WorldWideScience

Sample records for geiger photon counter

  1. 60 years Geiger-Mueller counter - 40 years scintillation counter

    International Nuclear Information System (INIS)

    Stolz, W.; Herforth, L.

    1988-01-01

    This review is devoted to two anniversaries that of the invention of the Geiger-Mueller counter sixty years ago and that of the development of the scintillation counter forty years ago. Besides the history described the importance at the present time is emphasized. The advances made in further improvement of these detectors are considered. 99 refs. (author)

  2. Geiger-Mueller counters for measuring tritium

    International Nuclear Information System (INIS)

    Kostadinov, K.N.; Yanev, Y.I.; Todorovsky, D.S.

    1978-01-01

    In the course of building up a procedure for easy and inexpensive assay of low 3 H-activity in water samples pure acetylene filling of GM counters was carried out. The counters used were of the Johnston type with a stainless steel cathodes and tungsten anode wire. When filled with pure acetylene, synthesized in specially constructed vacuum apparatus, they showed very good characteristics in the GM region. In the range of acetylene pressures 40-100 mm Hg, the length of plateaus varied from 150 to 250 V and there was a clear dependence of the plateau length on the acetylene pressure in the counter. The same was true of the threshold and working voltage. Increasing acetylene pressure led to a certain increase in the background of the counter probably due to photosensitivity. When using acetylene pressures exceeding 70 mm Hg, the increase in the background was negligible. The slope of the plateau was usually not more then 2-3%/100V and the dead time determined by the Stever method was 150 s. The obtained characteristics of the counter support the conclusion that acetylene can be used as pure filling gas of Geiger counters to measure tritium. (K.M.)

  3. Geiger counters of gamma rays with a bismuth cathode

    International Nuclear Information System (INIS)

    Meunier, R.; Legrand, J.P.

    1953-01-01

    Geiger Muller counters present a lake of efficiency of some per cent, for the γ radiations. In the region 0,3 - 1 MeV, a substantial growth of their output can be obtained by a special construction of their cathode. In accordance with previous works, we constructed some counter of formed cathode by a pleated copper wire fencing covered of Bi by electrolysis. The successive modifications brought to a cylindrical conventional cathode in sheet metal of copper, that succeeds to this type of cathode, drive to an improvement of the output. (M.B.) [fr

  4. Development of tecniques for constructing Geiger-Mueller counters

    International Nuclear Information System (INIS)

    Baccarelli, A.M.

    1984-01-01

    A systematic study of several construction techniques of Geiger-Mueller counters was carried out in order to establish the most suitable technology for such purpose. The results obtained with counters for alpha, beta and gamma rays, which were designed and built in the laboratory of Sao Paulo University (USP) are described. Most of the counters were built inside Pyrex-glass envelope and their cathodes were made of electrolytic copper or brass foils of still a silver layer deposited by chemical process. Some counters were made with cilyndrical brass tube. Anode wires of different materials and diameters and severals quenching vapors were used and the results obtained are described. All the procedures used in preparation of surfaces, cleaning of materials, purification of filling mixtures, the procedures for operating evacuation and filling of counters are described. The results obtained with self quenching counters using soda glass and an external colloidas graphite cathode are presented and the influence of filling mixtures is analysed. A technology to produce reliable counters from materials and gases easily available in the country was established. It is shown that counters with an external cathode can be used when recovery time on order of 2 μs are required. The plateus obtained for such counters were on order of 1000V with slope of about 0.5%. (Author) [pt

  5. Calibration of Farmer dosimeter and Geiger-Mueller counters

    International Nuclear Information System (INIS)

    Yudelev, M.; Jones, D.T.L.

    1988-11-01

    According to the protocol adopted at NAC for neutron beam calibration a Farmer type dosimeter is the Secondary Standard instrument used to obtain the exposure calibration factors for tissue equivalent (TE) ion chambers in Co-60 beam. Miniature Geiger-Mueller (GM) counters are used in conjunction with the TE ion chambers to determine the gamma dose component in mixed neutron-gamma radiation fields which are produced by the neutron therapy treatment system. The calibration factors for the GM counters are somewhat lower (∼10%) than previous measurements with similar counters. The orientational changes in the sensitivity of the GM counters cause a change of about 14% in the calibration factor of Far West Technology (GM2) counter and about 2% for Alrad (ZP1300) counters either with or without the Li 6 F caps. The attenuation of the Co-60 gamma rays in the Li 6 F cap results in an increase of the calibration factor by about 2% for all counters. 2 figs., 5 refs., 4 tabs

  6. Project and construction of a system to measure with Geiger-Mueller counter

    International Nuclear Information System (INIS)

    Melo, F.A. de.

    1984-01-01

    The project and construction of a Geiger-Mueller detection and analysis system using Brazilian electronic equipment and presented. The measure system has an high voltage source that permits to give variable output voltage in stages of 30 to 30 V, a pulse counter and a clock, that drives simultaneously with the counter. (E.G.) [pt

  7. Propagation velocity of an avalanche along the anode wire in a Geiger-Mueller counter filled with Q-gas at 1 ATM

    International Nuclear Information System (INIS)

    Matsuda, Kazunori; Sanada, Junpei

    1990-01-01

    Simple methods were applied to investigate the characteristics of a Geiger-Mueller counter with Q-gas flowing at 1 atm. The propagation velocity of the photon-aided avalanche along the anode wire depends linearly on the strength of the electric field in the counter. Its fluctuation (FWHM) as a function of distance between the source position and the end point is discussed. (orig.)

  8. Cosmic Rays with Portable Geiger Counters: From Sea Level to Airplane Cruise Altitudes

    Science.gov (United States)

    Blanco, Francesco; La Rocca, Paola; Riggi, Francesco

    2009-01-01

    Cosmic ray count rates with a set of portable Geiger counters were measured at different altitudes on the way to a mountain top and aboard an aircraft, between sea level and cruise altitude. Basic measurements may constitute an educational activity even with high school teams. For the understanding of the results obtained, simulations of extensive…

  9. Construction techniques and working principles of external cathode Geiger-Mueller counters

    International Nuclear Information System (INIS)

    Sevegnani, Francisco Xavier

    1996-01-01

    In this paper, the construction technique and working principles of the external cathode Geiger-Mueller counter are described in detail. During the analysis of the behavior of these counters a new phenomena was observed, related to an increase int he background rate with the applied voltage. The experiments have also shown that the pulse amplitude of those counters decreases exponentially with the counting rate. The counters built with the techniques described in this paper has shown plateaus of about 1400 V with slope of 0,8%/100 V. (author)

  10. Construction techniques and operation principles of Geiger-Mueller counters using external cathode (Mazetype)

    International Nuclear Information System (INIS)

    Sevegnani, F.X.

    1988-01-01

    The construction techniques for external cathode (Maze) and internal cathode Geiger-Muller counters are described, showing the operation principles and the used material nature. More than 200 counter types were evaluated analysing their characteristics. The influence of several types of guard-rings was studied, for optimizing counter operation conditions. Plateaus of the order of 700 V with slope of 0,3%/100 V for the net counting rate, and 1400 V with a slope of 0,8/100 V for total counts using total pressure of 10 cmHg, were obtained. A counter for β detection, using blown glass window in one of the edges of the cylinder was constructed. Counters of long life using materials such as, mica, adhesive glues, etc., were obtained. The results shown that the best counter operation occurs when it is empty in a vacuum of 10 -5 mmHg. (M.C.K.) [pt

  11. Multichannel strobed photon counter

    International Nuclear Information System (INIS)

    Ganichev, V.A.; Elkin, O.K.; Zajdel', I.N.; Kozlov, V.A.; Lyapunov, G.M.; Malinovskij, A.L.; Ryabov, E.A.; Sil'kis, Eh.G.

    1987-01-01

    A multichannel strobed photon counter operating in the visible spectrum range is developed on the basis of luminescence amplifier with a microchannel plate and LI-706 supervidicon. The pulses overvoltaged supply mode of a microchannel plate has brought about amplification necessary for input into plateau of the counting characteristics and photoacceptor strobing in the nanosecond (140 ns) range. Device noises are practically completely determined by noises in luminescence amplifier photocathode. the above multichannel counter has a durable stability of parameters, electronic system simplicity and small dimensions of the photoacceptor

  12. Application of a background-compensated Geiger-Mueller counter to a survey meter

    International Nuclear Information System (INIS)

    Mori, C.; Kumanomido, H.; Watanabe, T.

    1984-01-01

    A background-compensated Geiger-Mueller counter was used as a probe for a GM survey meter to obtain a net count rate of β-rays from a radioactive source in a quick survey. Although a background counting ratio between the two parts in the counter, front and rear, varied somewhat depending on the incident direction of background γ-rays, it was possible to compensate the background counts by subtracting a part of the rear counts, which were background counts, from the front counts, which contained β-ray counts and background counts. Undesirable small pulses generated during the recovering time after a full Geiger discharge were eliminated by an anticoincidence gating method. The survey meter with this counter and a differential ratemeter is useful for obtaining a net count rate of β-rays emitted from a surface radioactive-contamination or from a source being put near the window of the counter with nearly the same accuracy in half the measuring time as compared with conventional GM counters. (orig.)

  13. Geiger-Mueller haloid counter dead time dependence on counting rate

    International Nuclear Information System (INIS)

    Onishchenko, A.M.; Tsvetkov, A.A.

    1980-01-01

    The experimental dependences of the dead time of Geiger counters (SBM-19, SBM-20, SBM-21 and SGM-19) on the loading, are presented. The method of two sources has been used to determine the dead time counters of increased stability. The counters are switched on according to the usually used circuit of discrete counting with loading resistance of 50 MOhm and the separating capacity of 10 pF. Voltage pulses are given to the counting device with the time of resolution of 100 ns, discrimenation threshold 3 V, input resistance 3.6 Ω and the input capacity-15 pF. The time constant of the counter RC-circuit is 50 μs

  14. Development and design of geiger counter interface circuit for extended radiation intensity range

    International Nuclear Information System (INIS)

    Elaraby, S.M.; Kamel, S.A.

    2005-01-01

    This paper has focused on the development and the design of geiger counter interface circuit for extended radiation intensity ranges. Specially in this case, amplitude sensitivity processing time of conventional interface circuit are the main problems. The proposed interface circuit is applicable for use in either analog or digital based instruments, in radiation dose rate measurements from the micro sever t/hour (MSv/h) up to sever t/hour (Sv/h) ranges. The proposed Design is based on an unconventional of the CMOS unbuffered logic hex-inverter device 4069 UB as analog/digital processing element. This design has been investigated by simulation for sensitivity to signal amplitude, rejection of super imposed traces signals occurrence that may cause erroneous output and for temperature variations Effects. Simulation results verify the applicability of the proposed geiger counter interface circuit for wider range of radiation intensity measurements, accurately. The proposed design has been implemented and verified through calibration by the national institute for standards NIS-EG

  15. Design of a portable dose rate detector based on a double Geiger-Mueller counter

    Science.gov (United States)

    Wang, Peng; Tang, Xiao-Bin; Gong, Pin; Huang, Xi; Wen, Liang-Sheng; Han, Zhen-Yang; He, Jian-Ping

    2018-01-01

    A portable dose rate detector was designed to monitor radioactive pollution and radioactive environments. The portable dose detector can measure background radiation levels (0.1 μSv/h) to nuclear accident radiation levels (>10 Sv/h). Both automatic switch technology of a double Geiger-Mueller counter and time-to-count technology were adopted to broaden the measurement range of the instrument. Global positioning systems and the 3G telecommunication protocol were installed to prevent radiation damage to the human body. In addition, the Monte Carlo N-Particle code was used to design the thin layer of metal for energy compensation, which was used to flatten energy response The portable dose rate detector has been calibrated by the standard radiation field method, and it can be used alone or in combination with additional radiation detectors.

  16. Multipixel geiger-mode photon detectors for ultra-weak light sources

    International Nuclear Information System (INIS)

    Campisi, A.; Cosentino, L.; Finocchiaro, P.; Pappalardo, A.; Musumeci, F.; Privitera, S.; Scordino, A.; Tudisco, S.; Fallica, G.; Sanfilippo, D.; Mazzillo, M.; Condorelli, G.; Piazza, A.; Valvo, G.; Lombardo, S.; Sciacca, E.; Bonanno, G.; Belluso, M.

    2007-01-01

    Arrays of Single Photon Avalanche Detectors (SPAD) are considered today as a possible alternative to PMTs and other semiconductor devices in several applications, like physics research, bioluminescence, Positron Emission Tomography (PET) systems, etc. We have developed and characterized a first prototype array produced by STMicroelectronics in silicon planar technology and working at low voltage (30-40 V) in Geiger mode operation. The single cell structure (size down to 20 μm) and the geometrical arrangement give rise to appealing intrinsic characteristics of the device, such as photon detection efficiency, dark count map, cross-talk effects, timing and energy resolution. New prototypes are under construction with a higher number of pixels that have a common output signal to obtain a so-called SiPM (Silicon PhotoMultiplier) configuration

  17. Evaluation of single photon and Geiger mode Lidar for the 3D Elevation Program

    Science.gov (United States)

    Stoker, Jason M.; Abdullah, Qassim; Nayegandhi, Amar; Winehouse, Jayna

    2016-01-01

    Data acquired by Harris Corporation’s (Melbourne, FL, USA) Geiger-mode IntelliEarth™ sensor and Sigma Space Corporation’s (Lanham-Seabrook, MD, USA) Single Photon HRQLS sensor were evaluated and compared to accepted 3D Elevation Program (3DEP) data and survey ground control to assess the suitability of these new technologies for the 3DEP. While not able to collect data currently to meet USGS lidar base specification, this is partially due to the fact that the specification was written for linear-mode systems specifically. With little effort on part of the manufacturers of the new lidar systems and the USGS Lidar specifications team, data from these systems could soon serve the 3DEP program and its users. Many of the shortcomings noted in this study have been reported to have been corrected or improved upon in the next generation sensors.

  18. As the crack in the Geiger counter came. Historical scientific analysis and didactic aspects of the Geiger-Mueller counting tube

    International Nuclear Information System (INIS)

    Korff, Sebastian

    2014-01-01

    This thesis studies the creation and establishment history of this instrument called first electron counting tube in the years 1928 and 1929. It deals thereby with the last two years of the common work of Hans Geiger and Walter Mueller, from which the measuring instrument later renamed to Geiger-Mueller counting tube. The results of this scientific case study are didactically worked out and made usable for the teaching of physics in the school.

  19. Geiger-Muller with a mica window halogen quenched counters aspects

    International Nuclear Information System (INIS)

    Gorski, M.S.; Bruzinga, W.A.

    1990-09-01

    We present the development of a model of a Geiger-Muller with likeness the model ZP 1410 Phillips. The prototype has a cylindrical shape with 37mm of effective length and a mica window of 1,5 to 2,0mg/cm sup(2) thickness with a useful diam of 19,8mm. For the window preparation and special cutting technique was developed Basically two types of quenching agents, bromine and chlorine were studied. Due to the high corrosive nature of these gases, we work with treatment of surface of the cathode through electropolishment, chemical passiveness, hard chrome and nickel coating. Out main objective was to get a Geiger-Muller detector with an operational plateau over 200V, working voltage above 600V and a sensivity of 320 counts/sec at 10 sup(-1) m Gy/h. (author)

  20. Modelization, fabrication and evaluation avalanche photodiodes polarized in Geiger mode for the single photon in astrophysics applications; Modelisation, fabrication et evaluation des photodiodes a avalanche polarisees en mode Geiger pour la detection du photon unique dans les applications Astrophysiques

    Energy Technology Data Exchange (ETDEWEB)

    Pellion, D

    2008-12-15

    The genesis of the work presented in this this is in the field of very high energy astrophysics. One century ago, scientists identified a new type of messenger coming from space: cosmic rays. This radiation consists of particles (photons or other) of very high energy which bombard the Earth permanently. The passage of cosmic radiations in the Earth's atmosphere results in the creation of briefs luminous flashes (5 ns) of very low intensity (1 pW), a Cherenkov flash, and then becomes visible on the ground. In the current state of the art the best detector of light today is the Photomultiplier tube (PMT), thanks to its characteristics of sensitivity and speed. But there are some drawbacks: low quantum efficiency, cost, weight etc. We present in this thesis a new alternative technology: silicon photon counters, made of photodiodes polarized in Geiger mode. This operating mode makes it possible to obtain an effect of multiplication comparable to that of the PMT. A physical and electrical model was developed to reproduce the behaviour of this detector. We then present in this thesis work an original technological process allowing the realization of these devices in the Center of Technology of LAAS-CNRS, with the simulation of each operation of the process. We developed a scheme for the electric characterization of the device, from the static mode to the dynamic mode, in order to check conformity with SILVACO simulations and to the initial model. Results are already excellent, given this is only a first prototype step, and comparable with the results published in the literature. These silicon devices can intervene in all the applications where there is a photomultiplier and replace it. The applications are thus very numerous and the growth of the market of these detectors is very fast. We present a first astrophysical experiment installed at the 'Pic du Midi' site which has detected Cherenkov flashes from cosmic rays with this new semiconductor technology

  1. Modelization, fabrication and evaluation avalanche photodiodes polarized in Geiger mode for the single photon in astrophysics applications

    International Nuclear Information System (INIS)

    Pellion, D.

    2008-12-01

    The genesis of the work presented in this this is in the field of very high energy astrophysics. One century ago, scientists identified a new type of messenger coming from space: cosmic rays. This radiation consists of particles (photons or other) of very high energy which bombard the Earth permanently. The passage of cosmic radiations in the Earth's atmosphere results in the creation of briefs luminous flashes (5 ns) of very low intensity (1 pW), a Cherenkov flash, and then becomes visible on the ground. In the current state of the art the best detector of light today is the Photomultiplier tube (PMT), thanks to its characteristics of sensitivity and speed. But there are some drawbacks: low quantum efficiency, cost, weight etc. We present in this thesis a new alternative technology: silicon photon counters, made of photodiodes polarized in Geiger mode. This operating mode makes it possible to obtain an effect of multiplication comparable to that of the PMT. A physical and electrical model was developed to reproduce the behaviour of this detector. We then present in this thesis work an original technological process allowing the realization of these devices in the Center of Technology of LAAS-CNRS, with the simulation of each operation of the process. We developed a scheme for the electric characterization of the device, from the static mode to the dynamic mode, in order to check conformity with SILVACO simulations and to the initial model. Results are already excellent, given this is only a first prototype step, and comparable with the results published in the literature. These silicon devices can intervene in all the applications where there is a photomultiplier and replace it. The applications are thus very numerous and the growth of the market of these detectors is very fast. We present a first astrophysical experiment installed at the 'Pic du Midi' site which has detected Cherenkov flashes from cosmic rays with this new semiconductor technology. (author)

  2. Description of the manufacture of a Geiger-Muller counter with window

    International Nuclear Information System (INIS)

    Granados, C. E.

    1959-01-01

    Total details about the manufacture elements in counter fabrication and the way of obtention are described as well as total indications useful in the installation process and filling of the counter. The appropriate materials and precautions that might be adopted in order to obtain counters with uniform operation and good characteristics, are described. Counters are of brass, with thin mica or aluminium windows and operate at 1100 V approximately with a slope lower than 5 % 1100 V. (Author)

  3. Geiger-mode APD camera system for single-photon 3D LADAR imaging

    Science.gov (United States)

    Entwistle, Mark; Itzler, Mark A.; Chen, Jim; Owens, Mark; Patel, Ketan; Jiang, Xudong; Slomkowski, Krystyna; Rangwala, Sabbir

    2012-06-01

    The unparalleled sensitivity of 3D LADAR imaging sensors based on single photon detection provides substantial benefits for imaging at long stand-off distances and minimizing laser pulse energy requirements. To obtain 3D LADAR images with single photon sensitivity, we have demonstrated focal plane arrays (FPAs) based on InGaAsP Geiger-mode avalanche photodiodes (GmAPDs) optimized for use at either 1.06 μm or 1.55 μm. These state-of-the-art FPAs exhibit excellent pixel-level performance and the capability for 100% pixel yield on a 32 x 32 format. To realize the full potential of these FPAs, we have recently developed an integrated camera system providing turnkey operation based on FPGA control. This system implementation enables the extremely high frame-rate capability of the GmAPD FPA, and frame rates in excess of 250 kHz (for 0.4 μs range gates) can be accommodated using an industry-standard CameraLink interface in full configuration. Real-time data streaming for continuous acquisition of 2 μs range gate point cloud data with 13-bit time-stamp resolution at 186 kHz frame rates has been established using multiple solid-state storage drives. Range gate durations spanning 4 ns to 10 μs provide broad operational flexibility. The camera also provides real-time signal processing in the form of multi-frame gray-scale contrast images and single-frame time-stamp histograms, and automated bias control has been implemented to maintain a constant photon detection efficiency in the presence of ambient temperature changes. A comprehensive graphical user interface has been developed to provide complete camera control using a simple serial command set, and this command set supports highly flexible end-user customization.

  4. Ultrafast photon number resolving detector with a temperature stabilized si multi pixel photon counter

    Energy Technology Data Exchange (ETDEWEB)

    Song, Minsoo; Hong, Eugene; Won, Eunil; Yoon, Tai Hyun [Korea Univ., Seoul (Korea, Republic of)

    2008-11-15

    Quantum information science has been rapidly progressed and matured and matured thanks to the recent developments of the single photon detection technologies. Single photon detectors such as a Si avalanche photo diode(APD)in the infrared, an InGaAs/InP APD in the telecommunication band, and a super conducting transient edge sensor(TES)in the broad region of the spectrum have been widely used. Single photon detectors, however, operating at the ultraviolet to visible (370nm∼800nm)regions has not been actively investigated partly due to the lack of single photon and/or entangled photon sources and the lack of solid state single photon detectors. In this paper, we investigate the single photon detection characteristics of a Si multi pixel photon counter(MPPC), which has a high spectral responsivity between 300nm to 800nm, as a photon number resolving solid state detector. Figure 1 shows the schematic diagram of the single photon detection set up at 399nm by using a temperature stabilized Si MPPC. The output beam of the laser being properly attenuated is directed to the MPPC module, at which fixed number of photo electrons corresponding to incident individual photon are generated at Geiger mode of the Si APD pixels. The detected photo current is converted into a digital signal by using a fast analog to digital converter and a digital oscilloscope stores the time sequence of the photo currents. Figure 2 shows the accumulated charges collected by MPPC at∼10.deg.C showing a clear single photon and two photons peaks, respectively, separated by ∼5 sigma of the coincidence counts at the two output ports of a Mach Zender interferometer as a function of optical path length difference. The research was supported by Seoul R and BD program(NT070127)and by the KRISS.

  5. Ultrafast photon number resolving detector with a temperature stabilized si multi pixel photon counter

    International Nuclear Information System (INIS)

    Song, Minsoo; Hong, Eugene; Won, Eunil; Yoon, Tai Hyun

    2008-01-01

    Quantum information science has been rapidly progressed and matured and matured thanks to the recent developments of the single photon detection technologies. Single photon detectors such as a Si avalanche photo diode(APD)in the infrared, an InGaAs/InP APD in the telecommunication band, and a super conducting transient edge sensor(TES)in the broad region of the spectrum have been widely used. Single photon detectors, however, operating at the ultraviolet to visible (370nm∼800nm)regions has not been actively investigated partly due to the lack of single photon and/or entangled photon sources and the lack of solid state single photon detectors. In this paper, we investigate the single photon detection characteristics of a Si multi pixel photon counter(MPPC), which has a high spectral responsivity between 300nm to 800nm, as a photon number resolving solid state detector. Figure 1 shows the schematic diagram of the single photon detection set up at 399nm by using a temperature stabilized Si MPPC. The output beam of the laser being properly attenuated is directed to the MPPC module, at which fixed number of photo electrons corresponding to incident individual photon are generated at Geiger mode of the Si APD pixels. The detected photo current is converted into a digital signal by using a fast analog to digital converter and a digital oscilloscope stores the time sequence of the photo currents. Figure 2 shows the accumulated charges collected by MPPC at∼10.deg.C showing a clear single photon and two photons peaks, respectively, separated by ∼5 sigma of the coincidence counts at the two output ports of a Mach Zender interferometer as a function of optical path length difference. The research was supported by Seoul R and BD program(NT070127)and by the KRISS

  6. Study of micro pixel photon counters for a high granularity scintillator-based hadron calorimeter

    International Nuclear Information System (INIS)

    D'Ascenzo, N.; Eggemann, A.; Garutti, E.

    2007-11-01

    A new Geiger mode avalanche photodiode, the Micro Pixel Photon Counter (MPPC), was recently released by Hamamatsu. It has a high photo-detection efficiency in the 420 nm spectral region. This product can represent an elegant candidate for the design of a high granularity scintillator based hadron calorimeter for the International Linear Collider. In fact, the direct readout of the blue scintillation photons with a MPPC is a feasible techological solution. The readout of a plastic scintillator by a MPPC, both mediated by the traditional wavelength shifting fiber, and directly coupled, has been systematically studied. (orig.)

  7. Description of the manufacture of a Geiger-Muller counter with window; Descripcion de la fabricacion de un contador Geiger-Muller con ventana

    Energy Technology Data Exchange (ETDEWEB)

    Granados, C. E.

    1959-07-01

    Total details about the manufacture elements in counter fabrication and the way of obtention are described as well as total indications useful in the installation process and filling of the counter. The appropriate materials and precautions that might be adopted in order to obtain counters with uniform operation and good characteristics, are described. Counters are of brass, with thin mica or aluminium windows and operate at 1100 V approximately with a slope lower than 5 % 1100 V. (Author)

  8. A vegetal Geiger counter

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    In order to study the Chernobyl accident impact on ecosystems, Ukrainian and Swiss scientists have used a plant: the Arabidopsis thaliana. They have introduced in its genome a gene coding an enzyme called β-glucuronidase. This substance, when it is expressed, colours vegetal cells blue. In fact the introduced gene is divided between 2 paired chromosomes. When the plant is placed on a nuclear contaminated soil, radiation damaged chromosomes exchange fragments and the 2 parts of the enzyme gene may recombine, the enzyme can then be expressed. For low and medium contamination ( 2 ) biologists have found a correlation between the number of blue spots on the plant and the irradiation rate. (A.C.)

  9. Operation of Multi-Pixel Photon Counters Down to Liquid Helium Temperatures

    Science.gov (United States)

    Cardini, Alessandro; Fanti, Viviana; Lai, Adriano

    2014-10-01

    We are investigating the possibility of using Silicon Avalanche Photo Detectors (APD), both in proportional and in Geiger mode, to readout inorganic scintillators operated at cryogenic temperatures. Such detectors, that need to operate close to liquid helium (LHe) temperatures and in a magnetic field of a few Tesla, have been proposed by our group as a way to build an active polarized target to be used for neutrino physics, for the search of axions and CP violation, as suggested by some theoretical papers. In the present work we investigate in some details the performance of Hamamatsu Multi-Pixel Photon Counters (MPPCs) down to LHe temperature to verify the temperature range of usability of these devices.

  10. Statistical analysis of natural radiation levels inside the UNICAMP campus through the use of Geiger-Muller counter; Analise estatistica dos niveis de radiacao natural dentro da UNICAMP atraves do uso de contador Geiger-Muller

    Energy Technology Data Exchange (ETDEWEB)

    Fontolan, Juliana A.; Biral, Antonio Renato P., E-mail: fontolanjuliana@gmail.com.br, E-mail: biral@ceb.unicamp.br [Hospital das Clinicas (CEB/UNICAMP), Campinas, SP (Brazil). Centro de Engenharia Biomedica

    2013-07-01

    It is known that the distribution at time intervals of random and unrelated events leads to the Poisson distribution . This work aims to study the distribution in time intervals of events resulting from radioactive decay of atoms present in the UNICAMP where activities involving the use of ionizing radiation are performed environments . The proposal is that the distribution surveys at intervals of these events in different locations of the university are carried out through the use of a Geiger-Mueller tube . In a next step , the evaluation of distributions obtained by using non- parametric statistics (Chi- square and Kolmogorov Smirnoff) will be taken . For analyzes involving correlations we intend to use the ANOVA (Analysis of Variance) statistical tool . Measured in six different places within the Campinas , with the use of Geiger- Muller its count mode and a time window of 20 seconds was performed . Through statistical tools chi- square and Kolmogorov Smirnoff tests, using the EXCEL program , it was observed that the distributions actually refer to a Poisson distribution. Finally, the next step is to perform analyzes involving correlations using the statistical tool ANOVA.

  11. Photon detection in ring imaging Cherenkov counters

    International Nuclear Information System (INIS)

    Jansen, H.

    1988-01-01

    One of the parts of DELPHI (a detector at the CERN LEP) is the barrel-RICH which uses Cherenkov radiation to determine the velocity of charged particles; together with the measured momentum this information yields the mass of each particle. The performance of the photon detector, which determines to a large extent the analyzing power of the barrel-RICH, is studied. 98 refs.; 40 figs.; 6 tabs

  12. Counter-propagating patterns in the BioPhotonics Workstation

    DEFF Research Database (Denmark)

    Palima, Darwin; Lindballe, T.B.; Kristensen, M.V.

    2010-01-01

    The counter-propagating geometry opens an extra degree of freedom for shaping light while subsuming single-sided illumination as a special case (i.e., one beam set turned off). In its conventional operation, our BioPhotonics Workstation (BWS) uses symmetric, co-axial counter-propagating beams...... for stable three-dimensional manipulation of multiple particles. In this work, we analyze counter-propagating shaped-beam traps that depart from this conventional geometry. We show that projecting shaped beams with separation distances previously considered axially unstable can, in fact, enhance the trap...... by improving axial and transverse trapping stiffness. We also show interesting results of trapping and micromanipulation experiments that combine optical forces with fluidic forces. These results hint about the rich potential of using patterned counter-propagating beams for optical trapping and manipulation...

  13. An Inexpensive Coincidence Circuit for the Pasco Geiger Sensors

    CERN Document Server

    Fichera, F; Librizzi, F; Riggi, F

    2005-01-01

    A simple coincidence circuit was devised to carry out educational coincidence experiments involving the use of Geiger counters. The system was tested by commercially available Geiger sensors from PASCO, and is intended to be used in collaboration with high school students and teachers

  14. Gallium nitride photocathodes for imaging photon counters

    Science.gov (United States)

    Siegmund, Oswald H. W.; Hull, Jeffrey S.; Tremsin, Anton S.; McPhate, Jason B.; Dabiran, Amir M.

    2010-07-01

    Gallium nitride opaque and semitransparent photocathodes provide high ultraviolet quantum efficiencies from 100 nm to a long wavelength cutoff at ~380 nm. P (Mg) doped GaN photocathode layers ~100 nm thick with a barrier layer of AlN (22 nm) on sapphire substrates also have low out of band response, and are highly robust. Opaque GaN photocathodes are relatively easy to optimize, and consistently provide high quantum efficiency (70% at 120 nm) provided the surface cleaning and activation (Cs) processes are well established. We have used two dimensional photon counting imaging microchannel plate detectors, with an active area of 25 mm diameter, to investigate the imaging characteristics of semitransparent GaN photocathodes. These can be produced with high (20%) efficiency, but the thickness and conductivity of the GaN must be carefully optimized. High spatial resolution of ~50 μm with low intrinsic background (~7 events sec-1 cm-2) and good image uniformity have been achieved. Selectively patterned deposited GaN photocathodes have also been used to allow quick diagnostics of optimization parameters. GaN photocathodes of both types show great promise for future detector applications in ultraviolet Astrophysical instruments.

  15. Comparison of the measured radiation dose-rate by the ionization chamber and G (Geiger-Mueller) counter after radioactive lodine therapy in differentiated thyroid cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kwang Hun [Dept. of Nuclear Medicine, Kyungbuk National University Hospital, Daegu (Korea, Republic of); Kim, Kgu Hwan [Dept. of Radiological Technology, Daegu Health College, Daegu (Korea, Republic of)

    2016-12-15

    Radioactive iodine(131I) treatment reduces recurrence and increases survival in patients with differentiated thyroid cancer. However, it is important in terms of radiation safety management to measure the radiation dose rate generated from the patient because the radiation emitted from the patient may cause the exposure. Research methods, it measured radiation dose-rate according to the elapsed time from 1 m from the upper abdomen of the patient by intake of radioactive iodine. Directly comparing the changes over time, high dose rate sensitivity and efficiency is statistically significant, and higher chamber than GM counter(p<0.05). Low dose rate sensitivity and efficiency in the chamber had lower levels than gm counter, but not statistically significant(p>0.05). In this study confirmed the characteristics of calibrated ionization chamber and GM counter according to the radiation intensity during high-dose radioactive iodine therapy by measuring the accurate and rapid radiation dose rate to the patient explains, discharged patients will be reduced to worry about radiation hazard of family and others person.

  16. Photon veto counters at KTeV/KAMI with blue WLS fibers

    International Nuclear Information System (INIS)

    Hanagaki, Kazunori

    1998-01-01

    The photon veto detectors used in KTeV experiment were required to have high detection efficiency with high speed response. To satisfy the requirements, we used scintillation counters with blue wave length shifter fibers for their readout. This document describes the design and performance of the photon veto detectors and a possible improvement for future experiments

  17. The quest for a third generation of gaseous photon detectors for Cherenkov imaging counters

    CERN Document Server

    Alexeev, M

    2009-01-01

    RICH (Ring Imaging CHerenkov) counters for PID in the high momentum domain and in large acceptance experiments require photon detectors covering extended surface (several square meters) and able to accept Cherenkov photons in a wide angular range. An ideal approach is represented by gaseous photon detectors, which allow covering wide surfaces at affordable costs. The first generation of these detectors was based on the use of organic vapors. The second generation consists of CsI photocathodes and open geometry gaseous detectors (MWPC). In spite of the success of this approach, some limits of the technique arise from the bombardment of the photocathodes by the ions generated in the amplification process and by the photon feedback. A third generation of gaseous photon detectors using closed geometry, as those possible with multistage arrangements of micropattern gaseous detectors, can overcome the observed limitations. We have started an R&D programme to develop a Thick-GEM-based photon detector and we repo...

  18. Search for ultra-high energy photons with AMIGA muon counters

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Nicolas Martin [Instituto de Tecnologias en Deteccion y Astroparticulas, Buenos Aires (Argentina); Institut fuer Kernphysik, Karlsruher Institut fuer Technologie. (Germany); Collaboration: Pierre-Auger-Collaboration

    2016-07-01

    The study of the composition of ultra-high energy (UHE) cosmic rays (CR) is one of the topical problems of astroparticle physics. The discovery of UHE photons, i.e. photons with energies around 1 EeV, in primary cosmic rays could be of particular interest for the field of astroparticle physics, and also for fundamental physics, since they are tracers of the highest-energy processes in the Universe. For the search for UHE photons at the Pierre Auger Observatory (PAO), several parameters have been proposed to distinguish between primary hadrons and photons. One of the most promising approaches to search for primary gamma rays is the study of the muon component in extensive air showers (EAS) produced in the interaction between the CR and the nuclei in the atmosphere. The number of muons in showers induced by gamma primaries is an order of magnitude lower than the hadronic primaries counterpart. The AMIGA extension of the PAO, consisting of an array of buried scintillators counters, allows the study of the muons produced during the EAS development. In this talk, the sensitivity of the muon counters to photon-initiated EAS and the possible discrimination procedures are discussed using dedicated EAS simulations with software package CORSIKA, including the detector response using the Offline package developed by the Pierre Auger Collaboration.

  19. The multichannel amplifier/discriminator CMOS ASIC for visual light photon counters

    International Nuclear Information System (INIS)

    Baturitsky, M.A.; Yurenya, Yu.P.Yu.P.

    2002-01-01

    The 18-channel CMOS custom monolithic amplifier/discriminator ASIC was designed as a front-end electronics chip for Visual Light Photon Counters which convert photons from scintillation fibre/strip detectors to electrical signals. One ASICs channel contains a charge-sensitive preamplifier, a discriminator to mark the arrival time of signals, and a charge divider to provide analog outputs for analog-to-digital conversion being performed by SVX2. The ASIC is proposed as one of the variants for possible future front-end electronics upgrading the D0 Central Fibre Tracker, Central and Forward Pre-Showers (Fermilab, Batavia, USA)

  20. Quality Assurance of Pixel Hybrid Photon Detectors for the LHCb Ring Imaging Cherenkov Counters

    CERN Document Server

    Carson, Laurence

    Pion/kaon discrimination in the LHCb experiment will be provided by two Ring Imaging Cherenkov (RICH) counters. These use arrays of 484 Hybrid Photon Detectors (HPDs) to detect the Cherenkov photons emitted by charged particles traversing the RICH. The results from comprehensive quality assurance tests on the 550 HPDs manufactured for LHCb are described. Leakage currents, dead channel probabilities, dark count rates and ion feedback rates are reported. Furthermore, measurements carried out on a sample of tubes to determine the efficiency of the HPD pixel chip by measuring the summed analogue response from the backplane of the silicon sensor are described.

  1. High-throughput gated photon counter with two detection windows programmable down to 70 ps width

    Energy Technology Data Exchange (ETDEWEB)

    Boso, Gianluca; Tosi, Alberto, E-mail: alberto.tosi@polimi.it; Zappa, Franco [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Mora, Alberto Dalla [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy)

    2014-01-15

    We present the design and characterization of a high-throughput gated photon counter able to count electrical pulses occurring within two well-defined and programmable detection windows. We extensively characterized and validated this instrument up to 100 Mcounts/s and with detection window width down to 70 ps. This instrument is suitable for many applications and proves to be a cost-effective and compact alternative to time-correlated single-photon counting equipment, thanks to its easy configurability, user-friendly interface, and fully adjustable settings via a Universal Serial Bus (USB) link to a remote computer.

  2. Performance studies of pixel hybrid photon detectors for the LHCb RICH counters

    CERN Document Server

    Aglieri-Rinella, G; Piedigrossi, D; Van Lysebetten, A

    2006-01-01

    The Pixel Hybrid Photon Detector is a vacuum tube with a multi-alkali photo cathode, high voltage cross-focused electron optics and an anode consisting of a silicon pixel detector bump-bonded to a readout CMOS electronic chip fully encapsulated in the device. The Pixel HPD fulfils the requirements of the Ring Imaging Cherenkov counters of the LHCb experiment at LHC. The performances of the Pixel HPD will be discussed with reference to laboratory measurements, Cherenkov light imaging in recent beam tests, image distortions due to a magnetic field.

  3. Performance Studies of Pixel Hybrid Photon Detectors for the LHCb RICH Counters

    CERN Document Server

    Aglieri Rinella, G; Piedigrossi, D; Van Lysebetten, A

    2004-01-01

    The Pixel Hybrid Photon Detector is a vacuum tube with a multi-alkali photo cathode, high voltage cross-focused electron optics and an anode consisting of a silicon pixel detector bump-bonded to a readout CMOS electronic chip fully encapsulated in the device. The Pixel HPD fulfils the requirements of the Ring Imaging Cherenkov counters of the LHCb experiment at LHC. The performances of the Pixel HPD will be discussed with reference to laboratory measurements, Cherenkov light imaging in recent beam tests, image distortions due to a magnetic field.

  4. Advances in Multi-Pixel Photon Counter technology: First characterization results

    Energy Technology Data Exchange (ETDEWEB)

    Bonanno, G., E-mail: gbonanno@oact.inaf.it [INAF, Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania (Italy); Marano, D.; Romeo, G.; Garozzo, S.; Grillo, A.; Timpanaro, M.C. [INAF, Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania (Italy); Catalano, O.; Giarrusso, S.; Impiombato, D.; La Rosa, G.; Sottile, G. [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, Via U. La Malfa 153, I-90146 Palermo Italy (Italy)

    2016-01-11

    Due to the recent advances in silicon photomultiplier technology, new types of Silicon Photomultiplier (SiPM), also named Multi-Pixel Photon Counter (MPPC) detectors have become recently available, demonstrating superior performance in terms of their most important electrical and optical parameters. This paper presents the latest characterization results of the novel Low Cross-Talk (LCT) MPPC families from Hamamatsu, where a noticeable fill-factor enhancement and cross-talk reduction is achieved. In addition, the newly adopted resin coating has been proven to yield improved photon detection capabilities in the 280–320 nm spectral range, making the new LCT MPPCs particularly suitable for emerging applications like Cherenkov Telescope Array, and Astroparticle Physics.

  5. Performance study of new pixel hybrid photon detector prototypes for the LHCb RICH counters

    CERN Document Server

    Moritz, M; Allebone, L; Campbell, M; Gys, Thierry; Newby, C; Pickford, A; Piedigrossi, D; Wyllie, K

    2004-01-01

    A pixel Hybrid Photon Detector was developed according to the specific requirements of the LHCb ring imaging Cerenkov counters. This detector comprises a silicon pixel detector bump-bonded to a binary readout chip to achieve a 25 ns fast readout and a high signal-to-noise ratio. The detector performance was characterized by varying the pixel threshold, the tube high voltage, the silicon bias voltage and by the determination of the photoelectron detection efficiency. Furthermore accelerated aging and high pixel occupancy tests were performed to verify the long term stability. The results were obtained using Cerenkov light and a fast pulsed light emitting diode. All measurements results are within the expectations and fulfill the design goals. (8 refs).

  6. Lifetime characteristics of Gaiger-Muller counters

    Directory of Open Access Journals (Sweden)

    Kartalović Nenad M.

    2016-01-01

    Full Text Available This paper discusses the process of functional aging of Geiger-Muller counters. Two types of Geiger-Muller counter chambers were characterized in an experiment using a combined constant voltage. Chamber A had a coaxial geometry and chamber B had a plan-parallel geometry. The experimental results indicate that the aging process was faster in the case of chambers with a coaxial geometry. The results are explained based on the process of electrical discharges in gasses.

  7. Photon and neutron dose discrimination using low pressure proportional counters with graphite and A150 walls

    International Nuclear Information System (INIS)

    Kylloenen, J.; Lindborg, L.

    2005-01-01

    Full text: The determination of both the low- and high-LET components of ambient dose equivalent in mixed fields is possible with microdosimetric methods. With the multiple-event microdosimetric variance covariance method the sum of those components are directly obtained also in pulsed beams. However, if the value of each dose component is needed a more extended analysis is required. The use of a graphite walled proportional detector in combination with a tissue-equivalent proportional counter in combination with the variance covariance method was here investigated. MCNP simulations were carried out for relevant energies to investigate the photon and neutron responses of the two detectors. The combined graphite and TEPC system, the Sievert instrument, was used for measurements at IRSN, Cadarache, in the workplace calibration fields of CANEL+, SIGMA, a Cf-252 and a moderated Cf(D 2 O,Cd) radiation field. The response of the instrument in various monoenergetic neutron fields is also known from measurements at PTB. The instrument took part in the measurement campaigns in workplace fields in the nuclear industry organized within the EVIDOS contract. The results are analyzed and the method of using a graphite detector compared with alternative methods of analysis is discussed. (author)

  8. Multi-Pixel Photon Counters for Optofluidic Characterization of Particles and Microalgae.

    Science.gov (United States)

    Asrar, Pouya; Sucur, Marta; Hashemi, Nastaran

    2015-06-12

    We have developed an optofluidic biosensor to study microscale particles and different species of microalgae. The system is comprised of a microchannel with a set of chevron-shaped grooves. The chevrons allows for hydrodynamic focusing of the core stream in the center using a sheath fluid. The device is equipped with a new generation of highly sensitive photodetectors, multi-pixel photon counter (MPPC), with high gain values and an extremely small footprint. Two different sizes of high intensity fluorescent microspheres and three different species of algae (Chlamydomonas reinhardtii strain 21 gr, Chlamydomonas suppressor, and Chlorella sorokiniana) were studied. The forward scattering emissions generated by samples passing through the interrogation region were carried through a multimode fiber, located in 135 degree with respect to the excitation fiber, and detected by a MPPC. The signal outputs obtained from each sample were collected using a data acquisition system and utilized for further statistical analysis. Larger particles or cells demonstrated larger peak height and width, and consequently larger peak area. The average signal output (integral of the peak) for Chlamydomonas reinhardtii strain 21 gr, Chlamydomonas suppressor, and Chlorella sorokiniana falls between the values found for the 3.2 and 10.2 μm beads. Different types of algae were also successfully characterized.

  9. Geiger Muller (GM) detector as online monitor: an experimental study

    International Nuclear Information System (INIS)

    Jayan, M.P.; Pawar, V.J.; Krishnakumar, P.; Sureshkumar, M.

    2014-01-01

    Monitoring the inadvertent release of radioactivity into otherwise inactive liquid streams is a common requirement in nuclear industry. In addition to conventional off-line sampling and measurement methods, nuclear facilities usually uses online methods to get real-time detection of activity contents in process cooling water lines and steam condensate lines. Due to its simplicity, ruggedness and cost effectiveness, Geiger Muller counter is obviously the first choice for online application. Though GM based monitors for such online application were in industrial use for a long time, practical data on the response of the detector with respect low level activities in the effluents is scarce in literature. This work was carried out to fill this information gap. The data generated in these experiments may be useful in giving a realistic interpretation of the response of the existing monitors and setting up their alarm limits

  10. ASIC Readout Circuit Architecture for Large Geiger Photodiode Arrays

    Science.gov (United States)

    Vasile, Stefan; Lipson, Jerold

    2012-01-01

    The objective of this work was to develop a new class of readout integrated circuit (ROIC) arrays to be operated with Geiger avalanche photodiode (GPD) arrays, by integrating multiple functions at the pixel level (smart-pixel or active pixel technology) in 250-nm CMOS (complementary metal oxide semiconductor) processes. In order to pack a maximum of functions within a minimum pixel size, the ROIC array is a full, custom application-specific integrated circuit (ASIC) design using a mixed-signal CMOS process with compact primitive layout cells. The ROIC array was processed to allow assembly in bump-bonding technology with photon-counting infrared detector arrays into 3-D imaging cameras (LADAR). The ROIC architecture was designed to work with either common- anode Si GPD arrays or common-cathode InGaAs GPD arrays. The current ROIC pixel design is hardwired prior to processing one of the two GPD array configurations, and it has the provision to allow soft reconfiguration to either array (to be implemented into the next ROIC array generation). The ROIC pixel architecture implements the Geiger avalanche quenching, bias, reset, and time to digital conversion (TDC) functions in full-digital design, and uses time domain over-sampling (vernier) to allow high temporal resolution at low clock rates, increased data yield, and improved utilization of the laser beam.

  11. Photon-number discrimination without a photon counter and its application to reconstructing non-Gaussian states

    International Nuclear Information System (INIS)

    Chrzanowski, H. M.; Bernu, J.; Sparkes, B. M.; Hage, B.; Lam, P. K.; Symul, T.; Lund, A. P.; Ralph, T. C.

    2011-01-01

    The nonlinearity of a conditional photon-counting measurement can be used to ''de-Gaussify'' a Gaussian state of light. Here we present and experimentally demonstrate a technique for photon-number resolution using only homodyne detection. We then apply this technique to inform a conditional measurement, unambiguously reconstructing the statistics of the non-Gaussian one- and two-photon-subtracted squeezed vacuum states. Although our photon-number measurement relies on ensemble averages and cannot be used to prepare non-Gaussian states of light, its high efficiency, photon-number-resolving capabilities, and compatibility with the telecommunications band make it suitable for quantum-information tasks relying on the outcomes of mean values.

  12. Photon-number discrimination without a photon counter and its application to reconstructing non-Gaussian states

    Energy Technology Data Exchange (ETDEWEB)

    Chrzanowski, H. M.; Bernu, J.; Sparkes, B. M.; Hage, B.; Lam, P. K.; Symul, T. [Centre for Quantum Computation and Communication Technology, Quantum Optics group, Department of Quantum Science, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia); Lund, A. P. [Centre for Quantum Computation and Communication Technology, Centre for Quantum Dynamics, Griffith University, Nathan QLD 4111 (Australia); Ralph, T. C. [Centre for Quantum Computation and Communication Technology, Department of Physics, University of Queensland, St. Lucia QLD 4072 (Australia)

    2011-11-15

    The nonlinearity of a conditional photon-counting measurement can be used to ''de-Gaussify'' a Gaussian state of light. Here we present and experimentally demonstrate a technique for photon-number resolution using only homodyne detection. We then apply this technique to inform a conditional measurement, unambiguously reconstructing the statistics of the non-Gaussian one- and two-photon-subtracted squeezed vacuum states. Although our photon-number measurement relies on ensemble averages and cannot be used to prepare non-Gaussian states of light, its high efficiency, photon-number-resolving capabilities, and compatibility with the telecommunications band make it suitable for quantum-information tasks relying on the outcomes of mean values.

  13. Observing pure effects of counter-rotating terms without ultrastrong coupling: A single photon can simultaneously excite two qubits

    Science.gov (United States)

    Wang, Xin; Miranowicz, Adam; Li, Hong-Rong; Nori, Franco

    2017-12-01

    The coherent process that a single photon simultaneously excites two qubits has recently been theoretically predicted by Garziano et al. [L. Garziano, V. Macrì, R. Stassi, O. Di Stefano, F. Nori, and S. Savasta, One Photon Can Simultaneously Excite two or More Atoms, Phys. Rev. Lett. 117, 043601 (2016), 10.1103/PhysRevLett.117.043601]. We propose a different approach to observe a similar dynamical process based on a superconducting quantum circuit, where two coupled flux qubits longitudinally interact with the same resonator. We show that this simultaneous excitation of two qubits (assuming that the sum of their transition frequencies is close to the cavity frequency) is related to the counter-rotating terms in the dipole-dipole coupling between two qubits, and the standard rotating-wave approximation is not valid here. By numerically simulating the adiabatic Landau-Zener transition and Rabi-oscillation effects, we clearly verify that the energy of a single photon can excite two qubits via higher-order transitions induced by the longitudinal couplings and the counter-rotating terms. Compared with previous studies, the coherent dynamics in our system only involves one intermediate state and, thus, exhibits a much faster rate. We also find transition paths which can interfere. Finally, by discussing how to control the two longitudinal-coupling strengths, we find a method to observe both constructive and destructive interference phenomena in our system.

  14. First in situ TOF-PET study using digital photon counters for proton range verification

    Science.gov (United States)

    Cambraia Lopes, P.; Bauer, J.; Salomon, A.; Rinaldi, I.; Tabacchini, V.; Tessonnier, T.; Crespo, P.; Parodi, K.; Schaart, D. R.

    2016-08-01

    Positron emission tomography (PET) is the imaging modality most extensively tested for treatment monitoring in particle therapy. Optimal use of PET in proton therapy requires in situ acquisition of the relatively strong 15O signal due to its relatively short half-life (~2 min) and high oxygen content in biological tissues, enabling shorter scans that are less sensitive to biological washout. This paper presents the first performance tests of a scaled-down in situ time-of-flight (TOF) PET system based on digital photon counters (DPCs) coupled to Cerium-doped Lutetium Yttrium Silicate (LYSO:Ce) crystals, providing quantitative results representative of a dual-head tomograph that complies with spatial constraints typically encountered in clinical practice (2  ×  50°, of 360°, transaxial angular acceptance). The proton-induced activity inside polymethylmethacrylate (PMMA) and polyethylene (PE) phantoms was acquired within beam pauses (in-beam) and immediately after irradiation by an actively-delivered synchrotron pencil-beam, with clinically relevant 125.67 MeV/u, 4.6  ×  108 protons s-1, and 1010 total protons. 3D activity maps reconstructed with and without TOF information are compared to FLUKA simulations, demonstrating the benefit of TOF-PET to reduce limited-angle artefacts using a 382 ps full width at half maximum coincidence resolving time. The time-dependent contributions from different radionuclides to the total count-rate are investigated. We furthermore study the impact of the acquisition time window on the laterally integrated activity depth-profiles, with emphasis on 2 min acquisitions starting at different time points. The results depend on phantom composition and reflect the differences in relative contributions from the radionuclides originating from carbon and oxygen. We observe very good agreement between the shapes of the simulated and measured activity depth-profiles for post-beam protocols. However, our results also

  15. Application of Geiger-mode photosensors in Cherenkov detectors

    Energy Technology Data Exchange (ETDEWEB)

    Gamal, Ahmed, E-mail: gamal.ahmed@assoc.oeaw.ac.a [Stefan Meyer Institute for Subatomic Physics of the Austrian Academy of Sciences, Vienna (Austria); Al-Azhar University, Faculty of Science, Physics Department, Cairo (Egypt); Paul, Buehler; Michael, Cargnelli [Stefan Meyer Institute for Subatomic Physics of the Austrian Academy of Sciences, Vienna (Austria); Roland, Hohler [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Johann, Marton [Stefan Meyer Institute for Subatomic Physics of the Austrian Academy of Sciences, Vienna (Austria); Herbert, Orth [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Ken, Suzuki [Stefan Meyer Institute for Subatomic Physics of the Austrian Academy of Sciences, Vienna (Austria)

    2011-05-21

    Silicon-based photosensors (SiPMs) working in the Geiger-mode represent an elegant solution for the readout of particle detectors working at low-light levels like Cherenkov detectors. Especially the insensitivity to magnetic fields makes this kind of sensors suitable for modern detector systems in subatomic physics which are usually employing magnets for momentum resolution. We are characterizing SiPMs of different manufacturers for selecting sensors and finding optimum operating conditions for given applications. Recently we designed and built a light concentrator prototype with 8x8 cells to increase the active photon detection area of an 8x8 SiPM (Hamamatsu MPPC S10931-100P) array. Monte Carlo studies, measurements of the collection efficiency, and tests with the MPPC were carried out. The status of these developments are presented.

