increases the iodide contribution to the total conductivity and both factors contribute to the increase in efficiency of the DSSC. The interaction behavior between polymer-plasticizer-salt was thoroughly investigated using EIS, FTIR spectroscopy and XRD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. DNA Based Electrolyte/Separator for Lithium Battery Application (Postprint)

    Science.gov (United States)

    2015-10-07

    composite electrolyte as shown by the thermos- gravimetric analysis (TGA). The AC conductivity measurements suggest that the addition of DC to the gel...stability of the composite electrolyte as shown by the thermos- gravimetric analysis (TGA). The AC conductivity measurements suggest that the...2.3. Testing methods and equipment Impedance testing using the Solartron 1260A Impedance/ Gain- phase Analyzer was performed on each cell at

  6. In-situ Fabrication of a Freestanding Acrylate-based Hierarchical Electrolyte for Lithium-sulfur Batteries

    International Nuclear Information System (INIS)

    Liu, M.; Jiang, H.R.; Ren, Y.X.; Zhou, D.; Kang, F.Y.; Zhao, T.S.

    2016-01-01

    Graphical abstract: We present a freestanding acrylate-based hierarchical electrolyte. This quasi-solid electrolyte is assembled by in-situ gelation of a pentaerythritol tetraacrylate (PETEA)-based gel polymer electrolyte (GPE) into a polymethyl methacrylate (PMMA)-based electrospun network. The prepared polymer battery renders a suppressed shuttle effect and much enhanced cycle life. - Highlights: • A freestanding Acrylate-based Hierarchical Electrolyte was in-situ crafted. • The high conductivity is due to strong uptake ability and elimination of separator. • The polymer battery renders a superior high rate capability and excellent retention. • First-principle calculations prove anchoring ability of ester functional groups. • Cell modeling shows geometric design effectively suppresses polysulfide flux. - Abstract: A number of methods have been attempted to suppress the shuttle effect in lithium-sulfur (Li-S) batteries to improve battery performance. Conventional methods, however, reduce the ionic conductivity, sacrifice the overall energy density and increase the cost of production. Here, we report a facile synthesis of an acrylate-based hierarchical electrolyte (AHE). This quasi-solid electrolyte is assembled by in-situ gelation of a pentaerythritol tetraacrylate (PETEA)-based gel polymer electrolyte (GPE) into a polymethyl methacrylate (PMMA)-based electrospun network. The structural similarity and synergetic compatibility between the electrospun network and GPE provide the AHE an ester-rich robust structure with a high ionic conductivity of 1.02 × 10 −3 S cm −1 due to the strong uptake ability and the elimination of commercial separator. The S/AHE/Li polymer battery also renders a high rate capability of 645 mAh g −1 at 3C, while maintaining excellent retention at both high and low current densities (80.3% after 500 cycles at 0.3C and 91.9% after 500 cycles at 3C). First-principle calculations reveal that the reduced shuttle effect can be

  7. Comparison of starch and gelatin hydrogels for non-toxic supercapacitor electrolytes

    Science.gov (United States)

    Railanmaa, Anna; Lehtimäki, Suvi; Lupo, Donald

    2017-06-01

    Starch and gelatin are two of the most abundantly available natural polymers. Their non-toxicity, low cost, and compatibility with aqueous solvents make them ideal for use in ubiquitous, environmentally friendly electronics systems. This work presents the results of conductivity measurements through impedance spectroscopy for gelatin- and starch-based aqueous gel electrolytes. The NaCl-based gels were physically cross-linked. The conductivity values were 84.6 mS/cm at 1.5 mol L-1 and 71.5 mS/cm at 2 mol L-1 for gelatin and starch, respectively. The mechanical properties of gelatin were found preferable to those of starch, although they deteriorated significantly when the salt concentration exceeded 2 mol L-1. The ability of the gels to successfully act as a supercapacitor electrolyte was demonstrated with printed electrodes on plastic substrate. The devices were characterized through cyclic voltammetry measurements. The results imply that these polymer gel electrolytes are very promising for replacing the traditional aqueous liquid electrolytes in supercapacitors in applications where, for example, user and environmental safety is essential.

  8. Investigation of the temperature effect on electrochemical behaviors of TiO2 for gel type valve regulated lead-acid batteries

    Directory of Open Access Journals (Sweden)

    Metin GENÇTEN

    2016-12-01

    Full Text Available In this study, the effect of temperature on the electrochemical behaviors of gel electrolyte systems was investigated for valve regulated lead-acid battery at 0≤ T ≤50 oC. Fumed silica and mixture of fumed silica and TiO2 were used as gel electrolytes. TiO2 has a good combination with fumed silica. They were characterized by cyclic voltammetry, electrochemical impedance spectroscopy and battery tests. The anodic peak currents and redox capacities of the gel electrolytes increased with increasing of temperature. The highest anodic peak current and redox capacity were observed at 30 oC in fumed silica and at 40 oC in fumed silica:TiO2 based gel systems. The solution and charge transfer resistance values decreased in fumed silica:TiO2 gel system by increasing temperature. In battery tests, discharge curves were obtained for each gel system at 0, 25 and 50 oC. The discharge time of mixture gel electrolyte system was higher than that of fumed silica based gel electrolyte at low (0 oC and high (50 oC temperatures. The best performance was obtained in fumed silica based gel electrolyte at 25 oC.

  9. Microporous gel electrolytes based on amphiphilic poly(vinylidene fluoride-co-hexafluoropropylene) for lithium batteries

    International Nuclear Information System (INIS)

    Yu Shicheng; Chen Lie; Chen Yiwang; Tong Yongfen

    2012-01-01

    Poly(vinylidene fluoride-co-hexafluoropropylene) grafted poly(poly(ethylene glycol) methyl ether methacrylate) (PVDF-HFP-g-PPEGMA) is simply prepared by single-step synthesis directly via atom transfer radical polymerization (ATRP) of poly(ethylene glycol) methyl ether methacrylate (PEGMA) from poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP). Thermal, mechanical, swelling and electrochemical properties, as well as microstructures of the prepared polymer electrolytes, are evaluated and the effects of the various contents and average molecular weights of PEGMA on those properties are also been investigated. By phase inversion technique, the copolymer membranes tend to form well-defined microporous morphology with the increase of content and average molecular weight of PEGMA, due to the competition and cooperation between the hydrophilic PEGMA segments and hydrophobic PVDF-HFP. When these membranes are gelled with 1 M LiCF 3 SO 3 in ethylene carbonate (EC)/propylene carbonate (PC) (1:1, v/v), their saturated electrolyte uptakes (up to 323.5%) and ion conductivities (up to 2.01 × 10 -3 S cm -1 ) are dramatically improved with respect to the pristine PVDF-HFP, ascribing to the strong affinity of the hydrophilic PEGMA segments with the electrolytes. All the polymer electrolytes are electrochemically stable up to 4.7 V versus Li/Li + , and show good mechanical properties. Coin cells based on the polymer electrolytes show stable charge-discharge cycles and deliver discharge capacities to LiFePO 4 is up to 156 mAh g -1 .

  10. ZnTe Semiconductor-Polymer Gel Composited Electrolyte for Conversion of Solar Energy

    Directory of Open Access Journals (Sweden)

    Wonchai Promnopas

    2014-01-01

    Full Text Available Nanostructured cubic p-type ZnTe for dye sensitized solar cells (DSSCs was synthesized from 1 : 1 molar ratio of Zn : Te by 600 W and 900 W microwave plasma for 30 min. In this research, their green emissions were detected at the same wavelengths of 563 nm, the energy gap (Eg at 2.24 eV, and three Raman shifts at 205, 410, and 620 cm−1. The nanocomposited electrolyte of quasisolid state ZnO-DSSCs was in correlation with the increase in the JSC, VOC, fill factor (ff, and efficiency (η by increasing the wt% of ZnTe-GPE (gel polymer electrolyte to an optimum value and decreased afterwards. The optimal ZnO-DSSC performance was achieved for 0.20 wt% ZnTe-GPE with the highest photoelectronic energy conversion efficiency at 174.7% with respect to that of the GPE without doping of p-type ZnTe.

  11. High-rate supercapacitive performance of GO/r-GO electrodes interfaced with plastic-crystal-based flexible gel polymer electrolyte

    International Nuclear Information System (INIS)

    Suleman, Mohd; Kumar, Yogesh; Hashmi, S.A.

    2015-01-01

    We report the performance of symmetrical electric double layer capacitors (EDLCs) fabricated with graphene oxide (GO) and reduced graphene oxide (r-GO) electrodes, and plastic crystal based flexible gel polymer electrolyte (GPE) film. The GPE, comprising the solution of lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) in a plastic crystal succinonitrile (SN) entrapped in poly (vinylidinefluoride-co-hexafluoropropylene) (PVdF-HFP), shows suitability as separator/electrolyte in EDLCs due to its excellent electrochemical properties including high ionic conductivity (∼1.97 × 10 −3 S cm −1 a 20 °C). The GO and r-GO electrodes exhibit supercapacitive properties with the SN-based GPE as evidenced from electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and galvanostatic charge-discharge analyses. The residual oxygen functionalities associated with GO-electrodes provide additional pseudo-capacitance resulting in higher specific capacitance and specific energy (∼66 F g −1 and 18 Wh kg −1 , respectively) as compared to r-GO electrodes (specific capacitance ∼60 F g −1 and specific energy ∼15.6 Wh kg −1 ). High knee frequency f k (∼38 Hz), low response time ∼τ 0 (∼166.5 ms) and high pulse power P 0 (∼32.9 kW kg −1 ), observed from EIS studies, indicate the high rate capability of GO-electrodes-based EDLCs. About three fold increase in f k and three times decrease in τ 0 indicates a substantially higher rate performance of r-GO-based EDLCs with respect to GO-based cell. The high rate capability of GO/r-GO electrodes in combination with SN-based GPEs is further confirmed from the rectangular CV shapes up to scan rates of 5 V s −1 for GO and 10 V s −1 for r-GO electrodes. The r-GO based EDLC offers higher specific power (∼54.9 kW kg −1 ) as compared to that of GO-based EDLC (∼33.3 kW kg −1 ), as observed from charge-discaharge studies. Both EDLCs show stable capacitive performance up to ∼11000-13500 charge

  12. Performance of electrical double layer capacitors fabricated with gel polymer electrolytes containing Li+ and K+-salts: A comparison

    International Nuclear Information System (INIS)

    Singh, Manoj K.; Hashmi, S. A.

    2015-01-01

    The comparative performance of the solid-state electrical double layer capacitors (EDLCs) based on the multiwalled carbon nanotube (MWCNT) electrodes and poly (vinaylidinefluoride-co-hexafluoropropyline) (PVdF-HFP) based gel polymer electrolytes (GPEs) containing potassium and lithium salts have been studied. The room temperature ionic conductivity of the GPEs have been found to be ∼3.8×10 −3 and 5.9×10 −3 S cm −1 for lithium and potassium based systems. The performance of EDLC cells studied by impedance spectroscopy, cyclic voltammetry and constant current charge-discharge techniques, indicate that the EDLC with potassium salt containing GPE shows excellent performance almost equivalent to the EDLC with Li-salt-based GPE

  13. Facile and Reliable in Situ Polymerization of Poly(Ethyl Cyanoacrylate)-Based Polymer Electrolytes toward Flexible Lithium Batteries.

    Science.gov (United States)

    Cui, Yanyan; Chai, Jingchao; Du, Huiping; Duan, Yulong; Xie, Guangwen; Liu, Zhihong; Cui, Guanglei

    2017-03-15

    Polycyanoacrylate is a very promising matrix for polymer electrolyte, which possesses advantages of strong binding and high electrochemical stability owing to the functional nitrile groups. Herein, a facile and reliable in situ polymerization strategy of poly(ethyl cyanoacrylate) (PECA) based gel polymer electrolytes (GPE) via a high efficient anionic polymerization was introduced consisting of PECA and 4 M LiClO 4 in carbonate solvents. The in situ polymerized PECA gel polymer electrolyte achieved an excellent ionic conductivity (2.7 × 10 -3 S cm -1 ) at room temperature, and exhibited a considerable electrochemical stability window up to 4.8 V vs Li/Li + . The LiFePO 4 /PECA-GPE/Li and LiNi 1.5 Mn 0.5 O 4 /PECA-GPE/Li batteries using this in-situ-polymerized GPE delivered stable charge/discharge profiles, considerable rate capability, and excellent cycling performance. These results demonstrated this reliable in situ polymerization process is a very promising strategy to prepare high performance polymer electrolytes for flexible thin-film batteries, micropower lithium batteries, and deformable lithium batteries for special purpose.

  14. Electrical double layer capacitor using poly(methyl methacrylate)–C4BO8Li gel polymer electrolyte and carbonaceous material from shells of mata kucing (Dimocarpus longan) fruit

    International Nuclear Information System (INIS)

    Arof, A.K.; Kufian, M.Z.; Syukur, M.F.; Aziz, M.F.; Abdelrahman, A.E.; Majid, S.R.

    2012-01-01

    Poly(methyl methacrylate), PMMA based gel polymer electrolytes (GPE) containing immobilized lithium bis(oxalato)borate, C 4 BO 8 Li or LiBOB dissolved in a propylene carbonate–ethylene carbonate binary solvent were prepared by heating the cast solution between 70 and 80 °C for 20 min. The electrolyte composition with 5 wt.% PMMA exhibited the highest conductivity of 3.27 and 7.46 mS cm −1 at 298 and 343 K respectively. Cyclic voltammetry studies on the GPE containing 15 wt.% PMMA and 85 wt.% (0.6 M LiBOB) dissolved in equal weight of ethylene and propylene carbonates showed that the electrochemical potential stability window of the electrolyte lies in the range between −1.7 to +1.7 V. Linear sweep voltammetry indicates the gel polymer electrolyte is stable up to 1.7 V. The electrical double layer capacitor (EDLC) using the highest conducting GPE and activated carbon derived from shells of the mata kucing (Dimocarpus longan) fruit has capacitance of ∼685 mF g −1 on the first cycle. The EDLC performance was also characterized using cyclic voltammetry and charge–discharge processes at constant current.

  15. Fast Switching Electrochromic Devices Containing Optimized BEMA/PEGMA Gel Polymer Electrolytes

    Directory of Open Access Journals (Sweden)

    N. Garino

    2013-01-01

    Full Text Available An optimized thermoset gel polymer electrolyte based on Bisphenol A ethoxylate dimethacrylate and Poly(ethylene glycol methyl ether methacrylate (BEMA/PEGMA was prepared by facile photo-induced free radical polymerisation technique and tested for the first time in electrochromic devices (ECD combining WO3 sputtered on ITO as cathodes and V2O5 electrodeposited on ITO as anodes. The behaviour of the prepared ECD was investigated electrochemically and electro-optically. The ECD transmission spectrum was monitored in the visible and near-infrared region by varying applied potential. A switching time of ca. 2 s for Li+ insertion (coloring and of ca. 1 s for Li+ de-insertion (bleaching were found. UV-VIS spectroelectrochemical measurements evidenced a considerable contrast between bleached and colored state along with a good stability over repeated cycles. The reported electrochromic devices showed a considerable enhancement of switching time with respect to the previously reported polymeric ECD indicating that they are good candidates for the implementation of intelligent windows and smart displays.

  16. New Microporous Polymer Electrolyte Based on Polysiloxane Grafted with Imidazolium Iodide Moieties for DSSC

    Directory of Open Access Journals (Sweden)

    Yan Yang

    2011-01-01

    Full Text Available Two types of polysiloxane grafted with different ratio of imidazolium iodide moieties (IL-SiO2 have been synthesized to develop a micro-porous polymer electrolyte for quasi-solid-state dye-sensitized solar cells. The samples were characterized by 1HNMR, FT-IR spectrum, XRD, TEM and SEM, respectively. Moreover, the ionic conductivity of the electrolytes was measured by electrochemical workstation. Nanostructured polysiloxane containing imidazolium iodide showed excellent compatibility with organic solvent and polymer matrix for its ionic liquid characteristics. Increasing the proportion of imidazolium iodide moieties in polysiloxane improved the electrochemical behavior of the gel polymer electrolyte. A dye-sensitized solar cell with gel polymer electrolyte yielded an open-circuit voltage of 0.70 V, short-circuit current of 11.19 mA cm−2, and the conversion efficiency of 3.61% at 1 sun illumination.

  17. Actuator device utilizing a conductive polymer gel

    Science.gov (United States)

    Chinn, Douglas A.; Irvin, David J.

    2004-02-03

    A valve actuator based on a conductive polymer gel is disclosed. A nonconductive housing is provided having two separate chambers separated by a porous frit. The conductive polymer is held in one chamber and an electrolyte solution, used as a source of charged ions, is held in the second chamber. The ends of the housing a sealed with a flexible elastomer. The polymer gel is further provide with electrodes with which to apply an electrical potential across the gel in order to initiate an oxidation reaction which in turn drives anions across the porous frit and into the polymer gel, swelling the volume of the gel and simultaneously contracting the volume of the electrolyte solution. Because the two end chambers are sealed the flexible elastomer expands or contracts with the chamber volume change. By manipulating the potential across the gel the motion of the elastomer can be controlled to act as a "gate" to open or close a fluid channel and thereby control flow through that channel.

  18. Improved protocols for the study of urinary electrolyte excretion and blood pressure in rodents: use of gel food and stepwise changes in diet composition.

    Science.gov (United States)

    Nizar, Jonathan M; Bouby, Nadine; Bankir, Lise; Bhalla, Vivek

    2018-06-01

    Many experimental protocols in rodents require the comparison of groups that are fed different diets. Changes in dietary electrolyte and/or fat content can influence food intake, which can potentially introduce bias or confound the results. Unpalatable diets slow growth or cause weight loss, which is exacerbated by housing the animals in individual metabolic cages or by surgery. For balance studies in mice, small changes in body weight and food intake and low urinary flow can amplify these challenges. Powder food can be administered as gel with the addition of a desired amount of water, electrolytes, drugs (if any), and a small amount of agar. We describe here how the use of gel food to vary water, Na, K, and fat content can reduce weight loss and improve reproducibility of intake, urinary excretion, and blood pressure in rodents. In addition, mild food restriction reduces the interindividual variability and intergroup differences in food intake and associated variables, thus improving the statistical power of an experiment. Finally, we also demonstrate the advantages of using gel food for weight-based drug dosing. These protocols can improve the accuracy and reproducibility of experimental data where dietary manipulations are needed and are especially advisable in rodent studies related to water balance, obesity, and blood pressure.

  19. Comparative study on the effects of negatively-charged biopolymers on chitosan-based gels for the development of instantaneous gels

    International Nuclear Information System (INIS)

    Jimeno, Austin Ed B.; Chakraborty, Soma

    2015-01-01

    Polymeric electrolytic complexes are solutions of charged/ionized chains. These solutions of positive and negative charge can be combined to make instantaneous networks bonded by electrostatic interactions, a gel network. These electrostatic interaction allows for easy application in injectable gels as the network can be temporarily distributed with the application of force and reformed on the relief of it. Possible applications for these injectable gels include drug delivery and wound-healing. κ-Carrageenan, dextran sulfate, alginate, and chitosan are polyelectrolytic biocompatible polymers which are widely studied and used for a variety of biomedical applications. Gel networks are made by combining a negatively-charged (κ-Carrageenan, dextran sulfate, or alginate) and positively charged (chitosan) solutions. The strong electrostatic interaction between the opposite charges from the gel network and the inherent biocompatibility of the polymers allow future biomedical applications. Quat 188-modified chitosan has additional sites for electrostatic bonding, can be dissolved in neutral, basic, and acidic pH, and has shown inherent antibacterial activity. The objectives of this study are the following: to formulate chitosan-based gels mixing solutions of chitosan with solutions of either κ-Carrageenan, dextran sulfate, or alginate, study the gelation of the gels as function of time and pH (4, 7, and 9) using UV-Vis, characterize the chitosan-based gels through DSC and DMA, characterize the physiological degradation of the chitosan-based gels, and compare results with those from Quat 188-modified chitosan-based gels. Polyelectrolytic solutions of chitosan and negatively-charged biopolymer of similar viscosities were mixed. It was determined from the UV-Vis spectroscopy of the chitosan-carrageenan gels under pH7 buffer that the increase of concentration by a factor of 5 for 0.006M-0.0095M and 1.25 for 0.0095M-0.0150M Chitosan-Carrageenan gels improved gelation by the

  20. Anode-supported single-chamber SOFCs based on gadolinia doped ceria electrolytes

    Directory of Open Access Journals (Sweden)

    Morales, M.

    2008-12-01

    Full Text Available The utilization of anode supported electrolytes is a useful strategy to increase the electrical properties of the solid oxide fuel cells, because it is possible to decrease considerably the thickness of the electrolytes. We have prepared successfully singlechamber fuel cells of gadolinia doped ceria electrolytes Ce1-xGdxO2-y (CGO supported on an anode formed by a cermet of Ni-CGO. Mixtures of precursor powders of NiO and gadolinium doped ceria with different particle sizes and compositions were analyzed to obtain optimal bulk porous anodes to be used as anode supported fuel cells. Doped ceria electrolytes were prepared by sol-gel related techniques. Then, ceria based electrolytes were deposited by dip coating at different thickness (15-30 µm using an ink prepared with nanometric powders of electrolytes dispersed in a commercial liquid polymer. Cathodes of La1-xSrxCoO3-s (LSCO were also prepared by sol-gel related techniques and were deposited by dip coating on the electrolyte thick films. Finally, electrical properties were determined in a single-chamber reactor where propane as fuel was mixed with synthetic air above the higher explosive limit. Stable density currents were obtained in these experimental conditions, but flow rates of the carrier gas and propane partial pressure were determinants for the optimization of the electrical properties of the fuel cells.

    La utilización de electrolitos soportados en el ánodo es una estrategia muy útil para mejorar las propiedades eléctricas de las pilas de combustible de óxido sólido, debido a que permiten disminuir considerablemente el espesor de los electrolitos. Para este trabajo, se han preparado exitosamente pilas de combustible de óxido sólido con electrolitos de ceria dopada con Gd, Ce1-xGdxO2-y (CGO soportados sobre un ánodo formado por un cermet de Ni/CGO. Dichas pilas se han

  1. Chemical stability of {gamma}-butyrolactone-based electrolytes for aluminium electrolytic capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Ue, Makoto [Mitsubishi Chemical Corp., Tsukuba Research Center, Ibaraki (Japan); Takeda, Masayuki [Mitsubishi Chemical Corp., Tsukuba Research Center, Ibaraki (Japan); Suzuki, Yoko [Mitsubishi Chemical Corp., Tsukuba Research Center, Ibaraki (Japan); Mori, Shoichiro [Mitsubishi Chemical Corp., Tsukuba Research Center, Ibaraki (Japan)

    1996-06-01

    {gamma}-Butyrolactone-based electrolytes have been used as the operating electrolytes for aluminum electrolytic capacitors. The chemical stability of these electrolytes at elevated temperatures has been examined by monitoring the decrease in their electrolytic conductivities. The deteriorated electrolytes were analyzed by gas and liquid chromatography and the conductivity decrease was directly correlated with the loss of acid components. In quaternary ammonium hydrogen maleate/{gamma}-butyrolactone electrolytes, the maleate anion decomposed by decarboxylation resulting in a complex polymer containing polyester and polyacrylate structures. Quaternary ammonium benzoate/{gamma}-butyrolactone electrolytes decomposed by SN2 reactions giving alkyl benzoates and trialkylamines. The deterioration of the carboxylate salt/{gamma}-butyrolactone electrolytes was accelerated by electrolysis. (orig.)

  2. Synthesis and Test of 'New' Gel-Type Lithium Electrolytes

    National Research Council Canada - National Science Library

    Scrosati, Bruno

    1994-01-01

    In this 6th two-month period we have continued the characterization of PMMA-based electrolyte membranes by examining the phenomena occurring at the interface between these membranes and the lithium...

  3. Stable, easily sintered BaCe0.5Zr0.3Y0.16Zn0.04O3-δ electrolyte-based proton-conducting solid oxide fuel cells by gel-casting and suspension spray

    International Nuclear Information System (INIS)

    Lin Bin; Dong Yingchao; Wang Songlin; Fang Daru; Ding Hanping; Zhang Xiaozhen; Liu Xingqin; Meng Guangyao

    2009-01-01

    Protonic ceramic membrane fuel cells (PCMFCs) based on oxide proton conductors exhibit more advantages than traditional solid oxide fuel cells (SOFCs) based on oxygen-ion conducting electrolytes, such as low activation energy and high energy efficiency. In order to develop a simple and cost-effective route to fabricate PCMFCs with SrCo 0.9 Sb 0.1 O 3-δ (SCS) cubic perovskite cathode, a dense BaCe 0.5 Zr 0.3 Y 0.16 Zn 0.04 O 3-δ (BCZYZn) electrolyte was fabricated in situ metal oxide on a porous anode support by gel-casting and suspension spray, which is cost-effective, easy to realize, and suitable for mass-production. The key part of this process is to directly spray well-mixed suspension of BaCO 3 , CeO 2 , ZrO 2 , Y 2 O 3 and ZnO instead of pre-synthesized BCZYZn ceramic powder on the anode substrate. With SCS cubic perovskite cathode synthesized by gel-casting on the bi-layer, single cells were assembled and tested with H 2 as fuel and the static air as oxidant. An open-circuit potential of 0.987 V, a maximum power density of 364 mW cm -2 , and a low polarization resistance of the electrodes of 0.07 Ω cm 2 was achieved at 700 deg. C.

  4. Effects of crown ethers in nanocomposite silica-gel electrolytes on the performance of quasi-solid-state dye-sensitized solar cells

    KAUST Repository

    Huang, Kuan-Chieh; Vittal, R.; Ho, Kuo-Chuan

    2010-01-01

    I) and iodine (I2) in 3-methoxypropionitrile (MPN) solvent. Three types of CEs, 12-crown-4 (12-C-4), 15-crown-5 (15-C-5), and 18-crown-6 (18-C-6) were used as additives to the gel electrolytes. DSSCs containing CEs showed enhancements in solar

  5. Electrochemical Impedance Spectroscopy Studies of Magnesium-Based Polymethylmethacrylate Gel Polymer Electroytes

    International Nuclear Information System (INIS)

    Osman, Z.; Zainol, N.H.; Samin, S.M.; Chong, W.G.; Md Isa, K.B.; Othman, L.; Supa’at, I.; Sonsudin, F.

    2014-01-01

    Magnesium-based rechargeable batteries might be an interesting future alternative to lithium-based batteries since magnesium compounds are highly abundant in the earth and are environmental friendly. In this work, we have prepared polymethylmethacrylate (PMMA) based gel polymer electrolyte (GPE) films containing two different magnesium salts, which is magnesium triflate, Mg(CF 3 SO 3 ) 2 and magnesium perchlorate, Mg(ClO 4 ) 2 using solution casting technique . The ionic conductivity of both gel polymer electrolyte systems was evaluated using a.c impedance spectroscopy. Results show that at room temperature, GPE-Mg(CF 3 SO 3 ) 2 system exhibits the highest conductivity value at 1.27 × 10 −3 S cm −1 for the film containing 20 wt.% of Mg(CF 3 SO 3 ) 2 salt, while the highest conductivity value for the GPE-Mg(ClO 4 ) 2 system is 3.13 × 10 −3 S cm −1 for the film containing 15 wt.% of Mg(ClO 4 ) 2 salt. The conductivity-temperature studies of both GPE systems follow the Arrhenius behavior. The activation energies for ionic conduction were determined to be in the range of 0.18–0.26 eV. The transport numbers of magnesium ions in both GPE systems were evaluated using the combination of a.c impedance spectroscopy and d.c polarization techniques. The results obtained indicate that the charge carriers in the GPE films for both systems are predominantly due to ions

  6. New polysaccharide-based polymer electrolytes; Nouveaux electrolytes polymeres a base de polysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Velasquez-Morales, P.; Le Nest, J.F.; Gandini, A. [Ecole Francaise de Papeterie et des Industries Graphique, 38 - Saint Martin d`Heres (France)

    1996-12-31

    Polysaccharides like cellulose and chitosan are known for their filmic properties. This paper concerns the synthesis and the study of chitosan-based polymer electrolytes. A preliminary work concerns the study of glucosamine reactivity. The poly-condensation of chitosan ethers (obtained by reaction with ethylene oxide or propylene oxide) with bifunctional and monofunctional oligo-ethers leads to the formation of thin lattices (10 {mu}m) having excellent mechanical properties. The presence of grafted polyether chains along the polysaccharide skeleton allows to modify the vitreous transition temperature and the molecular disorder of the system. Two type of polymer electrolytes have been synthesized: electrolytes carrying a dissolved alkaline metal salt and ionomers. The analysis of their thermal, dynamical mechanical, nuclear magnetic relaxation, electrical, and electrochemical properties shows that this new class of polymer electrolytes has the same performances as ethylene poly-oxide based amorphous lattices plus the advantage of having good filmic properties. Abstract only. (J.S.)

  7. New polysaccharide-based polymer electrolytes; Nouveaux electrolytes polymeres a base de polysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Velasquez-Morales, P; Le Nest, J F; Gandini, A [Ecole Francaise de Papeterie et des Industries Graphique, 38 - Saint Martin d` Heres (France)

    1997-12-31

    Polysaccharides like cellulose and chitosan are known for their filmic properties. This paper concerns the synthesis and the study of chitosan-based polymer electrolytes. A preliminary work concerns the study of glucosamine reactivity. The poly-condensation of chitosan ethers (obtained by reaction with ethylene oxide or propylene oxide) with bifunctional and monofunctional oligo-ethers leads to the formation of thin lattices (10 {mu}m) having excellent mechanical properties. The presence of grafted polyether chains along the polysaccharide skeleton allows to modify the vitreous transition temperature and the molecular disorder of the system. Two type of polymer electrolytes have been synthesized: electrolytes carrying a dissolved alkaline metal salt and ionomers. The analysis of their thermal, dynamical mechanical, nuclear magnetic relaxation, electrical, and electrochemical properties shows that this new class of polymer electrolytes has the same performances as ethylene poly-oxide based amorphous lattices plus the advantage of having good filmic properties. Abstract only. (J.S.)

  8. Comparative study of polymer matrices for gelled electrolytes of lithium batteries; Etude comparative de matrices polymeres pour electrolytes gelifies de batteries au lithium

    Energy Technology Data Exchange (ETDEWEB)

    Du Pasquier, A.; Sarrazin, C.; Fauvarque, J.F. [CNAM, 75 - Paris (France); Andrieu, X. [Alcatel Alsthom Recherche, 91 - Marcoussis (France)

    1996-12-31

    A solid electrolyte for lithium batteries requires several properties: a good ionic conductivity of about 10{sup -3} S/cm at 298 deg. K, a high cationic transport number (greater than 0.5), a redox stability window higher than 4.5 V, a good stability of the interface with the lithium electrode, and a sufficient mechanical stability. The family of gelled or hybrid electrolytes seems to meet all these requirements. Thus, a systematic study of the gelling of an ethylene carbonate and lithium bistrifluorosulfonimide (LiTFSI) based electrolyte has been carried out. The polymers used for gel or pseudo-gel synthesis are POE, PMMA and PAN which represent 3 different cases of interaction with the electrolyte. All the properties mentioned above have been studied according to the nature of the polymer and to the concentration of lithium salt, showing the advantages and drawbacks of each polymer. The possibility of using some of these gels in lithium-ion batteries has been tested by lithium intercalation tests in UF2 graphite at the C/10 regime and by the cycling of LiCoO{sub 2}/UF{sub 2} batteries at the C/5 regime. Interesting performances have been obtained on Li/PPy batteries which can operate at the 7.5 C regime. (J.S.)

  9. Comparative study of polymer matrices for gelled electrolytes of lithium batteries; Etude comparative de matrices polymeres pour electrolytes gelifies de batteries au lithium

    Energy Technology Data Exchange (ETDEWEB)

    Du Pasquier, A; Sarrazin, C; Fauvarque, J F [CNAM, 75 - Paris (France); Andrieu, X [Alcatel Alsthom Recherche, 91 - Marcoussis (France)

    1997-12-31

    A solid electrolyte for lithium batteries requires several properties: a good ionic conductivity of about 10{sup -3} S/cm at 298 deg. K, a high cationic transport number (greater than 0.5), a redox stability window higher than 4.5 V, a good stability of the interface with the lithium electrode, and a sufficient mechanical stability. The family of gelled or hybrid electrolytes seems to meet all these requirements. Thus, a systematic study of the gelling of an ethylene carbonate and lithium bistrifluorosulfonimide (LiTFSI) based electrolyte has been carried out. The polymers used for gel or pseudo-gel synthesis are POE, PMMA and PAN which represent 3 different cases of interaction with the electrolyte. All the properties mentioned above have been studied according to the nature of the polymer and to the concentration of lithium salt, showing the advantages and drawbacks of each polymer. The possibility of using some of these gels in lithium-ion batteries has been tested by lithium intercalation tests in UF2 graphite at the C/10 regime and by the cycling of LiCoO{sub 2}/UF{sub 2} batteries at the C/5 regime. Interesting performances have been obtained on Li/PPy batteries which can operate at the 7.5 C regime. (J.S.)

  10. Correlation between ionic conductivity and fluidity of polymer gel ...

    Indian Academy of Sciences (India)

    Unknown

    Ionic conductivity; ion aggregates; FTIR spectroscopy; gels; fluidity. 1. Introduction ... liquid and polymer gel electrolytes have been studied as functions of salt ..... Ratner M A 1987 in Polymer electrolyte reviews (eds) J R. MacCallum and C A ...

  11. A Lithium/Polysulfide Battery with Dual-Working Mode Enabled by Liquid Fuel and Acrylate-Based Gel Polymer Electrolyte.

    Science.gov (United States)

    Liu, Ming; Ren, Yuxun; Zhou, Dong; Jiang, Haoran; Kang, Feiyu; Zhao, Tianshou

    2017-01-25

    The low density associated with low sulfur areal loading in the solid-state sulfur cathode of current Li-S batteries is an issue hindering the development of this type of battery. Polysulfide catholyte as a recyclable liquid fuel was proven to enhance both the energy density and power density of the battery. However, a critical barrier with this lithium (Li)/polysulfide battery is that the shuttle effect, which is the crossover of polysulfides and side deposition on the Li anode, becomes much more severe than that in conventional Li-S batteries with a solid-state sulfur cathode. In this work, we successfully applied an acrylate-based gel polymer electrolyte (GPE) to the Li/polysulfide system. The GPE layer can effectively block the detrimental diffusion of polysulfides and protect the Li metal from the side passivation reaction. Cathode-static batteries utilizing 2 M catholyte (areal sulfur loading of 6.4 mg cm -2 ) present superior cycling stability (727.4 mAh g -1 after 500 cycles at 0.2 C) and high rate capability (814 mAh g -1 at 2 C) and power density (∼10 mW cm -2 ), which also possess replaceable and encapsulated merits for mobile devices. In the cathode-flow mode, the Li/polysulfide system with catholyte supplied from an external tank demonstrates further improved power density (∼69 mW cm -2 ) and stable cycling performance. This novel and simple Li/polysulfide system represents a significant advancement of high energy density sulfur-based batteries for future power sources.

  12. Polymer Electrolytes

    Science.gov (United States)

    Hallinan, Daniel T.; Balsara, Nitash P.

    2013-07-01

    This review article covers applications in which polymer electrolytes are used: lithium batteries, fuel cells, and water desalination. The ideas of electrochemical potential, salt activity, and ion transport are presented in the context of these applications. Potential is defined, and we show how a cell potential measurement can be used to ascertain salt activity. The transport parameters needed to fully specify a binary electrolyte (salt + solvent) are presented. We define five fundamentally different types of homogeneous electrolytes: type I (classical liquid electrolytes), type II (gel electrolytes), type III (dry polymer electrolytes), type IV (dry single-ion-conducting polymer electrolytes), and type V (solvated single-ion-conducting polymer electrolytes). Typical values of transport parameters are provided for all types of electrolytes. Comparison among the values provides insight into the transport mechanisms occurring in polymer electrolytes. It is desirable to decouple the mechanical properties of polymer electrolyte membranes from the ionic conductivity. One way to accomplish this is through the development of microphase-separated polymers, wherein one of the microphases conducts ions while the other enhances the mechanical rigidity of the heterogeneous polymer electrolyte. We cover all three types of conducting polymer electrolyte phases (types III, IV, and V). We present a simple framework that relates the transport parameters of heterogeneous electrolytes to homogeneous analogs. We conclude by discussing electrochemical stability of electrolytes and the effects of water contamination because of their relevance to applications such as lithium ion batteries.

  13. Performance of flexible capacitors based on polypyrrole/carbon fiber electrochemically prepared from various phosphate electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Wei; Han, Gaoyi, E-mail: han_gaoyis@sxu.edu.cn; Chang, Yunzhen; Li, Miaoyu; Xiao, Yaoming, E-mail: ymxiao@sxu.edu.cn; Zhou, Haihan; Zhang, Ying; Li, Yanping

    2016-11-30

    Highlights: • PPy/CFs have been fabricated by electrodepositing polypyrrole on carbon fibers. • The electrolytes in deposition solution have effect on PPy/CFs’ capacitive behavior. • Cells of PPy/CFs obtained from NaH{sub 2}PO{sub 4} electrolyte has good stability in PVA/H{sub 3}PO{sub 4}. - Abstract: In order to investigate the influence of electrolytes in electro-deposition solution on the capacitive properties of polypyrrole (PPy), we have chosen phosphoric acid, phosphate, hydrogen phosphate and dihydrogen phosphate as electrolyte in deposition solution respectively and electrochemically deposited PPy on carbon fibers (CFs) via galvanostatic method. The morphologies of the PPy/CFs samples have been characterized by scanning electron microscope. The specific capacitance of PPy/CFs samples has been evaluated in different electrolytes through three-electrode test system. The assembled flexible capacitors by using PPy/CFs as electrodes and H{sub 3}PO{sub 4}/polyvinyl alcohol as gel electrolyte have been systematically measured by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy. The results show that the electrochemical capacitors based on PPy/CFs prepared from deposition solution containing NaH{sub 2}PO{sub 4}·2H{sub 2}O electrolyte exhibit higher specific capacitance, flexibility and excellent stability (retaining 96.8% of initial capacitance after 13,000 cycles), and that three cells connected in series can power a light-emitting diode.

  14. Improvement in ionic conductivity of self-supported P(MMA-AN-VAc) gel electrolyte by fumed silica for lithium ion batteries

    International Nuclear Information System (INIS)

    Liao Youhao; Rao Mumin; Li Weishan; Tan Chunlin; Yi Jin; Chen Lang

    2009-01-01

    Fumed silica was used as a dopant in the preparation of poly(methyl methacrylate-acrylonitrile-vinyl acetate) (P(MMA-AN-VAc)) to improve the ionic conductivity of the P(MMA-AN-VAc)-based gel polymer electrolyte (GPE). The performance of the P(MMA-AN-VAc) membrane and its GPE for lithium ion battery use were studied by XRD, SEM, TGA, LSV, CA, EIS, and charge/discharge test. It is found that the doping of fumed silica in the P(MMA-AN-VAc) changes the membrane from semi-crystal to amorphous state and the pore structure of the membrane. By the doping of 10 wt.% fumed silica in the membrane, the porosity of the membrane increases with the pore dispersed more uniformly and interconnected and having higher electrolyte uptake, resulting in the improvement in ionic conductivity of the GPE from 3.48 x 10 -3 to 5.13 x 10 -3 S cm -1 at ambient temperature. On the other hand, the thermal stability of the membrane, the electrochemical stability of the GPE, and the cyclic performance of the battery are also improved.

  15. Effects of TiO2 and TiC Nanofillers on the Performance of Dye Sensitized Solar Cells Based on the Polymer Gel Electrolyte of a Cobalt Redox System.

    Science.gov (United States)

    Venkatesan, Shanmuganathan; Liu, I-Ping; Chen, Li-Tung; Hou, Yi-Chen; Li, Chiao-Wei; Lee, Yuh-Lang

    2016-09-21

    Polymer gel electrolytes (PGEs) of cobalt redox system are prepared for dye sensitized solar cell (DSSC) applications. Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) is used as a gelator of an acetonitrile (ACN) liquid electrolyte containing tris(2,2'-bipyridine)cobalt(II/III) redox couple. Titanium dioxide (TiO2) and titanium carbide (TiC) nanoparticles are utilized as nanofillers (NFs) of this PGE, and the effects of the two NFs on the conductivity of the PGEs, charge-transfer resistances at the electrode/PGE interface, and the performance of the gel-state DSSCs are studied and compared. The results show that the presence of TiC NFs significantly increases the conductivity of the PGE and decreases the charge-transfer resistance at the Pt counter-electrode (CE)/PGE interface. Therefore, the gel-state DSSC utilizing TiC NFs can achieve a conversion efficiency (6.29%) comparable to its liquid counterpart (6.30%), and, furthermore, the cell efficiency can retain 94% of its initial value after a 1000 h stability test at 50 °C. On the contrary, introduction of TiO2 NFs in the PGE causes a decrease of cell performances. It shows that the presence of TiO2 NFs increases the charge-transfer resistance at the Pt CE/PGE interface, induces the charge recombination at the photoanode/PGE interface, and, furthermore, causes a dye desorption in a long-term-stability test. These results are different from those reported for the iodide redox system and are ascribed to a specific attractive interaction between TiO2 and cobalt redox ions.

  16. Investigation on polyethylene-supported and nano-SiO2 doped poly(methyl methacrylate-co-butyl acrylate) based gel polymer electrolyte for high voltage lithium ion battery

    International Nuclear Information System (INIS)

    Xie, Huili; Liao, Youhao; Sun, Ping; Chen, Tingting; Rao, Mumin; Li, Weishan

    2014-01-01

    Highlights: • P(MMA-co-BA)/nano-SiO 2 /PE based GPE was developed for high voltage lithium ion battery. • P(MMA-co-BA)/nano-SiO 2 /PE has uniform and interconnected pore structure. • The GPE exhibits improved ionic conductivity and compatibility with electrodes. • 5 V battery using the GPE presents excellent cyclic stability. - Abstract: Nano-SiO 2 as dopant was used for preparing polyethylene-supported poly(methyl methacrylate-co-butyl acrylate) (P(MMA-co-BA)/PE) based membrane and corresponding gel polymer electrolyte (GPE), which is applied to improve the cyclic stability of high voltage lithium ion battery. P(MMA-co-BA)/nano-SiO 2 /PE based membranes and corresponding GPEs were characterized with scanning electron spectroscopy, X-ray diffraction, electrochemical impedance spectroscopy, mechanical test, thermogravimetric analysis, linear sweep voltammetry, and charge/discharge test. It is found that the GPE with 5 wt.% nano-SiO 2 shows the best performance. Compared to the undoped membrane, the 5 wt.% nano-SiO 2 doped membrane has a better pore structure and higher electrolyte uptake, leading to the enhancement in ionic conductivity of the resulting GPE from 1.23 × 10 −3 to 2.26 × 10 −3 S.cm −1 at room temperature. Furthermore, the thermal stability of the doped membrane is increased from 300 to 320 °C while its decomposition potential of GPE is from 5.0 to 5.6 V (vs. Li/Li + ). The cyclic stability of Li/GPE/Li(Li 0.13 Ni 0.30 Mn 0.57 )O 2 cell at the high voltage range of 3.5 V ∼ 5.0 V is consequently improved, the capacity retention of the cell using the doped membrane is 92.8% after 50 cycles while only 88.9% for the cell using undoped membrane and 66.9% for the cell using liquid electrolyte

  17. Water-gel for gating graphene transistors.

    Science.gov (United States)

    Kim, Beom Joon; Um, Soong Ho; Song, Woo Chul; Kim, Yong Ho; Kang, Moon Sung; Cho, Jeong Ho

    2014-05-14

    Water, the primary electrolyte in biology, attracts significant interest as an electrolyte-type dielectric material for transistors compatible with biological systems. Unfortunately, the fluidic nature and low ionic conductivity of water prevents its practical usage in such applications. Here, we describe the development of a solid state, megahertz-operating, water-based gate dielectric system for operating graphene transistors. The new electrolyte systems were prepared by dissolving metal-substituted DNA polyelectrolytes into water. The addition of these biocompatible polyelectrolytes induced hydrogelation to provide solid-state integrity to the system. They also enhanced the ionic conductivities of the electrolytes, which in turn led to the quick formation of an electric double layer at the graphene/electrolyte interface that is beneficial for modulating currents in graphene transistors at high frequencies. At the optimized conditions, the Na-DNA water-gel-gated flexible transistors and inverters were operated at frequencies above 1 MHz and 100 kHz, respectively.

  18. Mixed solid device based on conducting polymer composite and polymer electrolyte

    Directory of Open Access Journals (Sweden)

    Neves Silmara

    2004-01-01

    Full Text Available Tetraethyl orthosilicate (TEOS derived sol-gel porous films have been utilized as template for the electrochemical polymerization of aniline. Polyaniline-silica composites were obtained and the redox behavior and charge/discharge capacities of a lithium polymeric battery using poly (dimethylsiloxane- co-ethylene oxide as gel polymeric electrolyte, were investigated. The composite presented a high initial capacity (140 mA h g-1 and a reversible capacity of 75 mA h g-1 after 100 charge/discharge cycles. The decrease in the specific capacity was attributed to an increase in charge transfer resistance and a decrease in the diffusion coefficient measured by electrochemical impedance spectroscopy.

  19. Influence of the Ionic Liquid Type on the Gel Polymer Electrolytes Properties

    Directory of Open Access Journals (Sweden)

    Juan P. Tafur

    2015-11-01

    Full Text Available Gel Polymer Electrolytes (GPEs composed by ZnTf2 salt, poly(vinylidene fluoride-co-hexafluoropropylene (PVdF-HFP, and different ionic liquids are synthesized using n-methyl-2-pyrrolidone (NMP as solvent. Three different imidazolium-based ionic liquids containing diverse cations and anions have been explored. Structural and electrical properties of the GPEs varying the ZnTf2 concentration are analyzed by ATR-FTIR, DSC, TG, and cyclic voltammetry. Free salt IL-GPEs present distinct behavior because they are influenced by the different IL cations and anions composition. However, inclusion of ZnTf2 salt inside the polymers provide GPEs with very similar characteristics, pointing out that ionic transport properties are principally caused by Zn2+ and triflate movement. Whatever the IL used, the presence of NMP solvent inside the polymer’s matrix turns out to be a key factor for improving the Zn2+ transport inside the GPE due to the interaction between Zn2+ cations and carbonyl groups of the NMP. High values of ionic conductivity, low activation energy values, and good voltammetric reversibility obtained regardless of the ionic liquid used enable these GPEs to be applied in Zn batteries. Capacities of 110–120 mAh·g−1 have been obtained for Zn/IL-GPE/MnO2 batteries discharged at −1 mA·cm−2.

  20. Lithium carbon batteries with solid polymer electrolyte; Accumulateur lithium carbone a electrolyte solide polymere

    Energy Technology Data Exchange (ETDEWEB)

    Andrieu, X.; Boudin, F. [Alcatel Alsthom Recherche, 91 - Marcoussis (France)

    1996-12-31

    The lithium carbon batteries studied in this paper use plasticized polymer electrolytes made with passive polymer matrix swollen by a liquid electrolyte with a high ionic conductivity (> 10{sup -3} S/cm at 25 deg. C). The polymers used to prepare the gels are polyacrylonitrile (PAN) and vinylidene poly-fluoride (PVdF). The electrochemical and physical properties of these materials are analyzed according to their composition. The behaviour of solid electrolytes with different materials of lithium ion insertion (graphite and LiNiO{sub 2}) are studied and compared to liquid electrolytes. The parameters taken into account are the reversible and irreversible capacities, the cycling performance and the admissible current densities. Finally, complete lithium ion batteries with gelled electrolytes were manufactured and tested. (J.S.) 2 refs.

  1. Lithium carbon batteries with solid polymer electrolyte; Accumulateur lithium carbone a electrolyte solide polymere

    Energy Technology Data Exchange (ETDEWEB)

    Andrieu, X; Boudin, F [Alcatel Alsthom Recherche, 91 - Marcoussis (France)

    1997-12-31

    The lithium carbon batteries studied in this paper use plasticized polymer electrolytes made with passive polymer matrix swollen by a liquid electrolyte with a high ionic conductivity (> 10{sup -3} S/cm at 25 deg. C). The polymers used to prepare the gels are polyacrylonitrile (PAN) and vinylidene poly-fluoride (PVdF). The electrochemical and physical properties of these materials are analyzed according to their composition. The behaviour of solid electrolytes with different materials of lithium ion insertion (graphite and LiNiO{sub 2}) are studied and compared to liquid electrolytes. The parameters taken into account are the reversible and irreversible capacities, the cycling performance and the admissible current densities. Finally, complete lithium ion batteries with gelled electrolytes were manufactured and tested. (J.S.) 2 refs.

  2. Cycle stability of the electrochemical capacitors patterned with vertically aligned carbon nanotubes in an LiPF6-based electrolyte.

    Science.gov (United States)

    Chiou, Yi-Deng; Tsai, Dah-Shyang; Lam, Hoa Hung; Chang, Chuan-hua; Lee, Kuei-Yi; Huang, Ying-Sheng

    2013-09-07

    The miniature ultracapacitors, with interdigitated electrodes of vertically aligned carbon nanotubes (VACNTs) and an inter-electrode gap of 20 μm, have been prepared in the LiPF6 organic electrolyte with and without PVdF-HFP gel. PVdF-HFP between two opposing electrodes enhances the device reliability, but lessens its power performance because of the extra diffusion resistance. Also noteworthy are the gel influences on the cycle stability. When the applied voltage is 2.0 or 2.5 V, both the LiPF6 and the gel capacitors exhibit excellent stability, typified by a retention ratio of ≥95% after 10,000 cycles. Their coulombic efficiencies quickly rise up, and hold steady at 100%. Nonetheless, when the applied voltage is 3.5 or 4.0 V, the cycle stability deteriorates, since the negative electrode potential descends below 0.9 V (vs. Li), leading to electrolyte decomposition and SEI formation. For the LiPF6 capacitor, its retention ratio could be around 60% after 10,000 cycles and the coulombic efficiency of 100% is difficult to reach throughout its cycle life. On the other hand, the gel capacitor cycles energy with a much higher retention ratio, >80% after 10,000 cycles, and a better coulombic efficiency, even though electrolyte decomposition still occurs. We attribute the superior stability of the gel capacitor to its extra diffusion resistance which slows down the performance deterioration.

  3. Charge Saturation and Intrinsic Doping in Electrolyte-Gated Organic Semiconductors.

    Science.gov (United States)

    Atallah, Timothy L; Gustafsson, Martin V; Schmidt, Elliot; Frisbie, C Daniel; Zhu, X-Y

    2015-12-03

    Electrolyte gating enables low voltage operation of organic thin film transistors, but little is known about the nature of the electrolyte/organic interface. Here we apply charge-modulation Fourier transform infrared spectroscopy, in conjunction with electrical measurements, on a model electrolyte gated organic semiconductor interface: single crystal rubrene/ion-gel. We provide spectroscopic signature for free-hole like carriers in the organic semiconductor and unambiguously show the presence of a high density of intrinsic doping of the free holes upon formation of the rubrene/ion-gel interface, without gate bias (Vg = 0 V). We explain this intrinsic doping as resulting from a thermodynamic driving force for the stabilization of free holes in the organic semiconductor by anions in the ion-gel. Spectroscopy also reveals the saturation of free-hole like carrier density at the rubrene/ion-gel interface at Vg < -0.5 V, which is commensurate with the negative transconductance seen in transistor measurements.

  4. FT-IR studies on interactions among components in hexanoyl chitosan-based polymer electrolytes

    Science.gov (United States)

    Winie, Tan; Arof, A. K.

    2006-03-01

    Fourier transform infrared (FT-IR) spectroscopic studies have been undertaken to investigate the interactions among components in a system of hexanoyl chitosan-lithium trifluoromethanesulfonate (LiCF 3SO 3)-diethyl carbonate (DEC)/ethylene carbonate (EC). LiCF 3SO 3 interacts with the hexanoyl chitosan to form a hexanoyl chitosan-salt complex that results in the shifting of the N(COR) 2, C dbnd O sbnd NHR and OCOR bands to lower wavenumbers. Interactions between EC and DEC with LiCF 3SO 3 has been noted and discussed. Evidence of interaction between EC and DEC has been obtained experimentally. Studies on polymer-plasticizer spectra suggested that there is no interaction between the polymer host and plasticizers. Competition between plasticizer and polymer on associating with Li + ions was observed from the spectral data for gel polymer electrolytes. The obtained spectroscopic data has been correlated with the conductivity performance of hexanoyl chitosan-based polymer electrolytes.

  5. A high performance flexible all solid state supercapacitor based on the MnO2 sphere coated macro/mesoporous Ni/C electrode and ionic conducting electrolyte

    Science.gov (United States)

    Zhi, Jian; Reiser, Oliver; Wang, Youfu; Hu, Aiguo

    2016-06-01

    A high contact resistance between the active materials and the current collector, a low ionic conductivity of the gel electrolyte, and an impenetrable electrode structure are the three major barriers which greatly limit the capacitance of MnO2 in solid state supercapacitors. As a potential solution to these problems, in this work we report a novel electrode for solid state supercapacitors, based on a ternary system composed of hierarchical MnO2 spheres as the active material, macroporous Ni foam as gel penetrable skeletons and an ordered mesoporous carbon (OMC) membrane as the charge-transport accelerating layer. By employing butyl-3-methylimidazolium chloride (BMIMCl) modified gels as the ionic conducting electrolyte, the utilization efficiency of MnO2 on the specific capacitance was enhanced up to 88% of the theoretical value, delivering a volumetric capacitance of 81 F cm-3, which is the highest value among MnO2 based solid state supercapacitors. Moreover, such a flexible device exhibits exceptional volumetric energy and power density (6.6 Wh L-1 and 549 W L-1, based on the whole device volume) combined with a small capacity loss of 8.5% after 6000 cycles under twisting. These encouraging findings unambiguously overcome the energy bottleneck of MnO2 in solid state supercapacitors, and open up a new application of macro/mesoporous materials in flexible devices.A high contact resistance between the active materials and the current collector, a low ionic conductivity of the gel electrolyte, and an impenetrable electrode structure are the three major barriers which greatly limit the capacitance of MnO2 in solid state supercapacitors. As a potential solution to these problems, in this work we report a novel electrode for solid state supercapacitors, based on a ternary system composed of hierarchical MnO2 spheres as the active material, macroporous Ni foam as gel penetrable skeletons and an ordered mesoporous carbon (OMC) membrane as the charge-transport accelerating

  6. Novel cellulose reinforcement for polymer electrolyte membranes with outstanding mechanical properties

    International Nuclear Information System (INIS)

    Nair, Jijeesh R.; Chiappone, A.; Gerbaldi, C.; Ijeri, Vijaykumar S.; Zeno, E.; Bongiovanni, R.; Bodoardo, S.; Penazzi, N.

    2011-01-01

    Highlights: ► UV-cured methacrylic-based composite gel-polymer electrolyte membranes for rechargeable lithium batteries. ► Excellent mechanical stability by reinforcement with classical cellulose handsheets. ► Fast and environmentally friendly preparation process, green and low cost cellulose reinforcement. ► Good electrochemical behaviour, stable cyclability and long-term performances in real battery configuration. - Abstract: Methacrylic-based thermo-set gel-polymer electrolytes obtained by an easy and reliable free radical photo-polymerisation process demonstrate good behaviour in terms of ionic conductivity, interfacial stability with the Li-metal electrode and cyclability in lithium cells. Though the obtained membranes are flexible, self standing and easy to handle, there is room for improving mechanical strength. In this respect, a novel approach is adopted in this work, in which a cellulose hand-sheet (paper), specifically designed for the specific application, is used as a composite reinforcing agent. To enhance its compatibility with the polymer matrix, cellulose is modified by UV-grafting of poly(ethylene glycol) methyl ether methacrylate on it. Excellent mechanical properties are obtained and good overall electrochemical performances are maintained; highlighting that such specific approach would make these hybrid organic, green, cellulose-based composite polymer electrolyte systems a strong contender in the field of thin and flexible Li-based power sources.

  7. Application of atmospheric-pressure plasma jet processed carbon nanotubes to liquid and quasi-solid-state gel electrolyte supercapacitors

    Science.gov (United States)

    Kuok, Fei-Hong; Kan, Ken-Yuan; Yu, Ing-Song; Chen, Chieh-Wen; Hsu, Cheng-Che; Cheng, I.-Chun; Chen, Jian-Zhang

    2017-12-01

    We use a dc-pulse nitrogen atmospheric-pressure plasma jet (APPJ) to calcine carbon nanotubes (CNTs) pastes that are screen-printed on carbon cloth. 30-s APPJ treatment can efficiently oxidize and vaporize the organic binders, thereby forming porous structures. As indicated by X-ray photoelectron spectroscopy (XPS) and electron probe microanalysis (EPMA), the oxygen content decreases after APPJ treatment owing to the oxidation and vaporization of ethyl cellulose, terpineol, and ethanol. Nitrogen doping was introduced to the materials by the nitrogen APPJ. APPJ-calcination improves the wettability of the CNTs printed on carbon cloth, as evidenced by water contact angle measurement. Raman spectroscopy indicates that reactive species of nitrogen APPJ react violently with CNTs in only 30-s APPJ processing time and introduce defects and/or surface functional groups on CNTs. Carbon cloths with calcined CNT layers are used as electrodes for liquid and quasi-solid-state electrolyte supercapacitors. Under a cyclic voltammetry test with a 2 mV/s potential scan rate, the specific capacitance is 73.84 F/g (areal capacitance = 5.89 mF/cm2) with a 2 M KCl electrolyte and 66.47 F/g (areal capacitance = 6.10 mF/cm2) with a H2SO4/polyvinyl alcohol (PVA) gel electrolyte.

  8. Electrochemical characterizations on MnO2 supercapacitors with potassium polyacrylate and potassium polyacrylate-co-polyacrylamide gel polymer electrolytes

    KAUST Repository

    Lee, Kuang-Tsin; Lee, Jyh-Fu; Wu, Nae-Lih

    2009-01-01

    MnO2·nH2O supercapacitors with potassium polyacrylate (PAAK) and potassium polyacrylate-co-polyacrylamide (PAAK-co-PAAM) gel polymer electrolytes (GPEs) having the weight compositions of polymer:KCl:H2O = 9%:6.7%:84.3% have been characterized for their electrochemical performance. Compared with the liquid electrolyte (LE) counterpart, the GPE cells exhibit remarkable (∼50-130%) enhancement in specific capacitance of the oxide electrode, and the extent of the enhancement increases with increasing amount of the carboxylate groups in the polymers as well as with increasing oxide/electrolyte interfacial area. In situ X-ray absorption near-edge structure (XANES) analysis indicates that the oxide electrodes of the GPE cells possess higher Mn-ion valences and are subjected to greater extent of valence variation than that of the LE cell upon charging/discharging over the same potential range. Copolymerization of PAAK with PAAM greatly improves the cycling stability of the MnO2·nH2O electrode, and the improvement is attributable to the alkaline nature of the amino groups. Both GPEs exhibit ionic conductivities greater than 1.0 × 10-1 S cm-1 and are promising for high-rate applications. © 2009 Elsevier Ltd. All rights reserved.

  9. Electrochemical characterizations on MnO2 supercapacitors with potassium polyacrylate and potassium polyacrylate-co-polyacrylamide gel polymer electrolytes

    KAUST Repository

    Lee, Kuang-Tsin

    2009-11-01

    MnO2·nH2O supercapacitors with potassium polyacrylate (PAAK) and potassium polyacrylate-co-polyacrylamide (PAAK-co-PAAM) gel polymer electrolytes (GPEs) having the weight compositions of polymer:KCl:H2O = 9%:6.7%:84.3% have been characterized for their electrochemical performance. Compared with the liquid electrolyte (LE) counterpart, the GPE cells exhibit remarkable (∼50-130%) enhancement in specific capacitance of the oxide electrode, and the extent of the enhancement increases with increasing amount of the carboxylate groups in the polymers as well as with increasing oxide/electrolyte interfacial area. In situ X-ray absorption near-edge structure (XANES) analysis indicates that the oxide electrodes of the GPE cells possess higher Mn-ion valences and are subjected to greater extent of valence variation than that of the LE cell upon charging/discharging over the same potential range. Copolymerization of PAAK with PAAM greatly improves the cycling stability of the MnO2·nH2O electrode, and the improvement is attributable to the alkaline nature of the amino groups. Both GPEs exhibit ionic conductivities greater than 1.0 × 10-1 S cm-1 and are promising for high-rate applications. © 2009 Elsevier Ltd. All rights reserved.

  10. Stretchable carbon nanotube/ion-gel supercapacitors with high durability realized through interfacial microroughness.

    Science.gov (United States)

    Lee, Jiho; Kim, Wonbin; Kim, Woong

    2014-08-27

    A critical problem with stretchable supercapacitors developed to date has been evaporation of a volatile component of their electrolyte, causing failure. In this work, we demonstrated successful use of an ionic-liquid-based nonvolatile gel (ion-gel) electrolyte in carbon nanotube (CNT)-based stretchable supercapacitors. The CNT/ion-gel supercapacitors showed high capacitance retention (96.6%) over 3000 stretch cycles at 20% strain. The high durability against stretch cycles was achieved by introducing microroughness at the interfaces between different materials. The microroughness was produced by the simple process of imprinting the surface microstructure of office paper onto a poly(dimethylsiloxane) substrate; the surface texture is reproduced in successive current collector and CNT layers. Adhesion between the different layers was strengthened by this roughness and prevented delamination over repeated stretch cycles. The addition of a CNT layer decreased the sensitivity of electrical characteristics to stretching. Moreover, the ion-gel increases the operating voltage window (3 V) and hence the energy density. We believe our demonstration will greatly contribute to the development of flexible and/or stretchable energy-storage devices with high durability.

  11. Stable, easily sintered BaCe{sub 0.5}Zr{sub 0.3}Y{sub 0.16}Zn{sub 0.04}O{sub 3-{delta}} electrolyte-based proton-conducting solid oxide fuel cells by gel-casting and suspension spray

    Energy Technology Data Exchange (ETDEWEB)

    Lin Bin; Dong Yingchao; Wang Songlin; Fang Daru; Ding Hanping; Zhang Xiaozhen; Liu Xingqin [Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei, Anhui 230026 (China); Meng Guangyao [Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei, Anhui 230026 (China)], E-mail: bin@mail.ustc.edu.cn

    2009-06-10

    Protonic ceramic membrane fuel cells (PCMFCs) based on oxide proton conductors exhibit more advantages than traditional solid oxide fuel cells (SOFCs) based on oxygen-ion conducting electrolytes, such as low activation energy and high energy efficiency. In order to develop a simple and cost-effective route to fabricate PCMFCs with SrCo{sub 0.9}Sb{sub 0.1}O{sub 3-{delta}} (SCS) cubic perovskite cathode, a dense BaCe{sub 0.5}Zr{sub 0.3}Y{sub 0.16}Zn{sub 0.04}O{sub 3-{delta}} (BCZYZn) electrolyte was fabricated in situ metal oxide on a porous anode support by gel-casting and suspension spray, which is cost-effective, easy to realize, and suitable for mass-production. The key part of this process is to directly spray well-mixed suspension of BaCO{sub 3}, CeO{sub 2}, ZrO{sub 2}, Y{sub 2}O{sub 3} and ZnO instead of pre-synthesized BCZYZn ceramic powder on the anode substrate. With SCS cubic perovskite cathode synthesized by gel-casting on the bi-layer, single cells were assembled and tested with H{sub 2} as fuel and the static air as oxidant. An open-circuit potential of 0.987 V, a maximum power density of 364 mW cm{sup -2}, and a low polarization resistance of the electrodes of 0.07 {omega} cm{sup 2} was achieved at 700 deg. C.

  12. Stabilized γ-BIMNVOX solid electrolyte: Ethylene glycol–citrate sol–gel synthesis, microwave-assisted calcination, and structural and electrical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Al-Areqi, Niyazi A.S., E-mail: niyazi.alareqi@gmail.com [Department of Chemistry, Faculty of Applied Science, Taiz University, Taiz, Republic of Yemen (Yemen); Beg, Saba [Department of Chemistry, Aligarh Muslim University, Aligarh 202002 (India); Al-Alas, Ahlam [Department of Chemistry, Faculty of Applied Science, Taiz University, Taiz, Republic of Yemen (Yemen); Hafeez, Shehla [Department of Chemistry, Aligarh Muslim University, Aligarh 202002 (India)

    2013-12-25

    Highlights: •γ-BIMNVOX was synthesized by ethylene glycol–citrate sol–gel route. •γ-BIMNVOX crystallizes by 25-min microwave-assisted calcination. •Smaller particle sizes for microwave calcined BIMNVOX samples. •Best oxide-ion performance for microwave calcined BIMNVOX samples. -- Abstract: Samples of γ-BIMNVOX (Bi{sub 2}V{sub 1−x}Mn{sub x}O{sub 5.5−x/2}; 0.13 ⩽ x ⩽ 0.20) system were synthesized by an ethylene glycol–citrate sol–gel route. The resulting xerogels were then calcined by the microwave heating using a modified domestic microwave oven operated at 2.45 GHz. Microwave-assisted calcination samples in comparison with other conventionally calcined samples were characterized in terms of phase crystallization, stabilization and particle size using simultaneous thermogravimetric–differential thermal analysis (TG–DTA), X-ray powder diffraction (XRPD) and scanning electron microscopy (SEM). The AC impedance spectroscopy was employed for electrical characterization. It was found that the microwave-assisted calcination route successfully produces better crystalline stabilized γ-BIMNVOX samples with appreciably small average particle sizes after only 25 min of microwave heating. The electrical properties of microwave calcined γ-BIMNVOX system make it an advanced low-temperature solid electrolyte suitable for use in oxide-ion based electrochemical applications.

  13. High optical and switching performance electrochromic devices based on a zinc oxide nanowire with poly(methyl methacrylate) gel electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Young Tea; Chu, Daping, E-mail: dpc31@cam.ac.uk [Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Neeves, Matthew; Placido, Frank [Thin Film Centre, University of the West of Scotland, Paisley PA1 2BE (United Kingdom); Smithwick, Quinn [Disney Research, 521 Circle Seven Drive, Glendale, Los Angeles, California 91201 (United States)

    2014-11-10

    High performance electrochromic devices have been fabricated and demonstrated utilizing a solid polymer electrolyte and zinc oxide (ZnO) nanowire (NW) array counter electrode. The poly(methyl methacrylate) based polymer electrolyte was spin coated upon hydrothermally grown ZnO NW array counter electrodes, while electron beam evaporated NiO{sub x} thin films formed the working electrodes. Excellent optical contrast and switching speeds were observed in the fabricated devices with active areas of 2 cm{sup 2}, exhibiting an optical contrast of 73.11% at the wavelength of 470 nm, combined with a fast switching time of 0.2 s and 0.4 s for bleaching and coloration, respectively.

  14. High optical and switching performance electrochromic devices based on a zinc oxide nanowire with poly(methyl methacrylate) gel electrolytes

    International Nuclear Information System (INIS)

    Chun, Young Tea; Chu, Daping; Neeves, Matthew; Placido, Frank; Smithwick, Quinn

    2014-01-01

    High performance electrochromic devices have been fabricated and demonstrated utilizing a solid polymer electrolyte and zinc oxide (ZnO) nanowire (NW) array counter electrode. The poly(methyl methacrylate) based polymer electrolyte was spin coated upon hydrothermally grown ZnO NW array counter electrodes, while electron beam evaporated NiO x thin films formed the working electrodes. Excellent optical contrast and switching speeds were observed in the fabricated devices with active areas of 2 cm 2 , exhibiting an optical contrast of 73.11% at the wavelength of 470 nm, combined with a fast switching time of 0.2 s and 0.4 s for bleaching and coloration, respectively

  15. Poly(ethyl methacrylate) and poly(2-ethoxyethyl methacrylate) based polymer gel electrolytes

    Czech Academy of Sciences Publication Activity Database

    Reiter, Jakub; Michálek, Jiří; Vondrák, Jiří; Chmelíková, Dana; Přádný, Martin; Mička, Z.

    2006-01-01

    Roč. 158, č. 1 (2006), s. 509-517 ISSN 0378-7753 R&D Projects: GA MŽP(CZ) SN/3/171/05; GA MŠk(CZ) LC523; GA ČR GA104/02/0731 Institutional research plan: CEZ:AV0Z40320502; CEZ:AV0Z40500505 Keywords : poly mer electrolyte * cross-linked poly mer * lithium batteries Subject RIV: CA - Inorganic Chemistry Impact factor: 3.521, year: 2006

  16. Ternary polymer electrolytes with 1-methylimidazole based ionic liquids and aprotic solvents

    Czech Academy of Sciences Publication Activity Database

    Reiter, Jakub; Vondrák, Jiří; Michálek, Jiří; Mička, Z.

    2006-01-01

    Roč. 52, č. 3 (2006), s. 1398-1408 ISSN 0013-4686 R&D Projects: GA MŠk LC523; GA MŽP SN/3/171/05 Institutional research plan: CEZ:AV0Z40320502; CEZ:AV0Z40500505 Keywords : polymer gel electrolyte * ionic liquids * lithium-ion batteries Subject RIV: CA - Inorganic Chemistry Impact factor: 2.955, year: 2006

  17. Enhancement of stability for lithium oxygen batteries by employing electrolytes gelled by poly(vinylidene fluoride-co-hexafluoropropylene) and tetraethylene glycol dimethyl ether

    International Nuclear Information System (INIS)

    Zhang, Jinqiang; Sun, Bing; Xie, Xiuqiang; Kretschmer, Katja; Wang, Guoxiu

    2015-01-01

    Free-standing gel polymer electrolytes with poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) matrix plasticized with tetraethylene glycol dimethyl ether (TEGDME) were prepared and investigated. The as-prepared gel polymer electrolytes exhibited large operating window and acceptable ionic conductivity. When applied in lithium oxygen batteries, the gel polymer electrolyte could support a high initial discharge capacity of 2988 mAh g −1 when a carbon black electrode without catalyst was used as cathode. Furthermore, the battery with gel polymer electrolyte can last at least 50 cycles in the fixed capacity cycling, displaying an excellent stability. Detailed study reveals that the gelling process is essential for the cycling stability enhancement. With excellent electrochemical properties, the free-standing gel polymer electrolyte presented in this investigation has great application potentials in long-life lithium oxygen batteries.

  18. Progress in electrolytes for rechargeable Li-based batteries and beyond

    Directory of Open Access Journals (Sweden)

    Qi Li

    2016-04-01

    Full Text Available Owing to almost unmatched volumetric energy density, Li-based batteries have dominated the portable electronic industry for the past 20 years. Not only will that continue, but they are also now powering plug-in hybrid electric vehicles and zero-emission vehicles. There is impressive progress in the exploration of electrode materials for lithium-based batteries because the electrodes (mainly the cathode are the limiting factors in terms of overall capacity inside a battery. However, more and more interests have been focused on the electrolytes, which determines the current (power density, the time stability, the reliability of a battery and the formation of solid electrolyte interface. This review will introduce five types of electrolytes for room temperature Li-based batteries including 1 non-aqueous electrolytes, 2 aqueous solutions, 3 ionic liquids, 4 polymer electrolytes, and 5 hybrid electrolytes. Besides, electrolytes beyond lithium-based systems such as sodium-, magnesium-, calcium-, zinc- and aluminum-based batteries will also be briefly discussed. Keywords: Electrolyte, Ionic liquid, Polymer, Hybrid, Battery

  19. Application of sol gel spin coated yttria-stabilized zirconia layers for the improvement of solid oxide fuel cell electrolytes produced by atmospheric plasma spraying

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Lars [University of British Columbia, Department of Materials Engineering, 309-6350 Stores Road, Vancouver, British Columbia, V6T 1Z4 (Canada); National Research Council, Institute for Fuel Cell Innovation, 4250 Wesbrook Mall, Vancouver, British Columbia, V6T 1W5 (Canada); Kesler, Olivera [National Research Council, Institute for Fuel Cell Innovation, 4250 Wesbrook Mall, Vancouver, British Columbia, V6T 1W5 (Canada); University of British Columbia, Department of Mechanical Engineering, 2054-6250 Applied Science Lane, Vancouver, British Columbia, V6T 1Z4 (Canada); Tang, Zhaolin; Burgess, Alan [Northwest Mettech Corp., 467 Mountain Hwy, North Vancouver, British Columbia, V7J 2L3 (Canada)

    2007-05-15

    Due to its high thermal stability and purely oxide ionic conductivity, yttria-stabilized zirconia (YSZ) is the most commonly used electrolyte material for solid oxide fuel cells (SOFCs). Standard electrolyte fabrication techniques for planar SOFCs involve wet ceramic techniques such as tape-casting or screen printing, requiring sintering steps at temperatures above 1300 C. Plasma spraying (PS) may provide a more rapid and cost efficient method to produce SOFCs without sintering. High-temperature sintering requires long processing times and can lead to oxidation of metal alloys used as mechanical supports, or to detrimental interreactions between the electrolyte and adjacent electrode layers. This study investigates the use of spin coated sol gel derived YSZ precursor solutions to fill the pores present in plasma sprayed YSZ layers, and to enhance the surface area for reaction at the electrolyte-cathode interface, without the use of high-temperature firing steps. The effects of different plasma conditions and sol concentrations and solid loadings on the gas permeability and fuel cell performance have been investigated. (author)

  20. The presence of nanostructured Al2O3 in PMMA-based gel electrolytes

    Czech Academy of Sciences Publication Activity Database

    Krejza, O.; Velická, Jana; Sedlaříková, M.; Vondrák, Jiří

    2008-01-01

    Roč. 178, č. 2 (2008), s. 774-778 ISSN 0378-7753 R&D Projects: GA AV ČR(CZ) KJB208130604; GA ČR(CZ) GA104/06/1471 Institutional research plan: CEZ:AV0Z40320502 Keywords : poly mer electrolyte * PMMA * ionic conductivity Subject RIV: CG - Electrochemistry Impact factor: 3.477, year: 2008

  1. Carboxymethyl Carrageenan Based Biopolymer Electrolytes

    International Nuclear Information System (INIS)

    Mobarak, N.N.; Jumaah, F.N.; Ghani, M.A.; Abdullah, M.P.; Ahmad, A.

    2015-01-01

    Highlights: • The paper highlights the potential of carboxymethyl carrageenan based on iota and kappa to be utilized as host polymer. • The highest conductivity were achieved up to ∼10 −3 S cm −1 by carboxymethyl carrageenan without the addition of plasticizer. • The electrochemical stability windows of the films were electrochemically stable up to 3.0 V. - Abstract: A series of biodegradable carboxymethyl carrageenan based polymer electrolytes, which are carboxymethyl kappa carrageenan (sulphate per disaccharide) and carboxymethyl iota carrageenan (two sulphates per disaccharide), have been prepared by a solution casting technique with different ratios of lithium nitrate (LiNO 3 ) salts. Interestingly, the lithium ions tended to interact with the carbonyl group in the different modes of symmetry, as observed from reflection Fourier transform infrared (ATR-FTIR) spectroscopy analysis. In the carboxymethyl kappa carrageenan electrolytes, as the concentration of LiNO 3 increased, the asymmetric stretching peak of the carbonyl bond became dominant because it can be observed clearly with the shifting of the peak from 1592 to 1602 cm −1 due to the interaction between the lithium ion and the carbonyl group, while the broad O-H stretching peak became sharp and intense. However, for the carboxymethyl iota carrageenan, the asymmetry stretching mode of the carbonyl group shifted from 1567 to 1599 cm −1 , as the salt concentration increased. The shifting of the C-O-C peak also occurred in the iota-based electrolytes. However, the changes in the peak that represented SO 4 2− symmetric stretching were only detected when the ion pair formation was observed. It was proposed that the peak shifting was due to the presence of the lithium ion pathway, forming a dative bond between the lithium and oxygen in the carbonyl group. Accordingly, as more peak shifting was observed, the number of the ion pathways also increased. This hypothesis was supported by the impedance

  2. Geometry dependent performance of bucky gel actuators: Increasing operating frequency by miniaturization

    International Nuclear Information System (INIS)

    Biso, Maurizio; Ansaldo, Alberto; Ricci, Davide

    2012-01-01

    Bucky gel actuators are one of the most promising type of electrochemical actuators based on carbon nanotubes (CNTs). They are lightweight, they are able to work in air without any liquid electrolyte and require just few volts to operate. In order to find real world applications where bucky gel actuators can outperform conventional motors, there are still some issues to be addressed. One key aspect in CNT-based electrochemical actuators is that their actuation speed is limited by the ability of charging and discharging the device without exceeding the electrochemical stability window of the electrolyte. This speed is macroscopically related with the product of the resistance and the capacitance of the equivalent circuit (circuit time constant), and with the ion diffusion speed inside the active electrodes. To enhance the actuator performance it is necessary to increase the ion drift current in the electrolyte avoiding to significantly raise the voltage at the electrodes and shorten the ion path necessary to charge the bucky gel electrodes. By proper material processing, we have successfully addressed this issue. A reduced thickness of the actuators to one third of the original size results in a one order of magnitude increase both of the strain at higher frequencies and of the maximum operating frequency. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Geometry dependent performance of bucky gel actuators: Increasing operating frequency by miniaturization

    Energy Technology Data Exchange (ETDEWEB)

    Biso, Maurizio; Ansaldo, Alberto; Ricci, Davide [Robotics, Brain and Cognitive Sciences Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa (Italy)

    2012-12-15

    Bucky gel actuators are one of the most promising type of electrochemical actuators based on carbon nanotubes (CNTs). They are lightweight, they are able to work in air without any liquid electrolyte and require just few volts to operate. In order to find real world applications where bucky gel actuators can outperform conventional motors, there are still some issues to be addressed. One key aspect in CNT-based electrochemical actuators is that their actuation speed is limited by the ability of charging and discharging the device without exceeding the electrochemical stability window of the electrolyte. This speed is macroscopically related with the product of the resistance and the capacitance of the equivalent circuit (circuit time constant), and with the ion diffusion speed inside the active electrodes. To enhance the actuator performance it is necessary to increase the ion drift current in the electrolyte avoiding to significantly raise the voltage at the electrodes and shorten the ion path necessary to charge the bucky gel electrodes. By proper material processing, we have successfully addressed this issue. A reduced thickness of the actuators to one third of the original size results in a one order of magnitude increase both of the strain at higher frequencies and of the maximum operating frequency. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Enhanced performance of a quasi-solid-state dye-sensitized solar cell with aluminum nitride in its gel polymer electrolyte

    KAUST Repository

    Huang, Kuan-Chieh

    2011-08-01

    The effects of incorporation of aluminum nitride (AlN) in the gel polymer electrolyte (GPE) of a quasi-solid-state dye-sensitized solar cell (DSSC) were studied in terms of performance of the cell. The electrolyte, consisting of lithium iodide (LiI), iodine (I2), and 4-tert-butylpyridine (TBP) in 3-methoxypropionitrile (MPN), was solidified with poly(vinyidene fluoride-co-hexafluoro propylene) (PVDF-HFP). The 0.05, 0.1, 0.3, and 0.5 wt% of AlN were added to the electrolyte for this study. XRD analysis showed a reduction of crystallinity in the polymer PVDF-HFP for all the additions of AlN. The DSSC fabricated with a GPE containing 0.1 wt% AlN showed a short-circuit current density (JSC) and power-conversion efficiency (η) of 12.92±0.54 mA/cm2 and 5.27±0.23%, respectively, at 100 mW/cm2 illumination, in contrast to the corresponding values of 11.52±0.21 mA/cm2 and 4.75±0.08% for a cell without AlN. The increases both in JSC and in η of the promoted DSSC are attributed to the higher apparent diffusion coefficient of I- in its electrolyte (3.52×10-6 cm2/s), compared to that in the electrolyte without AlN of a DSSC (2.97×10-6 cm 2/s). At-rest stability of the quasi-solid-state DSSC with 0.1 wt% of AlN was found to decrease hardly by 5% and 7% at room temperature and at 40 °C, respectively, after 1000 h duration. The DSSC with a liquid electrolyte showed a decrease of about 40% at room temperature, while it virtually lost its performance in about 150 h at 40 °C. Explanations are further substantiated by means of electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), and by porosity measurements. © 2010 Elsevier B.V.

  5. Intrinsically stretchable supercapacitors composed of polypyrrole electrodes and highly stretchable gel electrolyte.

    Science.gov (United States)

    Zhao, Chen; Wang, Caiyun; Yue, Zhilian; Shu, Kewei; Wallace, Gordon G

    2013-09-25

    There has been an emerging interest in stretchable power sources compatible with flexible/wearable electronics. Such power sources must be able to withstand large mechanical strains and still maintain function. Here we report a highly stretchable H3PO4-poly(vinyl alcohol) (PVA) polymer electrolyte obtained by optimizing the polymer molecular weight and its weight ratio to H3PO4 in terms of conductivity and mechanical properties. The electrolyte demonstrates a high conductivity of 3.4 × 10(-3) S cm(-1), and a high fracture strain at 410% elongation. It is mechanically robust with a tensile strength of 2 MPa and a Young's modulus of 1 MPa, and displays a small plastic deformation (5%) after 1000 stretching cycles at 100% strain. A stretchable supercapacitor device has been developed based on buckled polypyrrole electrodes and the polymer electrolyte. The device shows only a small capacitance loss of 5.6% at 30% strain, and can retain 81% of the initial capacitance after 1000 cycles of such stretching.

  6. Antimicrobial efficacy of alcohol-based hand gels.

    Science.gov (United States)

    Guilhermetti, M; Marques Wiirzler, L A; Castanheira Facio, B; da Silva Furlan, M; Campo Meschial, W; Bronharo Tognim, M C; Botelho Garcia, L; Luiz Cardoso, C

    2010-03-01

    In recent years, several commercial alcohol-based hand gels have appeared on the market to improve the hand-cleansing compliance of healthcare workers. Although the antimicrobial efficacy of these products has been reported in different countries, few studies have investigated this subject in Brazil. In this study, we assessed the antimicrobial efficacy of 12 alcohol-based hand gels produced in Brazil, containing 70% w/w or v/v ethyl alcohol as the active ingredient, according to the European Standard EN 1500 (EN 1500). The following alcohol gels were tested: Hand Gel, Voga Gel, Solumax Solugel, Doctor Clean, Rio Gel, Clear Gel, Sevengel, Hand CHC, Gel Bac, WBL-50 Gel, Sanigel and Soft Care Gel. In addition, 70% w/w ethyl alcohol and three alcohol-based hand rubs (Sterillium, Sterillium Gel, and Spitaderm), commonly used in Europe and effective according to EN 1500, were also tested. All the products tested, except for two, were approved by the EN 1500 test protocol with a 60s application. The results confirmed the antimicrobial efficacy of the majority of the alcohol gels produced in Brazil for hand hygiene of healthcare workers. Copyright 2009 The Hospital Infection Society. Published by Elsevier Ltd. All rights reserved.

  7. Silver nitrate based gel dosimeter

    International Nuclear Information System (INIS)

    Titus, D; Samuel, E J J; Srinivasan, K; Roopan, S M; Madhu, C S

    2017-01-01

    A new radiochromic gel dosimeter based on silver nitrate and a normoxic gel dosimeter was investigated using UV-Visible spectrophotometry in the clinical dose range. Gamma radiation induced the synthesis of silver nanoparticles in the gel and is confirmed from the UV-Visible spectrum which shows an absorbance peak at around 450 nm. The dose response function of the dosimeter is found to be linear upto12Gy. In addition, the gel samples were found to be stable which were kept under refrigeration. (paper)

  8. Handheld Microneedle-Based Electrolyte Sensing Platform.

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Philip R. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Rivas, Rhiana [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Johnson, David [Aquila Technologies Group, Inc., Albuquerque, NM (United States); Edwards, Thayne L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Koskelo, Markku [Aquila Technologies Group, Inc., Albuquerque, NM (United States); Shawa, Luay [Aquila Technologies Group, Inc., Albuquerque, NM (United States); Brener, Igal [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Chavez, Victor H. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Polsky, Ronen [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    Sandia National Laboratories will provide technical assistance, within time and budget, to Requester on testing and analyzing a microneedle-based electrolyte sensing platform. Hollow microneedles will be fabricated at Sandia and integrated with a fluidic chip using plastic laminate prototyping technology available at Sandia. In connection with commercial ion selective electrodes the sensing platform will be tested for detection of electrolytes (sodium and/or potassium) within physiological relevant concent ration ranges.

  9. Study of Ion Transport Behaviour in (PVA-NH4I):SIO2 Nano Composite Polymer Electrolyte

    Science.gov (United States)

    Tripathi, Mridula; Trivedi, Shivangi; Upadhyay, Ruby; Singh, Markandey; Pandey, N. D.; Pandey, Kamlesh

    2013-07-01

    Development and characterization of Poly vinyl alcohol (PVA) based nano composite polymer electrolytes comprising of (PVA-NH4I):SiO2 is reported. Sol-gel derived silica powder of nano dimension has been used as ceramic filler for development of nano composite electrolyte. Formation of nano composites, change in the structural and microscopic properties of the system have been investigated by X-ray differaction, SEM and conductivity.

  10. Poly(vinyl Alcohol) Borate Gel Polymer Electrolytes Prepared by Electrodeposition and Their Application in Electrochemical Supercapacitors.

    Science.gov (United States)

    Jiang, Mengjin; Zhu, Jiadeng; Chen, Chen; Lu, Yao; Ge, Yeqian; Zhang, Xiangwu

    2016-02-10

    Gel polymer electrolytes (GPEs) have been studied for preparing flexible and compact electrochemical energy storage devices. However, the preparation and use of GPEs are complex, and most GPEs prepared through traditional methods do not have good wettability with the electrodes, which retard them from achieving their performance potential. In this study, these problems are addressed by conceiving and implementing a simple, but effective, method of electrodepositing poly(vinyl alcohol) potassium borate (PVAPB) GPEs directly onto the surfaces of active carbon electrodes for electrochemical supercapacitors. PVAPB GPEs serve as both the electrolyte and the separator in the assembled supercapacitors, and their scale and shape are determined solely by the geometry of the electrodes. PVAPB GPEs have good bonding to the active electrode materials, leading to excellent and stable electrochemical performance of the supercapacitors. The electrochemical performance of PVAPB GPEs and supercapacitors can be manipulated simply by adjusting the concentration of KCl salt used during the electrodeposition process. With a 0.9 M KCl concentration, the as-prepared supercapacitors deliver a specific capacitance of 65.9 F g(-1) at a current density of 0.1 A g(-1) and retain more than 95% capacitance after 2000 charge/discharge cycles at a current density of 1 A g(-1). These supercapacitors also exhibit intelligent high voltage self-protection function due to the electrolysis-induced cross-linking effect of PVAPB GPEs.

  11. Super-capacitive electro-chemical performance of polymer blend gel polymer electrolyte (GPE) in carbon-based electrical double-layer capacitors

    International Nuclear Information System (INIS)

    Syahidah, S. Nuur; Majid, S.R.

    2013-01-01

    This study reports on the fabrication and comparative performance characteristics of a symmetrical electrical double-layer capacitor (EDLC) employed gel polymer electrolyte (GPE) assembled between carbon based electrodes. Three cells, A, B and C were fabricated using different composition of active materials (activated or porous carbon), binder (PVdF-HFP) and conductivity enhancer (super-P). The configuration of cell A: 0.9 porous carbon/0.1 PVdF-HFP, cell B: 0.45 activated carbon/0.45 porous carbon/0.1 PVdF-HFP and cell C: 0.8 activated carbon/0.1 super-P/0.1 PVdF-HFP. The GPE, comprising a poly(vinyl pyrrolidone) (PVP)/poly(vinylidene fluoride co-hexafluoroproplyne) (PVdF-HFP) blend complexed with magnesium triflate, Mg(CF 3 SO 3 ) 2 , was prepared by the solution casting technique at 60 °C. The physico-chemical properties of the GPEs were characterized by electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), linear sweep voltammetry (LSV) and cyclic voltammetry (CV). The ionic conductivity at the ambient temperature of the GPE is 2.16 × 10 −4 S cm −1 at 7.5 wt.% of Mg(CF 3 SO 3 ) 2 with a ∼2.6 V electro-chemical stability window. At the 1000th cycle, the specific capacitance, C s of cell A is 89 F g −1 while cell B and C are 63 and 49 F g −1 . Cell A shows excellent long-term cyclic stability (less than a 5% decrease in specific capacitance after 1000 cycles). The best operating voltage for cell A is 1.6 V with the specific capacitance 106 F g −1 after 500 cycles

  12. Ionic conduction studies in Li3+ ion irradiated P(VDF-HFP)-(PC + DEC)-LiCF3SO3 gel polymer electrolyte

    International Nuclear Information System (INIS)

    Saikia, D.; Hussain, A.M.P.; Kumar, A.; Singh, F.; Avasthi, D.K.

    2006-01-01

    In an attempt to increase the Li ion diffusivity in gel polymer electrolytes, the effects of Li 3+ ion irradiation in P(VDF-HFP)-(PC + DEC)-LiCF 3 SO 3 electrolyte system, with five different fluences, is studied. Irradiation with swift heavy ions shows enhancement in conductivity at low fluences and decreased in conductivity at higher fluences with respect to pristine polymer electrolyte films. Maximum room temperature ionic conductivity after irradiation is found to be 2.6 x 10 -3 S/cm. This interesting result could be attributed to the fact that, higher fluence provides critical activation energy for cross-linking and crystallization to occur, which results in decrease in ionic conductivity. XRD results show decrease in the degree of crystallinity upon ion irradiation at low fluences (≤10 11 ions/cm 2 ) and increase in crystallinity at high fluences (>10 11 ions/cm 2 ). In FTIR spectra the absorption band intensities around 3025 cm -1 and 2985 cm -1 decrease upon irradiation with a fluence of 5 x 10 1 ions/cm 2 suggesting chain scission and increase upon irradiation with a fluence of 5 x 10 12 ions/cm 2 indicating cross-linking. FTIR analyses corroborate the conductivity and XRD results

  13. Relationship between structural properties and electrochemical characteristics of monolithic carbon xerogel-based electrochemical double-layer electrodes in aqueous and organic electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Zeller, Mario [Bavarian Center for Applied Energy Research e.V. (ZAE Bayern), Wuerzburg (Germany); Institute of Radiology, University Clinic, University of Wuerzburg (Germany); Lorrmann, Volker; Reichenauer, Gudrun; Wiener, Matthias [Bavarian Center for Applied Energy Research e.V. (ZAE Bayern), Wuerzburg (Germany); Pflaum, Jens [Bavarian Center for Applied Energy Research e.V. (ZAE Bayern), Wuerzburg (Germany); Department of Experimental Physics VI, Julius-Maximilians-University of Wuerzburg (Germany)

    2012-05-15

    The impact of the micropore width, external surface area, and meso-/macropore size on the charging performance of electrochemical double-layer capacitor (EDLC) electrodes is systematically investigated. Nonactivated carbon xerogels are used as model electrodes in aqueous and organic electrolytes. Monolithic porous model carbons with different structural parameters are prepared using a resorcinol-formaldehyde-based sol-gel process and subsequent pyrolysis of the organic precursors. Electrochemical properties are characterized by utilizing them as EDLC half-cells operated in aqueous and organic electrolytes, respectively. Experimental data derived for organic electrolytes reveals that the respective ions cannot enter the micropores within the skeleton of the meso- and macroporous carbons. Therefore the total capacitance is limited by the external surface formed by the interface between the meso-/macropores and the microporous carbon particles forming the xerogel skeleton. In contrast, for aqueous electrolytes the total capacitance solely depends on the total surface area, including interfaces at the micropore scale. For both types of electrolytes the charging rate of the electrodes is systematically enhanced when increasing the diameter of the carbon xerogel particles from 10 to 75 nm and the meso-/macropore size from 10 to 121 nm. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. IPEC Gels for Remediating Soils Contaminated as Result of Nuclear and Industrial Activities

    International Nuclear Information System (INIS)

    Mikheykin, S.V.; Anciferova, E.Yu.; Simonov, V.P.; Zezin, A.B.; Rogacheva, V.B.; Bolusheva, T.N.

    2006-01-01

    Under International Scientific and Technological Center (ISTC, Moscow) Project no. 1567 the Moscow research team in collaboration with Los Alamos National Laboratory developed and tested new kind of inter-polyelectrolyte complexes with micro-gel (IPECs) for soil surface stabilization, prevention of radioactive contamination distribution with wind and water streams and for site remediation using mixtures of new water-soluble polymers with seeding grasses. Evidently, the most important factor responsible for the effectiveness of a polymeric aggregator is the ratio of the size of poly-complex particles to that of dispersion particles being aggregated. The particle size of IPEC produced of a pair of linear oppositely charged poly-electrolytes is usually fractions of a micron. Such a particle can fix only small aggregates (∼10 μm and less). One of the ways of improving poly-complex aggregators is to use loose cross-linked poly-electrolytic gels as an IPEC component. When generating/dispersing these poly-electrolytic gels, particles of specified sizes can be produced. These poly-electrolytic micro-gels introduced into soil save moisture, what is important for arid sites. Wind erosion was studied as a function of soil physical-chemical properties and the air stream velocity. A laboratory wind tunnel instrumented to follow the process on a real-time basis was used for our study. Polymer-treated samples show a high wind erosion resistance in the wind velocity range up to 40 m/s. The micro-gel dispersion MGD-2 was injected in combination with MLA-1 in the experiments with water flow - water erosion resistance. With an increase in the water-polymer solution application rate from 2.0 to 4.0 l/m 2 the soil resistance to eroding water streams with velocity of 55 cm/s (2.0 l/m 2 ) and at 70.0 cm/s with 4.0 l/m 2 . Based on the classification of soils by erosion resistance, soils eroded with a water stream 1 cm high at a velocity of 50 cm/s are considered to be highly erosion

  15. Conducting polymer electrodes for gel electrophoresis.

    Directory of Open Access Journals (Sweden)

    Katarina Bengtsson

    Full Text Available In nearly all cases, electrophoresis in gels is driven via the electrolysis of water at the electrodes, where the process consumes water and produces electrochemical by-products. We have previously demonstrated that π-conjugated polymers such as poly(3,4-ethylenedioxythiophene (PEDOT can be placed between traditional metal electrodes and an electrolyte to mitigate electrolysis in liquid (capillary electroosmosis/electrophoresis systems. In this report, we extend our previous result to gel electrophoresis, and show that electrodes containing PEDOT can be used with a commercial polyacrylamide gel electrophoresis system with minimal impact to the resulting gel image or the ionic transport measured during a separation.

  16. Conducting polymer electrodes for gel electrophoresis.

    Science.gov (United States)

    Bengtsson, Katarina; Nilsson, Sara; Robinson, Nathaniel D

    2014-01-01

    In nearly all cases, electrophoresis in gels is driven via the electrolysis of water at the electrodes, where the process consumes water and produces electrochemical by-products. We have previously demonstrated that π-conjugated polymers such as poly(3,4-ethylenedioxythiophene) (PEDOT) can be placed between traditional metal electrodes and an electrolyte to mitigate electrolysis in liquid (capillary electroosmosis/electrophoresis) systems. In this report, we extend our previous result to gel electrophoresis, and show that electrodes containing PEDOT can be used with a commercial polyacrylamide gel electrophoresis system with minimal impact to the resulting gel image or the ionic transport measured during a separation.

  17. Conducting Polymer Electrodes for Gel Electrophoresis

    OpenAIRE

    Bengtsson, Katarina; Nilsson, Sara; Robinson, Nathaniel D

    2014-01-01

    In nearly all cases, electrophoresis in gels is driven via the electrolysis of water at the electrodes, where the process consumes water and produces electrochemical by-products. We have previously demonstrated that p-conjugated polymers such as poly(3,4-ethylenedioxythiophene) (PEDOT) can be placed between traditional metal electrodes and an electrolyte to mitigate electrolysis in liquid (capillary electroosmosis/electrophoresis) systems. In this report, we extend our previous result to gel ...

  18. Solid-state supercapacitors with ionic liquid gel polymer electrolyte based on poly (3, 4-ethylenedioxythiophene), carbon nanotubes, and metal oxides nanocomposites for electrical energy storage

    Science.gov (United States)

    Obeidat, Amr M.

    Clean and renewable energy systems have emerged as an important area of research having diverse and significant new applications. These systems utilize different energy storage methods such as the batteries and supercapacitors. Supercapacitors are electrochemical energy storage devices that are designed to bridge the gap between batteries and conventional capacitors. Supercapacitors which store electrical energy by electrical double layer capacitance are based on large surface area structured carbons. The materials systems in which the Faradaic reversible redox reactions store electrical energy are the transition metal oxides and electronically conducting polymers. Among the different types of conducting polymers, poly (3, 4- ethylenedioxythiophene) (PEDOT) is extensively investigated owing to its chemical and mechanical stability. Due to instability of aqueous electrolytes at high voltages and toxicity of organic electrolytes, potential of supercapacitors has not been fully exploited. A novel aspect of this work is in utilizing the ionic liquid gel polymer electrolyte to design solid-state supercapacitors for energy storage. Various electrochemical systems were investigated including graphene, PEDOT, PEDOT-carbon nanotubes, PEDOT-manganese oxide, and PEDOT-iron oxide nanocomposites. The electrochemical performance of solid-state supercapacitor devices was evaluated based on cyclic voltammetry (CV), charge-discharge (CD), prolonged cyclic tests, and electrochemical impedance spectroscopy (EIS) techniques. Raman spectroscopy technique was also utilized to analyze the bonding structure of the electrode materials. The graphene solid-state supercapacitor system displayed areal capacitance density of 141.83 mF cm-2 based on high potential window up to 4V. The PEDOT solid-state supercapacitor system was synthesized in acetonitrile and aqueous mediums achieving areal capacitance density of 219.17 mF cm-2. The hybrid structure of solid-state supercapacitors was also

  19. Minimization of Ion-Solvent Clusters in Gel Electrolytes Containing Graphene Oxide Quantum Dots for Lithium-Ion Batteries.

    Science.gov (United States)

    Chen, Yen-Ming; Hsu, Shih-Ting; Tseng, Yu-Hsien; Yeh, Te-Fu; Hou, Sheng-Shu; Jan, Jeng-Shiung; Lee, Yuh-Lang; Teng, Hsisheng

    2018-03-01

    This study uses graphene oxide quantum dots (GOQDs) to enhance the Li + -ion mobility of a gel polymer electrolyte (GPE) for lithium-ion batteries (LIBs). The GPE comprises a framework of poly(acrylonitrile-co-vinylacetate) blended with poly(methyl methacrylate) and a salt LiPF 6 solvated in carbonate solvents. The GOQDs, which function as acceptors, are small (3-11 nm) and well dispersed in the polymer framework. The GOQDs suppress the formation of ion-solvent clusters and immobilize PF6- anions, affording the GPE a high ionic conductivity and a high Li + -ion transference number (0.77). When assembled into Li|electrolyte|LiFePO 4 batteries, the GPEs containing GOQDs preserve the battery capacity at high rates (up to 20 C) and exhibit 100% capacity retention after 500 charge-discharge cycles. Smaller GOQDs are more effective in GPE performance enhancement because of the higher dispersion of QDs. The minimization of both the ion-solvent clusters and degree of Li + -ion solvation in the GPEs with GOQDs results in even plating and stripping of the Li-metal anode; therefore, Li dendrite formation is suppressed during battery operation. This study demonstrates a strategy of using small GOQDs with tunable properties to effectively modulate ion-solvent coordination in GPEs and thus improve the performance and lifespan of LIBs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Ionic-Liquid-Based Polymer Electrolytes for Battery Applications.

    Science.gov (United States)

    Osada, Irene; de Vries, Henrik; Scrosati, Bruno; Passerini, Stefano

    2016-01-11

    The advent of solid-state polymer electrolytes for application in lithium batteries took place more than four decades ago when the ability of polyethylene oxide (PEO) to dissolve suitable lithium salts was demonstrated. Since then, many modifications of this basic system have been proposed and tested, involving the addition of conventional, carbonate-based electrolytes, low molecular weight polymers, ceramic fillers, and others. This Review focuses on ternary polymer electrolytes, that is, ion-conducting systems consisting of a polymer incorporating two salts, one bearing the lithium cation and the other introducing additional anions capable of plasticizing the polymer chains. Assessing the state of the research field of solid-state, ternary polymer electrolytes, while giving background on the whole field of polymer electrolytes, this Review is expected to stimulate new thoughts and ideas on the challenges and opportunities of lithium-metal batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Gelled-electrolyte batteries for electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Tuphorn, H. (Accumulatorenfabrik Sonnenschein GmbH, Buedingen (Germany))

    1992-09-15

    Increasing problems of air pollution have pushed activities of electric vehicle projects world-wide and in spite of projects for developing new battery systems for high energy densities, today lead/acid batteries are almost the single system, ready for technical usage in this application. Valve-regulated lead/acid batteries with gelled electrolyte have the advantage that no maintenance is required and because the gel system does not cause problems with electrolyte stratification, no additional appliances for central filling or acid addition are required, which makes the system simple. Those batteries with high density active masses indicate high endurance results and field tests with 40 VW-CityStromers, equipped with 96 V/160 A h gel batteries with thermal management show good results during four years. In addition, gelled lead acid batteries possess superior high rate performance compared with conventional lead/acid batteries, which guarantees good acceleration results of the car and which makes the system recommendable for application in electric vehicles. (orig.).

  2. Gelled-electrolyte batteries for electric vehicles

    Science.gov (United States)

    Tuphorn, Hans

    Increasing problems of air pollution have pushed activities of electric vehicle projects worldwide and in spite of projects for developing new battery systems for high energy densities, today lead/acid batteries are almost the single system, ready for technical usage in this application. Valve-regulated lead/acid batteries with gelled electrolyte have the advantage that no maintenance is required and because the gel system does not cause problems with electrolyte stratification, no additional appliances for central filling or acid addition are required, which makes the system simple. Those batteries with high density active masses indicate high endurance results and field tests with 40 VW-CityStromers, equipped with 96 V/160 A h gel batteries with thermal management show good results during four years. In addition, gelled lead/acid batteries possess superior high rate performance compared with conventional lead/acid batteries, which guarantees good acceleration results of the car and which makes the system recommendable for application in electric vehicles.

  3. The role of the solvent in PMMA gel polymer\

    Czech Academy of Sciences Publication Activity Database

    Vondrák, J.; Musil, M.; Sedlaříková, M.; Kořínek, Radim; Bartušek, Karel; Fedorková, A.

    2016-01-01

    Roč. 2, č. 1 (2016), s. 6-12 E-ISSN 2300-3545 R&D Projects: GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : gel polymer electrolyte * TGA * NMR spectroscopy * conductivity * sodium polymer electrolyte Subject RIV: BH - Optics, Masers, Lasers https://www.degruyter.com/view/j/eetech.2016.2.issue-1/eetech-2016-0002/eetech-2016-0002.xml

  4. Zinc-based electrolyte compositions, and related electrochemical processes and articles

    Science.gov (United States)

    Kniajanski, Sergei; Soloveichik, Grigorii Lev

    2018-02-20

    An aqueous electrolyte composition is described, including a zinc salt based on zinc acetate or zinc glocolate. The saturation concentration of zinc in the electrolyte composition is in the range of about 2.5M to about 3.5M. The composition also contains at least one salt of a monovalent cation. The molar ratio of zinc to the monovalent cation is about 1:2. An aqueous zinc electroplating bath, containing the aqueous electrolyte composition, is also disclosed, along with a method for the electrochemical deposition of zinc onto a substrate surface, using the electroplating bath. Related flow batteries are also described, including a catholyte, as well as an anolyte based on the aqueous electrolyte composition, with a membrane between the catholyte and the anolyte.

  5. Recent progress in sulfide-based solid electrolytes for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, D., E-mail: liu.dongqiang@ireq.ca; Zhu, W.; Feng, Z.; Guerfi, A.; Vijh, A.; Zaghib, K.

    2016-11-15

    Graphical abstract: Li{sub 2}S-GeS{sub 2}-P{sub 2}S{sub 5} ternary diagram showing various sulphide compounds as solid electrolytes for Li-ion batteries. - Highlights: • Recent progress of sulfide-based solid electrolytes is described from point of view of structure. • Thio-LISICON type electrolytes exhibited high ionic conductivity due to their bcc sublattice and unique Li{sup +} diffusion pathway. • “Mixed-anion effect” is also an effective way to modify the energy landscape as well as the ionic conductivity. - Abstract: Sulfide-based ionic conductors are one of most attractive solid electrolyte candidates for all-solid-state batteries. In this review, recent progress of sulfide-based solid electrolytes is described from point of view of structure. In particular, lithium thio-phosphates such as Li{sub 7}P{sub 3}S{sub 11}, Li{sub 10}GeP{sub 2}S{sub 12} and Li{sub 11}Si{sub 2}PS{sub 12} etc. exhibit extremely high ionic conductivity of over 10{sup −2} S cm{sup −1} at room temperature, even higher than those of commercial organic carbonate electrolytes. The relationship between structure and unprecedented high ionic conductivity is delineated; some potential drawbacks of these electrolytes are also outlined.

  6. Effect of aqueous electrolytes on the electrochemical behaviors of supercapacitors based on hierarchically porous carbons

    Science.gov (United States)

    Zhang, Xiaoyan; Wang, Xianyou; Jiang, Lanlan; Wu, Hao; Wu, Chun; Su, Jingcang

    2012-10-01

    Hierarchically porous carbons (HPCs) have been prepared by sol-gel self-assembly technology with nickel oxide and surfactant as the dual template. The porous carbons are further activated by nitric acid. The electrochemical behaviors of supercapacitors using HPCs as electrode material in different aqueous electrolytes, e.g., (NH4)2SO4, Na2SO4, H2SO4 and KOH are studied by cyclic voltametry, galvanostatic charge/discharge, cyclic life, leakage current, self-discharge and electrochemical impedance spectroscopy. The results demonstrate that the supercapacitors in various electrolytes perform definitely capacitive behaviors; especially in 6 M KOH electrolyte the supercapacitor represents the best electrochemical performance, the shortest relaxation time, and nearly ideal polarisability. The energy density of 8.42 Wh kg-1 and power density of 17.22 kW kg-1 are obtained at the operated voltage window of 1.0 V. Especially, the energy density of 11.54 Wh kg-1 and power density of 10.58 kW kg-1 can be achieved when the voltage is up to 1.2 V.

  7. Virus-Assembled Flexible Electrode-Electrolyte Interfaces for Enhanced Polymer-Based Battery Applications

    Directory of Open Access Journals (Sweden)

    Ayan Ghosh

    2012-01-01

    Full Text Available High-aspect-ratio cobalt-oxide-coated Tobacco mosaic virus (TMV- assembled polytetrafluoroethylene (PTFE nonstick surfaces were integrated with a solvent-free polymer electrolyte to create an anode-electrolyte interface for use in lithium-ion batteries. The virus-assembled PTFE surfaces consisted primarily of cobalt oxide and were readily intercalated with a low-molecular-weight poly (ethylene oxide (PEO based diblock copolymer electrolyte to produce a solid anode-electrolyte system. The resulting polymer-coated virus-based system was then peeled from the PTFE backing to produce a flexible electrode-electrolyte component. Electrochemical studies indicated the virus-structured metal-oxide PEO-based interface was stable and displayed robust charge transfer kinetics. Combined, these studies demonstrate the development of a novel solid-state electrode architecture with a unique peelable and flexible processing attribute.

  8. Morphological changes in bone tissue around titanium implants subjected to micro-arc oxidation in alkaline electrolytes with and without the use of «CollapAn-gel»

    Directory of Open Access Journals (Sweden)

    Kalmin O.V.

    2013-12-01

    Full Text Available The purpose of the article is to conduct comparative study of the features of reparative processes in the bone during installation of titanium implants with sandblasted exposed microarc subsequent oxidation in alkaline electrolyte using osteoinductive formulation without the use of this preparation. Material and Methods. Histologically examined tissue samples from 24 adult rabbits in the region of titanium implant with osteoinductive formulation and without after 7, 14, 28, 56 and 112 days postoperatively. Results. It has been revealed that the installation of titanium implants subjected to micro-arc oxidation in alkaline electrolytes without the use of osteoinductive preparation leads to a moderate inflammatory response and the processes of bone formation take more time. When using identical implants with osteoinductive preparation «CollapAn-gel» led to a less expressed inflammatory response and a more active process of bone formation. Conclusion. The use of titanium implants subjected to sandblasting followed microarc oxidation in alkaline electrolytes is optimally combined with osteoinductive agents as it provides the best clinical results and highlights shorter time of bone regeneration.

  9. Lithium current sources with an electrolyte based on aprotonic solvents

    Energy Technology Data Exchange (ETDEWEB)

    Shembel, Ye.M.; Ksenzhek, O.S.; Litvinova, V.I.; Martynenko, T.L.; Raykhelson, L.B.; Sokolov, L.A.; Strizhko, A.S.

    1984-01-01

    Lithium current sources with an electrolyte based on aprotonic solvents are examined. The effect of the composition of the electrolyte solution on the solubility of SO2 and the excess pressure of the gas above the electrolyte solution is established. The temperature characteristics of the electrolyte are studied from the standpoint of salt solubility, the association between the discharge conditions, the macrostructure of the porous inert cathode and the degree of usage of the active cathode substance of the SO2 as the necessary aspects for solving the problems of optimizing a lithium and SO2 system.

  10. Prognostics Health Management and Physics based failure Models for Electrolytic Capacitors

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper proposes first principles based modeling and prognostics approach for electrolytic capacitors. Electrolytic capacitors and MOSFETs are the two major...

  11. Development and Electrochemical Investigations of an EIS- (Electrolyte-Insulator-Semiconductor based Biosensor for Cyanide Detection

    Directory of Open Access Journals (Sweden)

    Michael J. Schöning

    2007-08-01

    Full Text Available A cyanide biosensor based on a pH-sensitive p-doped electrolyte-insulator-semiconductor (EIS structure with an immobilised enzyme (cyanidase is realised at thelaboratory scale. The immobilisation of the cyanidase is performed in two distinct steps:first, the covalent coupling of cyanidase to an N-hydroxysuccinimide- (NHS activatedSepharoseTM gel and then, the physical entrapment of NHS-activated SepharoseTM with theimmobilised cyanidase in a dialysis membrane onto the EIS structure. The immobilisationof the cyanidase to the NHS-activated SepharoseTM is studied by means of gelelectrophoresis measurements and investigations using an ammonia- (NH3 selectiveelectrode. For the electrochemical characterisation of the cyanide biosensor,capacitance/voltage and constant capacitance measurements, respectively, have beencarried out. A differential measurement procedure is presented to evaluate the cyanideconcentration-dependent biosensor signals.

  12. Effect of alkyl chain length of imidazolium cations on the electron transport and recombination kinetics in ionic gel electrolytes based quasi-solid-state dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Huo, Zhipeng; Tao, Li; Wang, Lu; Zhu, Jun; Chen, Shuanghong; Zhang, Changneng; Dai, Songyuan; Zhang, Bing

    2015-01-01

    Highlights: •A series of novel IGEs based on 12-hydroxystearicacid as LMOG were prepared. •The QS-DSSCs exhibit excellent stability during the accelerated aging tests. •The influence of Im + alkyl chain length on the electron kinetic process is investigated. -- Abstract: A series of stable quasi-solid-state dye-sensitized solar cells (QS-DSSCs) are prepared by the 12-hydroxystearicacid as low molecular mass organogelator (LMOG) to gelate the ionic liquid with different alkyl chain lengths (3, 4, and 7). The influence of alkyl chain length of imidazolium cations (Im + ) on the kinetic processes of electron transport and recombination are investigated by Electrochemical impedance spectroscopy (EIS) and intensity-modulated photocurrent spectroscopy/intensity-modulated photovoltage spectroscopy (IMPS/IMVS). It is found that the ionic gel electrolytes (IGEs) with different alkyl chain lengths of Im + can influence the competitive adsorption effects of imidazolium cations (Im + ) and Li + , and further affect the charge diffusion, the electron recombination/transport processes, the shift of TiO 2 conduction band edge and surface states distribution. The IGE with longer alkyl chain length of Im + can prolong the electron recombination lifetime, promote the incidental photon-to-electron conversion efficiency (IPCE) and the short circuit photocurrent density (J sc ). An excellent QS-DSSC based on the IGE with the longer alkyl chain of Im + gives the highest photoelectric conversion efficiency. Moreover, all the QS-DSSCs based on IGEs exhibit excellent durability without losing their photovoltaic performances during the accelerated thermal and light–soaking test. These results are very important to the researches on the electrochemical mechanism and application of QS-DSSCs based on IGEs

  13. Novel Non-Carbonate Based Electrolytes for Silicon Anodes

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ye [Wildcat Discovery Technologies, San Diego, CA (United States); Yang, Johnny [Wildcat Discovery Technologies, San Diego, CA (United States); Cheng, Gang [Wildcat Discovery Technologies, San Diego, CA (United States); Carroll, Kyler [Wildcat Discovery Technologies, San Diego, CA (United States); Clemons, Owen [Wildcat Discovery Technologies, San Diego, CA (United States); Strand, Diedre [Wildcat Discovery Technologies, San Diego, CA (United States)

    2016-09-09

    Substantial improvement in the energy density of rechargeable lithium batteries is required to meet the future needs for electric and plug-in electric vehicles (EV and PHEV). Present day lithium ion battery technology is based on shuttling lithium between graphitic carbon and inorganic oxides. Non-graphitic anodes, such as silicon can provide significant improvements in energy density but are currently limited in cycle life due to reactivity with the electrolyte. Wildcat/3M proposes the development of non-carbonate electrolyte formulations tailored for silicon alloy anodes. Combining these electrolytes with 3M’s anode and an NMC cathode will enable up to a 20% increase in the volumetric cell energy density, while still meeting the PHEV/EV cell level cycle/calendar life goals.

  14. Effect of growth parameters on spatial pattern formation of cadmium hydroxide in agar gel

    International Nuclear Information System (INIS)

    Palaniandavar, N.; Gnanam, F.D.; Ramasamy, P.

    1986-01-01

    The interrelated effects of growth parameters on spatial pattern formation of cadmium hydroxide in agar gel medium have been investigated. The main parameters are concentration of electrolytes, pH of the medium, density of the gel, the concentration of parasitic electrolyte and the concentration of additives. The pattern formation is explained on the basis of electrical double layer theory coupled with diffusion. Using Shinohara's revised coagulation concept, the flocculation value is calculated. With suitable combinations of parameter values, dendritic growth and spherulitic growth of cadmium hydroxide crystals have been observed. (author)

  15. Fabrication and characterization of a sandpaper-based flexible energy storage

    International Nuclear Information System (INIS)

    Shieh, Jen-Yu; Wu, Cheng-Hung; Tsai, Sung-Ying; Yu, Hsin Her

    2016-01-01

    Graphical abstract: A sandpaper-based supercapacitor was assembled from two graphene/CNTs-coated fine-sandpaper electrodes and a PVA porous separator enclosed with H_3PO_4/PVA gel electrolyte, then packaged between two PET sheets by hot pressing. The galvanostatic charge/discharge curves obtained at a current of 0.10 mA over about 3000 cycles. The capacitance retention rates remained over 91% after this period, indicating the electrochemical stability of the supercapacitor. Thus, the supercapacitor based on the fine sandpaper electrode has a long lifetime and good cycling stability. - Highlights: • Carbon nanotubes prevent stacking of graphene sheets and act as spacers and binders. • The sandpaper surface provides more electrode/electrolyte contact area. • The gel electrolyte can prevent contact discontinuity in a supercapacitor. • Sandpaper-based supercapacitors exhibit excellent flexibility and cycling stability. - Abstract: In this paper, graphene and carbon nanotubes dispersed in a pectin solution are examined as a precursor for electrode fabrication for supercapacitor applications. The carbon nanotubes not only prevent the stacking of graphene sheets, but also act as spacers and binders. Dropping the hybrid conductive suspension onto sandpaper is found to form a sandpaper-based electrode that improves the specific capacitance of a subsequently fabricated supercapacitor because of its high surface area. In particular, the large contact surface of the sandpaper allows it to absorb more electrolyte ions and increases the number of ions assembled on the electrode surface. For the supercapacitor fabrication, replacing the liquid or solid electrolyte with a gel electrolyte prevents leakage and contact discontinuity. Therefore, a high-performance supercapacitor can be constructed with one separator coated with a gel electrolyte inserted between two fine-sandpaper-based electrodes, which can be assembled into a sandwich structure by hot pressing

  16. Fabrication and characterization of a sandpaper-based flexible energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Shieh, Jen-Yu; Wu, Cheng-Hung; Tsai, Sung-Ying [Institute of Electro-Optical and Materials Science, National Formosa University, 64 Wenhua Road, Huwei, Yunlin 63208, Taiwan (China); Yu, Hsin Her, E-mail: hhyu@nfu.edu.tw [Department of Biotechnology, National Formosa University, 64 Wenhua Road, Huwei, Yunlin 63208, Taiwan (China)

    2016-02-28

    Graphical abstract: A sandpaper-based supercapacitor was assembled from two graphene/CNTs-coated fine-sandpaper electrodes and a PVA porous separator enclosed with H{sub 3}PO{sub 4}/PVA gel electrolyte, then packaged between two PET sheets by hot pressing. The galvanostatic charge/discharge curves obtained at a current of 0.10 mA over about 3000 cycles. The capacitance retention rates remained over 91% after this period, indicating the electrochemical stability of the supercapacitor. Thus, the supercapacitor based on the fine sandpaper electrode has a long lifetime and good cycling stability. - Highlights: • Carbon nanotubes prevent stacking of graphene sheets and act as spacers and binders. • The sandpaper surface provides more electrode/electrolyte contact area. • The gel electrolyte can prevent contact discontinuity in a supercapacitor. • Sandpaper-based supercapacitors exhibit excellent flexibility and cycling stability. - Abstract: In this paper, graphene and carbon nanotubes dispersed in a pectin solution are examined as a precursor for electrode fabrication for supercapacitor applications. The carbon nanotubes not only prevent the stacking of graphene sheets, but also act as spacers and binders. Dropping the hybrid conductive suspension onto sandpaper is found to form a sandpaper-based electrode that improves the specific capacitance of a subsequently fabricated supercapacitor because of its high surface area. In particular, the large contact surface of the sandpaper allows it to absorb more electrolyte ions and increases the number of ions assembled on the electrode surface. For the supercapacitor fabrication, replacing the liquid or solid electrolyte with a gel electrolyte prevents leakage and contact discontinuity. Therefore, a high-performance supercapacitor can be constructed with one separator coated with a gel electrolyte inserted between two fine-sandpaper-based electrodes, which can be assembled into a sandwich structure by hot pressing

  17. Integration of gel-based and gel-free proteomic data for functional analysis of proteins through Soybean Proteome Database

    KAUST Repository

    Komatsu, Setsuko

    2017-05-10

    The Soybean Proteome Database (SPD) stores data on soybean proteins obtained with gel-based and gel-free proteomic techniques. The database was constructed to provide information on proteins for functional analyses. The majority of the data is focused on soybean (Glycine max ‘Enrei’). The growth and yield of soybean are strongly affected by environmental stresses such as flooding. The database was originally constructed using data on soybean proteins separated by two-dimensional polyacrylamide gel electrophoresis, which is a gel-based proteomic technique. Since 2015, the database has been expanded to incorporate data obtained by label-free mass spectrometry-based quantitative proteomics, which is a gel-free proteomic technique. Here, the portions of the database consisting of gel-free proteomic data are described. The gel-free proteomic database contains 39,212 proteins identified in 63 sample sets, such as temporal and organ-specific samples of soybean plants grown under flooding stress or non-stressed conditions. In addition, data on organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored. Furthermore, the database integrates multiple omics data such as genomics, transcriptomics, metabolomics, and proteomics. The SPD database is accessible at http://proteome.dc.affrc.go.jp/Soybean/. Biological significanceThe Soybean Proteome Database stores data obtained from both gel-based and gel-free proteomic techniques. The gel-free proteomic database comprises 39,212 proteins identified in 63 sample sets, such as different organs of soybean plants grown under flooding stress or non-stressed conditions in a time-dependent manner. In addition, organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored in the gel-free proteomics database. A total of 44,704 proteins, including 5490 proteins identified using a gel-based proteomic technique, are stored in the SPD. It accounts for approximately 80% of all

  18. Integration of gel-based and gel-free proteomic data for functional analysis of proteins through Soybean Proteome Database.