  16. Application of Geiger-mode photosensors in Cherenkov detectors

    Science.gov (United States)

    Gamal, Ahmed; Paul, Bühler; Michael, Cargnelli; Roland, Hohler; Johann, Marton; Herbert, Orth; Ken, Suzuki

    2011-05-01

    Silicon-based photosensors (SiPMs) working in the Geiger-mode represent an elegant solution for the readout of particle detectors working at low-light levels like Cherenkov detectors. Especially the insensitivity to magnetic fields makes this kind of sensors suitable for modern detector systems in subatomic physics which are usually employing magnets for momentum resolution. We are characterizing SiPMs of different manufacturers for selecting sensors and finding optimum operating conditions for given applications. Recently we designed and built a light concentrator prototype with 8×8 cells to increase the active photon detection area of an 8×8 SiPM (Hamamatsu MPPC S10931-100P) array. Monte Carlo studies, measurements of the collection efficiency, and tests with the MPPC were carried out. The status of these developments are presented.

  17. Experimental study of photon fast detector with a cathodic lecture in check pattern for annular focusing Cherenkov counters

    International Nuclear Information System (INIS)

    Arnold, R.; Guyonnet, J.L.; Giomataris, Y.; Seguinot, J.; Ypsilantis, T.

    1990-01-01

    It's about the experimental study of a photodetector for Cherenkov counters, able to separate events of a high multiplicity belonging to two successive collisions of beams (Interaction rate - 100 MHz for a luminosity of 10 33 cm -2 sec -1 at SSC). The detailed tests of the photodetector have been made to know its answer. (detection efficiency, rapidity, geometric resolution, reconstruction), to optimalize its geometry but also to elaborate and to test a Monte Carlo simulation program which can predict the comportment and the reconstruction resolution of a detector for several granularities of lecture for different devices of photon-electron converters or operation gases [fr

  18. Geiger mode mapping: A new imaging modality for focused ion microprobes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Changyi; Hougaard, Christiaan R. [School of Physics, ARC Centre for Quantum Computation and Communication Technology, University of Melbourne, Parkville, VIC 3010 (Australia); Bielejec, Edward; Caroll, Malcolm S. [Sandia National Laboratories, POB 5800, Albuquerque, NM 87185 (United States); Jamieson, David N., E-mail: d.jamieson@unimelb.edu.au [School of Physics, ARC Centre for Quantum Computation and Communication Technology, University of Melbourne, Parkville, VIC 3010 (Australia)

    2015-04-01

    Geiger mode detectors fabricated in silicon are used to detect incident photons with high sensitivity. They are operated with large internal electric fields so that a single electron–hole pair can trigger an avalanche breakdown which generates a signal in an external circuit. We have applied a modified version of the ion beam induced charge technique in a nuclear microprobe system to investigate the application of Geiger mode detectors to detect discrete ion impacts. Our detectors are fabricated with an architecture based on the avalanche diode structure and operated with a transient bias voltage that activates the Geiger mode. In this mode avalanche breakdown is triggered by ion impact followed by diffusion of an electron–hole pair into the sensitive volume. The avalanche breakdown is quenched by removal of the transient bias voltage which is synchronized with a beam gate. An alternative operation mode is possible at lower bias voltages where the avalanche process self-quenches and the device exhibits linear charge gain as a consequence. Incorporation of such a device into a silicon substrate potentially allows the exceptional sensitivity of Geiger mode to register an electron–hole pair from sub-10 keV donor atom implants for the deterministic construction of shallow arrays of single atoms in the substrate required for emerging quantum technologies. Our characterization system incorporates a fast electrostatic ion beam switcher gated by the transient device bias, duration 800 ns, with a time delay, duration 500 ns, that allows for both the ion time of flight and the diffusion of the electron–hole pairs in the substrate into the sensitive region of the device following ion impact of a scanned 1 MeV H microbeam. We compare images at the micron scale mapping the response of the device to ion impact operated in both Geiger mode and avalanche (linear) mode for silicon devices engineered with this ultimate-sensitivity detector structure.

  19. Development of hybrid photon detectors with integrated silicon pixel readout for the RICH counters of LHCb

    CERN Document Server

    Alemi, M; Formenti, F; Gys, Thierry; Piedigrossi, D; Puertolas, D; Rosso, E; Snoeys, W; Wyllie, Ken H

    1999-01-01

    We report on the ongoing work towards a hybrid photon detector with integrated silicon pixel readout for the ring imaging Cherenkov detectors of the LHCb experiment at the Large Hadron Collider at CERN. The photon detector is based $9 on a cross-focussed image intensifier tube geometry where the image is de-magnified by a factor of 4. The anode consists of a silicon pixel array, bump-bonded to a fast, binary readout chip with matching pixel electronics. The $9 performance of a half-scale prototype is presented, together with the developments and tests of a full-scale tube with large active area. Specific requirements for pixel front-end and readout electronics in LHCb are outlined, and $9 recent results obtained from pixel chips applicable to hybrid photon detector design are summarized.

  20. Fluctuation mechanisms in superconductors nanowire single-photon counters, enabled by effective top-down manufacturing

    CERN Document Server

    Bartolf, Holger

    2016-01-01

    Holger Bartolf discusses state-of-the-art detection concepts based on superconducting nanotechnology as well as sophisticated analytical formulæ that model dissipative fluctuation-phenomena in superconducting nanowire single-photon detectors. Such knowledge is desirable for the development of advanced devices which are designed to possess an intrinsic robustness against vortex-fluctuations and it provides the perspective for honorable fundamental science in condensed matter physics. Especially the nanowire detector allows for ultra-low noise detection of signals with single-photon sensitivity and GHz repetition rates. Such devices have a huge potential for future technological impact and might enable unique applications (e.g. high rate interplanetary deep-space data links from Mars to Earth). Contents Superconducting Single-Photon Detectors Nanotechnological Manufacturing; Scale: 10 Nanometer Berezinskii-Kosterlitz Thouless (BKT) Transition, Edge-Barrier, Phase Slips Target Groups Researchers and students of...

  1. MPGD-based counters of single photons developed for COMPASS RICH-1

    Czech Academy of Sciences Publication Activity Database

    Alexeev, M.; Birsa, R.; Bodlak, M.; Bradamante, F.; Bressan, A.; Büchele, M.; Chiosso, M.; Ciliberti, P.; Dalla Torre, S.; Dasgupta, S.; Denisov, O.; Duic, V.; Finger, M.; Finger jr., M.; Fischer, H.; Giorgi, M.; Gobbo, B.; Gregori, M.; Herrmann, F.; Königsmann, K.; Levorato, S.; Maggiora, A.; Martin, A.; Menon, G.; Nováková, Kateřina; Nový, J.; Panzieri, D.; Pereira, F.A.; Santos, C.A.; Sbrizzai, G.; Schiavon, P.; Schorb, S.; Slunečka, M.; Sozzi, F.; Steiger, Lukáš; Sulc, M.; Tessarotto, F.; Veloso, J.F.C.A.

    2014-01-01

    Roč. 9, č. 9 (2014), C09017-C09017 ISSN 1748-0221. [International Conference on Instrumentation for Colliding Beam Physics. Budker Inst Nucl Phys, Novosibirsk, 24.02.2014-01.03.2014] Institutional support: RVO:61389021 Keywords : Hybrid detectors * Micropattern gaseous detectors (MSGC, GEM, THGEM, RETHGEM, MHSP, MICROPIC, MICROMEGAS, InGrid, etc) * Electron multipliers (gas) * visible and IR photons (gas) (gas-photocathodes, solid-photocathodes) * Photon detectors for UV Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.399, year: 2014 http://iopscience.iop.org/1748-0221/9/09/C09017/pdf/1748-0221_9_09_C09017.pdf

  2. Data acquisition system development for the detection of X-ray photons in multi-wire gas proportional counters

    International Nuclear Information System (INIS)

    Kimpton, J.A.; Kinnane, M.N.; Smale, L.F.; Chantler, C.T.; Hudson, L.T.; Henins, A.; Szabo, C.I.; Gillaspy, J.D.; Tan, J.N.; Pomeroy, J.M.; Takacs, E.; Radics, B.

    2007-01-01

    A new data acquisition system coupled to a backgammon-type gas proportional counter capable of single-photon counting over a wide range of count rates has been developed and replaces a CAMAC-based system. The new apparatus possesses improved architecture, interface technology, speed and diagnostic capability. System efficiency and throughput is significantly improved, especially in addressing earlier problems of hardware buffer downloads containing zero or repeat data and inefficient gating control. The new system is a PXI-based data acquisition apparatus including additional electronics, controlled by a graphical programming environment. It allows development of superior diagnostic tools for system optimisation and more stable performance. System efficiency is improved by 10% over a wide range of count rates (0.5 Hz-50 kHz). For the Backgammon Detector type, this represents a significant improvement in performance and applicability over previous systems. Characteristic and few-electron spectra collected on the new acquisition system are illustrated

  3. TH-D-BRC-00: Educational Point Counter/Point: Has Photon RT Hit the Limits?

    International Nuclear Information System (INIS)

    2016-01-01

    Interest in proton therapy has increased dramatically in the past couple of years, especially in the United States. There certainly is an important place for proton therapy in the arsenal of cancer treatments. Its dosimetric advantage and potential for low toxicity makes it the perfect partner for photons and other cancer treatment modalities. Often there is a belief that the new technology ought to be better but many believe that they should be widely adopted in the clinic only after evidence has shown that they are at least as safe and efficacious as existing technologies, which are often less expensive. This is the case for proton radiotherapy. This session being both educational and debate will provide a good review of basics and technological advancement as well as a comprehensive clinical update for both proton and photon therapy. Future technology developments and how they will impact the potential dosimetric advantage of proton therapy will be discussed. Particularly the debate will focus on whether these developments will close or widen the gap between photon and proton therapy. Learning Objectives: To review challenges, limitations, and recent and future developments in proton therapy. To review challenges, limitations, recent and future developments in photon radiotherapy. To review current clinical trials and challenging clinical cases. C. Yu, No company or organization that my presentation mentions provided me with financial support. I am the Founder and CEO of Xcision Medical Systems, LLC. However, my presentation will not mention any product or technology developed by Xcision.

  4. Investigation of photon detection probability dependence of SPADnet-I digital photon counter as a function of angle of incidence, wavelength and polarization

    Energy Technology Data Exchange (ETDEWEB)

    Játékos, Balázs, E-mail: jatekosb@eik.bme.hu; Ujhelyi, Ferenc; Lőrincz, Emőke; Erdei, Gábor

    2015-01-01

    SPADnet-I is a prototype, fully digital, high spatial and temporal resolution silicon photon counter, based on standard CMOS imaging technology, developed by the SPADnet consortium. Being a novel device, the exact dependence of photon detection probability (PDP) of SPADnet-I was not known as a function of angle of incidence, wavelength and polarization of the incident light. Our targeted application area of this sensor is next generation PET detector modules, where they will be used along with LYSO:Ce scintillators. Hence, we performed an extended investigation of PDP in a wide range of angle of incidence (0° to 80°), concentrating onto a 60 nm broad wavelength interval around the characteristic emission peak (λ=420 nm) of the scintillator. In the case where the sensor was optically coupled to a scintillator, our experiments showed a notable dependence of PDP on angle, polarization and wavelength. The sensor has an average PDP of approximately 30% from 0° to 60° angle of incidence, where it starts to drop rapidly. The PDP turned out not to be polarization dependent below 30°. If the sensor is used without a scintillator (i.e. the light source is in air), the polarization dependence is much less expressed, it begins only from 50°.

  5. Cherenkov light imaging tests with state-of-the-art solid state photon counter for the CLAS12 RICH detector

    Science.gov (United States)

    Balossino, Ilaria; Barion, L.; Contalbrigo, M.; Lenisa, P.; Lucherini, V.; Malaguti, R.; Mirazita, M.; Movsisyan, A.; Squerzanti, S.; Turisini, M.

    2017-12-01

    A large area ring-imaging Cherenkov detector will be operated for hadron identification in the 3 GeV / c to 8 GeV / c momentum range at the CLAS12 experiment at the upgraded continuous electron beam accelerator facility of Jefferson Lab. The detector, consisting of aerogel radiator, composite mirrors and photon counters, will be built with a hybrid optics design to allow the detection of Cherenkov light for both forward and large angle hadron tracks. The active area has to be densely packed and highly segmented, covering about 1m2 with pixels of 6mm2 , and to allow a time resolution of 1 ns. A technology that can offer a cost-effective solution and low material budget could be Silicon Photomultipliers (SiPM) thanks to their high gain at low bias voltage, fast timing, good single-photoelectron resolution and insensitivity to magnetic fields. An investigation is ongoing on samples of 3 × 3mm2 SiPM of different micro-cell size to assess the single photon detection capability in the presence of high dark count rate due to thermal generation effects, after-pulses or optical cross-talk and to study the response to the moderate radiation damage expected at CLAS12. In this work, a brief review of the latest and most interesting results from these studies will be shown.

  6. Measuring the absolute disintegration rate of a radioactive gas with a moveable endplate discharge counter (MEP) and theoretical calculation of wall effect

    International Nuclear Information System (INIS)

    Jaffey, A.H.; Gray, J.; Bentley, W.C.; Lerner, J.L.

    1987-09-01

    A precision built moveable endplate Geiger-Mueller counter was used to measure the absolute disintegration rate of a beta-emitting radioactive gas. A Geiger-Mueller counter used for measuring gaseous radioactivity has 85 Kr (beta energy, 0.67 MeV). The wall effect calculation is readily extendable to other beta energies

  7. Performance of hybrid photon detector prototypes with 80% active area for the RICH counters of LHCb

    CERN Document Server

    Albrecht, E; Barber, G J; Bibby, J H; Campbell, M; Duane, A; Gys, Thierry; Montenegro, J; Piedigrossi, D; Schomaker, R; Snoeys, W; Wotton, S A; Wyllie, Ken H

    2000-01-01

    We report on the ongoing work towards a hybrid photon detector with integrated Si pixel readout for the ring imaging Cherenkov detectors of the LHCb experiment at the Large Hadron Collider at CERN. The photon detector is based on an electrostatically focussed image intensifier tube geometry where the image is de-magnified by a factor of ~5. The anode consists of a silicon pixel array, bump-bonded to a binary readout chip with matching pixel electronics. The performance of full-scale prototypes equipped with 61-pixel anodes and external analogue readout is presented. The average signal-to-noise ratio is ~11 with a peaking time of 1.2 mu s. The tube active-to-total surface ratio is 81.7%, which meets the LHCb requirements. The spatial precision is measured to be better than 90 mu m. A cluster of three such tubes has been installed in the LHCb RICH 1 prototype where Cherenkov gas rings have been successfully detected. Progress towards the encapsulation of new pixel electronics into a tube is also reported. In pa...

  8. Performance of hybrid photon detector prototypes with 80% active area for the rich counters of LHCB

    International Nuclear Information System (INIS)

    Albrecht, E.; Alemi, M.; Barber, G.; Bibby, J.; Campbell, M.; Duane, A.; Gys, T.; Montenegro, J.; Piedigrossi, D.; Schomaker, R.; Snoeys, W.; Wotton, S.; Wyllie, K.

    2000-01-01

    We report on the ongoing work towards a hybrid photon detector with integrated silicon pixel readout for the ring imaging Cherenkov detectors of the LHCb experiment at the Large Hadron Collider at CERN. The photon detector is based on an electrostatically focussed image intensifier tube geometry where the image is de-magnified by a factor of ∼5. The anode consists of a silicon pixel array, bump-bonded to a binary readout chip with matching pixel electronics. The performance of full-scale prototypes equipped with 61-pixel anodes and external analogue readout is presented. The average signal-to-noise ratio is ∼11 with a peaking time of 1.2 μs. The tube active-to-total surface ratio is 81.7%, which meets the LHCb requirements. The spatial precision is measured to be better than 90 μm. A cluster of three such tubes has been installed in the LHCb RICH 1 prototype where Cherenkov gas rings have been successfully detected. Progress towards the encapsulation of new pixel electronics into a tube is also reported. In particular, the status of the development of a binary readout chip with a peaking time of 25 ns and a low and uniform detection threshold is summarized

  9. Performance of hybrid photon detector prototypes with 80% active area for the rich counters of LHCB

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, E.; Alemi, M.; Barber, G.; Bibby, J.; Campbell, M.; Duane, A.; Gys, T. E-mail: thierry.gys@cern.ch; Montenegro, J.; Piedigrossi, D.; Schomaker, R.; Snoeys, W.; Wotton, S.; Wyllie, K

    2000-03-11

    We report on the ongoing work towards a hybrid photon detector with integrated silicon pixel readout for the ring imaging Cherenkov detectors of the LHCb experiment at the Large Hadron Collider at CERN. The photon detector is based on an electrostatically focussed image intensifier tube geometry where the image is de-magnified by a factor of {approx}5. The anode consists of a silicon pixel array, bump-bonded to a binary readout chip with matching pixel electronics. The performance of full-scale prototypes equipped with 61-pixel anodes and external analogue readout is presented. The average signal-to-noise ratio is {approx}11 with a peaking time of 1.2 {mu}s. The tube active-to-total surface ratio is 81.7%, which meets the LHCb requirements. The spatial precision is measured to be better than 90 {mu}m. A cluster of three such tubes has been installed in the LHCb RICH 1 prototype where Cherenkov gas rings have been successfully detected. Progress towards the encapsulation of new pixel electronics into a tube is also reported. In particular, the status of the development of a binary readout chip with a peaking time of 25 ns and a low and uniform detection threshold is summarized.

  10. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    Discusses the basic physical principles underlying thescience and technology of nanophotonics, its materials andstructures This volume presents nanophotonic structures and Materials.Nanophotonics is photonic science and technology that utilizeslight/matter interactions on the nanoscale where researchers arediscovering new phenomena and developing techniques that go wellbeyond what is possible with conventional photonics andelectronics.The topics discussed in this volume are: CavityPhotonics; Cold Atoms and Bose-Einstein Condensates; Displays;E-paper; Graphene; Integrated Photonics; Liquid Cry

  11. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    Discusses the basic physical principles underlying Biomedical Photonics, spectroscopy and microscopy This volume discusses biomedical photonics, spectroscopy and microscopy, the basic physical principles underlying the technology and its applications. The topics discussed in this volume are: Biophotonics; Fluorescence and Phosphorescence; Medical Photonics; Microscopy; Nonlinear Optics; Ophthalmic Technology; Optical Tomography; Optofluidics; Photodynamic Therapy; Image Processing; Imaging Systems; Sensors; Single Molecule Detection; Futurology in Photonics. Comprehensive and accessible cov

  12. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    This book covers modern photonics accessibly and discusses the basic physical principles underlying all the applications and technology of photonicsThis volume covers the basic physical principles underlying the technology and all applications of photonics from statistical optics to quantum optics. The topics discussed in this volume are: Photons in perspective; Coherence and Statistical Optics; Complex Light and Singular Optics; Electrodynamics of Dielectric Media; Fast and slow Light; Holography; Multiphoton Processes; Optical Angular Momentum; Optical Forces, Trapping and Manipulation; Pol

  13. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    Discusses the basic physical principles underlying the technology instrumentation of photonics This volume discusses photonics technology and instrumentation. The topics discussed in this volume are: Communication Networks; Data Buffers; Defense and Security Applications; Detectors; Fiber Optics and Amplifiers; Green Photonics; Instrumentation and Metrology; Interferometers; Light-Harvesting Materials; Logic Devices; Optical Communications; Remote Sensing; Solar Energy; Solid-State Lighting; Wavelength Conversion Comprehensive and accessible coverage of the whole of modern photonics Emphas

  14. A support note for the use of pixel hybrid photon detectors in the RICH counters of LHCb

    CERN Document Server

    Gys, Thierry

    2001-01-01

    This document is a proposal for the use of a hybrid photon detector with integrated silicon pixel readout in the ring imaging Cherenkov detectors of the LHCb experiment. The photon detector is based on a cross-focussed image intensifier tube geometry where the image is de-magnified by a factor of 5. The anode consists of a silicon pixel array, bump-bonded to a binary readout chip with matching pixel electronics. The document starts with the general specification of the baseline option, followed by a summary of the main results achieved so far during the R&D phase. A future R&D programme and its related time table is also presented. The document concludes with the description of a photon detector production scheme and time schedule.

  15. General Roy S. Geiger, USMC: Marine Aviator, Joint Force Commander

    Science.gov (United States)

    2007-06-01

    always harmonious. For example, when she insisted that he take violin lessons at age eleven, he resisted this notion in a dramatic manner. Running...several months before returning home. There are no records of his ever playing the violin . The Geiger children learned to survive and excel under...Lieutenant Lawson H. M. Sanderson addressed these problems in his development of CAS techniques , which he refined under Geiger’s guidance.13

  16. A discrete model of the development and relaxation of a local microbreakdown in silicon avalanche photodiodes operating in the Geiger mode

    International Nuclear Information System (INIS)

    Vanyushin, I. V.; Gergel, V. A.; Gontar', V. M.; Zimoglyad, V. A.; Tishin, Yu. I.; Kholodnov, V. A.; Shcheleva, I. M.

    2007-01-01

    A new discrete theoretical model of the development and relaxation of a local microbreakdown in silicon avalanche photodiodes operating in the Geiger mode is developed. It is shown that the spreading resistance in the substrate profoundly affects both the amplitude of a single-photon electrical pulse and the possibility of attaining the steady-state form of the avalanche breakdown excluding the Geiger mode of the photodiode's operation. The model is employed to interpret the experimental data obtained using test single-photon cells of avalanche photodiodes fabricated on the basis of the 0.25-μm silicon technology with the use of deep implantation to form the region of avalanche multiplication for the charge carriers. Excellent functional properties of the studied type of the single-photon (Geiger) cell are noted. A typical amplitude characteristic of the cell for optical radiation with the wavelength λ = 0.56 μm in the irradiance range of 10 -3 -10 2 lx is presented; this characteristic indicates that the quantum efficiency of photoconversion is extremely high

  17. Performance of hybrid photon detector prototypes with encapsulated silicon pixel detector and readout for the RICH counters of LHCb

    International Nuclear Information System (INIS)

    Campbell, M.; George, K.A.; Girone, M.; Gys, T.; Jolly, S.; Piedigrossi, D.; Riedler, P.; Rozema, P.; Snoeys, W.; Wyllie, K.

    2003-01-01

    These proceedings report on the performance of the latest prototype pixel hybrid photon detector in preparation for the LHCb Ring Imaging Cherenkov detectors. The prototype encapsulates a silicon pixel detector bump-bonded to a binary read-out chip with short (25 ns) peaking time and low ( - ) detection threshold. A brief description of the prototype is given, followed by the preliminary results of the characterisation of the prototype behaviour when tested using a low intensity pulsed light emitting diode. The results obtained are in good agreement with those obtained using previous prototypes. The proceedings conclude with a summary of the current status and future plans

  18. Point Spread Function (PSF) noise filter strategy for geiger mode LiDAR

    Science.gov (United States)

    Smith, O'Neil; Stark, Robert; Smith, Philip; St. Romain, Randall; Blask, Steven

    2013-05-01

    LiDAR is an efficient optical remote sensing technology that has application in geography, forestry, and defense. The effectiveness is often limited by signal-to-noise ratio (SNR). Geiger mode avalanche photodiode (APD) detectors are able to operate above critical voltage, and a single photoelectron can initiate the current surge, making the device very sensitive. These advantages come at the expense of requiring computationally intensive noise filtering techniques. Noise is a problem which affects the imaging system and reduces the capability. Common noise-reduction algorithms have drawbacks such as over aggressive filtering, or decimating in order to improve quality and performance. In recent years, there has been growing interest on GPUs (Graphics Processing Units) for their ability to perform powerful massive parallel processing. In this paper, we leverage this capability to reduce the processing latency. The Point Spread Function (PSF) filter algorithm is a local spatial measure that has been GPGPU accelerated. The idea is to use a kernel density estimation technique for point clustering. We associate a local likelihood measure with every point of the input data capturing the probability that a 3D point is true target-return photons or noise (background photons, dark-current). This process suppresses noise and allows for detection of outliers. We apply this approach to the LiDAR noise filtering problem for which we have recognized a speed-up factor of 30-50 times compared to traditional sequential CPU implementation.

  19. Study of counter E.M.F. on external cathodes proportional counters

    International Nuclear Information System (INIS)

    Tobias, C.C.B.

    1990-01-01

    Results previously obtained in our laboratory with Geiger-Mueller counters with external cathodes (Maze type), led us to build a cylindrical proportional counter around a tube of soda glass, covered by a thin layer of acquadag. The characteristics of this proportional counter were studied for argon and argon-methane mixture at atmospheric pressure, under continuous flow. Using alpha particles, emitted by an Am-241 source, the results obtained shown that its pulse amplitude decreases slowly with an increase of the counting rate, due to the counter e.m.f. which appears between the internal counter surface and the external cathode. This small effect, does not influence either the pulse amplitude distribution or the resolution, due to the large time constant of the distributed charge. (author)

  20. Explosion-proof scintillation counter

    International Nuclear Information System (INIS)

    Opitts, P.; Borkert, R.

    1979-01-01

    It is noted that measuring devices used in the research works conducted with the help of radioactive isotopes on the chemical industry installations dangerous from the point of view of explosions, especially on the installations of the petrochemistry industry, must not limit the exploitation safety of these installations. The said especially concerns with the Geiger-Mueller type counters and scintillation detectors, located immediately in the places of measurements on the installations and supplied by high voltage power supply. It has been shown that electronic circuits for the detector's signals processing and obtaining working voltages can be located out of the explosive dangerous premices, for example, in the car trailer. Description is given of the device, with the help of which explosion safety is provided for the serially produced scintillation counter with forced ventilation (counter of the VA-S-50 type). Due to this device application, the exploitation parameters of the counter do not go down and there is no need for any changes in its design. Description is given of the device for external power supply and control of the counter which can swich off the power supply in the case of an accident, dangerous from the point of view of violation of the explosion safety conditions. The device is described for providing service to 10 measuring chanels, mounted on the car trailer [ru

  1. Wolfgang Geiger (17 July 1921 - 3 July 2000

    Directory of Open Access Journals (Sweden)

    Renata Boucher-Rodoni

    2000-08-01

    Full Text Available Wolfgang Geiger died on the 3rd July 2000, at the age of 79. He was born on July 17th 1921 in Biel; his mother died at his birth. His childhood was spent with his father, a well-known artist, partly in Ligerz, on Lake Biel, and partly in Porto Ronco in Ticino, on Lago Maggiore. After high school in Biel, he began his University studies, first at the Swiss Federal Institute of Technology in Zürich, then in Basel, where he studied under Professor A. Portmann. During his PhD a grant from the Janggen-Pöhn foundation enabled him to work for some months at the Institut des Pêches maritimes du Maroc, in Casablanca, with Dr. J .Furnestin. In 1953 he completed his PhD on teleost fish brain. His career as a biologist began in Bern at the Eidgenossische Inspektion für Fortwesen, Jagd und Fischerei. In 1962 he was appointed head assistant (chef des travaux at the University of Geneva, in the comparative anatomy and physiology laboratory (Dr H. J. Huggel, where he discovered the joys and the limitations of teaching. He was highly regarded as a lecturer and taught in a relaxed atmosphere of mutual respect and trust, much appreciated by his students. Professor Geiger was also the main organiser of field trips to Sète, on the French Mediterranean coast, where he was in his element living on the water. He went out on the trawlers with the students and introduced them enthusiastically to the marvels of sea fauna. He was happy during those field trips and had the knack of communicating his happiness to the students.

  2. Development of simple neutron counters

    International Nuclear Information System (INIS)

    Satoh, S.; Hirota, K.

    2014-01-01

    Position sensitive neutron detectors are used for neutron scattering, neutron imaging, and neutron radiography. Developments in neutron detectors are mainly focused on spatial resolution and high counting rate in these fields. After the Fukushima nuclear power plant disaster, many simple radiation counters are now marketed in Japan and are useful for estimating the radiation level. However, no simple, equivalent device exists for neutron measurements. In this work, we have developed simple neutron counters (LiM counter and HeM counter) with the following features. In the LiM counter, a 6 Li glass scintillator is employed as a neutron converter for a large dynamic range. A silicon photon MPPC (multi-pixel photon counter) detector is used separately for photon counting, thus reducing the size of the device. In the HeM counter, a 3 He neutron detector is employed. Both counters employ a pulse-height analysis function for ensuring reliable data and display the pulse-height distribution on a graphical liquid crystal display (G-LCD). The LiM counter can be used for about 6 h using a battery, operating at 264 mA and 5.1 V. (author)

  3. Time-resolved imaging of prompt-gamma rays for proton range verification using a knife-edge slit camera based on digital photon counters

    Science.gov (United States)

    Cambraia Lopes, Patricia; Clementel, Enrico; Crespo, Paulo; Henrotin, Sebastien; Huizenga, Jan; Janssens, Guillaume; Parodi, Katia; Prieels, Damien; Roellinghoff, Frauke; Smeets, Julien; Stichelbaut, Frederic; Schaart, Dennis R.

    2015-08-01

    Proton range monitoring may facilitate online adaptive proton therapy and improve treatment outcomes. Imaging of proton-induced prompt gamma (PG) rays using a knife-edge slit collimator is currently under investigation as a potential tool for real-time proton range monitoring. A major challenge in collimated PG imaging is the suppression of neutron-induced background counts. In this work, we present an initial performance test of two knife-edge slit camera prototypes based on arrays of digital photon counters (DPCs). PG profiles emitted from a PMMA target upon irradiation with a 160 MeV proton pencil beams (about 6.5   ×   109 protons delivered in total) were measured using detector modules equipped with four DPC arrays coupled to BGO or LYSO : Ce crystal matrices. The knife-edge slit collimator and detector module were placed at 15 cm and 30 cm from the beam axis, respectively, in all cases. The use of LYSO : Ce enabled time-of-flight (TOF) rejection of background events, by synchronizing the DPC readout electronics with the 106 MHz radiofrequency signal of the cyclotron. The signal-to-background (S/B) ratio of 1.6 obtained with a 1.5 ns TOF window and a 3 MeV-7 MeV energy window was about 3 times higher than that obtained with the same detector module without TOF discrimination and 2 times higher than the S/B ratio obtained with the BGO module. Even 1 mm shifts of the Bragg peak position translated into clear and consistent shifts of the PG profile if TOF discrimination was applied, for a total number of protons as low as about 6.5   ×   108 and a detector surface of 6.6 cm  ×  6.6 cm.

  4. Photon-counting monolithic avalanche photodiode arrays for the super collider

    International Nuclear Information System (INIS)

    Ishaque, A.N.; Castleberry, D.E.; Rougeot, H.M.

    1994-01-01

    In fiber tracking, calorimetry, and other high energy and nuclear physics experiments, the need arises to detect an optical signal consisting of a few photons (in some cases a single photoelectron) with a detector insensitive to magnetic fields. Previous attempts to detect a single photoelectron have involved avalanche photodiodes (APDs) operated in the Geiger mode, the visible light photon counter, and a photomultiplier tube with an APD as the anode. In this paper it is demonstrated that silicon APDs, biased below the breakdown voltage, can be used to detect a signal of a few photons with conventional pulse counting circuitry at room temperature. Moderate cooling, it is further argued, could make it possible to detect a single photoelectron. Monolithic arrays of silicon avalanche photodiodes fabricated by Radiation Monitoring Devices, Inc. (RMD) were evaluated for possible use in the Super Collider detector systems. Measurements on 3 element x 3 element (2 mm pitch) APD arrays, using pulse counting circuitry with a charge sensitive amplifier (CSA) and a Gaussian filter, are reported and found to conform to a simple noise model. The model is used to obtain the optimal operating point. Experimental results are described in Section II, modeling results in Section III, and the conclusions are summarized in Section IV

  5. Constant sensitivity circuit for solid state nuclear radiation counters

    International Nuclear Information System (INIS)

    Kronenberg, S.; Erkkila, B.

    1985-01-01

    The utilization of solid state counters in tactical radiological instruments for measuring intensities and doses of fallout gamma rays offers advantages over Geiger-Mueller (GM) counters such as a much wider dynamic range and low operating voltages. Their very small size is suitable for use in miniaturized equipment. However, these devices have a serious problem if used in a mixed, fast neutron/gamma environment such as is encountered e.g. in a battlefield where tactical nuclear weapons are used and neutrons, prompt, initial gammas and fallout gammas are killing factors of comparable importance. Exposure to fast neutrons reduces seriously their sensitivity. This makes the solid state counters at this time unacceptable for use in Army tactical surveillance equipment and in other applications where according to requirements the performance must not be impaired by exposure to fast neutrons. It seems to be possible to reduce to some extent this neutron generated damage by improving the crystal counters

  6. Characterization of new hexagonal large area Geiger Avalanche Photodiodes

    International Nuclear Information System (INIS)

    Boccone, V.; Aguilar, J.A.; Della Volpe, D.; Christov, A.; Montaruli, T.; Rameez, M.; Basili, A.

    2013-06-01

    Photomultipliers (PMTs) are the standard detector for construction of the current generation of imaging Atmospheric Cherenkov Telescopes (IACTs). Despite impressive improvements in QE and reliability in the last years, these devices suffer from the limitation of being unable to operate in the partially illuminated sky (during full or partial moon periods) as the excess light leads to a significant increase in the rate of ageing of the devices themselves and consequently limit the life of the camera. A viable alternative is the large area Geiger-mode avalanche photodiodes (G-APDs also known as Silicon Photomultipliers or SiPMs) that are commercially available from different producers in various types and dimensions. The sufficiency of the maturity of this technology for application to Cherenkov Astronomy has already been demonstrated by the FACT telescope. One of the camera designs under study for the 4 m Davies Cotton Telescope foresees the utilization of a large area G-APDs coupled to non imaging light concentrators. In collaboration with Hamamatsu and deriving from their current technology, we have designed a new hexagonal shaped large area G-APD HEX S12516 which when coupled to a Winston cone of 24 degrees cutting angle allows for a pixel angular resolution of 0.25 degrees for a f/D 1.4 telescope with a diameter of 4 m. The device, available in 2 different cell size configurations (50 μm and 100 μm), is divided into 4 different channels powered in common cathode mode. A temperature sensor was included for a better temperature evaluation in the characterization phase. The first 3 prototypes were fully characterized and the results are compared to the larger area devices commercially available such as the S10985-050C (2x2 array of 3x3 mm 2 G-APDs). The photo-detection efficiency is measured applying the Poisson statistics method using pulsed LED at 7 different wavelengths from 355 to 670 nm and for different bias over-voltages (V ov ). Optical crosstalk and

  7. A fast photo-counter with multi-level buffers

    International Nuclear Information System (INIS)

    Peng Hu; Zhou Peiling; Yao Kun; Guo Guangcan

    1992-01-01

    Digital Photon Correlator (DPC) is composed of a Photo-counter and a data processing unit. The performance of Photo-counter in data acquisition system has a direct influence on data processing. The Photo-counter with fast carry designed here has multi-level buffers. Photon pulses can be correctly and dynamically recorded by the Photo-counter and processed by a single chip computer

  8. Large Format Geiger Mode Avalanche Photodiode Arrays and Readout Circuits

    Science.gov (United States)

    2017-06-01

    efficiency. The pixels in early CMOS designs effectively contained a “stop watch ” – circuitry operating at fast clock frequencies required to...Ghioni, A. Lacaita, C. Samori, and F. Zappa, "Avalanche photodiodes and quenching circuits for single-photon detection," Appl . Opt. 35, 1956-1976

  9. Flexible ultrathin-body single-photon avalanche diode sensors and CMOS integration

    NARCIS (Netherlands)

    Sun, P.; Ishihara, R.; Charbon, E.

    2016-01-01

    We proposed the world’s first flexible ultrathin-body single-photon avalanche diode (SPAD) as photon counting device providing a suitable solution to advanced implantable bio-compatible chronic medical monitoring, diagnostics and other applications. In this paper, we investigate the Geiger-mode

  10. Updated world map of the Köppen-Geiger climate classification

    Directory of Open Access Journals (Sweden)

    M. C. Peel

    2007-10-01

    Full Text Available Although now over 100 years old, the classification of climate originally formulated by Wladimir Köppen and modified by his collaborators and successors, is still in widespread use. It is widely used in teaching school and undergraduate courses on climate. It is also still in regular use by researchers across a range of disciplines as a basis for climatic regionalisation of variables and for assessing the output of global climate models. Here we have produced a new global map of climate using the Köppen-Geiger system based on a large global data set of long-term monthly precipitation and temperature station time series. Climatic variables used in the Köppen-Geiger system were calculated at each station and interpolated between stations using a two-dimensional (latitude and longitude thin-plate spline with tension onto a 0.1°×0.1° grid for each continent. We discuss some problems in dealing with sites that are not uniquely classified into one climate type by the Köppen-Geiger system and assess the outcomes on a continent by continent basis. Globally the most common climate type by land area is BWh (14.2%, Hot desert followed by Aw (11.5%, Tropical savannah. The updated world Köppen-Geiger climate map is freely available electronically in the Supplementary Material Section.

  11. Real Time Coincidence Processing Algorithm for Geiger Mode LADAR using FPGAs

    Science.gov (United States)

    2017-01-09

    typical UAV communication links. A physical 64x256 Geiger-mode ladar array was integrated with an FPGA processing board running a baseline processing...implementation and results including FPGA complexity studies and algorithm performance results. Detailed FPGA utilization reports are generated for...imaging for robotics rely on synchronous time of flight (TOF) focal plane arrays (FPAs), with one example of that being the Microsoft Kinect sensor

  12. Criticality Detection Using a Mirion Technologies DRM-2NC Remote Area Monitor Geiger-Mueller Probe

    Science.gov (United States)

    Kryskow, Adam P.

    The prompt fission neutron activation and subsequent response of a DRM-2NC Geiger-Mueller probe (manufactured by Mirion Technologies) was investigated for the purpose of creating a criticality accident detection algorithm with sensitivity and false positive suppression comparable to modern criticality accident detection systems. The expected decay pattern of secondary emissions arising from the neutron induced activity of the Geiger-Mueller probe was investigated experimentally in high neutron fluence environments at research reactors operated by the University of Massachusetts Lowell, Pennsylvania State University, and the White Sands Missile Range of Los Alamos National Laboratory. Monte Carlo techniques were used to both identify key probe materials responsible for the majority of the Geiger-Mueller response and investigate the effects of boron doping to increase detector sensitivity and enhance the signal to noise ratio. Subsequently, a statistical algorithm centered on a point weighted linear regression of the combined effective half-life was developed as the basis for criticality declaration. Final testing of the system indicated that the system was capable of meeting all ANSI criticality accident criteria with sufficient sensitivity to the minimum accident of concern, an adequate response time, and an extremely low likelihood of false alarm.

  13. Body counter

    International Nuclear Information System (INIS)

    Koeppe, P.

    1975-01-01

    The paper gives a survey on some applications of the whole body counter in clinical practice and a critical study of its application as a routine testing method. Remarks on the necessary precautions are followed by a more detailed discussion of the determination of the natural potassium content, the iron metabolism, the vitamin B12 test, investigations of the metabolism of the bone using 47 Ca and 85 Sr, investigations with iodine and iodine-labelled substances, clearance investigations (in particular the 51 Cr EDTA clearance test), as well as the possibilities of neutron activation in vivo. (ORU/AK) [de

  14. Scintillation counter, segmented shield

    International Nuclear Information System (INIS)

    Olson, R.E.; Thumim, A.D.

    1975-01-01

    A scintillation counter, particularly for counting gamma ray photons, includes a massive lead radiation shield surrounding a sample-receiving zone. The shield is disassembleable into a plurality of segments to allow facile installation and removal of a photomultiplier tube assembly, the segments being so constructed as to prevent straight-line access of external radiation through the shield into radiation-responsive areas. Provisions are made for accurately aligning the photomultiplier tube with respect to one or more sample-transmitting bores extending through the shield to the sample receiving zone. A sample elevator, used in transporting samples into the zone, is designed to provide a maximum gamma-receiving aspect to maximize the gamma detecting efficiency. (U.S.)

  15. Comparative evaluation of determinations of air activation produced by medical accelerators using triazole and malonic acid or a Geiger-Mueller counting circuit

    International Nuclear Information System (INIS)

    Neumann, K.

    1989-01-01

    The radioactivity levels of irradiated air were measured directly using a Geiger-Mueller counting circuit and compared to the activity of irradiated tablets consisting of solid-state malonic acid and triazole, which was determined by means of a scintillation counter. During studies in various accelerator plants in North Rhine-Westphalia parallel measurements were carried out on the basis of the two methods described above. In order to determine the percentage shares of nitrogen and oxygen in the total amount of radioactivity the values measured were further analysed using the linear regression procedure and the method of the least squares according to Gauss. The combined use of the data obtained and suitable mathematical models permitted average values to be calculated for the activity concentrations occurring during a predetermined period of time under clinical conditions in the area of irradiation. Even in a set of unfavourable circumstances did these prove to be appreciably below the threshold values mandated by the radiation protection laws for individuals at risk of occupational radiation exposure. (orig./DG) [de

  16. Distributed performance counters

    Science.gov (United States)

    Davis, Kristan D; Evans, Kahn C; Gara, Alan; Satterfield, David L

    2013-11-26

    A plurality of first performance counter modules is coupled to a plurality of processing cores. The plurality of first performance counter modules is operable to collect performance data associated with the plurality of processing cores respectively. A plurality of second performance counter modules are coupled to a plurality of L2 cache units, and the plurality of second performance counter modules are operable to collect performance data associated with the plurality of L2 cache units respectively. A central performance counter module may be operable to coordinate counter data from the plurality of first performance counter modules and the plurality of second performance modules, the a central performance counter module, the plurality of first performance counter modules, and the plurality of second performance counter modules connected by a daisy chain connection.

  17. Some possibilities for decreasing the background of liquid scintillation beta-ray counter

    International Nuclear Information System (INIS)

    Punning, J.M.; Rajamae, R.

    1977-01-01

    The components of the background were observed caused by inherent noise and optical feedback of photomultipliers. A liquid scintillation beta counter for measuring the natural activity of 14 C was designed. The selection of suitable anticoincidence shields for the counter consisting of 15 Geiger-Mueller counters made possible the reduction of the background level caused by hard cosmic radiation to 0.2 cpm, the background caused by Cherenkov radiation and by the 40 K isotope in the windows of the photomultipliers to 0.4 cpm and the background caused by radioactive impurities in the construction materials of the detector and by unidentified sources to 4.3 cpm. (J.B.)

  18. Changes in Köppen-Geiger climate types under a future climate for Australia: hydrological implications

    Directory of Open Access Journals (Sweden)

    R. S. Crosbie

    2012-09-01

    Full Text Available The Köppen-Geiger climate classification has been used for over a century to delineate climate types across the globe. As it was developed to mimic the distribution of vegetation, it may provide a useful surrogate for making projections of the future distribution of vegetation, and hence resultant hydrological implications, under climate change scenarios. This paper developed projections of the Köppen-Geiger climate types covering the Australian continent for a 2030 and 2050 climate relative to a 1990 historical baseline climate using 17 Global Climate Models (GCMs and five global warming scenarios. At the highest level of classification for a +2.4 °C future climate (the upper limit projected for 2050 relative to the historical baseline, it was projected that the area of the continent covered by

    – tropical climate types would increase from 8.8% to 9.1%;
    – arid climate types would increase from 76.5% to 81.7%;
    – temperate climate types would decrease from 14.7% to 9.2%;
    – cold climate types would decrease from 0.016% to 0.001%.

    Previous climate change impact studies on water resources in Australia have assumed a static vegetation distribution. If the change in projected climate types is used as a surrogate for a change in vegetation, then the major transition in climate from temperate to arid in parts of Australia under a drier future climate could cause indirect effects on water resources. A transition from annual cropping to perennial grassland would have a compounding effect on the projected reduction in recharge. In contrast, a transition from forest to grassland would have a mitigating effect on the projected reduction in runoff.

  19. Double peak effect in microdosimetric proportional counters and its interpretation

    International Nuclear Information System (INIS)

    Bednarek, B.; Olko, P.; Booz, J.

    1989-01-01

    In calibration measurements with low energy X-rays, a double peak effect appears in low pressure proportional counters with a helix, when used for simulation of tissue equivalent diameters considerably larger than 2 μm. An interpretation of this phenomenon is discussed, based upon electron capture and electric field perturbation at the counter helix. A description of the physical processes is presented showing that the double peak effect is a problem in the case of helix counters (called also Rossi counters) for all simulated diameters. Conclusions are drawn on systematic errors introduced by the counter helix into microdosimetric spectra and anti y D of photons and neutrons. The authors recommend to use cylindrical counters with optimized geometrical and electronic parameters rather than the spherical counters with a helix discussed. (orig.)

  20. The assessment of external photon dose rate in the vicinity of nuclear power stations. An intercomparison of different monitoring systems

    DEFF Research Database (Denmark)

    Thompson, I.M.G.; Bøtter-Jensen, L.; Lauterbach, U.

    1993-01-01

    Four environmental dose rate instruments having different detectors, a high pressure ionisation chamber, a Geiger-Muller counter, a proportional counter and a scintillation counter, were used to make continuous measurements over a four month period of the air kerma rate at a location close...... of thermoluminescence dosemeter. The results clearly demonstrate that accurate estimations of doses in the environment arising from a nuclear facility can only be obtained if the responses of the detectors used to the different radiation components at that location are accurately evaluated. By correcting the measured...

  1. Whole Body Counters (rev.)

    Energy Technology Data Exchange (ETDEWEB)

    Woodburn, John H. [Walter Johnson High School, Rockville, MD; Lengemann, Frederick W. [Cornell University

    1967-01-01

    Whole body counters are radiation detecting and measuring instruments that provide information about the human body. This booklet describes different whole body counters, scientific principles that are applied to their design, and ways they are used.

  2. Extruded plastic counters with WLS fiber readout

    CERN Document Server

    Kudenko, Yu G; Mayatski, V A; Mineev, O V; Yershov, N V

    2001-01-01

    Extruded plastic scintillation counters with WLS fiber readout are described. For a 7 mm thick counter with 4.3 m long double-clad fibers spaced at 7 mm a light yield of 18.7 photoelectrons/MeV and a time resolution of 0.71 ns (sigma) were obtained. A prototype photon veto module consisting of 10 layers of 7 mm thick grooved plastic slabs interleaved with 1 mm lead sheets was also tested, which yielded 122 photoelectrons per minimum ionizing particle and time resolution of 360 ps.

  3. Geiger-Mode Avalanche Photodiode Arrays Integrated to All-Digital CMOS Circuits

    Science.gov (United States)

    2016-01-20

    Digital CMOS Circuits* *This work was sponsored by the Assistant Secretary of Defense...control. The ultimate sensitivity limitation of a CCD is set by the readout noise of the output amplifier that senses the charge packets and...all‐ digital CMOS readout circuits. The term "photon counting" is used broadly here to mean digital recording of a photon arrival within the

  4. Fast differential pulse discriminator-counter

    International Nuclear Information System (INIS)

    Shelevoj, K.D.

    1985-01-01

    The flowsheet of a differential pulse discriminator counter is described; the result of discrimination here is independent from the shape of the input pulse. Rate of the analysis of input pulses with minimum amplitude up to 0.3 mV coming out from the photomultiplier makes up 220 MHz. The flowsheet of the discriminator used in the system of photon counting for atmosphere probing is presented

  5. Photon-photon collisions

    International Nuclear Information System (INIS)

    Haissinski, J.

    1986-06-01

    The discussions presented in this paper deal with the following points: distinctive features of gamma-gamma collisions; related processes; photon-photon elastic scattering in the continuum and γγ →gg; total cross section; γγ → V 1 V 2 (V=vector meson); radiative width measurements and light meson spectroscopy; exclusive channels at large /t/; jets and inclusive particle distribution in γγ collisions; and, the photon structure function F γ 2

  6. Photon-photon collisions

    International Nuclear Information System (INIS)

    Burke, D.L.

    1982-10-01

    Studies of photon-photon collisions are reviewed with particular emphasis on new results reported to this conference. These include results on light meson spectroscopy and deep inelastic e#betta# scattering. Considerable work has now been accumulated on resonance production by #betta##betta# collisions. Preliminary high statistics studies of the photon structure function F 2 /sup #betta#/(x,Q 2 ) are given and comments are made on the problems that remain to be solved

  7. Photon-photon colliders

    Energy Technology Data Exchange (ETDEWEB)

    Sessler, A.M.

    1995-04-01

    Since the seminal work by Ginsburg, et at., the subject of giving the Next Linear Collider photon-photon capability, as well as electron-positron capability, has drawn much attention. A 1990 article by V.I. Teinov describes the situation at that time. In March 1994, the first workshop on this subject was held. This report briefly reviews the physics that can be achieved through the photon-photon channel and then focuses on the means of achieving such a collider. Also reviewed is the spectrum of backscattered Compton photons -- the best way of obtaining photons. We emphasize the spectrum actually obtained in a collider with both polarized electrons and photons (peaked at high energy and very different from a Compton spectrum). Luminosity is estimated for the presently considered colliders, and interaction and conversion-point geometries are described. Also specified are laser requirements (such as wavelength, peak power, and average power) and the lasers that might be employed. These include conventional and free-electron lasers. Finally, we describe the R&D necessary to make either of these approaches viable and explore the use of the SLC as a test bed for a photon-photon collider of very high energy.

  8. Single photon detector design features

    Science.gov (United States)

    Zaitsev, Sergey V.; Kurochkin, Vladimir L.; Kurochkin, Yury V.

    2016-12-01

    In the report are discussed the laboratory test results of SPAD detectors with InGaAs / InP avalanche photodiodes, operating in Geiger mode. Device operating in synchronous mode with the dead timer setting for proper working conditions of photodiodes. The report materials will showing the functional block diagram of the detector, real operating signals in the receiver path and clock circuits and main results of measurements. The input signal of the synchronous detector is the clock, which determines the time positions of expected photons arrival. Increasing the clock speed 1-300 MHz or getting more time positions of the time grid, we provide increased capacity for time position code of signals, when QKD information transmitted over the nets. At the same time, the maximum attainable speed of photon reception is limited by diode dead time. Diode quantum noise are minimized by inclusion of a special time interval - dead time 0.1-10 usec, after each received and registered a photon. The lowest attainable value of the dead time is determined as a compromise between transients in electrical circuits, passive avalanche «quenching» circuit and thermal transients cooling crystal diode, after each avalanche pass though photodiode. Achievable time and speed parameters are discussed with specific examples of detectors.

  9. Scintillation counter: photomultiplier tube alignment

    International Nuclear Information System (INIS)

    Olson, R.E.

    1975-01-01

    A scintillation counter, particularly for counting gamma ray photons, includes a massive lead radiation shield surrounding a sample-receiving zone. The shield is disassembleable into a plurality of segments to allow facile installation and removal of a photomultiplier tube assembly, the segments being so constructed as to prevent straight-line access of external radiation through the shield into the sample receiving zone. Provisions are made for accurately aligning the photomultiplier tube with respect to one or more sample-transmitting bores extending through the shield to the sample receiving zone. A sample elevator, used in transporting samples into the zone, is designed to provide a maximum gamma-receiving aspect to maximize the gamma detecting efficiency. (auth)

  10. Scintillation counter, maximum gamma aspect

    International Nuclear Information System (INIS)

    Thumim, A.D.

    1975-01-01

    A scintillation counter, particularly for counting gamma ray photons, includes a massive lead radiation shield surrounding a sample-receiving zone. The shield is disassembleable into a plurality of segments to allow facile installation and removal of a photomultiplier tube assembly, the segments being so constructed as to prevent straight-line access of external radiation through the shield into radiation-responsive areas. Provisions are made for accurately aligning the photomultiplier tube with respect to one or more sample-transmitting bores extending through the shield to the sample receiving zone. A sample elevator, used in transporting samples into the zone, is designed to provide a maximum gamma-receiving aspect to maximize the gamma detecting efficiency. (U.S.)

  11. Photon-photon collisions

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.J.

    1988-07-01

    Highlights of the VIIIth International Workshop on Photon-Photon Collisions are reviewed. New experimental and theoretical results were reported in virtually every area of ..gamma gamma.. physics, particularly in exotic resonance production and tests of quantum chromodynamics where asymptotic freedom and factorization theorems provide predictions for both inclusive and exclusive ..gamma gamma.. reactions at high momentum transfer. 73 refs., 12 figs.

  12. Single photons on demand

    International Nuclear Information System (INIS)

    Grangier, P.; Abram, I.

    2004-01-01

    Quantum cryptography and information processing are set to benefit from developments in novel light sources that can emit photons one by one. Quantum mechanics has gained a reputation for making counter-intuitive predictions. But we rarely get the chance to witness these effects directly because, being humans, we are simply too big. Take light, for example. The light sources that are familiar to us, such as those used in lighting and imaging or in CD and DVD players, are so huge that they emit billions and billions of photons. But what if there was a light source that emitted just one photon at a time? Over the past few years, new types of light source that are able to emit photons one by one have been emerging from laboratories around the world. Pulses of light composed of a single photon correspond to power flows in the femtowatt range - a million billion times less than that of a table lamp. The driving force behind the development of these single-photon sources is a range of novel applications that take advantage of the quantum nature of light. Quantum states of superposed and entangled photons could lead the way to guaranteed-secure communication, to information processing with unprecedented speed and efficiency, and to new schemes for quantum teleportation. (U.K.)

  13. The first CEDAR counter

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    The first differential Cerenkov counter with chromatic corrections (called CEDAR) successfully tested at the PS in July 75. These counters were used in the SPS hadronic beams for particle identification. Some of the eight photomultipliers can be seen: they receive the light reflected back through the annular diaphragm. René Maleyran stands on the left.

  14. Anticoincidence scintillation counter

    CERN Multimedia

    CERN PhotoLab

    1966-01-01

    This anticoincidence scintillation counter will be mounted in a hydrogen target vessel to be used in a measurement of the .beta. parameter in the .LAMBDA0. decay. The geometry of the counter optimizes light collection in the central part where a scintillation disk of variable thickness can be fitted.

  15. Geiger-Mode SiGe Receiver for Long-Range Optical Communications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this program is to develop, demonstrate and implement a photon-counting detector array sensitive in the wavelength range from 1000 nm to 1600 nm,...

  16. Development of MPPC

    Indian Academy of Sciences (India)

    photon counter (MPPC) is composed of a number of small pixels which work at the Geiger mode or limited ... Therefore the pixel sizes are 100 micron meter square for 100 pixels, 50 micron meter square for 400 pixels ... a pixel, a few micron meter of depletion layer keeps strong electric files up to 106. V/cm where Geiger or ...

  17. Portable multiplicity counter

    Science.gov (United States)

    Newell, Matthew R [Los Alamos, NM; Jones, David Carl [Los Alamos, NM

    2009-09-01

    A portable multiplicity counter has signal input circuitry, processing circuitry and a user/computer interface disposed in a housing. The processing circuitry, which can comprise a microcontroller integrated circuit operably coupled to shift register circuitry implemented in a field programmable gate array, is configured to be operable via the user/computer interface to count input signal pluses receivable at said signal input circuitry and record time correlations thereof in a total counting mode, coincidence counting mode and/or a multiplicity counting mode. The user/computer interface can be for example an LCD display/keypad and/or a USB interface. The counter can include a battery pack for powering the counter and low/high voltage power supplies for biasing external detectors so that the counter can be configured as a hand-held device for counting neutron events.

  18. A large Cerenkov counter

    CERN Multimedia

    1981-01-01

    The photo shows the vertex Cerenkov counter C0 back side (with 12 mirrors) of the NA9 experiment. On foreground are members of the team (CERN and Wuppertal Uni), Salvo .., Manfred Poetsch, ..., Jocelyn Thadome, Helmut Braun, Heiner Brueck.

  19. Counter-cryptanalysis

    NARCIS (Netherlands)

    M.M.J. Stevens (Marc); R. Canetti; J.A. Garay

    2013-01-01

    textabstractWe introduce \\emph{counter-cryptanalysis} as a new paradigm for strengthening weak cryptographic primitives against cryptanalytic attacks. Redesigning a weak primitive to more strongly resist cryptanalytic techniques will unavoidably break backwards compatibility. Instead,

  20. Shower counter resolution scaling

    International Nuclear Information System (INIS)

    Kirk, T.B.W.

    1991-01-01

    The EM shower counter for the SDC detector has a resolution expression containing two stochastic terms plus a constant term. Recent measurements clarifying the sources of these terms are presented here. 3 refs., 4 figs

  1. Multisectional gas counter for measuring ultrasoft x radiation spatial distribution, polarization and spectrum

    International Nuclear Information System (INIS)

    Bogomolov, G.D.; Peskov, V.D.

    1981-01-01

    Hodoscope of multithread counters for detecting small intensity fluxes of ultrasoft roentgen (USR) photons with 0.2x0.2 mm space resolution is described. When detecting primary photoelectron track by the counter USR photon polarization is determined. It is managed to evaluate the shape of USR radiation spectrum from the measurement of radiation attenuation unside the counter volume. Techniques for measuring coordinates of USR photons and determination of their polarization as well as a technique for measuring spectral distribution of radiation in USR range of the spectrum based on a method for evaluating photon absorption in a gas were considered. Results of experimental test of the suggested techniques for investigating USR radiation ( with approximately 100 eV energy) of superhigh frequency plasma filament of high pressure with an intensity of several pulses per a minute are given. Analysis of the results obtained shows that the effective energy resolution of the counter ΔW [ru

  2. Turn-key Near-Infrared Photon-Counting Detector Module for LIDAR Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Based on the prototype photon counter developed during Phase I, we will deliver a next-generation photon counting detector optimized for LIDAR applications within...

  3. Demonstration of Lasercom and Spatial Tracking with a Silicon Geiger-Mode APD Array

    Science.gov (United States)

    2016-02-26

    that can be processed by higher layers in the ROIC and then transported off-chip digitally. In this way both spatial and temporal information can be...communications,” Proc. SPIE 8971, pp. 89710I–89710I–7, 2014. 4. P. A. Hiskett and R. A. Lamb , “Underwater optical communications with a single photon

  4. Photon-photon collisions

    International Nuclear Information System (INIS)

    Field, J.H.

    1984-01-01

    The current status, both theoretical and experimental, of two photon collision physics is reviewed with special emphasis on recent experimental results from e + e - storage rings. After a complete presentation of the helicity amplitude formalism for the general process e + e - → Xe + e - , various approximations (transverse photon, Weisaecker Williams) are discussed. Beam polarisation effects and radiative corrections are also briefly considered. A number of specific processes, for which experimental results are now available, are then described. In each case existing theoretical prediction are confronted with experimental results. The processes described include single resonance production, lepton and hadron pair production, the structure functions of the photon, the production of high Psub(T) jets and the total photon photon cross section. In the last part of the review the current status of the subject is summarised and some comments are made on future prospects. These include both extrapolations of current research to higher energy machines (LEP, HERA) as well as a brief mention of both the technical realisation and the physics interest of the real γγ and eγ collisions which may be possible using linear electron colliders in the 1 TeV energy range

  5. Photon-photon collisions

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.J.

    1985-01-01

    The study of photon-photon collisions has progressed enormously, stimulated by new data and new calculational tools for QCD. In the future we can expect precise determinations of ..cap alpha../sub s/ and ..lambda../sup ms/ from the ..gamma..*..gamma.. ..-->.. ..pi../sup 0/ form factor and the photon structure function, as well as detailed checks of QCD, determination of the shape of the hadron distribution amplitudes from ..gamma gamma.. ..-->.. H anti H, reconstruction of sigma/sub ..gamma gamma../ from exclusive channels at low W/sub ..gamma gamma../, definitive studies of high p/sub T/ hadron and jet production, and studies of threshold production of charmed systems. Photon-photon collisions, along with radiative decays of the psi and UPSILON, are ideal for the study of multiquark and gluonic resonances. We have emphasized the potential for resonance formation near threshold in virtually every hadronic exclusive channel, including heavy quark states c anti c c anti c, c anti c u anti u, etc. At higher energies SLC, LEP, ...) parity-violating electroweak effects and Higgs production due to equivalent Z/sup 0/ and W/sup + -/ beams from e ..-->.. eZ/sup 0/ and e ..-->.. nu W will become important. 44 references.

  6. Photon-photon collisions

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1985-01-01

    The study of photon-photon collisions has progressed enormously, stimulated by new data and new calculational tools for QCD. In the future we can expect precise determinations of α/sub s/ and Λ/sup ms/ from the γ*γ → π 0 form factor and the photon structure function, as well as detailed checks of QCD, determination of the shape of the hadron distribution amplitudes from γγ → H anti H, reconstruction of sigma/sub γγ/ from exclusive channels at low W/sub γγ/, definitive studies of high p/sub T/ hadron and jet production, and studies of threshold production of charmed systems. Photon-photon collisions, along with radiative decays of the psi and UPSILON, are ideal for the study of multiquark and gluonic resonances. We have emphasized the potential for resonance formation near threshold in virtually every hadronic exclusive channel, including heavy quark states c anti c c anti c, c anti c u anti u, etc. At higher energies SLC, LEP, ...) parity-violating electroweak effects and Higgs production due to equivalent Z 0 and W +- beams from e → eZ 0 and e → nu W will become important. 44 references

  7. Test of a large size acrylic scintillation counter

    International Nuclear Information System (INIS)

    Bertino, M.; De Zorzi, G.; Zanello, D.

    1984-01-01

    We have tested the behaviour of an acrylic scintillator measuring the attenuation length and the time resolution of a 7.8 m long counter. On a small sample the photon yield relative to the NE 110 plastic has been measured. (orig.)

  8. Development of a honeycomb gas proportional counter array for ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 60; Issue 5. Development of a honeycomb gas proportional counter array for photon multiplicity measurements in high multiplicity environment. M S Ganti M M Aggarwal S K Badyal V S Bhatia S Chattopadhyay A K Dubey M R Majumdar M S Ganti A Kumar T K Nayak ...

  9. Update on photon-photon collisions

    International Nuclear Information System (INIS)

    Arteaga-Romero, N.; Cochard, G.; Ong, S.; Amiens Univ., 80; Carimalo, C.; Kessler, P.; Nicolaidis, A.; Parisi, J.; Courau, A.

    1980-03-01

    This report is the continuation of the 'Update' of last year (L.P.C. 79-03, March 1979, in French). In Part I, the structure functions of the photon in QCD are examined. It is shown that, while large psub(T) hadron production is similar to some extent in γγ collisions and in hadron-hadron collisions, the point-like nature of the photon introduces new terms which are entirely calculable, providing new means to test the dynamics of strong interactions. In Part II, problems of analysis in γγ experiments are discussed. The pros and cons of various options with regard to the measurement of outgoing electrons (non-tagging, finite-angle tagging, tagging at 0 0 ) are compared. It is shown that (a) non-tagging may be applied to the study of a limited number of processes only; (b) finite-angle tagging counters allow for various possibilities (double-tagging, single-tagging, double anti-tagging), but none of them is entirely satisfactory; (c) the ideal measurement is double tagging at 0 0 , provided the problem of bremsstrahlung saturation of the tagging counters can be solved

  10. Gas proportional scintillation counter

    International Nuclear Information System (INIS)

    Iguchi, Tetsuo; Nakazawa, Masaharu; Sekiguchi, Akira

    1980-01-01

    As the trial in the first stage of utilizing recoil helium for the measurement of 2 - 14 MeV neutron spectra in the simulated blanket for a nuclear fusion reactor, the He-Xe system gas proportional scintillation counter (GPSC) has been manufactured for trial, giving consideration to the advantages of gas scintillators and further to improve the energy resolution. In GPSC, delayed secondary scintillation pulses are produced, and its amplitude gives the energy resolution the adverse effect. Thus, in order to improve the energy resolution, it is desirable to realize such geometry of proportional counters that the electric field in the vicinity of center wire is sufficiently intense to induce the secondary excitation or ionization. The counters of such construction are called GPSC, in which the actual energy resolution can be improved according to the secondary scintillation pulses without losing the fast primary scintillation pulses useful for fast coincidence technique. The experimental results and the consideration on them are described. As compared with proportional counters, GPSC can give large output pulses even at low voltage, improve the energy resolution greatly as compared with ordinary gas scintillators, and measure the time data by the primary scintillation and the energy data based on the secondary scintillation simultaneously. However, it is likely to be affected by gas impurities more than proportional counters, and inferior in the reproducibility and stability of measurement. (Wakatsuki, Y.)

  11. Nuclear timer/counter

    International Nuclear Information System (INIS)

    Wuthayavanich, S.

    1978-01-01

    This thesis represents the development of a Timer/COUNTER compatible to the standard Nuclear Instrument Module Specifications. The unit exhibits high accuracy, light weight and ease of maintenance. The unit also has a built-in precision discriminator to discriminate unwanted signals that may cause interference in counting. With line frequency time base the timer can be preset in steps from 0.1 sec. to 9 x 10 5 min. The counter with six digits miniature display and an overflow output has a maximum counting rate of 10 MHz. The accumulated counting data can be transferred to a teletype or printer for hard copy printout with the aid of ORTEC 777 Line Printer or 432 A Print-out Control or any print out interface with input compatible to the print output of the Timer/Counter. Owing to its NIM compatibility the unit is directly powered by the NIM power supply

  12. Experimental evaluation of penetration capabilities of a Geiger-mode APD array laser radar system

    Science.gov (United States)

    Jonsson, Per; Tulldahl, Michael; Hedborg, Julia; Henriksson, Markus; Sjöqvist, Lars

    2017-10-01

    Laser radar 3D imaging has the potential to improve target recognition in many scenarios. One case that is challenging for most optical sensors is to recognize targets hidden in vegetation or behind camouflage. The range resolution of timeof- flight 3D sensors allows segmentation of obscuration and target if the surfaces are separated far enough so that they can be resolved as two distances. Systems based on time-correlated single-photon counting (TCSPC) have the potential to resolve surfaces closer to each other compared to laser radar systems based on proportional mode detection technologies and is therefore especially interesting. Photon counting detection is commonly performed with Geigermode Avalanche Photodiodes (GmAPD) that have the disadvantage that they can only detect one photon per laser pulse per pixel. A strong return from an obscuring object may saturate the detector and thus limit the possibility to detect the hidden target even if photons from the target reach the detector. The operational range where good foliage penetration is observed is therefore relatively narrow for GmAPD systems. In this paper we investigate the penetration capability through semi-transparent surfaces for a laser radar with a 128×32 pixel GmAPD array and a 1542 nm wavelength laser operating at a pulse repetition frequency of 90 kHz. In the evaluation a screen was placed behind different canvases with varying transmissions and the detected signals from the surfaces for different laser intensities were measured. The maximum return from the second surface occurs when the total detection probability is around 0.65-0.75 per pulse. At higher laser excitation power the signal from the second surface decreases. To optimize the foliage penetration capability it is thus necessary to adaptively control the laser power to keep the returned signal within this region. In addition to the experimental results, simulations to study the influence of the pulse energy on penetration through

  13. An efficient anticoincidence counter

    CERN Multimedia

    1977-01-01

    This scintillation counter (about 25 cm diameter) was prepared at CERN for an experiment at the Saclay 600 MeV electron linac studying molecular processes originated in liquid hydrogen by muons. The counter is meant to surround the target and detect charged particles emerging from the hydrogen. The experiment was a CERN-Saclay collaboration which used the linac so as to take advantage of the time structure of the electron beam(see CERN Courier Sep 1977 and J. Bardin et al. Phys. Lett. B104 (1981) 320)

  14. CONFERENCE: Photon-photon collisions

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Despite being difficult to observe, photon-photon collisions have opened up a range of physics difficult, or even impossible, to access by other methods. The progress which has been made in this field was evident at the fifth international workshop on photon-photon collisions, held in Aachen from 13-16 April and attended by some 120 physicists

  15. Modelling of an IR scintillation counter

    CERN Document Server

    Fraga, M M F; Policarpo, Armando

    2000-01-01

    A systematic study of the excitation and de-excitation mechanisms in ternary gas mixtures Ar+CO sub 2 +N sub 2 is presented regarding the possibility of developing a proportional scintillation counter based on the detection of the infrared molecular emissions associated with the lowest vibrational states of molecules. The use of visible or near-infrared photons (lambda<1 mu m) for applications like imaging and quality control of microstructure detectors has been reported. In view of these applications we analyse the processes leading to near-infrared emissions in pure argon and give an estimation of the number of photons emitted per electron, at several pressures, as a function of the charge gain.

  16. Measurement of the STS-6 counter efficiency to gamma radiation

    International Nuclear Information System (INIS)

    Dyatlov, V.D.

    1981-01-01

    Gamma radiation measurements by the STS-6 proportional counters in bad geometry at 0.1-2 MeV γ-radiation are presented to evaluating the efficiency of measurement of the decay product radiation. This efficiency is reduced to ''good'' geometry by introduction of an effective space angle with account of γ-radiation losses and absorption of compton electrons in the material of the counter walls. The counter efficiency for γ-radiation photons of the given energy was determined as a ratio of difference of the real counting rate and the background to the number of photons in the counter active volume. It ws considered in this case, that the active volume of the counter is such a volume, where the secondary charged particles are detected with 100; probability. The experiments in which the counter was placed at different distances from the source were conducted for identification of this volume. At 17 mm distance of the counter from the source the effective space angle of the counter constituted 0.36 sr and its dependence on the energy did not exceed 2%. The error of efficiency determination comprised the error of radiation dose determination, error of measuring the real counting rate, background counting rate with account of the error of ''dead'' time determination as well as the error of identification of the effective space angle and the error of calculating partial efficiencies for certain lines occurring at the decay of the given nuclide. The total error with account of the errors of determining the half-decay periods constituted 3% [ru

  17. Photon technology. Hard photon technology; Photon technology. Hard photon gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Research results of hard photon technology have been summarized as a part of novel technology development highly utilizing the quantum nature of photon. Hard photon technology refers to photon beam technologies which use photon in the 0.1 to 200 nm wavelength region. Hard photon has not been used in industry due to the lack of suitable photon sources and optical devices. However, hard photon in this wavelength region is expected to bring about innovations in such areas as ultrafine processing and material synthesis due to its atom selective reaction, inner shell excitation reaction, and spatially high resolution. Then, technological themes and possibility have been surveyed. Although there are principle proposes and their verification of individual technologies for the technologies of hard photon generation, regulation and utilization, they are still far from the practical applications. For the photon source technology, the laser diode pumped driver laser technology, laser plasma photon source technology, synchrotron radiation photon source technology, and vacuum ultraviolet photon source technology are presented. For the optical device technology, the multi-layer film technology for beam mirrors and the non-spherical lens processing technology are introduced. Also are described the reduction lithography technology, hard photon excitation process, and methods of analysis and measurement. 430 refs., 165 figs., 23 tabs.

  18. Electromagnetically Operated Counter

    Science.gov (United States)

    Goldberg, H D; Goldberg, M I

    1951-12-18

    An electromagnetically operated counter wherein signals to be counted are applied to cause stepwise rotation of a rotatable element which is connected to a suitable register. The mechanism involved consists of a rotatable armature having three spaced cores of magnetic material and a pair of diametrically opposed electromagnets with a suitable pulsing circuit to actuate the magnets.

  19. Counter radicalization development assistance

    OpenAIRE

    van Hippel, Karin

    2006-01-01

    The paper reviews current research and practice and recommends strategies for development agencies working in the Arab and Muslim world. It builds on the basic assumption that the realization of the Millennium Development Goals will be vital to reduce support for terrorism in the long term. Within this overall framework, emphasis is placed on particular programs that could be specifically applied to counter radicalization.

  20. Irradiated fuel bundle counter

    International Nuclear Information System (INIS)

    Campbell, J.W.; Todd, J.L.

    1975-01-01

    The design of a prototype safeguards instrument for determining the number of irradiated fuel assemblies leaving an on-power refueled reactor is described. Design details include radiation detection techniques, data processing and display, unattended operation capabilities and data security methods. Development and operating history of the bundle counter is reported. (U.S.)

  1. Over-the-Counter Medicines

    Science.gov (United States)

    Over-the-counter (OTC) medicines are drugs you can buy without a prescription. Some OTC medicines relieve aches, pains and itches. ... medicine is safe enough to sell over-the-counter. Taking OTC medicines still has risks. Some interact ...

  2. Proportional counter end effects eliminator

    International Nuclear Information System (INIS)

    Meekins, J.F.

    1976-01-01

    An improved gas-filled proportional counter which includes a resistor network connected between the anode and cathode at the ends of the counter in order to eliminate ''end effects'' is described. 3 Claims, 2 Drawing Figures

  3. Design and performance study of the TOP counter

    International Nuclear Information System (INIS)

    Matsuoka, Kodai

    2013-01-01

    A novel RICH detector called TOP counter has been developed for particle identification in Belle II. It measures the time of propagation (TOP) of Cherenkov photons traveling in the quartz radiator with micro-channel-plate photomultiplier tubes (MCP-PMTs) with a precision of 50 ps. A prototype TOP counter was tested with the 1.2 GeV/c electron beam in the Laser Electron Photon beam line at SPring-8 (LEPS). The TOP distribution was obtained as expected after taking into account the dependence of the MCP-PMT quantum efficiency on light incidence angle and polarization. In this paper, the key features of the TOP counter design and the beam test results are presented. -- Highlights: •The TOP counter has been developed for particle identification in Belle II. •A time of propagation (TOP) of Cherenkov light in the quartz radiator is measured. •Cherenkov light is detected by the MCP-PMTs with a resolution of about 40 ps. •A prototype TOP counter was tested with the 1.2 GeV/c electron beam at LEPS. •The TOP distribution measured in the beam test agrees with the expectation

  4. Fundamentals of gas counters

    International Nuclear Information System (INIS)

    Bateman, J.E.

    1994-01-01

    The operation of gas counters used for detecting radiation is explained in terms of the four fundamental physical processes which govern their operation. These are 1) conversion of neutral radiation into charged particles, 2) ionization of the host gas by a fast charge particle 3) transport of the gas ions to the electrodes and 4) amplification of the electrons in a region of enhanced electric field. Practical implications of these are illustrated. (UK)

  5. Particulate matter time-series and Köppen-Geiger climate classes in North America and Europe

    Science.gov (United States)

    Pražnikar, Jure

    2017-02-01

    Four years of time-series data on the particulate matter (PM) concentrations from 801 monitoring stations located in Europe and 234 stations in North America were analyzed. Using k-means clustering with distance correlation as a measure for similarity, 5 distinct PM clusters in Europe and 9 clusters across the United States of America (USA) were found. This study shows that meteorology has an important role in controlling PM concentrations, as comparison between Köppen-Geiger climate zones and identified PM clusters revealed very good spatial overlapping. Moreover, the Köppen-Geiger boundaries in Europe show a high similarity to the boundaries as defined by PM clusters. The western USA is much more diverse regarding climate zones; this characteristic was confirmed by cluster analysis, as 6 clusters were identified in the west, and only 3 were identified on the eastern side of the USA. The lowest similarity between PM time-series in Europe was observed between the Iberian Peninsula and the north Europe clusters. These two regions also show considerable differences, as the cold semi-arid climate has a long and hot summer period, while the cool continental climate has a short summertime and long and cold winters. Additionally, intra-continental examination of European clusters showed meteorologically driven phenomena in autumn 2011 encompassing a large European region from Bulgaria in the south, Germany in central Europe and Finland in the north with high PM concentrations in November and a decline in December 2011. Inter-continental comparison between Europe and the USA clusters revealed a remarkable difference between the PM time-series located in humid continental zone. It seems that because of higher shortwave downwelling radiation (≈210 W m-2) over the USA's continental zone, and consequently more intense production of secondary aerosols, a summer peak in PM concentration was observed. On the other hand, Europe's humid continental climate region experiences

  6. ASP: a new PEP experiment to measure single photons

    International Nuclear Information System (INIS)

    Hollebeek, R.

    1984-05-01

    The design and construction of a new experiment for PEP designed to measure the flux of low energy photons unaccompanied by any additional photons, or charged tracks is described. The device consists of arrays of extruded lead glass bars and PWC's in the central region with lead-scintillator shower counters, drift chambers and PWC's in the forward regions. 9 references

  7. Countering antivaccination attitudes.

    Science.gov (United States)

    Horne, Zachary; Powell, Derek; Hummel, John E; Holyoak, Keith J

    2015-08-18

    Three times as many cases of measles were reported in the United States in 2014 as in 2013. The reemergence of measles has been linked to a dangerous trend: parents refusing vaccinations for their children. Efforts have been made to counter people's antivaccination attitudes by providing scientific evidence refuting vaccination myths, but these interventions have proven ineffective. This study shows that highlighting factual information about the dangers of communicable diseases can positively impact people's attitudes to vaccination. This method outperformed alternative interventions aimed at undercutting vaccination myths.

  8. Microchip Coulter particle counter

    DEFF Research Database (Denmark)

    Larsen, Ulrik Darling; Blankenstein, Gert; Branebjerg, J.

    1997-01-01

    This paper presents a micro device employing the Coulter principle for counting and sizing of living cells and particles in liquid suspension. The microchip Coulter particle counter (μCPC) has been employed in a planar silicon structure covered with glass, which enables detailed observation during...... and short contact time of liquids in microchannels. As a result, the width of the liquids can be controlled without knowing the actual flow rates. The μCPC has been fabricated by standard microfabrication techniques, including RIE, wet silicon etching, metalization and anodic bonding...

  9. Photonic Hypercrystals

    Directory of Open Access Journals (Sweden)

    Evgenii E. Narimanov

    2014-10-01

    Full Text Available We introduce a new “universality class” of artificial optical media—photonic hypercrystals. These hyperbolic metamaterials, with periodic spatial variation of dielectric permittivity on subwavelength scale, combine the features of optical metamaterials and photonic crystals. In particular, surface waves supported by a hypercrystal possess the properties of both the optical Tamm states in photonic crystals and surface-plasmon polaritons at the metal-dielectric interface.

  10. Neutron position sensitive proportional counter

    International Nuclear Information System (INIS)

    Gal'tsov, V.S.; Zakharkin, I.I.; Kuznetsov, V.A.; Shchetinin, O.I.

    1979-01-01

    A design of a position-sensitive neutron counter is given in which ionizing events are positioned along the length of the counter on the basis of time shift between signals propagating towards both ends of the counter. The propagation velocity decreases due to the use of a spiral cathode which, together with an external grounded frame, constitutes an electromagnetic delay line. The counter frame is made of a steel tube 200 mm long and 32 mm in diameter. The spiral cathode is a single-layer solenoid, 27.5 mm in internal diameter, which is made of a copper wire. The counter filled with 3 He (1200 torr) and Kr (750 torr) mixture, its efficiency of thermal neutron detection is 48% for the 3 He(n,p) 2 H reaction. An evaluated spatial resolution is 5 mm. Total delay time for the above design of the counter is 280 ns

  11. Microwave photonics

    CERN Document Server

    Lee, Chi H

    2006-01-01

    Wireless, optical, and electronic networks continue to converge, prompting heavy research into the interface between microwave electronics, ultrafast optics, and photonic technologies. New developments arrive nearly as fast as the photons under investigation, and their commercial impact depends on the ability to stay abreast of new findings, techniques, and technologies. Presenting a broad yet in-depth survey, Microwave Photonics examines the major advances that are affecting new applications in this rapidly expanding field.This book reviews important achievements made in microwave photonics o

  12. Single photon timing resolution and detection efficiency of the IRST silicon photo-multipliers

    International Nuclear Information System (INIS)

    Collazuol, G.; Ambrosi, G.; Boscardin, M.; Corsi, F.; Dalla Betta, G.F.; Del Guerra, A.; Dinu, N.; Galimberti, M.; Giulietti, D.; Gizzi, L.A.; Labate, L.; Llosa, G.; Marcatili, S.; Morsani, F.; Piemonte, C.; Pozza, A.; Zaccarelli, L.; Zorzi, N.

    2007-01-01

    Silicon photo-multipliers (SiPM) consist in matrices of tiny, passive quenched avalanche photo-diode cells connected in parallel via integrated resistors and operated in Geiger mode. Novel types of SiPM are being developed at FBK-IRST (Trento, Italy). Despite their classical shallow junction n-on-p structure the devices are unique in their enhanced photo-detection efficiency (PDE) for short-wavelengths and in their low level of dark rate and excess noise factor. After a summary of the extensive SiPM characterization we will focus on the study of PDE and the single photon timing resolution

  13. Photon detector composed of metal and semiconductor nanoparticles

    International Nuclear Information System (INIS)

    Takahashi, Atsuo; Minoura, Norihiko; Karube, Isao

    2005-01-01

    Applying the function of the single electron transistor, a novel photon detector consisting of a self-assembled structure of metal and semiconductor nanoparticles and an organic insulating layer was developed. It showed coulomb blockade behavior under dark conditions and remarkable increase in current corresponding to light intensity under light irradiation. Ultraweak photon emission of about 600 counts per second in the ultraviolet region could be detected at room temperature by this photon counter

  14. Single-photon detector operating under extremely high background photon flux conditions

    International Nuclear Information System (INIS)

    Prochazka, Ivan; Sopko, Bruno; Blazej, Josef

    2009-01-01

    We are reporting our results in research and development in the field of avalanche semiconductor single-photon detectors and their application. Our goal was a development of a solid-state photon-counting detector capable of high-precision photon arrival time tagging in extremely harsh operating conditions. The background photon flux exceeding 10 9 photons per second hitting the detector active area should not avoid the useful signal detection and recognition on the signal level of units of photons per second. This is background photon flux about two orders of magnitude higher than what the conventional solid-state photon counters accept. The detection timing resolution should be better than 100 ps and the delay stability should be on picosecond level. We have developed and tested the active quenched and gated avalanche structure on silicon providing the required features in connection with the K14 detection chips. The detector is capable of gated operation under the conditions of background photon flux of 5x10 9 photons per second. The operational detector tolerates long term exposures to the input photon flux exceeding 10 15 photons (>1 mW) per second without damage.

  15. Space and power efficient hybrid counters array

    Science.gov (United States)

    Gara, Alan G [Mount Kisco, NY; Salapura, Valentina [Chappaqua, NY

    2009-05-12

    A hybrid counter array device for counting events. The hybrid counter array includes a first counter portion comprising N counter devices, each counter device for receiving signals representing occurrences of events from an event source and providing a first count value corresponding to a lower order bits of the hybrid counter array. The hybrid counter array includes a second counter portion comprising a memory array device having N addressable memory locations in correspondence with the N counter devices, each addressable memory location for storing a second count value representing higher order bits of the hybrid counter array. A control device monitors each of the N counter devices of the first counter portion and initiates updating a value of a corresponding second count value stored at the corresponding addressable memory location in the second counter portion. Thus, a combination of the first and second count values provide an instantaneous measure of number of events received.

  16. Polychromatic photons

    DEFF Research Database (Denmark)

    Keller, Ole

    2002-01-01

    A review is given of the space-time wave mechanics of single photons, a subject with an almost century long history. The Landau-Peierls photon wave function, which is related nonlocally to the electromagnetic field is first described, and thereafter the so-called energy wave function, based...... on the positive-frequency Riemann-Silberstein vectors, is discussed. Recent attempts to understand the birth process of a photon emerging from a single atom are summarized. The polychromatic photon concept is introduced, and it is indicated how the wave mechanics of polychromatic photons can be upgraded to wave...... in a hyperfine spin transition shows an exponential falloff with the distance from the atomic nucleus. The length parameter in this falloff is the Bohr radius....

  17. Silica aerogel Cerenkov counter

    International Nuclear Information System (INIS)

    Yasumi, S.; Masaike, A.; Yamamoto, A.; Yoshimura, Y.; Kawai, H.

    1984-03-01

    In order to obtain silica aerogel radiators of good quality, the prescription used by Saclay group has been developed. We have done several experiments using beams from KEK.PS to test the performance of a Cerenkov counter with aerogel modules produced in KEK. It turned out that these modules had excellent quality. The production rate of silica aerogel in KEK is 15 -- 20 litres a week. Silica aerogel modules of 20 x 10 x 3 cm 3 having the refractive index of 1.058 are successfully being used by Kyoto University group in the KEK experiment E92 (Σ). Methodes to produce silica aerogel with higher refractive index than 1.06 has been investigated both by heating an module with the refractive index of 1.06 and by hydrolyzing tetraethyl silicate. (author)

  18. ELECTRICAL PULSE COUNTER APPARATUS

    Science.gov (United States)

    Kaufman, W.M.; Jeeves, T.A.

    1962-09-01

    A progressive electrical pulse counter circuit rs designed for the counting of a chain of input pulses. The circuit employs a series of direct connected bistable counting stages simultaneously pulsed by each input pulse and a delay means connected between each of the stages. Each bistable stage has two d-c operative states, which stage, when in its initial state, prevents the next succeeding stage from changing its condition when the latter stage is pulsed. Since the delay circuits between the stages prevents the immediate decay of the d-c state of each stage when the stages are pulsed, only one stage will change its state for each input pulse, thereby providing progressive stage-by-stage counting. (AEC)

  19. Hign sensitivity neutron rem counter

    International Nuclear Information System (INIS)

    Jiang Jinling; Wen Youqin; Xie Jianlun; Chen Changmao

    1986-01-01

    The constructions of two counters (NR1 and NR2) and their characteristics are presented. In the region from thermal energy to 17 MeV, the detectable dose equivalent values range from 10 -4 to 10 2 mrem.h -1 and the neutron dose equivalent sensitivity is approximately 140 cps/mrem.h -1 for the counter NR1; the detectable dose equivalent values range from 10 -4 to 65 mrem.h -1 and the dose equivalent sensitivity approx.= 209 cps/mrem.h -1 for the counter NR2 in the energy range from thermal energy to 7 MeV. Compared with the rem counter SIUDSVIK 2202D, their dose equivalent readings are consistent within +- 10% when neutron beams are approximatly perpendicular to the counter axis

  20. X-ray diffraction analysis device with electronic photon counter

    International Nuclear Information System (INIS)

    Fillit, R.Y.; Bruyas, H.; Patay, F.

    1985-01-01

    The means provided to control the movements around the three axes are composed of step-by-step motors related to exits control logic which is connected to the calculation and monitored by a clock. The clock monitors also the calculator so as that the calculator controls, together with the programmable clock and control logic, the coordination of the whole rotation movements, along the three rotation axes, their velocity, their duration and the acquisition of the measured intensities of the diffracted X-ray beam [fr

  1. A prototype threshold Cherenkov counter for DIRAC

    CERN Document Server

    Bragadireanu, M; Cima, E; Dulach, B; Gianotti, P; Guaraldo, C; Iliescu, M A; Lanaro, A; Levi-Sandri, P; Petrascu, C; Girolami, B; Groza, L; Kulikov, A; Kuptsov, A; Topilin, N; Trusov, S

    1999-01-01

    We have designed, built and tested a gas threshold Cherenkov counter as prototype for a larger counter foreseen for use in the DIRAC experiment, at CERN. We describe the performances of the counter on a test beam.

  2. Hallo photons calls photon; Allo photon appelle photon

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1997-09-01

    When a pair of photons is created, it seems that these 2 photons are bound together by a mysterious link. This phenomenon has been discovered at the beginning of the seventies. In this new experiment the 2 photons are separated and have to follow different ways through optic cables until they face a quantum gate. At this point they have to chose between a short and a long itinerary. Statistically they have the same probability to take either. In all cases the 2 photons agree to do the same choice even if the 2 quantum gates are distant of about 10 kilometers. Some applications in ciphering and coding of messages are expected. (A.C.)

  3. A portable neutron coincidence counter

    Energy Technology Data Exchange (ETDEWEB)

    Peurrung, A.J.; Bowyer, S.M.; Craig, R.A.; Dudder, G.B.; Knopf, M.A.; Panisko, M.E.; Reeder, P.L.; Stromswold, D.C.; Sunberg, D.S.

    1996-11-01

    Pacific Northwest National Laboratory has designed and constructed a prototype portable neutron coincidence counter intended for use in a variety of applications, such as the verification and inspection of weapons components, safety measurements for novel and challenging situations, portable portal deployment to prevent the transportation of fissile materials, uranium enrichment measurements in hard-to-reach locations, waste assays for objects that cannot be measured by existing measurement systems, and decontamination and decommissioning. The counting system weighs less than 40 kg and is composed of parts each weighing no more than 5 kg. In addition, the counter`s design is sufficiently flexible to allow rapid, reliable assembly around containers of nearly arbitrary size and shape. The counter is able to discern the presence of 1 kg of weapons-grade plutonium within an ALR-8 (30-gal drum) in roughly 100 seconds and 10 g in roughly 1000 seconds. The counter`s electronics are also designed for maximum adaptability, allowing operation under a wide variety of circumstances, including exposure to gamma-ray fields of 1 R/h. This report provides a detailed review of the design and construction process. Finally, preliminary experimental measurements that confirm the performance capabilities of this counter are discussed. 6 refs., 18 figs., 3 tabs.

  4. Microwave photonics

    CERN Document Server

    Lee, Chi H

    2013-01-01

    Microwave photonics continues to see rapid growth. The integration of optical fiber and wireless networks has become a commercial reality and is becoming increasingly pervasive. Such hybrid technology will lead to many innovative applications, including backhaul solutions for mobile networks and ultrabroadband wireless networks that can provide users with very high bandwidth services. Microwave Photonics, Second Edition systematically introduces important technologies and applications in this emerging field. It also reviews recent advances in micro- and millimeter-wavelength and terahertz-freq

  5. Spent fuel counter

    International Nuclear Information System (INIS)

    Drayer, D.D.

    1988-09-01

    In many cases the IAEA must inspect spent fuel shipping casks before they leave facilities. Similarly, inspections may be required at the location where a cask is received and unloaded. In order to reduce the number of inspections required, it would be desirable to develop a system to count spent fuel assemblies as they are loaded or removed from shipping casks. This report discusses several methods which potentially could be used for performing this function. A concept for a Spent Fuel Counter System is proposed which uses a Laser Surveillance System (LASSY), Cerenkov Viewing Device (CVD), and Modular Integrated Video System (MIVS), all coupled together. In the proposed system, LASSY would provide an indication that an object is being placed into or removed from the cask, the CVD would be used to determine if the object has the radiation characteristics of a spent fuel assembly, and the MIVS would record the information. The system may need to be designed so that the operator could determine that it was operating correctly during the loading operations. This would help prevent anomalies from occurring which could only be resolved through reverification measures. Before such a system could be implemented testing would be necessary to determine that the individual components would each work adequately in this application. The issues of reliability, intrusiveness, and cask sealing should also be addressed before a development program is undertaken. 12 refs., 1 fig

  6. Photon diffraction

    Science.gov (United States)

    Hodge, John

    2009-11-01

    In current light models, a particle-like model of light is inconsistent with diffraction observations. A model of light is proposed wherein photon inferences are combined with the cosmological scalar potential model (SPM). That the photon is a surface with zero surface area in the travel direction is inferred from the Michelson-Morley experiment. That the photons in slits are mathematically treated as a linear antenna array (LAA) is inferred from the comparison of the transmission grating interference pattern and the single slit diffraction pattern. That photons induce a LAA wave into the plenum is inferred from the fractal model. Similarly, the component of the photon (the hod) is treated as a single antenna radiating a potential wave into the plenum. That photons are guided by action on the surface of the hod is inferred from the SPM. The plenum potential waves are a real field (not complex) that forms valleys, consistent with the pilot waves of the Bohm interpretation of quantum mechanics. Therefore, the Afshar experiment result is explained, supports Bohm, and falsifies Copenhagen. The papers may be viewed at http://web.citcom.net/˜scjh/.

  7. Development of a measurement device, using a Geiger-Mueller type detector, for the determination of the activity in a 99mTc generator prototype

    International Nuclear Information System (INIS)

    Urquizo, Rafael; Gago, Javier; Mendoza, Pablo; Cruz-Saco, Cesar; Rojas, Jorge

    2014-01-01

    This article presents the implementation of a measurement system using a Geiger-Mueller detector (GM) in order to adapt it into a 99m Tc generator prototype. The response signal of the measurement system designed in terms of count rate is linearly proportional to the variation of the activity measured between 280 and 170 mCi of 99m Tc with a relative error of ± 2,8 %. However, further tests are needed to evaluate the correlation for an activity level lower than 20 mCi in order to obtain an adequate range of use. (authors).

  8. In-vivo radiation counter

    International Nuclear Information System (INIS)

    Pollard, D.E.

    1983-01-01

    This patent specification describes a radiation counter utilizing at least one detector for sensing radiation from a living body. The radiation counter also includes an aperture for forming a corridor between the body and the detector. A shield outside the corridor prevents passage of background radiation through the corridor and gaining access to the detector. The counter also includes a device for isolating a selected portion of the body from the corridor such that radiation counting is restricted to a region of the body through a separate detector. The corridor formation permits a user to stand in an upright position while the detector and detectors are able to separately monitor different sections of the body. The radiation counter overcomes the problem of obtaining accurate and quick measurements or radiation doses sustained by a large group of persons. (author)

  9. The escape gated proportional counter

    International Nuclear Information System (INIS)

    Bibbo, G.; Sanford, P.W.

    1981-01-01

    Proportional counters, designed to detect hard X-rays, are generally filled with Xe or Kr or a mixture of Xe and Kr. In a large multichamber proportional counter the K-fluorescent radiation of these gases, which escapes the cell of origin, but is absorbed in other cells of the counter, provides an additional signal. A coincidence technique, which makes use of this signal to reduce the charged particle background and to correct the energy spectrum for the escape peak, has been evaluated. The detector has an improved energy resolution over that of the conventional proportional counter and preliminary results indicate that a reduction in the background by a factor of about 1000 can be obtained. Its combined properties of very efficient background reduction and improved energy resolution make this type of instrument most suitable for spectroscopic studies of astronomical X-ray sources in the energy range of 15-100 keV. (orig.)

  10. High-speed parallel counter

    International Nuclear Information System (INIS)

    Gus'kov, B.N.; Kalinnikov, V.A.; Krastev, V.R.; Maksimov, A.N.; Nikityuk, N.M.

    1985-01-01

    This paper describes a high-speed parallel counter that contains 31 inputs and 15 outputs and is implemented by integrated circuits of series 500. The counter is designed for fast sampling of events according to the number of particles that pass simultaneously through the hodoscopic plane of the detector. The minimum delay of the output signals relative to the input is 43 nsec. The duration of the output signals can be varied from 75 to 120 nsec

  11. Practical techniques on radiation counters

    International Nuclear Information System (INIS)

    Sanada, Junpei

    1977-01-01

    The operating mechanisms of and the practical techniques on what are called ''counters'' among radiation detectors have already been described in detail in many literatures. The author describes his experiences about the fundamental problems and practical use that have not been clear yet unexpectedly. In core wire counters, it is important to produce incident radiation tracks in parallel as far as possible with the wire or with the wire plane in multi-wire counters. The electron avalanche in the non-uniform field in the vicinity of a wire is supposed to be generated like the shape of heart from the experimental results. In the needle counters having been used for a long time, the plateau of counting becomes considerably wider than wire counters, and the background count is less structurally. Therefore the needle counters are suitable for low background counting. When fabricating the silicon surface barrier semiconductor detector, the etching of the just inside of wax cover tends to proceed fast so that the central portion is separated in spite of the expectation that only the central surface is etched. If gold grains are put on and permitted to roll over the surface of a silicon wafer by the combination of rotation and reciprocating motion as the wafer is kept horizontally, the etching of the central surface can be successfully done because it proceeds 10 times as fast as the peripheral part. It proceeds about 3 times as fast by employing glass beads instead of gold grains. (Wakatsuki, Y.)

  12. Quantum photonics

    CERN Document Server

    Pearsall, Thomas P

    2017-01-01

    This textbook employs a pedagogical approach that facilitates access to the fundamentals of Quantum Photonics. It contains an introductory description of the quantum properties of photons through the second quantization of the electromagnetic field, introducing stimulated and spontaneous emission of photons at the quantum level. Schrödinger’s equation is used to describe the behavior of electrons in a one-dimensional potential. Tunneling through a barrier is used to introduce the concept of non­locality of an electron at the quantum level, which is closely-related to quantum confinement tunneling, resonant tunneling, and the origin of energy bands in both periodic (crystalline) and aperiodic (non-crystalline) materials. Introducing the concepts of reciprocal space, Brillouin zones, and Bloch’s theorem, the determination of electronic band structure using the pseudopotential method is presented, allowing direct computation of the band structures of most group IV, group III-V, and group II-VI semiconducto...

  13. The ARGUS electron/photon calorimeter. Pt. 2

    International Nuclear Information System (INIS)

    Drescher, A.; Graf, H.J.; Graewe, B.; Hofmann, W.; Markees, A.; Matthiesen, U.; Spengler, J.; Wegener, D.

    1983-03-01

    A detailed investigation is described of the photon production and transport in lead scintillator shower counters with wave-length shifter readout built for the ARGUS detector. Experimental data and Monte Carlo calculations are in good agreement. The most prominent effects due to the light collection system are small nonlinearities in the relation between deposited energy and pulse height and an energy dependent decrease of the energy resolution of the counters. (orig.)

  14. Green photonics

    International Nuclear Information System (INIS)

    Quan, Frederic

    2012-01-01

    Photonics, the broad merger of electronics with the optical sciences, encompasses such a wide swath of technology that its impact is almost universal in our everyday lives. This is a broad overview of some aspects of the industry and their contribution to the ‘green’ or environmental movement. The rationale for energy conservation is briefly discussed and the impact of photonics on our everyday lives and certain industries is described. Some opinions from industry are presented along with market estimates. References are provided to some of the most recent research in these areas. (review article)

  15. The suppression of destructive sparks in parallel plate proportional counters

    Energy Technology Data Exchange (ETDEWEB)

    Cockshott, R.A.; Mason, I.M.

    1984-02-01

    The authors find that high energy background events produce localised sparks in parallel plate counters when operated in the proportional mode. These sparks increase dead-time and lead to degradation ranging from electrode damage to spurious pulsing and continuous breakdown. The problem is particularly serious in low energy photon detectors for X-ray astronomy which are required to have lifetimes of several years in the high radiation environment of space. For the parallel plate imaging detector developed for the European X-ray Observatory Satellite (EXOSAT) they investigate quantitatively the spark thresholds, spark rates and degradation processes. They discuss the spark mechanism, pointing out differences from the situation in spark chambers and counters. They show that the time profile of the sparks allows them to devise a spark suppression system which reduces the degradation rate by a factor of ''200.

  16. Position-sensitive proportional counters using resistance-capacitance position encoding

    International Nuclear Information System (INIS)

    Kopp, M.K.; Borkowski, C.J.

    1975-12-01

    A new method was developed for encoding the position of individual photons, neutrons, or charged particles in proportional counters by using the distributed RC line characteristics of these counters. The signal processing is described and guidelines for the design and operation of these position sensitive proportional counters (PSPCs) are given. Using these guidelines, several prototypic PSPCs were constructed to improve the spatial resolution and shorten the signal processing time; for example, the intrinsic spatial uncertainty was reduced to 28 μ fwhm for alpha particles and 100 μ fwhm for low-energy x rays (2 to 6 keV). Also, the signal processing time was reduced to 0.6 μsec without seriously degrading the spatial resolution. These results have opened new fields of application of the RC position encoding method in imaging distributions of photons, charged particles, or neutrons in nuclear medicine, physics, and radiography

  17. Photon Differentials

    DEFF Research Database (Denmark)

    Schjøth, Lars; Frisvad, Jeppe Revall; Erleben, Kenny

    2007-01-01

    illumination features. This is often not desirable as these may lose clarity or vanish altogether. We present an accurate method for reconstruction of indirect illumination with photon mapping. Instead of reconstructing illumination using classic density estimation on finite points, we use the correlation...

  18. Photon Rao

    Indian Academy of Sciences (India)

    Volume 2 Issue 5 May 1997 pp 69-72 Feature Article. Molecule of the Month Molecular–Chameleon: Solvatochromism at its Iridescent Best! Photon Rao · More Details Fulltext PDF. Volume 16 Issue 12 December 2011 pp 1303-1306. Molecule of the Month - Molecular-Chameleon: Solvatochromism at its Iridescent Best!

  19. Plea and counter-plea

    International Nuclear Information System (INIS)

    1979-06-01

    The bulk of papers written during the hearing 'Plea and counter-plea', the so-called 'Gorleben hearing', which was held from 28th March until 3rd April 1979, comprises ca. 4,200 pages. It consists of the written comments put forward by the critics of nuclear energy, the minutes of the hearing as well as the supplementary statements of the counter-critics. This report is trying to confront those essential objections made by the critics which put in doubt the feasibility of a fuel-cycle centre with regard to safety engineering with the facts which are considered correct from the view of the DWK. The oral and written explanations of the counter-critics are particularly referred to in this debate. (orig./HP) [de

  20. The bremsstrahlung tagged photon beam in Hall B at JLab

    CERN Document Server

    Sober, D I; Longhi, A; Matthews, S K; O'Brien, J T; Berman, B L; Briscoe, W J; Cole, P L; Connelly, J P; Dodge, W R; Murphy, L Y; Philips, S A; Dugger, M K; Lawrence, D; Ritchie, B G; Smith, E S; Lambert, J M; Anciant, E; Audit, G; Auger, T; Marchand, C; Klusman, M; Napolitano, J; Khandaker, M A; Salgado, C W; Sarty, A J

    2000-01-01

    We describe the design and commissioning of the photon tagging beamline installed in experimental Hall B at the Thomas Jefferson National Accelerator Facility (JLab). This system can tag photon energies over a range from 20% to 95% of the incident electron energy, and is capable of operation with beam energies up to 6.1 GeV. A single dipole magnet is combined with a hodoscope containing two planar arrays of plastic scintillators to detect energy-degraded electrons from a thin bremsstrahlung radiator. The first layer of 384 partially overlapping small scintillators provides photon energy resolution, while the second layer of 61 larger scintillators provides the timing resolution necessary to form a coincidence with the corresponding nuclear interaction triggered by the tagged photon. The definitions of overlap channels in the first counter plane and of geometric correlation between the two planes are determined using digitized time information from the individual counters. Auxiliary beamline devices are briefl...

  1. Development of a drift tissue equivalent proportional counter for radiation protection personnel dosimetry

    International Nuclear Information System (INIS)

    Bordy, J.M.