    Science.gov (United States)

    Komatsu, Setsuko; Wang, Xin; Yin, Xiaojian; Nanjo, Yohei; Ohyanagi, Hajime; Sakata, Katsumi

    2017-06-23

    The Soybean Proteome Database (SPD) stores data on soybean proteins obtained with gel-based and gel-free proteomic techniques. The database was constructed to provide information on proteins for functional analyses. The majority of the data is focused on soybean (Glycine max 'Enrei'). The growth and yield of soybean are strongly affected by environmental stresses such as flooding. The database was originally constructed using data on soybean proteins separated by two-dimensional polyacrylamide gel electrophoresis, which is a gel-based proteomic technique. Since 2015, the database has been expanded to incorporate data obtained by label-free mass spectrometry-based quantitative proteomics, which is a gel-free proteomic technique. Here, the portions of the database consisting of gel-free proteomic data are described. The gel-free proteomic database contains 39,212 proteins identified in 63 sample sets, such as temporal and organ-specific samples of soybean plants grown under flooding stress or non-stressed conditions. In addition, data on organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored. Furthermore, the database integrates multiple omics data such as genomics, transcriptomics, metabolomics, and proteomics. The SPD database is accessible at http://proteome.dc.affrc.go.jp/Soybean/. The Soybean Proteome Database stores data obtained from both gel-based and gel-free proteomic techniques. The gel-free proteomic database comprises 39,212 proteins identified in 63 sample sets, such as different organs of soybean plants grown under flooding stress or non-stressed conditions in a time-dependent manner. In addition, organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored in the gel-free proteomics database. A total of 44,704 proteins, including 5490 proteins identified using a gel-based proteomic technique, are stored in the SPD. It accounts for approximately 80% of all predicted proteins from

  19. Integration of gel-based and gel-free proteomic data for functional analysis of proteins through Soybean Proteome Database

    KAUST Repository

    Komatsu, Setsuko; Wang, Xin; Yin, Xiaojian; Nanjo, Yohei; Ohyanagi, Hajime; Sakata, Katsumi

    2017-01-01

    The Soybean Proteome Database (SPD) stores data on soybean proteins obtained with gel-based and gel-free proteomic techniques. The database was constructed to provide information on proteins for functional analyses. The majority of the data is focused on soybean (Glycine max ‘Enrei’). The growth and yield of soybean are strongly affected by environmental stresses such as flooding. The database was originally constructed using data on soybean proteins separated by two-dimensional polyacrylamide gel electrophoresis, which is a gel-based proteomic technique. Since 2015, the database has been expanded to incorporate data obtained by label-free mass spectrometry-based quantitative proteomics, which is a gel-free proteomic technique. Here, the portions of the database consisting of gel-free proteomic data are described. The gel-free proteomic database contains 39,212 proteins identified in 63 sample sets, such as temporal and organ-specific samples of soybean plants grown under flooding stress or non-stressed conditions. In addition, data on organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored. Furthermore, the database integrates multiple omics data such as genomics, transcriptomics, metabolomics, and proteomics. The SPD database is accessible at http://proteome.dc.affrc.go.jp/Soybean/. Biological significanceThe Soybean Proteome Database stores data obtained from both gel-based and gel-free proteomic techniques. The gel-free proteomic database comprises 39,212 proteins identified in 63 sample sets, such as different organs of soybean plants grown under flooding stress or non-stressed conditions in a time-dependent manner. In addition, organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored in the gel-free proteomics database. A total of 44,704 proteins, including 5490 proteins identified using a gel-based proteomic technique, are stored in the SPD. It accounts for approximately 80% of all

  20. Reactivity between carbon cathode materials and electrolyte based on industrial and laboratory data

    CSIR Research Space (South Africa)

    Chauke, L

    2013-07-01

    Full Text Available Interaction between electrolyte and carbon cathodes during the electrolytic production of aluminium decreases cell life. This paper describes the interaction between carbon cathode materials and electrolyte, based on industrial and laboratory data...

  1. Preparation and characterization of poly(vinyl sulfone)- and poly(vinylidene fluoride)-based electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Choe, H.S.; Giaccai, J.; Alamgir, M.; Abraham, K.M. [EIC Labs., Inc., Norwood, MA (United States)

    1995-10-01

    A novel group of polymer electrolytes based on poly(vinyl sulfone) (PVS) and poly(vinylidene fluoride) (PVdF) polymers, plasticized with highly conductive solutions of LiClO{sub 4}, LiN(CF{sub 3}SO{sub 2}){sub 2} or LiAsF{sub 6} dissolved in ethylene carbonate, propylene carbonate, sulfolane, or mixtures thereof, was prepared via in situ photopolymerization and solution casting, respectively. The polymer electrolytes were characterized from conductivity and cyclic voltammetry data. It was found that solutions of Li salts in the vinyl sulfone monomer were highly conductive at room temperature with conductivities of 0.6 to 1.3 x 10{sup -3} {Omega}{sup -1}cm{sup -1} at 30{sup o}C, but the conductivities decreased by about 10{sup 3} times on polymerizing. Conversely, the conductivities increased by about 10{sup 2} to 10{sup 4} times on incorporating plasticizing solvents into the solid polymer electrolytes, suggesting that ionic mobility is the primary factor affecting the conductivities of solid polymer electrolytes. The highest conductivity exhibited by PVS-based electrolyte was 3.74 x 10{sup -4} {Omega}{sup -1}cm{sup -1} and that by PVdF-based electrolyte was 1.74 x 10{sup -3} {Omega}{sup -1}cm{sup -1}, at 30{sup o}C. The PVS-based electrolytes were found to be stable to oxidation up to potentials ranging between 4.5 and 4.8 V, while the stable potential limits for PVdF-based electrolytes were between 3.9 and 4.3 V vs. Li{sup +}/Li. (author)

  2. Homogeneous lithium electrodeposition with pyrrolidinium-based ionic liquid electrolytes.

    Science.gov (United States)

    Grande, Lorenzo; von Zamory, Jan; Koch, Stephan L; Kalhoff, Julian; Paillard, Elie; Passerini, Stefano

    2015-03-18

    In this study, we report on the electroplating and stripping of lithium in two ionic liquid (IL) based electrolytes, namely N-butyl-N-methylpyrrolidinium bis(fluorosulfonyl) imide (Pyr14FSI) and N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI), and mixtures thereof, both on nickel and lithium electrodes. An improved method to evaluate the Li cycling efficiency confirmed that homogeneous electroplating (and stripping) of Li is possible with TFSI-based ILs. Moreover, the presence of native surface features on lithium, directly observable via scanning electron microscope imaging, was used to demonstrate the enhanced electrolyte interphase (SEI)-forming ability, that is, fast cathodic reactivity of this class of electrolytes and the suppressed dendrite growth. Finally, the induced inhomogeneous deposition enabled us to witness the SEI cracking and revealed previously unreported bundled Li fibers below the pre-existing SEI and nonrod-shaped protuberances resulting from Li extrusion.

  3. Quasi-solid state electrolyte for semi-transparent bifacial dye-sensitized solar cell with over 10% power conversion efficiency

    Science.gov (United States)

    Hwang, Dae-Kue; Nam, Jung Eun; Jo, Hyo Jeong; Sung, Shi-Joon

    2017-09-01

    In traditional dye-sensitized solar cells (DSSCs), the liquid electrolyte (LE) presents a problem for long-term stability. Herein, we demonstrate a bifacial DSSC by combining a new metal-free organic dye and a quasi-solid state electrolyte (QSSE) that contains poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-HFP)-based polymer gel. The incident light irradiates the front side of the DSSC, and the transmitted light is reused after reflection on the back side. Owing to the semi-transparent DSSC electrode, the reflected light can penetrate and be absorbed by the dye molecules in the DSSC, thereby enhancing the short-circuit current density and thus the overall power conversion efficiency (PCE). The PCE for the DSSC device with QSSE from bifacial irradiation is 10.37%, a value that is comparable to that obtained with LE-based DSSC (9.89%). The stability of the device is enhanced when the polymer gel containing PVdF-HFP is mixed with the LE, and the effectiveness of PVdF-HFP as a gelator is attributed to its interaction with the Li+ ions. Based on our preliminary results, this architecture can lead to more stable bifacial QSSE-based DSSCs without sacrificing the photovoltaic performance.

  4. Electrochemical corrosion behaviour of plasma electrolytic oxidation coatings on AM50 magnesium alloy formed in silicate and phosphate based electrolytes

    International Nuclear Information System (INIS)

    Liang, J.; Srinivasan, P. Bala; Blawert, C.; Stoermer, M.; Dietzel, W.

    2009-01-01

    PEO coatings were produced on AM50 magnesium alloy by plasma electrolytic oxidation process in silicate and phosphate based electrolytes using a pulsed DC power source. The microstructure and composition of the PEO coatings were analyzed by scanning electron microscopy (SEM) and X-ray Diffraction (XRD). The corrosion resistance of the PEO coatings was evaluated using open circuit potential (OCP) measurements, potentiodynamic polarisation tests and electrochemical impedance spectroscopy (EIS) in 0.1 M NaCl solution. It was found that the electrolyte composition has a significant effect on the coating evolution and on the resulting coating characteristics, such as microstructure, composition, coating thickness, roughness and thus on the corrosion behaviour. The corrosion resistance of the PEO coating formed in silicate electrolyte was found to be superior to that formed in phosphate electrolyte in both the short-term and long-term electrochemical corrosion tests.

  5. High temperature fuel cell with ceria-based solid electrolyte

    International Nuclear Information System (INIS)

    Arai, H.; Eguchi, K.; Yahiro, H.; Baba, Y.

    1987-01-01

    Cation-doped ceria is investigated as an electrolyte for the solid oxide fuel cell. As for application to the fuel cells, the electrolyte are desired to have high ionic conductivity in deriving a large electrical power. A series of cation-doped ceria has higher ionic conductivity than zirconia-based oxides. In the present study, the basic electrochemical properties of cation-doped ceria were studied in relation to the application of fuel cells. The performance of fuel cell with yttria-doped ceria electrolyte was evaluated. Ceria-based oxides were prepared by calcination of oxide mixtures of the components or calcination of co-precipitated hydroxide mixtures from the metal nitrate solution. The oxide mixtures thus obtained were sintered at 1650 0 C for 15 hr in air into disks. Ionic transference number, t/sub i/, was estimated from emf of oxygen concentration cell. Electrical conductivities were measured by dc-4 probe method by varying the oxygen partial pressure. The fuel cell was operated by oxygen and hydrogen

  6. Nonflammable perfluoropolyether-based electrolytes for lithium batteries

    Science.gov (United States)

    Wong, Dominica H. C.; Thelen, Jacob L.; Fu, Yanbao; Devaux, Didier; Pandya, Ashish A.; Battaglia, Vincent S.; Balsara, Nitash P.; DeSimone, Joseph M.

    2014-01-01

    The flammability of conventional alkyl carbonate electrolytes hinders the integration of large-scale lithium-ion batteries in transportation and grid storage applications. In this study, we have prepared a unique nonflammable electrolyte composed of low molecular weight perfluoropolyethers and bis(trifluoromethane)sulfonimide lithium salt. These electrolytes exhibit thermal stability beyond 200 °C and a remarkably high transference number of at least 0.91 (more than double that of conventional electrolytes). Li/LiNi1/3Co1/3Mn1/3O2 cells made with this electrolyte show good performance in galvanostatic cycling, confirming their potential as rechargeable lithium batteries with enhanced safety and longevity. PMID:24516123

  7. Stretchable supercapacitors based on highly stretchable ionic liquid incorporated polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Tamilarasan, P.; Ramaprabhu, S., E-mail: ramp@iitm.ac.in

    2014-11-14

    Mechanical stability of electrolyte in all-solid-state supercapacitor attains immense attention as it addresses safety aspects. In this study, we have demonstrated, the fabrication of stretchable supercapacitor based on stretchable electrolyte and hydrogen exfoliated graphene electrode. We synthesized ionic liquid incorporated stretchable Poly(methyl methacrylate) electrolyte which plays dual role as electrolyte and stretchable support for electrode material. The molecular vibration studies show composite nature of the electrolyte. At least four-fold stretchability has been observed along with good ionic conductivity (0.78 mS cm{sup −1} at 28 °C) for this polymer electrolyte. This stretchable supercapacitor shows a low equivalent series resistance (16 Ω) due to the compatibility at electrode–electrolyte interface. The performance of the device has been determined under strain as well. - Highlights: • A stretchable supercapacitor has been fabricated using stretchable electrolyte. • Here ionic liquid incorporated polymer plays dual role as electrolyte and stretchable support. • The developed device shows low equivalent series resistance. • The device has specific capacitance of 83 F g{sup −1}, at the specific current of 2.67 A g{sup −1}. • The energy density and power density of 25.7 Wh kg{sup −1} and 35.2 kW kg{sup −1}, respectively.

  8. Impedance Spectroscopy and FTIR Studies of PEG - Based Polymer Electrolytes

    Directory of Open Access Journals (Sweden)

    Anji Reddy Polu

    2011-01-01

    Full Text Available Ionic conductivity of poly(ethylene glycol (PEG - ammonium chloride (NH4Cl based polymer electrolytes can be enhanced by incorporating ceramic filler TiO2 into PEG-NH4Cl matrix. The electrolyte samples were prepared by solution casting technique. FTIR studies indicates that the complex formation between the polymer, salt and ceramic filler. The ionic conductivity was measured using impedance spectroscopy technique. It was observed that the conductivity of the electrolyte varies with TiO2 concentration and temperature. The highest room temperature conductivity of the electrolyte of 7.72×10−6 S cm-1 was obtained at 15% by weight of TiO2 and that without TiO2 filler was found to be 9.58×10−7 S cm−1. The conductivity has been improved by 8 times when the TiO2 filler was introduced into the PEG–NH4Cl electrolyte system. The conductance spectra shows two distinct regions: a dc plateau and a dispersive region. The temperature dependence of the conductivity of the polymer electrolytes seems to obey the VTF relation. The conductivity values of the polymer electrolytes were reported and the results were discussed. The imaginary part of dielectric constant (εi decreases with increase in frequency in the low frequency region whereas frequency independent behavior is observed in the high frequency region.

  9. Molybdenum oxide nanowires based supercapacitors with enhanced capacitance and energy density in ethylammonium nitrate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Sarfraz, Mansoor; Aboud, Mohamed F.A.; Shakir, Imran, E-mail: shakir@skku.edu

    2015-11-25

    Orthorhombic molybdenum trioxide (α-MoO{sub 3}) nanowires as an electrode for electrochemical supercapacitors in ethylammonium nitrate (EAN) electrolyte exhibits a high specific capacitance of 288 Fg{sup −1}, which is 8 times higher than the specific capacitance obtained from MoO{sub 3} nanowires in water based electrolyte. MoO{sub 3} nanowires in EAN electrolyte exhibit energy density of 46.32 Wh kg{sup −1} at a power density of 20.3 kW kg{sup −1} with outstanding cycling stability with specific capacitance retention of 96% over 3000 cycles. We believe that the superior performance of the MoO{sub 3} nanowires in EAN based electrolyte is primarily due to its relatively low viscosity (0.28 P at 25 °C), high electrical conductivity (20 mS cm{sup −1} at 25 °C) and large working voltage window. The results clearly demonstrate that EAN as electrolyte is one of the most promising electrolyte for high performance large scale energy storage devices. - Highlights: • Synthesis of single crystalline molybdenum oxide nanowires. • Ethylammonium Nitrate as an electrolyte for high performance large scale psuedocapacitor based energy storage devices. • Molybdenum oxide nanowires based electrodes shows 8 fold enhancement in Ethylammonium Nitrate electrolyte as compared to water based electrolytes. • The devices in Ethylammonium Nitrate exhibit excellent stability, retaining 96% of its initial capacity after 3000 cycles.

  10. Mg/O2 Battery Based on the Magnesium-Aluminum Chloride Complex (MACC) Electrolyte

    DEFF Research Database (Denmark)

    Vardar, Galin; Smith, Jeffrey G.; Thomson, Travis

    2016-01-01

    Mg/O2 cells employing a MgCl2/AlCl3/DME (MACC/DME) electrolyte are cycled and compared to cells with modified Grignard electrolytes, showing that performance of magnesium/oxygen batteries depends strongly on electrolyte composition. Discharge capacity is far greater for MACC/DME-based cells, whil...

  11. Ceramic membrane fuel cells based on solid proton electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Guangyao; Ma, Qianli; Peng, Ranran; Liu, Xingqin [USTC Lab. for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026 (China); Ma, Guilin [School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 215123 (China)

    2007-04-15

    The development of solid oxide fuel cells (SOFCs) has reached its new stage characterized with thin electrolytes on porous electrode support, and the most important fabrication techniques developed in which almost all are concerned with inorganic membranes, and so can be named as ceramic membrane fuel cells (CMFCs). CMFCs based on proton electrolytes (CMFC-H) may exhibit more advantages than CMFCs based on oxygen-ion electrolytes (CMFC-O) in many respects, such as energy efficiency and avoiding carbon deposit. Ammonia fuelled CMFC with proton-conducting BaCe{sub 0.8}Gd{sub 0.2}O{sub 2.9} (BCGO) electrolyte (50 {mu}m in thickness) is reported in this works, which showed the open current voltage (OCV) values close to theoretical ones and rather high power density. And also, we have found that the well known super oxide ion conductor, La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3-{alpha}} (LSGM), is a pure proton conductor in H{sub 2} and mixed proton and oxide ion conductor in wet air, while it is a pure oxide ion conductor in oxygen or dry air. To demonstrate the CMFC-H concept to get high performance fuel cells the techniques for thin membranes, chemical vapor deposition (CVD), particularly novel CVD techniques, should be given more attention because of their many advantages. (author)

  12. Electrochemical redox reactions in solvated silica sol-gel glass

    International Nuclear Information System (INIS)

    Opallo, M.

    2002-01-01

    The studies of electrochemical redox reactions in solvated silica sol-gel glass were reviewed. The methodology of the experiments with emphasis on the direct preparation of the solid electrolyte and the application ultra microelectrodes was described. Generally, the level of the electrochemical signal is not much below that observed in liquid electrolyte. The current depends on time elapsed after gelation, namely the longer time, the smaller current. The differences between electrochemical behaviour of the redox couples in monoliths and thin layers were described. (author)

  13. Biopolymer Electrolyte Based on Derivatives of Cellulose from Kenaf Bast Fiber

    Directory of Open Access Journals (Sweden)

    Mohd Saiful Asmal Rani

    2014-09-01

    Full Text Available A cellulose derivative, carboxymethyl cellulose (CMC, was synthesized by the reaction of cellulose from kenaf bast fiber with monochloroacetic acid. A series of biopolymer electrolytes comprised of the synthesized CMC and ammonium acetate (CH3COONH4 were prepared by the solution-casting technique. The biopolymer-based electrolyte films were characterized by Fourier Transform Infrared spectroscopy to investigate the formation of the CMC–CH3COONH4 complexes. Electrochemical impedance spectroscopy was conducted to obtain their ionic conductivities. The highest conductivity at ambient temperature of 5.77 × 10−4 S cm−1 was obtained for the electrolyte film containing 20 wt% of CH3COONH4. The biopolymer electrolyte film also exhibited electrochemical stability up to 2.5 V. These results indicated that the biopolymer electrolyte has great potential for applications to electrochemical devices, such as proton batteries and solar cells.

  14. Cycling of lithium/metal oxide cells using composite electrolytes containing fumed silicas

    International Nuclear Information System (INIS)

    Zhou Jian; Fedkiw, Peter S.

    2003-01-01

    The effect on cycle capacity is reported of cathode material (metal oxide, carbon, and current collector) in lithium/metal oxide cells cycled with fumed silica-based composite electrolytes. Three types of electrolytes are compared: filler-free electrolyte consisting of methyl-terminated poly(ethylene glycol) oligomer (PEGdm, M w =250)+lithium bis(trifluromethylsufonyl)imide (LiTFSI) (Li:O=1:20), and two composite systems of the above baseline liquid electrolyte containing 10-wt% A200 (hydrophilic fumed silica) or R805 (hydrophobic fumed silica with octyl surface group). The composite electrolytes are solid-like gels. Three cathode active materials (LiCoO 2 , V 6 O 13 , and Li x MnO 2 ), four conducting carbons (graphite Timrex [reg] SFG 15, SFG 44, carbon black Vulcan XC72R, and Ketjenblack EC-600JD), and three current collector materials (Al, Ni, and carbon fiber) were studied. Cells with composite electrolytes show higher capacity, reduced capacity fade, and less cell polarization than those with filler-free electrolyte. Among the three active materials studied, V 6 O 13 cathodes deliver the highest capacity and Li x MnO 2 cathodes render the best capacity retention. Discharge capacity of Li/LiCoO 2 cells is affected greatly by cathode carbon type, and the capacity decreases in the order of Ketjenblack>SFG 15>SFG 44>Vulcan. Current collector material also plays a significant role in cell cycling performance. Lithium/vanadium oxide (V 6 O 13 ) cells deliver increased capacity using Ni foil and carbon fiber current collectors in comparison to an Al foil current collector

  15. Physics based Degradation Modeling and Prognostics of Electrolytic Capacitors under Electrical Overstress Conditions

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper proposes a physics based degradation modeling and prognostics approach for electrolytic capacitors. Electrolytic capacitors are critical components in...

  16. Electrochemical properties of ether-based electrolytes for lithium/sulfur rechargeable batteries

    International Nuclear Information System (INIS)

    Barchasz, Céline; Leprêtre, Jean-Claude; Patoux, Sébastien; Alloin, Fannie

    2013-01-01

    Highlights: ► Liquid electrolyte composition for lithium/sulfur secondary batteries. ► Carbonate-based electrolytes prove not to be compatible with the sulfur electrode. ► Poor electrochemical performances related to low polysulfide solubility. ► Increase in the discharge capacity using ether solvents with high solvating ability such as PEGDME. ► Evidence of DIOX polymerization during cycling. -- Abstract: The lithium/sulfur (Li/S) battery is a promising electrochemical system that has a high theoretical capacity of 1675 mAh g −1 . However, the system suffers from several drawbacks: poor active material conductivity, active material dissolution, and use of the highly reactive lithium metal electrode. In this study, we investigated the electrolyte effects on electrochemical performances of the Li/S cell, by acting on the solvent composition. As conventional carbonate-based electrolytes turned out to be unusable in Li/S cells, alternative ether solvents had to be considered. Different kinds of solvent structures were investigated by changing the ether/alkyl moieties ratio to vary the lithium polysulfide solubility. This allowed to point out the importance of the solvent solvation ability on the discharge capacity. As the end of discharge is linked to the positive electrode passivation, an electrolyte having high solvation ability reduces the polysulfide precipitation and delays the positive electrode passivation

  17. PVDF-HFP-based porous polymer electrolyte membranes for lithium-ion batteries

    DEFF Research Database (Denmark)

    Miao, Ruiying; Liu, Bowen; Zhu, Zhongzheng

    2008-01-01

    As a potential electrolyte for lithium-ion batteries, a porous polymer electrolyte membrane based on poly(vinylidenefluoride-hexafluoropropylene) (PVDF-HFP) was prepared by a phase inversion method. The casting solution, effects of the solvent and non-solvent and addition of micron scale TiO2...... particles were investigated. The membranes were characterized by SEM, XRD, AC impedance, and charge/discharge tests. By using acetone as the solvent and water as the non-solvent, the prepared membranes showed good ability to absorb and retain the lithium ion containing electrolyte. Addition of micron TiO2...

  18. Nanoporous Hybrid Electrolytes for High-Energy Batteries Based on Reactive Metal Anodes

    KAUST Repository

    Tu, Zhengyuan; Zachman, Michael J.; Choudhury, Snehashis; Wei, Shuya; Ma, Lin; Yang, Yuan; Kourkoutis, Lena F.; Archer, Lynden A.

    2017-01-01

    electrolytes created by infusing conventional liquid electrolytes into nanoporous membranes provide exceptional ability to stabilize Li. Electrochemical cells based on γ-Al2O3 ceramics with pore diameters below a cut-off value above 200 nm exhibit long

  19. A general strategy toward the rational synthesis of metal tungstate nanostructures using plasma electrolytic oxidation method

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yanan; Liu, Baodan, E-mail: baodanliu@imr.ac.cn; Zhai, Zhaofeng; Liu, Xiaoyuan; Yang, Bing; Liu, Lusheng; Jiang, Xin, E-mail: xjiang@imr.ac.cn

    2015-11-30

    Graphical abstract: A general strategy for the rational synthesis of tungstate nanostructure has been developed based on plasma electrolytic oxidation (PEO) technology (up). Using this method, ZnWO{sub 4} and NiWO{sub 4} nanostructures with controllable morphologies and superior crystallinity can be easily obtained (down), showing obvious advantage in comparison with conventional hydrothermal and sol–gel methods. - Highlights: • Plasma electrolyte oxidation (PEO) method has been used for the rational synthesis of tungstate nanostructures. • ZnWO{sub 4} nanoplates have strong mechanical adhesion with porous TiO{sub 2} film substrate. • The morphology and dimensional size of ZnWO{sub 4} nanostructures can be selectively tailored by controlling the annealing temperature and growth time. • The PEO method can be widely applied to the growth of various metal oxides. - Abstract: A new method based on conventional plasma electrolytic oxidation (PEO) technology has been developed for the rational synthesis of metal tungstate nanostructures. Using this method, ZnWO{sub 4} and NiWO{sub 4} nanostructures with controllable morphologies (nanorods, nanosheets and microsheets) and superior crystallinity have been synthesized. It has been found that the morphology diversity of ZnWO{sub 4} nanostructures can be selectively tailored through tuning the electrolyte concentration and annealing temperatures, showing obvious advantages in comparison to traditional hydrothermal and sol–gel methods. Precise microscopy analyses on the cross section of the PEO coating and ZnWO{sub 4} nanostructures confirmed that the precursors initially precipitated in the PEO coating and its surface during plasma discharge process are responsible for the nucleation and subsequent growth of metal tungstate nanostructures by thermal annealing. The method developed in this work represents a general strategy toward the rational synthesis of metal oxide nanostructures and the formation mechanism of

  20. A general strategy toward the rational synthesis of metal tungstate nanostructures using plasma electrolytic oxidation method

    International Nuclear Information System (INIS)

    Jiang, Yanan; Liu, Baodan; Zhai, Zhaofeng; Liu, Xiaoyuan; Yang, Bing; Liu, Lusheng; Jiang, Xin

    2015-01-01

    Graphical abstract: A general strategy for the rational synthesis of tungstate nanostructure has been developed based on plasma electrolytic oxidation (PEO) technology (up). Using this method, ZnWO 4 and NiWO 4 nanostructures with controllable morphologies and superior crystallinity can be easily obtained (down), showing obvious advantage in comparison with conventional hydrothermal and sol–gel methods. - Highlights: • Plasma electrolyte oxidation (PEO) method has been used for the rational synthesis of tungstate nanostructures. • ZnWO 4 nanoplates have strong mechanical adhesion with porous TiO 2 film substrate. • The morphology and dimensional size of ZnWO 4 nanostructures can be selectively tailored by controlling the annealing temperature and growth time. • The PEO method can be widely applied to the growth of various metal oxides. - Abstract: A new method based on conventional plasma electrolytic oxidation (PEO) technology has been developed for the rational synthesis of metal tungstate nanostructures. Using this method, ZnWO 4 and NiWO 4 nanostructures with controllable morphologies (nanorods, nanosheets and microsheets) and superior crystallinity have been synthesized. It has been found that the morphology diversity of ZnWO 4 nanostructures can be selectively tailored through tuning the electrolyte concentration and annealing temperatures, showing obvious advantages in comparison to traditional hydrothermal and sol–gel methods. Precise microscopy analyses on the cross section of the PEO coating and ZnWO 4 nanostructures confirmed that the precursors initially precipitated in the PEO coating and its surface during plasma discharge process are responsible for the nucleation and subsequent growth of metal tungstate nanostructures by thermal annealing. The method developed in this work represents a general strategy toward the rational synthesis of metal oxide nanostructures and the formation mechanism of metal tungstate nanostructures fabricated by

  1. Physics of failure based analysis of aluminium electrolytic capacitor

    International Nuclear Information System (INIS)

    Sahoo, Satya Ranjan; Behera, S.K.; Kumar, Sachin; Varde, P.V.; Ravi Kumar, G.

    2016-01-01

    Electrolytic capacitors are one of the important devices in various power electronic systems, such as motor drives, uninterruptible power supply, electric vehicles and dc power supply. Electrolytic capacitors are also the integral part of many other electronic devices. One of the primary function of electrolytic capacitors is the smoothing of voltage ripple and storing electrical energy. However, the electrolytic capacitor has the shortest lifespan of components in power electronics. Past experiences show that electrolytic capacitor tends to degrade and fail faster under high electrical or thermal stress conditions during operations. The primary failure mechanism of an electrolytic capacitor is the evaporation of the electrolyte due to electrical or thermal overstress. This leads to the drift in the values of two important parameters-capacitance and equivalent series resistance (ESR) of the electrolytic capacitor. An attempt has been made to age the electrolytic capacitor and validate the results. The overall goal is to derive the accurate degradation model of the electrolytic capacitor. (author)

  2. Neurologic complications of electrolyte disturbances and acid-base balance.

    Science.gov (United States)

    Espay, Alberto J

    2014-01-01

    Electrolyte and acid-base disturbances are common occurrences in daily clinical practice. Although these abnormalities can be readily ascertained from routine laboratory findings, only specific clinical correlates may attest as to their significance. Among a wide phenotypic spectrum, acute electrolyte and acid-base disturbances may affect the peripheral nervous system as arreflexic weakness (hypermagnesemia, hyperkalemia, and hypophosphatemia), the central nervous system as epileptic encephalopathies (hypomagnesemia, dysnatremias, and hypocalcemia), or both as a mixture of encephalopathy and weakness or paresthesias (hypocalcemia, alkalosis). Disabling complications may develop not only when these derangements are overlooked and left untreated (e.g., visual loss from intracranial hypertension in respiratory or metabolic acidosis; quadriplegia with respiratory insufficiency in hypermagnesemia) but also when they are inappropriately managed (e.g., central pontine myelinolisis when rapidly correcting hyponatremia; cardiac arrhythmias when aggressively correcting hypo- or hyperkalemia). Therefore prompt identification of the specific neurometabolic syndromes is critical to correct the causative electrolyte or acid-base disturbances and prevent permanent central or peripheral nervous system injury. This chapter reviews the pathophysiology, clinical investigations, clinical phenotypes, and current management strategies in disorders resulting from alterations in the plasma concentration of sodium, potassium, calcium, magnesium, and phosphorus as well as from acidemia and alkalemia. © 2014 Elsevier B.V. All rights reserved.

  3. Enhancing the performance of dye-sensitized solar cells by incorporating nanomica in gel electrolytes☆

    KAUST Repository

    Lai, Yi-Hsuan; Lin, Chia-Yu; Chen, Jian-Ging; Wang, Chun-Chieh; Huang, Kuan-Chieh; Liu, Ken-Yen; Lin, King-Fu; Lin, Jiang-Jen; Ho, Kuo-Chuan

    2010-01-01

    Gel-type dye-sensitized solar cells (DSSCs) were fabricated with 5.0 wt% polyvinyidene fluoride-co-hexafluoro propylene (PVDF-HFP) in methoxy propionitrile (MPN) as gel polymer electrolyte (GPE), 1-butyl-3-methylimidazolium iodide (BMII)/iodine (I2) as redox couple, 4-tertiary butyl pyridine (TBP) and guanidine thiocyanate as additives. The incorporation of alkyl-modified nanomica (AMNM) in the PVDF-HFP gel electrolytes caused the reduction of crystallization of PVDF-HFP, which was confirmed by X-ray diffraction (XRD) analysis. The short-circuit current density (JSC) of the cell increased due to the decrease of diffusion resistance, as judged by the electrochemical impedance spectra (EIS) analysis, while the open-circuit voltage (VOC) remained almost the same. As the loading of AMNM in the PVDF-HFP gel electrolyte was increased to 3.0 wt%, the JSC and power conversion efficiency (η) of the cells increased from 8.3 to 13.6 mA/cm2 and 3.5% to 5.7%, respectively. However, the JSC decreased as the loading of AMNM exceeded 3.0 wt%. At higher AMNM loadings, nanomica acted as a barrier interface between the electrolyte and the dye molecules to hinder electron transfer, and thus reducing the cell's photocurrent density. Furthermore, the DSSCs fabricated by dispersing polymethyl methacrylate (PMMA) microspheres in the TiO2 electrode with the GPE containing 3.0 wt% AMNM improved the η to 6.70%. The TiO2 films would exhibit larger porosity by blending with PMMA, leading the penetration of GPEs into the porous TiO2 easier, thus improving the contact between the dye-adsorbed TiO2 surfaces and the GPEs, as characterized by EIS. Moreover, the η of gel-type DSSCs with a 25 μm thickness of surlyn reached 7.96% as compared with 6.70% for the DSSCs with a 60 μm surlyn. © 2009 Elsevier B.V. All rights reserved.

  4. Enhancing the performance of dye-sensitized solar cells by incorporating nanomica in gel electrolytes☆

    KAUST Repository

    Lai, Yi-Hsuan

    2010-04-01

    Gel-type dye-sensitized solar cells (DSSCs) were fabricated with 5.0 wt% polyvinyidene fluoride-co-hexafluoro propylene (PVDF-HFP) in methoxy propionitrile (MPN) as gel polymer electrolyte (GPE), 1-butyl-3-methylimidazolium iodide (BMII)/iodine (I2) as redox couple, 4-tertiary butyl pyridine (TBP) and guanidine thiocyanate as additives. The incorporation of alkyl-modified nanomica (AMNM) in the PVDF-HFP gel electrolytes caused the reduction of crystallization of PVDF-HFP, which was confirmed by X-ray diffraction (XRD) analysis. The short-circuit current density (JSC) of the cell increased due to the decrease of diffusion resistance, as judged by the electrochemical impedance spectra (EIS) analysis, while the open-circuit voltage (VOC) remained almost the same. As the loading of AMNM in the PVDF-HFP gel electrolyte was increased to 3.0 wt%, the JSC and power conversion efficiency (η) of the cells increased from 8.3 to 13.6 mA/cm2 and 3.5% to 5.7%, respectively. However, the JSC decreased as the loading of AMNM exceeded 3.0 wt%. At higher AMNM loadings, nanomica acted as a barrier interface between the electrolyte and the dye molecules to hinder electron transfer, and thus reducing the cell\\'s photocurrent density. Furthermore, the DSSCs fabricated by dispersing polymethyl methacrylate (PMMA) microspheres in the TiO2 electrode with the GPE containing 3.0 wt% AMNM improved the η to 6.70%. The TiO2 films would exhibit larger porosity by blending with PMMA, leading the penetration of GPEs into the porous TiO2 easier, thus improving the contact between the dye-adsorbed TiO2 surfaces and the GPEs, as characterized by EIS. Moreover, the η of gel-type DSSCs with a 25 μm thickness of surlyn reached 7.96% as compared with 6.70% for the DSSCs with a 60 μm surlyn. © 2009 Elsevier B.V. All rights reserved.

  5. New polymer lithium secondary batteries based on ORMOCER (R) electrolytes-inorganic-organic polymers

    DEFF Research Database (Denmark)

    Popall, M.; Buestrich, R.; Semrau, G.

    2001-01-01

    Based on new plasticized inorganic-organic polymer electrolytes CM. Popall, M. Andrei, J. Kappel, J. Kron, K. Olma, B. Olsowski,'ORMOCERs as Inorganic-organic Electrolytes for New Solid State Lithium Batteries and Supercapacitors', Electrochim. Acta 43 (1998) 1155] new flexible foil-batteries...... electrolyte, typical for polymer electrolytes. Cycling tests (more than 900 cycles) proved that the unplasticized electrolyte can act as binder in composite cathodes of lithium secondary batteries [2]. Charge/discharge cycles of complete batteries like (Cu/active carbon/ORMOCER(R)/LiCoO2/Al) with an ORMOCER......(R) as separator electrolyte were measured. The voltage drop of these batteries is very similar to cells with standard liquid electrolytes and the efficiency is close to 100%. Cycling the batteries with a current density of 0.25 mA cm(-2) between the voltage limits of 3.1 and 4.1 V results in a charge...

  6. Performance of Lithium Polymer Cells with Polyacrylonitrile based Electrolyte

    DEFF Research Database (Denmark)

    Perera, Kumudu; Dissanayake, M.A.K.L.; Skaarup, Steen

    2006-01-01

    The performance of lithium polymer cells fabricated with Polyacrylonitrile (PAN) based electrolytes was studied using cycling voltammetry and continuous charge discharge cycling. The electrolytes consisted of PAN, ethylene carbonate (EC), propylene carbonate (PC) and lithium...... trifluoromethanesulfonate (LiCF3SO3 – LiTF). The polymer electrode material was polypyrrole (PPy) doped with dodecyl benzene sulfonate (DBS). The cells were of the form, Li / PAN : EC : PC : LiCF3SO3 / PPy : DBS. Polymer electrodes of three different thicknesses were studied using cycling at different scan rates. All cells...

  7. Application of phase diagrams to obtain a new surfactant-based fracturing gel; Aplicacao de diagrama de fases para obtencao de um novo gel de fraturamento hidraulico

    Energy Technology Data Exchange (ETDEWEB)

    Dantas, Tereza N. de Castro; Santana, Vanessa C.; Dantas Neto, Afonso A.; Franca Neta, Luzia S. de; Albuquerque, Heraldo S. [Rio Grande do Norte Univ., Natal, RN (Brazil)]. E-mail: tereza@eq.ufrn.br

    2003-07-01

    Through pseudo ternary phases diagram was defined a gel area with the objective of obtaining a new surfactant-based fracturing gel. The surfactant used was synthesized from regional vegetable oil. Fracturing gel properties, like: viscosity, leak off coefficient and proppant-settling rate were analyzed. The obtained results with the surfactant-based gel had its properties compared with a HPG-based gel (hydroxypropyl guar). Rheological tests was accomplished at 100 s{sup -1} being varied the temperature from 26 to 86 deg C, where the surfactant-based gel showed great results. The leak off coefficient was determined by static filtration and the new gel presented smaller coefficient in relation to the HPG gel. The proppant-setting rate was also determined in the gel and, the surfactant-based gel showed good static proppant support. One can conclude that obtained gel presents compatible characteristics when compared with the HPG gel, without the inconvenience of leaving insoluble residues in the well. (author)

  8. Electrospun polyimide-based fiber membranes as polymer electrolytes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang, Qiujun; Song, Wei-Li; Wang, Luning; Song, Yu; Shi, Qiao; Fan, Li-Zhen

    2014-01-01

    Polymer electrolytes based on electrospun polyimide (PI) membranes are incorporated with electrolyte solution containing 1 mol L −1 LiPF 6 /ethylene carbonate/ethylmethyl carbonate/dimethyl carbonate to examine their potential application for lithium ion batteries. The as-electrospun non-woven membranes demonstrate a uniformly interconnected structure with an average fiber diameter of 800 nm. The membranes, showing superior thermal stability and flame retardant property compared to the commercial Celgard® membranes, exhibit high porosity and high uptake when activated with the liquid electrolyte. The resulting PI electrolytes (PIs) have a high ionic conductivity up to 2.0 × 10 −3 S cm −1 at 25 °C, and exhibit a high electrochemical stability potential more than 5.0 V (vs. Li/Li + ). They also possess excellent charge/discharge performance and capacity retention. The initial discharge capacities of the Li/PIs/Li 4 Ti 5 O 12 cells are 178.4, 167.4, 160.3, 148.3 and 135.9 mAh g −1 at the charge/discharge rates of 0.2 C, 1 C, 2 C, 5 C and 10 C, respectively. After 200 cycles at 5 C, a capacity around ∼146.8 mAh g −1 can be still achieved. The PI-based polymer electrolytes with strong mechanical properties and good electrochemical performance are proved to be promising electrolytes for lithium ion batteries

  9. New Supercapacitors Based on the Synergetic Redox Effect between Electrode and Electrolyte

    Directory of Open Access Journals (Sweden)

    You Zhang

    2016-08-01

    Full Text Available Redox electrolytes can provide significant enhancement of capacitance for supercapacitors. However, more important promotion comes from the synergetic effect and matching between the electrode and electrolyte. Herein, we report a novel electrochemical system consisted of a polyanilline/carbon nanotube composite redox electrode and a hydroquinone (HQ redox electrolyte, which exhibits a specific capacitance of 7926 F/g in a three-electrode system when the concentration of HQ in H2SO4 aqueous electrolyte is 2 mol/L, and the maximum energy density of 114 Wh/kg in two-electrode symmetric configuration. Moreover, the specific capacitance retention of 96% after 1000 galvanostatic charge/discharge cycles proves an excellent cyclic stability. These ultrahigh performances of the supercapacitor are attributed to the synergistic effect both in redox polyanilline-based electrolyte and the redox hydroquinone electrode.

  10. Characterization of Novel Castor Oil-Based Polyurethane Polymer Electrolytes

    Directory of Open Access Journals (Sweden)

    Salmiah Ibrahim

    2015-04-01

    Full Text Available Castor oil-based polyurethane as a renewable resource polymer has been synthesized for application as a host in polymer electrolyte for electrochemical devices. The polyurethane was added with LiI and NaI in different wt% to form a film of polymer electrolytes. The films were characterized by using attenuated total reflectance-Fourier transform infrared spectroscopy, dynamic mechanical analysis, electrochemical impedance spectroscopy, linear sweep voltammetry and transference number measurement. The highest conductivity of 1.42 × 10−6 S cm−1 was achieved with the addition of 30 wt% LiI and 4.28 × 10−7 S·cm−1 upon addition of 30 wt% NaI at room temperature. The temperature dependence conductivity plot indicated that both systems obeyed Arrhenius law. The activation energy for the PU-LiI and PU-NaI systems were 0.13 and 0.22 eV. Glass transition temperature of the synthesized polyurethane decreased from −15.8 °C to ~ −26 to −28 °C upon salts addition. These characterizations exhibited the castor oil-based polyurethane polymer electrolytes have potential to be used as alternative membrane for electrochemical devices.

  11. Electrochemical hydrogen isotope sensor based on solid electrolytes

    International Nuclear Information System (INIS)

    Matsumoto, Hiroshige; Hayashi, Hiroyuki; Iwahara, Hiroyasu

    2002-01-01

    An electrochemical sensor of hydrogen isotopes based on solid electrolytes for determining the hydrogen isotope ratios and/or total hydrogen pressures in gases has been developed. This paper describes the methodology of the hydrogen isotope sensing together with experimental results. When hydrogen isotope gases are introduced to an electrochemical cell using a proton-conducting electrolyte (hydrogen isotope cell), the electromotive force (EMF) of the cell agrees with that theoretically estimated. The EMF signals can be used for the determination of the hydrogen isotope ratio in gases if the total hydrogen pressure is predetermined. By supplementary use of an oxide ion conductor cell, both the ratio and total pressure of the hydrogen isotopes can be simultaneously determined. (author)

  12. Boronic ionogel electrolytes to improve lithium transport for Li-ion batteries

    International Nuclear Information System (INIS)

    Lee, Albert S.; Lee, Jin Hong; Hong, Soon Man; Lee, Jong-Chan; Hwang, Seung Sang; Koo, Chong Min

    2016-01-01

    Boron containing ionogels were fabricated through chemical crosslinking of boron allyloxide with polyethylene glycol dimethacrylate in an ionic liquid electrolyte solution to obtain mechanically robust gels. Because of the relatively small concentration of crosslinking agent required to fully solidify the ionic liquid electrolyte, good characters of high ionic conductivity, high thermal stability, and good electrochemical stability were observed. A spectroscopic investigation of the boronic ionogels revealed that the lithium mobility was noticeably enhanced compared with ionogels fabricated without the boronic crosslinker, leading to promising Li-ion battery performance at elevated temperatures.

  13. Cross-Linked Poly(vinylidene fluoride-co-hexafluoropropene (PVDF-co-HFP Gel Polymer Electrolyte for Flexible Li-Ion Battery Integrated with Organic Light Emitting Diode (OLED

    Directory of Open Access Journals (Sweden)

    Ilhwan Kim

    2018-04-01

    Full Text Available Here, we fabricate poly(vinylidene fluoride-co-hexafluoropropene (PVDF-co-HFP by electrospinning for a gel polymer electrolyte (GPE for use in flexible Li-ion batteries (LIBs. As a solvent, we use N-methyl-2-pyrrolidone (NMP, which helps produce the cross-linked morphology of PVDF-co-HFP separator, owing to its low volatility. The cross-linked PVDF-co-HFP separator shows an uptake rate higher than that of a commercialized polypropylene (PP separator. Moreover, the PVDF-co-HFP separator shows an ionic conductivity of 2.3 × 10−3 S/cm at room temperature, comparable with previously reported values. An LIB full-cell assembled with the PVDF-co-HFP-based GPE shows capacities higher than its counterpart with the commercialized PP separator, confirming that the cross-linked PVDF-co-HFP separator provides highly efficient ionic conducting pathways. In addition, we integrate a flexible LIB cell using the PVDF-co-HFP GPE with a flexible organic light emitting diode (OLED, demonstrating a fully flexible unit of LIB and OLED.

  14. High-Efficiency Glass and Printable Flexible Dye-Sensitized Solar Cells with Water-Based Electrolytes

    Directory of Open Access Journals (Sweden)

    Omar Moudam

    2014-01-01

    Full Text Available The performance of a flexible and glass dye-sensitized solar cell (DSSC with water-based electrolyte solutions is described. High concentrations of alkylamidazoliums were used to overcome the deleterious effect of water and, based on this variable, pure water-based electrolyte DSSCs were tested displaying the highest recorded efficiency so far of 3.45% and 6% for flexible and glass cells, respectively, under a simulated air mass 1.5 solar spectrum illumination at 100 mWcm−2. An improvement in the Jsc with high water content and the positive impact of GuSCN on the enhancement of the performance of pure water-based electrolytes were also observed.

  15. Evaluation of Topical Gel Bases Formulated with Various Essential ...

    African Journals Online (AJOL)

    Evaluation of Topical Gel Bases Formulated with Various Essential Oils for Antibacterial Activity against Methicillin- Resistant Staphylococcus Aureus. ... Lemon grass and thyme oils were chosen for further studies, including analysis of their composition by gas chromatography–mass spectrometry (GC/MS). Gels were ...

  16. based anion exchange membrane for alkaline polymer electrolyte

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Hydroxyl ion (OH–) conducting anion exchange membranes based on modified poly (phenylene oxide) are fabricated for their application in alkaline polymer electrolyte fuel cells (APEFCs). In the present study, chloromethylation of poly(phenylene oxide) (PPO) is performed by aryl substitution rather than benzyl.

  17. Electrochromic device based on electrospun WO{sub 3} nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Dulgerbaki, Cigdem; Maslakci, Neslihan Nohut; Komur, Ali Ihsan; Oksuz, Aysegul Uygun, E-mail: ayseguluygun@sdu.edu.tr

    2015-12-15

    Highlights: • WO{sub 3} electrochromic nanofibers were prepared by electrospinning technique. • WO{sub 3} nanofibers switched reversibly from transparent to blue color. • Electrochromic device was assembled using ionic liquid based gel electrolyte. • Significant optical modulation and excellent cycling stability were achieved for ECD. - Abstract: The tungsten oxide (WO{sub 3}) nanofibers were grown directly onto an ITO-coated glass via an electrospinning method for electrochromic applications. The electrochromic properties of WO{sub 3} nanofibers were investigated in the presence of different electrolytes including a series of ionic liquids and classic LiClO{sub 4}-PC system. A significant optical modulation of 20.82% at 760 nm, reversible coloration with efficiency of 64.58 cm{sup 2}/C and excellent cycling stability were achieved for the nanofiber electrochromic device (ECD) with ionic liquid based gel electrolyte.

  18. Flexible and Self-Healing Aqueous Supercapacitors for Low Temperature Applications: Polyampholyte Gel Electrolytes with Biochar Electrodes.

    Science.gov (United States)

    Li, Xinda; Liu, Li; Wang, Xianzong; Ok, Yong Sik; Elliott, Janet A W; Chang, Scott X; Chung, Hyun-Joong

    2017-05-10

    A flexible and self-healing supercapacitor with high energy density in low temperature operation was fabricated using a combination of biochar-based composite electrodes and a polyampholyte hydrogel electrolyte. Polyampholytes, a novel class of tough hydrogel, provide self-healing ability and mechanical flexibility, as well as low temperature operation for the aqueous electrolyte. Biochar is a carbon material produced from the low-temperature pyrolysis of biological wastes; the incorporation of reduced graphene oxide conferred mechanical integrity and electrical conductivity and hence the electrodes are called biochar-reduced-graphene-oxide (BC-RGO) electrodes. The fabricated supercapacitor showed high energy density of 30 Wh/kg with ~90% capacitance retention after 5000 charge-discharge cycles at room temperature at a power density of 50 W/kg. At -30 °C, the supercapacitor exhibited an energy density of 10.5 Wh/kg at a power density of 500 W/kg. The mechanism of the low-temperature performance excellence is likely to be associated with the concept of non-freezable water near the hydrophilic polymer chains, which can motivate future researches on the phase behaviour of water near polyampholyte chains. We conclude that the combination of the BC-RGO electrode and the polyampholyte hydrogel electrolyte is promising for supercapacitors for flexible electronics and for low temperature environments.

  19. High power, gel polymer lithium-ion cells with improved low temperature performance for NASA and DoD applications

    Science.gov (United States)

    Smart, M. C.; Ratnakumar, B. V.; Whitcanack, L. D.; Chin, K. B.; Surampudi, S.; Narayanan, S. R.; Alamgir, Mohamed; Yu, Ji-Sang; Plichta, Edward P.

    2004-01-01

    Both NASA and the U.S. Army have interest in developing secondary energy storage devices that are capable of meeting the demanding performance requirements of aerospace and man-portable applications. In order to meet these demanding requirements, gel-polymer electrolyte-based lithium-ion cells are being actively considered, due to their promise of providing high specific energy and enhanced safety aspects.

  20. Redox Species-Based Electrolytes for Advanced Rechargeable Lithium Ion Batteries

    KAUST Repository

    Ming, Jun

    2016-08-15

    Seeking high-capacity cathodes has become an intensive effort in lithium ion battery research; however, the low energy density still remains a major issue for sustainable handheld devices and vehicles. Herein, we present a new strategy of integrating a redox species-based electrolyte in batteries to boost their performance. Taking the olivine LiFePO4-based battery as an example, the incorporation of redox species (i.e., polysulfide of Li2S8) in the electrolyte results in much lower polarization and superior stability, where the dissociated Li+/Sx2– can significantly speed up the lithium diffusion. More importantly, the presence of the S82–/S2– redox reaction further contributes extra capacity, making a completely new LiFePO4/Li2Sx hybrid battery with a high energy density of 1124 Wh kgcathode–1 and a capacity of 442 mAh gcathode–1. The marriage of appropriate redox species in an electrolyte for a rechargeable battery is an efficient and scalable approach for obtaining higher energy density storage devices.

  1. Improvement of lithium-ion battery performance at low temperature by adopting polydimethylsiloxane-based electrolyte additives

    International Nuclear Information System (INIS)

    Kim, Kwang Man; Ly, Nguyen Vu; Won, Jung Ha; Lee, Young-Gi; Cho, Won Il; Ko, Jang Myoun; Kaner, Richard B.

    2014-01-01

    Three kinds of polydimethylsiloxane (PDMS)-based grafted and ungrafted copolymers such as poly[dimethylsiloxane-co-(siloxane-g-acrylate)] (PDMS-A), poly(dimethylsiloxane-co-phenylsiloxane) (PDMS-P), and poly[dimethylsiloxane-co-(siloxane-g-ethylene oxide)] (PDMS-EO) are used as additives to standard liquid electrolyte solutions to enhance the lithium-ion battery performance at low temperatures. Liquid electrolyte solutions with PDMS-based additives are electrochemically stable under 5.0 V and have adequate ionic conductivities of 10 −4 S cm −1 at -20 °C. Particularly, liquid electrolytes with PDMS-P and PDMS-EO exhibit higher ionic conductivities of around 5 × 10 −4 S cm −1 at -20 °C, indicating a specific resisting property against the freezing of the liquid electrolyte components. As a result, the addition of PDMS-based additives to liquid electrolytes improves the capacity retention ratio and rate-capability of lithium-ion batteries at low temperatures

  2. Application of polyacrylonitrile-based polymer electrolytes in rechargeable lithium batteries

    DEFF Research Database (Denmark)

    Perera, K.S.; Dissanayake, M.A.K.L.; Skaarup, Steen

    2008-01-01

    Polyacrylonitrile (PAN)-based polymer electrolytes have obtained considerable attention due to their fascinating characteristics such as appreciable ionic conductivity at ambient temperatures and mechanical stability. This study is based on the system PAN-ethylene carbonate (EC)-propylene carbona...

  3. Sol-gel-based biosensing applied to medicinal science.

    Science.gov (United States)

    Moreira, Felismina T C; Moreira-Tavares, Ana P; Sales, M Goreti F

    2015-01-01

    Biosensors have opened new horizons in biomedical analysis, by ensuring increased assay speed and flexibility, and allowing point-of-care applications, multi-target analyses, automation and reduced costs of testing. This has been a result of many studies merging nanotechnology with biochemistry over the years, thereby enabling the creation of more suitable environments to biological receptors and their substitution by synthetic analogue materials. Sol-gel chemistry, among other materials, is deeply involved in this process. Sol-gel processing allows the immobilization of organic molecules, biomacromolecules and cells maintaining their properties and activities, permitting their integration into different transduction devices, of electrochemical or optical nature, for single or multiple analyses. Sol-gel also allows to the production of synthetic materials mimicking the activity of natural receptors, while bringing advantages, mostly in terms of cost and stability. Moreover, the biocompatibility of sol-gel materials structures of biological nature allowed the use of these materials in emerging in vivo applications. In this chapter, biosensors for biomedical applications based on sol-gel derived composites are presented, compared and described, along with current emerging applications in vivo, concerning drug delivery or biomaterials. Sol-gel materials are shown as a promising tool for current, emerging and future medical applications.

  4. Conductivity studies of PEG based polymer electrolyte for applications as electrolyte in ion batteries

    Science.gov (United States)

    Patil, Ravikumar V.; Praveen, D.; Damle, R.

    2018-05-01

    Development of lithium ion batteries employing solid polymer electrolytes as electrolyte material has led to efficient energy storage and usage in many portable devices. However, due to a few drawbacks like lower ionic conductivity of solid polymer electrolytes (SPEs), studies on SPEs for improvement in conductivity still have a good scope. In the present paper, we report the conductivity studies of a new SPE with low molecular weight poly ethylene glycol (PEG) as host polymer in which a salt with larger anion Lithium trifluro methane sulphonate (LTMS). XRD studies have revealed that the salt completely dissociates in the polymer giving a good stable electrolyte at lower salt concentration. Conductivity of the SPEs has been studied as a function of temperature and we reiterate that the conductivity is a thermally activated process and follows Arrhenius type behavior.

  5. Strong poly(ethylene oxide) based gel adhesives via oxime cross-linking.

    Science.gov (United States)

    Ghosh, Smita; Cabral, Jaydee D; Hanton, Lyall R; Moratti, Stephen C

    2016-01-01

    There is a demand for materials to replace or augment the use of sutures and staples in surgical procedures. Currently available commercial surgical adhesives provide either high bond strength with biological toxicity or polymer and protein-based products that are biologically acceptable (though with potential sensitizing potential) but have much reduced bond strength. It is desirable to provide novel biocompatible and biodegradable surgical adhesives/sealants capable of high strength with minimal immune or inflammatory response. In this work, we report the end group derivatization of 8-arm star PEOs with aldehyde and amine end groups. Gels were prepared employing the Schiff-base chemistry between the aldehydes and the amines. Gel setting times, swelling behavior and rheological characterization were carried out for these gels. The mechanical-viscoelastic properties were found to be directly proportional to the crosslinking density of the gels, the 10K PEO gel was stiffer in comparison to the 20K PEO gel. The adhesive properties of these gels were tested using porcine skin and showed excellent adhesion properties. Cytotoxicity studies were carried out for the individual gel components using two different methods: (a) Crystal Violet Staining assay (CVS assay) and (b) impedance and cell index measurement by the xCELLigence system at concentrations >5%. Gels prepared by mixing 20% w/w solutions were also tested for cytotoxicity. The results revealed that the individual gel components as well as the prepared gels and their leachables were non-cytotoxic at these concentrations. This work presents a new type of glue that is aimed at surgery applications using a water soluble star shaped polymer. It show excellent adhesion to skin and is tough and easy to use. We show that it is very biocompatible based on tests on live human cells, and could therefore in principle be used for internal surgery. Comparison with other reported and commercial glues shows that it is stronger

  6. Kinetics of aging of metastable, zirconium-dioxide-based solid electrolytes

    International Nuclear Information System (INIS)

    Vlasov, A.N.; Inozemtsev, M.V.