    1992-04-01

    A new multicellular geometry for proportional counter has been developed. It is made of several drift regions which are some holes drilled in the cathode in front of anodes wires. The present work is made of 3 parts: 1) A theoretical evaluation of the multicellular counter characteristics: the sensitivity increases by a factor 15 vs the Tinelli Merlin-Gerin counter; the chord length distribution study shows the possibility to use a Dirac function for the dosimetry calculations; a tissue equivalent gas mixture based on argon and propane is designed. 2) The production of a monocellular prototype made of a hole and a needle shaped anode. 3) An experimental study of the prototype electrical characteristics and a computation of the electrical field in the counter. The focalization and the electron drift into the hole, the proportional operating mode are shown. Irradiations in front of photon and neutron sources verify these results

  2. Photon detectors

    International Nuclear Information System (INIS)

    Va'vra, J.

    1995-10-01

    J. Seguinot and T. Ypsilantis have recently described the theory and history of Ring Imaging Cherenkov (RICH) detectors. In this paper, I will expand on these excellent review papers, by covering the various photon detector designs in greater detail, and by including discussion of mistakes made, and detector problems encountered, along the way. Photon detectors are among the most difficult devices used in physics experiments, because they must achieve high efficiency for photon transport and for the detection of single photo-electrons. For gaseous devices, this requires the correct choice of gas gain in order to prevent breakdown and wire aging, together with the use of low noise electronics having the maximum possible amplification. In addition, the detector must be constructed of materials which resist corrosion due to photosensitive materials such as, the detector enclosure must be tightly sealed in order to prevent oxygen leaks, etc. The most critical step is the selection of the photocathode material. Typically, a choice must be made between a solid (CsI) or gaseous photocathode (TMAE, TEA). A conservative approach favors a gaseous photocathode, since it is continuously being replaced by flushing, and permits the photon detectors to be easily serviced (the air sensitive photocathode can be removed at any time). In addition, it can be argued that we now know how to handle TMAE, which, as is generally accepted, is the best photocathode material available as far as quantum efficiency is concerned. However, it is a very fragile molecule, and therefore its use may result in relatively fast wire aging. A possible alternative is TEA, which, in the early days, was rejected because it requires expensive CaF 2 windows, which could be contaminated easily in the region of 8.3 eV and thus lose their UV transmission

  3. Dimensions of Counter-Narratives

    DEFF Research Database (Denmark)

    2019-01-01

    The book welcomes proposals for chapter contributions on a wide array of topics related to the narratological notion of counter-narratives. By way of example, the topic has hitherto been treated by disciplines and subjects such as literature studies, organization studies, corporate communication ...

  4. The Eros of Counter Education

    Science.gov (United States)

    Luzon, Pinhas

    2016-01-01

    Erotic Counter Education (ECE) is the educational position of the late Ilan Gur-Ze'ev. In ECE Gur-Ze'ev combines two opposing positions in the philosophy of education, one teleological and anti-utopian, the other teleological and utopian. In light of this unique combination, I ask what mediates between these two poles and suggest that the answer…

  5. The Micro Trench Gas Counter

    International Nuclear Information System (INIS)

    Schmitz, J.

    1991-07-01

    A novel design is presented for a gas avalanche chamber with micro-strip gas readout. While existing gaseous microstrip detectors (Micro-strip Gas Counters, Knife edge chambers) have a minimum anode pitch of the order of 100 μm, the pitch of the discussed Micro Trench Gas Counter goes down to 30-50 μm. This leads to a better position resolution and two track separation, and a higher radiation resistivity. Its efficiency and signal speed are expected to be the same as the Microstrip Gas Counter. The energy resolution of the device is expected to be equal to or better than 10 percent for the 55 Fe peak. Since the anode strip dimensions are larger than those in a MSGC, the device may be not as sensitive to discharges and mechanical damage. In this report production of the device is briefly described, and predictions on its operation are made based on electric field calculations and experience with the Microstrip Gas Counter. The authors restrict themselves to the application in High Energy Physics. (author). 10 refs.; 9 figs

  6. Proportional counter measurements in neutron therapy beams

    International Nuclear Information System (INIS)

    Menzel, H.G.

    1984-01-01

    Dosimetry for clinical neutron therapy requires a characterization of radiation quality in addition to the specification of absorbed dose. Generally, a very simple approach has been adopted which consists in separating total absorbed dose into neutron and photon fractions. This is explained by the requirement of clinical dosimetry to apply methods suitable for routine measurements, by the lack of generally accepted improved alternatives, and by the fact that radiation quality is only one of several problems in neutron therapy not sufficiently solved. Spectra measured with low-pressure tissue-equivalent proportional counters (experimental microdosimetry) provide a detailed description of the physical properties of the radiation field at neutron therapy facilities. These descriptions are suitable for explaining the influence of different parameters (collimation, field size, phantom) on radiation quality. Although the physical properties of the radiation field as described by the measured microdosimetric distributions and quantities are not the only properties relevant for radiation effects, in general there are reasons to believe that they provide a suitable radiation quality characterization for the limited range of applications in neutron therapy. (author)

  7. Recent results from the DELPHI barrel ring imaging Cherenkov counter

    International Nuclear Information System (INIS)

    Anassontzis, E.G.; Ioannou, P.; Kalkanis, G.; Katsanevas, S.; Kontaxis, I.; Kourkoumelis, C.; Nounos, S.; Preve, P.; Resvanis, L.K.; Brunet, J.M.; Dolbeau, J.; Guglielmo, L.; Ledroit, F.; Poutot, D.; Tristram, G.

    1991-01-01

    The DELPHI detector, installed at LEP, is equipped with RICH (Ring Imaging Cherenkov) counters. The Barrel part incorporates a liquid (C 6 F 14 ) and a gaseous (C 5 F 12 ) radiator providing particle identification up to 20GeV/c. The Cherenkov protons of both radiators are detected by TPC-like photon detectors. The drift gas (75% CH 4 + 25% C 2 H 6 ) is doped with TMAE, but which the UV Cherenkov photons are converted into single free photo-electrons. These are drifted towards MWPC's at the end of the drift tubes and the space coordinates of the conversion point are determined. One half of the Barrel RICH is now equipped with drift tubes and has provided results from the liquid radiator since spring 1990. The gas radiator has been tested with C 2 F 6 as a preliminary filling since August 1990. The data obtained demonstrate the good particle identification potential. For the liquid radiator the number of detected photons per ring in hadron jets is N=8, whereas for muon pairs (single tracks) N=10 has been obtained. For the gas radiator 2.1 photons per track were observed, which demonstrates the good functioning of the focussing mirrors, as the C 2 F 6 this is close to the expected value

  8. Basic Research Needs for Countering Terrorism

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, W.; Michalske, T.; Trewhella, J.; Makowski, L.; Swanson, B.; Colson, S.; Hazen, T.; Roberto, F.; Franz, D.; Resnick, G.; Jacobson, S.; Valdez, J.; Gourley, P.; Tadros, M.; Sigman, M.; Sailor, M.; Ramsey, M.; Smith, B.; Shea, K.; Hrbek, J.; Rodacy, P.; Tevault, D.; Edelstein, N.; Beitz, J.; Burns, C.; Choppin, G.; Clark, S.; Dietz, M.; Rogers, R.; Traina, S.; Baldwin, D.; Thurnauer, M.; Hall, G.; Newman, L.; Miller, D.; Kung, H.; Parkin, D.; Shuh, D.; Shaw, H.; Terminello, L.; Meisel, D.; Blake, D.; Buchanan, M.; Roberto, J.; Colson, S.; Carling, R.; Samara, G.; Sasaki, D.; Pianetta, P.; Faison, B.; Thomassen, D.; Fryberger, T.; Kiernan, G.; Kreisler, M.; Morgan, L.; Hicks, J.; Dehmer, J.; Kerr, L.; Smith, B.; Mays, J.; Clark, S.

    2002-03-01

    To identify connections between technology needs for countering terrorism and underlying science issues and to recommend investment strategies to increase the impact of basic research on efforts to counter terrorism.

  9. Photon factory

    International Nuclear Information System (INIS)

    Tanaka, J.; Huke, K.; Chikawa, J.

    1985-01-01

    The Photon Factory (PF) was established on April 1, 1978 at KEK. The PF is a synchrotron radiation facility, which has a 2.5 GeV electron storage ring fully dedicated to the SR usage and a 2.5 GeV electron linac supplying electrons and positrons to the PF ring and the accumulation ring of TRISTAN (30 GeV electron-positron colliding machine). The PF consists of three departments, injector linac, light source, and instrumentation department. The facility is described

  10. Counter-discourse in Zimbabwean literature

    NARCIS (Netherlands)

    Mangena, Tendai

    2015-01-01

    Counter-Discourse in Zimbabwean Literature is a study of specific aspects of counter-discursive Zimbabwean narratives in English. In discussing the selected texts, my thesis is based on Terdiman’s (1989) the postcolonial concept of counter-discourse. In Zimbabwean literature challenges to a dominant

  11. Discharge quenching circuit for counters

    International Nuclear Information System (INIS)

    Karasik, A.S.

    1982-01-01

    A circuit for quenching discharges in gas-discharge detectors with working voltage of 3-5 kV based on transistors operating in the avalanche mode is described. The quenching circuit consists of a coordinating emitter follower, amplifier-shaper for avalanche key cascade control which changes potential on the counter electrodes and a shaper of discharge quenching duration. The emitter follower is assembled according to a widely used flowsheet with two transistors. The circuit permits to obtain a rectangular quenching pulse with front of 100 ns and an amplitude of up to 3.2 kV at duration of 500 μm-8 ms. Application of the quenching circuit described permits to obtain countering characteristics with the slope less than or equal to 0.02%/V and plateau extent greater than or equal to 300 V [ru

  12. Countering 21st Century Threats

    DEFF Research Database (Denmark)

    Scharling Pedersen, Peter; Pillai, Chad M.; Hun, Lee Jae

    2015-01-01

    The United States and its Allies confront an increasingly volatile world where threats range from traditional state-on-state challenges to non-state transnational networks. To successfully combat these 21st Century problems, in an era of resource and geo-political power constraints, the U...... to be addressed in order to successfully conduct IW. As result of researching the issues associated with developing a JIIM approach to IW, the paper makes the following recommendations: • Establishing universally accepted concepts and doctrines for IW, UW, Foreign Internal Defense (FID), Counter Insurgency (COIN......), Counter-Terrorism (CT), and Security and Stability Operations (SSO). • Establishing a construct that allows a strategic Whole-of-Government capacity for operations coordinated by joint interagency task forces. • Continue to developing the Global SOF network. • Increased intelligence sharing in areas...

  13. Novel determination of protein, fat, and lactose of milk by liquid scintillation counter

    International Nuclear Information System (INIS)

    Noble, R.C.; Shand, J.H.; West, I.G.

    1981-01-01

    A method for routine determination of protein, fat, and lactose contents of milk is based on the ability of a scintillation counter to measure coloration or opalescence through attenuation of photons emitted from sealed miniature carbon-14 and hydrogen-3 radioactive standards. A series of simplified and accurate analytical procedures enable full advantage to be taken of the automatic facilities on the modern liquid scintillation counter. The methods provide several advantages over existing procedures. Accuracy of quantification was high as assessed by comparing the results with those derived by recommended Kjeldahl, Gerber, and colorimetric procedures for protein, fat, and lactose determinations, respectively

  14. Countering Islamic Radicalization Indonesian Experiences

    Science.gov (United States)

    2016-02-16

    sense“ among Muslims that Muslim under attack by infidels , and the best way to solve Muslim problems is to apply Sharia as state law, if necessary by...three days the 8 11 income from oil it had taken a year to earn before the embargo and gave the kingdom all the petrodollars it needed to export... infidels ”. From the mid-1980s onward, to counter the Iranian Islamic revolution and Nasser’s Arab Nationalism influence among its Saudi population

  15. Counter support for WA35

    CERN Document Server

    CERN PhotoLab

    1977-01-01

    This assembly was equipped with 78 counters, each consisting of a lucite cone, to produce Cerenkov light, and a CsI scintillator plate of 3 mm thickness glued on the face of the cone. The experiment WA35 was set-up in the s1 beam (West Hall) by the Darmstadt-Heidelberg-Virginia-Warsaw Collaboration to measure angular distributions and multiplicities of pions and recoil protons produced by hadrons interacting in nuclei. (See Annual Report 1976 p. 39)

  16. INTRODUCING OVER THE COUNTER COUNSELING

    Directory of Open Access Journals (Sweden)

    Nataša Bakić-Mirić

    2009-01-01

    Full Text Available A pharmacist in today’s world has a great responsibility – to help and educate patients about diverse ways for effective self-treatment. Whereas self-care is becoming increasingly popular among patients today the availability of over-the-counter medications makes it possible for patients to treat numerous conditions on their own but still under the supervision of a healthcare provider. During the pharmacist-patient encounter, the pharmacist’s obligation is to evaluate the patient’s medical condition, provide proper advice and counsel the patient on the proper course of treatment to be taken. Also by employing effective over the counter (OTC counseling as the most proper means in a pharmacist/patient communication process and, accordingly, rapport building in the OTC area, the pharmacist needs to demonstrate high energy, enthusiasm, respect, empathy, know-how of sensitive intercultural issues alongside personal appearance, body language, eye contact that all together make his/her personal “signature”. Accordingly, apart from patient education, the primary objective of OTC counseling becomes to educate pharmacists on basic principles used in assisting patients in the selection of over-the-counter (OTC products, provide examples of proper communication techniques for effective patient counseling concerning the OTC products (i.e. dosage, administration technique, storage, food and beverage interaction, monitoring etc where the pharmacist plays the key role in helping patients maximize their pharmaceutical care.

  17. 14-channel threshold gas Cerenkov counter

    International Nuclear Information System (INIS)

    Voichishin, M.N.; Devitsin, E.G.; Gus'kov, B.N.; Kapishin, M.N.; Zavertyaev, M.V.; Zinchenko, A.I.

    1985-01-01

    A 14-channel threshold gas Cerenkov counter filled with Freon-12 at a pressure of 1 atm is described. The radiator length is 150 cm. The counter efficiency for protons with a momentum of circa equal to or greater than 30 GeV/c exceeds 98%. The counter is a part of the system for identification of secondary charged particles of the BIS-2 spectrometer of the Institute of HighEnergy Physics. A diagram of the counter and its dimensions is shown. The counter consists of a light- and gasproof housing, a set of focusing mirrors, and a photomultiplier system

  18. Recent advances in gas scintillation proportional counters

    International Nuclear Information System (INIS)

    Palmer, H.E.

    1975-01-01

    Various geometrical configurations for gas scintillation proportional counters have been investigated in order to determine which is best for use in a large volume, high efficiency counter for measuring low energy gamma and x-rays. A xenon filled counter having a rod anode inside a cylindrical cathode appears to provide the best configuration for providing a uniform field and the best resolution over the total volume of the counter. The details of construction and operating characteristics of various shaped counters are described. (U.S.)

  19. Quality control of liquid scintillation counters

    International Nuclear Information System (INIS)

    Jaubert, F.; Tartes, I.; Cassette, P.

    2006-01-01

    Liquid scintillation counting (LSC) is widely used at LNHB for primary standardization of radionuclides (TDCR method), for secondary calibration and also for source stability studies or radioactive purity measurements. A total of five LSC counters are used for these purposes: two locally developed 3-photodetector counters for the implementation of the TDCR method, two Wallac 1414 counters and one Wallac 1220 Quantulus counter. The quality of the LSC measurements relies on the correct operation of these counters and their traceability to the frequency and time units

  20. Characterization of Sphinx1 ASIC X-ray detector using photon counting and charge integration

    Science.gov (United States)

    Habib, A.; Arques, M.; Moro, J.-L.; Accensi, M.; Stanchina, S.; Dupont, B.; Rohr, P.; Sicard, G.; Tchagaspanian, M.; Verger, L.

    2018-01-01

    Sphinx1 is a novel pixel architecture adapted for X-ray imaging, it detects radiation by photon counting and charge integration. In photon counting mode, each photon is compensated by one or more counter-charges typically consisting of 100 electrons (e-) each. The number of counter-charges required gives a measure of the incoming photon energy, thus allowing spectrometric detection. Pixels can also detect radiation by integrating the charges deposited by all incoming photons during one image frame and converting this analog value into a digital response with a 100 electrons least significant bit (LSB), based on the counter-charge concept. A proof of concept test chip measuring 5 mm × 5 mm, with 200 μm × 200 μm pixels has been produced and characterized. This paper provides details on the architecture and the counter-charge design; it also describes the two modes of operation: photon counting and charge integration. The first performance measurements for this test chip are presented. Noise was found to be ~80 e-rms in photon counting mode with a power consumption of only 0.9 μW/pixel for the static analog part and 0.3 μW/pixel for the static digital part.

  1. Resonance formation in photon-photon collisions

    Energy Technology Data Exchange (ETDEWEB)

    Gidal, G.

    1988-08-01

    Recent experimental progress on resonance formation in photon-photon collisions is reviewed with particular emphasis on the pseudoscalar and tensor nonents and on the ..gamma gamma..* production of spin-one resonances. 37 refs., 17 figs., 5 tabs.

  2. Functionalized 2PP structures for the BioPhotonics Workstation

    DEFF Research Database (Denmark)

    Matsuoka, Tomoyo; Nishi, Masayuki; Sakakura, Masaaki

    2011-01-01

    In its standard version, our BioPhotonics Workstation (BWS) can generate multiple controllable counter-propagating beams to create real-time user-programmable optical traps for stable three-dimensional control and manipulation of a plurality of particles. The combination of the platform with micr......In its standard version, our BioPhotonics Workstation (BWS) can generate multiple controllable counter-propagating beams to create real-time user-programmable optical traps for stable three-dimensional control and manipulation of a plurality of particles. The combination of the platform...... with microstructures fabricated by two-photon polymerization (2PP) can lead to completely new methods to communicate with micro- and nano-sized objects in 3D and potentially open enormous possibilities in nano-biophotonics applications. In this work, we demonstrate that the structures can be used as microsensors...

  3. Direct photon-counting scintillation detector readout using an SSPM

    International Nuclear Information System (INIS)

    Stapels, Christopher J.; Squillante, Michael R.; Lawrence, William G.; Augustine, Frank L.; Christian, James F.

    2007-01-01

    Gamma-ray detector technologies, capable of providing adequate energy information, use photomultiplier tubes (PMTs) or silicon avalanche photodiodes to detect the light pulse from a scintillation crystal. A new approach to detect the light from scintillation materials is to use an array of small photon counting detectors, or a 'detector-on-a-chip' based on a novel 'Solid-state Photomultiplier' (SSPM) concept. A CMOS SSPM coupled to a scintillation crystal uses an array of CMOS Geiger photodiode (GPD) pixels to collect light and produce a signal proportional to the energy of the radiation. Each pixel acts as a binary photon detector, but the summed output is an analog representation of the total photon intensity. We have successfully fabricated arrays of GPD pixels in a CMOS environment, which makes possible the production of miniaturized arrays integrated with the detector electronics in a small silicon chip. This detector technology allows for a substantial cost reduction while preserving the energy resolution needed for radiological measurements. In this work, we compare designs for the SSPM detector. One pixel design achieves maximum detection efficiency (DE) for 632-nm photons approaching 30% with a room temperature dark count rate (DCR) of less than 1 kHz for a 30-μm-diameter pixel. We characterize after pulsing and optical cross talk and discuss their effects on the performance of the SSPM. For 30-μm diameter, passively quenched CMOS GPD pixels, modeling suggests that a pixel spacing of approximately 90 μm optimizes the SSPM performance with respect to DE and cross talk

  4. COUNTER-TERRORISM IN INDONESIA

    Directory of Open Access Journals (Sweden)

    Jordan Sebastian Meliala

    2015-04-01

    Full Text Available Since the incident of World Trade Center (WTC in USA, Indonesia has become an easy target for the next terrorism. Counterterrorist campaigns can be undertaken by military and paramilitary forces. Counterterrorism refers to proactive policies that specifically seek to eliminate terrorist environments and groups, Regardless of which policy is selected, the ultimate goal of counterterrorism is clear: to save lives by proactively preventing or decreasing the number of terrorist attacks. But, so far the Government of Indonesia is only able to capture the terrorists but is unable to eradicate terrorism. Therefore, the government of Indonesia still needs a comprehensive ways to counter terrorism in Indonesia

  5. RR photons

    CERN Document Server

    Camara, Pablo G; Marchesano, Fernando

    2011-01-01

    Type II string compactifications to 4d generically contain massless Ramond-Ramond U(1) gauge symmetries. However there is no massless matter charged under these U(1)'s, which makes a priori difficult to measure any physical consequences of their existence. There is however a window of opportunity if these RR U(1)'s mix with the hypercharge $U(1)_Y$ (hence with the photon). In this paper we study in detail different avenues by which $U(1)_{RR}$ bosons may mix with D-brane U(1)'s. We concentrate on Type IIA orientifolds and their M-theory lift, and provide geometric criteria for the existence of such mixing, which may occur either via standard kinetic mixing or via the mass terms induced by St\\"uckelberg couplings. The latter case is particularly interesting, and appears whenever D-branes wrap torsional $p$-cycles in the compactification manifold. We also show that in the presence of torsional cycles discrete gauge symmetries and Aharanov-Bohm strings and particles appear in the 4d effective action, and that ty...

  6. X-ray polarimetry with a conventional gas proportional counter through rise-time analysis

    CERN Document Server

    Hayashida, K; Tsunemi, H; Torii, K; Murakami, H; Ohno, Y; Tamura, K

    1999-01-01

    We have performed an experiment on the signal rise time of a Xe gas proportional counter using a polarized X-ray beam of synchrotron orbital radiation with energies from 10 to 40 keV. When the counter anode is perpendicular to the electric vector of the incident X-ray photons, the average rise time becomes significantly longer than that for the parallel case. This indicates that the conventional gas proportional counters are useful for X-ray polarimetry. The moderate modulation contrast of this rise-time polarimeter (M=0.1 for 10 keV X-rays and M=0.35 for 40 keV X-rays), with capability of the simultaneous measuring X-ray energies and the timing, would be useful for applications in X-ray astronomy and in other fields.

  7. Geometric covers, graph orientations, counter games

    DEFF Research Database (Denmark)

    Berglin, Edvin

    are a type of abstract game played over a set of counters holding values, and these values may be moved between counters according to some set of rules. Typically they are played between two players: the adversary who tries to concentrate the greatest value possible in a single counter, and the benevolent......-directed graph is dynamic (can be altered by some outside actor), some orientations may need to be reversed in order to maintain the low out-degree. We present a new algorithm that is simpler than earlier work, yet matches or outperforms the efficiency of these results with very few exceptions. Counter games...... player who tries to prevent the adversary from doing so. These counter games are sometimes used as a behind-the-scenes tool for proving the efficiency of an algorithm, i.e. proving that the adversary is unable concentrate more than some specific value in a counter, also proves that the algorithm cannot...

  8. Secured Optical Communications Using Quantum Entangled Two-Photon Transparency Modulation

    Science.gov (United States)

    Kojima, Jun (Inventor); Nguyen, Quang-Viet (Inventor); Lekki, John (Inventor)

    2015-01-01

    A system and method is disclosed wherein optical signals are coded in a transmitter by tuning or modulating the interbeam delay time (which modulates the fourth-order coherence) between pairs of entangled photons. The photon pairs are either absorbed or not absorbed (transparent) by an atomic or molecular fluorescer in a receiver, depending on the inter-beam delay that is introduced in the entangled photon pairs. Upon the absorption, corresponding fluorescent optical emissions follow at a certain wavelength, which are then detected by a photon detector. The advantage of the disclosed system is that it eliminates a need of a coincidence counter to realize the entanglement-based secure optical communications because the absorber acts as a coincidence counter for entangled photon pairs.

  9. Quantum non-demolition phonon counter with a hybrid optomechnical system

    Science.gov (United States)

    Song, Qiao; Zhang, KeYe; Dong, Ying; Zhang, WeiPing

    2018-05-01

    A phonon counting scheme based on the control of polaritons in an optomechanical system is proposed. This approach permits us to measure the number of phonons in a quantum non-demolition (QND) manner for arbitrary modes not limited by the frequency matching condition as in usual photon-phonon scattering detections. The performance on phonon number transfer and quantum state transfer of the counter are analyzed and simulated numerically by taking into account all relevant sources of noise.

  10. Photonic time crystals.

    Science.gov (United States)

    Zeng, Lunwu; Xu, Jin; Wang, Chengen; Zhang, Jianhua; Zhao, Yuting; Zeng, Jing; Song, Runxia

    2017-12-07

    When space (time) translation symmetry is spontaneously broken, the space crystal (time crystal) forms; when permittivity and permeability periodically vary with space (time), the photonic crystal (photonic time crystal) forms. We proposed the concept of photonic time crystal and rewritten the Maxwell's equations. Utilizing Finite Difference Time Domain (FDTD) method, we simulated electromagnetic wave propagation in photonic time crystal and photonic space-time crystal, the simulation results show that more intensive scatter fields can obtained in photonic time crystal and photonic space-time crystal.

  11. Crate counter for normal operating loss

    International Nuclear Information System (INIS)

    Harlan, R.A.

    A lithium-loaded zinc sulfide scintillation counter to closely assay plutonium in waste packaged in 1.3 by 1.3 by 2.13m crates was built. In addition to assays for normal operating loss accounting, the counter will allow safeguards verification immediately before shipment of the crates for burial. The counter should detect approximately 10 g of plutonium in 1000 kg of waste

  12. Butane gas-flow proportional counter

    International Nuclear Information System (INIS)

    Han Jingquan; Ren Wei; Ma Liping

    2000-01-01

    It is experimentally proved that the butane can be used as an operating gas of the proportional counter. The operating performances of the counter with the butane are quite similar to that with the methane. A KX-50 butane flow proportional counter is described and its plateau characteristic is determined. For this counter, the plateau length, the slope of the plateau, the background count rate is 600 V, 1.7% per 100 V, 0.02s -1 for 239 Pu α source and about 500 V, 1.8% per 100 V, 3s -1 for 90 Sr- 90 Y source, respectively

  13. Anomalous transparency in photonic crystals and its application to point-by-point grating inscription in photonic crystal fibers.

    Science.gov (United States)

    Baghdasaryan, Tigran; Geernaert, Thomas; Chah, Karima; Caucheteur, Christophe; Schuster, Kay; Kobelke, Jens; Thienpont, Hugo; Berghmans, Francis

    2018-04-03

    It is common belief that photonic crystals behave similarly to isotropic and transparent media only when their feature sizes are much smaller than the wavelength of light. Here, we counter that belief and we report on photonic crystals that are transparent for anomalously high normalized frequencies up to 0.9, where the crystal's feature sizes are comparable with the free space wavelength. Using traditional photonic band theory, we demonstrate that the isofrequency curves can be circular in the region above the first stop band for triangular lattice photonic crystals. In addition, by simulating how efficiently a tightly focused Gaussian beam propagates through the photonic crystal slab, we judge on the photonic crystal's transparency rather than on isotropy only. Using this approach, we identified a wide range of photonic crystal parameters that provide anomalous transparency. Our findings indicate the possibility to scale up the features of photonic crystals and to extend their operational wavelength range for applications including optical cloaking and graded index guiding. We applied our result in the domain of femtosecond laser micromachining, by demonstrating what we believe to be the first point-by-point grating inscribed in a multi-ring photonic crystal fiber.

  14. Beta, gamma contamination analysis of thermo luminescence dosimeter cassettes using Geiger Muller counting set up and gamma spectrometry techniques

    International Nuclear Information System (INIS)

    Prasad, S.K.; Sudheer, T.S.; Sahoo, L.; Vinayagam, Bhakti; Kamble, Mahesh; Khuspe, R.R.; Anilkumar, Rekha; Verma, K.K.

    2009-01-01

    Β-γ contamination cheek up of TLD cassettes were carried out and the isotopes found were 137 Cs, 106 Ru, 60 Co, 64 Cu, 144 Ce and 95 Nb with activity per square cm varying from 0.05-4.70 Bq/cm 2 with median value 1.3. The assessed dose in TLD was in the range of 2.10 mSv to 22.05 mSv for beta, 0.05 mSv to 5.25 mSv for gamma. The beta doses have median value of 6.19 mSv. This contamination may be due to active water contamination on TLD's of personnel working for irradiated fuel handling or work in fuel rod (under water) storage area. This gives a method to estimate skin exposure of personnel due to skin contamination during work. Chances of getting TLD's contaminated due to various reasons were studied. Contamination was found maximum inside the cassette box having area 16 cm 2 . In case of plastic pouch of TLD disc contamination was detected in three cases. Contamination level on TLD cassettes using GM counter was found in the range of 0.30-3.6 Bq/cm 2 for cassettes. By opening the window of the surveymeter contamination and field of these cassettes in closed condition were found to increase by 20% due to the measurement of beta dose. With the same condition contamination of TLD cassette in open condition was found five times more. This is due to the a-contamination which is five times more than a contamination, The most prominent isotope 137 Cs in common chemical forms are soluble in water and if inhaled or ingested are rapidly and completely absorbed in the lungs and across the gastrointestinal tract. Thus a skin contamination of most prominent isotope 137 Cs can lead to intake in addition to skin dose. Fading studies of contamination of TLD cassettes were carried out. It was found negligible after counting with GM counting set up after a period of 3 months. But one of the TLD cassettes was showing an 80% reduction of contamination after 3 months with GM counting set up, the contaminants being 141 Ce, 103 Ru and 95 Nb. The gamma peaks in the external exposure

  15. The GlueX Start Counter and Beam Asymmetry$\\Sigma$ in Single $\\pi^{0}$ Photoproduction

    Energy Technology Data Exchange (ETDEWEB)

    Pooser, Eric [Florida Intl Univ., Miami, FL (United States)

    2016-03-26

    The GlueX experiment aims to study meson photoproduction while utilizing the coherent bremsstrahlung technique to produce a 9 GeV linearly polarized photon beam incident on a liquid H2 target. A Start Counter detector was fabricated to properly identify the accelerator electron beam buckets and to provide accurate timing information. The Start Counter detector was designed to operate at photon intensities of up to 108 γ/s in the coherent peak and provides a timing resolution ~300 ps so as to provide successful identification of the electron beam buckets to within 99% accuracy. Furthermore, the Start Counter detector provides excellent solid angle coverage, ~ 90% of 4π hermeticity, and a high degree of segmentation for background rejection. It consists of a cylindrical array of 30 scintillators with pointed ends that bend towards the beam at the downstream end. Magnetic field insensitive silicon photomultiplier detectors were selected as the readout system. An initial measurement of the beam asymmetry Sigma in the exclusive reaction γ$\\vec{p}$→ π0p, where π0 → γ has been carried out utilizing the GlueX spectrometer during the Spring 2015 commissioning run. The tagged photon energies ranged from 2.5≤ Eγ ≤ 3.0 GeV in the coherent peak. These measurements were then compared to the world data set and show remarkable agreement with only two hours of physics production running.

  16. Scattering of two photons on a quantum emitter in a one-dimensional waveguide: exact dynamics and induced correlations

    DEFF Research Database (Denmark)

    Nysteen, Anders; Kristensen, Philip Trøst; McCutcheon, Dara

    2015-01-01

    that the nonlinearity of the emitter with respect to incoming photons depends strongly on the emitter excitation and the spectral shape of the incoming pulses, resulting in transmission of the photons which depends crucially on their separation and width. In addition, for counter-propagating pulses, we analyze...

  17. Once, someone just took a geiger counter. Development and state of the art of radio-activity measurement techniques; Einst nahm man einen Geigerzaehler. Entwicklung und Stand der Radioaktivitaets-Messtechnik

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelm, Christoph [Forschungszentrum Karlsruhe GmbH, Karlsruhe (Germany). Physikalisches Messlabor

    2009-07-01

    The development of activity measurement techniques started together with the discovery of radioactivity in 1896. A great impulse was given to the development by the rising of nuclear technology in the 50s. The detection techniques used today have been developed mainly at that time and in the following years. With the huge progress in semiconductor industry and in computer technology, the application of measuring processes developed then has become much simpler. Today, even commercial measuring systems for low-level-measurements of radioactivity are available. (orig.)

  18. Photonic Crystals Towards Nanoscale Photonic Devices

    CERN Document Server

    Lourtioz, Jean-Michel; Berger, Vincent; Gérard, Jean-Michel; Maystre, Daniel; Tchelnokov, Alexis

    2005-01-01

    Just like the periodical crystalline potential in solid-state crystals determines their properties for the conduction of electrons, the periodical structuring of photonic crystals leads to envisioning the possibility of achieving a control of the photon flux in dielectric and metallic materials. The use of photonic crystals as a cage for storing, filtering or guiding light at the wavelength scale thus paves the way to the realisation of optical and optoelectronic devices with ultimate properties and dimensions. This should contribute toward meeting the demands for a greater miniaturisation that the processing of an ever increasing number of data requires. Photonic Crystals intends at providing students and researchers from different fields with the theoretical background needed for modelling photonic crystals and their optical properties, while at the same time presenting the large variety of devices, from optics to microwaves, where photonic crystals have found applications. As such, it aims at building brid...

  19. Photonic Crystals Towards Nanoscale Photonic Devices

    CERN Document Server

    Lourtioz, Jean-Michel; Berger, Vincent; Gérard, Jean-Michel; Maystre, Daniel; Tchelnokov, Alexei; Pagnoux, Dominique

    2008-01-01

    Just like the periodical crystalline potential in solid state crystals determines their properties for the conduction of electrons, the periodical structuring of photonic crystals leads to envisioning the possibility of achieving a control of the photon flux in dielectric and metallic materials. The use of photonic crystals as cages for storing, filtering or guiding light at the wavelength scale paves the way to the realization of optical and optoelectronic devices with ultimate properties and dimensions. This will contribute towards meeting the demands for greater miniaturization imposed by the processing of an ever increasing number of data. Photonic Crystals will provide students and researchers from different fields with the theoretical background required for modelling photonic crystals and their optical properties, while at the same time presenting the large variety of devices, ranging from optics to microwaves, where photonic crystals have found application. As such, it aims at building bridges between...

  20. Nuclear photonics

    Science.gov (United States)

    Habs, D.; Günther, M. M.; Jentschel, M.; Thirolf, P. G.

    2012-07-01

    With the planned new γ-beam facilities like MEGa-ray at LLNL (USA) or ELI-NP at Bucharest (Romania) with 1013 γ/s and a band width of ΔEγ/Eγ≈10-3, a new era of γ beams with energies up to 20MeV comes into operation, compared to the present world-leading HIγS facility at Duke University (USA) with 108 γ/s and ΔEγ/Eγ≈3ṡ10-2. In the long run even a seeded quantum FEL for γ beams may become possible, with much higher brilliance and spectral flux. At the same time new exciting possibilities open up for focused γ beams. Here we describe a new experiment at the γ beam of the ILL reactor (Grenoble, France), where we observed for the first time that the index of refraction for γ beams is determined by virtual pair creation. Using a combination of refractive and reflective optics, efficient monochromators for γ beams are being developed. Thus, we have to optimize the total system: the γ-beam facility, the γ-beam optics and γ detectors. We can trade γ intensity for band width, going down to ΔEγ/Eγ≈10-6 and address individual nuclear levels. The term "nuclear photonics" stresses the importance of nuclear applications. We can address with γ-beams individual nuclear isotopes and not just elements like with X-ray beams. Compared to X rays, γ beams can penetrate much deeper into big samples like radioactive waste barrels, motors or batteries. We can perform tomography and microscopy studies by focusing down to μm resolution using Nuclear Resonance Fluorescence (NRF) for detection with eV resolution and high spatial resolution at the same time. We discuss the dominating M1 and E1 excitations like the scissors mode, two-phonon quadrupole octupole excitations, pygmy dipole excitations or giant dipole excitations under the new facet of applications. We find many new applications in biomedicine, green energy, radioactive waste management or homeland security. Also more brilliant secondary beams of neutrons and positrons can be produced.

  1. Evaluation of waste crate counter

    International Nuclear Information System (INIS)

    Wachter, J.R.; Shaw, S.W.

    1994-01-01

    A novel nondestructive measurement system has been developed to perform combined gamma-ray, passive neutron, and active neutron analyses of radioactive waste packaged in large crates. The system will be used to examine low level and transuranic waste at the Waste Receiving and Processing facility at Westinghouse-Hanford Corp. Prior to delivery of the system, an extensive evaluation of its performance characteristics will be conducted. The evaluation is to include an assessment of the mechanical properties of the system, gamma-ray attenuation correction algorithms, instrument response as a function of source positions, performance of the high resolution gamma-ray detector for ''hot spot'' and isotopic analyses, active and passive neutron counter response, instrument sensitivity, matrix effects, and packaging effects. This report will discuss the findings of the evaluation program, to date, and indicate future directions for the program

  2. Numerical model of thyroid counter

    Directory of Open Access Journals (Sweden)

    Szuchta Maciej

    2016-03-01

    Full Text Available The aim of this study was to develop a numerical model of spectrometric thyroid counter, which is used for the measurements of internal contamination by in vivo method. The modeled detector is used for a routine internal exposure monitoring procedure in the Radiation Protection Measurements Laboratory of National Centre for Nuclear Research (NCBJ. This procedure may also be used for monitoring of occupationally exposed nuclear medicine personnel. The developed model was prepared using Monte Carlo code FLUKA 2011 ver. 2b.6 Apr-14 and FLAIR ver. 1.2-5 interface. It contains a scintillation NaI(Tl detector, the collimator and the thyroid water phantom with a reference source of iodine 131I. The geometry of the model was designed and a gamma energy spectrum of iodine 131I deposited in the detector was calculated.

  3. Single photon detection in the SQS mode

    International Nuclear Information System (INIS)

    Alves, M.A.; Fraga, M.M.; Lima, E.P. de; Marques, R.F.; Neves, F.; Policarpo, A.

    1997-01-01

    Results are presented concerning the detection of single UV photons in self quenching streamer detectors by photoionization of one of the gas mixture components, in this case TEA (tri ethyl-amine), whose molecules have low photoionization potential and large absorption cross section. As a UV light source, a gas scintillation counter filled with krypton was used, whose emission light spectrum, centered at approximately 150 nm, overlaps well the photoionization spectrum of TEA. The mixtures studied were argon/ethane/TEA, argon/isobutane/TEA, argon/ethane/methylal/TEA and argon/isobutane/methylal/ TEA. (author). 4 refs., 4 figs

  4. Development of aerogel Cherenkov counters for KEDR detector

    International Nuclear Information System (INIS)

    Onuchin, A.P.; Shamov, A.G.; Vorobiov, A.I.; Danilyuk, A.F.; Gorodetskaya, T.A.; Kunznetsov, V.L.

    1990-01-01

    A threshold Cherenkov counters were proposed for particle identification in KEDR detector for B-mesons study. The counters are based on silica aerogel and phototubes, which can work in high magnetic field. Counters have a compact design and nearly 4π acceptance. In this paper design of counters is described. Tests of phototubes and Cherenkov counter prototype are presented

  5. On generating counter-rotating streamwise vortices

    KAUST Repository

    Winoto, S H

    2015-09-23

    Counter-rotating streamwise vortices are known to enhance the heat transfer rate from a surface and also to improve the aerodynamic performance of an aerofoil. In this paper, some methods to generate such counter-rotating vortices using different methods or physical conditions will be briefly considered and discussed.

  6. Charged particle identification: Cherenkov counters at ISABELLE

    International Nuclear Information System (INIS)

    Etkin, A.; Kostoulas, I.; Leith, D.W.G.S.; Thun, R.

    1977-01-01

    A brief summary is given of a study of Cherenkov counters for ISABELLE. The study was certainy not exhaustive and was meant primarily to suggest future detector development. A substantial research effort is needed in order to insure that Cherenkov counters utilizing photoionization are fully exploited

  7. Aerogel Cherenkov Counters of the KEDR Detector

    CERN Document Server

    Ovtin, I V; Barnyakov, M Y; Bobrovnikov, V S; Buzykaev, A R; Danilyuk, A F; Katcin, A A; Kononov, S A; Kravchenko, E A; Kuyanov, I A; Onuchin, A P; Rodiakin, V A

    2017-01-01

    The particle identification system of the KEDR detector is based on aerogel threshold Cherenkov counters called ASHIPH counters. The system consists of 160 counters arranged in two layers. An event reconstruction program for the ASHIPH system was developed. The position of each counter relative to the tracking system was determined using cosmic muons and Bhabha events. The geometric efficiency of the ASHIPH system was verified with Bhabha events. The efficiency of relativistic particle detection was measured with cosmic muons. A π/K separation of 4δ in the momentum range 0.95 −1.45 GeV/c was confirmed. A simulation program for the ASHIPH counters has been developed.

  8. Proportional neutron counters for reactor engineering

    International Nuclear Information System (INIS)

    Artem'eva, I.V.; Zasadych, Yu.B.; Malyshev, E.K.

    1986-01-01

    Proportional neutron counters, designed for measuring the neutron flux density at nuclear reactors; position sensitive proportional neutron counters and recoil proton proportional counters, used at research reactors and accelerators are considered. Modern level of proportional neutron counters is described and trends in development of that field of engineering are determined. Specifications of detectors for industrial application are presented. The main trend in reactor detector development is the increase of service life, radiation resistance and thermal resistance. A particular place among the counters is occupied by position sensitive detectors, which appear to be the most rapidly developing detector type. Their further development and application sphere expansion depend on the production technology improvement, the development and lowering the price of the measuring electronic equipment

  9. Photon-Counting Arrays for Time-Resolved Imaging

    Science.gov (United States)

    Antolovic, I. Michel; Burri, Samuel; Hoebe, Ron A.; Maruyama, Yuki; Bruschini, Claudio; Charbon, Edoardo

    2016-01-01

    The paper presents a camera comprising 512 × 128 pixels capable of single-photon detection and gating with a maximum frame rate of 156 kfps. The photon capture is performed through a gated single-photon avalanche diode that generates a digital pulse upon photon detection and through a digital one-bit counter. Gray levels are obtained through multiple counting and accumulation, while time-resolved imaging is achieved through a 4-ns gating window controlled with subnanosecond accuracy by a field-programmable gate array. The sensor, which is equipped with microlenses to enhance its effective fill factor, was electro-optically characterized in terms of sensitivity and uniformity. Several examples of capture of fast events are shown to demonstrate the suitability of the approach. PMID:27367697

  10. Photon-Counting Arrays for Time-Resolved Imaging

    Directory of Open Access Journals (Sweden)

    I. Michel Antolovic

    2016-06-01

    Full Text Available The paper presents a camera comprising 512 × 128 pixels capable of single-photon detection and gating with a maximum frame rate of 156 kfps. The photon capture is performed through a gated single-photon avalanche diode that generates a digital pulse upon photon detection and through a digital one-bit counter. Gray levels are obtained through multiple counting and accumulation, while time-resolved imaging is achieved through a 4-ns gating window controlled with subnanosecond accuracy by a field-programmable gate array. The sensor, which is equipped with microlenses to enhance its effective fill factor, was electro-optically characterized in terms of sensitivity and uniformity. Several examples of capture of fast events are shown to demonstrate the suitability of the approach.

  11. Photonic crystals: towards nanoscale photonic devices

    National Research Council Canada - National Science Library

    Lourtioz, J.-M

    2005-01-01

    .... From this point of view, the emergence of photonic bandgap materials and photonic crystals at the end of the 1980s can be seen as a revenge to the benefit this time of optics and electromagnetism. In the same way as the periodicity of solid state crystals determines the energy bands and the conduction properties of electrons, the periodical structur...

  12. Photon-photon measurements in CMS

    CERN Document Server

    Chudasama, Ruchi

    2017-01-01

    We discuss the measurement of photon-photon processes using data collected by the CMS experiment in pp collisions at $\\sqrt{s}$ = 7 and 8 TeV and in PbPb collisions at $\\sqrt{s_{_{{\\rm NN}}}}= 5.02$ TeV.

  13. High energy photon-photon collisions

    International Nuclear Information System (INIS)

    Brodsky, S.J.; Zerwas, P.M.

    1994-07-01

    The collisions of high energy photons produced at a electron-positron collider provide a comprehensive laboratory for testing QCD, electroweak interactions and extensions of the standard model. The luminosity and energy of the colliding photons produced by back-scattering laser beams is expected to be comparable to that of the primary e + e - collisions. In this overview, we shall focus on tests of electroweak theory in photon-photon annihilation, particularly γγ → W + W - , γγ → Higgs bosons, and higher-order loop processes, such as γγ → γγ, Zγ and ZZ. Since each photon can be resolved into a W + W minus pair, high energy photon-photon collisions can also provide a remarkably background-free laboratory for studying WW collisions and annihilation. We also review high energy γγ tests of quantum chromodynamics, such as the scaling of the photon structure function, t bar t production, mini-jet processes, and diffractive reactions

  14. Programmable Quantum Photonic Processor Using Silicon Photonics

    Science.gov (United States)

    2017-04-01

    mentioned above, increased infidelity in the single photon states produced by sources sharply increases the resource overhead for quantum repeaters...for a time-invariant cavity. Using a “dual Hong-Ou-Mandel” geometry shown in Fig. 3, we were able to ensure that the incoming and existing photon

  15. Photonic crystal light source

    Science.gov (United States)

    Fleming, James G [Albuquerque, NM; Lin, Shawn-Yu [Albuquerque, NM; Bur, James A [Corrales, NM

    2004-07-27

    A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

  16. Photonic Design for Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Kosten, E.; Callahan, D.; Horowitz, K.; Pala, R.; Atwater, H.

    2014-08-28

    We describe photonic design approaches for silicon photovoltaics including i) trapezoidal broadband light trapping structures ii) broadband light trapping with photonic crystal superlattices iii) III-V/Si nanowire arrays designed for broadband light trapping.

  17. Photonic crystal pioneer

    Science.gov (United States)

    Anscombe, Nadya

    2011-08-01

    Over the past ten years, Crystal Fiber, now part of NKT Photonics, has been busy commercializing photonic crystal fibre. Nadya Anscombe finds out about the evolution of the technology and its applications.

  18. The bremsstrahlung tagged photon beam in Hall B at JLab

    Energy Technology Data Exchange (ETDEWEB)

    Sober, D.I.; Crannell, Hall; Longhi, Alberto; Matthews, S.K.; O' Brien, J.T. E-mail: obrienj@cua.edu; Berman, B.L.; Briscoe, W.J.; Cole, Philip L.; Connelly, J.P.; Dodge, W.R.; Murphy, L.Y.; Philips, S.A.; Dugger, M.K.; Lawrence, D.; Ritchie, B.G.; Smith, E.S.; Lambert, James M.; Anciant, E.; Audit, G.; Auger, T.; Marchand, C.; Klusman, M.; Napolitano, J.; Khandaker, M.A.; Salgado, C.W.; Sarty, A.J

    2000-02-01

    We describe the design and commissioning of the photon tagging beamline installed in experimental Hall B at the Thomas Jefferson National Accelerator Facility (JLab). This system can tag photon energies over a range from 20% to 95% of the incident electron energy, and is capable of operation with beam energies up to 6.1 GeV. A single dipole magnet is combined with a hodoscope containing two planar arrays of plastic scintillators to detect energy-degraded electrons from a thin bremsstrahlung radiator. The first layer of 384 partially overlapping small scintillators provides photon energy resolution, while the second layer of 61 larger scintillators provides the timing resolution necessary to form a coincidence with the corresponding nuclear interaction triggered by the tagged photon. The definitions of overlap channels in the first counter plane and of geometric correlation between the two planes are determined using digitized time information from the individual counters. Auxiliary beamline devices are briefly described, and performance results to date under real operating conditions are presented. The entire photon-tagging system has met or exceeded its design goals.

  19. Quantum Biometrics with Retinal Photon Counting

    Science.gov (United States)

    Loulakis, M.; Blatsios, G.; Vrettou, C. S.; Kominis, I. K.

    2017-10-01

    It is known that the eye's scotopic photodetectors, rhodopsin molecules, and their associated phototransduction mechanism leading to light perception, are efficient single-photon counters. We here use the photon-counting principles of human rod vision to propose a secure quantum biometric identification based on the quantum-statistical properties of retinal photon detection. The photon path along the human eye until its detection by rod cells is modeled as a filter having a specific transmission coefficient. Precisely determining its value from the photodetection statistics registered by the conscious observer is a quantum parameter estimation problem that leads to a quantum secure identification method. The probabilities for false-positive and false-negative identification of this biometric technique can readily approach 10-10 and 10-4, respectively. The security of the biometric method can be further quantified by the physics of quantum measurements. An impostor must be able to perform quantum thermometry and quantum magnetometry with energy resolution better than 10-9ℏ , in order to foil the device by noninvasively monitoring the biometric activity of a user.

  20. Instability of counter-rotating stellar disks

    Science.gov (United States)

    Hohlfeld, R. G.; Lovelace, R. V. E.

    2015-09-01

    We use an N-body simulation, constructed using GADGET-2, to investigate an accretion flow onto an astrophysical disk that is in the opposite sense to the disk's rotation. In order to separate dynamics intrinsic to the counter-rotating flow from the impact of the flow onto the disk, we consider an initial condition in which the counter-rotating flow is in an annular region immediately exterior the main portion of the astrophysical disk. Such counter-rotating flows are seen in systems such as NGC 4826 (known as the "Evil Eye Galaxy"). Interaction between the rotating and counter-rotating components is due to two-stream instability in the boundary region. A multi-armed spiral density wave is excited in the astrophysical disk and a density distribution with high azimuthal mode number is excited in the counter-rotating flow. Density fluctuations in the counter-rotating flow aggregate into larger clumps and some of the material in the counter-rotating flow is scattered to large radii. Accretion flow processes such as this are increasingly seen to be of importance in the evolution of multi-component galactic disks.

  1. Photonic crystal fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Hansen, K P; Nielsen, M D

    2003-01-01

    Photonic crystal fibers having a complex microstructure in the transverse plane constitute a new and promising class of optical fibers. Such fibers can either guide light through total internal reflection or the photonic bandgap effect, In this paper, we review the different types and applications...... of photonic crystal fibers with particular emphasis on recent advances in the field....

  2. Delayed photon selfinterference

    International Nuclear Information System (INIS)

    Kessel', A.R.; Moiseev, S.A.

    1993-01-01

    Delayed photon selfinterference on a sample containing resonant two-level atoms is considered when the difference in the lengths in two optical paths exceeds the photon 'length'. It is shown that a reading pulse of the electromagnetic field can induce photon echo

  3. Diffusion Based Photon Mapping

    DEFF Research Database (Denmark)

    Schjøth, Lars; Olsen, Ole Fogh; Sporring, Jon

    2006-01-01

    . To address this problem we introduce a novel photon mapping algorithm based on nonlinear anisotropic diffusion. Our algorithm adapts according to the structure of the photon map such that smoothing occurs along edges and structures and not across. In this way we preserve the important illumination features......, while eliminating noise. We call our method diffusion based photon mapping....

  4. Development of DIRC counters for the PANDA experiment at FAIR

    International Nuclear Information System (INIS)

    Seitz, B.; Bettoni, D.; Branford, D.; Britting, A.; Carassiti, V.; Cecchi, A.; Cowie, E.; Dodokhof, V.Kh.; Dueren, M.; Eyrich, W.; Foehl, K.; Hayrapetyan, A.; Hill, G.; Hoek, M.; Hohler, R.; Kaiser, R.; Keri, T.; Lehmann, A.; Lehmann, D.; Marton, J.

    2011-01-01

    The PANDA experiment at the planned FAIR facility at GSI, Darmstadt, aims at measuring hadronic final states with unprecedented precision and luminosity. Superior particle identification of charged and neutral particles is mandatory to fulfil PANDA's physics aims. DIRC (Detection of Internally Reflected Cherenkov light) counters are foreseen for charged particle identification. A barrel DIRC will cover the central region while a disc DIRC will provide particle identification in the forward region. Three DIRC concepts differing in the radiator geometry and method for dispersion correction are studied. The barrel DIRC uses a novel imaging system and aims at exploiting a 3D reconstruction to mitigate dispersion effects. Two concepts are investigated for the forward disc DIRC. One concept employs passive dispersion correction and focussing light guides for image reconstruction. Alternatively, time-of-propagation measurements and a wave-length dependent photon detection system are investigated. The three detector designs share common developments such as investigating radiator properties and photon detection systems, and use the same test beam facilities.

  5. Calibration and background measurements with a tissue equivalent proportional counter

    International Nuclear Information System (INIS)

    Autischer, M.; Beck, P.; Rollet, S.; Kindl, P.; Latocha, M.

    2005-01-01

    Full text: A TEPC (tissue equivalent proportional counter) instrument has been used as the reference instrument for cosmic radiation measurement at flight altitudes by several institutes. For characterization purposes the instrument response has been investigated under different standard radiation conditions, in terms of radiation particle, energy and angular direction. Photon sources and photon beams up to 6 MeV and neutron beams up to 200MeV were used. To deepen understanding the shielding influence of the instrument assembly, the angle dependency were analyzed for several radiation conditions. Specific measurement conditions were simulated with the Monte Carlo transport code FLUKA. The measured instrument response is compared with simulation results. lt is demonstrated, that simulation are very helpful to understand the instruments response. The used TEPC instrument of the Austrian Research Center Seibersdorf (ARCS) simulates the energy deposition in a cell size tissue volume of 2 μm diameter. Pure propane at low pressure is used as measurement gas. To characterize the instrument at low dose rates, background measurements were done about 800 m below ground and at the ultra low level laboratory in Gran Sasso, 1380 m below ground. These results were compared with measurements on earth's surface at different altitudes on mountains up to 3480 m above the sea level. The significant increase of the expected dose rate is well reproduced by the experiments at mountain altitudes. As a result of this study a full characterization and a complete understanding of the performance and reliability of the detector is achieved. (author)

  6. 21 CFR 866.2170 - Automated colony counter.

    Science.gov (United States)

    2010-04-01

    ...) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2170 Automated colony counter. (a) Identification. An automated colony counter is a mechanical device intended for medical...

  7. High pressure BF3 proportional counter

    International Nuclear Information System (INIS)

    Mihara, Masaru; Gotoh, Eiichiro; Kodama, Masahiro

    1978-01-01

    Plateau and pulse characteristics of high pressure BF 3 proportional counter were investigated in terms of counter geometry and gas pressure, in order to develop a small-sized and high-sensitive one. Description is given of the construction of improved gas filling equipment with filling procedure. A tentative brass counter, 67 mm in cathode diameter, 40 micron in anode diameter, filled to 1.2 kg/cm 2 revealed characteristics of 150 volts plateau range, the slope of which being 3% per 100 volts at the operation voltage of around 3.3 kV, and 103% full width at half-maximum in the pulse height distribution. (auth.)

  8. Photon correlation holography.

    Science.gov (United States)

    Naik, Dinesh N; Singh, Rakesh Kumar; Ezawa, Takahiro; Miyamoto, Yoko; Takeda, Mitsuo

    2011-01-17

    Unconventional holography called photon correlation holography is proposed and experimentally demonstrated. Using photon correlation, i.e. intensity correlation or fourth order correlation of optical field, a 3-D image of the object recorded in a hologram is reconstructed stochastically with illumination through a random phase screen. Two different schemes for realizing photon correlation holography are examined by numerical simulations, and the experiment was performed for one of the reconstruction schemes suitable for the experimental proof of the principle. The technique of photon correlation holography provides a new insight into how the information is embedded in the spatial as well as temporal correlation of photons in the stochastic pseudo thermal light.

  9. Electron and Photon ID

    CERN Document Server

    Hryn'ova, Tetiana; The ATLAS collaboration

    2017-01-01

    The identification of prompt photons and the rejection of background coming mostly from photons from hadron decays relies on the high granularity of the ATLAS calorimeter. The electron identification used in ATLAS for run 2 is based on a likelihood discrimination to separate isolated electron candidates from candidates originating from photon conversions, hadron misidentification and heavy flavor decays. In addition, isolation variables are used as further handles to separate signal and background. Several methods are used to measure with data the efficiency of the photon identification requirements, to cover a broad energy spectrum. At low energy, photons from radiative Z decays are used. In the medium energy range, similarities between electrons and photon showers are exploited using Z->ee decays. At high energy, inclusive photon samples are used. The measurement of the efficiencies of the electron identification and isolation cuts are performed with the data using tag and probe techniques with large statis...

  10. Counter-Bioterrorism, US Intelligence Challenges

    National Research Council Canada - National Science Library

    Mardis, Howard

    2002-01-01

    This paper discusses challenges the US intelligence community faces in helping to counter bioterrorism a real and emerging threat that has the potential to cause mass destruction in the United States...

  11. Counter-Leadership Targeting and Conflict Termination

    National Research Council Canada - National Science Library

    Taylor, Bradly

    1999-01-01

    .... Can the leader be found? And, is it legal and ethical to attack the leader? Analysis rarely has been conducted to determine whether the targeted organization is vulnerable to Counter Leadership Targeting (CLT...

  12. ASHIPH counters for the KEDR detector

    CERN Document Server

    Barnyakov, A Y; Bobrovnikov, V S; Buzykaev, A R; Danilyuk, A F; Guber, F F; Kolachev, G M; Kononov, S A; Krasnov, V A; Kravchenko, E A; Kurepin, A B; Minakov, G D; Onuchin, A P; Savinov, G A; Tayursky, V A

    2002-01-01

    The status of the ASHIPH (Aerogel, wavelength SHIfter, and PHotomultipliers) system of the KEDR detector is described. The measurement of the quality of the particle identification with the ASHIPH counters was performed. The pi/K separation is 4.5 sigma for the momentum 1.2 GeV/c and 4.7 sigma for the momentum 0.86 GeV/c. Timing properties of the ASHIPH counter are measured. The time resolution for pions is 2 ns, and the BBQ decay time is 15 ns. The advantages and disadvantages of Cherenkov counters filled with aerogel crumb are discussed. The process of the mass counter production for the KEDR detector is described.

  13. Track reconstruction in BES barrel shower counter

    International Nuclear Information System (INIS)

    Zhao Haiwen; Wang Taijie; Mao Zepu; Li Jin; Li Weiguo; Yan Wuguang; Chen Guangpei; Liu Jing; Li Peiqin; Rong Gang; Yuan Ye; Liu Hongtao

    1999-01-01

    The track reconstruction of BES barrel shower counter was presented and the shower finding, pattern recognition technique were described. The reconstruction results from experimental data were presented and discussed

  14. Using over-the-counter medicines safely

    Science.gov (United States)

    ... ency/patientinstructions/000882.htm Using over-the-counter medicines safely To use the sharing features on this ... need to know about OTC drugs. About OTC Medicines You can buy OTC medicines without a prescription ...

  15. Bureaucracy vs. Bioterrorism: Countering a Globalized Threat

    Science.gov (United States)

    2011-02-16

    AIR WAR COLLEGE AIR UNIVERSITY BUREAUCRACY VS. BIOTERRORISM: COUNTERING A GLOBALIZED THREAT by Stephen G. Hoffman, Lt Col, USAF...DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Bureaucracy vs. Bioterrorism: Countering a Globalized Threat 5a. CONTRACT NUMBER...and novel biothreats to our adversaries. Globalization and the increasing availability of knowledge required to develop biothreats coupled with

  16. Quality control and the multicrystal counter

    International Nuclear Information System (INIS)

    Hart, G.C.; Davis, K.M.

    1983-01-01

    The reliability of multicrystal counters for use in counting large numbers of radioimmunoassay samples is studied. In particular, the dependencies of the outputs from the array of detectors, and hence their degree of matching, on the count rate and volume of the samples being counted are investigated. Quality control procedures are described to assist in the assurance of consistent performance of the counter in the clinical situation. (U.K.)

  17. Development of a Mobile Ice Nucleus Counter

    Energy Technology Data Exchange (ETDEWEB)

    Kok, Gregory [Droplet Measurement Technologies, Boulder, CO (United States); Kulkarni, Gourihar [Droplet Measurement Technologies, Boulder, CO (United States)

    2014-07-10

    An ice nucleus counter has been constructed. The instrument uses built-in refrigeration systems for wall cooling. A cascade refrigeration system will allow the cold wall to operate as low as -70°C, and a single stage system can operate the warm wall at -45C. A unique optical particle counter has been constructed using polarization detection of the scattered light. This allows differentiation of the particles exiting the chamber to determine if they are ice or liquid.

  18. Submillisecond X-ray photon correlation spectroscopy from a pixel array detector with fast dual gating and no readout dead-time.

    Science.gov (United States)

    Zhang, Qingteng; Dufresne, Eric M; Grybos, Pawel; Kmon, Piotr; Maj, Piotr; Narayanan, Suresh; Deptuch, Grzegorz W; Szczygiel, Robert; Sandy, Alec

    2016-05-01

    Small-angle scattering X-ray photon correlation spectroscopy (XPCS) studies were performed using a novel photon-counting pixel array detector with dual counters for each pixel. Each counter can be read out independently from the other to ensure there is no readout dead-time between the neighboring frames. A maximum frame rate of 11.8 kHz was achieved. Results on test samples show good agreement with simple diffusion. The potential of extending the time resolution of XPCS beyond the limit set by the detector frame rate using dual counters is also discussed.

  19. Nonlinear silicon photonics

    Science.gov (United States)

    Borghi, M.; Castellan, C.; Signorini, S.; Trenti, A.; Pavesi, L.

    2017-09-01

    Silicon photonics is a technology based on fabricating integrated optical circuits by using the same paradigms as the dominant electronics industry. After twenty years of fervid development, silicon photonics is entering the market with low cost, high performance and mass-manufacturable optical devices. Until now, most silicon photonic devices have been based on linear optical effects, despite the many phenomenologies associated with nonlinear optics in both bulk materials and integrated waveguides. Silicon and silicon-based materials have strong optical nonlinearities which are enhanced in integrated devices by the small cross-section of the high-index contrast silicon waveguides or photonic crystals. Here the photons are made to strongly interact with the medium where they propagate. This is the central argument of nonlinear silicon photonics. It is the aim of this review to describe the state-of-the-art in the field. Starting from the basic nonlinearities in a silicon waveguide or in optical resonator geometries, many phenomena and applications are described—including frequency generation, frequency conversion, frequency-comb generation, supercontinuum generation, soliton formation, temporal imaging and time lensing, Raman lasing, and comb spectroscopy. Emerging quantum photonics applications, such as entangled photon sources, heralded single-photon sources and integrated quantum photonic circuits are also addressed at the end of this review.

  20. Scintillation counter with MRS APD light readout

    International Nuclear Information System (INIS)

    Akindinov, A.; Bondarenko, G.; Golovin, V.; Grigoriev, E.; Grishuk, Yu.; Mal'kevich, D.; Martemiyanov, A.; Ryabinin, M.; Smirnitskiy, A.; Voloshin, K.

    2005-01-01

    START, a high-efficiency and low-noise scintillation detector for ionizing particles, was developed for the purpose of creating a high-granular system for triggering cosmic muons. Scintillation light in START is detected by MRS APDs (Avalanche Photo-Diodes with Metal-Resistance-Semiconductor Structure), operated in the Geiger mode, which have 1mm 2 sensitive areas. START is assembled from a 15x15x1cm 3 scintillating plastic plate, two MRS APDs and two pieces of wavelength-shifting optical fiber stacked in circular coils inside the plastic. The front-end electronic card is mounted directly on the detector. Tests with START have confirmed its operational consistency, over 99% efficiency of MIP registration and good homogeneity. START demonstrates a low intrinsic noise of about 10 -2 Hz. If these detectors are to be mass-produced, the cost of a mosaic array of STARTs is estimated at a moderate level of 2-3kUSD/m 2

  1. Modular high speed counter employing edge-triggered code

    Science.gov (United States)

    Vanstraelen, G.F.

    1993-06-29

    A high speed modular counter (100) utilizing a novel counting method in which the first bit changes with the frequency of the driving clock, and changes in the higher order bits are initiated one clock pulse after a 0'' to 1'' transition of the next lower order bit. This allows all carries to be known one clock period in advance of a bit change. The present counter is modular and utilizes two types of standard counter cells. A first counter cell determines the zero bit. The second counter cell determines any other higher order bit. Additional second counter cells are added to the counter to accommodate any count length without affecting speed.

  2. Single-photon imaging

    CERN Document Server

    Seitz, Peter

    2011-01-01

    The acquisition and interpretation of images is a central capability in almost all scientific and technological domains. In particular, the acquisition of electromagnetic radiation, in the form of visible light, UV, infrared, X-ray, etc. is of enormous practical importance. The ultimate sensitivity in electronic imaging is the detection of individual photons. With this book, the first comprehensive review of all aspects of single-photon electronic imaging has been created. Topics include theoretical basics, semiconductor fabrication, single-photon detection principles, imager design and applications of different spectral domains. Today, the solid-state fabrication capabilities for several types of image sensors has advanced to a point, where uncoooled single-photon electronic imaging will soon become a consumer product. This book is giving a specialist´s view from different domains to the forthcoming “single-photon imaging” revolution. The various aspects of single-photon imaging are treated by internati...

  3. Hybrid photon detectors

    CERN Document Server

    D'Ambrosio, C

    2003-01-01

    Hybrid photon detectors detect light via vacuum photocathodes and accelerate the emitted photoelectrons by an electric field towards inversely polarized silicon anodes, where they are absorbed, thus producing electron-hole pairs. These, in turn, are collected and generate electronic signals on their ohmic contacts. This review first describes the characteristic properties of the main components of hybrid photon detectors: light entrance windows, photocathodes, and silicon anodes. Then, essential relations describing the trajectories of photoelectrons in electric and magnetic fields and their backscattering from the silicon anodes are derived. Depending on their anode configurations, three families of hybrid photon detectors are presented: hybrid photomultiplier tubes with single anodes for photon counting with high sensitivity and for gamma spectroscopy; multi-anode photon detector tubes with anodes subdivided into square or hexagonal pads for position-sensitive photon detection; imaging silicon pixel array t...

  4. Spin annihilations of and spin sifters for transverse electric and transverse magnetic waves in co- and counter-rotations.

    Science.gov (United States)

    Lee, Hyoung-In; Mok, Jinsik

    2014-01-01

    This study is motivated in part to better understand multiplexing in wireless communications, which employs photons carrying varying angular momenta. In particular, we examine both transverse electric (TE) and transverse magnetic (TM) waves in either co-rotations or counter-rotations. To this goal, we analyze both Poynting-vector flows and orbital and spin parts of the energy flow density for the combined fields. Consequently, we find not only enhancements but also cancellations between the two modes. To our surprise, the photon spins in the azimuthal direction exhibit a complete annihilation for the counter-rotational case even if the intensities of the colliding waves are of different magnitudes. In contrast, the orbital flow density disappears only if the two intensities satisfy a certain ratio. In addition, the concepts of spin sifters and enantiomer sorting are illustrated.

  5. Spin annihilations of and spin sifters for transverse electric and transverse magnetic waves in co- and counter-rotations

    Directory of Open Access Journals (Sweden)

    Hyoung-In Lee

    2014-10-01

    Full Text Available This study is motivated in part to better understand multiplexing in wireless communications, which employs photons carrying varying angular momenta. In particular, we examine both transverse electric (TE and transverse magnetic (TM waves in either co-rotations or counter-rotations. To this goal, we analyze both Poynting-vector flows and orbital and spin parts of the energy flow density for the combined fields. Consequently, we find not only enhancements but also cancellations between the two modes. To our surprise, the photon spins in the azimuthal direction exhibit a complete annihilation for the counter-rotational case even if the intensities of the colliding waves are of different magnitudes. In contrast, the orbital flow density disappears only if the two intensities satisfy a certain ratio. In addition, the concepts of spin sifters and enantiomer sorting are illustrated.

  6. Design and properties of position-sensitive proportional counters using resistance--capacitance position encoding

    International Nuclear Information System (INIS)

    Borkowski, C.J.; Kopp, M.K.

    1975-01-01

    The construction and signal processing methods of several experimental gas-filled, position-sensitive proportional counters (PSPCs) using resistance--capacitance (RC) position encoding are described, and guidelines for the design and operation of these counters are given. Using these guidelines, we were able to improve the spatial resolution and shorten the signal processing time; for example, the intrinsic spatial uncertainty in the position measurement was reduced to 28 μ FWHM for alpha particles and 100 μ FWHM for low-energy x rays (2--6 keV). Also, the signal processing time was reduced to 0.6 μsec without seriously degrading the spatial resolution. These results have widened the field of application of the RC position encoding method for position measurements of low-energy photons, neutrons, and charged particles in a wide variety of nuclear physics experiments, in nuclear medicine imaging, and in low-dose, medium-resolution radiography. (AIP)

  7. Tale of two photons

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    A very profitable spinoff from electron- positron collisions is two-photon physics. Rather than the electron and positron interacting directly via an exchanged photon, two virtual (transient) photons, one from each particle, get tangled up. With new electron-positron colliders appearing on the scene, a topical meeting on two-photon physics - 'From DAPHNE to LEP 200 and beyond' - held from 2-4 February in Paris, in the premises of the Ministry of Higher Education and Research, was particularly timely. Some 60 physicists, both experimentalists and theorists, participated, with some thirty speakers

  8. Photon virtual bound state

    International Nuclear Information System (INIS)

    Inoue, J.; Ohtaka, K.

    2004-01-01

    We study virtual bound states in photonics, which are a vectorial extension of electron virtual bound states. The condition for these states is derived. It is found that the Mie resonant state which satisfies the condition that the size parameter is less than the angular momentum should be interpreted as a photon virtual bound state. In order to confirm the validity of the concept, we compare the photonic density of states, the width of which represents the lifetime of the photon virtual bound states, with numerical results

  9. Photonic Integrated Circuits

    Science.gov (United States)

    Krainak, Michael; Merritt, Scott

    2016-01-01

    Integrated photonics generally is the integration of multiple lithographically defined photonic and electronic components and devices (e.g. lasers, detectors, waveguides passive structures, modulators, electronic control and optical interconnects) on a single platform with nanometer-scale feature sizes. The development of photonic integrated circuits permits size, weight, power and cost reductions for spacecraft microprocessors, optical communication, processor buses, advanced data processing, and integrated optic science instrument optical systems, subsystems and components. This is particularly critical for small spacecraft platforms. We will give an overview of some NASA applications for integrated photonics.

  10. Advanced Photon Source (APS)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Photon Source (APS) at the U.S. Department of Energy's Argonne National Laboratoryprovides this nation's (in fact, this hemisphere's) brightest storage...

  11. Review on Dark Photon

    Directory of Open Access Journals (Sweden)

    Curciarello Francesca

    2016-01-01

    Full Text Available e+e− collider experiments at the intensity frontier are naturally suited to probe the existence of a force beyond the Standard Model between WIMPs, the most viable dark matter candidates. The mediator of this new force, known as dark photon, should be a new vector gauge boson very weakly coupled to the Standard Model photon. No significant signal has been observed so far. I will report on current limits set on the coupling factor ε2 between the photon and the dark photon by e+e− collider experiments.

  12. Biomedical photonics handbook

    CERN Document Server

    Vo-Dinh, Tuan

    2003-01-01

    1.Biomedical Photonics: A Revolution at the Interface of Science and Technology, T. Vo-DinhPHOTONICS AND TISSUE OPTICS2.Optical Properties of Tissues, J. Mobley and T. Vo-Dinh3.Light-Tissue Interactions, V.V. Tuchin 4.Theoretical Models and Algorithms in Optical Diffusion Tomography, S.J. Norton and T. Vo-DinhPHOTONIC DEVICES5.Laser Light in Biomedicine and the Life Sciences: From the Present to the Future, V.S. Letokhov6.Basic Instrumentation in Photonics, T. Vo-Dinh7.Optical Fibers and Waveguides for Medical Applications, I. Gannot and

  13. Spectral distribution of the 2S → 1S two-photon transition in atoms ...

    Indian Academy of Sciences (India)

    counters). Schematic of the GSI accelerator facility and the experimental set-up at the target area of the ESR storage ring are depicted in figures 1 and 2, respectively. The photons emitted from the beam–target interaction region were detected by a pla- nar HPGe detector placed at 35. ◦ observation angles with respect to the ...

  14. Extensive tests of Hybrid Photon Detectors (HPD) used to collect Cherenkov light

    International Nuclear Information System (INIS)

    Borsato, E.; Buccheri, A.; DalCorso, F.; Ferroni, F.; Iacovella, F.; Mazzoni, M.A.; Morandin, M.; Morganti, S.; Piredda, G.; Posocco, M.; Santacesaria, R.; Stroili, R.; Torassa, E.; Voci, C.

    1997-01-01

    The principle of operation of a newly developed proximity focused Hybrid Photon Detector is described. The HPD characteristics, performance and calibration are reported. Results from beam tests of aerogel threshold counters read out by HPD and the particle identification performance are presented. (orig.)

  15. Calibration of the whole body counter at PSI

    International Nuclear Information System (INIS)

    Mayer, Sabine; Boschung, Markus; Fiechtner, Annette; Habegger, Ruedi; Meier, Kilian; Wernli, Christian

    2008-01-01

    At the Paul Scherrer Institut (PSI), measurements with the whole body counter are routinely carried out for occupationally exposed persons and occasionally for individuals of the population suspected of radioactive intake. In total about 400 measurements are performed per year. The whole body counter is based on a p-type high purity germanium (HPGe) coaxial detector mounted above a canvas chair in a shielded small room. The detector is used to detect the presence of radionuclides that emit photons with energies between 50 keV and 2 MeV. The room itself is made of iron from old railway rails to reduce the natural background radiation to 24 n Sv/h. The present paper describes the calibration of the system with the IGOR phantom. Different body sizes are realized by different standardized configurations of polyethylene bricks, in which small tubes of calibration sources can be introduced. The efficiency of the detector was determined for four phantom geometries (P1, P2, P4 and P6 simulating human bodies in sitting position of 12 kg, 24 kg, 70 kg and 110 kg, respectively. The measurements were performed serially using five different radionuclide sources ( 40 K, 60 Co, 133 Ba, 137 Cs, 152 Eu) within the phantom bricks. Based on results of the experiment, an efficiency curve for each configuration and the detection limits for relevant radionuclides were determined. For routine measurements, the efficiency curve obtained with the phantom geometry P4 was chosen. The detection limits range from 40 Bq to 1000 Bq for selected radionuclides applying a measurement time of 7 min. The proper calibration of the system, on one hand, is essential for the routine measurements at PSI. On the other hand, it serves as a benchmark for the already initiated characterisation of the system with Monte Carlo simulations. (author)

  16. Counter-balanced, multiple cable construction crane

    Science.gov (United States)

    Mikulas, Martin M., Jr. (Inventor); Yang, Li-Farn (Inventor)

    1993-01-01

    The invention is a counter-balanced, multiple cable construction crane. The apparatus for hoisting payloads comprises a crane having a lifting means, the lifting means comprising an end effector means and three suspension means or cables. One end of each cable attaches to a different winding means located on the lifting means, and the other end of each cable attaches to a different point on the end effector, such that the three cables have a theoretical point of convergence with this point corresponding to the center of mass of the payload. Three controls command rotation of the winding means to a predetermined position. Accordingly, the crane provides precise and autonomous positioning of the payload without human guidance. The crane further comprises a counter-balancing means. Two controls position the counter-balancing means to offset the overturning moment which arises during the lifting of heavy payloads.

  17. An extended range neutron rem counter

    International Nuclear Information System (INIS)

    Birattari, C.; Nuccetelli, C.; Pelliccioni, M.; Silari, M.

    1990-01-01

    Extensive Monte Carlo calculations have been carried out to assess the possibility of extending the sensitivity of a neutron rem counter of the Andersson-Braun type up to several hundred MeV. The validity of the model adopted has first been checked by comparing with experimental data the calculated response curve and the angular dependence of the sensitivity for a well known commercial rem counter. Next, a number of modifications to the configuration of the moderator-attenuator have been investigated. The response functions and angular distributions produced by two simple solutions yielding an instrument with a sensitivity extended up to 400 MeV are presented. The response of the original rem counter and of its two modified versions to nine test spectra has also been calculated. The resulting instrument is transportable rather than portable, but the availability of an extended range neutron survey meter would be of great advantage at medium and high energy particle accelerator facilities. (orig.)

  18. Semi-portable whole body counter deployable during post-radiological accident

    International Nuclear Information System (INIS)

    Panchal, C.G.; Bansode, P.Y.; Vinod, M.; Sarade, Bhagyashree; Jain, R.K.; Jakati, R.K.; Pithawa, C.K.

    2012-01-01

    A versatile whole body counter with the state of art electronics has been indigenously designed and developed which can be readily deployed for use during nuclear emergency. This instrument is designed to quickly identify and quantify the activity of high energy photon emitters accumulated particularly in vital organs like thyroid, lungs besides the body of the victims of the radiological incident or accident. Special features of the instruments are swivel type detectors assembly mountable on a wall or table top and detachable collimator configurable to assess the internal contamination selectively to meet protective measures of the radiological accidents, mechanically rugged and functionally reliable to perform in contaminated environmental field conditions. (author)

  19. Two Photon Distribution Amplitudes

    International Nuclear Information System (INIS)

    El Beiyad, M.; Pire, B.; Szymanowski, L.; Wallon, S.

    2008-01-01

    The factorization of the amplitude of the process γ*γ→γγ in the low energy and high photon virtuality region is demonstrated at the Born order and in the leading logarithmic approximation. The leading order two photon (generalized) distribution amplitudes exhibit a characteristic ln Q 2 behaviour and obey new inhomogeneous evolution equations

  20. Photon beam position monitor

    Science.gov (United States)

    Kuzay, Tuncer M.; Shu, Deming

    1995-01-01

    A photon beam position monitor for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade "shadowing". Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation.

  1. Integrated microwave photonics

    NARCIS (Netherlands)

    Marpaung, D.A.I.; Roeloffzen, C.G.H.; Heideman, Rene; Leinse, Arne; Sales, S.; Capmany, J.

    2013-01-01

    Microwave photonics (MWP) is an emerging field in which radio frequency (RF) signals are generated, distributed, processed and analyzed using the strength of photonic techniques. It is a technology that enables various functionalities which are not feasible to achieve only in the microwave domain. A

  2. Diffusion Based Photon Mapping

    DEFF Research Database (Denmark)

    Schjøth, Lars; Fogh Olsen, Ole; Sporring, Jon

    2007-01-01

    . To address this problem we introduce a novel photon mapping algorithm based on nonlinear anisotropic diffusion. Our algorithm adapts according to the structure of the photon map such that smoothing occurs along edges and structures and not across. In this way we preserve the important illumination features...

  3. ALICE Photon Multiplicity Detector

    CERN Multimedia

    Nayak, T

    2013-01-01

    Photon Multiplicity Detector (PMD) measures the multiplicity and spatial distribution of photons in the forward region of ALICE on a event-by-event basis. PMD is a pre-shower detector having fine granularity and full azimuthal coverage in the pseudo-rapidity region 2.3 < η < 3.9.

  4. Diffusion Based Photon Mapping

    DEFF Research Database (Denmark)

    Schjøth, Lars; Sporring, Jon; Fogh Olsen, Ole

    2008-01-01

    . To address this problem, we introduce a photon mapping algorithm based on nonlinear anisotropic diffusion. Our algorithm adapts according to the structure of the photon map such that smoothing occurs along edges and structures and not across. In this way, we preserve important illumination features, while...

  5. Calibration of nuclear medicine gamma counters

    International Nuclear Information System (INIS)

    Orlic, M.; Spasic-Jokic, V.; Jovanovic, M.; Vranjes, S. . E-mail address of corresponding author: morlic@vin.bg.ac.yu; Orlic, M.)

    2005-01-01

    In this paper the practical problem of nuclear medicine gamma counters calibration has been solved by using dose calibrators CRC-15R with standard error ±5%. The samples from technetium generators have been measured both by dose calibrators CRC-15R and gamma counter ICN Gamma 3.33 taking into account decay correction. Only the linear part of the curve has practical meaning. The advantage of this procedure satisfies the requirements from international standards: the calibration of sources used for medical exposure be traceable to a standard dosimetry laboratory and radiopharmaceuticals for nuclear medicine procedures be calibrated in terms of activity of the radiopharmaceutical to be administered. (author)

  6. Whole body counters: types, performance and uses

    International Nuclear Information System (INIS)

    Jales, R.L.C.

    1983-01-01

    The present monograph deals with Whole Counters, since its definition, evolution, performance, clinical indications and results. Scintillation crystals detection systems were described as well as scintillant solutions, plastic scintillations, and gaseous detectors, including its interplay forms and basal characteristics. Geometric arrangements of standard chair, arc and hammock, arrangements with scintillant solutions and plastic scintillations, as well as special geometric arrangements were equally commented. Clinic and experimental studies were also dealt with Whole Body Counters, giving examples with potassium, iron vitamin B 12 and albumin. (author)

  7. Analysis of counter-rotating wind turbines

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Zakkam, Vinod Arun Kumar; Sørensen, Jens Nørkær

    2007-01-01

    This paper presents a study on the performance of a wind turbine with two counter-rotating (CRWT) rotors. The characteristics of the two counter-rotating rotors are on a 3-bladed Nordtank 500 kW rotor. The analysis has been carried out by using an Actuator Line technique implemented in the Navier......-Stokes code EllipSys3D. The analysis shows that the Annual Energy Production can be increased to about 43.5 %, as compared to a wind turbine with a single rotor. In order to determine the optimal settings of the CRWT turbine, parameters such as distance between two rotors and rotational speed have been...

  8. High energy photon response

    International Nuclear Information System (INIS)

    Cummings, F.M.; Yoder, R.C.; Endres, G.W.R.; Kathren, R.L.

    1981-01-01

    This study examines the response of the Hanford 4-chip and 5-chip dosimeter to high energy photons. The dose response of the Hanford Multipurpose Personnel Diometer (HMPD) to photons with energies greater than 0.65 MeV has been evaluated relative to the dose produced by photons from a 60 Co. source. The penetrating dose determined with the HMPD is compared to the 1 cm depth dose in tissue measured with an extrapolation chamber. The results of the study indicate that the HMPD can be used to estimate the 1 cm depth dose in tissue from photons with energies between 0.65 MeV and 3.0 MeV to within an accuracy of 15%. However, the 1 cm depth dose is underestimated by 38% when the dosimeter is irradiated in a beam of very high energy photons produced by bombarding a tungsten target with 25 MeV electrons

  9. Photonic Crystal Fibres

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes; Sanchez Bjarklev, Araceli

    Photonic crystal fibres represent one of the most active research areas today in the field of optics. The diversity of applications that may be addressed by these fibres and their fundamental appeal, by opening up the possibility of guiding light in a radically new way compared to conventional...... optical fibres, have spun an interest from almost all areas of optics and photonics. The aim of this book is to provide an understanding of the different types of photonic crystal fibres and to outline some of the many new and exciting applications that these fibres offer. The book is intended for both...... readers with a general interest in photonic crystals, as well as for scientists who are entering the field and desire a broad overview as well as a solid starting point for further specialized stuides. Teh book, therefore, covers bothe general aspects such as the link from classical optics to photonic...

  10. Active Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Ek, Sara

    This thesis deals with the fabrication and characterization of active photonic crystal waveguides, realized in III-V semiconductor material with embedded active layers. The platform offering active photonic crystal waveguides has many potential applications. One of these is a compact photonic...... crystal semiconductor optical amplier. As a step towards such a component, photonic crystal waveguides with a single quantum well, 10 quantum wells and three layers of quantum dots are fabricated and characterized. An experimental study of the amplied spontaneous emission and a implied transmission...... are presented in this thesis. A variation of photonic crystal design parameters are used leading to a spectral shift of the dispersion, it is veried that the observed effects shift accordingly. An enhancement of the amplified spontaneous emission was observed close to the band edge, where light is slowed down...

  11. Nonlinear Photonics 2014: introduction.

    Science.gov (United States)

    Akhmediev, N; Kartashov, Yaroslav

    2015-01-12

    International Conference "Nonlinear Photonics-2014" took place in Barcelona, Spain on July 27-31, 2014. It was a part of the "Advanced Photonics Congress" which is becoming a traditional notable event in the world of photonics. The current focus issue of Optics Express contains contributions from the participants of the Conference and the Congress. The articles in this focus issue by no means represent the total number of the congress contributions (around 400). However, it demonstrates wide range of topics covered at the event. The next conference of this series is to be held in 2016 in Australia, which is the home of many researchers working in the field of photonics in general and nonlinear photonics in particular.

  12. Ion photon emission microscope

    Science.gov (United States)

    Doyle, Barney L.

    2003-04-22

    An ion beam analysis system that creates microscopic multidimensional image maps of the effects of high energy ions from an unfocussed source upon a sample by correlating the exact entry point of an ion into a sample by projection imaging of the ion-induced photons emitted at that point with a signal from a detector that measures the interaction of that ion within the sample. The emitted photons are collected in the lens system of a conventional optical microscope, and projected on the image plane of a high resolution single photon position sensitive detector. Position signals from this photon detector are then correlated in time with electrical effects, including the malfunction of digital circuits, detected within the sample that were caused by the individual ion that created these photons initially.

  13. Scanning, Multibeam, Single Photon Lidars for Rapid, Large Scale, High Resolution, Topographic and Bathymetric Mapping

    Directory of Open Access Journals (Sweden)

    John J. Degnan

    2016-11-01

    Full Text Available Several scanning, single photon sensitive, 3D imaging lidars are herein described that operate at aircraft above ground levels (AGLs between 1 and 11 km, and speeds in excess of 200 knots. With 100 beamlets and laser fire rates up to 60 kHz, we, at the Sigma Space Corporation (Lanham, MD, USA, have interrogated up to 6 million ground pixels per second, all of which can record multiple returns from volumetric scatterers such as tree canopies. High range resolution has been achieved through the use of subnanosecond laser pulsewidths, detectors and timing receivers. The systems are presently being deployed on a variety of aircraft to demonstrate their utility in multiple applications including large scale surveying, bathymetry, forestry, etc. Efficient noise filters, suitable for near realtime imaging, have been shown to effectively eliminate the solar background during daytime operations. Geolocation elevation errors measured to date are at the subdecimeter level. Key differences between our Single Photon Lidars, and competing Geiger Mode lidars are also discussed.

  14. Ranging accuracy improvement of time-correlated signal-photon counting lidar

    Science.gov (United States)

    Zhang, Zijing; Zhao, Yuan; Zhang, Jiandong; Cen, Longzhu; Li, Shuo; Sun, Yifei; Wang, Feng

    2017-11-01

    Lidar based on Geiger-mode Avalanche Photodiode Detector (Gm-APD), also called Gm-APD Lidar for short, has the advantages of the ultra-high sensitivity and ranging accuracy, and therefore it is widely used in the weak signal detection over a long distance. Time-Correlated Single Photon Counting (TCSPC) is a more commonly used signal processing method of Gm-APD Lidar. However, after each avalanche response, Gm-APD needs a certain time to quench avalanche current, which is called the dead time. In the dead time, Gm-APD can't response any signal. This will result in the uneven response by Gm-APD, and the response probability of the front of the echo pulse signal is higher than that of the back of the echo pulse signal. The peak of photon counting results will deviate from the real peak of the echo signal, and this deviation will become larger with the increase of the echo pulse width. In many application environments (for example, underwater, battlefield smoke, fog and dust, etc.), the broadening effect of the echo pulse signal is obvious, and this will seriously impact the ranging accuracy of Gm-APD Lidar. In this paper, an improved method uses the multi-gate detection to response the complete waveform of the echo pulse signal, and thus improves the ranging accuracy of GmAPD due to obtaining more accurate echo pulse peak.

  15. Single-Photon Avalanche Diode with Enhanced NIR-Sensitivity for Automotive LIDAR Systems.

    Science.gov (United States)

    Takai, Isamu; Matsubara, Hiroyuki; Soga, Mineki; Ohta, Mitsuhiko; Ogawa, Masaru; Yamashita, Tatsuya

    2016-03-30

    A single-photon avalanche diode (SPAD) with enhanced near-infrared (NIR) sensitivity has been developed, based on 0.18 μm CMOS technology, for use in future automotive light detection and ranging (LIDAR) systems. The newly proposed SPAD operating in Geiger mode achieves a high NIR photon detection efficiency (PDE) without compromising the fill factor (FF) and a low breakdown voltage of approximately 20.5 V. These properties are obtained by employing two custom layers that are designed to provide a full-depletion layer with a high electric field profile. Experimental evaluation of the proposed SPAD reveals an FF of 33.1% and a PDE of 19.4% at 870 nm, which is the laser wavelength of our LIDAR system. The dark count rate (DCR) measurements shows that DCR levels of the proposed SPAD have a small effect on the ranging performance, even if the worst DCR (12.7 kcps) SPAD among the test samples is used. Furthermore, with an eye toward vehicle installations, the DCR is measured over a wide temperature range of 25-132 °C. The ranging experiment demonstrates that target distances are successfully measured in the distance range of 50-180 cm.

  16. Single-Photon Avalanche Diode with Enhanced NIR-Sensitivity for Automotive LIDAR Systems

    Directory of Open Access Journals (Sweden)

    Isamu Takai

    2016-03-01

    Full Text Available A single-photon avalanche diode (SPAD with enhanced near-infrared (NIR sensitivity has been developed, based on 0.18 μm CMOS technology, for use in future automotive light detection and ranging (LIDAR systems. The newly proposed SPAD operating in Geiger mode achieves a high NIR photon detection efficiency (PDE without compromising the fill factor (FF and a low breakdown voltage of approximately 20.5 V. These properties are obtained by employing two custom layers that are designed to provide a full-depletion layer with a high electric field profile. Experimental evaluation of the proposed SPAD reveals an FF of 33.1% and a PDE of 19.4% at 870 nm, which is the laser wavelength of our LIDAR system. The dark count rate (DCR measurements shows that DCR levels of the proposed SPAD have a small effect on the ranging performance, even if the worst DCR (12.7 kcps SPAD among the test samples is used. Furthermore, with an eye toward vehicle installations, the DCR is measured over a wide temperature range of 25–132 °C. The ranging experiment demonstrates that target distances are successfully measured in the distance range of 50–180 cm.

  17. Range walk error correction and modeling on Pseudo-random photon counting system

    Science.gov (United States)

    Shen, Shanshan; Chen, Qian; He, Weiji

    2017-08-01

    Signal to noise ratio and depth accuracy are modeled for the pseudo-random ranging system with two random processes. The theoretical results, developed herein, capture the effects of code length and signal energy fluctuation are shown to agree with Monte Carlo simulation measurements. First, the SNR is developed as a function of the code length. Using Geiger-mode avalanche photodiodes (GMAPDs), longer code length is proven to reduce the noise effect and improve SNR. Second, the Cramer-Rao lower bound on range accuracy is derived to justify that longer code length can bring better range accuracy. Combined with the SNR model and CRLB model, it is manifested that the range accuracy can be improved by increasing the code length to reduce the noise-induced error. Third, the Cramer-Rao lower bound on range accuracy is shown to converge to the previously published theories and introduce the Gauss range walk model to range accuracy. Experimental tests also converge to the presented boundary model in this paper. It has been proven that depth error caused by the fluctuation of the number of detected photon counts in the laser echo pulse leads to the depth drift of Time Point Spread Function (TPSF). Finally, numerical fitting function is used to determine the relationship between the depth error and the photon counting ratio. Depth error due to different echo energy is calibrated so that the corrected depth accuracy is improved to 1cm.

  18. A calibration method for whole-body counters, using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Ishikawa, T.; Matsumoto, M.; Uchiyama, M.

    1996-01-01

    A Monte Carlo simulation code was developed to estimate the counting efficiencies in whole-body counting for various body sizes. The code consists of mathematical models and parameters which are categorised into three groups: a geometrical model for phantom and detectors, a photon transport model, and a detection system model. Photon histories were simulated with these models. The counting efficiencies for five 137 Cs block phantoms of different sizes were calculated by the code and compared with those measured with a whole-body counter at NIRS (Japan). The phantoms corresponded to a newborn, a 5 month old, a 6 year old, and 11 year old and an adult. The differences between the measured and calculated values were within 6%. For the adult phantom, the difference was 0.5%. The results suggest that the Monte Carlo simulation code can be used to estimate the counting efficiencies for various body sizes. (Author)

  19. A calibration method for whole-body counters, using Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, T.; Matsumoto, M.; Uchiyama, M. [National Inst. of Radiological Sciences, Chiba (Japan)

    1996-11-01

    A Monte Carlo simulation code was developed to estimate the counting efficiencies in whole-body counting for various body sizes. The code consists of mathematical models and parameters which are categorised into three groups: a geometrical model for phantom and detectors, a photon transport model, and a detection system model. Photon histories were simulated with these models. The counting efficiencies for five {sup 137}Cs block phantoms of different sizes were calculated by the code and compared with those measured with a whole-body counter at NIRS (Japan). The phantoms corresponded to a newborn, a 5 month old, a 6 year old, and 11 year old and an adult. The differences between the measured and calculated values were within 6%. For the adult phantom, the difference was 0.5%. The results suggest that the Monte Carlo simulation code can be used to estimate the counting efficiencies for various body sizes. (Author).

  20. New particle detector - a spark counter with a localized discharge

    International Nuclear Information System (INIS)

    Laptev, V.D.; Pestov, Yu.N.; Petrovykh, N.V.; Sannikov, B.P.; Fedotovich, G.V.

    1978-01-01

    Described is a plane spark counter with a localized discharge, which provides better time and X-Y resolution over a large area and at a high counting speed. Unlike conventional counters, in case of puncture, voltage applied to the counter plates is taken off in a limited area round the discharge. Main characteristics of the counter with 0.1 mm gap between electrodes are given. It is shown that time resolution of spark counters with a localized discharge is better than that for other types of counters

  1. Photon response of silicon diode neutron detectors

    International Nuclear Information System (INIS)

    McCall, R.C.; Jenkins, T.M.; Oliver, G.D. Jr.

    1976-07-01

    The photon response of silicon diode neutron detectors was studied to solve the problem on detecting neutrons in the presence of high energy photons at accelerator neutron sources. For the experiment Si diodes, Si discs, and moderated activation foil detectors were used. The moderated activation foil detector consisted of a commercial moderator and indium foils 2'' in diameter and approximately 2.7 grams each. The moderator is a cylinder of low-density polyethylene 6 1 / 4 '' in diameter by 6 1 / 16 '' long covered with 0.020'' of cadmium. Neutrons are detected by the reaction 115 In (n,γ) 116 In(T/sub 1 / 2 / = 54 min). Photons cannot be detected directly but photoneutrons produced in the moderator assembly can cause a photon response. The Si discs were thin slices of single-crystal Si about 1.4 mils thick and 1'' in diameter which were used as activation detectors, subsequently being counted on a thin-window pancake G.M. counter. The Si diode fast neutron dosimeter 5422, manufactured by AB Atomenergi in Studsvik, Sweden, consists of a superdoped silicon wafer with a base width of 0.050 inches between two silver contacts coated with 2 mm of epoxy. For this experiment, the technique of measuring the percent change of voltage versus dose was used. Good precision was obtained using both unirradiated and preirradiated diodes. All diodes, calibrated against 252 CF in air,were read out 48 hours after irradiation to account for any room temperature annealing. Results are presented and discussed

  2. Cerenkov counters at the Omega Facility

    CERN Multimedia

    1975-01-01

    P. Petroff on the left. Here one sees both the gas Cerenkov counters sitting in front of the magnet to select forward emitted particles. The smaller one, working at high pressure, sits nearest to the Omega magnet (see photo 7505073X), the other (see photo 7505071X) works at atmospheric pressure.

  3. Calibration of proportional counters in microdosimetry

    International Nuclear Information System (INIS)

    Varma, M.N.

    1982-01-01

    Many microdosimetric spectra for low LET as well as high LET radiations are measured using commercially available (similar to EG and G) Rossi proportional counters. This paper discusses the corrections to be applied to data when calibration of the counter is made using one type of radiation, and then the counter is used in a different radiation field. The principal correction factor is due to differences in W-value of the radiation used for calibration and the radiation for which microdosimetric measurements are made. Both propane and methane base tissue-equivalent (TE) gases are used in these counters. When calibrating the detectors, it is important to use the correct stopping power value for that gas. Deviations in y-bar/sub F/ and y-bar/sub D/ are calculated for 60 Co using different extrapolation procedures from 0.15 keV/μm to zero event size. These deviations can be as large as 30%. Advantages of reporting microdosimetric parameters such as y-bar/sub F/ and y-bar/sub D/ above a certain minimum cut-off are discussed

  4. Townsend coefficients of gases in avalanche counters

    International Nuclear Information System (INIS)

    Brunner, G.

    1978-01-01

    Though much work has been done by many authors in the last few years in the development and application of avalanche counters for ion radiation, it is based upon values of the Townsend coefficients as the essential gas parameter, which were determined many years ago for much lower reduced field strengths F/p than prevail in such counters. Therefore absolute determinations of α in vapours of methyl alcohol, cyclohexane, acetone, and n-heptene were performed under original conditions of avalanche counters. The values obtained do not differ by more than 30%-50% from the former values indeed, extrapolated over F/p for the first three mentioned substances, but the amounts of A and B in the usual representation α/p=A exp(-B(F/p)) are much greater for the stronger reduced fields. This is of importance for such counter properties as the dependence of pulse heights on pressure, voltage, electrode distance etc., which are governed by other combinations of A and B than α/p itself. A comparison of results for different ionic radiations shows a marked influence of the primary ionization density along the particle tracks which is hard to explain. (Auth.)

  5. Imaging rings in ring imaging Cherenkov counters

    Energy Technology Data Exchange (ETDEWEB)

    Ratcliff, Blair N

    2002-11-25

    The general concepts used to form images in Ring Imaging Cherenkov (RICH) counters are described and their performance properties compared. Particular attention is paid to issues associated with imaging in the time dimension, especially in Detectors of Internally Reflected Cherenkov light (DIRCs).

  6. International perspectives on countering school segregation

    NARCIS (Netherlands)

    Bakker, J.T.A.; Denessen, E.J.P.G.; Peters, T.J.M.; Walraven, G.

    2010-01-01

    School segregation is perceived as an unyielding problem worldwide, which is manifest along both ethnic and socio-economic lines. With this edited volume we aim to share information about school segregation and policies focused on countering school segregation from an international perspective. Many

  7. Can counter-stereotypes boost flexible thinking?

    NARCIS (Netherlands)

    Goclowska, M.A.; Crisp, R.J.; Labuschagne, K.

    2013-01-01

    To reduce prejudice psychologists design interventions requiring people to think of counter-stereotypes (i.e., people who defy stereotypic expectations—a strong woman, a Black President). Grounded in the idea that stereotypes constrain the ability to think flexibly, we propose that thinking of

  8. Incorporation monitoring with whole-body counters

    International Nuclear Information System (INIS)

    Steger, F.; Lovranich, E.; Urbanich, E.

    1988-01-01

    Whole-body counters are an important tool in dose measurements after incorporation. The present state in the design of whole-body measurements installations is shown and foreseeable developments are presented. Results of measurements and commited dose equivalent determinations are discussed with Chernobyl as an example. 9 refs., 10 figs., 3 tabs. (Authors, translated qui)

  9. Sealed drift tube cosmic ray veto counters

    Energy Technology Data Exchange (ETDEWEB)

    Rios, R., E-mail: rrios@lanl.go [Idaho State University, Pocatello, ID 83209 (United States); Tatar, E. [Idaho State University, Pocatello, ID 83209 (United States); Bacon, J.D.; Bowles, T.J.; Hill, R.; Green, J.A.; Hogan, G.E.; Ito, T.M.; Makela, M.; Morris, C.L.; Mortenson, R.; Pasukanics, F.E.; Ramsey, J.; Saunders, A.; Seestrom, S.J.; Sondheim, W.E.; Teasdale, W. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Saltus, M. [Sloan Enterprises, NC (United States); Back, H.O.; Cottrell, C.R. [North Carolina State University, Raleigh, NC 27695 (United States)

    2011-05-01

    We describe a simple drift tube counter that has been used as a cosmic ray veto for the UCNA experiment, a first-ever measurement of the neutron beta-asymmetry using ultra-cold neutrons. These detectors provide an inexpensive alternative to more conventional scintillation detectors for large area cosmic ray anticoincidence detectors.

  10. Counter Trafficking System Development "Analysis Training Program"

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Dennis C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2010-12-01

    This document will detail the training curriculum for the Counter-Trafficking System Development (CTSD) Analysis Modules and Lesson Plans are derived from the United States Military, Department of Energy doctrine and Lawrence Livermore National Laboratory (LLNL), Global Security (GS) S Program.

  11. High School Equivalency as Counter-Space

    Science.gov (United States)

    Schwartz, Joni

    2014-01-01

    This chapter is based on the findings of an ethnographic study of an urban General Education Development (GED®) program and suggests that, for some marginalized African American and other young men of color, adult education programs are counter-spaces (Yosso, Ceja, Smith, & Solorzano, [Yosso, T., 2009]) of spatial justice in opposition to…

  12. A high energy photon detector system in compact form

    International Nuclear Information System (INIS)

    Kato, Sadayuki; Sugano, Katsuhito; Yoshioka, Masakazu.

    1975-01-01

    The development of a high energy photon detector system in compact form for use in experiments of high energy physics is described, and the results of its characteristics calibrated using converted electron beams and a pair spectrometer are reported. This system consists of a total absorption lead glass Cerenkov counter, twenty hodoscope arrays for the vertical and the horizontal directions respectively, a lead plate for the conversion of γ-rays into electron-positron pairs, veto counters, photon hardener, and lead blocks for shieldings and collimation. The spatial resolution of the hodoscope is 15 mm for each direction, covering 301 x 301 mm 2 area. The energy resolution of the total absorption lead glass Cerenkov counter, whose volume is 30 x 30 x 30 cm 3 , is typically 18 % (FWHM) for the incident electron energy of 500 MeV, and it can be expressed with a relation of ΔE/E = 3.94 Esup(-1/2). (E in MeV). (auth.)

  13. Progress in neuromorphic photonics

    Science.gov (United States)

    Ferreira de Lima, Thomas; Shastri, Bhavin J.; Tait, Alexander N.; Nahmias, Mitchell A.; Prucnal, Paul R.

    2017-03-01

    As society's appetite for information continues to grow, so does our need to process this information with increasing speed and versatility. Many believe that the one-size-fits-all solution of digital electronics is becoming a limiting factor in certain areas such as data links, cognitive radio, and ultrafast control. Analog photonic devices have found relatively simple signal processing niches where electronics can no longer provide sufficient speed and reconfigurability. Recently, the landscape for commercially manufacturable photonic chips has been changing rapidly and now promises to achieve economies of scale previously enjoyed solely by microelectronics. By bridging the mathematical prowess of artificial neural networks to the underlying physics of optoelectronic devices, neuromorphic photonics could breach new domains of information processing demanding significant complexity, low cost, and unmatched speed. In this article, we review the progress in neuromorphic photonics, focusing on photonic integrated devices. The challenges and design rules for optoelectronic instantiation of artificial neurons are presented. The proposed photonic architecture revolves around the processing network node composed of two parts: a nonlinear element and a network interface. We then survey excitable lasers in the recent literature as candidates for the nonlinear node and microring-resonator weight banks as the network interface. Finally, we compare metrics between neuromorphic electronics and neuromorphic photonics and discuss potential applications.

  14. Fundamentals of microwave photonics

    CERN Document Server

    Urick, V J; McKinney , Jason D

    2015-01-01

    A comprehensive resource to designing andconstructing analog photonic links capable of high RFperformanceFundamentals of Microwave Photonics provides acomprehensive description of analog optical links from basicprinciples to applications.  The book is organized into fourparts. The first begins with a historical perspective of microwavephotonics, listing the advantages of fiber optic links anddelineating analog vs. digital links. The second section coversbasic principles associated with microwave photonics in both the RFand optical domains.  The third focuses on analog modulationformats-starti

  15. Single-Photon Optomechanics

    Science.gov (United States)

    Nunnenkamp, A.; Børkje, K.; Girvin, S. M.

    2011-08-01

    Optomechanics experiments are rapidly approaching the regime where the radiation pressure of a single photon displaces the mechanical oscillator by more than its zero-point uncertainty. We show that in this limit the power spectrum has multiple sidebands and that the cavity response has several resonances in the resolved-sideband limit. Using master-equation simulations, we also study the crossover from the weak-coupling many-photon to the single-photon strong-coupling regime. Finally, we find non-Gaussian steady states of the mechanical oscillator when multiphoton transitions are resonant. Our study provides the tools to detect and take advantage of this novel regime of optomechanics.