    1985-01-01

    The kinetics of aging of zirconium-dioxide-based metastable solid oxide electrolytes stabilized with 8 to 10 mole % of yttrium, holmium, or scandium oxide were studied over the temperature range from 1200 to 1373 0 K. Kinetic equations were proposed which describe the conduction behavior of two-phase solid electrolytes in a wide time range. The processes were found to occur independently at the initial stage of aging in the cubic solution, viz., an increase in the number of nuclei of the new phase, and a growth in volume of nuclei of the new phase. After a long time the former process ceases, and the kinetics of aging of the electrolyte only are determined by the kinetics of volume growth of the inclusions of new phase. The time-dependent behavior of two-phase solid solutions is discussed theoretically and examined experimentally

  7. Nanocomposite polymer electrolyte based on whisker or microfibrils polyoxyethylene nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Alloin, Fannie, E-mail: fannie.alloin@lepmi.grenoble-inp.f [LEPMI, Laboratoire d' Electrochimie et de Physicochimie des Materiaux et des Interfaces, Grenoble-INP-UJF-CNRS, UMR 5631, BP 75, 38041 Grenoble Cedex 9 (France); D' Aprea, Alessandra [Laboratoire de Rheologie, Grenoble-INP-UJF, UMR 5520, BP 53, 38041 Grenoble Cedex 9 (France); LEPMI, Laboratoire d' Electrochimie et de Physicochimie des Materiaux et des Interfaces, Grenoble-INP-UJF-CNRS, UMR 5631, BP 75, 38041 Grenoble Cedex 9 (France); Ecole Internationale du Papier, de la communication imprimee et des Biomateriaux, PAGORA- Grenoble-INP, BP 65, 38402 Saint Martin d' Heres Cedex (France); Kissi, Nadia El [Laboratoire de Rheologie, Grenoble-INP-UJF, UMR 5520, BP 53, 38041 Grenoble Cedex 9 (France); Dufresne, Alain [Ecole Internationale du Papier, de la communication imprimee et des Biomateriaux, PAGORA- Grenoble-INP, BP 65, 38402 Saint Martin d' Heres Cedex (France); Bossard, Frederic [Laboratoire de Rheologie, Grenoble-INP-UJF, UMR 5520, BP 53, 38041 Grenoble Cedex 9 (France)

    2010-07-15

    Nanocomposite polymer electrolytes composed of high molecular weight poly(oxyethylene) PEO as a matrix, LiTFSI as lithium salt and ramie, cotton and sisal whiskers with high aspect ratio and sisal microfibrils (MF), as reinforcing phase were prepared by casting-evaporation. The morphology of the composite electrolytes was investigated by scanning electron microscopy and their thermal behavior (characteristic temperatures, degradation temperature) were investigated by thermogravimetric analysis and differential scanning calorimetry. Nanocomposite electrolytes based on PEO reinforced by whiskers and MF sisal exhibited very high mechanical performance with a storage modulus of 160 MPa at high temperature. A weak decrease of the ionic conductivity was observed with the incorporation of 6 wt% of whiskers. The addition of microfibrils involved a larger decrease of the conductivity. This difference may be associated to the more restricted PEO mobility due to the addition of entangled nanofibers.

  8. Sodium ion conducting polymer electrolyte membrane prepared by phase inversion technique

    Science.gov (United States)

    Harshlata, Mishra, Kuldeep; Rai, D. K.

    2018-04-01

    A mechanically stable porous polymer membrane of Poly(vinylidene fluoride-hexafluoropropylene) has been prepared by phase inversion technique using steam as a non-solvent. The membrane possesses semicrystalline network with enhanced amorphicity as observed by X-ray diffraction. The membrane has been soaked in an electrolyte solution of 0.5M NaPF6 in Ethylene Carbonate/Propylene Carbonate (1:1) to obtain the gel polymer electrolyte. The porosity and electrolyte uptake of the membrane have been found to be 67% and 220% respectively. The room temperature ionic conductivity of the membrane has been obtained as ˜ 0.3 mS cm-1. The conductivity follows Arrhenius behavior with temperature and gives activation energy as 0.8 eV. The membrane has been found to possess significantly large electrochemical stability window of 5.0 V.

  9. Organosilicon-Based Electrolytes for Long-Life Lithium Primary Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Fenton, Kyle R. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Nagasubramanian, Ganesan [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Staiger, Chad L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Pratt, III, Harry D. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Rempe, Susan B. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Leung, Kevin [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Chaudhari, Mangesh I. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Anderson, Travis Mark [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    This report describes advances in electrolytes for lithium primary battery systems. Electrolytes were synthesized that utilize organosilane materials that include anion binding agent functionality. Numerous materials were synthesized and tested in lithium carbon monofluoride battery systems for conductivity, impedance, and capacity. Resulting electrolytes were shown to be completely non-flammable and showed promise as co-solvents for electrolyte systems, due to low dielectric strength.

  10. Kinetics of aging of metastable solid electrolytes based on zirconium dioxide

    International Nuclear Information System (INIS)

    Vlasov, A.N.; Inozemtsev, M.V.

    1985-01-01

    Kinetics of aging of metastable solid electrolytes on the base of zirconium dioxide stabilized with 8-10 mol.%of yttrium, holmium, and scandium oxides has been studied within the 1200-1373 K temperature range. Kinetic equations describibg behaviour of electric conductivity of two-phase solid electrolytes within a wide temperature interval have been suggested. It has been established that at the initial stage of ageing in cubic solid solution two processes proceed independently of one another: growth of a number of new phase centres and of a volume of new phase centres. At large times growth of a number of new phase centres stops, and kinetics of electrolyte aging is defined only by the growth kinetics of a volume of new phase inclusions

  11. Determination of molecular weight of silk fibroin by non-gel sieving capillary electrophoresis.

    Science.gov (United States)

    Wei, Wei; Zhang, Yaopeng; Shao, Huili; Hu, Xuechao

    2010-01-01

    A simple non-gel sieving capillary electrophoresis (NGSCE) method was established to determine the MW of silk fibroin using CE. The background electrolyte with a pH of 8.8 was based on three components: polyethylene glycol, tris(hydroxymethyl)aminomethane, and sodium dodecyl sulfate (SDS). NGSCE showed a good linear relationship with satisfactory reproducibility between the migration time and the MW of standard proteins. It was found that the regenerated silk fibroin had an MW around 83 kDa with a wide MW distribution (MWD). This absolute value is lower than the result obtained from SDS-polyacrylamide gel electrophoresis due to the different principles of the methods, but their similar MWD shapes indicated that NGSCE could be a feasible, highly sensitive, rapid method for determination of the MW of silk fibroin.

  12. A Model-Based Prognostics Methodology For Electrolytic Capacitors Based On Electrical Overstress Accelerated Aging

    Data.gov (United States)

    National Aeronautics and Space Administration — A remaining useful life prediction methodology for electrolytic capacitors is presented. This methodology is based on the Kalman filter framework and an empirical...

  13. Advancing Polymer-Supported Ionogel Electrolytes Formed via Radical Polymerization

    Science.gov (United States)

    Visentin, Adam F.

    Applications ranging from consumer electronics to the electric grid have placed demands on current energy storage technologies. There is a drive for devices that store more energy for rapid consumption in the case of electric cars and the power grid, and safer, versatile design options for consumer electronics. Electrochemical double-layer capacitors (EDLCs) are an option that has garnered attention as a means to address these varied energy storage demands. EDLCs utilize charge separation in electrolytes to store energy. This energy storage mechanism allows for greater power density (W kg -1) than batteries and higher energy density (Wh kg-1) than conventional capacitors - along with a robust lifetime in the range of thousands to millions of charge-discharge cycles. Safety and working voltage windows of EDLCs currently on the market are limited by the organic solvents utilized in the electrolyte. A potential solution lies in the replacement of the organic solvents with ionic liquids, or room-temperature molten salts. Ionic liquids possess many superior properties in comparison to conventional solvents: wide electrochemical window, low volatility, nonflammability, and favorable ionic conductivity. It has been an endeavor of this work to exploit these advantages while altering the liquid form factor into a gel. An ionic liquid/solid support scaffold composite electrolyte, or ionogel, adds additional benefits: flexible device design, lower encapsulation weight, and elimination of electrolyte leakage. This work has focused on investigations of a UV-polymerizable monomer, poly(ethylene glycol) diacrylate, as a precursor for forming ionogels in situ. The trade-off between gaining mechanical stability at the cost of ionic conductivity has been investigated for numerous ionogel systems. While gaining a greater understanding of the interactions between the gel scaffold and ionic liquid, an ionogel with the highest known ionic conductivity to date (13.1 mS cm-1) was

  14. Pharmacokinetics of 2 dapivirine vaginal microbicide gels and their safety vs. Hydroxyethyl cellulose-based universal placebo gel.

    Science.gov (United States)

    Nel, Annalene M; Smythe, Shanique C; Habibi, Sepideh; Kaptur, Paulina E; Romano, Joseph W

    2010-10-01

    Dapivirine, a nonnucleoside reverse transcriptase inhibitor, is in development as a microbicide for the protection of women against HIV infection. A randomized, double-blind, phase 1 trial was conducted in 36 healthy HIV-negative women to compare the pharmacokinetics of 2 dapivirine vaginal gel formulations (0.05% each) and their safety with the hydroxyethyl cellulose-based universal placebo gel. Gel was self-administered once daily for a total of 11 days. Blood and vaginal fluid samples were collected sequentially over 24 days for pharmacokinetic analysis. Safety was evaluated by pelvic examination, colposcopy, adverse events, and clinical laboratory assessments. Adverse event profiles were similar for the 3 gels. Most events were mild and not related to study gel. Headache and vaginal hemorrhage (any vaginal bleeding) were most common. Plasma concentrations of dapivirine did not exceed 1.1 ng/mL. Steady-state conditions were reached within approximately 10 days. Dapivirine concentrations in vaginal fluids were slightly higher for Gel 4789, but Cmax values on days 1 and 14 were not significantly different. Terminal half-life was 72-73 hours in plasma and 15-17 hours in vaginal fluids. Both formulations of dapivirine gel were safe and well tolerated. Dapivirine was delivered to the lower genital tract at concentrations at least 5 logs greater than in vitro inhibitory concentrations.

  15. Operating mechanisms of electrolytes in magnesium ion batteries: chemical equilibrium, magnesium deposition, and electrolyte oxidation.

    Science.gov (United States)

    Kim, Dong Young; Lim, Younhee; Roy, Basab; Ryu, Young-Gyoon; Lee, Seok-Soo

    2014-12-21

    Since the early nineties there have been a number of reports on the experimental development of Mg electrolytes based on organo/amide-magnesium chlorides and their transmetalations. However, there are no theoretical papers describing the underlying operating mechanisms of Mg electrolytes, and there is no clear understanding of these mechanisms. We have therefore attempted to clarify the operating mechanisms of Mg electrolytes by studying the characteristics of Mg complexes, solvation, chemical equilibrium, Mg-deposition processes, electrolyte-oxidation processes, and oxidative degradation mechanism of RMgCl-based electrolytes, using ab initio calculations. The formation and solvation energies of Mg complexes highly depend on the characteristics of R groups. Thus, changes in R groups of RMgCl lead to changes in the equilibrium position and the electrochemical reduction and oxidation pathways and energies. We first provide a methodological scheme for calculating Mg reduction potential values in non-aqueous electrolytes and electrochemical windows. We also describe a strategy for designing Mg electrolytes to maximize the electrochemical windows and oxidative stabilities. These results will be useful not only for designing improved Mg electrolytes, but also for developing new electrolytes in the future.

  16. Acid-Base and Electrolyte Disorders in Patients with and without Chronic Kidney Disease: An Update.

    Science.gov (United States)

    Dhondup, Tsering; Qian, Qi

    2017-12-01

    Kidneys play a pivotal role in the maintenance and regulation of acid-base and electrolyte homeostasis, which is the prerequisite for numerous metabolic processes and organ functions in the human body. Chronic kidney diseases compromise the regulatory functions, resulting in alterations in electrolyte and acid-base balance that can be life-threatening. In this review, we discuss the renal regulations of electrolyte and acid-base balance and several common disorders including metabolic acidosis, alkalosis, dysnatremia, dyskalemia, and dysmagnesemia. Common disorders in chronic kidney disease are also discussed. The most recent and relevant advances on pathophysiology, clinical characteristics, diagnosis, and management of these conditions have been incorporated.

  17. Synthesis of a novel imidazolium-based electrolytes and application for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Dong-Wan [Department of Applied Chemistry, Konkuk University, 322 Danwol-dong, 380-701 Chungju (Korea, Republic of); Sarker, Subrata; Nath, Narayan Chandra Deb [Department of Advanced Technology Fusion, Konkuk University, Seoul (Korea, Republic of); Choi, Seung-Woo [Department of Applied Chemistry, Konkuk University, 322 Danwol-dong, 380-701 Chungju (Korea, Republic of); Ahammad, A.J. Saleh [Department of Advanced Technology Fusion, Konkuk University, Seoul (Korea, Republic of); Lee, Jae-Joon, E-mail: jjlee@kku.ac.k [Department of Applied Chemistry, Konkuk University, 322 Danwol-dong, 380-701 Chungju (Korea, Republic of); Department of Advanced Technology Fusion, Konkuk University, Seoul (Korea, Republic of); Kim, Whan-Gi, E-mail: wgkim@kku.ac.k [Department of Applied Chemistry, Konkuk University, 322 Danwol-dong, 380-701 Chungju (Korea, Republic of)

    2010-01-25

    A series of new imidazolium-based oligomers with different length of a poly(ethylene glycol) moiety as a linker were synthesized and studied as electrolytes for dye-sensitized solar cell (DSSC). These oligomeric molecules are expected to have an intra- or inter-molecular hydrogen bonding interaction through its urethane and urea bonds. They can be used to prepare the liquid-type electrolytes for DSSC by dissolving them into conventional solvent system or to develop solvent-free electrolytes by incorporating an extra redox mediator and other functional materials together as additives. It was found that these oligomers could replace the cationic component of the conventional electrolytes and became the source of redox species when iodine is added. The photocurrent-voltage characteristics of DSSCs with the electrolytes containing these oligomers demonstrated that they can successfully replace the conventional ionic liquid-type electrolytes such as 1-methyl-3-propyl imidazolium iodide (PMII) in 3-methoxypropionitrile (MPN) if the length of the linker is optimized.

  18. Synthesis of a novel imidazolium-based electrolytes and application for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Seo, Dong-Wan; Sarker, Subrata; Nath, Narayan Chandra Deb; Choi, Seung-Woo; Ahammad, A.J. Saleh; Lee, Jae-Joon; Kim, Whan-Gi

    2010-01-01

    A series of new imidazolium-based oligomers with different length of a poly(ethylene glycol) moiety as a linker were synthesized and studied as electrolytes for dye-sensitized solar cell (DSSC). These oligomeric molecules are expected to have an intra- or inter-molecular hydrogen bonding interaction through its urethane and urea bonds. They can be used to prepare the liquid-type electrolytes for DSSC by dissolving them into conventional solvent system or to develop solvent-free electrolytes by incorporating an extra redox mediator and other functional materials together as additives. It was found that these oligomers could replace the cationic component of the conventional electrolytes and became the source of redox species when iodine is added. The photocurrent-voltage characteristics of DSSCs with the electrolytes containing these oligomers demonstrated that they can successfully replace the conventional ionic liquid-type electrolytes such as 1-methyl-3-propyl imidazolium iodide (PMII) in 3-methoxypropionitrile (MPN) if the length of the linker is optimized.

  19. Electrical transport study of potato starch-based electrolyte system-II

    International Nuclear Information System (INIS)

    Tiwari, Tuhina; Kumar, Manindra; Srivastava, Neelam; Srivastava, P.C.

    2014-01-01

    Highlights: • Cheap and bio-degradable polymer electrolyte. • High conductivity ∼ 9.59 × 10 −3 Scm −1 . • Detailed ion dynamics stud. -- Abstract: Glutaraldehyde (GA) crosslinked potato starch, after mixing with sodium iodide (NaI), resulted in electrolyte film having conductivity (σ) ∼ 10 −3 S/cm and ionic transference number (t ion ) ≥ 0.99. Out of two preparation mediums, namely methanol and acetone, methanol based electrolyte system seems to be better. Super-linear power law (SLPL) phenomenon is observed in MHz frequency range and both lattice site potential and coulomb cage potential due to neighboring mobile charge carriers seems to be responsible for existence of SLPL, and variation of power law exponent ‘n’ with salt concentration. These ion dynamics results are supported by dielectric data also. Estimated number of charge carriers ‘N’ and mobility ‘μ’ are discussed with reference to different variants (medium of preparation, plasticizer, and salt content). Material's conductivity strongly depends on humidity

  20. Enhanced performance of P(VDF-HFP)-based composite polymer electrolytes doped with organic-inorganic hybrid particles PMMA-ZrO2 for lithium ion batteries

    Science.gov (United States)

    Xiao, Wei; Wang, Zhiyan; Zhang, Yan; Fang, Rui; Yuan, Zun; Miao, Chang; Yan, Xuemin; Jiang, Yu

    2018-04-01

    To improve the ionic conductivity as well as enhance the mechanical strength of the gel polymer electrolyte, poly(vinylidene fluoride-hexafluoroprolene) (P(VDF-HFP))-based composite polymer electrolyte (CPE) membranes doped with the organic-inorganic hybrid particles poly(methyl methacrylate) -ZrO2 (PMMA-ZrO2) are prepared by phase inversion method, in which PMMA is successfully grafted onto the surface of the homemade nano-ZrO2 particles via in situ polymerization confirmed by FT-IR. XRD and DSC patterns show adding PMMA-ZrO2 particles into P(VDF-HFP) can significantly decrease the crystallinity of the CPE membrane. The CPE membrane doped with 5 wt % PMMA-ZrO2 particles can not only present a homogeneous surface with abundant interconnected micro-pores, but maintain its initial shape after thermal exposure at 160 °C for 1 h, in which the ionic conductivity and lithium ion transference number at room temperature can reach to 3.59 × 10-3 S cm-1 and 0.41, respectively. The fitting results of the EIS plots indicate the doped PMMA-ZrO2 particles can significantly lower the interface resistance and promote lithium ions diffusion rate. The Li/CPE-sPZ/LiCoO2 and Li/CPE-sPZ/Graphite coin cells can deliver excellent rate and cycling performance. Those results suggest the P(VDF-HFP)-based CPE doped with 5 wt % PMMA-ZrO2 particles can become an exciting potential candidate as polymer electrolyte for the lithium ion battery.

  1. Polymer electrolytes based on aromatic lithium sulfonyl-imide compounds; Electrolytes polymeres a base de sulfonylimidures de lithium aromatiques

    Energy Technology Data Exchange (ETDEWEB)

    Reibel, L.; Bayoudh, S. [Centre National de la Recherche Scientifique (CNRS), 67 - Strasbourg (France). Institut Charles Sadron; Baudry, P. [Electricite de France, 77 - Moret sur Loing (France). Direction des Etudes et Recherches; Majastre, H. [Bollore Technologies, 29 - Quimper (France); Herlem, G. [UFR de Sciences et Techniques, L.E.S., 25 - Besancon (France)

    1996-12-31

    This paper presents ionic conductivity results obtained with polymer electrolytes and also with propylene carbonate solutions. The domain of electrochemical activity of this salt has been determined using cycle volt-amperometry in propylene carbonate. Preliminary experiments on the stability of the polymer electrolyte with respect to the lithium electrode have been carried out for a possible subsequent use in lithium batteries. (J.S.) 4 refs.

  2. Polymer electrolytes based on aromatic lithium sulfonyl-imide compounds; Electrolytes polymeres a base de sulfonylimidures de lithium aromatiques

    Energy Technology Data Exchange (ETDEWEB)

    Reibel, L; Bayoudh, S [Centre National de la Recherche Scientifique (CNRS), 67 - Strasbourg (France). Institut Charles Sadron; Baudry, P [Electricite de France, 77 - Moret sur Loing (France). Direction des Etudes et Recherches; Majastre, H [Bollore Technologies, 29 - Quimper (France); Herlem, G [UFR de Sciences et Techniques, L.E.S., 25 - Besancon (France)

    1997-12-31

    This paper presents ionic conductivity results obtained with polymer electrolytes and also with propylene carbonate solutions. The domain of electrochemical activity of this salt has been determined using cycle volt-amperometry in propylene carbonate. Preliminary experiments on the stability of the polymer electrolyte with respect to the lithium electrode have been carried out for a possible subsequent use in lithium batteries. (J.S.) 4 refs.

  3. P(AN-MMA)/TiO_2 Nano-composite Polymer Electrolyte by in-situ Polymerization

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1 Introduction With the development of portable electric devices,polymer lithium ion batteries (PLiBs) have been widely used as the power sources because of their high energy density and safe property[1].P(AN-MMA) copolymer is a kind of cheap macromolecules easily dissolving in the polar solvents such as carbonate,it has been applied as gel polymer electrolyte in PLiBs.Here we prepare a kind of highly conductive nano-composite polymer electrolytes using the P(AN-MMA) copolymer incorporated with TiO2 nan...

  4. Neutron detector based on lithiated sol-gel glass

    CERN Document Server

    Wallace, S; Miller, L F; Dai, S

    2002-01-01

    A neutron detector technology is demonstrated based on sup 6 Li/ sup 1 sup 0 B doped sol-gel glass. The detector is a sol-gel glass film coated silicon surface barrier detector (SBD). The ionized charged particles from (n, alpha) reactions in the sol-gel film enter the SBD and are counted. Data showing that gamma-ray pulse amplitudes interfere with identifying charged particles that exit the film layer with energies below the gamma-ray energy is presented. Experiments were performed showing the effect of sup 1 sup 3 sup 7 Cs and sup 6 sup 0 Co gamma rays on the SBD detector. The reaction product energies of the triton and alpha particles from sup 6 Li are significantly greater than the energies of the Compton electrons from high-energy gamma rays, allowing the measurement of neutrons in a high gamma background. The sol-gel radiation detection technology may be applicable to the characterization of transuranic waste, spent nuclear fuel and to the monitoring of stored plutonium.

  5. Rheological and sensory properties of hydrophilic skin protection gels based on polyacrylates.

    Science.gov (United States)

    Kulawik-Pióro, Agnieszka; Kurpiewska, Joanna; Kułaszka, Agnieszka

    2018-03-01

    With the current increases in occupational skin diseases, literature data attesting the decreasing efficiency of barrier creams with respect to the manufacturer's declarations and legal regulations granting skin protection gels for employees, research is required to analyse and evaluate the recipes used for hydrophilic skin protection gels based on polyacrylates. This study investigated the rheological properties, pH and sensory perception of hydrophilic barrier gels based on polyacrylates. The acrylic acid derivatives used were good thickeners, and helped to form transparent gels of adequate durability. They could be used to create hydrophilic films on the surface of the skin to protect it against hydrophobic substances. A correlation was shown between the results of the rheological properties and the barrier properties of the gels. This confirms the possibility of monitoring the quality of the gels at the stage of recipe development. Polyacrylates are viable for use in industry to produce hydrophilic barrier creams suitable for skin protection.

  6. Improved Composite Gel Electrolyte by Layered Vermiculite for Quasi-Solid-State Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Hongcai He

    2014-01-01

    Full Text Available A composite quasisolid electrolyte is prepared by adding a layered vermiculite (VMT into the iodide/triiodide electrolyte including 4-tert-butylpyridine, which obviously improves the photovoltaic properties of quasisolid dye-sensitized solar cells (DSSCs. When adding 6 wt% VMT, the maximum photovoltaic conversion efficiency of 3.89% is obtained, which reaches more than two times greater than that without VMT. This enhancement effect is primarily explained by studying the Nyquist spectra, dark currents, and photovoltaic conversion efficiency.

  7. Pyrrolidinium-based ionic liquid electrolyte with organic additive and LiTFSI for high-safety lithium-ion batteries

    International Nuclear Information System (INIS)

    Yang, Binbin; Li, Cuihua; Zhou, Junhui; Liu, Jianhong; Zhang, Qianling

    2014-01-01

    Highlights: • New ionic liquid electrolytes composed by PYR 13 TFSI and EC/DMC-5%VC. • Mixed electrolyte for use in high-safety lithium-ion batteries. • LiTFSI concentration in IL electrolyte greatly affects the rate capability of the cell. • The optimal mixed electrolyte is ideal for applications at high temperature. - Abstract: In this paper, we report on the physicochemical properties of mixed electrolytes based on an ionic liquid N-propyl-N-methylpyrrolidiniumbis (trifluoromethanesulfonyl) imide (PYR 13 TFSI), organic additives, and lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) for high safety lithium-ion batteries. The proposed optimal content of ionic liquid in the mixed electrolyte is 65 vol%, which results in non- flammability, high thermal stability, a wide electrochemical window of 4.8 V, low viscosity, low bulk resistance and the lowest interface resistance to lithium anode. The effects of the concentration of LiTFSI in the above electrolyte are critical to the rate performance of the LiFePO 4 -based battery. We have found the suitable LiTFSI concentration (0.3 M) for good capacity retention and rate capability

  8. High Lithium Transference Number Electrolytes via Creation of 3-Dimensional, Charged, Nanoporous Networks from Dense Functionalized Nanoparticle Composites

    KAUST Repository

    Schaefer, Jennifer L.

    2013-03-26

    High lithium transference number, tLi+, electrolytes are desired for use in both lithium-ion and lithium metal rechargeable battery technologies. Historically, low tLi+ electrolytes have hindered device performance by allowing ion concentration gradients within the cell, leading to high internal resistances that ultimately limit cell lifetime, charging rates, and energy density. Herein, we report on the synthesis and electrochemical features of electrolytes based on nanoparticle salts designed to provide high tLi+. The salts are created by cofunctionalization of metal oxide nanoparticles with neutral organic ligands and tethered lithium salts. When dispersed in a conducting fluid such as tetraglyme, they spontaneously form a charged, nanoporous network of particles at moderate nanoparticle loadings. Modification of the tethered anion chemistry from -SO3 - to -SO3BF3 - is shown to enhance ionic conductivity of the electrolytes by facilitating ion pair dissociation. At a particle volume fraction of 0.15, the electrolyte exists as a self-supported, nanoporous gel with an optimum ionic conductivity of 10 -4 S/cm at room temperature. Galvanostatic polarization measurements on symmetric lithium metal cells containing the electrolyte show that the cell short circuit time, tSC, is inversely proportional to the square of the applied current density tSC ∼ J-2, consistent with previously predicted results for traditional polymer-in-salt electrolytes with low tLi+. Our findings suggest that electrolytes with tLi+ ≈ 1 and good ion-pair dissociation delay lithium dendrite nucleation and may lead to improved lithium plating in rechargeable batteries with metallic lithium anodes. © 2013 American Chemical Society.

  9. Advances in the electrodeposition of aluminum from ionic liquid based electrolytes

    Science.gov (United States)

    Leadbetter, Kirt C.

    Aluminum plating is of considerable technical and economic interest because it provides an eco-friendly substitute for cadmium coatings used on many military systems. However, cadmium has been determined to be a significant environmental safety and occupational health (ESOH) hazard because of its toxicity and carcinogenic nature. Furthermore, the cost of treating and disposing of generated wastes, which often contain cyanide, is costly and is becoming prohibitive in the face of increasingly stringent regulatory standards. The non-toxic alternative aluminum is equivalent or superior in performance to cadmium. In addition, it could serve to provide an alternative to hexavalent chromium coatings used on military systems for similar reasons to that of cadmium. Aluminum is a beneficial alternative in that it demonstrates self-healing corrosion resistance in the form of a tightly-bound, impervious oxide layer. A successfully plated layer would be serviceable over a wider temperature range, 925 °F for aluminum compared to 450 oF for cadmium. In addition, an aluminum layer can be anodized to make it non-conducting and colorable. In consideration of the plating process, aluminum cannot be deposited from aqueous solutions because of its reduction potential. Therefore, nonaqueous electrolytes are required for deposition. Currently, aluminum can be electrodeposited in nonaqueous processes that use hazardous chemicals such as toluene and pyrophoric aluminum alkyls. Electrodeposition from ionic liquids provides the potential for a safer method that could be easily scaled up for industrial application. The plating process could be performed at a lower temperature and higher current density than other commercially available aluminum electrodeposition processes; thus a reduced process cost could be possible. The current ionic liquid based electrolytes are more expensive; however production on a larger scale and a long electrolyte lifetime are associated with a reduction in price

  10. Instability of Ionic Liquid-Based Electrolytes in Li−O2 Batteries

    DEFF Research Database (Denmark)

    Das, Supti; Højberg, Jonathan; Knudsen, Kristian Bastholm

    2015-01-01

    Ionic liquids (ILs) have been proposed as promising solvents for Li−air battery electrolytes. Here, several ILs have been investigated using differential electrochemical mass spectrometry (DEMS) to investigate the electrochemical stability in a Li−O2 system, by means of quantitative determination...... of the rechargeability (OER/ORR), and thereby the Coulombic efficiency of discharge and charge. None of the IL-based electrolytes are found to behave as needed for a functional Li−O2 battery but perform better than commonly used organic solvents. Also the extent of rechargeability/reversibility has been found...

  11. Understanding the thermal instability of fluoroethylene carbonate in LiPF6-based electrolytes for lithium ion batteries

    International Nuclear Information System (INIS)

    Kim, Koeun; Park, Inbok; Ha, Se-Young; Kim, Yeonkyoung; Woo, Myung-Heuio; Jeong, Myung-Hwan; Shin, Woo Cheol; Ue, Makoto; Hong, Sung You; Choi, Nam-Soon

    2017-01-01

    Highlights: • The FEC in LiPF 6 -based electrolytes thermally decomposes at elevated temperatures. • Lewis acids in the electrolyte promote de-fluorination of the FEC to form HF. • The HF causes the SEI destruction and severe metal ion dissolution from the cathode. - Abstract: The cycling and storage performances of LiCoO 2 (LCO)-LiNi 0.5 Co 0.2 Mn 0.3 O 2 (NCM)/pitch-coated silicon alloy-graphite (Si-C) full cells with ethylene carbonate (EC)–based and fluoroethylene carbonate (FEC)–based electrolytes are investigated at elevated temperatures. Excess FEC (used as a co-solvent in LiPF 6 -based electrolytes), which is not completely consumed during the formation of the solid electrolyte interphase (SEI) layer on the electrodes, is prone to defluorination in the presence of Lewis acids such as PF 5 ; this reaction can generate unwanted HF and various acids (H 3 OPF 6 , HPO 2 F 2 , H 2 PO 3 F, H 3 PO 4 ) at elevated temperatures. Our investigation reveals that the HF and acid compounds that are formed by FEC decomposition causes significant dissolution of transition metal ions (from the LCO-NCM cathode) into the electrolyte at elevated temperatures; as a result, the reversible capacity of the full cells reduces because of the deposition of the dissolved metal ions onto the anode. Moreover, we demonstrate possible mechanisms that account for the thermal instability of FEC in LiPF 6 -based electrolytes at elevated temperatures using model experiments.

  12. Enhanced photovoltaic performance and long-term stability of dye-sensitized solar cells by incorporating SiO{sub 2} nanoparticles in binary ionic liquid electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hsin-Fang; Wu, Jhih-Lin; Hsu, Po-Ya [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China); Tung, Yung-Liang [Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu 30013, Taiwan, ROC (China); Ouyang, Fan-Yi [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China); Kai, Ji-Jung, E-mail: jjkai@ess.nthu.edu.tw [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China)

    2013-02-01

    Hydrophilic SiO{sub 2} nanoparticles in a binary ionic liquid (bi-IL) consisting of 1-propyl-3-methylimidazolium iodide (PMII) and 1-ethyl-3-methyl-imidazolium dicyanimide (EMIDCA) facilitated electron transfer and solidified the electrolyte for a dye-sensitized solar cell (DSC). We investigated the dependence of charge transport and photovoltaic performance on the composition of bi-IL electrolytes with varied ratio of SiO{sub 2} nanoparticles. The electrochemical impedance spectra revealed a decreased resistance to charge transfer at the Pt counter electrode (R{sub ct1}) when SiO{sub 2} (up to 2.0 wt.%) was added, improving the photovoltaic parameters. The DSC based on a TiO{sub 2} nanocrystalline film (thickness 14.2 μm) with a composite ionic gel electrolyte of EMIDCA/PMII bi-IL (33 vol.% of EMIDCA) incorporating SiO{sub 2} (2 wt.%) exhibited a power conversion efficiency of 5.28% under simulated solar illumination (AM 1.5 G, 100 mW cm{sup −} {sup 2}). The durability of DSC with a SiO{sub 2} solidified electrolyte was superior to that of a liquid one, exhibiting good stability at 60 °C in darkness during an accelerated test for 1000 h. - Highlights: ► SiO{sub 2} nanoparticles were introduced in a binary ionic liquid electrolyte. ► Effect of various ratios of SiO{sub 2} nanoparticles in gel electrolytes was studied. ► Mechanism of charge transfer with addition of SiO{sub 2} nanoparticles was discussed. ► An enhanced solar to electric energy conversion efficiency of 5.28% was achieved. ► Thermal stability of a quasi-solid state dye-sensitized solar cell was improved.

  13. Ionic diffusion and salt dissociation conditions of lithium liquid crystal electrolytes.

    Science.gov (United States)

    Saito, Yuria; Hirai, Kenichi; Murata, Shuuhei; Kishii, Yutaka; Kii, Keisuke; Yoshio, Masafumi; Kato, Takashi

    2005-06-16

    Salt dissociation conditions and dynamic properties of ionic species in liquid crystal electrolytes of lithium were investigated by a combination of NMR spectra and diffusion coefficient estimations using the pulsed gradient spin-echo NMR techniques. Activation energies of diffusion (Ea) of ionic species changed with the phase transition of the electrolyte. That is, Ea of the nematic phase was lower than that of the isotropic phase. This indicates that the aligned liquid crystal molecules prepared efficient conduction pathways for migration of ionic species. The dissociation degree of the salt was lower compared with those of the conventional electrolyte solutions and polymer gel electrolytes. This is attributed to the low concentration of polar sites, which attract the dissolved salt and promote salt dissociation, on the liquid crystal molecules. Furthermore, motional restriction of the molecules due to high viscosity and molecular oriented configuration in the nematic phase caused inefficient attraction of the sites for the salt. With a decreased dissolved salt concentration of the liquid crystal electrolyte, salt dissociation proceeded, and two diffusion components attributed to the ion and ion pair were detected independently. This means that the exchange rate between the ion and the ion pair is fairly slow once the salt is dissociated in the liquid crystal electrolytes due to the low motility of the medium molecules that initiate salt dissociation.

  14. Polymer gel dosimeter based on itaconic acid

    International Nuclear Information System (INIS)

    Mattea, Facundo; Chacón, David

    2015-01-01

    A new polymeric dosimeter based on itaconic acid and N, N’-methylenebisacrylamide was studied. The preparation method, compositions of monomer and crosslinking agent and the presence of oxygen in the dosimetric system were analyzed. The resulting materials were irradiated with an X-ray tube at 158 cGy/min, 226 cGy min and 298 cGy/min with doses up to 1000 Gy. The dosimeters presented a linear response in the dose range 75–1000 Gy, sensitivities of 0.037 1/Gy at 298 cGy/min and an increase in the sensitivity with lower dose rates. One of the most relevant outcomes in this study was obtaining different monomer to crosslinker inclusion in the formed gel for the dosimeters where oxygen was purged during the preparation method. This effect has not been reported in other typical dosimeters and could be attributed to the large differences in the reactivity among these species. - Highlights: • A novel polymer gel dosimeters based on itaconic acid is presented and characterized. • The typical linear trend of the dose behavior in a specific dose range was found. • Different gel structures were formed when oxygen and an antioxidant were present. • Absorbed dose is univocally correlated with optic absorbance and Raman spectroscopy. • Itaconic acid appears as a reliable radiation dosimeter that may be further improved.

  15. Electrochemical investigation of electrochromic devices based on NiO and WO3 films using different lithium salts electrolytes

    International Nuclear Information System (INIS)

    Wei, Youxiu; Chen, Mu; Liu, Weiming; Li, Lei; Yan, Yue

    2017-01-01

    Highlights: •ECDs based on NiO and WO 3 films using different electrolytes were fabricated. •Effect of different electrolytes on films and ECDs was investigated. •Applied voltage distribution on NiO and WO 3 electrodes in an ECD was studied. •Voltage distribution on films was unbalanced and associated with electrolyte. •Films have different impedance behavior in different states and electrolytes. -- Abstract: Electrochromic devices (ECDs) with different liquid electrolytes were fabricated using NiO film as counter electrode, WO 3 film as working electrode. The effect of liquid electrolytes containing different lithium salts (LiClO 4 , LiPF 6 , LiTFSI) on films and ECDs was investigated, such as transmittance change, charge density, memory effect and cyclic stability. Films or ECDs using LiPF 6 electrolyte have excellent electrochromic properties but low cyclic stability, compared with LiClO 4 and LiTFSI electrolytes. In order to deeply understand the effect of electrolyte on films and devices, the voltage distribution of films based on an analog cell and electrochemical impedance spectroscopy (EIS) were measured and analyzed in different lithium salts electrolytes. Results show that voltage distribution and EIS characteristics of films have obvious difference in liquid LiClO 4 , LiPF 6 and LiTFSI electrolytes. Voltage distribution on NiO and WO 3 films is unbalanced and the impedance of films in bleached and colored states is different in the same electrolyte.

  16. Electrolyte and Acid-Base Disturbances in End-Stage Liver Disease: A Physiopathological Approach.

    Science.gov (United States)

    Jiménez, José Víctor; Carrillo-Pérez, Diego Luis; Rosado-Canto, Rodrigo; García-Juárez, Ignacio; Torre, Aldo; Kershenobich, David; Carrillo-Maravilla, Eduardo

    2017-08-01

    Electrolyte and acid-base disturbances are frequent in patients with end-stage liver disease; the underlying physiopathological mechanisms are often complex and represent a diagnostic and therapeutic challenge to the physician. Usually, these disorders do not develop in compensated cirrhotic patients, but with the onset of the classic complications of cirrhosis such as ascites, renal failure, spontaneous bacterial peritonitis and variceal bleeding, multiple electrolyte, and acid-base disturbances emerge. Hyponatremia parallels ascites formation and is a well-known trigger of hepatic encephalopathy; its management in this particular population poses a risky challenge due to the high susceptibility of cirrhotic patients to osmotic demyelination. Hypokalemia is common in the setting of cirrhosis: multiple potassium wasting mechanisms both inherent to the disease and resulting from its management make these patients particularly susceptible to potassium depletion even in the setting of normokalemia. Acid-base disturbances range from classical respiratory alkalosis to high anion gap metabolic acidosis, almost comprising the full acid-base spectrum. Because most electrolyte and acid-base disturbances are managed in terms of their underlying trigger factors, a systematic physiopathological approach to their diagnosis and treatment is required.

  17. Comparative gel-based phosphoproteomics in response to signaling molecules

    KAUST Repository

    Marondedze, Claudius; Lilley, Kathryn S.; Thomas, Ludivine

    2013-01-01

    The gel-based proteomics approach is a valuable technique for studying the characteristics of proteins. This technique has diverse applications ranging from analysis of a single protein to the study of the total cellular proteins. Further, protein quality and to some extent distribution can be first assessed by means of one-dimensional gel electrophoresis and then more informatively, for comparative analysis, using the two-dimensional gel electrophoresis technique. Here, we describe how to take advantage of the availability of fluorescent dyes to stain for a selective class of proteins on the same gel for the detection of both phospho- and total proteomes. This enables the co-detection of phosphoproteins as well as total proteins from the same gel and is accomplished by utilizing two different fluorescent stains, the ProQ-Diamond, which stains only phosphorylated proteins, and Sypro Ruby, which stains the entire subset of proteins. This workflow can be applied to gain insights into the regulatory mechanisms induced by signaling molecules such as cyclic nucleotides through the quantification and subsequent identification of responsive phospho- and total proteins. © Springer Science+Business Media New York 2013.

  18. Comparative gel-based phosphoproteomics in response to signaling molecules

    KAUST Repository

    Marondedze, Claudius

    2013-09-03

    The gel-based proteomics approach is a valuable technique for studying the characteristics of proteins. This technique has diverse applications ranging from analysis of a single protein to the study of the total cellular proteins. Further, protein quality and to some extent distribution can be first assessed by means of one-dimensional gel electrophoresis and then more informatively, for comparative analysis, using the two-dimensional gel electrophoresis technique. Here, we describe how to take advantage of the availability of fluorescent dyes to stain for a selective class of proteins on the same gel for the detection of both phospho- and total proteomes. This enables the co-detection of phosphoproteins as well as total proteins from the same gel and is accomplished by utilizing two different fluorescent stains, the ProQ-Diamond, which stains only phosphorylated proteins, and Sypro Ruby, which stains the entire subset of proteins. This workflow can be applied to gain insights into the regulatory mechanisms induced by signaling molecules such as cyclic nucleotides through the quantification and subsequent identification of responsive phospho- and total proteins. © Springer Science+Business Media New York 2013.

  19. Novel microemulsion-based gel formulation of tazarotene for therapy of acne.

    Science.gov (United States)

    Patel, Mrunali Rashmin; Patel, Rashmin Bharatbhai; Parikh, Jolly R; Patel, Bharat G

    2016-12-01

    The objective of this study was to develop and evaluate a novel microemulsion based gel formulation containing tazarotene for targeted topical therapy of acne. Psudoternary phase diagrams were constructed to obtain the concentration range of oil, surfactant, and co-surfactant for microemulsion formation. The optimized microemulsion formulation containing 0.05% tazarotene was formulated by spontaneous microemulsification method consisting of 10% Labrafac CC, mixed emulsifiers 15% Labrasol-Cremophor-RH 40 (1:1), 15% Capmul MCM, and 60% distilled water (w/w) as an external phase. All plain and tazarotene-loaded microemulsions were clear and showed physicochemical parameters for desired topical delivery and stability. The permeation profiles of tazarotene through rat skin from optimized microemulsion formulation followed the Higuchi model for controlled permeation. Microemulsion-based gel was prepared by incorporating Carbopol®971P NF in optimized microemulsion formulation having suitable skin permeation rate and skin uptake. Microemulsion-based gel showed desired physicochemical parameters and demonstrated advantage over marketed formulation in improving the skin tolerability of tazarotene indicating its potential in improving its topical delivery. The developed microemulsion-based gel may be a potential drug delivery vehicle for targeted topical delivery of tazarotene in the treatment of acne.

  20. Electrical transport study of potato starch-based electrolyte system-II

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Tuhina; Kumar, Manindra [Department of Physics (Mahila Mahavidyalay), Banaras Hindu University, Varanasi (India); Srivastava, Neelam, E-mail: neelamsrivastava_bhu@yahoo.co.in [Department of Physics (Mahila Mahavidyalay), Banaras Hindu University, Varanasi (India); Srivastava, P.C. [Department of Physics, Banaras Hindu University, Varanasi (India)

    2014-03-15

    Highlights: • Cheap and bio-degradable polymer electrolyte. • High conductivity ∼ 9.59 × 10{sup −3} Scm{sup −1}. • Detailed ion dynamics stud. -- Abstract: Glutaraldehyde (GA) crosslinked potato starch, after mixing with sodium iodide (NaI), resulted in electrolyte film having conductivity (σ) ∼ 10{sup −3} S/cm and ionic transference number (t{sub ion}) ≥ 0.99. Out of two preparation mediums, namely methanol and acetone, methanol based electrolyte system seems to be better. Super-linear power law (SLPL) phenomenon is observed in MHz frequency range and both lattice site potential and coulomb cage potential due to neighboring mobile charge carriers seems to be responsible for existence of SLPL, and variation of power law exponent ‘n’ with salt concentration. These ion dynamics results are supported by dielectric data also. Estimated number of charge carriers ‘N’ and mobility ‘μ’ are discussed with reference to different variants (medium of preparation, plasticizer, and salt content). Material's conductivity strongly depends on humidity.

  1. Novel configuration of polyimide matrix-enhanced cross-linked gel separator for high performance lithium ion batteries

    International Nuclear Information System (INIS)

    Zhang, Hong; Zhang, Yin; Yao, Zhikan; John, Angelin Ebanezar; Li, Yang; Li, Weishan; Zhu, Baoku

    2016-01-01

    Highlights: • For the first time, a cross-linked gel polymer electrolyte with additional lithium ions, was introduced into a nonwoven separator. • The PI nonwoven is employed to ensure enhanced thermal stability and mechanical strength of the IACS. • With the introduction of PAMPS(Li"+), the migration and mobility rate of anions could be hindered by the -SO_3"− group, giving rise to a high lithium ion transference number. • This IACS is recommended as a promising candidate for the high-power and high-safety lithium ion batteries. - Abstract: A novel composite nonwoven separator exhibiting high heat resistance, high ionic conductivity and high lithium ion transference number is fabricated by a simple dip-coating and heat treatment method. The thermal stable polyimide (PI) nonwoven matrix is chosen as a mechanical support and contributes to improving the thermal shrinkage of the composite nonwoven separator (abbreviated as IACS). The cross-linked poly(2-acrylamido-2-methylpropanesulfonic acid) PAMPS(Li"+) gel polymer electrolyte (GPE), lithium ion sources of a single ion conductor, is introduced into the PI nonwoven matrix and acts as a functional filler. This PAMPS (Li"+) GPE is proved to be able to provide internal short circuit protection, to alleviate liquid electrolyte leakage effectively, to supply more lithium ions dissociating from PAMPS (Li"+) by liquid electrolyte solvent, to contribute a more stable interfacial resistance, and thus resulting in an excellent cyclability. More notably, the migration and mobility rate of anions could be hindered by the −SO_3"− group in the PAMPS (Li"+) polymer based on electrostatic interaction, giving rise to a very high lithium ion transference number. These fascinating characteristics endow the IACS a great promise for the application in the high power and high safety lithium ion batteries.

  2. Lipophilic polyelectrolyte gel derived from phosphonium borate can absorb a wide range of organic solvents.

    Science.gov (United States)

    Sunaga, Sokuro; Kokado, Kenta; Sada, Kazuki

    2018-01-24

    Herein, we demonstrate a polyelectrolyte gel which can absorb a wide range of organic solvents from dimethylsulfoxide (DMSO, permittivity: ε = 47.0) to tetrahydrofuran (ε = 5.6). The gel consists of polystyrene chains with small amounts (∼5 mol%) of lipophilic electrolytes derived from triphenylphosphonium tetraaryl borate. The swelling ability of the polyelectrolyte gel was higher than that of the alkyl ammonium tetraaryl borate previously reported by us, and this is attributed to the higher compatibility with organic solvents, as well as the higher dissociating ability, of the triphenyl phosphonium salt. The role of the ionic moieties was additionally confirmed by post modification of the polyelectrolyte gel via a conventional Wittig reaction, resulting in a nonionic gel. Our findings introduced here will lead to a clear-cut molecular design for polyelectrolyte gels which absorb all solvents.

  3. Quasi-solid polymer electrolytes using photo-cross-linked polymers. Lithium and divalent cation conductors and their applications

    Science.gov (United States)

    Ikeda, Shoichiro; Mori, Yoichi; Furuhashi, Yuri; Masuda, Hideki; Yamamoto, Osamu

    In this report, we will present the results on the photo-cross-linked poly-(ethylene glycol) diacrylate (PEGDA) based quasi-solid, i.e. gel, polymer electrolyte systems with lithium, magnesium and zinc trifluoromethanesulfonates [triflate; M n(CF 3SO 3) n] and their preliminary applications to primary cells. The Celgard® membrane-impregnated electrolytes were prepared in the same manner as Abraham et al. [K.M. Abraham, M. Alamgir, D.K. Hoffman, J. Electrochem. Soc. 142 (1995) 683]. The precursor solutions were composed of metal triflates, ethylene carbonate, propylene carbonate, and tetraethylene glycol diacrylate. The Celgard® #3401 membrane was soaked overnight in the precursor solution, then clamped between two Pyrex glass plates and irradiated with UV light to form a gel electrolyte. The maxima of the conductivity obtained were 4.5×10 -4 S cm -1 at 12 mol% for LiCF 3SO 3, 1.7×10 -4 S cm -1 at 1 mol% for Mg(CF 3SO 3) 2, and 2.1×10 -4 S cm -1 at 4 mol% for Zn(CF 3SO 3) 2 system, respectively. The Arrhenius plots of the conductivities are almost linear between 268 and 338 K with 15-25 kJ/mol of activation energy for conduction. The cell, Li|LiCF 3SO 3-SPE+Celgard® #3401|(CH 3) 4NI 5+acetylene black, showed 2.86 V of OCV and could discharge up to 25% with respect to the cathode active material at a discharging current of 0.075 mA/cm 2.

  4. FTIR Spectroscopic and DC Ionic conductivity Studies of PVDF-HFP: LiBF4: EC Plasticized Polymer Electrolyte Membrane

    Science.gov (United States)

    Sangeetha, M.; Mallikarjun, A.; Jaipal Reddy, M.; Siva Kumar, J.

    2017-08-01

    In the present paper; the FTIR and Temperature dependent DC Ionic conductivity studies of polymer (80 Wt% PVDF-HFP) with inorganic lithium tetra fluoroborate salt (20 Wt% LiBF4) as ionic charge carrier and plasticized with various weight ratios of Ethylene carbonate plasticizer (10 Wt% to 70 Wt% EC) as gel polymer electrolytes. Solution casting method is used for the preparation of plasticized polymer-salt electrolyte films. FTIR analysis shows the good complexation between PVDF-HFP: LiBF4 and the presence of functional groups in the plasticized polymer-salt electrolyte membrane. Also the analysis and results show that the highest DC ionic conductivity of 1.66 × 10-3 SCm -1 was found at 373 K for a particular concentration of 80 Wt% PVDF-HFP: 20 Wt% LiBF4: 40 Wt% EC porous gel type polymer-salt plasticized porous membrane. Increase of temperature results expansion and segmental motion of polymer chain that generates free volume in turn promotes hopping of the lithium ions satisfying Vogel-Tammann-Fulcher equation.

  5. Ionic and Wigner Glasses, Superionic Conductors, and Spinodal Electrostatic Gels: Dynamically Arrested Phases of the Primitive Model

    International Nuclear Information System (INIS)

    Sanchez-Diaz, L. E.; Juarez-Maldonado, R.; Vizcarra-Rendon, A.

    2009-01-01

    Based on the recently proposed self-consistent generalized Langevin equation theory of dynamic arrest, in this letter we show that the ergodic-nonergodic phase diagram of a classical mixture of charged hard spheres (the so-called 'primitive model' of ionic solutions and molten salts) includes arrested phases corresponding to nonconducting ionic glasses, partially arrested states that represent solid electrolytes (or 'superionic' conductors), low-density colloidal Wigner glasses, and low-density electrostatic gels associated with arrested spinodal decomposition.

  6. An investigation of 2,5-di-tertbutyl-1,4-bis(methoxyethoxy)benzene in ether-based electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Su, Liang; Ferrandon, Magali; Barton, John L.; de la Rosa, Noel Upia; Vaughey, John T.; Brushett, Fikile R.

    2017-08-01

    The identification and development of conductive electrolytes with high concentrations of redox active species is key to realizing energy-dense nonaqueous flow batteries. Herein, we explore the use of ether solvents (1,3-dioxolane (DOL), 1,2-dimethoxyethane (DME), diethylene glycol dimethyl ether (DEGDME), and tetraethylene glycol dimethyl ether (TEGDME)) as the basis for redox electrolytes containing a lithium ion supporting salt (LiBF4 or LiTFSI) and 2,5-di-tert-butyl-1,4-bis(2-methoxyethoxy)benzene (DBBB) as an active material. An automated high-throughput platform is employed to screen various electrolyte compositions by measuring solution conductivity and solute solubility as a function of solvent and salt type, component concentration, and temperature. Subsequently, the electrochemical and transport properties of select redox electrolytes are characterized by cyclic voltammetry using glassy carbon disk electrodes and by linear sweep voltammetry using carbon fiber ultramicroelectrodes. In general, improvements in electrolyte conductivity and solute solubility are observed with ether-based formulations as compared to previously reported propylene carbonate (PC)-based formulations. In particular, the addition of DOL to a DME-based electrolyte increases the conductivity and decreases the temperature for solubilization at high LiTFSI and DBBB concentrations. The redox behavior of DBBB remains consistent across the range of concentrations tested while the diffusion coefficient scales with changes in solution viscosity.

  7. Therapeutic potential of gel-based injectables for vocal fold regeneration

    Science.gov (United States)

    Bartlett, Rebecca S.; Thibeault, Susan L.; Prestwich, Glenn D.

    2012-01-01

    Vocal folds are anatomically and biomechanically unique, thus complicating the design and implementation of tissue engineering strategies for repair and regeneration. Integration of an enhanced understanding of tissue biomechanics, wound healing dynamics and innovative gel-based therapeutics has generated enthusiasm for the notion that an efficacious treatment for vocal fold scarring could be clinically attainable within several years. Fibroblast phenotype and gene expression are mediated by the three-dimensional mechanical and chemical microenvironment at an injury site. Thus, therapeutic approaches need to coordinate spatial and temporal aspects of the wound healing response in an injured vocal tissue to achieve an optimal clinical outcome. Successful gel-based injectables for vocal fold scarring will require a keen understanding of how the native inflammatory response sets into motion the later extracellular matrix remodeling, which in turn will determine the ultimate biomechanical properties of the tissue. We present an overview of the challenges associated with this translation as well as the proposed gel-based injectable solutions. PMID:22456756

  8. Therapeutic potential of gel-based injectables for vocal fold regeneration

    International Nuclear Information System (INIS)

    Bartlett, Rebecca S; Thibeault, Susan L; Prestwich, Glenn D

    2012-01-01

    Vocal folds are anatomically and biomechanically unique, thus complicating the design and implementation of tissue engineering strategies for repair and regeneration. Integration of an enhanced understanding of tissue biomechanics, wound healing dynamics and innovative gel-based therapeutics has generated enthusiasm for the notion that an efficacious treatment for vocal fold scarring could be clinically attainable within several years. Fibroblast phenotype and gene expression are mediated by the three-dimensional mechanical and chemical microenvironment at an injury site. Thus, therapeutic approaches need to coordinate spatial and temporal aspects of the wound healing response in an injured vocal tissue to achieve an optimal clinical outcome. Successful gel-based injectables for vocal fold scarring will require a keen understanding of how the native inflammatory response sets into motion the later extracellular matrix remodeling, which in turn will determine the ultimate biomechanical properties of the tissue. We present an overview of the challenges associated with this translation as well as the proposed gel-based injectable solutions. (paper)

  9. Nanoporous Hybrid Electrolytes for High-Energy Batteries Based on Reactive Metal Anodes

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Zhengyuan [Department of Materials Science and Engineering, Cornell University, Ithaca NY 14850 USA; Zachman, Michael J. [School of Applied and Engineering Physics, Cornell University, Ithaca NY 14850 USA; Choudhury, Snehashis [School of Chemical Engineering and Biomolecular Engineering, Cornell University, Ithaca NY 14850 USA; Wei, Shuya [School of Chemical Engineering and Biomolecular Engineering, Cornell University, Ithaca NY 14850 USA; Ma, Lin [Department of Materials Science and Engineering, Cornell University, Ithaca NY 14850 USA; Yang, Yuan [Department of Chemistry and Geochemistry, Colorado School of Mines, Golden CO 80401 USA; Kourkoutis, Lena F. [School of Applied and Engineering Physics, Cornell University, Ithaca NY 14850 USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca NY 14853 USA; Archer, Lynden A. [Department of Materials Science and Engineering, Cornell University, Ithaca NY 14850 USA; School of Chemical Engineering and Biomolecular Engineering, Cornell University, Ithaca NY 14850 USA

    2017-01-06

    Successful strategies for stabilizing electrodeposition of reactive metals, including lithium, sodium, and aluminum are a requirement for safe, high-energy electrochemical storage technologies that utilize these metals as anodes. Unstable deposition produces high-surface area dendritic structures at the anode/electrolyte interface, which causes premature cell failure by complex physical and chemical processes that have presented formidable barriers to progress. Here, it is reported that hybrid electrolytes created by infusing conventional liquid electrolytes into nanoporous membranes provide exceptional ability to stabilize Li. Electrochemical cells based on γ-Al2O3 ceramics with pore diameters below a cut-off value above 200 nm exhibit long-term stability even at a current density of 3 mA cm-2. The effect is not limited to ceramics; similar large enhancements in stability are observed for polypropylene membranes with less monodisperse pores below 450 nm. These findings are critically assessed using theories for ion rectification and electrodeposition reactions in porous solids and show that the source of stable electrodeposition in nanoporous electrolytes is fundamental.

  10. Nanoporous Hybrid Electrolytes for High-Energy Batteries Based on Reactive Metal Anodes

    KAUST Repository

    Tu, Zhengyuan

    2017-01-06

    Successful strategies for stabilizing electrodeposition of reactive metals, including lithium, sodium, and aluminum are a requirement for safe, high-energy electrochemical storage technologies that utilize these metals as anodes. Unstable deposition produces high-surface area dendritic structures at the anode/electrolyte interface, which causes premature cell failure by complex physical and chemical processes that have presented formidable barriers to progress. Here, it is reported that hybrid electrolytes created by infusing conventional liquid electrolytes into nanoporous membranes provide exceptional ability to stabilize Li. Electrochemical cells based on γ-Al2O3 ceramics with pore diameters below a cut-off value above 200 nm exhibit long-term stability even at a current density of 3 mA cm−2. The effect is not limited to ceramics; similar large enhancements in stability are observed for polypropylene membranes with less monodisperse pores below 450 nm. These findings are critically assessed using theories for ion rectification and electrodeposition reactions in porous solids and show that the source of stable electrodeposition in nanoporous electrolytes is fundamental.

  11. Polybenzimidazoles based on high temperature polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Linares Leon, Jose Joaquin; Camargo, Ana Paula M.; Ashino, Natalia M.; Morgado, Daniella L.; Frollini, Elisabeth; Paganin, Valdecir A.; Gonzalez, Ernesto Rafael [Universidade de Sao Paulo (IQSC/USP), Sao Carlos, SP (Brazil); Bajo, Justo Lobato [University of Castilla-La Mancha, Ciudad Real (Spain). Dept. of Chemical Engineering

    2010-07-01

    This work presents an interesting approach in order to enhance the performance of Polymer Electrolyte Membrane Fuel Cells (PEMFC) by means of an increase in the operational temperature. For this, two polymeric materials, Poly(2,5-bibenzimidazole) (ABPBI) and Poly[2,2'-(m-phenyl en)-5,5' bib enzimidazol] (PBI), impregnated with phosphoric acid have been utilized. These have shown excellent properties, such as thermal stability above 500 deg C, reasonably high conductivity when impregnated with H{sub 3}PO{sub 4} and a low permeability to alcohols compared to Nafion. Preliminary fuel cells measurements on hydrogen based Polymer Electrolyte Membrane Fuel Cell (PEMFC) displayed an interestingly reasonable good fuel cell performance, a quite reduced loss when the hydrogen stream was polluted with carbon monoxide, and finally, when the system was tested with an ethanol/water (E/W) fuel, it displayed quite promising results that allows placing this system as an attractive option in order to increase the cell performance and deal with the typical limitations of low temperature Nafion-based PEMFC. (author)

  12. Iodide-conducting polymer electrolytes based on poly-ethylene glycol and MgI2: Synthesis and structural characterization

    International Nuclear Information System (INIS)

    Vittadello, Michele; Waxman, David I.; Sideris, Paul J.; Gan Zhehong; Vezzù, Keti; Negro, Enrico; Safari, Ahmad; Greenbaum, Steve G.; Di Noto, Vito

    2011-01-01

    A major obstacle for a viable technological development of dye sensitized solar cells (DSSCs) is still the synthesis of a high performance iodide-conducting polymer electrolyte. Here we present a series of eight electrolytic complexes with formula PEG1000/(MgI 2 ) x (I 2 ) y (0.0038 ≤ x ≤ 0.5801, 0 ≤ y ≤ 0.0636). The synthesis involves the preparation of a disordered form of MgI 2 by a metallorganic route, which enables us to dissolve high amounts of salt in the chosen polymer host. The thermal analysis of the resulting polymer electrolytes was performed using modulated differential scanning calorimetry measurements. Vibrational studies were carried out using medium FT-IR, far FT-IR and FT-Raman. The variation of the CO and OH stretching modes in the medium infrared, as a function of the mole-to-mole ratio n Mg /n O , was investigated by Gaussian decomposition to provide insight into the polymer–polymer and salt–polymer interactions in these materials. The FT-Raman spectra confirmed and complemented the vibrational assignment. The conductivity study of these systems was performed by electrical spectroscopy in the frequency interval 10 mHz–10 MHz. The direct current conductivity (σ DC ) profiles versus the reciprocal temperature exhibited a Vögel-Tamman-Fülcher (VTF) behavior. The best σ DC at 50 °C was 5 × 10 −5 S cm −1 . The overall results indicate the presence of bivalent, monovalent and neutral species, Mg 2+ , [MgI] + and MgI 2 , respectively, which participate in the conduction process. These results are consistent with what was previously observed in PEG400-based systems doped with δ-MgCl 2 . The presence of at least one Mg site containing a distribution in parameters was observed using 25 Mg solid state magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy. The site has been assigned to a Mg complex involving the coordination by oxygen atoms of the polymer backbone.

  13. Band gap control using electric field of photonic gel cells fabricated with block copolymer and hydrogel.

    Science.gov (United States)

    Lee, Sung Nam; Baek, Young Bin; Shin, Dong Myung

    2014-08-01

    Optical and electrical characteristics of the devices using photonic gel film and hydrogel electrolyte were studied. Poly(styrene-b-2-vinylpyridine) (PS-b-P2VP) lamellar film with alternating hydrophobic block and hydrophilic polyelectrolyte block polymers (52 kg/mol-b-57 kg/mol) were prepared for the photonic gel. Poly(isobutylene-co-maleic acid) sodium salts were prepared for the hydrogel. This hydrogel fiber is common water swelling material and it owned ions for a device has conductivity. Photonic gel and hydrogel was spin coating onto Indium-tin-oxide (ITO) glass for make electric fields. The reflectance maximum wavelength of photonic crystal device shifted from 538 nm and reached to 557 nm, 585 nm and 604 nm during 30 min voltage applying time. The bandwidth variation was very limited. Loss of electrolyte was much less with hydrogel compared to the pure water. We can control color of hydrogel used photonic device by electric field with reasonable time range under moderate electric field by applying 2 V between two facing electrodes.

  14. Solid-state electroanalytical characterization of the nonaqueous proton-conducting redox gel containing polyoxometallates

    International Nuclear Information System (INIS)

    Lewera, Adam; Zukowska, Grazyna; Miecznikowski, Krzysztof; Chojak, Malgorzata; Wieczorek, Wladyslaw; Kulesza, Pawel J.

    2005-01-01

    A novel polymetacrylate-based redox-conducting polymeric gel, into which Keggin-type polyoxometallate, phosphododecatungstic acid (H 3 PW 12 O 40 ), had been incorporated, was electrochemically characterized in the absence of external liquid supporting electrolyte using an ultramicrodisk-working electrode. The phosphotungstate component (15 wt.% of the gel block) was entrapped as the polar organic solvent solution within pores of the polymer matrix. H 3 PW 12 O 40 plays bifunctional role: it provides well-behaved redox centers and serves as strong acid (source of mobile protons). The solid-state voltammetric properties of the system are defined by the reversible one-electron transfers between phosphotungstate redox centers. The following parameters have been determined from the combination of potential step experiments performed in two limiting (radial and linear) diffusional regimes: the concentration of heteropolytungstate redox centers, 6 x 10 -2 mol dm -3 , and the apparent diffusion coefficient, 5 x 10 -7 cm 2 s -1 . The room temperature ionic (protonic) conductivity of the bulk gel was equal to 1.6 x 10 -3 S cm -1 . The charge propagation mechanism was found to be primarily controlled by physical diffusion of heteropolytungstate units within the gel pores rather than by electron hopping (self-exchange) between mixed-valence sites

  15. Symmetric lithium-ion cell based on lithium vanadium fluorophosphate with ionic liquid electrolyte

    International Nuclear Information System (INIS)

    Plashnitsa, Larisa S.; Kobayashi, Eiji; Okada, Shigeto; Yamaki, Jun-ichi

    2011-01-01

    Lithium vanadium fluorophosphate, LiVPO 4 F, was utilized as both cathode and anode for fabrication of a symmetric lithium-ion LiVPO 4 F//LiVPO 4 F cell. The electrochemical evolution of the LiVPO 4 F//LiVPO 4 F cell with the commonly used organic electrolyte LiPF 6 /EC-DMC has shown that this cell works as a secondary battery, but exhibits poor durability at room temperature and absolutely does not work at increased operating temperatures. To improve the performance and safety of this symmetric battery, we substituted a non-flammable ionic liquid (IL) LiBF 4 /EMIBF 4 electrolyte for the organic electrolyte. The symmetric battery using the IL electrolyte was examined galvanostatically at different rates and operating temperatures within the voltage range of 0.01-2.8 V. It was demonstrated that the IL-based symmetric cell worked as a secondary battery with a Coulombic efficiency of 77% at 0.1 mA cm -2 and 25 o C. It was also found that the use of the IL electrolyte instead of the organic one resulted in the general reduction of the first discharge capacity by about 20-25% but provided much more stable behavior and a longer cycle life. Moreover, an increase of the discharge capacity of the IL-based symmetric battery up to 120 mA h g -1 was observed when the operating temperature was increased up to 80 o C at 0.1 mA cm -2 . The obtained electrochemical behavior of both symmetric batteries was confirmed by complex-impedance measurements at different temperatures and cycling states. The thermal stability of LiVPO 4 F with both the IL and organic electrolytes was also examined.

  16. Ionic liquid based multifunctional double network gel

    Science.gov (United States)

    Ahmed, Kumkum; Higashihara, Tomoya; Arafune, Hiroyuki; Kamijo, Toshio; Morinaga, Takashi; Sato, Takaya; Furukawa, Hidemitsu

    2015-04-01

    Gels are a promising class of soft and wet materials with diverse application in tissue engineering and bio-medical purpose. In order to accelerate the development of gels, it is required to synthesize multi-functional gels of high mechanical strength, ultra low surface friction and suitable elastic modulus with a variety of methods and new materials. Among many types of gel ionic gel made from ionic liquids (ILs) could be used for diverse applications in electrochemical devices and in the field of tribology. IL, a promising materials for lubrication, is a salt with a melting point lower than 100 °C. As a lubricant, ILs are characterized by an extremely low vapor pressure, high thermal stability and high ion conductivity. In this work a novel approach of making double network DN ionic gel using IL has been made utilizing photo polymerization process. A hydrophobic monomer Methyl methacrylate (MMA) has been used as a first network and a hydrophobic IL monomer, N,N-diethyl-N-(2-mthacryloylethyl)-N-methylammonium bistrifluoromethylsulfonyl)imide (DEMM-TFSI) has been used as a second network using photo initiator benzophenon and crosslinker triethylene glycol dimethacrylate (TEGDMA). The resulting DN ionic gel shows transparency, flexibility, high thermal stability, good mechanical toughness and low friction coefficient value which can be a potential candidate as a gel slider in different mechanical devices and can open a new area in the field of gel tribology.

  17. Characterization of ι-carrageenan and its derivative based green polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Jumaah, Fatihah Najirah; Mobaraka, Nadhratun Naiim; Ahmad, Azizan; Ramli, Nazaruddin [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan (Malaysia)

    2013-11-27

    The new types of green polymer electrolytes based on ι-carrageenan derivative have been prepared. ι-carrageenan act as precursor was reacted with monochloroacetic acid to produce carboxymethyl ι-carrageenan. The powders were characterized by Attenuated Total Reflection Fourier Transform infrared (ATR-FTIR) spectroscopy and {sup 1}H nuclear magnetic resonance (NMR) to confirm the substitution of targeted functional group in ι-carrageenan. The green polymer electrolyte based on ι-carrageenan and carboxymethyl ι-carrageenan was prepared by solution-casting technique. The films were characterized by electrochemical impedance spectroscopy to determine the ionic conductivity. The ionic conductivity ι-carrageenan film were higher than carboxymethyl ι-carrageenan which 4.87 ×10{sup −6} S cm{sup −1} and 2.19 ×10{sup −8} S cm{sup −1}, respectively.

  18. Silica- and germania-based dual-ligand sol-gel organic-inorganic hybrid sorbents combining superhydrophobicity and π-π interaction. The role of inorganic substrate in sol-gel capillary microextraction.

    Science.gov (United States)

    Seyyal, Emre; Malik, Abdul

    2017-04-29

    Principles of sol-gel chemistry were utilized to create silica- and germania-based dual-ligand surface-bonded sol-gel coatings providing enhanced performance in capillary microextraction (CME) through a combination of ligand superhydrophobicity and π-π interaction. These organic-inorganic hybrid coatings were prepared using sol-gel precursors with bonded perfluorododecyl (PF-C 12 ) and phenethyl (PhE) ligands. Here, the ability of the PF-C 12 ligand to provide enhanced hydrophobic interaction was advantageously combined with π-π interaction capability of the PhE moiety to attain the desired sorbent performance in CME. The effect of the inorganic sorbent component on microextraction performance of was explored by comparing microextraction characteristics of silica- and germania-based sol-gel sorbents. The germania-based dual-ligand sol-gel sorbent demonstrated superior CME performance compared to its silica-based counterpart. Thermogravimetric analysis (TGA) of the created silica- and germania-based dual-ligand sol-gel sorbents suggested higher carbon loading on the germania-based sorbent. This might be indicative of more effective condensation of the organic ligand-bearing sol-gel-active chemical species to the germania-based sol-gel network (than to its silica-based counterpart) evolving in the sol solution. The type and concentration of the organic ligands were varied in the sol-gel sorbents to fine-tune extraction selectivity toward different classes of analytes. Specific extraction (SE) values were used for an objective comparison of the prepared sol-gel CME sorbents. The sorbents with higher content of PF-C 12 showed remarkable affinity for aliphatic hydrocarbons. Compared to their single-ligand sol-gel counterparts, the dual-ligand sol-gel coatings demonstrated significantly superior CME performance in the extraction of alkylbenzenes, providing up to ∼65.0% higher SE values. The prepared sol-gel CME coatings provided low ng L -1 limit of detections (LOD

  19. Scan-Mode Atmospheric-Pressure Plasma Jet Processed Reduced Graphene Oxides for Quasi-Solid-State Gel-Electrolyte Supercapacitors

    Directory of Open Access Journals (Sweden)

    Aliyah R. Hsu

    2018-01-01

    Full Text Available A scanning atmospheric-pressure plasma jet (APPJ is essential for high-throughput large-area and roll-to-roll processes. In this study, we evaluate scan-mode APPJ for processing reduced graphene oxides (rGOs that are used as the electrodes of quasi-solid-state gel-electrolyte supercapacitors. rGO nanoflakes are mixed with ethyl cellulose (EC and terpineol to form pastes for screen-printing. After screen-printing the pastes on carbon cloth, a DC-pulse nitrogen APPJ is used to process the pastes in the scan mode. The maximal temperature attained is ~550 °C with a thermal influence duration of ~10 s per scan. The pastes are scanned by APPJ for 0, 1, 3 and 5 times. X-ray photoelectron spectroscopy (XPS indicates the reduction of C-O binding content as the number of scan increases, suggesting the oxidation/decomposition of EC. The areal capacitance increases and then decreases as the number of scan increases; the best achieved areal capacitance is 15.93 mF/cm2 with one APPJ scan, in comparison to 4.38 mF/cm2 without APPJ processing. The capacitance retention rate of the supercapacitor with the best performance is ~93% after a 1000-cycle cyclic voltammetry (CV test. The optimal number of APPJ scans should enable the proper removal of inactive EC and improved wettability while minimizing the damage caused to rGOs by nitrogen APPJ processing.

  20. Designed synergetic effect of electrolyte additives to improve interfacial chemistry of MCMB electrode in propylene carbonate-based electrolyte for enhanced low and room temperature performance.

    Science.gov (United States)

    Wotango, Aselefech Sorsa; Su, Wei-Nien; Haregewoin, Atetegeb Meazah; Chen, Hung-Ming; Cheng, Ju-Hsiang; Lin, Ming-Hsien; Wang, Chia-Hsin; Hwang, Bing-Joe

    2018-05-09

    The performance of lithium ion batteries rapidly falls at lower temperatures due to decreasing conductivity of electrolytes and Solid Electrolyte Interphase (SEI) on graphite anode. Hence, it limits the practical use of lithium ion batteries at sub-zero temperatures and also affects the development of lithium ion batteries for widespread applications. The SEI formed on the graphite surface is very influential in determining the performance of the battery. Herein, a new electrolyte additive, 4-Chloromethyl-1,3,2-dioxathiolane-2-oxide (CMDO), is prepared to improve the properties of commonly used electrolyte constituents - ethylene carbonate (EC), and fluoroethylene carbonate (FEC). The formation of an efficient passivation layer in propylene carbonate (PC) -based electrolyte for MCMB electrode was investigated. The addition of CMDO resulted in a much less irreversible capacity loss and induces thin SEI formation. However, the combination of the three additives played a key role to enhance reversible capacity of MCMB electrode at lower or ambient temperature. The electrochemical measurement analysis showed that the SEI formed from a mixture of the three additives gave better intercalation-deintercalation of lithium ions.

  1. Cell-Based Fabrication of Organic/Inorganic Composite Gel Material

    Directory of Open Access Journals (Sweden)

    Takayoshi Nakano

    2011-01-01

    Full Text Available Biomaterials containing components similar to the native biological tissue would have benefits as an implantable scaffold material. To obtain such biomimetic materials, cells may be great contributors because of their crucial roles in synthetic organics. In addition, the synthesized organics—especially those derived from osteogenic differentiated cells—become a place where mineral crystals nucleate and grow even in vitro. Therefore to fabricate an organic/inorganic composite material, which is similar to the biological osteoid tissue, bone marrow derived mesenchymal stem cells (BMSCs were cultured in a 3D fibrin gel in this study. BMSCs secreted bone-related proteins that enhanced the biomineralization within the gel when the cells were cultured with an osteogenic differentiation medium. The compositions of both synthesized matrices and precipitated minerals in the obtained materials altered depending on the cell culture period. The mineral obtained in the 3D gel showed low crystalline hydroxyapatite. The composite materials also showed excellent osteoconductivity with new bone formation when implanted in mice tibiae. Thus, we demonstrated the contributions of cells for fabricating implantable organic/inorganic composite gel materials and a method for controlling the material composition in the gel. This cell-based material fabrication method would be a novel method to fabricate organic/inorganic composite biomimetic materials for bone tissue engineering.

  2. Ethylene carbonate-free fluoroethylene carbonate-based electrolyte works better for freestanding Si-based composite paper anodes for Li-ion batteries

    Science.gov (United States)

    Yao, K.; Zheng, J. P.; Liang, R.

    2018-03-01

    Fluoroethylene carbonate (FEC)-based electrolytes using FEC as the co-solvent (50 wt%) are investigated and compared with the electrolyte using FEC as the additive (10 wt%) for freestanding Si-carbon nanotubes (CNTs) composite paper anodes for Li-ion batteries. The ethylene carbonate (EC)-free FEC-based electrolyte is found to achieve higher specific capacity and better capacity retention in terms of long-term cycling. After 500 cycles, the capacity retention of the cell using diethyl carbonate (DEC)-FEC (1:1 w/w) is increased by 88% and 60% compared to the cells using EC-DEC-FEC (45:45:10 w/w/w) and EC-FEC (1:1 w/w), respectively. Through SEM-EDX and XPS analyses, a possible reaction route of formation of fluorinated semicarbonates and polyolefins from FEC is proposed. The inferior cell performance related to the EC-containing electrolytes is likely due to the formation of more polyolefins, which do not favor Li ion migration.

  3. Novel Nonflammable Electrolytes for Secondary Magnesium Batteries and High Voltage Electrolytes for Electrochemcial Supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Brian

    2008-12-30

    Magnesium has been used successfully in primary batteries, but its use in rechargeable cells has been stymied by the lack of suitable non-aqueous electrolyte that can conduct Mg+2 species, combined with poor stripping and plating properties. The development of a suitable cathode material for rechargeable magnesium batteries has also been a roadblock, but a nonflammable electrolyte is key. Likewise, the development of safe high voltage electrochemical supercapaitors has been stymied by the use of flammable solvents in the liquid electrolyte; to wit, acetonitrile. The purpose of the research conducted in this effort was to identify useful compositions of magnesium salts and polyphosphate solvents that would enable magnesium ions to be cycled within a secondary battery design. The polyphosphate solvents would provide the solvent for the magnesium salts while preventing the electrolyte from being flammable. This would enable these novel electrolytes to be considered as an alternative to THF-based electrolytes. In addition, we explored several of these solvents together with lithium slats for use as high voltage electrolytes for carbon-based electrochemical supercapacitors. The research was successful in that: 1) Magnesium imide dissolved in a phosphate ester solvent that contains a halogented phosphate ester appears to be the preferred electrolyte for a rechargeable Mg cell. 2) A combination of B-doped CNTs and vanadium phosphate appear to be the cathode of choice for a rechargeable Mg cell by virtue of higher voltage and better reversibility. 3) Magnesium alloys appear to perform better than pure magnesium when used in combination with the novel polyphosphate electrolytes. Also, this effort has established that Phoenix Innovation's family of phosphonate/phosphate electrolytes together with specific lithium slats can be used in supercapacitor systems at voltages of greater than 10V.

  4. 3D MR gel dosimetry with lung equivalent gel

    International Nuclear Information System (INIS)

    Scherer, J.; Solleder, M.; Schiessl, I.; Bogner, L.; Herbst, M.

    1998-01-01

    The MR gel dosimetry is used to verify complex 3D treatment plans. Till now this method served only for dose evaluation in homogeneous phantoms. On the way to build a heterogeneous anthropomorphic gel phantom, a lung equivalent gel with the density 0.4 g/cm 3 was developed. First experiments show a 1.55 times higher dose reponse in the low density gel (LD gel). The comparison of a dose distribution in a gel/LD gel/gel slab phantom with Monte Carlo calculations shows good agreement within 5%. More over the accuray of the measuring device magnetic resonance imager was studied in respect to the now exclusive digital image processing with the software MRD (MR dosimetry). Because of the dimensions of the Fricke gel phantom an artefact correction, based on the data from the unirradiated phantom proved to be essential. (orig.) [de

  5. The incidence of electrolyte and acid-base abnormalities in critically ...

    African Journals Online (AJOL)

    Background: Electrolytes and acid-base disorders are common challenges seen in the intensive care unit (ICU) resulting in difficulty in weaning patients off the ventilator, prolonged admission periods, preventable cardiac arrhythmias and cardiac arrest. These require prompt lab results most of which are done serially, ...

  6. Tuning thin-film electrolyte for lithium battery by grafting cyclic carbonate and combed poly(ethylene oxide) on polysiloxane.

    Science.gov (United States)

    Li, Jie; Lin, Yue; Yao, Hehua; Yuan, Changfu; Liu, Jin

    2014-07-01

    A tunable polysiloxane thin-film electrolyte for all-solid-state lithium-ion batteries was developed. The polysiloxane was synthesized by hydrosilylation of polymethylhydrosiloxane with cyclic [(allyloxy)methyl]ethylene ester carbonic acid and vinyl tris(2-methoxyethoxy)silane. (1) H NMR spectroscopy and gel-permeation chromatography demonstrated that the bifunctional groups of the cyclic propylene carbonate (PC) and combed poly(ethylene oxide) (PEO) were well grafted on the polysiloxane. At PC/PEO=6:4, the polysiloxane-based electrolyte had an ionic conductivity of 1.55 × 10(-4) and 1.50 × 10(-3)  S cm(-1) at 25 and 100 °C, respectively. The LiFePO4 /Li batteries fabricated with the thin-film electrolyte presented excellent cycling performance in the temperature range from 25 to 100 °C with an initial discharge capacity at a rate of 1 C of 88.2 and 140 mA h g(-1) at 25 and 100 °C, respectively. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Dynamic NMR studies of polymer electrolyte materials for application to lithium-ion batteries and fuel cells

    Science.gov (United States)

    Khalfan, Amish N.

    This dissertation investigates the structural and dynamical properties of polymer electrolyte materials for applications to lithium-ion batteries and fuel cells. The nuclear magnetic resonance (NMR) technique was used to characterize these materials. NMR aids in understanding the local environments of nuclei and the mobility of a molecular/ionic species. Five research projects were carried out, and they have been outlined in this work. NASA has developed rod-coil block copolymers for use as electrolytes in lithium-ion batteries. The copolymers exhibit a microphase separation within their structure leading to the formation of ionically conducting channels. We studied ion transport properties of the copolymers, and determined the predominant mechanism for transport to occur in the amorphous phase. Seven gel polymer electrolytes, each containing a mixture of LiBETI salt and organic solvents, were studied. Two of them incorporated BMI (1-n-butyl-3-methylimidazolium) ionic liquid. Ionic liquids are room temperature molten salts. BMI had been thought to enhance ion mobility. However, the BMI component was observed to restrict ion mobility. Gel polymer electrolytes containing LiTFSI salt and P13TFSI ionic liquid with or without the inclusion of ethylene carbonate (EC) were studied for application to lithium metal/air batteries, which have high theoretical energy densities. The addition of EC was found to improve lithium ion transport. The gels with EC therefore prove to be favorable for use as electrolytes in lithium metal/air batteries. Highly sulfonated poly(arylenethioethersulfone) (SPTES) membranes were examined for use in direct methanol fuel cells (DMFCs) as an alternative to the Nafion membrane. DMFCs use methanol as a fuel instead of reformed hydrogen as in conventional proton exchange membrane fuel cells. Compared to Nafion, the SPTES membranes were shown to retain water better at high temperatures and yield lower methanol diffusion. SPTES membranes with the

  8. Novel inorganic materials for polymer electrolyte and alkaline fuel cells

    Science.gov (United States)

    Tadanaga, Kiyoharu

    2012-06-01

    Inorganic materials with high ionic conductivity must have big advantages for the thermal and long term stability when the materials are used as the electrolyte of fuel cells. In the present paper, novel ionic conductive inorganic materials for polymer electrolyte fuel cells (PEFCs) and all solid state alkaline fuel cells (AFCs) that have been developed by our group have been reviewed. PEFCs which can operate in temperature range from 100 to 200 °C are intensively studied because of some advantages such as reduction of CO poisoning of Pt catalyst and acceleration of electrode reactions. We showed that the fuel cells using the composite membranes prepared from phosphosilicate gel powder and polyimide precursor can operate in the temperature range from 30 to 180 °C. We also found that the inorganic-organic hybrid membranes with acid-base pairs from 3-aminopropyl triethoxy silane and H2SO4 or H3PO4 show high proton conductivity under dry atmosphere, and the membranes are thermally stable at intermediate temperatures. On the other hand, because the use of noble platinum is the serious problem for the commercialization of PEFCs and because oxidation reactions are usually faster than those of acid-type fuel cells, alkaline type fuel cells, in which a nonplatinum catalyst can be used, are attractive. Recently, we have proposed an alkaline-type direct ethanol fuel cell (DEFC) using a natural clay electrolyte with non-platinum catalysts. So-called hydrotalcite clay, Mg-Al layered double hydroxide intercalated with CO32- (Mg-Al CO32- LDH), has been proved to be a hydroxide ion conductor. An alkalinetype DEFC using Mg-Al CO32- LDH as the electrolyte and aqueous solution of ethanol and potassium hydroxide as a source of fuel exhibited excellent electrochemical performance.

  9. Hydrogen ion conducting starch-chitosan blend based electrolyte for application in electrochemical devices

    International Nuclear Information System (INIS)

    Shukur, M.F.; Kadir, M.F.Z.

    2015-01-01

    Highlights: • Cation transference number of the highest conducting starch-chitosan-NH 4 Cl-glycerol electrolyte is 0.56. • LSV has shown that the polymer electrolyte is suitable for fabrication of EDLC and proton batteries. • The fabricated EDLC has been charged and discharged for 500 cycles. • Secondary proton battery has been charged and discharged for 40 cycles. - Abstract: This paper reports the characterization of starch-chitosan blend based solid polymer electrolyte (SPE) system and its application in electrochemical double layer capacitor (EDLC) and proton batteries. All the SPEs are prepared via solution cast technique. Results from X-ray diffraction (XRD) verify the conductivity result from our previous work. Scanning electron microscopy (SEM) analysis shows the difference in the electrolyte's surface with respect to NH 4 Cl and glycerol content. From transference number measurements (TNM), transference number of ion (t ion ) of the electrolytes shows that ion is the dominant conducting species. Transference number of cation (t + ) for the highest conducting electrolyte is found to be 0.56. Linear sweep voltammetry (LSV) result confirms the suitability of the highest conducting electrolyte to be used in the fabrication of EDLC and proton batteries. The EDLC has been characterized using cyclic voltammetry (CV) and galvanostatic charge-discharge measurements. The open circuit potential (OCP) of the primary proton batteries for 48 h is lasted at (1.54 ± 0.02) V, while that of secondary proton batteries is lasted at (1.58 ± 0.01) V. The primary proton batteries have been discharged at different constant currents. The secondary proton battery has been charged and discharged for 40 cycles

  10. A facile prestrain-stick-release assembly of stretchable supercapacitors based on highly stretchable and sticky hydrogel electrolyte

    Science.gov (United States)

    Tang, Qianqiu; Chen, Mingming; Wang, Gengchao; Bao, Hua; Saha, Petr

    2015-06-01

    A facile prestrain-stick-release assembly strategy for the stretchable supercapacitor device is developed based on a novel Na2SO4-aPUA/PAAM hydrogel electrolyte, saving the stretchable rubber base conventionally used. The Na2SO4-aPUA/PAAM hydrogel electrolyte exhibits high stretchability (>1000%), electrical conductivity (0.036 S cm-1) and stickiness. Due to the unique features of the hydrogel electrolyte, the carbon nanotube@MnO2 film electrodes can be firmly stuck to two sides of the prestrained hydrogel electrolyte. Then, by releasing the hydrogel electrolyte, homogenous buckles are formed for the film electrodes to get a full stretchable supercapacitor device. Besides, the high stickiness of the hydrogel electrolyte ensures its strong adhesion with the film electrodes, facilitating ion and electronic transfer of the supercapacitor. As a result, excellent electrochemical performance is achieved with the specific capacitance of 478.6 mF cm-2 at 0.5 mA cm-2 (corresponding to 201.1 F g-1) and capacitance retention of 91.5% after 3000 charging-discharging cycles under 150% strain, which is the best for the stretchable supercapacitors.

  11. The buffer effect in neutral electrolyte supercapacitors

    DEFF Research Database (Denmark)

    Thrane Vindt, Steffen; Skou, Eivind M.

    2016-01-01

    The observation that double-layer capacitors based on neutral aqueous electrolytes can have significantly wider usable potential windows than those based on acidic or alkaline electrolytes is studied. This effect is explained by a local pH change taking place at the electrode surfaces, leading...... potassium nitrate as the electrolyte and potassium phosphates as the buffer system....

  12. Microemulsion and Microemulsion-Based Gels for Topical Antifungal Therapy with Phytochemicals.

    Science.gov (United States)

    Boonme, Prapaporn; Kaewbanjong, Jarika; Amnuaikit, Thanaporn; Andreani, Tatiana; Silva, Amélia M; Souto, Eliana B

    2016-01-01

    Skin fungal infections are regular injuries suffered by people living in tropical areas. Most common pathogens are Trichophyton, Microsporum and Epidermophyton which can cause skin lesions in many parts of body. Topical antifungal phytochemicals are commonly used to avoid systemic adverse events and are more convenient for patient application than those administered by other routes. However, the effectiveness of topical treatments in eradicating fungal infection is more limited since the stratum corneum acts as the skin barrier, resulting in long treatment duration and low patient's compliance. The goal of this work is to identify optimized drug delivery systems to improve topic clinical efficacy. Microemulsions i.e. liquid dispersions of oil and water stabilized with an interfacial film of surfactant are well known drug delivery systems. A thickening agent may be included to form microemulsion-based gels to increase skin adhesion. Microemulsions and microemulsion-based gels can be loaded with several hydrophilic and lipophilic drugs because they are composed of both water and oil phases. Microemulsions and microemulsion-based gels can also be used for the delivery of many drugs including antifungal drugs through stratum corneum due to their capacity to act as skin penetration enhancement. In addition to a comprehensive review of microemulsion and microemulsion-based gels as suitable carriers for skin delivery of various antifungal drugs, this review also aims to discuss the delivery of antifungal phytochemicals.

  13. Ionic conduction in polyether-based lithium arylfluorosulfonimide ionic melt electrolytes

    International Nuclear Information System (INIS)

    Herath, Mahesha B.; Creager, Stephen E.; Rajagopal, Rama V.; Geiculescu, Olt E.; DesMarteau, Darryl D.

    2009-01-01

    We report synthesis, characterization and ion transport in polyether-based ionic melt electrolytes consisting of Li salts of low-basicity anions covalently attached to polyether oligomers. Purity of the materials was investigated by HPLC analysis and electrospray ionization mass spectrometry. The highest ionic conductivity of 7.1 x 10 -6 S/cm at 30 deg. C was obtained for the sample consisting of a lithium salt of an arylfluorosulfonimide anion attached to a polyether oligomer with an ethyleneoxide (EO) to lithium ratio of 12. The conductivity order of various ionic melts having different polyether chain lengths suggests that at higher EO:Li ratios the conductivity of the electrolytes at room temperature is determined in part by the amount of crystallization of the polyether portion of the ionic melt.

  14. Properties of ENR-50 Based Electrolyte System

    International Nuclear Information System (INIS)

    Zainal, N.; Mohamed, N.S.; Zainal, N.; Idris, R.

    2013-01-01

    In this work, epoxidized natural rubber 50 (ENR-50) has been used as a host polymer for the preparation of electrolyte system. Attenuated total reflection-fourier transform infrared spectroscopic analyses showed the presence of lithium salt-ENR interactions. The glass transition temperature displayed an increasing trend with the increase in salt concentration indicating that the ionic conductivity was not influenced by segmental motion of the ENR-50 chains. The increase in glass transition temperature with the addition of salt was due to the formation of transient cross-linking between ENR-50 chains via the coordinated interaction between ENR-50 chains and salt. The highest room temperature ionic conductivity obtained was in the order of 10 -5 S cm -1 for the film containing 50 wt % of lithium salt. The ionic conductivity of this electrolyte system increased with increasing temperature and obeyed the Vogel-Tamman-Fulcher behavior. The increase in ionic conductivity of the electrolyte system with salt concentration could also be correlated to the charge carriers concentration and/ or migration rate of charge carriers. (author)

  15. POLYMER ELECTROLYTE MEMBRANE FUEL CELLS

    DEFF Research Database (Denmark)

    2001-01-01

    A method for preparing polybenzimidazole or polybenzimidazole blend membranes and fabricating gas diffusion electrodes and membrane-electrode assemblies is provided for a high temperature polymer electrolyte membrane fuel cell. Blend polymer electrolyte membranes based on PBI and various...... thermoplastic polymers for high temperature polymer electrolyte fuel cells have also been developed. Miscible blends are used for solution casting of polymer membranes (solid electrolytes). High conductivity and enhanced mechanical strength were obtained for the blend polymer solid electrolytes....... With the thermally resistant polymer, e.g., polybenzimidazole or a mixture of polybenzimidazole and other thermoplastics as binder, the carbon-supported noble metal catalyst is tape-cast onto a hydrophobic supporting substrate. When doped with an acid mixture, electrodes are assembled with an acid doped solid...

  16. Solid-state electroanalytical characterization of the nonaqueous proton-conducting redox gel containing polyoxometallates

    Energy Technology Data Exchange (ETDEWEB)

    Lewera, Adam [Department of Chemistry, University of Warsaw, Pasteura 1, PL-02-093 Warsaw (Poland); Zukowska, Grazyna [Department of Chemistry, Warsaw University of Technology, Noakowskiego 3, PL-00-664 Warsaw (Poland); Miecznikowski, Krzysztof [Department of Chemistry, University of Warsaw, Pasteura 1, PL-02-093 Warsaw (Poland); Chojak, Malgorzata [Department of Chemistry, University of Warsaw, Pasteura 1, PL-02-093 Warsaw (Poland); Wieczorek, Wladyslaw [Department of Chemistry, Warsaw University of Technology, Noakowskiego 3, PL-00-664 Warsaw (Poland); Kulesza, Pawel J. [Department of Chemistry, University of Warsaw, Pasteura 1, PL-02-093 Warsaw (Poland)]. E-mail: pkulesza@chem.uw.edu.pl

    2005-04-22

    A novel polymetacrylate-based redox-conducting polymeric gel, into which Keggin-type polyoxometallate, phosphododecatungstic acid (H{sub 3}PW{sub 12}O{sub 40}), had been incorporated, was electrochemically characterized in the absence of external liquid supporting electrolyte using an ultramicrodisk-working electrode. The phosphotungstate component (15 wt.% of the gel block) was entrapped as the polar organic solvent solution within pores of the polymer matrix. H{sub 3}PW{sub 12}O{sub 40} plays bifunctional role: it provides well-behaved redox centers and serves as strong acid (source of mobile protons). The solid-state voltammetric properties of the system are defined by the reversible one-electron transfers between phosphotungstate redox centers. The following parameters have been determined from the combination of potential step experiments performed in two limiting (radial and linear) diffusional regimes: the concentration of heteropolytungstate redox centers, 6 x 10{sup -2} mol dm{sup -3}, and the apparent diffusion coefficient, 5 x 10{sup -7} cm{sup 2} s{sup -1}. The room temperature ionic (protonic) conductivity of the bulk gel was equal to 1.6 x 10{sup -3} S cm{sup -1}. The charge propagation mechanism was found to be primarily controlled by physical diffusion of heteropolytungstate units within the gel pores rather than by electron hopping (self-exchange) between mixed-valence sites.

  17. Selective recovery of Ag(I) coordination anion from simulate nickel electrolyte using corn stalk based adsorbent modified by ammonia–thiosemicarbazide

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Ying, E-mail: xiongying_1977@hotmail.com; Wan, Li; Xuan, Jing; Wang, Yongwei; Xing, Zhiqing; Shan, Weijun; Lou, Zhenning

    2016-01-15

    Highlights: • We developed a “green” corn stalk adsorbent treated by thiosemicarbazide–glutaraldehyde. • Adsorption mechanism of AgCl{sub i}{sup 1−i} could be electrostatic interaction with C−SH{sup +}−N and C=SH{sup +} group. • The gel could selectively adsorb AgCl{sub i}{sup 1−i} coordination anion from the Ag(I)–Cu(II)–Ni(II) simulate nickel electrolyte. - Abstract: In nickel electrolyte, Ag(I) was present at trace level concentration (10–20 mg L{sup −1}) and existed in the form of AgCl{sub i}{sup 1−i} coordination anion, instead of Ag{sup +} positive ion usually in several sources. In the present study, TSC-NH{sub 3}-OCS adsorbent based on natural corn stalk modified by ammonia (NH{sub 3})–thiosemicarbazide (TSC) was synthesized and characterized using some instrumental techniques. The TSC-NH{sub 3}-OCS adsorbent could selectively adsorb Ag(I) as AgCl{sub i}{sup 1−i} coordination anion from the Ag(I)–Cu(II)–Ni(II) simulate nickel electrolyte, especially in the case of the very high levels of Cu(II) and Ni(II), which significantly outperforms the commercial available resins. The adsorption mechanism was believed to be electrostatic interaction of the protonated bands of AgCl{sub 4}{sup 3−} with protonated thiol form of the thioamide units by FTIR and XPS analysis. The maximum adsorption capacity in the Ag(I) single and Ag(I)–Cu(II)–Ni(II) ternary system were obtained and calculated as 153.54 and 46.69 mg g{sup −1}, respectively. The reasons that the maximum adsorption capacity of AgCl{sub i}{sup 1−i} from the single and ternary system varied widely could be explained by adsorption kinetic and thermodynamic results. In addition, three successive sorption/desorption cycle runs from ternary system were performed which indicated that the TSC-NH{sub 3}-OCS adsorbent has a good performance for recovery Ag(I) from simulate nickel electrolyte.

  18. Energy-density enhancement of carbon-nanotube-based supercapacitors with redox couple in organic electrolyte.

    Science.gov (United States)

    Park, Jinwoo; Kim, Byungwoo; Yoo, Young-Eun; Chung, Haegeun; Kim, Woong

    2014-11-26

    We demonstrate for the first time that the incorporation of a redox-active molecule in an organic electrolyte can increase the cell voltage of a supercapacitor. The redox molecule also contributes to increasing the cell capacitance by a faradaic redox reaction, and therefore the energy density of the supercapacitor can be significantly increased. More specifically, the addition of redox-active decamethylferrocene in an organic electrolyte results in an approximately 27-fold increase in the energy density of carbon-nanotube-based supercapacitors. The resulting high energy density (36.8 Wh/kg) stems from the increased cell voltage (1.1 V→2.1 V) and cell capacitance (8.3 F/g→61.3 F/g) resulting from decamethylferrocene addition. We found that the voltage increase is associated with the potential of the redox species relative to the electrochemical stability window of the supporting electrolyte. These results will be useful in identifying new electrolytes for high-energy-density supercapacitors.

  19. High-performance supercapacitors based on vertically aligned carbon nanotubes and nonaqueous electrolytes

    International Nuclear Information System (INIS)

    Kim, Byungwoo; Kim, Woong; Chung, Haegeun

    2012-01-01

    We demonstrate the high performance of supercapacitors fabricated with vertically aligned carbon nanotubes and nonaqueous electrolytes such as ionic liquids and conventional organic electrolytes. Specific capacitance, maximum power and energy density of the supercapacitor measured in ionic liquid were ∼75 F g −1 , ∼987 kW kg −1 and ∼27 W h kg −1 , respectively. The high power performance was consistently indicated by a fast relaxation time constant of 0.2 s. In addition, electrochemical oxidation of the carbon nanotubes improved the specific capacitance (∼158 F g −1 ) and energy density (∼53 W h kg −1 ). Both high power and energy density could be attributed to the fast ion transport realized by the alignment of carbon nanotubes and the wide operational voltage defined by the ionic liquid. The demonstrated carbon-nanotube- and nonaqueous-electrolyte-based supercapacitors show great potential for the development of high-performance energy storage devices. (paper)

  20. High-performance supercapacitors based on vertically aligned carbon nanotubes and nonaqueous electrolytes.

    Science.gov (United States)

    Kim, Byungwoo; Chung, Haegeun; Kim, Woong

    2012-04-20

    We demonstrate the high performance of supercapacitors fabricated with vertically aligned carbon nanotubes and nonaqueous electrolytes such as ionic liquids and conventional organic electrolytes. Specific capacitance, maximum power and energy density of the supercapacitor measured in ionic liquid were ~75 F g(-1), ~987 kW kg(-1) and ~27 W h kg(-1), respectively. The high power performance was consistently indicated by a fast relaxation time constant of 0.2 s. In addition, electrochemical oxidation of the carbon nanotubes improved the specific capacitance (~158 F g(-1)) and energy density (~53 W h kg(-1)). Both high power and energy density could be attributed to the fast ion transport realized by the alignment of carbon nanotubes and the wide operational voltage defined by the ionic liquid. The demonstrated carbon-nanotube- and nonaqueous-electrolyte-based supercapacitors show great potential for the development of high-performance energy storage devices. © 2012 IOP Publishing Ltd

  1. High-performance supercapacitors based on vertically aligned carbon nanotubes and nonaqueous electrolytes

    Science.gov (United States)

    Kim, Byungwoo; Chung, Haegeun; Kim, Woong

    2012-04-01

    We demonstrate the high performance of supercapacitors fabricated with vertically aligned carbon nanotubes and nonaqueous electrolytes such as ionic liquids and conventional organic electrolytes. Specific capacitance, maximum power and energy density of the supercapacitor measured in ionic liquid were ˜75 F g-1, ˜987 kW kg-1 and ˜27 W h kg-1, respectively. The high power performance was consistently indicated by a fast relaxation time constant of 0.2 s. In addition, electrochemical oxidation of the carbon nanotubes improved the specific capacitance (˜158 F g-1) and energy density (˜53 W h kg-1). Both high power and energy density could be attributed to the fast ion transport realized by the alignment of carbon nanotubes and the wide operational voltage defined by the ionic liquid. The demonstrated carbon-nanotube- and nonaqueous-electrolyte-based supercapacitors show great potential for the development of high-performance energy storage devices.

  2. Electrochemical flue gas desulfurization: Reactions in a pyrosulfate-based electrolyte

    International Nuclear Information System (INIS)

    Scott, K.; Fannon, T.; Winnick, J.

    1988-01-01

    A new electrolyte has been found suitable for use in an electrochemical membrane cell for flue gas desulfurization (FGD). The electrolyte is primarily K/sub 2/S/sub 2/O/sub 7/ and K/sub 2/SO/sub 4/ with V/sub 2/O/sub 5/ as oxidation enhancer. This electrolyte has a melting point near 300/sup 0/C which is compatible with flue gas exiting the economizer of coal-burning power plants. Standard electrochemical tests have revealed high exchange current densities around 30 mA/cm/sup 2/, in the free electrolyte. Sulfur dioxide is found to be removed from simulated flue gas in a multiple-step process, the first of which is electrochemical reduction of pyrosulfate

  3. Nanoemulsion-based gel formulation of diclofenac diethylamine: design, optimization, rheological behavior and in vitro diffusion studies.

    Science.gov (United States)

    Hamed, Rania; Basil, Marwa; AlBaraghthi, Tamadur; Sunoqrot, Suhair; Tarawneh, Ola

    2016-12-01

    Chronic oral administration of the non-steroidal anti-inflammatory drug, diclofenac diethylamine (DDEA), is often associated with gastrointestinal ulcers and bleeding. As an alternative to oral administration, a nanoemulsion-based gel (NE gel) formulation of DDEA was developed for topical administration. An optimized formulation for the o/w nanoemulsion of oil, surfactant and cosurfactant was selected based on nanoemulsion mean droplet size, clarity, stability, and flowability, and incorporated into the gelling agent Carbopol® 971P. Rheological studies of the DDEA NE gel were conducted and compared to those of conventional DDEA gel and emulgel. The three gels exhibited an elastic behavior, where G' dominated G″ at all frequencies, indicating the formation of strong gels. NE gel exhibited higher G' values than conventional gel and emulgel, which indicated the formation of a stronger gel network. Strat-M® membrane, a synthetic membrane with diffusion characteristics that are well correlated to human skin, was used for the in vitro diffusion studies. The release of DDEA from conventional gel, emulgel and NE gel showed a controlled release pattern over 12 h, which was consistent with the rheological properties of the gels. DDEA release kinetics from the three gels followed super case II transport as fitted by Korsmeyer-Peppas model.

  4. Lithium/sulfur batteries with mixed liquid electrolytes based on ethyl 1,1,2,2-tetrafluoroethyl ether

    International Nuclear Information System (INIS)

    Lu, Hai; Zhang, Kai; Yuan, Yan; Qin, Furong; Zhang, Zhian; Lai, Yanqing; Liu, Yexiang

    2015-01-01

    Highlights: • Electrolyte based on fluorinated ether of ETFE is used in Li/S battery. • ETFE improves cycling, rate and self-discharging performances of Li/S battery. • Surface film on Li anode modified by ETFE inhibits the shuttle of polysulfides. - Abstract: Fluorinated ether of ethyl 1,1,2,2-tetrafluoroethyl ether (ETFE) was selected as electrolyte solvent for lithium/sulfur battery, and the influence of ETFE in electrolyte on cell properties was first investigated. The enhanced stability of electrolyte/anode interface and improved electrochemical performances (cycling, rate and self-discharging) of the Li/S cell are presented by using ETFE-containing electrolyte, especially for complete replacement of tetraethylene glycol dimethyl ether (TEGDME) by ETFE in combine with 1,3-dioxolane (DOL). It is found that ETFE plays a key role in modifying the surface composition and structure of the metallic Li, forming a strengthened protective film on the anode during cycling. Besides, ETFE is considered to decrease the dissolution of polysulfides in the electrolyte. These factors together restrict the contact and reaction between polysulfides and Li anode

  5. GelTouch

    DEFF Research Database (Denmark)

    Miruchna, Viktor; Walter, Robert; Lindlbauer, David

    2015-01-01

    We present GelTouch, a gel-based layer that can selectively transition between soft and stiff to provide tactile multi-touch feedback. It is flexible, transparent when not activated, and contains no mechanical, electromagnetic, or hydraulic components, resulting in a compact form factor (a 2mm thin...... touchscreen layer for our prototype). The activated areas can be morphed freely and continuously, without being limited to fixed, predefined shapes. GelTouch consists of a poly(N-isopropylacrylamide) gel layer which alters its viscoelasticity when activated by applying heat (>32 C). We present three different...

  6. Ionic Liquid based polymer electrolytes for electrochemical sensors

    Directory of Open Access Journals (Sweden)

    Jakub Altšmíd

    2015-09-01

    Full Text Available Amperometric NO2 printed sensor with a new type of solid polymer electrolyte and a carbon working electrode has been developed. The electrolytes based on 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonylimide [EMIM][N(Tf2], 1-butyl-3-methylimidazolium trifluoromethanesulfonate [BMIM][CF3SO3] and 1-ethyl-3-methylimidazolium tetrafluoroborate [EMIM][BF4] ionic liquids were immobilized in poly(vinylidene fluoride matrix [PVDF]. The analyte, gaseous nitrogen dioxide, was detected by reduction at -500 mV vs. platinum pseudoreference electrode. The sensors showed a linear behavior in the whole tested range, i.e., 0 - 5 ppm and their sensitivities were in order of 0.3 x∙10-6 A/ppm. The sensor sensitivity was influenced by the electric conductivity of printing formulation; the higher the conductivity, the higher the sensor sensitivity. The rise/recovery times were in order of tens of seconds. The use of  screen printing technology and platinum pseudoreference electrode simplify the sensor fabrication and it does not have any negative effect on the sensor stability.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7371

  7. Preparation and characterization of Jatropha oil-based Polyurethane as non-aqueous solid polymer electrolyte for electrochemical devices

    International Nuclear Information System (INIS)

    Mustapa, Siti Rosnah; Aung, Min Min; Ahmad, Azizan; Mansor, Ahmad; TianKhoon, Lee

    2016-01-01

    Jatropha-oil based polyurethane is one of the initiative for replacing conventional petroleum based polyurethane. The vegetable oil-based polyurethane is more cost-effective and synthesize from renewable resources. Polyurethane was synthesized through prepolymerization method between jatropha oil-based polyol and diphenylmethane 4, 4’diisocyanate, (MDI) in inert condition. Then, lithium perchloride ion (LiClO 4 ) was added to the polyurethane system to form electrolyte film via solution casting technique. The polymer electrolytes were prepared by varying the amount of LiClO 4 ion 10 wt.% to 30 wt. %. The highest conductivity is achieved at 25 wt.% of LiClO 4 salt content, which is 1.29 × 10 −4 S/cm at room temperature 30 °C. The FTIR results showed the shifting of carbonyl group (C=O) (1750 cm −1 – 1730 cm −1 ), ether and ester group (C-O-C) (1300 cm −1 –1000 cm −1 ) and amine functional groups (N-H) (1650 cm −1 –1500 cm −1 ) in polyurethane electrolytes from the blank polyurethane shows that oxygen and nitrogen atom acts as electron donor in the electrolytes system. It also confirmed that the intermolecular reaction had occurred in the electrolytes system. While, the XRD analysis showed the semi-crystalline properties of polyurethane have been reduced to amorphous phase upon the increasing addition of lithium ion. SEM results revealed the morphology analysis of the polyurethane electrolytes. There is homogenous and smooth surface in polyurethane and the dissociation of salt was observed after the addition of salt indicates there was interaction between salt and the polymer host.

  8. Role of perfluoropolyether-based electrolytes in lithium metal batteries: Implication for suppressed Al current collector corrosion and the stability of Li metal/electrolytes interfaces

    Science.gov (United States)

    Cong, Lina; Liu, Jia; Armand, Michel; Mauger, Alain; Julien, Christian M.; Xie, Haiming; Sun, Liqun

    2018-03-01

    The development of safe and high performance lithium metal batteries represents a major technological challenge for this new century. Historically, intrinsic instabilities of conventional liquid organic electrolytes induced battery failures and safety issues that hinder the practical utilization of advanced rechargeable lithium metal batteries. Herein, we report a multifunctional perfluoropolyether-based liquid polymer electrolyte (PFPE-MC/LiTFSI), presenting a unique "anion-solvent" interaction. This interaction optimizes the interfacial chemistry of lithium metal batteries, which effectively inhibits the corrosion of aluminum current collectors, suppresses lithium dendrite growth, and also facilitates the formation of a thin and stable SEI layer on Li anode. Even at a high current density of 0.7 mA cm-2, the lithium dendrites do not form after 1360 h of continuous operation. The LiFePO4|PFPE-MC/LiTFSI|Li cell delivers a stable cycling performance with over 99.9% columbic efficiency either at ambient temperature or high temperature, which is significantly superior to those using traditional carbonate electrolytes. In addition, PFPE-MC/LiTFSI electrolyte also possesses eye-catching properties, such as being non-flammable, non-volatile, non-hygroscopic, and existing in the liquid state between -90 °C and 200 °C, which further ensures the high safety of the lithium metal batteries, making this electrolyte promising for the development of high energy lithium metal batteries.

  9. High-performance flexible supercapacitor based on porous array electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Shieh, Jen-Yu; Tsai, Sung-Ying; Li, Bo-Yan [Institute of Electro-Optical and Materials Science, National Formosa University, 64 Wenhua Road, Huwei, Yunlin 63208, Taiwan (China); Yu, Hsin Her, E-mail: hhyu@nfu.edu.tw [Department of Biotechnology, National Formosa University, 64 Wenhua Road, Huwei, Yunlin 63208, Taiwan (China)

    2017-07-01

    In this study, an array of polystyrene (PS) spheres was synthesized by a dispersion-polymerization technique as a template onto which a porous polydimethylsiloxane (PDMS) microarray structure was fabricated by soft lithography. A conducting layer was coated on the surface of the microarray after a suspension of multi-walled carbon nanotubes (MWCNTs) mixed with graphene (G) had been poured into the porous array. A PDMS-based porous supercapacitor was assembled by sandwiching a separator between two porous electrodes filled with a H{sub 3}PO{sub 4}/polyvinyl alcohol (PVA) gel electrolyte. The specific capacitance, electrochemical properties, and cycle stability of the porous electrode supercapacitors were explored. The porous PDMS-electrode-based supercapacitor exhibited high specific capacitance and good cycle stability, indicating its enormous potential for future applications in wearable and portable electronic products. - Highlights: • Porous electrode was prepared using an array of polystyrene spheres as template. • The porous electrodes provided increased contact area with the electrolyte. • A gel electrolyte averted problems with leakage and poor interfacial contact. • A larger separator pore size effectively reduced the internal resistance, iR{sub drop}. • Porous PDMS supercapacitor showed superior flexibility and cycling stability.

  10. [Synthesis and Characterization of a Sugar Based Electrolyte for Thin-film Polymer Batteries

    Science.gov (United States)

    1998-01-01

    The work performed during the current renewal period, March 1,1998 focused primarily on the synthesis and characterization of a sugar based electrolyte for thin-film polymer batteries. The initial phase of the project involved developing a suitable sugar to use as the monomer in the polymeric electrolyte synthesis. The monomer has been synthesized and characterized completely. Overall the yield of this material is high and it can be produced in relatively large quantity easily and in high purity. The scheme used for the preparation of the monomer is outlined along with pertinent yields.

  11. Effect of Mixing Dyes and Solvent in Electrolyte Toward Characterization of Dye Sensitized Solar Cell Using Natural Dyes as The Sensitizer

    Science.gov (United States)

    Puspitasari, Nurrisma; Nurul Amalia, Silviyanti S.; Yudoyono, Gatut; Endarko

    2017-07-01

    Dye Sensitized Solar Cell (DSSC) using natural dyes (chlorophyll, curcumin from turmeric extract, and anthocyanin from mangosteen extract) have been successfully fabricated for determining the effect of variation natural dyes, mixing dyes and acetonitrile in electrolyte toward characterization of DSSC. DSSC consists of five parts namely ITO (Indium Tin Oxide) as a substrate; TiO2 as semiconductor materials; natural dyes as an electron donor; electrolyte as electron transfer; and carbon as a catalyst that can convert light energy into electric energy. Two types of gel electrolyte based on PEG that mixed with liquid electrolyte have utilized for analyzing the lifetime of DSSC. Type I used distilled water as a solvent whilst type II used acetonitrile as a solvent with addition of concentration of KI and iodine. The main purpose of study was to investigate influence of solvent in electrolyte, variation of natural dyes and mixing dyes toward an efficiency that resulted by DSSC. The result showed that electrolyte type II is generally better than type I with efficiency 0,0556 and 0,0456 %, respectively. An efficiency values which resulted from a variation of mixed three natural dyes showed the greatest efficiency compared to mixed two natural dyes and one dye, with an efficiency value can be achieved at 0,0194 % for chlorophyll; 0,111 % for turmeric; 0,0105 % for mangosteen; 0,0244% (mangosteen and chlorophyll); 0,0117 % (turmeric and mangosteen); 0,0158 % (turmeric and chlorophyll); and 0.0566 % (mixed three natural dyes).

  12. Impedance studies of a green blend polymer electrolyte based on PVA and Aloe-vera

    Science.gov (United States)

    Selvalakshmi, S.; Mathavan, T.; Vijaya, N.; Selvasekarapandian, Premalatha, M.; Monisha, S.

    2016-05-01

    The development of polymer electrolyte materials for energy generating and energy storage devices is a challenge today. A new type of blended green electrolyte based on Poly-vinyl alcohol (PVA) and Aloe-vera has been prepared by solution casting technique. The blending of polymers may lead to the increase in stability due to one polymer portraying itself as a mechanical stiffener and the other as a gelled matrix supported by the other. The prepared blend electrolytes were subjected to Ac impedance studies. It has been found out that the polymer film in which 1 gm of PVA was dissolved in 40 ml of Aloe-vera extract exhibits highest conductivity and its value is 3.08 × 10-4 S cm-1.

  13. Enhanced cycling performance of a Li metal anode in a dimethylsulfoxide-based electrolyte using highly concentrated lithium salt for a lithium-oxygen battery

    Science.gov (United States)

    Togasaki, Norihiro; Momma, Toshiyuki; Osaka, Tetsuya

    2016-03-01

    Stable charge-discharge cycling behavior for a lithium metal anode in a dimethylsulfoxide (DMSO)-based electrolyte is strongly desired of lithium-oxygen batteries, because the Li anode is rapidly exhausted as a result of side reactions during cycling in the DMSO solution. Herein, we report a novel electrolyte design for enhancing the cycling performance of Li anodes by using a highly concentrated DMSO-based electrolyte with a specific Li salt. Lithium nitrate (LiNO3), which forms an inorganic compound (Li2O) instead of a soluble product (Li2S) on a lithium surface, exhibits a >20% higher coulombic efficiency than lithium bis(trifluoromethanesulfonyl)imide, lithium bis(fluorosulfonyl)imide, and lithium perchlorate, regardless of the loading current density. Moreover, the stable cycling of Li anodes in DMSO-based electrolytes depends critically on the salt concentration. The highly concentrated electrolyte 4.0 M LiNO3/DMSO displays enhanced and stable cycling performance comparable to that of carbonate-based electrolytes, which had not previously been achieved. We suppose this enhancement is due to the absence of free DMSO solvent in the electrolyte and the promotion of the desolvation of Li ions on the solid electrolyte interphase surface, both being consequences of the unique structure of the electrolyte.

  14. Electrolyte for batteries with regenerative solid electrolyte interface

    Science.gov (United States)

    Xiao, Jie; Lu, Dongping; Shao, Yuyan; Bennett, Wendy D.; Graff, Gordon L.; Liu, Jun; Zhang, Ji-Guang

    2017-08-01

    An energy storage device comprising: an anode; and a solute-containing electrolyte composition wherein the solute concentration in the electrolyte composition is sufficiently high to form a regenerative solid electrolyte interface layer on a surface of the anode only during charging of the energy storage device, wherein the regenerative layer comprises at least one solute or solvated solute from the electrolyte composition.

  15. Improved performance and safety of lithium ion cells with the use of fluorinated carbonate-based electrolytes

    Science.gov (United States)

    Smart, M. C.; Ratnakumar, B. V.; Ryan, V. S.; Surampudi, S.; Prakashi, G. K. S.; Hu, J.; Cheung, I.