  16. Photonics: Technology project summary

    Science.gov (United States)

    Depaula, Ramon P.

    1991-01-01

    Photonics involves the use of light (photons) in conjunction with electronics for applications in communications, computing, control, and sensing. Components used in photonic systems include lasers, optical detectors, optical wave guide devices, fiber optics, and traditional electronic devices. The goal of this program is to develop hybrid optoelectronic devices and systems for sensing, information processing, communications, and control. It is hoped that these new devices will yield at least an order of magnitude improvement in performance over existing technology. The objective of the program is to conduct research and development in the following areas: (1) materials and devices; (2) networking and computing; (3) optical processing/advanced pattern recognition; and (4) sensing.

  17. Physics of photonic devices

    CERN Document Server

    Chuang, Shun Lien

    2009-01-01

    The most up-to-date book available on the physics of photonic devices This new edition of Physics of Photonic Devices incorporates significant advancements in the field of photonics that have occurred since publication of the first edition (Physics of Optoelectronic Devices). New topics covered include a brief history of the invention of semiconductor lasers, the Lorentz dipole method and metal plasmas, matrix optics, surface plasma waveguides, optical ring resonators, integrated electroabsorption modulator-lasers, and solar cells. It also introduces exciting new fields of research such as:

  18. Single photon ECT

    International Nuclear Information System (INIS)

    Maeda, Toshio; Matsuda, Hiroshi; Tada, Akira; Bunko, Hisashi; Koizumi, Kiyoshi

    1982-01-01

    The detectability of lesions located deep in a body or overlapped with a physiologically increased activity improve with the help of single photon ECT. In some cases, the ECT is superior to the conventional gamma camera images and X-ray CT scans in the evaluation of the location and size of lesion. The single photon ECT of the brain compares favorably with the contrast enhansed X-ray CT scans. The most important adaptation of the single photon ECT are the detection of recurrent brain tumors after craniotomy and the evaluation of ischemic heart diseases. (author)

  19. Fundamentals of photonics

    CERN Document Server

    Saleh, Bahaa E A

    2007-01-01

    Now in a new full-color edition, Fundamentals of Photonics, Second Edition is a self-contained and up-to-date introductory-level textbook that thoroughly surveys this rapidly expanding area of engineering and applied physics. Featuring a logical blend of theory and applications, coverage includes detailed accounts of the primary theories of light, including ray optics, wave optics, electromagnetic optics, and photon optics, as well as the interaction of photons and atoms, and semiconductor optics. Presented at increasing levels of complexity, preliminary sections build toward more advan

  20. Can Counter-Gang Models be Applied to Counter ISIS’s Internet Recruitment Campaign

    Science.gov (United States)

    2016-06-10

    the unprecedented scope of the challenges posed by our enemy’s usage of the Internet to spread information.29 During the meeting, Lumpkin stated...CAN COUNTER-GANG MODELS BE APPLIED TO COUNTER ISIS’S INTERNET RECRUITMENT CAMPAIGN? A thesis presented to the Faculty of the... reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215

  1. 21 CFR 866.2180 - Manual colony counter.

    Science.gov (United States)

    2010-04-01

    ...) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2180 Manual colony counter. (a) Identification. A manual colony counter is a device intended for medical purposes that consists...

  2. Operating life of X-ray proportional counters

    International Nuclear Information System (INIS)

    Vajgachev, A.A.; Klyukvina, E.F.; Puzyrev, S.Yu.; Sorokin, L.S.; Chajkovskij, V.G.; Shchekin, K.I.

    1977-01-01

    The purpose of the work was to determine the operating time of X-ray proportional counters filled with a mixture of an inert gas with an organic additive. The counter energy resolution is used as the counter serviceability criterion. Counters operated at an integral counting speed of (3-8)x10 5 pulses per second and gas gain factor of 10 3 . A linear dependance of the counter operating time from the gas gain factor has been established (in the range of 10 2 -3x10 3 ). It has also been established that the counter operating time is independent of the inert gas type. An investigation into the counter anode filaments has been carried out. The obtained photographs of the anode surface indicate that during the counter operation the anode filament is covered with high spots caused by disintegration of the damping additive

  3. Quantum dots in photonic crystals for integrated quantum photonics

    Science.gov (United States)

    Kim, Je-Hyung; Richardson, Christopher J. K.; Leavitt, Richard P.; Waks, Edo

    2017-08-01

    Integrated quantum photonic technologies hold a great promise for application in quantum information processing. A major challenge is to integrate multiple single photon sources on a chip. Quantum dots are bright sources of high purity single photons, and photonic crystals can provide efficient photonic platforms for generating and manipulating single photons from integrated quantum dots. However, integrating multiple quantum dots with photonic crystal devices still remains as a challenging task due to the spectral randomness of the emitters. Here, we present the integration of multiple quantum dots with individual photonic crystal cavities and report quantum interference from chip-integrated multiple quantum dots. To solve the problem of spectral randomness, we introduce local engineering techniques for tuning multiple quantum dots and cavities. From integrated quantum dot devices we observe indistinguishable nature of single photons from individual quantum dots on the same chip. Therefore, our approach paves the way for large-scale quantum photonics with integrated quantum emitters.

  4. Performance of 4096 pixel photon counting chip

    CERN Document Server

    Bisogni, M G; Conti, M; Delogu, P; Fantacci, M E; Heijne, Erik H M; Maestro, P; Magistrati, G; Marzulli, V M; Meddeler, G; Mikulec, B; Pernigotti, E; Rosso, V; Schwarz, C; Snoeys, W; Stumbo, S; Watt, J

    1998-01-01

    A 4096 pixel Photon Counting Chip (PCC) has been developed and tested. It is aimed primarily at medical imaging although it can be used for other applications involving particle counting. The readout chip consists of a matrix of 64 x 64 identical square pixels, whose side measures 170 mm and is bump-bonded to a similar matrix of GaAs or Si pixel diodes covering a sensitive area of 1.18 cm . The electronics in each cell comprises a preamplifier, a discriminator with variable threshold and a 3-bit threshold tune as well as 15-bit counter. Each pixel can be individually addressed for electrical test or masked during acquisition. A shutter allows for switching between the counting and the readout modes and the use of a static logic in the counter enables long data taking periods. Electrical tests of the chip have shown a maximum counting rate of up to 2 MHz in each pixel. The minimum reachable threshold is 1400 e with a variation of 350 e rms that can be reduced to 80 e rms after tuning with the 3-bit adjustment....

  5. Microwave photonics shines

    Science.gov (United States)

    Won, Rachel

    2011-12-01

    The combination of microwave photonics and optics has advanced many applications in defence, wireless communications, imaging and network infrastructure. Rachel Won talks to Jianping Yao from the University of Ottawa in Canada about the importance of this growing field.

  6. Photonic fabrics take shape

    Science.gov (United States)

    Graham-Rowe, Duncan

    2007-01-01

    Electronics firms, fashion houses and medical-equipment suppliers are all busy developing textiles that blend photonics technology with materials science. Duncan Graham-Rowe reports on the striking results of their endeavours.

  7. Photonic Crystal Nanocavity Arrays

    National Research Council Canada - National Science Library

    Altug, Hatice; Vuckovic, Jelena

    2006-01-01

    We recently proposed two-dimensional coupled photonic crystal nanocavity arrays as a route to achieve a slow-group velocity of light in all crystal directions, thereby enabling numerous applications...

  8. Nonlinear Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Hansen, Kim Per

    2004-01-01

    Despite the general recession in the global economy and the collapse of the optical telecommunication market, research within specialty fibers is thriving. This is, more than anything else, due to the technology transition from standard all-glass fibers to photonic crystal fibers, which, instead...... of doping, use a microstructure of air and glass to obtain a refractive index difference between the core and the cladding. This air/glass microstructure lends the photonic crystal fibers a range of unique and highly usable properties, which are very different from those found in solid standard fibers......, leading to reduced mode confinement and dispersion flexibility. In this thesis, we treat the nonlinear photonic crystal fiber – a special sub-class of photonic crystal fibers, the core of which has a diameter comparable to the wavelength of the light guided in the fiber. The small core results in a large...

  9. Photonic Crystal Fibers

    National Research Council Canada - National Science Library

    Kristiansen, Rene E

    2005-01-01

    This report results from a contract tasking Crystal Fibre A/S as follows: Crystal Fibre will conduct research and development of large mode area, dual clad multi-core Yb-doped photonic crystal fiber...

  10. Photonic Quantum Information Processing

    International Nuclear Information System (INIS)

    Walther, P.

    2012-01-01

    The advantage of the photon's mobility makes optical quantum system ideally suited for delegated quantum computation. I will present results for the realization for a measurement-based quantum network in a client-server environment, where quantum information is securely communicated and computed. Related to measurement-based quantum computing I will discuss a recent experiment showing that quantum discord can be used as resource for the remote state preparation, which might shine new light on the requirements for quantum-enhanced information processing. Finally, I will briefly review recent photonic quantum simulation experiments of four frustrated Heisenberg-interactions spins and present an outlook of feasible simulation experiments with more complex interactions or random walk structures. As outlook I will discuss the current status of new quantum technology for improving the scalability of photonic quantum systems by using superconducting single-photon detectors and tailored light-matter interactions. (author)

  11. Nonlinear optics and photonics

    CERN Document Server

    He, Guang S

    2015-01-01

    This book provides a comprehensive presentation on most of the major topics in nonlinear optics and photonics, with equal emphasis on principles, experiments, techniques, and applications. It covers many major new topics including optical solitons, multi-photon effects, nonlinear photoelectric effects, fast and slow light , and Terahertz photonics. Chapters 1-10 present the fundamentals of modern nonlinear optics, and could be used as a textbook with problems provided at the end of each chapter. Chapters 11-17 cover the more advanced topics of techniques and applications of nonlinear optics and photonics, serving as a highly informative reference for researchers and experts working in related areas. There are also 16 pages of color photographs to illustrate the visual appearances of some typical nonlinear optical effects and phenomena. The book could be adopted as a textbook for both undergraduates and graduate students, and serve as a useful reference work for researchers and experts in the fields of physics...

  12. Principles of photonics

    CERN Document Server

    Liu, Jia-Ming

    2016-01-01

    With this self-contained and comprehensive text, students will gain a detailed understanding of the fundamental concepts and major principles of photonics. Assuming only a basic background in optics, readers are guided through key topics such as the nature of optical fields, the properties of optical materials, and the principles of major photonic functions regarding the generation, propagation, coupling, interference, amplification, modulation, and detection of optical waves or signals. Numerous examples and problems are provided throughout to enhance understanding, and a solutions manual containing detailed solutions and explanations is available online for instructors. This is the ideal resource for electrical engineering and physics undergraduates taking introductory, single-semester or single-quarter courses in photonics, providing them with the knowledge and skills needed to progress to more advanced courses on photonic devices, systems and applications.

  13. The photon collider at TESLA

    Czech Academy of Sciences Publication Activity Database

    Badelek, B.; Bloechinger, C.; Blümlein, J.; Boos, E.; Brinkman, R.; Burkhardt, H.; Bussey, P.; Carimalo, C.; Chýla, Jiří; Ciftci, A.K.

    2004-01-01

    Roč. 19, č. 30 (2004), s. 5097-5186 ISSN 0217-751X Institutional research plan: CEZ:AV0Z1010920 Keywords : photon collider * linear collider * gamma-gamma * photon-photon * photon electron * Compton scattering Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.054, year: 2004

  14. Photonics Explorer: revolutionizing photonics in the classroom

    Science.gov (United States)

    Prasad, Amrita; Debaes, Nathalie; Cords, Nina; Fischer, Robert; Vlekken, Johan; Euler, Manfred; Thienpont, Hugo

    2012-10-01

    The `Photonics Explorer' is a unique intra-curricular optics kit designed to engage, excite and educate secondary school students about the fascination of working with light - hands-on, in their own classrooms. Developed with a pan European collaboration of experts, the kit equips teachers with class sets of experimental material provided within a supporting didactic framework, distributed in conjunction with teacher training courses. The material has been specifically designed to integrate into European science curricula. Each kit contains robust and versatile components sufficient for a class of 25-30 students to work in groups of 2-3. The didactic content is based on guided inquiry-based learning (IBL) techniques with a strong emphasis on hands-on experiments, team work and relating abstract concepts to real world applications. The content has been developed in conjunction with over 30 teachers and experts in pedagogy to ensure high quality and ease of integration. It is currently available in 7 European languages. The Photonics Explorer allows students not only to hone their essential scientific skills but also to really work as scientists and engineers in the classroom. Thus, it aims to encourage more young people to pursue scientific careers and avert the imminent lack of scientific workforce in Europe. 50 Photonics Explorer kits have been successfully tested in 7 European countries with over 1500 secondary school students. The positive impact of the kit in the classroom has been qualitatively and quantitatively evaluated. A non-profit organisation, EYESTvzw [Excite Youth for Engineering Science and Technology], is responsible for the large scale distribution of the Photonics Explorer.

  15. Magnetic photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Lyubchanskii, I L [Donetsk Physical and Technical Institute of the National Academy of Sciences of Ukraine, 72, R. Luxemburg St., 83114 Donetsk (Ukraine); Dadoenkova, N N [Donetsk Physical and Technical Institute of the National Academy of Sciences of Ukraine, 72, R. Luxemburg St., 83114 Donetsk (Ukraine); Lyubchanskii, M I [Donetsk Physical and Technical Institute of the National Academy of Sciences of Ukraine, 72, R. Luxemburg St., 83114 Donetsk (Ukraine); Shapovalov, E A [Department of Physics, Donetsk National University, 24, Universitetskaya St., 83055 Donetsk (Ukraine); Rasing, Th [NSRIM Institute, University of Nijmegen, 6525 ED, Nijmegen (Netherlands)

    2003-09-21

    In this paper we outline a new direction in the area of photonic crystals (PCs), or photonic band gap materials, i.e. one-, two-, or three-dimensional superstructures with periods that are comparable with the wavelengths of electromagnetic radiation. The main (and principal) characteristic of this new class of PCs is the presence of magnetically ordered components (or external magnetic field). The linear and nonlinear optical properties of such magnetic PCs are discussed. (topical review)

  16. ALICE photon spectrometer crystals

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    Members of the mechanical assembly team insert the last few crystals into the first module of ALICE's photon spectrometer. These crystals are made from lead-tungstate, a crystal as clear as glass but with nearly four times the density. When a high-energy particle passes through one of these crystals it will scintillate, emitting a flash of light allowing the energy of photons, electrons and positrons to be measured.

  17. Photonics in switching

    CERN Document Server

    Midwinter, John E; Kelley, Paul

    1993-01-01

    Photonics in Switching provides a broad, balanced overview of the use of optics or photonics in switching, from materials and devices to system architecture. The chapters, each written by an expert in the field, survey the key technologies, setting them in context and highlighting their benefits and possible applications. This book is a valuable resource for those working in the communications industry, either at the professional or student level, who do not have extensive background knowledge or the underlying physics of the technology.

  18. Photon structure function

    International Nuclear Information System (INIS)

    Bardeen, W.A.

    1980-11-01

    Theoretical understanding of the photon structure function is reviewed. As an illustration of the pointlike component, the parton model is briefly discussed. However, the systematic study of the photon structure function is presented through the framework of the operator product expansion. Perturbative QCD is used as the theoretical basis for the calculation of leading contributions to the operator product expansion. The influence of higher order QCD effects on these results is discussed. Recent results for the polarized structure functions are discussed

  19. Efficiency calibration of solid track spark auto counter

    International Nuclear Information System (INIS)

    Wang Mei; Wen Zhongwei; Lin Jufang; Liu Rong; Jiang Li; Lu Xinxin; Zhu Tonghua

    2008-01-01

    The factors influencing detection efficiency of solid track spark auto counter were analyzed, and the best etch condition and parameters of charge were also reconfirmed. With small plate fission ionization chamber, the efficiency of solid track spark auto counter at various experiment assemblies was re-calibrated. The efficiency of solid track spark auto counter at various experimental conditions was obtained. (authors)

  20. Generalization of the development of liquid-sparkling counter

    International Nuclear Information System (INIS)

    Bian Zhengzhu; Zhang Jue; Zhang Jinwei

    2006-01-01

    This paper includes five parts. It not only reviews the development history of liquid-sparkling counter but refers that the appearance of coincident circuit is its milestone. The paper summarizes the resembled hard ware and soft ware and soft ware of liquid-sparkling counter of indoor and overseas, and prospects the development of liquid-sparkling counter in our country. (authors)

  1. Development of a gaseous photon detector for Cherenkov imaging applications

    CERN Document Server

    Rocco, Elena; Dalla Torre, Silvia

    2010-01-01

    This thesis is dedicated to the R&D activity aiming at a novel micro pattern gaseous photon detector based on the THick Gas Electron Multiplier (THGEM). The goal application of the novel photon detector is the detection of single photon in Ring Imaging CHerenkov (RICH) counters. The THGEM principle is derived from the Gas Electron Multiplier (GEM) one, even if the material, the production technology and the size scale are different: a THGEM is a Circuit Printed Board (PCB) coated with thin copper layers on both faces, with holes obtained by drilling. Part of the THGEM features are similar to those of the GEMs, but a number of characteristics aspects result substantially different: in fact, if the geometrical parameters can be scaled from the GEM ones, the parameters related to the electrons multiplication, which is a microscopic physical phenomenon, do not. This is why, before starting the photon detector development, we have performed a systematic study of the THGEM multiplier. A photon detector is forme...

  2. Photon Production at the LHC

    CERN Document Server

    Lafaye, Remi; The ATLAS collaboration

    2013-01-01

    We review the last results on photon production at LHC by the ATLAS and CMS experiments obtained in proton-proton collisions with a center of mass energy of 7 TeV. We discuss the impact of prompt photon and photon-jet differential cross-sections, on the parton distribution function of the proton. Di-photon differential cross-sections are also presented as a function of the di-photon invariant mass, transverse momentum, azimuthal separation, and cos theta*.

  3. Governmentality, Counter-conduct and Prefigurative Demonstrations

    DEFF Research Database (Denmark)

    McIlvenny, Paul

    2016-01-01

    This chapter attends to the micro-ethnographic detail of actual practices, procedures and technologies – the techne – of governance, especially those practices that manifest as what Foucault called ‘counter-conducts’. The interactional and categorial practices of a prefigurative protest demonstra......This chapter attends to the micro-ethnographic detail of actual practices, procedures and technologies – the techne – of governance, especially those practices that manifest as what Foucault called ‘counter-conducts’. The interactional and categorial practices of a prefigurative protest...... how fields of visibility, forms of knowledge, technologies and apparatuses, and subjectivities and identities are negotiated and accomplished collaboratively. Specific tools and methods that are well suited to investigating the situated practices, procedures and technologies of governmentality...

  4. Sources of Brazil's Counter-Hegemony

    Directory of Open Access Journals (Sweden)

    Marcos Aurelio Guedes de Oliveira

    2010-01-01

    Full Text Available There have been two key initiatives taken in the last two decades in Brazil to create a counter-hegemonic project for the country. One initiative resulted from Brazil's business community and high-level State bureaucracy and aimed at forming a regional economic and political bloc that would guarantee and enlarge a relative independence from the hegemonic powers. The other resulted from the emergence of the new unionist movement in São Paulo and from the formation of Partido dos Trabalhadores and aimed at promoting radical democratization and reducing social exclusion. Both initiatives have created policies and changes that have converged to enhance Brazil's counter-hegemonic position as a regional and emerging power.

  5. Pulse triggering mechanism of air proportional counters

    International Nuclear Information System (INIS)

    Aoyama, T.; Mori, T.; Watanabe, T.

    1983-01-01

    This paper describes the pulse triggering mechanism of a cylindrical proportional counter filled with air at atmospheric pressure for the incidence of β-rays. Experimental results indicate that primary electrons created distantly from the anode wire by a β-ray are transformed into negative ions, which then detach electrons close to the anode wire and generate electron avalanches thus triggering pulses, while electrons created near the anode wire by a β-ray directly trigger a pulse. Since a negative ion pulse is triggered by a single electron detached from a negative ion, multiple pulses are generated by a large number of ions produced by the incidence of a single β-ray. It is therefore necessary not to count pulses triggered by negative ions but to count those by primary electrons alone when use is made of air proportional counters for the detection of β-rays. (orig.)

  6. Calibration of the neutron scintillation counter threshold

    International Nuclear Information System (INIS)

    Noga, V.I.; Ranyuk, Yu.N.; Telegin, Yu.N.

    1978-01-01

    A method for calibrating the threshold of a neutron counter in the form of a 10x10x40 cm plastic scintillator is described. The method is based on the evaluation of the Compton boundary of γ-spectrum from the discrimination curve of counter loading. The results of calibration using 60 Co and 24 Na γ-sources are given. In order to eValuate the Compton edge rapidly, linear extrapolation of the linear part of the discrimination curve towards its intersection with the X axis is recommended. Special measurements have shown that the calibration results do not practically depend on the distance between the cathode of a photomultiplier and the place where collimated γ-radiation of the calibration source reaches the scintillator

  7. Engaging Civil Society in Countering Violent Extremism

    Directory of Open Access Journals (Sweden)

    Bibi van Ginkel

    2012-08-01

    Full Text Available In this Research Paper Dr. Bibi van Ginkel takes an in depth look at how multi-lateral institutions, engage with civil society to counter violent extremism. Dr. van Ginkel argues that civil society can play a crucial role in preventing and countering violent extremism in numerous ways – by working on development programs, through their work in conflict transformation, in providing a platform to raise political grievances and to facilitate dialogue, or through their work in empowering victims and survivors of terrorism. The Paper finds that over the last decade there has been a more intensive coordination of activities between the UN and other multi-lateral organisations and civil society but the question remains whether the implementation as well as the drafting of these policies will live up to their potential effectiveness. This Paper gauges how effective these measures have been and what more there is to do. The final section concludes with a series of policy recommendations.

  8. 3D characterization of the forces in optical traps based on counter-propagation beams shaped by a spatial light modulator

    DEFF Research Database (Denmark)

    Kristensen, M. V.; Lindballe, T.; Kylling, A.

    2010-01-01

    An experimental characterization of the 3D forces, acting on a trapped polystyrene bead in a counter-propagating beam geometry, is reported. Using a single optical trap with a large working distance (in the BioPhotonics Workstation), we simultaneously measure the transverse and longitudinal...... power of 2x35 mW) for displacements in opposite directions. The Equipartition method is limited by mechanical noise and is shown to be applicable only when the total laser power in a single 10 µm counter-propagating trap is below 2x20 mW....

  9. A position sensitive parallel plate avalanche counter

    International Nuclear Information System (INIS)

    Lombardi, M.; Tan Jilian; Potenza, R.; D'amico, V.

    1986-01-01

    A position sensitive parallel plate avalanche counter with a distributed constant delay-line-cathode (PSAC) is described. The strips formed on the printed board were served as the cathode and the delay line for readout of signals. The detector (PSAC) was operated in isobutane gas at the pressure range from 10 to 20 torr. The position resolution is better than 1 mm and the time resolution is about 350 ps, for 252 Cf fission-spectrum source

  10. Light Obscuration Particle Counter Fuel Contamination Limits

    Science.gov (United States)

    2015-10-08

    limits were derived from 1.0 mg/L concentration levels for ISO 12103-1 A1Ultrafine and ISO 12103-1 A2 Fine test dusts , and down to a 5 ppm free water...AND USE OF LIQUID FUELS Charleston, South Carolina USA 4-8 October 2015 LIGHT OBSCURATION PARTICLE COUNTER FUEL CONTAMINATION LIMITS Joel... contamination . Based on this work the Department of Defense Tri-Service Petroleum, Oil and Lubricants Technical Steering Committee has recommended

  11. Universal Fast Breeder Reactor Subassembly Counter manual

    Energy Technology Data Exchange (ETDEWEB)

    Menlove, H.O.; Eccleston, G.W.; Swansen, J.E.; Goris, P.; Abedin-Zadeh, R.; Ramalho, A.

    1984-08-01

    A neutron coincidence counter has been designed for the measurement of fast breeder reactor fuel assemblies. This assay system can accommodate the full range of geometries and masses found in fast breeder subassemblies under IAEA safeguards. The system's high-performance capability accommodates high plutonium loadings of up to 16 kg. This manual describes the system and its operation and gives performance and calibration parameters for typical applications.

  12. Universal Fast Breeder Reactor Subassembly Counter manual

    International Nuclear Information System (INIS)

    Menlove, H.O.; Eccleston, G.W.; Swansen, J.E.; Goris, P.; Abedin-Zadeh, R.; Ramalho, A.

    1984-08-01

    A neutron coincidence counter has been designed for the measurement of fast breeder reactor fuel assemblies. This assay system can accommodate the full range of geometries and masses found in fast breeder subassemblies under IAEA safeguards. The system's high-performance capability accommodates high plutonium loadings of up to 16 kg. This manual describes the system and its operation and gives performance and calibration parameters for typical applications

  13. Non-Poissonian photon statistics from macroscopic photon cutting materials.

    Science.gov (United States)

    de Jong, Mathijs; Meijerink, Andries; Rabouw, Freddy T

    2017-05-24

    In optical materials energy is usually extracted only from the lowest excited state, resulting in fundamental energy-efficiency limits such as the Shockley-Queisser limit for single-junction solar cells. Photon-cutting materials provide a way around such limits by absorbing high-energy photons and 'cutting' them into multiple low-energy excitations that can subsequently be extracted. The occurrence of photon cutting or quantum cutting has been demonstrated in a variety of materials, including semiconductor quantum dots, lanthanides and organic dyes. Here we show that photon cutting results in bunched photon emission on the timescale of the excited-state lifetime, even when observing a macroscopic number of optical centres. Our theoretical derivation matches well with experimental data on NaLaF 4 :Pr 3+ , a material that can cut deep-ultraviolet photons into two visible photons. This signature of photon cutting can be used to identify and characterize new photon-cutting materials unambiguously.

  14. Which future for nuclear counter-proliferation?

    International Nuclear Information System (INIS)

    Duval, M.

    2010-01-01

    Dealing with the case of nuclear weapons possessed by nuclear states (but not eventually by terrorists), the author first identifies the constants of counter-proliferation: it is linked to interest conflicts between those who try to preserve their monopoly and those who try to acquire a new weapon either because of a threat or for reasons of regional prestige, the evolution from use to deterrence, the appearance of new actors after the USA and Russia, the role of nuclear tactical weapons, and the future of Russian weapons and know-how. He presents the international counter-proliferation context: the Non Proliferation Treaty (NPT), the IAEA and its controls, the Nuclear Supplier Group (NSG), the nuclear-free zones, the Comprehensive Test Ban Treaty (CTBT), the Missile Technology Control Regime (MTCR). He describes how and why proliferation occurs: uranium enrichment and plutonium technology, political reasons in different parts of the world. Then, he gives an overview of the proliferation status by commenting the cases of Israel, Iraq, India, Pakistan, North Korea, and Iran. He discusses the future of proliferation (involved countries, existence of a nuclear black market) and of counter-proliferation as far as Middle-East and North Korea are concerned. He tries finally to anticipate the consequences for nuclear deterrence strategy, and more particularly for Europe and France

  15. CMOS-compatible photonic devices for single-photon generation

    Directory of Open Access Journals (Sweden)

    Xiong Chunle

    2016-09-01

    Full Text Available Sources of single photons are one of the key building blocks for quantum photonic technologies such as quantum secure communication and powerful quantum computing. To bring the proof-of-principle demonstration of these technologies from the laboratory to the real world, complementary metal–oxide–semiconductor (CMOS-compatible photonic chips are highly desirable for photon generation, manipulation, processing and even detection because of their compactness, scalability, robustness, and the potential for integration with electronics. In this paper, we review the development of photonic devices made from materials (e.g., silicon and processes that are compatible with CMOS fabrication facilities for the generation of single photons.

  16. Hardware support for software controlled fast multiplexing of performance counters

    Science.gov (United States)

    Salapura, Valentina; Wisniewski, Robert W.

    2013-01-01

    Performance counters may be operable to collect one or more counts of one or more selected activities, and registers may be operable to store a set of performance counter configurations. A state machine may be operable to automatically select a register from the registers for reconfiguring the one or more performance counters in response to receiving a first signal. The state machine may be further operable to reconfigure the one or more performance counters based on a configuration specified in the selected register. The state machine yet further may be operable to copy data in selected one or more of the performance counters to a memory location, or to copy data from the memory location to the counters, in response to receiving a second signal. The state machine may be operable to store or restore the counter values and state machine configuration in response to a context switch event.

  17. Photonics for life.

    Science.gov (United States)

    Cubeddu, Rinaldo; Bassi, Andrea; Comelli, Daniela; Cova, Sergio; Farina, Andrea; Ghioni, Massimo; Rech, Ivan; Pifferi, Antonio; Spinelli, Lorenzo; Taroni, Paola; Torricelli, Alessandro; Tosi, Alberto; Valentini, Gianluca; Zappa, Franco

    2011-01-01

    Light is strictly connected with life, and its presence is fundamental for any living environment. Thus, many biological mechanisms are related to light interaction or can be evaluated through processes involving energy exchange with photons. Optics has always been a precious tool to evaluate molecular and cellular mechanisms, but the discovery of lasers opened new pathways of interactions of light with biological matter, pushing an impressive development for both therapeutic and diagnostic applications in biomedicine. The use of light in different fields has become so widespread that the word photonics has been utilized to identify all the applications related to processes where the light is involved. The photonics area covers a wide range of wavelengths spanning from soft X-rays to mid-infrared and includes all devices related to photons as light sources, optical fibers and light guides, detectors, and all the related electronic equipment. The recent use of photons in the field of telecommunications has pushed the technology toward low-cost, compact, and efficient devices, making them available for many other applications, including those related to biology and medicine where these requirements are of particular relevance. Moreover, basic sciences such as physics, chemistry, mathematics, and electronics have recognized the interdisciplinary need of biomedical science and are translating the most advanced researches into these fields. The Politecnico school has pioneered many of them,and this article reviews the state of the art of biomedical research at the Politecnico in the field internationally known as biophotonics.

  18. Reconfigurable topological photonic crystal

    Science.gov (United States)

    Shalaev, Mikhail I.; Desnavi, Sameerah; Walasik, Wiktor; Litchinitser, Natalia M.

    2018-02-01

    Topological insulators are materials that conduct on the surface and insulate in their interior due to non-trivial topology of the band structure. The edge states on the interface between topological (non-trivial) and conventional (trivial) insulators are topologically protected from scattering due to structural defects and disorders. Recently, it was shown that photonic crystals (PCs) can serve as a platform for realizing a scatter-free propagation of light waves. In conventional PCs, imperfections, structural disorders, and surface roughness lead to significant losses. The breakthrough in overcoming these problems is likely to come from the synergy of the topological PCs and silicon-based photonics technology that enables high integration density, lossless propagation, and immunity to fabrication imperfections. For many applications, reconfigurability and capability to control the propagation of these non-trivial photonic edge states is essential. One way to facilitate such dynamic control is to use liquid crystals (LCs), which allow to modify the refractive index with external electric field. Here, we demonstrate dynamic control of topological edge states by modifying the refractive index of a LC background medium. Background index is changed depending on the orientation of a LC, while preserving the topology of the system. This results in a change of the spectral position of the photonic bandgap and the topological edge states. The proposed concept might be implemented using conventional semiconductor technology, and can be used for robust energy transport in integrated photonic devices, all-optical circuity, and optical communication systems.

  19. Beam Cherenkov counter conception for in line identification of 270 GeV/c Σ- Ξ- and Ω-

    International Nuclear Information System (INIS)

    Touillon, R.

    1991-06-01

    The purpose of this thesis is to design a beam Cerenkov counter. This counter will provide an on line identification of the Σ - , Ξ - and Ω - hyperons (270 GeV/c) in the experiment WA89 at CERN. The acceptance of the detector should allow tagging these hyperons in a large momentum range (± 25%) and for a beam divergence up to 250 microrad. The first part of this report is devoted to the physical goals such as the study of charmed baryons, the search of multiquark states, and the determination of hadronic and electromagnetic hyperon radii. The experimental WA89 setup is also presented. The major part deals with the design of the Cerenkov counter. The dimension of the detector, the Cerenkov angle value, the focal length of the spherical mirror, etc... are derived from a Monte-Carlo simulation. Various methods of simple photon detection (gaz detector: TEA, TMAE; solid detectors: PM and Image Intensifier) are investigated. The most performing solution uses two conical mirrors in order to reduce the size of the Cerenkov circles and an image intensifier (which detects the single photon) followed by an optical fiber matrix transmitting the luminous signal to 160 photomultipliers. The on line procedure for calculating the radius of each circle (identification of the particle) is studied in detail. Finally, the optimization of the optical system to achromatize the Cerenkov light is discussed [fr

  20. Coincidence measurements with the use of detectors measuring the energy of the radiances (proportional meters and scintillation counter)

    International Nuclear Information System (INIS)

    Sartory, M.

    1953-01-01

    In the setting of the realization of a set of installations permitting of the measures of coincidences between sorted radiances according to their energies, an installation understanding a proportional counter and a scintillation counter has been constructed and optimized. It has been used to do some measures of coincidences between X K photons and photons γ issued at the time of the radioactive transformation of the selenium 75 (electronic capture). The efficiency of the proportional meter has been determined roughly. Besides, a proportional counter of solid angle neighboring of 4π was able to achieve measures of coincidences while only doing one selection of amplitudes: indeed, the simultaneity of the detection of two radiances appear by an impulse whose amplitude is the sum of the amplitudes of the impulses resulting from each of the studied radiations. This method, applied to the coincidences between X-rays, permitted to bring the information on the diagram of decay of the arsenic 73. Besides, the coefficient of internal conversion of a consecutive transition to this decay has been valued. (author) [fr

  1. Consumer Preferences for High Welfare Meat in Germany: Self-service Counter or Service Counter?

    Directory of Open Access Journals (Sweden)

    Ramona Weinrich

    2015-01-01

    Full Text Available Many people view animal welfare standards in the agricultural industry as critical and some consumers would prefer to buy high welfare meat. In order to successfully introduce high welfare meat products onto the market, some important marketing decisions must be made. Due to limited shelf space in retail outlets, niche products like high welfare meat cannot be placed both at the self-service counter and at the service counter. In order to analyze where to place it best an online survey of 642 German consumers was conducted. By means of factor and cluster analyses, consumers’ animal welfare attitudes and their preference for a point of purchase were combined. The different target groups were joint using cross tabulation analysis. The results reveal that consumers in the target group show a more positive attitude to the service counter.

  2. Mesoscopic photon heat transistor

    DEFF Research Database (Denmark)

    Ojanen, T.; Jauho, Antti-Pekka

    2008-01-01

    We show that the heat transport between two bodies, mediated by electromagnetic fluctuations, can be controlled with an intermediate quantum circuit-leading to the device concept of a mesoscopic photon heat transistor (MPHT). Our theoretical analysis is based on a novel Meir-Wingreen-Landauer-typ......We show that the heat transport between two bodies, mediated by electromagnetic fluctuations, can be controlled with an intermediate quantum circuit-leading to the device concept of a mesoscopic photon heat transistor (MPHT). Our theoretical analysis is based on a novel Meir......-Wingreen-Landauer-type of conductance formula, which gives the photonic heat current through an arbitrary circuit element coupled to two dissipative reservoirs at finite temperatures. As an illustration we present an exact solution for the case when the intermediate circuit can be described as an electromagnetic resonator. We discuss...

  3. Graphene-based photonic crystal

    International Nuclear Information System (INIS)

    Berman, Oleg L.; Boyko, Vladimir S.; Kezerashvili, Roman Ya.; Kolesnikov, Anton A.; Lozovik, Yurii E.

    2010-01-01

    A novel type of photonic crystal formed by embedding a periodic array of constituent stacks of alternating graphene and dielectric discs into a background dielectric medium is proposed. The photonic band structure and transmittance of such photonic crystal are calculated. The graphene-based photonic crystals can be used effectively as the frequency filters and waveguides for the far infrared region of electromagnetic spectrum. Due to substantial suppression of absorption of low-frequency radiation in doped graphene the damping and skin effect in the photonic crystal are also suppressed. The advantages of the graphene-based photonic crystal are discussed.

  4. Photonic Floquet topological insulators

    Science.gov (United States)

    Rechtsman, Mikael C.; Zeuner, Julia M.; Plotnik, Yonatan; Lumer, Yaakov; Podolsky, Daniel; Dreisow, Felix; Nolte, Stefan; Segev, Mordechai; Szameit, Alexander

    2013-09-01

    Topological insulators are a new phase of matter, with the striking property that conduction of electrons occurs only on the surface. In two dimensions, surface electrons in topological insulators do not scatter despite defects and disorder, providing robustness akin to superconductors. Topological insulators are predicted to have wideranging applications in fault-tolerant quantum computing and spintronics. Recently, large theoretical efforts were directed towards achieving topological insulation for electromagnetic waves. One-dimensional systems with topological edge states have been demonstrated, but these states are zero-dimensional, and therefore exhibit no transport properties. Topological protection of microwaves has been observed using a mechanism similar to the quantum Hall effect, by placing a gyromagnetic photonic crystal in an external magnetic field. However, since magnetic effects are very weak at optical frequencies, realizing photonic topological insulators with scatterfree edge states requires a fundamentally different mechanism - one that is free of magnetic fields. Recently, a number of proposals for photonic topological transport have been put forward. Specifically, one suggested temporally modulating a photonic crystal, thus breaking time-reversal symmetry and inducing one-way edge states. This is in the spirit of the proposed Floquet topological insulators, where temporal variations in solidstate systems induce topological edge states. Here, we propose and experimentally demonstrate the first external field-free photonic topological insulator with scatter-free edge transport: a photonic lattice exhibiting topologically protected transport of visible light on the lattice edges. Our system is composed of an array of evanescently coupled helical waveguides arranged in a graphene-like honeycomb lattice. Paraxial diffraction of light is described by a Schrödinger equation where the propagation coordinate acts as `time'. Thus the waveguides

  5. Models for photon-photon total cross-sections

    International Nuclear Information System (INIS)

    Godbole, R.M.; Grau, A.; Pancheri, G.

    1999-01-01

    The paper presents here a brief overview of recent models describing the photon-photon cross-section into hadrons. It shall be showed in detail results from the eikonal minijet model, with and without soft gluon summation

  6. Handedness of direct photons

    International Nuclear Information System (INIS)

    Kopeliovich, B.Z.; Rezaeian, A.H.; Schmidt, Ivan

    2008-01-01

    The azimuthal asymmetry of direct photons originating from primary hard scatterings between partons is calculated. This can be accounted for by the inclusion of the color dipole orientation, which is sensitive to the rapid variation of the nuclear profile. To this end we introduce the dipole orientation within the saturation model of Golec-Biernat and Wuesthoff, while preserving all its features at the cross-section level. We show that the direct photon elliptic anisotropy v2 coming from this mechanism changes sign and becomes negative for peripheral collisions, albeit it is quite small for nuclear collisions at the RHIC energy. (author)

  7. Workplace photon radiation fields

    International Nuclear Information System (INIS)

    Burgess, P.H.; Bartlett, D.T.; Ambrosi, P.

    1999-01-01

    The knowledge of workplace radiation fields is essential for measures in radiation protection. Information about the energy and directional distribution of the incident photon radiation was obtained by several devices developed by the National Radiation Protection Board, United Kingdom, by the Statens Stralskyddsinstitut, Sweden, together with EURADOS and by the Physikalisch-Technische Bundesanstalt, Germany. The devices are described and some results obtained at workplaces in nuclear industry, medicine and science in the photon energy range from 20 keV to 7 MeV are given. (author)

  8. Cross strip microchannel plate imaging photon counters with high time resolution

    Energy Technology Data Exchange (ETDEWEB)

    Stonehill, Laura C [Los Alamos National Laboratory; Shirey, Robert [Los Alamos National Laboratory; Rabin, Michael W [Los Alamos National Laboratory; Thompson, David C [Los Alamos National Laboratory; Siegmund, Oswald H W [U.C. BERKELEY; Vallerga, John V [U.C. BERKELEY; Tremsin, Anton S [U.C. BERKELEY

    2010-01-01

    We have implemented cross strip readout microchannel plate detectors in 18 mm active area format including open face (UV/particle) and sealed tube (optical) configurations. These have been tested with a field programmable gate array based parallel channel electronics for event encoding which can process high input event rates (> 5 MHz) with high spatial resolution. Using small pore MCPs (6 {micro}m) operated in a pair, we achieve gains of >5 x 10{sup 5} which is sufficient to provide spatial resolution of <35 {micro}m FHWM, with self triggered event timing accuracy of {approx}2 ns for sealed tube optical sensors. A peak quantum efficiency of {approx}19% at 500 nm has been achieved with SuperGenII photocathodes that have response over the 400 nm to 900 nm range. Local area counting rates of up to >200 events/mcp pore sec{sup -1} have been attained, along with image linearity and stability to better than 50 {micro}m.

  9. First in situ TOF-PET study using digital photon counters for proton range verification

    NARCIS (Netherlands)

    Cambraia Lopes Ferreira da Silva, P.; Bauer, J.; Salomon, A.; Rinaldi, I; Tabacchini, V.; Tessonnier, T.; Crespo, P; Parodi, K; Schaart, D.R.

    2016-01-01

    Positron emission tomography (PET) is the imaging modality most extensively tested for treatment monitoring in particle therapy. Optimal use of PET in proton therapy requires in situ acquisition of the relatively strong 15O signal due to its relatively short half-life (∼2 min) and high

  10. Recent developments in the theory of photon-photon collisions

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1984-09-01

    Over the past few years the field of photon-photon collisions has emerged as one of the best testing grounds for QCD, particularly in the area of exclusive and inclusive hard scattering processes, exotic resonance production, and detailed tests of the coupling of real and virtual photons to the quark current. In this summary of contributed papers, I will briefly review recent theoretical progress in the analysis of two-photon reactions and possible directions for future work. 29 references

  11. Bio-optofluidics and Bio-photonics: Programmable Phase Optics activities at DTU Fotonik

    DEFF Research Database (Denmark)

    Bañas, Andrew Rafael; Palima, Darwin; Pedersen, Finn

    We present ongoing research and development activities for constructing a compact next generation BioPhotonics Workstation and a Bio-optofluidic Cell Sorter (cell-BOCS) for all-optical micromanipulation platforms utilizing low numerical aperture beam geometries. Unlike conventional high NA optical...... tweezers, the BioPhotonics workstation is e.g. capable of long range 3D manipulation. This enables a variety of biological studies such as manipulation of intricate microfabricated assemblies or for automated and parallel optofluidic cell sorting. To further reduce its overhead, we propose ways of making...... the BioPhotonics Workstation platform more photon efficient by studying the 3D distribution of the counter propagating beams and utilizing the Generalized Phase Contrast (GPC) method for illuminating the applied spatial light modulators....

  12. Generation of polarization-entangled photon pairs with arbitrary joint spectrum

    International Nuclear Information System (INIS)

    Walton, Zachary D.; Sergienko, Alexander V.; Saleh, Bahaa E. A.; Teich, Malvin C.

    2004-01-01

    We present a scheme for generating polarization-entangled photons pairs with arbitrary joint spectrum. Specifically, we describe a technique for spontaneous parametric down-conversion in which both the center frequencies and the bandwidths of the down-converted photons may be controlled by appropriate manipulation of the pump pulse. The spectral control offered by this technique permits one to choose the operating wavelengths for each photon of a pair based on optimizations of other system parameters (loss in optical fiber, photon counter performance, etc.). The combination of spectral control, polarization control, and lack of group-velocity matching conditions makes this technique particularly well suited for a distributed quantum information processing architecture in which integrated optical circuits are connected by spans of optical fiber

  13. Performance confirmation of the Belle II imaging Time Of Propogation (iTOP) prototype counter

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Alan; Liu, Yang; Belhorn, Matt; /Cincinnati U.; Browder, Thomas; Varner, Gary; Andrew, Matt; Rosen, Marc; Barrett, Matthew; Nishimura, Kurtis; Anderson, Eric /Hawaii U.; Iijima, Toru; /Nagoya U. /PNL, Richland

    2011-10-17

    The Bell Detector at the KEKB asymmetric-energy e{sup +}e{sup -} collider performed extremely well, logging an integrated luminosity an order of magnitude higher than the design baseline. With this inverse attobarn of integrated luminosity, time-dependent CP-violation inn the 3rd generation beauty quarks was firmly established, and is now a precision measurement. Going beyond this to explore if the Kobayashi-Maskawa mechanism is the only contributor to quark-mixing, and to interrogate the flavor sector for non-standard model enhancements, requires a detector and accelerator capable of topping this world-record luminosity by more than an order of magnitude. The Belle II detector at the upgraded Super-KEKB accelerator has been designed to meet this highly ambitious goal of operating at a luminosity approaching 10{sup 36} cm{sup -2} s{sup -1}. Such higher event rates and backgrounds require upgrade of essentially all detector subsystems, as well as their readout. Comparing the Belle composite (threshold Aerogel + Time of Flight) particle identification (PID) system with the DIRC employed by BaBar, quartz radiator internal Cherenkov photon detection proved to have higher kaon efficiency and lower pion fake rates. However, because the detector structure and CsI calorimeter will be retained, an improved barrel PID must fit within a very narrow envelope, as indicated in Figure 1. To effectively utilize this space, a more compact detector concept based on the same quartz radiators, but primarily using photon arrival time was proposed. This Time Of Propagation (TOP) counter was studied in a number of earlier prototype tests. Key to the necessary 10's of picosecond single-photon timing has been the development of the so-called SL-10 Micro-Channel Plate Photo-Multiplier Tube (MCP-PMT), which has demonstrated sub-40 ps single photon Transit Time Spread TTS. Further simulation study of this detector concept indicated that a focusing mirror in the forward direction, as well

  14. GEANT4 simulation of the response of a liquid scintillation counter

    Science.gov (United States)

    Hurtado, S.

    2017-09-01

    Liquid Scintillation Counting (LSC) is widely used as a very efficient technique for radioactivity quantification. LSC is a powerful tool applied as much in low level environmental radioactivity monitoring, as in radionuclide metrology for the activity standardization of electron capture, pure-beta, and alpha nuclides. In order to quantify the sample activity, the number of scintillation photons are counted by one or several PMTs. However, the scintillation count rate varies with the detection efficiency. As an alternative to traditional methods for the calculation of detection efficiency, a Monte Carlo approach based on GEANT4 toolkit is presented for the simulation of light emission inside a Quantulus 1220 liquid scintillation counter with two PMT photomultipliers tubes working in sum-coincidence mode. To this end, the GEANT4 simulation handles a variety of processes at optical wavelengths including refraction and reflection at medium boundaries, Rayleigh scattering and bulk absorption, and additional processes which produce optical photons such as Cherenkov effect, transition radiation and scintillation, and includes a description of optical properties associated with each material constituting the detection system. The objective is to simulate the propagation of optical photons from their creation in the liquid scintillation cocktail to the production of photoelectrons in the PMTs. In this paper, we report in detail the results of the proposed simulation (detection efficiency, and additionally wall effect and absorption probabilities of gamma-rays) for different radionuclides such as 14C, 3H, 54Mn and 90Y, and its validation through the comparison with the experimental measurements.

  15. Concentrating lightguide for threshold Cherenkov counters

    International Nuclear Information System (INIS)

    Gavrishchuk, O.P.; Onuchin, V.A.; Semenov, V.K.; Suzdalev, V.I.

    1991-01-01

    A method of manufacturing lightguides (Winston lenses) is proposed to increase the effective area of light collection on photodetectors (with diameter of detectiving area from 45 to 120 mm) and to broaden angular range of radiation detection in threshold Cherenkov counters. The concentrating lightguides with height and diameter up to 300 mm were pressure formed of 3 to 5 mm thick plexiglass sheets. Dependences of the light reflection coefficient on the wavelength (for wavelengths between 185 and 650 nm) of the deposited lightguide are presented. 10 refs.; 4 figs

  16. Industrial espionage and technical surveillance counter measurers

    CERN Document Server

    Androulidakis, Iosif

    2016-01-01

    This book examines technical aspects of industrial espionage and its impact in modern companies, organizations, and individuals while emphasizing the importance of intellectual property in the information era. The authors discuss the problem itself and then provide statistics and real world cases. The main contribution provides a detailed discussion of the actual equipment, tools and techniques concerning technical surveillance in the framework of espionage. Moreover, they present the best practices and methods of detection (technical surveillance counter measures) as well as means of intellectual property protection.

  17. The counter-conventional mindsets of entrepreneurs

    OpenAIRE

    Mullins, J

    2017-01-01

    These days, it seems, nearly everyone aspires to be an entrepreneur. But many entrepreneurs think and act differently than the ways in which most other businesspeople do and the ways much of today’s business education encourages them to think and act. My in-depth examination of dozens of entrepreneurs I’ve come to know well over the past two decades tells me that their unconventional – or, dare I say, counter-conventional – mindsets and behaviors are marked by six common patterns:\\ud “Yes, we...

  18. Taxing Junk Food to Counter Obesity

    Science.gov (United States)

    Franck, Caroline; Grandi, Sonia M.

    2013-01-01

    We examined the advantages and disadvantages of implementing a junk food tax as an intervention to counter increasing obesity in North America. Small excise taxes are likely to yield substantial revenue but are unlikely to affect obesity rates. High excise taxes are likely to have a direct impact on weight in at-risk populations but are less likely to be politically palatable or sustainable. Ultimately, the effectiveness of earmarked health programs and subsidies is likely to be a key determinant of tax success in the fight against obesity. PMID:24028245

  19. Cerenkov counter for the experiment NA3

    CERN Multimedia

    1978-01-01

    The program of the NA3 experiment included the study of hadronic interactions with a large transverse momentum pT, thus the inclusion in the set-up of three gas threshold Cerenkov counters of large acceptance. The photo shows the downstream part of the second Cerenkov (located at the output of the magnet). The yellow membrane is a temporary protection for the optics (shown in photo 7810540X) to be taken away when fixing this part to the gas tank (entering the magnet and not shown). The photomultipliers all around are heavily shielded.

  20. DIRECT COUPLED PROGRESSIVE STAGE PULSE COUNTER APPARATUS

    Science.gov (United States)

    Kaufman, W.M.

    1962-08-14

    A progressive electrical pulse counter circuit was designed for the counting of a chain of input pulses of random width and/or frequency. The circuit employs an odd and even pulse input line alternately connected to a series of directly connected bistable counting stages. Each bistable stage has two d-c operative states which stage, when in its rnrtial state, prevents the next succeeding stage from changing its condition when the latter stage is pulsed. Since only altennate stages are pulsed for each incoming pulse, only one stage will change its state for each input pulse thereby providing prog essive stage by stage counting. (AEC)

  1. Shared address collectives using counter mechanisms

    Science.gov (United States)

    Blocksome, Michael; Dozsa, Gabor; Gooding, Thomas M; Heidelberger, Philip; Kumar, Sameer; Mamidala, Amith R; Miller, Douglas

    2014-02-18

    A shared address space on a compute node stores data received from a network and data to transmit to the network. The shared address space includes an application buffer that can be directly operated upon by a plurality of processes, for instance, running on different cores on the compute node. A shared counter is used for one or more of signaling arrival of the data across the plurality of processes running on the compute node, signaling completion of an operation performed by one or more of the plurality of processes, obtaining reservation slots by one or more of the plurality of processes, or combinations thereof.

  2. Taxing junk food to counter obesity.

    Science.gov (United States)

    Franck, Caroline; Grandi, Sonia M; Eisenberg, Mark J

    2013-11-01

    We examined the advantages and disadvantages of implementing a junk food tax as an intervention to counter increasing obesity in North America. Small excise taxes are likely to yield substantial revenue but are unlikely to affect obesity rates. High excise taxes are likely to have a direct impact on weight in at-risk populations but are less likely to be politically palatable or sustainable. Ultimately, the effectiveness of earmarked health programs and subsidies is likely to be a key determinant of tax success in the fight against obesity.

  3. Experimental demonstration of robust entanglement distribution over reciprocal noisy channels assisted by a counter-propagating classical reference light.

    Science.gov (United States)

    Ikuta, Rikizo; Nozaki, Shota; Yamamoto, Takashi; Koashi, Masato; Imoto, Nobuyuki

    2017-07-06

    Embedding a quantum state in a decoherence-free subspace (DFS) formed by multiple photons is one of the promising methods for robust entanglement distribution of photonic states over collective noisy channels. In practice, however, such a scheme suffers from a low efficiency proportional to transmittance of the channel to the power of the number of photons forming the DFS. The use of a counter-propagating coherent pulse can improve the efficiency to scale linearly in the channel transmission, but it achieves only protection against phase noises. Recently, it was theoretically proposed [Phys. Rev. A 87, 052325(2013)] that the protection against bit-flip noises can also be achieved if the channel has a reciprocal property. Here we experimentally demonstrate the proposed scheme to distribute polarization-entangled photon pairs against a general collective noise including the bit flip noise and the phase noise. We observed an efficient sharing rate scaling while keeping a high quality of the distributed entangled state. Furthermore, we show that the method is applicable not only to the entanglement distribution but also to the transmission of arbitrary polarization states of a single photon.

  4. Photon states in anisotropic media

    Indian Academy of Sciences (India)

    Rosen) cor- relations as codified in Bell's inequalities have been tested for the polarization-entangled states of two photons. Similarly, quantum teleportation and quantum encryption have also been accomplished using photon polarization states.

  5. Submillisecond X-ray photon correlation spectroscopy?from a pixel array detector with fast?dual gating and no readout dead-time

    OpenAIRE

    Zhang, Qingteng; Dufresne, Eric M.; Grybos, Pawel; Kmon, Piotr; Maj, Piotr; Narayanan, Suresh; Deptuch, Grzegorz W.; Szczygiel, Robert; Sandy, Alec

    2016-01-01

    Small-angle scattering X-ray photon correlation spectroscopy (XPCS) studies were performed using a novel photon-counting pixel array detector with dual counters for each pixel. Each counter can be read out independently from the other to ensure there is no readout dead-time between the neighboring frames. A maximum frame rate of 11.8?kHz was achieved. Results on test samples show good agreement with simple diffusion. The potential of extending the time resolution of XPCS beyond the limit set ...

  6. Photon strength functions

    International Nuclear Information System (INIS)

    Bergqvist, I.

    1976-01-01

    Methods for extracting photon strength functions are briefly discussed. We follow the Brink-Axel approach to relate the strength functions to the giant resonances observed in photonuclear work and summarize the available data on the E1, E2 and M1 resonances. Some experimental and theoretical problems are outlined. (author)

  7. Photonic band structure computations.

    Science.gov (United States)

    Hermann, D; Frank, M; Busch, K; Wolfle, P

    2001-01-29

    We introduce a novel algorithm for band structure computations based on multigrid methods. In addition, we demonstrate how the results of these band structure calculations may be used to compute group velocities and effective photon masses. The results are of direct relevance to studies of pulse propagation in such materials.

  8. ALICE Photon Spectrometer

    CERN Multimedia

    Kharlov, Y

    2013-01-01

    PHOS provides unique coverage of the following physics topics: - Study initial phase of the collision of heavy nuclei via direct photons, - Jet-quenching as a probe of deconfinement, studied via high Pτ ϒ and π0, - Signals of chiral-symmetry restoration, - QCD studies in pp collisions via identified neutral spectra.

  9. What is a Photon?

    Indian Academy of Sciences (India)

    IAS Admin

    We discuss the absorber theory of radiation as put forward by Wheeler and Feynman. We show that it gives a better understanding of the photon compared to the usual quantum electrodynamics. (QED) picture. All the fifty years of conscious brooding have brought me no closer to answer the question, `What are light quanta ...

  10. Magnetic photon scattering

    International Nuclear Information System (INIS)

    Lovesey, S.W.

    1987-05-01

    The report reviews, at an introductory level, the theory of photon scattering from condensed matter. Magnetic scattering, which arises from first-order relativistic corrections to the Thomson scattering amplitude, is treated in detail and related to the corresponding interaction in the magnetic neutron diffraction amplitude. (author)

  11. Biomedical photonics handbook biomedical diagnostics

    CERN Document Server

    Vo-Dinh, Tuan

    2014-01-01

    Shaped by Quantum Theory, Technology, and the Genomics RevolutionThe integration of photonics, electronics, biomaterials, and nanotechnology holds great promise for the future of medicine. This topic has recently experienced an explosive growth due to the noninvasive or minimally invasive nature and the cost-effectiveness of photonic modalities in medical diagnostics and therapy. The second edition of the Biomedical Photonics Handbook presents fundamental developments as well as important applications of biomedical photonics of interest to scientists, engineers, manufacturers, teachers, studen

  12. Limits on the photon mass

    International Nuclear Information System (INIS)

    Vasseur, G.

    1996-03-01

    Is the photon mass strictly null as it is told in quantum electrodynamics. In fact, a coherent theory can be build with a massive photon. Experiences have been regularly led to try to make obvious an eventual non null photon mass. Superior limits more and more strict have been found. Here is given a general survey of the consequences of a non null photon mass, different methods to measure it and the achieved limits. (author). 30 refs., 1 fig

  13. The bremsstrahlung tagged photon beam in Hall B at the Jefferson Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Daniel I. Sober; Hall Crannell; Alberto Longhi; Scott Matthews; James T. O' Brien; Barry L. Berman; William Briscoe; Philip L. Cole; James Connelly; W.R. Dodge; Luc Y. Murphy; S.A. Phillips; Michael Dugger; David Lawrence; Barry G. Ritchie; Elton Smith; J.M. Lambert; Eric P.M. Anciant; Gerad Audit; Thierry Auger; Claude Marchand; Michael Klusman; James Napolitano; M.A. Khandaker; Carlos Salgado; Adam Sarty

    2000-02-01

    We describe the design and commissioning of the photon tagging beamline installed in experimental Hall B at the Thomas Jefferson National Accelerator Facility (Jlab). This system can tag photon energies over a range from 20% to 95% of the incident electron energy, and is capable of operation with beam energies up to 6.1 GeV. A single dipole magnet is combined with a hodoscope containing two planar arrays of plastic scintillators to detect energy-degraded electrons from a thin bremsstrahlung radiator. The first layer of 384 partially overlapping small scintillators provides photon energy resolution, while the second layer of 61 larger scintillators provides the timing resolution necessary to form a coincidence with the corresponding nuclear interaction triggered by the tagged photon. The definitions of overlap channels in the first counter plane and of geometric correlation between the two planes are determined using digitized time information from the individual counters. Auxiliary beamline devices are briefly described, and performance results to date under real operating conditions are presented. The entire photon-tagging system has met or exceeded its design goals.

  14. Nonlinear photonic quasicrystals

    International Nuclear Information System (INIS)

    Freedman, B.; Bartal, G.; Segev, M.; Lifshitz, R.; Christodoulides, D.; Fleischer, J.

    2005-01-01

    Full Text:Quasicrystals are structures with long-range order and no periodicity, whose unique structural and physical properties have intrigued scientists ever since their discovery and initial theoretical analysis more than two decades ago. The lack of periodicity excludes the use of well-established theoretical and experimental tools for the analysis of quasicrystals, including such notions as the Brillouin zone and Bloch theorem. Instead, the quasiperiodic atomic arrangement gives rise to unique properties such as a hierarchy of effective Brillouin (or Jones) zones, yielding a fractal-like band structure, and the existence of unique phason degrees of freedom. Generally, in atomic quasicrystals it is very difficult to directly observe the evolution of electronic wave-packets propagating through the structure, or the dynamics of the structure itself. Photonic quasicrystals, on the other hand, are macroscopic objects and hence their internal wave dynamics can be locally excited and directly imaged. Here, we employ optical induction to create 2D photonic quasicrystals, and explore wave transport phenomena in quasicrystals in ways that were impossible until now. We demonstrate linear tunneling-transport of light initiated at different crystal sites, and observe the formation of lattice solitons when the light is made sufficiently intense. We experiment with dynamical photonic quasicrystals, in which crystal sites interact with one another, and directly observe dislocation dynamics: creation, healing, and local structural rearrangement due to phason flips. Our experiments show that photonic quasicrystals are an excellent model system through which one can study the universal features of wave dynamics in quasiperiodic structures, that should apply not only to photonics, but also to other systems such as matter waves in quasiperiodic traps, generic pattern-forming systems as in parametrically-excited surface waves, liquid quasicrystals, as well as the more familiar

  15. Hydrogenated amorphous silicon photonics

    Science.gov (United States)

    Narayanan, Karthik

    2011-12-01

    Silicon Photonics is quickly proving to be a suitable interconnect technology for meeting the future goals of on-chip bandwidth and low power requirements. However, it is not clear how silicon photonics will be integrated into CMOS chips, particularly microprocessors. The issue of integrating photonic circuits into electronic IC fabrication processes to achieve maximum flexibility and minimum complexity and cost is an important one. In order to minimize usage of chip real estate, it will be advantageous to integrate in three-dimensions. Hydrogenated amorphous silicon (a-Si:H) is emerging as a promising material for the 3-D integration of silicon photonics for on-chip optical interconnects. In addition, a-Si:H film can be deposited using CMOS compatible low temperature plasma-enhanced chemical vapor deposition (PECVD) process at any point in the fabrication process allowing maximum flexibility and minimal complexity. In this thesis, we demonstrate a-Si:H as a high performance alternate platform to crystalline silicon, enabling backend integration of optical interconnects in a hybrid photonic-electronic network-on-chip architecture. High quality passive devices are fabricated on a low-loss a-Si:H platform enabling wavelength division multiplexing schemes. We demonstrate a broadband all-optical modulation scheme based on free-carrier absorption effect, which can enable compact electro-optic modulators in a-Si:H. Furthermore, we comprehensively characterize the optical nonlinearities in a-Si:H and observe that a-Si:H exhibits enhanced nonlinearities as compared to crystalline silicon. Based on the enhanced nonlinearities, we demonstrate low-power four-wave mixing in a-Si:H waveguides enabling high speed all-optical devices in an a-Si:H platform. Finally, we demonstrate a novel data encoding scheme using thermal and all-optical tuning of silicon waveguides, increasing the spectral efficiency in an interconnect link.

  16. Optimization of photonic crystal cavities

    DEFF Research Database (Denmark)

    Wang, Fengwen; Sigmund, Ole

    2017-01-01

    We present optimization of photonic crystal cavities. The optimization problem is formulated to maximize the Purcell factor of a photonic crystal cavity. Both topology optimization and air-hole-based shape optimization are utilized for the design process. Numerical results demonstrate...... that the Purcell factor of the photonic crystal cavity can be significantly improved through optimization....

  17. An accurate behavioral model for single-photon avalanche diode statistical performance simulation

    Science.gov (United States)

    Xu, Yue; Zhao, Tingchen; Li, Ding

    2018-01-01

    An accurate behavioral model is presented to simulate important statistical performance of single-photon avalanche diodes (SPADs), such as dark count and after-pulsing noise. The derived simulation model takes into account all important generation mechanisms of the two kinds of noise. For the first time, thermal agitation, trap-assisted tunneling and band-to-band tunneling mechanisms are simultaneously incorporated in the simulation model to evaluate dark count behavior of SPADs fabricated in deep sub-micron CMOS technology. Meanwhile, a complete carrier trapping and de-trapping process is considered in afterpulsing model and a simple analytical expression is derived to estimate after-pulsing probability. In particular, the key model parameters of avalanche triggering probability and electric field dependence of excess bias voltage are extracted from Geiger-mode TCAD simulation and this behavioral simulation model doesn't include any empirical parameters. The developed SPAD model is implemented in Verilog-A behavioral hardware description language and successfully operated on commercial Cadence Spectre simulator, showing good universality and compatibility. The model simulation results are in a good accordance with the test data, validating high simulation accuracy.

  18. Photon detectors with high quantum efficiency at NUV range using a confinement of wavelength-shifted signals and optical couplers

    Science.gov (United States)

    Takahashi, Y.; Hadaway, J.; Pakhomov, A.; Takizawa, Y.

    Near-UV wavelengths 300 - 400 nm have been in a death-valley for photon detectors due to very low quantum efficiencies QE in this range Conventional bi-alkali photocathodes of PMTs do not have QE better than 20-26 Much better photo-cathodes like GaAsP GaN and similar give better efficiencies but only at wavelengths 400nm and are severely plagued by very short lifetimes Avalanche Photo-diodes perform better at low temperatures but no better than 35 QE in the NUV region Silicon Photo-multipliers at Geiger mode SiPM with micro-pixels have high QEs 90 like CCD and CMOS as bare silicon but are severely plagued by very poor geometrical fill-factors 30 and their overallQMis limited to no better than 20 at NUV regime An optical interference-filter works as a half-mirror passing more than 90 of NUV lights 300-400 nm and reflect more than 90 of longer wavelength lights 400 nm UV photons after converted into blue-green lights by wavelength-shifter are reflected back and confined without much loss back into space A specific dichroic interference mirror with WLS was made by RIKEN Japan H Shimizu Y Takahashi Y Takizawa Patent pending 2000-399940 for this optical principle It also allows a better use of limited photo-sensitive micro-cells of SiPM overcoming the past serious problem of its very poor fill-factor As a result Half-mirror SiPM yields high final efficiency for NUV photons This new detector TRAPPER with optical couplers for SiPM or by GaAsP PMTs could be used for photon-hungry space experiments at NUV range TRAPPER

  19. Silicon photomultipliers in AMIGA muon counters

    Energy Technology Data Exchange (ETDEWEB)

    Botti, Ana Martina [Institut fuer Kernphysik, Karlsruher Institut fuer Technologie (Germany); Instituto de Tecnologias en Deteccion y Astroparticulas (ITeDA) (Argentina); Collaboration: Pierre-Auger-Collaboration

    2016-07-01

    The project AMIGA (Auger Muons and Infill for the Ground Array) aims to extend the energy range at the Pierre Auger Observatory to observe cosmic rays of lower energies (down to ∝10{sup 17} eV) and to study the transition from extragalactic to galactic cosmic rays. AMIGA is compounded by an infill of surface detectors (employing Cherenkov radiation detection in water) and muon counters. The AMIGA muon counters consist of an array of buried modules composed of 64 scintillator bars, a multi-pixel Photo Multiplier Tube (PMT) and the corresponding electronic of acquisition which works along with the surface detector. Currently, ITeDA is evaluating the feasibility of replacing PMTs with silicon photomultipliers (SiPM) without performing any substantial modification in the digital readout nor in the mechanical design. I present calibration results of a prototype module associated to the surface detector Toune of the Pierre Auger Observatory using a SiPM Hamamatsu S1257-100C plugged to the standard AMIGA front-end electronics. In addition, a study concerning gain stability and temperature variation has also been performed and is reported. I finally discuss a comparison between traces measured by both photodetectors (PMT and SiPM) for modules associated to the surface detector Toune.

  20. Knowledge teachers in teacher's counters understanding

    Directory of Open Access Journals (Sweden)

    Cristian Baú Dal Magro

    2016-04-01

    Full Text Available The central objective of the study was to analyze the understanding of teacher’s counters on the knowledge teachers who contribute to the process of teaching and learning. The study was characterized as descriptive research, conducted through semi-structured interviews and qualitative data analysis. The research population is accountants / teachers of higher education institutions located in the Western Region of the State of Santa Catarina who teach in undergraduate degree in Accounting. The sample was designed intentionally and for convenience, where 5 were selected counters / teachers. The content analysis was structured in four steps: a Identification of respondents; b Characterization of the teaching activities; c Perceptions of teachers regarding the teaching-learning process, d that manifest understandings about the teaching knowledge. The findings of the research studies conducted by Schulman (1986, Tardif (2002 and Saviani (1996 state, and the teachers knowledge that best contribute in the teaching-learning process according to the respondents are teaching methodology and evaluation appropriate; use of audiovisual resources; content knowledge and institutional policies and good relationship with the academics.

  1. The associated charged particle multiplicity of high-p/sub T/ pi /sup 0/ and single-photon events

    CERN Document Server

    Diakonou, M; Albrow, M G; Almehed, S; Benary, O; Bøggild, H; Botner, O; Cnops, A M; Cockerill, D J A; Dagan, S; Dahl-Jensen, Erik; Dahl-Jensen, I; Damgaard, G; Fabjan, Christian Wolfgang; Filippas-Tassos, A; Fokitis, E; Fowler, E C; Hallgren, A; Hansen, K H; Henning, S; Hood, D M; Hooper, J; Jarlskog, G; Karpathopoulos, S; Killian, T; Kourkoumelis, C; Kreisler, M; Lissauer, D; Lörstad, B; Ludlam, T; Mannelli, I; McCubbin, N A; Melin, A; Mjörnmark, U; Møller, R; Molzon, W; Mouzourakis, P; Nielsen, B S; Nielsen, S O; Nilsson, A; Oren, Y; Palmer, R B; Rahm, David Charles; Rehak, P; Resvanis, L K; Rosselt, L; Schistad, B; Stumer, I; Svensson, L; von Dardel, Guy F; Willis, W J

    1980-01-01

    The associated charged particle multiplicities of high-p/sub T/ pi /sup 0/ and single-photon events were measured at the CERN intersecting storage rings using lead/liquid-argon calorimeters and a scintillation counter array placed around the intersection region. The average multiplicity on the trigger side for the single-photon events was found to be significantly lower than that for the pi /sup 0/ events. The away-side multiplicity for both pi /sup 0/ and single- photon events increases with the trigger particle p/sub T/, but, at a fixed p/sub T/, the direct photon sample was found to have a slightly lower average multiplicity. The differences in the event structure can be explained if a large fraction of the single photons are produced via qg to gamma q constituent scattering. (16 refs).

  2. Construction and calibration studies of the SAPHIR scintillation counters

    International Nuclear Information System (INIS)

    Kostrewa, D.

    1988-03-01

    For the scintillation counter system of the SAPHIR detector at the stretcher ring ELSA in Bonn 50 time of flight counters and 12 trigger counters have been built. Each of them has two photomultipliers, one at each side. A laser calibration system with a pulsed nitrogen laser as central light source to monitor these photomultipliers has been optimized. It was used to adjust the photomultipliers and to test their long and short time instabilities. (orig.)

  3. Criticism and Counter-Criticism of Public Management: Strategy Models

    OpenAIRE

    Luis C. Ortigueira

    2007-01-01

    Critical control is very important in scientific management. This paper presents models of critical and counter-critical public-management strategies, focusing on the types of criticism and counter-criticism manifested in parliamentary political debates. The paper includes: (i) a normative model showing how rational criticism can be carried out; (ii) a normative model for oral critical intervention; and (iii) a general motivational strategy model for criticisms and counter-criticisms. The pap...

  4. Calibration and monitoring of the ARGUS shower counters

    International Nuclear Information System (INIS)

    Drescher, A.; Matthiesen, U.; Scheck, H.; Spaan, B.; Spengler, J.; Wegener, D.; Heller, R.; Schubert, K.R.; Stiewe, J.; Weseler, S.

    1986-02-01

    The 1760 shower counter modules of the detector ARGUS at DORIS II are monitored by a laser as the central light source. A lead glass counter, which also detects cosmic muons, and a photodiode serve as reference systems. The paper describes the technical layout, performance and stability of the monitoring system. Algorithms and corrections applied in the calibration procedure are discussed in detail. The monitoring system serves also to control the time-of-flight counter performance and to calibrate their TDCs. (orig.)

  5. Calibration and monitoring of the ARGUS shower counters

    International Nuclear Information System (INIS)

    Drescher, A.; Matthiesen, U.; Scheck, H.; Spaan, B.; Spengler, J.; Wegener, D.; Heller, R.; Schubert, K.R.; Stiewe, J.; Weseler, S.

    1986-01-01

    The 1760 shower counter modules of the detector ARGUS at DORIS II are monitored by a laser as the central light source. A lead glass counter, which also detects cosmic muons, and a photodiode serve as reference systems. The paper describes the technical layout, performance and stability of the monitoring system. Algorithms and corrections applied in the calibration procedure are discussed in detail. The monitoring system serves also to control the time-of-flight counter performance and to calibrate their TDCs. (orig.)

  6. Investigation of new gas mixtures for the Pestov Counter

    CERN Document Server

    Sann, H; CERN. Geneva; Eschke, J; Lühning, J; Lynen, U; Neyer, C; Pestov, Yu N; Schmidt, H R; Schreiber, B M; Schulze, R; Stelzer, H; Woerner, A; Frankenfeld, U

    2000-01-01

    The physical principle of discharge localization in Pestor spark counters is described. It was experimentally shown that Isoprene is one of the promising candidates to replace 1,3-Butadiene in the standard gas mixture. In the spark counter with the DME-Argon gas mixture and an aluminium nitrite cathode a discharge localization was obtained for the first time. This result is considered as the beginning of a new spark counter technology without conditioning.

  7. A study of proportional counter optimization for long-term counting

    International Nuclear Information System (INIS)

    Povinec, P.

    1979-01-01

    The influence of the counter geometry and the nature of the gas filling on counter characteristics is studied. The electron transit time is calculated for various gases and consequences for long-term counter operation are discussed. It is shown that for good counter performance it is important to secure high drift velocity of electrons in the counter. The effect of electronegative impurities in the counter filling on the counter characteristics is investigated. (Auth.)

  8. Multiwire proportional counters for low-level 14C and 3H measurements

    International Nuclear Information System (INIS)

    Povinec, P.

    1978-01-01

    Two types of proportional counters for low-level counting of 14 C and 3 H are described. The 14 C counter is of the Oeschger type with copper foil used for separation of the inner and the ring counter. The 3 He counter is a new type of wall-less counter which does not use the internal cathode between the inner and the ring counter. Both counters have very low background and enable to reach a high counting sensitivity. (Auth.)

  9. Testing Three Types of Raspberry Pi People Counters

    Directory of Open Access Journals (Sweden)

    Johnathan Cintron

    2017-10-01

    Full Text Available The Hudson County Community College (HCCC Library tested three different types of Raspberry Pi based people counters between 6/14/2017 and 7/9/2017. This article will describe how we created each type of counter, will compare the accuracy of each sensor, and will compare them to the college’s existing 3M 3501 gate counters. It will also describe why and how our team decided to make this project, discuss lessons learned, and provide instructions for how other libraries can create their own gate counters.

  10. A multiwire proportional counter for tritium and radiocarbon measurements

    International Nuclear Information System (INIS)

    Srdoc, D.; Planinic, J.; Obelic, B.

    1977-01-01

    A wall-less proportional counter for tritium and 14 C measurements is described. The device consists of a central counter surrounded by a ring of 16 counters. There is no wall between the counters and the whole volume is filled with the gas to be measured. A special arrangement of anode connections helps to distinguish the pulses due to sample activity and those due to background. Further reduction of background was achieved by summing up coincident pulses and rejecting those above the chosen level, which gives the optimal sample count to background ratio. (author)

  11. Few-photon optical diode

    OpenAIRE

    Roy, Dibyendu

    2010-01-01

    We propose a novel scheme of realizing an optical diode at the few-photon level. The system consists of a one-dimensional waveguide coupled asymmetrically to a two-level system. The two or multi-photon transport in this system is strongly correlated. We derive exactly the single and two-photon current and show that the two-photon current is asymmetric for the asymmetric coupling. Thus the system serves as an optical diode which allows transmission of photons in one direction much more efficie...

  12. Photon production at the LHC

    CERN Document Server

    Lafaye, R

    2013-01-01

    We review the last results on photon production at the LHC by the ATLAS and CMS experiments obtained in proton-proton collisions with a center of mass energy of 7 TeV in 2010 and 2011, corresponding to a maximum integrated luminosity of 5 fb−1. We compare the prompt photon and photon-jet differential cross-sections to theoretical predictions and discuss their impact on the parton distribution functions of the proton. Di-photon differential cross-sections are also presented as a function of the di-photon invariant mass, transverse momentum, azimuthal separation, and cos theta*.

  13. Physics with Photons in ATLAS

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    The fine granularity ATLAS electromagnetic calorimeter provides a precise measurement of the photon energy and direction, as well as efficient rejection of background from fake photons, while the high precision inner detector allows also the reconstruction of photons that convert into electron-positron pairs.Isolated photons are measured using well-defined infrared-safe isolation criteria corrected for underlying event and the effects of additional proton-proton collisions. Differential cross sections for inclusive photons and diphotons are presented, and the spectrum of diphoton production is used to search for the Higgs boson in this decay channel.

  14. Photonic band gap materials

    Science.gov (United States)

    Cassagne, D.

    Photonic band gap materials Photonic band gap materials are periodic dielectric structures that control the propagation of electromagnetic waves. We describe the plane wave method, which allows to calculate the band structures of photonic crystals. By symmetry analysis and a perturbative approach, we predict the appearance of the low energy photonic band gaps of hexagonal structures. We propose new two-dimensional structures called graphite and boron nitride. Using a transfer matrix method, we calculate the transmission of the graphite structure and we show the crucial role of the coupling with external modes. We study the appearance of allowed modes in the photonic band gap by the introduction of localized defects in the periodicity. Finally, we discuss the properties of opals formed by self-organized silica microspheres, which are very promising for the fabrication of three-dimensional photonic crystals. Les matériaux à bandes interdites photoniques sont des structures diélectriques périodiques qui contrôlent la propagation des ondes électromagnétiques. Nous décrivons la méthode des ondes planes qui permet de calculer les structures de bandes des cristaux photoniques. Par une analyse de la symétrie et une approche perturbative, nous précisons les conditions d'existence des bandes interdites de basse énergie. Nous proposons de nouvelles structures bidimensionnelles appelées graphite et nitrure de bore. Grâce à une méthode de matrices de transfert, nous calculons la transmission de la structure graphite et nous mettons en évidence le rôle fondamental du couplage avec les modes extérieurs. Nous étudions l'apparition de modes permis dans la bande interdite grâce à l'introduction de défauts dans la périodicité. Enfin, nous discutons les propriétés des opales constituées de micro-billes de silice auto-organisées, qui sont très prometteuses pour la fabrication de cristaux photoniques tridimensionnels.

  15. Photon activation analysis

    International Nuclear Information System (INIS)

    Segebade, C.; Weise, H.P.; Lutz, G.J.

    1988-01-01

    This book is written to give, in a concentrated form, an overview of the application of photonuclear reactions to activation analysis. Is is intended to accompany the analyst's work in the photon activation analysis laboratory as a practical usable reference. Emphasis is placed upon analytical qualitative and quantitative data which are based upon experimentally obtained results. Therefore, both a source of general information on photon activation analysis and a laboratory manual are combined in this book. The results of the authors' laboratory work and a large amount of literature data are evaluated and presented as completely as possible by the authors. Special knowledge of photonuclear physics is not required; only a very elementary theoretical introduction is given. More detailed information on the physical and mathematical theory should be sought in the special literature which is cited in the relevant chapters. (orig./RB)

  16. Photons in a ball

    Energy Technology Data Exchange (ETDEWEB)

    Mueck, Wolfgang [Universita degli Studi di Napoli ' ' Federico II' ' , Dipartimento di Fisica ' ' Ettore Pancini' ' , Naples (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Naples (Italy)

    2015-12-15

    The electromagnetic field inside a spherical cavity of large radius R is considered in the presence of stationary charge and current densities. R provides infra-red regularisation while maintaining gauge invariance. The quantum ground state of physical photons forming the magnetic field is found to be a coherent state with a definite mean occupation number. The electric field, which is determined by the Gauss law constraint, is maintained by a minimum uncertainty coherent state, according to the projection operator approach to the quantisation of constrained systems. The mean occupation number of this state is proportional to the square of the total charge. The results confirm formulae obtained previously from a calculation with a finite photon mass for infra-red regularisation. (orig.)

  17. Photons in a ball

    Energy Technology Data Exchange (ETDEWEB)

    Mück, Wolfgang, E-mail: mueck@na.infn.it [Dipartimento di Fisica “Ettore Pancini”, Università degli Studi di Napoli “Federico II”, Via Cintia, 80126, Naples (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Via Cintia, 80126, Naples (Italy)

    2015-12-11

    The electromagnetic field inside a spherical cavity of large radius R is considered in the presence of stationary charge and current densities. R provides infra-red regularisation while maintaining gauge invariance. The quantum ground state of physical photons forming the magnetic field is found to be a coherent state with a definite mean occupation number. The electric field, which is determined by the Gauss law constraint, is maintained by a minimum uncertainty coherent state, according to the projection operator approach to the quantisation of constrained systems. The mean occupation number of this state is proportional to the square of the total charge. The results confirm formulae obtained previously from a calculation with a finite photon mass for infra-red regularisation.

  18. Natural photonic crystals

    Science.gov (United States)

    Vigneron, Jean Pol; Simonis, Priscilla

    2012-10-01

    Photonic structures appeared in nature several hundred millions years ago. In the living world, color is used for communication and this important function strongly impacts the individual chances of survival as well as the chances to reproduce. This has a statistical influence on species populations. Therefore, because they are involved in evolution, natural color-generating structures are - from some point of view - highly optimized. In this short review, a survey is presented of the development of natural photonic crystal-type structures occurring in insects, spiders, birds, fishes and other marine animals, in plants and more, from the standpoint of light-waves propagation. One-, two-, and three-dimensional structures will be reviewed with selected examples.

  19. Essentials of photonics

    CERN Document Server

    Rogers, Alan; Baets, Roel

    2008-01-01

    Photons and ElectronsHistorical SketchThe Wave Nature of LightPolarizationThe Electromagnetic SpectrumEmission and Absorption ProcessesPhoton Statistics The Behaviour of Electrons LasersSummaryWave Properties of LightThe Electromagnetic SpectrumWave RepresentationElectromagnetic WavesReflection and RefractionTotal Internal ReflectionInterference of LightLight WaveguidingInterferometersDiffractionGaussian Beams and Stable Optical ResonatorsPolarization OpticsThe Polarization EllipseCrystal OpticsRetarding WaveplatesA Variable Waveplate: The Soleil-Babinet Compensator Polarizing PrismsLinear BirefringenceCircular BirefringenceElliptical BirefringencePractical Polarization EffectsPolarization AnalysisThe Form of the Jones MatricesLight and Matter Emission, Propagation, and Absorption ProcessesClassical Theory of Light Propagation in Uniform Dielectric Media Optical Dispersion Emission and Absorption of LightOptical Coherence and CorrelationIntroductionMeasure of Coherence Wiener-Khinchin TheoremDual-Beam Interfe...

  20. Photonics an introduction

    CERN Document Server

    Reider, Georg A

    2016-01-01

    This book provides a comprehensive introduction into photonics, from the electrodynamic and quantum mechanic fundamentals to the level of photonic components and building blocks such as lasers, amplifiers, modulators, waveguides, and detectors. The book will serve both as textbook and as a reference work for the advanced student or scientist. Theoretical results are derived from basic principles with convenient, yet state-of-the-art mathematical tools, providing not only deeper understanding but also familiarization with formalisms used in the relevant technical literature and research articles. Among the subject matters treated are polarization optics, pulse and beam propagation, waveguides, light–matter interaction, stationary and transient behavior of lasers, semiconductor optics and lasers (including low-dimensional systems such as quantum wells), detector technology, photometry, and colorimetry. Nonlinear optics are elaborated comprehensively. The book is intended for both students of physics and elect...

  1. Fiber-Optic Monitoring System of Particle Counters

    Directory of Open Access Journals (Sweden)

    A. A. Titov

    2016-01-01

    Full Text Available The article considers development of a fiber-optic system to monitor the counters of particles. Presently, optical counters of particles, which are often arranged at considerable distance from each other, are used to study the saltation phenomenon. For monitoring the counters, can be used electric communication lines.However, it complicates and raises the price of system Therefore, we offered a fiber-optic system and the counter of particles, free from these shortcomings. The difference between the offered counter of particles and the known one is that the input of radiation to the counter and the output of radiation scattering on particles are made by the optical fibers, and direct radiation is entered the optical fiber rather than is delayed by a light trap and can be used for lighting the other counters thereby allowing to use their connection in series.The work involved a choice of the quartz multimode optical fiber for communication, defining the optical fiber and lenses parameters of the counter of particles, and a selection of the radiation source and the photo-detector.Using the theory of light diffraction on a particle, a measuring range of the particle sizes has been determined. The system speed has been estimated, and it has been shown that a range of communication can reach 200km.It should be noted that modulation noise of counters of particles connected in series have the impact on the useful signal. To assess the extent of this influence we have developed a calculation procedure to illustrate that with ten counters connected in series this influence on the signal-to-noise ratio will be insignificant.Thus, it has been shown that the offered fiber-optic system can be used for monitoring the counters of particles across the desertified territories. 

  2. Three-photon micromasers

    International Nuclear Information System (INIS)

    Obada, A.S.F.; Abu Sitta, A.M.M.; Yasin, O.M.

    1993-01-01

    A non-degenerate 3-photon micromaser is analyzed. A 4-level atom is taken and 3 models of the field are considered. The model is solved for the case of resonance and the master equation for the density matrix is obtained. Semi-analytical solutions are obtained under specified approximations. Three modes can exist depending on the time of interaction. (author). 10 refs, 2 figs

  3. Active Photonic Devices

    Science.gov (United States)

    Della Valle, Giuseppe; Osellame, Roberto

    The chapter is devoted to active photonic devices fabricated by fs-laser writing. After a brief introduction focused on the role played by fs-laser written active devices, Sect. 10.2 briefly reviews the spectroscopical properties of the most interesting active ions so far exploited, namely erbium, ytterbium, neodimium, and bismuth. In Sect. 10.3 the main figures of merit for an active waveguide, namely the internal gain, the insertion loss, the net gain, and the noise figure are introduced and the experimental procedure for accurate gain measurement is also detailed. A thorough review of the active photonic devices demonstrated with the femtosecond laser microfabrication technique is presented in Sects. 10.4, 10.5, and 10.6, where several active waveguides and amplifiers, prototypal lasers, as well as more functionalized laser devices (operating under single longitudinal mode or stable mode-locking regime) are illustrated, respectively. Finally, conclusions and future perspectives of femtosecond-laser micromachining of active photonic devices are provided.

  4. Photon-activation therapy

    International Nuclear Information System (INIS)

    Fairchild, R.G.; Bond, V.P.

    1982-01-01

    Photon Activation Therapy (PAT) is a technique in which radiation dose to tumor is enhanced via introduction of stable 127 I in the form of iodinated deoxyuridine (IdUrd). Stimulation of cytotoxic effects from IdUrd is accomplished by activation with external (or implanted) radiation sources. Thus, accumulations of this nucleoside in actively competing cellpools do not preclude therapy in so far as such tissues can be excluded from the radiation field. Calculations show that 5% replacement of thymidine (Tyd) in tumor DNA should enhance the biological effectiveness of a given photon radiotherapy dose by a factor of approx. 3. Proportionally higher gains would result from higher replacements of Tyd and IdUrd. In addition, biological response is enhanced by chemical sensitization with IdUrd. The data indicate that damage from photon activation as well as chemical sensitization does not repair. Thus, at low dose rates, a further increase in therapeutic gain should accrue as normal tissues are allowed to repair and regenerate. A samarium-145 source has been developed for PAT, with activating x-ray energies of from 38 to 45 keV. Favorable clinical results can be expected through the use of IdUrd and protracted irradiations with low energy x-rays. In particular, PAT may provide unique advantages at selected sites such as brain, or head and neck tumors

  5. Slotted Photonic Crystal Sensors

    Science.gov (United States)

    Scullion, Mark G.; Krauss, Thomas F.; Di Falco, Andrea

    2013-01-01

    Optical biosensors are increasingly being considered for lab-on-a-chip applications due to their benefits such as small size, biocompatibility, passive behaviour and lack of the need for fluorescent labels. The light guiding mechanisms used by many of them results in poor overlap of the optical field with the target molecules, reducing the maximum sensitivity achievable. This review article presents a new platform for optical biosensors, namely slotted photonic crystals, which provide higher sensitivities due to their ability to confine, spatially and temporally, the optical mode peak within the analyte itself. Loss measurements showed values comparable to standard photonic crystals, confirming their ability to be used in real devices. A novel resonant coupler was designed, simulated, and experimentally tested, and was found to perform better than other solutions within the literature. Combining with cavities, microfluidics and biological functionalization allowed proof-of-principle demonstrations of protein binding to be carried out. Higher sensitivities were observed in smaller structures than possible with most competing devices reported in the literature. This body of work presents slotted photonic crystals as a realistic platform for complete on-chip biosensing; addressing key design, performance and application issues, whilst also opening up exciting new ideas for future study. PMID:23503295

  6. Photonic Molecule Lasers Revisited

    Science.gov (United States)

    Gagnon, Denis; Dumont, Joey; Déziel, Jean-Luc; Dubé, Louis J.

    2014-05-01

    Photonic molecules (PMs) formed by coupling two or more optical resonators are ideal candidates for the fabrication of integrated microlasers, photonic molecule lasers. Whereas most calculations on PM lasers have been based on cold-cavity (passive) modes, i.e. quasi-bound states, a recently formulated steady-state ab initio laser theory (SALT) offers the possibility to take into account the spectral properties of the underlying gain transition, its position and linewidth, as well as incorporating an arbitrary pump profile. We will combine two theoretical approaches to characterize the lasing properties of PM lasers: for two-dimensional systems, the generalized Lorenz-Mie theory will obtain the resonant modes of the coupled molecules in an active medium described by SALT. Not only is then the theoretical description more complete, the use of an active medium provides additional parameters to control, engineer and harness the lasing properties of PM lasers for ultra-low threshold and directional single-mode emission. We will extend our recent study and present new results for a number of promising geometries. The authors acknowledge financial support from NSERC (Canada) and the CERC in Photonic Innovations of Y. Messaddeq.

  7. Fast-neutron coincidence-counter manual

    International Nuclear Information System (INIS)

    Ensslin, N.; Atwell, T.L.; Lee, D.M.; Erkkila, B.; Marshall, R.S.; Morgan, A.; Shonrock, C.; Tippens, B.; Van Lyssel, T.

    1982-03-01

    The fast neutron counter (FNC) described in this report is a computer-based assay system employing fast-pulse counting instrumentation. It is installed below a glove box in the metal electrorefining area of the Los Alamos National Laboratory Plutonium Processing Facility. The instrument was designed to assay plutonium salts and residues from this process and to verify the mass of electrorefined metal. Los Alamos National Laboratory Groups Q-1, Q-3, and CMB-11 carried out a joint test and evaluation plan of this instrument between May 1978 and May 1979. The results of that evaluation, a description of the FNC, and operating instructions for further use are given in this report

  8. CAMAC differential pulse discriminator-counter

    International Nuclear Information System (INIS)

    Tselikov, N.V.

    1987-01-01

    Differential pulse discriminator-counter for Moessbauer spectrometer is described. Input pulse setting into the channel is performed according to the following algorithm: the pulse is transmitted to the channel depending on the fact whether the preceding pulse has got to the discrimination window or not. The circuit does not contain delay lines, taking into account the delay of a signal from the upper level discriminator in relation to the lower level discriminator signal, which is connected with input pulse rise finite time, which in turn allows one to reduce the discriminator dead time up to the operation time of threshold circuits. The pulse counting rate is 150 MHz, input signal amplitude is ±3 V, dead time is 6 ns, delay time from input to output is 14 ns. The unit is made in CAMAC system

  9. Countering laser pointer threats to road safety

    Science.gov (United States)

    Svensson, Sören; Björkert, Stefan; Kariis, Hans; Lopes, Cesar

    2006-09-01

    The market demand for bright laser pointers has led to the development of readily available devices that can pose a threat to road safety. Laser pointers can be involved in accidents caused by laser users who do not realise the dangers involved, but laser pointers can also enable deliberate criminal activity. There are technologies available that can counter the threat in different ways. A number of protective principles are outlined below. Some technologies built upon Liquid Crystal Devices are described in greater detail. Without any knowledge of what laser pointers a potential aggressor has access to, a frequency agile filter seems to be the most promising way to avoid the most severe consequences of dazzle from laser pointers. Protective systems incorporating suitable glasses or visors holding frequency agile filters of this kind however, are not commercially available today.

  10. Multi-level modelling of the response of the ultraminiature proportional counter: gas gain phenomena and pulse height spectra

    International Nuclear Information System (INIS)

    Olko, P.; Moutarde, C.; Segur, P.

    1995-01-01

    The ultraminiature proportional counters, UMC, unique radiation detectors for monitoring high intensity therapy fields, designed by Kliauga and operated at Columbia University (USA), have yielded a number of pulse height distributions for photons, neutrons and ions at simulated diameters of 5-50 nm. Monte Carlo calculations of the gas gain in such a counter questioned the possibility of achieving proportionally at such low simulated diameters. The response of the UMC has now been modelled taking into account both fluctuations of energy deposited in the counter volume and its calculated gas gain. Energy deposition was calculated using the MOCA-14, MOCA-8 and TRION codes, whereby distributions of ionisations d(j) after irradiations with 137 Cs, 15 MeV neutrons and 7 MeV.amu -1 deuterons were obtained. Monte Carlo calculations of electron avalanches in UMC show that the size of the single-electron avalanche P(n) reaching the anode depends strongly on the location of the primary ionisation within the counter volume. Distributions of the size of electron avalanches for higher numbers of primary ionisations, P *j (n), were obtained by successive convolutions of P(n). Finally, the counter response was obtained by weighting P *j (n) over d(j) distributions. On comparing the measured and calculated spectra it was concluded that the previously proposed single-electron peak calibration method might not be valid for the UMC due to the excessive width and overlap of electron avalanche distributions. Better agreement between the measured and calculated spectra is found if broader electron avalanche distributions than those used in the present calculations, are assumed. (author)

  11. Bases for calibration of whole body counters using anthropomorphic physical simulators

    International Nuclear Information System (INIS)

    Dantas, Bernardo Maranhao

    1998-01-01

    The quantification of radionuclides in the human body can be carried out through in vivo measurements performed in facilities generically called whole body counters. The calibration of such units is usually done by using physical anthropomorphic phantoms, which can be defined as artificial structures with geometrical characteristics and attenuation properties similar to the living tissues. This work presents the development of the phantoms necessary to the monitoring of the internal contamination by the radionuclides manipulated in Brazil. It also presents the procedures for the calibration of the detectors used for the in vivo measurements. The developed phantoms are applied in the determination of radionuclides deposited in specific organs, such as Th-232 and Am-241 in the lungs and skull, isotopes of iodine in the thyroid and photon emitters in the energy range from 100 to 3000 keV in the whole body. (author)

  12. Photon flux determination for a precision measurement of the neutral pion lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Teymurazyan, Aram [Univ. of Kentucky, Lexington, KY (United States)

    2008-01-01

    The Jefferson Lab Hall B PrimEx Collaboration is using tagged photons to perform a 1.4% level measurement of the absolute cross section for the photo-production of neutral pions in the Coulomb field of a nucleus as a test of Chiral Perturbation Theory. Such a high precision pushes the limits of the photon tagging technique in regards to the determination of the absolute photon flux. A multifaceted approach to this problem has included measuring the absolute tagging ratios with a Total Absorption Counter (TAC) as well as relative tagging ratios with a Pair Spectrometer (PS), and determining the rate of the tagging counters using multi-hit TDC's and a clock trigger. This enables the determination of the absolute tagged photon flux for the PrimEx experiment with uncertainty of ~ 1.0%, which is unprecedented. In view of the stringent constraints on the required precision of the photon flux for this experiment, periodicmeasurements of the pair production cross section were performed throughout the run. In these measurements, both the photon energy and flux were determined by the Jefferson Lab Hall B tagger, and the electron-positron pairs were swept by a magnetic field and detected in the new 1728 channel hybrid calorimeter (HyCal). The pair production crosssection was extracted with an uncertainty of ~ 2%, producing an agreement with theoretical calculations at the level of ~ 2%. This measurement provided a unique opportunity to verify the photon flux determination procedure for the PrimEx experiment.

  13. INDIA: Photon multiplicity detector

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Full text: The team of Indian scientists from Calcutta's Variable Energy Cyclotron Centre, Bhubaneswar Institute of Physics, Panjab (Chandigarh), Rajasthan (Jaipur) and Jammu in collaboration with GSI Darmstadt have contributed a large and highly granular preshower photon multiplicity detector (PMD) for the WA98 experiment at the CERN SPS proton synchrotron. This experiment studies high energy collisions of lead ions and will measure both charged particle and photon multiplicity in a large overlap region. The motivation for measuring photon multiplicity in ultra-relativistic heavy ion collisions stems from theoretical predictions of changes in the relative production of photons and charged particles in the phase transition of hadronic matter to quarkgluon plasma and its subsequent hadronization. The photon multiplicity detector consists of a matrix of scintillator pads placed in light-tight boxes and mounted behind the lead converter plates. The light from the scintillator pads is transported to the readout system using wavelength shifting (WLS) fibres. Developing on the team's earlier experience with a smaller version for the WA93 experiment (September 1991, page 16), several modifications were incorporated to improve light collection and transport. Use of improved WLS fibres, short WLS pieces to minimize self-absorption, and thermal splicing with long clear fibres were some of the important changes incorporated. Tests showed signficantly improved light collection. The scintillator pads were fabricated at all the five collaborating centres in India and the complicated assembly in the detector box modules carried out at the Variable Energy Cyclotron Centre, Calcutta. More than 400 lead converter plates were machined in Calcutta to rigorous tolerances of 0.2 mm. The assembled detector box modules and lead plates were shipped to CERN in spring 1994 for tests and installation. The WA98 PMD consists of over 50,000 scintillator pads of sizes varying from 15 to

  14. Model-Checking CTL* over Flat Presburger Counter Systems

    DEFF Research Database (Denmark)

    Demri, Stéphane; Finkel, Alain; Goranko, Valentin

    2010-01-01

    This paper studies model-checking of fragments and extensions of CTL* on infinite- state counter systems, where the states are vectors of integers and the transitions are determined by means of relations definable within Presburger arithmetic. In general, reachability properties of counter system...

  15. Beam test of Cherenkov counter prototype for ZDF setup

    International Nuclear Information System (INIS)

    Kacharava, A.K.; Macharashvili, G.G.; Nioradze, M.S.; Komarov, V.I.; Sopov, V.S.; Chernyshev, V.P.

    1995-01-01

    We describe a Cherenkov counter of total internal reflection for particle separation in the momentum range where all types of particles radiate Cherenkov light. The Cherenkov counter prototype with the lucite radiator was tested on the secondary beam of the ITEP (Moscow) accelerator. Dependence of the photomultiplier pulse height on the particle entrance angle was clearly observed. 4 refs., 4 figs

  16. Counter-terrorism strategies in Indonesia, Algeria and Saudi Arabia

    NARCIS (Netherlands)

    Meijer, R.; Hasan, Noorhaidi; Hendriks, B.; Janssen, F.

    2012-01-01

    This report is the result of a year-long study, conducted from March 2010 to March 2011, of the counter-terrorist strategies of three countries: Indonesia, Algeria and Saudi Arabia. The aim of this study was to acquire insight into the counter-terrorist strategies of these countries, to analyse

  17. The Counter Terrorist Classroom: Religion, Education, and Security

    Science.gov (United States)

    Gearon, Liam

    2013-01-01

    The article identifies international cases--from the United States, Europe, and the United Nations--of an emergent interface of religion, education, and security. This is manifest in the uses of religion in education to counter religious extremism, the notional "counter terrorist classroom." To avoid an over-association of extremism with…

  18. Lessons from History for Counter- Terrorism Strategic Communications

    NARCIS (Netherlands)

    Ingram, H.J.; Reed, A.G.

    2016-01-01

    Drawing on the Counter-terrorism Strategic Communication (CTSC) Project’s research paper “A Brief History of Propaganda during Conflict“, this Policy Brief lays out the key policy-relevant lessons for developing effective counter-terrorism strategic communications. It presents a framework of

  19. Neutron sensitivity improvement in boron-lined proportional counters

    International Nuclear Information System (INIS)

    Dighe, P.M.; Prasad, K.R.; Kataria, S.K.

    2002-01-01

    Various techniques have been employed to improve the neutron sensitivity of boron-coated proportional counters developed indigenously. A boron-lined proportional counter (67 mm ID x 750 mm length) of 17 cps/nv thermal neutron sensitivity is developed by coating 92% enriched 10 B on the inner wall of the counter. This counter can be used for low thermal neutron flux (∼0.2 nv) at various applications such as neutron area monitoring, reactor start-up instrumentation, assay of fissile materials and detection of fuel failure. An improvement in sensitivity was also achieved by summing the output signals from four 10 B lined counters and two BF 3 proportional counters. The summation did not change the susceptibility of the device to gamma interference. In view of the scarcity of enriched 10 B isotope, indigenously available natural boron coated two prototype proportional counters are developed of 0.8 cps/nv and 1.1 cps/nv thermal neutron sensitivity. Efforts have been made to improve the sensitivity with boron coated 3-dimensional structures introduced into the sensitive volume. Tests in thermal neutron flux showed 50% improvement in the sensitivity due to the introduction of additional boron coated wires. Another counter with 51 boron-coated annular discs (23 mm OD X 10 mm ID X 1 mm thick) mounted perpendicular to the axis of the cathode showed 1.7 cps/nv neutron sensitivity, an improvement by a factor of 2.5. (author)

  20. A counter system for natural C14 measurement

    International Nuclear Information System (INIS)

    Oona, H.; Fan, C.Y.

    1977-01-01

    Two proportional counters made of plastic scintillator were constructed for measuring the C14 contents in dated tree rings. One is for background and the other for specimen. CH 4 at 1 atm pressure was used as the counter gas; each counter has an active volume approximately 5.5 l. The wall, being a scintillator, serves as a 4π anti-coincidence shell for rejection of natural radioactivity in the material housing the proportional counter and penetrating cosmic ray muons. The outputs of the proportional counters which are in anticoincidence with the scintillation counter were recorded in a pulse height analyzer. After background subtraction, it yields the beta-decay spectrum of carbon-14 in the methane filled proportional counter. Simultaneously, the outputs which are in coincidence with the scintillation counter were also recorded as a monitor of the operational characteristics of the detector systems. The problems inherent with pulse height analyzers and the use of scintillators are discussed and evaluated. (Auth.)

  1. Calibration of the LDI/CDTN Whole Body Counter using three physical phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Paiva, F.G.; Fonseca, T.C.F. [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte, MG (Brazil). Dep. de Engenharia Nuclear; Mendes, B.M.; Silva, T.A. da; Lacerda, M.A.S.; Pinto, J.R.; Prates, S.; Filho, N.N.A., E-mail: fgpaiva92@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte/MG (Brazil); Dantas, A.L.A.; Dantas, B.M. [Instituto de Radioproteção e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    The Laboratory of Internal Dosimetry of the Center for Development of Nuclear Technology (LDI/CDTN) is responsible for routine monitoring of internal contamination of the Individuals Occupationally Exposed (IOEs) at the Unit for Research and Production of Radiopharmaceuticals (UPPR/CDTN), the Research Reactor TRIGA-IPR-R1/CDTN and other workplaces of the institute where there is a risk of accidental intakes. Additionally, LDI supports the Institute of Radiation Protection and Dosimetry (IRD/CNEN) to attend radiological emergencies. The determination of photon emitting radionuclides in the human body requires the use of calibration techniques in different counting geometries for converting the count rates into activity in organs and tissues. This paper presents and discusses the calibration of the LDI/CDTN Whole Body Counter (WBC) using a standard BOMAB phantom (Bottle Mannequin Absorber) compared to a home-made phantom produced with Polyethylene Terephthalate bottles (PET). Initially, the BOMAB was filled with a cocktail containing {sup 60}Co, {sup 137}Cs and {sup 133}Ba. The phantom was counted at the LDI whole body counter and an Efficiency x Energy curve was obtained. Subsequently the PET-BOMAB was filled with the same standard source and a second curve was determined. The efficiency values in each region of interest as well as the shape of both curves were found to be equivalent. The results validate the use of the PET-BOMAB for the calibration of whole body geometry applied to the measurement of high energy photon emitting radionuclides in the energy region evaluated in this work. (author)

  2. First Swiss bachelor in Photonics

    Science.gov (United States)

    Leutenegger, Tobias; Studer, Bruno

    2015-10-01

    Swissmem, the Swiss association of mechanical and electrical engineering industries, founded a new photonics group in 2013. This reflects the importance of this key technology for Switzerland. Swissmem requested from the Swiss Universities of Applied Sciences to introduce a new bachelor program to fulfill the increasing demand of the Swiss industry of young academics in the field of photonics. Optech Consulting is investigating the Swiss photonics market since many years on behalf of Swissphotonics, the Swiss national thematic network for photonics. The study concluded that the total production volume of the Swiss photonics industry in the year 2013 was 3 billion Swiss francs and a slight growth is expected for 2014. The University of Applied Science HTW Chur is located in the Eastern part of Switzerland. This area of the Rhine valley is a technology cluster of innovative companies in the field of optics and electronics. The industry is growing and the R&D departments of the worldwide active companies are lacking well-educated photonics engineers. The HTW Chur is dedicated to establish the first Swiss bachelor in Photonics. Supported by strong industrial players and an excellent network, the HTW Chur developed different job descriptions and a complete curriculum, which reflect the needs of the Swiss photonics industry. Almost 60% of the ECTS of this national degree program are assigned to photonics specific courses and the practical projects are organized in close collaboration with the photonics industry. Curriculum, job descriptions and the industrial needs will be discussed in detail in this paper.