    2002-01-01

    There has been increasing interest in developing lithium-ion electrolytes that possess enhanced safety characteristics, while still able to provide the desired stability and performance. Toward this end, our efforts have been focused on the development of lithium-ion electrolytes which contain partially and fully fluorinated carbonate solvents. The advantage of using such solvents is that they possess the requisite stability demonstrated by the hydrocarbon-based carbonates, while also possessing more desirable physical properties imparted by the presence of the fluorine substituents, such as lower melting points, increased stability toward oxidation, and favorable SEI film forming Characteristics on carbon. Specifically, we have demonstrated the beneficial effect of electrolytes which contain the following fluorinated carbonate-based solvents: methyl 2,2,2-trifluoroethyl carbonate (MTFEC), ethyl-2,2,2 trifluoroethyl carbonate (ETFEC), propyl 2,2,2-trifluoroethyl carbonate (PTFEC), methyl-2,2,2,2',2',2' -hexafluoro-i-propyl carbonate (MHFPC), ethyl- 2,2,2,2',2',2' -hexafluoro-i-propyl carbonate (EHFPC), and di-2,2,2-trifluoroethyl carbonate (DTFEC). These solvents have been incorporated into multi-component ternary and quaternary carbonate-based electrolytes and evaluated in lithium-carbon and carbon-LiNio.8Coo.202 cells (equipped with lithium reference electrodes). In addition to determining the charge/discharge behavior of these cells, a number of electrochemical techniques were employed (i.e., Tafel polarization measurements, linear polarization measurements, and electrochemical impedance spectroscopy (EIS)) to further characterize the performance of these electrolytes, including the SEI formation characteristics and lithium intercalatiodde-intercalation kinetics. In addition to their evaluation in experimental cells, cyclic voltammetry (CV) and conductivity measurements were performed on select electrolyte formulations to further our understanding of the trends

  16. Materials system for intermediate temperature solid oxide fuel cells based on doped lanthanum-gallate electrolyte

    Science.gov (United States)

    Gong, Wenquan

    2005-07-01

    The objective of this work was to identify a materials system for intermediate temperature solid oxide fuel cells (IT-SOFCs). Towards this goal, alternating current complex impedance spectroscopy was employed as a tool to study electrode polarization effects in symmetrical cells employing strontium and magnesium doped lanthanum gallate (LSGM) electrolyte. Several cathode materials were investigated including strontium doped lanthanum manganite (LSM), Strontium and iron doped lanthanum cobaltate (LSCF), LSM-LSGM, and LSCF-LSGM composites. Investigated Anode materials included nickel-gadolinium or lanthanum doped cerium oxide (Ni-GDC, or Ni-LDC) composites. The ohmic and the polarization resistances of the symmetrical cells were obtained as a function of temperature, time, thickness, and the composition of the electrodes. Based on these studies, the single phase LSM electrode had the highest polarization resistance among the cathode materials. The mixed-conducting LSCF electrode had polarization resistance orders of magnitude lower than that of the LSM-LSGM composite electrodes. Although incorporating LSGM in the LSCF electrode did not reduce the cell polarization resistance significantly, it could reduce the thermal expansion coefficient mismatch between the LSCF electrodes and LSGM electrolyte. Moreover, the polarization resistance of the LSCF electrode decreased asymptotically as the electrode thickness was increased thus suggesting that the electrode thickness needed not be thicker than this asymptotic limit. On the anode side of the IT-SOFC, Ni reacted with LSGM electrolyte, and lanthanum diffusion occurred from the LSGM electrolyte to the GDC barrier layer, which was between the LSGM electrolyte and the Ni-composite anode. However, LDC served as an effective barrier layer. Ni-LDC (70 v% Ni) anode had the largest polarization resistance, while all other anode materials, i.e. Ni-LDC (50 v% Ni), Ni-GDC (70 v% NO, and Ni-GDC (50 v% Ni), had similar polarization

  17. Interfacial stability and electrochemical behavior of Li/LiFePO4 batteries using novel soft and weakly adhesive photo-ionogel electrolytes

    Science.gov (United States)

    Aidoud, D.; Etiemble, A.; Guy-Bouyssou, D.; Maire, E.; Le Bideau, J.; Guyomard, D.; Lestriez, B.

    2016-10-01

    We have developed flexible polymer-gel electrolytes based on a polyacrylate cross-linked matrix that confines an ionic liquid doped with a lithium salt. Free-standing solid electrolyte membrane is obtained after UV photo-polymerization of acrylic monomers dissolved inside the ionic liquid/lithium salt mixture. The liquid precursor of the photo-ionogel may also be directly deposited onto porous composite electrode, which results in all-solid state electrode/electrolyte stacking after UV illumination. Minor variations in the polymer component of the electrolyte formulation significantly affect the electrochemical behavior in LiFePO4/lithium and lithium/lithium cells. The rate performance increases with an increase of the ionic conductivity, which decreases with the polymer content and decreases with increasing oxygen content in the polyacrylate matrix. Their fairly low modulus endow them weak and beneficial pressure-sensitive-adhesive character. X-Rays Tomography shows that the solid-state photo-ionogel electrolytes keep their integrity upon cycling and that their surface remains smooth. The coulombic efficiency of LiFePO4/lithium cells increases with an increase of the adhesive strength of the photo-ionogel, suggesting a relationship between the contact intimacy at the lithium/photo-ionogel interface and the efficiency of the lithium striping/plating. In lithium/lithium cells, only the photo-ionogels with the higher adhesion strength are able to allow the reversible striping/plating of lithium.

  18. Ionic conductivity of polymer gels deriving from alkali metal ionic liquids and negatively charged polyelectrolytes

    International Nuclear Information System (INIS)

    Ogihara, Wataru; Sun Jiazeng; Forsyth, Maria; MacFarlane, Douglas R.; Yoshizawa, Masahiro; Ohno, Hiroyuki

    2004-01-01

    We have prepared polymer gel electrolytes with alkali metal ionic liquids (AMILs) that inherently contain alkali metal ions. The AMIL consisted of sulfate anion, imidazolium cation, and alkali metal cation. AMILs were mixed directly with poly(3-sulfopropyl acrylate) lithium salt or poly(2-acrylamido-2-methylpropanesulfonic acid) lithium salt to form polymer gels. The ionic conductivity of these gels decreased with increasing polymer fraction, as in general ionic liquid/polymer mixed systems. At low polymer concentrations, these gels displayed excellent ionic conductivity of 10 -4 to 10 -3 S cm -1 at room temperature. Gelation was found to cause little change in the 7 Li diffusion coefficient of the ionic liquid, as measured by pulse-field-gradient NMR. These data strongly suggest that the lithium cation migrates in successive pathways provided by the ionic liquids

  19. Stacking gels: A method for maximising output for pulsed-field gel electrophoresis

    Directory of Open Access Journals (Sweden)

    Heng See

    2009-01-01

    Full Text Available Pulsed field gel electrophoresis (PFGE, the gold standard of molecular typing methods, has a major disadvantage of an unusually long electrophoretic time. From the original protocol of 6 days, it was modified to 3 days and subsequently to a single day. We describe the procedure of stacking five to six gels one on top of another in order to increase and maximize the output in a shorter time without compromising the resolution and reproducibility. All the variables that affect pulsed field gels during electrophoresis were taken into consideration. We firstly optimized the parameters to be used and secondly determined whether stacking of five to six gels had any effect on the molecular separation during electrophoresis in comparison with a single gel run. DNA preparation, restriction, electrophoresis, staining and gel documentation was carried out based on previously published methods. Gels were analysed using BioNumerics and dice coefficient and unweighted pair group methods were used to generate dendrograms based on 1.5% tolerance values. Identical band profiles and band resolution-separation were seen in the PFGE patterns with single gel and multiple stacking gels. Cluster analysis further strengthened the fact that results from stacking gels were reproducible and comparable with a single gel run. This method of stacking gels saves time and maximizes the output at the same time. The run time for a single gel was about 28 hours, but with six stacked gels the run time was 54 hours compared with 28 x 6 = 168 hours if they were run separately as single gels thus saving time of 67.86%. Beside the big factor of saving time, stacking gels save resources (electricity, reagents, water, chemicals and working time by increasing the sample throughput in a shorter time without compromising on quality of data. But optimization of working parameters is vital depending on the PFGE system used.

  20. Quasi-solid polymer electrolytes using photo-cross-linked polymers. Lithium and divalent cation conductors and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Shoichiro; Mori, Yoichi; Furuhashi, Yuri; Masuda, Hideki [Nagoya Inst. of Tech. (Japan). Dept. of Applied Chemistry; Yamamoto, Osamu [Mie Univ., Tsu (Japan). Dept. of Chemistry

    1999-09-01

    In this report, we will present the results on the photo-cross-linked poly-(ethylene glycol) diacrylate (PEGDA) based quasi-solid, i.e. gel, polymer electrolyte systems with lithium, magnesium and zinc trifluoromethanesulfonates [triflate; M{sup n}(CF{sub 3}SO{sub 3}){sub n}] and their preliminary applications to primary cells. The Celgard{sup trademark} membrane-impregnated electrolytes were prepared in the same manner as Abraham et al. [K.M. Abraham, M. Alamgir, D.K. Hoffmann, J. Electrochem. Soc. 142 (1995) 683]. The precursor solutions were composed of metal triflates, ethylene carbonate, propylene carbonate, and tetraethylene glycol diacrylate. The Celgard{sup trademark} aa3401 membrane was soaked overnight in the precursor solution, then clamped between two Pyrex glass plates and irradiated with UV light to form a gel electrolyte. The maxima of the conductivity obtained were 4.5 x 10{sup -4} S cm{sup -1} at 12 mol% for LiCF{sub 3}SO{sub 3}, 1.7 x 10{sup -4} S cm{sup -1} at 1 mol% for Mg(CF{sub 3}SO{sub 3}){sub 2}, and 2.1 x 10{sup -4} S cm{sup -1} at 4 mol% Zn(CF{sub 3}SO{sub 3}){sub 2} system, respectively. The Arrhenius plots of the conductivities are almost linear between 268 and 338 K with 15-25 kJ/mol of activation energy for conduction. The cell, li vertical stroke LiCF{sub 3}SO{sub 3}-SPE+Celgard{sup trademark} aa3401 vertical stroke (CH{sub 3}){sub 4}NI{sub 5}+acetylene black, showed 2.86 V of OCV and could discharge up to 25% with respect to the cathode active material at a discharging current of 0.075 mA/cm{sup 2}. (orig.)

  1. Gel-like properties of MCM-41 material and its transformation to MCM-50 in a caustic alkaline surround

    International Nuclear Information System (INIS)

    Saputra, Hens; Othman, Raihan; Sutjipto, A.G.E.; Muhida, R.; Ani, M.H.

    2012-01-01

    Highlights: ► MCM-41 material transforms gradually into MCM-50 lamellar gel upon controlled exposure to 6 M KOH. ► The formation of MCM-50 ordered gel structure occurs at KOH weight content of 40–70 wt. %. ► MCM gel phase shows pseudoplastic behavior and possesses homogeneous matrix texture. -- Abstract: MCM-41 material, prepared by sol–gel method, reveals gel-like properties in a caustic alkaline environment, i.e., 6 M potassium hydroxide (KOH) electrolyte. The gellation of MCM-41 starts at a KOH weight ratio of 40 wt.%. The structural change of the material is verified with X-Ray diffractograms and supported by observation using Scanning Electron Microscope (SEM). As the KOH weight ratio increases, the MCM-41 hexagonal arrays structure gradually transforms into MCM-50 lamellar structure before disappearing completely at 80 wt.% KOH. The MCM gel phase is further characterized by rotational viscometry and texture analysis. The gel phase shows shear thinning or pseudoplastic behavior and possesses homogeneous matrix structure.

  2. Highly conducting leakage-free electrolyte for SrCoOx-based non-volatile memory device

    Science.gov (United States)

    Katase, Takayoshi; Suzuki, Yuki; Ohta, Hiromichi

    2017-10-01

    The electrochemical switching of SrCoOx-based non-volatile memory with a thin-film-transistor structure was examined by using liquid-leakage-free electrolytes with different conductivities (σ) as the gate insulator. We first examined leakage-free water, which is incorporated in the amorphous (a-) 12CaO.7Al2O3 film with a nanoporous structure (Calcium Aluminate with Nanopore), but the electrochemical oxidation/reduction of the SrCoOx layer required the application of a high gate voltage (Vg) up to 20 V for a very long current-flowing-time (t) ˜40 min, primarily due to the low σ [2.0 × 10-8 S cm-1 at room temperature (RT)] of leakage-free water. We then controlled the σ of the leakage-free electrolyte, infiltrated in the a-NaxTaO3 film with a nanopillar array structure, from 8.0 × 10-8 S cm-1 to 2.5 × 10-6 S cm-1 at RT by changing the x = 0.01-1.0. As the result, the t, required for the metallization of the SrCoOx layer under small Vg = -3 V, becomes two orders of magnitude shorter with increase of the σ of the a-NaxTaO3 leakage-free electrolyte. These results indicate that the ion migration in the leakage-free electrolyte is the rate-determining step for the electrochemical switching, compared to the other electrochemical process, and the high σ of the leakage-free electrolyte is the key factor for the development of the non-volatile SrCoOx-based electro-magnetic phase switching device.

  3. Preparation and evaluation of chitosan-based nanogels/gels for oral delivery of myricetin.

    Science.gov (United States)

    Yao, Yashu; Xia, Mengxin; Wang, Huizhen; Li, Guowen; Shen, Hongyi; Ji, Guang; Meng, Qianchao; Xie, Yan

    2016-08-25

    A novel nanogel/gel based on chitosan (CS) for the oral delivery of myricetin (Myr) was developed and evaluated comprehensively. The particle size of the obtained Myr-loaded CS/β-glycerol phosphate (β-GP) nanogels was in the range of 100-300nm. The rheological tests showed that the sol-gel transition happened when the nanogels were exposed to physiological temperatures, and 3D network structures of the gelatinized nanogels (gels) were confirmed by Scanning Electron Microscopy. Myr was released from CS/β-GP nanogel/gel in acidic buffers via a Fickian mechanism, and this release was simultaneously accompanied by swelling and erosion. Moreover, the nanogel/gel exhibited no cytotoxicity by MTT assay, and the oral bioavailability of Myr in rats was improved with an accelerated absorption rate after Myr was loaded into CS/β-GP nanogel/gel. In summary, all of the above showed that CS/β-GP nanogel/gel was an excellent system for orally delivering Myr. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Positively charged polysilsesquioxane/iodide lonic liquid as a quasi solid-state redox electrolyte for dye-sensitized photo electrochemical cells: infrared, 29 Si NMR, and electrical studies

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available A new sol-gel precursor based on 1-methyl-3-[3-(trimethoxy- λ 4 -silylpropyl]-1 H -imidazolium iodide (MTMSPI + I − was synthesized and investigated as a potential novel quasi solid-state ionic liquid redox electrolyte for dye-synthesized photoelectrochemical (DSPEC cells of the Graetzel type. MTMSPI + I − was hydrolyzed with acidified water and the reaction products of the sol-gel condensation reactions assessed with the help of 29 Si NMR and infrared spectroscopic techniques. Results of the time-dependent spectra analyses showed the formation of positively charged polyhedral cube-like silsesquioxane species that still contained a small amount of silanol end groups, which were removed after heating at 200 ° C . After cooling, the resulting material formed is a tough, yellowish, and transparent solid, which could be reheated again and used for assembling DSPEC cells. The addition of iodine increased the specific conductivity of the hydrolyzed and nonhydrolyzed MTMSPI + I − , which we attributed to the formation of triiodide ions contributed to the conductivity via the Grotthus mechanism. DSPEC cells based on a titania-dye system with MTMSPI + I − electrolyte containing iodine (0.1 M reached an overall efficiency between 3.3–3.7%.

  5. A Comparison of Electrolytic Capacitors and Supercapacitors for Piezo-Based Energy Harvesting

    Science.gov (United States)

    2013-07-01

    A Comparison of Electrolytic Capacitors and Supercapacitors for Piezo-Based Energy Harvesting by Matthew H. Ervin, Carlos M. Pereira, John R...Capacitors and Supercapacitors for Piezo-Based Energy Harvesting Matthew H. Ervin Sensors and Electronic Devices Directorate, ARL Carlos M. Pereira... Supercapacitors for Piezo-Based Energy Harvesting 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Matthew H

  6. A study of correlations between the release of drugs from petrolatum-based gels containing nonionic surfactants and some physical and physico-chemical characteristics of the gel systems.

    Science.gov (United States)

    Colo, G D; Nannipieri, E; Serafini, M F; Vitale, D

    1986-06-01

    Synopsis The in vitro release of benzocaine and 2-ethyIhexyl p-di-methylaminobenzoate (EH-PABA) from petrolatum-based gels either containing two nonionic surfactants, or not, was compared with some physical and/or physico-chemical characteristics of the drugs, the gels and the drug-gel systems. The surfactants had no effect on the release of EH-PABA, the less polar drug, whereas they decreased the release of benzocaine. Moreover, the release data show a complex dependence of diffusive properties of ben-zocaine on drug and surfactant concentration. Benzocaine appears to form mixed micelles with each of the two surfactants and/or undergoes self-aggregation phenomena within surfactant micelles. The results indicate that drug diffusion is influenced by gel porosity, drug molecular size and polarity and molecular interactions. Etude des corrélations entre la disponibilité des medicaments dans les gels a base de vaseline contenant des surfactifs non ioniques et quelques propriétés physiques et physicochimiques des gels.

  7. Composite, Polymer-Based Electrolytes for Advanced Batteries

    National Research Council Canada - National Science Library

    Ratner, Mark A

    2001-01-01

    .... Several substantive advances towards new, improved performance electrolyte materials both for low temperature fuel cell applications and for advanced secondary lithium battery materials have been reported...

  8. High flash point electrolyte for use in lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Isken, P.; Dippel, C.; Schmitz, R.; Schmitz, R.W.; Kunze, M.; Passerini, S.; Winter, M. [Institute of Physical Chemistry, Westfaelische Wilhelms-University Muenster, Corrensstrasse 28/30, 48149 Muenster (Germany); Lex-Balducci, A., E-mail: a.lex-balducci@uni-muenster.de [Institute of Physical Chemistry, Westfaelische Wilhelms-University Muenster, Corrensstrasse 28/30, 48149 Muenster (Germany)

    2011-09-01

    Highlights: > Substitution of linear carbonates in conventional electrolytes with adiponitrile allows the realization of high flash point electrolytes. > EC:ADN based electrolytes display a higher anodic stability than a conventional electrolyte based on EC:DEC. > Graphite and NCM electrodes used in combination with the EC:ADN based electrolyte display a performance comparable with that of conventional electrolytes. - Abstract: The high flash point solvent adiponitrile (ADN) was investigated as co-solvent with ethylene carbonate (EC) for use as lithium-ion battery electrolyte. The flash point of this solvent mixture was more than 110 deg. C higher than that of conventional electrolyte solutions involving volatile linear carbonate components, such as diethyl carbonate (DEC) or dimethyl carbonate (DMC). The electrolyte based on EC:ADN (1:1 wt) with lithium tetrafluoroborate (LiBF{sub 4}) displayed a conductivity of 2.6 mS cm{sup -1} and no aluminum corrosion. In addition, it showed higher anodic stability on a Pt electrode than the standard electrolyte 1 M lithium hexafluorophosphate (LiPF{sub 6}) in EC:DEC (3:7 wt). Graphite/Li half cells using this electrolyte showed excellent rate capability up to 5C and good cycling stability (more than 98% capacity retention after 50 cycles at 1C). Additionally, the electrolyte was investigated in NCM/Li half cells. The cells were able to reach a capacity of 104 mAh g{sup -1} at 5C and capacity retention of more than 97% after 50 cycles. These results show that an electrolyte with a considerably increased flash point with respect to common electrolyte systems comprising linear carbonates, could be realized without any negative effects on the electrochemical performance in Li-half cells.

  9. Present status of solid state photoelectrochemical solar cells and dye sensitized solar cells using PEO-based polymer electrolytes

    International Nuclear Information System (INIS)

    Singh, Pramod Kumar; Bhattacharya, Bhaskar; Nagarale, R K; Pandey, S P; Rhee, H W

    2011-01-01

    Due to energy crises in the future, much effort is being directed towards alternate sources. Solar energy is accepted as a novel substitute for conventional sources of energy. Out of the long list of various types of solar cells available on the market, solid state photoelectrochemical solar cells (SSPECs) and dye sensitized solar cells (DSSCs) are proposed as an alternative to costly crystalline solar cell. This review provides a common platform for SSPECs and DSSCs using polymer electrolyte, particularly on polyethylene oxide (PEO)-based polymer electrolytes. Due to numerous advantageous properties of PEO, it is frequently used as an electrolyte in both SSPECs as well as DSSCs. In DSSCs, so far high efficiency (more than 11%) has been obtained only by using volatile liquid electrolyte, which suffers many disadvantages, such as corrosion, leakage and evaporation. The PEO-based solid polymer proves its importance and could be used to solve the problems stated above. The recent developments in SSPECs and DSSCs using modified PEO electrolytes by adding nano size inorganic fillers, blending with low molecular weight polymers and ionic liquid (IL) are discussed in detail. The role of ionic liquid in modifying the electrical, structural and photoelectrochemical properties of PEO polymer electrolytes is also described. (review)

  10. Present status of solid state photoelectrochemical solar cells and dye sensitized solar cells using PEO-based polymer electrolytes

    Science.gov (United States)

    Singh, Pramod Kumar; Nagarale, R. K.; Pandey, S. P.; Rhee, H. W.; Bhattacharya, Bhaskar

    2011-06-01

    Due to energy crises in the future, much effort is being directed towards alternate sources. Solar energy is accepted as a novel substitute for conventional sources of energy. Out of the long list of various types of solar cells available on the market, solid state photoelectrochemical solar cells (SSPECs) and dye sensitized solar cells (DSSCs) are proposed as an alternative to costly crystalline solar cell. This review provides a common platform for SSPECs and DSSCs using polymer electrolyte, particularly on polyethylene oxide (PEO)-based polymer electrolytes. Due to numerous advantageous properties of PEO, it is frequently used as an electrolyte in both SSPECs as well as DSSCs. In DSSCs, so far high efficiency (more than 11%) has been obtained only by using volatile liquid electrolyte, which suffers many disadvantages, such as corrosion, leakage and evaporation. The PEO-based solid polymer proves its importance and could be used to solve the problems stated above. The recent developments in SSPECs and DSSCs using modified PEO electrolytes by adding nano size inorganic fillers, blending with low molecular weight polymers and ionic liquid (IL) are discussed in detail. The role of ionic liquid in modifying the electrical, structural and photoelectrochemical properties of PEO polymer electrolytes is also described.

  11. Network type sp3 boron-based single-ion conducting polymer electrolytes for lithium ion batteries

    Science.gov (United States)

    Deng, Kuirong; Wang, Shuanjin; Ren, Shan; Han, Dongmei; Xiao, Min; Meng, Yuezhong

    2017-08-01

    Electrolytes play a vital role in modulating lithium ion battery performance. An outstanding electrolyte should possess both high ionic conductivity and unity lithium ion transference number. Here, we present a facile method to fabricate a network type sp3 boron-based single-ion conducting polymer electrolyte (SIPE) with high ionic conductivity and lithium ion transference number approaching unity. The SIPE was synthesized by coupling of lithium bis(allylmalonato)borate (LiBAMB) and pentaerythritol tetrakis(2-mercaptoacetate) (PETMP) via one-step photoinitiated in situ thiol-ene click reaction in plasticizers. Influence of kinds and content of plasticizers was investigated and the optimized electrolytes show both outstanding ionic conductivity (1.47 × 10-3 S cm-1 at 25 °C) and high lithium transference number of 0.89. This ionic conductivity is among the highest ionic conductivity exhibited by SIPEs reported to date. Its electrochemical stability window is up to 5.2 V. More importantly, Li/LiFePO4 cells with the prepared single-ion conducting electrolytes as the electrolyte as well as the separator display highly reversible capacity and excellent rate capacity under room temperature. It also demonstrates excellent long-term stability and reliability as it maintains capacity of 124 mA h g-1 at 1 C rate even after 500 cycles without obvious decay.

  12. Data Visualization and Feature Selection Methods in Gel-based Proteomics

    DEFF Research Database (Denmark)

    Silva, Tomé Santos; Richard, Nadege; Dias, Jorge P.

    2014-01-01

    -based proteomics, summarizing the current state of research within this field. Particular focus is given on discussing the usefulness of available multivariate analysis tools both for data visualization and feature selection purposes. Visual examples are given using a real gel-based proteomic dataset as basis....

  13. Manufacturing of Dysprosium-Iron Alloys by Electrolysis in Fluoride-Based Electrolytes: Oxide Solubility Determinations

    Science.gov (United States)

    Martinez, Ana Maria; Støre, Anne; Osen, Karen Sende

    2018-04-01

    Electrolytic production of light rare earth elements and alloys takes place in a fluoride-based electrolyte using rare earth oxides as raw material. The optimization of this method, mainly in terms of the energy efficiency and environmental impact control, is rather challenging. Anode effects, evolution of fluorine-containing compounds, and side cathode reactions could largely be minimized by a good control of the amount of rare earth oxide species dissolved in the fluoride-based electrolyte and their dissolution rate. The oxide content of the fluoride melts REF3-LiF (RE = Nd, Dy) at different compositions and temperatures were experimentally determined by carbothermal analysis of melt samples. The highest solubility values of oxide species, added as Dy2O3 and Dy2(CO3)3, were obtained to be of ca. 3 wt pct (expressed as Dy2O3) in the case of the equimolar DyF3-LiF melt at 1323 K (1050 °C). The oxide saturation values increased with the amount of REF3 present in the molten bath and the working temperature.

  14. Low temperature electrochemical cells with sodium β″-alumina solid electrolyte (BASE)

    Science.gov (United States)

    Girija, T. C.; Virkar, Anil V.

    Cells of Daniell-type with copper-zinc electrochemical couples and sodium β″-alumina solid electrolyte (BASE) were constructed. The cathode consisted of copper in contact with its ions (Cu/Cu 2+) while zinc in contact with its ions (Zn/Zn 2+) constituted the anode. Dimethyl sulfoxide (DMSO) containing 1 M NaBF 4 was used as the liquid electrolyte. The configuration of the cell constructed can be written as follows: Zn(s)/ZnCl 2(DMSO)(0.1 M), NaBF 4(1 M)/BASE/NaBF 4(1 M), CuCl 2(DMSO)(0.1 M)/Cu(s). The cell was subjected to charge-discharge cycles at 100 °C. The BASE discs were found to be stable even after the cell was subjected to several electrochemical charge-discharge cycles. Cells were also constructed using BASE discs with porous BASE surface layers introduced to lower the interfacial resistance. Cells with surface modified BASE exhibited a lower resistance in comparison to those using unmodified BASE. XRD and SEM analyses indicated that no detectable degradation of BASE discs occurred after cell testing. Preliminary cell tests were also conducted with NaCF 3SO 3 in place of NaBF 4.

  15. Optimization of Microemulsion Based Transdermal Gel of Triamcinolone.

    Science.gov (United States)

    Jagdale, Swati; Chaudhari, Bhagyashree

    2017-01-01

    Triamcinolone is a long acting corticosteroid used in the treatment of arthritis, eczema, psoriasis and similar conditions which cause inflammation. Triamcinolone has half-life of 88min. Prolonged oral use is associated with gastrointestinal adverse effects as peptic ulcer, abdominal distention and ulcerative esophagitis as described in various patents. Microemulgel offers advantage of better stability, better loading capacity and controlled release especially for drug with short half life. Objective of the present study was to optimize microemulgel based transdermal delivery of triamcinolone. Saturated solubility of triamcinolone in various oils, surfactants and co-surfactants is estimated. Pseudo-ternary phase diagrams were constructed to determine the region of transparent microemulsion. Microemulsion was evaluated for globule size (FE-SEM, zetasizer), % transmittance, pH, viscosity, conductivity etc. Design of experiment was used to optimize microemulsion based gel. Carbopol 971P and HPMC K100M were used as independent variables. Microemulsion based gel was evaluated for in-vitro as well as ex-vivo parameters. Microemulsion was formulated with oleic acid, lauroglycol FCC and propylene glycol. PDI 0.197 indicated microemulsion is mono-disperse. 32 factorial design gave batch F8 as optimized. Design expert suggested drug release; gel viscosity and bio-adhesive strength were three significant dependant factors affecting the transdermal delivery. F8 showed drug release 92.62.16±1.22% through egg membrane, 95.23±1.44% through goat skin after 8hr and Korsmeyer-Peppas release model was followed. It can be concluded that a stable, effective controlled release transdermal microemulgel was optimised for triamcinolone. This would be a promising tool to deliver triamcinolone with enhanced bioavailability and reduced dosing frequency. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Cycling performance of lithium polymer cells assembled by in situ polymerization of a non-flammable ionic liquid monomer

    International Nuclear Information System (INIS)

    Lee, Yoon-Sung; Kim, Dong-Won

    2013-01-01

    Highlights: • Gel polymer electrolytes were synthesized by in situ polymerization of ionic liquid in the lithium polymer cells. • Flammability of the electrolyte was significantly reduced by polymerizing electrolyte containing a non-flammable ionic liquid monomer. • The cells assembled with polymeric ionic liquid-based electrolytes exhibited reversible cycling behavior with good capacity retention. -- Abstract: Lithium polymer cells composed of a lithium negative electrode and a LiCoO 2 positive electrode were assembled with a gel polymer electrolyte obtained by in situ polymerization of an electrolyte solution containing an ionic liquid monomer with vinyl groups. The polymerization of the electrolyte solution containing the non-flammable ionic liquid monomer resulted in a significant reduction of the flammability of the gel polymer electrolytes. The lithium polymer cell assembled with the stable gel polymer electrolyte delivered a discharge capacity of 134.3 mAh g −1 at ambient temperature and exhibited good capacity retention

  17. A new polymer electrolyte based on a discotic liquid crystal triblock copolymer

    International Nuclear Information System (INIS)

    Stoeva, Zlatka; Lu, Zhibao; Ingram, Malcolm D.; Imrie, Corrie T.

    2013-01-01

    A discotic liquid crystal triblock copolymer consisting of a central main chain triphenylene-based liquid crystal block capped at both ends by blocks of poly(ethylene oxide) (PEO) (M W = 2000 g mol −1 ) has been doped with lithium perchlorate in an EO:Li 6:1 ratio. The polymer electrolyte exhibits a phase separated morphology consisting of a columnar hexagonal liquid crystal phase and PEO-rich regions. The polymer electrolyte forms self-supporting, solid-like films. The ionic conductivity on initial heating of the sample is very low below ca. 60 °C but increases rapidly above this temperature. This is attributed to the melting of crystalline PEO-rich regions. Crystallisation is suppressed on cooling, and subsequent heating cycles exhibit higher conductivities but still less than those measured for the corresponding lithium perchlorate complex in poly(ethylene glycol) (M W = 2000 g mol −1 ). Instead the triblock copolymer mimics the behaviour of high molecular weight poly(ethylene oxide) (M W = 300,000 g mol −1 ). This is attributed, in part, to the anchoring of the short PEG chains to the liquid crystal block which prevents their diffusion through the sample. Temperature and pressure variations in ion mobility indicate that the ion transport mechanism in the new material is closely related to that in the conventional PEO-based electrolyte, opening up the possibility of engineering enhanced conductivities in future

  18. Physics Based Modeling and Prognostics of Electrolytic Capacitors

    Science.gov (United States)

    Kulkarni, Chetan; Ceyla, Jose R.; Biswas, Gautam; Goebel, Kai

    2012-01-01

    This paper proposes first principles based modeling and prognostics approach for electrolytic capacitors. Electrolytic capacitors have become critical components in electronics systems in aeronautics and other domains. Degradations and faults in DC-DC converter unit propagates to the GPS and navigation subsystems and affects the overall solution. Capacitors and MOSFETs are the two major components, which cause degradations and failures in DC-DC converters. This type of capacitors are known for its low reliability and frequent breakdown on critical systems like power supplies of avionics equipment and electrical drivers of electromechanical actuators of control surfaces. Some of the more prevalent fault effects, such as a ripple voltage surge at the power supply output can cause glitches in the GPS position and velocity output, and this, in turn, if not corrected will propagate and distort the navigation solution. In this work, we study the effects of accelerated aging due to thermal stress on different sets of capacitors under different conditions. Our focus is on deriving first principles degradation models for thermal stress conditions. Data collected from simultaneous experiments are used to validate the desired models. Our overall goal is to derive accurate models of capacitor degradation, and use them to predict performance changes in DC-DC converters.

  19. A quasi-direct methanol fuel cell system based on blend polymer membrane electrolytes

    DEFF Research Database (Denmark)

    Li, Qingfeng; Hjuler, Hans Aage; Hasiotis, C.

    2002-01-01

    , compared to less than 100 ppm CO for the Nafion-based technology at 80degrees C. The high CO tolerance makes it possible to use the reformed hydrogen directly from a simple methanol reformer without further CO removal. That both the fuel cell and the methanol reformer operate at temperatures around 200......On the basis of blend polymer electrolytes of polybenzimidazole and sulfonated polysulfone, a polymer electrolyte membrane fuel cell was developed with an operational temperature up to 200degrees C. Due to the high operational temperature, the fuel cell can tolerate 1.0-3.0 vol % CO in the fuel...

  20. Durability and degradation analysis of hydrocarbon ionomer membranes in polymer electrolyte fuel cells accelerated stress evaluation

    Science.gov (United States)

    Shimizu, Ryo; Tsuji, Junichi; Sato, Nobuyuki; Takano, Jun; Itami, Shunsuke; Kusakabe, Masato; Miyatake, Kenji; Iiyama, Akihiro; Uchida, Makoto

    2017-11-01

    The chemical durabilities of two proton-conducting hydrocarbon polymer electrolyte membranes, sulfonated benzophenone poly(arylene ether ketone) (SPK) semiblock copolymer and sulfonated phenylene poly(arylene ether ketone) (SPP) semiblock copolymer are evaluated under accelerated open circuit voltage (OCV) conditions in a polymer electrolyte fuel cell (PEFC). Post-test characterization of the membrane electrodes assemblies (MEAs) is carried out via gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) spectroscopy. These results are compared with those of the initial MEAs. The SPP cell shows the highest OCV at 1000 h, and, in the post-test analysis, the SPP membrane retains up to 80% of the original molecular weight, based on the GPC results, and 90% of the hydrophilic structure, based on the NMR results. The hydrophilic structure of the SPP membrane is more stable after the durability evaluation than that of the SPK. From these results, the SPP membrane, with its simple hydrophilic structure, which does not include ketone groups, is seen to be significantly more resistant to radical attack. This structure leads to high chemical durability and thus impedes the chemical decomposition of the membrane.

  1. The ionic conductivity, mechanical performance and morphology of two-phase structural electrolytes based on polyethylene glycol, epoxy resin and nano-silica

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Qihang; Yang, Jiping, E-mail: jyang08@163.com; Yu, Yalin; Tian, Fangyu; Zhang, Boming; Feng, Mengjie; Wang, Shubin

    2017-05-15

    Highlights: • Structural electrolytes based on PEG-epoxy resins were prepared. • Factors of influencing ionic conductivity and mechanical properties were studied. • Co-continuous morphology was benefit for improved structural electrolyte property. • Efficiently optimized multifunctional electrolyte performance was achieved. - Abstract: As one of significant parts of structural power composites, structural electrolytes have desirable mechanical properties like structural resins while integrating enough ionic conductivity to work as electrolytes. Here, a series of polyethylene glycol (PEG)-epoxy-based electrolytes filled with nano-silica were prepared. The ionic conductivity and mechanical performance were studied as functions of PEG content, lithium salt concentration, nano-silica content and different curing agents. It was found that, PEG-600 and PEG-2000 content in the epoxy electrolyte system had a significant effect on their ionic conductivity. Furthermore, increasing the nano-silica content in the system induced increased ionic conductivity, decreased glass transition temperature and mechanical properties, and more interconnected irregular network in the cured systems. The introduction of rigid m-xylylenediamine resulted in enhanced mechanical properties and reasonably decreased ionic conductivity. As a result, these two-phase epoxy structural electrolytes have great potential to be used in the multifunctional energy storage devices.

  2. Universal low-temperature MWCNT-COOH-based counter electrode and a new thiolate/disulfide electrolyte system for dye-sensitized solar cells.

    Science.gov (United States)

    Hilmi, Abdulla; Shoker, Tharallah A; Ghaddar, Tarek H

    2014-06-11

    A new thiolate/disulfide organic-based electrolyte system composed of the tetrabutylammonium salt of 2-methyl-5-trifluoromethyl-2H-[1,2,4]triazole-3-thiol (S(-)) and its oxidized form 3,3'-dithiobis(2-methyl-5-trifluoromethyl-2H-[1,2,4]triazole) (DS) has been formulated and used in dye-sensitized solar cells (DSSCs). The electrocatalytic activity of different counter electrodes (CEs) has been evaluated by means of measuring J-V curves, cyclic voltammetry, Tafel plots, and electrochemical impedance spectroscopy. A stable and low-temperature CE based on acid-functionalized multiwalled carbon nanotubes (MWCNT-COOH) was investigated with our S(-)/DS, I(-)/I3(-), T(-)/T2, and Co(II/III)-based electrolyte systems. The proposed CE showed superb electrocatalytic activity toward the regeneration of the different electrolytes. In addition, good stability of solar cell devices based on the reported electrolyte and CE was shown.

  3. Alkoxide-based magnesium electrolyte compositions for magnesium batteries

    Science.gov (United States)

    Dai, Sheng; Sun, Xiao-Guang; Liao, Chen; Guo, Bingkun

    2018-01-30

    Alkoxide magnesium halide compounds having the formula: RO--Mg--X (1) wherein R is a saturated or unsaturated hydrocarbon group that is unsubstituted, or alternatively, substituted with one or more heteroatom linkers and/or one or more heteroatom-containing groups comprising at least one heteroatom selected from fluorine, nitrogen, oxygen, sulfur, and silicon; and X is a halide atom. Also described are electrolyte compositions containing a compound of Formula (1) in a suitable polar aprotic or ionic solvent, as well as magnesium batteries in which such electrolytes are incorporated.

  4. Nanoscale dynamics and aging of fibrous peptide-based gels

    Energy Technology Data Exchange (ETDEWEB)

    Dudukovic, Nikola A., E-mail: dudukov1@illinois.edu [Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Zukoski, Charles F. [Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York 14222 (United States)

    2014-10-28

    Solutions of the aromatic dipeptide derivative molecule fluorenylmethoxycarbonyl-diphenylalanine (Fmoc-FF) in dimethyl sulfoxide produce fibrous gels when mixed with water. We study the evolution of density fluctuations of this three-component system using X-ray photon correlation spectroscopy (XPCS) and compare these results to the macroscopic rheology of the gels and optical observations of the microstructure evolution. At the investigated scattering angles, the intensity autocorrelation functions do not follow behavior expected for simple diffusion of individual Fmoc-FF molecules localized within cages of nearest neighbors. Instead, the dynamics are associated with density fluctuations on length scales of ∼10–100 nm arising from disaggregation and reformation of fibers, leading to an increasingly uniform network. This process is correlated with the growth of the elastic modulus, which saturates at long times. Autocorrelation functions and relaxation times acquired from XPCS measurements are consistent with relaxation rates of structures at dynamic equilibrium. This study provides further support to the concept of exploring peptide-based gelators as valence-limited patchy particles capable of forming equilibrium gels.

  5. Rheology of oleo gels based on sorbitan and glyceryl mono stearates and vegetable oils for lubricating applications

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, R.; Franco, J. M.; Delgado, M. A.; Valencia, C.; Gallegos, C.

    2011-07-01

    Oleo gels based on sorbitan and glyceryl mono stearates and different types of vegetable oils, potentially applicable as biodegradable alternatives to traditional lubricating greases, have been studied. In particular, the rheological behavior, by means of small-amplitude oscillatory shear (SAOS) measurements, and some lubrication performance-related properties (mechanical stability and tribological response) have been evaluated in this work. SAOS response and mechanical stability of these oleo gels are significantly influenced by the type and concentration of the organogelator and the vegetable oil used in the formulations. Glyceryl monostearate (GMS) generally produces stronger gels than sorbitan monostearate (SMS). The use of low-viscosity oils, such as rapeseed and soybean oils, yields gels with significantly higher values of the linear viscoelastic functions than oleo gels prepared with high-viscosity oils, i.e. castor oil. The rheological behavior of SMS-based oleo gels also depends on the cooling rate applied during the gelification process. On the other hand, the oleo gels studied present low values of the friction coefficient obtained in a tribological contact, although only some GMS/castor oil-based oleo gels exhibit a suitable mechanical stability. (Author) 28 refs.

  6. Electrolyte creepage barrier for liquid electrolyte fuel cells

    Science.gov (United States)

    Li, Jian [Alberta, CA; Farooque, Mohammad [Danbury, CT; Yuh, Chao-Yi [New Milford, CT

    2008-01-22

    A dielectric assembly for electrically insulating a manifold or other component from a liquid electrolyte fuel cell stack wherein the dielectric assembly includes a substantially impermeable dielectric member over which electrolyte is able to flow and a barrier adjacent the dielectric member and having a porosity of less than 50% and greater than 10% so that the barrier is able to measurably absorb and chemically react with the liquid electrolyte flowing on the dielectric member to form solid products which are stable in the liquid electrolyte. In this way, the barrier inhibits flow or creepage of electrolyte from the dielectric member to the manifold or component to be electrically insulated from the fuel cell stack by the dielectric assembly.

  7. Zirconia based ceramic coating on a metal with plasma electrolytic oxidation

    Science.gov (United States)

    Akatsu, T.; Kato, T.; Shinoda, Y.; Wakai, F.

    2011-10-01

    We challenge to fabricate a thermal barrier coating (TBC) made of ZrO2 based ceramics on a Ni based single crystal superalloy with plasma electrolytic oxidation (PEO) by incorporating metal species from electrolyte into the coating. The PEO process is carried out on the superalloy galvanized with aluminium for 15min in Na4O7P4 solution for an oxygen barrier coating (OBC) and is followed by PEO in K2[Zr(CO3)2(OH)2] solution for TBC. We obtained the following results; (1) Monoclinic-, tetragonal-, cubic-ZrO2 crystals were detected in TBC. (2) High porosity with large pores was observed near the interface between OBC and TBC. The fine grain structure with a grain size of about 300nm was typically observed. (3) The adhesion strength between PEO coatings and substrate was evaluated to be 26.8±6.6MPa. At the adhesion strength test, PEO coatings fractured around the interface between OBC and TBC. The effect of coating structure on adhesion strength is explained through the change in spark discharge during PEO process.

  8. Solid polymer electrolytes based on alternating copolymers of vinyl ethers with methoxy oligo(ethyleneoxy)ethyl groups and vinylene carbonate

    International Nuclear Information System (INIS)

    Itoh, Takahito; Fujita, Katsuhito; Inoue, Kentaro; Iwama, Hiroki; Kondoh, Kensaku; Uno, Takahiro; Kubo, Masataka

    2013-01-01

    Graphical abstract: - Highlights: • Synthesis of alternating copolymers of vinyl ethers and vinylene carbonate. • Preparation of polymer electrolytes based on the alternating copolymers with LiTFSI. • Structure-property relationship for alternating copolymers-based electrolytes. • Interfacial stability between polymer electrolytes with lithium metal electrode. - Abstract: Alternating copolymers (poly(1a-g-alt-VC)) of vinyl ethers with various methoxy oligo(ethyleneoxy)ethyl groups and vinylene carbonate (VC) were prepared, and the thermal and electrochemical properties of their polymer electrolytes with LiTFSI and interfacial stability between the polymer electrolyte and Li metal electrode were investigated. T g 's increased linearly with salt contents, and decreased with an increase in the chain length of methoxy oligo(ethyleneoxy)ethyl groups in the vinyl ethers at constant salt concentration. The slopes of T g vs. [Li]/[O] were identical, independent of the polymer structure. The ionic conductivities of the polymer electrolytes increased with increasing the side-chain ethyleneoxy (EO) unit length of the vinyl ether unit in the alternating copolymers, and also their temperature dependences became relatively smaller in the polymer electrolytes having longer EO units in the vinyl ethers. The highest ionic conductivity, 1.2 × 10 −4 S/cm at 30 °C, was obtained in the alternating copolymer with a side-chain EO unit length of 23.5 in the vinyl ether unit. Ion transport coupled with the segmental motion of the polymer is dominant in these polymer electrolytes. Interfacial resistance increased gradually with contact time, indicative of the formation of passivation films on the Li metal electrode. These polymer electrolytes are thermally stable and have large electrochemical windows of use

  9. The gel electrophoresis markup language (GelML) from the Proteomics Standards Initiative.

    Science.gov (United States)

    Gibson, Frank; Hoogland, Christine; Martinez-Bartolomé, Salvador; Medina-Aunon, J Alberto; Albar, Juan Pablo; Babnigg, Gyorgy; Wipat, Anil; Hermjakob, Henning; Almeida, Jonas S; Stanislaus, Romesh; Paton, Norman W; Jones, Andrew R

    2010-09-01

    The Human Proteome Organisation's Proteomics Standards Initiative has developed the GelML (gel electrophoresis markup language) data exchange format for representing gel electrophoresis experiments performed in proteomics investigations. The format closely follows the reporting guidelines for gel electrophoresis, which are part of the Minimum Information About a Proteomics Experiment (MIAPE) set of modules. GelML supports the capture of metadata (such as experimental protocols) and data (such as gel images) resulting from gel electrophoresis so that laboratories can be compliant with the MIAPE Gel Electrophoresis guidelines, while allowing such data sets to be exchanged or downloaded from public repositories. The format is sufficiently flexible to capture data from a broad range of experimental processes, and complements other PSI formats for MS data and the results of protein and peptide identifications to capture entire gel-based proteome workflows. GelML has resulted from the open standardisation process of PSI consisting of both public consultation and anonymous review of the specifications.

  10. Polymer gel dosimeter with AQUAJOINT® as hydrogel matrix

    Science.gov (United States)

    Maeyama, Takuya; Ishida, Yasuhiro; Kudo, Yoshihiro; Fukasaku, Kazuaki; Ishikawa, Kenichi L.; Fukunishi, Nobuhisa

    2018-05-01

    We report a polymer gel dosimeter based on a new gel matrix (AQUAJOINT®) that is a thermo-irreversible hydrogel formed by mixing two types of water-based liquids at room temperature. Normoxic N-vinylpyrrolidone-based polymer gels were prepared with AQUAJOINT® instead of gelatin. This AQUAJOINT®-based gel dosimeter exhibits a 2.5-fold increase in sensitivity over a gelatin-based gel dosimeter and a linear dose-response in the dose range of 0-8 Gy. This gel has heat resistance in a jar and controlled gel properties such as viscoelastic and mechanical characters, which may be useful for deformable polymer gel dosimetry.

  11. Preparation and characterization of poly(vinylidene fluoride) based composite electrolytes for electrochemical devices

    International Nuclear Information System (INIS)

    Karabelli, D.; Leprêtre, J.-C.; Cointeaux, L.; Sanchez, J.-Y.

    2013-01-01

    Highlights: • Macroporous PVdF based membranes for electrochemical applications were prepared with support materials. • Woven PET and PA fabrics and non-woven cellulose paper are used as support materials. • Porous structure of PVdF was obtained on the support material. • Interaction between the electrolyte solvent and the composite material played an important role on the mechanical properties. • Compared to the pure PVdF separators, enhanced mechanical strength was obtained for composite separators, without decreasing the ionic conductivity. -- Abstract: PVdF-based separators are very promising materials in electrochemical energy storage systems but they suffer from fairly poor mechanical properties. To overcome this drawback, composite PVdF separators were fabricated and characterized in electrolytes of Li-ion batteries and supercapacitors. Macroporous PVdF composite separators were prepared by phase inversion method using PA and PET, and non-woven cellulose as support layers. Ionic conductivity and thermomechanical analyses were performed using electrolytes of Li-ion batteries and supercapacitors. The composite approach allowed a tremendous increase of the mechanical performances of the separator (between 340 and 750 MPa) compared to the unreinforced PVdF separator (56 MPa), without compromising the ionic conductivities (up to 15.6 mS cm −1 )

  12. Lanthanum germanate-based apatites as electrolyte for SOFCs

    Energy Technology Data Exchange (ETDEWEB)

    Marrero-Lopez, D.; Diaz-Carrasco, P.; Ramos-Barrado, J.R. [Departamento de Fisica Aplicada I, Laboratorio de Materiales y Superficies (Unidad Asociada al C.S.I.C.), Universidad de Malaga, 29071 Malaga (Spain); Pena-Martinez, J. [Instituto de Energias Renovables, Parque Tecnologico, Universidad de Castilla La Mancha, 02006 Albacete (Spain); Ruiz-Morales, J.C. [Departamento de Quimica Inorganica, Universidad de La Laguna, 38200 La Laguna, Tenerife (Spain)

    2011-02-15

    Germanate apatites with composition La{sub 10-x}Ge{sub 5.5}Al{sub 0.5}O{sub 26.75-3x/2} have been evaluated for the first time as possible electrolytes for solid oxide fuel cells (SOFCs). Different electrode materials have been considered in this study, i.e. manganite, ferrite, nickelates and cobaltite as cathode materials; and NiO-CGO composite and chromium-manganite as anodes. The chemical compatibility and electrochemical performance of these electrodes with La{sub 9.8}Ge{sub 5.5}Al{sub 0.5}O{sub 26.45} have been studied by X-ray powder diffraction (XRPD) and impedance spectroscopy. The XRPD analysis did not reveal appreciable bulk reactivity with the formation of reaction products between the germanate electrolyte and these electrodes up to 1,200 C. However, a significant cation interdiffusion was observed by energy dispersive spectroscopy (EDS) at the electrode/electrolyte interface, which leads to a significant decrease of the performance of these electrodes. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Lithium ion conduction in sol-gel synthesized LiZr2(PO4)3 polymorphs

    Science.gov (United States)

    Kumar, Milind; Yadav, Arun Kumar; Anita, Sen, Somaditya; Kumar, Sunil

    2018-04-01

    Safety issue associated with the high flammability and volatility of organic electrolytes used in commercial rechargeable lithium ion batteries has led to significant attention to ceramic-based solid electrolytes. In the present study, lithium ion conduction in two polymorphs of LiZr2(PO4)3 synthesized via the sol-gel route has been investigated. Rietveld refinement of room temperature X-ray diffraction data of LiZr2(PO4)3 powders calcined at 900 °C and 1300 °C confirmed these to be the monoclinic phase with P21/n structure and rhombohedral phase with R3¯c structure, respectively. Increase in calcination temperature and resultant phase transformation improved the room temperature conductivity from 2.27×10-6 ohm-1m-1 for the monoclinic phase to 1.41×10-4 ohm-1m-1 for rhombohedral phase. Temperature dependence of conductivity was modeled using Arrhenius law and activation energy of ˜ 0.59 eV (for monoclinic phase) and ˜0.50 eV (for rhombohedral phase) were obtained.

  14. All-solid-state lithium-sulfur battery based on a nanoconfined LiBH4 electrolyte

    DEFF Research Database (Denmark)

    Das, Supti; Ngene, Peter; Norby, Poul

    2016-01-01

    In this work we characterize all-solid-state lithium-sulfur batteries based on nano-confined LiBH4 in mesoporous silica as solid electrolytes. The nano-confined LiBH4 has fast ionic lithium conductivity at room temperature, 0.1 mScm-1, negligible electronic conductivity and its cationic transport...... number (t+ = 0.96), close to unity, demonstrates a purely cationic conductor. The electrolyte has an excellent stability against lithium metal. The behavior of the batteries is studied by cyclic voltammetry and repeated charge/discharge cycles in galvanostatic conditions. The batteries show very good...

  15. Study of nuclear glasses alteration gel and synthesis of some model gels; Etude du gel d`alteration des verres nucleaires et synthese de gels modeles

    Energy Technology Data Exchange (ETDEWEB)

    Ricol, S

    1995-10-05

    This work deals with the general problem of alteration of the reference nuclear glass R7T7. Attention is paid particularly to the altered layer formed at the glass surface during alteration process. In opposition to previous works, related essentially to glass dissolution kinetics based on chemical analyses of lixiviated elements, this thesis deals with alteration problems through structural studies of the reference glass and derived gel. This approach allows the determination of mechanisms for the gel formation and a better understanding of the behaviour of glasses towards lixiviation. Both approaches appeared complementary. Based on several spectroscopic techniques, this work showed the particular role of cations such as calcium, zirconium and iron. Studies of silica-based synthetic gels showed the synergic effect of formers cation and of one highly coordinated cation. The variation of the wavenumber related to Si-O-Si asymmetric stretching vibration can be correlated to O/Si ratio for ternary systems Si/Na/Zr. On the contrary, the Si losses of the materials depend on the number of non-bridging oxygen atoms. In the perspective of long-term behaviour, the alteration gel presents better characteristics than initial glass. It is therefore a highly stable material in static conditions. In the same way, synthetic gels are materials with very low solubilities (much lower than the alteration gel) and could be used as confining matrices. (authors). refs., 71 figs., 37 tabs.

  16. Sol-Gel Synthesis of Phosphate-Based Glasses for Hydrophilic Enamel Applications

    International Nuclear Information System (INIS)

    Kim, Dae-Sung; Ryu, Bong-ki

    2017-01-01

    In this study, quaternary phosphate-based sol-gel derived glasses were synthesized from a P 2 O 5 -CaO-Na 2 O-TiO 2 system with a high TiO 2 content of up to 50 mol%. The sol-gel method was chosen because incorporating a high percentage of titanium into a phosphate network via traditional melt-quench methods is non-trivial. The structure and thermal properties of the obtained stabilized sol-gel glasses were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and differential scanning calorimetry (DSC). The XRD results confirmed the amorphous nature of all of the stabilized sol–gel derived glasses. The FTIR results revealed that added TiO 2 enters the network as (TiO 6 ), which likely acts as a modifier oxide. Consequently, the number of terminal oxygen atoms increases, leading to an increase in the number of P-OH bonds. In addition, DSC results confirmed a decrease in glass transition and crystallization temperatures with increasing TiO 2 content. This is the first report of a sol-gel synthesis strategy combined with enameling to prepare glass at low processing temperatures and the first use of such a system for both hydrophilic and chemical resistance purposes.

  17. Sol-Gel Synthesis of Phosphate-Based Glasses for Hydrophilic Enamel Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae-Sung; Ryu, Bong-ki [Pusan National University, Busan (Korea, Republic of)

    2017-04-15

    In this study, quaternary phosphate-based sol-gel derived glasses were synthesized from a P{sub 2}O{sub 5}-CaO-Na{sub 2}O-TiO{sub 2} system with a high TiO{sub 2} content of up to 50 mol%. The sol-gel method was chosen because incorporating a high percentage of titanium into a phosphate network via traditional melt-quench methods is non-trivial. The structure and thermal properties of the obtained stabilized sol-gel glasses were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and differential scanning calorimetry (DSC). The XRD results confirmed the amorphous nature of all of the stabilized sol–gel derived glasses. The FTIR results revealed that added TiO{sub 2} enters the network as (TiO{sub 6}), which likely acts as a modifier oxide. Consequently, the number of terminal oxygen atoms increases, leading to an increase in the number of P-OH bonds. In addition, DSC results confirmed a decrease in glass transition and crystallization temperatures with increasing TiO{sub 2} content. This is the first report of a sol-gel synthesis strategy combined with enameling to prepare glass at low processing temperatures and the first use of such a system for both hydrophilic and chemical resistance purposes.

  18. Influence of ionic constituents and electrical conductivity on the propagation of charged nanoscale objects in passivated gel electrophoresis.

    Science.gov (United States)

    Bikos, Dimitri A; Mason, Thomas G

    2018-01-01

    When determining the electric field E acting on charged objects in gel electrophoresis, the electrical conductivity of the buffer solution is often overlooked; E is typically calculated by dividing the applied voltage by a separation distance between electrodes. However, as a consequence of electrolytic reactions, which occur at the electrodes, gradients in the ionic content of the buffer solution and its conductivity can potentially develop over time, thereby impacting E and affecting propagation velocities of charged objects, v, directly. Here, we explore how the types and concentrations of ionic constituents of the buffer solution, which largely control its conductivity, when used in passivated gel electrophoresis (P-gelEP), can influence E, thereby altering v of charged nanospheres propagating through large-pore gels. We measure the conductivity of the buffer solution in the center of the gel region near propagating bands of nanospheres, and we show that predictions of E based on conductivity closely correlate with v. We also explore P-gelEP involving two different types of passivation agents: nonionic polyethylene glycol (PEG) and anionic sodium dodecyl sulfate (SDS). Our observations indicate that using a conductivity model to determine E from the local current density and the conductivity where spheres are propagating can lead to a better estimate than the standard approach of a voltage divided by a separation. Moreover, this conductivity model also provides a starting point for interpreting the complex behavior created by amphiphilic ionic passivation agents, such as SDS, on propagating nanospheres used in some P-gelEP experiments. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Materials Development for All-Solid-State Battery Electrolytes

    Science.gov (United States)

    Wang, Weimin

    glasses as involving a jump by the migrating cation and transient reversible isotropic displacement of atoms in the immediate vicinity, and express the activation energy as a sum of Coulomb and elastic terms. By fitting our experimental data to this model, we find that the number of affected atoms in the vicinity ranges between 20 and 30. Furthermore, elastic deformations in ion jumping are almost purely hydrostatic and hardly shear. Considering that the energy required for the cation jump is made available by concentrating thermal phonons at the jump site, we establish a relationship between structural stiffness and activation energy. Moreover, the more atoms that partake in the cation jump, the more degrees of freedom for atomic motion can be relied upon to achieve the required net outward expansion to facilitate the passage of the jumping cation, lowering the activation energy. To combine the flexibility of polymers and the good mechanical and electrochemical properties of silica, we use sol-gel methods for fabricating silica-based hybrid organic-inorganic electrolytes. Polyethylene glycol is covalently grafted onto the silica backbone as the organic filler that provides the environment for ion conduction. We developed synthesis methods in which grafting and polycondensation occur concurrently, or the grafting occurs after the silica backbone has formed. Small angle x-ray scattering measurements reveal that different structures are achieved depending on the method used. The two-step procedure allows for a larger amount of conducting polymer to be embedded into network pores than in the one-pot method. This greatly enhances the ionic conductivity without sacrificing mechanical stability afforded by the continuous silica backbone. Here we provide a cumulative account of a systematic materials design efforts, in which we sequentially implement several important design aspects to identify their respective importance and influence on the materials performance

  20. Hybrid Metal/Electrolyte Monolithic Low Temperature SOFCs

    National Research Council Canada - National Science Library

    Cochran, Joe

    2004-01-01

    The program objective is to develop SOFCs, operating in the 500-700 degrees C range, based on Metal/Electrolyte square cell honeycomb formed by simultaneous powder extrusion of electrolyte and metal...

  1. Lecithin-based nanostructured gels for skin delivery: an update on state of art and recent applications.

    Science.gov (United States)

    Elnaggar, Yosra S R; El-Refaie, Wessam M; El-Massik, Magda A; Abdallah, Ossama Y

    2014-04-28

    Conventional carriers for skin delivery encounter obstacles of drug leakage, scanty permeation and low entrapment efficiency. Phospholipid nanogels have recently been recognized as prominent delivery systems to circumvent such obstacles and impart easier application. The current review provides an overview on different types of lecithin nanostructured gels, with particular emphasis on liposomal versus microemulsion gelled systems. Liposomal gels investigated encompassed classic liposomal hydrogel, modified liposomal gels (e.g. Transferosomal, Ethosomal, Pro-liposomal and Phytosomal gels), Microgel in liposomes (M-i-L) and Vesicular phospholipid gel (VPG). Microemulsion gelled systems encompassed Lecithin microemulsion-based organogels (LMBGs), Pluronic lecithin organogels (PLOs) and Lecithin-stabilized microemulsion-based hydrogels. All systems were reviewed regarding matrix composition, state of art, characterization and updated applications. Different classes of lecithin nanogels exhibited crucial impact on transdermal delivery regarding drug permeation, drug loading and stability aspects. Future perspectives of this theme issue are discussed based on current laboratory studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Steam Electrolysis by Proton-Conducting Solid Oxide Electrolysis Cells (SOECs) with Chemically Stable BaZrO3-Based Electrolytes

    KAUST Repository

    Bi, Lei

    2015-07-17

    BaZrO3-based material was applied as the electrolyte for proton-conducting solid oxide fuel cells (SOECs). Compared with the instability of BaCeO3-based proton-conductors, BaZrO3-based material could be a more promising candidate for proton-conducting SOECs due to its excellent chemical stability under H2O conditions, but few reports on this aspect has been made due to the processing difficulty for BaZrO3. Our recent pioneering work has demonstrated the feasibility of using BaZrO3-based electrolyte for SOECs and the fabricated cell achieves relatively high cell performance, which is comparable or even higher than that for BaCeO3-based SOECs and offers better chemical stability. Cell performance can be further improved by tailoring the electrolyte and electrode. © The Electrochemical Society.

  3. Tunable separations based on a molecular size effect for biomolecules by poly(ethylene glycol) gel-based capillary electrophoresis.

    Science.gov (United States)

    Kubo, Takuya; Nishimura, Naoki; Furuta, Hayato; Kubota, Kei; Naito, Toyohiro; Otsuka, Koji

    2017-11-10

    We report novel capillary gel electrophoresis (CGE) with poly(ethylene glycol) (PEG)-based hydrogels for the effective separations of biomolecules containing sugars and DNAs based on a molecular size effect. The gel capillaries were prepared in a fused silica capillary modified with 3-(trimethoxysilyl)propylmethacrylate using a variety of the PEG-based hydrogels. After the fundamental evaluations in CGE regarding the separation based on the molecular size effect depending on the crosslinking density, the optimized capillary provided the efficient separation of glucose ladder (G1 to G20). In addition, another capillary showed the successful separation of DNA ladder in the range of 10-1100 base pair, which is superior to an authentic acrylamide-based gel capillary. For both glucose and DNA ladders, the separation ranges against the molecular size were simply controllable by alteration of the concentration and/or units of ethylene oxide in the PEG-based crosslinker. Finally, we demonstrated the separations of real samples, which included sugars carved out from monoclonal antibodies, mAbs, and then the efficient separations based on the molecular size effect were achieved. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Synthesis and characterization of novel electrolyte materials for intermediate temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Chaubey, Nityanand; Chattopadhyaya, M.C.; Wani, B.N.; Bharadwaj, S.R.

    2008-01-01

    The high operating temperature of SOFCs using zirconia based electrolyte have several restrictions on materials used as interconnect and sealing and also requires use of expensive ceramics. Lowering the operating temperature of SOFCs to 600-800 deg C will enable to use cheaper materials and reduce the cost of fabrication while keeping the high power density. Lanthanide gallates are considered to be very promising solid electrolytes for intermediate temperature (600-800 deg C) solid oxide fuel cells (IT-SOFCs) due to their high ionic conductivity at lower temperatures. Phase purity of this material is a concern for the researchers for a long time. These materials are prepared at very high temperature (∼1400 deg C), since it is known that at around 1100 deg C, solubilities of Sr and Mg in LaGaO 3 were close to zero. Hence in the present work perovskite oxides of Ln 1-x Sr x Ga 1-y Mg y O 3-δ (Ln= Sm, Gd and x = 0.10, y=0.20) have been prepared by different methods i.e. solid state reaction, gel combustion and co-precipitation methods

  5. A solid state actuator based on polypyrrole (PPy) and a solid electrolyte NBR working in air

    Science.gov (United States)

    Cho, Misuk; Nam, Jaedo; Choi, Hyouk Ryeol; Koo, Jachoon; Lee, Youngkwan

    2005-05-01

    The solid polymer electrolyte based conducting polymer actuator was presented. In the preparation of acutuator module, an ionic liquid impregnated a synthetic rubber (NBR) and PPy were used as a solid polymer electrolyte and conducting polymer, respectively. An ionic liquid, 1-butyl-3-methylimidazolium bis (trifluoromethyl sulfonyl)imide (BMITFSI) is gradually dispersed into the NBR film and the conducting polymer, PPy was synthesized on the surface of NBR. The ionic conductivity of new type solid polymer electrolyte as a function of the immersion time was investigated. The cyclic voltammetry responsed and the redox switching dynamics of PEDOT in NBR matrix were studied. The displacement of the actuator was measured by laser beam.

  6. An Enhanced Soft Vibrotactile Actuator Based on ePVC Gel with Silicon Dioxide Nanoparticles.

    Science.gov (United States)

    Park, Won-Hyeong; Shin, Eun-Jae; Yun, Sungryul; Kim, Sang-Youn

    2018-01-01

    In this paper, we propose a soft vibrotactile actuator made by mixing silicon dioxide nanoparticles and plasticized PVC gel. The effect of the silicon dioxide nanoparticles in the plasticized PVC gel for the haptic performance is investigated in terms of electric, dielectric, and mechanical properties. Furthermore, eight soft vibrotactile actuators are prepared as a function of the content. Experiments are conducted to examine the haptic performance of the prepared eight soft vibrotactile actuators and to find the best weight ratio of the plasticized PVC gel to the nanoparticles. The experiments should show that the plasticized PVC gel with silicon dioxide nanoparticles improves the haptic performance of the plasticized PVC gel-based vibrotactile actuator, and the proposed vibrotactile actuator can create a variety of haptic sensations in a wide frequency range.

  7. Water-based sol-gel synthesis of hydroxyapatite: process development.

    Science.gov (United States)

    Liu, D M; Troczynski, T; Tseng, W J

    2001-07-01

    Hydroxyapatite (HA) ceramics were synthesized using a sol-gel route with triethyl phosphite and calcium nitrate as phosphorus and calcium precursors, respectively. Two solvents, water and anhydrous ethanol, were used as diluting media for HA sol preparation. The sols were stable and no gelling occurred in ambient environment for over 5 days. The sols became a white gel only after removal of the solvents at 60 degrees C. X-ray diffraction showed that apatitic structure first appeared at a temperature as low as 350 degrees C. The crystal size and the HA content in both gels increase with increasing calcination temperature. The type of initial diluting media (i.e., water vs. anhydrous ethanol) did not affect the microstructural evolution and crystallinity of the resulting HA ceramic. The ethanol-based sol dip-coated onto a Ti substrate, followed by calcination at 450 degrees C, was found to be porous with pore size ranging from 0.3 to 1 microm. This morphology is beneficial to the circulation of physiological fluid when the coating is used for biomedical applications. The satisfactory adhesion between the coating and substrate suggests its suitability for load-bearing uses.

  8. Electrolytes for lithium ion batteries

    Science.gov (United States)

    Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

    2014-08-05

    A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

  9. Zinc polymer electrolytes in battery systems

    Energy Technology Data Exchange (ETDEWEB)

    Hagan, W.P.; Latham, R.J.; Linford, R.G.; Vickers, S.L. (Dept. of Chemistry, School of Applied Sciences, De Montfort Univ., Leicester (United Kingdom))

    1994-06-01

    We have previously reported results of our studies of structure-conductivity relationships for polymer electrolytes of the form PEO[sub n][center dot]ZnX[sub 2]. In this paper we report the results of investigations of battery systems based on these electrolytes. Results will be presented for OCV and discharge curves for loaded cells of the type: Zn/polymer electrolyte/MnO[sub 2]. We are particularly interested in the speciation between oxidation states of manganese as a function of the degree of cell discharge, and have carried out determinations by chemical methods based on polarography. Preliminary studies indicate the presence of Mn[sup II] in cells discharged at various rates. The discharge times for a series of optimised cells show an exponential decrease with increasing load. This is consistent with a low electrolyte conductivity and less than ideal cathode conductivity, which leads to an increased 'front face' reaction with increasing load

  10. Comprehensive bactericidal activity of an ethanol-based hand gel in 15 seconds

    Directory of Open Access Journals (Sweden)

    Kampf Günter

    2008-01-01

    Full Text Available Abstract Background Some studies indicate that the commonly recommended 30 s application time for the post contamination treatment of hands may not be necessary as the same effect may be achieved with some formulations in a shorter application time such as 15 s. Method We evaluated the bactericidal activity of an ethanol-based hand gel (Sterillium® Comfort Gel within 15 s in a time-kill-test against 11 Gram-positive, 16 Gram-negative bacteria and 11 emerging bacterial pathogens. Each strain was evaluated in quadruplicate. Results The hand gel (85% ethanol, w/w was found to reduce all 11 Gram-positive and all 16 Gram-negative bacteria by more than 5 log10 steps within 15 s, not only against the ATCC test strains but also against corresponding clinical isolates. In addition, a log10 reduction > 5 was observed against all tested emerging bacterial pathogens. Conclusion The ethanol-based hand gel was found to have a broad spectrum of bactericidal activity in only 15 s which includes the most common species causing nosocomial infections and the relevant emerging pathogens. Future research will hopefully help to find out if a shorter application time for the post contamination treatment of hands provides more benefits or more risks.

  11. High Efficient Dye-Sensitized Solar Cells Based on Synthesized SnO2 Nanoparticles

    Directory of Open Access Journals (Sweden)

    W. M. N. M. B. Wanninayake

    2016-01-01

    Full Text Available In this study, SnO2 semiconductor nanoparticles were synthesized for DSC applications via acid route using tin(ii chloride as a starting material and hydrothermal method through the use of tin(iv chloride. Powder X-ray diffraction studies confirmed the formation of the rutile phase of SnO2 with nanoranged particle sizes. A quasi-solid-state electrolyte was employed instead of a conventional liquid electrolyte in order to overcome the practical limitations such as electrolyte leakage, solvent evaporation, and sealing imperfections associated with liquid electrolytes. The gel electrolytes were prepared incorporating lithium iodide (LiI and tetrapropylammonium iodide (Pr4N+I− salts, separately, into the mixture which contains polyacrylonitrile as a polymer, propylene carbonate and ethylene carbonate as plasticizers, iodide/triiodide as the redox couple, acetonitrile as the solvent, and 4-tertiary butylpyridine as an electrolyte additive. In order to overcome the recombination problem associated with the SnO2 due to its higher electron mobility, ultrathin layer of CaCO3 coating was used to cover the surface recombination sites of SnO2 nanoparticles. Maximum energy conversion efficiency of 5.04% is obtained for the device containing gel electrolyte incorporating LiI as the salt. For the same gel electrolyte, the ionic conductivity and the diffusion coefficient of the triiodide ions are 4.70 × 10−3 S cm−1 and 4.31 × 10−7 cm2 s−1, respectively.

  12. On gel electrophoresis of dielectric charged particles with hydrophobic surface: A combined theoretical and numerical study.

    Science.gov (United States)

    Majee, Partha Sarathi; Bhattacharyya, Somnath; Gopmandal, Partha Pratim; Ohshima, Hiroyuki

    2018-03-01

    A theoretical study on the gel electrophoresis of a charged particle incorporating the effects of dielectric polarization and surface hydrophobicity at the particle-liquid interface is made. A simplified model based on the weak applied field and low charge density assumption is also presented and compared with the full numerical model for a nonpolarizable particle to elucidate the nonlinear effects such as double layer polarization and relaxation as well as surface conduction. The main motivation of this study is to analyze the electrophoresis of the surface functionalized nanoparticle with tunable hydrophobicity or charged fluid drop in gel medium by considering the electrokinetic effects and hydrodynamic interactions between the particle and the gel medium. An effective medium approach, in which the transport in the electrolyte-saturated hydrogel medium is governed by the Brinkman equation, is adopted in the present analysis. The governing electrokinetic equations based on the conservation principles are solved numerically. The Navier-slip boundary condition along with the continuity condition of dielectric displacement are imposed on the surface of the hydrophobic polarizable particle. The impact of the slip length on the electrophoresis is profound for a thinner Debye layer, however, surface conduction effect also becomes significant for a hydrophobic particle. Impact of hydrophobicity and relaxation effects are higher for a larger particle. Dielectric polarization creates a reduction in its electrophoretic propulsion and has negligible impact at the thinner Debye length as well as lower gel screening length. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. An evaluation of the dosimetric performance characteristics of N-vinylpyrrolidone-based polymer gels

    Energy Technology Data Exchange (ETDEWEB)

    Papadakis, A E [Department of Medical Physics, Faculty of Medicine, University of Crete, PO Box 2208, Iraklion 71003, Crete (Greece); Maris, T G [Department of Medical Physics, Faculty of Medicine, University of Crete, PO Box 2208, Iraklion 71003, Crete (Greece); Zacharopoulou, F [Department of Medical Physics, Faculty of Medicine, University of Crete, PO Box 2208, Iraklion 71003, Crete (Greece); Pappas, E [Department of Medical Physics, Faculty of Medicine, University of Crete, PO Box 2208, Iraklion 71003, Crete (Greece); Zacharakis, G [Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), PO Box 1527, Iraklion, Crete (Greece); Damilakis, J [Department of Medical Physics, Faculty of Medicine, University of Crete, PO Box 2208, Iraklion 71003, Crete (Greece)

    2007-08-21

    The aim of this work was to investigate the dosimetric performance properties of the N-vinylpyrrolidone argon (VIPAR) based polymer gel as a dosimetric tool in clinical radiotherapy. VIPAR gels with a larger concentration of gelatin than the standard recipe were manufactured and irradiated up to 68 Gy using a 6 and 18 MV linear accelerator. Using MRI, the R2-dose response was recorded at different imaging sessions within a 34 day time period post-irradiation. The R2-dose response was found to be linear between 5 and 68 Gy. Although dose sensitivity did not show significant variation with time, the measured R2-dose values showed an increasing trend, which was less evident beyond 17 days. At one day post-irradiation, calculated dose standard uncertainties at 20 Gy and 56 Gy were 2.2% and 1.7%, providing a dose resolution of 0.45 Gy and 0.97 Gy, respectively. Although these values fulfilled the 2% limit of ICRU, when gels were imaged at one day post-irradiation, it was shown that the temporal evolution of the R2 values deteriorated the per cent standard uncertainty and the dose resolution by {approx}57%, when imaged 17 days post-irradiation. Variation in the coagulation temperature of the gels did not impact the R2-dose sensitivity. This study has shown that the VIPAR gel has the properties of a dosimetric tool required in clinical radiotherapy, especially in applications where a wide dose dynamic range is employed. For results with the lowest per cent uncertainty and the optimum dose resolution, the dosimetry gels used in this work should be MR scanned at one day post-irradiation. Furthermore, a preliminary study on the R2-dose response of a new normoxic N-vinylpyrrolidone-based polymer gel showed that it could potentially replace the traditional VIPAR gel formulation, while preserving the wide dynamic dose response inherent to that monomer.

  14. Effectiveness of silica based sol-gel microencapsulation method for odorants and flavors leading to sustainable environment.

    Science.gov (United States)

    Ashraf, Muhammad Aqeel; Khan, Aysha Masood; Ahmad, Mushtaq; Sarfraz, Maliha

    2015-01-01

    Microencapsulation has become a hot topic in chemical research. Technology mainly used for control release and protection purposes. The sol-gel micro encapsulation approach for fragrance and aroma in porous silica-based materials leads to sustainable odorant and flavored materials with novel and unique beneficial properties. Sol-gel encapsulation of silica based micro particles considered economically cheap as capital investment in manufacturing is very low and environmentally friendly. Amorphous sol-gel SiO2 is non-toxic and safe, whereas the sol-gel entrapment of delicate chemicals in its inner pores results in pronounced chemical and physical stabilization of the entrapped active agents, thereby broadening the practical utilization of chemically unstable essential oils (EOs). Reviewing progress in the fabrication of diverse odorant and flavored sol-gels, shows us how different synthetic strategies are appropriate for practical application with important health and environmental benefits.

  15. Electrochemical Properties and Speciation in Mg(HMDS)2-Based Electrolytes for Magnesium Batteries as a Function of Ethereal Solvent Type and Temperature.

    Science.gov (United States)

    Merrill, Laura C; Schaefer, Jennifer L

    2017-09-19

    Magnesium batteries are a promising alternative to lithium-ion batteries due to the widespread abundance of magnesium and its high specific volumetric energy capacity. Ethereal solvents such as tetrahydrofuran (THF) are commonly used for magnesium-ion electrolytes due to their chemical compatibility with magnesium metal, but the volatile nature of THF is a concern for practical application. Herein, we investigate magnesium bis(hexamethyldisilazide) plus aluminum chloride (Mg(HMDS) 2 -AlCl 3 ) electrolytes in THF, diglyme, and tetraglyme at varying temperature. We find that, despite the higher thermal stability of the glyme-based electrolytes, THF-based electrolytes have better reversibility at room temperature. Deposition/stripping efficiency is found to be a strong function of temperature. Diglyme-based Mg(HMDS) 2 -AlCl 3 electrolytes are found to not exchange as quickly as THF and tetraglyme, stabilizing AlCl 2 + and facilitating undesired aluminum deposition. Raman spectroscopy, 27 Al NMR, and mass spectrometry are used to identify solution speciation.

  16. Low temperature electrochemical cells with sodium {beta}''-alumina solid electrolyte (BASE)

    Energy Technology Data Exchange (ETDEWEB)

    Girija, T.C.; Virkar, Anil V. [Department of Materials Science and Engineering, 122 S. Central Campus Drive, University of Utah, Salt Lake City, UT 84112 (United States)

    2008-05-15

    Cells of Daniell-type with copper-zinc electrochemical couples and sodium {beta}''-alumina solid electrolyte (BASE) were constructed. The cathode consisted of copper in contact with its ions (Cu/Cu{sup 2+}) while zinc in contact with its ions (Zn/Zn{sup 2+}) constituted the anode. Dimethyl sulfoxide (DMSO) containing 1 M NaBF{sub 4} was used as the liquid electrolyte. The configuration of the cell constructed can be written as follows: Zn(s)/ZnCl{sub 2}(DMSO)(0.1 M), NaBF{sub 4}(1 M)/BASE/NaBF{sub 4}(1 M), CuCl{sub 2}(DMSO)(0.1 M)/Cu(s) The cell was subjected to charge-discharge cycles at 100 C. The BASE discs were found to be stable even after the cell was subjected to several electrochemical charge-discharge cycles. Cells were also constructed using BASE discs with porous BASE surface layers introduced to lower the interfacial resistance. Cells with surface modified BASE exhibited a lower resistance in comparison to those using unmodified BASE. XRD and SEM analyses indicated that no detectable degradation of BASE discs occurred after cell testing. Preliminary cell tests were also conducted with NaCF{sub 3}SO{sub 3} in place of NaBF{sub 4}. (author)

  17. Alkyl Substitution Effect on Oxidation Stability of Sulfone-Based Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chi-Cheung [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave. Argonne IL 60439 USA; He, Meinan [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave. Argonne IL 60439 USA; Redfern, Paul [Materials Science Division, Argonne National Laboratory, 9700 S. Cass Ave. Argonne IL 60439 USA; Curtiss, Larry A. [Materials Science Division, Argonne National Laboratory, 9700 S. Cass Ave. Argonne IL 60439 USA; Liao, Chen [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave. Argonne IL 60439 USA; Zhang, Lu [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave. Argonne IL 60439 USA; Burrell, Anthony K. [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave. Argonne IL 60439 USA; Zhang, Zhengcheng [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave. Argonne IL 60439 USA

    2016-02-16

    Organic sulfone compounds have been widely used as high-voltage electrolytes for lithium-ion batteries for decades. However, owing to the complexity of the synthesis of new sulfones, only a few commercially available sulfones have been studied. In this paper, we report the synthesis of new sulfone compounds with various substituent groups and the impact of the substituent group on the oxidation stability of sulfones. Electrochemical floating tests using a 5 V LiNi0.5Mn1.5O4 spinel cathode and density functional theory calculations showed that the cyclopentyl-substituted sulfone McPS suffered from oxidation instability, starting from 4.9 V versus Li+/Li, as observed by the large leakage currents. On the other hand, the isopropyl-substituted sulfone MiPS and tetramethylene substituted sulfone TMS showed much improved oxidation stability under identical testing conditions. The substitution structure of the sulfone plays a significant role in the determination of its oxidative stability and should first be considered for the development of new sulfone-based electrolytes for high-voltage, high-energy lithium-ion batteries.

  18. The Solubility of Aluminum in Cryolite-Based Electrolyte-Containing KF

    Science.gov (United States)

    Zhang, Yu; Yu, Jiangyu; Gao, Bingliang; Liu, Yibai; Hu, Xianwei; Shi, Zhongning; Wang, Zhaowen

    2016-04-01

    The solubility of aluminum in NaF-AlF3-CaF2-KF-A12O3 electrolyte system at 1253 K (980 °C) has been measured by the analysis of quenched samples saturated with aluminum. The content of the dissolved metal in the quenched melt was determined by collecting the volume of hydrogen gas when a finely crushed sample is treated with HCl. Addition of 0 to 5 pct KF has no obvious effect on the solubility of aluminum in cryolite-based melts with molar ratio of NaF/AlF3 (cryolite ratio) ranging from 2.2 to 3.0. The solubility of aluminum increases from 0.015 to 0.026 wt pct with cryolite ratio increases from 2.2 to 4.0 in the NaF-AlF3-5 wt pct CaF2-3 wt pct A12O3 electrolyte at 1253 K (980 °C). Aluminum solubility was affected by both chemical replacement reaction of Al + 3NaF = AlF3 + 3Na and physical dissolution.

  19. Light emission from organic single crystals operated by electrolyte doping

    Science.gov (United States)

    Matsuki, Keiichiro; Sakanoue, Tomo; Yomogida, Yohei; Hotta, Shu; Takenobu, Taishi

    2018-03-01

    Light-emitting devices based on electrolytes, such as light-emitting electrochemical cells (LECs) and electric double-layer transistors (EDLTs), are solution-processable devices with a very simple structure. Therefore, it is necessary to apply this device structure into highly fluorescent organic materials for future printed applications. However, owing to compatibility problems between electrolytes and organic crystals, electrolyte-based single-crystal light-emitting devices have not yet been demonstrated. Here, we report on light-emitting devices based on organic single crystals and electrolytes. As the fluorescent materials, α,ω-bis(biphenylyl)terthiophene (BP3T) and 5,6,11,12-tetraphenylnaphthacene (rubrene) single crystals were selected. Using ionic liquids as electrolytes, we observed clear light emission from BP3T LECs and rubrene EDLTs.

  20. Underscreening in concentrated electrolytes.

    Science.gov (United States)

    Lee, Alpha A; Perez-Martinez, Carla S; Smith, Alexander M; Perkin, Susan

    2017-07-01

    Screening of a surface charge by an electrolyte and the resulting interaction energy between charged objects is of fundamental importance in scenarios from bio-molecular interactions to energy storage. The conventional wisdom is that the interaction energy decays exponentially with object separation and the decay length is a decreasing function of ion concentration; the interaction is thus negligible in a concentrated electrolyte. Contrary to this conventional wisdom, we have shown by surface force measurements that the decay length is an increasing function of ion concentration and Bjerrum length for concentrated electrolytes. In this paper we report surface force measurements to test directly the scaling of the screening length with Bjerrum length. Furthermore, we identify a relationship between the concentration dependence of this screening length and empirical measurements of activity coefficient and differential capacitance. The dependence of the screening length on the ion concentration and the Bjerrum length can be explained by a simple scaling conjecture based on the physical intuition that solvent molecules, rather than ions, are charge carriers in a concentrated electrolyte.

  1. The Effect of Cerium Ions on the Structure, Porosity and Electrochemical Properties of Si/Zr-Based Hybrid Sol-Gel Coatings Deposited on Aluminum

    Directory of Open Access Journals (Sweden)

    Peter Rodič

    2018-04-01

    Full Text Available This study was focused on the synthesis and characterization of Si/Zr-based hybrid sol-gel coatings with and without the addition of cerium(III ions. The coatings were deposited on aluminum aiming to act as an effective and ecologically harmless alternative to toxic chromate coatings. The chemical composition, structure, thermal properties and porosity of the non-doped and Ce-doped coatings containing various Zr contents were examined by Raman spectroscopy and photothermal beam deflection spectroscopy. The corrosion properties of the coated aluminum substrates were studied using AC and DC electrochemical methods in 0.1 M NaCl electrolyte solution. Barrier and protecting properties of the coatings were monitored upon long-term immersion in chloride solution using electrochemical impedance spectroscopy. The effect of cerium ions was two-fold: on the formation of a more condensed Si−O−Zr network structure and on the formation of Ce-based deposits, which diminish the rate of cathodic reaction at the coating/metal interface. These effects acted synergistically and resulted in the creation of the coatings with effective barrier and active corrosion protection.

  2. Modification of chitosan membranes with nanosilica particles as polymer electrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kusumastuti, Ella, E-mail: ella.kusuma@gmail.com; Siniwi, Widasari Trisna, E-mail: wsiniwi@gmail.com; Mahatmanti, F. Widhi; Jumaeri [Department of Chemistry, Faculty of Mathematics and Natural Sciences, State University of Semarang D6 Building 2" n" d floor, Sekaran Unnes Campus, Gunungpati, Semarang (Indonesia); Atmaja, Lukman; Widiastuti, Nurul [Department of Chemistry, Faculty of Mathematics and Natural Sciences, Tenth November Institute of Technology Keputih ITS Campus, Sukolilo, Surabaya (Indonesia)

    2016-04-19

    Chitosan has been widely used as polymer matrix for Polymer Electrolyte Membrane (PEM) application replacing Nafion which has shortcomings in terms of high methanol permeability that degrades the performance of fuel cells. Chitosan membranes modification is performed by adding nanosilica to prevent methanol transport through the membrane. Nanosilica is synthesized by sol-gel method and the particle diameter is obtained by analysis using Breunner Emmet Teller (BET) that is 6.59 nm. Nanosilica is mixed with chitosan solution to obtain nanosilica-chitosan as polymer electrolyte membrane. The membranes are synthesized through phase inversion method with nanosilica composition including 0; 0.5; 1; 2; 3; 5; and 10% w/w of chitosan. Characterization of the membranes indicate that the results of water swelling, proton conductivity and methanol permeability of the membrane with 3% nanosilica respectively were 49.23%, 0.231 S/cm, and 5.43 x 10{sup −7} cm{sup 2}/s. Based on the results of membrane selectivity calculation, the optimum membrane is the composition of 3% nanosilica with value 5.91 x 105 S s cm{sup −3}. The results of functional groups analysis with FTIR showed that it was only physical interaction that occurred between chitosan and nanosilica since no significant changes found in peak around the wave number 1000-1250 cm{sup −-1}.

  3. The potential role of electrolytic hydrogen in Canada

    International Nuclear Information System (INIS)

    Hammerli, M.

    1982-03-01

    The potential role of electrolytic hydrogen in Canada is assessed for the period 1980 to 2025 for large-scale uses only. Present uses of hydrogen, and specifically electrolytic hydrogen, are discussed briefly and hydrogen production processes are summarized. Only hydrogen derived from natural gas, coal, or electrolysis of sater are considered. Cost estimates of electrolytic hydrogen are obtained from a parametric equation, comparing values for unipolar water elecctrklyser technologies with those for bipolar electrolysers. Both by-products of electrolytic hydrogen production, namely heavy water and oxygen, are evaluated. Electrolytic hydrogen, based on non-fossil primary energy sources, is also considered as ankther 'liquid fuel option' for Canada along with the alcohols. The market potential for hydrogen in general and electrolytic hydrogen is assessed. Results show that the market potential for electrolytic hydrogen is large by the year 2025

  4. Effectiveness of silica based sol-gel microencapsulation method for odorants and flavors leading to sustainable environment

    Science.gov (United States)

    Ashraf, Muhammad Aqeel; Khan, Aysha Masood; Ahmad, Mushtaq; Sarfraz, Maliha

    2015-01-01

    Microencapsulation has become a hot topic in chemical research. Technology mainly used for control release and protection purposes. The sol-gel micro encapsulation approach for fragrance and aroma in porous silica-based materials leads to sustainable odorant and flavored materials with novel and unique beneficial properties. Sol-gel encapsulation of silica based micro particles considered economically cheap as capital investment in manufacturing is very low and environmentally friendly. Amorphous sol-gel SiO2 is non-toxic and safe, whereas the sol-gel entrapment of delicate chemicals in its inner pores results in pronounced chemical and physical stabilization of the entrapped active agents, thereby broadening the practical utilization of chemically unstable essential oils (EOs). Reviewing progress in the fabrication of diverse odorant and flavored sol-gels, shows us how different synthetic strategies are appropriate for practical application with important health and environmental benefits. PMID:26322304

  5. Effectiveness of silica based Sol-gel microencapsulation Method for odorants and flavours leading to sustainable Environment

    Directory of Open Access Journals (Sweden)

    Muhammad Aqeel eAshraf

    2015-08-01

    Full Text Available Microencapsulation has become a hot topic in chemical research. Technology mainly used for control release and protection purposes. The sol–gel micro encapsulation approach for fragrance and aroma in porous silica-based materials leads to sustainable odorant and flavored materials with novel and unique beneficial properties. Sol-gel encapsulation of silica based micro particles considered economically cheap as capital investment in manufacturing is very low and environmentally friendly. Amorphous sol–gel SiO2 is non-toxic and safe, whereas the sol–gel entrapment of delicate chemicals in its inner pores results in pronounced chemical and physical stabilization of the entrapped actives, thereby broadening the practical utilization of chemically unstable essential oils. Reviewing progress in the fabrication of diverse odorant and flavoured sol-gels, shows us how different synthetic strategies are appropriate for practical application with important health and environmental benefits.

  6. Electrospinning of Ceramic Solid Electrolyte Nanowires for Lithium-Ion Batteries with Enhanced Ionic Conductivity

    Science.gov (United States)

    Yang, Ting

    Solid electrolytes have great potential to address the safety issues of Li-ion batteries, but better synthesis methods are still required for ceramics electrolytes such as lithium lanthanum titanate (LLTO) and lithium lanthanum zirconate (LLZO). Pellets made from ceramic nanopowders using conventional sintering can be porous due to the agglomeration of nanoparticles (NPs). Electrospinning is a simple and versatile technique for preparing oxide ceramic nanowires (NWs) and was used to prepare electrospun LLTO and LLZO NWs. Pellets prepared from the electrospun LLTO NWs had higher density, less void space, and higher Li+ conductivity compared to those comprised of LLTO prepared with conventional sol-gel methods, which demonstrated the potential that electrospinning can provide towards improving the properties of sol-gel derived ceramics. Cubic phase LLZO was stabilized at room temperature in the form of electrospun NWs without extrinsic dopants. Bulk LLZO with tetragonal structure was transformed to the cubic phase using particle size reduction via ball milling. Heating conditions that promoted particle coalescence and grain growth induced a transformation from the cubic to tetragonal phase in both types of nanostructured LLZO. Composite polymer solid electrolyte was fabricated using LLZO NWs as the filler and showed an improved ionic conductivity at room temperature. Nuclear magnetic resonance studies show that LLZO NWs partially modify the polymer matrix and create preferential pathways for Li+ conduction through the modified polymer regions. Doping did not have significant effect on improving the overall conductivity as the interfaces played a predominant role. By comparing fillers with different morphologies and intrinsic conductivities, it was found that both NW morphology and high intrinsic conductivity are desired.

  7. Synthesis and characterization of an electrolyte system based on a biodegradable polymer

    Directory of Open Access Journals (Sweden)

    K. Sownthari

    2013-06-01

    Full Text Available A polymer electrolyte system has been developed using a biodegradable polymer namely poly-ε-caprolactone (PCL in combination with zinc triflate [Zn(CF3SO32] in different weight percentages and characterized during this investigation. Free-standing thin films of varying compositions were prepared by solution casting technique. The successful doping of the polymer has been confirmed by means of Fourier transform infrared spectroscopy (FTIR by analyzing the carbonyl (C=O stretching region of the polymer. The maximum ionic conductivity obtained at room temperature (25°C was found to be 8.8x10–6 S/cm in the case of PCL complexed with 25 wt% Zn(CF3SO32 which is five orders of magnitude higher than that of the pure polymer host material. The increase in amorphous phase with an increase in salt concentration of the prepared polymer electrolyte has also been confirmed from the concordant results obtained from X-ray diffraction (XRD, differential scanning calorimetry (DSC and scanning electron microscopic (SEM analyses. Furthermore, the electrochemical stability window of the prepared polymer electrolyte was found to be 3.7 V. An electrochemical cell has been fabricated based on Zn/MnO2 electrode couple as an application area and its discharge characteristics were evaluated.

  8. Graphene oxide-enhanced sol-gel transition sensitivity and drug release performance of an amphiphilic copolymer-based nanocomposite

    Science.gov (United States)

    Hu, Huawen; Wang, Xiaowen; Lee, Ka I; Ma, Kaikai; Hu, Hong; Xin, John H.

    2016-01-01

    We report the fabrication of a highly sensitive amphiphilic copolymer-based nanocomposite incorporating with graphene oxide (GO), which exhibited a low-intensity UV light-triggered sol-gel transition. Non-cytotoxicity was observed for the composite gels after the GO incorporation. Of particular interest were the microchannels that were formed spontaneously within the GO-incorporated UV-gel, which expedited sustained drug release. Therefore, the present highly UV-sensitive, non-cytotoxic amphiphilic copolymer-based composites is expected to provide enhanced photothermal therapy and chemotherapy by means of GO’s unique photothermal properties, as well as through efficient passive targeting resulting from the sol-gel transition characteristic of the copolymer-based system with improved sensitivity, which thus promises the enhanced treatment of patients with cancer and other diseases. PMID:27539298

  9. Conductivity enhancement via chemical modification of chitosan based green polymer electrolyte

    International Nuclear Information System (INIS)

    Mobarak, N.N.; Ahmad, A.; Abdullah, M.P.; Ramli, N.; Rahman, M.Y.A.

    2013-01-01

    The potential of carboxymethyl chitosan as a green polymer electrolyte has been explored. Chitosan produced from partial deacetylation of chitin was reacted with monochloroacetic acid to form carboxymethyl chitosan. A green polymer electrolyte based chitosan and carboxymethyl chitosan was prepared by solution-casting technique. The powder and films were characterized by reflection Fourier transform infrared (ATR-FTIR) spectroscopy, 1 H nuclear magnetic resonance, elemental analysis and X-ray diffraction, electrochemical impedance spectroscopy, and scanning electron microscopy. The shift of wavenumber that represents hydroxyl and amine stretching confirmed the polymer solvent complex formation. The XRD spectra results show that chemical modification of chitosan has improved amorphous properties of chitosan. The ionic conductivity was found to increase by two magnitudes higher with the chemical modification of chitosan. The highest conductivity achieved was 3.6 × 10 −6 S cm −1 for carboxymethyl chitosan at room temperature and 3.7 × 10 −4 S cm −1 at 60 °C

  10. Hybrid capacitors utilizing halogen-based redox reactions at interface between carbon positive electrode and aqueous electrolytes

    Science.gov (United States)

    Yamazaki, Shigeaki; Ito, Tatsuya; Murakumo, Yuka; Naitou, Masashi; Shimooka, Toshiharu; Yamagata, Masaki; Ishikawa, Masashi

    2016-09-01

    We propose novel hybrid capacitors (HCs) with electrolyte-involved redox reactions of bromide or iodide species by pretreatment of an activated carbon positive electrode. The treatment is simple; impregnation of pores at an activated carbon fiber cloth (ACFC) as a positive electrode with bromine- or iodine-containing water before cell assembly. The treated positive electrode is applied to a HC cell with a non-treated negative electrode of ACFC and its electrochemical performance is investigated by galvanostatic cycling and leakage current tests. Few studies on such "electrolytic" charge storage systems have provided acceptable capacitor performance because of inevitable self-discharge caused by diffusion of charged species form an electrode to the other one through an electrolyte. Nevertheless, our electrolyte-redox-based HCs show excellent performance without undesirable diffusion of charged species. Moreover, the present HC utilizing a bromide redox system fulfills a practical cell voltage of 1.8 V in spite of an aqueous electrolyte system. This high voltage provides excellent energy density, which is 5 times higher than that in a conventional aqueous electric double-layer capacitor (EDLC), and 1.2 times higher even than that in a 2.7 V-class non-aqueous EDLC, while keeping high charge-discharge rate capability.

  11. An efficient binary ionic liquid based quasi solid-state electrolyte for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Chen, Junnian; Peng, Tianyou; Shi, Wenye; Li, Renjie; Xia, Jiangbin

    2013-01-01

    A novel binary ionic liquid electrolyte containing lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) and binary ionic liquids, which is composed of 1-butyl-3-methylimidazolium iodide (BMII) and 1-butyl-3-methylimidazolium thiocyanate (BMISCN), is developed for dye-sensitized solar cells (DSSCs). It is found that incorporation of LiTFSI as charge transfer promoter with BMII has positive effect on the interfacial charge transfer of the dye/TiO 2 film, further addition of BMISCN into the above composite electrolyte can take advantage of its low viscosity to enhance the ionic conductivity and reduce the interfacial charge transfer resistance, and a photovoltaic conversion efficiency of 5.55% is obtained from the solar cell fabricated with the optimized binary ionic liquid electrolyte without iodine participation under AM 1.5 illumination at 100 mW cm −2 , with a 108.6% improvement in the efficiency with lower resistance and higher ionic conductivity as compared to the solar cell fabricated with single BMII ionic liquid-based electrolyte. The above results should be attributed to the reduced charge recombination and the effective interfacial charge transfer in the solar cell

  12. Are your hands clean enough for point-of-care electrolyte analysis?

    Science.gov (United States)

    Lam, Hugh S; Chan, Michael H M; Ng, Pak C; Wong, William; Cheung, Robert C K; So, Alan K W; Fok, Tai F; Lam, Christopher W K

    2005-08-01

    To investigate clinically significant analytical interference in point-of-care electrolyte analysis caused by contamination of blood specimens with hand disinfectant. Six different hand hygiene products were added separately to heparinised blood samples in varying amounts as contaminant. The contaminated samples were analysed by three different blood gas and electrolyte analysers for assessing interference on measured whole blood sodium and potassium concentrations. There were significant analytical interferences caused by hand hygiene product contamination that varied depending on the combination of disinfectant and analyser. Small amounts of Microshield Antibacterial Hand Gel contamination caused large increases in measured sodium concentration. Such effect was much greater compared with the other five products tested, and started to occur at much lower levels of contamination. There was a trend towards lower sodium results in blood samples contaminated with Hexol Antiseptic Lotion (Hexol), the hand hygiene product that we used initially. Apart from AiE Hand Sanitizer, all the other hand disinfectants, especially Hexol, significantly elevated the measured potassium concentration, particularly when a direct ion-selective electrode method was used for measurement. Hand disinfectant products can significantly interfere with blood electrolyte analysis. Proper precautions must be taken against contamination since the resultant errors can adversely affect the clinical management of patients.

  13. Nanoporous polymer electrolyte

    Science.gov (United States)

    Elliott, Brian [Wheat Ridge, CO; Nguyen, Vinh [Wheat Ridge, CO

    2012-04-24

    A nanoporous polymer electrolyte and methods for making the polymer electrolyte are disclosed. The polymer electrolyte comprises a crosslinked self-assembly of a polymerizable salt surfactant, wherein the crosslinked self-assembly includes nanopores and wherein the crosslinked self-assembly has a conductivity of at least 1.0.times.10.sup.-6 S/cm at 25.degree. C. The method of making a polymer electrolyte comprises providing a polymerizable salt surfactant. The method further comprises crosslinking the polymerizable salt surfactant to form a nanoporous polymer electrolyte.

  14. Preparation and Properties of Polyester-Based Nanocomposite Gel Coat System

    Directory of Open Access Journals (Sweden)

    P. Jawahar

    2006-01-01

    Full Text Available Nanocomposite gel coat system is prepared using unsaturated polyester resin with aerosil powder, CaCO3, and organoclay. The influence of organoclay addition on mechanical and water barrier properties of gel coat system is studied for different amount (1, 2, and 3 wt % of organoclay. The nanolevel incorporation of organoclay improves the mechanical and water barrier properties of nanocomposite gel coat system. The nanocomposite gel coat system exhibits 55% improvement in tensile modulus and 25% improvement in flexural modulus. There is a 30% improvement in impact property of nanocomposite gel coat system. The dynamic mechanical analysis shows a slight increase in glass transition temperature for nanocomposite gel coat system.

  15. Comparative study of Ce0.80Sm0.20 Ba0.80Y0.20O3-δ (YB-SDC) electrolyte by various chemical synthesis routes

    Science.gov (United States)

    Tariq, Sana; Marium, Aniqa; Raza, Rizwan; Ashfaq Ahmad, M.; Ajmal Khan, M.; Abbas, Ghazanfar; Waseem Boota, M.; Khalid Imran, S.; Arshad, Sarfraz; Ikram, Muhammad

    2018-03-01

    Solid Oxide Fuel Cells is received a significant attention in recent years due to higher efficiency and fuel flexibility. The one of the main challenge for SOFC is to lower the operating temperature of SOFCs. Therefore, different strategies are used in order to enhance the ionic conduction of electrolyte, which can lower the overall SOFC operating temperature. The present work is focused on this strategy to enhance the electrolytic conductivity. Therefore, the ceria based composite electrolytes Ce0.80Sm0.20B0.80Y0.20O3-δ (YBSDC) are synthesized using three different approaches i.e. co-precipitation (YBSDC-1), sol-gel (YBSDC-2) and ball milling (YBSDC-3). Their crystal structures and surface morphologies are characterized through X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) techniques, respectively. The four-probe technique is employed to measure their dc conductivities in the temperature range (300-700) °C under air atmosphere. The open circuit voltage (OCV) and current are recorded with natural gas as fuel {flow rate kept at 100 ml min-1 at 1 atm pressure} over the temperature range (300-600) °C. The electrolyte (YBSDC-1) prepared by co-precipitation technique is shown better results as compare to other two electrolytes (YBSDC-2 and YBSDC-3). The electrolyte (YBSDC-1) having maximum dc conductivity (0.096 S/cm), peak power density 224 mW cm-2 and OCV 0.94 V at 600 °C. These results show that YBSDC-1electrolyte is potential candidate for low temperature SOFCs.

  16. A novel tantalum-based sol-gel packed microextraction syringe for highly specific enrichment of phosphopeptides in MALDI-MS applications.

    Science.gov (United States)

    Çelikbıçak, Ömür; Atakay, Mehmet; Güler, Ülkü; Salih, Bekir

    2013-08-07

    A new tantalum-based sol-gel material was synthesized using a unique sol-gel synthesis pathway by PEG incorporation into the sol-gel structure without performing a calcination step. This improved its chemical and physical properties for the high capacity and selective enrichment of phosphopeptides from protein digests in complex biological media. The specificity of the tantalum-based sol-gel material for phosphopeptides was evaluated and compared with tantalum(V) oxide (Ta2O5) in different phosphopeptide enrichment applications. The tantalum-based sol-gel and tantalum(V) oxide were characterized in detail using FT-IR spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM), and also using a surface area and pore size analyzer. In the characterization studies, the surface morphology, pore volume, crystallinity of the materials and PEG incorporation into the sol-gel structure to produce a more hydrophilic material were successfully demonstrated. The X-ray diffractograms of the two different materials were compared and it was noted that the broad signals of the tantalum-based sol-gel clearly represented the amorphous structure of the sol-gel material, which was more likely to create enough surface area and to provide more accessible tantalum atoms for phosphopeptides to be easily adsorbed when compared with the neat and more crystalline structure of Ta2O5. Therefore, the phosphopeptide enrichment performance of the tantalum-based sol-gels was found to be remarkably higher than the more crystalline Ta2O5 in our studies. Phosphopeptides at femtomole levels could be selectively enriched using the tantalum-based sol-gel and detected with a higher signal-to-noise ratio by matrix-assisted laser desorption/ionization-mass spectrometer (MALDI-MS). Moreover, phosphopeptides in a tryptic digest of non-fat bovine milk as a complex real-world biological sample were retained with higher yield using a tantalum-based sol-gel. Additionally, the sol-gel material

  17. Evaluation and Selection of Gel Base for the Formulation of ...

    African Journals Online (AJOL)

    Purpose: To formulate dexpanthenol gels with enhanced in vivo absorption properties via skin. Methods: Carboxyvinyl derivatives (Carbopol 980 and Ultrez 10) and poloxamer (Lutrol F 127) were used as the hydrogel base in the formulations. Changes in rheological properties (apparent viscosity and penetration values) ...

  18. Influence of polyoxyethylene phytosterol addition in ionic liquid-based electrolyte on photovoltaic performance of dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Takahashi, Masashi; Sato, Kei; Sakurai, Sho; Kobayashi, Koichi

    2016-01-01

    Highlights: • The ionic liquid solution of less solvophilic BPS exhibits a better surface active property and a weaker dye-desorption effect. • Photovoltaic performances of the N719- and NKX2677-sensitized DSSCs can be improved by the BPS addition to the IL-based electrolyte. • BPS added to the electrolyte plays a key role in reducing charge-transfer resistance and increasing electron lifetime in the TiO 2 electrode. - Abstract: In this work, we studied influence of polyoxyethylene phytosterol (BPS) addition in ionic liquid (IL)-based electrolyte on photovoltaic performance of dye-sensitized solar cells (DSSCs) using 1-methyl-3-propylimidazolium iodide as an IL. Surface tension, photocurrent density-voltage characteristics and electrochemical impedance spectra were measured to clarify the role of BPS in the DSSCs using three different dyes. The results showed that the IL solution of less solvophilic BPS-EO5 exhibited a better surface active property and a weaker dye-desorption effect than BPS-EO30 and BPS-PO7/EO30. Short-circuit current densities of the N719- and NKX2677-sensitized cells were found to be noticeably increased by the addition of either BPS-EO5 or BPS-EO30 to the IL-based electrolyte in the concentration range of 0.001–0.01 mol dm −3 . Enhanced photovoltaic conversion efficiencies were obtained for these DSSCs, which most likely resulted from the effects of BPS on reducing charge-transfer resistance at the TiO 2 /dye/electrolyte interface and on increasing electron lifetime within the TiO 2 photoanode.

  19. Nanoclay gelation approach toward improved dye-sensitized solar cell efficiencies: an investigation of charge transport and shift in the TiO2 conduction band.

    Science.gov (United States)

    Wang, Xiu; Kulkarni, Sneha A; Ito, Bruno Ieiri; Batabyal, Sudip K; Nonomura, Kazuteru; Wong, Chee Cheong; Grätzel, Michael; Mhaisalkar, Subodh G; Uchida, Satoshi

    2013-01-23

    Nanoclay minerals play a promising role as additives in the liquid electrolyte to form a gel electrolyte for quasi-solid-state dye-sensitized solar cells, because of the high chemical stability, unique swelling capability, ion exchange capacity, and rheological properties of nanoclays. Here, we report the improved performance of a quasi-solid-state gel electrolyte that is made from a liquid electrolyte and synthetic nitrate-hydrotalcite nanoclay. Charge transport mechanisms in the gel electrolyte and nanoclay interactions with TiO(2)/electrolyte interface are discussed in detail. The electrochemical analysis reveals that the charge transport is solely based on physical diffusion at the ratio of [PMII]:[I(2)] = 10:1 (where PMII is 1-propyl-3-methylimidazolium iodide). The calculated physical diffusion coefficient shows that the diffusion of redox ions is not affected much by the viscosity of nanoclay gel. The addition of nitrate-hydrotalcite clay in the electrolyte has the effect of buffering the protonation process at the TiO(2)/electrolyte interface, resulting in an upward shift in the conduction band and a boost in open-circuit voltage (V(OC)). Higher V(OC) values with undiminished photocurrent is achieved with nitrate-hydrotalcite nanoclay gel electrolyte for organic as well as for inorganic dye (D35 and N719) systems. The efficiency for hydrotalcite clay gel electrolyte solar cells is increased by 10%, compared to that of the liquid electrolyte. The power conversion efficiency can reach 10.1% under 0.25 sun and 9.6% under full sun. This study demonstrates that nitrate-hydrotalcite nanoclay in the electrolyte not only solidifies the liquid electrolyte to prevent solvent leakage, but also facilitates the improvement in cell efficiency.

  20. Electrolytic decontamination of stainless steel using a basic electrolyte

    International Nuclear Information System (INIS)

    Childs, E.L.; Long, J.L.

    1981-01-01

    An electrolytic plutonium decontamination process or stainless steel was developed for use as the final step in a proposed radioactive waste handling and decontamination facility to be construced at the Rockwell International Rocky Flats plutonium handling facility. This paper discusses test plan, which was executed to compare the basic electrolyte with phosphoric acid and nitric acid electrolytes. 1 ref

  1. Electrophoresis of DNA in agarose gels, polyacrylamide gels and in free solution

    Science.gov (United States)

    Stellwagen, Nancy C.

    2009-01-01

    This review describes the electrophoresis of curved and normal DNA molecules in agarose gels, polyacrylamide gels and in free solution. These studies were undertaken to clarify why curved DNA molecules migrate anomalously slowly in polyacrylamide gels but not in agarose gels. Two milestone papers are cited, in which Ferguson plots were used to estimate the effective pore size of agarose and polyacrylamide gels. Subsequent studies on the effect of the electric field on agarose and polyacrylamide gel matrices, DNA interactions with the two gel matrices, and the effect of curvature on the free solution mobility of DNA are also described. The combined results suggest that the anomalously slow mobilities observed for curved DNA molecules in polyacrylamide gels are due primarily to preferential interactions of curved DNAs with the polyacrylamide gel matrix; the restrictive pore size of the matrix is of lesser importance. In free solution, DNA mobilities increase with increasing molecular mass until leveling off at a plateau value of (3.17 ± 0.01) × 10-4 cm2/Vs in 40 mM Tris-acetate-EDTA buffer at 20°C. Curved DNA molecules migrate anomalously slowly in free solution as well as in polyacrylamide gels, explaining why the Ferguson plots of curved and normal DNAs containing the same number of base pairs extrapolate to different mobilities at zero gel concentration. PMID:19517510

  2. Physicochemistry of the plasma-electrolyte solution interface

    International Nuclear Information System (INIS)

    Chen Qiang; Saito, Kenji; Takemura, Yu-ichiro; Shirai, Hajime

    2008-01-01

    The atmospheric rf plasma discharge was successfully investigated using NaOH or HCl electrolyte solutions as a counter electrode at different pH values. The emission intensities of solution components, self bias, and electron density strongly depend on the pH value of electrolyte. An addition of ethanol to the electrolyte solutions enhanced the dehydration, which markedly promoted the emissions of solution components as well as electrons from the solution. An acidification of the solution was always observed after the plasma exposure and two coexisting mechanisms were proposed to give a reasonable interpretation. The plasma-electrolyte interface was discussed based on a model of hydrogen cycle

  3. Stabilization of Li Metal Anode in DMSO-Based Electrolytes via Optimization of Salt-Solvent Coordination for Li-O 2 Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bin [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Xu, Wu [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Yan, Pengfei [Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA; Kim, Sun Tai [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 689-798 South Korea; Engelhard, Mark H. [Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA; Sun, Xiuliang [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Mei, Donghai [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Cho, Jaephil [Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 689-798 South Korea; Wang, Chong-Min [Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA; Zhang, Ji-Guang [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA

    2017-03-08

    The conventional DMSO-based electrolyte (1 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in DMSO) is unstable against the Li metal anode and therefore cannot be used directly in practical Li-O2 batteries. Here, we demonstrate that a highly concentrated electrolyte based on LiTFSI in DMSO (with a molar ratio of 1:3) can greatly improve the stability of the Li metal anode against DMSO and significantly improve the cycling stability of Li-O2 batteries. This highly concentrated electrolyte contains no free DMSO solvent molecules, but only complexes of (TFSI–)a-Li+-(DMSO)b (where a + b = 4), and thus enhances their stability with Li metal anodes. In addition, such salt-solvent complexes have higher Gibbs activation energy barriers than the free DMSO solvent molecules, indicating improved stability of the electrolyte against the attack of superoxide radical anions. Therefore, the stability of this highly concentrated electrolyte at both Li metal anodes and carbon-based air electrodes has been greatly enhanced, resulting in improved cyclic stability of Li-O2 batteries. The fundamental stability of the electrolyte with free-solvent against the chemical and electrochemical reactions can also be used to enhance the stability of other electrochemical systems.

  4. Highly Quantitative Electrochemical Characterization of Non-Aqueous Electrolytes & Solid Electrolyte Interphases

    Energy Technology Data Exchange (ETDEWEB)

    Sergiy V. Sazhin; Kevin L. Gering; Mason K. Harrup; Harry W. Rollins

    2012-10-01

    The methods to measure solid electrolyte interphase (SEI) electrochemical properties and SEI formation capability of non-aqueous electrolyte solutions are not adequately addressed in the literature. And yet, there is a strong demand in new electrolyte generations that promote stabilized SEIs and have an influence to resolve safety, calendar life and other limitations of Li-ion batteries. To fill this gap, in situ electrochemical approach with new descriptive criteria for highly quantitative characterization of SEI and electrolytes is proposed. These criteria are: SEI formation capacity, SEI corrosion rate, SEI maintenance rate, and SEI kinetic stability. These criteria are associated with battery parameters like irreversible capacity, self-discharge, shelf-life, power, etc. Therefore, they are especially useful for electrolyte development and standard fast screening, allowing a skillful approach to narrow down the search for the best electrolyte. The characterization protocol also allows retrieving information on interfacial resistance for SEI layers and the electrochemical window of electrolytes, the other important metrics of characterization. The method validation was done on electrolyte blends containing phosphazenes, developed at Idaho National Laboratory, as 1.2M LiPF6 [80 % EC-MEC (2:8) (v/v) + 20% Phosphazene variety] (v/v), which were targeted for safer electrolyte variations.

  5. Communication: Modeling electrolyte mixtures with concentration dependent dielectric permittivity

    Science.gov (United States)

    Chen, Hsieh; Panagiotopoulos, Athanassios Z.

    2018-01-01

    We report a new implicit-solvent simulation model for electrolyte mixtures based on the concept of concentration dependent dielectric permittivity. A combining rule is found to predict the dielectric permittivity of electrolyte mixtures based on the experimentally measured dielectric permittivity for pure electrolytes as well as the mole fractions of the electrolytes in mixtures. Using grand canonical Monte Carlo simulations, we demonstrate that this approach allows us to accurately reproduce the mean ionic activity coefficients of NaCl in NaCl-CaCl2 mixtures at ionic strengths up to I = 3M. These results are important for thermodynamic studies of geologically relevant brines and physiological fluids.

  6. Study of nuclear glasses alteration gel and synthesis of some model gels

    International Nuclear Information System (INIS)

    Ricol, S.

    1995-01-01

    This work deals with the general problem of alteration of the reference nuclear glass R7T7. Attention is paid particularly to the altered layer formed at the glass surface during alteration process. In opposition to previous works, related essentially to glass dissolution kinetics based on chemical analyses of lixiviated elements, this thesis deals with alteration problems through structural studies of the reference glass and derived gel. This approach allows the determination of mechanisms for the gel formation and a better understanding of the behaviour of glasses towards lixiviation. Both approaches appeared complementary. Based on several spectroscopic techniques, this work showed the particular role of cations such as calcium, zirconium and iron. Studies of silica-based synthetic gels showed the synergic effect of formers cation and of one highly coordinated cation. The variation of the wavenumber related to Si-O-Si asymmetric stretching vibration can be correlated to O/Si ratio for ternary systems Si/Na/Zr. On the contrary, the Si losses of the materials depend on the number of non-bridging oxygen atoms. In the perspective of long-term behaviour, the alteration gel presents better characteristics than initial glass. It is therefore a highly stable material in static conditions. In the same way, synthetic gels are materials with very low solubilities (much lower than the alteration gel) and could be used as confining matrices. (authors). refs., 71 figs., 37 tabs

  7. PC based electrolytes with LiDFOB as an alternative salt for lithium-ion batteries

    Science.gov (United States)

    Knight, Brandon M.

    Lithium-ion batteries (LIBs) have been greatly sought after as a source of renewable energy storage. LIBs have a wide range of applications including but not limited portable electronic devices, electric vehicles, and power tools. As a direct result of their commercial viability an insatiable hunger for knowledge, advancement within the field of LIBs has been omnipresent for the last two decades. However, there are set backs evident within the LIB field; most notably the limitations of standard electrolyte formulations and LiPF6 lithium salt. The standard primary carbonate of ethylene carbonate (EC) has a very limited operating range due to its innate physical properties, and the LiPF6 salt is known to readily decompose to form HF which can further degrade LIB longevity. The goal of our research is to explore the use of a new primary salt LiDFOB in conjunction with a propylene carbonate based electrolyte to establish a more flexible electrolyte formulation by constructing coin cells and cycling them under various conditions to give a clear understanding of each formulation inherent performance capabilities. Our studies show that 1.2M LiDFOB in 3:7 PC/EMC + 1.5% VC is capable of performing comparably to the standard 1.2M LiPF6 in 3:7 EC/EMC at 25°C and the PC electrolyte also illustrates performance superior to the standard at 55°C. The degradation of lithium manganese spinel electrodes, including LiNi 0.5Mn1.5O4, is an area of great concern within the field of lithium ion batteries (LIBs). Manganese containing cathode materials frequently have problems associated with Mn dissolution which significantly reduces the cycle life of LIB. Thus the stability of the cathode material is paramount to the performance of Mn spinel cathode materials in LIBs. In an effort to gain a better understanding of the stability of LiNi0.5 Mn1.5O4 in common LiPF6/carbonate electrolytes, samples were stored at elevated temperature in the presence of electrolyte. Then after storage both

  8. Self-Healable and Cold-Resistant Supercapacitor Based on a Multifunctional Hydrogel Electrolyte.

    Science.gov (United States)

    Tao, Feng; Qin, Liming; Wang, Zhikui; Pan, Qinmin

    2017-05-10

    Excellent self-healability and cold resistance are attractive properties for a portable/wearable energy-storage device. However, achieving the features is fundamentally dependent on an intrinsically self-healable electrolyte with high ionic conduction at low temperature. Here we report such a hydrogel electrolyte comprising sodium alginate cross-linked by dynamic catechol-borate ester bonding. Since its dynamically cross-linked alginate network can tolerate high-content inorganic salts, the electrolyte possesses excellent healing efficiency/cyclability but also high ionic conduction at both room temperature and low temperature. A supercapacitor with the multifunctional hydrogel electrolyte completely restores its capacitive properties even after breaking/healing for 10 cycles without external stimulus. At a low temperature of -10 °C, the capacitor is even able to maintain at least 80% of its room-temperature capacitance. Our investigations offer a strategy to assemble self-healable and cold-resistant energy storage devices by using a multifunctional hydrogel electrolyte with rationally designed polymeric networks, which has potential application in portable/wearable electronics, intelligent apparel or flexible robot, and so on.