  3. Fast transmission avalanche counter for charged particle detection

    International Nuclear Information System (INIS)

    Nojbert, V.; Dubbers, F.

    1979-01-01

    A new type of detectors, an avalanche transmission-type counter has been developed to record charged particles. It consists of two very thin tightened films between which high voltage is applied. Structurally the avalanche counter is made in the form of round small polyamide frames on which a FORMAVAR film of 15-30 μgxcm -2 thick is tightened. The latter is then covered with gold (approximately 40 μgxcm -2 ). As a working gas the avalanche counter uses vapours of acetone or n-heptane at a pressure ranging from 2 to 10 mm Hg. The basic circuits of detector-preamplifier connection is given, and the dependence of the detector signal amplitude on the counter anode-cathode voltage is presented. When recording α-particles the proper time resolution of the developed counter constitutes 475 ps

  4. Design of a novel quantum reversible ternary up-counter

    Science.gov (United States)

    Houshmand, Pouran; Haghparast, Majid

    2015-08-01

    Reversible logic has been recently considered as an interesting and important issue in designing combinational and sequential circuits. The combination of reversible logic and multi-valued logic can improve power dissipation, time and space utilization rate of designed circuits. Only few works have been reported about sequential reversible circuits and almost there are no paper exhibited about quantum ternary reversible counter. In this paper, first we designed 2-qutrit and 3-qutrit quantum reversible ternary up-counters using quantum ternary reversible T-flip-flop and quantum reversible ternary gates. Then we proposed generalized quantum reversible ternary n-qutrit up-counter. We also introduced a new approach for designing any type of n-qutrit ternary and reversible counter. According to the results, we can conclude that applying second approach quantum reversible ternary up-counter is better than the others.

  5. Frequency Agile Microwave Photonic Notch Filter in a Photonic Chip

    Science.gov (United States)

    2016-10-21

    AFRL-AFOSR-JP-TR-2016-0087 Frequency Agile Microwave Photonic Notch Filter in a Photonic Chip Benjamin Eggleton UNIVERSITY OF SYDNEY Final Report 10...REPORT TYPE      Final 3.  DATES COVERED (From - To)      14 May 2014 to 13 May 2016 4.  TITLE AND SUBTITLE Frequency Agile Microwave Photonic Notch Filter...in a Photonic Chip 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-14-1-4030 5c.  PROGRAM ELEMENT NUMBER 61102F 6.  AUTHOR(S) Benjamin Eggleton, David

  6. Photonic crystals in epitaxial semiconductors

    CERN Document Server

    La Rue, R M de

    1998-01-01

    The title of the paper uses the expression "photonic crystals". By photonic crystals, we mean regular periodic structures with a substantial refractive index variation in one-, two- or three- dimensional space. Such crystals can $9 exist naturally, for example natural opal, but are more typically fabricated by people. Under sufficiently strong conditions, i.e., sufficiently large refractive index modulation, correct size of structural components, and $9 appropriate rotational and translational symmetry, these crystals exhibit the characteristics of a photonic bandgap (PBG) structure. In a full photonic bandgap structure there is a spectral stop band for electromagnetic waves $9 propagating in any direction through the structure and with an arbitrary state of polarization. This behavior is of interest both from a fundamental viewpoint and from the point of view of novel applications in photonic devices. The $9 paper gives an outline review of work on photonic crystals carried out by the Optoelectronics Researc...

  7. All-photonic quantum repeaters

    Science.gov (United States)

    Azuma, Koji; Tamaki, Kiyoshi; Lo, Hoi-Kwong

    2015-01-01

    Quantum communication holds promise for unconditionally secure transmission of secret messages and faithful transfer of unknown quantum states. Photons appear to be the medium of choice for quantum communication. Owing to photon losses, robust quantum communication over long lossy channels requires quantum repeaters. It is widely believed that a necessary and highly demanding requirement for quantum repeaters is the existence of matter quantum memories. Here we show that such a requirement is, in fact, unnecessary by introducing the concept of all-photonic quantum repeaters based on flying qubits. In particular, we present a protocol based on photonic cluster-state machine guns and a loss-tolerant measurement equipped with local high-speed active feedforwards. We show that, with such all-photonic quantum repeaters, the communication efficiency scales polynomially with the channel distance. Our result paves a new route towards quantum repeaters with efficient single-photon sources rather than matter quantum memories. PMID:25873153

  8. The Photon Collider at Tesla

    Science.gov (United States)

    Badelek, B.; Blöchinger, C.; Blümlein, J.; Boos, E.; Brinkmann, R.; Burkhardt, H.; Bussey, P.; Carimalo, C.; Chyla, J.; Çiftçi, A. K.; Decking, W.; de Roeck, A.; Fadin, V.; Ferrario, M.; Finch, A.; Fraas, H.; Franke, F.; Galynskii, M.; Gamp, A.; Ginzburg, I.; Godbole, R.; Gorbunov, D. S.; Gounaris, G.; Hagiwara, K.; Han, L.; Heuer, R.-D.; Heusch, C.; Illana, J.; Ilyin, V.; Jankowski, P.; Jiang, Y.; Jikia, G.; Jönsson, L.; Kalachnikow, M.; Kapusta, F.; Klanner, R.; Klassen, M.; Kobayashi, K.; Kon, T.; Kotkin, G.; Krämer, M.; Krawczyk, M.; Kuang, Y. P.; Kuraev, E.; Kwiecinski, J.; Leenen, M.; Levchuk, M.; Ma, W. F.; Martyn, H.; Mayer, T.; Melles, M.; Miller, D. J.; Mtingwa, S.; Mühlleitner, M.; Muryn, B.; Nickles, P. V.; Orava, R.; Pancheri, G.; Penin, A.; Potylitsyn, A.; Poulose, P.; Quast, T.; Raimondi, P.; Redlin, H.; Richard, F.; Rindani, S. D.; Rizzo, T.; Saldin, E.; Sandner, W.; Schönnagel, H.; Schneidmiller, E.; Schreiber, H. J.; Schreiber, S.; Schüler, K. P.; Serbo, V.; Seryi, A.; Shanidze, R.; da Silva, W.; Söldner-Rembold, S.; Spira, M.; Stasto, A. M.; Sultansoy, S.; Takahashi, T.; Telnov, V.; Tkabladze, A.; Trines, D.; Undrus, A.; Wagner, A.; Walker, N.; Watanabe, I.; Wengler, T.; Will, I.; Wipf, S.; Yavaş, Ö.; Yokoya, K.; Yurkov, M.; Zarnecki, A. F.; Zerwas, P.; Zomer, F.

    High energy photon colliders (γγ,γe) are based on e-e- linear colliders where high energy photons are produced using Compton scattering of laser light on high energy electrons just before the interaction point. This paper is a part of the Technical Design Report of the linear collider TESLA.1 Physics program, possible parameters and some technical aspects of the photon collider at TESLA are discussed.

  9. Topological Order in Silicon Photonics

    Science.gov (United States)

    2017-02-07

    AFRL-AFOSR-VA-TR-2017-0037 Topological orders in Silicon photonics Mohammad Hafezi MARYLAND UNIV COLLEGE PARK 3112 LEE BLDG COLLEGE PARK, MD 20742...15 SEP 2016 4. TITLE AND SUBTITLE Topological Order in Silicon Photonics 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA-9550-14-1-0267 5c. PROGRAM...matter to ultra cold gases. Recently, photonic systems have been under investigation to explore various types of topological orders and to potentially

  10. CERN manufactured hybrid photon detectors

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    These hybrid photon detectors (HPDs) produce an electric signal from a single photon. An electron is liberated from a photocathode and accelerated to a silicon pixel array allowing the location of the photon on the cathode to be recorded. The electronics and optics for these devices have been developed in close collaboration with industry. HPDs have potential for further use in astrophysics and medical imaging.

  11. Silicon photonic heater-modulator

    Science.gov (United States)

    Zortman, William A.; Trotter, Douglas Chandler; Watts, Michael R.

    2015-07-14

    Photonic modulators, methods of forming photonic modulators and methods of modulating an input optical signal are provided. A photonic modulator includes a disk resonator having a central axis extending along a thickness direction of the disk resonator. The disk resonator includes a modulator portion and a heater portion. The modulator portion extends in an arc around the central axis. A PN junction of the modulator portion is substantially normal to the central axis.

  12. Silicon photonic integration in telecommunications

    Directory of Open Access Journals (Sweden)

    Christopher Richard Doerr

    2015-08-01

    Full Text Available Silicon photonics is the guiding of light in a planar arrangement of silicon-based materials to perform various functions. We focus here on the use of silicon photonics to create transmitters and receivers for fiber-optic telecommunications. As the need to squeeze more transmission into a given bandwidth, a given footprint, and a given cost increases, silicon photonics makes more and more economic sense.

  13. Photonic based marine radar demonstrator

    OpenAIRE

    Laghezza, Francesco; Scotti, Filippo; Ghelfi, Paolo; Bogoni, Antonella; Banchi, Luca; Malaspina, Vincenzo; Serafino, Giovanni

    2015-01-01

    This paper presents the results obtained during the field trial experiments of the first photonic-based radar system demonstrator, in a real maritime environment. The developed demonstrator exploits photonic technologies for both the generation and the detection of radar RF signals, allowing increased performance even in term of system flexibility. The photonic radar performance have been compared with a state of the art commercial system for maritime applications provide...

  14. Nanodiamond Emitters of Single Photons

    Directory of Open Access Journals (Sweden)

    Vlasov I.I.

    2015-01-01

    Full Text Available Luminescence properties of single color centers were studied in nanodiamonds of different origin. It was found that single photon emitters could be realized even in molecularsized diamond (less than 2 nm capable of housing stable luminescent center “silicon-vacancy.” First results on incorporation of single-photon emitters based on luminescent nanodiamonds in plasmonic nanoantennas to enhance the photon count rate and directionality, diminish the fluorescence decay time, and provide polarization selectivity are presented.

  15. Silicon applications in photonics

    Science.gov (United States)

    Jelenski, A. M.; Gawlik, G.; Wesolowski, M.

    2005-09-01

    Silicon technology enabled the miniaturization of computers and other electronic system for information storage, transmission and transformation allowing the development of the Knowledge Based Information Society. Despite the fact that silicon roadmap indicates possibilities for further improvement, already now the speed of electrons and the bandwidth of electronic circuits are not sufficient and photons are commonly utilized for signal transmission through optical fibers and purely photonic circuits promise further improvements. However materials used for these purposes II/V semiconductor compounds, glasses make integration of optoelectronic circuits with silicon complex an expensive. Therefore research on light generation, transformation and transmission in silicon is very active and recently, due to nanotechnology some spectacular results were achieved despite the fact that mechanisms of light generation are still discussed. Three topics will be discussed. Porous silicon was actively investigated due to its relatively efficient electroluminescence enabling its use in light sources. Its index of refraction, differs considerably from the index of silicon, and this allows its utilization for Bragg mirrors, wave guides and photonic crystals. The enormous surface enables several applications on medicine and biotechnology and in particular due to the effective chemo-modulation of its refracting index the design of optical chemosensors. An effective luminescence of doped and undoped nanocrystalline silicon opened another way for the construction of silicon light sources. Optical amplification was already discovered opening perspectives for the construction of nanosilicon lasers. Luminescences was observed at red, green and blue wavelengths. The used technology of silica and ion implantation are compatible with commonly used CMOS technology. Finally the recently developed and proved idea of optically pumped silicon Raman lasers, using nonlinearity and vibrations in the

  16. Fully reflective photon sieve

    Science.gov (United States)

    Sun, Wenbo; Hu, Yongxiang; MacDonnell, David G.; Kim, Hyun Jung; Weimer, Carl; Baize, Rosemary R.

    2018-02-01

    Photon sieves (PS) have many applications and various designs in focusing light. However, a traditional PS only has a light transmissivity up to ∼25% and a focusing efficiency up to ∼7%, which hinder the application of them in many fields, especially for satellite remote sensing. To overcome these inherent drawbacks of traditional PSs, a concept of reflective photon sieve is developed in this work. This reflective photon sieve is based on a transparent membrane backed by a mirror. The transparent membrane is optimally a fully transparent material sheet with given refractive index and designed geometric thickness which has an optical thickness of a quarter incident wavelength (i.e. an anti-reflective coating). The PS-patterned pinholes are made on the transparent membrane. The design makes the light reflected from pinholes and that from zones of membrane material have 180° phase difference. Thus, light incident on this optical device is reflected and focused on its focal point. This device can have a reflectivity of ∼100% and a focusing efficiency of ∼50% based on numerical simulation. This device functions similar to a concave focusing mirror but can preserve the phase feature of light (such as that for the light with orbital angular momentum). It also has excellent wavelength-dependent property, which can exclude most of the undesired light from the focal point. A thin sheet of this component can perform the joint function of lenses and gratings/etalons in the optical path of a remote sensing system, thus is suitable for controling/filtering light in compact instruments such as satellite sensors. This concept is validated by the finite-difference time domain (FDTD) modeling and a lab prototype in this study.

  17. Higgs-photon resonances

    Energy Technology Data Exchange (ETDEWEB)

    Dobrescu, Bogdan A.; Fox, Patrick J.; Kearney, John [Fermilab, Theoretical Physics Department, Batavia, IL (United States)

    2017-10-15

    We study models that produce a Higgs boson plus photon (h{sup 0}γ) resonance at the LHC. When the resonance is a Z{sup '} boson, decays to h{sup 0}γ occur at one loop. If the Z{sup '} boson couples at tree level to quarks, then the h{sup 0}γ branching fraction is typically of order 10{sup -5} or smaller. Nevertheless, there are models that would allow the observation of Z{sup '} → h{sup 0}γ at √(s) = 13 TeV with a cross section times branching fraction larger than 1 fb for a Z{sup '} mass in the 200-450 GeV range, and larger than 0.1 fb for a mass up to 800 GeV. The one-loop decay of the Z{sup '} into lepton pairs competes with h{sup 0}γ, even if the Z{sup '} couplings to leptons vanish at tree level. We also present a model in which a Z{sup '} boson decays into a Higgs boson and a pair of collimated photons, mimicking an h{sup 0}γ resonance. In this model, the h{sup 0}γ resonance search would be the discovery mode for a Z{sup '} as heavy as 2 TeV. When the resonance is a scalar, although decay to h{sup 0}γ is forbidden by angular momentum conservation, the h{sup 0} plus collimated photons channel is allowed. We comment on prospects of observing an h{sup 0}γ resonance through different Higgs decays, on constraints from related searches, and on models where h{sup 0} is replaced by a nonstandard Higgs boson. (orig.)

  18. Spaceborne Photonics Institute

    Science.gov (United States)

    Venable, D. D.; Farrukh, U. O.; Han, K. S.; Hwang, I. H.; Jalufka, N. W.; Lowe, C. W.; Tabibi, B. M.; Lee, C. J.; Lyons, D.; Maclin, A.

    1994-01-01

    This report describes in chronological detail the development of the Spaceborne Photonics Institute as a sustained research effort at Hampton University in the area of optical physics. This provided the research expertise to initiate a PhD program in Physics. Research was carried out in the areas of: (1) modelling of spaceborne solid state laser systems; (2) amplified spontaneous emission in solar pumped iodine lasers; (3) closely simulated AM0 CW solar pumped iodine laser and repeatedly short pulsed iodine laser oscillator; (4) a materials spectroscopy and growth program; and (5) laser induced fluorescence and atomic and molecular spectroscopy.

  19. Photonic crystal optofluidic biolaser

    Science.gov (United States)

    Mozaffari, Mohammad Hazhir; Ebnali-Heidari, Majid; Abaeiani, Gholamreza; Moravvej-Farshi, Mohammad Kazem

    2017-09-01

    Optofluidic biolasers are recently being considered in bioanalytical applications due to their advantages over the conventional biosensing methods Exploiting a photonic crystal slab with selectively dye-infiltrated air holes, we propose a new optofluidic heterostructure biolaser, with a power conversion efficiency of 25% and the spectral linewidth of 0.24 nm. Simulations show that in addition to these satisfactory lasing characteristics, the proposed lab-on-a-chip biolaser is highly sensitive to the minute biological changes that may occur in its cavity and can detect a single virus with a radius as small as 13 nm.

  20. Hybrid photon detectors for the LHCb RICH

    CERN Document Server

    Eisenhardt, Stephan

    2006-01-01

    The LHCb Ring Imaging Cherenkov (RICH) counters use the pixel Hybrid Photon Detector (HPD) as a photo-sensitive device. Photo-electrons are produced in semi-transparent multi-alkali photo-cathode (S20) and are accelerated by a voltage of 20 kV onto a pixelated silicon anode. The anode is bump-bonded to the LHCBPIX1 pixel readout chip which amplifies and digitises the anode signals at the LHC speed of 40 MHz. Using a demagnification of five, the effective pixel size at the HPD window is 2.5 x 2.5 mm$^2$. Over the course of 18 months, 550 HPSs will undergo a quality-assurance programme to verify the specifications and to characterise the tubes. The tested parameters include the threshold and noise behaviour of the chip, the response to light emitting diode (LED) light, the demagnification of the electron optics, the leakage current and the depletion of the silicon sensor, the quality of the vacuum, the signal efficiency and the dark count rate. Results of tests of the first nine HPDs of the final design are pr...

  1. The Advanced Photon Source event system

    International Nuclear Information System (INIS)

    Lenkszus, F.R.; Laird, R.

    1995-01-01

    The Advanced Photon Source, like many other facilities, requires a means of transmitting timing information to distributed control system 1/0 controllers. The APS event system provides the means of distributing medium resolution/accuracy timing events throughout the facility. It consists of VME event generators and event receivers which are interconnected with 10OMbit/sec fiber optic links at distances of up to 650m in either a star or a daisy chain configuration. The systems event throughput rate is 1OMevents/sec with a peak-to-peak timing jitter down to lOOns depending on the source of the event. It is integrated into the EPICS-based A.PS control system through record and device support. Event generators broadcast timing events over fiber optic links to event receivers which are programmed to decode specific events. Event generators generate events in response to external inputs, from internal programmable event sequence RAMS, and from VME bus writes. The event receivers can be programmed to generate both pulse and set/reset level outputs to synchronize hardware, and to generate interrupts to initiate EPICS record processing. In addition, each event receiver contains a time stamp counter which is used to provide synchronized time stamps to EPICS records

  2. Counter-terrorism threat prediction architecture

    Science.gov (United States)

    Lehman, Lynn A.; Krause, Lee S.

    2004-09-01

    This paper will evaluate the feasibility of constructing a system to support intelligence analysts engaged in counter-terrorism. It will discuss the use of emerging techniques to evaluate a large-scale threat data repository (or Infosphere) and comparing analyst developed models to identify and discover potential threat-related activity with a uncertainty metric used to evaluate the threat. This system will also employ the use of psychological (or intent) modeling to incorporate combatant (i.e. terrorist) beliefs and intent. The paper will explore the feasibility of constructing a hetero-hierarchical (a hierarchy of more than one kind or type characterized by loose connection/feedback among elements of the hierarchy) agent based framework or "family of agents" to support "evidence retrieval" defined as combing, or searching the threat data repository and returning information with an uncertainty metric. The counter-terrorism threat prediction architecture will be guided by a series of models, constructed to represent threat operational objectives, potential targets, or terrorist objectives. The approach would compare model representations against information retrieved by the agent family to isolate or identify patterns that match within reasonable measures of proximity. The central areas of discussion will be the construction of an agent framework to search the available threat related information repository, evaluation of results against models that will represent the cultural foundations, mindset, sociology and emotional drive of typical threat combatants (i.e. the mind and objectives of a terrorist), and the development of evaluation techniques to compare result sets with the models representing threat behavior and threat targets. The applicability of concepts surrounding Modeling Field Theory (MFT) will be discussed as the basis of this research into development of proximity measures between the models and result sets and to provide feedback in support of model

  3. Counter-Rotating Tandem Motor Drilling System

    Energy Technology Data Exchange (ETDEWEB)

    Kent Perry

    2009-04-30

    Gas Technology Institute (GTI), in partnership with Dennis Tool Company (DTC), has worked to develop an advanced drill bit system to be used with microhole drilling assemblies. One of the main objectives of this project was to utilize new and existing coiled tubing and slimhole drilling technologies to develop Microhole Technology (MHT) so as to make significant reductions in the cost of E&P down to 5000 feet in wellbores as small as 3.5 inches in diameter. This new technology was developed to work toward the DOE's goal of enabling domestic shallow oil and gas wells to be drilled inexpensively compared to wells drilled utilizing conventional drilling practices. Overall drilling costs can be lowered by drilling a well as quickly as possible. For this reason, a high drilling rate of penetration is always desired. In general, high drilling rates of penetration (ROP) can be achieved by increasing the weight on bit and increasing the rotary speed of the bit. As the weight on bit is increased, the cutting inserts penetrate deeper into the rock, resulting in a deeper depth of cut. As the depth of cut increases, the amount of torque required to turn the bit also increases. The Counter-Rotating Tandem Motor Drilling System (CRTMDS) was planned to achieve high rate of penetration (ROP) resulting in the reduction of the drilling cost. The system includes two counter-rotating cutter systems to reduce or eliminate the reactive torque the drillpipe or coiled tubing must resist. This would allow the application of maximum weight-on-bit and rotational velocities that a coiled tubing drilling unit is capable of delivering. Several variations of the CRTDMS were designed, manufactured and tested. The original tests failed leading to design modifications. Two versions of the modified system were tested and showed that the concept is both positive and practical; however, the tests showed that for the system to be robust and durable, borehole diameter should be substantially larger

  4. Recent photon results from ATLAS

    CERN Document Server

    Glasman, Claudia; The ATLAS collaboration

    2017-01-01

    The production of prompt isolated photons at hadron colliders provides a stringent test of perturbative QCD and can be used to probe the gluon density function of the proton. The ATLAS collaboration has performed precise measurements of the inclusive production o f isolated prompt photons at a center-of-mass energy of 13 TeV, differential in both rap idity and the photon transverse momentum. In addition, the integrated and differential c ross sections for isolated photon pair production 8 TeV have been measured. The results are compared with state-of-the-art theory predictions at NLO in QCD and with predictions of several MC generators.

  5. Photon counting detector for the personal radiography inspection system "SIBSCAN"

    Science.gov (United States)

    Babichev, E. A.; Baru, S. E.; Grigoriev, D. N.; Leonov, V. V.; Oleynikov, V. P.; Porosev, V. V.; Savinov, G. A.

    2017-02-01

    X-ray detectors operating in the energy integrating mode are successfully used in many different applications. Nevertheless the direct photon counting detectors, having the superior parameters in comparison with the integrating ones, are rarely used yet. One of the reasons for this is the low value of the electrical signal generated by a detected photon. Silicon photomultiplier (SiPM) based scintillation counters have a high detection efficiency, high electronic gain and compact dimensions. This makes them a very attractive candidate to replace routinely used detectors in many fields. More than 10 years ago the digital scanning radiography system based on multistrip ionization chamber (MIC) was suggested at Budker Institute of Nuclear Physics. The detector demonstrates excellent radiation resistance and parameter stability after 5 year operations and an imaging of up to 1000 persons per day. Currently, the installations operate at several Russian airports and at subway stations in some cities. At the present time we design a new detector operating in the photon counting mode, having superior parameters than the gas one, based on scintillator - SiPM assemblies. This detector has close to zero noise, higher quantum efficiency and a count rate capability of more than 5 MHz per channel (20% losses), which leads to better image quality and improved detection capability. The suggested detector technology could be expanded to medical applications.

  6. Deterministically swapping frequency-bin entanglement from photon-photon to atom-photon hybrid systems

    Science.gov (United States)

    Ou, Bao-Quan; Liu, Chang; Sun, Yuan; Chen, Ping-Xing

    2018-02-01

    Inspired by the recent developments of the research on the atom-photon quantum interface and energy-time entanglement between single-photon pulses, we are motivated to study the deterministic protocol for the frequency-bin entanglement of the atom-photon hybrid system, which is analogous to the frequency-bin entanglement between single-photon pulses. We show that such entanglement arises naturally in considering the interaction between a frequency-bin entangled single-photon pulse pair and a single atom coupled to an optical cavity, via straightforward atom-photon phase gate operations. Its anticipated properties and preliminary examples of its potential application in quantum networking are also demonstrated. Moreover, we construct a specific quantum entanglement witness tool to detect such extended frequency-bin entanglement from a reasonably general set of separable states, and prove its capability theoretically. We focus on the energy-time considerations throughout the analysis.

  7. Counter-Punishment, Communication, and Cooperation among Partners

    Science.gov (United States)

    Andrighetto, Giulia; Brandts, Jordi; Conte, Rosaria; Sabater-Mir, Jordi; Solaz, Hector; Székely, Áron; Villatoro, Daniel

    2016-01-01

    We study how communication affects cooperation in an experimental public goods environment with punishment and counter-punishment opportunities. Participants interacted over 30 rounds in fixed groups with fixed identifiers that allowed them to trace other group members' behavior over time. The two dimensions of communication we study are asking for a specific contribution level and having to express oneself when choosing to counter-punish. We conduct four experimental treatments, all involving a contribution stage, a punishment stage, and a counter-punishment stage in each round. In the first treatment communication is not possible at any of the stages. The second treatment allows participants to ask for a contribution level at the punishment stage and in the third treatment participants are required to send a message if they decide to counter-punish. The fourth combines the two communication channels of the second and third treatments. We find that the three treatments involving communication at any of the two relevant stages lead to significantly higher contributions than the baseline treatment. We find no difference between the three treatments with communication. We also relate our results to previous results from treatments without counter-punishment opportunities and do not find that the presence of counter-punishment leads to lower cooperation level. The overall pattern of results shows that given fixed identifiers the key factor is the presence of communication. Whenever communication is possible contributions and earnings are higher than when it is not, regardless of counter-punishment opportunities. PMID:27092065

  8. The research on the failure regularity of GM counter tubes

    International Nuclear Information System (INIS)

    Li Jiyuan; Huai Guangli; Xie Bo; Zhang Hao

    2002-01-01

    The reliability of GM counter tubes should be described by useful time before failure-life and failure rate during life. A new method to study the failure regularity of GM counter tubes is advanced and adopted. The essential point of the method is that after the GM counter tubes of the instruments in use is tested, both the performance parameters and other information of the GM counter tubes and the instruments collected are recorded. Then database is created. Failure criterion is ascertained. The GM counter tubes are inspected to determine whether they are failure. Failure mode should be decided if the GM counter tubes failure. The GM counter tubes with the same useful year come together to make up a subsample. According to the relevant information, the number of the subsample is restored to the number of the sample that initially put into use. Then the number of failure sample is counted and at the same time the distribution of failure mode is got. The parameter m, γ, t 0 of Weibull distribution function are calculated with method of linear fit. Thus mean life, failure rate and other character values are obtained. Using this method, useful life and failure rate are determined. The conclusion is that the useful life is 18-20 years and the failure rate is 5 x 10 -6 and 4 x 10 -6 /h respectively during the course

  9. Effect of Counter Electrode in Electroformation of Giant Vesicles

    Directory of Open Access Journals (Sweden)

    Shuuhei Oana

    2011-11-01

    Full Text Available Electroformation of cell-sized lipid membrane vesicles (giant vesicles, GVs, from egg yolk phosphatidylcholine, was examined varying the shape of the counter electrode. Instead of a planar ITO (indium tin oxide electrode commonly used, platinum wire mesh was employed as a counter electrode facing lipid deposit on a planar formation electrode. The modification did not significantly alter GV formation, and many GVs of 30–50 µm, some as large as 100 µm, formed as with the standard setup, indicating that a counter electrode does not have to be a complete plane. When the counter electrode was reduced to a set of two parallel platinum wires, GV formation deteriorated. Some GVs formed, but only in close proximity to the counter electrode. Lower electric voltage with this setup no longer yielded GVs. Instead, a large onion-like multilamellar structure was observed. The deteriorated GV formation and the formation of a multilamellar structure seemed to indicate the weakened effect of the electric field on lipid deposit due to insufficient coverage with a small counter electrode. Irregular membranous objects formed by spontaneous swelling of lipid without electric voltage gradually turned into multilamellar structure upon following application of voltage. No particular enhancement of GV formation was observed when lipid deposit on a wire formation electrode was used in combination with a large planar counter electrode.

  10. A dual-detector extended range rem-counter

    CERN Document Server

    Ferrarini, M; Silari, M; Agosteo, S

    2010-01-01

    The design and characterization of a dual-detector spherical rem counter is discussed in this paper. The rem counter is based on a polythene sphere with lead and cadmium insets, designed to host at its centre either an active (He-3 SP9 proportional counter) or a passive (CR39 + B-10 radiator) thermal neutron detector. Its sensitivity ranges from thermal energies up to 1 GeV. A Monte Carlo characterization of this dual-detector rem counter has shown no significant change in the shape of the response curve obtained with the two detectors. The rem counter has been calibrated with a Pu-Be source. An intercomparison in a high-energy neutron field has been carried out at the CERF facility at CERN among the rem counter in the two configurations, two commercial units and the original version of the active LINUS in use at CERN. Both the active and passive versions of the rem counter agree, within the statistical uncertainties, with the CERN LINUS and with the facility reference values. Both versions of the instrument ...

  11. Direct Writing of Photonic Structures by Two-Photon Polymerization

    Directory of Open Access Journals (Sweden)

    Li Yan

    2013-11-01

    Full Text Available Single-mode dielectric-loaded surface plasmon-polariton nanowaveguides with strong mode confinement at excitation wavelength of 830 nm and high-Q polymer whispering gallery mode microcavities with surface roughness less than 12 nm have been directly written by two-photon polymerization, which pave the way to fabricate 3D plasmonic photonic structures by direct laser writing.

  12. Photon and di-photon production at ATLAS

    CERN Document Server

    INSPIRE-00213273

    2013-01-01

    The latest ATLAS measurements of the cross section for the inclusive production of isolated prompt photons in $pp$ collisions at a centre-of-mass energy $\\sqrt{s}$ = 7 TeV at the LHC are presented, as well as the measurement of the di-photon production cross section.

  13. Sidewall roughness measurement of photonic wires and photonic crystals

    DEFF Research Database (Denmark)

    Svalgaard, Mikael; Frandsen, Lars Hagedorn; Garnæs, Jørgen

    2007-01-01

    The performance of nanophotonic building blocks such as photonic wires and photonic crystals are rapidly improving, with very low propagation loss and very high cavity Q-factors being reported. In order to facilitate further improvements in performance the ability to quantitatively measure...

  14. Photonic band gap engineering in 2D photonic crystals

    Indian Academy of Sciences (India)

    -dimensional photonic crystals with square lattices composed of air holes in dielectric and vice versa i.e., dielectric rods in air, using the plane-wave expansion method are investigated. We then study, how the photonic band gap size is ...

  15. Quantum photonics with quantum dots in photonic wires

    DEFF Research Database (Denmark)

    Munsch, Mathieu; Kuhlmann, Andreas; Cadeddu, Davide

    2016-01-01

    We present results from the spectroscopy of a single quantum dot in a photonic wire. The device presents a high photon extraction efficiency, and strong hybrid coupling to mechanical modes. We use resonance fluorescence to probe the emitter’s properties with the highest sensitivity. Weperform...

  16. Non-Poissonian photon statistics from macroscopic photon cutting materials

    NARCIS (Netherlands)

    De Jong, Mathijs; Meijerink, A; Rabouw, Freddy T.

    2017-01-01

    In optical materials energy is usually extracted only from the lowest excited state, resulting in fundamental energy-efficiency limits such as the Shockley-Queisser limit for single-junction solar cells. Photon-cutting materials provide a way around such limits by absorbing high-energy photons and

  17. Helium-filled proportional counter and its operation mechanism at low temperatures

    CERN Document Server

    Isozumi, Y; Kishimoto, S

    2002-01-01

    The operation mechanism of helium-filled proportional counter (HFPC) at about 4.2 K is explained. Unstable behavior of HFPC is caused by releasing secondary-electron from the cathode by four kinds of active particles such as He sub n sup + , non-resonance photon from excited helium atom, non-resonance photon from He sub 2 sup * (A sup 1 Su sup +) and He sub 2 sup m (a sup 3 Su sup +). On experiments of HFPC behavior at low temperature, the following facts were observed; 1) main charge formation process in the electron avalanche is direct ionization by electron without Hornbeck-Molnar process. Accordingly, the gas amplification factor becomes small at low temperature. 2) Stable helium cation is He sub 2 sup + at room temperature, but cluster at low temperature. Large after-pulse is observed in output signal depends on cluster ion. The probability of secondary-electron emission decreased. The gas gain increased with increasing anode voltage. 3) By decreasing reaction rate of atom and molecule collision at low t...

  18. Photon counting systems

    International Nuclear Information System (INIS)

    Cuby, J.G.

    1988-01-01

    This paper is a review of the various photon counting systems, used in astronomy, at optical wavelengths. Technological differences between available devices are introduced according to the processes applied to these photoelectrons (multiplication and/or acceleration), and their impact targets (phosphors, photodetectors, resistive or conductive anodes...). Two detection processes are involved: threshold discrimination above noise for most types of devices, and analog measurement for systems using resistive and wedge-and-strip anodes. Devices currently used for astronomical observations are presented, and their performance characteristics. These devices are: photomultipliers, which are monopixel detectors, using multiplication with dynodes; images intensifiers cameras, most frequently read with CCDs; analog devices with resistive or wedge-and-strip anodes, behind microchannel plates (MCP); Digicons, using direct electronic bombardment; the MAMA detector, with coincidence anodes behind MCP; and then the PAPA detector using masks encoding readout. Dead time effects, which define the dynamic range are presented with some details. Finally, because of the improvement of low level readout noise devices (CCDs), the field of application of the photon counting techniques confines to the blue and the UV part of the spectrum, at low signal to noise ratios [fr

  19. Training options for countering nuclear smuggling

    International Nuclear Information System (INIS)

    Ball, D Y; Erickson, S A

    1999-01-01

    The burden of stopping a nuclear smuggling attempt at the border rests most heavily on the front-line customs inspector. He needs to know how to use the technological tools at his disposal, how to discern tell-tale anomalies in export documents and manifests, how to notice psychological signs of a smuggler's tension, and how to search anything that might hide nuclear material. This means that assistance in the counter-nuclear smuggling training of customs officers is one of the most critical areas of help that the United States can provide. This paper discusses the various modes of specialized training, both in the field and in courses, as well as the types of assistance that can be provided. Training for nuclear customs specialists, and supervisors and managers of nuclear smuggling detection systems is also important, and differs from front-line inspector training in several aspects. The limitations of training and technological tools such as expert centers that will overcome these limitations are also discussed. Training assistance planned by DOE/NN-43 to Russia within the Second Line of Defense program is discussed in the light of these options, and future possibilities for such training are projected

  20. UMCP MIST counter-part test

    International Nuclear Information System (INIS)

    di Marzo, M.; Almenas, K.; Hsu, Y.Y.; Pertmer, G.A.

    1990-01-01

    Two small break loss-of-coolant accident (LOCA) transients are compared to illustrate a scaling methodology for reduced pressure integral facilities. Mapping test 3004 is conducted in the Multiloop Integral System Test (MIST) full pressure, full height facility. The counter-part test MISO3l7 is scaled and performed in the reduced height, reduced pressure UMCP facility. Inventory is used as the chronological scale and pressure, normalized with the initial and system saturation pressures, is used as characteristic parameter to describe the system behavior. The appropriately normalized results conclusively demonstrate that: (a) the same phenomena are observed in the two facilities; (b) the sequence of events is analogous and (c) the trends described by the normalized pressure versus inventory traces are in good quantitative agreement. Each energy transport mode traversed by the two facilities is compared and the phenomena present are described in detail. The differences between the high and reduced pressure tests are outlined. The findings clearly indicate that pressure and height can be scaled for transient where limited boundary conditions are applied and where the break is subcooled. A statement on sensitivity to the initial conditions is also included to define the limitations of the quantitative results

  1. International intercomparison of whole body counters

    International Nuclear Information System (INIS)

    Andrasi, A.; Beleznay, E.

    1980-01-01

    An international intercomparison of whole-body counters with the participation of 7 laboratories from 5 member countries was organized in 1976 by the Consultative Scientific and Technical Council for Radiation Protection of the CMEA. The Health Physics Department of the Central Research Institute for Physics also participated in this intercomparison. The main aim of the participation was to check our calibration method, measuring and evaluation procedures to determine their suitability for routine measurements and to investigate the advantages and drawbacks of applying different measuring geometries and evaluation methods. The final results of the intercomparison including our data in more detail are shown in the paper. The results obtained for different measuring geometries, evaluation methods and phantom sizes applying a simple calibration procedure are also given. The results show that a simplified calibration method using point sources embedded in an elliptic cylinder shaped scattering medium and a computerized least square fitting procedure in the evaluation of measurements combine to yield a final accuracy of +-15% in the gamma energy range of 250-1500 keV assuming uniformly distributed sources, a wide range of body sizes, and the choice of a particular measuring geometry. (author)

  2. Countering GPS jamming and EW threat

    Science.gov (United States)

    Pereira, Carlos M.; Rastegar, J.; McLain, Clifford E.; Alanson, T.; McMullan, Charles; Nguyen, H.-L.

    2007-09-01

    Efforts at the U.S. Army Research, Development and Engineering Center (ARDEC) at Picatinny, New Jersey are focused on developing methods to counter GPS jamming and electronic warfare (EW) threat by eliminating GPS dependency entirely. In addition, the need for munitions cost reduction requires alternatives to expensive high-grade inertia components. Efforts at ARDEC include investigations of novel methods for onboard measurement of munitions full position and angular orientation independent of GPS signals or high-grade inertia components. Currently, two types of direct angular measurement sensors are being investigated. A first sensor, Radio Frequency Polarized Sensor (RFPS), uses an electromagnetic field as a reference. A second sensor is based on magnetometers, using the Earth magnetic field for orientation measurement. Magnetometers, however, can only provide two independent orientation measurements. The RFPS may also be used to make full object position and angular orientation measurement relative to a reference coordinate system, which may be moving or stationary. The potential applications of novel RFPS sensors is in providing highly effective inexpensive replacement for GPS, which could be used in a "Layered Navigation" scheme employing alternate referencing methods and reduce the current dependency on GPS as a primary reference for guided gun-fired munitions. Other potential applications of RFPSs is in UAVs, UGVs, and robotic platforms.

  3. Amplified Photon Upconversion by Photonic Shell of Cholesteric Liquid Crystals.

    Science.gov (United States)

    Kang, Ji-Hwan; Kim, Shin-Hyun; Fernandez-Nieves, Alberto; Reichmanis, Elsa

    2017-04-26

    As an effective platform to exploit triplet-triplet-annihilation-based photon upconversion (TTA-UC), microcapsules composed of a fluidic UC core and photonic shell are microfluidically prepared using a triple emulsion as the template. The photonic shell consists of cholesteric liquid crystals (CLCs) with a periodic helical structure, exhibiting a photonic band gap. Combined with planar anchoring at the boundaries, the shell serves as a resonance cavity for TTA-UC emission and enables spectral tuning of the UC under low-power-density excitation. The CLC shell can be stabilized by introducing a polymerizable mesogen in the LC host. Because of the microcapsule spherical symmetry, spontaneous emission of the delayed fluorescence is omnidirectionally amplified at the edge of the stop band. These results demonstrate the range of opportunities provided by TTA-UC systems for the future design of low-threshold photonic devices.

  4. Photonic integration and photonics-electronics convergence on silicon platform

    CERN Document Server

    Liu, Jifeng; Baba, Toshihiko; Vivien, Laurent; Xu, Dan-Xia

    2015-01-01

    Silicon photonics technology, which has the DNA of silicon electronics technology, promises to provide a compact photonic integration platform with high integration density, mass-producibility, and excellent cost performance. This technology has been used to develop and to integrate various photonic functions on silicon substrate. Moreover, photonics-electronics convergence based on silicon substrate is now being pursued. Thanks to these features, silicon photonics will have the potential to be a superior technology used in the construction of energy-efficient cost-effective apparatuses for various applications, such as communications, information processing, and sensing. Considering the material characteristics of silicon and difficulties in microfabrication technology, however, silicon by itself is not necessarily an ideal material. For example, silicon is not suitable for light emitting devices because it is an indirect transition material. The resolution and dynamic range of silicon-based interference de...

  5. Robust Adaptive Photon Tracing using Photon Path Visibility

    DEFF Research Database (Denmark)

    Hachisuka, Toshiya; Jensen, Henrik Wann

    2011-01-01

    algorithm is the use of visibility of photon path as the importance function which ensures that our sampling algorithm focuses on paths that are visible from the given viewpoint. Our sampling algorithm builds on two recent developments in Markov chain Monte Carlo methods: adaptive Markov chain sampling...... and replica exchange. Using these techniques, each photon path is adaptively mutated and it explores the sampling space efficiently without being stuck at a local peak of the importance function. We have implemented this sampling approach in the progressive photon mapping algorithm which provides visibility...... information in a natural way when a photon path contributes to a measurement point. We demonstrate that the final algorithm is strikingly simple, yet effective at sampling photons under lighting conditions that would be difficult for existing Monte Carlo ray tracing-based methods....

  6. Over-the-counter codeine use in Iceland

    DEFF Research Database (Denmark)

    Almarsdóttir, A B; Grimsson, A

    2000-01-01

    an interrupted time series design that contrasts the monthly sales data for over-the-counter pain relievers containing codeine before and after the legislation took effect. RESULTS: The total use of over-the-counter pain relievers containing codeine as well as those containing paracetamol and codeine has risen...... steadily throughout the period under study. The interrupted time series did not show a substantial effect from the legislative change on the use of all over-the-counter codeine pain relievers, paracetemol with codeine, and aspirin with codeine combinations. CONCLUSION: The assumption that increased access...

  7. Over-the-counter codeine use in Iceland

    DEFF Research Database (Denmark)

    Almarsdóttir, Anna Birna; Grímsson, Almar

    2000-01-01

    an interrupted time series design that contrasts the monthly sales data for over-the-counter pain relievers containing codeine before and after the legislation took effect. Results: The total use of over-the-counter pain relievers containing codeine as well as those containing paracetamol and codeine has risen...... steadily throughout the period under study. The interrupted time series did not show a substantial effect from the legislative change on the use of all over-the-counter codeine pain relievers, paracetemol with codeine, and aspirin with codeine combinations. Conclusion: The assumption that increased access...

  8. Hardware support for collecting performance counters directly to memory

    Science.gov (United States)

    Gara, Alan; Salapura, Valentina; Wisniewski, Robert W.

    2012-09-25

    Hardware support for collecting performance counters directly to memory, in one aspect, may include a plurality of performance counters operable to collect one or more counts of one or more selected activities. A first storage element may be operable to store an address of a memory location. A second storage element may be operable to store a value indicating whether the hardware should begin copying. A state machine may be operable to detect the value in the second storage element and trigger hardware copying of data in selected one or more of the plurality of performance counters to the memory location whose address is stored in the first storage element.

  9. Gain stabilisation of gas-flow proportional counters

    International Nuclear Information System (INIS)

    Denecke, B.; Grosse, G.; Szabo, T.

    1998-01-01

    A stabilisation of the gas gain for proportional counters with a continuous gas flow is described. New gas-flow systems for two end-window counters and one pressurised proportional counter were developed. The gas density of the counting-gas flow is stabilised by a two-stage back-pressure regulation system. The pressure in the gas flow is compared with the pressure in a reference vessel. During one month of operation the gain was stable within ±0.3%

  10. The STAR Photon Multiplicity Detector

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, M.M.; Badyal, S.K.; Bhaskar, P.; Bhatia, V.S.; Chattopadhyay, S. E-mail: sub@veccal.ernet.in; Das, S.; Datta, R.; Dubey, A.K.; Dutta Majumdar, M.R.; Ganti, M.S.; Ghosh, P.; Gupta, A.; Gupta, M.; Gupta, R.; Kaur, I.; Kumar, A.; Mahajan, S.; Mahapatra, D.P.; Mangotra, L.K.; Mishra, D.; Mohanty, B.; Nayak, S.K.; Nayak, T.K.; Pal, S.K.; Phatak, S.C.; Potukuchi, B.V.K.S.; Raniwala, R.; Raniwala, S.; Sahoo, R.; Sharma, A.; Singaraju, R.N.; Sood, G.; Trivedi, M.D.; Varma, R.; Viyogi, Y.P

    2003-03-01

    Details concerning the design, fabrication and performance of STAR Photon Multiplicity Detector (PMD) are presented. The PMD will cover the forward region, within the pseudorapidity range 2.3-3.5, behind the forward time projection chamber. It will measure the spatial distribution of photons in order to study collective flow, fluctuation and chiral symmetry restoration.

  11. Photonic nanowires for quantum optics

    DEFF Research Database (Denmark)

    Munsch, M.; Claudon, J.; Bleuse, J.

    Photonic nanowires (PWs) are simple dielectric structures for which a very efficient and broadband spontaneous emission (SE) control has been predicted [1]. Recently, a single photon source featuring a record high efficiency was demonstrated using this geometry [2]. Using time-resolved micro-phot...

  12. Advances on integrated microwave photonics

    DEFF Research Database (Denmark)

    Dong, Jianji; Liao, Shasha; Yan, Siqi

    2017-01-01

    Integrated microwave photonics has attracted a lot of attentions and makes significant improvement in last 10 years. We have proposed and demonstrated several schemes about microwave photonics including waveform generation, signal processing and energy-efficient micro-heaters. Our schemes are all...

  13. Nanodiamond particles forming photonic structures

    International Nuclear Information System (INIS)

    Grichko, Varvara; Tyler, Talmage; Grishko, Victor I; Shenderova, Olga

    2008-01-01

    Colloid suspensions of irregularly shaped, highly charged detonation nanodiamond particles are found to have unexpected optical properties, similar to those of photonic crystals. This finding is all the more surprising since the particles used in this work are far more polydisperse than those typically forming photonic crystals. Intensely iridescent structures have been fabricated using the centrifugation of aqueous suspensions of nanodiamonds

  14. Nanodiamond particles forming photonic structures

    Energy Technology Data Exchange (ETDEWEB)

    Grichko, Varvara; Tyler, Talmage; Grishko, Victor I; Shenderova, Olga [International Technology Center, 8100 Brownleigh Drive, Suite 120, Raleigh, NC 27617 (United States)], E-mail: oshenderova@itc-inc.org

    2008-06-04

    Colloid suspensions of irregularly shaped, highly charged detonation nanodiamond particles are found to have unexpected optical properties, similar to those of photonic crystals. This finding is all the more surprising since the particles used in this work are far more polydisperse than those typically forming photonic crystals. Intensely iridescent structures have been fabricated using the centrifugation of aqueous suspensions of nanodiamonds.

  15. Photon Production Within Storage Capsules

    CERN Document Server

    Rittmann, P D

    2003-01-01

    This report provides tables and electronic worksheets that list the photon production rate within SrF2 and CsC1 storage capsules, particularly the continuous spectrum of bremsstrahlung photons from the slowing down of the emitted electrons (BREMCALC).

  16. Silicon photonics fundamentals and devices

    CERN Document Server

    Deen, M Jamal

    2012-01-01

    The creation of affordable high speed optical communications using standard semiconductor manufacturing technology is a principal aim of silicon photonics research. This would involve replacing copper connections with optical fibres or waveguides, and electrons with photons. With applications such as telecommunications and information processing, light detection, spectroscopy, holography and robotics, silicon photonics has the potential to revolutionise electronic-only systems. Providing an overview of the physics, technology and device operation of photonic devices using exclusively silicon and related alloys, the book includes: * Basic Properties of Silicon * Quantum Wells, Wires, Dots and Superlattices * Absorption Processes in Semiconductors * Light Emitters in Silicon * Photodetectors , Photodiodes and Phototransistors * Raman Lasers including Raman Scattering * Guided Lightwaves * Planar Waveguide Devices * Fabrication Techniques and Material Systems Silicon Photonics: Fundamentals and Devices outlines ...

  17. Two-dimensional topological photonics

    Science.gov (United States)

    Khanikaev, Alexander B.; Shvets, Gennady

    2017-12-01

    Originating from the studies of two-dimensional condensed-matter states, the concept of topological order has recently been expanded to other fields of physics and engineering, particularly optics and photonics. Topological photonic structures have already overturned some of the traditional views on wave propagation and manipulation. The application of topological concepts to guided wave propagation has enabled novel photonic devices, such as reflection-free sharply bent waveguides, robust delay lines, spin-polarized switches and non-reciprocal devices. Discrete degrees of freedom, widely used in condensed-matter physics, such as spin and valley, are now entering the realm of photonics. In this Review, we summarize the latest advances in this highly dynamic field, with special emphasis on the experimental work on two-dimensional photonic topological structures.

  18. Photonic quantum information: science and technology.

    Science.gov (United States)

    Takeuchi, Shigeki

    2016-01-01

    Recent technological progress in the generation, manipulation and detection of individual single photons has opened a new scientific field of photonic quantum information. This progress includes the realization of single photon switches, photonic quantum circuits with specific functions, and the application of novel photonic states to novel optical metrology beyond the limits of standard optics. In this review article, the recent developments and current status of photonic quantum information technology are overviewed based on the author's past and recent works.

  19. Discrimination capability of avalanche counters detecting different ionizing particles

    International Nuclear Information System (INIS)

    Prete, G.; Viesti, G.; Padua Univ.

    1985-01-01

    The discrimination capability of avalanche counters to detect different ionizing particles has been studied using a 252 Cf source. Pulse height, pulse-height resolution and timing properties have been measured as a function of the reduced applied voltage for parallel-plate and parallel-grid avalanche counters. At the highest applied voltages, space charge effects shift the pulse-height signal of the avalanche counter away from being linearly proportional to the stopping power of the detected particles and cause the pulse-height resolution to deteriorate. To optimize the avalanche counter capability, without loss of time resolution, it appears better to operate the detector at voltages well below the breakdown threshold. Measurements with 32 S ions are also reported. (orig.)

  20. Epithermal neutron multiplicity counter (ENMC) - summary of measurement results

    Energy Technology Data Exchange (ETDEWEB)

    Henzlova, Daniela [Los Alamos National Laboratory; Menlove, Howard O [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory; Rael, Carlos D [Los Alamos National Laboratory; Martinez, Isaac P [Los Alamos National Laboratory; Marlow, Johnna B [Los Alamos National Laboratory

    2010-10-20

    This presentation summarizes results acquired within LLNL-LANL collaboration on fast and thermal neutron detection techniques. Results acquired using Epithermal Neutron Multiplicity Counter (ENMC) are presented. Variety of sources relevant for nuclear safeguards were used in this comparison.