  9. Methods for and products of processing nanostructure nitride, carbonitride and oxycarbonitride electrode power materials by utilizing sol gel technology for supercapacitor applications

    Science.gov (United States)

    Huang, Yuhong; Wei, Oiang; Chu, Chung-tse; Zheng, Haixing

    2001-01-01

    Metal nitride, carbonitride, and oxycarbonitride powder with high surface area (up to 150 m.sup.2 /g) is prepared by using sol-gel process. The metal organic precursor, alkoxides or amides, is synthesized firstly. The metal organic precursor is modified by using unhydrolyzable organic ligands or templates. A wet gel is formed then by hydrolysis and condensation process. The solvent in the wet gel is then be removed supercritically to form porous amorphous hydroxide. This porous hydroxide materials is sintered to 725.degree. C. under the ammonia flow and porous nitride powder is formed. The other way to obtain high surface area nitride, carbonitride, and oxycarbonitride powder is to pyrolyze polymerized templated metal amides aerogel in an inert atmosphere. The electrochemical capacitors are prepared by using sol-gel prepared nitride, carbonitride, and oxycarbonitride powder. Two methods are used to assemble the capacitors. Electrode is formed either by pressing the mixture of nitride powder and binder to a foil, or by depositing electrode coating onto metal current collector. The binder or coating is converted into a continuous network of electrode material after thermal treatment to provide enhanced energy and power density. Liquid electrolyte is soaked into porous electrode. The electrochemical capacitor assembly further has a porous separator layer between two electrodes/electrolyte and forming a unit cell.

  10. Towards A Model-based Prognostics Methodology for Electrolytic Capacitors: A Case Study Based on Electrical Overstress Accelerated Aging

    Directory of Open Access Journals (Sweden)

    Gautam Biswas

    2012-12-01

    Full Text Available This paper presents a model-driven methodology for predict- ing the remaining useful life of electrolytic capacitors. This methodology adopts a Kalman filter approach in conjunction with an empirical state-based degradation model to predict the degradation of capacitor parameters through the life of the capacitor. Electrolytic capacitors are important components of systems that range from power supplies on critical avion- ics equipment to power drivers for electro-mechanical actuators. These devices are known for their comparatively low reliability and given their critical role in the system, they are good candidates for component level prognostics and health management. Prognostics provides a way to assess remain- ing useful life of a capacitor based on its current state of health and its anticipated future usage and operational conditions. This paper proposes and empirical degradation model and discusses experimental results for an accelerated aging test performed on a set of identical capacitors subjected to electrical stress. The data forms the basis for developing the Kalman-filter based remaining life prediction algorithm.

  11. X-ray diffraction studies of chitosan acetate-based polymer electrolytes

    International Nuclear Information System (INIS)

    Osman, Z.; Ibrahim, Z.A.; Abdul Kariem Arof

    2002-01-01

    Chitosan is the product when partially deacetylated chitin dissolves in dilute acetic acid. This paper presents the x-ray diffraction patterns of chitosan acetate, plasticised chitosan acetate and plasticised-salted chitosan acetate films. The results show that the chitosan acetate based polymer electrolyte films are not completely amorphous but it is partially crystalline. X-ray diffraction study also confirms the occurrence of the complexation between chitosan and the salt and the interaction between salt and plasticizer. The salt-chitosan interaction is clearly justified by infrared spectroscopy. (Author)

  12. SISGR: Improved Electrical Energy Storage with Electrochemical Double Layer Capacitance Based on Novel Carbon Electrodes, New Electrolytes, and Thorough Development of a Strong Science Base

    Energy Technology Data Exchange (ETDEWEB)

    Ruoff, Rodney S. [PI; Alam, Todd M. [co-PI; Bielawski, Christopher W. [co-PI; Chabal, Yves [co-PI; Hwang, Gyeong [co-PI; Ishii, Yoshitaka [co-PI; Rogers, Robin [co-PI

    2014-07-23

    The broad objective of the SISGR program is to advance the fundamental scientific understanding of electrochemical double layer capacitance (EDLC) and thus of ultracapacitor systems composed of a new type of electrode based on chemically modified graphene (CMG) and (primarily) with ionic liquids (ILs) as the electrolyte. Our team has studied the interplay between graphene-based and graphene-derived carbons as the electrode materials in electrochemical double layer capacitors (EDLC) systems on the one hand, and electrolytes including novel ionic liquids (ILs), on the other, based on prior work on the subject.

  13. Analysis of initial changes in the proteins of soybean root tip under flooding stress using gel-free and gel-based proteomic techniques.

    Science.gov (United States)

    Yin, Xiaojian; Sakata, Katsumi; Nanjo, Yohei; Komatsu, Setsuko

    2014-06-25

    Flooding has a severe negative effect on soybean cultivation in the early stages of growth. To obtain a better understanding of the response mechanisms of soybean to flooding stress, initial changes in root tip proteins under flooding were analyzed using two proteomic techniques. Two-day-old soybeans were treated with flooding for 3, 6, 12, and 24h. The weight of soybeans increased during the first 3h of flooding, but root elongation was not observed. Using gel-based and gel-free proteomic techniques, 115 proteins were identified in root tips, of which 9 proteins were commonly detected by both methods. The 71 proteins identified by the gel-free proteomics were analyzed by a hierarchical clustering method based on induction levels during the flooding, and the proteins were divided into 5 clusters. Additional interaction analysis of the proteins revealed that ten proteins belonging to cluster I formed the center of a protein interaction network. mRNA expression analysis of these ten proteins showed that citrate lyase and heat shock protein 70 were down-regulated, whereas calreticulin was up-regulated in initial phase of flooding. These results suggest that flooding stress to soybean induces calcium-related signal transduction, which might play important roles in the early responses to flooding. Flooding has a severe negative effect on soybean cultivation, particularly in the early stages of growth. To better understand the response mechanisms of soybean to the early stages of flooding stress, two proteomic techniques were used. Two-day-old soybeans were treated without or with flooding for 3, 6, 12, and 24h. The fresh weight of soybeans increased during the first 3h of flooding stress, but the growth then slowed and no root elongation was observed. Using gel-based and gel-free proteomic techniques, 115 proteins were identified in root tips, of which 9 proteins were commonly detected by both methods. The 71 proteins identified by the gel-free proteomics were analyzed

  14. Tetrapeptide-coumarin conjugate 3D networks based on hydrogen-bonded charge transfer complexes: gel formation and dye release.

    Science.gov (United States)

    Guo, Zongxia; Gong, Ruiying; Jiang, Yi; Wan, Xiaobo

    2015-08-14

    Oligopeptide-based derivatives are important synthons for bio-based functional materials. In this article, a Gly-(L-Val)-Gly-(L-Val)-coumarin (GVGV-Cou) conjugate was synthesized, which forms 3D networks in ethanol. The gel nanostructures were characterized by UV-vis spectroscopy, FT-IR spectroscopy, X-ray diffraction (XRD), SEM and TEM. It is suggested that the formation of charge transfer (CT) complexes between the coumarin moieties is the main driving force for the gel formation. The capability of the gel to encapsulate and release dyes was explored. Both Congo Red (CR) and Methylene Blue (MB) can be trapped in the CT gel matrix and released over time. The present gel might be used as a functional soft material for guest encapsulation and release.

  15. Microcontroller based instrumentation for the fuel pin preparation facility by sol-gel method

    International Nuclear Information System (INIS)

    Suhasini, B.; Prabhakar Rao, J.; Srinivas, K.C.

    2009-01-01

    The fuel pin preparation facility by Sol-Gel route has been set up at Chemistry Group at Indira Gandhi Centre for Atomic Research, Kalpakkam. Sol-Gel, a solution-gelation process involves conversion of solutions of nitrates of uranium-plutonium (at 0 deg C) into gel microspheres. To measure the exact quantities of the above solutions and to ensure their temperatures, a variety of sensors have been used at various stages in the plant. To monitor and acquire the data of process parameters used in the production and for an automated operation of the plant, a PC (master)-microcontroller (slave) based instrumentation has been developed along with acquisition software and a GU interface developed in Visual Basic. (author)

  16. New operational modes for the Ta2O5-based electrolyte conductance cell

    NARCIS (Netherlands)

    Olthuis, Wouter; Smith, A.; van der Zalm, R.A.J.; Bergveld, Piet

    1994-01-01

    Based on the recently presented conductance cell, two specific operational modes are proposed. In the oscillator mode, the conductivity of the electrolyte determines the frequency of an oscillator, experimentally obtaining a shift from 10 to 27 kHz for a KCl concentration range from 0.5 to 100 mM.

  17. Ionic and viscoelastic mechanisms of a bucky-gel actuator

    Science.gov (United States)

    Kruusamäe, Karl; Sugino, Takushi; Asaka, Kinji

    2015-07-01

    Ionic electromechanically active polymers (IEAPs) are considered attractive candidates for soft, miniature, and lightweight actuators. The bucky-gel actuator is a carbonaceous subtype of IEAP that due to its structure (i.e. two highly porous electrodes sandwiching a thin ion-permeable electrolyte layer) and composition (i.e. being composed of soft porous polymer, carbon nanotubes, and ionic liquid) is very similar to an electric double-layer capacitor. In response to the voltage applied between the electrodes of a bucky-gel actuator, the laminar structure bends. The time domain behavior exhibits, however, a phenomenon called the back-relaxation, i.e., after some time the direction of bending is reversed even though voltage remains constant. In spite of the working mechanism of IEAP actuators being generally attributed to the transport of ions within the soft multilayer system, the specific details remain unclear. A so-called two-carrier model proposes that the bending and subsequent back-relaxation are caused by the relocation of two ionic species having different mobilities as they enter and exit the electrode layers. By adopting the two-carrier model for bucky-gel actuators, we see very good agreement between the mathematical representation and the experimental data of the electromechanical behavior. Furthermore, since the bucky-gel actuator is viscoelastic, we propose to use the time domain response of a blocking force as the key parameter related to the inner ionic mechanism. We also introduce a method to estimate the viscoelastic creep compliance function from the time domain responses for curvature and blocking force. This analysis includes four types of bucky-gel actuators of varying composition and structure.

  18. Basic principles of electrolyte chemistry for microfluidic electrokinetics. Part II: Coupling between ion mobility, electrolysis, and acid-base equilibria.

    Science.gov (United States)

    Persat, Alexandre; Suss, Matthew E; Santiago, Juan G

    2009-09-07

    We present elements of electrolyte dynamics and electrochemistry relevant to microfluidic electrokinetics experiments. In Part I of this two-paper series, we presented a review and introduction to the fundamentals of acid-base chemistry. Here, we first summarize the coupling between acid-base equilibrium chemistry and electrophoretic mobilities of electrolytes, at both infinite and finite dilution. We then discuss the effects of electrode reactions on microfluidic electrokinetic experiments and derive a model for pH changes in microchip reservoirs during typical direct-current electrokinetic experiments. We present a model for the potential drop in typical microchip electrophoresis device. The latter includes finite element simulation to estimate the relative effects of channel and reservoir dimensions. Finally, we summarize effects of electrode and electrolyte characteristics on potential drop in microfluidic devices. As a whole, the discussions highlight the importance of the coupling between electromigration and electrophoresis, acid-base equilibria, and electrochemical reactions.

  19. Facile preparation of polymer electrolytes based on the polymerized ionic liquid poly((4-vinylbenzyl)trimethylammonium bis(trifluoromethanesulfonylimide)) for lithium secondary batteries

    International Nuclear Information System (INIS)

    Li, Mingtao; Wang, Lu; Yang, Bolun; Du, Tingting; Zhang, Ying

    2014-01-01

    Graphical abstract: (A) The main components of PIL electrolytes, (B) A PIL electrolyte sample. - Highlights: • A new polymer electrolyte incorporating a DEME-TFSI liquid is prepared. • The ionic conductivity of the electrolytes reaches 7.58 × 10 −4 S cm −1 at 60 °C. • Batteries discharge 130 mAh g −1 at 0.1 C rates with good capacity retention. - Abstract: The polymer electrolytes based on a novel poly((4-vinylbenzyl)trimethylammonium bis(trifluoromethanesulfonylimide)) polymeric ionic liquid (PIL) as polymer host and containing DEME-TFSI ionic liquid, LiTFSI salt and nano silica are prepared. The polymer electrolyte is chemically stable even at a higher temperature of 60 °C in contact with lithium anode. Particularly, the electrolyte exhibits high lithium ion conductivity, wide electrochemical stability window and good lithium stripping/plating performance. When the IL content reaches 60% (the weight ratio of DEME-TFSI/PIL), the PIL electrolyte presents a higher ionic conductivity, and it is 7.58 × 10 −4 S cm −1 at 60 °C. Preliminary battery tests show that Li/LiFePO 4 cells with the PIL electrolytes are capable to deliver above 130 mAh g −1 at 60 °C with very good capacity retention

  20. Sol-gel based sensor for selective formaldehyde determination

    Energy Technology Data Exchange (ETDEWEB)

    Bunkoed, Opas [Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Davis, Frank [Cranfield Health, Cranfield University, Bedford MK43 0AL (United Kingdom); Kanatharana, Proespichaya, E-mail: proespichaya.K@psu.ac.th [Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Thavarungkul, Panote [Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Higson, Seamus P.J., E-mail: s.p.j.higson@cranfield.ac.uk [Cranfield Health, Cranfield University, Bedford MK43 0AL (United Kingdom)

    2010-02-05

    We report the development of transparent sol-gels with entrapped sensitive and selective reagents for the detection of formaldehyde. The sampling method is based on the adsorption of formaldehyde from the air and reaction with {beta}-diketones (for example acetylacetone) in a sol-gel matrix to produce a yellow product, lutidine, which was detected directly. The proposed method does not require preparation of samples prior to analysis and allows both screening by visual detection and quantitative measurement by simple spectrophotometry. The detection limit of 0.03 ppmv formaldehyde is reported which is lower than the maximum exposure concentrations recommended by both the World Health Organisation (WHO) and the Occupational Safety and Health Administration (OSHA). This sampling method was found to give good reproducibility, the relative standard deviation at 0.2 and 1 ppmv being 6.3% and 4.6%, respectively. Other carbonyl compounds i.e. acetaldehyde, benzaldehyde, acetone and butanone do not interfere with this analytical approach. Results are provided for the determination of formaldehyde in indoor air.

  1. Sol-gel based sensor for selective formaldehyde determination

    International Nuclear Information System (INIS)

    Bunkoed, Opas; Davis, Frank; Kanatharana, Proespichaya; Thavarungkul, Panote; Higson, Seamus P.J.

    2010-01-01

    We report the development of transparent sol-gels with entrapped sensitive and selective reagents for the detection of formaldehyde. The sampling method is based on the adsorption of formaldehyde from the air and reaction with β-diketones (for example acetylacetone) in a sol-gel matrix to produce a yellow product, lutidine, which was detected directly. The proposed method does not require preparation of samples prior to analysis and allows both screening by visual detection and quantitative measurement by simple spectrophotometry. The detection limit of 0.03 ppmv formaldehyde is reported which is lower than the maximum exposure concentrations recommended by both the World Health Organisation (WHO) and the Occupational Safety and Health Administration (OSHA). This sampling method was found to give good reproducibility, the relative standard deviation at 0.2 and 1 ppmv being 6.3% and 4.6%, respectively. Other carbonyl compounds i.e. acetaldehyde, benzaldehyde, acetone and butanone do not interfere with this analytical approach. Results are provided for the determination of formaldehyde in indoor air.

  2. Proton conducting sodium alginate electrolyte laterally coupled low-voltage oxide-based transistors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang Hui; Wan, Qing, E-mail: wanqing@nju.edu.cn [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Qiang Zhu, Li, E-mail: lqzhu@nimte.ac.cn [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Shi, Yi [School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China)

    2014-03-31

    Solution-processed sodium alginate electrolyte film shows a high proton conductivity of ∼5.5 × 10{sup −3} S/cm and a high lateral electric-double-layer (EDL) capacitance of ∼2.0 μF/cm{sup 2} at room temperature with a relative humidity of 57%. Low-voltage in-plane-gate indium-zinc-oxide-based EDL transistors laterally gated by sodium alginate electrolytes are fabricated on glass substrates. The field-effect mobility, current ON/OFF ratio, and subthreshold swing of such EDL transistors are estimated to be 4.2 cm{sup 2} V{sup −1} s{sup −1}, 2.8 × 10{sup 6}, and 130 mV/decade, respectively. At last, a low-voltage driven resistor-load inverter is also demonstrated. Such in-plane-gate EDL transistors have potential applications in portable electronics and low-cost biosensors.

  3. Semiconductor electrolyte photovoltaic energy converter

    Science.gov (United States)

    Anderson, W. W.; Anderson, L. B.

    1975-01-01

    Feasibility and practicality of a solar cell consisting of a semiconductor surface in contact with an electrolyte are evaluated. Basic components and processes are detailed for photovoltaic energy conversion at the surface of an n-type semiconductor in contact with an electrolyte which is oxidizing to conduction band electrons. Characteristics of single crystal CdS, GaAs, CdSe, CdTe and thin film CdS in contact with aqueous and methanol based electrolytes are studied and open circuit voltages are measured from Mott-Schottky plots and open circuit photo voltages. Quantum efficiencies for short circuit photo currents of a CdS crystal and a 20 micrometer film are shown together with electrical and photovoltaic properties. Highest photon irradiances are observed with the GaAs cell.

  4. Enhanced Design of a Soft Thin-Film Vibrotactile Actuator Based on PVC Gel

    Directory of Open Access Journals (Sweden)

    Won-Hyeong Park

    2017-09-01

    Full Text Available We fabricated a soft thin-film vibrotactile actuator, which can be easily inserted into wearable devices, based on an electroactive PVC gel. One of the most important factors in fabricating a soft and thin vibrotactile actuator is to create vibrational force strong enough to stimulate human skin in a wide frequency range. To achieve this, we investigate the working principle of the PVC gel and suggest a new structure in which most of electric energy contributes to the deformation of the PVC gel. Due to this structure, the vibrational amplitude of the proposed PVC gel actuator could considerably increase (0.816 g (g = 9.8 m/s2 at resonant frequency. The vibrotactile amplitude is proportional to the amount of input voltage. It increased from 0.05 g up to 0.416 g with increasing applied voltages from 200 V to 1 kV at 1 Hz. The experimental results show that the proposed actuator can create a variety of haptic sensations.

  5. Cation effect on small phosphonium based ionic liquid electrolytes with high concentrations of lithium salt

    Science.gov (United States)

    Chen, Fangfang; Kerr, Robert; Forsyth, Maria

    2018-05-01

    Ionic liquid electrolytes with high alkali salt concentrations have displayed some excellent electrochemical properties, thus opening up the field for further improvements to liquid electrolytes for lithium or sodium batteries. Fundamental computational investigations into these high concentration systems are required in order to gain a better understanding of these systems, yet they remain lacking. Small phosphonium-based ionic liquids with high concentrations of alkali metal ions have recently shown many promising results in experimental studies, thereby prompting us to conduct further theoretical exploration of these materials. Here, we conducted a molecular dynamics simulation on four small phosphonium-based ionic liquids with 50 mol. % LiFSI salt, focusing on the effect of cation structure on local structuring and ion diffusional and rotational dynamics—which are closely related to the electrochemical properties of these materials.

  6. Characterizations of Chitosan-Based Polymer Electrolyte Photovoltaic Cells

    International Nuclear Information System (INIS)

    Buraidah, M.H.; Teo, L.P.; Majid, S.R.; Yahya, R.; Taha, R.M.; Arof, A.K.

    2010-01-01

    The membranes 55 wt.% chitosan-45 wt.% NH4I, 33 wt.% chitosan-27 wt.% NH4I-40 wt.% EC, and 27.5 wt.% chitosan-22.5 wt.%?NH4I-50 wt.% buthyl-methyl-imidazolium-iodide (BMII) exhibit conductivity of 3.73 x 10-7, 7.34x10-6, and 3.43x10-5 S cm -1 , respectively, at room temperature. These membranes have been used in the fabrication of solid-state solar cells with configuration ITO/TiO 2 /polymer electrolyte membrane/ITO. It is observed that the short-circuit current density increases with conductivity of the electrolyte. The use of anthocyanin pigment obtained by solvent extraction from black rice and betalain from the callus of Celosia plumosa also helps to increase the short-circuit current.

  7. Sol gel based fiber optic sensor for blook pH measurement

    International Nuclear Information System (INIS)

    Grant, S. A.; Glass, R. S.

    1996-01-01

    This paper describes a fiber-optic pH sensor based upon sol-gel encapsulation of a self-referencing dye, seminaphthorhodamine-1 carboxylate (SNARF-1C). The simple sol-gel fabrication procedure and low coating leachability are ideal for encapsulation and immobilization of dye molecules onto the end of an optical fiber. A miniature bench-top fluorimeter system was developed for use with the optical fiber to obtain pH measurements. Linear and reproducible responses were obtained in human blood in the pH range 6.8 to 8.0, which encompasses the clinically-relevant range. Therefore, this sensor can be considered for in vivo use

  8. Synthesis and electrochemical characterization of hybrid membrane Nafion-SiO2 for application as polymer electrolyte in PEM fuel cell

    International Nuclear Information System (INIS)

    Dresch, Mauro Andre

    2009-01-01

    In this work, the effect of sol-gel synthesis parameters on the preparation and polarization response of Nafion-SiO 2 hybrids as electrolytes for proton exchange membrane fuel cells (PEMFC) operating at high temperatures (130 degree C) was evaluated. The inorganic phase was incorporated in a Nafion matrix with the following purposes: to improve the Nafion water uptake at high temperatures (> 100 degree C); to increase the mechanical strength of Nafion and; to accelerate the electrode reactions. The hybrids were prepared by an in-situ incorporation of silica into commercial Nafion membranes using an acid-catalyzed sol-gel route. The effects of synthesis parameters, such as catalyst concentration, sol-gel solvent, temperature and time of both hydrolysis and condensation reactions, and silicon precursor concentration (Tetraethyl orthosilicate - TEOS), were evaluated as a function on the incorporation degree and polarization response. Nafion-SiO 2 hybrids were characterized by gravimetry, thermogravimetric analysis (TGA), scanning electron microscopy and X-ray dispersive energy (SEM-EDS), electrochemical impedance spectroscopy (EIS), and X-ray small angle scattering (SAXS). The hybrids were tested as electrolyte in single H 2 /O 2 fuel cells in the temperature range of 80 - 130 degree C and at 130 degree C and reduced relative humidity (75% and 50%). Summarily, the hybrid performance showed to be strongly dependent on the synthesis parameters, mainly, the type of alcohol and the TEOS concentration. (author)

  9. Organization versus frustration: low temperature transitions in a gelatine-based gel

    Energy Technology Data Exchange (ETDEWEB)

    Philipp, M; Mueller, U; Sanctuary, R; Baller, J; Krueger, J K [Laboratoire de Physique des Materiaux, Universite du Luxembourg, 162A, avenue de la Faiencerie, L-1511 (Luxembourg)], E-mail: martine.philipp@uni.lu

    2008-09-15

    A commercial physical gel composed of gelatine, water and glycerol shows a sol-gel transition which has been resolved by optical rotation measurements by step-wise heating the gel. This transition is not observable in the longitudinal acoustic mode measured at hypersonic frequencies with Brillouin spectroscopy. Depending on the thermal treatment of the investigated material during the sol-gel transition and within the gel state, Brillouin spectroscopy reflects tremendously different hypersonic dynamics. These distinct dynamics are responsible for the formation of different glassy states at low temperatures including that of a glass-ceramic. The large variety of super-cooled and glassy states is attributed to distinct distributions of the gel's constituents within the samples. Surprisingly, the same gel state can be produced either by annealing the gel over months or by the non-equilibrium effect of thermo-diffusion (Soret effect) in the course of some minutes.

  10. Monitoring electrolyte concentrations in redox flow battery systems

    Science.gov (United States)

    Chang, On Kok; Sopchak, David Andrew; Pham, Ai Quoc; Kinoshita, Kimio

    2015-03-17

    Methods, systems and structures for monitoring, managing electrolyte concentrations in redox flow batteries are provided by introducing a first quantity of a liquid electrolyte into a first chamber of a test cell and introducing a second quantity of the liquid electrolyte into a second chamber of the test cell. The method further provides for measuring a voltage of the test cell, measuring an elapsed time from the test cell reaching a first voltage until the test cell reaches a second voltage; and determining a degree of imbalance of the liquid electrolyte based on the elapsed time.

  11. Theoretical and experimental study of mixed solvent electrolytes

    International Nuclear Information System (INIS)

    Cummings, P.T.; O'Connell, J.P.

    1990-01-01

    In the original proposal to study mixed solvent electrolyte solutions, four major goals were formulated: fundamental modeling of mixed solvent electrolytes using numerically solved integral equation approximation theories; evaluation of intermolecular pair potential models by computer simulation of selected systems for comparison with experiment and the numerical integral equation studies; development of fundamentally based correlations for the thermodynamic properties of mixed solvent electrolyte solutions using analytically solvable statistical mechanical models; and extension of experimental database on mixed solvent electrolytes by performing vapor-liquid equilibrium measurements on selected systems. This paper discusses the progress on these goals

  12. Comparative Study of Ether-Based Electrolytes for Application in Lithium-Sulfur Battery.

    Science.gov (United States)

    Carbone, Lorenzo; Gobet, Mallory; Peng, Jing; Devany, Matthew; Scrosati, Bruno; Greenbaum, Steve; Hassoun, Jusef

    2015-07-01

    Herein, we report the characteristics of electrolytes using various ether-solvents with molecular composition CH3O[CH2CH2O]nCH3, differing by chain length, and LiCF3SO3 as the lithium salt. The electrolytes, considered as suitable media for lithium-sulfur batteries, are characterized in terms of thermal properties (TGA, DSC), lithium ion conductivity, lithium interface stability, cyclic voltammetry, self-diffusion properties of the various components, and lithium transference number measured by NMR. Furthermore, the electrolytes are characterized in lithium cells using a sulfur-carbon composite cathode by galvanostatic charge-discharge tests. The results clearly evidence the influence of the solvent chain length on the species mobility within the electrolytes that directly affects the behavior in lithium sulfur cell. The results may effectively contribute to the progress of an efficient, high-energy lithium-sulfur battery.

  13. Electrochemical performance of all-solid-state lithium batteries using inorganic lithium garnets particulate reinforced PEO/LiClO4 electrolyte

    International Nuclear Information System (INIS)

    Cheng, Samson Ho-Sum; He, Kang-Qiang; Liu, Ying; Zha, Jun-Wei; Kamruzzaman, Md; Ma, Robin Lok-Wang; Dang, Zhi-Min; Li, Robert K.Y.; Chung, C.Y.

    2017-01-01

    All-solid-state batteries are proposed to have ultimate safety and higher power and energy densities over conventional lithium ion batteries with liquid electrolytes. The Li ion conductivity and interfacial resistance between electrolyte and electrodes are the major bottleneck of the development of all-solid-state batteries for practical uses. Here, we reported a novel composite electrolyte which is composed of uniform distributed Li ion conducting Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 (LLZTO) fillers in PEO/LiClO 4 matrix. The EO:Li + ratio of 15:1 is being used to achieve lower interfacial resistance between electrolyte and electrodes through the melting process. The composite electrolyte is fabricated by simple solution casting method, which is more advantageous comparing with high temperature sintering or sol-gel method used in the fabrication of ceramic electrolytes. The composite electrolyte exhibits good Li ion conductivity of 4.8 × 10 −4 Scm −1 at 60 °C and excellent interfacial stability against Li metal. The all-solid-state lithium battery using this composite electrolyte shows a specific capacity of 140mAhg −1 and an unprecedentedly high capacity retention of 83% after 500 cycles at 60 °C and the rate of 1C. It is concluded that good electrode/electrolyte interfacial stability and contact as well as fast Li ion conductivity obtained by the addition of active garnet particulates to PEO/LiClO 4 matrix are essential criteria for good charge/discharge performance of all-solid-state lithium batteries.

  14. Water equivalence of NIPAM based polymer gel dosimeters with enhanced sensitivity for x-ray CT

    International Nuclear Information System (INIS)

    Gorjiara, Tina; Hill, Robin; Bosi, Stephen; Kuncic, Zdenka; Baldock, Clive

    2013-01-01

    Two new formulations of N-isopropylacrylamide (NIPAM) based three dimensional (3D) gel dosimeters have recently been developed with improved sensitivity to x-ray CT readout, one without any co-solvent and the other one with isopropanol co-solvent. The water equivalence of the NIPAM gel dosimeters was investigated using different methods to calculate their radiological properties including: density, electron density, number of electrons per grams, effective atomic number, photon interaction probabilities, mass attenuation and energy absorption coefficients, electron collisional, radiative and total mass stopping powers and electron mass scattering power. Monte Carlo modelling was also used to compare the dose response of these gel dosimeters with water for kilovoltage and megavoltage x-ray beams and for megavoltage electron beams. We found that the density and electron density of the co-solvent free gel dosimeter are more water equivalent with less than a 2.6% difference compared to a 5.7% difference for the isopropanol gel dosimeter. Both the co-solvent free and isopropanol solvent gel dosimeters have lower effective atomic numbers than water, differing by 2.2% and 6.5%, respectively. As a result, their photoelectric absorption interaction probabilities are up to 6% and 19% different from water, respectively. Compton scattering and pair production interaction probabilities of NIPAM gel with isopropanol differ by up to 10% from water while for the co-solvent free gel, the differences are 3%. Mass attenuation and energy absorption coefficients of the co-solvent free gel dosimeter and the isopropanol gel dosimeter are up to 7% and 19% lower than water, respectively. Collisional and total mass stopping powers of both gel dosimeters differ by less than 2% from those of water. The dose response of the co-solvent free gel dosimeter is water equivalent (with 100 keV, correction factor is required for the gels. • For MV electron, correction factor needed for the gels to

  15. Papain-based gel for biochemical caries removal: influence on microtensile bond strength to dentin

    Directory of Open Access Journals (Sweden)

    Evandro Piva

    2008-12-01

    Full Text Available This study investigated the influence of a papain-based gel (Papacárie for chemo-mechanical caries removal on bond strength to dentin. Human molars were assigned to the following groups: Group 1: sound teeth were flattened to expose dentin; Group 2: after flattening of surfaces, the papain-based gel was applied on the sound dentin; Group 3: overlying enamel from carious teeth was removed and mechanical excavation of dentin was conducted; Group 4: chemo-mechanical excavation of carious dentin was conducted using the papain-based gel. The Prime&Bond NT or Clearfil SE Bond adhesive systems were used for restorative procedures. A microtensile bond strength test was performed, and the modes of failure were determined under SEM. The data were submitted to two-way ANOVA and Tukey's test (p < 0.05. No significant differences were observed between the sound dentin groups. For both excavation methods, Clearfil presented a significantly higher bond strength than Prime&Bond NT. Also, for Clearfil, the mechanically excavated samples disclosed a significantly higher bond strength than the chemo-mechanically ones. For Prime&Bond NT, no significant differences were detected between the excavation methods. Predominance of mixed failures for the sound substrate and of adhesive failures for the carious dentin one was detected. The bond strength to carious dentin of the self-etching system was negatively affected by chemo-mechanical excavation using the papain-based gel.

  16. 3D-Printing Electrolytes for Solid-State Batteries.

    Science.gov (United States)

    McOwen, Dennis W; Xu, Shaomao; Gong, Yunhui; Wen, Yang; Godbey, Griffin L; Gritton, Jack E; Hamann, Tanner R; Dai, Jiaqi; Hitz, Gregory T; Hu, Liangbing; Wachsman, Eric D

    2018-05-01

    Solid-state batteries have many enticing advantages in terms of safety and stability, but the solid electrolytes upon which these batteries are based typically lead to high cell resistance. Both components of the resistance (interfacial, due to poor contact with electrolytes, and bulk, due to a thick electrolyte) are a result of the rudimentary manufacturing capabilities that exist for solid-state electrolytes. In general, solid electrolytes are studied as flat pellets with planar interfaces, which minimizes interfacial contact area. Here, multiple ink formulations are developed that enable 3D printing of unique solid electrolyte microstructures with varying properties. These inks are used to 3D-print a variety of patterns, which are then sintered to reveal thin, nonplanar, intricate architectures composed only of Li 7 La 3 Zr 2 O 12 solid electrolyte. Using these 3D-printing ink formulations to further study and optimize electrolyte structure could lead to solid-state batteries with dramatically lower full cell resistance and higher energy and power density. In addition, the reported ink compositions could be used as a model recipe for other solid electrolyte or ceramic inks, perhaps enabling 3D printing in related fields. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Water equivalence of NIPAM based polymer gel dosimeters with enhanced sensitivity for x-ray CT

    Science.gov (United States)

    Gorjiara, Tina; Hill, Robin; Bosi, Stephen; Kuncic, Zdenka; Baldock, Clive

    2013-10-01

    Two new formulations of N-isopropylacrylamide (NIPAM) based three dimensional (3D) gel dosimeters have recently been developed with improved sensitivity to x-ray CT readout, one without any co-solvent and the other one with isopropanol co-solvent. The water equivalence of the NIPAM gel dosimeters was investigated using different methods to calculate their radiological properties including: density, electron density, number of electrons per grams, effective atomic number, photon interaction probabilities, mass attenuation and energy absorption coefficients, electron collisional, radiative and total mass stopping powers and electron mass scattering power. Monte Carlo modelling was also used to compare the dose response of these gel dosimeters with water for kilovoltage and megavoltage x-ray beams and for megavoltage electron beams. We found that the density and electron density of the co-solvent free gel dosimeter are more water equivalent with less than a 2.6% difference compared to a 5.7% difference for the isopropanol gel dosimeter. Both the co-solvent free and isopropanol solvent gel dosimeters have lower effective atomic numbers than water, differing by 2.2% and 6.5%, respectively. As a result, their photoelectric absorption interaction probabilities are up to 6% and 19% different from water, respectively. Compton scattering and pair production interaction probabilities of NIPAM gel with isopropanol differ by up to 10% from water while for the co-solvent free gel, the differences are 3%. Mass attenuation and energy absorption coefficients of the co-solvent free gel dosimeter and the isopropanol gel dosimeter are up to 7% and 19% lower than water, respectively. Collisional and total mass stopping powers of both gel dosimeters differ by less than 2% from those of water. The dose response of the co-solvent free gel dosimeter is water equivalent (with x-ray beams over the energy range 180 keV-18 MV, both gel dosimeters have less than 2% discrepancy with water. For

  18. Optical ph sensing material prepared from doped sol-gel film for use in acid-base titration

    OpenAIRE

    Musa Ahmad; T.W. Tan

    2017-01-01

    An optical pH sensing material has been prepared in this study by using sol-gel technique. Bromothymol blue, bromophenol blue and thymol blue were chosen in this study as acidbase indicators for strong acid-strong base, strong acid-weak base and weak acid-strong base titration, respectively. The results show that these indicators could be successfully entrapped inside the sol-gel film and still maintain its chemical behaviour as in solution. The entrapped acid-base indicators respond well to ...

  19. Fuel cells with solid polymer electrolyte and their application on vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Fateev, V.

    1996-04-01

    In Russia, solid polymer electrolyte MF-4-SK has been developed for fuel cells. This electrolyte is based on perfluorinated polymer with functional sulfogroups. Investigations on electrolyte properties and electrocatalysts have been carried out.

  20. Carboxymethyl Cellulose From Kenaf Reinforced Composite Polymer Electrolytes Based 49 % Poly (Methyl Methacrylate)-Grafted Natural Rubber

    International Nuclear Information System (INIS)

    Serawati Jafirin; Ishak Ahmad; Azizan Ahmad; Ishak Ahmad; Azizan Ahmad

    2014-01-01

    Composite polymer electrolytes based 49 % poly(methyl methacrylate)-grafted natural rubber (MG49) incorporating lithium triflate (LiCF 3 SO 3 ) were prepared. The study mainly focuses on the ionic conductivity performances and mechanical properties. Prior to that, carboxymethyl cellulose was synthesized from kenaf fiber. The films were characterized by electrochemical impedance (EIS) spectroscopy, linear sweep voltammetry (LSV), universal testing machine and scanning electron microscopy (SEM). The conductivity was found to increase with carboxymethyl cellulose loading. The highest conductivity value achieved was 6.5 x 10 -6 Scm -1 upon addition of 6 wt % carboxymethyl cellulose. LSV graph shows the stability of this film was extended to 2.7 V at room temperature. The composition with 6 wt % carboxymethyl cellulose composition showed the highest tensile strength value of 7.9 MPa and 273 MPa of Young's modulus. The morphology of the electrolytes showed a smooth surface of films after addition of salt and filler indicating amorphous phase in electrolytes system. Excellent mechanical properties and good ionic conductivity are obtained, enlightening that the film is suitable for future applications as thin solid polymer electrolytes in lithium batteries. (author)

  1. A new nanocomposite polymer electrolyte based on poly(vinyl alcohol) incorporating hypergrafted nano-silica

    KAUST Repository

    Hu, Xian-Lei

    2012-01-01

    Solid-state nanocomposite polymer electrolytes based on poly(vinyl alcohol)(PVA) incorporating hyperbranched poly(amine-ester) (HBPAE) grafted nano-silica (denoted as SiO2-g-HBPAE) have been prepared and investigated. Through surface pretreatment of nanoparticles, followed by Michael-addition and a self-condensation process, hyperbranched poly(amine-ester) was directly polymerized from the surface of nano-silica. Then the hypergrafted nanoparticles were added to PVA matrix, and blended with lithium perchlorate via mold casting method to fabricate nanocomposite polymer electrolytes. By introducing hypergrafted nanoparticles, ionic conductivity of solid composite is improved significantly at the testing temperature. Hypergrafted nano-silica may act as solid plasticizer, promoting lithium salt dissociation in the matrix as well as improving segmental motion of matrix. In addition, tensile testing shows that such materials are soft and tough even at room temperature. From the dielectric spectra of nanocomposite polymer electrolyte as the function of temperature, it can be deduced that Arrhenius behavior appears depending on the content of hypergrafted nano-silica and concentration of lithium perchlorate. At a loading of 15 wt% hypergrafted nano-silica and 54 wt% lithium perchlorate, promising ionic conductivities of PVA nanocomposite polymer electrolyte are achieved, about 1.51 × 10 -4 S cm-1 at 25 °C and 1.36 × 10-3 S cm-1 at 100 °C. © The Royal Society of Chemistry.

  2. Interaction of High Flash Point Electrolytes and PE-Based Separators for Li-Ion Batteries.

    Science.gov (United States)

    Hofmann, Andreas; Kaufmann, Christoph; Müller, Marcus; Hanemann, Thomas

    2015-08-27

    In this study, promising electrolytes for use in Li-ion batteries are studied in terms of interacting and wetting polyethylene (PE) and particle-coated PE separators. The electrolytes are characterized according to their physicochemical properties, where the flow characteristics and the surface tension are of particular interest for electrolyte-separator interactions. The viscosity of the electrolytes is determined to be in a range of η = 4-400 mPa∙s and surface tension is finely graduated in a range of γL = 23.3-38.1 mN∙m(-1). It is verified that the technique of drop shape analysis can only be used in a limited matter to prove the interaction, uptake and penetration of electrolytes by separators. Cell testing of Li|NMC half cells reveals that those cell results cannot be inevitably deduced from physicochemical electrolyte properties as well as contact angle analysis. On the other hand, techniques are more suitable which detect liquid penetration into the interior of the separator. It is expected that the results can help fundamental researchers as well as users of novel electrolytes in current-day Li-ion battery technologies for developing and using novel material combinations.

  3. Sol-gel technology for biomedical engineering

    International Nuclear Information System (INIS)

    Podbielska, H.; Ulatowska-Jarza, A.

    2005-01-01

    Sol-gel derived silica possess many promising features, including low-temperature preparation procedure, porosity, chemical and physical stability. Applications exploiting porous materials to encapsulate sensor molecules, enzymes and many other compounds, are developing rapidly. In this paper some potential applications, with emphasis on biomedical and environmental ones, are reviewed. The material preparation procedure is described and practical remarks on silica-based sol-gels are included. It is reported that sol-gels with entrapped various molecules may be used in construction of implants and coatings with bioactive properties. It is shown how to exploit the sol-gel production route for construction of sol-gel coated fiberoptic applicators for laser therapy. The applications of bioactive materials are discussed, as well. It is demonstrated that it is possible to immobilize photosensitive compounds in sol-gel matrix without loosing their photoactivity. Some examples of sol-gel based biosensors are demonstrated, as well, showing their potential for detecting various gases, toxic substances, acidity, humidity, enzymes and biologically active agents. (authors)

  4. Comparative study of Ce0.80Sm0.20 Ba0.80Y0.20O3-δ (YB-SDC electrolyte by various chemical synthesis routes

    Directory of Open Access Journals (Sweden)

    Sana Tariq

    2018-03-01

    Full Text Available Solid Oxide Fuel Cells is received a significant attention in recent years due to higher efficiency and fuel flexibility. The one of the main challenge for SOFC is to lower the operating temperature of SOFCs. Therefore, different strategies are used in order to enhance the ionic conduction of electrolyte, which can lower the overall SOFC operating temperature. The present work is focused on this strategy to enhance the electrolytic conductivity. Therefore, the ceria based composite electrolytes Ce0.80Sm0.20B0.80Y0.20O3-δ (YBSDC are synthesized using three different approaches i.e. co-precipitation (YBSDC-1, sol-gel (YBSDC-2 and ball milling (YBSDC-3. Their crystal structures and surface morphologies are characterized through X-ray Diffraction (XRD and Scanning Electron Microscopy (SEM techniques, respectively. The four-probe technique is employed to measure their dc conductivities in the temperature range (300–700 °C under air atmosphere. The open circuit voltage (OCV and current are recorded with natural gas as fuel {flow rate kept at 100 ml min−1 at 1 atm pressure} over the temperature range (300–600 °C.The electrolyte (YBSDC-1 prepared by co-precipitation technique is shown better results as compare to other two electrolytes (YBSDC-2 and YBSDC-3. The electrolyte (YBSDC-1 having maximum dc conductivity (0.096 S/cm, peak power density 224 mW cm−2 and OCV 0.94 V at 600 °C. These results show that YBSDC-1electrolyte is potential candidate for low temperature SOFCs. Keywords: Hydrogen, Energy, Ball milling, Composite, Conductor

  5. Polycarbonate-based polyurethane as a polymer electrolyte matrix for all-solid-state lithium batteries

    Science.gov (United States)

    Bao, Junjie; Shi, Gaojian; Tao, Can; Wang, Chao; Zhu, Chen; Cheng, Liang; Qian, Gang; Chen, Chunhua

    2018-06-01

    Four kinds of polycarbonate-based polyurethane with 8-14 wt% hard segments content are synthesized via reactions of polycarbonatediol, hexamethylene diisocyanate and diethylene glycol. The mechanical strength of the polyurethanes increase with the increase of hard segments content. Solid polymer electrolytes composed of the polycarbonate-based polyurethanes and LiTFSI exhibits fascinating characteristics for all-solid-state lithium batteries with a high ionic conductivity of 1.12 × 10-4 S cm-1 at 80 °C, an electrochemical stability window up to 4.5 V (vs. Li+/Li), excellent mechanical strength and superior interfacial stability against lithium metal. The all-solid-state batteries using LiFePO4 cathode can deliver high discharge capacities (161, 158, 134 and 93 mAh g-1 at varied rates of 0.2, 0.5, 1 and 2 C) at 80 °C and excellent cycling performance (with 91% capacity retention after 600 cycles at 1 C). All the results indicate that such a polyurethane-based solid polymer electrolyte can be a promising candidate for all-solid-state lithium batteries.

  6. Exceptional durability enhancement of PA/PBI based polymer electrolyte membrane fuel cells for high temperature operation at 200°C

    DEFF Research Database (Denmark)

    Aili, David; Zhang, Jin; Jakobsen, Mark Tonny Dalsgaard

    2016-01-01

    The incorporation of phosphotungstic acid functionalized mesoporous silica in phosphoric acid doped polybenzimidazole (PA/PBI) substantially enhances the durability of PA/PBI based polymer electrolyte membrane fuel cells for high temperature operation at 200°C.......The incorporation of phosphotungstic acid functionalized mesoporous silica in phosphoric acid doped polybenzimidazole (PA/PBI) substantially enhances the durability of PA/PBI based polymer electrolyte membrane fuel cells for high temperature operation at 200°C....

  7. Synthesis and characterizations of novel polymer electrolytes

    Science.gov (United States)

    Chanthad, Chalathorn

    Polymer electrolytes are an important component of many electrochemical devices. The ability to control the structures, properties, and functions of polymer electrolytes remains a key subject for the development of next generation functional polymers. Taking advantage of synthetic strategies is a promising approach to achieve the desired chemical structures, morphologies, thermal, mechanical, and electrochemical properties. Therefore, the major goal of this thesis is to develop synthetic methods for of novel proton exchange membranes and ion conductive membranes. In Chapter 2, new classes of fluorinated polymer- polysilsesquioxane nanocomposites have been designed and synthesized. The synthetic method employed includes radical polymerization using the functional benzoyl peroxide initiator for the telechelic fluorinated polymers with perfluorosulfonic acids in the side chains and a subsequent in-situ sol-gel condensation of the prepared triethoxylsilane-terminated fluorinated polymers with alkoxide precursors. The properties of the composite membranes have been studied as a function of the content and structure of the fillers. The proton conductivity of the prepared membranes increases steadily with the addition of small amounts of the polysilsesquioxane fillers. In particular, the sulfopropylated polysilsesquioxane based nanocomposites display proton conductivities greater than Nafion. This is attributed to the presence of pendant sulfonic acids in the fillers, which increases ion-exchange capacity and offers continuous proton transport channels between the fillers and the polymer matrix. The methanol permeability of the prepared membranes has also been examined. Lower methanol permeability and higher electrochemical selectivity than those of Nafion have been demonstrated in the polysilsesquioxane based nanocomposites. In Chapter 3, the synthesis of a new class of ionic liquid-containing triblock copolymers with fluoropolymer mid-block and imidazolium methacrylate

  8. Micro- and nanostructured sol-gel-based materials for optical chemical sensing (2005–2015)

    International Nuclear Information System (INIS)

    Barczak, Mariusz; McDonagh, Colette; Wencel, Dorota

    2016-01-01

    This review (with 172 references) highlights the progress made in the past 10 years in silica sol-gel-based materials for use in optical chemical sensing. Following an introduction, the processes leading to the sol-gel-based and ormosil materials, their printability and methods for characterisation are discussed. Then various classes of optical sensors, with a focus on sensors for pH values, oxygen, carbon dioxide, ammonia (also in dissolved form), and heavy metal ions are described. A further section covers nanoparticle-based optical sensors mainly for use in intracellular sensing of the above species. Recent developments in this area are also emphasised and future trends discussed. (author)

  9. Ion transport properties of lithium ionic liquids and their ion gels

    International Nuclear Information System (INIS)

    Shobukawa, Hitoshi; Tokuda, Hiroyuki; Susan, Md. Abu Bin Hasan; Watanabe, Masayoshi

    2005-01-01

    A new series of lithium ionic liquids were prepared by introducing of two electron-withdrawing trifluoroacetyl groups in borate salts containing two methoxy-oligo(ethylene oxide) groups in the structures. Successive substitution reactions of oligo-ethylene glycol monomethyl ether and trifluroacetic acid from LiBH 4 yielded the lithium salts, which were clear and colorless liquids at room temperature. The fundamental physicochemical properties, such as density, thermal property, viscosity, ionic conductivity, self-diffusion coefficients, and electrochemical stability, were measured. The lithium ionic liquids had self-dissociation ability and conducted ions even in the absence of organic solvents. New polymer electrolytes, named 'ion gels', were prepared by radical cross-linking reactions of a poly(ethylene oxide-co-propylene oxide)tri-acrylate macromonomer in the presence the lithium ionic liquid. An increase in the glass transition temperatures (T g ) of the ion gels was very small even with increasing lithium ionic liquid concentration, and the T g 's were lower than that of the ionic liquid itself. The ionic conductivity of the ion gels surpassed that of the lithium ionic liquid in the bulk at certain compositions

  10. Influence of electrolyte nature on steel membrane hydrogen permeability

    International Nuclear Information System (INIS)

    Lisovskij, A.P.; Nazarov, A.P.; Mikhajlovskij, Yu.N.

    1993-01-01

    Effect of electrolyte nature on hydrogen absorption of carbonic steel membrane at its cathode polarization is studied. Electrolyte buffering by anions of subdissociated acids is shown to increase hydrogen flow though the membrane in acid electrolytes. Mechanisms covering dissociation of proton-bearing anion in the electrolyte near-the-electron layer or dissociative adsorption on steel surface are suggested. Effect of proton-bearing bases forming stable complex compounds with iron, is studied. Activation of anode process of iron solution is shown to increase the rate of hydrogen penetration

  11. Low temperature electrochemistry at normal conductor/frozen electrolyte interface

    International Nuclear Information System (INIS)

    Borkowska, Z.; Stimming, U.

    1991-01-01

    The frozen electrolyte technique (FREECE = FRozen Electrolyte ElectroChEmistry) is based on the experimental result that frozen electrolytes are suitable for electrochemical studies. This technique has been used in our laboratory and also by others to investigate interfacial electrochemical behavior. An argument will be given as to why the FREECE technique is advantageous in a number of respects and what kind of electrolyte systems can be used. Reference is made to electrochemical results such as interfacial reactions and double layer properties. 26 refs

  12. Effect of Anion on Behaviour of Li-S Battery Electrolyte Solutions Based on N-Methyl-N-Butyl-Pyrrolidinium Ionic Liquids

    International Nuclear Information System (INIS)

    Barghamadi, Marzieh; Best, Adam S.; Bhatt, Anand I.; Hollenkamp, Anthony F.; Mahon, Peter J.; Musameh, Mustafa; Rüther, Thomas

    2015-01-01

    The electrochemical behaviour and electrical performance are investigated for a series of lithium-sulfur (Li-S) cells in which the electrolyte solutions are organic solvent-ionic liquid mixtures that are based on the 1-butyl-1-methylpyrrolidinium (C 4 mpyr) cation with a range of anions. In each case, performance is compared with cells that are based on a standard mixed-ether organic electrolyte. The capacity of cells assembled with electrolytes containing 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl) trifluorophosphate (C 4 mpyr-FAP), 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate (C 4 mpyr-OTf), or 1-butyl-1-methylpyrrolidinium tricyanomethanide (C 4 mpyr-TCM) decline rapidly due to low conductivity, high polysulfide solubility and side reaction of electrolyte with electrodes, respectively. Our results confirm that polysulfide solubility is strongly controlled by the anion of the ionic liquid and verify that not all ionic liquids decrease polysulfide solubility. In agreement with previous reports, 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide (C 4 mpyr-TFSI) shows the best compatibility in Li-S batteries and has a higher coulombic efficiency of greater than 99% over 100 cycles. Furthermore, impedance spectroscopy confirms that electrolyte composition influences the SEI layer formed on the lithium anode and its subsequent impedance.

  13. A high-capacitance solid-state supercapacitor based on free-standing film of polyaniline and carbon particles

    International Nuclear Information System (INIS)

    Khosrozadeh, A.; Xing, M.; Wang, Q.

    2015-01-01

    Highlights: • The solid-state supercapacitor has high energy density and good cyclic stability. • The electrode is a freestanding composite film of polyaniline and carbon particles. • The impregnation of electrodes with gel electrolyte facilitates high capacitance. • The supercapacitor is lightweight, thin, flexible, and environmental friendly. - Abstract: Polyaniline tends to degrade with cycling in aqueous electrolytes and it can be alleviated using gel electrolytes. A low-cost solid-state supercapacitor of high energy density and good cyclic stability is fabricated with a facile method. The electrodes of the supercapacitor are made of a freestanding composite film of polyaniline and acid-treated carbon particles using phytic acid as a crosslinker, and the gel electrolyte is composed of sulfuric acid and polyvinyl alcohol. The electrochemical performances of the as-fabricated supercapacitor are investigated with cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy. Our results show that a maximum capacitance of 272.6 F/g (3.63 F/cm 2 ) at a current density of 0.63 A/g can be achieved by the supercapacitor, which is significantly higher than most solid-state ones reported in the literature. The ability to achieve a high-capacitance supercapacitor with good cyclic stability is mainly attributed to excellent infiltration of the gel electrolyte into the electrodes. The developed lightweight, thin, flexible, and environmental friendly supercapacitor would have potential applications in various energy storage devices, such as wearable electronics and hybrid electric vehicles

  14. Synthesis of new solid polymer electrolyte and actuator based on PEDOT/NBR/ionic liquid

    Science.gov (United States)

    Cho, M. S.; Seo, H. J.; Nam, J. D.; Choi, H. R.; Koo, J. C.; Lee, Y.

    2006-03-01

    The conducting polymer actuator was presented. The solid polymer electrolyte based on nitrile rubber (NBR) activated with different ionic liquids was prepared. The three different grades of NBR films were synthesized by emulsion polymerization with different amount of acrylonitrile, 23, 35, and 40 mol. %, respectively. The effect of acrylonitrile content on the ionic conductivity and dielectric constant of solid polymer electrolytes was characterized. A conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), was synthesized on the surface of the NBR layer by using a chemical oxidation polymerization technique, and room temperature ionic liquids (RTIL) based on imidazolium salts, e.g. 1-butyl-3-methyl imidazolium X [where X= BF 4 -, PF 6 -, (CF 3SO II) IIN -], were absorbed into the composite film. The effects of the anion size of the ionic liquids on the displacement of the actuator were examined. The displacement increased with increasing the anion-size of the ionic liquids.

  15. Electroactive polymer gels based on epoxy resin

    Science.gov (United States)

    Samui, A. B.; Jayakumar, S.; Jayalakshmi, C. G.; Pandey, K.; Sivaraman, P.

    2007-04-01

    Five types of epoxy gels have been synthesized from common epoxy resins and hardeners. Fumed silica and nanoclay, respectively, were used as fillers and butyl methacrylate/acrylamide were used as monomer(s) for making interpenetrating polymer networks (IPNs) in three compositions. Swelling study, tensile property evaluation, dynamic mechanical thermal analysis, thermo-gravimetric analysis, scanning electron microscopy and electroactive property evaluation were done. The gels have sufficient mechanical strength and the time taken for bending to 20° was found to be 22 min for forward bias whereas it was just 12 min for reverse bias.

  16. Application of Composite Polymer Electrolytes

    National Research Council Canada - National Science Library

    Scrosati, Bruno

    2001-01-01

    ...)PEO-based composite polymer electrolytes, by a series of specifically addressed electrochemical tests which included the determination of the conductivity and of the lithium transference number...

  17. Understanding ternary poly(potassium benzimidazolide)-based polymer electrolytes

    DEFF Research Database (Denmark)

    Aili, David; Jankova Atanasova, Katja; Han, Junyoung

    2016-01-01

    Poly(2,20-(m-phenylene)-5,50-bisbenzimidazole) (m-PBI) can dissolve large amounts of aqueous electrolytes to give materials with extraordinary high ion conductivity and the practical applicability has been demonstrated repeatedly in fuel cells, water electrolysers and as anion conducting component...

  18. Optofluidic interferometry chip designs of differential NIR absorbance based sensors for identification and quantification of electrolytes

    NARCIS (Netherlands)

    Steen, Gerrit W.; Wexler, Adam D.; Offerhaus, Herman L.

    2014-01-01

    Design and optimization of integrated photonic NIR absorbance based sensors for identification and quantification of aqueous electrolytes was performed by simulation in MATLAB and Optodesigner. Ten designs are presented and compared for suitability.

  19. Nanocrystal/sol-gel nanocomposites

    Science.gov (United States)

    Petruska, Melissa A [Los Alamos, NM; Klimov, Victor L [Los Alamos, NM

    2007-06-05

    The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites.

  20. Fast and facile preparation of CTAB based gels and their applications in Au and Ag nanoparticles synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Ravi Kant, E-mail: rkupadhyay85@gmail.com [Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Budh Nagar, 201314 Uttar Pradesh (India); Soin, Navneet, E-mail: n.soin@bolton.ac.uk [Knowledge Centre for Materials Chemistry (KCMC), Institute for Materials Research and Innovation (IMRI), University of Bolton, Deane Road, Bolton BL3 5AB (United Kingdom); Saha, Susmita, E-mail: ssaha@bose.res.in [Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098 (India); Barman, Anjan, E-mail: abarman@bose.res.in [Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098 (India); Sinha Roy, Susanta, E-mail: susanta.roy@snu.edu.in [Department of Physics, School of Natural Sciences, Shiv Nadar University, Gautam Budh Nagar, 201314 Uttar Pradesh (India)

    2015-04-15

    We have demonstrated that the gel-like mesophase of Cetyltrimethylammonium bromide (CTAB) can be synthesized by judicial adjustment of water to surfactant molar ratio (W{sub 0}), without using any additional salts, gelating agents or co-surfactants. Gel formation was found to be highly dependent on the water to surfactant molar ratio (W{sub 0}), with the lowest value of W{sub 0} (41.5) resulting in rapid gel formation. Environmental scanning electron microscope (ESEM) analysis revealed that the gel was comprised of interconnected cylindrical structures. The presence of hydrogen bonding in the gel-like mesophase was confirmed by Fourier Transform Infrared spectroscopy (FTIR) analysis. Rheology measurements revealed that all the gel samples were highly viscoelastic in nature. Furthermore, Au and Ag containing CTAB gels were explored as precursors for the preparation of spherical Gold (Au) and Silver (Ag) nanoparticles using Sodium borohydride (NaBH{sub 4}) as reducing agent. The effects of NaBH{sub 4} concentration on the particle size and morphology of the Au and Ag nanoparticles have also been studied. - Highlights: • A facile synthesis of CTAB based gel-like mesophase is reported. • CTAB gels were obtained by adjusting water to surfactant molar ratio (W{sub 0}). • FTIR analysis revealed that hydrogen bonding plays a key role in gel formation. • Au, Ag nanoparticles were synthesized by using CTAB gel and NaBH{sub 4}.